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Advertencia 
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Capítulo 10: completo 

Capítulo 11: completo 

Capítulo 12: completo 

Para  Algebra: 

Sin los Capítulos 6 y 7, los restantes Capítulos con todos sus incisos en el orden propuesto. 
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CAPÍTULO 1 

Elementos de Lógica (Informalmente)

Comentario histórico y algo más... 

Los Elementos de Euclides es un clásico de la matemática de Occidente que ha sido escrito 

aproximadamente en el año 300 antes de Cristo. En  este trabajo Euclides presenta en forma 

ordenada, en una colección de 13 Libros, los "elementos" o las partes introductorias a la Matemática  que  se  estudiaba  en  Alejandría  en  ese  entonces.  Los  resultados  presentados  en  los Elementos, no todos son obra de Euclides, es una recopilación ordenada y metódica. La mayor contribución de Euclides es la organización axiomática de la obra y que cada resultado es rigu-rosamente deducido de un número pequeño de suposiciones y definiciones. Este tipo de orga-

nización fue modelo luego para varias otras obras posteriores. 

En  la  actualidad  hay  distintas  presentaciones  de  la  fundamentación  de  la  Matemática,  en  su mayoría se basan en la teoría de conjuntos o la teoría de los números naturales, la presentación de Euclides comenzó con puntos y rectas. Él expresó las leyes de la Aritmética geométricamente. 

Euclides  comienza  los  Elementos  con  una  lista  de  23  definiciones,  seguida  de  5  postulados (axiomas) que gobiernan todo lo que puede ser construido y que tienen "existencia" matemática. Luego Euclides da sus  5 "nociones comunes" o "verdades lógicas" que tienen relación con las propiedades de la igualdad. Los primeros seis Libros son relativos a la Geometría (plana), en el final del Libro I se incluye la demostración del teorema de Pitágoras (570-500 a.C) y su recíproco. 

Cabe aclarar  que "el teorema de Pitágoras" se atribuye a Pitágoras por ser probablemente el matemático que obtuvo su primera demostración, pero la relación que plantea ya era conocida por los babilonios. 

En los Libros VII, VIII y IX se desarrol a todo lo relativo a la teoría de números enteros (positivos, en esa época no se trabajaba con negativos). En el Libro X se investigan expresiones de cierta  complicación  con  raíces  cuadradas  tratando  de  reducirlas  a  expresiones  más  simples. 

Los restantes Libros son estudios sobre Geometría del espacio. 

El proceder de Euclides se basa en la propuesta de Aristóteles (384-322 a.C) de teoría axiomática dada en los Segundos Analíticos, donde formula el método deductivo. 

Este método consiste en partir de proposiciones l amadas axiomas ó postulados, probar otras proposiciones l amadas teoremas. Cada proposición en la prueba debe estar justificada por un axioma, un teorema previamente probado o por un principio lógico. Esa prueba es la demostración del teorema 

( Sería  importante   que  usando  Internet,  con  un  buscador  rápido  averigüe  e  investigue  sobre Euclides, Aristóteles, Pitágoras y algo sus obras, es muy interesante además de instructivo). 
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Una  diferencia  sustancial  entre  la  teoría  dada  por  Euclides  en  sus  Elementos  y  las  teorías axiomáticas actuales es que Euclides consideraba a sus puntos de  partida como verdaderos, 

no como en la actualidad que las teorías consideran los puntos de partida como hipótesis, sin atribuirles un valor de verdad. Considerar los axiomas de la Matemática como  verdaderos es también una idea que Euclides toma de Aristóteles. 

Euclides no incluyó en su trabajo un informe del desarrol o de los resultados matemáticos  que l evaron siglos para  que puedan ser presentados como un cuerpo organizado  como el que él 

presenta. 

El trabajo creativo del matemático no procede paso a paso en un razonamiento lógico, esa será la  justificación  necesaria.  El  trabajo  creativo  requiere  de  pensar,  conjeturar  y  hacer  hipótesis, luego de dar una demostración, cosa que también requiere de la intuición , percepción profunda, asociación de ideas, suerte, mucho trabajo y mucha paciencia. 

Las  matemáticas  ya  establecidas  fueron  objeto  de  distintas  formulaciones  deductivas.  El as tuvieron  por  objeto  lograr  una  presentación  coherente  y  también  de  comprobar  los  pasos  de una  demostración.  A  través  de  los  siglos  (entre  los  años  3000  antes  de  Cristo  hasta  el  1900 

después de Cristo) los matemáticos han elaborado los distintos tipos de números y las operaciones con esos números que constituyen el sistema de los números complejos. En cada mo-

mento  del  desarrol o  y  ampliación  de  estos  números,  los  matemáticos,  sabían  precisamente cuales eran estos números y las propiedades que cumplían. En las últimas décadas del siglo 

XIX los matemáticos decidieron construir un desarrol o lógico del sistema de los números complejos. Para el o trataron de construir axiomas de los que se pudieran deducir las propiedades de los números que el os ya conocían. 

Este tipo de fundamentación se pretendió para todas las ramas de la Matemática (sea el Algebra, la Geometría, el Análisis, etc.) y consistiría en axiomas enunciados con completa exactitud y  demostraciones  explícitas  de  todos  los  resultados,  aun  de  aquel os  que  pudieran  pensarse obvios para la intuición. En lugar de la verdad se pedirá compatibilidad lógica o consistencia. 

La axiomatización de la Matemática se l evó adelante y en un congreso internacional de matemáticos que se realizó en París en 1900, Henri Poincaré (uno de los matemáticos más impor-

tantes de su tiempo) proclamó que "el rigor había sido alcanzado".  En realidad en ese intento se habían usado aspectos que no tenían la consistencia deseada; surgieron así otras formulaciones de la fundamentación que se basan en distintos puntos de partida y posiciones filosófi-cas sobre ¿qué es la Matemática? 

En 1931, Kurt Gödel demostró lo que se conoce con el nombre de  teorema de incompletitud de Gödel,  que  demuestra  que  no  existe  axiomatización  consistente  posible  de  abarcar  todas  las verdades  de  la  Matemática  clásica,  inclusive  de  la  aritmética.  Este  teorema  afirma  que  hay verdades de la aritmética que no son demostrables. 
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Ante la pregunta ¿qué son los números? Muchos matemáticos darán por respuesta en términos 

axiomáticos: "unos entes u objetos que cumplen los siguientes axiomas....." 

A fines del siglo XIX Giusepppe Peano proporcionó una descripción de los números naturales 

en término de cinco axiomas. En el os se pueden interpretar los aspectos familiares de los números  naturales.  Hay  quienes  le  atribuyen  la  formulación  a  Richard  Dedekind  (1831-1916), pero estos axiomas se conocen vulgarmente como "los axiomas de Peano". 

Uno de los aspectos más importantes de esta formulación es el quinto axioma que convalida un método de demostración muy importante y de gran utilidad, pues su uso permite demostrar la 

validez de proposiciones universales relativas a los números naturales. 

El método de inducción y uso es anterior a Peano. Pareciera que el primer europeo que lo usó fue el veneciano Francesco Maurocylus (1491-1575) , está en su libro de aritmética publicado en 1575.  Ese  método  está presente y mejorado en obras  de  Pierre  de Fermat (1601-1665) y Blaise  Pascal (1623-1662).  El  nombre de inducción  matemática es usado por  primera vez en 1838 por Augustus De Morgan (1806-1871) que hace una descripción detal ada del proceso. 

1. Rudimentos de Formalización del Lenguaje

Una de las primeras cosas que el ser humano ha aprendido a hacer es hablar. 

Para hablar y que eso permita la comunicación con el resto de los hombres tuvo que idear un lenguaje. Por supuesto que hay varios lenguajes. Pasaron miles de años para que se pudiera 

pasar del lenguaje oral al lenguaje escrito. Se hubieron de crear y convenir en la aceptación de símbolos apropiados para la representación de las ideas. 

Todo  esto  hoy,  a  la  mayoría de  la  gente  le pasa desapercibido. No es  así para aquel os  que trabajamos en disciplinas que vulgarmente se dicen "exactas" y para los usuarios y creadores de tecnologías muy sofisticada como son las computadoras y los lenguajes de programación. 

Reflexionemos un poco sobre nuestras costumbres al expresarnos 

En muchas situaciones nuestra expresión es imprecisa. Esto sucede cuando describimos acon-

teceres de manera subjetiva (es decir cada individuo lo puede interpretar a su modo), en general, cuando expresamos sentimientos u opiniones. 

Hay otras situaciones en que nuestro hablar debe ser preciso. Esto es, no debe dejar posibles interpretaciones que distorsionen lo que realmente queremos expresar. 

Como una de las soluciones para que no haya ambigüedades, el hombre recurrió a la Matemá-

tica para cuantificar algunos conceptos  y así dotarlos de objetividad. Se han ideado aparatos para medir las cosas más dispares. Se logró así una asignación de números a hechos o cosas. 

Es una idea arraigada que los números traen con el os objetividad, trasparencia y exactitud. 

Además es importante convenir en valores de aceptación a algunas formas del lenguaje colo-

quial. Lo que se pretende es encontrar una estructura en el lenguaje que nos permita descartar las ambigüedades. 
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 ¿Qué pasa con los reglamentos? 

Sean éstos de un juego o de algo muy serio (como ser el específico para el Ingreso a la Facultad) tratarán de contemplar todas las posibilidades y ser "claros" (no ambiguos) para que de su lectura y su aplicación se desprenda quién juega, gana o quién entra. 

EJEMPLO 1.1.1 

Analicemos  la  implicancia  de  un  artículo  del  reglamento  de  la  Copa  Libres  de  América  (C.L), organizada en América por la F.I.F.A. (Federation International Footbal  Assosiations). Es una Copa que podría existir, pues hay tantas! 

•

Participarán en la C.L. del año en curso equipos de un país asociado a la F.I.F.A. que haya resultado primero o segundo en el torneo de primera división del fútbol profesional del año anterior. 

La A.F.A. (Asociación del Fútbol Argentino) está asociada a la F.I.F.A.. 

a) De acuerdo al artículo precedente analizar si alguno de los siguientes equipos argentinos pueden participar en C.L. a iniciarse:

- Defensores de Cambaceres. 

- Estudiantes de La Plata. 

- Rosario Central

Justifique su respuesta. 

b) Supongamos que parte de la tabla siguiente es la definitiva del Torneo Fútbol de Primera División de la A.F.A. (en un año imaginario):

1. Gimnasia y Esgrima de la Plata

2. Boca Junior. 

3. River Plate

................... 

………………. 

Cuáles de las siguientes afirmaciones son correctas de acuerdo al artículo dado y la tabla anterior, justifique su respuesta. 

i)

Gimnasia y Esgrima de La Plata disputa la próxima C.L. 

i )

Gimnasia y Esgrima de La Plata y Boca Junior disputan la próxima C.L. 

i i)

Gimnasia y Esgrima de La Plata y River Plate disputan la próxima C.L. 

iv)

Estudiantes no juega la próxima C.L. 

v)

Gimnasia y Esgrima de La Plata no juega la C.L. o Boca Junior juega la C.L. 

vi)

Gimnasia y Esgrima de La Plata no juega la C.L. y Boca Junior no juega la C.L. 
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EJEMPLO 1.1.2 

Si los artículos de la Reglamentación del Ingreso a la Facultad son: 

•

Los aspirantes deberán rendir una evaluación diagnostica. La evaluación tendrá un re-

sultado de aprobado o desaprobado. 

•

La pruebas diagnosticas no son eliminatorias, ni se exige aprobarlas

•

La  calificación  obtenida  por  el  aspirante  en  cada  evaluación,  será  puesta  en  conocimiento a través de las carteleras correspondientes 

•

Los aspirantes deberán acreditar el ochenta por ciento (80%) de asistencia al curso. 

Suponga    que  el  número  de  clases  de  la  asignatura  Matemática  en  las  que  se  computa asistencia es 20. Al final del curso parte de la lista del Ayudante Antonio registra lo siguiente: 

APELLIDO y NOMBRE 

Asistencia 

Prueba 

Ferrari, C 

90% 

Aplazado 

González, M 

60% 

Ausente 

Martegani, A 

85% 

Aprobado 

Martínez, M 

80% 

Aprobado 

Robles, A 

82% 

Ausente 

Sol ivel a, G 

100% 

Aprobado 

¿Cuáles de los alumnos que figuran en este fragmento de lista, están en condiciones de ingresar? 

Justifique. 

También en las discusiones de todos los días, en la lectura de las noticias y en nuestro diario vivir es importante tener claro como usar el lenguaje y el razonamiento (esto es el obtener conclusiones a partir de algunos datos) de manera adecuada. También importa en el estudio, so-

bre todo en Matemática. 

La  idea  de  esta  introducción  a  la  Lógica  es  dar  herramientas  que  nos  permitan  decir  cuando algunos razonamientos que desarrol amos en nuestras actividades se pueden justificar desde 

el punto de vista lógico. Ese es interés de la Lógica: hal ar formas absolutamente verdaderas, que convaliden los razonamientos. 

Hay argumentos de la vida diaria como:  

 Voy al cine o al teatro. 

 Si voy al cine encuentro a María. 

 No encuentro a María. 

 Voy al teatro 

Es claro que de este argumento se pueden extraer las oraciones: 
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 Voy al cine  

 Voy al teatro. 

 Encuentro a María 

y que el argumento está formado por oraciones que son combinaciones apropiadas de el as. 

Es nuestro interés  justificar éstos argumentos o similares, independientemente de las oraciones que lo formen sino por la forma de los mismos. 

Podemos representar las oraciones por letras: 

 p: Voy al cine  

 q: Voy al teatro. 

 r: Encuentro a María 

y el argumento por: 

 p o q 

 Si p entonces r 

 No es el caso que r 

 q 

Vamos a dar un sentido más preciso a nuestra discusión. 

2. Cálculo Proposicional  (Clásico)

Definiciones Básicas en Lógica 

Cuando se habla de Lógica moderna se usa referirse a el a como “Lógica Formal”, “Lógica 

Simbólica”, “Lógica Matemática”.  Históricamente la terminología ha aparecido en  ese orden.  

 Lógica Formal  es por lo menos tan antigua como los escritos de Arist6teles,  en donde ya se 

observa que la validez de los silogismos depende de su forma y no del significado particular de 

las proposiciones que los componen 

La  Lógica Simbólica  tiene su precursor en Leibnitz (uno de los creadores del Cálculo Infinitesimal) quién se interesó por el problema de descubrir una “characteristica universalis”, es decir 

un método para simbolizar proposiciones y argumentos de Matemática y Metafísica y "calcular"  

con las formas simbólicas para averiguar su verdad o validez.  Este deseo se cristaliza,  apoya-do por los progresos del l amado “ método axiomático” ,  en el siglo XIX con los trabajos de Boole,   De  Morgan,   Frege,   Shröeder,   Pierce,   y  Peano.   Puede  decirse  que  esta  etapa  culmina  en 
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1910 - 1913 con la monumental  Principia Mathematica  de Whitehead y Russel ,  en donde una 

gran parte del raciocinio matemático se reduce a un cálculo simb6lico.   

( Vale la misma sugerencia buscar en las redes, sobre Boole, Frege, Peano y Russel , son muy importantes sus aportes a la cultura general además de a la Lógica y la Matemática). 

El desarrol o posterior corresponde  Lógica Matemática,   cuando los sistemas formales mismos 

se convierten en objetos de estudio por métodos matemáticos (Metamatemática).  Son Hilbert,  

Löwenheim,   Skolem,   Gödel,   y  Tarski,  entre  otros,   los  principales  propiciadores  en  la  primera 

mitad del siglo XX de este desarrol o,  el cual ha dado resultados muy profundos en los Fundamentos de la Matemática y en la Teoría de Calculabilidad Efectiva, resultados que inciden radi-calmente en áreas   que van desde la pura especulación filos6fica hasta las aplicaciones prácticas de la Matemática. 

La Lógica se ha convertido en un instrumento poderosísimo para el estudio de las Matemáticas mismas, ha  l egado  a conformar una de las grandes  áreas en que se divide su estudio, junto con las tradicionales de Análisis y Algebra. Sus aplicaciones más interesantes son en la Informática, especialmente en Programación  y distintos aspectos de lo conocido como Inteligencia Artificial. 

Se trabajará con proposiciones y conectivos, razonamientos y deducciones. Estos temas permiten dos acercamientos desde el punto de vista de la forma o la estructura (sintáctico) y desde el punto de vista de su verdad o falsedad (semántico). La Lógica que se presentará en este Curso admite una formalización que escapa a nuestras intenciones y esa formalización garantiza que todo lo que es demostrable sintácticamente (esto es que depende de la estructura de las fórmulas  y  de  las  reglas  específicamente  dadas  para  deducir)  es  lógicamente  verdadero.  El  tratamiento en este Curso será ingenuo y se apelará a la intuición aun para las formalizaciones. 

Las  proposiciones son las expresiones a las cuales se puede asignar un valor de verdad. 

Admitimos sólo dos posibles valores de verdad: verdadero (V) o falso (F). 

Por ejemplo,  son proposiciones: 

El número 1 es positivo. 

2  es irracional y positivo. 

5 divide a 4 ó 5 divide a -6435. 

0 es un número primo. 

La cifra que ocupa el lugar 10 -5678902148765467890329876543211387675432134576879090 de π  es 3. 

Discuta el valor de verdad de cada una de el as. Es decir, ¿es verdadera o falsa? 

Por otra parte,  no son proposiciones: 

Hola, qué tal? 
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Ufa! 

Hurra! 

A estas expresiones no se les asigna un valor de verdad. 

EJERCICIO 1.2.1 

Escriba 5 expresiones que sean proposiciones y 5 expresiones que no lo sean. 

Hay  proposiciones atómicas (que son aquel as que no se pueden descomponer en proposiciones más simples) y que simbolizaremos con letras : p, q, r,  etc. También usaremos esas letras para referirnos a proposiciones genéricas, es decir ninguna en particular, por eso también p, q,...,  se l aman letras o variables proposicionales. 

Hay ciertas partículas del lenguaje que conectan (l amados  conectivos) las proposiciones atómicas, que también tienen simbolizaciones especiales, para formar las proposiciones compuestas. 

En el lenguaje cotidiano (o también l amado lenguaje natural) hay muchas expresiones que 

usamos para “unir” proposiciones y así formar nuevas proposiciones, pero desde cierto punto de vista todas esas expresiones son sustituibles por un número  pequeño de  conectivos. 

Dichos conectivos poseen una simbolización (también de las varias maneras que se usan, 

adoptaremos una de las más usuales) que está dada en la siguiente tabla. La expresión de 

operación lógica, se debe a que a partir de la combinación, usando conectivos, de letras proposicionales  se obtiene una nueva proposición. Hay una similitud con el cálculo aritmético en algunos aspectos. 

lenguaje natural 

simbolización 

operación lógica 

 p y  q 

 p ∧  q 

conjunción 

 p ó  q 

 p  ∨  q 

disyunción 

no  p 

no es el caso de  p 

∼  p

negación 

no es cierto que  p 

es falso que  p 

si  p entonces  q 

de p se sigue q 

 p →  q 

condicional 

 p implica  q 

 p si y solamente si  q 

 p ↔  q 

bicondicional 

 p equivalente a  q 

Consideremos los siguientes ejemplos de proposiciones: 
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 Mi gato no tiene hambre. 

 Los gatos son felinos. 

 La mayoría de los gatos tienen cuatro patas. 

El as involucran el concepto de gato. Los conceptos identifican una cierta clase de cosa y agrupan a objetos similares, acciones, propiedades y relaciones, pero los conceptos no completan el pensamiento. Las unidades del pensamiento y el discurso son las proposiciones. 

Entender proposiciones es una habilidad importante en el razonar. Cuando se toma una posi-

ción en una discusión se está aceptando que cierta proposición es válida. 

Si no podemos distinguir entre proposiciones que son similares pero no idénticas entonces no seremos capaces de defender nuestros argumentos y podríamos no darnos cuenta si la posición del otro contradice la nuestra. Para la evidencia o para sacar una conclusión es necesario el uso de algunos principios de la Lógica que involucran relaciones entre las proposiciones. Ese será el camino que tomaremos. 

Hay palabras que no son idénticas pero expresan el mismo concepto, el as son sinónimos. De 

manera semejante dos estructuras gramaticales distintas pueden expresar proposiciones equi-

valentes (más adelante daremos una definición formal). Por ejemplo: 

 Juan estuvo mejor que Pedro en el examen. 

 Pedro estuvo peor que Juan en el examen. 

Otro más complejo: 

 Argentina venció a Brasil en la clasificación. 

 Brasil fue vencido por Argentina en la clasificación. 

EJERCICIO 1.2.2 

Determinar si los siguientes pares de oraciones establecen proposiciones equivalentes. 

i)

La puerta está al lado de la ventana. 

La ventana está al lado de la puerta. 

i )

El té está preparado. 

Yo preparé el té. 

i i)

El muchacho que cortó el árbol del frente es hermano de mi mejor amiga. 

El hermano de mi mejor amiga cortó el árbol del frente. 
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EJERCICIO 1.2.3 

Hacer una lista con las proposiciones componentes de las siguientes proposiciones. 

i)

El a l egó a tiempo, pero el a estaba cansada. 

i )

Juan vive en una casa blanca y María vive en el bosque. 

 Estrategia  para  identificar  proposiciones  en  una  oración:  preguntarse  qué  hechos  son  afirmados. 

EJERCICIO 1.2.4 

Las siguientes oraciones son declaraciones hechas ante una compañía de seguros por perso-

nas que han sufrido accidentes; identificar las proposiciones afirmadas y escribirlas utilizando letras proposicionales y conectivos convenientes 

i)

Un peatón me chocó y se cayó bajo mi automóvil. 

i )

Yo iba por mi mano y el micro me encandiló. 

i i)

Yo iba por mi mano y el micro me encandiló, entonces choqué el auto que estaba esta-

cionado. 

Las proposiciones compuestas y sus valores de verdad 

El valor de verdad de una proposición depende del valor de verdad de sus componentes. 

Así como una proposición genérica que simbolizamos con la letra  p admite uno de los dos posibles valores de verdad V o F, cuando combinamos letras proposicionales con conectivos la 

forma  proposicional  resultante  tendrá  un  valor  de  verdad.  Si  el  conectivo  involucra  dos  letras proposicionales habrá 4 casos de combinación de valores de las componentes. ¿Por qué? 

ACTIVIDAD 1.2.5 

Discuta el valor de verdad de las siguientes proposiciones: 

i)

El número 4 es par y el número 8 es impar. 

i )

El número 5 es raíz cuadrada de 25 y el número -5 es raíz cuadrada de 25. 

i i)

El número 5 es raíz cuadrada de 25 o el número -3 es raíz cuadrada de 25. 

iv)

El número 4 es raíz cuadrada de 25 o el número -3 es raíz cuadrada de 25. 

v)

El  conjunto  de  los  números  naturales  está  contenido  en  el  conjunto  de  los  números irracionales. 

vi)

El 0 es el menor número real. 

vi )

El cuadrado de -8 es 64 y el cuadrado de 4 es 8. 

Para que una conjunción se verifique, es decir se considere verdadera, deben ser verdaderas cada una de las proposiciones que la forman. 
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Para que una disyunción se verifique, es decir sea verdadera, debe ser verdadera alguna de las proposiciones que la forman. 

 Un  tipo  importante  de  proposición  que  se  obtiene  a  partir  de  una  sola  proposición  es  la negación. 

Son ejemplos: 

1. No es cierto que 3 sea un número par. 

2. El cuadrado de -1 no es 7. 

3. Gimnasia no le ganó a Estudiantes el último domingo. 

4. El -2 al cuadrado no es 4. 

Por  reglas  gramaticales  del  idioma  castel ano  se  coloca  “no”  delante  del  verbo  o  núcleo  del predicado de la oración. 

La proposición dada en  1.  es la negación de “3 es un número par”,  1.  dice lo mismo que: 

“NO 3 es un número par”. 

Se  acostumbra  a  simbolizar  la  negación  de  una  proposición  anteponiéndole  alguno  de  los símbolos: -,  ∼  o ¬ . En lo que sigue usaremos  ∼ para indicar negación. 

En este caso 1.  lo anotaremos:   ∼ (3 es un número par ) 

Vale comentario similar para los otros ejemplos. Observar que la negación por la gramática del idioma castel ano, el “no” se coloca por lo general delante del verbo de la oración. 

ACTIVIDAD 1.2.6 

Explique porqué no es atómica: 

1. No es cierto que 3 sea un número par. 

2. El cuadrado de -1 no es 7. 

3. Gimnasia no le ganó a Estudiantes el último domingo. 

4. El -2 al cuadrado no es 4. 

EJERCICIO 1.2.7 

i)

Qué relación hay entre el valor de verdad de una proposición y el valor de verdad de su

negación? 

i )

Cuál es el valor de verdad de las proposiciones del ejemplo anterior. 

i i)

Negar las proposiciones de 4.2.6. 
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 Otra forma de proposición compuesta muy usual en Matemática es el condicional. 

Son ejemplos: 

1. Si 2 divide a 6 entonces 6 es un número par. 

2. Si la recta r1  es paralela a la recta r2  entonces o son coincidentes o no tienen puntos en común. 

3. Si 2 es la distancia entre los puntos P y Q entonces  - 2 es la distancia entre Q y P. 

4. Si 3 + 4 = 8 entonces 5 es un número primo. 

5. Si 2 + 3= 8 entonces 3 es un número par. 

Estas proposiciones tienen la estructura “si   p  entonces   q”. 

La  proposición  que  se  ubica  entre  “si”  y  “entonces”  se  denomina  antecedente  y  la  que  está después de “entonces” se l ama  consecuente. 

Las formas más corrientes de simbolizarlas es utilizando  → , ⊃, para el conectivo. En lo que sigue se usará → . 

Por ejemplo 1.  se simboliza 

2 divide a 6  →   6 es un número par 

Para que un condicional se verifique, es decir sea una proposición verdadera, no se debe dar el caso de antecedente verdadero y consecuente falso, o sea para toda otra alternativa de valores de verdad el condicional es verdadero. 

EJERCICIO 1.2.8 

i)

¿Cuál es el valor de verdad de las proposiciones del ejemplo anterior? 

i )

Simbolizar cada una de el as. 

 Más sobre las proposiciones Condicionales. 

Estas proposiciones también son l amadas hipotéticas. En el lenguaje corriente estas proposiciones se usan para identificar una relación de dependencia entre hechos. Por ejemplo: 

 Si Juan es alumno de segundo año de la Facultad entonces Juan cumplió las condicio-

 nes del ingreso. 

Pero formalmente esa dependencia entre antecedente y consecuente no tiene por qué darse. 
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Hay otras maneras de expresar la misma proposición: 

 Juan cumplió las condiciones del ingreso si Juan es alumno de segundo año de la Fa-

 cultad. 

En ambos casos sea 

 p: Juan es alumno de segundo año de la Facultad 

 q: Juan cumplió las condiciones del ingreso 

La forma es: Si  p entonces  q, simbolizando también el conectivo se tiene :  p →  q.  

De la misma manera se simboliza: 

 Siempre que Juan sea alumno de segundo año de la Facultad, Juan cumplió las condi-

 ciones del ingreso. 

También: 

 Juan es alumno de segundo año de la Facultad, sólo si Juan cumplió las condiciones 

 del ingreso. 

  Juan  cumplió  las  condiciones  del  ingreso  es  condición  necesaria  para  Juan  sea alumno de segundo  año de la Facultad. 

En el lenguaje corriente también se usa esta forma de proposición para indicar asombro,  per-plejidad o descrédito como en el siguiente caso: 

 Si Juan es buen jugador, yo soy Maradona. 

Dé algunos ejemplos similares a este último uso. 

Resumen 

lenguaje natural 

simbolización 

operación lógica 

Si  p entonces  q 

 p, sólo si  q 

 q, si  p 

 p →  q 

condicional 

 p es condición suficiente para  q 

 q es condición necesaria para  p 
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EJERCICIO 1.2.9 

Para  cada  una  de  las  siguientes  proposiciones  identificar  las  componentes  y  los  conectivos. 

Poner la proposición en forma simbólica. 

i)

María escuchó la historia y el a se enojó. 

ii)

Los jugadores están cansados, pero el os están muy felices. 

iii)

Ganar no es todo. 

iv)

Juan termina el partido u Osvaldo reemplaza a Juan en el segundo tiempo.. 

v)

Pedro es un excelente cocinero aunque odia la comida. 

vi)

Si los zapatos están en liquidación, me compraré dos pares. 

vii)

El es un loco o un genio. 

viii)

Usted va a triunfar sólo si usted trabaja mucho. 

ix)

Tener el 80% de asistencia es condición necesaria para entrar a la Facultad. 

x)

Si Guil ermo ganó la final entonces Guil ermo ganó la semifinal. 

xi)

Guil ermo ganó la semifinal si Guil ermo ganó la final. 

xii)

Guil ermo ganó la semifinal es condición necesaria para que Guil ermo haya ganado la

final. 

xiii)

Guil ermo ganó la final es suficiente para que Guil ermo haya ganado la semifinal. 

xiv)

David perdió un partido entonces David no l ego al puntaje que quería  en el ranking. 

Tablas de verdad 

Recapitulando los comentarios sobre los valores de verdad de las proposiciones, podemos 

presentar los valores de verdad de las formas proposicionales compuestas en tablas, que se 

l aman tablas de verdad . 

 p 

 q 

 p ∧  q 

 p 

 q 

 p ∨  q 

 p 

∼ p 

 p 

 q 

 p →  q 

V 

V 

V 

V 

V 

V 

V 

F 

V 

V 

V 

V 

F 

F 

V 

F 

V 

F 

V 

V 

F 

F 

F 

V 

F 

F 

V 

V 

F 

V 

V 

F 

F 

F 

F 

F 

F 

F 

F 

V 

•

Consideremos  un  caso  particular  para  hacer  algunos  comentarios  sobre  la  tabla  de verdad del condicional:

 Si Juan estudió mucho entonces Juan aprobó el examen. 

El antecedente, 

 p: Juan estudió mucho 

el consecuente, 

 q: Juan aprobó el examen 
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¿Cuáles combinaciones de la tabla de verdad son consistentes con su opinión y la tabla dada? 

Supongamos que:  

Juan estudió mucho ( p) y que Juan aprobó el examen ( q). 

Entonces  p y  q  son ambas verdaderas al igual que lo dado en la primera línea de la tabla del condicional. 

También resultará aceptable que si Juan no estudió mucho y Juan no aprobó el examen, sea verdadera y concordante con lo que afirma el condicional. Es la línea 4 de su tabla. 

Supongamos que Juan no estudió mucho y que Juan (igual) aprobó el examen. 

¿Esto hace que el condicional sea falso? No. La proposición “Si  p entonces  q” no dice que la única manera de aprobar el examen sea estudiando mucho, el examen puede ser muy fácil 

(nadie sospecha que haya copia...). Esto es la 3° línea de la tabla del condicional. 

En el caso que Juan estudió mucho y Juan no aprobó el examen, al í diremos que lo que dice el condicional  “Si  p entonces  q” es falso. Es la 2° línea de su tabla de verdad. 

El ejemplo presenta un condicional que establece una relación entre causa y efecto. 

Se pueden considerar condicionales abstractamente con  p y  q sin ninguna relación, y por lo tanto no tiene porqué resultar tan explicable ni aceptable su tabla de verdad, pero es una definición que así resulta muy útil para sus aplicaciones. Piense un análisis sobre el siguiente condicional:  Si 2 es un número irracional  entonces el Papa saldrá al balcón. 

Es muy posible que la tabal dada no lo convenza!!! 

Observación: El valor de verdad de una proposición compuesta, dado por su tabla de verdad, es una asignación de verdad a la fórmula proposicional, que depende de cual es el conectivo y de los valores de verdad de las componentes de la fórmula. La manera que se ha definido esa asignación se adecua a la interpretación en el lenguaje corriente de los conectivos, pero recordar que vale para cualquier interpretación de las letras proposicionales. 

EJERCICIO 1.2.10 

i)

Escriba proposiciones que respondan a las formas:

(  p ∧  q) ∨  r

 p ∧ ( q ∨  r )

i )

Ídem para:

 p → ( q →  r )

(  p →  q) →  r
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 Otro conectivo que es importante considerar es el bicondicional. 

Este conectivo se puede definir en términos de la conjunción y el condicional. 

Un ejemplo es:  

 El agua está en ebullición si y sólo si la temperatura del agua es de 100°  C. 

 e: el agua está en ebullición 

 t: la temperatura del agua es de 100°  C. 

Esta proposición se simboliza por 

 (e →  t) ∧  (t →  e)    o por 

 e ↔  t 

La tabla de verdad del bicondicional: 

 p 

 q 

 p →  q  q →  p 

 p ↔  q 

V 

V 

V 

V 

V 

V 

F 

F 

V 

F 

F 

V 

V 

F 

F 

F 

F 

V 

V 

V 

Observar que el bicondicional   p ↔  q   es verdadero    si  p y  q tienen el mismo valor de verdad y falso si los valores de verdad son diferentes. 

Cuál es el valor de verdad de: 

 Los pájaros vuelan si  y sólo si La Plata es la Capital de la Pcia. de Bs. As.. 

 Sarmiento escribió Martín Fierro si y sólo si 3+2=7. 

EJEMPLO 1.2.11 

Explicar los pasos a seguir para construir una tabla de verdad para la forma proposicional:  p →  ( q ∧   r ).   

Solución:  Para  eso  se  debe  analizar  cuáles  son  las  letras  proposicionales  intervinientes,  una columna para cada letra y dar la posibilidad de la combinación de todas las alternativas de verdad para cada letra. Se hará una columna por cada componente de la forma proposicional: 
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 p 

 q 

 r 

 q ∧ r

 p  → ( q ∧  r)  

V 

V 

V 

V 

V 

V 

F 

V 

F 

F 

F 

V 

V 

V 

V 

F 

F 

V 

F 

V 

V 

V 

F 

F 

F 

V 

F 

F 

F 

F 

F 

V 

F 

F 

V 

F 

F 

F 

F 

V 

EJERCICIO 1.2.12 

Construir la tabla de verdad para las formas proposicionales: 

 i)

 p ∨ ( q ∨  p)

 ii)

∼  r ↔  s

 iii)

((∼  p∨ ∼  q) ∨ (  p ∨  q))

 iv)

∼ (  p ∧  q) → ( q ∨  r)

 v)

((  p ∧  q) → ( q ∨  r))

EJERCICIO 1.2.13 

a) Escribir  cada  una  de  las  siguientes  proposiciones  en  forma  simbólica,  reemplazando  las palabras y signos de puntuación por correctivos y paréntesis. 

Cuál es el valor de verdad si p es V y q es F? 

i)

 p si q. 

i )  bien p o q. 

i i)  No es el caso que r

iv)  Ninguno de ambos p y q. 

v)  p o q si y solo si r. 

vi)  Si p o bien q o r, entonces s. 

b) De un ejemplo de  proposición para cada una de las formas proposicionales dadas. 

Equivalencia Lógica 

Analicemos la siguiente proposición: 

 María aprobó el examen de francés. 

Y comparemos con: 

 No es cierto que María no aprobó el examen de francés. 
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¿Qué puede decir respecto de lo que dicen? 

Formalmente el as son proposiciones distintas, como claramente lo vemos al simbolizarlas: 

 a :  María aprobó el examen de francés. 

∼ (∼  a) :  No es cierto que María no aprobó el examen de francés. 

Pero  expresan lo mismo.  Eso puede pasar con muchas proposiciones. 

Consideremos dos fórmulas proposicionales que indicaremos por   P y  Q que estén formadas por las mismas letras proposicionales. 

En el ejemplo anterior,  P  es  a  y  Q  es  ∼ (∼  a) , 

otro caso podría ser   P:  p →  q  y   Q :  ∼  p ∨  q ; otro    P:  p → ( q  ∧   r)   y    Q : (  p ∧   q )  → ( r ∧  p) P y  Q  (que involucran las mismas letras proposicionales)  son  lógicamente equivalentes si el bicondicional   P ↔  Q  es  verdadero para todos los valores de verdad de sus componentes. 

Por simplicidad también se dice  P y  Q   equivalentes. 

Lo anotaremos                                P ⇔  Q  

Observar que hemos usado una doble flecha  ⇔ . 

También es usual encontrar el símbolo  ≡ , para  indicar equivalencia. Este es claramente una deformación del símbolo de igualdad, pero hay que tener muy presente que las proposiciones  

 no son iguales  aunque “digan lo mismo”. 

 La equivalencia lógica es más que un bicondicional entre proposiciones. 

Analicemos exhaustivamente que significa la exigencia  “  P ↔  Q  es verdadero para todos los valores de verdad de sus componentes”, si pensamos en la tabla de verdad del bicondicional: P 

 Q 

 P ↔  Q 

V 

V 

V 

V 

F 

F 

F 

V 

F 

F 

F 

V 

Luego se rescatan los casos en que  P y  Q tienen igual valor de verdad, además deben estar formadas por las mismas letras proposicionales y no necesariamente los mismos conectivos !!! 
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Es claro que en una discusión es posible "cambiar" una proposición por otra lógicamente equivalente  sin  alterar  el  sentido  del  discurso,  esto  también  es  posible  en  los  razonamientos  que veremos luego. Por eso el interés de encontrar formas proposicionales equivalentes. 

EJERCICIO 1.2.14 

Si dos fórmulas atómicas son equivalentes, ¿cómo son? 

La  misma  definición  nos  sugiere  un  método  efectivo  para  analizar  la  equivalencia  de  formas proposicionales. ¿ Cuál es la estrategia? 

   Hacer tablas de verdad, que pueden ser trabajosas, pero es un proceso efectivo para dilucidar la cuestión. 

Por lo general requiere de paciencia…. 

EJEMPLO 1.2.15: 

Comprobemos que para toda variable proposicional   p,  p   ⇔   ∼ (∼  p) Solución: Analizando la tabla de verdad correspondiente: 

 p 

∼  p ∼ (∼  p)

 p ↔∼ (∼  p)

V 

F 

V 

V 

F 

V 

F 

V 

A esta equivalencia se le da el nombre de regla (de equivalencia) de la doble negación 

Luego esto vale para cualquier proposición, un caso de el o es el ejemplo dado inicialmente. 

EJEMPLO 1.2.16 

¿Son equivalentes    p →  q  y  ∼  p ∨  q ? 

Solución: Analizando la tabla de verdad correspondiente al bicondicional entre ambas 
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 p 

 q 

 p →  q 

∼  p

∼  p ∨  q

(  p →  q) ↔ (∼  p ∨  q)  

V 

V 

V 

F 

V 

V 

V 

F 

F 

F 

F 

V 

F 

V 

V 

V 

V 

V 

F 

F 

V 

V 

V 

V 

•

Por  definición  son  equivalentes.  Esta  equivalencia  está  estableciendo  que  es  posible escribir un condicional en términos de negación y disyunción, pero como vale la regla

de la doble negación también permite expresar una disyunción en términos de un con-

dicional. 

EJERCICIO 1.2.17 

Escriba una fórmula equivalente a   p ∨  q  en términos de  → . 

EJEMPLO 1.2.18 

¿Son equivalentes  p → ( q  ∧  r)  y    (  p ∧  q )  → ( r ∧  p) ? 

Solución: Para resolverlo hacemos la tabla del bicondicinal entre ambas formas 

 p 

 q 

 r 

 p →  (q ∧ r)   (  p ∧  q )  → ( r ∧  p)  

(  p → ( q ∧  r)) ↔ ((  p ∧  q) → ( r ∧  p)) V 

V 

V 

V 

V 

V 

V 

F 

V 

F 

V 

F 

F 

V 

V 

V 

V 

V 

F 

F 

V 

V 

V 

V 

V 

V 

F 

F 

F 

V 

V 

F 

F 

F 

V 

F 

F 

V 

F 

V 

V 

V 

F 

F 

F 

V 

V 

V 

Como se destaca, en las líneas 2 y 6 en la columna del bicondicional hay F, por lo cual no son equivalentes. 

EJERCICIO 1.2.19:  

Estudiar la equivalencia lógica de las fórmulas proposicionales que se dan en cada caso: 

i) 

 p, 

 p ∧  p, 

 p ∨  p  

i )

 p ∧ ( q ∧  r), 

(  p ∧  q) ∧  r

iii)

 p ∨ ( q ∨  r), 

(  p ∨  q) ∨  r

iv)

 p ∧  q, 

 q ∧  p
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v)

 p ∨  q, 

 q ∨  p

vi)

 p ∧ ( q ∨  r), 

(  p ∧  q) ∨ (  p ∧  r)

vii)

 p ∨ ( q ∧  r), 

(  p ∨  q) ∧ (  p ∨  r)

viii)

∼ (  p ∧  q), ∼  p∨ ∼  q

ix)

∼ (  p ∨  q), ∼  p∧ ∼  q

¿Qué sugieren las equivalencias comprobadas en i ) y i i) ? ¿Les pondría algún nombre? 

¿Qué sugieren las equivalencias comprobadas en iv) y  v)? ¿algún nombre? ¿Y para vi) y vi )? 

Las equivalencias comprobadas en vi i) y  ix) dan una “herramienta” para negar conjunciones y disyunciones.  Se l aman reglas o leyes de De Morgan. 

EJERCICIO 1.2.20 

Escriba  proposiciones  que  sean  instancias  de  cada  una  de  las  formas  dadas  en  el  ejercicio anterior. ¿Le convence que son equivalentes? 

1. Analice las siguientes proposiciones:

 Si subió la marea entonces hay almejas en la costa. 

 No hay almejas en la costa entonces no subió la marea. 

Suponga que el valor de verdad de la primera es V, ¿qué puede decir del valor de verdad de la segunda? 

Simbolice cada una de el as. 

Eso le ayudara para razonar y contestar esa pregunta más rápidamente. 

2. Analice las siguientes proposiciones:

 Si en Internet está el reglamento entonces José sabe las condiciones para entrar. 

 José no sabe las condiciones para entrar entonces en Internet no está el reglamento. 

Suponga que el valor de verdad de la primera es F, ¿qué puede decir del valor de verdad de la segunda? 

Simbolice cada una de el as. 

¿Se anima a conjeturar algo? 

 Conjetura: algo que se cree que es válido, 

pero todavía no se probó que vale…. 
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EJERCICIO 1.2.21 

Estudiar la equivalencia lógica de las fórmulas proposicionales que se dan en cada caso: 

i) 

 p →  q, 

∼  q → ∼  p  

i )

 p →  q, 

~  p ∨  q, 

∼ (  p∧ ∼  q)

i i)

 p → ( q →  r), 

(  p ∧  q) →  r

iv)

 p →  q, 

 q →  p

La equivalencia que probó en i) se l ama regla de la contrarecíproca.  

Muy importante de recordar. 

EJERCICIO 1.2.22 

Escriba  proposiciones  que  sean  instancias  de  cada  una  de  las  formas  dadas  en  el  ejercicio anterior. 

¿Le convence que son equivalentes? 

Todas las equivalencias que ha demostrado es muy útil tenerlas presente. 

Por ello se sugiere el siguiente ejercicio. 

EJERCICIO 1.2.23 

Hacer un cuadro resumen donde estén las equivalencias todas juntas (Si recuerda el nombre 

mejor). 

 p ⇔ (  p ∨  p) ⇔ (  p ∧  p)  

(  p ∧ ( q ∧  r) ) ⇔ ((  p ∧  q) ∧  r)  

......................................... 

............................ 

……………………………. 

…………………………. 
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3. Demostraciones

 Análisis de argumentos o razonamientos

Hay cosas que se saben por simple observación. Uno puede decir acertadamente si está  l o-

viendo simplemente mirando para afuera. También puede decidir si el agua es fría o templada simplemente  poniendo  la  mano  en  el  agua.  Nuestra  propia  experiencia  y  la  memoria  de  las cosas que percibimos en el pasado son cosas que sabemos. A esto hay que agregar también 

la experiencia de otros. Por ejemplo: cómo sabemos el día que nacimos? La experiencia propia de haber nacido no alcanza,  nuestros padres nos han dicho y le hemos creído. De la  misma 

manera aceptamos de los historiadores y el os de otras personas, en un camino hacia el pasa-do hasta l egar a contemporáneos al 25 de mayo de 1810, que ese día asumió el Primer Go-

bierno Patrio. Pero hay conocimiento que trasciende la experiencia colectiva. Se saben cosas de los orígenes de la Tierra, de las dimensiones del Universo o de los componentes del átomo que no han sido observados directamente por nadie. Para estos casos procedemos por medio 

de  razonamientos.  Cuando  razonamos  se  usan  relaciones  entre  proposiciones  para  sacar nuestro  conocimiento  de  todo  lo  que  se  ha  podido  experimentar  directamente  y  otras  se  dan por ciertas. 

Considerar la siguiente proposición:  

 Las piedras en la China ruedan por la ladera de la montaña. 

Dé razones por las cuales Ud. piensa que  la afirmación anterior es verdadera. 

La proposición "Las piedras ..." es la conclusión de una serie de otras proposiciones (las dadas por usted para convalidarla) que consideramos como dadas y se l aman premisas. 

Por sí  misma  una proposición  no  es una  premisa  ni tampoco conclusión. Una  proposición es premisa o conclusión con respecto a otras proposiciones. 

¿Cierto???? 

El conjunto de premisas junto con la conclusión es l amado argumento o razonamiento. 

Las proposiciones que l amamos premisas son el soporte o evidencia para la proposición que 

se l ama conclusión. 

Una manera común de decir es que la conclusión se deriva o infiere de las premisas. 

33

ELEMENTOS  DE LÓGICA (INFORMALMENTE) – CAPÍTULO 1

EJEMPLOS 

¿Qué conclusión infiere de las siguientes proposiciones? 

(Se supone que las dice una persona que no miente): 

Justifique su respuesta, intuitivamente . 

 Si hace menos de 280C entonces salgo a correr 

  Hace menos de 280 C 

   Voy al teatro o me quedo en casa mirando televisión. 

  No me quedo en casa mirando televisión. 

EJERCICIO 1.3.1 

En cada argumento identificar la conclusión y numerar cada una de las premisas. 

i)

 Para ser informático se debe ser muy reflexivo y detallista, y Pedro no lo es, luego él no se recibirá de informático. 

i )

 Manuel Belgrano fue una persona muy importante para la Argentina. 

 Belgrano trabajó en el Consulado, además fue secretario de la Primera Junta de

 Gobierno. Después en Tucumán condujo como general el Ejército y además había crea-     

             do la bandera nacional. 

i i)

 Como mi auto no arranca, tendré que tomar el micro, entonces necesito cambio para el

 pasaje. 

EJERCICIO 1.3.2 

Arme un razonamiento donde cada una de las siguientes proposiciones sea: 

a) Conclusión. 

b) Premisa

i)

 Los jugadores de fútbol profesional ganan mucho más que un docente universitario. 

i )

 Los adultos son responsables de sus acciones. 

i i)

 A la democracia vale la pena defenderla. 
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 Formalicemos lo formal

Se  quiere,  mediante  definiciones  poder  analizar  si  una  determinada  derivación  (arribar  a  una conclusión) a partir de hipótesis dadas (lo que se tiene como dato o sabido) es una  buena manera de razonar. 

Un argumento o razonamiento es  lógicamente válido si de premisas verdaderas no se puede deducir una conclusión falsa. 

•

¿Cómo se convalida un razonamiento? 

Una manera muy clara y efectiva es por tablas de verdad. 

Si el razonamiento es de la forma: 

donde 

1

 P , 

2

 P , 3

 P ,...,  P ,  C, 

 n

1

 P ,..., 

 n

 P  son las premisas y

 C  la conclusión, se acostumbra  escribir:  

1

 P , 2

 P , ..,  n

 P

 C , o también 

1

 P

2

 P

 n

 P

 C

Ambas maneras expresan que de   1

 P ,..., 

 n

 P  se deduce C. 

Para que esto sea correcto lógicamente,  debe cumplirse lo siguiente: 

(

sea un  condicional “siempre verdadero”. 

1

 P ∧ 2

 P ∧ ... ∧  P )

 n

→  C

Esto es, para todos los valores de verdad que puedan darse como combinación de los valores 

de las letras proposicionales que componen las premisas  1

 P ,..., 

 n

 P  y la conclusión  C,  el valor

de verdad del condicional sea V. 

•

Se construye el condicional  (

y se hace su tabla de verdad. 

1

 P ∧ 2

 P ∧ ... ∧  P )

 n

→  C

•

¿Cuándo el condicional  (

es F ? 

1

 P ∧ 2

 P ∧ ... ∧  P )

 n

→  C

Será F en el caso que todas las premisas sean V y la conclusión sea F. 

Si hay un caso en esta situación, significa que el razonamiento no es válido. 

•

Y  será  válido  en  el  caso  que  siempre  (esto  es,  en  cada  línea  de  valores)  el  condicional (

resulte verdadero. 

1

 P ∧ 2

 P ∧ ... ∧  P )

 n

→  C
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•

¿Cómo se deduce? 

Aplicando  reiteradamente  reglas  de  derivación  que  cumplan  la  condición  que,  de  premisas verdaderas no se pueda arribar a una conclusión falsa. 

Son sinónimos: reglas de deducción, reglas de derivación, reglas de inferencia.   

La más natural de todas las reglas es la l amada Modus Ponens. 

Pongámosla a prueba, ¿qué concluye si tiene las siguientes proposiciones como premisas?: 

 Si Guillermo ganó el partido entonces Guillermo salió campeón. 

 Guillermo ganó el partido. 

Seguramente que: 

 Guillermo salió campeón. 

La estructura formal es: 

 p →  q

 p

 q

Veamos que respeta la definición de razonamiento lógicamente válido. Para el o usaremos el 

método de convalidación por tabla de verdad. 

Hay dos métodos basados en tablas de verdad para analizar la validez de un razonamien-

to. 

Método 1: 

Para el del ejemplo, construimos una tabla de verdad que tiene por columnas las letras proposicionales o componentes, las premisas y la conclusión. 

Componentes 

Premisas 

Conclusión 

 p 

 q 

 p→ q 

 p 

 q 

V 

V 

V 

V 

V 

V 

F 

F 

V 

F 

F 

V 

V 

F 

V 

F 

F 

F 

F 

F 
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Estrategia de análisis: 

•

Buscamos líneas en que la conclusión sea F. ¿Hay? Si, son la 2da. y 4ta. línea. 

•

Analizamos si en estas líneas las premisas son V. En la 2da línea hay una premisa F, en la

4ta. línea las dos premisas son F. Luego,  no se da el caso de premisas V y conclusión F. 

Luego, este razonamiento es lógicamente válido. 

Este  mismo  esquema  y  proceder  se  puede  usar  para  analizar  cualquier  razonamiento 1

 P , 2

 P , ..,  n

 P

 C . 

Método 2:  

Se basa también en tablas de verdad pero tiene un trabajo adicional. 

Primero se debe recordar la tabla de verdad del condicional: sólo es F si el antecedente es V y el consecuente es F, en todo otro caso es V. 

También recordemos que una conjunción es V sólo en el caso que ambas letras proposiciona-

les sean V. Esto es así también para cualquier número de conyuntos. 

•

Para el o  se construye una forma proposicional  condicional, formando el antecedente con la conjunción de las premisas y como consecuente la conclusión. 

En este caso será: 

((  p →  q) ∧  p) →  q

Se hace la tabla de este condicional: 

 p 

 q 

 p→  q 

 ( p→  q) ∧  p 

((  p →  q) ∧  p) →  q  

V 

V 

V 

V 

V 

V 

F 

F 

F 

V 

F 

V 

V 

F 

V 

F 

F 

V 

F 

V 

•

Se analiza si en alguna línea de la columna del condicional (el fabricado) es F. ¿Hay? No. 

Luego el razonamiento es lógicamente válido. 
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Veamos otro razonamiento: 

 Si Guillermo ganó el partido entonces Guillermo salió campeón. 

 Guillermo salió campeón. 

 Guillermo ganó el partido. 

Analicemos su validez lógica. 

Su forma es:   

 p →  q

 q

 p

Por Método 1: 

Componentes 

Premisas 

Conclusión 

 p 

 q 

 p →  q 

 q 

 p 

V 

V 

V 

V 

V 

V 

F 

F 

F 

V 

F 

V 

V 

V 

F 

F 

F 

V 

F 

F 

En las líneas 3 y 4 la conclusión es F, y en la línea 3 ambas premisas son V, por lo tanto el razonamiento es lógicamente inválido. 

ACTIVIDAD 1.3.3 

Demuestre utilizando el Método 2 que: 

 p →  q

 q

 p

es un razonamiento lógicamente inválido. 

OJO!!! 

Este último (mal) ejemplo debe “tenerse en mente”. 

Es un error muy común esta mala forma de razonar. NO es lógicamente válida. 
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Más ejemplos: 

 Si Argentina ganó o empató entonces va a la final. 

 Argentina ganó. 

 Luego, Argentina va a la final. 

La forma del razonamiento:

( g ∨  e) →  f

 g

 f

siendo: 

 g:  Argentina ganó.  

 e:  Argentina empató. 

 f:  Argentina va a la final. 

Para analizar si el razonamiento es lógicamente válido usaremos el Método 2. 

Observar que al haber 3 letras proposicionales la tabla tiene 8 líneas (ya la cosa se está com-plicando.... no deja de ser efectivo pero da trabajo). 

 g 

 e 

 f 

 g ∨  e 

 (g ∨  e) →  f 

 ((g ∨  e)→  f) ∧  g 

 (((g ∨  e)→  f) ∧  g)→  f 

V 

V 

V 

V 

V 

V 

V 

V 

F 

V 

V 

V 

V 

V 

F 

V 

V 

V 

V 

F 

V 

F 

F 

V 

F 

V 

F 

V 

V 

V 

F 

V 

F 

F 

V 

V 

F 

F 

V 

F 

F 

V 

F 

V 

F 

V 

F 

F 

V 

F 

F 

F 

F 

V 

F 

V 

Luego esto significa que el razonamiento es lógicamente válido. (Lógica aparte, si la conclusión resulta verdadera mejor...)  

Más ejemplos: 

 Si María consiguió trabajo entonces María ganó dinero. 

 Si María ganó dinero entonces María compró una moto. 

 Luego, si María consiguió trabajo entonces María compró una moto 

Veamos la forma de este razonamiento: 
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 t →  d

 d →  m

 t →  m

Donde: 

 t:  María consiguió trabajo 

 d: María ganó dinero 

 m:  María compró una moto. 

Veamos que esta es una manera lógicamente correcta de razonar: 

 t 

 d 

 m 

 t→  d 

 d→  m 

 t→  m 

 (t→ d) ∧  (d→ m) 

 ((t→ d) ∧  (d→ m)) →  ( t→  m) 

V 

V 

V 

V 

V 

V 

V 

V 

V 

F 

V 

F 

V 

V 

F 

V 

F 

V 

V 

V 

V 

V 

V 

V 

F 

F 

V 

V 

V 

V 

V 

V 

V 

V 

F 

V 

F 

F 

F 

V 

V 

F 

F 

F 

V 

F 

F 

V 

F 

V 

F 

V 

F 

V 

F 

V 

F 

F 

F 

V 

V 

V 

V 

V 

EJERCICIO 1.3.4 

Utilizando el Método 1 ó 2 analizar la validez de las siguientes formas de razonamiento: 

a) 

 a →  b

b)

 c ∨  d

∼  b

 d

∼  a

∼  c

c)

 e →  f

d) 

 g →  h

∼  e

 g → (  g ∧  h)

 f

e)

∼ ( m ∧  n)

f)

 a →∼ ( b ∧  c)

∼  m

 a

 b

g)

 s → ( t ∧  v)

∼  v

∼  s
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 Una manera de reducir el Método de las Tablas de Verdad

Ya  es  algo  molesto  analizar  usando  tablas  de  verdad  razonamientos  que  involucren  3  letras proposicionales pues el o significa l enar 8 líneas de valores. 

Cada  letra  proposicional  que  se  que  incorpora  duplica  el  número  de  líneas  para  considerar todas las posibilidades de combinación. ¿Por qué? 

Mediante un ejemplo, se describe un método que también usa las tablas de verdad pero de una manera reducida para analizar la validez lógica de un razonamiento. Tratando de l egar a una contradicción. 

Dado un razonamiento de la forma: 

1. (  p →  q) ∧ ( r →  s)

2.  p ∨  r

 q ∨  s

•

Se colocan en una misma línea las premisas y la conclusión:

Premisas 

Conclusión 

 ( p →  q) ∧  ( r→  s) 

 p ∨   r 

 q ∨   s 

V 

V 

F 

•

Se coloca el valor  V a las premisas y el valor F a la conclusión. 

•

Se analiza si tal asignación es posible. Esto l evará a buscar con los valores de las letras proposicionales que hagan posible esa asignación. 

Si esta asignación es posible el razonamiento es no lógicamente válido, si esta asignación 

no es posible, el razonamiento es lógicamente válido. 

•

Cada proposición se trabaja “hacia arriba” ,  desde el conectivo principal  a los conectivos secundarios, hasta l egar a los valores que tienen que tomar las letras proposicionales para que esos sean los valores atribuidos a las proposiciones. 

Esto  depende  del  tipo  de  proposición  presente  en  el  razonamiento,  es  importante  encontrar aquel as  que  ofrezcan  el  menor  número  de  alternativas  para  el  valor  dado,  pues  esto  limita favorablemente el trabajo. 
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Si la conclusión es F, son F tanto  q como  s. 

Esos valores de verdad se deben trasladar a esas letras en las otras formas proposicionales. 

Premisas 

Conclusión 

 (p →  q ) ∧  (r →  s ) 

 p ∨   r 

 q ∨   s 

V 

V 

F 

F 

 V 

V 

F 

Si una conjunción es verdadera, ambas proposiciones lo son. 

Esto forzará los valores de  p y  r pues ambos condicionales de la primer premisa deben ser V. 

Debido a la tabla del condicional, los antecedentes ( p y  r) también deben ser F : Premisas 

Conclusión 

 (p  →   q ) ∧  ( r →   s ) 

 p ∨   r 

 q ∨   s 

F 

F 

F 

F 

F 

F 

V 

V 

V 

F 

 V 

Este valor para   p  y  r  en la primer premisa debe trasladarse a la segunda premisa. 

Pero entonces..., miremos que pasa en la segunda premisa: 

Premisas 

Conclusión 

 (p  →   q ) ∧  ( r →   s ) 

 p ∨   r 

 q ∨   s 

F 

F 

F 

F 

F   F 

F 

F 

V 

V 

V 

F 

 V 

Se pretende una disyunción V con ambas letras proposicionales F. Este no puede ser (por la 

tabla de la disyunción). 

 ¿Qué significa todo esto?  Que NO hay posibilidad de premisas verdaderas y conclusión falsa. 

Entonces, el razonamiento es lógicamente válido. 
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Observar que si se hubiera usado el método de las tabla de verdad (1 ó 2) en este ejemplo, se hubiera tenido que formar una tabla de 16 líneas, que es más trabajoso que el trabajo descripto. 

Este método es aplicable en general para cualquier razonamiento  1

 P , 2

 P , ..,  n

 P

 C . 

Se hace una disposición y trabajo similar al descripto. Su practicidad es más apreciable cuanto mayor es el número de letras que hay en las formas proposicionales intervinientes. 

 Pruebas o demostraciones

El método reducido que se basa en las tablas de verdad es un camino para analizar la validez de una forma de razonamiento y es conveniente cuando dicho argumento tiene varias variables proposicionales y varias premisas, es una alternativa de los métodos 1 y 2 para el análisis de la validez de un razonamiento, pero hay otra manera de analizarlo. 

Esto es, encontrar una cadena de pequeñas demostraciones o justificaciones que paso a paso 

permitan saliendo de las premisas arribar a la conclusión. Esto es dar una prueba o demostración del razonamiento. 

Hay una serie de justificaciones válidas, buenas maneras de razonar desde el punto de vista lógico (de premisas verdaderas no permiten obtener conclusiones falsas), las l amadas  reglas 

 de inferencia (muchas de el as tienen nombre). Hemos visto ya algunas de el as: El Modus Ponens 

 p →  q

 p

 q

El Silogismo Hipotético 

 p →  q

 q →  r

 p →  r

El Modus Tollens  

 p →  q

∼  q

∼  p
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Claramente es una buena manera de razonar sustituir una forma proposicional por otra equivalente. 

Justifique esa afirmación. 

EJEMPLO 1.3.5 

Probemos que son reglas de inferencia también: 

Silogismo disyuntivo 

 i)

 ii)

 Gana o empata 

 p ∨  q

 Gana o empata 

 p ∨  q



 N   

 o    

 g   

 a   

 n   

 a       



 N  

 o   empata 

∼  p

∼  q

 empata 

 gana 

 q

 p

¿Cuál es la idea intuitiva? Si afirmo una disyunción y también la negación de uno de los disyuntos el otro disyunto debe ser verdadero. 

Para i) se aplica el método 2. 

 Premisa 

 Premisa 

 Conj. de Prem. 

 Condicional 

 p 

 q 

 p ∨  q 

∼  p 

 (p ∨  q) ∧  ∼  p 

 ((p ∨  q ) ∧  ∼  p )→  q 

V 

V 

V 

F 

F 

V 

V 

F 

V 

F 

F 

V 

F 

V 

V 

V 

V 

V 

F 

F 

F 

V 

F 

V 

Hágalo para i ). O use que   p ∨  q ⇔  q ∨  p , y en ese caso i ) tiene “la forma” de i). 

Daremos más reglas de inferencia que se utilizan mucho tanto en demostraciones matemáticas 

como en los razonamientos cotidianos. 

La mayoría de el as son muy intuitivas además de ser maneras válidas de razonar. 

Se han puesto los nombres de las reglas pero no es imprescindible recordarlos aunque el o sea útil. 

Simplificación 

 i)

 Cantó y bailó 

 ii)

 Cantó y bailó 

 p ∧  q

 p ∧  q

 cantó 

 bailó 

 p

 q
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 Adición 

 p

 Estudio 

 p ∨  q

 estudio o paseo 

ACTIVIDAD 1.3.6 

Demuestre que la simplificación y la adición son reglas de inferencia y de una interpretación intuitiva. 

ACTIVIDAD1.3.7 

 p

¿Es una regla de inferencia: 

? 

 p ∧  q

Justifique. De un ejemplo que refuerce su opinión. 

ACTIVIDAD 1.3.8 

La siguiente es una regla de inferencia? Justifique. 

 p

 q

 p ∧  q

ACTIVIDAD 1.3.9 

Explique la diferencia entre lo propuesto por los dos ejercicios anteriores. La regla se l ama conjunción.    

EJERCICIO. 1.3.10 

Escriba un ejemplo que ilustre la aplicación de: 

i)

Silogismo Disyuntivo. 

i )

Simplificación. 

i i) Adición. 

iv) Conjunción. 

Veamos el siguiente ejemplo: 
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 Si  entro  a  Internet  entonces  encuentro  las  ofertas  que  necesito;  pero  si  voy  a  mirar  vidrieras, me compro algo que me tienta. Estas son mis alternativas: entro a Internet o voy a mirar vidrieras. Por lo tanto o bien encuentro las ofertas que necesito o me compro algo que me tienta. 

Simbolizando:  

 i: (yo) entro a Internet. 

 o: (yo) encuentro las ofertas que necesito. 

 v: (yo) voy a mirar vidrieras. 

 c: (yo) me compro algo que me tienta. 

( i → o) ∧ ( v → c)

 i ∨  v

 o ∨  c

Este  argumento  presenta  un  dilema,  es  común  en  la  táctica  de  debates  y  es  una  forma  de pensar sobre alternativas de acción. 

EJERCICIO 1.3.11 

Verificar que la forma ejemplificada antes: 

(  p →  q) ∧ ( r →  s)

 p ∨  r

 q ∨  s

es una manera válida de razonar. 

EJERCICIO 1.3.12: 

¿En qué se transforma la anterior forma si   q = s ? 

Dé un ejemplo de razonamiento de esta forma. 

Se hará una tabla para tener a mano de equivalencias lógica y reglas de inferencias. 
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RESUMEN de las REGLAS de BÁSICAS de RAZONAMIENTO 

REGLAS POR EQUIVALENCIAS 

 p  ⇔  p ∧  p  ⇔  p ∨   p     Tautología (T) 

   p ⇔  ∼  (∼ p )   Doble negación  (DN) 

 p ∧ ( q ∧  r )

⇔

(  p ∧  q) ∧  r

 p ∨ ( q ∨  r ) ⇔

(  p ∨  q) ∨  r  Asociatividad (As.) 

 p ∧  q ⇔

 q ∧  p

 p ∨  q ⇔

 q ∨  p

  Conmutatividad (Conm.) 

 p ∧ ( q ∨  r )

⇔

(  p ∧  q) ∨ (  p ∧  r )

    

  Distributividad   (Dist.) 

 p ∨ ( q ∧  r )

⇔

(  p ∨  q) ∧ (  p ∨  r )

    

∼ (  p ∧  q ) ⇔

(∼  p ∨ ∼  q )

    

∼ (  p ∨  q ) ⇔

(∼  p ∧ ∼  q )

    

  De Morgan 

(  p →  q ) ⇔

(∼  p ∨  q )

   ⇔

∼ (  p ∧ ∼  q )

       Implicación 

(  p →  q ) ⇔

(∼  p → ∼  q )

        Contraposición 

FORMAS BÁSICAS DE INFERENCIA 

 p →  q

 p →  q

 p

∼

 Modus Ponens (MP) 

 q

 Modus Tollens (MT) 

 q

∼  p

 p →  q

 p ∨  q

 q →  r

∼

Silogismo Hipotético (SH) 

 q

Silogismo Disyuntivo (SD) 

 p →  r

 p

 p ∧  q

∧

; 

 p

 q  Simplificación (Simp.) 

 p

; 

 q

Adición (Ad.) 

 p

 q

 p ∨  q

 p ∨  q

 p

(  p →  q) ∧ ( r →  s)

 q

∨

Conjunción (Conj.) 

   p

 r

 Dilema (Dil.) 

 p ∧  q

 q

  

∨  s
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¿Cómo se construye una prueba? 

Vamos a presentar el método mediante un ejemplo: 

 Si sigue la recesión o el ministro aumenta los impuestos entonces el presidente no será reelegido. 

 Sigue la recesión 

 El presidente no será reelegido. 

Para dar una prueba formal de validez: 

•

Se simbolizan las premisas y la conclusión:

 r: sigue la recesión este año. 

 d: o el ministro aumenta los impuestos. 

 p: el presidente será reelegido . 

•

Se simboliza el razonamiento:

( r ∨  a) →∼  p

 r

∼  p

•

Se numeran las premisas y se disponen encolumnadas:

 I. ( r ∨  a) →∼  p

( P)

2. 

 r

( P)

En una última columna se pone el porqué de la proposición. La ( P) significa que es premisa y por eso está. 

Luego hay que ir pensando y encontrando (lo que no es fácil cuando uno comienza) cuáles son las reglas, que permiten l egar a la conclusión. 

La conclusión es el consecuente de 1, para "sacarlo" tendríamos que poder afirmar el antecedente. ¿Efectivamente es posible? sí, se sigue así: 

 I. ( r ∨  a) →∼  p

( P)

2. 

 r

( P)

3. 

 r ∨  a

de (2) por adición

Por lo cual de (1) y (3) por Modus Ponens tenemos la conclusión. 

Escribamos toda la prueba junta: 
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 I. ( r ∨  a) →∼  p

( P)

2. 

 r

( P)

3. 

 r ∨  a

de (2) por adición

4. 

∼  p

de (1) y (3) por Modus Ponens. 

Método de prueba formal: 

•

Disponer en 3 columnas el número de la proposición, la proposición y su justificación. 

•

Una proposición entrará en esta lista o bien si es una premisa o se dedujo de anteriores

por la aplicación de una regla de inferencia. 

•

Se termina la demostración cuando l egamos a la conclusión. 

 ¿Cuál es el inconveniente de este método? 

Podemos  no  darnos  cuenta  de  que  regla  hay  que  aplicar,  lo  cual  no  significa  que  el  razonamiento  no  sea  válido.  Simplemente  que  no  hemos  estado  muy  lúcidos  para  hal ar  la  prueba. 

Esta  "lucidez"  se  consigue  con  "entrenamiento".  Hay  que  hacer  varios  para  tener  "golpe  de vista", para esto no hay que ser genios.... es como un juego de estrategias, nada más. 

Puede haber más de un camino (prueba formal) que convalide un razonamiento válido. 

EJEMPLO 1.3.13 

Dar una prueba formal para un razonamiento que simbolizado tiene la forma: 

1.  a →  b

2.  c ∧ ∼  b

3. ( c ∨  d ) →  e

4.  e →  f

∼  a ∧  f

Solución: Si observamos  la conclusión  (∼  a ∧  f )  es una conjunción, por la regla de conjunción será suficiente que pudiéramos sacar por aplicación de las reglas aceptadas:  ∼  a   y    f. 

Pensando en las apariciones de   f  en las premisas, es el consecuente de 4., donde  e es antecedente, luego debemos trabajar para "sacar"  e. 

A su vez  e es consecuente de (3), hay entonces que "sacar" su antecedente. 
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La proposición   ∼  a  no aparece en las premisas. En (1) está   a   como antecedente de   a →  b , luego es objetivo poder deducir  ∼  b  para "sacar"  ∼  a  por Modus Tol ens. 

Manos a la obra!: 

1.  a →  b

( P)

2.  c ∧ ∼  b

( P)

3. ( c ∨  d ) →  e

( P)

4.  e →  f

( P)

5. ∼  b

de (2) por simp. 

6. ∼  a

de (1) y  (5) por M. T. 

7.  c 

de (2) por simp. 

8.  c ∨  d  

de (7) por ad. 

9.  e 

de (3) y  (8) por M.P. 

10.  f

de (4) y (9) por M.P. 

11. ∼  a ∧  f

de (6) y (10) conj. 

EJEMPLO 1.3.14 

Construir una prueba formal para: 

∼ ( a ∧  b)

∼  b →  c

 a →  c

Solución: La conclusión es un condicional, ¿ servirá el Silogismo Hipotético?, 

intentemos... 

1. ∼ ( a ∧  b)

( P)

2. ∼  b →  c

( P)

3. ∼  a ∨ ∼  b 

de (1) por equivalencia (De Morgan)  

4.  a →∼  b 

de (3) por equivalencia

5.  a →  c 

de (4) y  (2) por S. H. 

Como los razonamientos y buenas maneras de deducir es algo muy importante en todas las 

situaciones de la vida, pero imprescindible en Matemática, que es una ciencia que no admite contradicciones, se hará una recapitulación destacando los aspectos fundamentales que se 

han desarrol ado sobre ese aspecto de la Lógica. 
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Resumiendo: Se presentaron métodos para analizar la validez lógica de una forma de razonamiento      

1

 P

2

 P

. 

 n

 P

 C

•

El primero es el de las tablas de verdad y no se admite que de premisas verdaderas la

conclusión sea falsa. 

•

Otro se construye una tabla de verdad para

( 1

 P ∧ 2

 P ∧ 3

 P ∧ ... ∧  P ) →

. 

 n

 C

El razonamiento es lógicamente válido si para  todas las líneas de la tabla (es decir: toda asignación de verdad a las componentes de las premisas y conclusión )  de:     

( 1

 P ∧ 2

 P ∧ 3

 P ∧ ... ∧  P ) →

el valor es V. 

 n

 C

Estos dos métodos son totalmente equivalentes en su trabajo. 

   Una versión corta de estos métodos, se busca un valor particular de asignaciones de valores de  verdad para las componentes que hagan las premisas verdaderas  y la conclusión   

falsa. Si existe esa asignación, el razonamiento es inválido, si no existe el razonamiento es válido. 

•

Un tercer método es tratar de construir una prueba formal de validez o derivación desde las premisas a la conclusión. 

Cada paso de esa derivación debe ser justificado por una regla de inferencia. 

La  construcción  de  una  prueba  formal  establece  la  validez  del  razonamiento,  pero  el  no encontrar la prueba no significa la invalidez del razonamiento. 

Los métodos de las tablas de verdad son métodos tediosos (si hay muchas componentes) pero 

efectivo para determinar o no la validez lógica de un razonamiento, el tercer es un método más divertido pero.... no efectivo. Podríamos no darnos cuenta de que regla es la aplicable o aplicada. 
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EJERCICIO 1.3.15 

Usar tablas de verdad (completa o reducida) para determinar si son válidos los siguientes argumentos: 

i) 

i ) 

i i) 

 e → (  f ∧  g )

 a →  b

 h → ( i ∨  j )

∼ (  p ∨  q) →  s

∼  b ∨  c

 f → (∼  i∧ ∼  j)

∼  p

∼  a ∨  c

∼ ( e ∧  h)

∼  s

EJERCICIO 1.3.16 

Llevar los siguientes argumentos al lenguaje simbólico y analizar en cada caso si cada uno de los razonamientos es lógicamente válido por tablas de verdad. 

Si es válido construir una prueba formal. 

i)

 Si  las  leyes son buenas y  su  cumplimiento es estricto, disminuirá el delito. Si el cumplimiento  estricto  de  la  ley  hace  disminuir  el  delito,  entonces nuestro, problema  es de carácter práctico. Las leyes son buenas, luego nuestro problema es de carácter práctico. 

ii)

 Si Pedro recibió el mail vendrá por la Facultad, siempre que esté cursando todas. Aun-

 que no haya venido por la Facultad, aún sigue cursando todas. Luego, Pedro no recibió

 el mail. 

iii)

 No se da el caso de que, o bien faltó, o bien no llegó a tiempo. Luego, llegó a tiempo. 

iv)

 Si Dios quisiera evitar el mal, pero fuera incapaz de  hacerlo, sería impotente; si fuera capaz de evitar el mal, pero no quisiera hacerlo, sería malévolo. El mal existe. Si Dios existe, no es impotente ni malévolo. Luego, Dios no existe. 

v)

 Si compro una computadora nueva antes de abril o le agrego memoria mi computadora

 actual, tomaré un trabajo como programador en mayo y atenderé la empresa Must. Ha-

 ré muchas tareas extra, si atiendo la empresa Must. Si hago muchas tareas extra esta-

 ré  mucho  tiempo  ocupado.  Si  estoy  mucho  tiempo  ocupado,  tendré  que  prepararme bien. Pero si me preparo bien no tomaré el trabajo de programador. Por consiguiente, 

 no agrego memoria a mi computadora actual. 
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EJERCICIO 1.3.17 

Sean  

 p: 128 K es una memoria regular 

 q: compraré más memoria 

  r: cambiaré la computadora. 

Traducir a lenguaje coloquial los siguientes argumentos y analizar su validez lógica: 

i) 

i ) 

i i)  

 p →  r

 p → ( r ∨  q)

 p →  r

 p →  q

 r →∼  q

 p →  q

 p → ( r ∧  q)

 p →  r

 p

 q

EJERCICIO. 1.3.18. 

Para cada una de las siguientes pruebas establecer la justificación de cada línea (dando las líneas y reglas que la convalidan). 

 a) de  b →  c :

1. ( a ∧  b) →  c

( P)

2. ∼  a →  d

( P)

3. ∼ ( b →  d )

( P)

4.  b ∧ ∼  d

5. ∼  d

6. ∼∼  a

7.  a

8.  a → ( b →  c)

9.  b →  c

 b) de  e ∧ ∼  f :

1. ( d →  e) ∧ (  f →  g )

( P)

2.  d ↔∼  g

( P)


3.  d

( P)

4. ( d →∼  g ) ∧ (∼  g →  d )

5.  d →∼  g

6. ∼  g

7. 

 f →  g

8. ∼  f

9.  d →  e

10.  e

11.  e ∧ ∼  f
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4. Enriqueciendo el lenguaje simbólico

Las proposiciones anteriores afirmaban "cosas" sobre individuos, sobre objetos particulares. 

No todas las proposiciones que usamos son de ese tipo. 

Hay  veces  que  se  necesita  hacer  afirmaciones  sobre  elementos  de  un  determinado  conjunto sin especificar un elemento en  particular,  esto es  permitiremos que  ese elemento varíe en  el conjunto (universo del esquema), que sean todos los elementos del conjunto o sean algunos de el os. 

Observación: para profundizar el concepto de conjunto se recomienda leer el capítulo 2. 

Por eso introducimos otro elemento importante de este lenguaje: los cuantificadores. 

Hay situaciones que debemos expresar: “todos los...” o “existen...”, como  por ejemplo en  las siguientes afirmaciones: 

 1. 

 Todos los números enteros son divisibles por 1

 2. 

 Existen números primos

El as tienen un valor de verdad, ¿ cuál ? 

Estas proposiciones decimos que son universales y existenciales respectivamente. 

Analicemos qué están expresando: 

La primera está diciendo que para cada uno o cualquiera sea el número entero este es divisible por 1; se habla de una propiedad que tienen todos los números enteros, por el o se dice que es universal,  considerando  como  universo  al  conjunto  de  los  números  enteros.   La  segunda proposición  manifiesta  la  existencia  de  números  que  tienen  la  propiedad  de  ser  primos,  dice que hay individuos que son primos. Además, se sabe que el os son infinitos, cosa que fue probada por Euclides en sus Elementos. 

Está claro que la elección del conjunto que se tome como universo es importante. 

Muchas afirmaciones de la Matemática son de estos tipos. La mayoría de las propiedades que 

se estudiarán son así. 
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La manera de simbolizarlas es la siguiente: (Dando por hecho que el universo U es el conjunto de los números enteros) 

1. (  x

∀ )( x es divisible por  1)

2. (  x

∃ )( x es numero prim )

 o

Por simplificación o para generalizar se usan los esquemas o funciones proposicionales. 

Estos se simbolizan por ejemplo por  P( x),  Q( x), etc. 

Para 1. podríamos escribir 

 P( x): x  es divisible por 1. 

Para 2. escribimos  

Q( x): x  es número primo. 

En  muchas  oportunidades  el  uso  de  los  paréntesis  que  encierran   x

∀

y  ∃ x   no  se  usarán. 

Los paréntesis indican el alcance del cuantificador. Resumiendo:  

•

Una proposición universal es de la forma: Para todo  x, P( x) , se simbolizará:   ( ∀ x)( P( x))

•

Una proposición existencial es de la forma: Existe  x, P( x) , se simbolizará :  ( ∃  x)( P( x)) EJEMPLO 1.4.1 

Simbolizar:  Los números naturales son positivos 

Solución: Esta proposición afirma que por el hecho de un número ser natural él es positivo. 

No habla de un número natural en particular sino de cualquiera de el os, es decir es algo referido a todos los naturales, luego su simbolización: 

(  x

∀ )( x es numero natural entonces x es positiv )

 o    

si consideramos como universo, por ejemplo 

. 

Si cambiamos al universo por 

lo simbolizamos:  (  x

∀ )( x es positiv )

 o . 

EJERCICIO 1.4.2: 

Simbolizar: (Recuerde que lo primero que tiene que establecer es el universo). 

1. Existen números pares. 

2. Toda circunferencia tiene un centro. 

3. Existen números pares y existen números positivos. 

4. Los cuadrados de los números reales son positivos. 

5. Todos los hombres se mueren. 

6. Todo número es par o impar. 

7. Existen estudiantes muy buenos y hay docentes cumplidores. 

8. Hay equipos que salieron campeones. 

9. Hay equipos que salieron campeones y hay equipos que juegan bien. 
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 El  valor  de  verdad  de  una proposición  universal  de  la  forma   Para  todo  x,  P(x)    depende  del  universo  que  esté  involucrando  y  si  cada  uno  de  los  individuos   a   de  ese universo  verifique o no lo que está afirmando  P( x) cuando  x es sustituido por un individuo   a . 

Si  P(  a ) es una proposición verdadera cualquiera sea   a  del universo es entonces ( ∀  x)( P( x) ) verdadera. 

 El valor de verdad de una proposición existencial de la forma  Existe  x, P(x)  depende del universo que esté involucrando y si hay algún individuo   a  de ese universo que verifique  P( x) cuando  x es sustituido por   a . 

Si  P(  a ) es una proposición verdadera para algún individuo  a del universo es entonces ( ∃  x)( P( x)) verdadera. 

EJERCICIO 1.4.3 

Para cada una de las proposiciones dadas en el EJERCICIO 1.4.2 dar  un universo. 

¿Cuál es el valor de verdad? 

EJERCICIO 1.4.4: 

a) Simbolizar las siguientes proposiciones indicando claramente cual es el universo que considera: 

i)

Todos los números primos son positivos. 

ii)

Existen números reales irracionales. 

iii)

Hay números reales racionales y hay números reales irracionales. 

iv)

Dado un número real, él es racional o irracional. 

v)

Todos los números racionales son enteros. 

vi)

Todos los números enteros son racionales. 

vii)

Hay números racionales que son enteros. 

viii)

Todos los reales al cuadrado son mayores que 0. 

ix)

Todas las circunferencias son concéntricas. 

x)

Hay circunferencias de radio negativo. 

xi)

Todos los cometas tienen órbitas elípticas. 
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xii)

Todo entero múltiplo de 4 es múltiplo de 2. 

xiii)

Hay enteros múltiplos de 8 y de 9 a la vez. 

xiv)

Existen enteros que son múltiplos de 7 que son pares. 

xv)

Todo múltiplo de 2 es múltiplo de 4. 

xvi)

Existen alumnos que estudian. 

xvii)

Los alumnos que estudian aprueban. 

xviii)

Todos son creativos. 

b) Analizar el valor de verdad de las proposiciones anteriores. 

c) Determine, de ser posible, un universo en que resulten falsas y otro en que resulten verdaderas cada una de las proposiciones dadas en a)

En  muchas  oportunidades  es  necesario  simbolizar  con  más  de  una  variable  proposicional. 

Puede que estas proposiciones l even a formular esquemas de más de una variable. 

EJEMPLO 1.4.5 

Una de las nociones más básicas en que podemos pensar es el orden. 

Supongamos que queremos expresar:  Todo número tiene uno mayor.  

Consideremos como universo el conjunto  , de qué se habla?  De que dado un número entero 

(cualquiera) hay otro número entero que es mayor. 

Para el o usaremos:      

 M( x, y):  y es mayor que x 

Se tiene entonces que cuantificar de manera conveniente y resulta: 

 ( ∀  x) ( ∃  y) (M(x, y) )

EJEMPLO 1.4.6 

¿Hay diferencia entre lo que expresan?  (Considerar como universo el conjunto de seres hu-

manos vivos actualmente) 

 1. 

 Todos aman a alguien. 

 2. 

 Hay quien ama a todos. 

Pensemos lo que dice (1). Dado un individuo cualquiera, él ama a otro individuo. El amor no es siempre correspondido...por lo cual no tiene porqué ser la relación "hacia el otro lado". 

¿Qué dice (2)? Que hay un individuo que ama a cualquier otro individuo. 

Lo que dicen es muy distinto. ¿Cómo se simbolizan? 
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Sea: 

 A( x, y):  x ama a y 

Para 1. 

 ( ∀  x) ( ∃  y) (A(x ,y) ) 

Para 2. 

 ( ∃  y) ( ∀  x)  (A(y, x) )

Por lo tanto  el orden de los cuantificadores es importante. Y el orden de las variables dentro del esquema también!!! 

EJERCICIO 1.4.7 

Sean 

i)

 Hay un número que es menor que todo número. 

ii)

 Todo número es menor que todo número. 

iii)

 Todo número es menor que algún número. 

a) Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números reales. 

b) Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números naturales. 

EJERCICIO 1.4.8: 

Sean: 

i)

 Todo número tiene inverso multiplicativo. 

ii)

 Hay números que tienen inverso multiplicativo. 

a) Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números reales. 

b) Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números enteros. 

c) Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números reales mayores que 3. 

d) Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números enteros mayores que 3. 

EJERCICIO 1.4.9 

Sean: 

i)

 Para todo número real positivo existe otro que sumados dan 0. 

ii)

 Para todo número real existe otro que sumados dan 0. 

iii)

 Dados dos números reales su producto es un número real. 

Simbolice y analice el valor de verdad de las proposiciones dadas en el universo de los números reales. 
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Reglas para negar proposiciones con un cuantificador 

A partir de las definiciones de los valores de verdad de las proposiciones universales y existenciales es posible deducir que vale lo siguiente: 

Proposición 

Negación de la Proposición 

Ejemplo 

NO todos son santos. 

( ∀ x) (P(x)) 

∼ (  x

∀ )( P( x)) ⇔ (∃ x)(~  P( x))

Hay algunos que NO son santos 

NO existen alumnos aprobados 

(∃ x)( P( x))

∼ (  x

∃ )( P( x)) ⇔ (  x

∀ )(~  P( x))

Todos los alumnos son NO aprobados 

Con estas reglas es suficiente para negar cualquier proposición con cuantificadores. 

La idea es que hay que ir introduciendo la regla en la proposición de a un cuantificador por vez. 

EJEMPLO 1.4.10 

Negar:  (  x

∀ )( T ( x) → ( R( x) ∨  S ( x)))  

De acuerdo a la regla anterior: 

∼ (  x

∀ )( T ( x) → ( R( x) ∨  S ( x))) ⇔ (  x

∃ ) ∼ ( T ( x) → ( R( x) ∨  S ( x)))

Negando un condicional se tiene: 

(  x

∃ ) ∼ ( T ( x) → ( R( x) ∨  S ( x))) ⇔ (∃ x)( T ( x)∧ ∼ ( R( x) ∨  S ( x))) y aplicando una de las reglas de De Morgan: 

(  x

∃ )( T ( x)∧ ∼ ( R( x) ∨  S( x))) ⇔ (  x

∃ )( T ( x)∧ ∼  R( x)∧ ∼  S( x))  

EJEMPLO 1.4.11 

Negar:  (  y

∃ )(  x

∀ )( H (  y) ∧ ( R( x,  y) →  S ( x)))

De acuerdo a las reglas y la recomendación: 

∼ (  y

∃ )(  x

∀ )( H (  y) ∧ ( R( x,  y) →  S ( x))) ⇔ (  y

∀ ) ∼ (  x

∀ )( H (  y) ∧ ( R( x,  y) →  S( x)))

Siguiendo... 

(  y

∀ ) ∼ (  x

∀ )( H (  y) ∧ ( R( x,  y) →  S ( x))) ⇔ (  y

∀ )(∃ x) ∼ ( H (  y) ∧ ( R( x,  y) →  S ( x))) aplicando Regla de De Morgan: 

(  y

∀ )(∃ x) ∼ ( H (  y) ∧ ( R( x,  y) →  S ( x))) ⇔ (  y

∀ )(  x

∃ )(∼  H (  y)∨ ∼ ( R( x,  y) →  S ( x)))

por la negación de un condicional: 

(  y

∀ )(∃ x)(∼  H (  y)∨ ∼ ( R( x,  y) →  S( x))) ⇔ (  y

∀ )(  x

∃ )(∼  H (  y) ∨ ( R( x,  y)∧ ∼  S ( x))) 
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¿Cuándo se considera terminado? Cuando cada símbolo de negación afecta un solo esquema 

proposicional. 

EJERCICIO 1.4.12: 

a) Negar las proposiciones simbolizadas en el EJERCICIO 1.4.4. 

b) Negar las proposiciones simbolizadas en el EJERCICIO 1.4.7. 

c) Negar las proposiciones simbolizadas en el EJERCICIO 1.4.8. 

d) Negar las proposiciones simbolizadas en el EJERCICIO 1.4.9. 

5. Otras Demostraciones

Como  se  ha  expresado  anteriormente  los resultados  válidos  en  Matemática  son  aquellos que se pueden demostrar.  Cosa que en general no es simple. 

Podemos agregar que cuando se presentan los distintos temas en una materia de Matemática 

se dan en el a los teoremas más importantes, con un encadenamiento que por lo general no es el histórico. Ni, por lo general, las demostraciones que se exhiben son las originales, el avance de los conocimientos hace que las demostraciones puedan mejorarse o hacerse "más elegantes" con el aporte de nuevos resultados. 

La manera de hacer demostraciones y también de recrearlas depende de lo que se quiera de-

mostrar y también de la "forma" del enunciado. 

Si  el  enunciado  a  probar  es  de  forma  existencial,  alcanzará  en  algunos  casos  con  exhibir  un individuo del universo involucrado con las características que dice el enunciado o una manera de construir ese individuo.. 

Si el enunciado es de forma universal habrá que probar que cada uno de los elementos del 

universo cumple con lo afirmado. Si el universo fuera de un número finito de individuos  

podríamos analizar que cada uno de el os verifica lo enunciado. Si el universo es infinito, tomar un elemento arbitrario (NO un ejemplo) del universo del que se habla, y probar que tiene la propiedad enunciada. 

Veamos como realizamos una demostración de una propiedad de teoría de conjuntos. 
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EJEMPLO 1.5.1 

Sean  A = {0, 2}  y   B = 0

{ , 2, 4,6,8,10}

Claramente se “ve” que   A ⊆  B ,  ya que cada uno de los elementos de  A son también elementos de  B. 

Si   C = { 6

− , 4

− , 2

− , , 0, 2, 4, 6, 8,10,12} se da que    B ⊆  C (¿por qué?), justifique y claramente observará que   A ⊆  C . 

Esta situación es general y muy obvia si la ilustramos: 

 C 

 A 

 B 

Se puede entonces enunciar: 

Propiedad transitiva de la contención:  

Cualesquiera sean los conjuntos  A, B y  C, si   A ⊆  B  y   B ⊆  C  entonces    A ⊆  C . 

Observar que la propiedad a demostrar habla de conjuntos cualesquiera y además formalmente 

es un condicional. Donde el antecedente es   A ⊆  B  y   B ⊆  C  (que es la  hipótesis de nuestra propiedad a demostrar). El consecuente es   A ⊆  C  (que es la  tesis de la propiedad a demostrar) 

Vamos a demostrarla. 

Para  el o  se  debe  tomar  un  elemento  cualquiera  de  A   y  usando  las  hipótesis  en  el  momento oportuno, l egar a que ese elemento de  A es también elemento de  C. 

El considerado es un elemento totalmente general de  A, sólo es eso lo que se sabe de él, que está en  A. Esto cumplido hay que trabajar para l egar a   A ⊆  C . Bueno empecemos... 

Sea   x ∈  A, como por hipótesis   A ⊆  B , usando la definición de inclusión, resulta que   x ∈  B . 

Ahora que se tiene   x ∈  B , se usa la hipótesis   B ⊆  C , resulta así que   x ∈  C . 

En la demostración que realizamos usamos el  Método Directo.  (Pusimos en claro que queríamos demostrar  y usamos las hipótesis en el camino y l egamos a la conclusión deseada) 
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EJEMPLO 1.5.2 

Demostrar que:   A ⊆  B , para  A = {  x: x es divisible por 6}  y  B = {  x:  x es divisible por 3} 

El concepto de divisibilidad para los números se entiende para los números enteros. 

Por lo tanto, esto está significando (aunque no se dice de manera explícita) que  A y  B son subconjuntos de Z. 

Recordar que: (esto lo sabemos….) 

si   a   y  b  son enteros y    a  es divisible por b si y sólo si existe un entero  c tal que   a  = c. b Para demostrar que   A ⊆  B  hay que hacer un trabajo similar al hecho en la demostración anterior. 

Para el o se debe tomar un elemento cualquiera de  A y usando las definiciones en el momento oportuno,  l egar  a  que  ese  elemento  de  A  es  también  elemento  de  B.  Se  trabaja  con  un  elemento totalmente  genérico de  A, sólo  es eso lo que se sabe de él, que está en  A.  (También será por el método directo) 

Dado  x ∈ A, se tiene por definición, que existe  k entero tal que 

 x = k. 6   (*) 

Para demostrar que  x es elemento de  B hay que probar que  x = h.3, con  h entero. 

Saber adónde se pretende l egar es importante, es la guía de qué cosas es importante pensar. 

Como  6 = 2.3, sustituyendo en (*) se tiene que: 

 x = k. 6 =  k. (2.3) = (k. 2). 3 

Esta  serie  de  igualdades  se  verifican  por  sustitución  y  asociatividad  del  producto  de  enteros. 

Además  k.2 es un entero, el  h que se está buscando..., así l egamos a que:  

  x = h.3,  con  h entero.              Por tanto,  x ∈  B. 

Veamos como realizamos una demostración de una propiedad de teoría de números reales: 

EJEMPLO 1.5.3 

La suma de un número racional con un número irracional es un número irracional. 

La demostración la haremos por el Método del Absurdo. Esto consiste en usar las hipótesis, negar la tesis y l egar a una contradicción. Esa contradicción puede ser de una de las hipótesis del mismo problema o de algún resultado ya probado o hecho conocido. 
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Sea   a  un número racional (cualquiera) y  b un número irracional (cualquiera). 

Por lo que sabemos de números,  a  es cociente de enteros y  b que no es cociente de enteros. 

Podemos pensar además que en   a  el denominador positivo. 

 p

Calculando,  a +  b =

+  b con  p ∈  y  q ∈

−{ }

0 . 

 q

Supongamos que  negamos que esa suma es irracional, luego esa suma es racional. Es decir: p

 s

 a +  b =

+  b = 

con  s ∈  y  t ∈

− { }

0 . 

 q

 t

 s

 p

De aquí, haciendo operaciones en los números reales, se tiene:    b = 

−

. 

 t

 q

 s

 p

. 

 s q −  t.  p

Ahora operando en el segundo miembro obtenemos que:   b = 

−

=

que es 

 t

 q

 t.  q

un  cociente  de  enteros  de  denominador  natural  no  nulo  (ya  que  ninguno  de  los  factores  del denominador es 0). 

Por lo tanto,  b se escribe como cociente de enteros con denominador no nulo, lo que contradice que  b es irracional. 

Hemos l egado a una contradicción (pues  b se tiene que es irracional por hipótesis, pero también es racional por como lo podemos escribir!), que se dice que es un absurdo. 

¿De dónde provino el absurdo? De haber supuesto que la suma de   a  y  b es racional, por en-de, debe ser irracional. 

Hay otro método  de demostración también muy usado que es el Método Indirecto. En realidad, es hacer el método directo a la proposición contrarecíproca de lo que se quiere demostrar. 

Pues ya se ha probado que un condicional y su contrarecíproca son equivalentes. 

EJEMPLO 1.5.4 

 Si  a 2  es un número entero impar entonces  a  es un número entero impar 

Por el Método Indirecto, tenemos que probar por el método directo: 

 Si  a  es un número entero par entonces  a 2 es un número entero par. 

De   a  lo que se sabe que es entero y par. 

Por definición   a  es un múltiplo de 2, cosa que expresamos:   a = 2. k, para algún  k entero. 

Veamos qué es   a 2, por definición de potencia y propiedades de esta operación resulta: a 2= (2.k)2=22.k2=(2.2).k2 por asociatividad del producto de enteros,  (2.2).k2=2.(2.k2).   
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Luego   a 2  es un número par por definición, ya que  2.k2  es un entero! 

Por lo tanto ¨salimos¨ de   a  par y ¨l egamosä que   a 2 es par. 

Por lo cual de acuerdo al método indirecto hemos demostrado lo que queríamos. 

EJERCICIO 1.5.5 

Demostrar por el método que le resulte más conveniente: 

a)  Todo número real al cuadrado es positivo. 

b)  Si  a  es divisible por 9 entonces  a  es divisible por 3. 

¡¡¡¡En los casos posibles anímese!!!! ha realizar las demostraciones por más de un método. 
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Elementos de una Teoría Intuitiva de Conjuntos 

El  desarrol o  de  la  Matemática  a  través  de  los  tiempos  l evó  a  que  su  escritura  fuera  más simbólica: la representación de los números (en cada civilización adoptaron alguna forma para expresarlos),  conceptos de la geometría y el análisis matemático también se fueron expresando de manera especial. 

Se trató de buscar un lenguaje común que pudiera demostrar la unidad de la Matemática. 

A fines del siglo XIX y principios del XX se desarrol ó la Teoría de Conjuntos. Esta teoría es un lenguaje que se usa en todas las ramas de la Matemática, permitiendo expresar los conceptos de cada teoría. Se hará un trabajo intuitivo sobre los conjuntos y sus operaciones. 

Es  conocido  que  hay  más  de  una  axiomatización  de  la  Teoría  de  Conjuntos  y  que  algunos primeros  tratamientos  de  la  misma  l evaron  a  paradojas  que  fueron  subsanadas  con  estas axiomatizaciones. 

Hay una importante vinculación con las operaciones del Cálculo Proposicional y las de esta 

teoría, como así también una relación con algunas clases de álgebras. 

1. Definiciones básicas

La  palabra  conjunto  resulta  una  expresión  primitiva  (que  no  requiere  definición),  por  el o entenderemos una colección o agrupamiento de entes u objetos, que en general tienen características similares. Los objetos que están en un conjunto son los elementos del conjunto. 

Si  A es un conjunto y  x es un elemento de  A lo indicamos por  x ∈  A . 

La representación usual de los conjuntos es: 

 A 

•  x

Los conjuntos están determinados por sus elementos . 

A un conjunto lo podemos presentar dando de manera explícita cada uno de sus elementos 

(extensión)  o dando lo que se l ama la propiedad definidora del conjunto, todo elemento que cumple esa  propiedad está en  el conjunto y sólo  esos elementos están en el  conjunto  (comprensión). 
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Dar el  conjunto por  extensión  es factible si el conjunto tiene un número finito de elementos (se cuentan sus elementos y se termina de hacerlo), pero sin embargo algunos conjuntos infinitos (cuando no es finito…) se presentan de esa manera cuando se entiende su ley de forma-

ción. 

EJEMPLO 2.1.1 

i) Si   A={ 0, 2, 4, 6 } (definido por extensión)

Se tiene que 0 ∈  A, 2 ∈  A, 4 ∈  A  y  6 ∈  A. 

También,  A queda definido por comprensión como: 

 A = {  x:  x es un número par positivo menor que 8  }= {  x:  x es un número par ∧   x ≥   0  ∧   x <  8  } 

Ambas maneras definen  A. 

i ) Al conjunto de todos los números naturales a pesar de su infinitud es usual anotarlo

= { 0, 1, 2, 3, ...} los puntos suspensivos dan la idea de cómo sigue el conjunto... 

Igualmente ocurre con los números enteros   = { ... -3, -2, -1, 0, 1, 2, 3, ...}. 

Estos conjuntos se representan sobre una recta, en la que se ha establecido un punto origen O, que representa el número 0, un punto  U, a la derecha de  O, representa al 1. Se considera una unidad de medida (longitud del segmento  OU) que se transporta a la derecha de  O representando a los números positivos y a la izquierda de  O los números negativos. 

 O 

 U 

-2 

-1 

0 

1 

2 

3 

En lo que sigue se anotará 

, 

, 

y 

a los conjuntos de los números naturales, enteros, 

racionales y reales respectivamente. 

EJERCICIO 2.1.2 

i)

Defina de dos maneras distintas el conjunto de los números impares que su valor abso-

luto es menor o igual que 5. 

i )

Ídem para el conjunto de las primeras seis potencias enteras de -2. 

i i)

Ídem para el conjunto de los números naturales pares. 

iv)

Ídem para el conjunto de los números pares. 
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El conjunto que no tiene elementos es el conjunto vacío, y se simboliza por  ∅ . 

Sean   A y  B conjuntos, el os son  iguale s si y sólo si  A y  B tienen los mismos elementos. 

Esto es, todo elemento de  A es también elemento de  B y recíprocamente. 

Esto lo anotaremos:                 A = B 

EJEMPLO 2.1.3 

Claramente son iguales los tres conjuntos 

 A = { x :  x = 2.  k ∧ ( k = 0 ∨  k = 1 }

) ,  B = {

2

 x :  x − 2 x = }

0  y   C = {0, }

2

Hay oportunidades que no se da la igualdad pero sucede que todo elemento de  A  es elemento de  B. 

Es conveniente ponerle nombre a este hecho tan habitual, piense que es lo que ocurre con el conjunto de los números naturales y el conjunto de los números enteros, y para otros conjuntos numéricos (¿cuáles situaciones se presentan?) 

Si ocurre que todo elemento de  A es elemento de  B, diremos que  A es subconjunto de  B o que  A está incluido en  B, o que  B contiene a  A. 

La expresión simbólica del concepto es:  (  x

∀ )( x ∈  A →  x ∈  B)   

Si esta proposición es verdadera,  A está incluido en  B 

Para indicarlo usamos la notación: 

 A ⊆  B

La situación la podemos "ver" por el diagrama: 

 B 

 A 

También es usual simbolizar   A ⊂  B  para indicar que  A es subconjunto de  B y  A distinto de  B. 

Si  A no es subconjunto de  B se anota   A ⊄  B   o   A ⊆

/  B . 
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EJEMPLO 2. 1.4 

Dados   A = {  a :  a  es un libro escrito por D. Sarmiento}  

 B = {  b :  b  es  biblioteca pública de la ciudad de La Plata  } 

Analizar el valor de verdad de las siguientes proposiciones, los libros se indicarán por el título y las bibliotecas por su nombre: 

 r :  "  Recuerdos de Provincia " ∈  A 

 r ∨  o :  "  Recuerdos de Provincia " ∈  A ∨  "  La Odisea " ∈  A r ∧  o :  "  Recuerdos de Provincia " ∈  A ∧  "  La Odisea " ∈  A f :  "  Facundo " ∈  A 

 r ∧   f :  "  Recuerdos de Provincia " ∈  A  ∧   "  Facund o" ∈  A m : La biblioteca de la municipalidad de La Plata ∈  B 

 t : "Recuerdos de Provincia" ∈  B 

 u : La biblioteca pública de la Universidad Nacional de La Plata ∈  B 

 m ∧  u: La biblioteca de la municipalidad de La Plata ∈  B ∧    La biblioteca pública de la  

        Universidad Nacional de La Plata ∈  B 

 j ∨  o: "La Odisea" ∈  B ∨ "La Odisea"∈  A 

 n : La biblioteca Nacional ∈  B 

 e : La biblioteca de la Facultad de Ciencias Exactas de la Universidad de La Plata ∈  B 

"Recuerdos de Provincia" es un libro escrito por Sarmiento, al igual que "Facundo". 

"La Odisea" es un libro atribuido de Homero. 

Recordando los valores de verdad de las proposiciones   compuestas se tiene que son verdaderas  r, r ∨  o,  f,  r ∧  f.     Es falsa  r ∧  o.  

La biblioteca que está en la ciudad de La Plata y es la biblioteca municipal es pública. 

La biblioteca pública de la Universidad Nacional de La Plata está en 7 y 60, por si le interesa el dato. 

La biblioteca de la Facultad de Ciencias Exactas de la Universidad de La Plata,  funciona en el subsuelo del edificio está en 115 y 50 . 

Volvamos al análisis... 

El conjunto  B  es un conjunto de bibliotecas, públicas y ubicadas en La Plata . 

Por lo tanto , t es falsa ,  observar que "Recuerdos de Provincia" es un libro y   NO una biblioteca . 

Seguro que es un libro que está en casi todas la bibliotecas públicas de la ciudad de La Plata . 

La pertenencia  (elemento - conjunto) no es transitiva. 

Si son verdaderas  m, u, m ∧  u,  j ∨  o (   justifique!  ! )  .  Son falsas  n  y  e, porqué? Averigüe.   
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EJERCICIO 2.1.5 

i)

Si   A = {−1, 4,  a, }

 c ,  indicar  con  verdadero  (V)  o  falso  (F)  y  justificar  los  siguientes

casos:

−1∈  A

 b ∈  A

 a ∈  A

−1 ⊆  A

{ a, }

 c ∈  A

 b ∉  A

{ }

 a ∈  A

{ , }

1∈  A ∧ 4 ∈

⊆

 A

 a c

 A

ii)

Bajo qué condiciones de los conjuntos   A y  B, ejemplifique, resulta verdadera: 1. 

 A ⊆  B    y       B ⊆  A

2. 

 A ≠  B    y       B ⊆  A

 Propiedades de la inclusión

Si  A es subconjunto de  B y además  B es subconjunto de  A, entonces  A = B. 

Además si  A= B  vale que  A es subconjunto de  B y  B es subconjunto de  A. 

Por lo cual podemos enunciar la siguiente propiedad: 

Propiedad de la Igualdad: 

 A =  B ⇔ (  A ⊆  B

∧

 B ⊆

)

 A  

⇔ simboliza "si y sólo si" en el sentido de equivalente, esto es que teniendo como hipótesis o dato lo que está de un lado de " ⇔ " se puede obtener lo que está del otro lado y viceversa. 

Aplicación: Sobre las proposiciones con cuantificadores 

Se está en condiciones de probar lo enunciado en el Capitulo 1 respecto al valor de verdad 

de las proposiciones con cuantificadores de una manera más precisa y demostrar alguna equi-

valencias que se han enunciado. 

En el apartado 4. del Capítulo 1 se ha enunciado que para cada esquema proposicional  P( x) hay que definir un universo  U,  y además el esquema tiene asociado el conjunto de verdad V (  P( x) ). 

Se puede enunciar entonces a partir de estos conjuntos que: 

(  x

∀ )( P( x)) es verdadera si y sólo si  V (  P (  x)  ) =  U  . 

(  x

∃ )( P( x)) es verdadera si y sólo si  V (  P (  x)  ) ≠ ∅ . 
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Se han enunciado las equivalencias de negaciones: 

Negación de la Proposición con cuantificadores 

∼ (  x

∀ )( P( x)) ⇔ (∃ x)(~  P( x))

∼ (  x

∃ )( P( x)) ⇔ (  x

∀ )(~  P( x))

Se probará una de el as como ejemplo, dejando la otra equivalencia como ejercicio. 

∼ (  x

∀ )( P( x)) ⇔ (∃ x)(~  P( x)) es correcta si y sólo si 

∼ (  x

∀ )( P( x)) ↔ (  x

∃ )(~  P( x)) es una tautología, es decir verdadera para cualquier 

instancia de verdad. 

Un bicondicional es verdadero si las proposiciones que lo forman tienen igual valor de verdad. 

Supongamos que  ∼ (  x

∀ )( P( x)) es verdadera. 

Por lo tanto  (  x

∀ )( P( x)) es falsa. 

Es decir  V ( P (  x)  ) ≠   U . Luego existe   a ∈ U  tal que  P( a) es falsa. 

Por lo cual existe   a ∈ U  tal que  ∼  P( a) es verdadera. 

Es así que el conjunto  V (∼  P (  x)  ) ≠ ∅   entonces  (  x

∃ )(~  P( x))  es verdadera. 

Supongamos que  ∼ (  x

∀ )( P( x)) es falsa. 

Por lo tanto  (  x

∀ )( P( x)) es verdadera. 

Por lo cual  V ( P (  x)  ) =  U . 

Entonces  V (∼  P (  x)  ) = ∅  ya que todo   a ∈ U  es tal que  P( a) es verdadera. 

Por lo tanto  (  x

∃ )(~  P( x)) es falsa. 

Anímese y demuestre la otra equivalencia. 

Analizar este ejemplo,  A = {0, 2},  B = 0

{ , 2, 4,6,8,10} se verifica que   A ⊆  B  y si

 C = { 6

− , 4

− , 2, 

− , 0, 2, 4, 6, 8,10,12}  se da que    B ⊆  C  y claramente   A ⊆  C . 

Esta situación es general y muy obvia si la ilustramos: 

 C 

 A 

 B 
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Se puede entonces enunciar: 

♦ PROPIEDAD 2.1.6  (Propiedad transitiva de la contención)

Cualesquiera sean los conjuntos  A, B y  C, si   A ⊆  B  y   B ⊆  C  entonces   A ⊆  C . 

Demostración:  

Para  el o  se  debe  tomar  un  elemento  cualquiera  de  A  y  usando  las  hipótesis  en  el  momento oportuno, l egar a que ese elemento de  A es también elemento de  C. Este es un elemento totalmente general de  A, sólo es eso lo que se sabe de él, que está en  A. 

Sea   x ∈  A , como por hipótesis   A ⊆  B , usando la definición de inclusión, resulta que   x ∈  B . 

Ahora que se tiene   x ∈  B , se usa la hipótesis   B ⊆  C , resulta así que   x ∈  C . Luego   A ⊆  C . 

♦

EJEMPLO 2.1.7 

Demostrar que   A ⊆  B , para  A = { x: x es divisible por 6}  y  B = {  x:   x es divisible por 3} 

Dado  x ∈  A , se tiene por definición de  A y de “divisible”, que existe  k entero tal que x = k.  6       (*) 

Para demostrar que  x es elemento de  B  hay que probar que  x = h.  3, con  h entero. 

Saber “adónde se pretende l egar” es importante, es la guía de qué cosas es importante pen-

sar. 

Como 6 = 2.3, sustituyendo en (*) se tiene:  

 x = k.  6  =  k. (2.3)  = ( k.  2). 3  

Esta serie de igualdades se verifican por sustitución  y asociatividad del producto de números enteros. 

Además  k.  2 es un entero, es el  h que se está buscando..., así l egamos a:  x = h.  3,  con  h entero. 

Por tanto,  x ∈  B. 

Luego vale que   A ⊆  B . 
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EJEMPLO 2.1.8 

Importante y Lógicamente... 

♦ Cualquiera sea el conjunto  A, se verifica que  ∅ ⊆  A

Demostración: 

De acuerdo a la definición,  ∅ ⊆  A  si y sólo si  (  x

∀ )( x ∈ ∅ →  x ∈ )

 A  es verdadero. 

El condicional   (  x ∈ ∅ →  x ∈  A ) es verdadero cualquiera sea  x, pues su antecedente es falso (Por qué?.....) 

Por lo cual, se cumple  ∅ ⊆  A  

♦

EJERCICIO 2.1.9 

Graficar conjuntos  A, B y  C que cumplan   A ⊆  B ,  A ⊆  C,  B ⊄  C, y  C ⊄  B . 

EJERCICIO 2.1.10 

Sea el conjunto   A = {2, 3, 5, }

9  indicar con verdadero (V) o falso (F) y justificar los siguientes 

casos: 

{2, }

4

{2, 5}

⊄

∈

∅ ∈

 A

 A

 A

{2, 5} ⊆  A

∅ ⊆  A

{2, }

4 ∉  A

{{9 }

} ⊆  A

{ }

∅ ⊆  A

{5, }

9 ⊆  A

EJERCICIO 2.1.11 

Dados    A = { x ∈ : 0 ≤  x ≤ }

3

; 

 B = { x ∈

:1 ≤  x ≤ }

4

; 

 C = { x ∈

: 0 ≤  x ≤ }

4  

i)

Hacer un gráfico en la recta numérica de los conjuntos dados. 

i )

Hay relaciones de inclusión entre el os? Cuáles? Justificar lo que afirma. 

 a

si  a ≥ 0

Recordar el valor absoluto que para cada    a ∈  está definido   a = − a  si  a < 0
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EJERCICIO 2.1.12 

i)

Graficar y demostrar que   A ⊆  B , para   A = { x ∈ : 2

− ≤  x ≤ }

3  y   B = { x ∈ :  x < }

4

i )

Graficar y demostrar que   B ⊆  C , para   C = { x ∈ :  x < }

4

i i)

Qué puede decir de  A y  C ? 

iv)

Hal ar el conjunto de números reales cuyos elementos cumplen  x = − x

v)

Hal ar el conjunto de números reales cuyos elementos cumplen  x = −  x

vi)

Hal ar el conjunto de números reales cuyos elementos cumplen  x =  x − 2

EJEMPLO 2.1.13 

Sean  A,  B y  C conjuntos. Demostrar: 

Si   A ⊆  B  entonces, si  C ⊆  A entonces  C ⊆  B

Hay que demostrar que   C ⊆  B  teniendo dos hipótesis   A ⊆  B  y   C ⊆  A . 

Por  lo tanto se  debe tomar un  elemento  genérico  de  C y oportunamente aplicar las hipótesis para determinar que también es elemento de  B.   

Sea   x ∈ C →  x ∈  A →  x ∈  B  por lo tanto   C ⊆  B  

hipótesis

hipotesis

 C⊆  A

 A⊆ B

2. Conjunto de Partes

Consideremos el conjunto  A = {0, 1}. Se buscarán todos los subconjuntos  A. 

El conjunto  X es parte de  A (o subconjunto de  A) si y sólo si todo elemento de  X es también elemento de  A. 

Por tanto, posibles  X son: {0}, {1}, {0, 1}. Falta algo? Sí,  el conjunto vacío  ∅ . 

Se va a formar el conjunto de todas las partes (o subconjuntos) de  A. 

Al conjunto de las partes se anotará P( A). 

P ( A) = { ∅ , {0}, {1}, {0, 1}} 

Sus elementos son conjuntos, los subconjuntos de  A.  

.{0,1} 

.{1} 

.1 

.{0} 

P (A) 

.0 

 A 

. ∅ 
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Para cualquier conjunto  A, el conjunto de partes de  A 

P ( A ) = {  X :  X ⊆  A  } 

Es evidente que:   x ∈  A ⇔ { }

 x ⊆  A

Para encontrar todos los subconjuntos de un conjunto finito una idea efectiva es 

•

 no olvidar el  ∅ , 

•

luego considerar los unitarios (los de un solo elemento), 

•

luego los de dos elementos y así seguir

•

hasta l egar al que tiene todos, es decir  A

EJERCICIO 2.2.1 

i)

Hal ar P ( B) siendo  B = {0}. 

i )

Hal ar P ( C) siendo  C = {0, 1, 2}. 

i i)

¿Cuántos elementos tienen  A  y  P ( A), del ejemplo introductorio? 

iv)

¿Cuántos elementos tiene  B?  y  P ( B) ? 

v)

¿Cuántos elementos tiene  C?  y  P ( C) ? 

vi)

¿Puede encontrar alguna relación entre esos números? 

vi )

Trabajando con cada uno de los conjuntos de partes hal ados, hal e la relación de con-

tención entre sus elementos. 

Más adelante se demostrará que si  A tiene  n elementos, entonces P ( A) tiene  2 n  elementos. 

Puede usar este hecho como control… al menos en el número de sus elementos. 

EJERCICIO 2.2.2 

Hal ar P ( A) para los casos: 

i)

 A = { -1, 3, 6}

i )

2

 A = { x ∈

:  x = 9}

i i)

2

 A = { x ∈

:  x = 9}

iv)

2

 A = { x ∈

:  x = 9 ∨  x = 4}

v)

 A = { x ∈

: 4 ≤  x < 6}  
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EJERCICIO 2.2.3 

i)

Hal ar P ( ∅ )

i )

¿Cuántos elementos tiene  ∅  ?  y  P ( ∅ ) ? 

i i)

¿Respeta la propiedad de la cantidad de elementos del conjunto de partes de conjun-

tos finitos? 

iv)

¿Qué diferencia hay entre P ( ∅ )  y  P ({ ∅ }) ? 

EJERCICIO 2.2.4 

Sea  L = {Basic, Java, Pascal, Ada}. 

i)

Haga una lista de subconjuntos de  L. 

ii)

Relacione por la contención los subconjuntos de  L. 

iii)

Hal ar P ( L). 

EJERCICIO 2.2.5: 

Sea  A = {0, 1, {1}, {0,2}}. 

i)

Haga una lista de subconjuntos de  A. 

ii)

Hal ar P ( A). 

3. Operaciones entre conjuntos

Siendo   A  y   B  conjuntos,  se  obtienen  a  partir  de  el os,  realizando  operaciones  conjuntistas, otros conjuntos. 

Intersección de  A  y  B es el conjunto de elementos que pertenecen simultáneamente a ambos conjuntos; se simboliza por: 

 A ∩  B = { x :  x ∈  A ∧  x ∈ }

 B  

 B 

 A 

Unión de  A y  B  es el conjunto de elementos que pertenecen a alguno de esos conjuntos, se simboliza por: 

 A ∪  B = { x :  x ∈  A ∨  x ∈ }

 B  

 B 

 A 
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EJEMPLO 2.3.1 

i)

Si  A = {0, 1} y   B ={-1,0, 1} entonces  A ∩  B={0, 1} y   A ∪  B={-1, 0, 1}

Observe la relación de inclusión entre  A, B y los resultados de las operaciones. ¿Puede asegurar algo?? 

i )

Si  A = {0} y   B = {-1, 1} entonces  A ∩  B =  ∅   y   A ∪  B = {-1, 0, 1}

Observe la relación de inclusión entre  A, B y los resultados de las operaciones, ¿qué opina?? 

i i)

Si P = { x ∈ :  x es pa }

r e  I  = { x ∈

:  x es impa }

r  entonces P∩I =  ∅   y  P∪I =N

Observe la relación de inclusión entre P, I  y  los resultados de las operaciones,¿qué arries-ga?? 

iv)

Si   A = { x ∈ : 0 ≤  x ≤ }

3

; 

 B = { x ∈

:1 ≤  x ≤ }

4

; 

 C = { x ∈

: 0 ≤  x ≤ }

4

entonces  A ∩  B =  { x ∈ :1 ≤  x ≤ }

3   y   A ∪  B =  { x ∈

: 0 ≤  x ≤ }

4  

entonces  A ∩  C =  { x ∈ : 0 ≤  x ≤ }

3   y   A ∪  C =  { x ∈

: 0 ≤  x ≤ }

4  

entonces  B ∩  C =  { x ∈ :1 ≤  x ≤ }

4   y   B  ∪  C =  { x ∈

: 0 ≤  x ≤ }

4  

(haga la representación para convencerse ....). 

Analice las relaciones de inclusión y realice una conjetura. 

EJERCICIO 2.3.2 

Hal ar  A ∩  B  y  A ∪  B para los casos: 

i)

 A = { -1, 3, 6},  B = { -2, -1, 3, ,4, 6, 8}

i )

2

 A = { x ∈

:  x = 9}  ,  B = { x ∈

: ( x − 3)( x + 3) = 0}

i i)

2

 A = { x ∈

:  x = 9} ,  B = { x ∈

: ( x − 3)( x + 3) = 0}

iv)

2

 A = { x ∈

:  x = 9 ∨  x = 4}  , B = { x ∈

: ( x − 1)( x + 3) = 0}

v)

 A = { x ∈

: 4 ≤  x < 6}  , B = { x ∈

: ( x − 1)( x + 3) = 0}

EJERCICIO 2.3.3 

Considere dos conjuntos cualesquiera  A y  B. 

En  qué  condiciones  se  verificarán  las  siguientes  proposiciones,  haga  un  gráfico  para  ayudarse...: 

i)

 A ∩  B = B

ii)

 A ∪  B =  ∅

iii)

 B ∪  ∅  =  ∅

iv)

 A ∩   ∅  =  ∅

v)

 A ∩   ∅  =  A

vi)

 A ∩  B = A ∪  B
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 Propiedades de la unión e intersección

Se está muy acostumbrado a realizar estas operaciones con conjuntos concretos, y también 

a partir de los ejemplos recién analizados se pueden establecer las siguientes propiedades. Se probarán algunas con el propósito mostrar un excelente ejercicio de razonamiento. 

Propiedad Conmutativa: (de la unión y de la intersección de conjuntos) 

Cualesquiera sean los conjuntos  A, B, se cumple: 

 A ∪  B =  B ∪  A

 A ∩  B =  B ∩  A  

Propiedad Asociativa: (de la unión y de la intersección de conjuntos) 

Cualesquiera sean los conjuntos  A, B  y  C,  se cumple: 

(  A ∪  B) ∪  C =  A ∪ ( B ∪  C)

(  A ∩  B) ∩  C =  A ∩ ( B ∩  C)

La demostración de estas propiedades es inmediata, cada una de el as se basa en las homó-

nimas propiedades de la disyunción y conjunción del cálculo proposicional. 

•

La técnica es considerar un elemento genérico del conjunto que está en uno de los miem-

bros  de  la  igualdad  a  demostrar  y  aplicar  la  definición  y  propiedades,  así  poder  concluir que ese elemento es elemento del conjunto del otro miembro de la igualdad. 

•

En general hay que probar la "doble" contención para probar una igualdad de conjuntos. 

EJEMPLO 2.3.4 

♦ Probar   A ∪  B =  B ∪  A

Demostración: 

Sea    x ∈  A ∪ B

↔

 x ∈  A ∨  x ∈  B

↔

 x ∈  B ∨  x ∈  A

↔

 x ∈  B ∪  A  

def. de unión

 p∨ q⇔ q∨  p

def. de unión

♦

EJEMPLO 2.3.5: 

♦ Probar  (  A ∩  B) ∩  C =  A ∩ ( B ∩  C)

Demostración:  

Sea    x ∈ (  A ∩  B) ∩  C

↔

 x ∈ (  A ∩  B) ∧  x ∈  C

↔

( x ∈  A ∧  x ∈  B) ∧  x ∈  C ) 

def. de 

def. de 

intersección

intersección
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¿Qué queremos obtener? Que  x es elemento de   A ∩ ( B ∩  C) . La idea es asociar de manera distinta la conjunción.  Como ya se ha probado la asociatividad de la conjunción, sigamos: 

( x ∈  A ∧  x ∈  B) ∧  x ∈  C ↔  x ∈  A ∧ ( x ∈  B ∧  x ∈  C)

↔

 x ∈  A ∧  x ∈  B ∩  C

↔

def. de 

def. de 

intersección

intersección

↔

 x ∈  A ∩ ( B ∩  C)

def. de 

intersección

♦

En este ejemplo todos los pasos fueron justificados por una equivalencia lógica o una definición (que es una equivalencia) por lo cual todos los pasos seguidos son "un ida y vuelta", por el o es que se da la doble contención. 

Anímese y pruebe las otras.... 

Propiedad:      Sean  A y  B  conjuntos 

 A ⊆  B 

 A ∪  B =  B

 A 

 B 

 A ⊆  B 

 A ∩  B =  A

En estas propiedades las igualdades no siempre se dan, requieren una hipótesis adicional sobre los conjuntos que intervienen. 

Las  demostraciones  con  hipótesis  adicionales  son  algo  más  complicadas.  Se  deben  usar  las definiciones y en el "momento apropiado" (ahí está el asunto) la hipótesis. 

Veamos una: 

EJEMPLO 2.3.6 

♦ Probar:   A ⊆  B 

 A ∪  B =  B

Demostración:  

¿Qué es lo que hay que probar? Sabiendo que   A ⊆  B  entonces

 A ∪  B =  B . 

Hay que probar una igualdad de conjuntos cuando se cumple una condición. 

Por lo tanto, se debe verificar la doble inclusión   B ⊆  A ∪  B   y que  A ∪  B ⊆  B ,  y seguramente habrá que usar la hipótesis pues por los ejemplos ya vistos, en general la unión no es igual a ninguno de los conjuntos que se están uniendo... 
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•

Comencemos probando

 B ⊆  A ∪  B   :

Sea   x ∈  B , habrá que deducir que ese elemento genérico tomado en  B es también elemento de la unión. 

Pero qué es el conjunto unión de  A con  B: son los elementos que están al menos en uno de el os. 

Formalmente hacemos lo siguiente: 

 x ∈  B  

→

 x ∈  B ∨  x ∈  A

↔

 x ∈  B ∪  A

↔

 x ∈  A ∪  B  

p

def. de unión

son iguales! 

 reg :

 la  p∨q

•

Se demostrará la otra contención  A ∪  B  ⊆  B , analice el uso de la hipótesis: Sea   x ∈  A ∪  B , habrá que deducir que ese  x  genérico tomado en   A ∪  B  es también elemento de  B.  

 x ∈  A ∪  B

↔

 x ∈  A ∨  x ∈  B  

def. de unión

Se tiene la hipótesis:   A ⊆  B, lo que significa que si  x ∈  A →  x ∈  B , por lo cual seguimos así: x ∈  A ∨  x ∈  B  

→

 x ∈  B ∨  x ∈  B

↔

 x ∈  B  

 hipótesis

 p∨  p⇔  p

♦

Muy  importante:  En  la  demostración  de   B ⊆  A ∪  B   NO  se  usó  la  hipótesis  adicional,  por  lo tanto es siempre verdadero que un conjunto está contenido en una unión de la que forma parte..... 

Esto es, cualesquiera sean los conjuntos  A y  B vale que   B ⊆  A ∪  B , y también para  A. 

EJERCICIO 2.3.7 

Probar otra propiedad enunciada anteriormente:   A ⊆  B 

 A ∩  B =  A  

EJERCICIO 2.3.8 

i)

Para cualquier conjunto  A calcular:   A ∪ ∅   y   A ∩ ∅ . 

ii)

Para   A = { x ∈ : 0 ≤  x ≤ }

3 ;  B = { x ∈

:1 ≤  x ≤ }

4  y  C = { x ∈

: 0 ≤  x ≤ }

4  calcular:

 A ∩ ( B ∪  C); 

(  A ∩  B) ∪ (  A ∩  C); 

 A ∪ ( B ∩  C); 

(  A ∪  B) ∩ (  A ∪  C)  ¿qué observa? 

iii) ¿Cómo enunciaría i )? ¿Qué nombres pondría? ¿Valdrá en general? 
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EJEMPLO 2.3.9 

♦ Probar que si   A ⊆  B entonces P ( )

 A ⊆ P ( B)

Demostración: 

Sea   C ∈P ( )

 A 

→  C ⊆  A → C ⊆  B 

→ C ∈P ( B)  

por definición

por la demostración

por definición

previa 2.1.13

Por lo tanto P ( )

 A ⊆ P ( B)  

♦

EJERCICIO 2.3.10 

Sean   A = { x ∈ :  x ≤ }

5 , 

 B = { x ∈ : 3

− <  x + 1 ≤ }

6 . 

i)

Hal ar P ( A) , P ( B) . 

i ) Hal ar  A ∪  B , 

 A ∩  B . 

i i) Hal ar P ( A ∪  B) , P ( A ∩  B) . 

iv) ¿Hay alguna relación con P ( A) ∪ P ( B) y con P ( A) ∩ P ( B) ? 

EJERCICIO 2.3.11 

Sean   A = { x ∈ : 2 <  x ≤ }

8 , 

 B = { x ∈ : 3

− <  x − 3 < }

2 . 

i)

Hal ar P ( A) , P ( B) . 

i ) Hal ar  A ∪  B , 

 A ∩  B . 

i i) Hal ar P ( A ∪  B) , P ( A ∩  B) . 

iv) ¿Hay alguna relación con P ( A) ∪ P ( B) y con P ( A) ∩ P ( B) ? 

EJERCICIO 2.3.12 

¿Puede hacer alguna conjetura entre P( A ∪ B) , P( A ∩  B)  con P ( A) ∪ P ( B) y  P ( A) ∩ P( B) ? 

Intente probar lo que afirma. 

El  ejemplo  2.3.9  le  puede  ayudar  en  la  demostración,  conjuntamente  con  propiedades  de  la unión e intersección de conjuntos relacionadas con las propiedades de la contención de conjuntos. 

EJERCICIO 2.3.13 

Si  A tiene sólo 4 elementos que no son elementos de  B que tiene 5, ¿cuántos elementos hay en los conjuntos   A ∪  B , 

 A ∩  B ? 

Haga un gráfico de la situación para ayudarse. 

EJERCICIO 2.3.14 

Si  A tiene  4 elementos,  B que tiene 5  y   A ∩  B  tiene 1. ¿Cuántos elementos hay en   A ∪  B ? 

Haga un gráfico de la situación para ayudarse. 
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EJERCICIO 2.3.15 

Si  A tiene   m elementos y  B  tiene  n, además   A ∩  B = ∅  (haga un gráfico de la situación). 

¿Cuántos elementos hay en    A ∪  B ? 

EJERCICIO 2.3.16 

Sea  T el conjunto de alumnos del turno tarde. 

Sea  A  el conjunto de  elementos de  T que saben usar el programa Java (pueden saber otras cosas...), sea  B el conjunto de elementos de  T que saben hablar inglés (también pueden saber otras cosas...) y sea  C  el conjunto de elementos de  T que hablan inglés y manejan el programa Java. 

Si  A tiene 70 elementos,  B tiene 175 y  C tiene 57. 

¿Qué es  C ? ¿cuántos elementos tiene  A ∪  B ? 

Haga un gráfico de la situación para ayudarse. 

EJERCICIO 2.3.17 

Sean los conjuntos  A = { a, b, c, d},  B = { a, b, d, e, f, g, j} y  C = { b, d, g, h, m, p}; ¿cuántos elementos hay en la unión  A ∪  B  ∪  C ? 

Haga un gráfico de la situación y cuente... 

EJERCICIO 2.3.18 

Los conjuntos  A, B y  C son finitos. Se quiere saber cuántos elementos hay en la  A ∪  B  ∪  C. 

Especule a partir del gráfico:   

 A 

 B 

 C 

EJERCICIO 2.3.19 

Se hizo una encuesta para saber con qué elementos contaban  las computadoras de un grupo 

alumnos. 

Se les pidió que marcaran una cruz en una planil a similar a la detal ada 

Impresora  color 

Reproductor de CD. 

Modem 
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Todos los que contestaron dijeron tener  una sola computadora. La información que surgió de las planil as  (número de cruces) fue: 

Impresora  color: 100 ; 

Modem - Reproductor C.D. : 15 ; 

Modem: 30 ; 



Reproductor de C.D. - Impresora color : 20 

Reproductor de CD.: 35 ; 

Modem – Reproductor de C.D. - Impresora color: 5 

Modem - Impresora color: 15 ; 

¿Cuántos alumnos l enaron la encuesta? 

 Otras operaciones con conjuntos

La diferencia entre   A y  B es el conjunto de los elementos que son elementos de  A y no son elementos de  B. 

 B 

Esto lo anotaremos simbólicamente por: 

 A

 A −  B = { x :  x ∈  A ∧  x ∉ }

 B



∉ simboliza "no pertenece". En la definición   x ∉  B

significa   ∼  ( x ∈  B) . 

Por ejemplo, la diferencia 

−

es el conjunto de enteros negativos. 

EJEMPLO 2.3.20 

i) Si  A = {0, 1} y   B = {-1,0, 1} entonces  A - B =  ∅

Observe  la  relación  de  inclusión  entre  A,  B  y  el  resultado  de  la  operación.  ¿Puede  asegurar algo?? 

i ) Si  A ={0, 1} y   B ={-1, 0, 1} entonces  B - A = {-1}

Observe  la  relación  de  inclusión  entre  A,  B  y  el  resultado  de  la  operación.  ¿Puede  asegurar algo? 

i i) Usando los resultados de dos incisos anteriores que puede decir de la diferencia de conjuntos? 

iv) Si  A ={0} y   B ={-1, 1} entonces  A - B = A

Observe la relación de inclusión entre  A, B y el resultado de la operación, ¿qué opina? 

EJERCICIO 2.3.21 

Hal ar  A - B  y   B - A para los casos: 

i)

 A = { -1, 3, 6},  B = { -2, -1, 3, 4, 6, 8}

ii)

2

 A = { x ∈

:  x = 9}  ,  B = { x ∈

: ( x − 3)( x + 3) = 0}

iii)

2

 A = { x ∈

:  x = 9} ,  B = { x ∈

: ( x − 3)( x + 3) = 0}

iv)

2

 A = { x ∈

:  x = 9 ∨  x = 4},  B = { x ∈

: ( x − 1)( x + 3) = 0}

v)

 A = { x ∈

: 4 ≤  x < 6} ,  B = { x ∈

: ( x − 1)( x + 3) = 0}  
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EJERCICIO 2.3.22 

Hal ar los siguientes conjuntos:   A ∪  B;  A ∩ ; 

 B

 A −  B  para los siguientes casos: 

i)    A =

 B =

ii)    A =

 B =

iii)   A =

 B =

iv )   A = { x ∈

:  x  es p ar}

 B = { x ∈

:  x  es im p ar}

2

v)   A =

 B = {

2

(  x ,  y ) ∈

:  x ≤ − 3 ∧  y ≥ 4}

EJERCICIO 2.3.23 

D ad o s :  A = { x ∈

:1 ≤  x ≤ 8} ,  B = { x ∈

: 5 ≤  x ≤ 9}  y  C = {1 0,1 1,1 2}

H allar  A −  B , 

 A −  C ,  C −  A ,  B ∩  C , (  A ∪  C ) −  B , (  B ∩  A ) ∪  C

EJERCICIO 2.3.24 

Comprobar que si   A = { x ∈ : 0 ≤  x ≤ }

3 ; 

 B = { x ∈ :1 ≤  x ≤ }

4 ; 

 C = { x ∈

: 0 ≤  x ≤ }

4  

a)  A - B =  ∅   y   B - A = { 4 }

b)  A - C =  ∅   y    C - A =  { x ∈ : 3 <  x ≤ }

4

c)  B - C =  ∅   y   C  - B =  { x ∈ : 0 ≤  x <1 ∨ 1 <  x < 2 ∨ 2 <  x < 3 ∨ 3 <  x < }

4

(haga la representación para convencerse ....). 

EJEMPLO 2.3.25 

♦ Demostrar para cualquier par de conjuntos  A y  B que    A −  B ⊆  A Demostración: 

Sea   x ∈  A −  B 

→  x ∈  A ∧  x ∉  B 

→  x ∈  A  

por definición

por simplificación

de diferencia

Por lo tanto   A −  B ⊆  A  

♦
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EJERCICIO 2.3.26 

Para practicar demostraciones, haga alguna de las siguientes: 

Propiedades:    Cualquiera sea el conjunto  A 

a)    A −  A = ∅

b)   A − ∅ =  A

c)  ∅ −  A = ∅

Se lo va a ayudar!!! 

Se probará c). 

Hay que demostrar que  ∅ −  A ⊆ ∅   y además que ∅ ⊆ ∅ −  A . 

Observar que la primer contención está probada pues es un caso particular de 2.3.25. 

Respecto de la segunda contención a probar está probada en 2.1.8 como caso particular. 

EJERCICIO 2.3.27 

Analice si vale la propiedad asociativa de la diferencia de conjuntos (ayúdese con ejemplos y gráficos). 

EJERCICIO 2.3.28 

Considere  en  el  plano  dos  círculos  concéntricos.  Sean  C 1  el  de  radio  mayor  y  C 2  el  de  radio menor. 

¿Qué figura es  C 1 ∪  C 2 ?  ¿Cuál  C 1 ∩  C 2 ?  Y ¿ C 1  −  C 2 ? Grafique. 

4. Universos y complemento

Consideremos el conjunto de estudiantes de la Facultad de Informática, l amémoslo  F.   Este conjunto contiene a varios subconjuntos. 

Por ejemplo, podría pensarse en el conjunto  P  de alumnos de la Fac. de Informática que son alumnos de Estructura de Datos; el conjunto  I de alumnos de la Fac. de Informática (es decir elementos  de   F)  que  hablan  inglés;  el  conjunto   W  de  elementos  de   F  que  saben  manejar  la Web; el subconjunto  O de  F cuyo documento de identidad termina en  0.   

Se puede necesitar trabajar con el alumnado de la Fac. de Informática, es decir con el conjunto F, por alguna razón. Ese conjunto será el universo para esa tarea. 

El universo es algo relativo. Es convencional, algo que se establece. 
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Para alguna investigación sociológica podría ser útil considerar como universo  U  el conjunto de todos los alumnos de la Universidad Nacional de La Plata, en cuyo caso  F es un subconjunto de  U. 

Dentro de  U  puede considerarse el conjunto de los alumnos que hablan inglés, este conjunto NO es  I, ¿por qué?. 

En algunas situaciones algebraicas el universo puede ser N el conjunto de los números natu-

rales y en otras R el conjunto de los números reales o cualquier otro conjunto numérico a convenir. 

La idea intuitiva es que universo es el conjunto que contiene a todos los conjuntos con que se trabaja en determinada circunstancia. 

Por razones que escapan a este Curso, el universo No es un conjunto que contiene todos los 

conjuntos. 

Un universo de esa naturaleza conduciría a una paradoja en la teoría. Por eso las axiomati-

zaciones de la teoría de conjuntos no permiten ese universo…. 

Hay conjuntos que se pueden definir como aquel os elementos de un conjunto que no cum-

plen una  determinada condición.  Por  ejemplo, podría tener interés  el conjunto  de  estudiantes de la Universidad Nacional de La Plata que no hablan inglés, o los números enteros que no son divisibles por 4, etc.  Para el o es útil la siguiente definición:  

Para  A subconjunto del universo  U, el complemento de  A respecto de  U  es el conjunto de elementos que pertenecen a  U  pero no a  A; se simboliza por   A  . 

 U

 A = { x :  x∈ U ∧  x ∉ }

 A  

 U

 A 

Cuando el conjunto  U se sobrentiende se anota simplemente   A ,  A' o  A C . 

Claramente  

 U 

 A  =   U - A

 U

EJEMPLO 2.4.1 

i)

Dado el universo  U = {  a, b, c, d } y los conjuntos  A = { a, b, d}  y  B = { c, b}, resulta A = {  c}   y    B ={  a , d } 

 U

 U

ii)

Dado el universo  U = {  a, b, c, d, e, f } y los conjuntos  A = { a, b, d}  y  B = { c, b}, resulta A = { c, e , f }  y    B = { a , d , e , f } 

 U

 U

Compare los resultados de i) y i ). ¿Por qué difieren? 
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Los universos dados en cada caso son distintos por lo tanto se obtienen complementos distintos. 

i) 

i ) 

  .a     . b 

  .a     . b 

   A

     

 A 

  A 

 .c 

  . d 

 .c 

  . d 

 U 

  U 

 U    .e 

  . f 

Haga un esquema similar para  B. 

EJERCICIO 2.4.2 

i) Sea  U = { x ∈ : 1

− ≤  x ≤ 1 }

0 calcular   A  si   A = {0,1, 2, }

3 . Representar en la recta numérica. 

 U

i ) Sea  U = { x ∈ : 1

− ≤  x ≤ 1 }

0 calcular   A  si   A = {0,1, 2, }

3 .Representar en la recta numérica. 

 U

EJEMPLO 2.4.3 

♦ Probar que para cualquier  A subconjunto de  U  vale que

(  A ) =  A 

 U

 U

Sea   x ∈

(  A ) entonces por definición de complemento respecto de  U, se tiene 

 U

 U

 x ∈ U ∧  x ∉  A

↔

 x ∈ U ∧ ∼  x ∈  A  

↔

 x ∈ U ∧ ∼ ( x ∈ U ∧  x ∉ )

 A

↔

 U

def. de 

 U

def. de 

Ley de 

complemento

complemento

De Morgan

↔

 x ∈ U ∧ ( x ∉ U ∨  x ∈ )

 A

↔

( x ∈ U ∧  x ∉ U ) ∨ ( x ∈ U ∧  x ∈ )

 A

Ley de 

Distributiva de la con-

De Morgan

junción en disyunción

Acá hay un detal e importante: 

Si se l ama P:  x ∈  U ∧  x ∉  U   

¿Cuál es el valor de verdad de P? Sí, es falsa. 

Por lo cual seguimos razonando así: 

( x ∈ U ∧  x ∉ U ) ∨ ( x ∈ U ∧  x ∈ )

 A

→

 x ∈ U ∧  x ∈  A

→

 x ∈  A   . 

 p∨ q

Simplificación

∼  p

 q

Se debe justificar la otra contención: 

Sea   x ∈  A

→

   x ∈ U ∧  x ∈  A →   ( x ∈ U ∧  x ∉ U ) ∨ ( x ∈ U ∧  x ∈ ) A  

 A U

⊆

 p

 x∈ A→ x U

∈

 p∨ q

y a partir de acá "deshacer el camino" de la otra contención ..... 

♦
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EJERCICIO 2.4.4 

i) Para el universo  U = { a, b, c, d, e, f } y los conjuntos  A = { a, b, d}  y  B = { c, b}, calcular: A ∪

 A

 A ∩

 A

 U

 U

 B ∪  B

 B ∩  B

 U

 U

i ) ¿Qué opina de este resultado, se generalizará? 

EJERCICIO 2.4.5 

Para cualquier conjunto  A subconjunto de  U, analizar el valor de verdad de: A ∪  A =  U

 A ∩  A = ∅

 U

 U

EJERCICIO 2.4.6 

Calcular para cualquier  U: 

a)  ∅  

b)   U

 U

 U

EJERCICIO 2.4.7 

i) Para el universo  U = {  a, b, c, d, e, f } y los conjuntos  A = { a, b, d, f }  y B = { a, b}, calcular sus complementos respecto de  U. 

i ) Sea  U = { x ∈ : 1

− ≤  x ≤ 1 }

0 calcular   A  si   A = { x ∈ :1 ≤  x ≤ }

6 y   B  siendo 

 U

 U

 B = { x ∈

:1 ≤  x ≤ }

7 . Representar en la recta numérica. 

i i) Para    A y   B subconjuntos de  U se sabe que   A ⊆  B  . Analice si hay alguna relación de contención entre los respectivos complementos respecto de  U. Justifique lo que afirma. 

EJERCICIO 2.4.8 

Para el universo  U = { a, b, c, d, e, f } y los conjuntos  A = { a, b, d}  y  B = { c, b},  calcular: (  A ∪  B)

(  A ∩  B)

 U

 U

 A ∪  B

 A ∩  B

 U

 U

 U

 U

y compare resultados. 

¿Puede conjeturar que igualdades se dan? ¡¡¡Demuestre lo que conjetura, anímese!!! 
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Vamos a definir otra operación entre conjuntos que en realidad es una combinación de las ya conocidas. Y tiene algunas propiedades muy interesantes desde el punto de vista del ¡Algebra! 

de los conjuntos. 

Dados dos conjuntos   A  y  B, A diferencia simétrica  B, se simboliza    A B  y representa los elementos que están sólo en  A o sólo en  B, decimos entonces que: 

 A B = { x : ( x ∈  A ∧  x ∉  B) ∨ ( x ∈  B ∧  x ∉  A }

)  

o también

 A B = (  A −  B) ∪ ( B − )

 A

 A 

 B 

EJEMPLO 2.4.9 

Sean    A = {1, 2,3, 4,5, }

6  y  B = {4, 5, 6, 7,8, }

9 entonces 

 A B = {1, 2, }

3 ∪ {7,8, }

9 = {1, 2, 3, 7,8, }

9  

♦ PROPIEDADES 2.4.10

a)   A A  = ∅,  A ∅  =   , 

 A     A U   =

 A

 U

b)   A B  =   B A  conmutativa

c) (  A B)  C   =   A ( B C)  asociativa

d)   A B ⊆   A ∪  B

e)   A B  = (  A ∪  B) − (  A ∩  B)

f)   A B =  A ⇔  B = ∅

Algunos ítems quedan como ejercicio. Se harán algunas… 

Demostración de d): 

Sea  x ∈   A B  

→  ( x ∈  A ∧  x ∉  B) ∨ ( x ∈  B ∧  x ∉ ) A →

por definición

por leyes

de dif simétrica

distributivas de ∧,∨

→ ( x ∈  A ∨  x ∈  B) ∧ ( x ∈  A ∨  x ∉ )

 A ∧ (  x ∉  B ∨  x ∈ )

 B ∧ (  x ∉  B ∨  x ∉ )

 A 

→ 

por simplificación

→  x ∈  A ∨  x ∈  B 

→  x ∈  A ∪  B 

por definición

de unión

Demostración de e): 

Probaremos primero que   A B  ⊆ (  A ∪  B) − ( A ∩  B)  

Sea   x ∈  A B →  ( x ∈  A ∧  x ∉  B) ∨ ( x ∈  B ∧  x ∉ ) A →

por def. de

por leyes

dif simétrica

distributivas de ∧,∨

→ ( x ∈  A ∨  x ∈  B) ∧ ( x ∈  A ∨  x ∉ )

 A ∧ (  x ∉  B ∨  x ∈ )

 B ∧ (  x ∉  B ∨  x ∉ )

 A 

→ 

por simplificación

88

ELEMENTOS DE UNA TEORÍA INTUITIVA DE CONJUNTOS – CAPÍTULO 2 

→ ( x ∈  A ∨  x ∈  B) ∧ ( x ∉  A ∨  x ∉  B)  (

→  x ∈  A ∨  x ∈  B)∧ ∼ ( x ∈  A ∧  x ∈  B) 

→

por De

por def. 

Morgan

intersección

y unión

→ ( x ∈  A ∪  B)∧ ∼ ( x ∈  A ∩  B)  (

→  x ∈  A ∪  B) ∧  x ∉(  A ∩  B) 

→

por negación

por def. de

diferencia

→  x ∈ (  A ∪  B) − (  A ∩  B)  

Por lo tanto   A B  ⊆ (  A ∪  B) − ( A ∩  B)

Veamos que  ( A ∪  B) − ( A ∩  B) ⊆  A B 

Sea   x ∈ (  A ∪  B) − (  A ∩  B)  (

→  x ∈  A ∪  B) ∧ ( x ∉(  A ∩  B)) 

→  

por def. de

por negación, def. 

diferencia

de intersección y

de unión

→ ( x ∈  A ∨  x ∈  B)∧ ∼ ( x ∈  A ∧  x ∈  B)  (

→  x ∈  A ∨  x ∈  B) ∧ ( x ∉  A ∨  x ∉  B) → 

por ley de 

De Morgan

 (

→  x ∈  A ∧  x ∉ )

 A ∨ ( x ∈  A ∧  x ∉  B) ∨ (  x ∈  B ∧  x ∉ ) A ∨ (  x ∈  B ∧  x ∉ )

 B → 

por leyes

distributivas

Notemos que  ( x ∈  A ∧  x ∉ )

 A   y   ( x ∈  B ∧  x ∉  B)  son falsas, por una regla de inferencia 

 (

→  x ∈  A ∧  x ∉  B) ∨ ( x ∈  B ∧  x ∉ )

 A  (

→  x ∈(  A −  B)) ∨ ( x ∈( B − )

 A ) → 

 p∨ q∨ r∨ s

por def. 

∼  p

diferencia

∼ s

 q∨ r



→  x ∈ (  A −  B) ∪ ( B − )

 A  

por def

de unión

Por lo tanto  ( A ∪  B) − ( A ∩  B) ⊆  A B   , con lo que queda probada la igualdad buscada. 

Demostración de f): 

Hay que demostrar 2 implicaciones:  

Si  A B =  A entonces  B = ∅  y  si   B = ∅ entonces  A B =  A Primero se demostrará: si   B = ∅ entonces   A B =  A  : 

Usamos la definición de diferencia simétrica y propiedades ya demostradas (2.3.26), entonces A B = (  A −  B) ∪ ( B −

)

 A = (  A − ∅) ∪ (∅ −  A) =   A ∪ ∅  =   . 

 A  

Veamos que si    A B =  A entonces  B = ∅ . 

Lo probaremos por el absurdo, suponemos que   A B =  A pero  B ≠ ∅  
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Como  B ≠ ∅, hay al menos un elemento en  B

Sea  x ∈  B 

→   x ∈  B ∧ ( x ∈  A ∨  x ∉ )

 A 

→  

porque  x∈ A∨  x∉ A 

por leyes distributivas

es  verdadera

→ ( x ∈  B ∧  x ∈ )

 A ∨ ( x ∈  B ∧  x ∉ )

 A

Llegamos a una forma proposicional de la forma   p ∨  q , se va aplicar la posibilidad que se de alguna de las dos situaciones de la disyunción. 

Si  p es verdadera se tiene: 

( x ∈  B ∧  x ∈ )

 A 

→  x ∈( B ∩ )

 A →  x ∉  A B →  x ∉  A  

por def. de

por def. de

por hipótesis

intersección

dif  simétrica

 A B=  A

Absurdo, porque partimos de   x ∈  A y l egamos a   x ∉  A 

Si  q es verdadera tenemos que: 

( x ∈  B ∧  x ∉ )

 A →  x ∈  A B →  x ∈  A  

por def. de

por hipótesis

dif  simétrica

 A B=  A

Luego tanto la aceptación de la verdad de  p o de  q l evan a absurdo, porque partimos de x ∉  A  y l egamos a   x ∈  A . Fue por aceptar que   B ≠ ∅ . 

Por lo tanto   A B =  A entonces  B = ∅ 

Y en conclusión se tiene que   A B =  A si y sólo si  B = ∅ 

♦

5. Unión e Intersección generalizada

Hemos visto las operaciones de unión e intersección para dos conjuntos, pero estas opera-

ciones gozan de la propiedad de asociatividad por lo cual se pueden definir para un número 

finito de conjuntos. 

Pues dados tres conjuntos   A, B y  C  vale que  ( A ∪  B) ∪  C =  A ∪ ( B ∪  C) por lo cual un elemento es de esa unión de conjuntos si es elemento de alguno de los tres. 

Analizar qué pasa si son cuatro conjuntos   A, B, C y  D:      

((  A ∪  B) ∪  C) ∪  D =  A ∪ (( B ∪  C) ∪  D) por lo cual un elemento es de esa unión de conjuntos si es elemento de alguno de los cuatro…. 
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Análogamente dados tres conjuntos   A, B y  C  vale que  ( A ∩  B) ∩  C =  A ∩ ( B ∩  C) por lo cual un elemento es de esa intersección de conjuntos si es elemento de los tres.  Piense que pasa si son cuatro conjuntos los intersecandos… 

Sean  0

 A , 1

 A , 2

 A ,...  n

 A  conjuntos cualesquiera se define el conjunto la unión generalizada 

como 

 n

0

 A ∪ 1

 A ∪ 2

 A ∪ ... ∪

= ∪

=

∃

≤ ≤

∧ ∈

 n

 A

 i

 A

{ x : (  i)(0  i n x

 i

 A }

)  

 i  1

=

EJEMPLO 2.5.1 

Sean 

= [ , + 1) = { : ∈

∧ ≤

< + }

1

 i

 A

 i i

 x x

 i

 x

 i

para cada  i, i =  0,1,2,… ,n

Así  



0

 A = [0,1), 

1

 A = [1, 2), 

2

 A = [2, 3),...,  A = [ , 

 n n + 1)

 n

10

Probemos que  ∪  A = [0,11)

 i

 i=0

Como hay que probar una igualdad de conjuntos, se probará  la doble inclusión: 

10

Sea   x ∈ ∪  A  (

→  i

∃ )(0 ≤  i ≤ 10 ∧  x ∈  A ) → (  i

∃ )(0 ≤  i ≤ 10 ∧  x ∈[ i,  i + 1)) →

 i



por def. 

 i

 i=0

→ (  i

∃ )(0 ≤  i ≤ 10 ∧  i ≤  x <  i + 1) → 0 ≤  x < 11 .  Por lo tanto   x ∈[0,11) Notemos que a cada número real  x podemos asignarle el número entero  n menor más cercano a  x.  Esta asignación es la función parte entera:  

 f :

→

,  definida por  f ( x) = [ x] =  n, 

 n ∈

∧  n ≤  x <  n + 1 . 

Así definida tenemos que por ejemplo   f ((1, 2301)) = 1,  f ((3, 5)) = 3

 f ((−2, 47509)) = −3 

Por lo tanto, dado un número real  x,   [ x] ≤  x < [ x] +1, siendo [ x]  la parte entera de  x.  

Sea 

 x ∈[0,11) entonces 0 ≤  x < 11 y además [ x] ≤  x < [  x] + 1  luego  0 ≤  x <11 ∧  x ∈ [

  x],[ x] +



)

1

Está claro que si 

0 ≤  x < 11 entonces  0 ≤ [ x] < [  x] + 1≤ 11,   luego  0 ≤  x < 11∧  x ∈ [

  x] ,[ x] +



)

1 por lo cual

11

0 ≤  x < 11 ∧  x ∈ [

 A

 x ∈ ∪  A . 

 x]  entonces por la definición 

 i

 i=0
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Se puede ampliar el concepto de unión para número infinito de conjuntos. 

Sean  0

 A , 1

 A , 2

 A ,...  n

 A ,… conjuntos cualesquiera se define el conjunto

∪

∪

∪

∪

∪

= ∪

=

∃

∈

∧ ∈

0

 A

1

 A

2

 A

... 

 A

... 

 A

{ x : (  i)( i

 x

 A }

)

 n

 i

 i

 i∈

EJERCICIO 2.5.2 

Sean 

= [ , + 1) = { : ∈

∧ ≤

< + }

1

 i

 A

 i i

 x x

 i

 x

 i

para cada  i,  i ∈

Algunos ejemplos son 

=

=

=

=

+



0

 A

[0,1), 

1

 A

[1, 2), 

2

 A

[2, 3),...,  A

[ , 

 n n  1)

 n

Dibujarlos sobre la recta real. 

Probar que  ∪  A

+

=

= { x ∈

:  x ≥ }

0

 i

 i∈

Trabajemos en el mismo sentido con la intersección de conjuntos. 

Sean  0

 A , 1

 A , 2

 A ,...  n

 A  conjuntos cualesquiera se define el conjunto 

 n

∩

0

 A ∩ 1

 A ∩ 2

 A ∩ ... ∩  n

 A =

 i

 A = { x : (  i

∀ )(0 ≤  i ≤  n ∧  x ∈  i

 A }

)  

 i=0

EJEMPLO 2.5.3 

 Sean los conjuntos como en el ejemplo anterior 

= [ , + 1) = { : ∈

∧ ≤

< + }

1

 i

 A

 i i

 x x

 i

 x

 i

para cada  i, i =  0,1,2,…,  n 

10

10

Resulta entonces que  ∩

= ∅  pues  si supusiéramos por el absurdo que  ∩  A ≠ ∅

 i

 A

 i

 i=0

 i=0

10

existiría  x tal que   x ∈ ∩  A  (

→

 i

∀ )(0 ≤  i < 10 ∧  x ∈  A )  por lo cual 

 i

por definición

 i

 i=0

(∀ )

 i (0 ≤  i <10 ∧  i ≤  x <  i +1)  (

→  x [

∈ 0,1) ∧  x [

∈ 1, 2) ∧... ∧  x [

∈ 10,11)) , absurdo, por lo tanto 

10

∩

= ∅

 i

 A

 i=0

Ampliamos la definición para un caso infinito de conjuntos. 

Sean  0

 A , 1

 A , 2

 A ,...  n

 A ,… conjuntos cualesquiera se define el conjunto

∩

0

 A ∩ 1

 A ∩ 2

 A ∩ ... ∩  A ∩ ... =

 A = { x : (∀ )

 i ( ∈

∧ ∈

 n

 i

 i

 x

 i

 A }  

 i∈
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EJERCICIO 2.5.4 

Sean 

= [0, ] = { : ∈

∧ 0 ≤

≤

para cada 

 i

 A

 i

 x x

 x

}

 i

 i, i= 0,1,2 ,…n

10

Probar que  ∩  A = { }

0

 i

 i=0

EJERCICIO 2.5.5 

Sean 

= [0, ] = { : ∈

∧ 0 ≤

≤

 i

 A

 i

 x x

 x

}

 i  para cada  i, i= 1,2 ,…n

10

Probar que  ∩

=

 i

 A

1

 A  

 i  1

=

EJERCICIO 2.5.6 

Sean 

= [1, ) = { : ∈

∧ 1 ≤

< 

 i

 A

 i

 x x

 x

}

 i  para cada  i, i >  1 y   i ∈

 . 

Representar algunos conjuntos sobre la recta real y demostrar que  ∩

=

 i

 A

1

 A  

 i∈

EJERCICIO 2.5.7 



1



1

Sean 

= 1,1 +

=  : ∈

∧ 1 ≤

≤ 1 + 

 i

 A

 x x

 x





para cada  i,  i ∈

− { }

0  . 



 i 



 i 

Representar algunos conjuntos sobre la recta real. 

 n

 n

Demostrar que  ∪  i

 A = 1

 A  y  ∩  i

 A =  n

 A  

 i  1

=

 i  1

=

RESUMEN de conceptos importantes del lenguaje de conjuntos 

El conjunto vacío no tiene elementos 

∅

 x es elemento de A 

 x ∈  A  

 A contenido en  B 

 A ⊆  B  si y sólo si: 

 x ∈  A →  x ∈  B  

 A igual a  B 

 A=B    si y sólo si: 

 x ∈  A ↔  x ∈  B  

Conjunto de partes de  A 

P ( A) = {  P :  P ⊆  A } 
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RESUMEN de conceptos operaciones de conjuntos 

 A ∩  B = { x :  x ∈  A ∧  x ∈ }

 B  

 A 

Intersección de  A y  B 

 B 

Unión de  A y  B 

 A ∪  B = { x :  x ∈  A ∨  x ∈ }

 B  

 A 

 B 

Diferencia de  A y  B 

 A −  B = { x :  x ∈  A ∧  x ∉ }

 B  

 A 

 B 

Complemento de  A res-

{ x :  x

 U

 x

}

 A

 A =

∈

∧

∉



 A 

pecto de  U 

 U

 U 

EJERCICIO 2.6.1 

1) Sea  U = {alumnos que cursan alguna de las materias  A 1,  A 2,  A 3 }

Expresar en lenguaje conjuntista por operaciones convenientes: 

a) Los alumnos que cursan  A 1

b) Los alumnos que no cursan  A 1

c) Los alumnos que cursan  A 1  y no cursan  A 3

d) Los alumnos que no cursan  A 1  y que no cursan  A 3

e) Los alumnos que sólo cursan  A 1

f) Los alumnos que cursan  A 2  y no cursan  A 3

2) Escribir en lenguaje conjuntista y representar:

a) Los números reales que son raíces de la ecuación   x 2 – 3 x – 4 = 0. 

b) Los números reales que no son raíces de la ecuación   x 2 – 3 x – 4 = 0. 

c) Los números reales que son raíces de la ecuación   x 2 – 3 x – 4 = 0  ó que su valor absoluto es 3. 

d) Los números reales que no son raíces de la ecuación   x 2 – 3 x – 4 = 0  y que su valor absoluto es 3. 

e) Los números reales que son raíces de la ecuación   x 2 – 3 x – 4 = 0  y que su valor absoluto es 3. 

f) Los números reales que no son raíces de la ecuación   x 2 – 3 x – 4 = 0  y que su valor absoluto es distinto de 3. 
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3) Resolver haciendo un planteo conjuntista para:

En la lista de Algebra hubo 60 alumnos y  63 en la de Análisis Matemático I, para el turno T3 del año pasado. 

La  oficina  de  la  Dirección  de  Enseñanza  ha  informado  que  el  año  pasado  se  inscribieron  80 

alumnos para cursar alguna de las 2 materias en el turno  T3 . 

¿Cuántos alumnos cursaron simultáneamente las dos materias? 

4) Escribir en lenguaje conjuntista por operaciones convenientes:

a) Los alumnos de la Facultad de Exactas que no hablan inglés. 

b) Los alumnos de la Facultad de Exactas que no tienen computadora en su casa y que apro-

baron el final de Algebra. 

c) Los alumnos de la Facultad de Exactas que aprobaron el final de Análisis Matemática I o el final de Algebra. 

d) Los alumnos de la Facultad de Exactas que aprobaron  el final de Algebra y sacaron 10 en el final de Análisis Matemático I. 

e) Los alumnos de la Facultad de Exactas  que aprobaron  el final de Algebra y no sacaron 10

en el final de Análisis Matemático I. 

f)

Los alumnos de la Facultad de Exactas que aprobaron los finales  de Algebra y de Análisis

Matemático I. 

5) a) Siendo  A, B  y  C  conjuntos, demostrar que: 

Si   A ⊆  B y  B ⊆  C y  C ⊆  A entonces  A =  B =  C. 

b) Siendo  X  un conjunto, demostrar que:

Si   X ⊆ ∅ entonces  X =

. 

∅  

6) Sea   A = {1,  {2},{ }

∅ ,{1,  2}}, hallar P ( A). 

7) Sea   A = {1,  2,  {3},  {1,  2}, -1} decir si son verdaderas o falsas las siguientes relaciones. 

Justifique. 

a) 3∈  A 

b) {1,  2} ⊆  A 

c) {1,  2}∈  A

d) {3}∈  A 

e) {{3}} ⊆  A 

f) ∅ ∈  A

g) {−1,  2} ⊆  A

h) ∅ ⊆  A

i) {1,  2, −1}∈  A

95

ELEMENTOS DE UNA TEORÍA INTUITIVA DE CONJUNTOS – CAPÍTULO 2 

8) Probar para  A, B y  C conjuntos que:

a) ∅ ∪  A  =   . 

 A

b)  A ⊆  C  ∧   B ⊆  C     A ∪  B ⊆  C. 

c)  A ⊆  A ∪ . 

 B

9) Probar (usando el contrarrecíproco) para A, B conjuntos que:

A ∪ B =∅   ( A =∅ ∧  B =∅ )  

10) Probar (usando el método de reducción al absurdo) para A, B conjuntos que:

A ∪ B =∅   ( A =∅ ∧  B =∅ )  

11) Probar (usando el método directo) para A, B conjuntos que:

A ≠ ∅ ∨  B ≠ ∅    A ∪ B ≠ ∅

12) Probar para  A, B y  C conjuntos que:

a) ∅ ∩  A =

. 

∅

b) C ⊆  A  ∧  C ⊆  B    C ⊆  A ∩  B

c)  A ∩  B ⊆  A

13) Demostrar:    A ∩  B  = ∅ ⇔  P ( )

 A ∩P ( B)  =  { }

∅

14) ¿Cuál o cuáles de las siguientes expresiones son equivalentes a   A ⊆  B ⊆  U ? 

a)  A ∩ C  B  =  ∅ 

 U

b)  A ∩ C  B  =  A

 U

c)   A -   B  = ∅ 

d)  A∪C  B =  U  

 U

e)  C  B ⊆ C  A

 U

 U

f)  C  A ∪  B  =   U

 U

15) Sean   A ⊆  U   y   B ⊆  U , siendo  U  un universo dado. Probar: a)   A −  B =  A ∩ C  B

 U

b)  C (  A ∩  B) = C  A ∪ C  B

 U

 U

 U

16) Hal ar   A B   en los siguientes casos:

a)  A =  { x :   x ∈

∧   x ≥ 1},  B = { x :   x ∈

∧   x ≤ 3}

b)  A  es el conjunto de los números impares;  B  es el intervalo natural [12, 30]. 
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17) Siendo  A, B  y  C  conjuntos;  U  el universo donde están definidos esos conjuntos, probar y representar utilizando diagramas de Venn: 

a)   A − ( B −  C)  =  (  A −  B) ∪ (  A ∩  C) b) (  A −  B) ∩  B  = ∅

c)   A ∪ ( B −  C)  =  (  A ∪  B) − ( C −

)

 A

d)   A −  B  =  (  A ∪  B) −  B 

e)   A B  =   B A

f)   A − (  A −  B)  =   A ∩  B

g)   A −  B  =   A − (  A ∩  B)

h)   A U   = C  A

 U

i) (  A ∩  B) −  C   =  (  A −  C) ∩ ( B −  C) 18) Sean, para cada natural  n, los conjuntos  A = { x :  x ∈

∧  x ≥  n , 

 n

}

 B = { x :  x ∈

∧  x ≤  n . 

 n

}

Determinar 

a)

∪  A

b)

 n

∪

 n

 B

 n∈

 n∈

8

c)

∪ ( A −  B )

d)

 n

 n

∩

 n

 B

 n∈

 n  1

=

19) Determinar:

a)

∪ [ n,  n + 2)

b) ∩ [ n, 2 n]

 n∈

 n∈

Considerar intervalos reales y luego intervalos naturales. 
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CAPITULO 3 


Iniciación a la Teoría de Números 

En este capítulo se desarrol arán los fundamentos del Algebra: la  Aritmética de los números naturales y enteros.  

Esos conjuntos numéricos son muy conocidos desde el primer acercamiento a la Matemática 

y  muy  usados  en  casi  todos  aspectos  operacionales.  Se  hará  un  repaso  o  estudio  sobre  los conceptos  más  importantes  dentro  esos  conjuntos,  con  la  idea  de  introducir  un  aspecto relevante  en  la  Matemática:   las  demostraciones,   por  lo  general  muy  sencil as,  de  algunas propiedades dentro de esos conjuntos. 

Consideremos como dados  los números naturales 0,1, 2, 3,....... , al conjunto de todos el os lo designaremos por N  

0. Operaciones básicas N

También  consideramos  como  definidas  las  operaciones  fundamentales  de  suma  (anotada como +) y multiplicación o producto (anotada por . ). 

Recordemos algunas propiedades importantes de estas operaciones: 

1)  La suma de dos números naturales es un número natural

También podemos formularla como sigue: 

   Si a y b son números naturales entonces a + b es un número natural. 

Esta  propiedad  se  l ama  ley  de  cierre  para  la  suma  de  números  naturales,  también decimos que la suma es cerrada en 

. 

2)  El 0 es  tal que sumado con cualquier otro número no lo modifica. 

Esto lo podemos expresar: 

  Dado el 0, si a es un número natural cualquiera entonces a+0 = a. 

Por eso al 0 se le dice elemento neutro de la suma. 

98

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

3)  Si se consideran tres números naturales, la suma de los dos primeros más  el tercero

 resulta igual   a  sumarle al primero la suma de los otros dos. 

Se puede formular: 

   Si a, b y  c son naturales cualesquiera entonces  (a+ b)+c = a+(b+ c) 

A esta propiedad se le da el nombre de asociativa para la suma. 

 4) La suma de números naturales es conmutativa. 

Es decir: 

   Si a y b son números naturales cualesquiera entonces a + b = b + a 

A esta propiedad se la l ama propiedad conmutativa de la suma 

EJERCICIO 3.0.1 

a)

Enuncie la propiedad similar a la 1) para la multiplicación de los números naturales. 

b)

¿Hay  elemento  neutro  para  la  multiplicación  de  números  naturales?  ¿Cuál  es? 

Ejemplifique. 

c)

Formule la propiedad asociativa de la multiplicación de números naturales. 

d)

¿Es cierto que el orden de los factores naturales no altera el producto?  ¿Cómo se l ama

esa propiedad? 

Otra propiedad que debemos recordar es la distributiva de la multiplicación en la suma de números naturales, es decir: 

  Si a, b, c son números naturales cualesquiera entonces a.(b+ c)= a.b + a.c 

  Orden Usual (o natural) en  N :

Dados dos números naturales  a  y  b puede suceder que: 

 a ≤  b  (a menor o igual que  b), lo que significa que  a “aparece” antes que  b en la sucesión de todos los números naturales, o es igual. En caso contrario  b < a. 

Recordemos que: 

Si  a, b son números naturales y  a  ≤  b entonces existe un número natural  c, l amado resta o diferencia de  b y  a, que se anota   c = b – a   el cual verifica    b = a + c 
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1. Inducción Matemática

A fines del siglo XIX Giuseppe Peano proporcionó una descripción de los números naturales 

en  término  de  cinco  axiomas.  En  el os  se  pueden  interpretar  los  aspectos  familiares  de  los números naturales. 

Uno de los aspectos más importantes de esta formulación es el quinto axioma que convalida 

un método de demostración muy importante y de gran utilidad, pues su uso permite demostrar 

la  validez  de  proposiciones  universales  relativas  a  los  números  naturales.  Como  se  ha expresado  anteriormente  los   resultados  válidos  en  Matemática  son  aquellos  que  se  pueden demostrar. Cosa que en general no es simple. 

Podemos  agregar  que  cuando  se  presentan  los  distintos  temas  en  una  materia  de 

Matemática se dan en el a los teoremas más importantes, con un encadenamiento que por lo 

general  no  es  el  histórico.  Ni,  por  lo  general,  las  demostraciones  que  se  exhiben  son  las originales,  el avance de los conocimientos  hace  que las  demostraciones puedan  mejorarse o hacerse "más elegantes" con el aporte de nuevos resultados. 

La  manera  de  hacer  demostraciones  y  también  de  recrearlas  depende  de  lo  que  se  quiera demostrar y también de la "forma" del enunciado. 

Si el enunciado a probar es de forma existencial alcanzará en algunos casos con exhibir un 

individuo con las características  que dice el enunciado o una manera de construirlo. 

Si el enunciado es de forma universal habrá que probar que cada uno de los elementos del 

universo  cumple  con  lo  afirmado.  Si  el  universo  fuera  de  un  número  finito  de  individuos podríamos  analizar  que  cada  uno  de  el os  verifica  lo  enunciado.  Si  es  infinito,  tomar  un elemento  arbitrario  (NO  un  ejemplo)  del  universo  del  que  se  habla,  y  probar  que  tiene  la propiedad enunciada. 

Para  propiedades  cuyo  universo  es  el  conjunto  de  los  números  naturales  tenemos  otra manera que prontamente veremos. 

 Los Axiomas de Peano

En el año 1890, Peano postuló los siguientes cinco axiomas para 

: 

Axioma 1 : 

0 ∈ 



Axioma 2 : 

 x ∈

   entonces   x'  ∈



. 

Axioma 3 : 

0 ≠  x'  para todo  x ∈ 



Axioma 4 : 

Si  x' = y'   entonces   x = y 

Si interpretamos 

como el conjunto de los números naturales y   x'  como  "el siguiente de x" (y esta  idea     x'  =  x +  1,  el  natural  que  está  después  de  x  en  la  sucesión  natural) ,   estos  cuatro axiomas nos dicen que: 

1) el 0 es un número natural; 

2) todo número natural tiene un siguiente que también es natural; 

3) el 0 no sigue a ningún natural, lo que equivale a decir que 0 es el primer número natural; 4) si los siguientes son iguales es porque los naturales de los que provenían eran iguales o equivalentemente si los naturales son distintos también lo son sus siguientes. 
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El otro axioma: 

Axioma 5: Dado  L un subconjunto de 

, es decir  L  ⊆

. 

Si: 

a) 0 ∈  L

y 

b) Cualquiera sea  x,  si   x ∈  L  entonces   x’ = x + 1 ∈  L

Entonces  L = 

 

A  este  último  axioma  se  lo  l ama  indistintamente:  Axioma  Inductivo,  o  de  Inducción,  o Principio  de  Inducción  Matemática,  o  Principio  de  Inducción  Completa  o  Principio  de Recurrencia. 

Observación e interpretación: 

Luego  de  presentar  los  Axiomas  1  a  4,  hemos  destacado  que  los  números  naturales comienzan con el 0 y que no terminan, pues dado un número natural, él tiene un siguiente que también  es  un  número  natural.  Estos  hechos  que  nos  resultan  tan  "naturales"  (pero  en  otro sentido...) nos permiten interpretar y comentar el Axioma 5. 

Sea  un  subconjunto  L  de  números  naturales  (un  conjunto  que  está  incluido  en 

)  tal  que 

tiene  al  0  como  elemento,  es  decir  0  está  en  L  y  que  además  cumple  que  cualquiera  sea  el número  natural  h  ( para  ponerle  un  nombre ...  que  es  totalmente  arbitrario ,  pero  no  un  ejemplo particular)  que esté en  L, también está su siguiente  h+1. Rescatando la idea que este paso lo puedo repetir tantas veces como números naturales hay … y he comenzado desde 0 (el primer 

número  natural),  estamos  obteniendo  que  en   L  estarán  todos  y  cada  uno  de  los  números naturales. 

Luego  L es .....  claramente 

. 

Los  conjuntos  que  tienen  la  propiedad    a)    y  b)    que  pide  para   L  el  Axioma  5,  se  l aman 

conjuntos inductivos. 

¿Para qué sirve este Axioma? 

Como venimos anticipando el Axioma 5 sirve para demostrar propiedades universales válidas 

para todos los números naturales. 

Veamos como. 
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 Método de Inducción

Dada una proposición del tipo (∀ n)( P(n)), ¿cómo se demuestra, si  n es una variable en 

, 

que esa proposición es verdadera? 

Recordemos que la proposición  (∀ n)( P(n)) es verdadera si y sólo si el  conjunto de verdad  de P(n) (esto es los valores  a∈

para los cuales resulta verdadera  P(a) )   es el universo de  P(n),  

es decir si el  conjunto de verdad coincide con el conjunto de los números naturales .  

Si l amamos V(P) al conjunto de verdad de  P(n) entonces deberemos controlar que V (P) = 



Y es justamente en ese análisis que usamos el Axioma de Inducción. 

El conjunto  V(P) es un subconjunto de 

, luego resultará que V(P) = 

, si logramos probar 

que V(P) es inductivo. 

Es decir para V(P) debemos ver que cumpla: 

a) 0 ∈V(P)

b) Cualquiera sea  h, si  h ∈V(P)  entonces   h’ = h+ 1 ∈V(P)

Porque entonces por el Axioma 5, resulta que V(P) =



¿Qué significa que V(P) cumpla a) y b) en términos de “verdad”? 

¿??? 

?? 

Esto significa: 

Tener    a) 0 ∈  V(P) se traduce en: 

 P(0) es verdadera. 

Tener   b) Para cualquier  h,  si  h ∈ V(P) entonces   h’ = h+ 1 ∈ V(P) se traduce en: Para cualquier  h,  si  P(h) es verdadera entonces  P(h+1) es verdadera Entonces el método de demostración por Inducción de  (∀ n)(P(n)),  con  n∈

será: 

1) Probar que  P(0) es verdadera

2) Si  P(h)  es verdadera (para un  h cualquiera), entonces probar que  P(h+1) es verdadera. 

Estos dos pasos cumplidos nos permitirán afirmar que  (∀ n)P(n) es verdadera. 
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El paso 2): 

En este paso se toma como hipótesis de trabajo (l amada muchas veces  hipótesis inductiva) que  P(h)  es verdadera y se debe demostrar que  P(h+1)  es verdadera. 

La justificación de este proceder es la "forma" de la condición b) del Axioma 5. Tiene la "forma" 

de condicional. 

Recordando que un condicional sólo es falso en el caso que el antecedente sea verdadero y 

el  consecuente  falso,  es  por  eso  necesario,  para  probar  la  validez  de  2,  asumir   P(h)  como verdadera, que es el  caso crítico (o más desfavorable) y demostrar que el consecuente,  P(h+1) es verdadera. 

EJEMPLO 3.1.1 

¿Es verdadera:  Para todo n, n es producto de números primos? 

Está claro que está expresando lo mismo que: 

 Todo número natural es producto de números primos. 

La simbolización será: (∀ n)( P(n)) 

Considerando: 

como el universo del  P(n) 

  P(n):  n es producto de números primos 

El análisis que debemos hacer es:  ¿ Es V(P) = 

? 

Esta proposición es falsa porque el 0 no es producto de primos. Es decir no se cumple 1), pues P(0) es falsa ó equivalentemente  0 ∉ V(P) 

Observar que P(0) es “0 es producto de números primos”  

EJEMPLO 3.1.2 

Sea  P(n):2n+1 es un número impar 

Analizar el valor de verdad de (∀ n)( P(n))  ,  con n∈

El universo del  P(n)  es 

 .  

Si V(P) es el conjunto de verdad del esquema  P(n), ¿es V(P) =

? 

Si vemos que se cumple:   

1) 0 ∈ V(P),  y

2) cualquiera sea  h,  h ∈ V(P) entonces  h + 1 ∈ V(P)

A V(P) le aplicaremos el axioma Inductivo y resultará V(P) = 

Recordemos que un número es impar si no es par. Además, un número es par si es divisible 

por 2. Luego, un número es impar si 2 no lo divide. 
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1) 0 ∈ V(P) es lo mismo que decir que  P(0) es verdadera. 

¿Qué dice  P(0)? 

 P(0): 2.0 +1 es un número impar.  

Como  2.0 + 1 es  1 y como 2  no divide a 1, entonces  P(0) es verdadera. 

Por lo tanto, 1) se cumple. 

Veamos ahora 2). Su antecedente:   h ∈ V(P)   se traduce como  P(h) es verdadera Siendo  P(h): 2.h +1  es un número impar 

Y aceptamos  P(h) como hipótesis inductiva que es equivalente a aceptar  P(h) como verdadera. 

Esto significa, que cualquiera sea  h, se acepta que  2.h+1 no es divisible por 2. 

El consecuente de 2):  h + 1 ∈V(P) es lo mismo que decir que  P(h + 1) es verdadera siendo   P(h+1):  2.(h+1) +1 es un número impar 

Hay que demostrar que: 

“Si  2.h +1  es un número impar entonces 2.(h+1) +1 es un número impar” 

 2.(h+1)  +1  =   2.h+  2  +1  =   2  +  2.h  +  1  =   2  +  (  2.h  +  1)    (aplicando  propiedad  distributiva  del producto en la suma y conmutando sumandos y asociando) 

2 divide a 2 y como 2 no divide a  2.h + 1  por hipótesis inductiva,  luego 2 no divide a  2.(h+1) +1 

pues sino, suponiendo lo contrario:  

 2.(h+1) +1= 2 + ( 2.h +1) = 2.q    para algún q entero 

por lo tanto, despejando:   2.h +1 = 2.q - 2 =2. (q-1) (habiendo sacado factor común 2)  

Luego  2 divide a 2h+1,  en contra de la hipótesis inductiva 

Por lo tanto vale 2). Entonces V(P) = 

y esto equivale a que  (∀ n)( P(n)) es verdadera. 

EJEMPLO 3.1.3 

Pretendemos  que  lo  siguiente  sirva  para  que  esclarecer  que  "algunos  ejemplos  no  son suficiente..." 

A  lo  largo  de  los  siglos  fue  preocupación  de  la  mayoría  de  los  matemáticos  encontrar  una fórmula que genere a todos los números primos o que al menos genere algunos. 

 n

1) En el siglo XVII Pierre Fermat conjeturó que  2

2 +1 es primo para todo  n natural. 

Si calculamos esta expresión para sucesivos valores de  n: 
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0

2

1

2 +1 = 2 +1 = 3

1

2

2

2 +1 = 2 +1 = 5

2

2

4

2 +1 = 2 +1 = 17

Compruebe que son primos (use la criba de Eratóstenes) 

3

2

8

2 +1 = 2 +1 = 257

4

2

2 +1 = 65537

No había calculadoras..., así que en siglo  XVII  no era fácil hacer cuentas buscando  divisores 5

2

de 2

1

+  = 4294967297. 

5

2

Fue en el siglo XVIII que Euler encontró que  2

1

+  = 4294967297 = 641.  6700417

2) Otra fórmula para números primos:

¿ 2

 n −  n + 41es un número primo para todo natural  n?? 

Calculemos para varios valores naturales: 

2

0 − 0 + 41 = 41

2

1 −1+ 41 = 41

2

2 − 2 + 41 = 43

2

3 − 3 + 41 = 47

2

4 − 4 + 41 = 53

2

5 − 5 + 41 = 61

2

6 − 6 + 41 = 71

Siga unos números más..... ¿Y qué contesta? ¿Vale para todo  n natural? 

Los enunciados anteriores se l amaron conjeturas, ya que durante mucho tiempo se creía que eran  verdaderas  para  todos  los  naturales  pero  no  habían  sido  probados  ni  refutados. 

Evidentemente probar con algunos números por muchos que sean no garantiza la verdad del 

enunciado para TODOS los naturales. 



 Los dos pasos de la inducción, para qué? 

EJEMPLO 3.1.4 

1) Demostrar  (∀ n)( n = 0 )  ,  con n∈

 . 

¿Qué dice  P(0)?   P(0):  0 = 0 

Como el valor de verdad de  P(0) es verdadera concluyo que (∀ n)( n = 0 )  ,  con n∈

Claramente  que  esto  no  será  aceptado,  hemos  cumplido  una  sola  etapa  del  método  de demostración por inducción, además la etapa más sencil a. 
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2) Demostrar  (∀ n) (  n = n+1 )  ,  con n∈

 . 

Veamos, supongamos que vale  P(h) para cualquier h   y   vamos a probar  P(h+1). 

¿Qué hemos aceptado? Es verdadero  P(h),  siendo   P( h):  h  = h+1 

¿Qué dice  P(h+1)?  P( h+1):  h +1 = (h+1)+ 1   y debemos probar que vale.   

Partamos del primer miembro de la igualdad que propone  P(h+1) y veamos: 

 h+1= (h+1) +1    la sustitución es por considerar verdadera  P(h) 

Luego,  P(h+1) es válida, habiendo supuesto  P(h),  y   h  es cualquier número natural, entonces: (∀ n) (  n = n+1 )  ,  con n∈

 . 

Claramente, esto es falso. 

Los  dos  pasos del método deben cumplirse  para  afirmar que  la  proposición  es válida para todos los naturales. 

2. Sucesiones y símbolos auxiliares

Una sucesión es una aplicación de 

en un conjunto  A.  

Si esta función la indicamos por S se tiene 

S: 

→  A

Como el dominio es 

,   están definidos S(0), S(1), S(2), etc. Se acostumbra a indicar estos 

elementos por: 

S(0) =  a0

S(1) =  a1

S(2) =  a2

 ………… 

En general para un  k cualquiera, S( k) =  ak

Dado  ak  se dice que  k  es el índice, y que  ak es el  k-ésimo término de la sucesión. 

Se lo l ama también término general  de la sucesión. 

La  función  S  lo  que  hace  es  elegir,  según  una  determinada  ley  (la  de  su  definición)  los elementos  a0 , a1 , a2 ,... ak ,...  del conjunto  A. 
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Por lo general las sucesiones sólo se indican por  a0 , a1 , a2 ,... ak ,...  es decir por la imagen de   la función   S. 

Otra notación para el as es { an } n∈  

. 

EJEMPLO 3.2.1 

Sea S: 

→  A , tal que S( n) =  n + 1. Hal ar los primeros 5 términos de la sucesión. 

Esto significa que se debe hal ar S(0) =  a0  , S(1) =  a1 ,  S(2) =  a2, ....,  S(4) =  a4 

Y el os son  a0  = 1,  a1  = 2,  a2  = 3,  a3  = 4,  a4  = 5 

EJEMPLO 3.2.2 

Hal ar el término general de la sucesión cuyos 6 primeros términos son: 1, 3, 5, 7, 9, 11. 

Esto significa que se debe encontrar la ley de formación de los elementos  an , sabiendo que a0  = 1,  a1  = 3,  a2  = 5,  a3  = 7,  a4  = 9,  a5  = 11 

Todos los elementos que se presentan son impares. 

La expresión para un número impar es  2.  n + 1,  luego S( n) =  an  =  2.n +1 

Es  casi  inmediato  extender  una  sucesión,  esto  es,  conocido  el  término  general  ir  dando cada uno de sus elementos, no resulta así el proceso inverso de encontrar el término general a partir de varios elementos de la sucesión. 

El trabajo con varios casos da la práctica para lograrlo...Esto favorece "el golpe de vista" y la imaginación tendrá que acompañar. 

EJEMPLO 3.2.3 

Hal ar el término general de la sucesión cuyos primeros elementos son: 

1

1

1

1

1

1

1, 

−

, 

, 

−

, 

, 

−

, 

2

4

8

16

32

64

Observar primeramente que los números son alternativamente positivos y negativos. 

Una manera de obtener esta alternancia en los signos es pensar en las sucesivas potencias de 

-1.  Pues  ( 1) h

−

es1 o 1

− , según la paridad de  h. 
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1

Prescindiendo por un momento de los signos, los elementos dados son potencias de 

, pues

2

0

1

2

3

 1 

1

 1 

1

 1 

1

 1 

1 =   , 

=   , 

=   , 

=   , etc. 

 2 

2

 2 

4

 2 

8

 2 

Combinando ambas observaciones: 

0

1

2

3

 1 

1

 1 

1

 1 

1

 1 

0

1

2

3

1 = ( 1

− )   , 

−

= ( 1

− )   , 

= (−1)   , − = (−1)   , 

 2 

2

 2 

4

 2 

8

 2 

4

5

6

1

 1 

1

 1 

1

 1 

4

5

6

= (−1)   , −

= ( 1

− )   , 

= (−1)  

16

 2 

32

 2 

64

 2 

 n

 

 n

1

Luego podemos decir que el término general es:   a = ( 1

− )

claramente también puede 

 n

 

 2 

 n

 1 

presentarse equivalentemente por:   a =  −

. 

 n



 2 

Esto nos permite afirmar que en realidad lo correcto es hablar de "un término general" de la sucesión en lugar de "el término general". 

Observación:  En  una  sucesión  (como  en  toda  función)  es  irrelevante  la  letra  que  utilicemos para designar a la variable, lo que importa es la ley que deba cumplir. Para indicar este hecho es común decir que "la variable es muda". 

EJEMPLO 3.2.4 

Hal ar los 5 primeros términos de las siguientes sucesiones: 

 h  1

 a)  a = ( 1

− ) + .3 h

 h

 t  1

 b)

 a = ( 1

− ) + .3 t

 t

 c)

 b = −(−3)  j

 j

Desarrol emos cada una de las expresiones 

 h  1

 a)  a = ( 1

− ) + .3 h       Para obtener los 5 primeros elementos debe variar  h  de 0 a 4, por lo cual h

0 1

+

0

 a = (−1)

.3 = 1

− .1 = 1

0

1 1

+

1

 a = ( 1

− ) .3 = 1.3 = 3

1

2 1

+

2

 a = ( 1

− )

.3 = −1.9 = −9

2

3 1

+

3

 a = ( 1

− )

.3 = 1.27 = 27

3

4 1

+

4

 a = ( 1

− )

.3 = 1

− .81 = −81

4
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 t  1

 b)

 a = ( 1

− ) + .3 t

 t

Para obtener los 5 primeros elementos debe variar  t  de 0 a 4, por lo cual

0 1

+

0

 a = (−1)

.3 = −1.1 = 1

0

1 1

+

1

 a = ( 1

− ) .3 = 1.3 = 3

1

2 1

+

2

 a = ( 1

− )

.3 = −1.9 = −9

2

3 1

+

3

 a = ( 1

− )

.3 = 1.27 = 27

3

4 1

+

4

 a = ( 1

− )

.3 = 1

− .81 = −81

4

 c)

 b = −( 3

− )  j

 j

Para obtener los 5 primeros elementos debe variar  j  de 0 a 4, por lo cual

0

 b = −(−3) = −1 = 1

0

1

 b = −( 3

− ) = −(−3) = 3

1

2

 b = −( 3

− ) = 9

−

2

3

 b = −( 3

− ) = −(−27) = 27

3

¿?? 

4

 b = −( 3

− ) = 8

− 1

4

¿Qué ocurre? ¿Cuántos términos generales tiene una sucesión? 

EJERCICIO 3.2.5   

Hal ar al menos dos formas para el término general de las siguientes sucesiones si se conocen algunos términos consecutivos: 

a) 1, -1, 1, -1, 1, -1,....... 

b) 0, 3, 6, 9, 12, 15, 18,..... 

c) 1, 1, 1, 1, 1, ....... 

1 2 3 4

d) 0, 

, , , ,... 

2 3 4 5

e)

 sen  2 x,  sen  4 x,  sen  6 x,  sen  8 x, EJERCICIO 3.2.6 

Considerar  los  siguientes  términos  generales  de  sucesiones  y  calcular  los  correspondientes para los casos   j = 0,  6,  h,  m,  m+1,  6k 

 j+2

( 2

− )

a) b

 j+

 j

j =

b) 

5

 p =

 a  siendo  a un  real mayor que 0

3  j −1

 j

c)  a j : 2. j -1  es un número impar

d)  b j  :  3  divide  a  j
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 Definiciones por recurrencia

Hay conceptos muy usuales que se definen de "a pasos". 

Piense en la potencia de exponente natural de un número real no nulo, la definición usual es la siguiente: 

0



 a = 1

Si   a ≠ 0, 

 n  1



 a + = .  n

 a a  para  n ≥ 0

Se define para  una base de la definición, en este ejemplo se toma el 0, y luego ya conocida para un valor (el  n) se define para el siguiente ( n+1). Es así como queda definida la potencia para  todo  natural,  pues  una  vez  definida  para  0,  usando  ese  dato  en  el  paso  siguiente  será definida para 1, luego para 2, etc. Seguidamente se verán otras definiciones de este tipo. 

Las sucesiones también pueden en algunos casos definirse recursivamente. 

EJEMPLO 3.2.7 

Pensemos en la siguiente sucesión:     3, 7, 11, 15, 19, … 

En este caso   a = 3 y luego cada término se obtiene del anterior sumándole 4, podemos decir 1

entonces que 

 a = 3  y    a =  a

+ 4

 n ≥ 2

1

 n

 n  1

−

Esta definición de la sucesión es recursiva, ya que hace uso de términos anteriores. 

EJEMPLO 3.2.8 

Miremos ahora la sucesión:  5, 10, 20, 40, 80,…. 

En  este  caso   a = 5   y  luego  cada  término  se  obtiene  del  anterior  multiplicándolo  por  2, 1

podemos decir entonces que 

 a = 5   y    a =  a

.2

 n ≥ 2

1

 n

 n  1

−

Esta definición de la sucesión es recursiva, ya que hace uso de términos anteriores. 

Estas  dos  sucesiones  que  hemos  visto  son  sucesiones  muy  especiales  que  definimos  a continuación de manera general: 
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Una   sucesión  aritmética,  es  una  sucesión  tal  que  la  diferencia  entre  dos  términos consecutivos es constante, es decir   a −  a

=  d  , a esa constante la l amamos diferencia y 

 n

 n  1

−

la notamos con la letra  d.  

¿?? 

Para que la sucesión sea interesante ¿cómo debe ser  d….? 

Se tiene entonces que una sucesión aritmética tiene definición recursiva como: 

 a   y    a =  a

+  d

 n ≥ 2

1

 n

 n  1

−

Una   sucesión  geométrica,  es  una  sucesión  tal  que  el  cociente  entre  dos  términos a

consecutivos  es  constante,  es  decir 

 n

=  r   ,  a  esa  constante  la  l amamos  razón  y  la

 an  1

−

¿?? 

notamos con la letra  r.   

¿Cómo tiene que ser el denominador? 

Se tiene entonces que una sucesión geométrica tiene definición recursiva como: 

 a   y     a =  a .  r n ≥ 2 . 

1

 n

 n  1

−

¿Cómo tienen que ser   a  y  r para que haya una sucesión geométrica interesante….? 

1

Pensemos en una sucesión aritmética cualquiera, definida como: 

 a    y    a =  a

+  d

 n ≥ 2

1

 n

 n  1

−

Podemos escribir entonces que: 

 a 1

 a =  a +  d

2

1

 a =  a +  d =  a +  d +  d

3

2

1

 a =  a +  d =  a +  d +  d =  a +  d +  d +  d 4

3

2

1

Esto sugiere entonces que: 

 a =  a + ( n −1) d

 n ≥ 1  es  la  definición  explícita  del  término  general  de  la  sucesión

 n

1

aritmética, conocido el primer término y la diferencia. 
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Pensemos ahora en una sucesión geométrica cualquiera, definida como: 

 a    y    a =  a

.  r

 n ≥ 2

1

 n

 n  1

−

Podemos escribir entonces que: 

 a 1

 a =  a .  r

2

1

 a =  a .  r =  a .  r.  r

3

2

1

 a =  a .  r =  a .  r.  r =  a .  r.  r.  r 4

3

2

1

Esto sugiere entonces que: 

 n  1

 a

 a .  r −

=

 n ≥ 1  es  la  definición  explícita  del  término  general  de  la  sucesión  de  la n

1

sucesión geométrica conocido el primer término y la razón. 

 Símbolos auxiliares

Veremos  ahora  una  notación  que  es  útil  cuando  queremos  sumar  o  multiplicar  un  número finito  de  elementos  que  pertenecen  a  una  sucesión.  Estos  elementos  auxiliares  también admiten una definición recursiva. 

Notación para la suma: Sigma 

Supongamos, sumar los primeros 6 números impares: 1, 3, 5, 7, 9, 11. 

Esto es: 1+ 3 + 5 + 7 + 9 + 11 = 36 

Si ahora queremos sumar los primeros 16 números impares: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31. 

Esto es: 1+3+ 5+ 7+ 9+ 11+ 13+ 15+ 17+ 19+ 21+ 23+ 25+ 27+ 29+ 31= 

Esta escritura es muy poco práctica. 

En general se escribe: 1+3+5+ .......+27+29+31= 

Pone algunos elementos de la sucesión a sumar, puntos suspensivos para sugerir que sigue 

igual  (la  misma  sucesión)  y  termina  con  otros,  los  últimos  de  la  sucesión  a  sumar.  Esto tampoco es muy práctico y además es impreciso. Para evitar ambigüedades vamos a presentar 

un  símbolo  auxiliar,  que  l amamos  sumatoria, que  es  la  letra  sigma  mayúscula  del  alfabeto griego:  


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¿Cómo se usa y cuándo? 

Sirve en casos como el anteriormente mencionado, la suma de un número finito de elementos 

de una sucesión. 

Utilizamos esta herramienta haciendo uso también del término general de una sucesión, en el caso de los números impares diremos que queremos: 

“Sumar los números 2 k + 1 con  k variando de 0 a 15, de uno en uno” 

Eso lo expresamos con este símbolo: 

15

(2 k +1) =

 k =0

 Esto se lee  “sumatoria desde  k = 0 hasta 15 de 2 k +1 “ 

Cuando queremos expresar la suma de una sucesión cualquiera de término general  ak  desde k = 0 hasta el número  k =  n escribimos: 

 n

 ak

 k =0

 Esto significa que estamos sumando  a0, a1 , … , y  an 

Definimos recursivamente la sumatoria: 

0

+



 n  1

 n





 a =  a

 y    a =   a +



  a

 k

0

 k

 k

 n  1

+





 k =0

 k =0

 k =0

La definición nos da una herramienta para expresar una suma de una sucesión con precisión. 

Otras alternativas de lo mismo: 

 k = n

  a  es tambien equivalente a escribir

  a

 k

=0

 k

 k

0≤ k ≤ n

Usémosla en el ejemplo anterior: 

El término general de la sucesión está dado por 

 a = 2 k + 1 si se pretende sumar los impares de 1 al 11, observar que

 k

1=   a

y 11 =  a  

0

5

5

Luego lo pedido resulta:  (2 k +1)  

 k =0
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Si se pretende sumar los impares de 1 al 31, observar que 1=   a

y

31 =  a

0

15

15

Luego se tiene entonces lo que resulta:  (2 k +1)  

 k =0

EJEMPLO 3.2.9 

Desarrol ar la sumatoria: 

 (− i)( i +1) = ( 1

− )(1+1) + ( 2

− )(2 +1) + (−3)(3 +1) + ( 4

− )(4 +1) + ( 5

− )(5 +1)

1≤ i≤5

EJEMPLO 3.2.10 

Desarrol ar la sumatoria: 

3

 j  1

+

0 1

+

1 1

+

2 1

+

3 1

2 = 2 + 2 + 2 + 2 +

 j =0

EJERCICIO 3.2.11 

a) Desarrol ar:

 j

 j  1

  a .(1− b) +

0≤  j  1

≤ 2

b) Desarrol ar:   a b

 i

 j

 j + i =4

EJERCICIO 3.2.12 

 n

 n

a) Demostrar que para todo  n vale:   a =  a

 i

 j

 i=0

 j =0

 n  1

+

 n

b)

Demostrar que para todo  n vale:   a =  a

 i

 i  1

+

 i  1

=

 i=0

c) Demostrar que  si    a ,  a ,...,  a ,...  y b ,  b ,...,  b ,... son sucesiones, entonces para todo 1

2

 n

1

2

 n

natural  n, se tiene que: 

 n

 n

 n

 I )

( a ±  b ) =  a ±  b

 j

 j

 j

 j

 j  1

=

 j  1

=

 j  1

=

 n

 n

 II )

 .  ca = .  c a

 j

 j

 j  1

=

 j  1

=

 n

 III )

 c = .  nc

 j  1

=

114

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

EJEMPLO 3.2.13 

Demostrar por el método de Inducción Completa: 

. 

 n ( n +1)

0 +1+ 2 + 3 + .............. +  n =

,  cualquiera sea  , 

 n   n número natural 

2

Vamos a utilizar el símbolo de sumatoria para practicar con él. 

Así lo anterior se puede escribir: 

 n

. 

 n ( n +1)

 i =

,  cualquiera sea  n,  n número natural 

 i=0

2

Esta prueba será muy simple y es importante retener la expresión para calcular la suma de los n+1 primeros números naturales. 

Se  pueden  poner  ejemplos  numéricos  para  convencerse  de  la  veracidad  de  la  proposición, pero  como se quiere demostrar usaremos el Principio de Inducción Matemática: 

1) Ver si  P(0) es verdadera:

Primero formulemos lo que dice  P(0), 

0

0.(0 +1)

 P(  0  ) :    i =

 i =0

2

0

e

    l  primer miembro de la igualdad propuesta por  P(0)  es    i = 0 

 i=0

0.(0 +1)

el segundo miembro de la igauldad propuesta por  P(0) es 

= 0

2

Luego observamos que  P(0) es verdadera

Supongamos verdadera a  P(h)  y demostremos  P(h+1): 

 h  1

+

 h

 h.(h +1 )

entonces 

 (h +1 ).((h +1 ) +1 )

 P(h)   i =

 P(h +

:

1 ) :   i =

 i=

2

 i=0

2

0

Aceptamos  a   P(h)  como  verdadera.  Decimos  que   P(h)  se  acepta  verdadera  por   hipótesis inductiva. Hay que demostrar la igualdad para  h+1. 

Analicemos el primer miembro de la igualdad propuesta: 

 h  1

+

 h

 i =  i + (h +1   ) por la definicion de 

 i=0

 i=0

 h

 h.(h +1  )

 i + (h +1   ) =

+  (h +1  

 )  por la hipotesis inductiva

 i=

2

0

 h.(h +1 )

 h.(h +1  ) + 2 .(h +1  )

 (h +1  ).(h + 2  )

 (h +1  ).((h +1 ) +1  )

+  (h +1 ) =

=

=

2

2

2

2

La justificación de los últimos pasos queda para el lector. 
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Hemos  cumplido  los  dos  pasos  que  pide  el  método  de  inducción.  Por  lo  tanto,  hemos demostrado que:  

 n

. 

 n ( n +1)

 i =

,  cualquiera sea  n,  n numero natural 

 i=0

2

Si en una demostración por Inducción no usa la hipótesis inductiva, entonces seguro que está mal la demostración. O al menos no se hizo por inducción. 

EJERCICIO 3.2.14 

Probar que para todo natural,  n ≥  0  vale la siguiente igualdad: 

 n

1 + 2 + 22 +......... + 2n =  2 k = 2n+1 – 1

 k =0

Notación para el producto: Pi 

Ahora  queremos  multiplicar  un  número  finito  de  elementos  de  una  sucesión.  Por  ejemplo, multiplicar: 

1

1

1

1

1

, 

, 

, 

, 

2

4

8

16

32

1 1 1 1

1

Podemos expresar esa operación como: 

⋅

⋅ ⋅

⋅

2 4 8 16 32

1 1

1

Una manera más "económica" de expresar la operación es: 

⋅

⋅.....⋅

2 4

32

Pero es bastante imprecisa. 

Para  evitar  estas  situaciones  y  en  especial  cuando  son  muchos  los  factores  se  define  un símbolo  ∏  (es la letra pi mayúscula) que l amamos productoria. 

Definimos recursivamente: 

0

 n  1

+

 n





 a =  a

∏

 y 

 a =

∏



 a

∏ i a

 k

0

 k

 k

 n  1

+





 k =0

 k =0

 k =0

Esto nos da una herramienta para expresar un producto con precisión. 

Otras alternativas de lo mismo:  

 n

 a

es tambien equivalente a escribir

 a

∏

∏

 k

=0

 k

 k

0≤ k ≤ n
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EJEMPLO 3.2.15 

Expresar el producto de los primeros 100 números naturales pares no nulos. 

La sucesión de naturales pares está dada por 0, 2, 4, 6,.....,   2n,.... 

Los no nulos son  2, 4, 6,.....,    que podemos expresar su  término general  por       an = 2.(n+1)     para  n≥  0 

Tenemos entonces que: 

 a = 2(0 +1) = 2

0

 a = 2(1+1) = 4

1

 a = 2(2 +1) = 6

2

 a = 2(3 +1) = 8

3

... 

 a = 2(99 +1) = 200

99

Entonces el producto lo expresamos por: 

99

99

 a =

[2( k +1)]

∏

∏

 k

 k =0

 k =0

EJERCICIO 3.2.16 

Desarrol ar las siguientes productorias: 

 t +2

 3 

10

1+  i

a)  ∏  − 

b)  ∏

c) 

7

( i +1)

∏

d) 

7

 i +1

∏







−

 i=0

 i=0

 i =

( 5) i

≤ t ≤

4

0

7

0

EJEMPLO 3.2.17 

Consideremos la siguiente sucesión: 1, 1, 2, 6, 24, 120, 720, .... 

Podemos comprobar que:                     1 = 1 

2 = 1. 2 

6 = 2. 3 

24 = 6. 4 

120 = 24. 5 

720 = 120. 6 

Salvo el primer 1, que vamos a l amar  a 0 , y a los restantes que serán  a 1  , etc. , esos cumplen la regla  : 

 a 1= 1 =  a 0.1 

 a 2 = 2 = 1. 2 =  a 1. 2 

      a 3 = 6 = 2. 3 =  a 2 .3 

  a 4 = 24 = 6. 4 =  a 3 .4 

  a 5 = 120 = 24. 5=  a 4.5 

 a 6   =720 = 120. 6 =  a 5.6 
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Luego  a 0 = 1 y para  n > 0   an  =  an-1.  n. 

Este es otro ejemplo de una sucesión definida en forma recursiva. 

Esta sucesión es el factorial de  n.  Hay una notación especial para el a  a n  = n!  

Se verá más adelante que  n!  es una sucesión con varias aplicaciones interesantes. 

También se define por recurrencia como: 

1



si  n = 0

 n! = 

( n −1)! i  n   si  n ≥ 1

Observar  que  se  verifica  lo  siguiente  ya  que  el  producto  de  naturales  es  conmutativo  y asociativo:  

1! = 1

2! = 2.1! = 2.1

3! = 3.2! = 3.2.1

4! = 4.3! = 4.3.2.1

5! = 5.4! = 5.4.3.2.1

6! = 6.5! = 6.5.4.3.2.1

 n

Es por tanto posible expresar que para  n ≥ 1:     n! =

 i

∏

 i  1

=

3. Cuando algunos  n quedan afuera... 

Hay  propiedades  que  no  se  verifican  para  todos  los  números  naturales,  comienzan  a verificarse a partir de un número natural  a y de ese número en adelante. 

El enunciado  

 (∀ n) (P(n)∧  n ≥  a) 

Se traduce como:  para todo número natural mayor o igual que  a, P(n). 

También se escribe: (∀ n) (n ∈  

∧  n ≥  a ∧  P(n))

La validez de este tipo de proposición también se demuestra por Inducción generalizada.  

En este caso el método se transforma para exigir lo siguiente: 
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Si 

1) P( a) es verdadero    Y

2) para  k ≥  a,  P( k ) verdadero entonces  P( k + 1) verdadero entonces

 P(n) es válido (∀ n)( n ∈  

  ∧  n ≥  a )

Observar que si  a=0 se tiene el método de inducción anteriormente dado. 

EJEMPLO 3.3.1 

Observemos lo siguiente: 

1

1

1−

=

2

2



1  

1 

1 2

1

1−  ⋅1−  = ⋅ =



2  

3 

2 3

3

Sigamos



1  

1  

1 

1 3

1

1−  ⋅1−  ⋅1−  = ⋅ =



2  

3  

4 

3 4

4



1  

1  

1  

1 

1 4

1

1−  ⋅1−  ⋅1−  ⋅1−  = ⋅ =



2  

3  

4  

5 

4 5

5

La observación nos permite postular la siguiente regla general que deberemos probar por 

inducción generalizada: 



1  

1 



1 

1

Para  n ≥ 2 :

1−  ⋅1−  ⋅...⋅1−  =



2  

3 



 n 

 n

 n



1 

1

O equivalentemente :

∏1−  =





=

 i

 n

 i  2

La prueba será: 

1) Demostrar  P(2)  que establece:

2



1 

1

∏  1 −  =



 i 

2

 i = 2

Desarrol ando la productoria, que en este caso es un solo factor, se tiene: 
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2



1 

1

∏ 1 −  = 1 −





=

 i

 i

2

2

1

1

y e fe c tiv a m e n te  1 -

=

2

2

Habiendo  comprobado  la  verdad  de   P(2),  aceptamos  como  válida  para   P(k)  para k ≥ 2  y demostremos  P( k + 1). 

Lo que aceptamos es:

 k



1 

1

∏1-  =





=

 i

 k

 i  2

Lo que queremos demostrar en este paso es: 

 k  1

+ 

1 

1

∏1−  =





+  

=

 i

 k

 i

1

2

Por definición de la productoria, se tiene 

 k  1

+ 

1

 k





1  

1 

∏1−  = ∏1− i1−

 y por hipotesis inductiva:







 

+ 

=

 i

=

 i

 k

 i

 i

1

2

2

 k



1  

1 

1 

1 

∏1− i1−

 = i1 −

  y operando resulta



 

+ 



+ 

=

 i

 k

 k

 k

 i

1

1

2

1 

1 

1   k + 1 − 1 

1

 k

1



i 1 −

 = i

 = i

=

 k 

 k + 1 

 k   k + 1 

 k k + 1

 k + 1

simplificando por  k, pues  k ≠ 0

Por lo tanto, habiendo cumplido las etapas 1) y 2) podemos afirmar que efectivamente vale: 

 n



1 

1

P a r a    n ≥ 2 :

∏  1 −

 =





=

 i

 n

 i

2

EJERCICIO 3.3.2 

Observar las siguientes expresiones: 

1 = 1 

1 + 3 = 4 

1 + 3 + 5 = 9 

1 + 3 + 5 + 7 = 16 

1 + 3 + 5 + 7 + 9 = 25 

Los resultados son cuadrados, veamos: 
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1 = 12 = (0 + 1)2 

4 = 22 = (1 + 1)2

9 = 32 = (2 + 1)2 

16 = 42 = (3 + 1)2 

25 = 52 = (4 + 1)2 

Y además: 

1 = 2.0 + 1 

3 = 2.1 + 1 

5 = 2.2 + 1 

7 = 2.3 + 1 

9 = 2.4 + 1 

Con lo que podríamos decir: 

1 = 2.0 + 1 = 1 = (0 + 1)2 

1 + 3 = (2.0 + 1) + (2.1 + 1) = 4 = (1 + 1)2

1 + 3 + 5 = (2.0 + 1) + (2.1 + 1) + (2.2 + 1) = 9 = 32 = (2 + 1)2 

1 + 3 + 5 + 7 = (2.0 + 1) + (2.1 + 1) +(2.2 + 1) + (2.3 + 1) = 16 = 42 = (3 + 1)2 

1 + 3 + 5 + 7 + 9 = (2.0 + 1) + (2.1 + 1) +(2.2 + 1) + (2.3 + 1) +(2.4 + 1)= 25 = 52 = = (4 + 1)2 

Ahora podemos inducir la siguiente regla general: 

1 + 3 + 5 +.......... + (2.  n + 1) = ( n + 1)2 

 n

O mejor expresado:   (2k + 1) = (n+1)2 

 k =0

¿Valdrá o no para  n ≥ 0? 

Probar por inducción la regla propuesta. 

EJEMPLO 3.3.3 

Observar atentamente la demostración siguiente: 

Monotonía de la multiplicación  en 

: 

 (∀ n)(2n > n) 

  

  

¡!!! 

 a ≥  b ,  si   c ≥ 0

entonces    a.  c ≥  b.  c

Siendo  P(n): 2n > n 

 a ≥  b ,  si   c < 0

entonces    a.  c ≤  b.  c

1) Como  P (0) :  20 > 0  ,  y    0

2 = 1

Se cumple que      1 > 0  es verdadero, luego  P (0) es válido 

2) Sea  P (t ): 2t > t  que suponemos verdadera por hipótesis inductiva. 
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Veamos que dice y probemos  P(t+1),  P(t + 1) : 2t + 1 > t + 1 

Demostración:  

  2t + 1 = 2t . 2 > t.2 = t + t 

↑

2 t >  t  por hipótesis y 2 >0

Aquí consideramos la necesidad de reformar el desarrol o del ejercicio porque si 

 t = 0, observar que  t + t no es mayor que  t + 1 

 Reformamos entonces como sigue:  

Probemos por inducción generalizada que:      (∀ n)(  n ≥  1 → 2n > n ) Por lo cual debemos partir de probar la verdad de  P (1) 

1)  P (1):  21 > 1

Como 2 > 1 es verdadero,  P (1) es verdadero. 

2) Vemos el siguiente paso que exige el método. 

 P ( t ): 2t > t para t ≥  1  se acepta como verdadera por hipótesis inductiva. 

Tratemos de probar para el siguiente: 

 P (t + 1): 2t + 1 > t + 1  

Demostración: 

 2t + 1 =  2t . 2 >  t.2 =  t + t   y como  t ≥  1 entonces  t + t ≥  t + 1, se tiene la desigualdad deseada. 

Habiendo cumplido la segunda etapa, hemos probado: 

 2n > n,  (∀ n )(   n ≥  1)

Pero como  P (0) también vale, entonces si: 

(a)  P (0) vale, y  

(b)  P(n) vale para todo  n ≥  1; 

Entonces vale para todo  n ≥  0,  2n > n 

EJERCICIO 3. 3.4 

Demostrar aplicando inducción completa, en cada apartado se considera  n número natural: n  1

−

 n

a)  (∀ n)( n ≥  1   entonces   a =   a )

 i

 i  1

−

 i=0

 i  1

=
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 n

b)  (∀ n)( n ≥  1  entonces  ( .  i i!) = ( n +1)!−1  ) i  1

=

 n

 n

c)  (∀ n)( n ≥   1  entonces log

 a =

∏

log  a  ) 

 b

 i

 b

 i

 i  1

=

 i  1

=

 d)  Para todo  n, entonces (1 + p)n ≥  1 + n.p    para cualquier  p > -1 (fijo) e)  Para  n ≥  5, entonces   2n > n2

 f)

 (∀ n)(  sen (nx)  ≤   n sen x  )

 g)  Siendo los    ai    números reales para

1 ≤  i ≤  n

y usando que en   vale  x+y ≤  x +  y

 n

 n

 a ≤   a  cualquiera sea el natural  .  n

 i

 i

 i  1

=

 i  1

=

 n



1 

 h)  Para todo  n,  n ≥  1,  entonces ∏1+  =  n +1





=

 n

 j  1

 i)

 (∀ n)(  cos (n π  ) = (-1)n 

 j)

 )

4. Segundo Principio de Inducción Completa

Existe  otra  formulación  equivalente  al  Principio  de  Inducción  ya  dado  que  también  servirá para  demostrar  propiedades  universales  referidas  a  los  números  naturales  o  que  se  refieren desde un número natural  a en adelante. 

Pero  para  la  demostración  de  esas  verdades,  no  alcanza  con  saber  que  se  cumplen  en  el paso anterior solamente sino que es necesario conocer la verdad en todos los menores que un valor cualquiera. Se enunciará y mostrará cómo funciona el método. 

 Segundo Principio de Inducción: 

Dado  L un subconjunto de 

, es decir  L   ⊆

. 

SI:  

a) 0 ∈  L

y 

 entonces  L=

b) Cualquiera sea  m,   para todo  k,  k < , 

 m  si  k∈  L  entonces   m ∈  L

Observación: La diferencia con el Axioma 5, está en la condición b). En este nuevo axioma   la exigencia es  que del hecho que todos los anteriores a m son elementos de  L permita  inferir  que m  es  elemento  de   L,   entonces  conjuntamente  con  a)  se  obtiene  que   L=

,  y  en  el  primer 

Principio de Inducción la condición b) liga un elemento con su siguiente. 
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El enunciado del  método de demostración de  (∀ n)(P(n))   con universo 

,  que se deriva del 

 Segundo Principio es: 

1) Probar que  P (0) es válido, 

y 

2) Supuesta la  verdad de  P(k),  para  todo  k,  k < m, (con  m cualquiera) entonces probar la verdad de  P(m) 

Estos dos pasos cumplidos permiten afirmar que   (∀ n)(P(n)) es verdadera. 

También  hay un método de demostración ligado al Segundo Principio para propiedades que  se verifican desde un número natural a en adelante, esto es propiedades cuyo enunciado es de la forma:    (∀ n)(P(n)), con  n ≥  a 

SI 

1) P( a) es verdadero    Y

2) para cualquier  k,  a ≤  k <  m,  P( k ) verdadero  entonces   P( ) m  verdadero

entonces

 P(n) es válido (∀ n)(n ∈N  ∧  n ≥  a)

EJEMPLO 3.4.1 

 Todo número natural mayor que 1 es producto finito de números primos. 

 El número natural p 

es primo si tiene 

exactamente dos 

Simbólicamente la proposición tiene la forma: (∀ n)(n ∈  

  ∧  n >1∧  P(n)) 

divisores 

Siendo P (n): n es producto finito de números primos. 

Es decir que la base de la inducción es 2 ya que se postula sobre los mayores que 1. 

Por tanto lo que hay que demostrar es:  

 (∀ n)(n ∈

  ∧  n ≥  2∧  P(n)) 

Vamos a aplicar el método derivado del Segundo Principio con base  a =  2. 

Un 

1) ¿ Qué dice  P(2)?  P(2): 2 es producto finito de números primos

factor!! 

Como 2 es un número primo es obvio que es producto finito de primos. 
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2) Admitimos que para todo  k,   2 ≤  k <  m,  P( k) es verdadero , esto es que para 2 ≤  k <  m ,  la  proposición  “k  es  producto  finito  de  números  primos”     es  una  proposición verdadera. 

Con esta hipótesis (en realidad muchas....) vamos a demostrar la verdad de  P(m),  esto es “m es producto finito de números primos” 

Dado  m ∈  

,  m > 2, está claro que  m es un número primo o no lo es. 

Si  m es primo entonces  P(m) es verdadero. 

Si  m no es primo entonces  m admite divisores no triviales, es decir que además de 1 y  m hay otros divisores de  m. 

Por lo cual podemos afirmar que existen  r y  s naturales tales que:  

  m = r . s  con  1< r<  m   y   1< s<  m 

Resulta entonces que  P(r) y  P(s) son proposiciones verdaderas por hipótesis. 

Pues hemos aceptado como verdaderas, lo que significa que son válidas: 

 r es producto finito de números primos. 

 s es producto finito de números primos. 

Luego tanto  r como  s son expresables como el producto de un número finito de primos. 

Como  m es el producto  r. s, tenemos que hay una cantidad finita de números primos (los de  r más los de  s) que factorean a  m. 

Es decir hemos demostrado que  P (m) es verdadera. 

Luego, habiendo cumplido también 2), concluimos que 

(∀ n)(n ∈  

  ∧  n ≥  2∧  P(n))  es verdadera   o sin simbolismos, vale que:  Todo número natural mayor que 1 es producto finito de números primos. 

Comentario: Es posible probar que este resultado se extiende a los números enteros. Piense Ud.  como  lo  haría.  Además  se  puede  probar  que  esa  factorización  es  única  salvo  el  orden, demostración que escapa al método que estamos ilustrando. 

Este resultado que se conoce como Teorema Fundamental de la Aritmética, lo veremos más adelante en este capítulo. 
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EJEMPLO 3.4.2 

Sea   a  una sucesión de números naturales dada por   a = 18;  a = 170  y para los elementos n

1

2

siguientes  para  n,  n ≥ 1 se define    a

= 18 a

− 77 a

 n+2

 n  1

+

 n

Probar que se define la misma sucesión por la condición: 

(  n

∀ )( n ≥ 1 entonces   a = 7 n + 11 n )

 n

1) Veamos que  P( 1 ) es verdadero:     P( 1 ):

1

1

 a = 7 +11

1

Como 

1

1

 a = 18

y

7 +11 = 18  se cumple  P ( 1 )

1

En este caso la definición recursiva es a partir del tercer término de la sucesión, tenemos que probar entonces que se cumple  P ( 2 ), antes de pasar al paso 2). 

Veamos que  P ( 2 ) es verdadero:     P ( 2 ): 

2

2

 a = 7 +11

2

Como 

2

2

 a = 170

y

7 +11 = 49 +121 = 170 se cumple  P ( 2 )

2

2) Veamos ahora que si  P (h) es verdadera (  h

∀ )( h <  m)   entonces  P (m) es verdadera:

Aceptamos que   a = 7 h +11 h

para  h,  h <  m , 

 h

Tenemos que probar que   a = 7 m +11 m

 m

Demostración: 

 m  1

−

 m  1

−

 m−2

 m−2

 a = 18 a

− 77 a

= 18(7

+ 11

) − 77(7

+ 11

) =

 m

 m  1

−

 m−2

↑       

↑

Por definición 

Por hipótesis ( m − 1 <  m  y  m − 2 <  m)

 m  1

−

 m  1

−

 m−2

 m−2

= 18.7

+ 18.11

− 77.7

− 77.11

=

↑       

Prop distributiva 

 m  1

−

 m  1

−

 m−2

 m−2

= (11 + 7)7

+ (11 + 7).11

− 7.11.7

− 7.11.11

=

 m  1

−

 m

 m

 m  1

−

 m  1

−

 m  1

11.7

7

11

7.11

11.7

7.11 −

=

+

+

+

−

−

= 7 m + 11 m

↑       

Prop distributiva, producto de potencias de igual base y cancelando

Por lo tanto se cumple  P (m),  hemos probado que: 

Si   a = 18;  a = 170  y se verifica la siguiente definición:   a

= 18 a

− 77 a

para  , 

 n n ≥ 1

1

2

 n+2

 n  1

+

 n

Entonces es verdadero que  (  n

∀ )( n ≥ 1,  entonces  a = 7 n + 11 n )

 n
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EJERCICIO 3.4.3 

1. Sea  ( a )

una sucesión de números reales tal que   a

 n n∈

 1 = 8,  a2 = 34  y  además 

 an = 8.  an-1 – 15  a n-2,  si  n ≥ 3. 

Probar, utilizando el segundo principio de inducción, para  n > 0 que  an =  3n + 5n 2. Sea  ( a )

una sucesión de números reales tal que   a

 n

 n∈

 1 = 1,  a2 = 3   y   además 

 an = an-1 + an-2, si  n ≥ 3. 

Probar, utilizando el segundo principio de inducción, que para todo  n, n  natural , n

 7 

 an <   

 4 

3. Sea el esquema proposicional  P( n):    n 2 + 5 n + 1 es par. 

a) Probar que si  P( k) es verdadera para un natural  k, entonces  P( k + 1) es verdadera. 

b) De  acuerdo  con  el  Principio  de  Inducción  Completa,  puede  entonces  afirmarse  que P( n) es verdadera ∀ n, n ≥ 1. Justifique. 

4. Probar que  n rectas distintas del plano que concurren a un punto dividen al plano en  2n partes 

5. Determinar para que valores de  n es válida cada una de las siguientes desigualdades  y demostrar: 

a) 2 n >  n2 + 4n + 5

b)  3n > 2n + 7n

6. Emplear el Principio de Inducción para demostrar que para todo  n número natural, valen:

. 

 n ( n +1)(2 n +1)

2

2

2

 i)   1+ 2 + 3 + ......... +  n =

6

. 

 n (2 n −1).(2 n +1)

2

2

2

 ii)   1+ 3 + 5 + ......... + (2 n −1) =

3

( n −1). . 

 n ( n +1)

 iii)   1.2 + 2.3 + 3.4 + ......... + ( n −1).  n =

3

1

1

1

 n

 iv) 

+

+ ........ +

=

1.3

3.5

(2 n −1).(2 n +1)

2 n +1

1

1

1

 n

 v)

+

+ ........ +

=

1.5

5.9

(4 n − 3).(4 n + 1)

4 n + 1
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7. Utilizando el principio de Inducción  Matemática,  demostrar las siguientes afirmaciones. 

a)  2 + 4 + 6 +. . . + 2n  = n (n + 1)     ,  para todo  n  natural   y   n ≥  1. 

b)  1 + 3 + 5 +. . . + (2n –1) = n2  ,  para todo  n  natural y   n ≥  1. 

 n

2

2

3

 n ( n + )

1

c)  i =

,  para todo  n natural y   n ≥  1.  

4

 i=1

d)

 n

 n

1+ 2 < 3 ,  si  n  es natural y   n ≥  2

e) 

 n

2  n + 1 < 2 ,  n = 3, 4, . . . 

f)  7 n  – 1   es divisible por 6,  para  n = 1, 2 , . . . 

g)  6.7 n – 2.3 n es divisible por 4   para  n = 1, 2 , . . . 

h) 11  n+1 – 6  n  es múltiplo de 5, para  n ≥ 1

 n

i)  (2 j-1) = ( n + 1) ( n -1) , para  n ≥ 1

 j=0

¡Debo que 

 t

acordarme! 

j) (6 k+1) = ( t + 1) (3 t + 1) , para  t ≥ 1

=

 k  0

 t

−

−

 r

 k

(1

 t )

k) 

1

( .  ar ) =  a

para natural   t ≥ 1

−

=

 r

 k  1

1

Suma de una sucesión geométrica de primer término  a  y razón  r ,  r ≠1 

¡Debo que 

acordarme! 

 t

( a + ( a + ( t −1) d ))

l)   ( a + ( k −1).  d ) =  t

para natural   t ≥ 1

 k  1

=

2

Suma de una sucesión aritmética de primer término  a y diferencia  d. 

 t

 t  1

+

 k

 r

− 1

m)    r =

,   para natural   t ≥ 1 y  r ≠1

 k

 r

=

−

0

1

8. Evaluar sin realizar la suma (no deje de relacionarlo con el ejercicio 7.)

50

a)  (2  j −1)  

 j =0

46

b)  (6  j +1)

 j=5
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37

C)  (18 k + 3) 

 k =20

89  i ⋅ ! 

 i

d) 

 i

2

=7

5. Principio de Buena Ordenación

Otro  axioma  que  sirve  de  herramienta  de  demostración.  Este  axioma  es  conocido  como Principio de Buena Ordenación ó del Mínimo Entero Positivo entre otros nombres. 

 Principio de Buena Ordenación 

Todo subconjunto  S de N  y  S ≠ ∅  ,  tiene un primer elemento. 

Es  sinónimo  de  primer  elemento  de  un  conjunto  S,  sobre  un  conjunto  que  tiene  un  orden, como  es  el  caso  de  los  números  naturales,  elemento  mínimo,  es  decir  un  elemento  del conjunto que no tiene un elemento que lo preceda en el orden. Es decir que si  m es el mínimo entonces  m es elemento de S y todo elemento  u de S es mayor o igual que  m. 

Hay posibilidades de hacer demostraciones usando este principio de Buena Ordenación, que 

como veremos seguidamente es equivalente al de Inducción Completa, y esto significa que una teoría que se pueda desarrol ar usando el Axioma de Inducción también se pueda desarrol ar 

con el Principio de Buena Ordenación. El uso de un método de demostración u otro depende 

de las características del problema a demostrar. 

Observación: Los Principios o Axiomas NO se demuestran. 

El os  son  en  algunos  casos  muy  intuitivos,  en  otros  el os  son  aceptados  por  una  teoría  para lograr su desarrol o. 

Lo  que  haremos  a  continuación  es  ver  que  dado  uno  de  los  principios  es  demostrable  en función del otro y recíprocamente. 

♦ PROPOSICIÓN 3.5.1

El principio de Buena Ordenación es equivalente al principio de Inducción Completa 

Demostración: 

•

Veamos  que  el  principio  de  Buena  Ordenación  implica  el  principio  de  Inducción

Completa. 
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Es decir sabiendo que todo conjunto no vacio de números naturales tiene un elemento mínimo, debemos  probar  que  si  una  propiedad  relativa  a  los  números  naturales  cumple  con  las condiciones 1) y 2) que pide el Principio de Inducción entonces vale para todo número natural. 

Sea un esquema proposicional P (n) relativo a los números naturales que cumple: 

1)  P( 0 ) es válida y

2) Si  P(h) es válida entonces  P( h+1) también es válida

Supongamos  que  la  proposición  no  es  válida  para  algún  natural  (es  decir  negamos  a  lo  que queremos l egar….) 

!! 

Vamos a construir un conjunto que nos permitirá arribar a nuestro propósito por el absurdo. 

Sea   C = { i ∈ N :  P( i) es fals }

a y supongamos que   C ≠ ∅ . 

Como   C ≠ ∅ ,  C tiene un mínimo ya que estamos suponiendo que se cumple el principio de Buena Ordenación. 

Sea  m el mínimo de  C, entonces   m ∈  C

∧

(  a

∀ )( a ∈  C →  a ≥

)

 m

 P ( m) es falsa por ser  m elemento de  C y  P ( m-1) es verdadera ya que  m-1 no es elemento de C.  

Observar que  m no es 0, pues tenemos por hipótesis que vale 1). 

Pero  si   P(m-1)  es  verdadera,  entonces   P( m-1+1)  es  verdadera  por  el  segundo  paso  del principio de Inducción, ya que se tiene por hipótesis 2). 

Como  m-1+1= m, l egamos a un absurdo, ya que  P(m) no puede ser verdadera y falsa a la vez. 

Que resulto de suponer que  P(m-1)  es verdadera .  

Luego  se  tendría  que  suponer   P(m-1)   falsa  (para  no  l egar  a  la  contradicción  del  valor  de verdad de  P(m)). Pero entonces  m-1 está en  C,  y como  m-1  es menor que  m  que es el mínimo de  C.  También se llega a un absurdo. 

¿Porque se l egó a un absurdo??? 

Por  lo  tanto   C = ∅   y  entonces   P(n)  es  verdadera  para  todo  natural,  es  decir  se  cumple  el principio de Inducción Completa. 

? 

? 

•

Veamos  ahora  que,  si  se  cumple  el  principio  de  Inducción  Completa,  se  cumple  el principio de Buena Ordenación. 

Escribimos  ( fabricamos…)  el  siguiente  esquema  proposicional  relativo  a  los  subconjuntos  de números  naturales,  que  resultara  apropiado  para  demostrar  lo  que  deseamos  (que  todo subconjunto no vacio de números naturales tiene primer elemento). 

Dado un conjunto   C ⊆

:

 P( n): Si  C tiene un elemento menor o igual que  n, entonces  C tiene mínimo. 
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Si  probamos  que  esta  proposición  se  cumple  para  todo  natural,  habremos  probado  que  todo subconjunto no vacío de números naturales tiene mínimo. 

Debemos probar que se cumplen los dos pasos del método de Inducción. 

1)  P (0): Si  C tiene un elemento menor o igual que 0 entonces  C tiene mínimo. 

Veamos que es verdadera:

Si  C tiene un elemento menor o igual que 0, entonces como el único natural que cumple eso es el 0, entonces 0 es elemento de  C. 

Entonces   C ≠ ∅   y  tiene  mínimo,  ya  que  el  0  es  el  mínimo  de  todos  los  naturales  y  en particular de  C.  Luego,  P(0) es válida. 

2) Aceptamos que se cumple

 P( h): Si  C tiene un elemento menor o igual que  h entonces  C tiene mínimo. 

Tenemos que probar

 P( h+1): Si  C tiene un elemento menor o igual que  h+1 entonces  C  tiene mínimo. 

La hipótesis de esta  proposición  para  h+1,  es que  C tiene un elemento  menor  o igual que h+1, sea  q ese elemento de  C. Luego resulta que  q <  h+1  ó   q =  h+1. 

Sea  q <  h+1, entonces  q ≤  h, entonces por la hipótesis inductiva  C tiene un mínimo. 

Sea  q =  h+1. Si  C tiene algún elemento  t < q= h+1,  por hipótesis inductiva vale que  C  tiene mínimo  pues   t  ≤  h.  Si   C  no  tiene  ningún  elemento  menor  que   h+1,   significa  que  todo   w elemento  de   C  es   w     q  =  h  +  1,  entonces   h+1  es  el  mínimo  de   C.  Por  lo  cual  se  ha demostrado la validez de  P( h+1). 

Por lo tanto  P( n) es verdadera para todo natural, es decir que todo subconjunto no vacío de los naturales tiene mínimo. 

♦ 

EJERCICIO 3.5.2 

a) Demostrar que el Principio de Buena Ordenación es equivalente al Segundo Principio

de Inducción Completa. (Difícil…seguir los pasos de la demostración anterior). 

b)  Corolario: Ambos Principios de Inducción son equivalentes. 

6. Algunos elementos de Combinatoria

La  Combinatoria es una de las ramas de la Matemática que permite resolver problemas con las más diversas aplicaciones, en diferentes especialidades de la ciencia o de la vida diaria, en los  cuales  haya  que  determinar  el  número  de  posibles  disposiciones  de  objetos,  letras, moléculas, docentes, semil as, etc., sujetos a determinadas condiciones. 
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La Combinatoria surgió en el siglo XVI. En esa época en las capas sociales altas el juego de azar  era  algo  importante,  tanto  las  cartas,  los  dados  y  las  loterías  permitían  perder  o  ganar grandes  fortunas  (supongo  que  más  perder...).  Es  por  eso  que  en  sus  inicios  los  problemas combinatorios trataran fundamentalmente de los juegos de azar, el interés de saber de cuántas maneras se puede obtener un determinado número al arrojar dos o tres dados, o de cuántas 

maneras se pueden obtener dos reyes en un juego de cartas. Estos problemas y otros similares fueron  los  que  influyeron  en  el  desarrol o  de  la  combinatoria  y  de  la  teoría  de  probabilidades que se desarrol ó paralelamente. 

De  los  primeros  en  ocuparse  de  los  recuentos  de  las  combinaciones  con  los  dados  fue  el matemático italiano Tartaglia. El estudio teórico de los problemas combinatorios comenzó en el siglo XVII por los franceses Pascal y Fermat. El punto de partida de estos estudios también fue el  juego  de  azar,  particularmente  el  problema  de  la  división  de  la  apuesta,  propuesto  por  el cabal ero de Meré a Pascal.  El juego  era ganado por aquel  participante que  en un torneo de 

"cara y cruz" ganara seis partidos, pero se interrumpía si un jugador ganaba cinco y otro cuatro. 

Entonces el  problema consistía  en cómo dividir la apuesta.  Aplicando  métodos combinatorios Pascal dio una solución al problema (aún más general que para ese caso) y otra resolución fue propuesta por Fermat. 

El desarrol o  ulterior de la combinatoria se debe a Bernoul i, Leibnitz y Euler y también para el os fue el juego de lotería y los solitarios campo de aplicación e inspiración. 

En  los  últimos  años  la  Combinatoria  entró  en  gran  desarrol o  relacionado  con  el  interés general  por  la  Matemática  Discreta  (que  tiene  importantes  aplicaciones  por  ejemplo  nada menos que a la Informática). 

Los métodos combinatorios son utilizados para resolver problemas de transporte, problemas 

de horarios, de producción, en la programación lineal y la estadística. También para descifrar o confeccionar claves y para resolver otros problemas de la teoría de la información. Hay además aplicación en otras ramas de la Matemática ya sea pura o aplicada. 

 Reglas Generales

EJEMPLO 3.6.1 

 Las patentes 

El parque automotor de nuestro país creció mucho en los últimos años. Si hacemos un poco de memoria hace tiempo las chapas de identificación de las patentes de los vehículos automotores tenían la  letra C (por Capital  Federal) o  la  inicial de la provincia, en la  mayoría  de los casos, seguida  de  números.  Unos  años  antes  al  actual,  la  manera  de  la  identificación  varió  y  las chapas  de  identificación,  que  aún  están  vigentes,  está  dada  por  tres  letras  seguidas  de  tres números. ¿A qué se debío este cambio? 
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Calculemos  el  número  total  de  posibles  identificaciones  de  cada  una  de  las  maneras descriptas. 

Está claro que en la antigua manera no había límite numérico, pero por una cuestión de "lugar" 

en la chapa, en la Capital Federal y provincia de Bs. As. ese espacio físico estaba l egando a su fin. 

Supongamos  que  consideramos  como  hasta  hace  poco  tiempo,  que  debemos  l enar  tres casil eros para las letras y tres para los números. ¿Cuántas identificaciones podemos hacer? 

 letras 

 números 

En las chapas patentes no hay ninguna relación entre las letras ni en los números que forman cada chapa. 

Para l enar cada casil ero (lugar) de letra tenemos 26 letras posibles (no se consideran la l , ñ, ch, como  letras) y  son  independientes  las elecciones en cada  caso.  Para  l enar los casil eros (lugares)  reservados  para  los  números  tenemos  10  dígitos  para  elegir  y  también  son independientes las elecciones en cada caso. 

26 

26 

26 

10 

10 

10 

 letras 

 números 

Por cada elección de letra, 26, para el primer lugar hay otras 26 elecciones posibles para cada uno de los otros se tienen así  263  disposiciones distintas de letras. 

Para la elección de los números se tiene por cada una de las 10 elecciones posibles para el primer  lugar  se  tienen  10  posibles  para  cada  uno  de  los  otros  dos,  es  así  que  entonces  las distintas disposiciones para los números son  103. 

Siendo a su vez independientes la elección de letras y de números se tiene así  

17 576 x 1 000 chapas posibles, es decir 17 576 000 es el número de chapas distintas. 

Observar  que  el  parque  automotor  ha  crecido  en  estos  últimos  años  y  es  por eso  por  lo  que volvió a cambiar el diseño de  las chapas patentes.  Queda para Ud.  investigar más y calcular cuál es el número de chapas que se puede fabricar con el nuevo diseño. 
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EJEMPLO 3.6.2: 

 Guardarropa 

Una alumna muy cuidadosa en su vestimenta tiene tres pantalones y cuatro remeras de modo 

que  "todo  combina  con  todo".  Quiere  vestirse  con  un  pantalón  y  una  remera  y  no  le  gusta repetir seguido su vestimenta. ¿Por cuántos días puede ponerse “conjuntos” distintos? 

Debe  elegir  un  pantalón  entre  tres  posibles  y  una  remera  entre  cuatro.  Como  "todo  combina con todo", es independiente la elección del pantalón a la de la remera que elija. 

Supongamos  ahora  dos  casil eros,  uno  representa  el  "pantalón"  y  el  otro  la  "remera".  De cuántas maneras podrá l enarlos: 

P1 

P2 

P3 

R1 

R2 

R3 

R4 

PANTALON 

REMERA 

Se tienen tres posibilidades para elegir un pantalón entre tres y cuatro para elegir una remera entre cuatro. Volviendo a pensar que "todo combina con todo"  el número total de "conjuntos" 

distintos es 3.4, por lo tanto puede "lucir" 12 días de distinta manera. 

EJEMPLO 3.6.3 

 El código Morse 

Para trasmitir informaciones por telégrafo se utiliza el código Morse que consiste en representar los signos del alfabeto, los números y los de puntuación por medio  de “.”   y “ -“ . Para estos signos  que  se  quieren  representar  se  forman  distintas  disposiciones  de  punto  o  raya considerándolos  de  a  1,  hasta  tomarlos  de  a  5;  cada  uno  de  estos  agrupamientos  está representando un signo distinto. 

Veamos por qué se toman hasta 5 elegidos entre “.”  y “-“ 

La  cantidad  de  representaciones  diferentes  que  se  pueden  hacer  con  un  solo  símbolo (pensemos que l enamos un casil ero) 

. 

- 

Para  l enar  el  casil ero  tenemos  dos  posibles  elecciones,  es  decir  hay  dos  signos  distintos que podemos representar con un solo símbolo (punto o raya). 
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La  cantidad  de  representaciones  diferentes  que  se  pueden  hacer  con  dos  símbolos  y exactamente dos (pensemos que l enamos dos casil eros, es independiente lo que se coloca en cada uno de el os, hay que poner un símbolo en cada uno) 

. 

. 

-

-

Luego, hay dos alternativas para elegir el primero y también dos para el segundo. Por el o hay cuatro signos distintos que podemos representar con dos símbolos. 

Haciendo un análisis similar en cada caso (l ene casil eros...) se puede concluir que hay ocho signos distintos que podemos representar con tres símbolos, dieciséis signos distintos 

que podemos representar con cuatro símbolos… 

Cuántos signos (letras, números y de puntuación) habremos representado hasta este punto: 

Usando 1 símbolo 

2 = 21 

Usando 2 símbolos 

4 = 22

Usando 3 símbolos 

8 = 23 

Usando 4 símbolos 

16 = 24 

TOTAL(con 1, con 2, con 3 y con 4) 

2 + 4 + 8 + 16 = 30 

Si pensamos que hay 10 dígitos y 27 letras (al menos), se necesitan más simbolizaciones, por el o es que se usan hasta disposiciones de cinco símbolos entre “.”  y “-“. 

Con los cuales es suficiente, pues esto incorpora 32 representaciones distintas más. 

Teniendo  entonces  el  lenguaje  Morse  una  capacidad  de  62  representaciones  para  símbolos distintos. 

Rescatando lo general 

 Regla del Producto para la Enumeración: 

Si una experiencia o hecho  A1 se puede producir de  n1  resultados o formas posibles y por cada resultado  de   A1  se  realiza  una  experiencia  o  hecho   A2  que  tiene   n2    resultados  o  formas posibles, entonces la realización de  A1   y   A2 ( en ese orden ) arroja un número total de     

  n1 . n2  resultados posibles. 

Esta  regla  puede  generalizarse  cuando  hay   A ,  A ,  A ,...,  A   experiencias  o  hechos  que 1

2

3

 k

pueden  producirse  de   n ,  n ,  n ,...,  n   formas  posibles,  entonces  la  realización  de 1

2

3

 k

 A

 y

 A

 y

 A

. 

 y ..  y

 A  puede hacerse de   n .  n .  n .....  n  formas posibles. 

1

2

3

 k

1

2

3

 k
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EJEMPLO 3.6.4 

¿Cuántas cadenas de ocho bits comienzan con 101 o con 111? 

Una cadena de ocho bits que comienza con 101 puede construirse en cinco pasos: se elige el 

cuarto bit, se elige el quinto bit, . . . , se elige el octavo bit. Cada una de esas elecciones puede hacerse de dos maneras (se elige un 1 o un 0). Por la regla del producto, hay 25=32  cadenas de ocho bits que comiencen con 101. 

El  mismo  razonamiento  vale  para  las  cadenas  que  comienzan  con  111.  Hay  también  32  de estas cadenas. 

El  conjunto  de  las  cadenas  que  comienzan  con  101  y  el  conjunto  de  las  cadenas  que comienzan  con  111  son  conjuntos  disjuntos,  una  cadena  no  puede  empezar  con  111  y además con 101, así, el número de cadenas de ocho bits que comienzan con 101 o con 111 es 

32 + 32 = 64. 

EJEMPLO 3.6.5 

Un  consejo  formado  por  Ana,  Beatriz,  Carla,  Daniel,  Elena  y  Francisco  debe  elegir  un presidente, un secretario y un tesorero. 

a) ¿De cuántas formas puede hacerse esto? 

b) ¿De cuántas formas puede hacerse si debe ser presidente Ana o Francisco? 

a) Los ocupantes de los cargos pueden elegirse en tres pasos: 1º) se elige el presidente (esta elección  se  puede  hacer  de  6  maneras  distintas);  2º)  se  elige  el  secretario  (quedan  cinco posibilidades, ya que nadie puede ser presidente y secretario a la vez); 3º) se elige el tesorero (4 posibilidades). 

Por  la  regla  del  producto,  hay    6  .  5  .  4  =  120  formas  diferentes  de  elegir  un  presidente,  un secretario y un tesorero. 

b) Si  Ana  es  presidente,  sólo  resta  elegir  secretario  y  tesorero,  para  los  que  habrá  5  y  4

posibilidades respectivamente, por lo tanto hay 5. 4 = 20 maneras de seleccionar un secretario y un tesorero entre las cinco personas que quedan. 

De la misma manera, si Francisco es presidente, hay 20 maneras de elegir a los demás. 

El conjunto de ternas que tienen a Ana como presidente  y el de ternas que tienen a Francisco como  presidente  son  disjuntos.  Por  eso  hay  20  +  20  =  40  formas  diferentes  de  elegir presidente, secretario y tesorero, si Ana  o Francisco deben ser presidentes. 

 Regla de la Suma para la Enumeración 

Si  cierto  objeto,  hecho  o  experiencia   B1  se  puede  escoger  o  realizar  de   m1   maneras  y  otro  

objeto, hecho o experiencia  B2 se puede escoger o realizar de  m2   maneras, siendo  B1  y  B2 , sucesos  disjuntos,  es  decir  que  no  pueden  darse  simultáneamente,  entonces  la  elección  o realización de  B1 ó  B2 está dada por  m1 +  m2 modos diferentes. 

136

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

Esta  regla  puede  generalizarse  cuando  hay   A ,  A ,  A ,...,  A   experiencias  o  hechos  que 1

2

3

 k

pueden  producirse  de   n ,  n ,  n ,...,  n   formas  posibles,  donde  los  sucesos   A   son  disjuntos 1

2

3

 k

 i

dos a dos, esto es que no tienen intersección entre dos cualesquiera, entonces la realización de   A

 o

 A

 o

 A

. 

 o ..  o

 A  puede hacerse de   n +  n +  n + ... +  n  formas posibles. 

1

2

3

 k

1

2

3

 k

EJERCICIOS 3.6.6 

a) Cuántos números de 3 dígitos pueden formarse con los dígitos 5, 6, 7 y  9? 

b) Cuántos números pares de 3 dígitos pueden formarse con los dígitos 5, 6, 7 y  9? 

c) Cuántos números de 3 dígitos pueden formarse con los dígitos 5, 6, 7 y  0? (números como 034, 005 no se admiten)

d) Cuántos números de 3 dígitos distintos pueden formarse con los dígitos 5, 6, 7 y  9? 

e) Cuántos  números  de  3  dígitos  distintos  pueden  formarse  con  los  dígitos  5,  6,  7  y    9  que comiencen con 5 o con 6? 

f)

Cuántos números de 3 dígitos pueden formarse con los dígitos 5, 6, 7 y  9 que terminen en

5 o 7? 

EJEMPLO 3.6.7 

Retomando  el  enunciado  del  ejemplo  3.6.5,  ahora  nos  preguntamos  de  cuántas  maneras pueden elegirse los 3 cargos con la condición de que Ana sea presidente o Carla tesorera. 

Podemos  nuevamente  separar  los  dos  casos  posibles:  a)  Ana  es  presidente,  b)  Carla  es tesorera. 

Contamos separadamente ambos casos: 

a) 5. 4 ya que para los otros dos cargos quedan 5 personas 

b) 5.4 ya que no podemos contar a Carla para presidente o secretario. 

Si sumamos estos casos estaremos repitiendo la terna Ana presidente, cualquiera de secretario y Carla de tesorera, estos son 4 casos, ya que hay 4 posibilidades para el secretario. 

En  este  caso  entonces  sumamos  los  resultados  del  caso  a)  y  el  caso  b)  y  restamos  los repetidos, tenemos entonces: 20 + 20 – 4 

EJEMPLO 3.6.8 

Cuántos números de 4 dígitos pueden formarse con los dígitos 3, 4, 5, 6 y 7  que terminen con 3 o que comiencen con 5? 

Asumimos que si no se especifica lo contrario, los dígitos pueden repetirse. 

Contamos separadamente los casos: 

a) que comiencen con 3: esto sería 5.5.5, ya que el primer lugar lo ocupa el 3 y para el resto tenemos 5 números disponibles. 
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b) Que terminen con 5: razonando del mismo modo serían 5.5.5

Ahora bien, nuevamente estamos contando casos repetidos, por ejemplo el 3335, el 3645, los 

estamos contando en ambos casos, cuántos repetidos hay? 

Todos  los  números  de  4  dígitos  que  comienzan  con  3  y  terminan  con  5,  es  decir  4.4  casos, fijado el primero y el último tenemos 4 posibilidades para el segundo y 4 para el tercero. 

Entonces, la cantidad de dígitos con esas condiciones son: 5.5.5 + 5.5.5 – 4.4  

 Regla de la Suma para la Enumeración  con intersección  

Si  B1 se puede realizar de  m1  maneras y otro   objeto, hecho o experiencia  B2 se puede  realizar de   m2     maneras,  siendo   B1    y   B2  , sucesos  con  intersección  o  que  comparten   n  casos, entonces la elección o realización de  B1 ó  B2 está dada por   m1 +  m2  -  n  modos diferentes. 

EJERCICIO 3.6.9 

a) ¿Cuántas disposiciones distintas se pueden hacer con 4 letras elegidas entre A, B, C, D, E, F, que comiencen con AB o terminen con C? 

b) ¿Cuántas disposiciones distintas se pueden hacer con 4 letras distintas elegidas entre A, B, C, D, E, F, que terminen con F o comiencen con CD? 

c) ¿Cuántas disposiciones distintas se pueden hacer con 4 letras distintas elegidas entre A, B, C, D? 

7. Definiciones Básicas en Combinatoria

Se  han  enunciado  las  reglas  generales  de  resolución  de  los  problemas  combinatorios  y  se han hecho varios ejemplos y propuesto ejercicios de aplicación de los mismos. 

Son formas o indicaciones para ordenarse a la hora de pensar un problema. 

Veremos ahora tres tipos de disposiciones (dos de el as ya tratadas en particular) que por ser de  mucha  aplicación  se  les  ha  dado  nombres  especiales:  las variaciones  (también  l amadas arreglos),  las  permutaciones  y  las  combinaciones.  Sólo  en  el  caso  de  las  variaciones admitiremos que elementos se repitan. 

  Variaciones (sin repetición)

No hay 

EJEMPLO 3.7.1 

arreglos de 

compra con 

En un torneo de footbal  intervienen 22 equipos. 

referees!!!! 

De cuántas maneras distintas se pueden ocupar el primero, 

segundo y tercer puesto? 

En este caso el problema se reduce a l enar 3 casil eros para los que disponemos de 22, 21 y 20 equipos respectivamente ya que obviamente no pueden repetirse. Por la regla del producto tenemos entonces: 22. 21. 20 maneras distintas de ocupar los tres primeros puestos. 
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 Generalizando… 

Se tienen   n objetos distintos. 

El  problema  a  resolver  es:  cuántas  distribuciones  distintas  de   r  objetos  distintos,  se  pueden formar a partir de los  n objetos dados. 

Dos distribuciones se consideran diferentes: si difieren al menos en uno de los  r  objetos,  o  si tienen los mismos  r objetos, difieren al menos en el orden de dos objetos que las formen. 

Al número total de distribuciones cumpliendo los requisitos anteriores se lo anota 

indistintamente 

 n

 V      o 


 V ( n,  r) 

 r

Y se lee variaciones de  n tomados de a  r. 

Como no se admiten objetos repetidos debe ser  r ≤  n. 

 ¿ Cómo calculamos el número de variaciones de  n tomados de a  r? 

Debemos hacer disposiciones de  r  objetos, sin repetir, elegidos entre  n posibles. 

La idea es recurrir a l enar  r casil eros, poniendo un objeto por casil ero, con todos elementos distintos. 

Cuando se va l enar el primer casil ero, ¿de cuántos objetos se dispone? 

Colocará un objeto en el primer casil ero (usa 1), le quedan  n-1 objetos disponibles. Entre el os puede elegir el que ocupará el segundo casil ero. 

Y así sigue.... 

El esquema sugiere: 

Elementos 

 n 

 n-1 

 n-? 

 n-? 

disponibles 

Coloco  1 

   por  

casillero  

Casillero 1 

Casillero 2 

Casillero r-1 

Casillero r 

¿Cuántos objetos tiene disponibles para ocupar el casil ero  r-1? 

???? 

? 

¿Cuántos objetos tiene disponibles para ocupar el casil ero  r? 

 Variaciones (sin repetición) 

Se tienen  n objetos distintos, la cantidad de distribuciones distintas de  r objetos distintos que se pueden formar a partir de los  n objetos dados es: 

 n

  V =n.(n-1).(n-2)…(n-(r-2))(n-(r-1)). 

 r
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EJERCICIO 3.7.2 

1



 n = 0

a) Exprese   n

 V  utilizando el símbolo de productoria. 

 n! = 

 r

 . 

 n ( n − 1)! 

 n ≥ 1

 n! 

b) Usando la definición de factorial, compruebe que   n

 V

=

 r

( n −  r)! 

EJERCICIO 3.7.3 

Identifique  en  los  ejemplos  o  ejercicios  anteriores  cuáles  son  ejemplos  de  variaciones  sin repetición. 

EJERCICIO 3.7.4 

a) Con  las  letras  del  conjunto   A=  { a,  b,  c,  d,...,l  }    ¿cuántas  disposiciones  distintas  de  seis letras si no se pueden repetir puede hacer? 

b) ¿Cuántas  si  en  todas  debe  estar  a  en  el  primer  lugar,  sin  repetir  las  letras?    ¿Y  si  debe estar en el último, sin admitir repeticiones? 

  Permutaciones (sin repetición)

EJEMPLO 3.7.5 

En un torneo de footbal  intervienen 22 equipos. ¿Cuántas tablas de posiciones diferentes se pueden dar? 

Acá  tenemos  que  l enar  22  casil eros,  ya  que  la  tabla  estará  formada  por  todos  los  equipos, todos ocupan algún lugar en la tabla. Tenemos entonces por la regla del producto: 

22

22. 21. 20….1, dicho de otro modo 

 i

∏ , o equivalente a 22 !  que son todas las tablas posibles. 

 i  1

=

 Generalizando… 

Se tienen   n objetos distintos. 

El  problema  a  resolver  es:  cuántas  distribuciones  distintas  de  n  objetos  distintos,  se  pueden formar a partir de los  n objetos dados. Dos distribuciones se consideran diferentes si difieren en el orden de dos objetos. 

Al número total de distribuciones cumpliendo los requisitos anteriores se lo anota      

 n

 P

o

 P (  n )

Y se lee permutaciones de  n. 

Observar: que es un caso particular de variaciones sin repetición con   r =  n. 

Por lo tanto el número que se obtiene es: 
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 Permutaciones (sin repetición) 

Se tienen   n objetos distintos, la cantidad de distribuciones distintas de  n objetos distintos, se pueden formar a partir de los  n objetos dados es: 

 n

 P      o 

 P( n) =  n!  

EJERCICIO 3.7.6 

Entre los 65 alumnos de la Comisión 4, hay 32 hombres y 33 mujeres: 

a) ¿Cuántas filas distintas con esos alumnos puede hacer? 

b) ¿Cuántas  filas  distintas  con  esos  alumnos  puede  hacer  si  primero  deben  estar  todas  las mujeres y atrás todos los hombres? 

c) ¿Cuántas  filas  distintas  con  esos  alumnos  puede  hacer  si  hay  dos  (una  pareja)  que siempre quiere estar uno detrás del otro en la fila? 

Un  caso  particular  será  un  ordenamiento  de   n  objetos  entre  los  que  hay  elementos indistinguibles. 

EJEMPLO 3.7.7 

¿De cuántas maneras pueden ordenarse las letras de la palabra MASA? 

Tenemos  que  ordenar  4  letras  donde  hay  claramente  2  repetidas.  Si  ordenamos  las  4  letras pensando  que  para  el  primer  lugar  disponemos  de  4  posibilidades,  para  el  2do  de  3  para  el tercero de 2 y para el último de una, por la regla del producto tendremos 4! ordenamientos. 

Pero acá estaríamos contando  MA SA

 Y

MA SA  como ordenamiento distintos. 

1

2

2

1

Por cada ordenamiento de las 4 letras estamos contando dos veces el mismo. 

4! 

Por lo tanto las maneras posibles de ordenar las letras son:  2! 

 Permutaciones con elementos indistinguibles 

Dados   n objetos entre los que hay   n 1 elementos iguales del tipo 1,  n 2 elementos iguales del tipo 2,  . . . ,  n k elementos iguales del tipo k, el número de permutaciones  distinguibles  de los  n objetos es: 

! 

 n

 n !  n ! . . .  n ! 

1

2

 k
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EJEMPLO 3.7.8 

¿De cuántas maneras pueden ordenarse las letras de la palabra MATEMATICA? 

En este caso se trata de ordenar 10 letras, donde claramente hay letras repetidas, si pensamos en l enar 10 casil eros, disponiendo para el primero de 10 letras, para el segundo de 9 letras, y así  sucesivamente,  estaremos  repitiendo  ordenamientos,  ya  que  las  3  A  son  indistinguibles entre sí, las 2 T también lo son y las 2 M también son indistinguibles. 

Tenemos  entonces  que  descontar  esos  casos  de  más,  los  ordenamientos  posibles  son: 10! 

2!.2!.3! 

EJERCICIO 3.7.9 

Identifique  en  los  ejemplos  o  ejercicios  anteriores  cuáles  son  ejemplos  de  permutaciones  sin repetición y permutaciones con elementos indistinguibles. 

En muchos problemas es difícil identificar el modelo al que responden, se requiere de mucha práctica para poder advertir si un problema es una variación o una permutación, etc. Por eso es conveniente  pensar  la  resolución  de  los  ejercicios  ordenando  los  casos  y  organizando  la información buscando patrones y recién después analizar si responde a alguna fórmula o a una combinación de el as. 

EJEMPLO 3.7.10 

a) ¿De cuántas maneras se pueden ubicar 22 bolitas en 9 cajas numeradas? 

b) De cuántas maneras si:

i)

ninguna caja debe quedar vacía

ii)

la tercera caja debe quedar vacía

iii)

la primera caja y la cuarta deben contener exactamente una bolita. 

a) En este caso podemos pensar el problema con 22 elementos indistinguibles y 9 objetos que dejaremos en orden del 1 al 9. 

Gráficamente: 

●●● █ ● █ █ ●● █●●●●●● █ ●● █ ●●●●●●● █ ● █ █ 

Cómo interpretamos esto???:  

Acá hemos dispuesto 3 bolitas en la primera caja, 1 en la segunda, ninguna en la tercera, 2 en la cuarta, 6 en la quinta, 2 en la sexta, 7 en la séptima, 1 en la octava y ninguna en la novena. 

Pensando esto como un ordenamiento en hilera, los posibles casos se encuentran permutando 
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secuencia  termina  con  bolitas  indicaría  que  no  están  en  ninguna  caja.    Por  lo  tanto  la  caja  9 

está fija y no permuta, esto daría el número  P(30)=30!  

Sin embargo, 

las bolitas son indistinguibles entre sí y las cajas también ya que están numeradas en orden de aparición en la secuencia. 

30! 

Por  lo  tanto  las  formas  de  poner  las  22  bolitas  en  las  9  cajas  son:

que  son  las 

8!22! 

permutaciones de 30 objetos con 8 indistinguibles entre sí y 22 indistinguibles entre sí. 

b) i) Si ninguna caja debe quedar vacía, asignamos primero una bolita a cada caja, de manera que  quedan  13  bolitas  para  asignar  a  las  9  cajas.  Con  un  proceso  similar  al  anterior  queda: 21! 

8!13! 

29! 

i ) Si la tercera caja debe quedar vacía, descontamos esa caja del total y queda 7!22! 

i i) Si la primera y la cuarta deben contener una bolita exactamente, descontamos dos bolitas y 26! 

dos cajas y queda  6!20! 

  Variaciones con elementos repetidos

EJEMPLO 3.7.11 

¿Cuántos números enteros de a lo sumo 4 cifras hay? 

En este caso debemos considerar los números de 1 cifra, los de 2, los de 3 y los de 4. 

Podemos considerar que el número 0002 es de 1 cifra, así como el número 0053 es de 2. Por 

lo tanto, podemos pensar en que queremos l enar 4 casil eros y para cada uno disponemos de 

10 dígitos, esto es: 10x10x10x10 

Esa es la cantidad de números enteros de a lo sumo 4 cifras. 

 Generalizando… 

Se tienen  n objetos distintos. Además admitimos que hay una cantidad ilimitada (al menos  r) de copias de cada uno de el os. 

El problema a resolver es: cuántas distribuciones distintas de  r objetos, se pueden formar a partir de los  n objetos dados (y sus copias). 

Dos distribuciones se consideran diferentes: si difieren en algún objeto que las forma o si los objetos son iguales deberán diferir al menos en el orden de dos objetos. 
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Al  número  total  de  distribuciones  cumpliendo  los  requisitos  anteriores  se  lo  anota indistintamente      

* n

 V

o

 V *( , 

 n r) 

 r

Y se lee variaciones con repetición de  r objetos elegidos entre  n. 

 Variaciones con elementos repetidos 

Se tienen   n objetos distintos. La cantidad de distribuciones distintas de r objetos, a partir de n objetos es: 

* n

 V

 o

 V * ( , 

 n r) 

 r

=  n

 r

EJERCICIO 3.7.12 

Identifique  en  los  ejemplos  o  ejercicios  anteriores  cuáles  son  ejemplos  de  variaciones  con repetición. 

EJERCICIO 3.7.13 

a) Hal ar la cantidad de números enteros pares de cuatro cifras. 

b) Hal ar la cantidad de números enteros capicúas de cuatro cifras. 

c) Hal ar la cantidad de números de teléfono de cuatro cifras por característica. 

d) Hal ar la cantidad de números de teléfono capicúas de cuatro cifras por característica. 

EJERCICIO 3.7.14 

Para el lenguaje binario sabe Ud. que se usan los símbolos 0 y 1 como alfabeto. 

a) En ese lenguaje, ¿cuántas cadenas de 8 símbolos puede formar? 

b) En binario, ¿cuántas cadenas de 8 símbolos puede formar que comiencen con 01? 

c) En  binario,  ¿cuántas  cadenas  de  8  símbolos  puede  formar  que  tengan  01  como

subcadena? 

d) En ese lenguaje, ¿cuántas cadenas de 24 símbolos puede formar? 

e) En ese lenguaje, ¿cuántas cadenas de hasta 24 símbolos puede formar? 

f)

En ese lenguaje, ¿cuántas cadenas de hasta  n ( n > 0) símbolos puede formar? 

Habrá plata?? 

EJEMPLO 3.7.15 

Una cerradura de combinación. 

En una caja fuerte hay una "cerradura de combinación".  Son cinco discos concéntricos, cada uno con números del 0 al  9. Para abrir la caja hay que encontrar una clave determinada por 5 

números particulares, uno de cada disco. ¿Cuántas tentativas inservibles se pueden hacer? 
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 En cada disco están los 

 dígitos de 0 a 9. 

 Abre la caja una sola 

 "combinación" de dígitos 

 que se pongan en linea 

 en las ranuritas... 

En cada disco hay 10 dígitos posibles (de 0 a 9) para elegir. 

En este caso también podemos analizar: ¿cuántas disposiciones de 5 dígitos podemos hacer? 

Resulta ser elegir un dígito por disco. 

Como la elección de cada dígito es independiente en cada disco respecto de otro, se tiene que este número es 

5

10 . 

Por lo tanto el número de intentos inútiles es 

5

10 −1 = 100000 −1 = 99999

¿En qué tipo de problema combinatorio lo encuadra? 

Seguiremos  con  otro  tipo  de  problemas  que  tiene  características  un  poco  distintas  a  los anteriores. 

Es cuando  el orden entre los elegidos no tiene significación.  

Algunas situaciones casi cotidianas permitirán comprender mejor. 

EJEMPLO 3.7.16 

Volvamos al EJEMPLO 3.7.1, contamos las posibles ternas con 1er., 2do. y 3er. puesto. 

Pensemos ahora que los equipos que ocupan los tres primeros puestos quedan seleccionados 

para jugar  la Copa Interplanetaria. Está claro el asunto es salir 1ro.,  2do. ó 3ro  para disputar esta nueva Copa, para el o no importa el orden. 

Con cualquiera de estas tablas los mismos equipos disputan la Interplanetaria:  

Tabla de Posiciones 

Pts. 

Tabla de Posiciones 

Pts. 

1. Deportivo Estudiantil

37 

1.Deportivo Estudiantil 

40 

2. Joven Boca

35 

2.Plateado Arroyo 

36 

3. Plateado Arroyo

34 

3.Joven Boca 

33 

........................................ 

....... 

.................................. 

...... 

22. Los Diablos Rojos

13 

22. Los Diablos Rojos

17 
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Dentro de la misma temática pero más triste: los últimos dos equipos de la tabla del torneo "se van" 

al  descenso.  El  asunto    acá  es  que  "nuestro"  equipo  no  ocupe  las  dos  últimas  posiciones,  es indistinto ocupar el lugar 21 ó 22. 

Con cualquiera de las dos situaciones los mismos "se van, ....." 

Tabla de Posiciones 

Pts. 

............................. 

..... 

21.Gimnasia Artística 

17 

22.Deportivo Esperanza 

13 

Tabla de Posiciones 

Pts. 

............................. 

..... 

21. Deportivo Esperanza

15 

22. Gimnasia Artística

11 

EJEMPLO 3.7.17 

Otra  situación  de  la  misma  estructura:  dentro  de  los  127  alumnos  presentes  en  el  aula  se quiere elegir una comisión de cinco alumnos para que los represente en un Acto Académico. 

Para ir al Acto no importa el orden, interesa el conjunto de los alumnos elegidos. 

Está claro que es la misma delegación: 

Pablo, Ignacio, Fiorel a, Ramiro, Luciano 

que  Ignacio, Fiorel a, Luciano, Pablo, Ramiro, 

que  Fiorel a, Pablo, Ramiro, Luciano, Ignacio, 

y otras más. Cuántas más? 

En los casos en que no interesa el orden de los elementos en la distribución, sino solamente su composición se dice que se trata de una combinación. 

  Combinaciones (sin repetición)

Se tienen   n objetos distintos. 

El  problema  a  resolver  es:  cuántas  combinaciones  distintas  de  r  objetos  distintos,  se  pueden formar a partir de los  n objetos dados. 
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Dos combinaciones de  r objetos elegidos entre  n posibles,  se consideran diferentes si difieren al menos en uno de los  r  objetos. 

También se puede interpretar que se está buscando el número de todos los subconjuntos de  r elementos a partir de un conjunto de  n elementos. 

Al  número  total  de  distribuciones  cumpliendo  los  requisitos  anteriores  se  lo  anota indistintamente      

  n

 n



 C  

o

C( , 

 n r)

 o

   

 r

  r 

Y se lee combinaciones de  n tomados de a  r. 

Observación 1: como no se admiten objetos repetidos debe ser  r ≤  n.  

Observación  2:  En  estas  condiciones  se  admite  que   r  =  0,  bajo  la  interpretación  de  formar subconjuntos de  r elementos se está calculando la cantidad de subconjuntos de 0 elementos a partir de  n dados. Cuántos son? 

Resolveremos los ejemplos planteados y luego se derivará una forma general para calcular el número  C(n,r).  

EJEMPLO 3.7.18 

Cuántas ternas de equipos de footbal   pueden formarse para ir a la Copa Interplanetaria? 

En el torneo de preselección hay 22 equipos y para disputar la Copa Interplanetaria un equipo debe ocupar uno de los tres primeros puestos de la tabla de posiciones de ese torneo. 

Al número que estamos buscando (el que se pretende encontrar)  lo simbolizamos por 

 C(22, 3) 

esto indica la cantidad de ternas de equipos (sin importar el orden) elegidos sobre 22 posibles. 

Si ahora se piensa en intercambiar el orden dentro de todas las ternas posibles, se obtendrán todas las variaciones de 22 objetos tomados de a 3. 

Cómo  se  hace  para  tener  el  número  de   V(22,3)  de  esta  manera?  Lo  que  se  propone  es intercambiar el orden dentro de cada una de las ternas. 

Cada  terna  tiene  3  elementos  y  el  número  que  da  todas  las  distintas  disposiciones  de  3 

elementos es  P(3) =3!. Esto se tiene por cada terna. 

Y para obtener el número cuando se permutan los elementos de todas las ternas posibles? 
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Por la Regla del Producto para Enumerar, resulta que:   V(22,3) = 3!.C(22,3) 

Por lo tanto el número buscado es: 

 V (22, 3)

 C(22,3) =

3! 

22! 

(22 − 3)! 

22! 

22.21.20

Y esto es   C(22,3) =

=

=

= 1540 

3! 

(22 − 3)!.3! 

3.2.1

Luego, 1540 es el número de todas las ternas de equipos que pueden quedar seleccionados en 

el torneo preliminar para disputar la Copa Interplanetaria. 

En manera similar podemos razonar para determinar el número de posibles duplas (no importa 

el orden) para "irse al descenso":     

Este número buscado lo representamos por  C(22,2), esto es el número de todas las posibles selecciones de dos equipos sobre 22 posibles, sin importar el orden. 

Si  se  reordenan  con  todos  los  ordenes  posibles  dentro  de  todas  las  duplas  posibles,  se obtendrán todas las variaciones de 22 objetos tomados de a 2. 

Cada dupla tiene 2 elementos, y el número de todas las disposiciones distintas con el os es P(2) = 2!. Esto es por cada una de las duplas. 

Para obtener el número cuando se intercambian los elementos de todas las duplas, se aplica la Regla del Producto para Enumerar, por lo cual resulta que:  

 V(22,2) = P(2).C(22,2) =  2!.C(22,2) 

 V (22, 2)

Entonces el número buscado es: 

 C(22, 2) =

2! 

Reemplazando por los valores correspondientes se tiene: 

22! 

(22 − 2)! 

22! 

22.21

 C(22, 2) =

=

=

= 231 

2! 

(22 − 2)!.2! 

2.1

Así que el número de posibles parejas de equipos para descender de categoría es 231. 

148

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

EJEMPLO 3.7.19 

¿Cuántas  delegaciones  de  5  alumnos  para  un  Acto  Académico,  sobre  una  clase  de  127 

alumnos? 

Llamando  C(127,5) al número buscado. 

Por cada uno de estos conjuntos de 5 alumnos, consideramos todas las posibles disposiciones distintas considerando las posibles permutaciones de sus elementos, es decir 5 ! . 

Si esto se realiza con cada uno de los subconjuntos dados por  C(127,5),  obtenemos todas las variaciones de 127 tomados de a 5. El número de éstas es  V(127,5) 

Y por la Regla del Producto resulta:  V(127,5) = P(5) . C(127,5) 

Así se tiene:  

127! 

 V (127, 5)

(127 − 5)! 

127! 

127.126.125.124.123

127.126.125.124.123

 C(127, 5) =

=

=

=

=

 P(5)

5! 

122!.5! 

5.4.3.2.1

120

 El caso general: 

Se tienen  n objetos y se quiere calcular  C(n, r), es decir el número de combinaciones de  n tomados de a  r. 

Este es el número de todas las posibles selecciones de  r  objetos a partir de los  n dados sin importar el orden. Para la deducción consideramos  r > 0. 

Con la idea de los ejemplos, formemos todas las combinaciones de  n objetos tomados de a  r. 

Si  cada  una  de  el as  las  ordenamos  en  todos  los  ordenes  posibles,  el  número  de  las disposiciones así obtenidas es el de las variaciones de  n tomados de a  r, es decir  V(n, r). 

El  número  de  elementos  de  cada  una  de  las  C(n,  r)   es   r.  El  número  de  todos  los  posibles ordenamientos de  r objetos (las permutaciones de  r  objetos) está dado por  P( r). 

Para  obtener  el  número  de  todas  las  distribuciones  distintas  cuando  se  permutan  los elementos de todas las  C(n, r), aplicamos la Regla del Producto para Enumerar. 

Y resulta: 

 V(n, r) =P(r).C(n, r) 

Entonces el número buscado es: 

 V ( n,  r)

   C( n,  r) =  P( r)
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  Combinaciones de n tomados de a r: 

 n! 

 V ( n,  r)

( n −  r)! 

 n! 

 C( n,  r) =

=

=

  (I)  

 P( r)

 r ! 

( n −  r)!⋅  r! 

Observación: Para la deducción de la fórmula general (I) y en los ejemplos hemos considerado r > 0. 

Si  interpretamos  que   C(n,  r)  da  el  número  de  subconjuntos  de   r  elementos  a  partir  de  un conjunto de  n elementos, tiene sentido admitir  r = 0 (también  n = 0). 

El vacío (  ∅ ) es el único conjunto de 0 elemento y es subconjunto de cualquier conjunto. 

Por lo cual  C(n ,0)= 1. 

Si evaluamos el último miembro de (I)  para  r = 0, se obtiene: 

 n! 

 n! 

 n! 

=

=

= 1  cualquiera sea  n

( n −  r)!⋅  r! 

( n − 0)!.0! 

 n!.1

 n! 

Por lo tanto se define para todo  n natural,  si   r ≤  n,   C( n,  r) =

  (II) 

( n −  r)!⋅  r ! 

si   n < r  ó  r < 0  se define   C(n, r)=0 

En  estos  últimos  casos  también  concuerda  con  la  intuición  si  interpretamos  que  elegimos subconjuntos de  r elementos de un conjunto de  n. 

EJERCICIO 3.7.20 

Resuelva el ejercicio 3.7.10  usando la fórmula de combinaciones. 

¿Cuántas asignaciones posibles habría si tuviera  n bolitas indistinguibles y  k cajas numeradas? 

EJERCICIOS 3.7.21 

1. ¿De cuántas formas pueden alinearse 6 hombres y 6 mujeres?:

a) sin restricciones; 

b) en forma alternada; 

c) los hombres primero y las mujeres después; 

d) primero tres hombres, luego las 6 mujeres y finalmente los restantes 3 hombres. 

2. Quince  personas  asisten  a  una  conferencia.  ¿De  cuántas  formas  pueden  sentarse  a  una mesa redonda si el presidente ha de ocupar una sil a particular? 

3. ¿De cuántas formas pueden sentarse 20 personas en dos mesas redondas, 11 en una y 9

en otra? 

150

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

4. La  cantidad  de  estudiantes  en  la  ciudad  de  La  Plata  es  de  20.000.  Si  cada  estudiante  se identifica con las 3 iniciales de sus nombres, ¿habrá al menos dos con las mismas iniciales? 

5. De  un  grupo  formado  por  6  hombres  y  8  mujeres  se  quiere  seleccionar  2  hombres  y  3

mujeres para formar una comisión. ¿De cuántas formas puede hacerse? 

a) sin restricciones, 

b) si Juan y Pedro no pueden estar juntos; 

c) si Juan y Martín no pueden estar juntos

d) si Nicolás y Luciano deben ser incluidos. 

6. Un examen tiene 20 preguntas. 

a) Si el alumno debe responder 15 y omitir 5, ¿de cuántas maneras puede hacer la selección? 

b) Y si debe contestar 5 y omitir 15? 

7. Treinta jugadores participan de un torneo de vol ey y deben formar dos equipos, ambos con igual número de integrantes; uno de el os debe estar dirigido por Martín y el otro por Patricio: a) ¿Cuántos equipos distintos pueden formarse? 

b) ¿Cuántos equipos distintos si hay 1 jugador particular que debe estar en el equipo de Martín y 2 que deben estar con Patricio? 

8. En las pruebas de natación de los Juegos Olímpicos para disputar la final hay una serie de carreras previas. En una de el as interviene 8 nadadores y los 3 primeros pasan a la final. 

a) ¿Cuántos grupos de finalistas distintos pueden salir de esa semifinal? 

b) En la final intervienen 10 nadadores, todos con iguales posibilidades de ganar, ¿de cuántas maneras distintas pueden subir al podio? 

c) Explique la diferencia o analogía entre a) y b). 

9. En  una  Conferencia  de  57  participantes  se  debe  elegir  una  Comisión  de  7  personas  para redactar las conclusiones. ¿De cuántas maneras puede hacerse? 

10. En  un  club  deportivo  con  30  miembros  hay  que  formar  un  equipo  de  4  personas  que  lo represente en una carrera de 1000 metros. 

a) ¿De cuántas maneras puede hacerse? 

b) ¿De cuántas si dos deportistas indiscutidos deben estar en la representación? 

11. Una persona tiene 6 amigos y quiere invitar diariamente a su casa un grupo de 3 de el os de modo que cada grupo sea distinto día a día. Por cuántos días lo logrará? 

12. Si en una carrera de cabal os intervienen 15 cabal os  todos competitivos. Se premia a los que l egan 1, 2 ó 3 (no hay repeticiones). Para que un cuidador gane algo es si su cabal o 

sale 1ro., 2do. ó 3ro.. ¿Cuántas posibles ternas hay? 
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Hay distintos tipos de jugadas para el apostador. Supongamos que una de el as es acertar el 1ro. y el 2do. Cuántas contras tiene? 

Supongamos que otra es acertar la dupla 1ro- 2do.  ¿Cuántas contras tiene? 

13. ¿De cuántas maneras se pueden ubicar 20 bolitas indistinguibles en 50 cajas numeradas

con la condición de que cada caja contenga a lo sumo 1 bolita? 

14. De  cuántas  maneras  se  pueden  ubicar  15  bolitas  indistinguibles  en  10  cajas  numeradas con la condición: 

a) ninguna caja quede vacía. 

b) la quinta caja quede vacía. 

c) la primera caja quede vacía y la segunda contenga exactamente 2 bolitas. 

d) queden a lo sumo 3 cajas vacías. 

15. Una  heladería  ofrece  20  gustos  distintos  de  helados.  ¿De  cuantas  maneras  distintas  se puede servir un kilo de helado si en el pote puede haber a lo sumo 3 gustos? 

16. ¿Cuántas palabras de 8 letras distintas y que contengan exactamente 3 vocales se pueden formar? 

17. ¿Cuántos segmentos de recta se pueden formar con 46 puntos en el plano tal que ninguna

terna de el os está alineada? 

18. ¿Cuántas poligonales formada por segmentos paralelos a los ejes se pueden trazar en el

plano  entre  el  punto  (2 ;  3)  y  el  punto  (8 ;  6)  si  sólo  se  permiten   pasos   ascendentes  y  de izquierda a derecha? 

19. ¿Cuántas poligonales formada por segmentos paralelos a los ejes se pueden trazar en el

espacio  3  entre (-1,2,0) y (1,3,7) si solo se permiten  pasos  de alguno de estos tres tipos De: ( x; y; z)  a  ( x + 1 ; y; z) 

 De: ( x; y; z) a  ( x; y + 1 ; z) 

 De: ( x; y; z) a  ( x; y; z + 1)? 

20. ¿De cuántas maneras se pueden seleccionar 12 frutas, en una verdulería en la que venden manzanas, peras, bananas? 

21. ¿Cuántas  soluciones  tienen  las  siguientes  ecuaciones  si  en  cada  caso  x    debe  ser  un i

entero no negativo? 

a)  x +  x +  x = 4

1

2

3

b)   x +  x +  x = 8

1

2

3
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8. Propiedades de los números combinatorios

Propiedad  3.8.1:  Es  evidente  que  dados  n  elementos  de  un  conjunto,  cada  subconjunto  de  r elementos determina otro de  n-r elementos, por lo tanto: 

 C( , 

 n r) =  C( , 

 n n −  r)

Además la propiedad se puede demostrar viendo la fórmula que define cada miembro de la 

igualdad anterior. 

Propiedad 3.8.2: Como casos particulares de la anterior Propiedad se tienen: 

 C( n, 0) =  C( n,  n) = 1

 C( n,1) =  C( n,  n −1) =  n

♦  Propiedad de Pascal 3.8.3

Para todo  r entero y  n natural vale que:

 C( n +1,  r) =  C( n,  r) +  C( n,  r −1) Demostración: 

a) Supongamos que 0 <   r ≤  n. 

Para  estas  condiciones  hagamos  la  siguiente  interpretación:  consideremos  un  elemento  en particular y fijo de los  n+1 dados, por ejemplo, el elemento  en+1. 

Los  subconjuntos que  de  r elementos a partir  de  los  n+1 dados se subdividen  en  dos clases disjuntas:  

Pero 

Claro!!!!! 

 S: los subconjuntos de  r elementos que tienen al elemento  en+1 



! 

Y 

 N: los subconjuntos de  r elementos que no tienen al elemento  en+1 

Observar que al  estar  el elemento  en+1 fijo en uno de el os, esos conjuntos  S  y  N eligen sus elementos entre los  n objetos restantes. En la formación de  S  hay que elegir sólo  r-1, pues uno de los  r o bjetos de ese conjunto es el elemento  en+1 , por lo tanto: 

La cantidad de subconjuntos que tiene  S es  C(n, r-1) y la cantidad de subconjuntos que tiene  N 

es  C(n, r).  
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Tenemos  entonces  que  la  cantidad  de  subconjuntos  de   r   elementos  de  un  conjunto  de   n+1 

elementos es igual a la cantidad de elementos de S + la cantidad de elementos de N, esto es: C( n +1,  r) =  C( n,  r) +  C( n,  r −1) Es  un  buen  ejercicio  que  verifique  la  igualdad  propuesta  usando  la  definición  del  número combinatorio.   

SI!! 

b) Para los casos en que  r =0 ó   n < r  ó  r < 0  la igualdad se verifica casi trivialmente. 

♦

 Un poquito de historia y otras cosas 

Consideremos el siguiente  triángulo aritmético: 

 n =0

1

 n =1

1

1

 n = 2

1

2

1

 n = 0

1

 n =3

1

3

3

1

 n = 1

1

1

 n = 4

1

4

6

4

 n =51

5

10

10

5

 n = 2

1

2

1

 n =6

6

15

20

15

 n = 3

1

3

3

1

 n = 77

21

35

35

21

 n = 4  

1

4

6

4

1  

 n = 5

1

5

10

10

5

1

 n = 6

1

6

15

20

15

6

1

 n = 7

1

7

21

35

35

21

7

1

Sobre él se pueden hacer las siguientes observaciones: 

 Cada  número que está  en el triángulo (no sobre  los  lados no horizontales) es suma de  los elementos de la fila de anterior entre los cuales se encuentra. 

Podríamos seguir su construcción con el mismo patrón y colocando 1 en los extremos. 

Este  triángulo  se  conoce  como   triángulo  de  Pascal,  aparece  en  una  obra  póstuma  del pensador  francés,  en  París1665.  Pero  antes  que  Pascal  (1623-1662),  el  italiano   Tartaglia 

(1500-1557)  lo  conocía.  También  hay  indicios  que  los  matemáticos  árabes   Giyaseddin  y 

 Hayyam lo conocían. 

Por el o siendo neutrales es el  triángulo aritmético. 

Miremos otro aspecto del mismo. 

 Para  cada   n  o  fila  del  triángulo,  se  puede  comprobar  que  sucesivamente  se  tienen  los números    C(n, r)  para cada  r tal que  0  ≤  r ≤  n.  

Como  se  ha  dicho  repetidamente  estos  números  son  la  cantidad  de  subconjuntos  de   r elementos a partir de  n dados. 
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 Si  sumamos  todos  los  elementos  de  cada  fila  la  suma  resulta  ser  2 n,  resultado  que  ya conocíamos por un ejercicio de demostración por inducción completa. 

 n

 n



Es decir: 

2 =

 C( , 

 n r)

A={  a ,  a .....  a } 

 r  0

=

1

2

 n

 P(A) = {∅,{  a },..., A}

1

Piense en la interpretación de los subconjuntos..... 

9. Los binomios a la  n

Vamos a considerar un binomio de la forma  a + b para  a y  b números reales. 

Se pretende encontrar una forma de calcular  ( + ) n

 a b

para cualquier

 n ∈

. 

Hay valores de  a o  b que hacen triviales el cálculo ( a = 0,  b= 0,  a = b, a = -b) pues el binomio deviene en monomio. Además, recordemos la indeterminación de 00

En lo que sigue vamos a considerar  a + b para  a y  b números reales, no nulos y de suma no nula. 

¡Aplico 

Recordemos que por definición de potencia, se tienen las conocidas expresiones: 

distributiva! 

2

2

2

( a +  b) = ( a +  b).( a +  b) =  a + 2 ab +  b 3

2

2

2

3

2

2

3

( a +  b) = ( a +  b) .( a +  b) = ( a + 2 ab +  b ).( a +  b) =  a + 3 a .  b + 3 . 

 a b +  b

es inmediato  que:

4

3

3

2

2

3

4

3

2

2

3

4

( a +  b) = ( a +  b) .( a +  b) = ( a + 3 a b + 3 ab +  b ).( a +  b) =  a + 4 a .  b + 6 a b + 4 . 

 a b +  b

Y podríamos seguir... 

Vamos a mirar con "espíritu crítico" cada uno de estos desarrol os. 

i)

Para cada potencia ( n =  2, 3,4) el número de términos es  n + 1. 

i )

Si en cada término se suman los exponentes de  a y  b esa suma es  n. (Recuerde que  a0

ó  b0 es  1)

i i)

Considerados  los  términos  en  el  orden  expuesto,  para  cada  n= 2,3    y    4,  los  sucesivos coeficientes de las potencias de  a y  b son   C(n, r) con 0  ≤  r ≤  n.  ¡¡¡ Compruebe!!! 

iv)

Los coeficientes de los términos, desde los extremos de los desarrol os hacia el centro

de los mismos (si el exponente es par hay un término central), son iguales. Esto es por

la observación anterior y la Propiedad 1 de los números combinatorios. 
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Para estos tres casos ( n = 2,3 y 4) se puede escribir: 

 n

 n

 n

( a+ ) n

 b = (

 C , 

 n )

 r .  n r

 a − .  r

 b =

 C

 ( ,  nn− ) r.  ra.  n r

 b − =  C

 ( ,  nn− ) r.  n r

 a − .  r

 b

 r  0

=

 r  0

=

 r  0

=

Ya lo 

También está claro que:  

verifico!! 

0

0

 r

0

( a +  b) = 1 =   C(0,  r).  a . − r

 b

 r = o

1

1

 r

1

( a +  b) =  a +  b =   C(1,  r).  a . − r b

 r =0

Se tiene entonces la siguiente expresión: 

♦  Binomio de Newton  3.9.1:

Si  a y  b son números reales, no nulos y de suma no nula vale que, para todo   n ∈

 n

 n

 n

 n

( a +  b) n =   C( n,  r)  r

 a .  n− r

 b

=   C( n,  r)  n− r

 a

.  r

 b =   C( n,  n −  r)  r n− r

 a b

=  C( , 

 n n −  r)  n− r r

 a

 b

 r =0

 r =0

 r =0

 r =0

Esta fórmula se conoce como  fórmula de Newton para el desarrol o de potencia natural de un binomio o simplemente  fórmula del binomio de Newton  

Demostración: 

Haremos la demostración de la primera igualdad por el principio de inducción completa sobre el natural  n: 

 n

Queremos ver que  (  n

∀ )( P( n)),   siendo  P( n) : ( a +  b) n =   C( n,  r)  r a .  n r

 b −

 r =0

0

1) 

0

 r

0

 P(0) : ( a +  b) =   C(0,  r).  a . 

 r

 b −

y como 

 r = o

0

0

 r

0− r

0

0

( a +  b) = 1 y

 C(0,  r).  a .  b =  C(0,0).  a .  b = 1  se cumple la igualdad. Por lo tanto r = o

 P (0) es verdadera. 

 k

2) Suponemos  que  se  cumple   P( k) : ( a +  b) k =  C( k,  r).  r a .  k r

 b −

siendo  la  hipótesis 

 r = o

inductiva 

 k  1

+

Queremos probar entonces que se cumple 

 k  1

+

 r

 k  1

 P( k +1) : ( a +  b)

=   C( k +1,  r).  a . + − r

 b

 r = o
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 k

 k  1

( a +  b) + = ( a +  b) k ( a +  b) = (  C( k,  r).  r a .  k− r

 b

)( a +  b) =

 r = o

↑       

↑

usando la hipótesis inductiva     por prop distributiva y

potencia de igual base

q 

 k  1

−

 k

 r  1

+

 k − r

 k  1

+

0

 r

 k  1

+ − r

0

 k  1

=  C( k,  r).  a .  b

+  C( k,  k) a

 b +   C( k,  r).  a .  b

+  C( k, 0) a b + =

 r = o

 r  1

=

↑

Haciendo un corrimiento de índice en la primer suma 

 k

 k

 r  1

−

1

+

 k −(  r  1

− )

 k  1

+

0

 r

 k  1

+ − r

0

 k  1

=  C( k,  r −1).  a

.  b

+  a

 b +   C( k,  r).  a .  b

+  a b + =

 r  1

=

 r  1

=

↑

Agrupando las dos sumatorias 

 k

 r

 k  1

+ − r

 k  1

+

0

0

 k  1

=  ( C( k,  r −1) +  C( k,  r)).  a .  b

+  a

 b +  a b + =

 r  1

=

↑

Usando la propiedad de Pascal 

 k

 r

 k  1

+ − r

 k  1

+

0

0

 k  1

=  C( k + 1,  r).  a .  b

+  a

 b +  a b + =

 r  1

=

↑

Reescribiendo los dos últimos términos

usando propiedades de los números combinatorios 

 k

 k  1

+

 r

 k  1

+ − r

 k  1

+

0

0

 k  1

 C( k +1,  r).  a .  b

+  C( k + 1,  k +1) a

 b +  C( k + 1, 0) a b + = 

 r

 k  1

 C( k +1,  r).  a . + − r

 b

 r  1

=

 r =0

Por  lo  tanto   P(k+1)  es  verdadera  y  en  virtud  del  principio  de  inducción  completa n

( a +  b) n =   C( n,  r)  n− r

 a

.  r

 b

 n

∀ ,  n ∈

 r =0

 ♦ 

EJERCICIO 3.9.2 

Demostrar las otras igualdades de la Fórmula del Binomio de Newton 
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Observación: Hemos supuesto que  a y  b son números reales, no nulos y de suma no nula ya que  es  el  conjunto  numérico  más  amplio  que  hemos  considerado  por  el  momento,  pero  esta fórmula  también  vale  para  números  complejos  con  las  mismas  restricciones  y  para 

indeterminadas cuyo producto conmute. 

EJERCICIO 3.9.3 

Como aplicación de la fórmula anterior y con las limitaciones necesarias,  demuestre que: 

 n

 i)

( a −  b) n =  ( 1

− ) k C( n,  k )  n− k

 a

.  k

 b

 k =0

 n

 n

 ii) 0 =  ( 1

− ) k C( n,  k )

 iii)

2 n =  C( , 

 n k)  

 k =0

 k =0

Observación: Por las propiedades de los números combinatorios y la fórmula demostrada para el  desarrol o  de  la  potencia  n  de  un  binomio,    resulta  que  los  coeficientes  del  desarrol o  son precisamente  los  elementos  del  triángulo  aritmético  para  la  fila  correspondiente  a  n.  Usar  el triángulo  da  un  método  para  encontrar  los  coeficientes  del  desarrol o  cuando   n  no  es  muy grande. 

EJERCICIO 3.9.4 

1) Utilizando la definición, probar:

a)  C( n- 1 , r) +  C( n- 1 , r- 1) =  C( n, r). 

b)  C( n + 2,   r) =  C( n, r) + 2  . C( n, r -  1) +  C( n, r -  2). 

c)  C( n + 3 , r) =  C( n, r) + 3 .   C( n, r -  1) + 3 .   C( n, r -  2) +  C( n, r-  3). 

2) a) Hal ar  r  si  V ( m, r) = 720 .  C( m, r). 

b) Hal ar  x  si  V ( x,  3) = 240 .   x. 

 V ( , 

 m r)

 C( , 

 m r)

3

c) Hal ar  m  y  r  si:

= 3  

, 

=

 V ( , 

 m r −1)

 C( , 

 m r −1)

5

3) Sea   Cr   es  el  coeficiente  del   r-ésimo  término  del  desarrol o  de  (1+ ) n x

.  Sabiendo  que

 C = 70  y C = 28 , determinar  n. 

5

7

4) Hal ar el término independiente de  x  en el desarrol o de 

2

1 12

( x

2 x−

−

) . 

5) En  el  desarrol o  de  (2 + 3 ) n

 b    el  coeficiente  de

12

 b   es  cuatro  veces  el  coeficiente  de  11

 b . 

Hal ar  n. 
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6) En el desarrol o de 

39

(3 x + 7) ,  Cr+1 =  Cr. Hal ar  r. 

7) Evaluar  las  siguientes  sumas  (sin  desarrol ar  los  combinatorios,  usando  binomios apropiados): 

a)  C(6,    0) +  C(6,    1) +…  +  C(6 ,  5). 

b)  C(6,    0) -  C(6,    1) +  C(6,    2) -  C(6,    3) +  …+  C(6 ,  6). 

8) Probar que (use binomios apropiados):

 n

a)  C( n,  k) = 2 n

 k =0

 n

b)  (−1) nC( n,  k) = 0

 k =0

9) Demostrar que si  n es par, entonces:

 C( n,  0) +  C( n,  2) + …  +  C( n, n) =  C( n,  1) +  C( n,  3) + …  +  C( n, n -  1) = 

1

2 n−

10) Usando el desarrol o de  (1+ ) n

 x   y dando a  x  un valor adecuado, probar:

a) 1 -   2 C( n,  1) +  2

2  C( n,  2) -    3

2  C( n,  3) + …  +  ( 1) n

−

2 n  C( n, n) =  ( 1) n

−

b) 1 + 2 C( n,  1) +  2

2  C( n,  2) +  3

2   C( n,  3) + …  +  2 n  C( n, n) =  3 n

11) Desarrol e 

16

3 7

2

−

3 5 12

(1+ 4 a) ; 

(2 −  ab ) ; 

( a

+ 2 a b )

12) Calcular el término de grado 34 en  x de:     
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3

46

a)  (1+  x)

b) ( x + 3)

1

13) Calcular el coeficiente del término de grado 15 en

3

245

 x de ( 

− 3 x  )

; y el de grado 17. 

 x
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10. Números Enteros

={..., 2

− , 1

− , 0, 1, 2,....}

-2      -1     0 

1 

2 

Se  trabajará  con  los  conocidos  números  enteros  resaltando  los  aspectos  importantes  de  la divisibilidad y de la división entera. 

 Un poquito de Historia importante de saber:

En las primeras épocas de la matemática occidental los enteros eran sólo los números que

conocemos  por  enteros  positivos,  pues  los  negativos  se  incorporan  en  las  matemáticas occidentales de manera definitiva a fines del siglo XVII (de nuestra era). 

En oriente los matemáticos hindúes del siglo VII (positivo) ya los usaban, para indicar deudas y los anotaban con un circulito arriba del número. Brahmagupta (aprox. en 628) fue el primero en dar reglas precisas para trabajar con números negativos. 

La aparición del 0 como lo usamos hoy también aparece en la India, en una inscripción  del 

año 876 y los árabes lo l evan a Europa en el siglo XII, junto con la notación que usamos para representar los números que por eso se la l ama indoarábiga. 

Porqué el interés desde el comienzo de los trabajos matemáticos (antiguos chinos, hindúes, 

babilonios, egipcios, griegos,...) en el estudio de los enteros? Además de ser los números que representaban  la  mayoría  de  los  problemas  prácticos  que  abordaban,  también  los  racionales que permiten resolver la mayoría de esos problemas, se escriben como cociente de enteros. 

La teoría de los números enteros es una motivación para otras teorías matemáticas, además 

de ser un tema rico en si mismo que permite con muy pocas definiciones hacer un desarrol o 

dentro de la teoría, dando la posibilidad al alumno de adquirir manejo de la manera de proceder en matemática: hacer demostraciones. 

La  mayoría  de  los  resultados  que  se  presentarán  son  conocidos  por  los  alumnos  desde  su enseñanza  elemental,  lo  que  seguramente  es  novedoso  para  gran  parte  de  el os  es  la demostración de esas propiedades. 

Recordando definiciones y algo más. 

• Operaciones

Recordamos que  el conjunto de  los números enteros son  los  números naturales al  que se  le unen  los  opuestos  de  cada  número  natural.  Son  los  que  vulgarmente  l amamos  los  enteros negativos. 

¿Qué es el opuesto? 

La  definición  formal  es  aquel  número  que  al  sumarse  entre  sí,  número  y  su  opuesto,  de  por resultado el 0. Por lo tanto observemos que el opuesto del 0 es 0. 
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Tenemos así que 

−

=

∪

, siendo  − = { 0

− , 1

− . − 2, −,... }

. . 

De acuerdo a la definición formal, todo entero tiene opuesto: 

Ya que si   m ∈ entonces  m = 0,  m > 0 ó  m < 0. 

Así si   m  0,  entonces -  m

−

≥

∈

por la definición del conjunto. 

Si  m < 0 entonces   m

−

∈

,  luego existe  a ∈

tal que  m = − a , y   a +  m = 0. 

Las  operaciones  usuales  de  suma  y  multiplicación  de 

sabemos  que  se  extienden  de  la 

manera conocida a  . Las propiedades que cumplen son similares a las que se vieron en el 

apartado 0. 

Recordatorio 1: 

La suma es asociativa, existe el 0 (neutro), conmutativa. 

 Ahora se enriquece con que cada elemento tiene opuesto. 

La multiplicación es asociativa, existe el 1 (neutro), 

Ah!! 

conmutativa. 

La suma se distribuye en la multiplicación. 

Recordatorio 2: 

 Regla de los signos para la multiplicación:  +  .  + = + 

 +  .  -  = - 

 -   .  - =  + 

 -   .  + = - 

EJERCICIO 3.10.1 

a) Probar que no existe   m ∈  tal que 0 <  m < 1. 

b) Si   n ∈ , probar que no existe   m ∈ tal que  n < m < n + 1. 

Para la operación de la suma cada elemento de   tiene su opuesto:  m + (- m)  = 0 (da por resultado el neutro respecto de esa operación). 

¿Habrá  una  propiedad  similar  para  la  multiplicación?  Es  decir:  dado  un  número  entero   a habrá  otro  número  entero  que  multiplicado  por  él  de  por  resultado  1  (neutro  para  esta operación). 

En ese caso se dirá que  a es invertible. 

Es claro que esta pregunta debe ser para   a ≠ 0 , pues 0.  m = 0 para todo   m ∈ . 

La siguiente propiedad es algo muy conocido pero muy útil, como se verá a lo largo del texto. 

Monotonía de la multiplicación  en 

, 

en particular en 

: 

 a ≤  b ,  si   c ≥ 0 entonces    a.  c ≤  b.  c a ≤  b ,  si   c < 0 entonces    a.  c ≥  b.  c 161

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

♦ PROPOSICION 3.10.2

Los únicos elementos invertibles en   son 1 y -1. 

Demostración: 

Sean   m ∈  y   n ∈  y supongamos que  m . n = 1. 

Por la regla de los signos ambos son positivos no nulo o ambos son negativos no nulos 

Primero supongamos  m > 0 y  n > 0 y ambos distintos de 1. Por cual   m ≥ 2 ∧  n ≥ 2  

Por lo tanto   m .  n ≥ 2 . 2 = 4 , por monotonía. 

Supongamos que  m < 0 y  n < 0 y ambos distintos de -1. Por lo cual   m ≤ 2

−

∧  n ≤ 2

−

Por lo cual    m .  n ≥ (−2) .(− 2) = 4 , por monotonía. 

Por lo cual todo par de enteros distintos de 1 y -1 su multiplicación no puede dar 1. 

Pero claramente 1. 1 = 1  y (-1) . ( -1) = 1. 

Por lo tanto el inverso de 1 es 1 y el inverso de -1 es -1. 

♦ 

• Divisibilidad

Dados dos enteros por ejemplo 8 y  - 4, se dice que - 4  divide a 8 pues existe el número - 2

tal que ( -4 ).(-2 ) = 8. 

También se dice que 8  es múltiplo de  - 4, -4  es un divisor de 8,  8  es divisible por - 4. 

No siempre ocurre que dados dos enteros se pueda encontrar un tercer entero que cumpla que 

el producto de uno de el os por el tercero sea el segundo de el os (aún intercambiando el papel del 1ro. y el 2do.), piense en 7 y - 4. 

Para que   - 4.  x = 7   ,  x debe ser negativo 

Si  x = -1   , -4. (-1) =  4 

Si  x = -2   , -4. (-2) =  8 > 7 

Por monotonía del producto en 

, en particular  en 

, cualquier otro valor negativo  

 x < -2 , al multiplicarlo por - 4  será aún mayor que 8. Por lo  tanto  no es posible encontrar un entero que multiplicado por -4 de 7. 

Justifique que tampoco 7 divide a -4. 

Justifique que 8  no divide a 4. 

En el caso de 7 y -4,  es posible encontrar enteros que permiten expresar 7 = (-4).(-2) + (-1), pero también       7 = (-4).(-1) + 3 = (-4).3 + 19  y podríamos encontrar más... 
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Como se ve las cosas entre los enteros no siempre son tan triviales, vamos a poner algunos 

límites y definiciones. 

Dados dos enteros  a  y  b, se dice que  a divide a  b si existe un entero  c  tal que  b = a.  c 

Si  a  divide a  b    se anota    a b  

Son sinónimos:  

 a es divisor de  b, b es divisible por  a, a es factor de  b, b es múltiplo de  a 

 a b  indica que  a no divide a  b.  

Para pensar 

•

En la definición de divisibilidad en los enteros dice “si existe un entero   c tal que  b = a. c” . 

Piense porqué "no tiene gracia" si  c  pudiera ser racional en el caso de ser  a no nulo. 

•

La restricción inicial de considerar  a y  b enteros por qué es? 

•

Explique claramente que significa que dados los enteros  a y  b,  a b

EJERCICIO 3.10.3 

Probar que para todo  n natural impar, 

2

8  n − 1

♦ PROPIEDADES 3.10.4:

1) Dado   a ∈ Z entonces  a  0

2) Dado   a ∈ Z entonces  a a

3) Dado   a ∈ Z entonces 1  a

4) Dado   a ∈ Z entonces -  a a

5) Dado   a ∈ Z entonces -1  a

Se demostrará la 1): 
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Sea  a un número entero. Hay que encontrar un entero que multiplicado por  a dé por resultado 0. 

Existe algún entero en esas condiciones?  Cuál es el número? 

? 

 a. 

= 0  , ese número es 0, ya que  a. 0 = 0

Observar  que  de     a  sólo  se  dice  que  es  un  entero.  Por  lo  tanto  esta  propiedad  la  cumple cualquier entero. 

♦ 

La propiedad 1) permite concluir que  el 0 tiene infinitos divisores. 

Por  las  propiedades  2),  3),  4)  y  5),  salvo  el  1  y  -1  todos  los  enteros  admiten  al  menos 

 cuatro divisores. 

EJERCICIO 3.10.5 

a) Probar las propiedades 2) a 5) de 3.10.4. 

b) Probar que los únicos divisores de 1 y de -1 son 1 y -1. 

c) Probar que dados   a ∈ ,  b ∈ Z,  si   a b  entonces  −  a b . 

d)

Los  divisores  "aparecen  de  a  pares"...    En  qué  caso  de   a  y   b    esos  divisores coinciden? 

e) Analizar el valor de verdad de la siguiente afirmación:   a b   y   -  a b . Justificar f)

Probar que dados   a ∈ ,  b ∈ Z,  si   a b  entonces   a −  b . 

g) Analizar el valor de verdad de la siguiente afirmación:

 a ∈ ,  b ∈ Z ∧ ( a b

∧  b a) →  a =  b  (Demuestre su posición)

Por  este  ejercicio  concluimos  que  es  suficiente  estudiar  la  divisibilidad  en  los  números enteros positivos. 

Dado el entero  a se l aman  divisores triviales de a   a los números:   a, -a, 1 y -1. 

En el ejemplo inicial se vio que el número 8 admite más de cuatro divisores. Pero hay otros números, por ejemplo el 2 que sólo admite 2, -2, 1 y -1 como divisores, como 2 no es el único con estas característica bien vale recordar otra definición fundamental 
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Un número entero es  primo si admite exactamente cuatro divisores. 

EJERCICIO 3. 10. 6 

Demostrar que si  p es primo entonces - p es primo. 

Los primos aparecen de a dos..... 

EJEMPLO 3.10.7 

Probar que 3 es primo. 

Se debe ver que sólo dividen a 3 los enteros 1, -1, 3 y -3. 

Ya sabemos que esos números lo dividen por las propiedades 2) a 5) de 3.10.5 que valen para todo entero. 

Su pongamos entonces que existen divisores no triviales de 3. 

Es decir que 3 =  a. b con  a  y  b  ambos distintos de 1 , -1 , 3 y -3. 

Si!! 

(Observar que si esto lo pedimos sólo para  a resulta suficiente...). 

También por 3.10.5 es suficiente analizar sólo los divisores positivos. 

Analicemos primero el caso  a >1. 

Es decir   a ≥ 2 . Cómo tampoco permitimos que  b sea 1,  b ≥ 2 . 

Por la regla de monotonía de la multiplicación se tiene: 

. 

 a b ≥ 2.  b ≥ 2.2 = 4 ,  por lo tanto no da 3. 

Es decir 3 no tiene divisores no triviales positivos, por lo tanto tampoco no triviales negativos. 

Por lo cual los únicos divisores que admite son 1-1, 3 y -3.  Luego, 3 ES PRIMO. 

Ya conoce al menos 4 primos: 2, -2, 3 y -3 de  los infinitos que existen. 

EJERCICIO 3.10.8 

Probar que 5 y 7 son  primos. ¿Cuáles enteros primos arrastra esta prueba? 

EJERCICIO 3.10.9 

Más propiedades de la divisibilidad en 

a) Probar que dados   a ∈ ,  b ∈ ,  c ∈ Z,  si  a b ∧  b c  entonces   a c . 

b) Probar que para todo  a, b, c  si

 a ∈ ,  b ∈ ,  c ∈ Z,  si  a b ∧  a c

entonces   a

. 

 m b + . 

 n c  para cualquier  m ∈ ,  n ∈

. 

c) Probar que dados   a ∈ ,  b ∈ ,  c ∈ Z,  si  a b ∧  a b +  c  entonces   a c   . 

d) Probar que si   a ∈ ,  b ∈ Z,  si  a b ∧  a  3.  b + 5 entonces   a = ±1 ∨  a = ±5
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¡¡Vamos a colaborar!! Haremos a):  

Si   a, , 

 b c son enteros,  si  a b ∧  b c  entonces  por  definición,  se  tiene  que  existen  números enteros   k y  t  tales que    b = a. k   (1)    y     c = b . t  (2). 

Reemplazando (1) en (2):   c = ( a. k).  t    y como vale la propiedad asociativa de la multiplicación c =  a. (  k.  t )     como producto  k. t es un entero, se tiene que   a c . 

También haremos b): 

 a, , 

 b c son números enteros,  si  a b ∧  a c

entonces por  definición,  se  tiene  que  existen

números enteros 

 k y  t  tales que  b = a. k   (1)  y   c = a . t  (2). 

Es así como dado cualquier par de enteros  m y  n, usando (1) y (2): 

 m. b +  n. c =m.  ( a.k) +  n. ( a . t) =  m.  ( k. a) +  n. (  t. a) = ( m.   k) . a + ( n. t) . a por las propiedades conmutativas y asociativas de la multiplicación. 

Como valen la conmutatividad de la multiplicación y la distributividad  de la multiplicación en la suma de enteros, resulta:      m. b +  n. c = ( m.   k) . a + ( n. t) . a  = ( m.   k +  n. t) . a= a. ( m.   k +  n. t)     

y sabemos que   m.   k +  n. t   es un número entero. 

Por lo cual   a

. 

 m b + . 

 n c  para cualquier  m ∈

y   n ∈

. 

EJERCICIO 3.10.10 

a) ¿Si   a, , 

 b c son números enteros y  a

. 

 b c  entonces  ( a b   ∨  a c) ? 

b) Demostrar que si   a,  b,  c son enteros  a

. 

 b c   implica que    a

 b   ∧  a

 c

c) Sean  a, b y  c números naturales, tales que  a= b.c y   a ≠ 0 . Demostrar que   b ≤  a y  c ≤  a . 

En otras palabras en 

, si   b a   y  a ≠ 0 entonces  b ≤  a . 

Ayudita, haremos c): (no hay porque!!!) 

Como  a, b y  c son números naturales y  a no nulo por hipótesis, resulta que tampoco pueden ser 0 ni  b ni  c. Por lo tanto,  b ≥ 1  y    c ≥ 1  (*). 

Vamos a usar la propiedad de monotonía de la multiplicación de naturales,  resulta así que  

multiplicando ambos miembros de (*) por  b: 

. 

 b c ≥ . 

 b  1 =  b  como   a =  b.c   se tiene   b ≤  a . 

De similar forma se puede demostrar que   c ≤  a . 
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♦ TEOREMA  3.10.11

Todo número entero distinto de 1 y -1 es divisible por un número primo. 

Demostración: 

Supongamos que la propiedad no es cierta, entonces hay al menos un entero distinto de 1 y de 

-1 para el cual ningún primo lo divide. 

Formamos el conjunto: 

 S = { k ∈

:  k ≠ 1 ∧  k  no tiene divisores primos} 

Veremos que el suponer que  S  es no vacío l eva a contradicción, luego  S no puede existir. 

Sea S ≠

. 

∅  Por el principio de buena ordenación, existe

 m ∈  S,  m primer elemento de  S. 

Por lo tanto,  m no es primo. Si lo fuera, como siempre  m m ,  m tiene un divisor primo en contra de lo que verifica por estar en  S. 

Por  lo  cual   m =  r.  s  con  r,  s divisores no triviales de  . 

 m   Se  los  puede  considerar  ambos

positivos. 

Por lo tanto   r <  m  y  s < . 

 m  (justifique). Por lo cual ambos no son elementos de  S ya que  m es mínimo de  S. 

Luego existe   p,  primo tal que  p r . 

Por la propiedad 3.10.9 a) existe un primo   p,   tal que  p m. 

Por construcción de  S ningún primo divide a  m,  sin embargo se ha encontrado un primo que lo divide. Esta contradicción significa que  m no puede existir. 

Por lo tanto  S debe ser vacío. 

Por  el  ejercicio  3.10.5,  dentro  de  los  enteros  negativos  distintos  de  -1  debe  pasar  lo  mismo, sino  sería  construible  un  conjunto  como   S,  pues  todo  numero  si  tiene  un  divisor  positivo, también tiene un divisor negativo. (Justifique) 

Es así entonces que  todo entero distinto de 1 y -1, tiene un divisor primo!! 

♦ 

El siguiente resultado se debe a Euclides (siglo IV a. C.), está en el libro IX de los  Elementos. 

Más adelante veremos porque la inquietud de estudiar a los números primos….. 
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♦ TEOREMA 3.10.12

Existen infinitos números primos 

Demostración: 

Se supondrá que hay un número finito de números primos y se l egará a una contradicción. 

Sean   p ,  p , 

,  p  todos los primos que existen. 

1

2

 n

Ya conozco varios 

 n

Se calcula   z =

 p

∏ . 

primos, entonces z es 

 i

distinto de….. 

 i  1

=

Considerar el número  z + 1. 

Por construcción   z + 1 ≠ 1  y   z + 1 ≠ −1. (Pues z no es 0 ni -2) (Justifique!!!). 

Por el teorema anterior, existe un primo  p que divide a  z + 1. 

Pero ese  primo  p es uno  de los factores de  z ya que hemos supuesto  que sólo existen  esos primos. Es entonces que   p z

Por lo cual,  p  1, ya que si   p z ∧

 p z +1. (por ejercicio  3.10.9 c))

Lo que es un absurdo ya que los únicos divisores de 1 son 1 y -1, y el os no son primos. 

Por  lo  tanto  no  hay  un  número  finito  de  primos,  sino  es  posible  construir   z,  que  l eva  a contradicción. 

♦ 

Como  se  viene  diciendo  los  números  primos  son  importantes,  ya  verá  porque  (sea 

paciente…). 

A lo largo de la historia de la Matemática se trató de encontrar una fórmula que los generara, pero  no  la  hay  pero  se  tiene  la  posibilidad  de  determinar  si  un  número  es  primo  conociendo algunos primos menores que él. 

Para un método que se enuncia a continuación se necesita el siguiente concepto: 

Se l ama raíz cuadrada natural de un número natural  b  

Si  b ∈

,  existe  c ∈

al mayor natural que es menor o igual que su raíz cuadrada. 

(  b)

2

=  c ↔  c ≤  b

Se la anota     (  b ) . 

( 1) = 1 ( 3) = 1

( 25) = 5

Este  método  permite  determinar  los  primos  positivos,  pero  use  el  ejercicio  3.10.6,  para determinar los que son enteros. 
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•  CRIBA de ERATOSTENES: Un método para enumerar los primos positivos. 

Si   m ∈   y   m ≠ 1  entonces existe el menor primo positivo  p tal que  p m. 

Por lo cual 

2

. 

 p a =  m con  a ∈ . Entonces  p ≤  p.  a =  m  (justifique). 

Luego: 

a) Si  m no es primo existe  p primo que es divisor de  m y  es menor o igual que la raíz cuadrada natural de  m. 

b) El  número   m  >  1  es  primo  si  no  es  divisible  por  ningún  primo  menor  o  igual  que  su  raíz natural. 

Este resultado da el método para determinar los primos sucesivamente, dados los números 

naturales y conociendo los primos menores se va avanzando, marcando los primos que se van 

determinando. 

Por los ejercicios, se sabe que 2, 3, 5 y 7 son primos. Además los números pares, salvo el 2 

no son primos. Si un número no es par no es divisible por 2. El 9 es divisible por 3. 

Vemos como haríamos por este método el estudio si el 11 es primo o no: 

( 11) = 3 , es divisible el 11 por los primos menores o iguales que 3? 

No lo es por 2 ni por 3. Luego, 11 es primo. También lo marcamos. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

¿Es el 13 primo?  ( 13) = 3, como 13 no es divisible ni por 2 ni por 3. Luego 13 es primo. 

Y de este modo se sigue. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 


14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

¿Qué pasa con el 31?  ( 31) = 5 . ¿Es 31 divisible por 2, 3 ó 5? NO. 31 es primo. Tacha? 

Supongamos que queremos saber si el número 211  es primo. 

( 211) = 14 , ver si 211 es divisible por 2, 3 ,5, 7, 11, 13. 

Por criterios conocidos de divisibilidad no es por 2, ni por 3 ni por 5. 
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Lo será por 7? No (haga la cuenta) 

Siendo más "grande" 

Será por 11? No (hice la cuenta). 

el número se nota 

Será por 13? No.  Por lo tanto 211 es primo. 

más la ventaja del 

método. 

Supongamos que queremos saber si el número 323  es primo. 

Justifique esta 

( 323) = 17  , ver si 323 es divisible por 2, 3, 5, 7, 11, 13, 17. 

afirmación. 

Por criterios conocidos de divisibilidad no es por 2, ni por 3 ni por 5. 

Será por 7? No.... Por 11? Tampoco. Por 13? No. Por 17? Si. 

Por lo tanto 323 NO es primo. 

EJERCICIO 3.10.13 

Determine los primos menores  que 100. 

 División entera

Si un entero  a no es divisible por otro  b se expresa  a como una suma de un producto de  b por otro entero más un entero "corrector". Se hacen algunas limitaciones para que sean únicos los enteros que permiten relacionar  a con  b. Volver a mirar el caso de 7 y -4 en la página 2. 

♦ TEOREMA 3.10.14

Dados   a ∈ ,  b ∈ Z  y   b > 0  existen enteros   q y  r   tales que   a = . 

 q b +  r   con  0 ≤  r < . 

 b

Los números   q  y   r  son únicos en esas condiciones. 

A  q se lo l ama cociente y a  r resto. 

Demostración: 

1) Si   b a , por definición de divisibilidad el teorema vale con  r = 0  y   a = q. b.  

Es fácil probar que ambos son únicos. 

2) Supóngase que  b no divide a  a. 

Se construye el conjunto   A ={ h ∈

:  h =  a −  k. , 

 b  con  k ∈ }

Z . 

Obsérvese que el 0 no está en  A (sino  b divide a  a). 

Por construcción  A es un subconjunto de  N. 

Usando el principio de buena ordenación, resulta que   A tiene un mínimo. Sea  r el mínimo de  A.  

Al ser  r un elemento de  A, existe   q ∈ Z tal  que   r =  a − . 

 q b . 

Es entonces   a = . 

 q b +  r . 
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Falta ver que  0<  r < . 

 b  Como   r ∈ , 

 A   r es natural. 

Veamos qué  r < b:  

Supongamos  que   r ≥  b ,   entonces   r −  b ≥ 0  .   Además   r  =  a  –  q.b,  entonces  restando   b   a ambos miembros y agrupando convenientemente,  se tiene   r – b = a – ( q+1)  . b,     como    

 q+1 ∈

    y además   r - b   es natural,    resulta  que   r - b∈  A . 

Como  b > 0,  - b < 0   y sumando  r a ambos miembros de esta desigualdad entonces   r – b < r, absurdo porque  r  es el mínimo de  A.  Por lo tanto  r < b .  

Veamos  que   q y  r  son únicos  si  0 <  r <  b :

Supongamos que existen  q y  q’ enteros y   r y  r’  naturales tales que  0 <  r <  b  y  0 <  r ' <  b que verifican   a =  q.b + r  y   a =  q’.b + r’.   

Igualando, pasando de miembro resulta y factoreando, resulta: 

 b . ( q - q’)  = r’ – r. 

Al ser b > 0, si   q −  q ' ≥ 1  entonces  b.( q -  q ') ≥  b  y por lo tanto  r '−  r ≥  b ,  esto es absurdo ya que   como    0 <  r ' <  b  y  r > 0, entonces    r '−  r <  b −  r <  b . 

Análogamente, si    q −  q ' ≤ 1

−   entonces  q '-  q ≥ 1  como   b > 0  y por lo tanto

. 

 b ( q '−  q) =  r −  r ' ≥  b

lo  que  es  absurdo  ya  que  sería   r −  r ' ≥  b    y  como    0 <  r <  b   y   r’  >  0  entonces r −  r ' <  b −  r ' <  b . 

Por lo tanto  q - q’ = 0 y entonces  q = q’ y en consecuencia  r’ – r = 0 por tanto  r’ = r. 

Se tiene entonces que  q y  r son únicos en las condiciones del teorema. 

♦ 

♦ COROLARIO ( Teorema del algoritmo de la división) 3.10.15

Dados   a ∈ ,  b ∈ Z  y  b ≠ 0  existen enteros    q  y   r tales que  a = . 

 q b +  r   con 0 ≤  r <  b . 

Estos enteros   q  y   r  son únicos en esas condiciones. 

Demostración: 

Dado   b ≠ 0,  entonces  b > 0 ∨  b < 0. 

Para la primera situación como   b =  b > 0  es el teorema anterior. 

Para el segundo caso,  b < 0,  b = − b > 0. Luego vale que para  a y -  b, existen únicos  q* y  r tales que 

 a =  q *.  b +  r   con 0 ≤  r <  b  reeplazando a =  q *.(− b) +  r = (− *

 q ).  b +  r = . 

 q b +  r

llamando  q = − q *

♦
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Justifique porqué   b ≠ 0 , que inconvenientes habría si  b = 0? 

EJERCICIO 3.10.16 

Hal ar el resto y el cociente en los siguientes casos 

a)  a = 287  y  b = 56313

b)  a = 287  y  b = - 56313

c)  a = 1335  y   b = 213

d)  a = -1335  y   b = - 213

e)  a = 1335  y   b = - 213

f)  a = - 1335  y  b = 213

EJERCICIO 3.10.17 

a) Hal ar el dividendo si el cociente es 456 y el resto es 45 y el divisor es 7

b) Hal ar el divisor si el cociente es - 5928 y el resto es 45 y el dividendo es 33. 

c) Cuáles son los posibles valores del resto si se divide por 13. 

d) Cuáles son los posibles valores del resto si se divide por 60. 

 Máximo Común Divisor y Mínimo Común Múltiplo

Dos  conceptos  muy  importantes  y  conocidos  cuyas  aplicaciones  son  interesantes  en  todo  lo que sigue en el texto. 

Dados dos enteros  a  y  b, el entero  d es máximo común divisor de  a y  b si cumple: 1)

 d > 0

2)  d a ∧  d b

3) Si   d *  a ∧  d *  b  entonces  d *  d

Se anota      d = ( a,  b) 

• Claramente   d = ( a,  b) = ( b,  a)
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EJEMPLO 3.10.18 

Si  b es un entero no nulo,  (0,  b) =   b . 

Pues   b  0  y además   b b , por ejercicios 3.10.4 y 3.10.5 

Además si  d* es tal que    d * 0  y  d *  b  también   d *  b , por los mismos ejercicios. 

Por lo cual   b  cumple, 1), 2) y 3) de la definición. 

• Observar que si  a = b = 0, como todo entero divide a 0 si un  d  cumple 1) y 2) de la definición no  necesariamente  cumple  3).    Por  ejemplo,  tome    d  =  5,  cumple  1)  y  2)  y  d*  =  8  cumple  el antecedente de 3) pero no su consecuente pues 8 no divide a 5. 

Luego no existe el máximo común divisor entre  a = b = 0.  

La  existencia  y  unicidad  del  máximo  común  divisor  la  asegura  el  siguiente  teorema  para enteros no simultáneamente nulos. 

♦ TEOREMA (Existencia y unicidad del máximo común divisor en 

) 3.10.19

Dados enteros  a y  b no simultáneamente nulos, entonces existe  d que verifica: 1)  d > 0

2)  d a ∧  d b

3) Si   d *  a ∧  d *  b  entonces  d *  d

4) Existen  m y  n enteros tales que  d =  m. a +  n. b

5)  d es único

Demostración: 

Por el ejercicio 3.10.18 habrá que probarlo para  a y  b enteros ambos no nulos, ya que si uno solo es 0, por ejemplo  a = 0 se  tiene   b =  m.  0 + 1.  b    ó     b =  m. 0 + (-1).  b según sea  b positivo o negativo y para cualquier entero  m, luego vale 4) y 5). 

En  esta  demostración  también  haremos  uso  del  principio  de  buena  ordenación  para  un conjunto conveniente cuyo mínimo verificará lo pedido. Sean  a y  b enteros ambos no nulos. 

Sea  M =  { . 

 h a +  k.  b : para todo par de enteros  h y  k   ∧   h.  a +  k.  b ≠ 0 } . 

El conjunto   M ≠ ∅ : 

 a +  b =  a +  b = 1.  a + 1.  b    si  a > 0 y  b > 0; a +  b = − a +  b = ( 1

− ).  a + 1.  b    si  a < 0 y  b > 0; 

 a +  b = − a +  b = ( 1

− ).  a + ( 1

− ).  b    si  a < 0 y  b < 0; 

 a +  b =  a + (− b) = 1.  a + ( 1

− ).  b    si  a > 0 y  b <  0 
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Por lo cual    a +  b ∈  M . Además   a +  b ∈ . Por lo tanto   M ∩

≠ ∅ . 

Aplicando el principio de buena ordenación    M ∩

tiene un elemento mínimo. 

Sea  d  el mínimo de   M ∩

. 

Por estar  d en   M ∩

entonces   d > 0 y existen enteros  m y  n  tales que  d = m. a +  n. b. (*) Por lo cual ya se tiene probado 1) y 4). 

Por ser el mínimo de un conjunto,  d es único. 

Además si   d *  a ∧  d *  b  entonces  d *  d , al ser  d = m. a +  n. b,  por la propiedad  a) del ejercicio 3.10.9. Es así que vale 3). 

Falta ver que   d a ∧  d b :

Como  d > 0, por el teorema del Algoritmo de la División existen únicos  q  y  r  tales que (**)  a = q. d +  r con  0 ≤  r <  d . 

Veamos qué ocurre si   r ≠ 0 : 

Despejando  r de (**), se tiene  r = a – q.d  ahora sustituimos usando (*) a   d, así resulta usando las propiedades distributiva de la multiplicación en la suma y asociativa  

  r = a – q. ( m. a +  n. b) = ( 1-q.m).  a + (- q. n).  b Es así que  r es un elemento de   M ∩

. 

Pero como   r  <  d.  esto es absurdo  pues  d es el mínimo de   M ∩

. 

Por lo cual debe ser   r = 0. 

Por lo tanto   d a . 

De igual manera se demuestra que   d b  (hágalo!!!) 

Por lo cual ya tenemos probado 2). 

♦ 

La propiedad 4) que da el teorema es de mucha utilidad en diferentes demostraciones. 

• Observar  que el  m y  n no son únicos como lo prueba el ejemplo

4 = (4, 8)   y  4 = 1. 4 + 0. 8 = -1.4 + 1. 8 = ....   (complete Ud.) 
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EJERCICIO 3.10.20 

a) Sean  a y  b no simultáneamente nulos tales que   a . 

 b  Hallar  d = ( a,  b)

b) Sea  p  un número primo y  a un entero, ¿cuáles son los posibles valores de  (  p,  a) ? 

c) Sean  p y  q números primos, ¿cuáles son los posibles valores de  (  p,  q)? 

d) Demostrar que para todo entero  a, vale que ( a, 1) = 1

e) Demostrar que para todo par de enteros  a y  b no simultáneamente nulos, vale que ( a,  b) = ( a,   -b) = (-  a,  b)

Este ejercicio, parte e) permite trabajar con positivos en lo relativo al cálculo del máximo común divisor   

Por propiedades anteriores 1 es divisor de todo entero, por  lo tanto al menos 1 está dentro de los divisores positivos comunes a cualquier par de enteros. 

Dos enteros   a y  b son coprimos o primos entre sí, si  ( a, b) = 1 

Una de las tesis del teorema de existencia y unicidad del máximo común divisor entre enteros no simultáneamente nulos  a y  b es que se puede escribir   d = ( a, b) =  m. a +  n. b para algún par de enteros  m y  n no necesariamente únicos como se hizo notar en un ejemplo. 

¿Es cierto que si un entero  h = m. a +  n. b, con  h > 0,  es  h  el máximo común divisor entre  a y b? 

Se habrá dado cuenta que no es así, salvo que sea la menor combinación entera positiva entre a y  b. 

Ya que por ejemplo 2.3 + 5.6 = 36 y sin embargo  36 ≠ (2, 5) . 

Para el caso que  a y  b  sean coprimos vale. Es decir: 

♦ PROPOSICIÓN 3.10.21

 a,  b ∈ Z, 1 =

. 

 m a + . 

 n b

para  m ∈ ,  n ∈ Z

si y sólo si

( a,  b) = 1

Demostración: 

Si ( a, b)  = 1  por el teorema 3.10.19 vale que 1  = m. a +  n. b  con  m  y  n enteros. 

Veamos la recíproca: 
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Esto significa que se tiene por hipótesis  1  = m. a +  n. b , con  m  y  n enteros. Hay que probar que  d = (  a,  b) = 1. 

Como 1  = m. a +  n. b,  claramente  a  y  b  no son simultáneamente nulos (justifique), por lo cual existe   d = (  a,  b). 

Por la definición de   d,  d divide a   a  y   d  divide a   b, entonces se tiene que a =  d.  q  y    b =  d.  k

para   q,  k  enteros  y  reemplazando

1 =

. 

 m d.  q + . 

 n d.  k =  d.( . 

 m q + . 

 n k )  como   . 

 m q + . 

 n k ∈

por ser cerrada la suma y el

producto en los enteros.   Por lo tanto   d divide a 1. 

Como  d es positivo y divide a 1, entonces  d = 1. 

♦ 

EJERCICIO 3.10.22 

a) Sea  d = ( a,  b), con   a y  b números enteros,  a =  d.  A b =  d.  B  para   A  y   B  enteros Probar que ( A , B ) = 1 

b) Para  a entero ( a, a -1) = 1

Ya  se  ha  visto  en  algunos  ejercicios  cual  es  el  máximo  común  divisor  en  algunos  casos particulares.  Si  los  números   a  y   b   no  son  "muy  grandes"  se  pude  escribir  en  cada  caso  el conjunto de sus divisores positivos y elegir de la intersección de ambos conjuntos el mayor. Si los números son algo grandes ese método no es práctico. Pero se tiene la propiedad siguiente que permite ir achicando los números: 

♦ PROPIEDAD 3.10.23

Si  b ≠ 0 entonces  ( a,  b) = ( b,  r)  donde   a = . 

 q b +  r    y  0 ≤  r <  b

Es decir el máximo común divisor entre  a  y  b coincide con el máximo común divisor entre  b y el resto de la división de  a  por  b. 

Demostración: 

Sea   d = ( a,  b) y sea  d = ( , 

 b r) . Ambos existen pues   b ≠ 0 . 

1

2

Se quiere probar que coinciden. 

Se  usará  la  siguiente  técnica:  se  probará  que  se  dividen  mutuamente  y  por  ser  naturales  no nulos son iguales. 
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Como   d a

y   d b , por definicion, luego por propiedad  anterior  d a − . 

 q b   que  es

1

1

1

una combinación entera entre  a y  b. Y precisamente es  r =  a – q. b por la hipótesis. 

Luego,  se tiene:   d b ∧  d r   y por propiedad 3 del máximo común divisor entre  b y  r: 1

1

 d d

1

2

Como   d b  y   d r , por definicion, luego por propiedad  anterior  d q.  b +  r   que  es 2

2

2

una combinación entera entre  b y  r.  Precisamente es   a =   q. b+ r  por la hipótesis. 

Luego,  se tiene:   d a ∧  d b   y por propiedad 3 del máximo común divisor entre  a y  b: 2

2

 d

 d

2

1

Por lo tanto, como son enteros positivos:   d =  d

1

2

♦

  ALGORITMO DE EUCLIDES 3.10.24 : método para calcular  d = ( a,  b) Algoritmo: es una  cadena 

El objetivo es calcular  d = ( a,  b). 

de operaciones a seguir con 

Si  a y  b son ambos no nulos y grandes es complicado. 

precisión  a partir de datos 

Por propiedades anteriores: 

iniciales para llegar al 

resultado esperado en un 

( a,  b) = (  b, a )  = ( a,   -b) = (-  a,  b) número finito de pasos. 

El algoritmo descripto está 

en el libro VII de los 

• Podemos considerar  a > 0 y  b > 0

 Elementos. La palabra 

Por la propiedad anterior: 

algoritmo fue de uso 

posterior a Euclides. 

Si  b ≠ 0 entonces  ( a,  b) = ( b,  r) , donde   a = . 

 q b +  r    y  0 ≤  r <  b

Para achicar los números, cuál es conveniente pensar como  a ??? 

(¿Qué ocurre si toma como  a al menor entre  a y  b?  Pierde tiempo. Justifique) Como ( a,  b) = ( b, r )  si  r = 0 (es decir,  b divide a  a ) se terminó el cálculo,  d =  b Cómo se sigue si   r ≠ 0 ? 

Es conveniente un cambio de nomenclatura que será muy provechoso: 
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 a = . 

 q b +  r

con 0 ≤  r <  b

 q =  q

 r =  r

0

0

Por lo cual: 

 a =  q .  b +  r

( a,  b) = ( b,  r) = ( b,  r )

0

0

0

La idea es ir aplicando reiteradamente mientras sea necesario la propiedad anterior. 

Como   r ≠ 0, para  calcular  ( b,  r ) se recurre a la propiedad anterior. 

0

0

Se divide  b por   r   y se tiene   b =  q .  r +  r   con 0 ≤  r <  r 0

1

0

1

1

0

( a,  b) = ( b,  r ) = ( r ,  r )

0

0

1

Si   r = 0,  terminamos... 

1

( a,  b) = ( b,  r ) = ( r ,  r ) = ( r , 0) =  r 0

0

1

0

0

Si   r ≠ 0, para  calcular  ( r ,  r ) nuevamente se recurre a la propiedad anterior. 

1

0

1

Se divide   r   por  r   y se tiene   r =  q .  r +  r   con 0 ≤  r <  r 0

1

0

2

1

2

2

1

( , 

 a )

 b =( , 

 b r )=( r ,  r) (

=  r,  r )

0

0 1

1 2

Si   r = 0,  terminamos... 

2

( a,  b) = ( b,  r ) = ( r ,  r ) = ( r ,  r ) = ( r , 0) =  r 0

0

1

1

2

1

1

Si   r ≠ 0, para  calcular  ( r ,  r ) nuevamente se recurre a la propiedad anterior. 

2

1

2

Se divide   r   por  r   y se tiene   r =  q .  r +  r   con 0 ≤  r <  r 1

2

1

3

2

3

3

2

( a,  b) = ( , 

 b r ) = ( r ,  r ) = ( r ,  r ) = ( r ,  r ) 0

0

1

1

2

2

3

Si   r = 0,  terminamos... 

3

( a,  b) = ( b,  r ) = ( r ,  r ) = ( r ,  r ) = ( r ,  r ) = ( r , 0) =  r 0

0

1

1

2

2

3

2

2

Si   r ≠ 0.........Terminará???? 

3

Observar la sucesión de los restos:  0 ≤  r <  r <  r <  r <  b 3

2

1

0

0 

 b 
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Entre 0 y   b hay un número finito de restos posibles, al cabo de a lo sumo  b pasos se tendrá resto 0. Sea entonces  n tal que    n  1

 r +  = 0. 

En el paso anterior se ha realizado la división de 

 r

por  r   y se tiene   r

=  q

.  r +  r

con 0 ≤  r

<  r

 n  1

−

 n

 n  1

−

 n  1

+

 n

 n  1

+

 n  1

+

 n

Por 

como   r

= 0, resulta   r

=  q

.  r

 n  1

+

 n  1

−

 n  1

+

 n

fin!!! 

Entonces si   r

= 0,  terminamos... 

 n  1

+

( a,  b) = ( , 

 b r ) = ( r ,  r ) = ( r ,  r ) = ( r ,  r ) =

= ( r , 0) =  r

0

0

1

1

2

2

3

 n

 n

Es  decir  el  máximo  común  divisor  entre   a  y   b  es  el  último  resto  no  nulo,  de  las  sucesivas divisiones. 

EJEMPLO 3.10.25 

Hal ar el (-1348, 3457) 

Por  propiedades  anteriores  es  equivalente  a  calcular  (1348,  3457).  Como  se  aplicará  el algoritmo de Euclides, considerar para el papel de  a 3457 y para el de  b 1348. 

Se  divide   a  por  b,  se  hal a  cociente  y  resto,    se  efectúan  sucesivas  divisiones  hasta  obtener resto 0:  

3457 = 2. 1348 + 761 

 r = 761

0

(-1348, 3457) = (1348, 3457) = (3457, 1348) 

= (1348, 761) 

divide 1348 por   r = 761

0

1348 = 1. 761 + 587 

 r = 587

1

(-1348, 3457) = (1348, 3457) = (3457, 1348) 

divide 761  por   r = 587

= (1348, 761) = (761, 587) 

1

761 = 1. 587 + 174 

 r = 174

2

(-1348, 3457) = (1348, 3457) = (3457, 1348) 

divide 587 por   r = 174

2

= (1348, 761) = (761, 587) = (587, 174) 

587 = 3. 174 + 65 

 r = 65

3

(-1348, 3457) = (1348, 3457) = (3457, 1348) = 

= (1348, 761) = (761, 587) = (587, 174)= (174, 65) 

divide 174 por   r = 65

3
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174 = 2. 65 + 44 

 r = 44

4

(-1348, 3457) = (1348, 3457) = (3457, 1348) =  

divide 65 por   r = 44

4

(1348, 761) = (761, 587) = (587, 174) = (174, 65) = 

= (65, 44)  

65 = 1. 44 + 21 

 r = 21

5

(-1348, 3457) = (1348, 3457) = (3457, 1348) = 

= (1348, 761) = (761, 587) = (587, 174)= (174, 65)= 

divide 44 por   r = 21

5

= (65, 44) = (44, 21) 

44 = 2. 21 + 2 

 r = 2

6

(-1348, 3457) = (1348, 3457) = (3457, 1348) = 

divide 21 por   r = 2

= (1348, 761) = (761, 587) = (587, 174)= (174, 65)= 

6

= (65, 44) = (44, 21) = (21, 2) 

21 = 10. 2 + 1 

 r = 1

Cuál será el siguiente resto??? 

7

 r = 0  JUSTIFIQUE. 

8

(-1348, 3457) = (1348, 3457) = (3457, 1348) = (1348, 761) = (761, 587) =(587, 174) = 

= (174, 65) = (65, 44) = (44, 21) = (21, 2) = (2, 1) = (1, 0) = 1   

Los números -1348 y 3457 son coprimos. 

Un  método  efectivo  para  expresar  el  máximo  común  divisor  entre  los  números  como combinación  entera de el os, como lo asegura el teorema de existencia y unicidad: 

"  Suba por los restos" de las sucesivas divisiones efectuadas siguiendo la regla del algoritmo. 

21 = 10. 2 + 1      de acá se despeja      1 = 21 - 10. 2 

(1) 

(2) 

44 = 2. 21 + 2 

de acá se despeja      2 = 44 - 2. 21 

se reemplaza en (1) 

(3) 

65 = 1. 44 + 21  de acá se despeja      21= 65 - 1. 44 

se reemplaza en (2) 

174 = 2. 65 + 44  de acá se despeja      44= 174 - 2. 65 

(  

4  

) s

e reemplaza en (3) 

587 = 3. 174 + 65  de acá se despeja   65 = 587 - 3.174 

(  

5 s

)  e reemplaza en (4) 

761 = 1. 587 + 174 de acá se despeja   174 = 587 - 3.174 

se reemplaza en (5) 

(6) 
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1348 = 1. 761 + 587   se despeja   587 = 1348 - 3.761      



se reemplaza en (6) 

(7) 

3457 = 2. 1348 + 761   se despeja   761 = 3457 - 2.1348    y   se reemplaza en (7) 

Luego de efectuar los reemplazos (hágalo...) quedará  1 =  m. (-1348) +  n. 3457  para un  m y  n convenientes. 

EJERCICIO 3.10.26 

Hal ar el máximo común divisor entre los siguientes números: 

a) 5985  y  2520

b) -5985 y  2520

d) 12665 y 55980

e) 2346  y 56901

EJERCICIO 3.10.27 

Sean  a, b y  c números enteros. 

a) Demostrar que si   a . 

 b c   ∧ ( a,  b) = 1  entonces  a c

b) Demostrar que si  p es primo y   p . 

 a b    entonces   p a  ∨  p b 

c) Si en b) saca la hipótesis de primo, qué ocurre? 

d) Demostrar que si   a c   ∧  b c    ∧ ( a,  b) = 1  entonces  a.  b c e) Si en d) saca la hipótesis ( a, b) = 1, qué ocurre?? 

f) Demostrar que si  t  es un entero,  t a   ∧  t b ∧ ( a,  b) = 1  entonces  t =1∨   t = -1

g) Demostrar que (  a, ( b, c) ) = (( a, b),  c). 

Otras  ayuditas: 

Se hará a). 

Como   a . 

 b c  existe   h ∈  tal que   b. c = a. h  (1) 

Además  por propiedad del máximo común divisor: 1 =  k. a + s. b, (2) para enteros  k y  s. 

Multiplicamos (2) por  c a ambos miembros: 

1.  c =  ( k. a + s. b) .   c = k. a. c  + s. b .   c

Reemplazando por (1) y por propiedades de la multiplicación y la suma de enteros: 

 c =  k. a. c  + s. a.h = a. ( k. c + s. h)   

como  k. c + s. h   es un número entero ,  por lo tanto    a   divide a   c. 

Se hará b): 

181

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3



Siendo  p un número primo por ejercicio 3.10.20 para todo  a entero vale que 

 p a   o   (  a, p) = 1 

Como   p . 

 a b , si   p    a    vale que  (  a, p) = 1    y  por a)  se tiene que   p b . 

Para  d) haga algo parecido a como se resolvió a). 

Diofanto de Alejandría (aprox. 250 d.C.) 

Fue uno de los "padres del álgebra" al 

Ecuaciones diofánticas (lineales)

introducir notación simbólica para las 

expresiones algebraicas. Su obra la 

 Aritmética fue de 13 libros, tiene soluciones 

a distintos problemas algebraicos. Precursor 

de la teoría de números. 

Una ecuación de la forma:     . 

 a x + . 

 b y =  c  con    a ∈ ,  b ∈  y  c ∈ Z   es

una  ecuación diofántica de la cual se buscan las soluciones enteras para  x e  y. 

Es interesante cuando tanto  a como  b son no nulos. Así los consideraremos. 

Como  x e  y están a la primera potencia, es por eso que se l ama lineal. 

Una  solución  de la ecuación es un par de enteros (  x ,  y ) de modo que  . 

 a x + . 

 b y =  c

0

0

0

0

♦ PROPOSICION 3.10.28

. 

 a x + . 

 b y =  c  con    a ∈ ,  b ∈  y  c ∈ Z   tiene solución si y sólo si   d c   siendo  d = ( a,  b) Demostración: 

Mostraremos que si    a x  + b y = c  tiene solución  entonces   d c . Sea la solución (x*, y*). 

Por ser  d el máximo común divisor entre  a y  b  sabemos que    d a   y   d b , entonces existen  m y  n enteros tales que  a = d. m    y    b= d. n  (1) 

Reemplazando    (1)    en  la  expresión   a  x*    +  b  y*  =  c,   se  tiene  que       d.m  x*    +  d.n  y*  =  c entonces usando propiedades de las operaciones de los números enteros ya que  x* e  y*  son enteros 

 d. ( m x*   + n y*)  = c  y como  m x* + n y* es  un número  entero  por ser suma y producto  de enteros, tenemos que   d c . 
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Mostraremos ahora que si   d c  entonces   a x  + b y = c tiene solución. 

Por  el  Teorema  de  existencia  y  unicidad  del  máximo  común  divisor,  sabemos  que  existen enteros  m y  n tales que    d = a. m + b. n  (1)    

y  como     d c  por hipótesis,   existe  k entero tal  que     c = d. k  (2) Multiplicando por  k  a ambos miembros de (1) tenemos que 

 d. k = ( a. m + b. n) . k = a .m. k + b. n. k  ,  por lo tanto por (2)  c = a .m. k + b. n. k 

   Siendo  m. k   y   n. k   enteros, por lo tanto l amando  x0 = n. k   y   y0 = m. k   tenemos que existen  

 x0  e  y0   tales que es solución de    a x  + b y = c  

♦ 

♦ PROPOSICION 3.10. 29

Si  . 

 a x + . 

 b y =  c  con    a ∈ ,  b ∈  y  c ∈ Z  tiene solución  entonces tiene infinitas soluciones. 

Demostración: 

Sea   x ,  y  solución de  . 

 a x + . 

 b y =  c 

0

0

Si hubiera otra solución   x ,  y , se cumple que . 

 a x + . 

 b y =  c = . 

 a x + . 

 b y , trabajando con la

1

1

0

0

1

1

igualdad y usando propiedades de las operaciones se tiene 

. 

 a ( x −  x ) = . 

 b (  y −  y )   (1)

0

1

1

0

Sea  d = ( a, b)  entonces   a = d. A   y    b = d. B, con   A y  B enteros coprimos (por un ejercicio anterior), y reemplazando en (1) resulta 

 d. . 

 A ( x −  x ) =  d. . 

 B (  y −  y )     (2)

0

1

1

0

Tenemos por ser  d no nulo y 

anil o de integridad,  que  . 

 A ( x −  x ) =

. 

 B (  y −  y ) . 

0

1

1

0

Esto dice que   A

. 

 B (  y −  y ) , pero como ( A,B)= 1,  A (  y −  y ) , entonces 1

0

1

0

(  y −  y ) = . 

 A k  con  k entero.  (3)

1

0

Por otro lado   B

(

 A x −  x )  pero como ( A,B)= 1,  B ( x −  x ) , entonces 0

1

0

1

( x −  x ) = . 

 B w  con  w entero.   (4)

0

1

Tenemos entonces que (2) resulta: 

 d. . 

 A . 

 B w =  d. . 

 B . 

 A k   por lo tanto  k = w ,  pues  d.A.B =  d.B.A   y  es no nulo. 

Por lo tanto de (3) y (4) se tienen   y =  y + . 

 A k

 x =  x − . 

 B k     (5)

1

0

1

0

Veamos para qué valores de  k  obtenemos una nueva solución: 

Como  . 

 a x + . 

 b y =  c  reemplazando por (5)

1

1
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. 

 a ( x − . 

 B k) + . 

 b (  y + . 

 A k) =  c   entonces . 

 a x − . 

 a . 

 B k + . 

 b y + . 

 b . 

 A k =  c   y como

0

0

0

0

. 

 a x + . 

 b y =  c , haciendo cuentas se tiene que  − . 

 a Bk + . 

 b Ak = 0 . 

0

0

Entonces  . 

 a . 

 B k = . 

 b . 

 A k   y como  a = d. A   y   b = d. B   se tiene que

 d. . 

 A . 

 B k =  d. . 

 B . 

 A k ,  y esto vale para todo valor entero de  k, pues   d. . 

 A B ≠ 0   . 

En  consecuencia,  si   x ,  y   es  solución  de  . 

 a x + . 

 b y =  c     hay    infinitas  soluciones  x ,  y

0

0

1

1

dadas por   y =  y + . 

 A k

 x =  x − . 

 B k   para cualquier valor entero de  k

1

0

1

0

♦ 

EJERCICIO 3.10.30 

Hal e soluciones para las siguientes ecuaciones 

a) 3  x + 4  y = 17

b) 5  x  -  65  y = 25

c) 9  x + 48  y = 81

d) 6  x + 4  y = 17

Dados dos enteros  a  y  b, el entero  m es mínimo común múltiplo de  a y  b si cumple 1)

 m  > 0

2)  a m ∧  b m

3) Si   a m * ∧  b m * entonces  m m * 

Se anota      m = [ a,  b] 

Claramente [ a, b] = [ b, a] 

Existe  un  Teorema  análogo  al  de  la  existencia  del  máximo  común  divisor  que  garantiza  la existencia y unicidad del mínimo común múltiplo entre dos enteros no simultáneamente nulos. 

Para el caso que  a =  0    ó   b = 0 se define  m = 0. 
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EJERCICIO 3.10.31 

. 

 a b

Probar que si  a  y  b son enteros no simultáneamente nulos [ a,  b] =

. 

( a,  b)

Para  determinar  [ a,  b]  se  puede  usar  el  algoritmo  de  Euclides  para  hal ar  ( a,  b)    y  usar  la igualdad anterior. 

EJERCICIO 3.10.32 

a) Justificar que [ a, b] = [  -a, b] = [ a , -b] para todo par de enteros  a y  b. 

b) Si los enteros  a y  b son coprimos, cuánto vale [  a,  b]? 

c) Dados los números enteros  a, b y  c probar que vale [  a, [ b ,c] ] = [ [  a,b] ,  c]

EJEMPLO 3.10.33 

Hal ar el mínimo común múltiplo entre 348 y 144. 

Se hal a (348, 144) =12    (compruebe...) 

348.144

Luego [348, 144] = 

= 4176 

12

EJERCICIO 3.10.34 

Hal ar [-5348, 8932] 

EJERCICIO 3.10.35 

a) Sean   a = 3467 y [ a, b ] = 991562. Determinar  b sabiendo que es coprimo con  a. 

b) Sean [ a, b ] = 5148,  ( a, b) = 6.   Determinar  a  y  b. 

"El" Teorema: Teorema Fundamental de la Aritmética

Este resultado da la descomposición única en factores primos de todos los enteros no nulos y no  unitarios,  permite  caracterizar  a  esos  números  y  por  defecto  da  un  método  para  buscar irracionales (los que no son cociente de enteros). Esas aplicaciones son las que se verán en algunos ejercicios. Las propiedades de los números primos son tan estudiadas (además de por la  curiosidad  natural  de  los  matemáticos  de  todas  las  épocas)  pues  los  enteros  se descomponen de manera única en función de el os. 

Ya ha demostrado que si  p es primo   p . 

 a b    entonces   p a  ∨  p b  , 
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Esta propiedad se puede generalizar a: 

♦ PROPIEDAD 3.10.36

 n

Si  p es primo y   p

 a

entonces (∃i) (1 ≤ i ≤  n  ∧   p a )

∏

, es decir, 

 i

 i

 i  1

=

 si un primo p divide a un producto, entonces p divide a alguno de los factores.  

La demostración de esta propiedad queda como ejercicio (usar inducción). 

♦ TEOREMA: Teorema Fundamental de la Aritmética 3.10.37

Todo  entero  no  nulo  y  distinto  de  1  y  de  -1  es  producto  finito  de  números  primos  y  esa factorización es única salvo el orden. 

(Esto  significa  que  un  número  entero  como  producto  de  números  primos  tiene  los  mismos factores salvo que se ubiquen en distinto orden en esa multiplicación) 

Demostración (idea, Ud. la completa): 

•

Observar  que  basta  probarlo  para  los  naturales  y  luego  justificarlo  para  los  enteros menores que -1. 

•

Como  ejemplo  de  aplicación  del  Segundo  principio  de  inducción  se  demostró  que  todo natural  m ≠  0 y de 1, es producto finito de números primos. 

 m =  p .  p .....  p

1

2

 n

con los  p  primos, para 1 ≤  i ≤  n

 i

•

También  usaremos  el  Segundo  principio  para  probar  la  parte  de  la  unicidad  de  la factorización. 

Si  m = 2  vale que se expresa de manera única. 

Aceptamos que vale para todo entero menor que  m y mayor o igual que 2,  que se expresa de manera única como producto de primos salvo el orden. 

Supongamos que   m =  p .  p .....  p =  q .  q .....  q (1) 

1

2

 k

1

2

 h

con factores primos   p  para 1 ≤ i ≤ k  y factores primos   q  para  1 ≤ j ≤ h . 

 i

 j

Lo que se quiere probar: que los factores de ambos miembros de (1)  son los mismos y que el número de factores también es igual. 

Claramente 

 p

 m =  q .  q ......  q

Por  la  propiedad  3.10.36,  existe  un  factor 

1

1

2

 h

 q  para un   t  con 1 ≤  t ≤  h  tal que

 p

 q    y como es primo   p =  q   Justifique! 

 t

1

 t

1

 t
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Por  lo  tanto  se  pude  cancelar  ambos  miembros  de  la  igualdad  (1)   por    p 1  =  qt , quedando entonces    p .....  p =  q .  q ....  q

2

 k

1

2

 h

En el 2do.miembro 

falta el factor  

Cada miembro es menor que 

 p =  q

 m. (Justifique!). 

1

 t

Concluya Ud. solo la demostración.... 

♦ 

Veamos un ejemplo elemental, es claro que el número 24 = 2. 3. 2. 2 = 3. 2. 2 .2 = ?? . 

Los primos que están en la descomposición de 24 son 2 y 3. 

El  2 está tres veces, por lo cual podemos escribir: 

3

3

24 = 2 .3 = 3.2

Se acostumbra a escribir la descomposición de un número en factores primos escribiendo los 

primos en orden creciente. (Se tienen en la Criba de Eratóstenes) 

Si el número entero es negativo por ejemplo -336, 

336 

2 

168 

2 

se realiza la descomposición de 336 y  luego antepone 

84 

2 

el signo - . 

42 

2 

Para hacer la descomposición 

21 

3 

7 

7 

4

3

− 36 = 2

− .3.7

1 

EJEMPLO 3.10.38 ( reflexión acerca de la factorización) 

Pensemos en positivo y positivos. 

Sea 

 h

 h

 h

 a   un  entero,  por  tanto 

1

2

 a =  p .  p ..... 

 n

 p

esto  significa  que  hay   n  primos  en  la 

1

2

 n

factorización  de  a  y  que  cada  uno  de  el os  se  lo  eleva  a  la  potencia   h  si es que el j-ésimo j

primo se repite   h  veces en la factorización de 

 j

 a. 

Mirar el ejemplo anterior: 

4

4 1 1

336 = 2 .3.7 = 2 .3 .7

Los exponentes que se han puesto en la descomposición del 336 son 4 para el 2, 1 para el 3 y 1 para el 7. Se estará de acuerdo con que también 

4 1 0 1

336 = 2 .3 .5 .7

Para el 336:    

4 para el primo 2 

más aún se podría poner que  

1 para el primo 3 

4 1 0 1

4 1 0 1

0

0

4 1 0 1

0

0

0

336 = 2 .3 .5 .7 = 2 .3 .5 .7 .11 .13 = 2 .3 .5 .7 .11 .13 .17 .?.? 

1 para el primo 7 

0 para cualquier 

otro primo 

187

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

El Teorema Fundamental de la Aritmética nos permite asegurar que para 

cada  entero   a  hay  sólo  un  número  finito  de  primos  que  lo  factoriza,  por  lo  cual  hay  sólo  un número  finito  de  exponentes  no  nulos  que  se  corresponden  con  los  primos  que  "realmente" 

están en la factorización de  a. Además esos exponentes son números naturales y únicos. 

Recordemos que hay infinitos primos. 

Dado el número entero no nulo   a,  para cada primo  p se define 

ν ( ) 

 p a

 = el exponente del primo  p en la factorización de  a. 

Resulta  ν ( ) ≥ 0 :

 p a

ν ( ) 

 p a

 =  0    si  p no está en la factorización de  a. 

ν ( ) > 0

para un número finito de primos 

 p a

 p de los infinitos que existen. 

ν

Con estas definiciones podemos expresar todo entero 

( )

 p a

 a =

 p

∏

 p  primo

Se pueden pensar los primos positivos, si el número  a es negativo se coloca el signo adelante. 

Se conviene 

En esta productoria (infinita) hay un número infinito de factores 1 

que el producto 

(no molestan, dan 1) 

de infinitos 

factores 1 es 1. 

Esa representación aún vale para el 1 y -1. ¿Porqué??? 

Observación: 

ν ( ) es la mayor potencia del primo    que divide a 

 p a

 p

 a ( a no nulo). 

Para   a ≠ 0,  si     h

 p

 a  entonces  h ≤ ν ( a)

 p

EJERCICIO 3.10.39 

Calcular  para  los  números  345,    78973,    -1237    los  valores  ν ( )   para  los  9  primeros p a

números primos positivos, para   a  respectivamente igual a c/u de esos números. 

EJEMPLO 3.10.40 ( reflexión a cerca de la divisibilidad) 

¿Por qué   a divide a  b?  

 a b

si y sólo si

(∃ c)(  c ∈ Z ∧  a.  c =  b)

188

INICIACION A LA TEORIA DE NUMEROS – CAPITULO 3

Pero los números son 

Sigamos pensando en positivo y positivos. 

abstracciones!!! 

Veamos un ejemplo para ver algo concreto…. 

Sean los números   a = 12 = 22 . 3= 22. 31  y    b= 

4

4 1 1

336 = 2 .3.7 = 2 .3 .7 . 

Claramente 12 divide a 336. ¿Porqué es tan claro que existe  c  entero tal que 12.  c = 336? 

12.  c = (22 . 3) . (22 . 7) = 336. 

ν

12 = 2

(12)

2 . 3

 p

 v

 v

 v

 v

2 (12)

3 (12)

5 (12)

7 (12)

1

 v  1(12)

=

 p

= 2

.3

.5

.7

.11

.... 

∏



 p  primo

con infinitos factores 1. 

4 1 1

ν (336)

336 = 2 .3 .7 =

 p

 v

 v

 v

 v

2 (336)

3 (336)

5 (336)

7 (336)

1

 v  1(336)

=

 p

= 2

.3

.5

.7

.11

.... 

∏



 p  primo

con infinitos factores 1. 

Porque  el  12  divide  a  336:  porque  “la  factorización  del  12  está  dentro  de  la  factorización  de 336”. 

Lo que le sobra a 336 respecto de 12 en esa factorización es el entero  c.  

Se pudo evaluar  c  porque para todo primo  p es ν (12) ≤ν (336)

 p

 p

 . 

Con las herramientas de 3.10.38, en general se tiene que 

ν

ν



( )

 p a

 a =

 p

∏

, 

( )

 p b

 b =

 p

∏

, 

 p  primo

 p  primo

Si  a divide a  b, se tiene: para todo primo  p,  ν ( a) ≤ ν ( b)  . De acuerdo??. 

 p

 p

EJERCICIO 3.10.41 

Probar que: ν ( . 

 m n) = ν ( m) +ν ( n)  para enteros no nulos 

 p

 p

 p

 m y  n. 

Verifique lo anterior para enteros concretos. Es decir, mírelo en ejemplos. 

1

2

ν (45)

EJEMPLO 3.10.42 

45 = 3 .5

 p

=

 p

∏

;  p primo 

 p

 Contemos divisores de un número. 

Los divisores positivos de 45 se pueden pensar que se obtienen a partir de las potencias de los primos que lo dividen:  

3 h  45

⇔

0 ≤  h ≤ ν3 (45) = 2
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Por lo tanto el primo 3 aporta como divisores positivos de 45:     0

1

2

3 , 3 , 3 . 

Es decir tres divisores (ν

)

3 (45) + 1 = 2 + 1

5 h  45

⇔

0 ≤  h ≤ ν5 (45) = 1

Por lo tanto el primo 5 aporta como divisores positivos de 45:   0

1

5 , 

5 . 

El 5 aporta dos divisores (ν

). 

5 (45) + 1 = 1 + 1

0

0

Cada divisor determinado por el primo 3, al multiplicarlo por 

=

0

3 .5

1

3 

un divisor determinado por el 5 da un divisor del 45: 

0 1

3 .5 = 5

1 0 =

1

3 .5

3

3 

1 1

3 .5 = 15

por lo cual el número es 3 .2 =  (ν

= 6

3 (45) + )

1 .(ν5 (45) + )

1

2

0

2

3 .5 = 9

3 

2 1

3 .5 = 45

Calcule cuántos divisores enteros. 

EJERCICIO 3.10.43 

a) Calcule el número de divisores positivos de 3458,  de 134890345

b) Calcule el número de divisores de 3458,  de 134890345

c) Calcule el número de divisores positivos de - 3458,  de -134890345

EJERCICIO 3.10.44 

a) Calcule el mínimo común múltiplo y el máximo común divisor entre 24 y -36. 

Use el método que aprendió en su infancia o el algoritmo de Euclides. 

24 2

36 2

b) Idem para los números 456 y 333. 

12 2

18 2

6 2

9 3

3 3

3 3

1

1

3

2

2

24 = 2 .3 36 = 2 .3
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EJERCICIO 3.10.45 

Demostrar que para todo par de enteros no nulos  a y  b vale que 

a) 

 m

 d = ( a,  b)

 p

=

 p

siendo  m = min imo

∏

 p

{ν ( a),ν (

 p

 p b }

)

 p primo

Así lo 

b) 

 s

 m = [ a,  b]

 p

=

 p

siendo s

= max imo

∏

 p

{ν ( a),ν (

 p

 p b }

)

aprendí en 

 p primo

el colegio!! 

Idea  para la  demostración:  para  a)  use  que  d  divide  tanto  a  a  como  a  b  y  las  observaciones hechas en 3.10.40; 

para b) use el hecho que tanto  a como  b  dividen a  m y nuevamente las observaciones. 

EJERCICIO 3.10.46 

a) Exprese 4! como producto de números primos. 

b) Exprese 6! como producto de números primos. 

c) Exprese 7! como producto de números primos. 

d) Exprese 85! como producto de números primos. 

e) Exprese  m! como producto de números primos, para  m no nulo. 

EJEMPLO 3.10.47 

Probar que no existen enteros  m y  n no nulos simultáneamente   tales que  m 3= 3.  n 3 

A esta igualdad la l amaremos (1). 

Para esto aplicaremos el Teorema Fundamental de la Aritmética. 

Sean  m y  n números enteros. 

Observar que para  m = n = 0, se verifica la igualdad (1). 

Supongamos que  m  es distinto de 0 y que también  n  es distinto de 0. 

Supongamos  m = 1. 

Por lo tanto sustituyendo en (1):  1 = 3.  n 3 , como  n 3 es un entero esta igualdad significa que 3 

es invertible en 

, lo que es absurdo (los únicos invertibles son 1 y -1 ). 

Si suponemos que  m = -1. 

Se  tiene  que  (1)  resulta:    -1  =  3.    n 3  ,  y  por  tanto  1=  (-3).    n 3      y  como   n 3  es  un  entero  esta igualdad significa que - 3 es invertible en 

, lo que es absurdo. 

Por lo tanto  m no es 1 ni -1. 

Consideremos  m natural. Si es  m entero negativo, luego multiplicaríamos  por -1. 
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Usando el Teorema Fundamental de la Aritmética,  existen finitos primos tales que 



 h

 h

 m = 

1

2

 k

 h

 p .p .....p

con  k ∈

∧  1 ≤  k ∧  h ≠ 0 para algún  k.. 

1

2

 k

 k

3

 h

 h

 h

 h

 h

 h

 m 3 = 

1

2

 k

3

1 3

( p .p .....p )   =( p )  . p

 ...... p

. 

 k

( 2 )

 k

3

(

)

1

2

1

2

 k

3

Supongamos 

 h

 h

 n = 1, por lo cual (1) significa:   m 3 

1 3

=( p )  . ( 2

 p

)

 k

 h

3

 ..... (

 . p ) = 3 1

 . = 3. 

1

2

 k

Vamos a contar los factores primos de cada miembro de la igualdad. 

En el primer miembro hay  3.( h 1+  h 2+ … +  h k ) factores primos y en el segundo miembro hay 1 

solo factor primo. 

El Teorema dice que los factores son iguales en número y son iguales dos a dos salvo el orden, por lo tanto 3.( h 1+  h 2+ … +  h k ) = 1.   (2) 

Pero   h 1+  h 2+ … +  h k  es un número natural (no nulo), por lo tanto esta igualdad (2)  significa que 3 es invertible, lo que ya hemos dicho que es absurdo. 

Por lo tanto  n no es 1. 

Análogamente si  n = -1, resulta el absurdo que -3 es invertible. 

Por lo cual  n no es 1 ni -1. 

Consideremos  n  natural. Si es  n  entero negativo, luego multiplicaríamos  por -1. 

Luego por el Teorema Fundamental de la Aritmética, existen finitos primos tales que 

 k

 k

 k

  n =  

1

2

 t

 q .q .....q   con  t ∈

∧  1 ≤  t ∧  k ≠ 0 para algún  t. 

1

2

 t

 t

Veamos qué ocurre si se verifica la igualdad  (1): 

3



1

 h

3

( p )  . ( 2

 h

 p

)

 k

 h

3

 ..... (

 . p ) = 3. 

1

 k

3

 k 2 3

 k

3

( q ) (

 . q )  .... (  t

 . q )  

1

2

 k

1

2

 t

El Teorema dice que los factores son iguales en número y son iguales dos a dos salvo el orden, por lo tanto, en el segundo miembro no olvidarse del 3. 

3.( h 1+  h 2+ … +  h k ) = 1 +  3.( k 1+  k 2+ … +  kt )   (3) Por lo cual:           3.( h 1+  h 2+ … +  h k ) - 3.( k 1+  k 2+ … +  kt )  = 1 

3.[( h 1+  h 2+ … +  h k ) - ( k 1+  k 2+ … +  kt )]  = 1  (4) Siendo    ( h 1+   h 2+  …  +   h  k )  -  ( k 1+   k 2+  …  +   kt  )  un  número  entero  (4)  significa  que  el  número entero  3 es invertible, lo que es absurdo 

. 

Por lo tanto  m y  n no pueden factorearse ni ser 1 ó -1. 

Por lo cual sólo vale que sea  m=  n = 0 
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Recordatorio: 

Un número es racional si pertenece al conjunto 



 k





=  a:  a =

∧  k ∈

∧  t ∈

∧  t ≠ 0



 t



Un número es irracional si es un número real pero no racional. 

EJERCICIO 3.10.48 

a) Demuestre que  5  es un número irracional. 

b) Demuestre que   p  es un número irracional para cualquier primo  p. 

c) Demuestre que  21  es un número irracional. 

d) ¿Cómo puede generalizar c)? Justifique su respuesta. 

 m

Idea para la solución: para a): Suponga   5 =

para  m,  n ∈ Z

, eleve al cuadrado y vea 

 n

que se contradice el teorema Fundamental de la Aritmética. 

De manera similar a lo realizado en el 3.10.47. 

Para las otras partes es análogo. 

EJERCICIOS 3.10.49 

1) Sean  a, b y  c números enteros. Probar: Si   a b ∧  a c   a b +  c ∧  a b −  c 2) Sean  a, b  y  c números enteros. Analizar la validez de:

a) Si   a b +  c   a b ∨  a c

b) Si   a b ∧  c b   ac b  

3) Sean  n  y  m números naturales. Probar:  n es par si y sólo si  nm  es par. 

4) Si   n ∈ , determinar si son o no par los siguientes números: 

2

3

3 n   +  1,  n( n  +  1),  n   -   . 

 n

5) Sean   a ∈ ,  b ∈ ,  b ≠ 0 . Si  a - b = 175 y la división de  a por  b tiene cociente 13 y resto 7, Hal ar  a y  b. 
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6) Hal ar el resto de dividir  x por 42 en los siguientes casos: (  a ∈

)

a)  x = a.42 + 86

b)  x = a.42 - 61

3)  x = a.42 + 11

4)  x = a.42 – 10

7) Sean  a y  b dos números enteros que tienen restos 5 y 8, respectivamente, en la división por 13. Hal ar los restos de la división por 13 de los siguientes enteros:

a)  5a - 4b

b)  a + b2

c)  (26b2 - 39a2)50

8) a) Si a un número se lo divide por 4, el resto es 2 y si se lo divide por 3, su resto es 1. ¿Cuál es el resto si se lo divide por 12? 

b) El resto de la división de un número por 7 es 2; si se lo divide por 3, su resto es 1. ¿Cuál es el resto si se lo divide por 21? 

9) Probar que si  a es número entero

a) ( a, 1)  = 1

b) ( a,  a) =  a

10) Si  p es primo y siendo  a entero cualquiera, calcular ( a, p). 

11) Determinar cuáles de los siguientes enteros son primos: 91, 307, 1001. 

12) Calcular ( a, b) y expresarlo como combinación lineal entera de  a y  b, siendo: a)  a = 47 ,  b = 10

b)  a = 352,  b = 16

c)  a = 12001,  b = -12002

13) Sean   a ∈  y  b ∈ . Calcular:

a) ( a + 1,  a)

b) ( a,  a. b + 1)

14) Calcular [ a, b] en los siguientes casos:

a)  a = 1,  b = 384

b)  a = 4,  b = -4

c)  a = 284,  b = -13
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15) Encontrar todos los números enteros  a y  b que verifican simultáneamente: ( a, b) = 54 

[ a, b] = 810 

16) Sean   a ∈ ,  b ∈   y   c ∈

, demostrar:

a) Si ( a, b) = 1  entonces  ( a, a + b) = 1

b) Si ( a, b) = 1 entonces ( a, b. c) = (a, c)

17) Probar:

a) 29 no es divisor de 730 + 732

b) 33 es divisor de 1111 + 1112

18) Probar que hay dos únicos primos pares. 

19) Hal ar el resto de dividir  a por  b en los siguientes casos: (usar binomio de Newton). 

a)  a = 438 + 1 ,  b = 3

b)  a = 41010101,  b = 5

c)  a = 932,  b = 7

d)  a = 655 + 1,  b = 7

20) ¿Son primos los siguientes números? Justifique su respuesta. 

a) 46104 - 1

b) 1000501 - 4

21) Si  m y  n  son enteros de igual paridad, probar que  m2 - n2   es múltiplo de 4. 

22) Si  r y  q son impares, probar que  r3 -  q3  es par, pero no múltiplo de 4. 

23) Demostrar que no existen enteros  m  y  n no nulos tales que  m2 = 2 . n2

24) i)¿Cuál es el menor entero positivo que admite exactamente 6 divisores? 

i ) Hal ar   m ∈

con exactamente 10 divisores. 

i i) Hal ar   m ∈

con exactamente 25 divisores POSITIVOS y solo uno de el os primo. 

25) Hal ar el menor entero positivo  q tal que 6552  q es un cuadrado. 

26) Determinar el conjunto de soluciones enteras de las siguientes ecuaciones:

a)  5x + 8y = 3

b)  24x + 14y = 7

c)  20x + 16y = 36
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CAPITULO 4 

Relaciones y funciones. Operaciones 

1. Introducción

Al igual que en capítulos anteriores, vamos a seguir trabajando con algunas situaciones que se presentan  en  la  vida  diaria  y  en  situaciones  más  formales.  La  idea  es  mirar  algunos  ejemplos  y luego  abstraer  de  el os  algunos  aspectos  que  permitan  generalizar  esas  situaciones,  para  luego según sea el caso particular volver a usar las definiciones generales. Este es el camino constante del trabajo matemático. 

Para el desarrol o de este tema, relaciones , tendrá aplicación todo lo visto y algo más. 

Comenzamos, como se dijo, con ejemplos. 

EJEMPLO 4.1. 1 

A cada ciudadano de la República Argentina le corresponde un D.N.I. que le asigna un número de matrícula. 

A cada butaca de los cines le corresponde un par de números (uno por fila y otro por butaca de esa fila). 

A cada asiento de los aviones un par de elementos: un número de fila y una letra para cada butaca de esa fila. 

A cada auto se le asigna una patente distinta de tres letras y tres números. 

Hay otro tipo de asignaciones que son menos exigentes, cuando no se requiere una identificación. 

EJEMPLO 4.1.2 

Asignar: 

1   A cada persona el número de hijos. 

2  A cada persona en un momento de su vida su edad. 

3  A cada persona en un momento de su vida su peso. 

Está claro que puede haber personas distintas con igual número de hijos, edad o peso. 
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

¿Qué tienen en común ambos ejemplos? 

A los elementos de un conjunto le asignamos elementos de otro conjunto. 

Una manera usual de visualizar estas asignaciones es 

por medio de un diagrama de flechas. La flecha tiene 

origen en un elemento de un conjunto y final  en el 

elemento que le es asignado en el otro conjunto. 

 y

 x

EJEMPLO 4. 1. 3 

Asignar a cada escritor el número de los libros que ha escrito ( i)) ; 

otra asignación distinta es a cada escritor el título de cada uno de sus libros (i )) y 

otra diferente es a cada escritor el conjunto de libros escritos por él (i i)) 

Para estos casos podemos representar algunos casos: 

i) 

Busque estos 

Cortázar    →     n 

números, por 

Sarmiento →     m 

ejemplo en 

............................. 

Wikipedia 

i ) 

Sarmiento  →  Facundo  

Sarmiento  →  Recuerdos de Provincia 

............................................................ 

Sarmiento  → Viajes 

Cortázar     →  Rayuela 

Cortázar     → Los Premios 

................................................................ 

Cortázar     → Bestiario 

.................................................................. 

¿Cuál es tu autor 

favorito?   Hace lo 

mismo. 
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i i) 

Rayuela 

Cortázar 

........... 

Los 

Cortazar 

→ 

premios 

............. 

Facundo 

Sarmiento 



.............. 

→ 

Viajes 

............ 

Escriba más ejemplos de estas asignaciones. 

EJEMPLO 4. 1. 4 

1. 

A cada persona su padre. 

2. 

A cada persona su padre y su madre. 

3. 

A cada persona su hijo o hija. 

Algunos elementos del diagrama de flechas para estas asignaciones: 

1. 

Abel 

→ 

Adán 

Caín 

→ 

Adán 

Merceditas     → 

José de San Martín 

Manuela 

→      Juan Manuel de Rosas 

Dominguito    → 

Domingo F. Sarmiento 

2. 

Caín      →   Adán, Eva 

Abel       →   Adán, Eva 

Edipo     →   Laio, Yocasta 

Merceditas     → 

José de San Martín, Remedios de Escalada 
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Manuela         → 

Juan Manuel de Rosas, Encarnación Ezcurra 

Dominguito    → 

Domingo F. Sarmiento, Benita Martínez 

3. 

Adán    →  Abel 

Adán    →  Caín 

Eva      → 

Caín 

Eva      → 

Abel 

José de San Martín  →      Merceditas 

¿Cuál es tu familia 

Remedios de Escalada  →  Merceditas 

o conocidos? 

Escriba más ejemplos de estas asignaciones. 

Otra manera de visualizar estas asignaciones es por medio de tablas. 

Se fabrica una tabla disponiendo filas y columnas. 

Las columnas serán dos:  

En la primera "las entradas" y en la segunda "las salidas". 

Esto es, en la primera columna un elemento y  

  entrada 

 salida 

en la segunda el elemento que le corresponde por la asignación. 

 x 

 y 

¿Y cuántas filas tendrá? 

Tendrá tantas filas como elementos sean los que tienen asignación. 

Por el o en casi todos los casos será una representación parcial. 

Para los ejemplos anteriores, pasemos a tabla la asignación. Está claro que en el os no podremos poner todas las filas, sería algo cansador. 

Para el EJEMPLO 4. 1.2, la tabla en el apartado: 

3.A cada persona en un momento de su vida su peso. 

PERSONA  El PESO a los 13 Años (en kg) 

José Pérez 

30 

María Rucci 

42 

Pedro Soler 

34,5 
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Ud. ponga algunas filas más…… 

Las tablas para el 4.1.3: (recuerde de agregar más filas) 

(i) 

ESCRITOR  NÚMERO de LIBROS que ha escrito 

¿Buscó estos 

Cortázar 

N 

números,  por 

Sarmiento 

M 

ejemplo en 

Wikipedia? 

(i ) 

ESCRITOR 

TITULOS de LIBROS que ha escrito 

Sarmiento 

Facundo 

Sarmiento 

Recuerdos de Provincia 

Sarmiento 

Viajes 

Cortázar 

Rayuela 

Cortázar 

Los Premios 

Cortázar 

Bestiario 

(i i) 

ESCRITOR 

CONJUNTO de LIBROS que ha escrito 

Sarmiento 

{Facundo, Recuerdos de Provincia, Viajes,...} 

Cortázar 

{Rayuela, Los Premios, Bestiario, ...} 

Para el EJEMPLO 4.1.4.  Ud. ponga algunas filas más en cada caso: 

 1. 

Persona 

 El Padre (de la persona) 

Abel 

Adán 

Caín 

Adán 

Edipo 

Laio 

Merceditas 

José de San Martín 

Manuelita 

Juan Manuel de Rosas 

Dominguito 

Domingo F. Sarmiento 
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2. 

Persona 

 El Padre y la madre (de la persona) 

Abel 

Adán, Eva 

Caín 

Adán, Eva 

Edipo 

Laio, Yocasta 

Merceditas 

José de San Martín, Remedios de Escalada 

Manuelita 

Juan Manuel de Rosas, Encarnación Ezcurra 

Dominguito 

Domingo F. Sarmiento, Benita Martínez 

3. 

Persona 

Hijo o hija (de la persona) 

Adán 

Abel 

Adán 

Caín 

Eva 

Abel 

Eva 

Caín 

Yocasta 

Edipo 

José de San Martín 

Merceditas 

Paula Albarracín 

Domingo F. Sarmiento 

EJERCICIO 4. 1.5 

Más asignaciones: 

1. A cada club de fútbol los jugadores de su primer equipo. 

2. A cada jugador de fútbol su club. 

3. A cada número entero sus múltiplos. 

4. A cada número entero sus divisores. 

5. A cada número natural sus múltiplos. 

6. A cada número natural sus divisores. 

Para  estas  asignaciones  haga  un  esquema  similar  a  los  dados  en  los  ejemplos  anteriores, diagrama de flecha y tabla (para algunos casos....). 

 Todas las asignaciones tienen en común lo siguiente: relacionan objetos de dos conjuntos y según una determinada ley. 

Los conjuntos relacionados no tienen porque ser distintos. 

Vamos a formalizar nuestros comentarios con algunas definiciones. 
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2. Definiciones Básicas

Dados dos conjuntos  A y  B l amamos producto cartesiano de  A por  B y lo anotamos  A ×  B 

al conjunto determinado por:  

  A ×  B = {( a, b)  : a∈ A  ∧  b∈  B }  

En  A ×  B están todos los pares ordenados con primer elemento en el conjunto  A y segundo elemento en el conjunto  B. 

( u, w) 

primer elemento ó primera componente    

↵      ↓

segundo elemento ó   

segunda componente

Dos  pares  son  iguales  si  y  sólo  si  tienen  respectivamente  igual  primera  y  segunda componente: 

( a , b)  = ( c , d)    si y sólo si   a = c  ∧    b = d Nota: La definición rigurosa de par ordenado está dada por: 

( a, b) =  {

{ }

 a ,{ a, }

 b }

A partir de esta definición resulta que vale la condición de la igualdad, sin haber visto la noción de orden. 

Su demostración la puede ver por ejemplo, en el libro de Lia Oubiña,  Teoría de Conjuntos. 

EJEMPLO 4.  2.1: 

a)  A = {2 , 3 } ;  B = {0 , 2 }

 A ×  B = {  (2, 0) , (2, 2), (3, 0),  (3, 2)  }

b)  A = { a ,b} ;  B = {  -2 }

 A ×  B = { ( a, - 2) , ( b, -2)  } 
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El producto cartesiano  se 

distribuye en las otras 

c) Propiedades del producto cartesiano:

operaciones de 

Sean  A, B, C y  D conjuntos cualesquiera

conjuntos!!!! 

1. ( A×  B) ∪ ( C ×  B) = (  A ∪  C) ×  B

Recordatorios:  En Conjuntos 

2. ( A×  B) ∩ ( C ×  B) = ( A ∩  C) ×  B

• E = F si y sólo si    E ⊆  F ∧  F ⊆  E

3. ( A×  B) ∪ ( A×  C) =  A× ( B ∪  C)

4. ( A×  B) ∩ ( A×  C) =  A× ( B ∩  C)

•  E ⊆  F :  u ∈  E  entonces  u ∈  F

5. ( A×  B) − ( C ×  B) = ( A −  C) ×  B

•

6. ( A×  B) − ( A×  C) =  A× ( B −  C)

 v ∈  E ∪  F  si y sólo si ( v ∈  E ∨  v ∈  F ) 7. Si   X ⊆ , 

 A  entonces  X ×  B ⊆  A×  B

8. Si

•

 Y ⊆  B,  entonces  A×  Y ⊆  A×  B

de 1. y 3.:

 v ∈  E ∩  F  si y sólo si ( v ∈  E ∧  v ∈  F ) 9. ( A×  B) ∪ ( C ×  D) = ( A ∪  C) × ( B ∪  D)

•

de 2. y 4.:

10. 

 v ∈  E −  F  si y sólo si ( v ∈  E ∧  v ∉  F ) (  A ×  B) ∩ ( C ×  D) = (  A ∩  C) × ( B ∩  D) 11. 

En Lógica 

∅ ×  B =  A × ∅ = ∅ (usar bien Lógica!!!)

12. Sean   A×  B =  C ×  B ∧  B ≠ ∅ entonces  A =  C

• (  p ∧  q) ∨  r ⇔ (  p ∨  r) ∧ ( q ∨  r)

• (  p ∨  q) ∧  r ⇔ (  p ∧  r) ∨ ( q ∧  r) Demostraremos algunas. 

• (  p ∧  q) ∧  r ⇔ (  p ∧  r) ∧ ( q ∧  r) Para 1.: 

Sea    ( x,  y) ∈ ( A×  B) ∪ ( C ×  B)  por definición de unión resulta  ( x,  y) ∈  A×  B)  ∨  ( x,  y) ∈ C ×  B

de la definición de producto cartesiano se tiene que  ( x ∈  A ∧  y ∈  B)  ∨  ( x ∈ C ∧  y ∈  B) por propiedades de la Lógica :  ( x ∈  A  ∨   x ∈ C) ∧  y ∈  B , entonces por definición de unión resulta    x ∈  A ∪  C ∧  y ∈  B  y por definición de producto cartesiano  ( x,  y)∈ ( A ∪  C) ×  B . 

Hasta ahora:  ( A×  B) ∪ ( C ×  B) ⊆ ( A ∪  C) ×  B . 

Para la otra contención también hacemos especulaciones similares pero cambiando un poco el 

orden de las mismas. 

Sea  ( x,  y) ∈ ( A ∪  C) ×  B entonces por definición de producto cartesiano  x ∈  A ∪  C ∧  y ∈  B  

de la definición de unión resulta  ( x ∈  A  ∨   x ∈ C) ∧  y ∈  B  por propiedades de la Lógica: ( x ∈  A ∧  y ∈  B)  ∨  ( x ∈  C ∧  y ∈  B) y por la definición del producto cartesiano sale: ( x,  y) ∈  A×  B  ∨  ( x,  y) ∈  C ×  B) , nuevamente por definición de unión es ( x,  y) ∈ (  A ×  B) ∪ ( C ×  B) . 

Y así tenemos:  ( A ∪  C) ×  B ⊆ ( A×  B) ∪ ( C ×  B) 203
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Luego vale al igualdad propuesta en 1.. 

Para 4.:   

Sea ( x,  y) ∈ ( A×  B) ∩ ( A×  C) por definición de intersección sale  ( x,  y) ∈  A×  B  ∧  ( x,  y) ∈  A×  C  

ahora por la definición de producto cartesiano se tiene que  ( x ∈  A ∧  y ∈  B)  ∧  ( x ∈  A ∧  y ∈ C) por propiedades de la Lógica :   x ∈  A ∧ (  y ∈  B ∧  y ∈ C) , entonces por definición de intersección resulta    x ∈  A ∧  y ∈  B ∩  C  usando la definición de producto cartesiano  ( x,  y)∈  A× ( B ∩  C) . 

Hasta ahora:  ( A×  B) ∩ ( A×  C) ⊆  A× ( B ∩  C) . 

Para la otra contención también hacemos especulaciones similares pero cambiando un poco el 

orden de las mismas. 

Sea ( x,  y)∈  A× ( B ∩  C) por definición de producto cartesiano sale   x ∈  A  ∧   y ∈  B ∩  C  

ahora por la intersección se tiene que   x ∈  A ∧ (  y ∈  B  ∧   y ∈ C)  por propiedades de la Lógica: ( x ∈  A ∧  y ∈  B) ∧ (  x ∈  A ∧  y ∈  C) , entonces por definición de producto cartesiano  resulta ( x,  y) ∈  A×  B ∧ ( x,  y) ∈  A ×  C  usando la definición intersección  ( x,  y) ∈ (  A ×  B) ∩ (  A×  C) . 

Así llegamos:   A× ( B ∩  C) ⊆ (  A×  B) ∩ (  A×  C) . 

Recordatorio: 

Luego vale al igualdad propuesta en 4.. 

En Lógica 

 p ∨  q

Ahora alguna que se tenga de diferencia entre conjuntos. 

∼ q

Para 5.: 

regla de deducción S.D. 

 p

Sea  ( x,  y) ∈ ( A×  B) − ( C ×  B) aplicando definición de diferencia, ( x,  y) ∈ (  A ×  B) ∧ ( x,  y) ∉ ( C ×  B) Es así que   ( x,  y) ∈ ( A×  B)∧ ∼ (( x,  y)∈ ( C ×  B)) usando la definición de producto cartesiano es ( x ∈  A ∧  y ∈  B) ∧ ∼ ( x ∈  C ∧  y ∈  B) . Por propiedad de la Lógica, resulta ( x ∈  A ∧  y ∈  B) ∧ (∼ (  x ∈ C)∨ ∼ (  y ∈  B)) lo que significa:  ( x ∈  A ∧  y ∈  B) ∧ ( x ∉  C ∨  y ∉  B) por propiedades lógicas:  (( x ∈  A ∧  y ∈  B) ∧  x ∉ C) ∨ (( x ∈  A ∧  y ∈  B) ∧  y ∉  B) luego también Lógica: (( x ∈  A∧  x ∉ C) ∧  y ∈  B)) ∨ ( x ∈  A ∧ (  y ∈  B ∧  y ∉ ) B )

¡Atención!!! Que ocurre con el segundo conyunto del segundo disyunto: es una contradicción. 

Por lo cual el segundo disyunto no se puede dar. Por regla válida de deducción, se da el 

primero:  

(( x ∈  A∧  x ∉ C) ∧  y ∈  B)) es decir que por definición de diferencia   x ∈  A−  C ∧  y ∈  B , por lo cual por producto cartesiano se tiene:  ( x,  y) ∈ ( A−  C) ×  B

Hasta ahora resulta:  ( A×  B) − ( C ×  B) ⊆ (  A −  C) ×  B
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Falta la otra contención. Sea  ( x,  y) ∈ ( A −  C) ×  B , usando definición de producto cartesiano se obtiene   x ∈ (  A −  C) ∧  y ∈  B , por  la definición  de diferencia es  ( x ∈  A ∧  x ∉ C) ∧  y ∈  B  usando equivalencia  lógica,  ( x ∈  A ∧  y ∈  B) ∧ ( x ∉ C ∧  y ∈  B) .  Para  que  un  par  este  en  un  producto cartesiano  de  conjuntos,  la  primera  componente  debe  estar  en  el  primer  factor  y  la  segunda componente debe estar en el segundo factor (ambas condiciones. Sino no está!!!!! ). 

Luego  ( x,  y) ∈  A×  B ∧ ( x,  y) ∉ C ×  B ,y por definición de diferencia queda ( x,  y) ∈ (  A ×  B) − ( C ×  B)  

Resulto en este caso que  ( A −  C) ×  B ⊆ ( A×  B) − ( C ×  B) Por tanto ambas contenciones nos han demostrado la igualdad propuesta en 5.. 

Para 12.: 

Recordatorio: 

Hay que probar que  A = C, con algunas hipótesis. 

 p ∧  q  regla de 

 p

Las hipótesis se usarán en la situación oportuna. 

simplificación S 

Sea   x ∈ . 

 A  Como  B ≠ ∅,  existe en  B algún elemento , 

por ejemplo   b ∈  B,  luego existe ( x,  b)∈  A×  B  y como   A×  B =  C ×  B se tiene que ( x,  b)∈ C ×  B . 

Es entonces por definición del producto cartesiano   x ∈ C ∧  b ∈  B . Y por simplificación   x ∈ C. 

Es decir así resulta que   A ⊆  C . 

De similar manera se prueba que   C ⊆ . 

 A . Por tanto se tiene la igualdad propuesta. 

EJEMPLO 4. 2.2 

Como caso particular de producto tenemos:  

  A = B =

(conjunto de los números reales)  

×

= {( , 

 a )

 b :  a∈

∧  b∈ }

Que por analogía con las operaciones dentro de los números se anota también: 

2

×

=

Este es el ejemplo motivador de la definición general. 

Se acostumbra a representar  2   como los puntos en un plano - que es un espacio 

bidimensional -  asociándolos a pares de números reales  de manera 1 a 1 (a un punto del plano un par de números reales y recíprocamente). 

Para representar puntos en un plano mediante pares de números, elegimos dos rectas que se 

intercepten y establecemos una escala en cada una de el as - cada recta es una "recta real", cada  uno  de  sus  puntos  está  en  correspondencia  con  un  número  real  -  como  vemos  en  la figura 
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 eje y 

  Py     b 

  P(a, b) 

  eje x 

  a   P x 

 a es la coordenada sobre el  eje x del punto  P, y  b es la coordenada sobre el  eje y del punto  P 

El punto de intersección de las rectas es el origen del sistema. 

Estas  dos  rectas  se  l aman  ejes  coordenados,  y  se  diferencian  mediante  símbolos,  que normalmente son las letras  x e  y. 

En el caso que las rectas sean perpendiculares, se dice que el sistema es ortogonal. 

Se l ama plano Cartesiano  (sinónimo de plano coordenado)  

al plano en el que se ha introducido un sistema de referencia que asigna 

a cada punto sus coordenadas 

Para  un  punto  dado   P  en  el  plano,  corresponde  un  punto   Px  en  el  eje   x.  Es  el  punto  de intersección del eje  x  con la recta que contiene  P    y es paralela al eje  y. (Si  P está en el eje  y, esta recta coincide con el eje  y) 

Igualmente, existe un punto  Py en el eje  y, que es el punto de intersección de ese eje y la recta que pasa por  P que es paralela al (o que es el) eje  x. 

Las  coordenadas  de  esos  puntos  ( Px  y   Py)  en  los  ejes  son  las  coordenadas  de   P.   La coordenada sobre el eje  x se llama abscisa y la definida sobre el eje  y, se le dice ordenada.   

Comentarios importantes sobre el plano cartesiano y su representación. 
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En un plano coordenado se acostumbra utilizar las  siguientes convenciones: 

•Los ejes son perpendiculares entre sí. 

•El eje  x  es una recta horizontal con sus coordenadas positivas hacia la derecha del origen, y el eje  y  es una recta vertical con sus coordenadas positivas arriba del origen. 

•Se usa la misma escala en ambos ejes. 

Naturalmente,  no  es  indispensable  apegarse  a  estas  convenciones  cuando  haya  otras  que sean más cómodas. 

Con  frecuencia  se  viola  la  tercera,  cuando  se  trabaja  con  figuras  cuyo  trazo  podría  ser  muy difícil si insistiéramos en usar la misma escala en ambos ejes.  En esos casos podremos usar libremente escalas distintas, sin olvidar que con el o distorsionamos la figura. 

Nótese que todos los puntos en el eje  x tienen ordenada cero, mientras que los que están en el eje  y tienen abscisa cero. 

El origen tiene sus dos coordenadas iguales a cero, porque está en ambos ejes. 

  PLANO COORDENADO 

 Segundo 

 Primer 

 cuadrante 

 cuadrante 

 Tercer 

 Cuarto 

 cuadrante 

 cuadrante 
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Los ejes dividen al plano en cuatro regiones, que se l aman cuadrantes, los cuales conviene identificar con los números que se muestran en la figura. 

En el primer cuadrante abscisa y ordenada positivas. ( x > 0 ;  y > 0) 

En el segundo cuadrante abscisa negativa y ordenada positiva. ( x < 0 ;  y > 0) En el tercer cuadrante abscisa y ordenada negativas. ( x < 0 ;  y < 0) 

En el cuarto cuadrante abscisa positiva y ordenada negativa. ( x > 0 ;  y < 0) Los puntos que están en esos ejes no están en ningún cuadrante. 

Nota histórica: A las coordenadas de un punto determinadas de esta manera, con frecuencia se  les  l ama  coordenadas  cartesianas,  en  honor  al  matemático  y  filósofo  francés  René Descartes (1596-1650), que utilizaba Cartesius como seudónimo.  En el apéndice de un libro publicado  en  1637  (el  “Discours  de  la  Méthode  pour  bien  conduire  sa  Raison  et  chercher    la Vérité  dans  les  Sciences”)  Descartes  presentó  la  primera  descripción  de  la  Geometría Analítica. 

A partir de al í vinieron grandes avances en la Matemática que condujeron entre otras cosas, a la invención del cálculo infinitesimal. 

En el “Discours”    Descartes presenta un programa para sistematizar el conocimiento aceptado, que permitiría construir un edificio de verdades sobre claros y ciertos principios. Uno de esos principios es el conocido: "  Pienso, luego existo" 

Para representar  A ×  B,  si  A ⊆   

y  B ⊆

 ,  es decir  A y  B son subconjuntos de

,    también 

se representa sobre un sistema de ejes coordenados,  A  como subconjunto en el eje horizontal y  B  como subconjunto en el eje vertical. 

EJEMPLO 4.2.3: 

1)

 A = [ 1

− , 0 ) = { x ∈

: 1

− ≤  x < }

0       B = ( − 2, 3) = { x ∈

: 2

− <  x < 3 }
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El conjunto    A ×  B = [ 1

− , 0) × ( 2

− , 3) es una 

región del plano encerrada por los 

segmentos dibujados. 

Se han dibujado con líneas punteadas rojas 

a los segmentos que no pertenecen al 

conjunto y con línea llena el segmento que 

pertenece al conjunto 

2)  A = [ -1, 0 )

 B = [ -2, 3 ) 

El conjunto    A ×  B = [ 1

− , 0) ×[ 2

− , 3) es una 

región del plano encerrada por los 

segmentos dibujados. 

Se han dibujado con líneas punteadas rojas 

a los segmentos que no pertenecen al 

conjunto y con línea llena los segmentos 

que pertenece al conjunto 
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3)  A = [ 1, 2 )

 B = (  0, 1 ) 

El conjunto    A ×  B = [ 1

− , 0) ×[ 2

− , 3) es 

una región del plano encerrada por los 

segmentos dibujados. 

Se han dibujado con líneas punteadas 

rojas a los segmentos que no pertenecen 

al conjunto y con línea llena los 

segmentos que pertenece al conjunto 

4)  A = [ 1, 2 ]

  B = { 0, 1} 

El conjunto    A ×  B = [1, 2]×{0, }

1

es una región del plano. 

Son dos segmentos. Se dibujaron 

los puntos del conjunto  con línea 

llena. 
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EJERCICIO 4.2.4 

1. Represente en el plano coordenado los siguientes conjuntos:

a) [3,5]  × ( 3

− ,5]

b) (-2,1) × ( 3

− ,5]

c) [2,6)  × [3,6]

d)

( 3

− ,5]× (1, 4)

e)

× (1, 4)

f)

(1, 4) ×

2. Hal e un punto  P del plano tal que:

a)  P no pertenezca al conjunto dado en 1.b)

b)  P pertenezca al conjunto dado en 1.c)

c)  P  no pertenezca al conjunto dado en 1.f)

d) Hal ar la intersección y la unión de las regiones dadas en a) y en b) y represente. 

e) Hal ar la intersección y la unión de las regiones dadas en e) y en f) y represente. 

Ya se tiene lo necesario para una definición general de las situaciones que se han visto en la Sección 1 de este Capítulo. 

Una relación  R (binaria) del conjunto  A en el conjunto  B es un subconjunto de  A ×  B. 

Por ser  R 

Por ser  R subconjunto de  A ×  B,  R es un conjunto de pares ordenados. 

conjunto de 

pares 

EJEMPLO 4.2.5 

ordenados la 

1. Sean  A = B = conjunto de seres humanos masculinos. 

relación es 

a)  P = {( x, y) : y es el padre de  x}  ⊆  A×  B

binaria  

b)  H = {( x, y) :  y es el hijo de  x}  ⊆    A×  B

2. Sean    A = conjunto de escritores. 

 B = conjunto de novelas de la literatura universal. 

 E = {( x, y):   x escribió  y }  ⊆    A×  B 

3. Sean   A = conjunto de los ciudadanos argentinos

  B = N 

 I = {( x, y) : y es el número de documento nacional de identidad de  x} 
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RELACIONES Y FUNCIONES – CAPITULO 4 

Para referirse a que el par  ( x , y) está en  R diremos: 

 x está relacionado según  R con   y 

o 

 y es el correspondiente por  R de  x. 

       R = {  ( x , y) :  x R y }  

( , 

 x y)∈  R  ó  x R y   expresan simbólicamente que   x está relacionado según  R con  y 

 A 

  B 

  Es claro que una relación  R puede 

ser subconjunto de diferentes 

productos cartesianos. 

 x 

 y   xRy, uRy 

Se entiende que si decimos: 

       la relación  R de  A en  B 

 w 

 z  wRz, uRz 

hemos fijado    A y  B. 

 u 

 v 

Dada la relación  R de  A en  B,  el 

 t 

dominio de  R es el  subconjunto de 

 A  tal que sus elementos tienen 

correspondientes por  R; 

el conjunto de valores de  R o 

imagen por  R es el  subconjunto 

Escrito por comprensión, para la relación  R de  A en  B 

       

 de      

 B          

cuyo       

s el        

eme    n          

tos s         

on     

dom (R) ={ x ∈  A : ( x,  y) ∈ }

 R  

correspondientes por  R. 

imagen (R) = { y ∈  B : ( x,  y) ∈ }

 R  

 Más definiciones con coincidencias!!!! 

Dada una relación  R de A en B 

Llamamos proyección 1 de la relación  R al conjunto de las primeras componentes de los pares de  R y lo notamos   Pr  R {

=  x∈ :

 A (∃ )

 y (  y B

∈ ∧( , 

 x )

 y ∈ )

 R } 

1

Llamamos proyección 2 de la relación  R al conjunto de las segundas componentes de los pares de  R y lo notamos  P 2

r  R {

=  y∈ :

 B (∃ )

 x ( x∈ A∧( , 

 x )

 y ∈ )

 R }

Estos nombres de proyecciones, están asociados a la idea de la 

2

representación de las relaciones en plano 

y su notación usual en

coordenadas. La proyección 1 seria “aplastar”  el conjunto relación sobre 

el eje horizontal y la p

212 royección 2 , “aplastar” sobre el vertical….. 

[image: Image 1999]

RELACIONES Y FUNCIONES – CAPITULO 4 

•

Observar que las proyecciones se corresponden con la definición de dominio de  R

e Imagen de  R, para cualquier relación independientemente que se represente en  2

EJEMPLO 4.2.6 

Sea  R = { (-1, 2), (3, 4), (2, -2), (3, 1) } ⊆

×

Entonces: 2 es el correspondiente  por  R  de -1;  4 es el correspondiente por  R  de 3; -2 es el correspondiente por  R  de 2; 3 es el correspondiente por  R  de 1. 

Como el conjunto de partida y de l egada (  y   respectivamente) son subconjuntos de

, la 

relación admite una  representación en un sistema de coordenadas cartesianas: 

Los pares ordenados de 

 R  son los puntos  del 

plano representados en 

el diagrama adjunto. 

En este caso  Pr  R = {−1, 2,3}  y   Pr  R = { 2

− , 1, 2, 4} 

1

2

EJEMPLO 4. 2.7 

Para los conjuntos  A = { -1, 0, 1, 2} y  B = {-2, -1, 0, 1, 2, 3, 5, 9} 

Sea   R = { (2, 3), (1, -2 ) , (2, 5), (0, -2), (1,1) ,(2,1) } 

En este caso  Pr  R = {2,1, 0}   y   Pr  R = { 2

− , 1, 3, 5} 

1

2

Haga Ud. el diagrama cartesiano. 
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EJERCICIO 4. 2.8 

I. Para cada uno de los casos de 4.2.5: 

a)

De cinco pares que estén en la relación. 

b)

De tres pares que no estén en la relación. 

c)

Haga una tabla (parcial) con los pares elegidos en a). 

II. Para cada uno de los casos presentados en 4.1.2 , 4.1.3 , 4.1.4  y 4.1.5

a)

Determine conjuntos  A y  B para los que esté definida la relación.  ¿Son únicos  A y  B ? 

Elija un  A y un  B. 

b)

De cinco pares que estén en la relación. 

c)

De tres pares que no estén en la relación. 

d)

Haga una tabla (parcial) con los pares elegidos en b). 

e)

Haga un gráfico cartesiano en los casos posibles. 

EJERCICIO 4.2.9 

Dadas las siguientes relaciones del conjunto  A = { -1, 0, 1, 2} en  B =  Z 

 R 1 = { (2, 3), (1, -2 ) , (2, 5), (0, -2) } 

 R 2 = { (-1, 3), (0, 3 ) , (2, 3), (1, 3) } 

 R 3 = { (-1, 2), (0, -8 ) , (1,4) } 

 R 4 = { (1, 2), (0, -3 ) , (2, 10), (-1, 10) } 

a) Representarlas en el plano coordenado. 

b) Hal ar  y tal que   x  R  y , para cada elemento  x del dominio de cada una de las relaciones. 

c) Haga una tabla de cada relación. 

d) Hal ar las proyecciones de cada una de las relaciones. 

EJERCICIO 4.2.10 

Dadas las relaciones definidas por las tablas: 

1. 

 x 

 y tal que x R y 

-1 

5 

0 

0 

0 

2 

3 

7 

2 

2 
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2. 

 x 

 y tal que x R y 

Jorge 

rubio 

César 

negro 

Ileana 

rubio 

Sixto 

pelirrojo 

María Fernanda 

castaño claro 

a) Expresarlas como un conjunto de pares ordenados. 

b) Dar el dominio y codominio de cada una. 

EJERCICIO 4.2.11 

Sea el conjunto de alumnos    

 A  =  {Carlos  Russo,  Mariela  Monteoliva,  Aldo  Lede,  Leandro  Alonso,  Silvia  Guzmán, Claudia Pastor, Natalia Tori }  

y sea el conjunto de materias  

 M = {Fundamentos de Algebra, Programación en Computadoras, Inglés, Estructuras 

Algebraicas,  Investigación Operativa, Análisis Matemático }. 

Se sabe que: 

Carlos Russo tiene aprobadas Fundamentos de Algebra, Programación en Computadoras, 

Estructuras Algebraicas,  Investigación Operativa 

Aldo Lede tiene aprobadas Fundamentos de Algebra,  Estructuras Algebraicas, Ingles. 

Leandro  Alonso  tiene  aprobadas  Fundamentos  de  Algebra,  Programación  en 

Computadoras, Estructuras Algebraicas, Análisis Matemático. 

Silvia  Guzmán  tiene  aprobadas  Fundamentos  de  Algebra,  Programación  en 

Computadoras, Inglés, Estructuras Algebraicas, Análisis Matemático. 

Mariela  Monteoliva,  Claudia  Pastor  y  Natalia  Tori    cada  una  de  el as  tienen  aprobadas Fundamentos  de  Algebra,  Programación  en  Computadoras,  Inglés,  Estructuras 

Algebraicas. 

a) Exprese estos datos en una tabla de la relación  R  que se define:

 a  R  y 

si y sólo si 

 y  es materia aprobada por el alumno   a 

b) También escriba  R como conjunto de pares ordenados. 

En ambos casos puede usar las iniciales de nombre y apel ido para indicar c/ alumno (esto 

es también una relación...) e igualmente para las materias. 
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EJEMPLO 4.2.12 

a) En el EJEMPLO 4.2.5  1.   sobre   A = B = {seres humanos masculino }

 P = {( x, y) : y es el padre de  x}  ⊆   A×  B   y    H = {( x, y) :  y es el hijo de  x}  ⊆   A×  B

Es fácil ver que si consideramos un par ( a, b) elemento de  P, entonces el par ( b, a) está en H. 

Claro!!!!! 

•

¿Cuál es la razón ?  Lo inverso de ser padre es ser hijo.... 

b) En el EJERCICIO 4.2.8  2. la relación  R descripta por la tabla

 X 

 y  tal que x R y 

Jorge 

rubio 

César 

negro 

Ileana 

rubio 

Sixto 

pelirrojo 

María Fernanda 

castaño claro 

????? 

es:      x  R  y   si y sólo si     y    es el color de pelo de  x 

•

¿Qué ocurre si  intercambiamos las columnas de la tabla??? 

Se tendrá otra relación que podríamos bautizar  R* . La tabla resultante es: 

 z 

 w tal que  z R* w 

Rubio 

Jorge 

Negro 

Cesar 

Rubio 

Ileana 

Pelirrojo 

Sixto 

castaño claro 

María Fernanda 

La relación es: 

 z R*  w    si y sólo si     w  tiene el color de pelo z 

La relación  R es de   A = {Jorge, César, Ileana, Sixto, María Fernanda} en 

 B = {rubio, negro, pelirrojo, castaño claro}. 

La relación  R* es de  B en   A. 
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RELACIONES Y FUNCIONES – CAPITULO 4 

•

Consideremos la relación de  A = { 0, 1, 2, 3, -1, -2, 5 } en  B ={ 0, 1, 4, 9} definida por  x  R  y   si y sólo si     y  es el cuadrado de x, 

su representación por pares 

es:  

 R = { (0, 0), (1, 1), (-1, 1), (2, 4), (-2, 4), (3, 9) } 

•

¿Si damos vuelta los pares que obtenemos? 

 R* = { (0, 0), (1, 1), (1,- 1), (4, 2), (4, -2), (9, 3) } 

•

¿Qué determina el conjunto  R*? 

Así se construyó R* 

Una relación de  B en  A. 

(dando vuelta los pares de R) 

•

¿Qué determina algebraicamente  R*? 

Partimos de    y  R*  x   si y sólo si    x   R  y   

  y  R*  x      si y sólo si      y  es el cuadrado de x      si y sólo si    x  es raíz  cuadrada de y Dada una relación  R de  A en  B  se define la relación inversa de  R,    como la relación  -1

 R  de  B en  A,  dada por 

  x  R-1  y 

si y sólo si   y  R  x 

 R 

 x 

 y  ;  x R y 

−1

 R

= {( x,  y) ∈  B ×  A : (  y,  x) ∈ }

 R  

es decir 

 u 

 z  ; x R z ,  u R z 

1

 xR−  y  si y sólo si  yRx

 v 

 t

 R-1
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EJERCICIO 4.2.13 

a) Hal e las relaciones inversas de las dadas en el EJERCICIO 4.2. 9

b) Representar cada relación obtenida, en un plano coordenado, 

c) Hal ar  y  tales que  x  R-1  y , para cada elemento  x de  B en cada caso. 

d) Represente cada una de el as por tabla. 

e) Represente en  un mismo  gráfico cartesiano para cada uno de  los casos, la relación y su inversa. Trace la bisectriz del 1er. y  4to. cuadrante. ¿Qué puede decir? 

EJERCICIO 4.2.14 

a) Hal e la relación inversa de la dada en el EJERCICIO 4.2.10

b) Hal ar  y  tal que  x  R-1  y , para cada elemento  x  de  M. 

c) Represente  por tabla. 

EJERCICIO 4.2.15 

Sea  R-1  la inversa de la relación  R relación de  A en  B.  ¿Cuál es la inversa de  R-1 ? 

a) Ejemplifique su conjetura. 

b) Demuestre lo que afirma. 

c) Demostrar que Pr 1( R) = Pr 2( R -1)  y que Pr 2( R) = Pr 1( R -1) . 

 Operaciones con relaciones

Las relaciones son conjuntos ,  por lo cual entre relaciones se pueden hacer las operaciones conjuntistas de unión, intersección, diferencia, etc. 

Analice cual es el conjunto de partida y conjunto de llegada en cada caso. 

Recordar propiedades del producto cartesiano que están formuladas en EJEMPLO 4.2.1. 

Por ejemplo , dadas R1={ (1,2), (-2,3), (-2,4) } y R2={ (-1,3), (-2, 3), (4,3) } 

R1 ∪ R2 = { (1,2), (-2,3), (-2,4), (-1,3),(4,3) } 

R1 ∩ R2 = { (-2,3) } 

Calcule R1 - R2   y R2 – R1 

¡Ya voy! 

Busque sus conjuntos de partida y de l egada. 

• 
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•

Hay una operación particular para el caso de tener dos relaciones: la composición. 

Dadas  R 1  de  A en  B  y   R 2 de  B en  C la composición de  R1 con  R2 

es la relación de  A en  C 

 R  2  o R  definida por el conjunto 

1

 R  2

 R  1= {(  x,  y) : (∃  z) ( ( x,  z) ∈  R  1∧ (  z,  y) ∈  R  2 ) ) }

o es la operación determinada por:

 x R  2  R 1  y  si y sólo si  (∃  z)(  x R 1  z ∧  z R 2  y) Observar que se habla de " composición de  R1 con  R2 "    y se escribe     R  2

 R  1

El siguiente gráfico aclara el porqué: 

 B 

 R1

 R 2 

 C 

 A 

 x 

  z (y R2 z, m R2 z) 

  y  ( x R1 y) 

  n 

  u 

 v   (x R1 v, u R1 v) 

  r  ( t R2 r ) 

  t  (w R1 t) 



 w 

  h 



 p

  m 

  q 

 R o R

2

1

•

Para que quede definido el correspondiente por la composición    R o R  de  x ∈  A 2

1

   , 

debe  tener  correspondiente   z  por   R 2    el  elemento   y   tal  que     x  R1     y,  obteniéndose  así x  R o R   z  debido que    y  R

2

1

 2   z  para   x R1   y
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EJEMPLO 4.2.16 

Sean las relaciones: 

 R 1 del conjunto  A = { -1, 0, 1, 2} en  B = {-2, -1, 0, 1, 2, 3, 5, 9} 

 R 2 del conjunto  B = {-2, -1, 0, 1, 2, 3, 5, 9}  en 

 R 3 del conjunto  B = {-2, -1, 0, 1, 2, 3, 5, 9}  en   

Dadas  por 

  R 1 = { (2, 3), (1, -2 ) , (2, 5), (0, -2), (1,1) ,(2,1) } 

 R 2 = { (-1, 3), (0, 3 ) , (-2, 3), (1, 3) , (0,1) , (5, 5) } 

  R 3 = { ( 0, 3),  (2, -3) , (0,1) , (9, 5) } 

•

Son  componibles    R1  con   R2   y  R1  con   R3  pues  R1   sale de  A y   l ega a  B y tanto  R2

como  R3   salen de  B. 

•

La relación composición  R o R  es de  A en 

. 

2

1

•

Para hal arla consideramos los pares que definen  R 1   y se busca en  R 2  los pares cuyas primeras componentes sean las segundas de  R 1 . 

Dado (2, 3) ∈  R 1 , se busca en  R 2  si existe un par que "comience" con 3. 

No 

"BUSCO

hay!!! 

 R 2 = { (-1, 3), (0, 3 ) , (-2, 3), (1, 3) , (0,1) , (5, 5) } 

Considero el siguiente par de  R 1 : como (1, -2 ) ∈  R 1 se busca en  R 2  si existe un par que 

"comience" con -2. 

"BUSCO -2" 

  R 2 = { (-1, 3), (0, 3 ) , (-2, 3), (1, 3) , (0,1) , (5, 5) } 

Está el (-2, 3) en  R 2

(1, -2 ) ∈  R 1

(-2, 3 ) ∈  R 2 

(1, 3 ) ∈   R o R

2

1

Se sigue este procedimiento y se obtiene (verifique...) que 
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 R o R = { (1,3), (2, 3), (0, 3), (2, 5) } 

2

1

•

No existe R oR  pues el  conjunto de llegada de R

1

2

2    NO es  el conjunto de salida de R 1 

•

Haciendo un proceso análogo calculemos   R o  R :

3

1

Para (2, 3) ∈  R 1 , se busca en  R 3  si existe un par que "comience" con 3.  No existe un elemento en  R 3  de esa característica.  Luego considero el par (1, -2) ∈  R 1 ,  se busca en  R 3  

si existe un par que "comience" con  -2. No hay en  R 3  un elemento así. Como (2,5) ∈  R 1 , se busca en  R 3  si existe un par que "comience" con 5.  No hay en  R 3  un par así. Seguimos con el par (0, -2) ∈  R 1 ,  se busca en  R 3  si existe un par que "comience" con -2, pero no existe. Dado (1, 1) ∈  R 1 ,  se busca en  R 3  si existe un par que "comience" con 1, pero no hay un elemento así. Por último, (2, 1) ∈  R 1 ,  se busca en  R 3  si existe un par que 

"comience" con 1 y ya vimos que no hay elemento con esa característica. 

Por lo tanto   R o  R = ∅ . 

3

1

• 

 R o  R  no existe. Pues el conjunto de l egada de  R 3   NO es  el conjunto de salida de  R 1 

1

3

•

NO es igual no existir a ser el conjunto vacío. 

EJERCICIO 4.2.17 

a) Haga  un  diagrama  de  flechas  para  representar  el  EJEMPLO  4.2.16,   en  un  mismo diagrama realice las tres relaciones:  R 1 ,  R 2   ,    R o R  . 

2

1

b) Hal e  R ∪  R . Haga un diagrama de flechas. 

1

2

c) Haga  una  tabla  para   R 1  y  a  continuación  una  para   R 2  .  Haga  una  tabla  para  la relación  R o R . Qué comentario puede hacer respecto de las tres tablas. 

2

1

EJERCICIO 4.2.18 

¿¿Es conmutativa la operación de composición?? (use el EJEMPLO 4.2.16).  

EJERCICIO 4.2.19 

Dadas las relaciones  R 1 del conjunto  A  en  B , R 2  del conjunto   B  en  C 

con  A =  B =C = 

y   definidas por 

  x  R1 y   si y sólo si   y = 

 x

; 

 x  R2 y     si y sólo si    y =   x -  x  2 
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a) Para  algunos  casos,  haga  un  diagrama  de  flechas  para  representar  en  un  mismo diagrama las tres relaciones  R 1 ,  R 2 ,    R o R . 

2

1

b) Para algunos casos, haga una tabla para  R 1 y a continuación una para  R 2 .  Haga una tabla para la relación  R o R . Qué comentario puede hacer respecto de las tres tablas. 

2

1

c) Cuál es la definición de  R o R ? 

2

1

d) Haga un diagrama cartesiano para cada una de las relaciones. 

e) Es posible hal ar  R o R ? 

1

2

f) Para  algunos  casos,  haga  un  diagrama  de  flechas  para  representar  en  un  mismo diagrama realice las tres relaciones  R 1 ,  R 2  ,  R oR . 

1

2

g) Para algunos casos, haga una tabla para  R 2 y a continuación una para   R 1.  Haga una tabla para la relación   R oR . 

1

2

h) Cuál es la definición de  R oR ? 

1

2

i)

Verificar que, si existe la composición  Pr ( R oR ) ⊆ Pr ( R )  y   Pr ( R oR ) ⊆ Pr ( R ) . 

1

1

2

1

1

2

1

2

2

2

EJERCICIO 4.2.20 

Repita el 4.2.19  para las relaciones: 

 R 1,  R 2  del conjunto  A en  B y de  B en  C, respectivamente, con   A =  B= C =

definidas 

por   x  R1 y     si y sólo si 

2

 y =  x

;  x  R2 y     si y sólo si    y =   x -  x  2 

EJERCICIO 4.2.21 

Repita el 4.2.19 para las relaciones: 

  R 1 del conjunto  A = 

en  B =

,  R 2  del conjunto  B =

en  C =    definidas por 

      x  R1 y     si y sólo si 

2

 y =  x

;      x  R2 y     si y sólo si    y =   x -  x  2 

¿ qué pasa? 

EJERCICIO 4.2.22 

 Sean las relaciones  R 1   de   A  en   B  y   R 2  de  B en  C.  

a)

Demostrar para que Pr ( R oR ) ⊆ Pr ( R )

1

1

2

1

1

b)

Demostrar  que  Pr ( R oR ) ⊆ Pr ( R )

2

1

2

2

2
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Sea  R una relación de  A en  B. Decimos que la relación  R es total si y sólo si   Pr  R =  A 1

Decimos que la relación  R es funcional si y sólo si      

(  x

∀ )(  y

∀ )(  z

∀ ) (( x,  y) ∈  R ∧ ( x,  z) ∈  R →  y =  z)

• En una relación total  R, la proyección 1 de  R  coincide con el conjunto de partida o dominio de la relación. 

En el EJERCICIO 4.2.20  la relación  R 1 no es total, pues por ejemplo  −1∈  A  y  −1∉ Pr 1 1

 R

• En una relación funcional un elemento no puede tener dos correspondientes. 

En el EJERCICIO 4.2.20 la relación  R 1 no es funcional,   (4, 2) ∈

y 

. 

1

 R

(4, 2

− ) ∈  R 1

EJEMPLO 4.2.23 

Sea la relación 

2

2

 R 1 del conjunto  A= B = 

, 

. 

1

 R = {( x,  y) :  x +  y = }

4

Hagamos la representación por un diagrama de coordenadas cartesiano ortogonal. 

Para lo cual hacemos una tabla para algunos valores, representa una circunferencia. 

 y 

 x 

 y 

 x 

0 

2 

-1 

3

0 

-2 

-1 

− 3

3

1 

7

3

- 2

2

3

1 

7

− 3

-

-

2

2

3

7

-2 

0 

2

2

3

7

-

2 

0 

2

2

2 

0 
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Esta relación representa una circunferencia con centro en el origen y radio 4. 

¿? 

Observar que  R

-1

 1 = R1 . Justifique. 

La relación no es total ni funcional.  ¿Por qué? Mire el grafico de la relación. 

EJERCICIO 4.2.24 

a) Sean  

2

2

 A = [-2, 2],  B = [-2, 2] y la relación

. 

2

 R = {( x,  y) :  x +  y = }

4

Analizar que la relación  R 2  es total pero no funcional. Verifique. 

b) Hal ar un conjunto  A y un conjunto  B para que la relación

 R = {

2

2

( x,  y) :  x +  y = }

4 ⊆  A×  B  sea total y funcional. 

3. Función

Vamos a introducir uno de los conceptos más importantes que recorre todos los campos 

de  la  Matemática  y  que  además  tiene  aplicaciones  interesantes  en  otros  acampos  del saber.  Son  las  funciones  un  caso  particular  de  relaciones,  con  mayores  exigencias  en  la definición pero no menos útiles por eso, al contrario. 

Dados dos conjuntos  A y  B, se llama función de  A en  B, a una terna   f  = (  F, A, B), donde F es una relación de  A en  B  (  F ⊆  A×  B ). Y se cumplen las siguientes condiciones: 1)  F es total, es decir  Pr  F =  A , 

1

2)  F es funcional, es decir:

(  x

∀ )(  y

∀ )(  z

∀ )(( x ∈  A ∧  y ∈  B ∧  z ∈ )

 B ∧ (( , 

 x y) ∈  F ∧ ( , 

 x z) ∈  F →  y = )

 z )  

 A el conjunto de partida o dominio de  f y  B el conjunto de llegada o codominio de  f. 

Estas condiciones 1) y 2)  implican que todos los elementos de  A deben tener un 

correspondiente y éste debe ser único. 

Una función se define por su dominio  A, codominio  B y su ley de formación dada por la relación  F . 

   Es usual para el caso de las funciones  a   F  l amarla  gráfica de la función   f . 
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Dada   f  = ( F, A, B),  F es el conjunto de pares ordenados tales que  x está relacionado con  y por la relación ,  así    F = {( x, y):  x F y} además se acostumbra escribir  y = f(x), para indicar que  y es el correspondiente de  x por la relación  F que por la condición 2) de la definición el   y es único. 

Por lo tanto también se representa a la relación   F = {( x, y):   y = f(x)} 

La  notación  que  a  los  elementos  del  dominio  de  una  relación  se  los  simbolice 

comúnmente con la letra   x  y a los del codominio con la letra  y, está incorporado así por la tradición de la representación en diagramas Cartesianos, y éstas representaciones cuando 

corresponde  como  vimos  ya  en  relaciones,  son  puntos  que  están  en  el  plano  y 

habitualmente  x es la abscisa e  y la ordenada de los puntos representados 

La imagen de   f, es el conjunto de los elementos del codominio que son correspondientes de algún elemento del dominio  

Im(  f ) = { y ∈  B : (∃ x)( x ∈  A ∧  f ( x) = }

 y  

En otras palabras la imagen de 

 f  es la proyección 2 de la 

relación  F. Observar que 

obviamente  Im(  f ) ⊆  B

Otra notación usual para una función   f con dominio  A  y codominio  B es: la función     f :  A →  B

Esta escritura para la función da la idea 

visual que 

 f  sale de  x en  A y llega a   f(x)= y en   B.  
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EJEMPLO 4.3.1 

 Si definimos la relación  F de 

en 

dada por   x F y ↔

 x =  y

•  F  es total, ya que todo número real tiene definido su valor absoluto y  F es funcional ya que el valor absoluto de un número es único. Podemos escribir la función 

 f :

→

, definida por  f ( x) =  x

• Son  Dom (  f )  = 

y  Codominio (  f )  =

. 

• Resulta que Im( f ) =

+ = { r ∈ :  r ≥ }

0 . Pues dado   r ∈   y   r ≥ 0  existe

 x ∈

tal que  x =  r ó  x = − r   es   x =  r = − r =  r . 

La representación gráfica (parcial…) de  f en un sistema cartesiano: 

  x 

 f(x) 

0 

0 

Observar 

1 

1 

que son 

-1 

1 

semirrectas 

1

1

con origen 

2

2

en O(0,0) 

1

1

-



2



2

-3 

3 

3 

3 

EJEMPLO 4.3.2 

 Si definimos ahora la relación     x F y ↔

 x =  y  pero modificando el dominio  por 

, 

es decir   F ⊆

×

.    Desde ya que es otra relación respecto a la anterior !!! 

• F  también es total y funcional, por lo tanto se tiene la función

 f :

→

, definida por  f ( x) =  x  , pero es distinta a la anterior. 
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•En este caso Dom ( f )  = 

y Codominio (  f )  =

. 

•Además  Im (  f )  =

, pues   y ∈  resulta que  existe   

 x =    

 y  en     tal que  y =  x =  f ( x) .   

La representación gráfica (parcial…) de  f en un sistema cartesiano: 

  x 

 f(x) 

0 

0 

 Observar que 

1 

1 

son puntos 

2 

2 

aislados 

3 

3 

4 

4 

EJEMPLO 4.3.3 

 Si definimos ahora la relación     x F y ↔

 x =  y  pero modificando el dominio  por 

es decir   F ⊆

×

. 

  Desde ya que es otra relación respecto a las anteriores!!!  

•  F  también es total y funcional, por lo tanto se tiene la función

 f :

→

, definida por  f ( x) =  x  , pero es distinta de la del ejemplo anterior. 

• En este caso Dom ( f ) = 

y Codominio (  f ) = 

. 

• Además  Im (  f )  =

: pues   y ∈

resulta que  existe   

 x =    

 y  en  

tal que  y =  x =  f ( x) . Además existe   x ∈ ,  x = −  y  con  -  y  ∈

tal que  y = −  y =  x =  f ( x)
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La representación gráfica (parcial…) de  f en un sistema cartesiano: 

  x 

 f(x) 

 Observar que 

0 

0 

son puntos 

1 

1 

aislados 

2 

2 

-2 

2 

-3 

3 

3 

3 

Dadas   f   y  g funciones tales que  f = (F, A, B)  y  g = (G, C, D), 

  f   y  g  son  iguales  (se anota     f  = g )   si y sólo si las ternas que las definen son iguales , 

es decir  F = G, A = C  y B =D. 

¡obvio! 

Por lo tanto las tres funciones de los tres  ejemplos  anteriores no son iguales. 

Los ¨dibujitos¨  lo confirman visualmente. 

• Uno de los motivos de definir las funciones como ternas es que resulta más claro que para que  dos funciones sean iguales no solo la ley de definición debe coincidir sino también 

dominio y codominio. 

¡Acordarse! 
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EJEMPLO 4.3.4 

Definimos la relación  G de 

en 

por:    x G y ↔

2 x − 3 =  y

•  G no es total, ya que por ejemplo si   x = 0,  resulta    y =

3

−   que no es un número real, 

por lo tanto no todo número real tiene correspondiente por  G. 

Por lo tanto la relación  G no es la gráfica de una función  de 

en

. 

EJEMPLO 4.3.5 

Si definimos la relación  F  de 

en 

dada por:   x F y ↔ 2  x − 3 =  y

•  F es total, ya que todo número real multiplicado por 2 y disminuido en 3 da un número real, y las operaciones de multiplicación y suma dan resultado único. Podemos justificarlo 

en general como:   x ∈

entonces  2 x ∈

por ser la multiplicación cerrada en

, 

entonces 2 x − 3∈

por ser la suma cerrada en

, por lo tanto todo elemento  x de 

tiene una imagen. 

•  F es funcional ya que el resultado de una multiplicación y una suma es único, por lo tanto podemos escribir   f :

→

, definida por  f ( x) = 2 x − 3   resulta   f una función tal que 

• Dom ( f ) = 

, Codominio (  f )  =

. 

• Probemos que Im(  f ) = 

: dado   y ∈

debemos ver que proviene por la función de

algún  x del dominio, es decir que existe  x real tal que   f ( x) =  y . 

Por definición de la función   y debe ser igual a   2 x – 3.   

Aceptemos que vale esa igualdad y probemos que en esas condiciones el  x es un número real. Sea entonces “aceptado” que   y = 2 x − 3  para   y real. Por propiedades de las operaciones en

, resulta que  2  x =  y + 3  (pues – 3 tiene opuesto….). 

 y + 3

Como 2 es  no nulo (tiene inverso multiplicativo) y se obtiene   x =

, que es un número 

2

real ya que la suma de números reales es un número real al igual que el cociente!!!! 

 y + 3

 y + 3

Por lo tanto   x =

es el número real que hace que   f ( x) =  f (

) =  y  , Verifique. 

2

2
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•

Notemos que para mostrar que una relación no es total (y por lo tanto no es grafica de

una función) alcanza con mostrar un elemento del dominio que no tenga correspondiente, 

pero para mostrar que sí es total,  hay que  demostrarlo justificando con propiedades conocidas o teoremas que todo elemento del dominio tiene su correspondiente. 

¡MUY 

IMPORTANTE! 

 Más Definiciones

Si   f :  A →  B  es una función la imagen por  f de un subconjunto  X de  A es el siguiente subconjunto de  B: 

 f (  X ) = { y ∈  B : (∃ x)( x ∈  X ∧  f ( x) =  y)} 

 f 

Informalmente son los 

elementos de  B que 

  f(X) 

provienen por  f  de 

  X 

algún elemento de  X. 

 Piense por qué se llama 

  A 

  B 

 “imagen”. 

¿   f  a donde manda los 

elementos de  X  ? 

EJEMPLO 4.3.6 

a) Sea la función   f :

→

, definida por  f ( x) =  x . Si   X = {0, 3, 4, 7} resulta que  f ( X) = {0, 3, 4, 7}. 

b) Dada la función    f :

→

, definida por  f ( x) =  x . Sea   X = {-5, -7, 0, 3, 4, 7} 

resulta que      f ( X) = {0, 3, 4,5, 7}. 
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c) Dada la función    f :

→

, definida por  f ( x) = 2 x − 3 . 

Si  X = {-5, -7, 0,  3 , 6,  2π }    f ( X) = {-13, -17,  - 3,  2 3 -3,  9, 4 π -3}. 

EJEMPLO 4.3.7 

 Sea    f :

→

definida por   f ( x) = 2 x − 3 , y sea   X =[-1, 1]. 

¿Cuál es la imagen de  X por la función   f ? 

 f (  X ) = { y ∈

:  y =  f ( x)

∧

 x ∈  X }, entonces por la definición de  X,   −1 ≤  x ≤ 1, 

se tiene trabajando con ambas desigualdades: 

Esto son dos 

desigualdades 

Usando leyes 

−1 ≤  x

y

 x ≤ 1

de monotonía 

2(−1) ≤ 2 x

y

2 x ≤ 2.1



de su        

ma y      



−2 − 3 ≤ 2 x − 3

y

2 x − 3 ≤ 2 − 3

multiplicación 

−5 ≤ 2 x − 3

y

2 x − 3 ≤ −1

de números 

reales  

Por lo tanto  −5 ≤ 2 x − 3 ≤ −1, es decir que   f ( x) = 2 x − 3  =  y  para   x ∈  X  entonces f (  X ) = [−5, −1] . 

Si   f :  A →  B  es una función, para un   Y subconjunto de  B,  la  imagen inversa o preimagen  por  f  es el subconjunto de  A definido como: 

1

 f − ( Y ) = { x ∈  A :  f ( x) =  y ∧  y ∈ Y}  

Informalmente son los 

elementos de  A que por  f 

llegan a algún elemento de 

 f 

 Y. 

    Es mirar por un espejo 

 Y 

 f-1(Y)  –

 (Y)1

 retrovisor desde Y  

    

(    

 Y  )  

 para A!! 

  A 

  B 

¿   f  qué elementos 

de  A  manda a   Y?  
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EJEMPLO 4.3.7 

Sea la función   f :

→

, definida por  f ( x) =  x . 

Si   Y = {0, 3, 4, 7} resulta que     f  - 1 ( Y) = {0, 3, -3, 4, -4, 7, -7}. 

EJEMPLO 4.3.8 

 Sea    f :

→

definida por   f ( x) =  x , y sea  Y =[-2, 4]. 

¿Cuál es la imagen inversa de  Y  por la función  f ? 

1

 f − ( Y ) = { x ∈

:  y =  f ( x)

∧

 y ∈ Y}, 

entonces por definición de  Y :   − 2 ≤  y ≤ 4 , se tiene por definición de   f : 2

− ≤  x ≤ 4

 como

 x ≥ 0 ,    se tiene entonces que: 

0 ≤  x ≤ 4

Por definición de valor absoluto hay que considerar dos situaciones: 

se da 1) ó se da 2). Siendo 

1)

 Si

 x ≥ 0 :

 x =  x por lo tanto:

0 ≤  x ≤ 4

2)

 Si

 x ≤ 0 :

 x = − x  por lo tanto  0 ≤ − x ≤ 4  

Usando leyes 

0 ≤ − x 

y 

-  x ≤ 4

¡Esto son dos  



de mo        

noto       

nía   

 x ≤ 0 

y 

- 4 ≤  x

desigualdades 

de  la 

simultaneas! 

multiplicación 

de números 

Es decir:  −4 ≤  x ≤ 0

reales  

Por lo cual de 1) y 2) resultan (se tiene que hacer la unión de las dos alternativas!!): 

0 ≤  x ≤ 4 es decir

 x ∈[0, 4] o

− 4 ≤  x ≤ 0

es decir   x ∈ [−4, 0], 

entonces 

1

 f − ( Y ) = [−4, 4]
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 La imagen de un conjunto por una función   f :  A →  B , con   A ≠ ∅ ,  no puede ser vacía,   ya que todos los elementos del dominio tienen correspondiente por  f, sin embargo, la imagen inversa sí puede serlo, ya que pueden existir elementos en el codominio que  no 

son imagen de ningún elemento del dominio. 

EJEMPLO 4.3.9 

Sea    f :

→

definida por   f ( x) =  x , y sea  Y = [-4, -1]. 

Cuál es la imagen inversa de  Y  por la función   f  ? 

1

 f − ( Y ) = { x ∈

:  y =  f ( x)

∧

 y ∈ Y}, entonces por definición de  Y :   −4 ≤  y ≤ −1, 

además por definición de  f  :   4

− ≤  x ≤ 1

−

como

 x ≥ 0  para todo  x ∈

, luego no 

existe   x ∈

tal que  

−

 y =  f( x)  e   y ∈ Y = [-4, -1]. Por lo cual 

1

 f

( Y ) = ∅

Recordatorio: 

 E ⊆  F  si y sólo si

(  x

∀ )( x ∈  E  entonces  x ∈  F )

♦  LEMA 4.3.10

Sea   f :  A →  B  una función y sean   X  e  Y  subconjuntos de  A. 

Si  X ⊆  Y   entonces  f (  X ) ⊆  f ( Y )

Demostración: 

Sea   b ∈  f (  X ) ,  por definición de imagen  (∃ a)( a ∈  X ∧  b =  f ( a))  por hipótesis   X ⊆  Y , por lo tanto (el mismo  a sirve!!!),   (∃ a)( a ∈ Y ∧  b =  f ( a)) y  por definición de imagen por  f, se desprende que   b ∈  f ( Y ) . 

Por lo tanto   f (  X ) ⊆  f ( Y )        

♦

     Por la propiedad demostrada decimos que  f  respeta la contención  o que   f  conserva la contención. 

EJERCICIO 4.3.11 

Dada la función    f :

→

definida por 

2

 f ( x) =  x , sean    X = [0, 1] e   Y = [- 2, 1]. Comprobar la propiedad dada en el LEMA 4.3.10. (Así practica, verifique  además que   f  es función) 233
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Recordatorio: 

♦    PROPOSICIÓN 4.3.12

 E =  F  si y sólo si

Sea   f :  A →  B  una función y sean   X  e  Y  subconjuntos de  A. 

( E   ⊆  F ∧  F ⊆  E)

Entonces se tiene:    f (  X ∪  Y ) =  f ( X ) ∪  f ( Y ) Recordatorio: 

Demostración: 

• Cualesquiera sean los conjuntos

1) Veamos que   f (  X ) ∪  f ( Y ) ⊆  f (  X ∪  Y ) : A,  B, C, D si 

Como   X ⊆  X ∪ Y

y  Y ⊆  X ∪  Y   entonces, 

(  A ⊆  C

∧

 B ⊆  D)  entonces 

aplicando  el LEMA anterior     

 A ∪  B ⊆  C ∪  D

•

Para todo conjunto  A, 

 f (  X ) ⊆  f (  X ∪  Y )

y

 f ( Y ) ⊆  f (  X ∪  Y )  

 A ∪  A =  A

Por lo que resulta    f (  X ) ∪  f ( Y ) ⊆  f (  X ∪  Y ) 2) Veamos que   f (  X ∪  Y ) ⊆  f ( X ) ∪  f ( Y ) : Sea   z ∈  f (  X ∪ Y ) , por definición de imagen por una función (∃ a)( a ∈  X ∪  Y ∧  z =  f ( a))  por definición de unión  (∃ a)(( a ∈  X ∨  a ∈ Y ) ∧  z =  f ( a)) por leyes distributivas (en Lógica)  (∃ a)( ( a ∈  X ∧  z =  f ( a)) ∨ ( a ∈ Y ∧  z =  f ( a)) ) por definición de imagen se tiene que  

Recordando lógicamente…..: 

 z ∈  f (  X ) ∨  z ∈  f ( Y )  

 p ∧ ( q ∨  r) ⇔ (  p ∧  q) ∨ (  p ∧  r)

y por definición de unión resulta    z ∈  f (  X ) ∪  f ( Y ) p ∨ ( q ∧  r) ⇔ (  p ∨  q) ∧ (  p ∨  r)

Por lo tanto   f (  X ∪  Y ) ⊆  f ( X ) ∪  f ( Y ) De 1) y 2) concluimos que   f (  X ∪  Y ) =  f ( X ) ∪  f ( Y )  

♦

•

Qué relación hay entre la imagen e imagen inversa de un conjunto por una función? 

EJEMPLO 4.3.13

Dada función   f :

→

, definida por  f ( x) =  x . Sean  X = {-2, 3, 4 } ⊆  A   e Y = {-1,0, 2} ⊆  B . 

Así   f ( X) = {2, 3, 4 }  y si consideramos  f  - 1 (  f ( X)) = {-2, 2, - 3, 3, - 4, 4 }. 

Es 

1

 f − ( Y ) = {0.2. − }

2 y si consideramos   f  (   f – 1( Y)) = {0. 2}. 

Luego 

1

 X

 f −

≠

(  f (  X )) , pero 

1

 X

 f −

⊆

(  f (  X )) . Además 

1

 Y

 f (  f −

≠

( Y ))  pero 

1

 f (  f − ( Y )) ⊆  Y
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Vale la pena hacer algunas demostraciones. 

Las demostraciones sobre estos temas tienen como principal objetivo que  se acostumbre a 

¨que es una demostraciónën Matemática. 

La importancia de cómo usar hipótesis en el momento oportuno. 

♦ PROPOSICIÓN 4.3.14

Sea   f :  A →  B  una función y sea   X  subconjunto de A. 

Entonces se tiene:  

1

 X

 f −

⊆

(  f (  X ))  

Demostración: 

Analicemos que significa que 

1

 a

 f −

∈

(  f (  X )) , es decir  a es preimagen de algún elemento 

de  f ( X),    entonces por definición de imagen inversa  a debe cumplir (∃ y)(  y ∈  f (  X ) ∧  y =  f ( a))  ** 

Consideremos un elemento genérico   a ∈  X ,  X ⊆  A  y como  f es función todo elemento de  X  tiene correspondiente, luego  (∃ b)( b ∈  B ∧  b =  f ( a))  por ser  b imagen de un elemento de  X   se tiene (  b

∃ )( b ∈  f (  X ) ∧  b =  f ( a)) , es decir  **. 

Por lo tanto 

−1

 a ∈  f

(  f (  X )) . 

Y resulta que 

1

 X

 f −

⊆

(  f (  X )) . 

♦

EJERCICIO 4.3.15 

Sea   f :  A →  B  una función y sea  Y subconjunto de  B. 

Entonces se tiene:  

1

 f (  f − ( Y )) ⊆  Y

Consideremos algunas otras propiedades de la imagen e imagen inversa de 

subconjuntos de  A y de  B para funciones   f :  A →  B  asociadas a operaciones conjuntistas. 

Se harán algunas demostraciones y otras quedarán como ejercicios. 
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 Analicemos ahora qué relación hay entre   f (  X ∩  Y )

y

 f (  X ) ∩  f ( Y )

Sean  A = { a, b, c, d} y  B = {1, 2, 3}  y sean  X = { a, b} y   Y = { c, d} 

Se define   f :  A →  B  por el siguiente diagrama: 

 A                                      B 

 a 

1 

  b 

   2  

  c 

  d 

3 

  f ( X )  ={1, 2}  

 f ( Y)  ={1, 3}     y     f (  X ) ∩  f ( Y ) = {1}

Pero     X ∩ Y = ∅     por lo tanto    f (  X ∩ Y ) = ∅

¡¡Pruébelo!! 

•

Entonces   f (  X ) ∩  f ( Y ) ≠  f (  X ∩  Y )

♦  LEMA 4.3.16

Sea   f :  A →  B  función y sean   X  e  Y  subconjuntos de B. 

Si  

−1

−1

 X ⊆  Y  entonces   f

(  X ) ⊆  f

( Y )  

Demostración: 

Sea 

−1

 a ∈  f

(  X )  por definición de imagen inversa  (∃ b)( b ∈  X ∧  b =  f ( a)) . Por hipótesis todo elemento de  X es elemento de  Y, por lo tanto el  b es también elemento de  Y, luego  (∃ b)( b ∈ Y ∧  b =  f ( a)) y por definición de imagen inversa 1

 a

 f −

∈

( Y )  

Por lo cual 

1

 f − (  X )

1

⊆  f − ( Y )

♦

•

Decimos que

1

−

 f

respeta la contención  o que 

1

−

 f

conserva la contención 
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♦  PROPOSICIÓN 4.3.17:

Sea   f :  A →  B  función y sean   X  e  Y  subconjuntos de  B. 

Entonces se tiene: 

1

−

1

−

1

 f

(  X

 Y )

 f

(  X )

 f −

∩

=

∩

( Y )

Demostración: 

1) Veamos que

1

 f − (  X ∩  Y )

1

⊆  f − (  X )

1

∩  f − ( Y ) : 

Como   X ∩  Y ⊆  X

 y

 X ∩  Y ⊆  Y   entonces,  por el LEMA anterior 

1

Recordatorio: 

 f − (  X ∩  Y )

1

⊆  f − (  X )

1

 y

 f − (  X ∩  Y )

1

⊆  f − ( Y )

•

Cualesquiera sean los

conjuntos  A, B, C, D, si

Por lo tanto 

1

 f − (  X ∩  Y )

1

⊆  f − (  X )

1

∩  f − ( Y )

 A ⊆  C

∧

 B ⊆  D  entonces

 A ∩  B ⊆  C ∩  D

2) Veamos que

1

 f − (  X )

1

∩  f − ( Y )

1

⊆  f − (  X ∩  Y ) : 

•

Para todo conjunto  A

 A ∩  A =  A

Sea 

−1

1

 z

 f

(  X )

 f −

∈

∩

( Y ) por definición de 

intersección 

−1

−1

 z ∈  f

(  X ) ∧  z ∈  f

( Y )  . Por definición de imagen inversa: 

(∃ a)( a ∈  X ∧  a =  f ( z))

∧

(∃ b)( b ∈ Y ∧  b =  f (  z))  

y por ser   f  función el correspondiente de  z es único, luego  a = b =  f ( z). 

Luego por definición de intersección:  ( a ∈  X ∩  Y ) ∧  a =  f ( z) , lo cual por definición de imagen inversa resulta que 

1

 z ∈  f − (  X ∩  Y )

Por lo tanto 

1

 f − (  X )

1

∩  f − ( Y )

1

⊆  f − (  X ∩  Y )

De 1) y 2) concluimos que 

1

 f − (  X )

1

∩  f − ( Y )

1

=  f − (  X ∩  Y )

♦

EJERCICIO 4.3.18 

Sea   f :  A →  B  una función y sean   X  e  Y  subconjuntos de  B. 

Entonces se tiene:  

1

−

1

−

1

 f

(  X

 Y )

 f

(  X )

 f −

∪

=

∪

( Y )  
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 Operaciones entre funciones

Hemos definido la composición entre relaciones, del mismo modo para las relaciones que 

son funciones, se tiene la composición de funciones: 

Sean  f = ( F, A, B) y  g =( G , B, C) funciones,  se considera la gráfica G F = {( x,  z) : (  y

∃ )(  y ∈  B ∧ ( , 

 x y) ∈  F ∧ (  y,  z) ∈ }

 G ⊆  A×  C

Definimos la terna   g

 f = ( G F, , 

 A C)   que se lee “f compuesta con  g”  

♦  PROPOSICIÓN 4.3.19

Si   f = ( F, A, B) y  g =( G , B, C)  son funciones,  g

 f = ( G F , , 

 A C)  es una función 

Demostración: 

Para probar que   g

 f  es una función debemos ver que 

 G F  es total y funcional. 

Las 1) y 2) de la 

definición de 

* Veamos que   G F  es total:

función. 

i) Por la definición de proyección se tiene  Pr  G

(

 F ) = { x ∈  A : ( x,  z) ∈  G F} ⊆  A

1

i ) Sea   x ∈  A por ser  f  función entonces (∃ y)( y ∈  B ∧ ( x,  y) ∈  F ) , además para todo elemento  y  de  B por ser  g función  (∃ z)( z ∈  C ∧ (  y,  z) ∈  G)  y por definición de composición de gráficas  ( x,  z) ∈  G F . Por lo cual   x ∈ Pr ( G F) , por lo tanto 1

 A ⊆ Pr ( G F )

1

De i) y ii) se tiene que  Pr  G

(

 F ) =  A , es decir que   G F  es total. 

1

* Veamos que   G F  es funcional:

Sean  ( x,  z) ∈  G F ∧ ( x, )

 w ∈  G F  por definición de composición de gráficas resulta: 

(∃ y)(  y ∈  B tal que ( x,  y) ∈  F ∧ (  y,  z) ∈  G) ∧ (∃ t)( t ∈  B tal que ( x,  t) ∈  F ∧ ( t, ) w ∈  G)

Por ser  F funcional, resulta que   y = t   por ser correspondientes de  x.  Por eso podemos reemplazar uno de el os por su igual y se tiene (  y,  z)∈ G ∧ (  y, ) w ∈ G  que como  G es 

funcional se tiene que   z = w 

Por lo tanto   G F  es funcional. 

♦
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•

Podemos componer funciones cuando el codominio de la primera es igual al dominio de la

segunda. Además, dada una función   f :  A →  B  y una función   g :  B →  C   la función g

 f :  A →  C,  está dada por

( g

 f )( x) =  g (  f ( x)) , como quedo visto en el teorema anterior y la gráfica que la define. 

EJEMPLO 4. 3. 20 

Sean   f :

→

y   g :

→

las funciones definidas por   f ( x) = [ x]  y   g( x) =  x + 1

 g

 f :

→

, donde  ( g

 f )( x) =  g(  f ( x)) =  g [

(  x]) = [  x] +1. 

Grafique en 

un sistema 

Calculemos algunos valores de esta función: 

de 

coordenadas 

( g

 f )(0) =  g(  f (0)) =  g([0]) = [0] +1 = 0 +1 = 1

( g

 f )(2, 3) =  g(  f (2, 3)) =  g([2, ]

3 ) = [2, ]

3 +1 = 2 +1 = 3

( g

 f )(−1, 45) =  g(  f ( 1

− , 45)) =  g([−1, 4 ]

5 ) = [ 1

− , 4 ]

5 +1 = −2 +1 = −1

 EJEMPLO 4.3.21 

 x − 3

 Sean   f :

→

y   g :

→

las funciones definidas por   f ( x) =

y 

4

 g( x)

2

=  x + 2  . 

2

 x − 3

 x − 3

 x − 6 x + 17

 g

 f :

→

, es   

2

( g

 f )( x) =  g(  f ( x)) =  g(

) = (

) + 2 =

4

4

4

 Será lo mismo   g f   que   f g ? 

Dígase por 

En algunos casos no están definidas ambas composiciones. 

qué. 

¿Y en los que estén que pasará? 

Para las funciones del ejemplo anterior podemos hacer ambas composiciones 

(¡¡¡justifique!!!). 

2

2

 x +

−

 x −

Ahora hacemos 



2

2

3

1

(  f

 g)( x) =  f ( g( x)) =  f ( x + 2) =

=

4

4

¿Son iguales   f

 g    y    g

 f ? 
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Los dominios de ambas funciones coinciden y también codominio. ¿Es igual la ley de 

formación de    f

 g    y    g

 f ? A la vista no lo son, pero eso no es suficiente (luego 

veremos porque…)  

Una manera de ver que pasa es tomar un valor particular del dominio de ambas y si su 

correspondiente es distinto para las funciones dadas las funciones no son iguales:  

2

0 − 60 +17

17

2

0 −1

−1

( g

 f )(0) =

=

y  (  f g)(0) =

=

. 

4

4

4

4

Por lo tanto   f

 g     ≠     g

 f

  La composición de funciones no es conmutativa . 

Dado un conjunto  A se define la función identidad de  A,  como   Id = (∆ , , A

)

 A  donde 

 A

 A

∆

= {( , ) : ∈ }  o equivalentemente

definida por 

 A

 x x

 x

 A

 Id :  A →  A

 Id ( x) =  x

 A

 A

 ¿Porque 

 este 

Al componer una función con la función identidad a derecha ¿qué obtenemos? 

 nombre? 

Sean   Id = (∆ , , 

 A

)

 A  y   f = ( F , , 

 A B)

 A

 A

Como el codominio de la identidad es igual al dominio de  f,  podemos hacer la composición de las gráficas:   F ∆ = {( , 

 x z) : (∃ y)(  y ∈  B ∧ ( , 

 x y) ∈ ∆ ∧ (  y,  z) ∈  F} . 

 A

 A

Sea  ( x,  z) ∈  F ∆  . Por definición de 

. 

 A

∆  si  

 A

( x,  y) ∈ ∆ entonces 

 A

 x =  y

Por lo cual resulta que  ( x,  z) ∈  F . 

Por lo tanto    F ∆ ⊆  F  

 A

Tomemos ahora un par  ( u,  v) ∈  F  entonces   u ∈  A ∧  v ∈  B . 

Además  (  x

∀ )( x ∈  A → ( x,  x) ∈ ∆ ) , por lo tanto como

es  

 A

 u ∈  A

 u

( ,  u) ∈ ∆  A

Entonces si  ( u,  u) ∈ ∆ ∧ ( u,  v) ∈  F  se tiene ( u,  v) A

∈  F ∆  A

Por lo cual   F ⊆  F ∆ . 

 A

Es decir que   F =  F ∆  . 

 A

Resulta entonces que si   Id = (∆ , , 

 A

)

 A ,  f = ( F, , 

 A B) entonces 

 A

 A

 f

 Id

= ( F ∆ , , 

 A B) = ( F , , 

 A B)

 A

 A

=  f
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Con la otra notación: Si   Id :  A →  A  y   f :  A →  B  entonces   f Id :  A →  B  y 

 A

 A

 f

 Id =  f

 A

EJERCICIO 4.3. 22 

Probar que si   Id :

y 

entonces 

y 

 B

 B →  B

 f :  A →  B

 Id

 f :  A →  B

 Id

 f =  f

 B

 B

En el cálculo aritmético o algebraico en los conjuntos numéricos habituales donde trabaja 

( , , 

por ejemplo) hay un elemento distinguido el 1 que  al multiplicarse con otros 

elementos “no los modifica”:   a. 1 = 1.  a =  a.   

Por esta propiedad del 1, se dice que 1 es  neutro para la multiplicación (“no hace nada”) En algunas oportunidades al 1 se lo llama  identidad. 

Resulta entonces que la función identidad es neutro en la composición de funciones, pero como la composición de funciones no es conmutativa no es de extrañar que haya dos 

neutros distintos para una función   f :  A →  B , si   A ≠  B . 

Tiene un neutro a izquierda y un neutro a derecha:   Id

 f =  f =  f

 Id

 B

 A

EJERCICIO 4.3. 23  

Sean  A  un conjunto y sea   X ⊆  A . 

Si   Inc :

está definida por

para todo 

. Probar que es una 

 X

 X →  A

 Inc ( x) =  x

 x ∈  X

 X

función. 

Compare con la   Id ( x)

. ¡Justifique claramente! 

 A

=  x
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La composición de funciones se definió para 

 dos funciones  y dio una función. 

♦  PROPIEDAD 4.3.24

Por eso es que en la propiedad a demostrar 

Sean   f :  A →  B ,  g :  B →  C   y 

los paréntesis NO son irrelevantes, pues cada 

 h :  C →  D  funciones. 

paréntesis define una función que será 

Entonces vale la igualdad de las funciones: 

compuesta con otra. Es así se tiene la 

( h g)  f =  h ( g

 f )

composición de dos funciones 

Demostración: 

 h ( g

 f ) = ( H

( G F ), , 

 A D)   y   ( h g)

 f = (( H G)  F , , 

 A D)  

por lo que sabemos de componer dos funciones!!! Observar que los dominios y codominios 

de la igualdad a demostrar se corresponden. 

Sólo nos falta demostrar que vale la igualdad de las gráficas. 

Sea  ( x,  z) ∈  H ( G F )  por definición de composición se verifica (∃ y)(( x,  y) ∈  G F

∧

(  y,  z) ∈  H )  y nuevamente por definición de composición 

(∃ y)(∃ u)((( x,  u) ∈  F

∧

( u,  y) ∈  G)

∧ (  y,  z) ∈  H )  por definición de composición y 

asociatividad de la conjunción: 

(∃ u)(( x,  u) ∈  F

∧

( u,  z) ∈  H G)  volviendo a aplicar la definición de composición 

( x,  z) ∈ ( H G)  F  . 

Como se usaron todas definiciones o equivalencias lógicas, vale el “camino de vuelta”, por 

lo cual se tiene la otra contención, luego las gráficas son iguales. 

♦

  Hemos probado que la composición de funciones es asociativa 

EJERCICIO 4.3.25 

Sean   f :

→

,  g :

→

y   h :

→

definidas por 

2

 f ( x) =  x +1 , 

 g( x) =  x ,  h( x) = 3 x . 

a) Representar las tres funciones en un diagrama cartesiano

b) Calcular   (( h g)  f )( x)
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  Más definiciones

Si   f = ( F, A, B)   es una función, la gráfica  F admite una gráfica inversa 1

 F − = {(  y,  x) : ( x,  y) ∈  F} . 

EJEMPLO 4.3. 26 

Sea   f :  A →  B   definida según el siguiente diagrama: 

  A 

                              B 

1 

 a 

2

3

 c 

 b 

 F  = {(1,  a), (2,  a), (3,  b)} entonces  F – 1 = {( a,1), ( a,2),( b,3)}  

Notemos que    F - 1 no es funcional ni total, por lo cual la terna  ( F - 1 ,  B,  A) no es función. 

Recordatorio: 

Si 

1

 F

 A B, 

 F −

⊆

×

⊆  B ×  A  

Pr 1( F) = Pr 2( F – 1) y Pr 2( F) = Pr1( F – 1) 

Im(  f ) = { y ∈  B : (∃ x)( x ∈  A ∧  f ( x) =  y)} = Pr 2( F) Analicemos las condiciones que se tienen que cumplir para que una terna ( F - 1 ,  B,  A) sea función si   f = ( F, A, B)   es una función. 

Para que ( F - 1,  B,  A)  sea función: 

1)  Pr  F −1 =  B ,  para que  F - 1 sea total. 

1

2) 

1

−

1

Si   ( u,  v)

 F

( u, )

 w

 F −

∈

∧

∈

entonces   v =  w ,  para que  F - 1 sea funcional. 
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Si pedimos que  Pr  F −1 =  B  entonces  Pr  F =  B , es decir que el codominio de   f  es 1

2

igual a la imagen,  por el o todo elemento del codominio es el correspondiente de algún 

elemento del dominio. 

Decimos que una función   f :  A →  B  es suryectiva 

si y sólo si      

(S) 

(  y

∀ )(  y ∈  B → (  x

∃ )( x ∈  A ∧  f ( x) =  y))

Si pedimos que 

1

−

1

si ( u,  v)

 F

( u, )

 w

 F −

∈

∧

∈

entonces  v =  w ,  entonces se cumple (por 

definición de gráfica inversa)   si ( v,  u)∈  F

∧

( , 

 w u) ∈  F  entonces  v =  w , es decir que dos 

elementos distintos del dominio no pueden tener la misma imagen o que si dos elementos 

tienen la misma imagen entonces son iguales. 

Decimos que una función   f :  A →  B  es inyectiva 

 si y sólo si 

(  x

∀ )(  y

∀ )(  f ( x) =  f (  y) →  x =  y)

(I) 

si y sólo si      

 x ≠  y →  f ( x) ≠  f (  y)  (por contrarecíproca) Dada    f :  A →  B  función para que la terna  ( F - 1 ,  B,  A) sea función  es necesario y suficiente que      

 f    sea suryectiva e inyectiva. En este caso decimos que  f es biyectiva. 

Y anotamos   f – 1 = ( F - 1 ,  B,  A)   y la l amamos función inversa de  f. 

1

 F − = {(  y,  x) : ( x,  y) ∈  F} = {(  y,  x) : ( x,  f ( x))∈  F}  por lo tanto se tiene 1

 f − (  y) =  x  si y sólo si    f ( x) =   y

¿Existen funciones invertibles, es decir que son biyectivas y por tanto tienen inversa? 

244

RELACIONES Y FUNCIONES – CAPITULO 4 

EJEMPLO 4.3.27 

Sea  A un conjunto y sea   Id :  A →  A, que es dada como   Id ( x) =  x . 

 A

 A

(I): Es inyectiva? 

Sean dos elementos de   A,  x ∈  A ∧  y ∈  A ∧  Id ( x) =  Id (  y)  como A

 A

 Id ( x) =  x

∧

 Id (  y) =  y   se tiene que  x = y

 A

 A

Por lo tanto   Id  es inyectiva 

 A

(S): Es suryectiva? 

Consideremos un elemento arbitrario del codominio y analicemos si es correspondiente por 

la función.  Sea   y ∈ , 

 A  como  Id (  y)

, luego para todo elemento de 

 A

=  y

 A hay alguno en  A

que lo tiene por imagen. 

Por lo tanto   Id  es suryectiva 

 A

Como   Id = ( ∆  , A, A) es biyectiva ,  analicemos en este caso que se tiene como función A

 A

inversa:  ( Id ) -1 = ( ∆ -1 , A, A). 

 A

 A

Para lo cual vamos a analizar   

−1

∆

= {(  x,  y) : (  y,  x) ∈ ∆ }   pero   ∆ = {( , ) : ∈ }

 A

 A

 A

 x x

 x

 A

entonces  ( y, x) = ( x, x)  luego 

1

−

∆

= {( x,  x) :  x ∈ }

 A =  ∆ . 

 A

 A

¡La función identidad de  A y su 

inversa son iguales! 

Otra propiedad que la asemeja al 1… 

♦  PROPOSICIÓN 4.3.28

Sea 

1

 f :  A

 B

y

 f −

→

:  B →  A ,  f  es biyectiva  y 

1

−

 f

es la función inversa de   f.  

Entonces 

1

−

1

 f

 f :  A

 A

y 

 f −

→

 f =  Id    y  además 

 A

1

−

1

 f

 f

:  B

 B

y

 f

 f −

→

=  IdB

Demostración:   

Recordemos que como   f  es biyectiva cada elemento del codominio tiene una imagen y ésta es única y  por definición    x =  f −1(  y) ↔  f ( x) =  y Entonces 

1

−

1

−

1

−

1

(  f

 f )( x)

 f

(  f ( x))

 f

(  y)

 x

entonces

 f −

=

=

=

 f =  Id A
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Del mismo modo 

1

−

1

−

1

(  f

 f

)(  y)

 f (  f

(  y))

 f ( x)

 y

luego

 f

 f −

=

=

=

=  IdB

♦ 

Veamos porque nos referimos a la inversa de  f.  

♦  LEMA 4.3.29

Sean    f :  A →  B , 

, 

1

 f :  B →  A

y

 f 2 :  B →  A f  es biyectiva y  se cumplen

entonces 

. 

1

 f

 f =  Id

 f 2

 f =  Id

 f

1

 f =  Id

y

 A

 A

 B

 f

 f 2 =  IdB

 f =  f

1

2

Demostración: 

 f =  Id

 f  por ser   Id  neutro en la composición, entonces usando la hipótesis: 

1

 A

1

 A

 f =  Id

 f = (  f

 f )

 f  entonces por asociatividad de la composición y también la 

1

 A

1

2

1

hipótesis, además que la   Id  es neutro para la composición: 

 B

 f =  Id

 f = (  f

 f )

 f =  f

(  f

 f ) =  f

 Id =  f

1

 A

1

2

1

2

1

2

 B

2

Por lo tanto   f =  f

1

2

♦

Podemos entonces concluir el siguiente teorema: 

♦  TEOREMA 4.3.30

Sean   f :  A →  B , 

, 

1

 f :  B →  A   f  es biyectiva  y   1

 f

 f =  Id    y

 A

 f

1

 f =  IdB

Entonces como existe 

1

−

1

 f

:  B

 A

y 

 f −

→

 f =  Id

y  además 

1

−

 A

 f

 f

=  IdB

entonces 

1

 f − =  f 1 

♦

¡¡¡Por lo tanto la función inversa es única!!! Por eso se dice  la inversa de una función cuando existe. 
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EJEMPLO 4.3.31  

Sea   f :

→

definida por   f ( x) = 2 x + 1 . Compruebe que es una función 

(I):¿ Es inyectiva? 

Sean   x ∈

∧  y ∈

∧

 f ( x) =  f (  y)  como    f ( x) = 2 x + 1 ∧

 f (  y) = 2  y + 1    se tiene 

que  2 x +1 = 2  y +1, usando propiedades de la suma y multiplicación de los números reales: 

2 x

2  y

2 x + 1 −1 = 2  y + 1 −1 entonces

2 x = 2 y  entonces

=

luego:  x =  y

2

2

Por lo tanto  f  es inyectiva 

(S): ¿Es suryectiva? 

Sea   y ∈

veamos si existe   x ∈

tal que   f ( x) =  y . Para lo cual se debe cumplir que 

 y = 2 x + 1. 

Consideremos que la igualdad se da y veamos que  x es un número real. Usemos 

nuevamente  propiedades de suma y multiplicación en los números reales para justificar 

 y −1

 y − 1

los pasos.   Entonces   y −1 = 2 x  entonces

=  x ,  como  y es un número real 

2

2

es un número real, ya que es suma y cociente de números reales, por lo tanto el número 

 y − 1

real   x =

tiene por imagen a   y, pues  para cualquier  y vale:

2

 y − 1

 y − 1

Llamamos  x a la variable 

 f (

) = 2(

) + 1 =  y − 1 + 1 =  y  

2

2

de la función inversa. 

Por lo tanto  f es suryectiva. 

¡Que no traiga confusión! 

 x −

1

−

1

La inversa de   f  existe y es 

1

 f − :

→

definida por   f ( x) =

2

¿Es poco 

cambio? 

EJEMPLO 4.3.32 

Sea   f :

→

definida por   f ( x) = 2 x + 1  (analizar que es función). 

En este ejemplo  sólo hemos cambiado el dominio y el codominio del ejemplo anterior. 
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(I)La prueba de la inyectividad  para esta   f es similar a la dada en el ejemplo anterior pero usando las propiedades de la suma y multiplicación de enteros, por lo cual tiene sus 

sutilezas…. 

Consideremos   f ( x) = 2 x +1 ∧

 f (  y) = 2  y + 1, para   x  e   y  números enteros. 

2 x + 1 −1 = 2  y + 1 −1 entonces

2 x = 2 y  entonces ACA ESTA LA DIFERENCIA!!! 

El  2 no tiene inverso en los enteros, por lo tanto lo que vale hacer (por ejemplo) es: 2 x − 2  y = 0,  como vale la distribuitiva de la multiplicación en la suma: 2.( x -  y) = 0 . 

Usando  que un producto  en  es  0  si uno de los factores es  0: 

Como  2 ≠ 0  por lo tanto debe ser  x −  y = 0 , es decir que  x = y. 

Por lo cual  f es inyectiva. 

(S) Veamos que pasa con la suryectividad. 

Sea cualquier   y ∈  debemos ver  si  existe  x ∈  tal que  f ( x) =  y.  Es decir cumplir que y = 2 x + 1 entonces  por ejemplo si   y = 4 ,   4 = 2 x +1  pero entonces  2. (2-  x) = 1 

y si  x es un número entero, resulta que 1 es un número par. 

Lo que es absurdo. 

¿En lugar de 4, que 

se puede poner para 

Por lo tanto, algunos elementos del codominio no son  

obtener un absurdo? 

correspondientes de un elemento del dominio, por lo tanto  

no hay ningún entero que tenga como correspondiente al 4. 

Por lo cual   f  no es suryectiva. 

Entonces  f  no es biyectiva, por eso no es invertible (no tiene inversa) 

* Representar las funciones es una buena guía para analizar sus propiedades. 

**Recuerde que si las funciones tienen dominio y codominio contenidos en los números 

reales hacer una tabla de valores para encontrar los puntos que cumplen la condición dada 

por la función y puede usar los sistemas de cartesianos para su representación. 

Veamos las representaciones de las funciones recientemente analizadas. 
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 f :

→

definida por   f ( x) = 2 x + 1  

 f :

→

definida por   f ( x) = 2 x + 1  

Además 

de  A y  B 

están en la 

¡Son sólo 

gráfica 

puntos 

todos los 

aislados los 

puntos de 

de la gráfica 

la recta. 

de la 

función! 

EJEMPLO 4.3.33 

Sea la función   f :

→

definida por   f ( x) =  x

(I)¿Es inyectiva? 

Sean   x ∈

∧  y ∈

∧

 f ( x) =  f (  y),  como    f ( x) =  x

∧

 f (  y) =  y   se tiene 

que   x =  y  , pero si dos números tienen el mismo valor absoluto no son necesariamente iguales. Para ver que no se cumple basta dar un contraejemplo, podemos ver que 

2 = 2

 y

− 2 = 2   por lo tanto   f (2) =  f (−2)

Por lo tanto   f  no es inyectiva 

(S)¿Es suryectiva? 

Sea   y ∈

habrá    x ∈  que cumpla    y =  x ,  pero como  y es un número real cualquiera vemos que los negativos no son el valor absoluto de ningún número real, por ejemplo 

−1≠  x

,  para todo  x  real. 

Por lo tanto   f   no es suryectiva. 

Recordemos  la  gráfica  de la función: (la tabla la hicimos en 4.3.1) 
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

Veamos cómo geométricamente podemos analizar las propiedades de inyectividad y

suryectividad de una función    f :  A →  B  con  A ⊆   y  B ⊆

. 

Supongamos que   f :  A →  B  con  A ⊆   y  B ⊆

tal que su grafica está dada en el sistema  

cartesiano por trazo negro y  

 A = [ 1

− ,5 ; 2]  y    B = [0 ; 7, ]

5

 Primero,, ¿ es función? 

Cualquier  recta paralela al eje  y corta 

en un único punto la gráfica de la      

 f.  Esto significa que todo elemento de

 A tiene un único correspondiente. 

Es decir  f es función de  A en  B. 
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 ¿Para la inyectividad? 

Toda recta que pase por un punto cualquiera del  

codominio corta a la gráfica de  la función en a lo 

sumo un punto. Es decir cada elemento del  

codominio de  f  a lo sumo proviene de un único  

elemento del dominio. 

Es decir la función  f es inyectiva. 

 ¿Para la suryectividad? 

Toda recta que pase por un punto 

cualquiera del codominio  de   f   debe 

cortar la gráfica de la función. 

Observar que esta función NO es  

suryectiva   pues si pasamos una      

 recta muy próxima al (0,0) NO 

corta la gráfica de la función   f. 

Veamos otro ejemplo: 

Supongamos que   f :  A →  B  con  A ⊆   y  B ⊆

tal que su grafica está dada por: 

Sea   A = [ 3

− ; ]

3   y    B = [ 2

− ,5 ; 6, ]

3

Claramente que es  f función pues las rectas 

paralelas al eje  y   que pasen por cualquier 

punto del dominio cortaran en un solo punto a la 

gráfica de   f. 

No es inyectiva ni suryectiva:   

hay rectas paralelas al eje  y   por puntos del  

codominio que cortan la gráfica de la función 

 f  en más de un  punto. Hay otras rectas 

paralelas al eje  y  por puntos del codominio que 

NO  cortan la gráfica  de la función   f.  
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EJERCICIO 4.3.34  

Haga gráficas de funciones   f : [-2, 2] → ( -1 , 5]  tales que: 

a)  f  sea inyectiva y no suryectiva. 

b)  f    sea inyectiva y  suryectiva. 

c)  f   no   sea inyectiva y  sea suryectiva. 

d)  f  no   sea inyectiva y  no sea suryectiva. 

♦  PROPOSICIÓN 4.3.35


Sean   f :  A →  B  y  g :  B →  C   , si   g

 f  es inyectiva entonces  f  es inyectiva. 

Demostración: 

Como   g

 f  es inyectiva  (  x

∀ )(  y

∀ )(( g

 f )( x) = ( g

 f )(  y)  entonces   x =  y)   

Veamos que  f   es inyectiva, es decir:  (  x

∀ )(  y

∀ )(  f ( x) =  f (  y)  entonces   x =  y)  

Sean   x ∈  A ,  y ∈  A ∧  f ( x) =  f (  y) , si  aplicamos  g a ambos miembros por ser  g función g(  f ( x)) =  g(  f (  y)) entonces

( g

 f )( x) = ( g

 f )(  y)   y  por ser la composición inyectiva 

resulta que    x= y 

♦

EJERCICIO 4.3.36  

Probar que si   f :  A →  B  y  g :  B →  C  y   g f  es suryectiva entonces  g es suryectiva. 

♦  PROPOSICIÓN 4.3.37

Sean   f :  A →  B  y  g :  B →  C , si   f  y   g son suryectivas entonces   g f  es suryectiva. 

Demostración:  

Como  f   y  g son suryectivas  (  y

∀ )(  y ∈  B  entonces  (  x

∃ )( x ∈  A ∧  f ( x) =  y))  y 

(  z

∀ )( z ∈  C  entonces  (  y

∃ )(  y ∈  B ∧  g (  y) =  z))   

Veamos que   (  z

∀ )( z ∈  C  entonces  (  x

∃ )( x ∈  A

∧ ( g

 f )( x) =  z))  

Sea   z ∈ C  entonces por ser  g suryectiva   (  y

∃ )(  y ∈  B :  g(  y) =  z)   entonces por ser  f

suryectiva y como   y ∈  B ,   (  x

∃ )( x ∈  A  tal que   f ( x) =  y)   entonces reemplazando se tiene z =  g(  f ( x))  es decir   z = ( g

 f )( x) . Por lo tanto   g

 f  es suryectiva 

♦ 

252

[image: Image 3278]

RELACIONES Y FUNCIONES – CAPITULO 4 

EJERCICIO 4.3.38  

Probar que si   f :  A →  B  y  g :  B →  C   , si   f  y   g  son inyectivas entonces   g f  es 

inyectiva . 

EJERCICIO 4.3.39:  

Probar que si   f :  A →  B

 y

 g :  B →  C   , si  f  y   g  son biyectivas entonces   g f

tiene inversa y 

1

−

−1

−1

( g

 f )

=  f

 g  . 

(idea usar TEOREMA 4.3.30) 

 Sigamos indagando en funciones

Sea   f :

→

definida por 

2

 f ( x) =  x

Esta función no es inyectiva ya que por ejemplo 

2

2

 f (1) = 1 = 1

y

 f ( 1

− ) = ( 1

− ) = 1

1 y -1 tienen la misma imagen. 

Tampoco es suryectiva ya que por ejemplo el -1 no es imagen de ningún elemento del 

dominio, no existe un número real  x tal que 

2

− 1 =  x

¿Podremos achicar el 

dominio y el codominio 

y  fabricar una función 

 biyectiva parecida? 
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Definimos   g : +

+

→

siendo 

2

 g( x) =  x

Esta función es ahora inyectiva ya que si 

 g ( x) =  g (  y →

 x 2

)

=  y 2 →

 x 2 =

 y 2 →

 x =  y

Y como  x e  y son positivos  x= y 

También es suryectiva ya que si   y

 R+ , (  x)( x

+

∈

∃

∈

∧  g( x) =  y), 

 x = ±  y

 x siempre existe porque  y es positivo, por lo tanto la raíz cuadrada de un número positivo está bien definida y tiene dos resultados, uno positivo y uno negativo, pero el valor de  x  a considerar es el positivo por ser el dominio  +

Qué ocurre con la  f  y la  g dadas?  Tienen igual ley de definición   y = x 2, pero sus dominios y codominios son distintos, NO son la misma función!!! 

Este ejemplo nos motiva la siguiente definición: 

Dadas   f  = ( F,A,B)  y   g = ( G,C,D)   tales que :   G ⊆  F,  C ⊆  A  y  D ⊆  B  

Decimos entonces que   g es una restricción de   f  o que   f es una extensión de  g

Observar que como    G ⊆  F   entonces (  x

∀ )( x ∈ C →  g ( x) =  f ( x))  

Por lo tanto de acuerdo a la última definición, para las funciones del ejemplo anterior, 

 f :

→

definida por 

2

 f ( x) =  x  extiende a   g :

+

+

→

siendo 

2

 g( x) =  x . 

EJERCICIO 4.3.40  

Sea   f :

→

y   g :

→

, definidas por si   f ( x) =  x

y

 g( x) =  x  . 

Mostrar que    f  extiende a    g.   
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EJERCICIO 4.3.41 

Probar que si   f :  A →  B

 y

 g :  C →  D  tal que  f es inyectiva y  g es restricción de  f entonces  g es inyectiva. 

EJERCICIO 4.3.42 

Probar que si   f :  A →  B

 y

 g :  C →  D  tal que  f  es suryectiva y  g es restricción de  f entonces  g  no necesariamente es suryectiva. 

4. Funciones Especiales: Estructuras Algebraicas

Vamos a considerar las definiciones de las estructuras algebraicas básicas. Este nombre 

involucra como ejemplos a los conjuntos numéricos conjuntamente con las operaciones 

definidas sobre el os y de acuerdo a las propiedades que estas operaciones tienen se les 

dan distintos nombres. Justamente estos ejemplos (los numéricos) son los motivadores de 

la generalización. 

Dado un conjunto  A, una operación binaria sobre  A es una función 

∗:  A ×  A →  A

Es decir, a cada par de elementos de  A le corresponde un único elemento de  A. 

Notación:   ∗(( a,  b)) =  a ∗  b  

EJEMPLOS 4.4.1 

1) En 

se tiene que  + :  

× 

  →  

siendo  +  la suma habitual de los números naturales. 

2) En   se tiene que + :  ×    →    siendo  +  la suma habitual de los números enteros. 

3) En 

se tiene que  . : 

×  

→  

siendo  .  el producto habitual de los números reales. 

EJERCICIO 4.4.2 

Cuáles de las siguientes son operaciones binarias sobre el conjunto de puntos del plano: 

1)  p1∗  p2 = distancia de  p1  a  p2

2)  p1∗  p2 = recta que pasa por   p1   y   p2

3)  p1∗  p2 = el punto medio entre   p1  y   p2
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EJERCICIO 4.4.3 

Dado un conjunto  E. Analizar que son operaciones binarias sobre P( E) (conjunto de partes de  E) la ∪ (unión), la   ∩ (intersección), la  ∆ (diferencia simétrica). 

¡más nombres! 

Verificarlo. 

  Propiedades de operaciones binarias sobre A y definiciones. 

Dada una operación binaria * sobre un conjunto  A, anotaremos esa situación por el par ( A, ∗  )  .   

Es usual identificar ( A,* ) con el conjunto subyacente   A . (Pero no es lo correcto, salvo casos muy obvios). 

El par ( A, * ) es una estructura algebraica que recibirá distintos nombres según las propiedades que tenga * sobre  A.  

Dado un conjunto   A y una operación binaria sobre   A, se dice que ∗   es asociativa si para cualesquiera sean  a, b y c  en  A se cumple   a ∗  (b ∗  c)= (a ∗   b) ∗  c Dado un conjunto   A y una operación binaria sobre   A, se dice que ∗  es conmutativa si para cualesquiera sean  a y b  en  A  se cumple   a ∗   b= b ∗   a Dado ( A, ∗  ) tal que  ∗  es asociativa diremos que el par ( A, ∗   ) es un monoide. 

Se l ama monoide conmutativo si ∗  es conmutativa.  

EJERCICIO 4.4.4 

1) Justificar que (

, +) es un monoide. 

2) Justificar  (P( E) , ∩) es un monoide. 

3) Además probar que ambos son conmutativos. 

Dado un monoide ( A, ∗  )   diremos que tiene elemento neutro si existe  e∈  A tal que para todo   a∈  A  se verifica que       a∗  e = e∗  a= a. 

En  caso  de  haber  definidas  sobre   A  más  de  una  operación  binaria  se  aclarará  neutro respecto de que operación. 
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♦  TEOREMA 4.4.5

Si el monoide ( A,* ) tiene neutro, el neutro es único. 

Demostración: 

Supongamos que existen dos neutros  en ( A,* ), es decir  existen   e1 ∈  A y  e2 ∈  A tales  que para todo   a∈  A  se verifican       a∗  e1 = e1∗  a = a    y   a∗  e2 =  e2 ∗  a = a .   

Por estas igualdades se puede considerar:    e1 = e1∗  e2  = e2    pues las igualdades valen para todo  a∈  A  , en particular para  e1 ∈  A y  e2 ∈  A.  

♦ 

Un monoide ( A, ∗  )   es un  semigrupo   si  * tiene elemento neutro. 

EJERCICIO 4.4.6 

1) Justificar que el monoide (

, +)  es un semigrupo conmutativo. 

2) Sea  A un conjunto y sea  F = {  f :  f  es función y   f:  A →  A }. 

Consideremos la ley de composición de funciones ° sobre F . Verificar que (F , ° ) es un

semigrupo. ¿Es conmutativo? 

Dado un monoide ( A, ∗ ) con neutro  e,  diremos que  a∈  A  tiene elemento opuesto (o 

inverso) respecto de * si existe  a’∈  A tal que         a’∗  a = a∗   a’ = e Dependiendo de la notación que se utilice para * será la notación y la terminología que se 

utilice para  a’. 

EJERCICIO 4.4.7 

Sea ( A, ∗  )   un   semigrupo. Demostrar que si  a∈  A  tiene opuesto ,  el opuesto es único .  

(Idea de la demostración: basta suponer que existen dos elementos opuestos para  a y ver que coinciden.) 

Un monoide ( A, ∗  ) tal que todo elemento tiene opuesto es un grupo.   
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EJERCICIO 4.4.8 

Justificar que son grupos ( , +),   (

, +)  y (P( E) , ∆) . Y que (

, +) no lo es. 

Un grupo ( A,*) se dice abeliano o conmutativo si * es conmutativa. 

EJERCICIO 4.4.9 

Analizar si son grupos conmutativos  ( , +),   (

, +)  y (P( E), ∆) . 

EJEMPLO 4.4.10 

1) Sea (  , ⊕) donde se define  a⊕  b= a+ b-1, siendo +  la suma habitual en  . 

Analizar que estructura tiene  ( , ⊕)  

Está claro que ⊕ es una operación binaria. 

Veamos si es asociativa: sean  a, b, c ∈  ,  calculemos  a⊕  (b⊕  c)=a+(b+c-1)-1=a+b+c-2 

por otra parte   (a⊕  b)⊕  c=(a+b-1)+c-1=a+b+c-2 . Luego ⊕ es asociativa. 

Por lo tanto (  , ⊕)  es un monoide. 

Veamos si tiene elemento neutro; de existir debe ser un  e∈     tal que:   

 a⊕  e = e ⊕  a = a,  es decir   que  a = a+ e -1= e+ a -1,  por lo tanto  e=1 

Luego  (  , ⊕)  es un semigrupo. Además debido a la conmutatividad de + resulta que a⊕  b = b⊕  a , por lo cual (  , ⊕) es un semigrupo conmutativo . 

Para ver si es grupo hay que analizar si todo entero tiene opuesto (respecto de ⊕), es decir si dado  a∈  ,  existe  a’ ∈     tal que  a’⊕  a = a⊕  a’ = 1 

Es decir que  a’⊕  a = a⊕  a’ = a+ a’- 1=1,  por lo cual   a’ = 2-a que es un entero. 

Por lo tanto  ( , ⊕) es un grupo conmutativo. 

2) Sea  ( , )

⊗  donde se define  a ⊗   b= a . b +1, siendo +  la suma habitual en 

y . 

multiplicación usual en . 

Analizar que estructura tiene ( , )

⊗ . 

Es claro que  ⊗ es binaria sobre . 

Veamos si es asociativa: sean  a, b, c ∈  ,  calculemos  a ⊗   (b ⊗   c)= a  ⊗   (b . c+1)=

 a.(b.c)+ a+1 

por otra parte   (a ⊗   b)  ⊗  c=(a .b+1)  ⊗  c = (a.b). c+ c+ 1   y    si  a ≠  c , los resultados son distintos. (Verifique por ejemplo con  a = 3 y  c = -2).    Luego  ⊗  NO es asociativa. Luego no es monoide, ni grupo…. 
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Este ejemplo aclara por qué No es correcto sólo hablar del monoide, grupo ó cualquier 

estructura  A, pues un mismo  A puede tener definida sobre él distintas operaciones y producir distinta estructura. 

  Más estructuras

Veamos que si sobre un conjunto  A se definen dos operaciones binarias resultan distintos tipos de estructuras algebraicas dependiendo también de las propiedades de las 

operaciones. 

Sean ∗ y ⊗ dos operaciones binarias sobre un conjunto  A. 

Si  ( A, ∗  ) es un grupo conmutativo, ( A, ⊗) es un monoide y además ⊗ se distribuye en *, esto es: 

Para cualesquiera   sean  a, b y c en A se cumplen 

 a ⊗  ( b∗  c)  = ( a ⊗   b)  ∗  (a  ⊗   c)   

(  a∗  b)  ⊗   c = (a  ⊗   c)  ∗  ( b ⊗   c)  

entonces la terna ( A, ∗  , ⊗) es un anillo .  

Cuando el monoide ( A, ⊗)   tiene propiedades adicionales se le da al anil o distintas denominaciones 

EJEMPLOS 4.4.11 

1)El anil o de los números enteros ( ,+ , . ) con las operaciones habituales de  +  y  .   es el ejemplo motivador de la definición. 

2)Es anil o (

 ,+ , . )    siendo +  y  .  las operaciones habituales en  

. 

3) Consideremos [0,1] ⊂ 

y sea C[0,1] ={  f  :  f continua  ∧   f : [0,1]→ 

}. 

Si  f, g ∈ C[0,1] se definen sobre C[0,1] las operaciones ⊕ y • como sigue: 

 f ⊕  g es la función definida punto a punto  

( f ⊕  g )( x)=  f(x) +  g( x) para cada  x∈[0,1] 

con +  es la suma usual en R. Claramente  f ⊕  g ∈C[0,1] (lo sabe de Análisis 

¿No estoy en Algebra? 

Matemático!!!) 
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 f   •    g  es la función definida punto a punto 

( f   •    g )( x) =  f( x) .  g( x) para cada  x∈[0,1] 

Dónde  .  es el producto usual en

.  Claramente  f   •    g  ∈C[0,1] (lo sabe de Análisis 

Matemático!!!) 

Es inmediato que (C[0,1], ⊕,•) es un anil o y  la función constante 

 f0 ( x) = 0  para todo  x ∈ [0,1] es el neutro de la suma. Es el anillo de las funciones  continuas definidas sobre [0, 1]. 

4) El ejemplo anterior se puede generalizar en algún sentido. Si  A es un conjunto no vacío y ( B, +, . ) es un anil o, sea  F ={  f : f   función  ∧    f : A →  B } .  Se definen sobre   F  las operaciones ⊕ y • de manera análoga que en el ejemplo anterior y resulta que ( F , ⊕ , •) es un anil o. Pruébelo!!!!  

  Más definiciones, anillos más costosos…. 

Un anil o  ( A, *, ⊗) es un anillo con unidad si el monoide ( A, ⊗)   es un semigrupo. Es decir existe un elemento neutro para la operación ⊗ . 

En el caso que ambos neutros coincidan se tiene un anil o trivial de un solo elemento. 

Un anil o  ( A, *, ⊗)   es un anillo conmutativo si el monoide ( A, ⊗) es conmutativo.  

EJEMPLO 4.4. 12 

Los anil os del EJEMPLO 4.4.11  1), 2) y 3) son con unidad. 

En el anil o (C[0,1], ⊕,•)  la función constante  f1( x) = 1 para todo  x ∈ [0,1] es la unidad. 

Estos anil os son conmutativos.   

En el caso de  ( F , ⊕ , •)   definido en  4) dependen sus propiedades   del tipo de anil o que sea  

( B,+, . ).    

EJERCICIO 4.4. 13 

1) Sea el conjunto  T = {o , e} .  Se definen sobre  T  las operaciones  +  y  • por las siguientes  igualdades: 

 o +  e =  e  ;  e +  o =   e  ;  o +  o =  o ; e +  e =  o o  •  e =  o  ;  e •  o =   o  ;  o •  o =  o ; e •  e =  e Demostrar  que (  T, +, •)  es un anil o conmutativo con unidad. 
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2) Sea  L =  ×   × . Sean sobre  L las operaciones   +  y   •   definidas por: (a, b, c) + (d, e, f) = (a+ d, b+ e, c+ f) 

 (a, b, c) •   (d, e, f) = (a. d, b. d+ c. e, c. f) 

Probar que ( L, +, •) es un anil o. Que la unidad es  u = (1, 0, 1)  y no es conmutativo (verificarlo por ejemplo con  (0, 1, 0) y  (1, 0, 0) )  

3) Sea (P( E),  ∆, ∩)  para un conjunto  E. Demostrar que (P( E), ∆, ∩) es un anil o con unidad.  ¿Qué ocurre si  E  es el conjunto vacío? 

Un anil o  ( A, *, ⊗)   es un anillo de integridad si   a ⊗  b= 0  entonces  a= 0 ó b= 0. 

EJEMPLO 4.4. 14 

1) Son anil os de integridad (  , +, . )  , (

 , +, .  ) . 

2) ( L, +, •)  no es de integridad:  (0,1,0) •  (0, 1, 0)= (0, 0, 0)

Un anil o  ( A, *, ⊗)   es un  cuerpo si todo elemento no nulo de   A tiene inverso respecto de  ⊗  .  

EJERCICIO 4.4.15 

Demostrar las siguientes afirmaciones: 

1) Son cuerpos (

 , +, . )    y   (  T, +, •)   (el dado en 4.4.13)  . 

2) No son cuerpos  ( L, +, •)  y  (C[0,1], ⊕,•). 

3) Sea   A = { a+ b i +c j +d k: a, b, c, d ∈  

}    i, j, k representan números hipercomplejos

(no son números reales).  En la definición de los objetos de  A los símbolos  +  NO

representan suma. 

Hamilton l amó cuaternios ó cuaterniones  a los elementos de  A dotado de las operaciones definidas por:

 a1+b1 i+c1 j+d1 k    ⊕   a2+b2 i+c2 j+d2 k =  a1 +a2 + (b1 +b2 )i+ (c1 + c 2 )j+ (d1+d2 )k 261
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y  la multiplicación ⊗ está dada por la siguiente tabla: 

⊗ 

 1 

 i 

 j 

 k 

 1 

 1 

 i 

 j 

 k 

 i 

 i 

 -1 

 k 

 -j 

 j 

 j 

 -k 

 -1 

 i 

 k 

 k 

 j 

 -i 

 -1 

Se amplía la definición de ⊗  para cualquier cuaternio haciendo cumplir la propiedad 

distributiva del producto ⊗ en la suma ⊕ . 

De la tabla se desprende que el producto ⊗ no es conmutativo. 

Probar que (  A, ⊕, ⊗ ) es un cuerpo. 

5. Relaciones en un conjunto

En  el  inicio del capítulo hemos visto la  introducción a un tema  importante que se 

inmiscuye  en  casi  todos  los  campos  de  la  Matemática  y  otras  ciencias  que  son  las relaciones,  que  se  introdujeron  como   R ⊆  A×  B .  Vimos  casos  particulares  como  las funciones y las operaciones. Ahora en este apartado estudiaremos un tipo particular de 

relación, cuando  A = B. 

Se dice entonces que  R es una relación definida en  A o sobre  A,  o simplemente  R 

es una relación en  A o sobre  A, si   R ⊆  A×  A . 

Ya  se  han  visto  algunos  ejemplos  (4.1.4  ;    4.1.5  partes  3),  4),  5)  6);  4.2.5  parte  1); 4.2.20 y 4.2.23 son algunos) de este tipo de relación. Las relaciones sobre el conjunto 

de   los  seres  humanos  son  motivo  de  estudio  de  distintas  disciplinas.  Las  relaciones sobre  los  conjuntos  numéricos  son  mayormente  estudiadas  por  la  Matemática  y  han 

derivado aplicaciones a otras disciplinas. 

Las relaciones en un conjunto, se dividen según las propiedades que verifican y hay, 

entre  otras,  dos  grandes  clases  importantes:  las   relaciones  de  equivalencia  y  las 

 relaciones de orden.  Fundamentalmente las primeras producen una “clasificación” de los  elementos  del  conjunto  en  distintos  compartimentos  o  clases.  El  segundo  tipo 262
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"ordena"  los  elementos  del  conjunto  donde  está  definida.  Estos  tipos  de  relaciones formalizan dos acciones muy habituales sobre los objetos. Ambos tipos generalizan las 

propiedades de la relación de igualdad. 

 Piense  que  propiedades  tiene  la  relación  de  igualdad  (por  ejemplo,  en  el  conjunto  de los números). 

Como  siempre. 

Para abordar estas relaciones haremos varias definiciones. 

Una relación  R en el conjunto  A  es un subconjunto de  A ×  A. 

  R es un conjunto de pares ordenados. 

  Algunos nombres para las propiedades de las relaciones sobre A. 

 Si  todo  elemento  del  conjunto  A  está  relacionado  con  sí  mismo  la  relación  se  dice reflexiva. 

Simbólicamente se expresa: (  x

∀ )(  x ∈  A →  xRx )   o    (  x

∀ )(  x ∈  A → ( , 

 x x) ∈  R )  

Luego, para que la relación en  A sea reflexiva  debe ser verdadero ese condicional para cada uno de los elementos de A. 

Una  relación   R   en   A  se  dice  simétrica  cada  vez  que   un  elemento  de  A  está relacionado con otro, este último lo esté con el primero. 

Simbólicamente por: 

(  x

∀ )(  y

∀ )( ( x,  y) ∈  R → (  y,  x) ∈  R )   o    (  x

∀ )(  y

∀ )(  x R y →  y R x )

Lo cual lo podemos expresar diciendo: si un par ordenado es elemento de R, también 

lo es su "dado vuelta". 
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Una  relación   R  en   A  se  dice antisimétrica cuando   cada  vez  que  un  elemento  de A está  relacionado  con  otro  y  este  último  lo  está  con  el  primero,  es  el  caso  que  ambos elementos son iguales. 

Simbólicamente por: 

(  x

∀ )(  y

∀ )( ( ( x,  y) ∈  R ∧ (  y,  x) ∈  R ) →  x =  y )      o (  x

∀ )(  y

∀ )( (  x R y ∧  y R x ) →  x =  y )

También  lo  podemos  expresar  diciendo:  si  un  par  ordenado  es  elemento  de   R  y también lo es su "dado vuelta" entonces ambos elementos del par son el mismo. 

Esta definición de antisimétrica es equivalente a formular: 

(  x

∀ )(  y

∀ )( ( ( x,  y) ∈  R ∧  x ≠  y ) → (  y,  x) ∉  R ) o 

(  x

∀ )(  y

∀ )( (  x R y ∧  x ≠  y ) →  y R x )

/

Como se verá en los ejemplos, simétrica y antisimétrica no son conceptos "opuestos" 

para una relación  R en  A. 

Una relación  R en  A se dice transitiva cuando  cada vez que un elemento de A está relacionado  con  otro  y  este  último  lo  está  con  un  tercero,  también  el  primero  está relacionado con el tercero. 

Simbólicamente: 

(  x

∀ )(  y

∀ )(  z

∀ )( ( ( x,  y) ∈  R ∧ (  y,  z) ∈  R ) → ( x,  z) ∈  R )      o (  x

∀ )(  y

∀ )(  z

∀ )( (  x R y ∧  y R z ) →  x R z )

La relación en  A es transitiva si se trasmite…. 
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♦  Ya  hemos  destacado  que   R  puede  ser  subconjunto  de  diferentes  productos cartesianos, pero al decir que  R es una relación en un conjunto, esta ambigüedad se elimina. Esta precisión es importante para poder analizar las propiedades. 

EJEMPLO 4.5.1 

a) Sean las relaciones

 R 1 = { (2, 3), (-2, -2 ) , (2, 2), (3, 3), (3, 2) } 

 R 2 = { (2, 3), (3, 3 ) , (-2, 3) } 

 R 3 = { (-1, 2), (0, -2 ) , (1, 5), (2, -1), (-2, 0), (5, 1) } 

¿Son reflexivas? ¿Son simétricas? ¿Son transitivas? ¿Son antisimétricas ? 

Observación 

muy importante 

 Las preguntas están mal formuladas y NO se podrán contestar. 

Pues no se ha dado el conjunto de partida de la relación. ¿Cuál es  A? 

La reflexividad depende claramente sobre qué conjunto se define  R. En la definición se dice  todo elemento de A  debe estar relacionado con si mismo.... 

Para  A = { 2, 3, -2},  R 1  es reflexiva pero NO lo son las otras relaciones. 

Pero si   A = { 1, 2, 3, -2} , ninguna de esas relaciones es reflexiva. 

Más aún: la relación  R 3 No es una relación en esos conjuntos dados como  A. 

El "menor" conjunto  A  para el cual la relación  R 3 está definida es  A = { 1, 2, 5, -2, -1, 0}. 

¿Por qué? ¿Sirve ese  A como conjunto de partida de las otras relaciones? 

b) Considerar   A = { 2, 3, -2},  R 1 = { (2, 3), (-2, -2 ) , (2, 2), (3, 3), (3, 2) }

y   R 2 = { (2, 3), (3, 3 ) , (-2, 3) } definidas sobre  A. 

¿Son reflexivas? ¿Son simétricas? ¿Son transitivas? ¿Son  antisimétricas? 

Tanto  R 1  y   R 2  son relaciones definidas sobre  A.  Son subconjuntos de  A x  A. 
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Claramente  R 1  es reflexiva pues para c /u de los elementos de  A 

  { -2 ,    2,    3}  

Formo  ( x, x): 

(-2, -2)   (2,2)    (3,3) 

Busco en R1: 

  R 1 = { (2, 3), (-2, -2 ) , (2, 2), (3, 3), (3, 2) } 

Y también, claramente  R 2  NO es reflexiva pues para c /u de los elementos de  A 

{ -2 ,    2,    3} 

Formo  ( x, x): 

(-2, -2)   (2,2)    (3,3) 

Busco en R2: 

NO está 

 R 2 = { (2, 3), (3, 3 ) , (-2, 3) } 

Es  R 1 simétrica? Hay que analizar:   si está un par, este su "dado vuelta" . 

En estos casos de relaciones sobre conjuntos finitos (y poco extensos) ese análisis es 

muy fácil. Lo natural es ir "rastreando" en la lista de la relación los elementos y sus simétricos: 

  R 1 = { (2, 3), (-2, -2 ) , (2, 2), (3, 3), (3, 2) } 

Considero el (2, 3). 

... Lo encuentro y sigo 

Busco (3, 2).......... 

con otro 
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Observar que los siguientes tres elementos de  R 1 son de la forma (  u, u), por lo cual también (  u, u)  está en  R 1. 

El restante elemento es (3, 2) , y ya hemos analizado que esta su dado vuelta! 

Por lo tanto la relación  R 1 es simétrica. 

Es  R 2  simétrica? Hay que analizar que:   si está un par, este su "dado vuelta" . 

 R 2 = { (2, 3), (3, 3 ) , (-2, 3) } 

Considero el (2, 3). 

NO lo encuentro....... 

Busco (3, 2).......... 

Por lo tanto la relación  R 2   NO es simétrica. 

Analicemos ahora la  transitividad de las relaciones. 

Para el o hay que investigar en cada caso si:  ( x R y ∧  y R z) →  x R z

Esto supone que al considerar un par dado  (l ámese  ( x, y)  )  en la relación, luego buscar aquel os pares (si existen) que comienzan con el elemento que terminó éste,  y . 

Detecto así si hay pares ( y, z) . Luego busco elementos ( x,  z). 

Deben estar todos los ( x,  z) para los cuales estén en la relación ( x,  z) e ( y, z). 

  R 1 = { (2, 3), (-2, -2 ) , (2, 2), (3, 3), (3, 2) } 

Considero el (2, 3). 

Encuentro (3, 3) y 

Busco (3, ...)    

(3, 2) 

Estando en la relación 

(2,  3 )      y 

( 3 ,   3 ) 

Este es el "  y".... 

Se debe buscar 

( 2,  3 )  . Claramente.....está en la relación. 
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Estando en la relación 

(2,  3 )      y 

( 3 ,   2 ) 

Este es el "  y".... 

Se debe buscar 

( 2,  2 )  . Claramente.....está en la relación. 

  R 1 = { (2, 3),   (-2, -2 ) ,   (2, 2), (3, 3), (3, 2) } 

Sólo encuentro 

Considero el (-2, -2). 

Cómo es en este caso?: Muy trivial..... 

Busco (-2 , ...) 

(-2, -2) !! 

Estando en la relación 

(-2,  -2 )    y 

( -2 ,  -2) 

Este es el "  y".... 

Se debe buscar   (-2,  -2)  . Claramente.....está en la relación. 

Sigamos.... 

 R 1 = { (2, 3),   (-2, -2 ) ,   (2, 2),  (3, 3),  (3, 2) } 

Sólo encuentro 

Considero el (2, 2). 

(2, 2) !! 

Busco (2 , ...)    

Y, cómo es este caso?: Muy trivial.....similar al anterior (justifique ) 

Sigamos....  R 1 = { (2, 3),   (-2, -2 ) ,   (2, 2),  (3, 3),  (3, 2) } 

Encuentro 

Considero el (3, 3). 

(3, 3)  y  (3, 2) !! 

Busco (3 , ...) 
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Hay que analizar por lo cual dos situaciones. 

Primero: 

Estando en la relación                (3,  3 )    y     

( 3 ,  3) 

Este es el "  y".... 

Se debe buscar   (3,  3)  ..... está en la relación. 

Segundo: 

En la relación están 

(3,  3 )     y 

( 3 ,  2) 

Este es el "  y".... 

Se debe buscar   (3,  2)  . Claramente.....está en la relación. 

Terminemos...  R 1 = { (2, 3),   (-2, -2 ) ,   (2, 2),  (3, 3),  (3, 2) } 

Encuentro 

Considero el (3, 2). 

Busco (2 , ...) 

(2, 3)  y  (2, 2) !! 

Hay que analizar nuevamente dos situaciones. 

Primero: 

Estando en la relación 

(3,  2 )     y 

( 2 ,  3) 

Este es el "  y".... 

Se debe buscar   (3,  3)  ....está en la relación. 
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Segundo: 

En la relación están 

(3,  2 )     y 

( 2,  2) 

Este es el "  y".... 

Se debe buscar   (3,  2)  .....  está en la relación!! 

Ya se  recorrió toda la relación y se verifico que si:   x R y ∧  y R z →  x R z Por lo cual  R 1 es transitiva. 

¿Qué pasa con  R 2  ?  Se hará un análisis similar. 

 R 2 = { (2, 3),  (3, 3), (-2, 3) } 

Encuentro (3, 3) 

Considero el (2, 3). 

Busco (3, ...)    

Estando en la relación 

(2,  3 )      y 

( 3 ,   3 ) 

Este es el "  y".... 

Se busca en la relación el 

( 2 , 3).  Y está!! 

Siguiendo por     R 2 = { (2, 3),  (3, 3), (-2, 3) } 

Encuentro (3, 3) 

Considero el (3, 3). 

Busco (3, ...)    

Estando en la relación 

(3,  3 )      y     ( 3 ,   3 ). 

Trivial lo que sigue....(de acuerdo?). 
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Terminando con     R 2 = { (2, 3),  (3, 3), (-2, 3) } 

Considero el (-2, 3). 

Encuentro (3, 3) 

Busco (3, ...)    

Estando en la relación 

(-2,  3 )      y 

( 3 ,   3 ) 

Este es el "  y".... 

Se busca en la relación el             ( -2 , 3).   Está!! 

Ya se  recorrió toda la relación y se verifico que si:   x R y ∧  y R z →  x R z . Por lo cual  R 2  es transitiva. 

Analicemos ahora la antisimetría de las relaciones. 

Para el o hay que investigar en cada caso si:  ( x R y ∧  y R x) →  x =  y Esto supone que al considerar un par  dado  ( llámese  ( x, y)  )  en la relación, luego buscar si existe el par ( y, x ) en la relación. Y se analiza si  x = y. O dicho de otro modo, ver si hay en la relación     ( x, y) e ( y, x ) para  x distinto de  y, en cuyo caso no es antisimétrica. 

 R 1 = { (2, 3), (-2, -2 ) , (2, 2), (3, 3), (3, 2) } 

Considero el (2, 3). 

Busco (3, 2)    

Encuentro   (3, 2) 

Luego, como 2 es distinto de 3, la relación  R 1 NO es antisimétrica. 
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Qué pasa con    R 2 = { (2, 3),  (3, 3), (-2, 3) }  ?? 

 R 2 = { (2, 3),  (3, 3), (-2, 3) } 

No se encuentra 



Considero el (2, 3). 

(3, 2) 



Busco (3, 2)    

Se sigue.. 

 R 2 = { (2, 3),  (3, 3), (-2, 3) } 



Se encuentra 

Considero el (3, 3). 

Busco (3, 3)    

En este caso  x = y !! 

Se termina con   R 2 = { (2, 3),  (3, 3), (-2, 3) } 

Considero el (-2, 3). 

Busco (3, -2)    

No se encuentra 

(3, -2) 

Por lo cual se puede concluir que  sólo en el caso que x =y está un par y su dado vuelta en  R 2  , y terminar diciendo que es antisimétrica. 

• Para los casos de  R 1 y  R 2 , resultó que una es simétrica pero no antisimétrica y la otra es antisimétrica pero no simétrica. ¿Será siempre así?  Haga el siguiente Ejercicio. 

Sea muy cuidadoso (también lógicamente) 

EJERCICIO 4.5.2 

Sean   A = { 2, 3} y las relaciones definidas en  A : 

 R 1 = { (2, 3), (2, 2 ) , (3, 3), (3, 2) },  R 2 = { (2,2) , (3, 3 ) },  R 3 = { (2,2) } } y   R 4 = { (2,3) } 

a) Estudie que propiedades tiene cada una de las relaciones. 
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b) Haga una tabla de la relación. 

c) Represente cada una de las relaciones en el plano cartesiano. 

  Más sobre representación de relaciones

Dado un conjunto  A y una relación  R definida sobre él, además de representarla por una  tabla, por un diagrama de flechas o por un sistema cartesiano se puede hacer una 

digráfica. 

Una  digráfica es una gráfica dirigida. Con  vértices y  aristas dirigidas. 

Veamos cómo se construye a partir de un ejemplo. 

EJEMPLO 4.5.3 

Sea la relación  R = { ( a, a), ( a, b), ( a, c), ( b, c), ( d, d) } definida sobre  A = { a, b, c, d } . 

Se marcan en este caso cuatro puntos o vértices, representando cada uno de los 

elementos de  A: 

  a . 

 .  b

c. 

 d . 

Luego se traza una flecha  o arista dirigida uniendo los vértices que están 

relacionados, para un par que está en la relación, la flecha tiene origen en la primera 

componente del par y fin en la segunda, es decir desde un elemento hasta su 

correspondiente. 

En el ejemplo resulta: 

  a . 

 .  b

c . 

  d . 

Para cada par de la forma ( x, x) hay un "rulo" o lazo. 
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EJEMPLO 4.5.4 

Dada la siguiente digráfica, es posible hal ar la relación como conjunto de pares 

ordenados 

Por cada flecha 

 b 

 x              y 

 a 

en la digráfica se forma  ( x, y)  y se 

 c 

 e 

pone en el conjunto  R.  

 h 

 d 

 g 

Por lo cual 

 f 

 i 

 R = { ( a, b), ( b, a), ( c, c), ( e, d), ( d, f),( f,e), ( g, i) , ( g, f), ( f, i), ( g, h), ( h, i), ( i, h) } 

EJERCICIO 4. 5. 5 

Sea  R la definida en el ejemplo anterior, justifique totalmente la representación de  R 

como conjunto de pares ordenados. ¿Cuál es el dominio sobre el que está definida  R. 

EJERCICIO 4.5.6 

1. Para la relación   R  definida sobre Z  por:

 x  R  y   si y sólo si   x - y = 5 

a) Hal e algunos elementos del conjunto  R. 

b) Represente  R en una tabla (parcialmente...)

c) Represente  R en un diagrama cartesiano. 

d) Represente  R por una digráfica . 

e) Estudie las propiedades de  R. 

2. Para la relación  R  definida sobre N  por:

 x  R  y   si y sólo si   x - y = 5 

Repita lo realizado en 1. . 
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RELACIONES Y FUNCIONES – CAPITULO 4 

EJERCICIO 4.5.7 

Para la relación  R definida sobre    por: 

 x  R  y   si y sólo si   x - y = 5.  k ,  para algún k entero. 

a) Hal e algunos elementos del conjunto  R. 

b) Represente  R en una tabla (parcialmente...)

c) Represente  R en un diagrama cartesiano. 

d) Represente  R por una digráfica. 

e) Estudie las propiedades de  R. 

EJERCICIO 4. 5. 8 

Para la relación  R definida sobre    por: 

 x  R  y   si y sólo si   x - y =   k ,  para algún k entero. 

a) Hal e algunos elementos del conjunto  R. 

b) Represente  R en una tabla (parcialmente...)

c) Represente  R en un diagrama cartesiano. 

d) Represente  R por una digráfica. 

e) Estudie las propiedades de  R. 

  Más sobre representación y propiedades de una relación

Si una  relación R definida sobre A es simétrica, de acuerdo con la definición:

si   x R  y  también  y R x 

 x 

• ¿cómo se trasluce esto en la digráfica correspondiente? 

      y     

Habrá un  ciclo entre x e  y, ya que hay una flecha de  x a  y,   además otra de  y a  x. 

(como caso particular de ser  x =  y hay un lazo) 

 x 

 y 

 y 

 x 

• ¿cómo se trasluce esto en la tabla correspondiente? 

 z 

 w 

Habrá una fila de entrada  x con salida   y  además otra fila de entrada  y con salida  x. 

• ¿cómo se trasluce esto en el diagrama cartesiano correspondiente? 

Habrá un punto P=(

P 

 x, y) en el plano y también Q=( y, x), 

que son simétricos respecto de la recta  y = x 

Q 

(la es  bisectriz del primer y tercer cuadrante). 
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EJERCICIO 4.5.9 

¿Cómo se trasluce en los distintos tipos de representación, si una  relación R sobre A 

 es reflexiva? (de un criterio, haciendo un trabajo similar al realizado para la propiedad simétrica) 

EJERCICIO 4.5.10 

¿Cómo se trasluce en los distintos tipos de representación, si una  relación R sobre A 

 es  antisimétrica? 

EJERCICIO 4.5.11 

¿Cómo se trasluce en los distintos tipos de representación, si una  relación R sobre A 

 es transitiva? 

EJERCICIO 4.5.12 

Dada una relación  R definida sobre  A, defina su inversa  R-1

EJERCICIO 4.5.13 

Dada la relación  R = { (-2,2) , (2, 2), (0, 0), (2, -2) } sobre   A = { -2, 0, 2 } 

a) Represente. ¿Qué propiedades tiene  R ? 

b) Hal e   R-1.  Represente. 

c) ¿Qué propiedades tiene  R-1 ? 

 EJERCICIO 4.5.14 

Dada la relación  R = { (-2,2) , (2, 2), (0, 0), (2, -2), (0,2), (-2, -2) } sobre  A = { -2, 0, 2 } 

a) Represente. ¿Qué propiedades tiene  R ? 

b) Hal e  R-1   Represente. 

c) ¿Qué propiedades tiene  R-1 ? 

EJERCICIO 4.5.15 

Estudie si hay relación entre las propiedades de una relación  R definida sobre  A y su inversa. 

Se demostrarán unas propiedades que se desprenden de los ejemplos y ejercicios 

anteriores sobre una relación y su inversa. Además, con el propósito de mostrar 
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demostraciones sencil as, que por lo general en el principio de nuestros estudios no 

resultan triviales. 

♦  PROPIEDAD 4.5.16

 Una relación  R es simétrica sobre A si y sólo si 

1

 R

 R−

=



Demostración: 

1)Para probar que: si  R es simétrica entonces

1

 R

 R−

=

,  hay que demostrar las 

contenciones 

1

−

−1

 R ⊆  R

∧

 R

⊆  R : 

Sea  ( x,  y) ∈  R entonces (  y,  x) ∈  R  por ser  R simétrica, entonces 1

( x,  y)

 R−

∈

por la 

definición de la relación inversa. Luego 

1

 R

 R−

⊆

. 

Sea 

−1

( x,  y) ∈  R   entonces por definición de relación inversa ( y,  x)∈  R  entonces ( x,  y) ∈  R  por ser  R simétrica. Es decir 

1

 R− ⊆  R  vale. 

Por lo tanto 

1

 R

 R−

=

2) Veamos que si

1

 R

 R−

=

entonces  R es simétrica: 

Sea 

1

( x,  y)

 R entonces ( x,  y)

 R−

∈

∈

entonces (  y,  x) ∈  R , por ser 

1

 R

 R−

=

y por la 

definición de la relación inversa. 

Por lo cual  R es simétrica. 

♦ 

♦  PROPIEDAD 4.5.17

 R es transitiva sobre   A si y sólo si   R

 R ⊆  R

Demostración: 

1) Primero aceptemos que  R es transitiva.  Sea  ( x,  z) ∈  R R  por definición de composición entonces  (∃ y)( xRy ∧

 yRz)  como  R es transitiva  resulta ( x,  z) ∈  R . 

Por lo tanto   R R ⊆  R  

2) Sean  x, y, z  elementos de  A, tales que  ( x,  y) ∈  R ∧ (  y,  z) ∈  R  y por definición de composición  ( x,  z) ∈  R  y en consecuencia  R es transitiva. 

♦ 
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6. Algunos casos especiales

Ya entramos a estudiar los dos tipos de relaciones muy importantes en varias 

ramas de la ciencia y en particular de la Matemática. Como se dijo ambos tipos de 

relaciones son una generalización de la relación de la igualdad en cualquier conjunto 

 A que esté definida. 

Las propiedades de la relación de la igualdad son: reflexividad, simetría, antisimetría y 

transitividad entre otras. 

 Caso importante

Dada una relación  R definida sobre  A , la relación es de orden si  R es 

-   reflexiva  

Por algunos autores 

-   antisimétrica 

(∀ )

 x ( x∈ A

 x

→  R )

 x

también es llamado 

-   transitiva. 

( xRy ∧  yR )

 x → x =  y

orden parcial 

Decimos también que 



 R es un orden sobre  A 

( xRy ∧  yR )

 z → xRz

Los ejemplos inmediatos son los conjuntos numéricos con sus órdenes usuales, también    

l amados órdenes naturales. Con el o nos referimos al orden que se corresponde con la   

representación de los números en la recta numérica y que se puede definir en términos de 

la suma y positivos. 

Verifique que efectivamente es un orden sobre los 

el  ≤  usual. 

EJEMPLO 4.6.1 

Sea  R = {(2,3), (2, 2), (3, 3), (1, 1) } la relación definida sobre  A = { 1, 2, 3}. 

  R es un orden sobre  A, ya que es reflexiva, antisimétrica y transitiva. Su digráfica es 3 

1 

2 
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EJERCICIO 4.6.2 

Considerar   A = {1,  2, 3},  sean   R 1 = { (2, 3), (1,1 ) , (2, 2), (3, 3), (3, 2) } 

 R 2 = {  (1, 1 ) , (2, 2), (3, 3),  (3, 2) } 

 R 3 = {  (1, 1 ) , (2, 2), (3, 3), (1, 2), (2,3), (1,3) } 

a) Estudie si las relaciones definidas sobre  A son órdenes sobre  A. 

¡Muy 

Haga sus digráficas. 

b) Compare los órdenes con el del ejemplo anterior. 

importante! 

Un mismo conjunto  A  puede tener definidos sobre él más de un orden. Por lo tanto no es suficiente hablar de  A  es un conjunto ordenado. 

Por lo cual es un  par ordenado  el conjunto y la relación cuando uno habla de “conjunto ordenado”. 

Es decir, se debe hablar de ( A, R). 


 EJERCICIO 4.6.3 

a) Considerar   A = {1,  2, 3},  y sea  R 3 = {  (1, 1 ) , (2, 2), (3, 3), (1, 3), (3,2), (1,2) }

en el ejercicio anterior probó que es un orden sobre  A.  

Calcule  R -1

-1

3 . Haga su digráfica. Es ( A,  R 3  )  ¿un conjunto ordenado? 

b) Sea  R un orden sobre  A. ¿Qué puede decir de  R-1 sobre  A ? ¿Cómo lo l amaría? 

EJERCICIO 4.6.4 

Sea  R la relación definida sobre  A = {María, Pedro, Julián, Elsa} 

 a  R  b   si y sólo si   la estatura de a es menor o igual que la estatura de b a) ¿Es  R un orden en  A ? 

b) Idee estaturas para los elementos de  A. Confeccione una tabla para  R. Represente por una digráfica. 

c) ¿Cuál es  R-1 ? Con los datos propuestos en b), haga la digráfica de  R-1 . 

3 

EJERCICIO 4.6.5 

1 

  A= { 1, 2, 3 }.  Es  R un orden sobre  A si  su digráfica es 

¿Cómo  l ama a este orden?? 

2 
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Dados   a ∈  A  y   b ∈ , 

 A  sabiendo que (  A, R ) es un conjunto ordenado, 

si   a R b  y  b R a  decimos que  a y  b son incomparables. 

Por lo tanto para el orden definido sobre  A en el ejercicio anterior  los tres elementos de  A son ¡¡¡incomparables!!! 

Recordatorio: 

EJEMPLO 4.6.6 

Si   a ∈

∧  b ∈

decimos

a) Definimos en   la relación  R, dada por   aRb ↔  a |  b

que  a divide a  b    y se 

Es reflexiva:

escribe   a |  b  , si y solo si, 

∀ a,  a ∈ , 

 a |  a

ya que  a.1=a   por lo tanto   aRa. 

∃ , 

 c c ∈   y  . 

 a c =  b . 

No es antisimétrica: 

Esta propiedad no se cumple ya que 2|-2 y -2|2 y sin embargo  2 ≠ −2  

Por lo tanto, no es una relación de orden en  . 

b) Definimos ahora en 

la relación  R, dada por     aRb ↔  a |  b Recordatorio: 

Analicemos sus propiedades:

Si   a ∈

∧  b ∈

decimos que  

Es reflexiva: 

 a divide a  b   y se  escribe 

∀ a,  a ∈ , 

 a |  a

ya que  a.1=a  por lo tanto  aRa. 

 a |  b  , si y solo si, 

∃ , 

 c c ∈

y  . 

 a c =  b . 

Es antisimétrica: 

Si  a y  b están en  , tales que ( aRb

∧

 bRa) entonces  a =  b ? 

Si   aRb ∧  bRa entonces  a |  b ∧  b |  a  por lo cual existen  c  y  d  naturales tales que   a.  c =  b

∧

 b.  d =  a . 

Si  a=0 entonces  b=0. Es decir,  a=b. 

Si   a ≠ 0 entonces  b ≠ 0 , por lo tanto reemplazando   a.c = ( b.d) .c= b =  b. ( d.c) , usando que    b ≠ 0  en dos pasos llega a que   d.c=1, y como los números son naturales resulta   c= d=1. 

Entonces  a=b.  Luego, es antisimétrica. 

Es transitiva: 
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¿Si  a,  b y  c son naturales y  aRb

∧

 bRc entonces  aRc ? 

Si   aRb ∧  bRc →  a |  b ∧  b |  c  es decir, 

existen  m  y  n naturales tales que   a.  m =  b

∧

. 

 b n =  c . 

Entonces reemplazando  b. n = ( a.m).  n =  a . ( m.  n)  = c siendo  m.n un número natural por ser producto de naturales, por lo tanto  aRc. 

Entonces decimos que  ( , |)   es un conjunto ordenado o que la relación divide define 

un orden sobre

. 

En este ejemplo 2) hay elementos que no están relacionados, por ejemplo 2 no divide 

a 3 y 3 no divide a 2 , por lo tanto 2 con 3 no están relacionados, son incomparables. 

Esta situación nos conduce a definir un concepto que en los conjuntos numéricos 

, Z, 

,  con el orden usual  ≤  se cumple, pero al haber introducido el concepto 

general de conjunto ordenado, no tiene porqué cumplirse, por lo cual amerita la 

siguiente definición: 

Decimos que ( A,  R) es un conjunto totalmente ordenado por  R, si cumple las siguientes condiciones: 

(i)  R es un orden sobre  A 

y 

(i ) Dados  a y  b en  A entonces  (   aRb ∨  bRa )

Es decir, dados dos elementos del conjunto  A,  a está antes en el orden que  b o  b está antes en el orden que  a.  Este orden también se llama orden lineal. 

con el orden usual es totalmente ordenado, pero 

con la relación divide no lo es. 

Por esta razón (destacamos nuevamente) cuando se habla de un conjunto ordenado 

hay que poner en claro cuál es conjunto sobre el que se define la relación y cuál es la 

relación definida sobre él. Lo correcto es anotar  ( ,≤) o ( , )  según sea el caso. 
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EJEMPLO 4.6.7 

 Sea  E un conjunto y sea P( E) el conjunto de partes de  E, definimos  R en el conjunto P( E) por: 

 ARB ↔  A ⊆  B

Es inmediato recordando las definiciones dadas en las propiedades de los conjuntos 

que esta relación es reflexiva, antisimétrica y transitiva en P( E), por lo tanto podemos decir que  (P( E)  , ⊆) es un conjunto ordenado. 

Dado (  A, R ) un conjunto ordenado, el diagrama de Hasse o diagrama de orden, es un dígrafo en el que no indicamos los bucles ya que se representa una relación de 

orden sobre  A y por lo tanto reflexiva, se sobreentiende que cada elemento está 

relacionado con sí mismo. 

Tomando el EJEMPLO 4.6.7 , consideremos como caso particular el conjunto 

 E = { a, b, c} y así  P( E)  = { , 

∅ { }

 a ,{ }

 b ,{ }

 c ,{ a, }

 b ,{ a, }

 c ,{ b, }

 c ,{ a,  b, }

 c } . 

Hagamos un análisis  de   (P( E)  , ⊆) . Tenemos entonces que: 

∅ ⊆  X

 X

∀ ,  X ∈ P( E) 

{ }

 a ⊆ { a, }

 b

{ }

 b ⊆ { , 

 a }

 b

{ }

 c ⊆ { , 

 c }

 a

{ }

 a ⊆ { a, }

 c

{ }

 b ⊆ { , 

 b }

 c

{ }

 c ⊆ { , 

 c }

 b

{ }

 a ⊆ { a, , 

 b }

 c

{ }

 b ⊆ { , 

 a , 

 b }

 c

{ }

 c ⊆ { , 

 a , 

 b }

 c

{ a, }

 b ⊆ { a, , 

 b }

 c

{ , 

 b }

 c ⊆ { a, , 

 b }

 c

{ a, }

 c ⊆ { a, , 

 b }

 c

El diagrama de Hasse es: 

{ a, , 

 b }

 c

↑

{ a, }

 b

{ a, }

 c

{ c, }

 b

↑

↑

↑

{ }

 a

{ }

 b

{ }

 c

↑

∅

En este caso no hay un orden total, ya que por ejemplo { b} no está relacionado con 

{ c}, son elementos incomparables. 
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EJERCICIO 4.6.8 

Realice el diagrama de Hasse del conjunto ordenado  ( , ≤) . (Obvio que 

parcialmente…) 

Le resulta claro porque un conjunto totalmente ordenado también se dice que es 

linealmente ordenado???? 

¡AJA! 

  Algunos elemento particulares importantes

En los conjuntos ordenados hay elementos que se destacan por distintas propiedades 

que merecen definirse, pues son conceptos de mucha utilidad dentro de la Matemática 

y otras  aplicaciones. 

Sean  ( A,  R) un conjunto ordenado y   a ∈  A ,  a es  primer elemento o mínimo del conjunto ordenado si  para todo  x,  x en  A  se tiene  aRx . 

Es decir  a “precede” a todos los elementos de  A.  

En  ( , ≤)  el 0 es el mínimo. 

En  (P( E)  , ⊆) el conjunto  ∅  es el mínimo. 

Los conjuntos 

y  con el orden usual respectivo, no tienen elemento mínimo. 

Hay veces que queremos considerar una parte de un conjunto ordenado y conservar el 

orden del conjunto que lo contiene. Eso lo garantiza: 

♦  PROPIEDAD 4.6.9

Si ( A,  R)  es un conjunto ordenado y    B ⊆  A , entonces  ( B,  R )  es un conjunto B

ordenado, donde   R  está definida por:   b R b ↔  b R b

 B

1

 B

2

1

2

 b  y  b  son 

1

2

(  R  es el orden inducido en  B  por  R) 

 B

elementos de B!! 

Demostración: 

Es reflexiva: 

Sea   b ∈  B entonces por la hipótesis  b ∈ , 

 A   luego  bRb  por ser  R reflexiva, entonces 

 bR b  por la definición de  R . 

 B

 B

Por lo tanto   R  es reflexiva. 

 B
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Es antisimétrica: 

Sean   b ∈  B  y  c ∈  B  tales que 

 bR c

y

 cR b entonces   bRc

y

 cRb luego  c =  b , aplicando la definición de 

 B

 B

 R  y por ser  R antisimétrica. Por lo tanto   R  es antisimétrica. 

 B

 B

Es transitiva: 

Sean   b ∈  B,  c ∈  B  y  d ∈  B , y además 

 bR c

y

 cR d  entonces por definición de  R   se tiene 

 B

 B

 B

 bRc  y   cRd  usando que  R es transitiva sale 

 bRd   y por definición de  R  resulta   bR d . 

 B

 B

Por lo tanto   R  es transitiva. 

 B

♦ 

Por ejemplo: Considerar el intervalo real abierto  A = (0,1) , si " ≤ " es el orden usual de R restringido a  A  u orden inducido en  A,  entonces (  A  , ≤) no tiene mínimo. 

Justificar. 

Sean ( A,  R) un conjunto ordenado  y    m ∈  A ,  m  es último  elemento o máximo del conjunto ordenado  si  para todo  x,  x en  A  se tiene   xR m . 

Es decir,  m es “posterior” a todos los elementos del conjunto  A.  

El 0 es el máximo de  ( ,|)  ya que todos los naturales dividen al 0. 

( , ≤) no tiene último elemento. Tampoco  ( ,≤ ) ni ( ,≤ ) lo tienen. 

El conjunto  E es el máximo de (P( E)  , ⊆)   pues todos los elementos de P( E) son subconjunto de  E. 

1

2 

Sea  A={ 1, 2, 3} el conjunto ordenado por  R en la digrafica  

( A,R) no tiene máximo, pero al 1 y al 2 ningún elemento lo sigue. 

3 

A esos elementos de un conjunto ordenado se le pone “nombre”. 
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Sean  ( A,  R) un conjunto ordenado y   m ∈  A ,  m  es maximal del conjunto si para todo x,  x ∈  A  que verifica   mRx  entonces   m =  x  

Esto implica que no hay ningún elemento distinto que  m que esté después en el orden R que  m. 

Sean  ( A,  R) un conjunto ordenado  y    a ∈  A ,  a es minimal  del conjunto si para todo x,  x ∈  A  que verifica   xR a  entonces   a =  x  

Esto implica que no hay ningún elemento distinto que   a que esté antes en el orden 

que  a. 

EJEMPLO 4.6.10 

Si tomamos  E ={ a, b, c}  y   R en el conjunto P( E) - { ∅ } definida por:    ARB ↔  A ⊆  B  , el diagrama es: 

{ a, , 

 b }

 c

↑

{ a, }

 b

{ a, }

 c

{ c, }

 b

↑

↑

↑

{ }

 a

{ }

 b

{ }

 c

Donde { a}, { b},{ c} son minimales y { a, b, c} es maximal y último elemento. No tiene primer elemento. 

Para el mismo conjunto  E, si definimos la relación  R en P( E) – {  E } como: ARB ↔  A ⊆  B  , el diagrama es: 

{ a, }

 b

{ a, }

 c

{ c, }

 b

↑

↑

↑

{ }

 a

{ }

 b

{ }

 c

↑

∅

Donde { a, b},{ a, c} y { b ,c} son maximales  y  ∅  es minimal y primer elemento. No tiene último elemento. 
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EJERCICIO 4.6.11 

1) Se define en  A = {0, 2, 3, 4, 5, 6, 7, 8, 9, 10} ⊆

, la restricción a  A de la relación sobre

:       a R b si y solo si  a |  b. 

¡Me ayudo con 

a) Hacer el diagrama de Hasse de  ( , 

 A R )

 A

digráficas! 

b) Dar maximales, minimales, primer y último elemento si es que existen. 

2) Sea ( A, R) un conjunto ordenado. 

a) Si ( A, R) tiene mínimo, ¿cuántos tiene? ¿Ídem para máximo? 

b) Si un elemento es maximal y minimal en ( A, R), ¿cómo es la situación de ese

elemento? 

c) Si  m es mínimo de ( A,R), es  m minimal? 

d) Probar que si ( A, R) es totalmente ordenado y tiene maximal M entonces M

máximo. 

Sea ( A,  R) un conjunto ordenado y   X ⊆  A . 

Decimos que  k es cota inferior de  X  si   k ∈  A ∧ (  x

∀ )( x ∈  X →  kRx)

Al conjunto de cotas inferiores de  X  lo notaremos k( X). 

Llamamos ínfimo del conjunto  X, a la mayor de las cotas inferiores de  X. 

Decimos que  K es cota superior de  X si   K ∈  A ∧ (  x

∀ )( x ∈  X →  xRK)



Al conjunto de cotas superiores de  X    lo notaremos K( X). 

Llamamos supremo del conjunto   X, a la menor de las cotas superiores de  X. . 

EJEMPLO 4.6.12 

1) Dado el conjunto  A = { a, b, c, d, e,  f  } y  X ={ c, d } con la relación de orden dada por el siguiente diagrama: 

 f

↑

 e

 c

 d

↑

↑

 a

 b
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En este ejemplo el conjunto de cotas superiores de  X  es K( X) ={ e, f} y no tiene cotas inferiores, es decir k( X) es el conjunto vacio. 

El conjunto está acotado superiormente pero no inferiormente. 

La menor de las cotas superiores es el elemento  e, por lo tanto es supremo del 

conjunto  X.  

Como no hay cotas inferiores, no hay ínfimo. 

También mirando el diagrama de orden del conjunto   A,  vemos que    f es maximal y último elemento y los elementos  a  y  b son minimales. 

Notar que ínfimo y supremo no son necesariamente elementos de  X.  

2) En el mismo  A de ejemplo 1) con el mismo orden, tomemos ahora como conjunto

  X  = { e, f}. 

 f

↑

 e

 c

 d

↑

↑

 a

 b

El conjunto de cotas superiores K( X) = {  f  }, el conjunto de cotas inferiores es k( X)={ a, b, c, d, e }. 

El supremo es   f,  ya que hay sólo una cota superior, la menor de las cotas superiores es ese único elemento. El ínfimo es  e, ya que es la mayor de las cotas inferiores. 

3) Sea  A = ( 0,1)  ⊆

, consideramos  ( , 

 A ≤) ( el orden de los reales restringido a  A ) y

sea 



1



 X =   x ∈  A :

 x =

∧  n ∈

− {1, 0}



 n



1

1

El conjunto de cotas superiores de  X,  K (  X ) = [ ,1) , por lo tanto el supremo es  . 

2

2

1

Este conjunto no tiene cotas inferiores, ya que dado un elemento de  X, este es   x =  n 1

y siempre existe   y =

, y así resulta que   y < x. Y además el 0 no es elemento de 

 n +1

 A. Por lo tanto  X  no tiene ínfimo. 
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RELACIONES Y FUNCIONES – CAPITULO 4 

4) 

En el conjunto ordenado ( A,  R) 

 A 

dado en la digráfica adjunta. 

 d 

 b 

 X= {  b,  c,    e } 

 X no tiene cotas superiores ni 

inferiores. Justifique! 

  c 

  e 

 a 

5) Considerar  ( , ) .  Sea X = { 3, 6, 9, 12, 15}.  Las cotas superiores de  X son los números naturales  divisibles por todos los elementos de X: es decir los múltiplos 

comunes de los elementos de  X, es decir     

 K , tal que 3  K   ∧   6  K   ∧   9  K   ∧  12  K   ∧  15  K     

luego  K debe contener en su factorización a  3, 6, 9, 12 y 15. 

Como los encontramos? Factoreando los números: 



2

2

3 = 3; 

6 = 2.3; 9 = 3 ; 12 = 2 .3; 15 = 3.5

Los  K que sirven son 

2 2

 K = 2 .3 .5.  h

para todo  h ∈

. Es así que el conjunto de 

cotas superiores de  X es 

2 2

2 2

2 2

{2 .3 .5.1, 

2 .3 .5.2

, 2 .3 .5.3, ....} es un conjunto 

infinito de números naturales. 

Por ser un conjunto no vacío de naturales tiene mínimo y es 

P.B.O.!! y es 

2 2

2 2

2 .3 .5.1 = 2 .3 .5 = 180

el mínimo común 

Es el supremo. 

.m...... 

Las cotas inferiores de  X son los números naturales  que  dividen a todos los elementos de X: es decir los divisores comunes de los elementos de  X, es decir      Es el máximo k , tal que  k  3  ∧    k  6  ∧    k  9   ∧   k  12  ∧    k  15 

común di.... 

Luego  k debe estar en la factorización de   3,  6,  9, 12 y 15. 

Como los encontramos? Ya se han factoreando los números, buscamos 

los factores comunes a todos el os... 
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En este caso el conjunto de divisores comunes es unitario es el  {3 } 

Claramente este conjunto tiene un máximo, la mayor cota inferior que es 3. 

Es el ínfimo. 

6). Queda para Ud.: 

a) Considerar  ( , ) . Hacer una digráfica parcial. Sea  X = { 7, 8, 9, 28, 36}. Hal ar el supremo e ínfimo de  X. 

b).Considerar ( , ) . Sea  X = {  1

 a , 2

 a ,...,  n

 a } ⊆

. 

Hal ar cotas superiores e inferiores de  X en ( , ) . Demostrar que existen el supremo e ínfimo de  X.  ¿Qué números son? 

Se va a generalizar el comportamiento de los números naturales con el orden usual: 

Sea ( A,  R) un conjunto ordenado, decimos que ( A,  R) está bien ordenado si (  S

∀ )( S ⊆  A

∧

 S ≠ ∅

entonces

 S  tiene primer elemento)  

♦  PROPIEDAD 4.6.13

Sea ( A, R) un conjunto ordenado. Si ( A,  R) es bien ordenado entonces está totalmente ordenado. 

Demostración: 

Sea   A ≠ ∅ . Si  A  es unitario es trivial. 

Sean   a y  b en  A , debemos probar que  aRb o  bRa, siendo   a ≠  b . 

Consideremos   X  = { a ,b} es un subconjunto no vacío de  A, por lo tanto por ser ( A,  R) bien ordenado   X tiene  primer elemento, entonces  aRb o bRa . Por lo tanto ( A,  R)  es totalmente ordenado. 

♦ 

La recíproca no es cierta 

Por ejemplo el conjunto  ( , ≤)  no tiene primer elemento, sin embargo está totalmente 

ordenado. 

Estar totalmente ordenado no implica estar bien ordenado. 
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♦  PROPIEDAD 4.6.14

Sea ( A,  R) un conjunto totalmente ordenado. Si existe   a  minimal de  A entonces  a es primer elemento de  A. 

Demostración: 

Sean  *

**

 a  y  a      minimales,  entonces por ser ( A,  R) totalmente ordenado 

*

**

**

*

 a Ra

∨

 a Ra    entonces si  *

**

 a Ra

, como  **

 a  es minimal   *

**

 a =  a    y si 

**

*

 a Ra  como    *

 a    es minimal    *

**

 a =  a . 

 En un conjunto totalmente 

 ordenado si hay minimal éste es 

Veamos que es el primer elemento: 

 único. 

Si  A es unitario es trivial. 

Si  *

 a  es minimal cumple 

*

*

(  x

∀ )( xRa →  x =  a )   usando la contrarrecíproca 

*

*

(  x

∀ )( x ≠  a →  a Rx)  y del hecho  que el conjunto ( A,  R) es totalmente ordenado, por lo tanto  *

 a  es primer elemento. 

♦ 

 El otro caso importante

Una relación  R definida sobre  A , la relación es de equivalencia si  R es 

-   reflexiva 

(∀ )

 x ( x∈ A→ xR )

 x

-   simétrica  

 xRy →  yRx

-   transitiva. 

( xRy ∧  yR )

 z → xRz

Los ejemplos inmediatos son los conjuntos numéricos con la igualdad.  Verifique  que efectivamente es una equivalencia sobre  

, ,   ó   la relación  =. 

¡SI! 

En la vida diaria se usa frecuentemente la expresión "  son equivalentes" para indicar que un elemento es  igual o  sustituible por otro, la idea intuitiva es que  son casi iguales... 

290

RELACIONES Y FUNCIONES – CAPITULO 4 

Esta expresión e idea la usamos tanto para remedios, alimentos, autos, …,  como para 

entes más abstractos como los de la Matemática o la Lógica: polígonos, fracciones, 

ecuaciones, proposiciones, definiciones y  podríamos seguir dando ejemplos. 

La idea formal  - pero todavía intuitiva -  consiste en que dado un conjunto,  rescatar 

 algunos aspectos  sobresalientes  de sus elementos para  igualar de alguna manera  los elementos con esas características.   Ese  rescatar algunos aspectos es dar la relación. 

Para lograr el  casi igual,  la relación definida tendrá que cumplir las propiedades de  la igualdad: reflexividad,  simetría,  transitividad. 

Esto permitirá  clasificar ( poner en clases...) los elementos del conjunto sobre el que está definida la relación, como se verá seguidamente. 

Hay que seguir definiendo y pensando!! 

Primero un 

EJEMPLO 4.6.15 

Sea sobre  A = {  a, b, c, d } la relación 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

(  x

∀ )( x ∈  A →  xRx)

•

Es visualmente comprobable que  es reflexiva. 

 si está un par, está su dado vuelta...  

•

es simétrica? 

Esto se verifica trivialmente en los pares de ambas componentes iguales. 

Habrá que hacer un rastreo sobre  R: 

R =  { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

Esto completa la prueba que R  es simétrica 
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•

Es más complicado el análisis de la transitividad de  R. 

( xR y ∧  yR z) →  xR z  

¿es verdadero en todos 

los casos? 

También para esta propiedad los elementos de  R con componentes iguales producen 

casos triviales de analizar. 

Si se tienen en R,  ( u, u)  y  ( u, v) 

entonces ¿cuáles par debe buscar? 

Justifique (nuevamente) esta afirmación. 

¿Y si están  ( u, v)  y ( v, v)  ? 

Ya se comentó cuando se presentaron las propiedades. 

Sigamos rastreando  R ,  buscando elementos que tengan distintas sus componentes. 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

Dado ( a, d), hay en  R de la forma ( d, ... )?  Por lo comentado antes, pero con componentes distintas! 

El que busca...... 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

Por lo cual hallamos (  d, a) y (  d, c). 

Teniendo 

•

( a, d) y (  d, a)  busco  (  a, a). 

•

( a, d) y (  d, c)  busco  (  a, c). 

Para ambos casos la respuesta es afirmativa. 

Sigamos rastreando  R ,  buscando elementos que tengan distintas sus componentes. 
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 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

Dado ( d, a), hay en  R de la forma ( a, ... )?  Por lo antedicho, con componentes distintas! 

Qué encontramos? 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

H allamos (  a, d) y (  a, c). 

Teniendo 

•

( d, a) y (  a, d)  busco  (  d, d). 

•

( d, a) y (  a, c)  busco  (  d, c). 

Para ambos casos es afirmativo. 

Buscando elementos de  R que tengan distintas sus componentes: 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

Hallo   ( a, c ), hay en  R de la forma ( c , ... ) ?   y con componentes distintas. 

 R =   { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

Encon tramos:   



ahora (  c, a) y (  c, d). 

Teniendo 

•

( a, c) y (  c, a)  busco  (  a, a). Lo encuentro. 

•

( a, c) y (  c, d)  busco  (  a, d). Lo encontramos…
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Sigo... Buscando elementos de  R que tengan distintas sus componentes: 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

El qu  e sigue es ( c, a ). Hay en R con forma ( a , ... ) y componentes distintas? 

 R =   { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 



Encontramos: 

ahora (  a, d) y (  a, c). 

Teniendo 

•

(  c, a) y ( a, c)  busco  (  c, c). Si está. 

•

( c, a) y (  a, d)  busco  (  c, d). Está!! 

Faltan dos elementos: 

 R = { ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 



Para  ( d, c ). Hay en  R con forma ( c , ... ) y componentes distintas? 

Para  ( c, d ). Hay en  R con forma ( d , ... ) y componentes distintas? 

para                                                                  para      

...... ...., ( a, c), ( c, a), ( d, c), ( c, d) } 

.....( a, d ), ( d, a ), ( a, c), ( c, a), ( d, c), ( c, d) } 

encuentro (  c, a) y (  c, d). 

encuentro (  d, a) y (  d, c). 

Teni endo 

Teniendo 

•

(   d, c) y ( c, a)  busco  (  d, a). Está!! 

•

(  c, d) y ( d, a)  busco  (  c, a). Lo encontré. 

•

( d, c) y (  c, d)  busco  (  d, d). Está!! 

•

( c, d) y (  d, c)  busco  (  c, c). Si está!! 
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Qué  trabajito!!! 

¡¡Hemos terminado!!.  Es transitiva. 

Luego  R es de equivalencia  sobre A. 

Vamos a hacer su digráfica y algunas consideraciones sobre la misma. 

En la digráfica de  R   los 

elementos  a, c y d están 

 a 

  c 

conectados entre sí. 

  b 

El  b queda solo. 

  d 

Todos tienen lazos. 

Hay ciclos de a dos elementos. 

Se cierra un triángulo entre los 3 

elementos relacionados, por doble 

camino (ida y vuelta). 

Observar que si se construyen subconjuntos de  A con todos los elementos de  A que están relacionados entre sí por la relación  R, obtenemos   

 A = { a,  c,  d}

 A = { }

 b

1

2

 A =  A ∪  A

 A ∩  A = ∅

1

2

1

2

EJERCICIO 4.6.16 

Sean los conjuntos  A = {  a, b, c, d },  A = { a,  c,  d} ,  A = { }

 b  . 

1

2

Se define la relación  R* sobre  A por: 

 xR*  y      ↔     ( { , 

 x   }

 y   ⊆   A ∨ { , 

 x   }

 y   ⊆   A )

1

2

a) Probar que  R* es de equivalencia. 

b) Hacer la digráfica de  R*. 

c) Qué puede comentar ? (compare con la relación del ejercicio anterior). 
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EJERCICIO 4.6.17 

Sea  A = {  a, b, c}, se define  R sobre  A  por  R =  A  x  A a) Hal e  R por pares. 

b) Hal e el gráfico cartesiano de  R. 

c) Haga la digráfica de  R. 

d) ¿Es  R una relación de equivalencia? Justifique su respuesta, por  definición y además gráficamente. 

EJERCICIO 4.6.18 

Dado  C = { La Plata,  Santa Rosa, Mendoza, Bragado, Magdalena, San Rafael, 

Córdoba, Junín, Rosario, Pico, Carlos Paz, Bariloche, Tunuyán } 

Se define sobre C la relación  R:    x  R  y  si y sólo si   x e  y  son de la misma provincia. 

a) Hal e  R por pares. 

b) Haga la digráfica de  R. 

c) ¿Es  R una relación de equivalencia? . Justifique su respuesta, por  definición y además gráficamente. 

d) ¿Este resultado con qué ejercicio previo lo compara? 

Para cualquier  R es útil en algunas oportunidades expresar 

 x está  R-relacionado con  y, para indicar que  x R  y En los ejemplos y ejercicios anteriores observe: 

•

Todos los elementos del conjunto sobre el que está definida la relación  R están

relacionados por  R. (Al menos  x  R  x ). 

•

Los elementos del dominio de la relación  R quedan "separados" por la relación. 

(No se da el caso que   xR y ∧  xR z ∧  y R z ). 

•

Por la simetría de la relación no hay "preferencia" entre dos elementos  x e y tal que R- relacionados. (Si  x  R  y entonces  y  R  x )

. 
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Dada una relación  R de equivalencia sobre  A , para cada  x elemento de  A , se llama clase de equivalencia de  x ,  al conjunto de elementos  R-relacionados con él. 

Simbólicamente:  R( x) = { y ∈  A :  xR }

 y = { y ∈  A : ( x,  y) ∈ }

 R  

Otras notaciones para   R ( x) son:  [ x ]  y    x . 

EJEMPLO 4-6.19 

Sea la relación   R ={ ( a, a), ( b, b), ( c, c), ( d, d), ( a, d), ( d, a), ( a, c), ( c, a), ( d, c), ( c, d) } 

definida sobre   A = {  a, b, c, d }  las clases de equivalencia son dos: 

 R (  a) = {  a, c, d } =  R (  c) =  R (  d) R ( b) ={  b } 

EJERCICIO. 4.6.20 

Para cada uno de los EJERCICIOS 4.6.16, 4.6.17 y 4.618 hal e las clases de 

equivalencia determinadas por las relaciones. 

EJERCICIO* 4.6.21 

Se define  R sobre  A =  { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } : 

* Más adelante se

  x  R  y  si y sólo si  5  divide  a   x  -   y . 

tratará el tema 

propuesto en este 

a) Probar que  R es de equivalencia. 

ejercicio con 

b) Haga la digráfica. 

mayor generalidad. 

c) Hal e las clases de equivalencia. 

Recordatorio: En los ejemplos vistos hemos trabajado con conjuntos finitos, cuando  

los conjuntos son infinitos debemos demostrar que se cumplen las propiedades para 

cualquier elemento genérico del conjunto. 
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RELACIONES Y FUNCIONES – CAPITULO 4 

EJEMPLO 4.6.22 

Sea la relación  R definida por 

  x  R  y  si y sólo si  5  divide  a   x  -   y   sobre el conjunto de los números enteros. 

Recordatorio: 

Notemos que si 

5 divide a  x, 

entonces  x=5.  k, 

Analizaremos las propiedades de  R sobre   : 

siendo  k algún 

entero. 

 R es reflexiva si (

 x

∀ ) ( x ∈   entonces  xRx)  

Sea   x ∈ , se cumple que 5 divide a   x −  x , ya que   x −  x = 0 = 5.0 , por lo tanto (  x

∀ )(  xRx)  

 R es simétrica si  (  x

∀ )(  y

∀ )( x ∈

∧  y ∈ , si

 xR y  entonces  yR )

 x  

Sean   x ∈  e  y ∈

, tales que   xR y  entonces 5 divide a   x −  y , entonces 

 x −  y = 5 k  entonces multiplicando por -1 a ambos miembros   y −  x = (

5 − k) , 

como  k es un número entero, -  k  también lo es, por lo tanto 5 divide a   y −  x  y resulta que   yR x  

 R es transitiva si 

(  x

∀ )(

 y

∀ )(  z

∀ )(( x ∈

∧  y ∈

∧  z ∈ ) ∧ ( si (  xRy ∧  yRz)  entonces  xRz) ))  

Sean   x,  y,  z  elementos de  , tales que   xR y   y   yR x  entonces 5 divide a   x −  y  y 5 divide a   y −  z , entonces existen  k y h enteros tales que   x −  y = 5 k    y y −  z = 5 h  entonces haciendo cuentas    x −  z =  k 5 +  y +  h

5 −  y , por lo tanto 

 x −  z = (

5  k +  h) siendo  k + h un entero por ser suma de enteros. Resulta entonces que 5 divide a   x −  z  y por lo tanto   xR z  

Hemos probado que la relación  R es reflexiva, simétrica y transitiva, por lo tanto es una relación de equivalencia sobre  . 
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RELACIONES Y FUNCIONES – CAPITULO 4 

π 

EJERCICIO 4.6.23 

Se define sobre el conjunto  L de rectas del plano π  la relación P: 

 r P  t  si y sólo si    r es paralela a t . 

  El gráfico es sólo una referencia visual. En  π   hay infinitas rectas. 

a) Probar que P es de equivalencia sobre  L. 

b) Hal e clases de equivalencia. 

c) Qué puede comentar sobre que produce P en  L ? 

EJERCICIO 4.6.24 

Se define sobre el conjunto  T de triángulos del plano π 

π 

la relación S:  

 r S  t  si y sólo si    r es semejante a t . 

  El gráfico es sólo una referencia visual. En  π   hay infinitos triángulos. 

a) Probar que S es de equivalencia sobre  T. 

b) Hal e clases de equivalencia. 

c) Qué puede comentar sobre que produce S en  T ? 

  Recordatorio: 

EJERCICIO 4.6.25 

Se define sobre el conjunto  F  de las fórmulas 

  P es lógicamente 

proposicionales la relación  E 

      equivalente con  Q se 

anota     P ⇔  Q  . 

  P  E  Q  si y sólo si    P es lógicamente equivalente  a Q . 

Está definido como: 

a) Probar que 

 P ⇔  Q  si y solo si   P ↔  Q es 

 E es de equivalencia sobre  F. 

b) Hal e algunas clases de equivalencia. 

siempre verdadero

Por ejemplo de las fórmulas   p →  q ;  ∼  p ∨  q ; 

otras más... 

c) Qué puede comentar sobre que produce E en  F ? 

( Por qué le habrán puesto lógicamente equivalente?? Ah!!  ) 
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RELACIONES Y FUNCIONES – CAPITULO 4 

Dada una relación  R de equivalencia sobre  A, se llama conjunto cociente por R  

(o cociente según R) al conjunto de todas las clases de equivalencia definidas sobre A por  R. Simbólicamente: 

 A

= {  R( x) :  x ∈  A } = {[ x]:  x ∈ }

 A

 R

El cociente es un conjunto de conjuntos. 

Por la notación se le dice "  A sobre  R" o "  A partido por  R". 

Esta notación quedará mejor justificada en lo que sigue. 

EJERCICIO 4.6.26 

Hal ar los conjuntos cocientes para las relaciones definidas en los EJERCICIOS 4.6.16, 

4.6.17. 4.6.18, 4.6.19, 4.6.20, 4.6.21, 4.6.22, 4.6.23, 4.6.24 

En los EJERCICIOS realizados,  ¿que piensa del cociente? 

  Propiedades de las relaciones de equivalencia

Para un conjunto cualquiera   A,  se l ama partición de  A  a un conjunto de conjuntos  P 

que  verifica las siguientes tres condiciones:     

Si   X ∈P  entonces   X ≠ ∅  

Si    X ∈P ∧  Y ∈P ∧  X ≠  Y  entonces   X ∩ Y = ∅

  A es unión de los elementos de  P 

Observar que si   A = ∅  no existe partición. 

EJEMPLO 4.6.27 

Una partición del conjunto  A = {1, 2, 3 } es  P  = {{1},{2,3 }

} . 

 A 

1 

2 

No es la única partición posible. Otra posible es  P  = {{1, 2},{3 }

} . 

3

Hal e Ud. otras. 
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Como hemos visto a través de los ejemplos o ejercicios si se define una relación de 

equivalencia  R en un conjunto  A, los elementos quedan divididos en clases de equivalencia. Las clases de equivalencia son no vacías y dos clases diferentes no 

tienen elementos en común. Esto que pasa en los ejemplos es general. Por lo cual se 

tiene: 

♦  LEMA 4.6.28

Sea   R  una relación de equivalencia sobre  A entonces: 

 x  R  y si y sólo si  R( x) =  R( y). 

Demostración: 

Sabiendo que  x  R  y,  veamos que vale la igualdad de las clases .  

z ∈ R(x) si y sólo si  z  R x  y por la hipótesis,  x  R  y  entonces por transitividad z  R  y   y por definición de clase de equivalencia  z ∈ R( y) . Observar que los pasos realizados son reversibles, por ser el os definiciones e hipótesis por lo cual vale la otra contención, así resulta   R( x) =  R( y). 

Sea ahora la hipótesis  R( x) =  R( y).  Por ser  R  r eflexiva,  x ∈ R ( x) y por la hipótesis x ∈ R ( y) entonces por definición de clase de equivalencia   x  R  y. 

♦ 

Tenemos todo para establecer el siguiente: 

♦  TEOREMA 4.6.29

Sea  A un conjunto no vacío. Dada una relación de equivalencia  R en  A  entonces el conjunto cociente es una partición de  A. 

Demostración: 

El conjunto cociente es    A  = { R( x) :  x ∈A} 

 R

1) Como  R es reflexiva,  si  x ∈A ,  x ∈  R( x) luego  R( x) ≠ ∅

2)Veamos que la unión de los elementos del cociente es  A. 
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Para 

 R( x)  ⊆  A :

∪

x   

∈ A

Sea z  ∈  

 R(  x)   entonces existe  x,  x ∈  A, tal que

∪

x   

∈ A

 z  ∈   R( x) entonces como

 R( x) = {  y ∈  A :  yR }

 x  resulta  z ∈   A

Falta  probar  que   A ⊆

R(x):

∪

x   

∈ A

Sea  x  ∈  A entonces  xRx por ser R reflexiva 

lo que significa que  x ∈  R( x)

Por lo tanto 

 R( x) =  A

∪

 x∈ A

3) Veamos que la intersección es vacía para elementos distintos del cociente A/ R  , o lo que lo mismo que si  la intersección es no vacía entonces los elementos del cociente 

son iguales. 

 z ∈ R( x) ∩  R( y) por lo tanto por definición de intersección   z ∈ R(x) y  z ∈ R(y) y por definición de clase se equivalencia   z  R  x  ∧   z  R  y  por simetría de  R,  x  R  z  ∧  z  R  y , por la transitividad  de  R, x  R  y luego por el LEMA 4.6.28   R( x) =  R( y). 

♦ 

 Toda relación de equivalencia en un conjunto A define una partición del conjunto A   y 

 toda partición define una relación de equivalencia en A,   vemos lo que sigue.    

La partición  A/    se llama partición de 

 R

 A canónicamente asociada a  R. 

Como cada elemento de  A está en una única clase de equivalencia, se define una 

función  

 p :  A  →   A/R , donde  p( x) =  R( x). 

Esta función   p se llama proyección al cociente o aplicación canónica de  A en 

 A

. 

 R
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La función   p así definida resulta suryectiva pero no necesariamente inyectiva. 

Es suryectiva pues dado   X ∈  A  significa que   X =  R( x) para algún  x ∈ A y entonces R

 p( x) =  X. 

Se deja como ejercicio para el lector buscar un contraejemplo donde se vea que puede 

no ser inyectiva. 

EJERCICIO 4.6.30 (un poquito difícil) 

Dado un conjunto no vacío  A. Sea  P  una partición de  A. 

Se define sobre  A la relación  R: 

 xR y  si y sólo si { x, }

 y ⊆  Y ,  para algún  Y ∈P  . 

a) Probar que  R es una equivalencia sobre  A. 

b) Hal ar las clases de equivalencia por  R. 

c) Cuál es   A  ? 

 R

d) Compare con el EJERCICIO  4.6.16. ¿Qué puede decir? 

EJERCICIO 4.6.31 

Sea  A = {1, 2, 3, 4, ......, 10}. Considere  A x  A. 

Se define  R sobre  A x  A como: 

( a, b)  R ( c, d )  si y sólo si   a. d = b. c 

a) Probar que  R es una equivalencia sobre  A. 

b) Hal ar las clases de equivalencia por  R. 

c) Cuál es   A  ? 

 R

d) ¿Le recuerdan estas clases a algunos números? 

EJERCICIO 4.6.32 (algo aplicable...) 

Sea R la relación definida sobre el conjunto  S  de cadenas de 6 bits. (Son 6 lugares ocupados por 0 ó por 1, un ejemplo de elemento de   S  es  000101). 

Para   s y  t en   S,  se define: 

 s  R  t  si y sólo si   los primeros tres bits de s y de t coinciden a) Probar que  R es una equivalencia sobre  S. 

b) Hal ar las clases de equivalencia por  R. 

c) Cuántos elementos tiene   S

? 

 R
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* En los lenguajes de programación es usual que sólo un cierto número de caracteres

de los nombres de las variables y los términos especiales (se los llama  identificadores) son significativos. En el lenguaje de programación C los primeros 31 caracteres de los 

identificadores son significativos. Esto significa que si dos identificadores comienzan 

con los mismos 31 caracteres el sistema puede considerarlos idéntico. 

7. Algunas particiones de   y otros anillos

Otra relación que queda definida en los enteros por medio de la divisibilidad o de la 

no  divisibilidad es la siguiente:  

Dado  m entero (fijo) y  números enteros  a  y  b, se dice que 

 a es  equivalente a  b módulo  m  si y sólo si  existe un entero  c tal que b - a = m. c 

   Equivalentemente: 

       a  es equivalente a  b módulo  m  si y sólo si  m divide  b - a 

Si  a es equivalente a  b  módulo  m se anota indistintamente 

 a ∼

 b

o

o 

 m

 a ≡ m b

 a ≡  b (mod  m)

Si   a ∼  b  o

o 

. 

 m

 a ≡ m b

 a ≡  b (mod  m)

También se dice que  a y  b están relacionados módulo  m.  

Si  a no es equivalente  a  b módulo m  se anota   a ∼ m b,  a ≡ b(mod  m),  a ≡ m b

•Para cada  m, la relación definida sobre 

es una relación de equivalencia. Probarlo!! 

(Ya lo ha probado para algunos ejemplos de  m en 4.6.21,  práctica de relaciones) 

Es decir:   ≡



 m

 es reflexiva, simétrica y transitiva  sobre 

. 
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 Podemos quedarnos sólo con los m naturales: 

* Dado  m ∈ Z → ( m ∈

∨ − m ∈ )

(  m

∀ )( m ∈ Z → ( m > 0 ∨  m = 0 ∨  m < 0))

Z

 0 

 m 

♦  PROPIEDAD 4.7.1

Z

 0 

 m ó -m 

Sean   a ∈  y  b ∈ . y sea  m ∈



Si   a ≡  b entonces 

 m

 a ≡  m b

−

Demostración: 

Supongamos   a ≡  b  . Por lo tanto existe un entero 

. 

 m

 c tal que   b −  a =

. 

 m c

Luego,  b −  a = (− m).(−  c) , es decir existe un  entero, -  c, que demuestra que a ≡  m b

−

♦ 

•Por lo cual de ahora en más, salvo manifestación explícita en contrario, el módulo de

la equivalencia será   m ∈

. 

Recordatorio: 

Si  R es una equivalencia sobre  A, para cada  x ∈  A  

la 

 clase de equivalencia    R(  x) = {  y ∈  A :  xR }

 y =  x

 xR y  si y sólo si  yR x si y sólo si  R( x) =  R(  y) El  conjunto cociente    A

(todas las clases de 

 R

equivalencia de  A según  R) es una partición de  A. 
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  Qué significa que sea  a ≡

  

 b  ? 

 m

EJEMPLO 4.7.2 

Consideremos el caso   m = 0 . 

Si   a ≡

entonces existe un entero 

0  b 

 c   y

 b −  a = 0.  c luego  b −  a = 0 entonces  b =  a Si    b =  a entonces  b −  a = 0 = 0.  c  para cualquier  c entero. 

Es decir la  equivalencia módulo 0 en 

  es la igualdad en 

Para cada entero  a la clase   R( a) = {  a }. 

¿Cómo queda particionado el conjunto de los enteros?  Z

= ??? 

≡0

Haga una digráfica (parcial) de esta relación. 

EJEMPLO 4.7.3 

Consideremos el caso  m = 1. 

Si   a

entonces existe un entero 

1

≡  b 

 c   y     b −  a = 1.  c luego  b −  a =  c

Es decir la exigencia en este caso es que la diferencia entre  b y   a  sea un entero, que trivialmente se cumple pues tanto  a como  b lo son. 

Por lo cual, cualquier par de enteros están relacionados módulo 1. 

Es decir, dado un entero en particular, está relacionado módulo 1 con todos los otros. 

Entonces hay una única clase de equivalencia. 

Recordatorio: 

Es indistinto el elemento que use como 

 xR y  si y sólo si  yR x si y sólo si  R( x) =  R(  y) representante para designar la clase. 

Elijo el 0, por lo cual   R(0) = { a :  a ∈ }

Z

¿Cómo es la digráfica en este caso? Haga una (parcialmente). 

Cuál es    Z

= { ?? }

? 

1

≡
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 a  ≡ m   b 

si y sólo si      m 

  b - a 

EJEMPLO 4.7.4 

¿ Es válido que:  3 ≡

? , 

2 5

−235 1

≡

? 

3 457

Para la primer cuestión, se debe ver si 5 -3 es divisible por 2. 

Como 5 -3 = 2, luego vale que  3 ≡

. Además módulo 2, 

2 5

 R(3) =  R(5). 

Para la segunda, se debe ver si 457 - (-235) es divisible por 13. 

Como 457+ 235 = 692, y 692  no es divisible por 13 (haga la cuenta!), luego no vale 

que  −235 1

≡

. 

3 457

EJERCICIO 4.7.5 

Analizar la validez de las afirmaciones: 

a) 3 ≡5 17 b) 8 ≡4 2678

c) 786 ≡5 −1434

d) Hal ar sus respectivas clases de equivalencia. 

EJEMPLO 4.7.6 

¿Existe  m tal que sea verdadero  9 ≡ 180 ? 

 m

Siendo  180 - 9 = 171, la pregunta se puede reformular: 

¿Cuáles son los  m que dividen a 171? 

Además de 1 (obvio). 

Para contestarla se factorea 171 en primos. (Fundamental es el T. Fundamental....) 

171=  2

3 .19  , por lo tanto los posibles  m:  3;   3.3;    19;    3.19;  3.3.19 

EJERCICIO 4.7.7 

Hal e los posibles  m que hacen verdaderas las siguientes afirmaciones: 

a) 235 ∼

4579 

b) 570 ≡ −4333(mod  m ) 

c) 1 ≡

−1

 m

 m

d) 1 ≡

0 

e) − 2347 ∼

−2347 

f)

− 786 ≡

2

 m

 m

 m
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Recordatorio: 

T.A.D. : Dados  a y  b enteros,  b ≠ 0

El teorema del Algoritmo de la División  

existen 

permite ver desde otro aspecto  esta relación: 

y son únicos los enteros cociente   q  y 

resto   r  tales que     

♦  PROPIEDAD 4.7.8

 a = . 

 q b +  r

con 0 ≤  r <  b

Para  m no nulo,    a ≡  b  si y sólo si  

 m

 a  y  b tienen el mismo resto al dividirlos por  m. 

Demostración: (idea, Ud. completa...) 

Supongamos que  a ≡  b  , por lo tanto 

 m

 m divide a   b - a. 

Por el teorema del Algoritmo de la División: 

 a =  q .  m +  r    co n   0

 a

 a

≤  a

 r <  m

Los cocientes y restos son únicos. 

 b =  q .  m +  r

co n  0

 b

 b

≤  rb <  m

Haciendo    b −  a =  m.( q −  q )

 b

 a

+  b

 r −

. Ahora aplique la hipótesis....y teorema

 a

 r

A.D. 

entonces,  b

 r =

(justifique!!) . 

 a

 r

La vuelta (es decir, saliendo de  a  y  b tienen el mismo resto al dividirlos por  m y  llegar a que   a ≡  b  ), queda de ejercicio. 

 m

♦

EJEMPLO 4.7.9 

a) ¿Los números 267 y 5484 son equivalentes módulo 3? 

b) ¿Los números 9284 y 767 son equivalentes módulo 17? 

c) ¿Los números 543 y 6819 son equivalentes módulo 12? 

Para analizar estos casos veremos si coinciden los restos cuando hacemos la división 

por 3 en el caso a) y por 17 en el caso b), y 12 para c). 

Al dividir por 3:  

(si se acordaba de la regla de 

267 = 3. 89, el resto es 0 

divisibilidad por 3....también sacaba eso, 

¡¡obvio!!) 

5484 = 3. 1828, el resto es 0 
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Por lo cual afirmamos que 267 y 54 84 son equivalentes módulo 3. 

Al dividir por 17: 

9284 = 17. 546 + 2  (¿haga la cuenta para comprobar!) 

767 = 17. 45 + 2  (¡haga la cuenta para comprobar!) 

Por lo cual afirmamos que 9284 y 767 son equivalentes módulo 17. 

Al dividir por 12: 

543 = 12. 45 + 3  (¡haga la cuenta para comprobar!) 

6818 = 12. 45 + 2  (¡haga la cuenta para comprobar!) 

Por lo cual afirmamos que 543 y 6818  no son equivalentes módulo 12. 

  ¿Cuántas clases de equivalencia determina   ≡     en 

   si m es no nulo? 

 m

 "¿Cuántos posibles restos puede tener una división por  m? " es una manera alternativa de preguntarse cuántas clases de equivalencia determina  ≡     . El teorema del

 m

Algoritmo de la División determina como posibles restos de la división de un entero por 

 m a un único valor entre todos los valores posibles  0 ≤  r <  m . Esto permite formular: 

♦  LEMA 4.7.10

Dado  m ≠ 0,  para todo  a ∈ Z   existe un único  r,  0 ≤  r <  m tal que  a ≡ m r

♦

♦  TEOREMA 4.7.11

Dado  m  no nulo,  ≡      determina  m clases de equivalencia en  . 

 m

♦
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Recordando que 

 x es la clase de equivalencia de  x modulo  m

 x ≡

 y si y sólo si  y ≡

 x  si y sólo si 

 m

 m

 x =  y

Dado cualquier  a en 

podemos elegir como representante de su clase módulo  m al 

natural entre 0  y   m - 1 que le es equivalente (Lema 4.7.10  y Teorema 4.7.11) 

Justifique que dado el  m >  0, los naturales entre 0 y  m - 1 están en clases distintas módulo  m. (idea: por el absurdo…) 

Se tienen así las clases  0 ,1 , 2, ,  m −1 

Por lo cual el cociente 

Z ≡ = {0,1,2 , , − }

1

 m

 m

EJEMPLO 4.7.12 

¿En qué clase de equivalencia módulo 24 está el entero 2789564? 

Es obvio que un entero cualquiera siempre está en "su" clase, esto es  a está en   a Pero esta pregunta significa: determinar el natural  < 24 equivalente con 2789564. 

Para el o se busca el resto de la división por 24 de 2789564: 

2789564 = 24. 116231 + 20   (¡¡Verifique!!) 

Así   2789564 es equivalente módulo 24 con 20 (si?) por lo que  2789564 = 20

Comentario elemental, por las dudas... 

Siempre que no traiga confusión, es decir que se tenga bien claro en que módulo  m se m

está trabajando, se usa   a  pero de ser necesario se usa   a

. 
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EJERCICIO 4.7.13 

a)

Volver a mirar y comentar lo que obtuvo para los casos de  m = 0 y  m = 1 en 4.7.2 y 4.7.3. 

b)

¿Cuáles son las clases de equivalencia módulo 2?  ¿Cómo se "dividen" los enteros

por  ≡ ? 

 2

c)

¿Cuáles son las clases de equivalencia módulo 3,  4  y  5? 

d)

Mirar el comentario previo al ejercicio. 

Aaah! 

 Recapacite que al variar el  m no es lo mismo lo que indican por ejemplo  0 , 1 ... 

EJERCICIO 4.7.14 

a) Hal ar las clases modulo 8 de los números  345871,   - 2456,  45892,  4136

b) Hal ar las clases modulo 13 de los números  13573457,   - 277456, 32145892,  136

En el siguiente ejercicio se verán propiedades algebraicas de la relación de equivalencia 

módulo  m por las cuales se llama también congruencia módulo  m. (relación de equivalencia compatible con las operaciones definidas, en este caso sobre Z) 

Observe que a) y b) 

EJERCICIO 4.7.15 

son casos 

a) Sean   a, b ∈ Z ,  a ≡  b    y

     c ∈ Z e

ntonces 

particulares de c) y 

 m

 a + c ≡ m b+ c

b) Sean   a, b ∈ Z ,  a ≡  b    y

     c ∈ Z e

ntonces 

 m

 a . c ≡ m b . c

d). (Justifique esto) 

c) Sean   a, b,c,d ∈ Z ,    a ≡  b    y

      c ≡  d   entonces   

 m

 m

 a + c ≡ m b+ d

d) Sean   a, b,c,d ∈ Z ,    a ≡  b    y

      c ≡  d   entonces   

 m

 m

 a . c ≡ m b . d

Se dejan como ejercicio las dos primeras, observar que son una monotonía de la relación 

módulo respecto de la suma y la multiplicación de enteros. Al introducir la definición de las equivalencias se dijo que generalizaban la igualdad, esto muestra alguna de esas cosas. 

De la tercera se hace el planteo: 

 a ≡

 b

↔

 b −  a =  m.  k    para algun  

Z

 m

 k ∈

(1) 

 c ≡

 d

↔

 d −  c =  m.  h   para algun  

Z

 m

 h ∈

¿Qué se debe probar? 
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Que    m ( b +  d ) − ( a +  c)   es decir que  ( b +  d ) − ( a +  c) = . 

 m t   para algun  t ∈ Z

Sumando miembro a miembro las igualdades dadas en  (1)  se obtiene lo querido. 

Hágalo y justifique. 

Para la cuarta, observe que tiene las mismas hipótesis que en la tercera, por lo tanto se 

tienen las igualdades (1)         . 

¿Qué se debe probar en este caso? 

Que    m ( . 

 b d ) − ( . 

 a c)   es decir que  ( b .  d ) − ( a .  c) =

. 

 m t   para algun  t ∈ Z  

para el o multiplique la 1ra. igualdad de (1) por   d  y la segunda por  a, y luego sume miembro a miembro. 

  Un álgebra muy particular

Las propiedades demostradas en el EJERCICIO 4.7.15  permiten introducir un álgebra muy 

particular. 

Las partes c) y d) están afirmando que la suma de elementos equivalentes módulo  m tiene por resultado elementos equivalentes, análogo para la multiplicación. 

La observación permite, para  m > 0, definir en el cociente Z ≡ = {0,1, 2 , , − }

1

 m

 m

operaciones: 

 la suma   a ⊕  b =  a +  b

y      la multiplicación  a ⊗  b =  a.  b

que quedan bien determinadas. 

•Sumar dos clases es sumar los enteros que las representan y luego tomar la clase de la

suma. 

•Multiplicar dos clases es multiplicar los enteros representantes y luego tomar la clase del producto. 
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Miremos algún caso y luego justificaremos algunos dichos. 

Si  m = 3, el conjunto cociente es   Z ≡

.  Para sumar en el cociente seguimos la

3 = {0,1 , 2 }

definición:  0 ⊕ 0 = 0 + 0 = 0 ;   0 ⊕ 1 = 0 +1 = 1 ;   0 ⊕ 2 = 0 + 2 = 2  

1⊕ 0 = 1 + 0 = 1  ;  1⊕ 1 = 1 + 1 = 2  ;  1⊕ 2 = 1 + 2 = 3 = 0  (¿si?, calcule o piense!!) 

2 ⊕ 0 = 2 + 0 = 2  ;  2 ⊕ 1 = 2 + 1 = 3 = 0  ;  2 ⊕ 2 = 2 + 2 = 4 = 1  (¡¡piense!!) 

Compare resultados. ¿Qué opina? 

¿Qué estructura tiene  Z ≡

con la suma definida? 

3 = {0,1 , 2 }

Haga Ud.  todas las cuentas de multiplicar posibles en  Z ≡

.  Compare 

3 = {0,1 , 2 }

resultados. 

¿Qué estructura tiene  Z ≡

con la multiplicación definida? 

3 = {0,1 , 2 }

Fabrique una tabla para la suma y otra para la multiplicación en Z ≡

. 

3 = {0,1 , 2 }

Comentarios sobre la definición de 

 la suma   a ⊕  b =  a +  b    y    la multiplicación  a ⊗  b =  a +  b   en Z ≡ ={0,1,2, , − }1  para 

 m

 m

 m > 0

•

 El resultado queda bien determinado:

Al hacer   a +  b hay un  único entero entre 0 y  m -1 que le es equivalente módulo  m. 

Ese es el que define 

Z

 a ⊕  b  en 

. 

≡ m

Análogamente, al hacer   a .  b hay un  único entero entre 0 y  m -1 que le es equivalente módulo  m. 

Ese define 

Z

 a ⊗  b  en 

. 

≡ m
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Z

•

 Propiedades en

de  ⊕  y   ⊗

≡ m

 a ⊕  b =  a +  b =  b +  a =  b ⊕  a

 a ⊗  b =  a.  b =  b.  a =  b ⊗  a

Dado el  0 ,  para toda   a ,  a ⊕ 0 =  a

Dado el 1,  para toda   a ,  a ⊗1 =  a

¡La justificación queda a su cargo! 

¿Qué nombre le pone a cada propiedad?   Bautice bien. 

(Si le parece haga antes el ejercicio siguiente para recordar) 

EJERCICIO 4.7.16 (de memoria) 

Escriba y dé el nombre de las propiedades de   +  y  de   .   en   . 

Hay una propiedad entre las dos operaciones:    a.( b +  c) =  a.  b +  a.  c     nombre?? 

¿Qué propiedad de  +  no se "repite" para  .   en 

? 

Recordatorio: 

Por tener todas esas propiedades se dice que (Z, +,⋅)  es un anillo conmutativo con

unidad. 

Anillo es un ejemplo de estructura matemática. 

¿Es anil o el conjunto  Z ≡

con las operaciones que se definieron? 

3 = {0,1 , 2 }

Justifique su respuesta. 
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EJEMPLO 4.7.17 

Recordatorio: 

La tabla de suma en  Z

En ( A, +)  (un conjunto no vacío  A con 

≡4 = {0,1,2 , }

3

una operación de "suma") y con un  

¡¡Verifique todas las salidas!! 

elemento nulo 0,  el   a ∈  A   tiene opuesto 

(o  inverso aditivo)  

  0  

  1  

  2  

  3  

si existe   b ∈  A  tal que  a + b =  b +  a = 0 

  0  

  0  

  1  

  2  

  3  

Al elemento  b se lo anota -  a.  

  1  

  1  

  2  

  3  

  0  

Los  opuestos: 

-  0   =  0  

  2  

  2  

  3  

  0  

  1  

-  1  = 3

  3  

  3  

  0  

  1  

  2  

¿Es el fin de los refranes? 

-  2  =   2

2 más 2 No es 4 (ó si?) 

-  3 =  1  

♦  PROPIEDAD 4.7.18

En  Z ≡ = {0,1, 2 , , − }

1  para 

 m

 m

 m > 0, todo elemento tiene opuesto. 

Demostración: (idea, Ud. la completa...) 

Dada una clase cualquiera    a ∈ Z

hay que hal ar   b ∈ Z

tal que  a ⊕  b = 0  

≡ m

≡ m

Es decir que exista  b tal que el resto de  a +  b y de 0 divididos por  m sea igual, pues se quiere que                            a ⊕  b =  a +  b = 0   

El resto de 0 al dividirlo por  m es 0.  Debe ser entonces 0 el resto para  a +  b. 

Dicho de otra forma, debe verificares que    m a +  b . 

El caso más simple (o más pequeño)  es si  a +  b =  0. (De acuerdo?)     SI 

Lo que es lo mismo a que   a +  b = m , pues   m = 0 . 

Si 

Z

   a ∈

entonces   a =  j   para un  j = 0, 

,  m −1. 

≡ m

Luego existe  

Z

 b =  m - a  tal que 

 b ∈

. ¡¡Justifique!! 

≡ m

♦ 
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EJEMPLO 4.7.19 

La tabla de multiplicar en  Z ≡

. Verifique todos los resultados. 

4 = {0,1 , 2 , }

3

  0  

  1  

  2  

  3  

 Algunas sorpresas o cosas no 

 habituales: 

  0  

  0  

  0  

  0  

  0  

En la aritmética  de 

(también en R) si 

 1 

  0  

  1  

  2  

  3  

un producto es 0 es porque uno de los 

  2  

  0  

  2  

  0  

  2  

factores también es 0. 

 

¡¡En este caso NO!! 

3  

  0  

  3  

  2  

  1  

EJERCICIO 4.7.20 

Haga las tablas de suma y multiplicación en 

a) 

Z ≡ . ¿Qué puede comentar al respecto? ¿qué le recuerda? 

2

b) 

Z ≡5

c) 

Z ≡6

d) 

Z ≡ . Dé un ejemplo de la vida diaria (no digital...) que use este módulo. 

1 2

EJERCICIO 4.7.21 

Cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas en Z ≡  (

 m

 m > 0 ): 

a) Para toda   a ∈ Z ≡

s e   c u m p le   q u e      a ⊕ 0

 m

=  a

b) Para toda   a ∈ Z

≡

s e   c u m p l e   q u e      a ⊗ 1

 m

=  a

c) Para toda   a ∈ Z ≡

e x i s t e    b ∈ Z

≡

y      a ⊕  b = 0

 m

 m

d) Para toda    a ∈ Z ≡

s i      a ≠ 0     e n t o n c e s  

Z

 m

existe  b ∈

≡

y   a ⊗  b =1

 m

e) Para  a,  b y  c  son elementos de Z ≡

, si    a   ≠ 0  y 

 m

 a ⊗  b =  a ⊗  c  entonces  b =  c

f)

Para   a ,  b  y  c  e n Z ≡

s e   c u m p l e   q u e

 m

 a ⊗ ( b ⊕  c) = ( a ⊗  b)   ⊕ ( a ⊗  c)
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Recordatorio: 

EJERCICIO 4.7.22 

Con relación al  4.7.19 y 4.7.29,  haga 

En ( A, . )  (un conjunto no vacío  A con una 

para cada uno de los conjuntos una lista 

operación de "multiplicación") y con un  

de los elementos  invertibles y 

elemento unidad 1, 

sus inversos. 

el   a ∈  A   tiene inverso (o  inverso

 multiplicativo)  

si existe   b ∈  A  tal que  a .  b =  b  .   a = 1

Al elemento   b se lo anota   a-1. 

El  a se dice  invertible.  

EJERCICIO 4.7.23 (de memoria activa) 

a) Escriba y dé el nombre de las propiedades de   +  y  de   .   en   R. 

b) Hay una propiedad entre las dos operaciones:    a .( b +  c) =  a .  b +  a .  c     nombre?? 

c) ¿Qué propiedad de  +  no se "repite"  en  .   ? ¿Cómo se modifica y se tiene algo parecido? 

d) Hay alguna propiedad de  .   en R que no se da en   Z ≡

? 

 m

Recordatorio: 

Por tener todas esas propiedades se dice que ( , + ,⋅)  es un cuerpo conmutativo. 

Con las mismas operaciones se tiene el cuerpo de los racionales:  ( , + ,⋅)

Cuerpo es otro ejemplo de estructura matemática, "más rica" que anil o., por eso menos general. 

Si es cuerpo es anil o con unidad. 

EJERCICIO 4.7.24 

Para los ejemplos vistos en el 4.7.20, qué tipo de estructura algebraica tiene cada uno de 

los  ( Z ≡

, ⊕ , ⊗ ) . ¿Cómo analiza algunas propiedades en las tablas? 

 m

¿En esos casos para qué  m es un anil o y no un cuerpo?, ¿en qué  m es cuerpo? 

¿Puede decir qué tipo de número entero positivo es en cada caso? 
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Obvio! 

Se supone que Ud. concluyó a partir de los ejemplos vistos que: 

Si   m es primo entonces  ( Z ≡

, ⊕ , ⊗ )  es un cuerpo. 

 m

Si  m es compuesto entonces  ( Z ≡

, ⊕ , ⊗ )  es sólo un anil o conmutativo con 

 m

unidad. 

Recordatorio: 

•Si    a ∈

y   b ∈

y existe  d máximo común

divisor entre ellos,  d= ( a, b),  entonces existen 

Sus conclusiones son válidas. 

enteros  g  y   f  tales que  d=  g. a +   f. b 

•

Vale el siguiente: 

( a, b) = 1 si y sólo si existen enteros  g  y   f

tales que    1  =  g. a +   f. b 

♦  TEOREMA 4.7.25

Para todo  m > 0 y   a ∈ . ( a, m) = 1    si y sólo si    a ∈ Z ≡

e s invertible. 

 m

Demostración: 

Supongamos que   ( a, m) = 1. 

Por propiedades del máximo común divisor existen   h ∈   y   k ∈  tales que 1 =  h. a +  k. 

 m y ahora aplicamos propiedades de la equivalencia módulo  m: 

1  = . 

 h   a +  k.  m = . 

 h   a ⊕  k.  m  (por definición de suma), 1  = . 

 h   a ⊕  k.  m =  h ⊗  a ⊕  k ⊗  m  

(por definición de producto)  y  como   m = 0  y propiedades del neutro resulta que el último término es  0 . 

Por lo cual 1  =  h ⊗  a , entonces existe    

 h  que la clase inversa de  a . 

Supongamos que    a ∈ Z ≡

e s invertible. 

 m

Es decir que existe   h ∈Z ≡  tal que  h  ⊗  a = 1 , ahora apliquemos definición de producto m

y definición de congruencia módulo  m,  h ⊗  a =  h.  a = 1  y    h.a -1 =   t.m   para algún  t entero. Por lo cual   h.a -  t.m = 1 o sea que   h.a + (-  t) .m = 1 y como –  t es entero, resulta por propiedad de máximo común divisor que ( a, m) = 1. 

♦ 
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Veamos que importante lo siguiente: 

♦  COROLARIO 4.7.26

Para  p > 0,  p es primo  si y sólo si    ( Z ≡

, ⊕ , ⊗ ) es cuerpo. 

 p

Es claro que todo  p  primo positivo es coprimo (( p, k) = 1) con los números 1 ≤  k ≤  p −1. 

Por lo cual toda clase no nula de  Z ≡

es invertible. 

 p

♦

 Observación importante  o  no tanto sobre la notación: 

Para indicar la clase de equivalencia   a  hay una notación alternativa [ a]  y  también  [ a]  . 

 m

Para indicar las operaciones de suma y multiplicación en  Z ≡

se ha usado un 

 m

símbolo distinto al que usamos en   ⊕ y  ⊗  pues son operaciones distintas pero hay 

autores que usan los símbolos +  y  . .   

La diferente simbolización le hará equivocarse menos, sobre todo cuando se empieza a 

trabajar con estas operaciones. 

Es usual encontrar en lugar de ( Z ≡

, ⊕ , ⊗ ) simplemente Z

,  esto significa

 m

 m

toda la estructura: el conjunto con las operaciones definidas sobre él. 

En el último corolario porqué se cambió  p por  m .... 

Y que quiere que le diga: los primos son  p. 

Es sólo cuestión de costumbre de hablar de los  ( Z ≡ , ⊕ , ⊗ ) o  Z

cuando 

 p

 p

 p 

es primo. 

Los 

Z

 cuerpos   

 p  son esencialmente 

los únicos ejemplos de cuerpos finitos, 

hay otros pero equivalentes con ellos 

desde un punto de vista algebraico. 
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EJEMPLO 4.7.27 

 Una  delicia para muchos: 

a) Pruebe que para

2

2

2

 a y  b en  Z ≡

Z

2 ,  en

2   vale  ( a ⊕  b)

=  a ⊕  b

!! Viva 

b) Generalice para cualquier primo  p, usando la fórmula de Newton y que

Z  p !! 

  p 

 p   para   0 <  k <  p 

  k 

Para a) 

2

2

2

2

2

 a y  b en Z ≡

aplicando

2 ,   ( a ⊕  b)

=  a ⊕ ( a ⊗  b) ⊕ ( b ⊗  a) ⊕  b =  a ⊕ 2 ⊗ ( a ⊗ ) b ⊕  b

las propiedades de las operaciones. 

Ahora apliquemos que se está trabajando en 

, por lo tanto 

. Por lo cual resulta, 

2

2 = 0



2

2

2

2

2

2

2

( a ⊕  b) =  a ⊕ 2 ⊗ ( a ⊗  b) ⊕  b =  a ⊕ 0 ⊗ ( a ⊗ ) b ⊕  b =  a ⊕  b

Para b), 

 a y  b en  Z ≡ ,   ( a ⊕  b)  p

 p

 p  esto se demuestra siguiendo los pasos propuestos. 

 p

=  a ⊕  b

EJEMPLO 4.7.28 

Hal ar las soluciones de las ecuaciones en  Z

: 

1 2

a)

 x ⊕ 3 = 6

La  operación  de  multiplicación  tiene  prioridad 

b)

7 ⊗  x ⊕ 5 = 7

sobre la suma 

c)

6 ⊗  x ⊕ 11 = 7

7 ⊗  x

⊕ 5 = 7  representa  ( 7 ⊗  x ) ⊕ 5 = 7  

d)

6 ⊗  x ⊕ 10 = 4

también se puede simplificar más poniendo  

Tener a mano las 

7  x

⊕ 5 = 7  (la multiplicación se 

tablas que hizo 

sobreentiende) 

en el 4.7.20  d) 

para módulo 12 

Para resolver las ecuaciones se usa la misma técnica que en 

o

. 

Para  la ecuación dada en a)  la solución está garantizada por la existencia de opuesto: 
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 x ⊕ 3 = 6 

 x = 6 ⊕ (− 3)

Justifique los pasos. 

 x = 6 ⊕ 9

 x = 3

Para las ecuaciones que siguen hay que usar también el 

 a es  invertible si hay un  b: 

concepto de elemento invertible: 

1

b)  

. 

 ab

. 

 ba  1

 b a−

=

= → =

7 ⊗  x ⊕ 5 = 7

7 ⊗  x = 7 ⊕ (− 5)

7 ⊗  x = 7 ⊕ 7

Justifique los pasos.  Cuál es ( 7, 12) =   ? 

7 ⊗  x = 2

−

 x = 2 ⊗( 7) 1

 x = 2 ⊗ 7

 x = 2

c) 

6 ⊗  x ⊕ 11 = 7

6 ⊗  x = 7 ⊕ (− 11)

6 ⊗  x = 7 ⊕1

Justifique los pasos. Cuál es  ( 6, 12) = ? 

6 ⊗  x = 8

¿Cómo se sigue?  Las tablas construidas permiten razonar de las siguientes maneras: 

* No hay ninguna clase que multiplicada por   6   d e    8

* Como  6 no  tiene  inverso  (nunca  encuentro  el  1 en la columna del  6   o  fila)  no  se  puede despejar la incógnita. 

Por lo tanto,  no hay solución. 

d) 

6 ⊗  x ⊕ 10 = 4

6 ⊗  x = 4 ⊕ (− 1 0 )

Justifique!! . Mirando la tabla de multiplicar en la columna o fila 

6 ⊗  x = 4 ⊕ 2

6 ⊗  x =

6

del 6 , ¿qué se puede afirmar? La ecuación tiene por solución  1, 3, 5  y  7 . 
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EJEMPLO 4.7.29 

Hal ar las soluciones de las ecuaciones en  Z

: 

1 7

Haga y tenga a 

a)

 x ⊕ 3 = 6

mano las tablas 

b)

7 ⊗  x ⊕ 5 = 7

módulo 17 

Resolvemos siguiendo los pasos habituales en este tipo de problema. 

Para a): 

 x ⊕ 3 = 6 

 x = 6 ⊕ (− 3)

Justifique. 

 x = 6 ⊕ 14

 x = 3

Para b): 

7 ⊗  x ⊕ 5 = 7

7 ⊗  x = 7 ⊕ (− 5)

7 ⊗  x = 7 ⊕12

7 ⊗  x = 2

Justifique los pasos. 

−

 x = 2 ⊗( 7) 1

 x = 2 ⊗ 5

 x = 10

•  Comentario sobre los últimos ejemplos. 

Se ha observado ya, que en los  Z

en el caso de los anil os que no son cuerpos hay un 

 m

comportamiento aún más diferente que en los cuerpos,  de las operaciones "suma" y 

"multiplicación" al que estas registran en 

o

. 

 Muy natural que no sea igual, se está en otro lado. 

Las ecuaciones de primer grado en 

siempre tienen solución única. Pero en 

ese tipo de 

ecuación o bien tiene solución única o no tiene solución. 

La razón de esto  es estructural. 

es cuerpo y  

no. 

Es así que por su estructura en  Z

hay ecuaciones de grado uno con solución única, sin 

1 2

solución o más de una solución, esto depende obviamente de los coeficientes. 

Y por ser  Z

un cuerpo este tipo de ecuaciones tiene solución única. 

1 7

¿Y para otro grado? Análogo. Se verá en lo que sigue sólo algunas sencil as. 
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EJERCICIO 4.7.30 

Hal ar las soluciones de las ecuaciones: i) En 

Z

i ) En Z

1 6

3 1

a)

7 ⊗  x ⊕ 5 = 7

b)

4 ⊗  x ⊕ 3 = 2

c)

9 ⊗  x ⊕ 3 = 13

Comente y justifique los resultados. 

d)

8 ⊗  x ⊕ 15 = 7

2

e) 

 x

⊕ 5 = 7

2

f) 

3⊗ (  x

⊕ 14 ) = 5

2

g) 

3⊗  x

⊕ 14 = 7

Un elemento 

 a ≠ 0 en un anillo  A 

EJERCICIO 4.7.31 

 es divisor de 0 si 

(no obligatorio, sólo para los estructurados y formales) 

existe   b ∈ , 

 A b ≠ 0    

a) Buscar en las tablas hechas hasta ahora divisores de cero. 

tal que   a. b = 0 

b) Demostrar que en Z

, con 

 p

 p primo no hay divisores de cero. 

c) Anímese a dar un criterio amplio para determinar si las ecuaciones de congruencia de primer grado admiten solución. 



 Algunas reglas muy conocidas 

Las propiedades demostradas en el EJERCICIO 4.7.15  permiten introducir un álgebra muy 

particular cuya aplicación justifica algunos resultados muy conocidos y usados. 

Como caso particular de la parte d) de 4.7.15  vale que: 

Para todo   n ∈

∧  n ≥ 1, 

si  a ≡

 b  entonces 

 n

 n

 m

 a ≡

. 

 m b

Justifique 

Además vale trivialmente para  n = 0 

¿Cómo lo podría demostrar y por qué método? 
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Sumamos sus cifras: 

6 + 7 + 8 + 9 = 30 

 La divisibilidad por 3: 

entonces .... 

  Un número es divisible por 3 si y sólo si  la suma de sus cifras es 3 o múltiplo de 3. 

Para demostrar esto se usará la expresión en base 10 de todo número entero  N  de h +1 cifras: N =

= 

 h

 h  1

−

2

1

0

 h

 a

 h

 a  1

2

 a  1

 a  0

 a

−

 a .10

 h

+  h

 a  1.10

+

+  a

−

2.10 + 1

 a .10 + 0

 a .10

En término de congruencias: 

 N es divisible por 3 

si y sólo si 

 N es equivalente módulo 3  con 3 

si y sólo si 

la clase de equivalencia de  N modulo 3 es la clase del  0 módulo 3. 

•

¿Cuál es la clase de  N  módulo 3 ? 

Por    N  se entiende la 

Por las operaciones y propiedades presentadas se tiene: 

clase de equivalencia 

módulo 3. 

 h

 h  1

−

2

1

0

 N =  a .10

 h

+  h

 a  1.10

−

+

+ 2

 a .10 + 1

 a .10 + 0

 a .10 =

Justifique todos 

 h

 h  1

−

2

1

0

=  a .10

 h

⊕  h

 a  1.10

−

⊕

⊕ 2

 a .10 ⊕ 1

 a .10 ⊕ 0

 a .10 =

l os pasos 

 h

 h  1

−

2

1

0

=  a ⊗ 10

 h

⊕  h

 a  1 ⊗10

−

⊕

⊕ 2

 a ⊗10 ⊕ 1

 a ⊗10 ⊕ 0

 a ⊗10 =

Siguiendo: 

10 = 1  por tanto para todo  n ∈



indica clase de equivalencia módulo 3. 

 n

 n

10 = 1 = 1

por  propiedad enunciada al comienzo de esta sección 

Reemplazando se obtiene que la clase módulo 3 de  N es: 
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 N =  a ⊗ 1⊕  a  1 ⊗1

−

⊕

⊕ 2

 a ⊗1⊕ 1

 a ⊗1⊕ 0

 a ⊗1

 h

 h

Justifique todo!!! 

 N es divisible por 3 

 N =  a .1+  a  1.1

−

+

+ 2

 a .1+ 1

 a .1+ 0

 a .1

 h

 h

si y sólo si 

 N = 0

 N =

 h

 a +  h

 a  1

− +

+ 2

 a + 1

 a + 0

 a

¡La clase de  N módulo 3 es la suma de sus cifras! 

¡Menos 

Por eso el enunciado que conoce desde chiquito y ahora lo sabe 

mal! 

demostrar  (seguro que ahora puede dormir...) 

EJERCICIO 4.7.32 

a)

Por qué para saber si un número es divisible por 2 sólo se mira la última cifra? Haga una

defensa en término de congruencias. 

b) 

Hal e una regla de divisibilidad por 9. 

¡Es 

c) 

Hal e una regla de divisibilidad por 11.  (sugerencias: en módulo 11 

buena 

2

data! 

10 = 100 = 99 +1 = ??  y  

1

10 = 10 = − 1 = −1  ) 

d) 

Hal e la cifra de la unidad de 

14

25  (sugerencia: escriba el número en base 10 y tome 

congruencia módulo 10 ) 

  El tiempo medido 

•

 Las horas y los días

¿Cuántas horas tiene un día? Hay algunos que parecen más largos y otros más cortos, 

pero todos el os tienen 24 horas. Así es la convención. 

Los días se juntan de a 7 para tener una semana. 

¡Use 

congruencias! 

EJERCICIO 4.7.33 

a) Ahora es las 9 de la noche. ¿Qué hora (del día) será dentro de 350 horas? 

b) Si hoy es viernes, ¿qué día será dentro de 237 días? ¿Y de 19 días y 500 noches? 

c) Mañana es sábado, ¿qué día fue hace 2456 horas? 
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•

 Los meses  y los años

El origen de nuestro calendario actual es 

el  c

Nuestro calendario actual es el 



 alendario Juliano (por Julio César) . 

 calendario Gregoriano (por 



Constaba c/año común de 365  días y cada 

Papa Gregorio XIII) .  La 

4 años era año bisiesto de 366. 

reforma se hizo en 1582  y se 

sacaron "de un plumazo" 10 

Los 

días: después del 4 de octubre 

años comenzaban en Marzo y 

final izaban en Febrero. Sus meses y su 

fue el 15 de octubre. 

cant  idad de días: 

Consta cada año común de 

Marzo 

30 días 

365  días y cada 4 años es de 

Abri

366, pero en el caso de los 

l 

30 

May o 

31 

años seculares (su número es 

Jun  

o 

30 

divisible por 100) para ser 

Quinto 

31 (Julio C. le puso Julio) 

bisiesto debe ser por 400. Por 

Sexto 

31 (el actual Agosto) 

eso lo fue el 2000 pero no el 

Sept

1900. 

iembre 

30 

Oct  

ubre 

31 

Nov  iembre 

30 

Los años comienzan en Enero 

Diciembre 

31 

y finalizan en Diciembre con 

Enero 

31  

los mismos días que en el 

Febr

Juliano. 

ero 

28 (los bisiestos 29) 

EJERCICIO 4.7. 34 

a) ¿Qué día de la semana fue el 25 de mayo de 1810? 

Use congruencias y 

b) ¿Qué día de la semana fue el 9 de julio de 1816? 

c) ¿Qué día de la semana fue el 15 de agosto de 1711? 

cuente los años bisiestos 

d) ¿Qué día de la semana nació? 
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  Algunos teoremas famosos

Hay dos teoremas muy famosos que tratan de éstos temas de la teoría de números. 

•

 Los restos chinos

Uno de el os viene de la antigua China, que matemáticamente tuvo un desarrol o independiente al de la occidental. La obra más importante del matemático (también poeta y arquitecto) Ch'in Chiu-Shiao (1202) es el libro  Shu-shu chiu-chang un tratado de 9 secciones, recopilación de la matemática china. En una de las secciones,  El análisis  indeterminado, expone problemas de ecuaciones de congruencia. 

Entre el os está un problema (y su solución) atribuidos a Sun Tzu (de aprox. el 300 d.C.) y el enunciado  dice:  

 Existe una cantidad de cosas que al contarlas de tres en tres deja un residuo de dos; al contarlas de cinco en cinco deja un residuo de tres; al contarlas de siete en siete deja un residuo de dos. Hallar el número de cosas 

 x ≡3 2



El planteo usando las congruencias, llamando  x a la cantidad de cosas:    x ≡5 3

 x ≡7 2

Este es un caso especial del Teorema Chino del Resto y Shiao da un algoritmo desarrol ado por él para la solución del problema que es  x = 23. 

El  problema  de  resolver  ecuaciones  de  congruencia  del  tipo 

 a x ≡ m b   es  laborioso  para   m 

grande. 

Pero cuando  m  se factoriza están las propiedades que permiten bajar la complejidad del problema: 

 Equivalente: 

Sean 

entonces

1

 m , 

2

 m , 

,  m ∈

− {0}

 n

tener la 

 ax ≡

 b

misma 

1

 m



el sistema   

es equivalente 

solución 

 ax ≡

 b



 n

 m

a la ecuación   a x ≡  b  con    m = [ 1

 m , 2

 m , 

, 

 m

 n

 m ]
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En el caso que  ( m ,  m ) = 1 para  j ≠  k   entonces [ 1

 m , 2

 m , 

,  m ] =  m = 1

 m . 2

 m . 

. 

 j

 k

 n

 n

 m

Lo cual da la propiedad: 

La  

Sea 

1

 h

2

 h

 m =  p .  p

. 

. 

 n

 h

 p

entonces la ecuación

1

2

 n

factorización 

 a x ≡ m b

para todos los 

 ax ≡

 b

 m interesantes.. 

1

 h

 p



1



qué la  

es equivalente al sistema     ax ≡

garantiza??... 

 h

 b

 n



 n

 p

Recordatorio: 

 m es el mínimo común múltiplo de los enteros no nulos 

 e  y  f ,  si  m >0 y además cumple  

♦  TOREMA 4.7.35

1)

 e m ∧  f m    y   2)  e m* ∧  f m * entonces  m m *

Sean  a y  b enteros, tales que  a es no nulo. Sean 

entonces

1

 m , 

2

 m , 

,  m ∈

− {0}

 n

 ax ≡

 b

1

 m



el sistema   


es equivalente a 



Recordatorio: 

 ax

≡

 b



 n

 m

 m = [ a, [ b  ,c]] = [ a ,b],  c] y 

la ecuación   a x ≡  b  con    m = [ 1

 m , 2

 m , 

, 

 m

 n

 m ]

también vale para n números 

enteros. 

Demostración: 

Supongamos  que  estamos  en  las  condiciones  generales  de  las  hipótesis  del  teorema. 

Comenzaremos por lo más sencil o. 

Sea  x solución de la ecuación   a x ≡ m b . Por lo tanto    m ax −  b . Como   m = [ 1

 m , 2

 m , 

,  n

 m ], 

por  la  condición  1)  de  definición  para  cada   i,1 ≤  i ≤  n

. Aplicando  la  transitividad  de  la

 i

 m m

divisibilidad se tiene que para cada   i,1 ≤  i ≤  n

. Por lo cual 

 i

 m a x −  b

 x  solución del sistema. 

Vamos ahora a la implicación un poco más complicada. 

Sea  x  solución del sistema, es decir que se cumple que para cada  i,1 ≤  i ≤  n a x −  b =  k . 

 i

 i

 m
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Es  decir  que  para  cada   i,1 ≤  i ≤  n

.  Si  m = [ 1

 m , 2

 m , 

,  n

 m ],    podemos  considerar

 i

 m a x −  b

sólo dos ecuaciones sin pérdida de generalidad por la “asociatividad” del cálculo del mínimo común múltiplo. 

Supongamos que    i,1 ≤  i ≤ 2

. Debemos comprobar que 

. Es decir se 

 i

 m a x −  b

 m ax −  b

 m .  m

cumple   a x ≡ m b . Recordemos a 

1

2

 m =

siendo  d = (

el máximo común divisor  entre 

1

 m , 2

 m )

 d

Recordatorio: 

 m 1,  m 2. 

. 

•Si ( e , f )= 1 y     e g  y  f g  entonces  . 

 e f g

1

 A .  d = 1

 m

. 

 a x −  b y además  2

 A .  d =

2

 m

. 

 a x −  b

Es entonces que  m =  d. A 1.  A 2. 

•

Si  d = ( e,  f ) entoces  e =  E.  d  y  f =  F.  d Además   1

 A

. 

 a x −  b y además  2

 A

. 

 a x −  b

y  ( E, F) = 1. 

y usando propiedades tenemos que : 

,  es decir que existe 

.  (1)

1

 A . 2

 A a x −  b

 A∈  y vale que  . 

 A  1

 A . 2

 A =  a x −  b

Además se tiene que  1

 A .  d.  K = . 

 a x −  b y además  2

 A .  d.  T = . 

 a x −  b,  para  K ∈  y  T ∈

. 

Luego resulta    . 

 A  1

 A . 2

 A =  K.  d. 1

 A  y que   . 

 A  1

 A  2

 A =  T.  d. 2

 A

de donde resulta que  K .  d. 

. 

1

 A =  T .  d. 2

 A

Por lo cual se tiene que    K. 

(haciendo un poco de cuentas…) Recordatorio: 

1

 A =  T. 2

 A

•Si ( e , f )= 1 y

En términos de divisibilidad significa por ejemplo, que 

 e g.  f  entonces  e g

. Por lo tanto existe un entero 

1

 A T. 2

 A   y como ( 1

 A , 2

 A ) = 1, 

1

 A T

 U, 

 T =  U . 

y remplazando convenientemente 

1

 A

. 

 A  1

 A  2

 A =  T.  d. 2

 A =  U . 1

 A .  d. 2

 A =  U. 1

 A . 2

 A .  d =  U .  m

Pero por (1)  . 

 A

es decir 

. 

1

 A . 2

 A =  a x −  b =  U. 1

 A . 2

 A .  d =  U.  m

 m ax −  b

Es decir se cumple   a x ≡ m b . 

♦ 

EJEMPLO 4.7.36 

Resolver la ecuación en  Z

3 ⊗  x = 33  

1

≡ 00

Z

Como se hará la factorización del 100 y se trabajará en distintos 

≡

para los factores de  m, es

 m

necesario no confundirse por lo cual se usará alguna de las notaciones alternativas 

3 ⊗  x  1

≡ 00 33  o brevemente  3  x  1

≡ 00 33  o   3 x = 33 (mod 100)
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Como  

2 2

100 = 2 .5 , la ecuación dada es equivalente a

Haga las tablas 

3

  x ≡

de 

4 33

3

  x ≡4 2



pasando la 1er. ec. a  Z

y la 2da. a  Z



3

  x

33

≡4

≡

≡

25

25

3

  x ≡25 8

Z

Z

4

y    25

Son solución de la 1er. ecuación los enteros de la  clase del  3 módulo 4: 3, 7, 11, 15,... 

Son solución de la 2da. ecuación los enteros  de la  clase del  11 módulo 25: 11, 36, ... 

Para ser solución del sistema debe cumplir con las dos condiciones (son los elementos de la intersección de las dos clases)... es entonces el 11 el primero de el os. 

Es la clase del 11 módulo 100. 

EJEMPLO  4.7.37 (un problema Chino de aproximadamente del 1275) 

"  Hallar un número que al ser dividido por siete da uno como resto, al ser dividido por ocho da dos como resto y al ser dividido por nueve da tres como residuo." 

El planteo lleva al sistema: 

 x ≡7 1



 x  8

≡ 2

 x ≡9 3

Sugerencia de resolución: por definición, de la 1ra.  x = 1+ 7 .  k     (1) 

sustituyendo en la 2da.        1 + 7.  k =2 (mod 8)   

resolviendo se tiene:   k = 7 (mod 8) 

Verifique  !! 

Pero entonces     k = 7 + 8.  h   Reemplazando en (1) 

Así se obtiene un valor de   x  = 1 + 7.( 7 + 8  h)  que se sustituye en la 3er. ecuación. 

(Verifique la solución es   x = 498 (mod.) 504 

Estos ejemplos tienen la solución garantizada por 
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♦ Teorema Chino del resto 4.7.38

Sean 

, con los 

1

 m , 

2

 m , 

,  m ∈

− {0}

 n

( m ,  m ) = 1 para  

 j

 k

 j ≠  k

 x ≡

 b

1

 m

1



entonces el sistema    

tiene solución única; además módulo el producto 

 x ≡

 b



 n

 m

 n

1

 m . 2

 m . 

.  n

 m

cualquier par de soluciones es congruente módulo  m. 

EJERCICIO 4.7.39 

 x ≡2 1

 x ≡ 2

Resolver 

3

 x ≡



5

3

 x ≡7 5

•

 El pequeño poderoso

En el área de la teoría de números, el más grande matemático del siglo XVII es Pierre de Fermat (1601-1665). Fue un gran algebrista que usó los trabajos de Vieta para hacer un tratamiento analítico de las ecuaciones y bajo ese aspecto trató viejos problemas de la teoría de números estudiando profundamente las obras de Diofantos, Euclides y Apolonio. Su interés por la teoría de números no tenía límites, se interesó por todos los temas de esa rama matemática. 

También en el siglo XVII se dieron importantes avances en otras áreas de la Matemática. 

Muchos de los resultados de Fermat han llegado hasta nuestra época por sus anotaciones hechas en los márgenes de una traducción de la  Aritmética  de Diofantos. 

Fermat planteó varios problemas (eran desafíos que se hacían entre los matemáticos de la época) Entre el os están: 

1.  Todo número primo de la forma 4.n + 1 se pude escribir como suma de dos cuadrados. 

2.  Todo número natural se expresa como suma de cuatro cuadrados

3. 

2

2

 La ecuación x −  d y

= 1   tiene infinitas soluciones. 

Fermat resolvió los problemas 1 y 3; dos siglos después Lagrange solucionó el  2. 
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El problema más famoso planteado por Fermat (puede ser que lo sea de toda la Matemática) es el 

 Gran teorema de Fermat: 

 n

 n

 n

 La ecuación  x +  y

=  z  no posee solución para  x,  y,  z ∈ Z,  si  n ≥ 3

Fermat dijo que tenía una "prueba maravil osa" pero no la dejó escrita. Escribió en la  Aritmética 

"que el margen es muy pequeño para escribirla". Hay quienes dudan que Fermat tuviera la prueba o que si tenía una, fuera realmente una demostración correcta. Sí ha dado una demostración para el caso de  n = 4. 

La demostración para  n = 3 la descubrió Euler un siglo más tarde. 

Este problema general despertó mucha inquietud y hubieron muchos intentos de demostración y solución lo que originó grandes avances y aparición de nuevas técnicas para poder resolverlo. Se dieron a lo lardo de tres siglos varias "demostraciones" defectuosas. La demostración la dio el matemático inglés Andrew Wiles, durante un congreso en Cambridge de junio de 1993.  La 

demostración de Wiles usa todo el potencial matemático que se tenía a disposición en el siglo XX, está considerada una obra maestra de la matemática contemporánea y es por eso que se dice que la demostración dada por Wiles no es la que tenía Fermat, hay quienes siguen tratando de ver si la logran encontrar. (recomendación: lea el libro de Simon Singh  El último teorema  de Fermat,  no es la prueba sino sobre la historia de la misma, Fermat y Wiles). 

El teorema que está ligado a los temas de este capítulo de estudio es el que se conoce como el 

"  pequeño teorema de Fermat": 

♦ TEOREMA 4.7.40

a) Si 

 p

 p es primo, entonces 

1

(  a)(  a

Z  y ( a,  p) 1  entonces   a −

∀

∈

=

≡ 1 )

 p

b) Si 

 p

 p  es primo, entonces  (  a

∀ )(  a ∈ Z  entonces   a

≡

 a)

 p



Demostración: 

La demostración del teorema es muy sencil a pero quedan como tema de investigación para 

aquel os muy interesados en el tema. 

EJERCICIO 4.7.41 

a) Verificar el teorema de Fermat para  a = 4 ,  p  = 11 ;  a = 35 ,  p  = 17. 

b) Hal ar el resto de la división de  3451

4

por 7. 

c) Calcular  3457

5

módulo 11. 
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d) Hal ar el menor 

 n

 n para el cual 12

≡23 1 

e) Probar que  5

 x −  x  es divisible por 3 y por 5 para todo entero  x. 

8. Conjuntos Coordinables

Lo que expondremos es una serie de conceptos que generalizan  la acción de contar los elementos de un conjunto. 

Sean  A y  B conjuntos,  A es coordinable con  B si y sólo si existe una función biyectiva entre el os. 

Esto es que exista    f :  A →  B

y   f  biyectiva. 

Se escribe   A ≡  B



 c

♦ PROPIEDAD 4.8.1:

a)  A ≡  A

para todo conjunto  A 

 c

b) Si  A≡  B  entonces    B≡  A  para todo par de conjuntos 

 c

 c

 A y  B. 

c) Si  A ≡  B ∧  B ≡  C  entonces   A ≡  C  para toda terna de conjuntos  A, B y  C. 

 c

 c

 c

Demostración: 

a) Para todo conjunto, existe la función  Id :  A →  A

que es biyectiva. 

 A

b) Si  A ≡  B  entonces existe una función biyectiva   f :  A →  B

entonces existe la función 

 c

inversa   f −1 :  B →  A

que también es biyectiva,  por lo tanto   B ≡  A

 c

c) Si  A ≡  B  y    B ≡  C

existe una función biyectiva   f :  A →  B

y existe una función 

 c

 c

biyectiva   g :  B →  C

entonces la función   g

 f :  A →  C

también es biyectiva, por lo tanto 

 A ≡  C

 c

♦ 

≡ C   es una relación de equivalencia definida sobre un conjunto de partes conveniente. 
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Por lo tanto, todos los conjuntos coordinables entre sí están en una misma clase de equivalencia. 

La clase de equivalencia correspondiente a esta relación ≡ C  a la cual  A pertenece se llama cardinal de  A. 

La cardinalidad de  A es menor  o igual que la de  B y  se anota    A ≤  B

 c

si y sólo si existe una función inyectiva   f :  A →  B

 

♦ PROPIEDAD 4.8.2:

 A ≤  B  entonces existe   C ⊆  B  tal que   A ≡  C

 c

 c

Demostración: 

Si   A ≤  B  existe   f :  A →  B

inyectiva. Puede definirse  *

 f :  A → Im(  f )  , siendo  *

 f

una 

 c

restricción de   f,  ya que   Im(  f ) ⊆  B  por la siguiente ley  *

 f ( x) =  f ( x), 

(  x

∀ )( x ∈ )

 A

Además  *

 f

es inyectiva, por ser restricción de una función inyectiva y es suryectiva ya que la 

imagen de  *

 f

coincide con el codominio de  *

 f

, es decir  Im( *

 f ) = Im(  f ) . 

Por lo tanto  *

 f

es biyectiva. 

Tomando el conjunto  C = Im(  f ) , se construye entonces la función 

*

 g =  Id

 f :  A →  C , como 

 c

*

 f

 y

 Id  son biyectivas, la composición también lo es, por lo tanto   g   es una biyección de  A c

en  C y se tiene así    A ≡  C . 

 c

♦ 

También vale su recíproca: 

♦ PROPIEDAD 4.8.3:

Si existe    C ⊆  B  tal que   A ≡  C  entonces  A ≤  B . 

 c

 c
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Demostración: 

Si   A ≡  C  existe   f :  A →  C  biyectiva,  entonces puede definirse   Inc :  C →  B  , siendo c

 c

 Inc ( x) =  x

(  x

∀ )( x ∈  C)  que claramente es una restricción de   Id

por lo tanto es inyectiva. 

 c

 B

Se construye entonces la función   h =  Inc

 f :  A →  B , que por ser composición de inyectivas es 

 c

inyectiva. Por lo tanto   h    es una inyección de  A en  B  y se tiene que  A ≤  B . 

 c

♦ 

Un conjunto  A es  finito si y sólo si: 

*  A = ∅    o

*  A ≡ [0,  n] ∩

,  es decir  A es coordinable con el intervalo natural [0,  n]. 

 c

Si un conjunto  A es finito porque no tiene elementos o porque  tiene  n + 1 elementos, por ser coordinable con el intervalo natural [0,  n]. 

Un conjunto  A es  numerable si y solo si: 

* A es finito  o

*   A ≡

,  A es coordinable con el conjunto de los números naturales 

 c

Si un conjunto es  numerable, puede ser finito numerable, que es el caso de los conjuntos finitos, o infinito numerable, que es el caso de los conjuntos coordinables con los naturales. 

Intuitivamente decir que un conjunto es numerable es equivalente a decir que pueden numerarse sus elementos. 

EJEMPLO: 

1) El conjunto de los números enteros es infinito numerable. 

¡Esto es sorprendente! 

Veamos que 

≡  Z

Un subconjunto 

 c

coordinable con el total….. 

Construimos una función   f :

→

definida por: 

 k

 si

 n = 2 k

 f ( n) = 

− ( k + )

1

 si

 n = 2 k + 1

335

RELACIONES Y FUNCIONES – CAPITULO 4 

Gráficamente: 

0   1   2   3   4   5   6 

-4   -3  -2   -1    0    1    2    3    4    5 

Esta función  f es fácil probar que es biyectiva,  por lo tanto 

≡

. 

 c

2) El conjunto de los números pares positivos es infinito numerable. 

Veamos que 

≡  P , siendo    P = { x ∈  N :  x = 2 k ∧  k ∈  N}

 c

Construimos una función   f :

→  P  definida por:      f ( n) = 2 n

Como    f  es biyectiva (probarlo!! Es muy sencil o) ,  resulta

≡  P

 c

EJERCICIO 4.8.4: 

Demostrar que 

≡  I , siendo    I = { x ∈

:  x = 2 k +1 ∧  k ∈  N}

 c

Notar que por propiedades  de la coordinabilidad como 

≡  P  y 

≡  Z , entonces 

≡

, 

 c

 c

 c

por lo tanto 

≡  P . 

 c

EJEMPLO 4.8.5: 

El conjunto 

−{0,1, 2, 3} es infinito numerable 

Construimos una función   f :

→

−{0,1, 2, 3} definida por:      f ( n) =  n + 4

  f  es biyectiva  ya que si  n + 4 = m + 4 entonces  n = m . 

Además si   y ∈

−{0,1, 2, 3} entonces existe un natural  n  tal que  n +4= y,  siendo  n = y-4, que por ser   y ≥ 3 , resulta que   n ≥ 0 y   n ∈   que es el dominio de  f . 

Si al conjunto de los naturales le saco un subconjunto finito, sigue siendo coordinable con los naturales. 
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♦ PROPIEDAD 4.8.6:

Sea  A un conjunto finito. Entonces para todo   X , si   X ⊆  A   entonces   X es finito Demostración: 

Como  A es finito   A ≡ [ , 

0  n]  entonces podemos asignar a cada elemento de  A un número natural 

 c

del intervalo [0,  n]  y es biyectiva. 

Por lo tanto podemos considerar que cada elemento de  A esta subindicado por el número natural que le corresponde por la asignación    A = { a ,  a ,  a ,...,  a

. 

0

1

2

 n }

Si   X = ∅ es trivial. 

Si    X ≠ ∅  como    X ⊆  A  se tiene que   X = { a ,  a ,  a ,...,  a donde los subíndices de los 

 j

 i

 m

 w}

elementos de   X  son números naturales de  [0,  n]. 

Por el Principio de Buena Ordenación de los números naturales el conjunto de subíndices de   X 

tiene un mínimo, sea   a  ese elemento y podemos asignarle el 0. 

 j

Tomamos el conjunto   X −{ a

, este conjunto también tiene un elemento de mínimo subíndice 

 j }

por ejemplo   at  y le asignamos el 1. Luego considerando   X −{ a ,  a  este conjunto también j

 t }

tiene un elemento de mínimo subíndice  y le asignamos el 2. 

Podemos continuar el proceso, ya que a lo sumo en   X   hay  n+1 elementos  (pues   X ⊆  A ). Por lo cual termina! 

Definiendo entonces así  una función  biyectiva   g :  X → [0,  k]  donde  k+1 es el número de elementos de  X , tenemos que   X ≡ [0,  k]  y por lo tanto finito. 

♦ 

 c

♦ PROPIEDAD 4.8.7:

La unión de conjuntos finitos, es un conjunto finito. 

Demostración: 

Sea A finito tal que   A ≡ [ , 

0  n]  y  sea   f :  A → [ , 

0  n] biyectiva. 

 c

Sea B finito tal que   B ≡ [ , 

0  m]  y  sea   g :  B → [ , 

0  m] biyectiva. 

 c

Pueden darse 2 casos:  a)   A ∩  B ≠ ∅  o   b)   A ∩  B = ∅  

a)  A ∩  B ≠ ∅
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Llamemos  C al conjunto   A ∩  B =  C

Como   C ⊆  A

y

 A −  B ⊆  A

y

 B −  A ⊆  B  sabiendo que   A  y B son finitos, resultan los 

conjuntos   C,  A - B  y   B - A  finitos, por la propiedad anterior. 

Podemos definir entonces funciones   h :  A −  B → [0,  t] ,  u :  B −  A → [0,  l] y  w :  C → [0,  p], biyectivas. Donde  t + p = n  y   l + p = m.  

Tenemos ahora 3 conjuntos disjuntos finitos, tales que  ( A −  B) ∪ ( B − ) A ∪  C =  A ∪  B , definimos 

entonces la función biyectiva   d :  A ∪  B → [0,  t +  l +  p]  :

 h( x)

 si

 x ∈  A −  B



 d ( x) =  u( x) +  t

 si

 x ∈  B −  A

 (

 w x) +  t +  l

 si

 x ∈  C

Por lo tanto   A ∪  B  es finito 

b)  A ∩  B = ∅

Definimos la función   h :  A ∪  B → [ , 

0  n +  m] , 

  f ( x)

 si

 x ∈  A

 h( x) =  g( x)+  n

 si

 x ∈  B

Que es biyectiva. 

Por lo tanto en ambos posibles casos se construye una biyección de    A ∪  B  sobre un intervalo natural, luego resulta   A ∪  B  finito. 

♦ 

Analicemos la coordinabilidad de otro conjunto numérico como 

, se hará por partes. 





+

 n

•

Consideremos el conjunto 

= 

:  m y  n en 

∧  m ≠ 0  

  m



 n

Definimos una función   t : + →

× (

−{0})  tal que   t ( ) = ( n,  m)  . 

 m

Veamos que  t es biyectiva: 

 n

 r

Si  (  m,  n )  = (  r,  h )    entonces  m = r   y   n = h, por lo tanto 

=

, por lo tanto  t  es inyectiva. 

 m

 h

 n

 n

Sea  ( n,  m) ∈ × ( −{0})  entonces existe 

+

∈

y resulta  que   t( ) = ( n,  m)  por lo tanto 

 m

 m
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 t es suryectiva. 

•

Además tenemos que 

≡

× (

−{0}) ya que existe una función biyectiva generada

 c

por el siguiente diagrama:

(0,1) 

(0,2) 

(0, 3) 

(0, 4) 

(0, 5) 

(0, 6)  ……. 

(1, 1) 

(1, 2) 

(1, 3) 

(1, 4) 

(1,5) 

(1, 6) 

(2, 1) 

(2, 2) 

(2, 3) 

(2, 4) 

(2, 5) 

(2, 6) 

La idea de este diagrama de flechas es  recorrer los puntos que sus componentes tengan igual suma (por ejemplo  k = 2), cuando en esa “  diagonal”  ya recorrimos todos los de esa suma, se dirige a el punto que tiene por suma un número más (por ejemplo  k + 1 = 3) que tiene  abajo   si esta sobre la primera columna,  o que tiene a la  derecha si esta sobre la primera fila. 

Cada uno de los puntos que se van recorriendo con ese patrón se pueden ir numerando ….. esto es    “ biyectarlos”  en 

. 

Por lo tanto cómo   + ≡

× (

−{0})  y 

≡

× (

−{0})  por transitividad resulta que 

 c

 c



+

≡ c

Tenemos entonces que  + es numerable. 
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



−

 n

•

Analicemos el conjunto 

= 

:  m ∈

∧  m ≠ 0 ∧  n ∈

∧  n < 0  . 

  m



Podemos identificar cada elemento de  − con  ( − −{0}) × ( −{0}) definiendo la función 

 t: 

−

( −

→

−{0}) × (

−{0})  dada por 

  p 

 t   = (  p,  q) . Claramente es una biyección. 

  q 

Además si definimos   h :

(

{0})

( −

×

−

→

− {0}) × (

− {0})  siendo 

 h (( n,  m)) = (−( n +1),  m)  . 

Esta función es biyectiva (muy fácil de probar!!!),  por lo tanto se tiene: 

−

( −

≡

−{0}) × (

−{0})  y 

(

{0})

( −

×

−

≡

−{0}) × (

−{0})  y por lo  probado con el 

 c

 c

diagrama  

≡

× (

−{0})

 c

Por las propiedades de    ≡   , entonces 

−

≡

. 

 c

 c

Tenemos entonces que  − es numerable. 

♦ PROPIEDAD 4.8.8:

La unión numerable de conjuntos numerables, es un conjunto  numerable. 

Demostración: 

1) Si son todos los conjuntos finitos la demostración se puede hacer por inducción usando el resultado de la PROPIEDAD 4.8.7. 

2) Si un conjunto  A es finito y otro  B infinito numerable entonces   A ∪  B  es infinito numerable: Como  A es finito existe   f :  A → [0,  n] biyectiva. Sabiendo que  B infinito numerable existe g :  B →

biyectiva. 

Es claro que   A ∪  B =  A ∪ ( B − )

 A , por lo tanto es posible definir una biyección como  sigue: 

 h :  A ∪ ( B − )

 A →
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

 f ( x)

si  x ∈  A



 h( x) =  g( x)+ n+1 si  x∈ B− A

Por lo tanto resulto que   A ∪  B  es infinito numerable 

3) Si dentro de los conjuntos  numerables que tenemos que realizar la unión  hay alguno finito y al menos dos infinitos  numerables por 2) podemos considerar todos infinitos numerables. 

Si hay al menos dos numerables que no sean finitos haremos lo que sigue:

Sean   A ,  A ,  A ,...  A  conjuntos infinito numerables. 

0

, 

1

2

 n

Para cada   Ai  existe una función biyectiva   f : →  A , por lo tanto podemos identificar cada i

 i

elemento con un número natural, escribimos entonces los elementos de cada conjunto: 

0

0

0

 A = { a

,  a , ...,  a , ...}  

0

0, 

1

 h

1

1

1

 A = { a

,  a ,...,  a

, ...}

1

0, 

1

 m

2

2

2

 A = { a

,  a ,...,  a

,...}

2

0, 

1

 w

….. 

Construimos una biyección con 

según el siguiente diagrama, donde el recorrido del diagrama 

está dado por la suma del subíndice y el superíndice. Y vamos  numerando los elementos. 

0

 a

0

0

0

0

0

 a  1

 a  2

 a  3

 a  4

…. 

1

 a

1

1

1

1

0

 a  1

 a  2

 a  3

 a  4

…. 

2

 a

2

2

2

2

0

 a  1

 a  2

 a  3

 a  4

…. 

Esta asignación define una función que es  biyectiva, por lo tanto   A = ∪

 A  es numerable. 

 i∈ N

 i

♦ 

Como 

+

−

=

∪

y  la unión de conjuntos numerables es numerable, 

tenemos que 

  es numerable. 
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¡Lo aceptaremos sin 

demostración ! 

Pero no todos los conjuntos numéricos son numerables. 

  Los números reales no son numerables 

Veamos qué cosas curiosas suceden en 

, ya vimos varias curiosidades en la coordinabilidad  de 

los otros conjuntos numéricos. 

EJEMPLO 4.8.9: 

1) Probaremos que [

)

1

, 

0

≡ (

)

1

, 

0

 c

Definimos una función biyectiva   g : [

)

1

, 

0

→ (

)

1

, 

0

definida por: 

1

 si

 x = 0

 2

1/2 



0 

1 

 1

1

 g( x) = 

 si

 x =

∧  n > 1 

 n +1

 n



1

 x

 si

 x ≠

∧  x ≠ 0



 n

0 

½ 

1 

1/3 

Por lo tanto [

)

1

, 

0

≡ (

)

1

, 

0

 c

2) Veamos que también [

]

1

, 

0

≡ (

)

1

, 

0

 c

Definimos una función biyectiva   g : [

]

1

, 

0

→ (

)

1

, 

0

definida por: 

1

 si

 x = 0

 2

 1

1

 g( x) = 

 si

 x =

∧  n ≥ 1 

Haga un esquema…. 

 n + 2

 n



1

 x

 si

 x ≠

∧  x ≠ 0



 n

Por lo tanto [

]

1

, 

0

≡ (

)

1

, 

0

 c

3) Tomemos ahora un intervalo [ a,  b]  y veamos que [ a,  b] ≡ [

]

1

, 

0



 c

Construimos  la recta que pasa por los puntos  A( a,0) y  B( b,1): 342
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 y − 0

 x −  a

 x −  a

=

entonces tenemos que   y =

, lo que nos permite definir una función biyectiva 

1 − 0

 b −  a

 b −  a

 x −  a

 g : [ a,  b] → [

]

1

, 

0

, dada por   g( x) =  b −  a

EJERCICIO 4.8.10: 

¡GUAU! 

Probar que [ a,  b] ≡ [ c,  d ]  

 c

De este modo, tenemos que  cualquiera sea el par de intervalos reales, esos intervalos son coordinables entre sí.   Sean cerrados o abiertos o semiabiertos.  Pero todavía falta…      

EJEMPLO 4.8.11: 

π π

Probemos que  (−

, 

) ≡

. 

2 2

 c

π π

La función   g : (−

, 

) →

definida por   g( x) =  tg( x)  es una biyección y por lo tanto determina 2 2

π π

que   (−

, 

) ≡

2 2

 c

De este modo hemos probado que,  cualquiera de los intervalos reales es coordinable con los números reales. 

Los números reales tienen un cardinal mayor que los naturales. 

♦ TEOREMA de CANTOR 4.8.12:

 Para cualquier conjunto  A,  A ≤  P( )

 A . Y no vale la igualdad.  

 c
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Demostración: 

Recordemos que P  (  A) = { X :  X ⊆ }

 A  

Hay que ver que existe una inyección  de  A en P  ( A) y que no puede existir una función suryectiva de P  ( A) en  A. 

1) Si   A = ∅ el conjunto no tiene elementos, pero P  ( A)  = { }

∅ tiene un elemento por lo cual no son

coordinables. Y  vale que  0 ≤ 1,  luego   A ≤ P  ( A)  . 

 c

2) Suponemos   A ≠ ∅ . 

Sea   g :  A → P  ( A)  definida por   g( a) = { }

 a

para cada  a ∈  A . 

Esta función es inyectiva,  por lo tanto   A ≤ P  ( A) 

 c

3) Supongamos que existe una función   h :  A → P  ( A)  biyectiva. 

Tomemos el conjunto   B = { x ∈  A :  x ∉  h( x)} , por definición   B ⊆  A , entonces    B ∈  P  ( A) entonces por ser  h suryectiva  (∃ b)( b ∈  A ∧  h( b) =  B) Entonces, observemos que ocurre: 

Como   b ∈  B entonces  b∉  h( b) por definición de  B pero  h( b) =  B   , luego esto es absurdo!!! 

Si    b ∉  B entonces por definición de  B,  b ∈  h( b) pero   h( b) =  B , luego también es absurdo!!! 

Por lo tanto  h no puede ser suryectiva. Por lo cual no existe una biyección de  A en  P( A). 

♦ 

Hay infinitos números cardinales. 

En general   A ≤ P  ( A)  ≤ P  (P  ( A) ) 

 c

 c

El cardinal de P  ( A)  es más grande que el de  A. Y asi se obtiene una “cadena de cardinales”…. 

Al cardinal de 

se lo l ama aleph 0, se escribe  χ . 

0

Al cardinal de   se lo anota  c y se lo llama continuo. Hay autores que lo llaman aleph 1, se escribe  χ  . Recordemos que una conjetura es un enunciado que aún no ha sido probado. 

1

La hipótesis del continuo dice que: no hay ningún otro cardinal entre  χ  y   c.  

0

Es una conjetura. 

Hay teorías dentro de la Teoría de Conjuntos que se desarrollan con la hipótesis del 

continuo y otras no. Es un motivo de estudio permanente y abierto. 
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CAPÍTULO 5

Introducción a la Geometría Analítica en \2

La Geometría Analítica es un puente entre el Algebra y la Geometría que hace posible resolver algebraicamente (o analíticamente) problemas geométricos. También nos permite resol-

ver geométricamente problemas algebraicos, pero el primer caso es mucho más importante, 

especialmente cuando se asignan números a conceptos esencialmente geométricos. Por 

ejemplo, pensemos en la longitud de un segmento de recta, o en el ángulo entre dos rectas. 

Aún cuando se conozcan exactamente las rectas y los puntos en cuestión, la cantidad que 

representa la longitud de un segmento, o el ángulo entre dos rectas, en la realidad sólo se puede medir en forma aproximada. Los métodos algebraicos nos permiten calcular de manera 

exacta esa cantidad. 

En un Anexo de este capítulo se presentan resultados de Trigonometría que le pueden ser de utilidad si es que está olvidado de esos conceptos. Conceptos que se aplican en este capítulo, también para los temas de vectores y complejos entre otros, que se abordarán en capítulos posteriores. 

En este Capítulo daremos las definiciones básicas de la Geometría Analítica. En los siguientes abordaremos otros temas relacionados, que hacen uso de lo presentado en éste. 

La relación entre el Algebra y la Geometría se forma asignando números a puntos. 

Por ejemplo, veamos esta asignación de números a los puntos de una recta. 

1. Coordenadas en la recta

Para comenzar seleccionamos un par de puntos,  O y  U de una recta, como se muestra en la figura. 

Al punto  O, que llamaremos el origen, se le asigna el número cero y al punto  U se le asigna el número uno. 

Si definimos a la longitud de   OU  como la unidad de longitud asignamos números a todos los demás puntos de la recta como sigue: a  Q,  en el lado del origen donde se encuentra  U, se le asigna el número positivo   x, si y sólo si su distancia al origen es  x. A un punto  T  del lado contrario del origen se le asigna el número negativo - x  si y sólo si su distancia al origen es  x unidades. 
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Resulta así que a cada punto de la recta se le asigna un número real y a cada número 

real le corresponde un punto en la recta. 

De este modo se establece una escala en la recta, así a esta recta la llamaremos en adelante un eje coordenado. Al número  a que representa un punto  P particular  se le llama coordenada de ese punto, y al punto  P se le llama la gráfica del número  a. 

EJERCICIO 5.1.1  

Representar en un eje coordenado los puntos cuyas coordenadas son: − 1,   5,   1/3 ,  -5/8 ,  0 , 3/2,  4 

2. Coordenadas en el plano

Del mismo modo que se representan los puntos en una recta (espacio unidimensional) me-

diante números, los puntos en un plano (que es un espacio bidimensional) se pueden representar por pares de números. 

Para representar puntos en un plano mediante pares de números, elegimos dos rectas que se intersecten y establecemos una escala en cada una de ellas, como vemos en la figura. 

El punto de intersección es el origen.  Estas dos rectas se llaman ejes, y se diferencian mediante símbolos, que normalmente son las letras  x e  y.  Para un punto dado  P en el plano, corresponde un punto P x en el eje  x. Es el punto de intersección del eje  x  con la recta que contiene   P  y es paralela al eje  y. (Si  P está en el eje  y, esta recta coincide con el eje  y.) Igualmente, existe un punto  Py en el eje  y, que es el punto de intersección de ese eje y la recta que pasa por  P que es paralela al (o que es el) eje  x.  Las coordenadas de esos dos puntos en los ejes son las coordenadas de  P. 
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Si   a   es la coordenada de  Px   y   b   es la de   Py,  el punto  P queda representado por el par ( a,  b)  . 

 a  es la abscisa de  P y  b  es la ordenada de  P. 

Se llama plano Cartesiano (como sinónimo plano coordenado) al plano en el que se ha introducido un sistema de referencia que asigna a cada punto sus coordenadas. 

En un plano coordenado se acostumbra utilizar las  siguientes convenciones: 

1. Los ejes son perpendiculares entre sí. 

2. El 

eje 

 x  es una recta horizontal con sus coordenadas positivas hacia la derecha del

origen, y el eje  y  es una recta vertical con sus coordenadas positivas arriba del origen. 

3. Se usa la misma escala en ambos ejes. 

Naturalmente, no es indispensable apegarse a estas convenciones cuando haya otras que 

sean más cómodas. Con frecuencia se viola la tercera, cuando se trabaja con figuras cuyo 

trazo podría ser muy difícil si insistiéramos en usar la misma escala en ambos ejes.  En esos casos podremos usar libremente escalas distintas, sin olvidar que con ello distorsionamos la figura. 

OBSERVACION 5.2.1 Nótese que todos los puntos en el eje  x tienen ordenada cero, mientras que los que están en el eje  y tienen abscisa cero. El origen tiene sus dos coordenadas iguales a cero, porque está en ambos ejes. 

Los ejes dividen al plano en cuatro regiones, que se llaman cuadrantes, los cuales conviene identificar con los números que se muestran en la figura. 

En el primer cuadrante abscisa y ordenada positivas. ( x > 0 ; y > 0) En el segundo cuadrante abscisa negativa y ordenada positiva. ( x < 0 ;  y > 0) En el tercer cuadrante abscisa y ordenada negativas. ( x < 0 ;  y < 0) En el cuarto cuadrante abscisa positiva y ordenada negativa. ( x > 0 ;  y < 0) Los puntos que están en esos ejes no están en ningún cuadrante. 
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A las coordenadas de un punto, determinadas de esta manera, con frecuencia se les llama 

coordenadas cartesianas, en honor del matemático y filósofo francés René Descartes. 

En el apéndice de un libro publicado en 1637, Descartes presentó la primera descripción de 

la Geometría Analítica. A partir de allí vinieron grandes avances en la Matemática que condujeron entre otras cosas, a la invención del cálculo infinitesimal. 

¡Sea curioso! y busque 

en la web sobre 

Descartes ( Cartesius) 

EJERCICIO 5.2.2 

a) Representar en un plano coordenado los siguientes puntos:

 P(1, 2) ;  Q(− 2, 3) ;  R( 3, ½) ;  T(3, − 3) ;  S(0, − 4);  V(− 2, 0);  W(− ½, − 4) b) En un plano coordenado, representar los puntos de abscisa negativa y ordenada > 3. 

c) En un plano coordenado, representar los puntos de abscisa positiva y  ordenada < − 1. 

d) En un plano coordenado, representar los puntos de abscisa ≥ − 2 y  ordenada < − 1. 

e) En un plano coordenado, representar los puntos de abscisa ≥ 1 y  ordenada negativa. 

3. Fórmula de la distancia entre dos puntos

Dirijamos ahora nuestra atención al problema de determinar la distancia entre dos puntos en el plano. 

Supongamos que nos interesa calcular la distancia entre los puntos  P 1 ( x1, y1)  y  P 2 ( x2, y2) del plano .  Pensemos sobre la figura. 
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Se traza una recta vertical que pase por  P1 y una horizontal que pase por  P2, que se inter-sectan en un punto  Q( x1, y2). Suponiendo que  P1 y  P2  no se encuentren en la misma recta horizontal o vertical, 

 P1Q P2  forman un triángulo rectángulo que tiene su ángulo recto en  Q. Podemos emplear ahora el teorema de Pitágoras para calcular la longitud de  P1 a  P2. 

De acuerdo con la interpretación de valor absoluto:  

 d ( Q,  P =  x −  x

 d Q,  P =  y −  y

2 )

2

1

( 1)

2

1

(Mantenemos en este caso los valores absolutos, porque deseamos que la fórmula obtenida 

sea válida para cualquier par   de puntos  P1 y  P2 , no tan sólo para una situación como la que vemos en la figura)  

Aplicando el teorema de Pitágoras, 

Recordatorio: 

 d ( P ,  P

=  d Q,  P +  d Q,  P

1

)2

2

(

)2

1

(

)2

2

 a 

 b    

   a2 = b2 + c2 

       c 

 d ( P ,  P ) =  d ( Q,  P )2 +  d ( Q,  P )2

1 2

1

2

 Teorema de Pitágoras 

 d ( P ,  P )

2

2

1 2

=

2

 x − 1

 x

+  y 2 − 1 y

Para deducir esta fórmula supusimos que  P1 y  P2 no estaban en la misma recta horizontal o vertical; sin embargo, la fórmula es válida aún en esos casos. 

Puede verificar usted estos casos.  ¡Me conviene dibujar! 

EJEMPLO 5.3.1 

a) Calcular la distancia entre  P1(−  2,   4) y  P2 ( 3, 2) 349
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Solución: Aplicamos directamente la fórmula obtenida antes. Para el caso se designa por 

 x1 = – 2,  x2 = 3,  y1 = 4,  y2 = 2.  Por lo tanto se tiene : 

 d ( P ,1  P ) =

3

( − ( 2

− ))2

2

+ (2 − )

4 2 = 3

( + 2)2 + (− )

2 2 = 25 + 4 = 29

b) Calcular la distancia entre  P1(0, – 3) y  P2 ( – 3, 5)

Solución: Aplicamos directamente la fórmula obtenida antes. En este caso:  

 x1 = 0,  x2 = – 3,  y1 = – 3,  y2 = 5. Por lo tanto se tiene : 

2

2

2

2

 d ( 1

 P ,  P 2) = (−3 − 0) + (5 − (−3)) = (−3) + (5 + 3) = 9 + 64 = 73

c) Calcular la distancia entre  P1 (0, 0) y  P2 ( – 3, 4)

Solución: Aplicamos directamente la fórmula obtenida antes. 

En este caso:   x1 = 0,  x2 = – 3,  y1 = 0,  y2 = 4. Por lo tanto se tiene :  

2

2

2

2

 d ( 1

 P ,  P 2) = ( 3

− − 0) + (4 − 0) = (−3) + 4 = 9 +16 = 25 = 5  

EJEMPLO 5.3.2 

Determinar si  A( 1, 7) , B( 0, 3)   y  C(  – 2,  – 5) son colineales (es decir: están alineados, están en una recta). 

Solución: 

2

2

 d( , 

 A B) = (0 −1) + (3 − 7) = 1+16 = 17

2

2

 d( , 

 A C) = ( 2

− −1) + ( 5

− − 7) = 9 +144 = 153 = 3 17

2

2

 d( B,  C) = (0 + 2) + (3 + 5) = 4 + 64 = 68 = 2 17

Aquí vemos que la longitud del lado mayor es exactamente igual a la suma de las longitudes 

de los otros dos lados. 

Pero en un  triángulo, la longitud del lado mayor debe ser menor que la suma de las longitudes de los otros lados. 

Luego, los tres puntos deben ser colineales. Ahora haga el dibujo y se convence! 

EJEMPLO 5.3.3 

Demostrar que   A ( 1, 2) , B ( 4, 7) , C ( – 6, 13) y  D ( – 9, 8) son vértices de un rectángulo. 

Solución: Los puntos están graficados (para ayudarnos a interpretar) en la figura. 
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Calculemos las longitudes de los lados: 

2

2

 d( , 

 A B) = (4 −1) + (7 − 2) = 9 + 25 = 34

2

2

 d ( , 

 A D) = ( 9

− −1) + (8 − 2) = 100 + 36 = 136

2

2

 d ( B,  C) = ( 6

− − 4) + (13 − 7) = 100 + 36 = 136

2

2

 d ( D,  C) = ( 9

− + 6) + (8 −13) = 9 + 25 = 34

Que las longitudes sean iguales dos a dos nos permite asegurar que es un paralelogramo. 

Veamos si es un rectángulo, si las diagonales de ese paralelogramo son iguales, entonces la figura es un rectángulo. 

Por consiguiente, determinaremos las longitudes de las diagonales: 

2

2

 d( , 

 A C) = ( 6

− −1) + (13 − 2) = 49 +121 = 170

2

2

 d( B,  D) = ( 9

− − 4) + (8 − 7) = 169 +1 = 170

Como este paralelogramo tiene sus diagonales iguales, podemos concluir que es un rectán-

gulo. 

EJERCICIO 5.3.4  

En cada caso  graficar y calcular la distancia entre: 

1. 

 P(– 1, 2)  y   Q(– 3, 2)

2. 

 P(2, 2)   y   Q( 2, – 1)
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3. 

 P(3, – 4)  y   Q(0, 2)

4. 

 P( – 3, 1) y    Q(1, 0)

5. 

 P(3, 5)  y  Q(2, 6)

EJERCICIO 5.3.5 

Determinar las coordenadas del punto medio  M entre dos puntos  P( a, b) y  Q ( c, d) cualesquiera, y representar gráficamente. 

Notar que  M debe cumplir que:  

 d( P, M) =  d( M, Q)  

y que  d( P, M) +  d( M,Q) =  d( P,Q). 

⎛  a +  c b +  d ⎞

(Pista: qué ocurre con el punto  ⎜

, 

?)  

2

2 ⎟

⎝

⎠

a) Hallar el punto medio del segmento   AB , si  A(2, 3) y  B(4, 2). Graficar. 

b) Hallar el punto medio del segmento   DE , si  D(4, 0) y  E(0, – 3). Graficar. 

EJERCICIO 5.3.6 

a) Hallar un punto del  eje x que equidiste (esté a igual distancia) de los puntos (2, 3) y (4, 0). 

Dibujar. 

b) Hallar un punto del  eje y que equidiste de (0, 0) y de (2, – 4). Dibujar. 

EJERCICIO 5.3.7 

En cada caso representar y hallar el perímetro del triángulo de vértices: 

a)  A( – 2, 1) ;  B(2, 4) ;  C(0, 0)

b)  A(1, – 3) ;  B( – 2, 1) ;  C(– 2, 4)

En los apartados siguientes se hará una aplicación de la Geometría Analítica: encontrar 

ecuaciones que representan distintos lugares geométricos del plano. Esto es, expresiones algebraicas que ligan las coordenadas de los puntos de esos lugares geométricos. Todo punto 

que cumple esas ecuaciones está en el lugar geométrico y ninguno más. 

4. Ecuaciones de Rectas

Una empresa de computación ofrece un servicio de conexión telefónica que cuesta $2 men-

suales más $3 por cada hora de tiempo de conexión efectiva. 

En la tabla vemos la tarifa: 

( x) 

Horas de conexión

 x 

0 1 2 3 4 5 

 y 

2  5  8  11 14 17 

( y)  

Costo
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Con los datos podemos hacer el siguiente gráfico: 

Si  x cambia de 0 a 1,  y cambia de 2 a 5; si  x cambia de 1 a 2,  y cambia de 5 a 8, y así siguiendo. 

Para igual cambio de  x (1), hay un igual cambio de  y (3), el cociente entre el cambio en  y sobre el cambio en  x es constante e igual a 3. 

 cambio de y

5 − 2 8 − 5 11− 8 14 −11 17 −14

=

=

=

=

=

= 3 

 cambio de x

1− 0

2 −1

3 − 2

4 − 3

5 − 4

Al graficar los puntos de la tabla vemos que ellos representan una recta del plano. 

Nuestro objetivo es determinar en forma general una relación algebraica de las coordenadas 

( x, y) de los puntos que están sobre cualquier recta. 

Consideremos dos puntos  P1( x1, y1) y  P2( x2, y2) tales que satisfagan la relación: 353
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1

 y

 y 2

=

con  x ≠

 x ≠  

1

0 y

2

0

 x

 x

1

2

La razón entre la ordenada y la abscisa de esos dos puntos es constante y se designa por 

 m. 

 y

Todo punto  P( x,y) con la propiedad que  

 = m  estará sobre la misma recta que pasa por 

 x

 P1  y por   P2  como se puede ver en la figura y justificar por semejanza de triángulos. 

Además  m es la tangente  del ángulo que forma la recta con el eje positivo de las abscisas. 

El conjunto de puntos  P( x, y) tales que: 

(1)        y =  m.  x   

es una recta que pasa por el origen y llamaremos  pendiente al valor  m. 

Equivalentemente, la ecuación   y  = m.x   es de una recta que pasa por el origen y tiene pendiente  m.   

Para comprobarlo basta con reemplazar las coordenadas de  O(0, 0) en la ecuación y ver que la satisface. 

Consideremos la ecuación:    (2)  

 y = m.x + n 

Los valores de  y se han modificado en una misma cantidad  n respecto de la  y dada por (1) 354
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Luego se obtiene así una recta paralela a la representada por (1), además, es de fácil com-

probación que el punto  R( 0, n) satisface la ecuación (2). 

Al valor  n  se lo llama  ordenada al origen. 

Una ecuación como (1) o como (2), se llama forma explícita de la ecuación de la recta, quedan claras (explícitas) su pendiente y su ordenada al origen. 

OBSERVACION 5.4.1: cualquiera sea el par de puntos  P1( x1, y1) y  P2( x2, y2)   distintos, que satisfaga la ecuación (2) (o la ecuación (1) en cuyo caso  n = 0) se verifica: 

  y1 = m.x1 + n 

  y2 = m.x2 + n ,  con lo cual 

 n = y1  −   m.x1 =  y2  −   m.x2 

 y1 –  y2 = m (x1 −   x2) 

en el caso que    x1 −   x2 ≠  0 ,  se tiene:  

 y −  y

1

2 =  m

 x −  x

1

2

Es decir que el cambio en  y sobre el cambio en  x (entre dos puntos distintos que están sobre la recta) es constante e igual a la pendiente  m.  Haga un dibujo de la situación para comprobar que  m es la pendiente de la recta (la tangente del ángulo que la recta forma con el eje positivo de las abscisas). 

EJEMPLO 5.4.2 

Determinar la pendiente de la recta dada por la ecuación  y – 3x = 2 

Hallar un punto que está en la recta y otro que no está. 

Solución: Llevamos a la forma explícita:  y = 3x+2, por lo tanto  m = 3. 

Un punto  E( a, b) es de la recta si y sólo si sus coordenadas satisfacen la ecuación dada, y 355
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por tanto un punto  N( p , q) no estará en la recta si y sólo si sus coordenadas NO satisfacen la ecuación. Desde ya que hay infinitos puntos en la recta e infinitos puntos fuera de ella. 

Luego debe cumplirse que  b = 3a+2,  si  a = 1,  resulta que  b = 5. Por lo cual   un  E  posible   es  

 E( 1, 5). Un  N  posible es  N( 1, 7). Represente la recta y convénzase señalando  E y  N…. 

Observemos que hemos obtenido dos formas de ecuaciones de recta, la (1) representa una 

recta que pasa por el origen y tiene pendiente  m y la (2) que también representa una recta que tiene pendiente  m y cuya ordenada al origen es  n. Es claro que (1) es un caso particular de (2). 

Por otra parte, por la observación anterior si la recta tiene pendiente  m, dos puntos distintos que estén sobre el a deben tener distinta abscisa. Por lo tanto las rectas que podemos representar con las ecuaciones del tipo (2) son rectas no paralelas al eje  y.   

Para determinar ecuaciones de las rectas que sean paralelas al eje  y hagamos la siguiente especulación: imaginemos varios puntos distintos que estén sobre una recta paralela al eje  y, y pensemos: ¿Qué tienen en común? 

¿??? 

Cualquiera sea la distancia de la recta al eje  y, la abscisa de esos puntos es la misma, eso es lo que caracteriza a esos puntos. 

Luego una ecuación que representa la recta que es paralela el eje  y  es: 

( 3)      x = k     si  k es la abscisa de cualquiera de sus puntos. 

Reforzar la idea en el siguiente gráfico: 

Analicemos qué significa que la pendiente   m   sea 0. Esto es que dos puntos distintos que están sobre la recta tienen igual ordenada, ya que el cambio de ordenadas en ese caso es 0, y eso pasa para cualquier par de puntos. 
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¿??? 

 y −  y

Como la pendiente   1

2 =  m ,  siendo   x ≠  x

 x −  x

1

2

1

2

Luego, si la pendiente es 0 todos los puntos tienen igual ordenada, es decir ellos están sobre una recta paralela al eje  x. 

Una ecuación que representa esa situación es:  

(4)   y = n,  siendo  n la ordenada de cualquiera de sus puntos. 

Confirmemos en el gráfico:  

Dada  y = m.x + n   haciendo convenientes pasajes de términos se puede llevar a la forma: 

  – m.x + y  – n = 0,  de donde resulta que:  

(5)       a.x +  b.y  + c = 0 

expresión que representa una recta para  a  y  b  números reales   no simultáneamente nulos. Ella da todas las posibilidades de ecuaciones de rectas analizadas previamente. 

Tarea: Puede usted considerar qué pasa para los casos en que se anula alguno de los 

parámetros  a, b ó  c (con la restricción   que  a y  b no sean 0 simultáneamente)    y observe que puede obtener las ecuaciones de tipo (1), (3) ó (4).              ¡Cierto! 

Una expresión del tipo (5) se llama ecuación general de la recta. 
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OBSERVACION 5.4.3:  Por lo anteriormente dicho   una misma recta puede tener más de una ecuación que la represente.  Basta multiplicar una de esas ecuaciones por una constante no nula para obtener otra ecuación que representará la misma recta, por ello se debe decir  una 

 ecuación de la recta y no la ecuación de la recta.  

EJEMPLO 5.4.4 

Determinar la pendiente y la ordenada al origen de la recta determinada por la ecuación:   

 3x – 2y + 4 = 0 

Solución: Para ello despejamos  y,  2 y  = 3x + 4, 

3

4

3

3

 y =  x +

por lo tanto   y =  x + 2   , luego la pendiente es  m =   y la ordenada al origen 2

2

2

2

es  n = 2. 

EJEMPLO 5.4.5 

Hallar una ecuación de la recta que pasa por el punto  P( 3, – 2) y es paralela al eje  y. 

Solución:  

Todos los puntos de una recta paralela al eje  y tienen igual abscisa. Si  P( 3, – 2) es uno de sus puntos todos ellos tendrán abscisa  3, por lo cual una ecuación será  x = 3. 

Se sabe que dos puntos determinan una recta. Además única. 

Es uno de los Postulados de Euclides. 

Por lo tanto si se conocen las coordenadas de dos puntos que estén en una recta se podrá 

determinar una ecuación de la misma. 

EJERCICIO 5.4.6 

Hallar una ecuación de la recta que pasa por los puntos  P1( x1, y1) y  P2( x2, y2)   distintos del plano. 

(Idea para la solución: usar la forma implícita, sabiendo que los dos puntos la satisfacen, y considerar la Observación 5.4.1.) 

EJERCICIO 5.4.7 

Hallar una ecuación de la recta que pasa por  P(− 3, 1) y por  Q(2, 2) 

EJERCICIO 5.4.8 
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Hallar una ecuación de la recta que es paralela a la determinada por  3 −   4y = 2x,  y pasa por A(3, − 7) 

EJERCICIO 5.4.9 

¿Los puntos  P(− 2, 3) ,  R(0, 5) y  S(1, − 1) son puntos de la recta de ecuación  3 x − 2 y = 0  ? 

EJERCICIO 5.4.10 

Hallar ecuaciones para las rectas que contienen a los lados del triángulo formado por los vértices  R(2, 3),  S(1, 0),  Q(5, 2). 

EJERCICIO 5.4.11 

Verificar que si dos rectas  r 1 y  r 2  son perpendiculares, y supongamos que  r 1 no es paralela 

−

al eje  x, entonces   m = −( m ) 1

1

2

  ,  siendo  m1  y  m2  respectivamente las pendientes de  r 1 y  r 2. 

Recordatorio: 

 m = tanα , siendo α  el ángulo que forma la recta con el eje positivo  x 



Recordatorio: 



 sen(α + 90D

D

)

tan (α + 90 ) =

, siendo  α  el ángulo que forma la recta  r

cos(α + 90D )

1 con el eje positivo  x,  y use las 



expresiones de seno y coseno para la suma de ángulos. Y usar los valores de sen 900 y de cos 900 

¿Qué ocurre si una de las rectas es paralela a uno de los ejes y son perpendiculares entre 

si? 

5. Cónicas

Anteriormente estudiamos que una ecuación de primer grado en ambas variables  x   e   y, siempre representa una recta, y toda recta se puede representar por una ecuación de primer 

grado en ambas variables. 

La ecuación general de segundo grado tiene la forma: 

 a x2 + b x y + c y2 + d x + e y + f = 0 

en la cual  a, b y  c son números reales que no son cero a la vez. 

Las ecuaciones de segundo grado representan, con dos excepciones triviales, a secciones 

cónicas; esto es, curvas formadas por la intersección de un plano con un cono circular recto. 
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Para una demostración sobre esta afirmación y que se ha representado en los gráficos ante-

riores, ver el Apéndice 1 del Capítulo 7.  

De manera inversa, todas las secciones cónicas se designan mediante ecuaciones de se-

gundo grado. (Analice que representa si  b = d = e = f = 0  y si   d = e = f = 0  y si además   a = 0 ó c = 0) 

Un cono tiene dos porciones, o  troncos,  separados entre sí por el vértice; no tiene base o extremo, por lo que se prolonga indefinidamente en ambas direcciones; de esta manera, algunas de las secciones cónicas no están acotadas. 

Las secciones cónicas tradicionales, o simplemente  cónicas, son la  elipse, la  parábola, la hipérbola; la  circunferencia es un caso especial de la elipse. 

A los demás casos se les llama  cónicas degeneradas.   

Existen otros dos casos representados por ecuaciones de segundo grado: un par de rectas 

y la carencia de gráfica, que no se obtienen como intersección de cono y plano. 

Circunferencia 

En este apartado vamos a determinar ecuaciones para las circunferencias, que como vere-

mos luego es un caso particular (y muy sencillo) de una situación más general. 

Una circunferencia es el conjunto de puntos del plano que equidistan (están a igual distancia) de un punto fijo llamado centro. Esa distancia se llama radio. 

Dependerá de la posición del centro  C y el radio  r la ecuación que se obtenga. 

Sea  C(α, β) y sea  r el radio. 
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Si   P( x, y) es un punto genérico de la cir-

cunferencia  por ello debe cumplir: 

 d( P,C) =  r 

es decir, aplicando la fórmula de distancia:  

2

2

( x −α) + ( y − β ) =  r  

por lo cual  

2

2

2

( x −α) + ( y − β ) =  r  

Hemos determinado la expresión buscada. 

(1) 

2

2

2

( x −α) + ( y − β ) =  r   Ecuación  canónica de la circunferencia con centro  C(α, β) y radio  r      

EJEMPLO 5.5.1 

Hallar una ecuación de la circunferencia con centro en  C(2, −1) y tiene radio 5. 

Solución: En este caso β = − 1 y α = 2, y  r = 5, sólo hay que remplazar en la expresión (1) hallada: 

( x −  2)2 + ( y − (− 1))2 = 52 

( x −  2)2 + ( y  + 1)2 = 25 

EJERCICIO 5.5.2 

Hallar una ecuación de la circunferencia que cumple: 

a) De 

centro 

 C(− 1, 2)  y radio1

b) De 

centro 

 C(0, 0) y radio 3

c) De 

centro 

 C (0, 0) y radio 1. 

d) De 

centro 

 C(− 3, 4) y radio 1. 

e) De 

centro 

 C(5, 0) y radio 31/2. 

f)

Pasa por los puntos  A(1, 3),  B(− 1, 3) y  E(2, 1). 

Si se desarrollan los cuadrados en (1) se obtiene: 

 x2 – 2  α  x+  α 2  + y2 – 2  β  y + β  2 = r 2

que se puede llevar a la forma: 

(2)   a x2 + b y2 + c x + d y + e = 0  para valores convenientes de  a, b, c, d y  e en  \ Observar que debe ser  a = b. 
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La pregunta es ¿toda expresión de la forma (2) representa una circunferencia? Analicemos 

con un ejemplo la respuesta. 

EJEMPLO 5.5.3 

Consideremos       2 x2 + 2 y2 + 4 x −  8 y −  8 = 0  el propósito es llevarla a  la forma (1) para determinar sus elementos; dividimos por 2 miembro a miembro y completamos cuadrados. 

2

2

 x +  y + 2 x − 4 y − 4 = 0  

(*) 

Este artilugio o estrategia, de completación de cuadrados, consiste en tratar que la expre-

sión en “x”, respectivamente en “y”, que poseemos se parezca a una de la forma  ( − )2

 x  α , es

decir a una expresión de la forma  (  x −α )2

2

2

=  x − 2 x α +α ,  análogo para ( − )2

 y  β . 

Así resulta que: 

2

2

2

2

 x + 2 x +  y − 4 y − 4 =  x − 2 x( 1

− ) +  y − 2.2 y − 4 = 0   

Observar que como    2

2

2

 x + 2 x =  x − 2 x( 1

− ) =  x − 2 x( 1

− ) + (− )2

1 −1 = ( x + )2

1 −1

y de igual forma :  2

2

2

 y − 4 y =  y − 2.2 y + 2 − 4 = (  y − 2)2 − 4

Luego, la expresión señalada anteriormente con (*) puede escribirse como: 

2

2

 x + 2 x +  y − 4 y = 4

y por lo observado antes puede reescribirse sumando a ambos miembros 1 unidad para com-

pletar las “x” y 4 unidades para completar las “y”. 

2

2

 x + 2 x +  y − 4 y = (  x + )2

1 −1 + (  y − 2)2 − 4 = 4

Con lo que queda: 

( x + )2 + (  y − )2

1

2 = 9

Observar que el primer miembro es POSITI-

VO, luego para ser una circunferencia el segun-

do miembro que está representando al cuadra-

do del radio también debe serlo y en este caso 

así es. 
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Por lo tanto la ecuación dada representa una circunferencia con centro  C(− 1, 2) y radio 3, cuya gráfica es la adjunta. 

EJEMPLO 5.5.4 

Sea ahora la ecuación  2

2

3

67

 x +  y −  x +  y −

= 0  .  Estudiemos a qué circunferencia correspon-

2

16

de, l evándola a su forma canónica para luego representarla gráficamente. 

Completemos cuadrados… 

2

2

3

67

 x −  x +  y +  y =

2

16

Sumamos a ambos miembros lo necesario para que los términos en “x” y en “y” sean cuadrados perfectos. 

2

2

2

2

2

1 ⎛ 1 ⎞

2

3 ⎛ 3 ⎞

67 ⎛ 1 ⎞

⎛ 3 ⎞

 x − 2. . 

 x

+ −

+  y +

⎜

⎟

2. . 

 y

+

=

+ −

+

2

2

4 ⎜ 4 ⎟

16 ⎜ 2 ⎟

⎜ 4⎟

⎝

⎠

⎝ ⎠

⎝

⎠

⎝ ⎠

Así queda: 

2

2

2

2

⎛

1 ⎞

⎛

3 ⎞

67 ⎛ 1 ⎞

⎛ 3 ⎞

 x −

+  y +

=

+ −

+

⎜

2 ⎟

⎜

4 ⎟

16 ⎜ 2 ⎟

⎜ 4⎟

⎝

⎠

⎝

⎠

⎝

⎠

⎝ ⎠

y resolviendo las cuentas del segundo miembro da: 

2

2

⎛

1 ⎞

⎛

3 ⎞

 x −

+  y +

=

⎜

⎟

⎜

⎟

5  

⎝

2 ⎠

⎝

4 ⎠

⎛ 1

3 ⎞

Por lo tanto, la ecuación dada representa una circunferencia con centro   C

,  −

⎜

y radio 

2

4 ⎟

⎝

⎠

 r =  5 , cuya gráfica es la de la figura. 

EJERCICIO 5.5.5 

Encontrar la condición para que (2) represente una circunferencia. 
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EJERCICIO 5.5.6 

Decir, justificando la respuesta,  si las siguientes ecuaciones representan o no una circunferencia. En caso de serlo hallar sus elementos. 

a)  x 2 +  y 2 – 2 x + 2 y = 1

b)  x 2 +  y 2 + 2 x – 2 y = 1

c)  x 2 +  y 2 – 2 x – 2 y – 1 = 0

d)  x 2 – 2 x +  y 2 = 1

e) 3 x 2 + 3 y 2 + 9 x – 3 y + 21 = 0

f) 6 x 2 + 6 y 2 – 12 x + 12 y – 6 = 0

Parábola 

La definición de parábola como lugar geométrico es la siguiente: 

Una parábola es el conjunto de los puntos de un plano que equidistan de un punto fijo (fo-co) y de una recta fija (directriz), que no contiene al foco. 

Imaginemos que el punto  F( c, 0) es el foco y la directriz es dada por   x = –  c, c ≠ 0. 

Escogemos un punto  P( x, y) de la parábola y vemos que condiciones deben satisfacer  x e  y. 

Al valor   c  se lo llama distancia focal. 

De acuerdo a la definición, tenemos: 

¿? 

 d( P,  F) =  d( P,  D)  

Para pensar: 

Por qué podemos afirmar que  D tiene  

coordenadas (− c, y)? 

Aplicando la definición de distancia entre 

dos puntos:  

2

2

2

( x −  c) +  y = ( x +  c)  

y como las bases son positivas (por qué?), elevando al cuadrado resulta: 

2

2

2

( x −  c) +  y = ( x +  c)   

desarrollando los binomios al cuadrado: 

2

2

2

2

2

 x − 2 cx +  c +  y =  x + 2 cx +  c  

simplificando queda: 
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 y2   =  4cx 

(1) 

Observar que los pasos que realizamos a partir de la definición hasta obtener (1) pueden 

revertirse. Por qué? 

Por lo tanto si un punto está en la parábola cuyo foco está en ( c,  0) y su directriz tiene como ecuación   x = – c, satisface la ecuación  y2 =  4cx  y recíprocamente. 

Un punto  P( x, y) está en la parábola de foco  F( c, 0) y directriz  d:  x = −  c si y sólo si satisface la 

ecuación: 

 y2   =  4cx 

OBSERVACION 5.5.7: Comprobar que un punto  P( y2 /4c , y2) es tal que : d ( P,  F ) =  d ( P,  D) , con  F( c, 0) el foco y la directriz,  x =  – c,  c ≠ 0

• Veamos 

algunas 

 propiedades  de esta parábola:

Primero consideremos que el eje  x   es un eje de simetría; en otras palabras, la parte que está abajo del eje  x es la imagen especular (en espejo) de la parte de arriba de él. A esta línea se le llama el eje de la parábola y es perpendicular a la directriz y contiene al foco. 

El punto de intersección del eje de la parábola con la parábola es el vértice  V. 

El vértice de la parábola dada por   y2 = 4cx  es el origen  V (0, 0). 

Acá 

trabaje!!! 

• Se puede invertir el papel de  x  e  y  en lo anterior, se obtendrá:

Un punto  P( x, y) se encuentra en la parábola cuyo foco está en  F(0,  c) y cuya directriz es  d: y = – c,  si y sólo si satisface la ecuación: 

 x2  = 4cy 

EJEMPLO 5.5.8 

Trazar y describir a    y2 = 8x. 

Solución:   

Esta ecuación tiene la forma  

 y2 = 4cx,  siendo  c = 2. 
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De esta manera, la ecuación representa una parábola cuyo vértice está en el origen (0, 0) y su eje en el eje  x. 

El foco está en (2, 0) y su directriz es  x = – 2. 

EJEMPLO 5.5.9 

Trazar y describir  x2 = – 12y 

Solución:  

Esta ecuación tiene la forma: 

 x2 = 4cy, siendo  c = – 3. 

Por consiguiente, es una parábola con su vértice en el origen y su eje en el eje  y. 

El foco está en (0, – 3) y una ecuación de la directriz es   y = 3. 

Observemos que, de acuerdo con estos dos ejemplos, el  signo de c expresa la dirección 

 hacia la cual se abre la parábola.  En general vale (justifique):  

Si  c es positiva, la parábola se abre en dirección positiva (a la derecha o arriba). 

Si  c es negativa., la parábola se abre en dirección negativa (a la izquierda o abajo). 

EJEMPLO 5.5.10 

Deducir una(s) ecuación(es) de la o las parábolas que tienen su vértice en el origen y su foco en el punto (– 4, 0). 
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Solución:   

Como el foco y el vértice se encuentran en el eje  x, éste es el eje de la parábola. 

Por tanto, está representada por una  ecuación de la forma  y2 = 4cx. 

Si el vértice es  V(0, 0) y el  foco está en (– 4, 0),  c = – 4 y la ecuación es: y2 = – 16x 

Hay una única parábola con vértice en el origen y foco (– 4.0), que es la representada en la figura. 

Respecto a las ecuaciones que la representan son sólo una, salvo por modificaciones alge-

braicas equivalentes, por ejemplo: 

   16 x + y2 =0,..     4 x + y2 /4 =0,……  3 y2 = -48 x, etc. 

que son expresiones algebraicas distintas, pero todas equivalentes entre sí. 

EJERCICIO 5.5.11 

Trazar y describir las parábolas representadas por las siguientes ecuaciones 

a)  y2 = – 12x

b) 



 x2 = – 8y

c) 

 y2 =10x

d)  x2 = 5y

e)  x2 = 6y

f)  y2 + 5x =0

EJERCICIO 5.5.12 

Deduce una(s) ecuación(es) de la o las parábolas descriptas en los siguientes puntos: 

a) Vértice en (0, 0), eje en el eje  x, contiene a (1, 5)

b) Vértice en (0, 0), eje en el eje  y, contiene a (1, 5)

c) Foco en (– 3, 0), directriz representada por  x = 3. 
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d) Vértice en (0, 0), contiene a (2, 3) y a (– 2, 3)

•  Sea ahora una parábola de vértice V (α, β )  , con eje paralelo al eje x,   distancia focal c, tal como ilustra la figura

Si planteamos que la distancia de un punto   P (  x,  y)  al foco es igual a la distancia del punto P(  x,  y)  a la recta directriz, resulta que:

( −(α + ))2 +( − β )2

 x

 c

 y

= ( x − (α −  c))2  

EJERCICIO 5.5.13 

Continuar la demostración planteada, siguiendo los pasos similares a los realizados para la obtención de las ecuaciones para parábolas con vértices en  O(0,0),  y llegará a la expresión: (  y − β )2 = 4 c( x −α )

Un punto  P( x, y) está en la parábola de foco  F ( α +  c,  β) y directriz   d:  x = α - c, con vértice V (α, β )  si y sólo si satisface la ecuación   (  y − β )2 = 4 c( x −α ) (la parábola es de eje paralelo al eje  x, con distancia focal   c ) 
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EJERCICIO 5.5.14 

Deducir una ecuación de la parábola que tiene vértice  V (α, β ) , con foco  F (α, β + c) y directriz d:  y = β - c  (la parábola es de eje paralelo al eje  y,  con distancia focal   c ). 

Representar gráficamente para orientarse! 

EJERCICIO 5.5.15 

Graficar las parábolas determinadas por las siguientes ecuaciones: 

a)  y2 = 4( x – 1)

b)  y2 = 4( x + 1)       Qué observa? 

c)  x2 = 4( y – 1)

d)  x2 = 4( y + 1)      Qué observa? 

EJERCICIO 5.5.16 

Considere las parábolas del ejercicio anterior y para cada una de ellas: 

a) Determine el foco  F. 

b) Determine la directriz   d  y una ecuación que la represente. 

c) Determine un punto  A que esté en la parábola. 

d) Compruebe que  d(A, F)= d(A, d)

e) Halle en cada caso para las parábolas del ejercicio anterior, una recta (y sus ecuaciones) que intercepta en un punto, otra en dos puntos y otra que no tenga intercepción. 

f) Hallar una parábola de eje paralelo al eje  x, que intercepte en dos puntos a la parábola dada en c) del ejercicio anterior. 

Elipse 

Veremos otra cónica tal que la circunferencia es un caso particular. 

Una elipse es el conjunto de los puntos  P( x, y), tales que la suma de las distancias de  P( x, y) a un par de puntos fijos distintos (los focos) es una constante fija. 

Representaremos a los focos como  F 1( c,  0) y  F 2(–  c, 0) y a la constante fija como  2 a. 
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2  a  > 0  (¿por qué?) 

Si  P( x, y) representa a un punto de la elipse, por la definición de la curva, se cumple d ( P,  F +

=

1 )

 d ( P,  F 2 ) 2  a

. 

Por la definición de distancia entre dos puntos, se obtiene la expresión:  

( x −  c)2 +  y 2 + ( x +  c)2 +  y 2 =  a

. 

2

Se harán una serie de operaciones convenientes para arribar a una ecuación más amigable. 

Pasando una raíz al segundo miembro: 

2

2

2

2

( x −  c) +  y = . 

2  a − ( x +  c) +  y

elevando al cuadrado ambos miembros y haciendo cuentas (recuerde un “binomio al cuadra-

do”…): 

2

2

2

2

2

2

2

2

2

 x − 2 cx +  c +  y = 4 a − 4 . 

 a ( x +  c) +  y +  x + 2 cx +  c +  y Acá 

cancelando y pasando de miembro convenientemente: 

trabaje!!! 

4 a. (  x +  c) 2 +  y  2 = 4 a  2 + 4 cx

dividiendo ambos miembros por  4a  (Lo puede hacer, pues : cómo es  a?): 

2

2

 cx

( x +  c) +  y =  a +  a

elevando nuevamente al cuadrado ambos miembros y haciendo cálculos: 

2 2

2

2

2

2

 x + 2 cx +  c +  y =  a + 2

 c x

 cx +

2

 a

Cancelando y agrupando nos queda: 
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2

2

⎛  a −  c ⎞ 2

2

2

2

 x +  y =  a −  c

⎜⎜

(1) 

2

⎝  a

⎟⎟⎠

Analicemos ¿cómo es  2

2

 a −  c ?: 

El triángulo cuyos vértices están en ( c, 0), (–  c, 0) y  P( x, y), tiene uno de sus lados de longitud 2  c . La suma de las longitudes de los otros dos lados es  2.a. Así, 

 2a >  2c 

Recordatorio: 

 a > c 

En cualquier triángulo, la longitud de un lado es menor 

que la suma de las longitudes de los otros dos… 

 a2 >  c2 

Si no, no hay triángulo! 

 a2  –  c2 > 0 

Dividiendo ambos miembros de la expresión (1) por  2

2

 a −  c  resulta:  

2

2

 x +  y

= 1   (2)  

2

2

2

 a

 a −  c

Como  a2 –  c2 es positivo, lo podemos llamar  b2. 

Por lo tanto, obtenemos al reemplazar en (2): 

2

2

 x +  y =1 

en 

donde  b2 = a2 −  c2 

2

2

 a

 b

Observemos que hemos elevado al cuadrado ambos lados de la ecuación al efectuar dos 

pasos, y ambos miembros de las igualdades eran no negativos. En consecuencia, no hemos 

introducido raíces extrañas y esos pasos se pueden invertir. 

• Algunas propiedades de esta elipse:

Vemos que hay dos ejes de simetría: el eje  x  y el eje   y. 

Además  A 1( a, 0) y  A 2 (−  a, 0) son los que dan las abscisas al origen de la curva y los puntos B 1(0,  b)  y  B 2(0, −  b)  son los que dan las ordenadas al origen de la curva. Siendo  a > b (porque b2 = a2 −   c2). 

Por ello, al segmento entre los puntos que están sobre el eje  x se le llama eje mayor, y al segmento entre los puntos que están sobre eje  y  se le llama eje menor de la elipse. 
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Los puntos,  A 1( a, 0) y  A 2(−  a, 0)  en el eje mayor se llaman vértices y los puntos  B 1(0,  b)  y B 2(0, −  b) en el eje menor se llaman  covértices. Al punto de intersección de los ejes,  O(0, 0) en este caso, se le llama centro. Los focos están en el eje mayor, esto es en ( c,  0) y (−  c,  0). 

Un punto  P(x, y) está en la elipse con vértices en  A 1( a, 0) y  A 2(−  a, 0) y focos en ( c,  0) y (−  c,  0) si y sólo si satisface la ecuación  

2

2

 x +  y =1

2

2



 a

 b

en la cual 

 b2 = a2 –  c2 

 Esta forma de la ecuación de la elipse, se llama forma estándar o canónica .   

En algunas oportunidades también explicita. 

???? 

 Para pensar : Que ocurre si   a =  b ?. 

•  También en este caso los papeles de x e y se pueden invertir

Un punto  P( x, y) está en la elipse con vértices en  A 1(0,  a) y  A 2(0, −  a) y focos en (0,  c) y (0, −  c) si y sólo si satisface la ecuación  

2

2

 y +  x =1 

2

2

 a

 b

en la cual 

 b2 = a2 −  c2 

 ¡Dibuje esta situación! 

EJEMPLO 5.5.17 

Describir la curva determinada por    9 x2 + 25 y2  = 225    (*) 
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Solución: 

Primero pasaremos esta ecuación a su forma estándar; para ello dividimos ambos miem-

bros por 225: 

2

2

 x +  y =1   (compruebe que es así)

25

9

De inmediato surge la pregunta acerca de cómo podemos saber que estamos manejando, si 

2

2

 x

2

2

+  y = 1

 y +  x =

2

2

ó 

1 

 a

 b

2

2

 a

 b

Los números en los denominadores no tienen “etiquetas” que digan cuál es  a  y cuál es  b, de modo que ¿cómo sabemos cuál es  a y cuál es  b? La respuesta es “el tamaño”. 

En ambos casos,  a > b. Así, el denominador mayor será  a2 y el menor  b2. 

Entonces, 

 a2 =  25 , b2 =  9 , 

y 

 c2 = a2 –  b2 =  16 . 

La elipse dada por la ecuación (*) tiene su centro en el punto (0, 0), sus vértices en  A 1(5, 0) y A 2(− 5, 0),  sus covértices  B 1(0, 3) y  B 2(0, − 3),  y sus focos en  F 1( 4, 0) y  F 2(− 4, 0). 

Una representación gráfica de la elipse es la siguiente: 

EJEMPLO 5.5.18  

Trazar y describir la curva  dada por la ecuación   25 x2 + 16 y2 = 400. 

Solución:  
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Pasamos esta ecuación a su forma estándar, dividiendo por 400 ambos miembros y simplifi-

cando,  obtenemos 

2

2

 x +  y =1 

16 25

Compruebe... 

Entonces 

 a2 = 25     y    b2 = 16, 

 c2 = a2 –  b2 = 9. 

Como el denominador de  y 2 es mayor que el denominador de  x 2: 

Esta elipse tiene su centro en (0, 0), sus vértices en (0, 5) y (0, − 5), sus covértices en (4, 0) y (− 4, 0) y sus focos en (0, 3)  y  (0, − 3). Haga un dibujo de la misma. 

Durante dos mil años, se creyó que los planetas se mueven en órbitas circulares, alrededor 

de la Tierra, según el llamado modelo aristotélico. Después de todo, el universo debe ser perfecto y el círculo es la figura perfecta (o lo que ello signifique). Estos argumentos filosóficos se tomaron como demostración suficiente de la hipótesis. Sin embargo, Johannes Kepler, en el siglo XVII, demostró que las órbitas son elípticas y que el Sol está en uno de los focos, por esta razón se abandonó el modelo aristotélico del sistema solar. 

No obstante, es posible que haya órbitas circulares, y algunas (entre el as la Tierra) son casi circulares. De hecho, si redujéramos la órbita de la Tierra de tal modo que el eje mayor tuviera 8 pulgadas de longitud, el eje menor tendría 7,8 pulgadas. Con esa diferencia tan pequeña era difícil reconocer que la órbita es una elipse y no una circunferencia. (Una pulgada es 2,54 cm, ya que Ud. estudia Algebra haga la conversión a cm y cuál es la diferencia entre ambos ejes con esa unidad de medida). 

EJERCICIO 5.5.19 

Trazar y describir las elipses en los siguientes apartados: 

2

2

 x

 y

2

2

 x

a) 

+

=1 



b) 

+  y = 1 

169 25

144 169

2

2

 x

c) 

+  y = 1 

d) 4 x2  +  25 y2 = 100

25 49
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e) Hallar dos puntos que pertenezcan a cada una de las elipses representadas por las ecuaciones anteriores, que no sean ni los vértices o covértices. 

EJERCICIO 5.5.20 

Deduzca una ecuación de las elipses descriptas en los siguientes casos, para mejor orientación para su trabajo, haga un dibujo de los datos: 

a) Centro en (0, 0), vértice en (0, 13), foco en (0, − 5). 

b) Centro en (0, 0), covértice en (0, 5), foco en (− 12, 0). 

c) Centro en (0, 0), covértice en (0, 3), vértice en (− 4, 0). 

Se va a generalizar la situación de la elipse, cambiando la posición del centro de la misma, dejando los ejes mayores y menores paralelos a los ejes del sistema coordenado, lo que pro-vocará la obtención de otra ecuación forma de la ecuación, pero no muy distinta…. 

•  Sea una elipse con centro en  C (α, β )  , de ejes paralelos a los ejes coordenados, con distancia focal c y semiejes a y b. 

Supongamos que el eje mayor de la elipse es paralelo al eje  x, tal como se indica en la figura. 

Si  P( x, y) representa a un punto de la elipse, entonces 

 d ( P,  F +

=

1 )

 d ( P,  F 2 ) 2  a

. 

( x −(α +  c))2 +(  y − β )2 + ( x −(α − c))2 +( y − β )2 = 2.  a EJERCICIO 5.5.21 
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Continuar la demostración planteada, siguiendo las ideas que hemos empleado para la elipse 

centrada en el origen de coordenadas, para llegar a la expresión:   

( x −α )2 (  y − β )2

+

=1 

2

2

 a

 b

Un punto  P( x, y) está en la elipse con centro en   C (α, β ) , de ejes paralelos a los ejes coordenados, con distancia focal  c y semiejes  a y  b, con el eje mayor de la elipse paralelo al eje  x si ( x −α )2 (  y − β )2

y sólo si sus coordenadas satisfacen la ecuación  

+

=1   siendo  b2 = a2 −  c2 

2

2

 a

 b

(ecuación en forma canónica,  estándar o explícita) 


EJERCICIO 5.5.22 

Deducir una ecuación de la elipse con centro en   C (α, β ) , de ejes paralelos a los ejes coordenados, con distancia focal  c y semiejes  a y  b, con el eje mayor de la elipse paralelo al eje  y. 

Representar gráficamente. (Idea: haga un dibujo de la situación y siga pasos similares al ejercicio anterior) 

Un punto  P( x, y) está en la elipse con centro en   C (α, β ) , de ejes paralelos a los ejes coordenados, con distancia focal  c y semiejes  a y  b, con el eje mayor de la elipse paralelo al eje  y si y sólo si sus coordenadas satisfacen la ecuación   

( x −α )2 (  y − β )2

+

=1 

2

2

 b

 a

siendo  b2 = a2 −  c2  (ecuación en forma canónica , estándar o explícita) 

EJERCICIO 5.5.23 

Graficar las elipses dadas por las siguientes ecuaciones y sacar conclusiones 

2

2

 x

( x − )

2 2

2

 y

a) 

+  y = 1



b) 

+

= 1  

4

9

4

9

EJERCICIO 5.5.24 

Graficar lo siguiente y sacar conclusiones: 
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2

2

 x

2

 x

( − )

2 2

a) 

+  y = 1

b) 

+  y

= 1 

4

9

4

9

EJERCICIO 5.5.25 

Para las elipses determinadas por las ecuaciones de los ejercicios 5.5.23 y 5.5.24 

a) Determinar un punto  E  que esté en la elipse. 

b) Considerar 

los 

focos 

 F1 y  F2 . 

c) Verificar 

que 

 d( E, F1)  + d( E, F2) =2a

d) Hallar un punto simétrico de  E respecto del eje  x,  ¿en qué caso está también en la elipse? 

Justifique! 

EJEMPLO 5.5.26 

Trazar y describir la curva descripta por:    2

2

59

 x + 9 y − 2 x + 27  y −

= 0  

4

Solución:  

Para ello completaremos cuadrados, aunque observando que las “y” se verán multiplicadas por 9, es decir, nos quedará algo de la forma:    ( − )2

9.  y  β . 

Tenemos entonces:  

2

2

59

 x + 9 y − 2 x + 27  y −

= 0

4

que  puede reescribirse como : 

2

2

59

 x − 2 x + 9 y + 27  y = 4

Para completar cuadrados en las "  x" agregaremos 1 a ambos miembros ya que la ecuación anterior es equivalente a: 

2

2

2

59

2

 x − 2 . 

 x  1 + 1 + 9 y + 27  y =

+ 1

4

Ahora completaremos las “y”, para ello sacamos factor común 9  y...: 

???? 

2

(

⎛

⎞

⎛ ⎞

 x − )2

2

3

3

59

9

1 + 9.⎜  y + 2. . 

 y

+ ⎜ ⎟ ⎟ =

+ 1+ 9. 

⎜

2

2 ⎟

⎝ ⎠

4

4

⎝

⎠

Siguiendo las cuentas: 

2

2

(

⎛

⎞

 x − )2

3

144

1 + 9.  y +

=

⎛

⎞

⎜

lo que equivale a  ( x − )2

3

1 + 9.  y +

=

⎜

⎟

36  

2 ⎟

⎝

⎠

4

⎝

2 ⎠

Si dividimos miembro a miembro por 36 queda: 
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( x − )2

2

1

9 ⎛

3 ⎞

+

 y +

=

⎜

⎟

1 

36

36 ⎝

2 ⎠

que podemos escribir como: 

2

⎛

3 ⎞

(

)2

+

1

 y

 x

⎜

2 ⎟

−

⎝

⎠

+

=1      Está de acuerdo? Compruebe! 

2

2

6

2

Esta es la ecuación canónica de la elipse, con centro en 

3

 C(1,− ) . Como  2

2

6 > 2  resulta que 

2

 a = 6   y    b = 2 . 

⎛

3

Por lo tanto es una elipse de eje mayor paralelo al eje  x, con vértices en  1 6, 

⎞

± −

⎜

, es de-

2 ⎟

⎝

⎠

cir los vértices son:  A ⎛

3 ⎞

⎛

⎞

 1  7, −

⎜

y  A

− −

. 

2 ⎟

 2 

3

⎜ 5, 

⎟

⎝

⎠

⎝

2 ⎠

⎛

3

Los covértices son  1, 

2⎞

− ±

⎛

⎞

⎛

7 ⎞

⎜

, es decir los puntos:  B

y  B ⎜1, −

. 

2

⎟

1 

1

⎜1, ⎟

2

⎟

⎝

⎠

⎝ 2 ⎠

⎝

2 ⎠

⎛

3

Como  2

2

2

 c = 6 − 2 = 32, resulta que los focos son  1

32, 

⎞

±

−

⎜

, es decir los puntos:  

2 ⎟

⎝

⎠

⎛

⎞

 F

⎛

⎞

1 

3

1+ 32,−

⎜

y   F

−

−



2 ⎟

2 

3

⎜1

32, 

⎝

⎠

2 ⎟

⎝

⎠

La gráfica de esta elipse es:  

EJERCICIO 5.5.27 

Hallar los elementos de las elipses dadas por las siguientes ecuaciones (si es que correspon-de) y representar: 

( x + )2

2

1

 y

( x − )2 (  y + )2

3

2

a) 

+

=1

b) 

+

= 4  

4

16

9

4

c) 2

2

 x + 4 y − 2 x +  y − 8 = 0

d) 

2

2

3 x + 2 y + 6 x − 4 y +124 = 0
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EJERCICIO 5.5.28 

La siguiente tabla representa las longitudes de los semiejes mayores ( a) y la excentricidad  e de las órbitas planetarias. Con esta información, calcula las distancias mínima y máxima (de centro a centro) de Mercurio, Tierra y Plutón al Sol. 

La excentricidad de la elipse está dada por  e = c/a 

Planeta

Semieje 

mayor

Excentricidad 

(millones de km) 

Mercurio

57,9

0,2056

Venus

108,2

0,0068

Tierra

149,6

0,0167

Marte

227,9

0,0934

Júpiter

778,3

0,0484

Saturno

1427,0

0,0560

Urano

2869,0

0,0461

Neptuno

4497,1

0,0100

Plutón

5900

0,2484

Hipérbola 

Vemos ahora la última cónica no degenerada que hemos mencionado como intersección de 

un plano con los dos troncos del cono. 

También esta cónica aparece en varias situaciones prácticas. 

Una hipérbola es el conjunto de todos los puntos  P( x, y) en el plano, tales que la diferencia positiva entre las distancias de  P( x, y) a un par de puntos fijos distintos (los focos) es igual a una constante. 

Otra vez representaremos a los focos como  F 1( c, 0) y  F 2(–  c, 0) y la constante como  2.a Si  P( x, y) representa un punto de la hipérbola, se cumplirá lo siguiente. 
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Aplicando la definición y haciendo un proceso similar al de la deducción en el caso de la 

elipse: 

 d ( P,  F −

= ±

1 )

 d ( P,  F 2 )

2 a

El signo  ±  es debido a que la expresión correcta sería   d ( P,  F ) −  d ( P,  F ) = 2 a 1

2

, pero pa-

ra facilitar las cuentas, trabajamos sin valor absoluto. ¿Cómo es  a, respecto del 0? 

Aplicando la definición de distancia entre dos puntos: 

( x −  c)2 +  y 2 − ( x +  c)2 +  y 2 = 2

±  a

pasando una raíz al otro miembro: 

( x −  c)2 +  y 2 = ( x +  c)2 +  y 2 ± 2 a  

Elevando al cuadrado ambos miembros y haciendo cuentas (recordar cómo se eleva un bi-

nomio al cuadrado): 

2

2

2

2

2

2

2

2

2

 x − 2 cx +  c +  y =  x + 2 cx +  c +  y ± 4 . 

 a ( x +  c) +  y + 4 a

cancelando y pasando de miembro convenientemente: 

± 4 a. ( x +  c)2 +  y 2 = 4 a 2 + 4 acx  

dividiendo ambos miembros de la igualdad por  4a (¿por qué se puede hacer?) 

2

2

 cx

± ( x +  c) +  y =  a +  a

Elevando ambos miembros al cuadrado nuevamente y desarrol ando los binomios al cua-

drado: 

380

INTRODUCCIÓN A LA GEOMETRÍA ANALÍTICA EN \2 – CAPÍTULO 5 

2 2

2

2

2

2

 x + 2 cx +  c +  y =  a + 2

 c x

 cx +

2

 a

Agrupando convenientemente: 

2

2

 c −  a

2

2

2

2

 x −  y =  c −  a

2

 a

Dividiendo ambos miembros de la igualdad por  2

2

 c −  a : 

2

2

 x

 y

−

=1 

2

2

2

 a

 c −  a

Recordatorio: 

En todo triángulo la longitud 

de un lado es menor que la 

En el triángulo PF1F2, se tiene: 

< 

2

 PF

+

1

 PF

1

 F  2

 F

suma de las longitudes de los 

otros dos lados 

−

2

 PF

< 

1

 PF

1

 F  2

 F

 2a <  2c 

 a < c       por lo tanto       0 < c2 – a2 

Luego, como  c2 –  a2  es positivo podemos llamarlo  b2, entonces: 

2

2

 x −  y =1

en 

donde 

 b2  = c2  – a2 

2

2

 a

 b

Ecuación en forma estándar, canónica o explícita de la hipérbola. 

• Otra vez hemos elevado al cuadrado ambos miembros de una ecuación en dos pasos de

la deducción. La primera vez los dos miembros eran positivos, y en la segunda podían ser positivos o negativos. Así, no hemos introducido raíces extrañas y los pasos se pueden invertir. Por el o se concluye: 

Un punto  P( x, y) está en la hipérbola que posee vértices en   A1(  a, 0) y  A2(−  a, 0) y focos en F1(  c, 0) y  F2(−  c, 0)  si y sólo si satisface la ecuación: 2

2

 x −  y =1  

en donde  b2  = c2  – a2. 

2

2

 a

 b

En esta curva tanto  a como  b son menores que  c.   
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• Algunas propiedades de esta hipérbola. 

También, los ejes  x e  y son ejes de simetría, y una vez más las abscisas al origen están en A1( a, 0) y  A2(−  a, 0). 

En este caso no hay ordenadas al origen pues, cuando   x = 0 se obtiene 

2

−  y = 1 , 

2

 b

y esta ecuación no se cumple con ningún número real  y. 

El eje  x, que contiene dos puntos de la hipérbola, se llama eje transversal; y al eje  y,  eje conjugado. El punto de intersección de los ejes de la hipérbola es  O(0, 0) y se llama  centro. 

Los puntos  B1( 0,  b) y  B2( 0, −  b) que no están en esta hipérbola son útiles para lo que sigue. 

Para toda hipérbola existen dos líneas rectas a las que la curva se acerca cada vez más. 

A esas rectas se les denomina asíntotas. Debemos decir las parábolas no tienen asíntotas. 

Por consiguiente, la hipérbola no es, como podría suponerse al ver diagramas trazados, un par de parábolas. 

Si la hipérbola está representada por: 

2

2

 x −  y =1 

2

2

 a

 b

Tiene asíntotas representadas por  

 b

 y = ±  x

 a

Observar que estas rectas contienen a las diagonales del rectángulo determinado por los 

puntos:  

    A1( a, 0),  A2(−  a, 0),  B1( 0,  b) y  B2( 0, −  b) . 

•  También en este caso los papeles de x e y se pueden invertir

Cambiando  x por  y, en el razonamiento anterior se puede llegar a la siguiente conclusión: Un punto  P( x, y) está en la hipérbola que posee vértices en  A1(0,  a) y  A2(0, −  a) y focos en F1(0,  c), y  F2(0, −  c), si y sólo si satisface la ecuación   

2

2

 y −  x =1 siendo 



 b2 = c2 –  a2 

2

2

 a

 b
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Las asíntotas de la hipérbola de ecuación 

2

2

 y −  x =1 

2

2

 a

 b

se representan por 

 b

 y = ±  x

 a

Ídem vale que estas rectas contienen a las diagonales del rectángulo determinados por los 

puntos: 

 A1(0 , a),  A2(0 , −  a),  B1( b,  0) y  B2(−  b,  0) EJEMPLO 5.5.29 

2

2

 x

Describir 

−  y = 1 

9

16

Solución:  

Vemos que  a 2 =  9,  b 2 = 16  y   c2 = a2 + b2 = 25. Esta hipérbola tiene su centro en (0, 0), sus vértices en   A 1(3, 0) y en   A 2(− 3, 0),  sus focos en  F1 (5, 0) y en  F2 (−5, 0). Las asíntotas están dadas por: 

4

 y = ±  x

3

EJEMPLO 5.5.30  

Trazar y describir lo representado por   

2

2

16 x − 9 y +144 = 0 

Solución:  

Pasamos esta ecuación a su forma estándar. Para ello podemos transformar la ecuación 

separando variables del término de número puro:  

2

2

16 x − 9 y = 1

− 44  

que dividiendo ambos miembros por – 144:   

16 2

9

2

 x −

 y = 1 

14

− 4

1

− 44

y simplificando obtenemos 

2

2

 y −  x =1 

16

9
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Vemos que  a 2 = 16,  b 2 = 9 y  c2 = a2 + b2  = 25. 

Esta hipérbola tiene su centro en (0, 0), sus vértices en   A 1(0, 4) y en   A 2(0, − 4) y sus focos 4

en  F

= ±

 1(0, 5) y en  F2(0, − 5). Sus asíntotas se representan mediante   y

 x

3

EJERCICIO 5.5.31 

Trazar y describir lo que representan las ecuaciones de los siguientes apartados: 

2

2

 x

2

2

 y

a). 

−  y = 1  

b) 

−  x = 1

c) 



 4x2 –  y2 =  4

16

9

1

9

d)  x2  –  y2 = 0

e)  16x2 –  9y2 =  – 36

EJERCICIO 5.5.32 

Deducir una ecuación que represente a las hipérbolas descriptas en los siguientes casos: 

a) Vértices en (± 2, 0), foco en (− 4, 0)

2

b) Asíntotas:  y = ±

 x  , vértice en (6, 0). 

3

EJERCICIO5.5.33 

Para las hipérbolas determinadas por las ecuaciones de los incisos a), b), c) y e) del ejercicio 5.5.31:  

a) Determinar un punto  H  que esté en la hipérbola. 

b) Considerar los focos  F1 y  F2. 

c) Verificar que ⏐ d(H, F1) –  d(H, F2)⏐  = 2a
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•  Sea una hipérbola de centro  C (α,β )  y de ejes paralelos a cada uno de los ejes coordenados, con distancia focal c y semiejes a y b. 

Supongamos además que el transverso es paralelo al eje  x, tal como muestra la figura. 

Por la definición de hipérbola, sabemos que: 

 d( P,  F −

= ±

1 )

 d( P,  F 2 )

2 a

( x −(α +  c))2 +(  y − β )2 − ( x −(α − c))2 +( y − β )2 = 2

±  a  

EJERCICIO 5.5.34 

Continuar la demostración planteada, siguiendo las ideas que hemos empleado para la hipér-

bola centrada en el origen de coordenadas, para llegar a la expresión:    

( x −α )2 (  y − β )2

−

=1 

2

2

 a

 b

que es la ecuación de una hipérbola de centro   C (α, β )  y de ejes paralelos a cada uno de los ejes coordenados, con distancia focal  c y semiejes  a y  b, siendo su eje transversal paralelo al eje  x. 

EJERCICIO 5.5.35 

Deducir una ecuación de la hipérbola de centro   C (α, β )  y de ejes paralelos a cada uno de los ejes coordenados, con distancia focal  c y semiejes  a y  b, siendo su eje transversal paralelo al eje  y. Representar gráficamente. 

EJERCICIO 5.5.36 

Hallar los elementos de las hipérbolas dadas por las siguientes ecuaciones (si es que corresponde) y representar: 
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( x + )2

2

1

 y

(  y + )2 ( x − )2

2

3

a) 

−

=1

b) 

−

= 4  

16

4

4

9

c) 2

2

 x − 4 y − 2 x +  y − 8 = 0

d) 2

2

3 x − 2 y + 6 x − 4 y +124 = 0

EJERCICIOS ADICIONALES  

1)  a) Representar en el plano coordenado los siguientes puntos: 

 A( – 1, 2);  B(0, ½);  C(2, – 3);  D( – 4, 0) 

b) Hallar la distancia de  A a  B; de  C a  D y de  B a  D. 

2) Dibujar en el plano coordenado los siguientes conjuntos de puntos:

a) {( x,  y):  x > 0 }

b) {( x,  y):  y < 0 }

3) Hallar 

 a y  b  para que los puntos  A( 2 −  a, 5) y  B(− 8,  b + 5) sean coincidentes. 

4) Los 

puntos 



 A, B, C son tres vértices de un paralelogramo. Colocar los puntos en un plano

coordenado y hallar las coordenadas del cuarto punto  D. 

Siendo  A(1, 2),  B(2, 4) y  C(7, 4). ¿Cuántas soluciones puede dar? 

5) Los 

puntos 

 A, B, C son tres vértices de un rectángulo. Colocar los puntos en un plano co-

ordenado y hallar las coordenadas del cuarto punto  D. 

Siendo  A(− 4, 2),  B(7, 2),  C(7, 8). ¿Cuántas soluciones hay? Hallar el área del rectángulo. 

6)  a) Hallar el perímetro del triángulo cuyos vértices son  S(0, 6);  T(9, − 6) y  V(− 3, 0). Hacer un dibujo en el plano coordenado. 

b) Probar analíticamente que es un triángulo rectángulo. 

(Idea: usar la recíproca del teorema de Pitágoras: Sean  a, b y  c las longitudes de los lados de un triángulo ABC. Si  a2 = b2 + c2 entonces ABC es un triángulo rectángulo con hipotenusa  a, y   catetos  b y  c.) 

7) Dados los puntos (0, 0), (6, 0) y (3, 3). Probar analíticamente que el triángulo que determinan es isósceles y rectángulo. Dibujar en el plano coordenado. Además hallar el área. 

8) Determinar cuáles pares ordenados satisfacen la ecuación dada:

a)  3x + 2y = 0

(3, − 2), (0, 0), (− 2, 3) 

b)  x−  4y = 6

(2, − 3), (0, − 3/2), (1, 7) 

c)  2x = 6y + 3

(1, 1), (− 2, 1), (0, 0). 

Interpretar geométricamente la situación en cada caso. 
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9) Para cada ecuación dada a continuación, hallar 3 pares ordenados que la satisfagan y 2

pares que no. Decir cuál es el significado geométrico. 

2

a)  2x + 3y = −  1

b)    x −  2 = 1 y 

3

c)  x −   y = 0

d)  x + y = 0

10) Encontrar en los siguientes pares la componente que falta, si éstos son coordenadas de

puntos de la recta que verifica la ecuación   2x −  6y = 12:

a) (0, ?)

b) (?, 0)

c) (3, ?)

11) Hallar  k para que (3, 2) resulte un punto de la recta determinada por la ecuación: 2x −  k.y = 6

12) Para qué valores de  b será la recta que une  P con  Q paralela al eje indicado: a)  P(− 4, 3),  Q( b, 1), eje  y. 

c)  P(3 b −   1, 5),  Q(8, 4), eje  y. 

b)  P(− 5, 2), Q(7,  b), eje  x. 

d)  P(−6, 2 b + 1),  Q(2, 7), eje  x. 

13)  a) Escribir una ecuación de la recta que pasa por el origen y tiene la misma pendiente que la recta dada por  x −  2y = 5. Graficar las dos rectas. 

b) Ídem para la recta perpendicular a la dada en a). 

14)  a) Escribir una ecuación de la recta que pasa por el punto (0, 5) y tiene la misma pendiente que la recta dada por  2y −  3x = 5. Graficar las dos rectas. 

b) Ídem para la recta perpendicular a la dada en a). 

15) Decidir si las rectas son paralelas y distintas o coincidentes o se cortan en un punto:

⎧ x  +  3 y  = 4

⎧ x −  y =1

⎧ x +  y = 4

 a)  ⎨

 b) ⎨

 c) ⎨

⎩ 2 x  +   y  = 5

⎩2 x − 2 y = 2

⎩ x +  y = 5

⎧ x + 4 y = 2

⎧2 x + 4 y =1

⎧2 x +  y = 2

 d)⎨

 e)⎨

 f )⎨

⎩ x − 4 y = 3

⎩4 x + 8 y = 2

⎩2 x +  y = 4

16) Representar los siguientes subconjuntos del plano. 

a) {( x,  y) :  y ≥  4 x + 1}

b) {( x, y) :  x  ≤   y  ≤   4x}

17) Hallar y representar los puntos del plano que verifican:

a) {( x, y):   x. (  y − 1)  ≥  0}

b) {( x, y):   x.( y + 2)  <  0}

18) Dada la ecuación    3x2 + 3y2 = 9. 

a) Verificar que representa una circunferencia. Halle sus elementos y represente geomé-

tricamente. 
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b) Verificar que el punto  A(1,  2 ) está en la circunferencia. 

c) Halle otro punto de la circunferencia que tenga igual abscisa que  A. 

d) Halle otro punto de la circunferencia que tenga igual ordenada que  A. 

19) Dada la ecuación  x2 − 2 x +  y2 = 0. 

a) Verificar que representa una circunferencia. Halle sus elementos y represente geomé-

tricamente. 

b) Verificar que el punto  A(2 +  3 , 1) está en la circunferencia. 

c) ¿Puede hallar otro punto de la circunferencia que tenga igual abscisa que  A? ¿y otro que tenga igual ordenada? 

20) Hallar, usando valores enteros, soluciones de la ecuación 

2

 x =  y  donde  − 4 ≤  y ≤ 4 , y

graficar. 

21) Hallar los elementos de las siguientes cónicas y graficarlas:

a)

2

2

 x +  y = 49

b)

2

 x + 9 y = 0

c)

2

 x + 2 2

 y = 8

d)

2

2

− 2 y = 8 −  x

e)

2

 y = 4 − 2 x

f)

2

2

3 x = 12 − 4 y

g) 9 2

2

 x +  y = 36

h) 4 2

2

 x +  y = 4

i)

2

 x + 9 2

 y = 4

j)

2

2

 x −  y = 1

k)

4 2

 y − 9 2

 x = 36

l)

2 2

 x + 3 2

 y = 24

m)

2

4 x + 3 y =12

n)

2

2

 y −  x = 9

o)

2

2

 x +  y = 49

p)

2

 x + 9 y = 0

22) Graficar:

a)

2

2

 y −  x = 0

b) 4 2

2

 x −  y = 0

c)

4 2

2

 x +  y = 0

23) Representar los siguientes subconjuntos del plano. 

a) {( x, y) :  x2 +  y2 ≥  25}

b) {( x, y) :  x2 +  y2 ≤ 1 ∧   y ≥  x}
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24) Determinar si existe algún valor de  a, de modo que las rectas dadas en cada apartado sean transversales:

a)  x +  a.y =2

b)  2 x +  y =3

c) 3 x +  y =  a

 x +   y =1

 a.  x + 2 y=1

3 x +  y = 4

25) Resolver los siguientes sistemas e interpretar gráficamente la situación:

a) ( x − 1)2 +  y 2 = 4

b) 2 x −  y = 4

 x +  y   = 1 

 x − 2 y = 5

2

2

c) ( x − 1)2 +  y 2 = 1

d)  x  +  y  = 1

 x 2 + ( y − 1)2 = 1

 y = 2 −  x 

2

e)  x  + ( y − 2)2 = 4

2

2

 x  +  y  = 4

26) En los siguientes sistemas, determinar si es posible hallar un valor de  a tal que la recta resulte tangente a la circunferencia. Interpretar gráficamente. 

2

2

2

a)  x  +  y  =1/4

b)  x 2 +  y  = 1

 y =  a. x + 1 

 x +  y =  a 

2

2

2

2

c)  x  + ( y − 1)2 =  a

d)  x  +  y  = 4

 y = 3 a  

 y =  a .x 

27) Hallar si es posible un valor de  a para que los siguientes sistemas admitan solución única. 

2

2

a)  y =  a .x  +  x + 2

b)  y  =  x

 y =  a. x + 2

 y =  a. ( x − 1) 

28) Resolver e interpretar geométricamente los siguientes sistemas:

a)

2

2

 x +  y = 49

b)

2

 x + 9 y = 0

 2x −  y =7

 x −  y  =1

c)

2

 x + 2 2

 y = 8

d)

2

2

− 2 y = 8 −  x

 x + 2y =  0

2

 y = 4 − 2 x

e)

2

2

3 x = 12 − 4 y

f)

9 2

2

 x +  y = 36

   x + y = 1 

2

2

 x −  y = 0

g)

4 2

2

 x +  y = 4

h)

2

 x + 9 2

 y = 4
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2

 y =  x    

 y = 3x + 1 

2

2

 x

 y

29) La orilla interna de una pista de atletismo se describe por la ecuación:

+

=1  y el an-

2

2

 a

 b

cho de la pista es  d. 

Cuando se le pidió a un alumno que dedujera la expresión de la orilla externa de la pista él 2

2

 x

 y

respondió:

+

=1 .  Está bien o mal su respuesta? Justifique la suya. 

2

2

( a +  d)

( b +  d)

NOTA: 

Otros sistemas de medida de longitud: 

Medidas inglesas 

Medidas marinas 

1 pulgada = 2,54 cm 

1 milla marina = 1.852 m 

1 pie = 12 pulgadas =30,48 cm 

1 nudo práctico = 14, 62 m 

1 yarda = 3 pies = 91,44 cm 

1 legua = 5.573 m 

1 milla (inglesa) = 1.609 m 

30) De lectura: Las parábolas tienen varias aplicaciones, una de las más importantes es la propiedad de reflexión. Si un espejo es parabólico, un rayo de luz que proceda del foco de

la parábola se refleja en él siguiendo una línea recta paralela al eje.  Esto también ocurre con los rayos infrarrojos, las ondas de radio y las microondas. 

Los reflectores de los faros de un automóvil son parabólicos y su fuente luminosa está en

el foco (en realidad son paraboloides, parábolas que giran sobre su eje). 

Resolver:  

a) Un faro de automóvil tiene un reflector parabólico de 6 pulgadas de diámetro y 3 de

profundidad, a qué distancia debe colocarse el bulbo luminoso? 

b) Un faro emplea un reflector parabólico de 1 m de diámetro. Qué profundidad debe tener

para que la fuente luminosa se coloque a media distancia entre el vértice y el plano del

borde. 

c) En la línea lateral de un cancha de football se instala un dispositivo para escuchar lo

que se dice en el centro de la cancha. Este dispositivo es un plato parabólico con un

micrófono en su foco. 

El plato tiene 4 pies de diámetro y 16 pulgadas de profundidad (1 pie = 12 pulgadas). 

Considerar un sistema de coordenadas con origen en el vértice de la parábola de modo

que ésta abra hacia la derecha. Hallar una ecuación de la parábola. En qué punto se

debe colocar el micrófono? 
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31) De lectura: Si un cable cuelga bajo su propio peso, no forma un arco de parábola, forma

−  x

 x

⎛

 e +  e ⎞

una catenaria  (de cadena en latín) cuya fórmula es más complicada  ⎜  y =

; su-

2

⎟

⎝

⎠

cede que un cable no tiene uniformemente distribuido su peso en su longitud. Cuando se 

cuelga un puente de un cable, resulta conveniente que el peso quede uniformemente dis-

tribuido en el cable, formando así una parábola. Los arcos de parábola tienen mayor resis-

tencia que otras formas, es así que varias construcciones usan esas formas. 

Resolver: 

−  x

 x

 e +  e

a) Representar

 y =

   en el intervalo [− 2, 2].  

2

b) Hacer un gráfico de la siguiente situación: Las torres de un puente colgante están a 500

pies de distancia entre sí y salen a 100 pies de alto respecto de la superficie de la ruta. 

Los cables principales o  portantes entre las torres ( pilotes) llegan a 10 pies de altura de la carretera en el centro del puente. Hay cables verticales de suspensión ( péndolas) cada 10 pies. 

c) Calcular las longitudes de las péndolas distribuidas de a 50 pies. 

32) Con los datos del ejercicio 5.5.28, demostrar que hay veces en que Plutón está más cerca del Sol que Neptuno. 

33) La Tierra se mueve en órbita elíptica alrededor del Sol y éste está en uno de los focos de esa elipse. La distancia mínima y máxima de la Tierra al Sol son de 91.446.000 millas y

94.560.000 millas respectivamente. ¿Cuál es la excentricidad de la órbita? ¿Cuáles son las

longitudes de los semiejes? 

34) La órbita del cometa Halley tiene una excentricidad de 0.97 y su semieje mayor mide 2885

millones de km. Deducir una ecuación de su órbita, con centro en el origen y eje mayor

contenido en el eje  x . 

35) Hacer un gráfico de la siguiente situación: Un salón de 10 pies de ancho,  tiene el techo semielíptico. Las paredes tienen 10 pies de altura y la bóveda se eleva a  12 pies en su

centro. 

Determinar una ecuación de la bóveda con el eje  x coincidente con la horizontal y el origen con el centro de la elipse. 

36) Un cometa tiene una órbita hiperbólica al pasar cerca del Sol y alcanza su  perihelio  (punto más cercano al Sol) en el vértice a 43 millones de millas de él. 

Cuando la recta que une al Sol con el cometa es perpendicular al eje transversal de la

hipérbola, el cometa está a 137 millones de millas del Sol. 
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Hacer un gráfico de la situación (en una escala conveniente). Determinar una ecuación de 

la órbita del cometa, si sitúa el eje  x conteniendo al transversal y el origen en el centro. 

Dónde está el Sol? 

37) Se ha visto que las partículas alfa apuntadas hacia el núcleo de un átomo son repelidas y siguen una trayectoria hiperbólica. 

Se dispara una partícula alfa hacia el núcleo de un átomo, que se considera en el origen de un sistema, desde un punto muy lejano de la recta  y =2 x. Se desvía siguiendo una trayectoria que tiende a   y = −  2 x, y llega hasta 10 angstroms del núcleo. 

(1 angstrom = 10 − 10 m) 

Hacer un gráfico de la situación (en una escala conveniente) 

Deducir una ecuación de la trayectoria de la partícula. 
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ANEXO: Recordando Trigonometría… 

Recordemos que hay definiciones básicas que son una herramienta importante que sirven 

para medir lados y ángulos de los triángulos. Las fórmulas que relacionan las medidas de los lados y ángulos de un triángulo rectángulo fueron el inicio de esta rama de la Matemática. 

Surgieron así las relaciones trigonométricas de seno, coseno, tangente entre otras. Luego se extendieron estas relaciones a triángulos en general y luego siguieron definiciones para ángulos de medidas entre 00 y 3600 (que medidos en radianes se corresponden a 0 y  2π , son ángulos cuyas representaciones están dentro de una circunferencia). Posteriormente se extendieron para valores de ángulos cuya medida es un número real cualquiera, dando origen a 

algunas funciones de dominio contenido en los números reales, que se conocen como funcio-

nes trigonométricas y que se estudian y aplican en Análisis Matemático y Física, por ejemplo. 

En esta materia usaremos principalmente de las relaciones trigonométricas para ángulos 

entre 00 y 3600.  Se aplicarán en los temas: ecuaciones de rectas,  vectores y números complejos. 

π

Consideremos inicialmente un ángulo  θ , 0 ≤ θ ≤

, inscripto en una circunferencia, el lado 

2

final del ángulo intercepta a la circunferencia en un punto  P( x, y):  

Se definen entonces: 

 y

 sen θ  =   d( O,  P)

 x

 cos θ  =   d( O,  P)

Estas definiciones están dadas por las relaciones entre los catetos y la hipotenusa de un 

triángulo rectángulo (desde ya que se asume que el triángulo es no degenerado, es decir que existe efectivamente como tal, ninguno de los lados tiene longitud nula). Estas definiciones iniciales se pueden generalizar para cuando  x ó  y es 0.  Si  P( x, y) está sobre alguno de los ejes x = 0, ó   y = 0. 

Estas relaciones permiten obtener:  

⎧ x =  d( O,  P).cosθ

⎨⎩ y =  d( O,  P).  sen θ

También se define   



 y

 tan  θ =

. 

 x

Para pensar:  

a) ¿En qué caso NO está definida esta relación? 
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π

b) Dibujar un ángulo θ ,0 ≤ θ ≤

donde   tanθ  no está definida. 

2

c) Explique qué vínculo encuentra entre las tres relaciones definidas. 

π

Si el ángulo  θ , 

≤ θ ≤ 2π   se definen de igual manera:  

2

 y

 x

 sen θ  = 

 cos θ  = 

y    



 y

 tan  θ =

 d ( O,  P)

 d ( O,  P)

 x

Desde ya que estos casos de medida de ángulos no permiten la interpretación de los cate-

tos e hipotenusa de un triángulo rectángulo. 

π

Para pensar:   Dibujar un ánguloθ , 

≤ θ ≤ 2π    donde tan

 y

θ =

no está definida. 

2

 x

Observaciones importantes: 

π

1) Dado θ , si 0 ≤ θ ≤

,  por propiedades de los triángulos rectángulos es fácil ver que 

2

 x ≤  d ( O,  P)  y que   y ≤  d( O,  P) , por lo cual: x

 y

 cos θ  = 

y   sen θ  = 

son números reales menores que 1 y positivos. 

 d( O,  P)

 d( O,  P)

π

2) Dado θ , si

≤ θ ≤ 2π , por estar el punto  P( x, y) sobre la circunferencia es fácil observar 2

que   x ≤  d ( O,  P)  y que   y ≤  d( O,  P) , por lo cual: x

 y

 cos  θ  = 

y   sen  θ  = 

son números reales que poseen valor absoluto 

 d ( O,  P)

 d ( O,  P)

menor que 1  

3) Los valores de 



 y

 tan  θ =

en los ángulos que está definida, es un número real. Además 

 x

para cada número real  r, seguro existe un θ  tal que    tan θ =  r .   

4) Valores exactos importantes (que es muy bueno recordar):

 sen  0D = 0            cos 0D  = 1        

 sen 90D =1          cos 90D = 0

D

1

D

3

D

3

D

1

 sen 30 =         cos 30 =

 sen 60 =

cos 60 =

2

2

2

2

D

2

D

2

 sen 45 =

cos 45 =

2

2

Observar que el seno de un ángulo es igual al  

coseno de su ángulo complementario. 

Si  α + β = 90D , α y β se llaman complementarios  
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EJEMPLO 1: 

π

Dibujar un ángulo θ  del segundo cuadrante (es decir que  θ , 

≤ θ ≤ π  ) con punto sobre la 

2

circunferencia de intersección,  P (– 2, 3). Veamos cómo son  las relaciones trigonométricas: 2

2

2

2

 d( O,  P) =  x +  y = ( 2

− ) + 3 = 13

 y

3

 sen θ  = 

=

 d( O,  P)

13

 x

2

−

2

 cos θ  = 

=

= −

 d( O,  P)

13

13

 y

3

3

y    tan θ =

=

= −

 x

−2

2

EJEMPLO 2:  

Dibujar un ángulo  β de medida π  radianes inscripto en una circunferencia de centro en  O(0.0) y radio  r.  Y hallar los valores de seno, coseno, tangente. 

2

2

2

2

2

 d( O,  P) =  x +  y = (− r) + 0 =  r =  r y

0

 sen   β = 

= = 0    

 d( O,  P)  r

 x

− r

 cos   β = 

=

= 1

−  

 d( O,  P)

 r

 y

0

y   tan  β =

=

= 0  

 x

− r

EJEMPLO 3: 

Hallar los valores de seno, coseno, tangente de 

0

α = 317 . 

Dibujamos aproximadamente un ángulo de 3170. 

α 

El punto en que se corta a la circunferencia es un 

punto  P de abscisa positiva y ordenada negativa. 

Como no tenemos esos valores, en este caso para el 

cálculo se utilizará una calculadora. 
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Para esta tarea se  requiere una calculadora científica. Existe esta herramienta también entre las herramientas de Windows. 

Sabemos, por la posición del punto  P, que el seno es negativo, el coseno es positivo y la tangente es negativa. 

 sen 317° = – 0,6819, 

 cos 317°  = 0,7313, 

y   tan 317°  = – 0,9325 

Estos valores son aproximados y en general dependiendo del grado de aproximación que 

deseemos será el número de cifras decimales a considerar. Por lo general son suficientes cuatro. 

EJEMPLO 4: 

Hallemos ahora los valores (aproximados) de la abscisa y la ordenada del punto  P del ejemplo 3 si se sabe que la distancia desde el origen del sistema de coordenadas  O a  P es 5. 

⎧  x =  d( O,  P).  cos θ = 5.0,7313 

⎨

Por lo tanto:  x =  3,6567      e      y =  – 3,4099   

⎩ y =  d( O,  P).  sen  θ = 5.( 0

− ,6819) 

Con lo cual el punto en cuestión es:       P (3,6567;  − 3,4099)

EJERCICIO 5: 

a) Hallar las equivalencias entre las medidas de los siguientes ángulos (Se sugiere representar gráficamente...):

π

45° equivale a ......... radianes 

radianes  equivale a ......... °

π

60° equivale a ......... radianes

radianes equivale a .........°

3

210° equivale a ........radianes

3π radianes equivale a .........°

5

b) Hallar los valores de seno, coseno, tangente de los ángulos dados en a). 

EJERCICIO 6: 

a) Determine el punto  P(–  3,  –  5) en un sistema de coordenadas cartesianas ortogonales de origen  O. Dibuje una circunferencia con centro en  O. Marque el ángulo α que determina el eje positivo de las abscisas y el segmento   OP . 
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b) En que cuadrante está el ángulo α? 

c) Halle los valores de seno, coseno, tangente de α. 

EJERCICIO 7: 

En un triángulo rectángulo la hipotenusa mide 134 cm y uno de los ángulos agudos mide 35°. 

Hallar la medida de los catetos y del otro ángulo. 

EJERCICIO 8: 

En un triángulo rectángulo, los catetos miden 32,10 cm y 15,30 cm. Hallar la medida de la hipotenusa y el valor de los dos ángulos agudos. 

Identidades Fundamentales: 

 sen α

Para todo ángulo α tal que  cos α ≠ 0,  tag  α = cos α

Para todo ángulo α , 

2

2

cos α +  sen  α =1   

Para todo ángulo α  y todo ángulo  β , se cumple: 

cos (α + β ) = cosα .cos β −  sen α .  sen  β  

 sen (α + β ) =  sen α .cos β + cosα .  sen  β  
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CAPÍTULO 6 

Vectores y Aplicaciones a la Geometría 

En este Capítulo se generalizará la noción de los vectores o flechas que han usado en la 

representación de las fuerzas en Física en la escuela secundaria. También de la Física son los ejemplos de velocidad y aceleración, que al igual que las fuerzas involucran dos aspectos: una intensidad (la cantidad de fuerza, velocidad o aceleración) y una dirección. El otro aspecto para tener en cuenta de estos conceptos físicos es el sentido. 

Toda entidad u objeto que involucre esos aspectos (intensidad, dirección y sentido) se llama 

 vector. Cuando representamos un vector por una flecha, la longitud de el a representa su intensidad y la dirección de la flecha la dirección del vector, además al dibujar en la flecha el vértice de la misma indica el sentido en que actúa según esa dirección. 

Los números son objetos tales que su magnitud se puede indicar en una escala y es por ello 

que en este contexto nos referimos a ellos como  escalares. 

Estudiaremos vectores en el plano y en el espacio. Para ello necesitaremos sistemas de re-

ferencia correspondientes a los vectores que tratemos (del plano o del espacio), que son los sistemas de coordenadas cartesianas. Trabajaremos en ambos casos con sistemas de coordenadas ortogonales. 

El sistema para el plano es el que ya se vio en el capitulo anterior. Para el espacio (de tres dimensiones) se considerará la intersección de tres planos perpendiculares, lo que originará tres rectas que llamaremos ejes coordenados. 

1. Pensando en vectores…
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Para dos puntos  P1 y  P2 en el  plano, con un sistema de coordenadas cartesianas ortogonales, cuyas  respectivas coordenadas son  P1( x1, y1) y  P2( x2, y2) ,  se traza el segmento   P P  que 1 2

los une. 

A ese segmento se lo orienta y da un 

sentido, poniendo una punta de flecha, 

por ejemplo en el punto  P2. 

En este caso lo anotaremos   P P  y lo 

1 2

llamaremos   vector con origen en  P1  y 

 extremo final en P2. 

Sea   A  otro punto, que Ud. determinará para 

que  O P1 P2 A sea un paralelogramo. 

¿Cómo son las longitudes de los segmentos  

 P P  y   OA ? 

1 2

¿? 

Ya que se ha construido un paralelogramo di-

chas longitudes son iguales. 

Ahora transformemos    OA  en un vector de origen en  O. Al vector   OA  se lo ha construido de igual longitud y sentido que   P P . 

1 2

Llamaremos  módulo del vector  P P

1 2

y lo anotaremos 

2

2

 P P = ( x −  x ) + (  y −  y ) ,  es decir coincide con la distancia entre los 1 2

2

1

2

1

puntos  P1 y  P2. 
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EJERCICIO 6.1.1 

Dibuje al menos 5 flechas con igual sentido que   OA  y que formen paralelogramos, tal que alguno de sus lados sea   OA   (como se hizo con   P P ). 

1 2

EJERCICIO 6.1.2 

a) Dados los puntos  P1 (1, 3) y  P2 (3, – 1) repita la construcción anterior. (Es decir siga los pasos hasta la construcción de   OA ). 

b) Halle el módulo de   P P  y compruebe que coincide con el de    OA . 

1 2

c) Dibuje varios vectores con origen distinto de  O, que tengan igual sentido y módulo que   OA . 

COMENTARIO: El conjunto de vectores que ha construido en c) se llaman vectores libres 

y son vectores que se llaman  equivalentes entre si. 

El concepto de equivalente en Matemática se utiliza muy frecuentemente. Su significado es casi igual al cotidiano. Cosas que no son iguales pero que pueden sustituirse entre sí de alguna manera. 

Para profundizar en esta idea puede verse el Apéndice 2 y el Capítulo 4. 

2. Comencemos por los vectores del plano... 

Partimos de la representación de los vectores o flechas en el plano y haremos algunas for-

malizaciones. 

Un plano en el que se ha introducido un sistema de coordenadas se designa por 

2

\ y en

el cual se definirán operaciones como se verá 

más adelante. Es decir   

2

\ = {( a,  b) :  a ∈ \ ∧  b∈ }

\

Este conjunto es el subyacente (que sirve 

de base o sustento) para la definición de ope-

raciones. 

Otra manera de tratar los puntos de  2

\  es

considerarlos como los extremos de las "fle-
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chas" o vectores cuyo origen es el origen del sistema de coordenadas. 

Por comodidad o abuso del lenguaje nos referiremos al vector tanto como  P,  el par ( a, b), OP  o también por   v . 

Además se define  para   v = ( a,  b)  u = ( c,  d )  y la igualdad se anota v =  u    si y sólo si    a =  c ∧  b =  d

Las operaciones sobre  2

\  se definen como sigue:

La  suma  + , como: 

 v = ( a,  b)

 u = ( c,  d)

 v +  u = ( a +  c,  b +  d)

Así resulta una operación interna de  2

2

2

\ × \ → \ , es decir dados dos vectores el resul-

tado de sumarlos es un vector. 

Y se define el producto por un escalar  .   como: 

G

2

 r ∈ \ y    v = ( a,  b)∈ \ , 

 r •  v = ( r.  a,  r.  b)  

En este dibujo se 

tomó también 

 r > 1 
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Esta operación es externa de  \ , va de  

2

2

\ × \ → \ , es decir: a un número real y a un

vector, se le asocia un vector. 

EJEMPLO 6.2.1 

Si   v  = (2, – 3) y   u = ( 7, 9) entonces  

 v  +   u  = (2 + 7, – 3 + 9) = (9, 6) 

3.  v + 5.  u  = (3.2 , 3.(– 3) ) + (5.7 , 5.9) = (6, – 9) + (35, 45) = ( 41, 36) Haga Ud. la representación gráfica. 

EJEMPLO 6.2.2 

•

Si 

 v  = (2,  – 3) y   o = (0, 0)  entonces   v  +   o  = (2 + 0 , – 3 + 0) = (2, – 3), 

¿qué opina de   o ? 

•

Si 

 v  = (2, – 3) y   u = ( – 2, 3)  entonces     v  +   u  = (2 + (– 2), – 3 + 3) = (0, 0) 

¡Cómo tengo 

¿Qué relación hay entre   v  y   u ? ¿Cómo los puede indicar? 

que pensar! 

¿Se anima a poner un nombre a   u  respecto de   v ? 

Efectivamente, el opuesto. 

•

Si 

 v  = (1, 7) qué ocurre si lo multiplico por 0, por 1 y por – 1? 

0.    v = (0.1, 0.7) = (0, 0)

1.    v = (1.1, 1.7) = (1, 7)

– 1.    v  = (– 1.1, – 1.7) = (– 1, – 7) 

¿Qué puede concluir?  ¿Será lo mismo para cualquier vector   v ? 

Pruebe lo que conjetura a partir de este ejemplo. 

EJEMPLO 6.2.3 

Para   v  = (2, – 3) y   u = (– 2, 3), hallar sus módulos: 

2

2

 v = 2 + ( 3

− ) = 4 + 9 = 13

2

2

 u = ( 2

− ) + 3 = 4 + 9 = 13

¿Qué puede concluir? 

¿Será lo mismo para cualquier vector   v  y su opuesto   u ? 

Pruebe lo que conjetura a partir de este ejemplo. 
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Por la existencia del opuesto se puede definir la resta. 

Se anota: 

 v +(− )

 u = v −  u , es decir la resta de vectores

EJERCICIO 6.2.4 

a)

Demostrar que las propiedades (A) asociativa, (C) conmutativa, (N) existencia del

neutro y (O) existencia del opuesto,  valen en la suma definida sobre  2

\ . 

Tome vectores generales y verifique: 

(A):  ( v +  u) +  w =  v + ( u + )

 w

(C):   v +  u =  u +  v

(N): Existe   O = (0,0) tal que para todo vector   v ,  O +  v =  v +  O =  v (O): Para todo vector   v , existe  − v  tal que  −  v +  v =  v + (−  v) =  O

b) Haga la interpretación geométrica de las mismas. 

EJERCICIO 6.2.5 

a) Demostrar que las propiedades (P1), (P2), (P3) y (P4),  valen en el producto por el escalar definido. 

(P1):   Para todo  r  y  t números reales y todo vector   v ,     r.( t.  v) = ( r.  t).  v (P2): Para todo  r  número  real y todo par de vectores   v  y  u ,  r.( v +  u) =  r.  v +  r.  u (P3): Para todo vector   v ,  1.  v  =   v



(P4):   Para todo  r y  t números reales y todo vector   v ,     ( r +  t).  v =  r.  v +  t.  v b) Haga la interpretación geométrica de las mismas. 

Para ello use vectores de distintos cuadrantes, además reales positivos y reales negativos

para tener una idea amplia de la operación. 
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3. Dos vectores destacados ... 

Dado cualquier vector   v = ( a,  b) , lo podemos expresar como:   v = ( a,  b) = ( a,0) + (0,  b) Además se tiene que 

( a,0) = . 

 a (1,0)

(0,  b) = . 

 b (0,1)

Por lo que resulta que   v = ( a,  b) = . 

 a (1,0) + . 

 b (0,1)

A estos dos vectores tan especiales, que nos permiten escribir cualquier vector del pla-

no como combinación de ellos,  los "bautizamos" como:  

 i = (1,0)

 j = (0,1)  

Decimos que son la base canónica de   2

\

EJEMPLO 6.3.1 

Dado el vector   v = (2, 5) se puede escribir como   v = (2,5) = 2.  î + 5.  j  , y  para el vector u = (4, 7 ) = 4.  î + 7.  j . 
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Es inmediato que para   v = ( a,  b) = . 

 a î + . 

 b j   los números  a y  b  que permiten escribir a   v

son únicos y se los llama las coordenadas de   v  respecto de la base  {  i ,  j } . 

Las coordenadas de   v  respecto de la base canónica  son 2 y 5, y las de   u  son 4 y 7. 

EJERCICIO 6.3.2 

Halle los vectores opuestos a   v  y a   u  de 6.3.1 y calcule la suma de los vectores   v  y    u , y luego sus coordenadas en la base canónica. ¿Qué puede decir? ¿Valdrá en general lo que 

observa? Justifique. 

EJERCICIO 6.3.3 

Dados los vectores   v  = (– 1, 0),  u  = (3, – 5),  w  = (0, 4),  r  = (5, – 2) a) Representarlos y escribirlos como combinación de la base canónica. 

b) Hallar los vectores 3.  v ,  – 5.  u . Representarlos y escribirlos como combinación de la base canónica. ¿Qué observa de las coordenadas? 

c) Hallar los vectores 4.  w ,  – 2.  r . Representarlos y escribirlos como combinación de la base canónica. ¿Qué observa de las coordenadas? 

d) Hallar los vectores 2.  v   – 3.  u ,  4.  w  + 3.  r . Representarlos y escribirlos como combinación de la base canónica. ¿Cuáles son las coordenadas en {  i ,  j } ? 

EJERCICIO 6.3.4 

Dados los vectores   v  = – 1.  i − 3  j  ,  w  = (0, 4) ,  r  = 5. (5, – 2) a) Representarlos y escribirlos como combinación de la base canónica. 

b) Hallar los vectores 3.  v   –    w +   r . Representarlos y escribirlos como combinación de la base canónica. ¿Qué observa de las coordenadas? 

c) Hallar 

el 

vector  x si sabe que  3.  x + 2.  v  = 4.  w  –  r

d) Hallar el vector opuesto a    v  +   w . 

e) Hallar  x si  2.  x + 5.  r =  – 15.  w  

f)

Hallar  ½ .  x,  si  7.  x – 9.  r =  4. (  v   –   w ) 

405

VECTORES Y APLICACIONES A LA GEOMETRÍA – CAPÍTULO 6 

EJERCICIO 6.3.5:  

¡Cómo 

a) Hallar los módulos de los vectores del ejercicio 6.3.4. 

razono! 

1

1

b) Hallar el módulo del vector

⋅ v   y 

⋅ w   para   v  y   w  de 6.3.4 

 v

 w

c) Lo que resultó en b) ¿será un caso particular o valdrá para cualquier vector del plano? 

4. Sigamos con  los vectores del espacio... 

Ahora se tratarán las "flechas" que se encuentran en el espacio. 

Para referirnos a ellas se hará un tratamiento similar al realizado anteriormente para los vectores del plano. 

Un sistema de referencia... 

Para ubicar y determinar un punto del espacio usual respecto de otro punto se necesitan dar tres valores de referencia: como difiere en "el ancho", en "el largo" y en "el alto". Por ello es que ahora un sistema de referencia debe tener tres ejes coordenados, que se obtienen como la 

intersección dos a dos de tres planos, llamados planos coordenados. 

Se verá  el caso en que estos  planos al cortase forman ángulos rectos. Así se construye el sistema de coordenadas cartesianas ortogonal. 

Estas intersecciones dividen al espacio en 8 regiones, cada una de las cuales llamada octante. 

En el caso del plano las coordenadas se llaman habitualmente   x e  y. En el espacio las coordenadas se llaman  x, y  y   z. 

Los planos coordenados se denominan plano  xy, plano  xz  y plano  yz.  

Los ejes se obtienen como intersección de cada dos de ellos. Los tres se cortan en un pun-

to: origen del sistema. 

La recta intersección del plano  xy con el plano  xz, se llama  eje x,  la recta intersección del plano  xz con el plano  yz, se llama  eje y,  y  la recta intersección del plano  yz  con el plano  xz, se llama  eje z. 

El diagrama siguiente ilustrará lo explicado sobre la intersección de los planos: 
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En la figura se puede apreciar una vista del primer octante y de un punto en él. En este caso se ha marcado el punto (2, 3, 3). 

En este esquema para dar idea de volumen, se han dibujado planos limitándolo. 

Los ejes coordenados son similares a los del plano. Son rectas graduadas. 

Una forma de determinar las coordenadas de un punto  P, se proyecta el punto sobre el plano  xy. Así se determina  P*. 

Las proyecciones de  P* sobre los ejes  x e  y (paralelamente al otro eje) dan los valores de  x y de  y  asociados a  P*. 

Para obtener el valor de  z, se proyecta  P sobre el eje  z paralelamente al plano  xy, lo que resulta paralelo al segmento  OP*. 
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EJEMPLO 6.4.1 

Dibujar un punto  P de coordenadas cartesianas (3,1, 2). 

EJERCICIO 6.4.2        

Dibujar en un sistema de coordenadas cartesiano ortogonal para el espacio, los puntos de coordenadas  (1,1, 0), ( 3, – 1, 2), (– 1, 0, 1),  (5, 5, 5), (0, 0, 3), ( 2, 0, 0), (0, – 2, – 3). 

Camino a los vectores... 

La motivación sigue siendo las "flechas" de la Física, por ejemplo las fuerzas. 

El espacio en el que se ha introducido un sistema de coordenadas se designa por  3

\ , en el

cual se definirán operaciones como se verá más adelante. Es decir   

3

\ = {( a,  b,  c) :  a ∈ \ ∧  b∈ \ ∧  c ∈ }

\

Este es el conjunto subyacente (que sirve de base o sustento) para la definición de opera-

ciones. 

Otra forma de tratar los puntos de  3

\  es  considerarlos como los extremos de las "flechas" 

o vectores cuyo origen es el origen del sistema de coordenadas. 

También por comodidad o abuso de lenguaje nos referiremos al vector tanto como  P, la terna ( a ,b ,c),  OP  o también por   v . 

Realice usted la interpretación geométrica de lo dicho. 

Además se define  para   v = ( a,  b,  c)  u = ( d, , e f )  la igualdad y se anota     

 v =  u    si y sólo si    a =  d ∧  b =  e ∧  c =  f 408
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Como en el caso planario se pueden definir para  3

\  las operaciones de suma y producto

por el escalar como sigue: 

La suma  +  por: 

 v = ( a,  b,  c)

 u = ( d, , 

 e f )

 v +  u = ( a +  d,  b + , 

 e c +  f )

Así resulta una operación interna de   3

3

3

\ × \ → \ . Dados dos vectores, al sumarlos

obtenemos un vector, por la definición de suma. 

El producto por un escalar .  como: 

3

 r ∈

y    v = ( a,  b,  c)∈

es      r ⋅  v = ( r.  a,  r.  b,  r.  c) Esta operación es externa  de 

. A un número real y a un vector se le asocia un vector, va 

de  

3

3

×

→

. 

EJEMPLO 6.4.3 

Si   v  = (2, − 3, 3)  y    u = (7,  9, 5) entonces  

 v  +   u  = (2 + 7, – 3 + 9, 3 + 5) = (9, 6, 8) 

3.  v + 5.  u  = (3.2 ,  3.(– 3) , 3.3) + (5.7 , 5.9 , 5.5) = (6, – 9, 9) + (35, 45 , 25) =

= (41, 36, 34) 

Haga Ud. la representación gráfica. 

EJEMPLO 6.4.4 



Si 

 v  = (2, – 3, 3) y   o = (0, 0, 0)  entonces   v  +   o = (2 + 0 , – 3 + 0, 3 + 0) = (2, – 3, 3), ¿qué opina de   o ? 



Si 

 v  = (2, – 3, 3) y   u = ( – 2, 3, – 3)

entonces   v  +   u  = (2 + (– 2), – 3 + 3, 3 + (– 3) ) = (0, 0, 0)  

¿Qué relación hay entre   v  y   u ? Se dirá que   u  es el opuesto de   v .  ¿Cómo los puede indicar? 

¿De acuerdo? Justifique el nombre. 



Si 

 v  = (1, 8, 7)  ¿qué ocurre si lo multiplico por 0, por 1 y por – 1? 

0.  v = (0.1, 0.8, 0.7) =   o  ;       1.  v  = 1. (1, 8, 7) =   v    y

– 1.  v  = – 1. (1, 8, 7) = (– 1.1, – 1.8, –  1.7) =  −   v  

También en   3  generalice los resultados de estos ejemplos... 
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Por la existencia del opuesto de todo vector, se puede definir la resta. 

Anotaremos: 

 v  + (− )

 u   =   

 v −  u , como la  resta de vectores en  3

EJERCICIO 6.4.5 

a) Demostrar que las propiedades (A), (C), (N) y (O) dadas en el ejercicio 6.2.4,  ahora valen para  la suma definida sobre  3 . 

b) Haga la interpretación geométrica de las mismas. 

EJERCICIO 6.4.6 

a) Demostrar que las propiedades (P1), (P2), (P3) y (P4) dadas en el ejercicio 6.2.5, ahora valen en el producto por el escalar definido para  3

b) Haga la interpretación geométrica de las mismas. 

De manera natural se generalizan los conceptos de  segmentos dirigidos determinados por puntos del espacio y todo lo relacionado con la equivalencia definida sobre ellos. Los puntos tienen en esta situación tres coordenadas. 

La  magnitud de un segmento   PQ , o  magnitud o  módulo del segmento dirigido o vector PQ   

2

2

2

 PQ =  PQ = ( 2

 x − 1

 x ) + (  y 2 − 1

 y ) + ( z 2 − 1

 z )  siendo   P( 1

 x , 1

 y , 1

 z )

y Q( 2

 x ,  y 2,  z 2) . 

Esto generaliza la noción de distancia entre dos puntos, para puntos de  3 . 

Así entonces si el vector es   OP = ( x,  y,  z) , su módulo es: 2

2

2

 OP =  x +  y +  z

Si el módulo de un vector   v = ( a,  b,  c) del espacio vale 1, se dice que el vector es unitario. 

De igual manera se dice unitario un vector del plano cuyo módulo es 1. 
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Ahora son tres los vectores destacados... 

Dado cualquier vector   v = ( a,  b,  c) , se puede expresar como v = ( a,  b,  c) = ( a,0,0) + (0,  b,0) + (0,0,  c) Y se tiene que 

( a,0,0) = . 

 a (1,0,0)

(0,  b,0) = .(

 b  0,1,0)

(0,0,  c) = . 

 c (0,0,1)

Luego resulta: 

 v = ( a,  b,  c) = . 

 a (1,0,0) + . 

 b (0,1,0) + . 

 c (0,0,1)

A estos tres vectores especiales que nos  permiten escribir cualquier vector del espacio 

 como combinación  de ellos,   los "bautizamos" con: i = (1,0,0)

 j = (0,1,0)

 k = (0,0,1)  

Decimos que son la base canónica  de  3 . 

EJEMPLO 6.4.7 

Dado el vector   v = (2, 5, 4) se puede escribir como   v = (2,5, 4) = 2.  î + 5.  j + 4.  k  , y  para el vector    u = (4, 7 , − 3) = 4 .  î + 7 .  j + ( − 3).  k . 
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Es inmediato que para   v = ( a, , 

 b c) = . 

 a î + . 

 b j + . 

 c k   los números  a,  b  y  c  que permiten 

escribir a   v  son únicos y se los llama las coordenadas de   v  respecto de la base {  i ,  j ,  k} . 

Las coordenadas de   v  respecto de la base canónica son 2, 5 y 4, y las de   u  son 4, 7 y – 3. 

Halle los vectores opuestos  a    v   y  a    u ,  y calcule la suma de los vectores    v  y    u  y luego dé sus coordenadas en la base canónica. ¿Qué se puede  decir? ¿Será en general lo que 

observa? 

EJERCICIO 6.4.8 

Dados los vectores   v  = (– 1, 0, 0),  u  = (6, 3, – 5),  w  = (0, 0, 4),  r  = (5, – 2, 2) a) Representarlos y escribirlos como combinación de la base canónica. Hallar sus módulos

b) Hallar los vectores 3.  v ,  – 5.  u . Representarlos y escribirlos como combinación de la base canónica. ¿Qué observa de las coordenadas? 

c) Hallar los vectores 4.  w ,  – 2.  r . Representarlos y escribirlos como combinación de la base canónica. ¿Qué observa de las coordenadas? 

d) Hallar los vectores 2.  v  – 3.  u ,  4.  w + 3.  r . Representarlos y escribirlos como combinación de la base canónica. ¿Cuáles son las coordenadas en {  i ,  j ,  k} ? 

EJERCICIO 6.4.9 

a) Represente 

en  3  el vector de coordenadas 5, 6 y – 9 en la base canónica. 

b) Expresar como terna el vector   v = . 

− î +3.  j +2.  k y representar. 

c) Expresar como terna el vector   u = 2. 

−  î +3.  j  y representar. 

d) Expresar como terna el vector   w = −.  î − .  k  y representar. 

e) Hallar y representar el vector   r  si se verifica que 3.  r –  2.  î + 3.  j =  5. 

−  î + 3.  j +  k

f)

Para cada uno de los vectores dados halle el módulo. 

5. Producto escalar de vectores

Vamos a estudiar un producto entre vectores, que dará un número real y permite hacer al-

gunas mediciones entre distintos aspectos de los vectores que intervienen en ese producto. 
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Dados dos vectores   v  y   u  no nulos, se considera un punto  O y puntos  P y  Q de modo que v   y   OP   son “equivalentes”  y    u  y   OQ  son “equivalentes”. Ahora   OP  y   OQ  están aplicados ambos a un punto común O. 

El ángulo θ  determinado por los vectores fijos    OQ   y     OP  no depende de la elección del punto  O,  sólo depende de los vectores   u   y    v . 

Se denomina ángulo entre   u   y    v .  

Este ángulo queda unívocamente determinado si se considera  que debe cumplir 

0 ≤ θ ≤ π . 

Observar que las consideraciones anteriores y la definición de ángulo entre vectores es in-

dependiente que los vectores estén en el plano o el espacio. 

Se define un concepto vectorial que permite calcular el ángulo entre dos vectores usando 

las componentes de ellos. 

Para cada par de vectores    u  y   v   se asocia un número real llamado producto escalar   o producto  interior ,   indicado por    u  .  v   que es determinado por u  .  v   =   u .  v .cosθ  
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Donde:  

 u  es el módulo de   u , 

 v  es el modulo de   v   

y θ   es el ángulo entre   u   y    v  

Pensemos: ¿Cuánto vale el producto escalar entre   u   y   v , si  u  =   v ? 

¿…? 

Podemos enunciar la propiedad: 

♦ PROPIEDAD 6.5.1

2

Sea   u  un vector, siempre se cumple que:  . 

 u u =  u

Demostración:  

Por definición      . 

 u u =  u .  u .cosθ  

Como el ángulo θ = 0° , por lo tanto: 

2

 u.  u =  u .  u .cos 0° =  u

♦ 

Por convención  θ  es de 90°  si alguno de los vectores es nulo. 

Recordar que la longitud o módulo de un vector es igual para todos los segmentos dirigidos 

equivalentes. 

Por lo tanto si se considera  O en el origen del sistema de coordenadas, los puntos  Q  y   P 

de respectivas coordenadas ( a, b, c) y ( d, e, f )  se tiene que:  

2

2

2

 u =  a +  b +  c

y  

2

2

2

 v =  d +  e +  f

en el caso de vectores del espacio (haga Ud. la comprobación...) 

Para el caso de vectores del plano las coordenadas de los puntos   Q  y   P  sean  pares ordenados ( a, b) y (c , d)  respectivamente, así resulta que 
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2

2

 u =  a +  b   y 

2

2

 v =  c +  d . 

Claramente el producto interno entre   u   y   v   se anula si    u = 0 ,  v =0   ó   cosθ = 0 . 

Por esto, dos vectores se dicen perpendiculares u ortogonales si el producto interno entre ellos es 0. 

Probaremos algunos resultados importantes sobre el producto escalar, además de muy 

práctico. 

Pues de acuerdo a la definición para calcularlo, tendríamos que poder determinar el ángulo 

entre los vectores, cosa que no resulta sencilla y desde ya no exacta en la mayoría de los casos. 

♦ TEOREMA 6.5.2

La expresión del producto interno o escalar por medio de las componentes de los vectores 

es la siguiente:  

Para    u   y    v  del espacio dados por  ( a, b, c) y ( d, e, f) (1)  

 u .  v  =  a. d +  b. e +  c. f 

Para   u   y    v  del plano dados por  ( a, b) y (c,  d) 

(2)  

 u .  v  =  a. c +  b. d 

Idea de la demostración: (se hará en el espacio y quedará para el lector hacerla para el plano) 

Es claro que si alguno de los vectores es nulo ambos miembros de  (1) son 0.  Supongamos que   u  es nulo,  u = (0,0, )

0

Luego  

 u.  v = (0,0 )

,0 . ( d, , 

 e f ) .cosθ = 0. ( d, , 

 e f ) .cosθ = 0  

Y también:  

 u.  v = 0.  d +0.  e+0.  f = 0
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Consideremos el caso que ambos vectores son no nulos. 

Sin pérdida de generalidad, por la “equivalencia”  introducida entre los vectores, se puede considerar que   u   y    v  están fijos en un origen  O, y considerar un triángulo como en la figura. 

Usando el teorema del coseno (es un resultado de trigonometría que generaliza el teorema de Pitágoras) y definición del producto interno resulta: 

2

2

2

2

2

 u −  v =  u +  v − 2.  u .  v  cosθ  =  u +  v − 2. . 

 u v

(1) 

Como estamos trabajando en el espacio, considerando la fórmula de distancia y la definición de módulo de vectores, se tiene: 

2

2

2

2

2

 u −  v =  PQ = ( d −  a) + ( e −  b) + (  f −  c) Haciendo cuentas y conmutando convenientemente, obtenemos: 

=  2

2

2

 a +  b +  c +  2

2

2

 d +  e +  f − 2 . 

 a d − 2 . 

 b e − 2 . 

 c f

2

2

Además 

2

2

2

 u =  a +  b +  c   y 

2

2

2

 v

=  d +  e +  f  . Por lo que reemplazando nos queda: 

2

2

2

 u −  v =  u +  v − 2.( . 

 a d + . 

 b e + . 

 c f ) (2) 

Igualando las expresiones de (1) y (2) tenemos que:  

2

2

2

2

 u +  v − 2. . 

 u v  =   u +  v − 2.( . 

 a d + . 

 b e + . 

 c f )  

que simplificando: 

 u.  v  =  . 

 a d + . 

 b e + . 

 c f

Quedando demostrada la propiedad. 

♦
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EJERCICIO 6.5.3 

Realice la demostración del teorema 6.5.2 para el caso de vectores del plano. 

EJEMPLO 6.5.4 

Hallar el producto escalar entre los vectores   u  = (2, 1, 4)  y    v  = (0, 3, 5) Por lo demostrado en 6.5.2,  u .  v  = 2. 0 + 1. 3 + 4. 5 = 0 + 3 + 20 = 23 

Como el producto es no nulo los vectores no son ortogonales. 

El coseno del  ángulo entre   u   y    v  está dado por  

. 

 u v

23

cosθ =

=

 u .  v

4 +1+16. 0 + 9 + 25

y haciendo cuentas 

23

cosθ =

. 

21. 34

Para hallar el ángulo θ   se calcula el arco coseno de 

23

. 

21. 34

Es así que θ  es aproximadamente igual a   arco coseno 0,86. 

Luego θ  es aproximadamente: 

30,68° = 30° 41´ 

Haga la representación gráfica de los vectores y compruebe que el ángulo entre el os es 

aproximadamente el hallado. 

EJERCICIO 6.5.5 

¿Puede decirse que los vectores de la base canónica del plano son perpendiculares dos a 

dos? ¿Y los de la base del espacio? Puede comprobarlo como aplicación del producto escalar. 

EJERCICIO 6.5.6 

Hallar el producto escalar entre los vectores   u  y    v  y el ángulo entre ellos. Realizar la interpretación gráfica, siendo los vectores   u   y    v  :  

a)  u = (– 2, 3)  y    v  = (3, 2)
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b)  u = (0, 3, 1) y    v  = (2 , – 3, 1)

c)  u = (2, 4)  y    v  = (6, 8)

d)  u = (1, – 2)  y    v  = (0, 2)

e)  u = (– 2, 3, 8)  y    v  = (3, 2, – 1)

f)

 u = (1, 2, 3)  y    v  = (– 3, –  6, – 9)

Aplicaciones geométricas y propiedades 

EJERCICIO 6.5.7 

Hal ar un número  a para que los vectores  u=3  

 i + 2  j − 8  k  y  v=5  

 i +  

 a j − 8  k sean perpen-

diculares. 

EJERCICIO 6.5.8 

Sean  P, Q  y  R puntos con coordenadas (1, 3, 5),  (2, 0, 4) y (2, 1, 0) respectivamente. 

Representarlos. Hallar los ángulos interiores del triángulo determinado por ellos. (Es posible que por la aproximación de los cálculos la suma de los tres no sea 180°...) 

EJERCICIO 6.5.9 

Demostrar: En un paralelogramo las diagonales tienen la misma longitud si y sólo si el paralelogramo es un rectángulo. 

EJERCICIO 6.5.10 

Demostrar las siguientes propiedades del producto escalar. 

a) Para todo par de vectores   u  y    v   entonces   u  .     v   =    v  .  u b) Para todo par de vectores   u   y    v   y   k número real entonces  ( k.  u ) .     v   =  k.  v  .  u  Para 

pensar 

: 

¿ Por qué podemos asegurar que los productos que aparecen en este inciso, 

señalados ambos con ., no representan el mismo producto? Justifique claramente. 

c) Para toda terna de vectores    u ,  v   y   w  ,   (  u   +    v ) .    w   =    u   .    w  +   v  .    w (Idea para la demostración, usar la expresión en coordenadas y además pensar en la interpretación geométrica de la definición.) 
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Más Propiedades (Importantes) 

♦ PROPIEDAD 6.5.11

Desigualdad de Schwarz: Dados vectores cualesquiera   u  y    v   vale la siguiente desigualdad: 

 u . . 

 v ≤  u v

Demostración:  

Por la definición de producto escalar :   u .  v =  u .  v .cosθ ,  tenemos que : u .  v =  u .  v .cosθ ≤  u .  v . cosθ  

Como  cosθ  es una función trigonométrica que toma valores reales en el intervalo [– 1, 1], resulta:  

 u .  v . cosθ ≤  u .  v  luego, tomando valor absoluto: 

 u . . 

 v ≤  u v  

♦ 

♦ PROPIEDAD 6.5.12

Desigualdad Triangular: Dados vectores cualesquiera   u  y   v   vale la siguiente desigualdad: 

 u  +  v ≤  u +  v

Demostración:  

Calcularemos 

2

 u  +  v . Por propiedades demostradas antes (6.5.1 y 6.5.10), tenemos 

que:  

2

 u  +  v   =   ( u  +  v).( u  +  v)  =   u.  u  +  u.  v +  .  vu  +  .  vv Luego, podemos escribir: 

2

2

2

 u  +  v   =   u .  u  +  u.  v +  . 

 v u  +  . 

 v v  =    u   +  2.  u.  v  +    v

 u.  v  es un  número real y por lo tanto cumple que :  . 

 u v ≤   . 

 u v , es decir :

2

2

2

2

2

 u  

+ 

 v  

=  

 u   

+ 2. . 

 u v  

+  v  

≤  

 u  

+  

2. . 

 u v  

+   v

que por la Desigualdad de Schwarz probada antes, se puede reescribir como:  

 u

 v

≤  u

+

 u v +  v

≤  u

+

 u v +  v

= (  u +  v )2

2

2

2

2

2



+       

2. . 

2. . 

Como en esta última expresión, la desigualdad se da entre cuadrados de módulos, que son 

números positivos, podemos tomar raíz cuadrada y quedará: 

 u  +  v   ≤    u +  v

♦
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EJERCICIO 6.5.13 

Hallar el ángulo entre una arista y la diagonal de un cubo. 

(Idea: haga coincidir un vértice con el origen del sistema de coordenadas cartesiano ortogonal) EJERCICIO 6.5.14 

a) Probar que si   v =( , 

 a   , 

 b   )

 c = . 

 aî  +  . 

 b j  +  . 

 ck  entonces   a= . 

 v î       b= . 

 v j       c= . 

 v k  

b) Calcular la expresión de los cosenos de los ángulos entre   v  y los vectores de la base canónica. Estos ángulos se llaman ángulos directores   del vector   v  y los cosenos de ellos cosenos directores. 

c) Hallar un vector unitario paralelo a   v   y expresarlo usando b) y a). 

d) Demostrar que la suma de los cuadrados de los cosenos directores de cualquier vector es 1. 

e) Probar lo análogo para vectores del plano. 

EJERCICIO 6.5.15 

Encontrar un vector   v  de módulo 10 y tal que  . 

 v î  =  . 

 v j  = v .  k

6. Producto vectorial (obvio: de vectores)

Este producto está definido para pares de vectores del espacio y asocia otro vector del es-

pacio. 

Dados dos vectores del espacio   u   y    v  con componentes  ( a, b, c) y ( d, e, f) respectivamente, se define el producto vectorial    de   u   y de    v  como el vector u   x   v  = ( b. f –  e. c, d. c – a . f, a. e – d. b) 

Una manera práctica de encontrar y recordar el producto vectorial de   u  y   v  con componentes ( a, b, c) y ( d, e, f) respectivamente es fabricar el siguiente cuadro y calcularlo como un determinante 3x3, en el Anexo 2 se completa esta idea de determinante 3x3, por la primera fila: 

 i

 j k

 b c

 a

 c

 a b

 u ×  v =  a b c =

 i −

 j +

 k

 e

 f

 d

 f

 d e

 d e

 f

Se dirá como se calcula lo planteado: 
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 x y

 x y = .  xt −  z.  y

Para cada   z t  se calcula de la siguiente manera    z t

, 

Este procedimiento será más práctico para realizar todos los cálculos de producto vectorial. 

EJEMPLO 6.6.1 

Hallar los productos vectoriales de los vectores de la base canónica tomados de a dos. 

Los vectores son    i = (1,0, 0)

 j = (0,1,0)

 k = (0,0,1)  

Hay varios productos a realizar: 

 i

 j k

0 0

1 0

1 0

 i ×  j = 1 0 0 = .  i

−  j

+  k

=  

1 0

0 0

0 1

0 1 0

= . 

 i (0.0 −1.0) −  j(1.0 − 0.0) +  k(1.1− 0.0) =  k

 i

 j k

0 1

0 0

0 1

 j× i = 0 1 0 =  .  i

−  j

+  k

=  

0 0

1 0

1 0

1 0 0

¡No estamos  

acostumbrados! 

=    .(

 i  0.0 − 0.1) −  j(0.0 −1.0) +  k(0.0 −1.1) = − k

Este ejemplo ya ilustra que el producto vectorial NO es conmutativo. 

 i

 j k

0 0

1 0

1 0

 i× k = 1 0 0 = .  i

−  j

+  k

=

0 1

0 1

0 0

0 0 1

=  .(

 i  0.1− 0.0) −  j(1.1− 0.0) +  k(1.0 − 0.0) = −  j

 i

 j k

0 1

0 1

0 0

 k × i = 0 0 1 =   .  i

−  j

+  k

=

0 0

1 0

1 0

1 0 0

¿……

=  .(

 i  0.0 − 0.1) −  j(0.0 −1.1) +  k(0.0 −1.0) =  j

Observar que el vector producto vectorial resulta perpendicular a cada uno de los factores... 

¿Será siempre igual? 
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EJERCICIO 6.6.2    

Resuelva los otros productos que faltan y compruebe que     

 j × k = î        k ×  j = − î  

EJERCICIO 6.6.3 

Hallar los productos vectoriales de   u   y de    v  para: 

a)   u = (3, 4, 0)  y    v  = (2, – 1, 3) 

b)   u = (2, 4, – 1)  y     v  = (1, 6, 0)

c) Comprobar que   u  x   v  es perpendicular a   u  y a   v . (Pista: recordar las propiedades del producto escalar)

En general... 

EJERCICIO 6.6.4 

Demostrar que para cualquier par de vectores   u   y     v : 

a)  u   x   v  =  –   v  x   u

b)  u   x   v  .  u  = 0      y      u   x   v   .  v    = 0  (es decir perpendiculares.....) c) Si 

 u  y     v   son no nulos,  u   x   v  =   o  si y sólo si    u  y   v  son paralelos. 

Algunas interpretaciones geométricas 

EJEMPLO 6.6.5 

Si los vectores   u  y   v  tienen componentes  ( a, b, c) y ( d, e, f) respectivamente y θ  es el ángulo entre ellos, resulta que si se calcula el módulo al cuadrado de   u   x   v , vale: 2

2

2

2

 u v

× = ( . 

 b  f  −  . 

 e )

 c  + (  . 

 d  

 c −   . 

 a f )  + ( . 

 a  

 e −  . 

 d   )

 b  

Desarrollando los cuadrados, agrupando convenientemente y usando las definiciones de 

módulo y la expresión del producto escalar en las componentes (queda para usted como ejercicio), se llega a: 

2

2

2

 u v

× = . 

 u  

 v − (



. 

 u )2

 v

Si se reemplaza el producto escalar por su definición y factoreando, y sacando raíz cuadra-

da (de bases positivas) se obtiene: 
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Recordatorio: 

 u × v  =    u .  v .  sen θ     (*) 

2

2

 sen  θ + cos θ = 1 

para cualquier θ  

Observar y pensar la definición del seno: 

Es decir que por la última igualdad,  (*)  es el área de un  paralelogramo determinado por los vectores    u   y    v   que forman un ángulo θ  entre sí. 

EJEMPLO 6.6.6 


Hallar el área del paralelogramo determinado por los vectores  u=(3, 0,  )

4 y     v = (1,  2,  0)

Verifique que el    u  x    v  = (– 8, 4, 6), por lo tanto el área del paralelogramo determinado por u  y   v   es     u ×  v  =   64 +16 + 36 = 116

Haga Ud. el dibujo de los vectores  y del paralelogramo determinado por el os. 

EJERCICIO 6.6.7 

Hallar el área del paralelogramo determinado por los vectores   u = (3, 2, 2) y   v = (0, 4, 5). 

EJERCICIO 6.6.8 

¿Cuál es el área del triángulo tal que dos de sus lados son los puntos de coordenadas (0, 2, 3) y (1, – 2, 3)?. Haga el dibujo y use el ejemplo... 
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EJERCICIO 6.6.9: 

Demostrar que el volumen V de un paralelepípedo determinado por los vectores   u ,  v  y   w está dado por: 

V = 

 u ×  v  .  w .  c o s  φ

Siendo  φ  el ángulo entre los vectores    u  x   v    y    w . (En el dibujo se señala la recta de dirección del vector   u  x   v ) 

(Idea de la demostración: el volumen de un paralelepípedo está dado por el producto de la 

superficie de la base y la altura. Use el ejercicio anterior y que el producto vectorial entre dos vectores es perpendicular a cada uno de los vectores del mismo) 

EJERCICIO 6.6.10 

Hallar el volumen del paralelepípedo determinado por (1, 0, 3), (2, 3, 3) y (3, 1, – 2). Hacer una interpretación gráfica. 
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ANEXO 1: Qué ocurre si las flechas están  sueltas....? 

Hemos comenzado nuestro estudio de vectores del plano a partir de flechas que tienen igual 

origen. Se puede también trabajar con vectores que no estén fijos en un punto. Serán necesarias algunas definiciones. 

Sobre estas flechas se precisan algunos conceptos. 

Estos elementos (las flechas) se llaman  segmentos 

 dirigidos.   

El punto   P  es el  punto inicial o  punto de aplica-

 ción  u  origen, el punto  Q es el  punto terminal o  punto 

 final  de   PQ  

Resultan ser un par ordenado de puntos, por ejemplo  P y  Q.  Se anota   PQ  . 

La distancia entre  P y  Q es la  magnitud o  módulo de   PQ , que se anotará  PQ . 

El segmento dirigido   PQ  es claramente distinto del segmento   QP . 

Para pensar: ¿qué puede decir de esta última afirmación? ¿Qué tienen igual   PQ  y  QP ? 

La figura adjunta tiene segmentos dirigidos con distintos puntos de aplicación. 

Es geométricamente 

obvio el significado de 

“algunos segmentos 

dirigidos tienen igual 

dirección y magnitud” 

aunque distintos puntos 

de aplicación y final. 

¿Cuáles de ellos se-

leccionaría en esas con-

diciones? 

Vamos a precisar esta idea: 

Dos segmentos dirigidos   PQ  y  RS  tienen la misma magnitud,  dirección y sentido si se cumple una de las siguientes condiciones: 
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1.  P = R   y   Q = S

2.  P  ≠  Q,  R  y   S  están en la misma recta,  PQ =  RS

y si  Q "está a la derecha de"  P, también  S "está a la derecha de"  R, y si  Q "está a la izquierda de"  P, también  S "está a la izquierda de"  R. 

3.  P, Q, R y  S son todos distintos y hay tres que no están

alineados,  PQ =  RS  y la recta que pasa por  P y por 

 Q es paralela a la recta que pasa por  R y por  S y la rec- 

ta que pasa por  P y por  R es paralela a la recta que pa- 

sa por  Q y por  S. 

Si   PQ  y  RS  tienen la misma magnitud, dirección y sentido se anota  PQ ∼  RS ; y se dice que   PQ  y  RS   son equivalentes. 

Nota: Para profundizar estos conceptos, ver el Capítulo 4. 

EJERCICIO 1 

Probar que la relación  ∼  definida entre los segmentos dirigidos del plano verifica las siguientes propiedades: 

a)

 PQ ∼  PQ (por eso se dice que ∼  es   reflexiva)

b) Si  PQ ∼  RS  entonces   RS ∼  PQ (por esto se dice que  ∼  es  simétrica) c) Si  PQ ∼  RS  y    RS ∼  TU  entonces   PQ ∼  TU (y por esto se dice que ∼  es  transitiva) OBSERVACION: Como la relación  ∼  cumple estas tres propiedades se dice que:  ∼  es 

una relación de equivalencia en el conjunto de segmentos dirigidos del plano.    

EJERCICIO 2 

En lo que sigue será muy importante que realice una representación gráfica: 

a) Si   P  tiene coordenadas  (2, 1)  y   Q   tiene coordenadas  (3, 1), hallar las coordenadas de   R

para que   PQ ∼  QR
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b) Si  P tiene coordenadas (– 3, 2) y  Q tiene coordenadas (– 3, – 5), hallar las coordenadas de R para que   PQ ∼  PR

c) Si  P tiene coordenadas (2, 2) y  Q tiene coordenadas (– 3, – 5), hallar las coordenadas de  R

para que   PQ ∼  QR

d) Si P tiene coordenadas  ( 2, 3) , y Q tiene coordenadas  ( 2 +1, 3 − 2), y R tiene co-

ordenadas (3, – 1)  hallar las coordenadas de S para que   PQ ∼  RS

Cómo podemos volver a los vectores fijos...... 

Dado un segmento dirigido 

 PQ  se considera   v  el conjun-

to de todos los segmentos 

dirigidos equivalentes con 

 PQ . 

Es decir:  

 v = { RS :  PQ ∼  RS }. 

Al conjunto   v  se lo llama 

 vector libre.  

En esta gráfica se han dibujado algunos elementos. 

Algunos de los equivalentes al    PQ  y algunos de los equivalentes al  RS . 

EJERCICIO 3 

En el dibujo anterior ponga nombre a los segmentos dirigidos y colóquelos en conjuntos  según corresponda. 

EJEMPLO 4 

Sea el segmento dirigido   PQ , determinado por los puntos  P  de coordenadas (2, 3) y Q de coordenadas  (3,1).  Busquemos las coordenadas de   R  para que   PQ  sea equivalente a   OR . 

Siendo  O el origen del sistema de coordenadas. 

¿Cuál es el módulo de   PQ ? 

2

2

 PQ = (3 − 2) + (1− 3) = 1+ 4 = 5
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El triángulo rectángulo de hipotenusa   PQ   tiene catetos    PT  y  TQ  de longitudes 2 y 1 

respectivamente. 

Por definición de la relación y seme-

janza de triángulos, con el punto  O, el  R y 

el eje  y se debe formar un triángulo seme-

jante al  PTQ. 

Por lo tanto   OMR  debe ser tal que 

 OM  mida 2, el cateto   MR  debe medir 1. 

Por lo tanto   R  es un punto de coorde-

nadas (1, – 2) 

Dibuje el paralelogramo que justifica 

por definición la equivalencia entre   PQ  y

 OR . 

Calcule el módulo de   OR . 

Los resultados del ejemplo anterior se pueden generalizar. 

Dado un segmento dirigido   PQ  se

quiere hallar uno equivalente que sea 

con origen en   O,  es decir hallar   OR , 

para que  PQ   ∼  OR

Sean   P  de coordenadas  (  x ,  y  y

1

1 )

 Q  de coordenadas  (  x ,  y . 

2

2 )

Se construye el triángulo  PTQ  rectángulo en  T;   los catetos   PT  y   QT  son de longitudes x −  x   y   y −  y  respectivamente. 

2

1

2

1

¿Cuál es la idea para construir un   OR ?  Hay que hacer un triángulo semejante con  PTQ. 

Debe ser rectángulo de hipotenusa   OR .  ¿Por qué? 
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Los catetos   MR  y   OM  deben me-

dir igual que   QT  y   PT  respectivamen-

te.  ¿Por qué? 

Por lo tanto las coordenadas de  R 

respetando el sentido deben ser 

± 2

 x − 1

 x     y    ±  y 2 − 1

 y  para que re-

sulten   PQ   ∼  OR

Construya usted el paralelogramo  OPQR. 

En la situación geométrica de la figura como las coordenadas de  Q  son mayores que las de P,  hay que tomar los valores positivos. 

Haga usted otras situaciones geométricas en las que haya que considerar los otros sig-

nos.... 

Si    v  es un  conjunto de segmentos dirigidos equivalentes se puede considerar como representante de el os a cualquiera. 

 v = { RS :  PQ ∼  RS }

Esto es, si   PQ  ∈  v , se puede referir a ese conjunto simplemente por   PQ , y por abuso de notación se pone   PQ   =  v . 

Considerando un sistema de coordenadas se puede con-

siderar en particular como representante del libre (clase de 

equivalencia)  al segmento dirigido con origen en  O.   

Este representante existe para cada conjunto o vector li-

bre (clase de equivalencia). Es así como a cada vector libre 

se le puede asociar un único vector fijo, es decir aquel 

con origen en  O.   

EJERCICIO 5 

a) Represente en el plano coordenado el vector dirigido determinado por los puntos  P de coordenadas (– 2, 3) y  Q de coordenadas (3, 4), siendo  P el punto inicial. 

b) Hallar al menos dos segmentos dirigidos equivalentes a   PQ , uno de ellos con origen en  O. 

c) Si considera el segmento   QP ,  dibújelo y realice lo pedido en b) para él. 

d) Sume los vectores fijos en  O que pertenecen obtenidos en b) y en c). ¿Qué observa? 
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EJERCICIO 6 

a) Para los puntos  P de coordenadas (3, 5), el punto  Q de coordenadas (1, 0), el punto  R de coordenadas (0, – 3), el  S de coordenadas (– 2, 4), representarlos en el plano. 

b) Hallar los segmentos dirigidos   PQ ,  QP ,  QR ,  SR ,  SP . Hallar en cada caso su longitud. 

¿Son equivalentes? Justifique su respuesta. 

c) Sume los segmentos dirigidos no equivalentes. 

d) Halle tres segmentos que sean equivalentes que cada uno de los dados en b) y otros a los obtenidos en c). En cada caso halle el de punto inicial en  O. Siempre dibuje. 

e) Sume los vectores fijos obtenidos en d). Compare con los resultados obtenidos en c). 

EJERCICIO 7 

Represente el segmento dirigido con punto inicial en  P de coordenadas (2, 3) y punto final también en  P. ¿Qué longitud tiene? 

Dibuje otros segmentos dirigidos distinto que sea equivalente.. 

¿Cuál es el que es equivalente y fijo en  O ? 

Lo mismo para vectores del espacio 

Si   PQ  y  RS  tienen la misma magnitud, dirección y sentido se anota  PQ ∼  RS  y se dice que   PQ  y  RS   son equivalentes. 

Los puntos están determinados por ternas, sus coordenadas. 

EJERCICIO 8 

En lo que sigue no deje de dibujar: 

a) Si 

 P  tiene coordenadas (2, 1, 3) y  Q tiene coordenadas (3, 1, 6), hallar las coordenadas de R para que   PQ ∼  QR

b) Si  P tiene coordenadas (– 3, 2, 1) y  Q tiene coordenadas (– 3, – 5, 2), hallar las coordenadas de  R para que   PQ ∼  PR

c) Si 

 P  tiene coordenadas (2, 1, 3) y  Q tiene coordenadas (3, 1, 6), hallar las coordenadas de R para que   PQ ∼  OR

d) Si  P tiene coordenadas (2, 1, 3) y  Q tiene coordenadas (3, 1, 6), hallar las coordenadas de R para que   QP ∼  OR

e) ¿Cuál es el módulo de   OR ? 
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ANEXO 2: Determinante 3x3  

Para introducir el producto vectorial se sugirió emplear una definición (que por sí sola tiene otras aplicaciones que se verán más adelante), y sobre la que se profundizará en el Capítulo 12 de Determinantes. 

Es la del cálculo de  determinante 3x3. 

Dado un cuadro de valores de la forma: 

 a

 b

 c

1

1

1

 a

 b

 c

donde los elementos de cada fila por lo general son 

2

2

2

 a

 b

 c

3

3

3

números. 

Lo que se hace es, a este cuadro, asociar un número de una manera especial. 

Ese valor se llama determinante. 

Vamos a obtener ese número por el método que se denomina desarrollo por la fila 1 (que 

puede probarse, y se hará en el capítulo correspondiente) que daría igual resultado si se lo hiciera por cualquiera de las otras filas): 

 a

 b

 c

1

1

1

 b

 c

 a

 c

 a

 b

 a

 b

 c = 

2

2

2

2

2

2

 a . 

−  b . 

+  c . 

2

2

2

1

1

1

 b

 c

 a

 c

 a

 b

 a

 b

 c

3

3

3

3

3

3

3

3

3

 b

 c

 a

 c

 a

 b

Los cuadros  2

2

2

2

2

2

y  

y 

son casos particulares de determinantes 2x2. 

 b

 c

 a

 c

 a

 b

3

3

3

3

3

3

Para calcularlos se usa la siguiente regla: 

 m

 n

1

1 =  m .  n −  m .  n

1

2

2

1

 m

 n

2

2

Es decir que se hace el producto de los elementos de la diagonal que va de la punta supe-

rior izquierda a la punta inferior derecha y se le resta el producto de los elementos que están en la otra diagonal. 

Por lo cual: 

 a

 b

 c

1

1

1

 b

 c

 a

 c

 a

 b

 a

 b

 c  = 

2

2

2

2

2

2

 a . 

−  b . 

+  c . 

=  

2

2

2

1

1

1

 b

 c

 a

 c

 a

 b

 a

 b

 c

3

3

3

3

3

3

3

3

3

=   a ( b .  c −  b .  c )   –   b ( a .  c −  a .  c ) +   c ( a .  b −  a .  b ) 1

2

3

3

2

1

2

3

3

2

1

2

3

3

2
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EJEMPLO 1 

1

3 0

2 5

3

−

5

3

−

2

Calcular    

3

−

2 5 =1. 

− 3

+ 0. 

=  

5 2

0

2

0

5

0

5 2

= 1.(2.2 – 5.5) – 3.(– 3.2 – 0.5) + 0.(– 3.5 – 0.2) 

y haciendo las cuentas indicadas se obtiene: 

1.(4 – 25) – 3.(– 6 – 0) + 0.(– 15 – 0) = 1.(– 19) – 3.(– 6) + 0. (– 15) = – 19 + 18 + 0 = – 1 

EJERCICIO 2 

Calcular los siguientes determinantes: 

0 1

3

−

3 1

7

2 −3

a) 

b)  1 4

6

c) 2 4

2

−

1

4

0 2

5

−

0 3

5

EJERCICIO 3 

Observar que para recordar la definición del producto vectorial de dos vectores   v = ( a, , b c)  y 

 u = ( d, , 

 e f ) , la misma equivale a resolver un determinante simbólico: 

 i

 j k

 a b c

 d e

 f

pues la primera fila son vectores (los de la base canónica) y no números. Por eso, si se resuelve desarrollando por la primera fila da por resultado un vector expresado en la base canónica. 

En 6.6 se dio la regla práctica para calcular el producto vectorial como: 

 i

 j k

 v × u =    a b c

 d e

 f
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CAPÍTULO 7 

Introducción a la geometría analítica en \3

El estudio de la Matemática como ciencia deductiva, como fue concebida por Euclides en los 

años 300 antes de Cristo, comienza con nociones primitivas sin definir como punto y recta y un conjunto de axiomas o postulados sobre ellos, y los teoremas y propiedades se deducen 

a partir de ellos de distintas nociones y figuras geométricas. 

Como se ha dicho en capítulos anteriores, en el siglo XVII el matemático francés Renee 

Descartes introduce los sistemas de coordenadas en el plano y el espacio y se comienza el 

estudio de las propiedades geométricas usando la Geometría Analítica. 

En el capítulo anterior vimos cómo se pueden estudiar algunos aspectos geométricos 

usando el cálculo vectorial, por ejemplo:  

Hemos visto que puede modelizarse a las fuerzas con los vectores, y asociarse las propie-

dades y operaciones de unas con las de los otros. En ese sentido podríamos ahora pregun-

tarnos ¿cómo podemos expresar la dirección de la fuerza (la recta a la que pertenece el vector que la representa)?. 

G

G

Sabemos también que dados dos vectores no paralelos   u  y   v , determinan un paralelogramo. En el capítulo anterior analizamos como podemos calcular el área de dicho paralelo-

gramo. 
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Surge la pregunta: ¿podemos conocer las rectas a las que pertenecen los lados del parale-

logramo? ¿Qué expresión algebraica podemos asignarle a dichas rectas? 

G

G

Si este paralelogramo generado por   u  y   v  se halla en el espacio; existe un plano en el espacio que lo contiene. Quisiéramos conocer alguna expresión algebraica que represente a 

ese plano. 

En este Capítulo se seguirán ambas líneas de trabajo: el referido a la Geometría Analítica y el referido al Cálculo Vectorial. 

1. Rectas

Comencemos repasando algunas cosas del plano y generali-

zaremos lo posible. 

Representemos en el plano la recta  r de ecuación  y = 2 x + 1. 

Así es que se escribe,  r :  y = 2 x + 1. 
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Los puntos  P  de coordenadas (0, 1) y  Q de coordenaas (1,3) son puntos de la recta  r. 

Verifíquelo. 

Representando el segmento dirigido  PQ  y cualquier segmento que se forme con un 

par de puntos   R y  S que esté en la recta se pueden escribir como un múltiplo escalar de  PQ . 

 RS = λ.  PQ , para  λ ∈ \  

EJERCICIO 7.1.1: 

Si  R tiene coordenadas (2, 5) y  S tiene coordenadas 

(5/2, 6), verifique que ambos están en la recta   r  (suge-

rencia: reemplace sus coordenadas en la ecuación). 

1

Además compruebe que  λ = . 

2

Verifique también que los  puntos  T(6,13) y  U(−1,−1) 

están en la recta  r y que además   

JJJG

JJJG

 TU = 7.  PQ

A partir del segmento dirigido  PQ , fijemos un punto, por 

ejemplo  R (2, 5). 

Variando el valor de  λ obtenemos otro segmento dirigido 

cuyo extremo final es también un punto de la recta. 

 P (0, 1) 

 Q (1, 3) 

 R (2, 5) 

Si   RB = λ.  PQ  y  λ. = 3

− , resulta que  B (−1, −1), que tam-

bién es un punto de la recta  y = 2  x + 1. 
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λ  un valor real variable (parámetro) que permite ir obteniendo cada uno de los puntos que forman la recta. 

Además si consideramos inicialmente otro par de puntos que esté en  r la conclusión sería similar. 

JJJG

G

Si el vector   PQ  está sobre la recta  r, y el vector   v  es 

JJJG

fijo en  O  y equivalente a   PQ  se  tiene que: 

G v =( x −  x ,  y −  y )

 Q

 P

 Q

 P . 

En el caso que estamos considerando, 

G v= (1, 2). 

JJJG

G

Para el segmento dirigido   RS  se encontrará otro vector fijo   u  en el origen que con respecto G

G

G

a   v  se cumple para ellos que   v = λ .  u  con   λ = 2 . 

G

G

Un vector como   v , que es paralelo a la recta,  se dice que   v  dirige la recta  r.   

¿Es único el vector? Reflexione al respecto!!! 

Generalizando:  

Para encontrar una ecuación de la recta que pasa por un punto genérico  P( x, y) y  por  P 0  y G

además es paralela a   v = ( a, b) podemos usar la observación anterior. 

JJJG

G

 P

= −λ

0

 P

.  v     para   λ ∈ \       (1) 

Que en coordenadas resulta: 

( x − 0

 x ,  y − 0

 y ) = λ .( a,  b)            (2) 
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⎧ x −  x = λ.  a

Por igualdad de pares ordenados, de (2) resulta el sistema: 

0

⎨

(3)  

 y −

⎩

0

 y = λ.  b

G

Si el vector   v  no es paralelo a ninguno de los ejes, tanto  a como  b son distintos de 0. 

En ese caso podemos “despejar" de ambas ecuaciones del sistema (3) el parámetro  λ  y se tiene: 

 x − 0

 x

 y − 0

 y

λ =

=

(4) 

 a

 b

 b

De la igualdad (4) se obtiene  

 y − 0

 y = ( x − 0

 x )     (5)   

 a

 b

Y de (5) se puede despejar   y   para obtener :   y = ( x − 0

 x ) +  y    0 , que haciendo algunas 

 a

sustituciones convenientes resulta: 

 y =  mx +  n     (6) 

G

Observar que de (1) a (6) todas las relaciones son equivalentes si el vector   v   no es paralelo a ningún eje coordenado. Es decir son todas distintas formas de ecuación de una recta. 

Cualquiera de esas formas sirve para expresar la misma recta. 

. 

EJERCICIO 7.1.2: 

Haga Ud. la comprobación que en el caso de la recta  r dada en el ejemplo y los puntos elegidos puede arribar a la ecuación dada originalmente, siguiendo los pasos de (1) a (6). 

G

Para pensar: En general ¿cuáles son las formas que no se pueden obtener si   v   es paralelo a algún eje coordenado?  Justifique su opinión. Lea atentamente los pasos realizados. 

¿…..? 
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Resumiendo, distintas formas de ecuaciones para la recta  r  son: 

G

(1)   Forma vectorial o vectorial paramétrica,   P 0  un punto de  r  y es paralela a   v JJJG

G

 P

= −λ

0

 P

.  v  para  λ ∈ \  

G

(2)   Forma en coordenadas,    P 0  un punto de  r  y es paralela a   v  = ( a, b) ( x −  x ,  y −  y = λ

,   λ ∈ \

0

0 )

(.  a,  b)

G

(3)   Forma cartesiana paramétrica,   P 0  un punto de  r  y es paralela a   v = ( a, b) 

⎧ x =  x + λ  a

. 

⎨

0

,   λ ∈ \  

⎩ y =  y + λ  b

. 

0

G

(4)   Forma simétrica,  P 0  un punto de  r  y es paralela a   v = ( a, b) , con   a.b ≠ 0 

 x −  x

 y −  y

0

0

=

 a

 b

(5)   Forma de ecuación conocido un punto P 0  y pendiente b/a , a≠ 0 

 b

 y −  y = ⋅  x −  x

0

(

0 )

 a

(6)   Forma explícita, con pendiente m y ordenada al origen n.  

 y =  m.  x +  n  

(7)  Forma general,  con     A.  B ≠ 0 

 A x + B y + C = 0 
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EJERCICIO 7.1.3: 

a) Determinar una ecuación vectorial de la recta que pasa por los puntos de coordenadas

(– 3, 3) y (2,4). Representar. 

b) Hallar dos vectores paralelos a la recta de ecuación   3  y  − 2  x = 5. Representar. 

G

c) Hallar una ecuación de la recta que pasa por el punto (− 2, 5) y es paralela al vector   v =

(3, 0). Representar. 

d) Hallar una ecuación de la recta que pasa por (1, − 2)  y es perpendicular al vector

G

G G

 v = 4.  i −  j . Representar. 

Se define como ángulo entre dos rectas del plano al ángulo entre los vectores que las dirigen. 

EJERCICIO 7.1.4: 

 x −1

 y + 3

Dadas las rectas   r : 3 x −  y = 0   y    r :

=

. Representarlas. 

1

2

−1

2

Hallar el ángulo entre vectores paralelos a ellas. 

EJERCICIO 7.1.5: 

Demostrar que las rectas dadas por las ecuaciones   A x + B y = c   y    A x + B y = c*  son paralelas para cualquier par de valores  c y  c*. 

Sugerencia: Determine la pendientes en cada caso ó las componentes de un vector paralelo 

a cada recta. 

EJERCICIO 7.1.6: 
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a) Representar y escribir una ecuación vectorial paramétrica de las rectas que pasan por

G

G G

G

G G

 P(1, 2) y son respectivamente paralelas a   v = 4   i −  j  y  a    u =    i −  j . 

b) Representar y escribir una ecuación vectorial paramétrica de la recta que pasa por

 P(1, 2) y paralela a   v = ( a, b) . ¿Qué relación hay con las ecuaciones halladas en a)? 

G

c) Dibuje las rectas que se obtienen en b) para distintos vectores   v . 

Estas son algunas:  

Al conjunto de rectas que pasan por  P se lo llama haz de rectas que pasa por  P      

EJERCICIO 7.1.7: 

Hallar en forma paramétrica  ecuaciones para el haz de recta que pasa por  P 0. Represente la situación descripta. 

EJERCICIO 7.1.8:  

Sea la recta  r de ecuación  3 x + 2 y = 1. 

a) Hallar las coordenadas de dos puntos   R y  T que estén en la recta. 

b) Determinar un punto  S que no pertenezca a  r. 

JJG

c) Hallar una ecuación de la recta  h que pasa por  T y es dirigida por el vector   SR

d) Cuál es el coseno del ángulo β entre las rectas  r  y  h ? 

e) Hallar la medida de β. 

EJERCICIO 7.1.9: 
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a) Hallar la ecuación cartesiana paramétrica de la recta que pasa por  A(1, – 2) y es parale-G

la al vector   v = (0, 4). Represente. 

b) Puede en esta caso hallar la forma simétrica? Porqué? 

2. Rectas en  3

\

Las rectas del plano o del espacio están totalmente determinadas por un punto y una direc-

ción (no se necesita más que eso para que quede totalmente determinada), es un postulado 

de la geometría elemental de Euclides. 

Por lo cual hay formas de ecuaciones de las rectas del espacio  3

\  que son similares a las 

encontradas en el plano con los cambios naturales para las tres componentes. 

La recta  r es paralela al vector   v ,  y este  vector es paralelo a cualquier segmento  dirigido formado con un par de puntos que están sobre la recta. 

Para determinar las distintas formas de ecuaciones consideremos un vector   v = ( a, b, c) paralelo a la recta, el punto genérico  P de la recta  de coordenadas ( x, y, z)  y designamos por P 0  un punto de la recta que tiene coordenadas  ( 0

 x , 0

 y ,  z 0 ) , se tiene así lo siguiente:         

(1)   Forma vectorial o vectorial paramétrica,   P 0  un punto de  r  y  es paralela a   v JJJG

G

 P

= −λ

0

 P

.  v  para  λ ∈ \  
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Reemplazando por las coordenadas  se llega a 

(2)   Forma en coordenadas,  P 0  un punto de  r  y es paralela a   v = ( a, b, c) ( x −  x ,  y −  y ,  z −  z = λ

,   λ ∈ \

0

0

0 )

(.  a,  b,  c)

Por la igualdad entre vectores se tiene el sistema 

G

(3)  Forma cartesiana paramétrica,  P 0  punto de  r y es  paralela a   v = ( a, b, c) 

⎧ x =  x + λ  a

. 

⎪

0

⎨ y =  y + λ  b

.   ,  λ ∈ \  

0

⎪⎩ z =  z + λ  c. 

0

Igualando a  λ  se obtienen la igualdad (en caso posible): 

G

(4)   Forma simétrica,   P 0  punto de  r  paralela a    v = ( a, b, c),  con   a.b.c ≠ 0 

 x −  x

 y −  y

 z −  z

0

0

0

=

=

 a

 b

 c

EJEMPLO 7.2.1: 

G

Hallar una ecuación de la recta que pasa por el punto (– 3, 2, 1) y es paralela al vector    v =

( 5, 3, 2)      

De las varias formas elegimos dos. 

Por ejemplo, la ecuación vectorial paramétrica resulta: 

⎧ x = 3

− + λ.5

⎪⎨ y = 2+λ.3   λ∈\ 

⎪ z =1+ λ.2

⎩
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Como las componentes del vector director son todas no nulas se puede despejar   λ  y obte-

ner la forma simétrica: 

 x + 3

 y − 2

 z −1

=

=

5

3

2

Queda para Ud. hacer el dibujo de la recta hallada. 

EJEMPLO 7.2.2: 

Determinar una ecuación de la recta que pasa por los puntos  P y  Q  de coordenadas (3,2,0)  y ( 1, 

− 4,8) respectivamente. 

G

De los datos se desprende que el vector    v  = ( 3 – (– 1), 2 – 4, 0 – 8 )  es paralelo a la recta determinada por  P y  Q.   ¿Está de acuerdo? 

G

Es decir el vector   v  = (4, – 2, – 8) dirige a la recta. 

Como punto en la recta se puede considerar tanto  P como  Q.  ¿Seguimos de acuerdo?.... 

 x +1

 y − 4

 z − 8

Luego una ecuación posible es  

=

=

4

− 2

− 8

¿Puede hallar Ud. alguna otra forma de ecuación de la misma recta?  Hágalo!!! 

También le queda la representación de la recta..... 

EJEMPLO 7.2.3: 

Determinar una ecuación del eje cartesiano 

 x. 

Para ello debemos obtener un punto sobre 

el eje y un vector paralelo al mismo. 

G

Un punto puede ser  A y un vector el   i . 

¿De acuerdo? 
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G

Consideremos  A(3, 0,0)  e   i = (1,0,0).  Se va a determinar la ecuación vectorial paramétrica, JJJG

G

 PA = −λ.  v  para  λ ∈ \ . 

Reemplazando por las coordenadas: 

( x − 3 , y −    0 , z −   0) = λ (1, 0, 0) 

⎧ x = 3 + λ.1

⎪⎨ y = 0+λ.0   para  λ∈\

Lo que lleva a:  ⎪ z = 0+λ.0

⎩

Por lo cual resulta que  x  es un número real cualquiera. 

La condición que determina este sistema es    y = 0  y   z = 0. 

Haga usted la prueba que obtiene la misma solución si considera otro punto que este sobre 

el eje  x pero distinto de  A y cualquier vector paralelo al eje  x (si está fijo con origen en  O, G

será un múltiplo escalar de   i ). 

EJERCICIO 7.2.4: 

a) Hallar una ecuación del eje  y. 

b) Hallar una ecuación del eje  z. 

EJERCICIO 7.2.5: 

G

G G G

G

Dados los puntos  P (2, – 1, 3),  Q (2, 3, 1)  y los vectores    v = (5, 3, 2)  y   u =  i −  j + 3.  k , hallar ecuaciones para las rectas determinadas por las siguientes condiciones y representar gráficamente: 

G

a) Pasa por  P y es paralela a   v . G

b) Pasa por  P y es paralela a  3.  v . Compare con a).  Qué opina?  Justifique. 

c) Pasa por  P y por  Q. 

G

G

d) Pasa por  Q  y es paralela a  3.  v  –   u . 
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G

e) Pasa por  Q  y  es dirigida por   u . 

EJERCICIO 7.2.6: 

G

G G

Hallar una ecuación de la recta que pasa por  P (1, 3, 5)  y es paralela al vector   u =  j +  k . 

Representar gráficamente. 

EJERCICIO 7.2.7: 

Hallar una ecuación de la recta que pasa por  P (3, 3, 5)  y es paralela a la recta de ecuación 

⎧ x = 4 −  t

⎪⎨ y =  t 3    t∈\. Represente gráficamente la situación. 

⎪⎩ z =1+ t

EJERCICIO 7.2.8: 

Hallar una ecuación de la recta que pasa por  P (0, 1, 4)  y es paralela a la recta de ecuación 

⎧ x = 4

⎪⎨ y = 3− t    t∈\. Represente gráficamente la situación. 

⎪⎩ z =  t

EJERCICIO 7.2.9: 

Hallar una ecuación de la recta que pasa por  Q (2, – 1, 1)  y es paralela a la recta de ecuación     

 x +1 =  y =  z + 2 . 

−1

2

Represente gráficamente la situación. 

EJERCICIO 7.2.10: 

a) Hallar una ecuación de la recta que pasa por  B(− 2, 3, 1) y es paralela al eje  y. Represente gráficamente la situación. 

b) Hallar una ecuación de la recta que pasa por  B(− 2, 3, 1) y es paralela al eje  z. Represente gráficamente la situación. 
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EJERCICIO 7.2.11: 

a) Hallar una ecuación de una recta que pasa por  R(1, 2, 2) y es perpendicular al eje  x. 

b) Es única la recta determinada en a)?  Justifique su respuesta. 

No deje de dibujar. 

3. Planos

Para empezar, comencemos con tres puntos. Dibujemos tres puntos en el espacio de modo 

que no estén en una sola recta (esto es  no alineados). 

¿Cuántos planos distintos pueden tener a la vez esos tres puntos como elementos? 

Efectivamente, tres puntos no alineados determinan un plano. 

Este resultado totalmente intuitivo es uno de los teoremas euclídeos. 

Con él nos ayudaremos para buscar una forma de ecuación para un plano. 

Con los tres puntos sobre el plano podemos determinar dos segmentos dirigidos contenidos 

en él. 
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JJJG

JJJG

Como el   PQ   y el   RQ , del gráfico que nos sirve para pensar… 

Ellos o sus equivalentes con origen en el origen del sistema, se dice que son los vectores que dirigen al plano. 

Claramente ambos pares de vectores son paralelos al plano. 

G

G

Por otra parte si consideramos dos vectores   u  y   v , no paralelos entre sí, y un punto  Q par-G

G

ticular del espacio, hay un único plano que es paralelo a ambos vectores   u  y    v  y  pasa por Q. 

G

G

Es claro que es posible a partir de   u  y    v  “fabricar”  vectores (segmentos dirigidos con origen en  Q) “equivalentes” con cada uno de ellos y cuya situación geométrica resulta semejante a la del diagrama anterior, lo que nos permite tener tres puntos especiales del espacio ( Q y los extremos finales de los vectores dirigidos) por lo cual hay un único plano. 

Por propiedades de la suma de vectores,  si se considera en un plano α un punto genérico  P 

de coordenadas ( x, y, z), otro punto del plano  P 0   que tiene coordenadas  ( x ,  y ,  z  y dos 0

0

0 )

vectores   u  y    v   paralelos al plano  α,  pero no paralelos entre sí, de coordenadas ( a, b, c) y ( d, e, f ) respectivamente se cumple que:  

JJJG

G

G

 PP = λ.  u + μ.  v      para  λ ∈\ y μ ∈\     (1) 

0

Verifique (1).   

Se dice que (1) es una ecuación del plano en  forma paramétrica. 

Reemplazando por las coordenadas de los vectores se tiene: 

( x −

−

−

= −λ

− μ

λ μ

0

 x ,  y

0

 y ,  z

0

 z )

.( a,  b,  c)

.( d, , 

 e f ) ,   , ∈ \

(2)   Forma paramétrica en 

G

G

 coordenadas,  P0  un punto de α, paralelo a   u  = ( a, b, c) y a   v  = ( d, e, f) Y se puede escribir equivalentemente como el sistema: 
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⎧ x =  x + λ  a

. + μ  d

. 

⎪

0

⎨ y =  y + λ  b

. + μ  e

.   ,  λ, μ ∈ \

(3)  e cuaciones paramétricas, P

0

0  un punto de α,  pa-

⎪⎩ z =  z + λ  c. + μ.  f

0

G

G

ralelo a los vectores   u  = ( a, b, c) y a   v  = ( d, e, f) 

EJEMPLO 7.3.1: 

Representar en un sistema coordenado y por ecuaciones paramétricas  el plano que pasa 

por (2, 1, 1) y es dirigido por los vectores   u  = (3 ,  0 ,  1) y   v  = (2 ,  4, 3) El plano queda determinado por esos tres elementos ya que los vectores no son paralelos 

entre sí. 

Es un plano que corta a los planos 

coordenados y “viene” hacia adelan-

te.... 

⎧ x = 2 + λ.3 + μ.2

⎪

Una ecuación cartesiana paramétrica es         ⎨ y = 1+ λ.0 + μ.4   ,  λ ∈ \ y μ ∈ \

⎪⎩ z =1+ λ.1+ μ.3

EJEMPLO 7.3.2 : 
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G

Hallar  ecuaciones del plano que pasa por   P(– 2, 1, 0),  Q(2, 3, 3)  y es paralelo al vector   u

= (1 ,  0 ,  3). 

JJJG

Si   P  y   Q  son puntos del plano,  el vector dirigido   PQ  es un vector paralelo al plano y sus coordenadas son (2 + 2, 3 – 1, 3 – 0) es decir (4, 2, 3). El otro vector paralelo es el dado, que no son paralelos entre sí. ¿Por qué? 

Como punto en el plano es posible considerar tanto  P como  Q. 

Luego ya se tiene todo lo necesario para escribir una ecuación, por ejemplo si elegimos a   P 

como el  P 0 tal fin se obtiene:  

( x − ( 2

− ),  y − , 

1  z − 0) = λ (. , 

4 3

, 

2 ) + μ (. , 

1 3

, 

0 ),   con  λ ∈ \ y μ ∈ \ , que podemos escribir como:

( x + ,2  y − ,1  z) = λ (. ,4 )

3

, 

2

+ μ (. 

)

3

, 

0

, 

1

,   λ ∈ \ y μ ∈ \

Queda para Ud. hacer el dibujo en un sistema coordenado y hallar otras formas de ecuación 

que se pueden obtener a partir de la obtenida. 

EJERCICIO 7.3.3: 

Hallar una ecuación del plano que pasa por los puntos  P(1, 0, 3),  Q(0, 2, 3) y  R(1, 2, 4). 

Represente el plano en un sistema de coordenadas. 

EJERCICIO 7.3.4: 

Hallar una ecuación del plano que pasa por los puntos  P(1, 0, 3),  Q(0, 2, 3) y es paralelo al vector  

G v = (2 ,  4, 3). Represente el plano en un sistema de coordenadas. 

Analicemos ahora si es  posible obtener una única ecuación cartesiana sin parámetros. 

Si eliminamos los parámetros, trabajando entre las tres ecuaciones  de (3), se logra lo de-

seado, 

obteniéndose:  
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( .  bf − .  ce).  x + ( .  cd − .  af ).  y + ( .  ae − .  bd).  z − ( .  a .  ez + .  bf .  x + .  cd.  y − .  c .  ex − .  af .  y − .  bd.  z =

0

0

0

0

0

0 )

0

Es decir, una expresión de la forma: 

 A  x +  B  y +  C  z =  D    

(4) 

Donde:  

 A =  b. f - c. e  

 B =  c. d -a .f   

 C =  a. e - b. d  

 D = . 

 a . 

 e z + . 

 b f .  x + . 

 c d.  y − . 

 c . 

 e x − . 

 a f .  y − . 

 b d.  z

0

0

0

0

0

0

Esos valores   A, B,  C   le hacen recordar algo? Piense bastante.... 

Además fíjese que   D =  . 

 a . 

 e z 0 + . 

 b f . 0

 x + . 

 c d. 0

 y − . 

 c . 

 e  0

 x − . 

 a f . 0

 y -  b. d z 0   se puede escribir 

como: 

               D =  A.  x  0 +  B.  y  0 +  C.  z 0 

G

G

Si hacemos el producto vectorial de   u  = ( a, b, c) y    v  = ( d, e, f), obtendremos que G G

 u ×  v = ( , 

 A B,  C) . 

G G

Una observación importante para recordar es que   u ×  v = ( , 

 A B,  C)  es un vector perpendicu-

G

G

G G

lar tanto a   u  como a   v ,  luego   u ×  v = ( , 

 A B,  C)  es un vector perpendicular al plano dirigido 

por ellos. 

G G JJJG

Además usando este vector se obtiene  D =  ( u ×  v ).  OP = ( , 

 A B,  C).( 0

 x , 0

 y ,  z 0 )  
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EJEMPLO 7.3.5: 

Para el plano que se ha encontrado una ecuación en el EJERCICIO 7.3.2 

Hallar una ecuación sin parámetros. 

La ecuación encontrada fue: 

( x + ,2  y − ,1  z) = λ (. ,4 3, 

2 ) + μ (. , 

1 3

, 

0 ) ,  con  λ ∈ \ y μ ∈ \

A partir de el a se tiene el sistema 

⎧ x + 2 = 4λ +1μ

⎪⎨ y −1= 2λ

del cual se logra eliminar   λ ∈ \ y μ ∈ \  (Hágalo para practicar). 

⎪

 z = 3λ + 3μ

⎩

Se usará el resultado de los comentarios anteriores: 

 A =  b. f −   c. e  = 2.3 − 3.0 =   6

 B =  c. d −  a .f  = 3.1 − 4.3 = − 9 

 C =  a. e −   b. d  = 4.0 − 2.1 = − 2        

 D =  A.  x  0 +  B.  y  0 +  C.  z 0  =6.(− 2) + (− 9).1+ (− 2).0 = − 21 

Y una ecuación  sin parámetros es entonces:   6  x − 9  y − 2  z = − 21. 

Represente el plano en un sistema coordenado. 

¿Cómo es el vector (6, -9, -2) respecto del plano obtenido? 

Otra forma de llegar al plano 

G

Dibuje un punto P0  y un vector  no nulo   n  en el espacio. 

G

Analice cuantos planos tienen ese punto P0  en él y son perpendiculares al vector   n . 

Un plano queda unívocamente determinado por un vector no nulo perpendicular al mismo y 

un punto que le pertenezca. 
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Todo segmento dirigido que esté sobre el plano (formado por dos puntos sobre él)  es per-

G

pendicular al vector   n , es así que usando consecuencias del producto escalar: 

JJJJG G

0

 P P.  n = 0  

G

Luego, si    n = ( A, B, C),  P es de coordenadas ( x, y, z)  y  el  P 0   tiene coordenadas ( 0

 x , 0

 y ,  z 0 ) ,  se obtiene: 

( x − 0

 x ,  y − 0

 y ,  z −  z 0).( , 

 A B,  C) = 0

Evaluando el producto escalar en función de las coordenadas: 

(

 A x − 0

 x ) +  B(  y − 0

 y ) +  C( z − 0

 z ) = 0  

distribuyendo se obtiene: 

 Ax +  By +  Cz = . 

 A  0

 x + . 

 B  0

 y +  C.  z 0  

y  si se llama  D =  A.  x  0 +  B.  y  0 +  C.  z 0 

se puede escribir:  

 Ax +  By +  Cz =  D

Observar que se obtiene un resultado totalmente similar al seguido cuando analizamos si 

era posible obtener una única ecuación cartesiana sin parámetros. 

 Ax +  By +  Cz =  D

esta forma es la  ecuación cartesiana  del plano.   
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EJEMPLO 7.3.6: 

G

Sea el plano π que pasa por el punto  P (0, 2, 0), y que es paralelo a   u = (2,− 1,0) y a G v = (0,−2,4)

Podemos expresar al plano π  que determinan los datos por la forma vectorial paramétrica 

en coordenadas:  

( x − 0,  y − 2,  z − 0) = λ.(2, 1

− ,0) + μ.(0, 2

− , 4) λ ∈ \ ∧ μ ∈\  

que equivale, por igualdad de ternas ordenadas, al siguiente sistema de ecuaciones pa-

ramétricas: 

⎧ x = 2.λ

⎪⎨ y = 2−λ −2.μ

⎪

(1) 

 z = 4.μ

⎩

G

G

Podemos, además hallar un vector normal simultáneamente a   u  y a   v : 

 i

 j

 k

G

G G

 n =  u ×  v = 2

1

−

0 = ( 4

− , 8

− , 4

− )  

0

2

−

4

que emplearemos para obtener la ecuación cartesiana del plano π : 

G

( x − , 

0  y − , 

2  z − ). 

0  n = 0

( x − , 

0  y − , 

2  z − ).(

0 − , 

4 − , 

8 − )

4 = 0  

Si resolvemos el producto escalar de esta última expresión obtenemos: 

− 4 x − 8 y +16 − 4 z = 0 

− 4 x − 8 y − 4 z = 16

−  

También equivale a:  

π:  2 x + 4 y + 2 z = 8      (2) 

Hallemos un punto  Q que pertenezca al plano π. 

Por ejemplo, aquel  Q  en el que  x = 3,  y = 0. 

Luego:  2.3 + 4.0 + 2.z = 8, de donde  z = 1. 

Se tiene entonces, que un punto del plano π es  Q (3, 0, 1). 

Hallemos ahora los parámetros  λ  y  μ  que corresponden   Q  usando el sistema (1): 453
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3

 x = λ

. 

2  = 3   entonces  λ = 2

1

 z = μ

. 

4  = 1  entonces   μ = 4

¿Para completar hay que ver si verifica    y = 2 − λ − μ

. 

2  = 0? 

3

1

 y = 2 − − . 

2

= 0  Efectivamente se cumple. 

2

4

3

1

Luego para  Q,  los parámetros son     λ =

y  μ =

. 

2

4

Si se varían   λ  y  μ  haciendo que tomen los valores en  \ se obtienen todos los puntos del plano π. 

Observemos (2),   la última expresión cartesiana del plano  π :  2 x + 4  y + 2 z = 8  

1 G

Por el producto vectorial hallado con los datos se tiene que (2, 4, 2) es  − ⋅  n

2

Por lo cual el vector (2, 4, 2) es un vector normal al plano π. 
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Gráficamente: 

EJERCICIO 7.3.7: 

Hallar una ecuación cartesiana del plano que pasa por el punto de coordenadas (3, −1, 4) y 

G

es perpendicular al vector   n = (2, 3, 5). Represente gráficamente. 

EJERCICIO 7.3.8:  

Hallar una ecuación cartesiana del plano que pasa por el punto de coordenadas (1, 1, −4) y 

G

es perpendicular al vector   n = (2, 0, 0). Represente gráficamente. 

EJERCICIO 7.3.9: 

Hallar una ecuación del plano que contiene al punto  T(1, 1, 0), sabiendo que un vector nor-G

mal a él es el   v = (0, 0, 1). Representar gráficamente. 

EJEMPLO 7.3.10: 

En este apartado se representarán gráficamente algunos planos junto a sus expresiones. 

455

[image: Image 6729]

INTRODUCCIÓN A LA GEOMETRÍA ANALÍTICA EN \ 3 – CAPÍTULO 7 

¾ La ecuación   x = 0   representa al plano ZY

G

Un vector normal al plano  ZY es el   i = (1, 0, 0). 

Un punto que pertenece a dicho plano es, por ejemplo,  P 0(0, 1, 2). 

Luego, una expresión para el plano está dada por: 

( x – 0,  y – 1,  z – 2) . (1, 0, 0) = 0 

haciendo el producto escalar indicado se obtiene: 

 x. 1 + ( y −   1).0 + ( z – 2).0 = 0

lo que equivale a:    x = 0 

¾ La 

ecuación 

 2x – y = 0  describe al plano representado. 

  z toma cualquier valor real y las variables  x e  y se relacionan por medio de la expresión  y = 

 2x 
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¾ La ecuación   y = 4  describe a un plano paralelo al plano XZ. 

Comparando la ecuación  y = 4  con la ecuación cartesiana sin parámetros de un plano: G

 A.x  +  B. y +  C. z =  D, tal que un vector normal a él es   n = ( A, B, C); G

observamos que   j = (0, 1, 0) es un vector normal al plano determinado por la ecuación da-da. 

¾ La 

ecuación 

 3x + 4z = 12 describe el plano representado en el dibujo. 
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Mientras   y  puede tomar cualquier valor,  x  y   z están relacionados por la ecuación   z = 

3

−  x + 3  

4

(en el plano XZ es una recta….) 

Intersección con los ejes cartesianos 

Una forma muy útil de representar un plano es hallar  (si existe) la intersección  del mismo con los ejes cartesianos. Estos puntos forman un triángulo que nos da una idea de la ubica-ción relativa del plano con respecto a los octantes en los que queda dividido el espacio por el sistema coordenado. 

Queda claro que el triángulo NO es el plano, forma parte de él. 

¾ Dado el plano π :  2x + 3y + z = 6 ; hallemos las intersecciones con los ejes y representemos :

Para la intersección con el eje  z:  

la ecuación del eje  z está dada por  x = 0 e  y = 0 entonces sustituyendo en  2x + 3y + z = 6 

resulta 

 z = 6. La intersección es  P(0, 0, 6) 
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Para la intersección con el eje  x: 

la ecuación del eje  x  está dada por  

 y = 0 y  z = 0 entonces sustituyendo en 

 2x + 3y + z = 6  resulta    x = 3. 

La intersección es  Q(3, 0, 0)  

Para la intersección con el eje  y: 

la ecuación del eje  y  está dada por  

 x = 0  y   z = 0 entonces sustituyendo en 

 2x + 3y + z = 6  resulta    y = 2. 

La intersección es  R(0, 2, 0) 

Su gráfica es: 

¾ Hallemos las intersecciones con los ejes coordenados y grafiquemos el plano

α:  2x – 3y + 4z = −  12 

Para la intersección con el eje  z:  

la ecuación del eje  z está dada por  x = 0 e  y = 0 entonces sustituyendo en  2x −  3y + 4z = −  

 12  resulta 

 z = − 3. La intersección es  P(0, 0, − 3). 

Para la intersección con el eje  x: 

la ecuación del eje  x  está dada por  y = 0 y  z = 0 entonces sustituyendo en  2x −  3y + 4 z = −  

 12  resulta    x = − 6. La intersección es  Q(− 6, 0, 0) 

Para la intersección con el eje  y: 

la ecuación del eje  y  está dada por  x = 0 y  z = 0 entonces sustituyendo en  2x −  3y + 4 z = −  

 12  resulta    y = 4. La intersección es  R(0, 4, 0) 
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Su gráfica es (quedan  P y  Q por detrás de los planos….) : 

¾

Planos paralelos

Sean los planos 

π :   2x – y + 2z = 6 

1

π :   2x – y + 2z = 4 

2

Obviamente son planos paralelos pues sus vectores normales son paralelos. Verifique. 

Hallemos la intersección de cada plano con los ejes coordenados. 

π :   2x – y + 2z = 6 

1

Para la intersección con el eje  z: 

la ecuación del eje  z está dada por  x = 0 e  y = 0 entonces sustituyendo en  2x −   y + 2z = 6 

resulta 
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 z = 3. La intersección es  P(0, 0, 3). 

Para la intersección con el eje  x: 

la ecuación del eje  x  está dada por  y = 0 y  z = 0 entonces sustituyendo en  2x −   y + 2 z  = 6 

resulta    

 x = 3. La intersección es  Q(3, 0, 0). 

Para la intersección con el eje  y: 

la ecuación del eje  y  está dada por  x = 0 y  z = 0 entonces sustituyendo en  2x −   y + 2 z  = 6 

resulta 

 y = − 6. La intersección es  R(0, − 6, 0). 

Ídem para   π : 

 2x – y + 2z = 4 

2

Para la intersección con el eje  z:  

la ecuación del eje  z está dada por  x = 0 e  y = 0 entonces sustituyendo en  2x −   y + 2z = 4 

resulta 

 z = 2. La intersección es  P(0, 0, 2). 

Para la intersección con el eje  x: 

la ecuación del eje  x  está dada por  y = 0 y  z = 0 entonces sustituyendo en  2x −   y + 2 z = 4 

resulta 

 x = 2. La intersección es  Q(2, 0, 0). 

Para la intersección con el eje  y: 

la ecuación del eje  y  está dada por  x = 0 y  z = 0 entonces sustituyendo en  2x −  y + 2 z = 4 

resulta 

 y = − 4. La intersección es  R(0, − 4, 0). 
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EJERCICIO 7.3.11: 

Hallar una ecuación cartesiana del plano que pasa por el punto de coordenadas (0, 1, 0) y 

es perpendicular al plano coordenado   x y. Represente gráficamente. 

EJERCICIO 7.3.12:  

Hallar una ecuación cartesiana del plano que pasa por los puntos R(− 1, 2, 3) y S(3, 2, 1) y G

es paralelo vector    v  = (2, 0, 0). Represente gráficamente. 

EJERCICIO 7.3.13: 

Hallar una ecuación cartesiana del plano que pasa por el punto de coordenadas (−1, 2, 3) y 

 x +1

 y

contiene a la recta de ecuación 

=

=  z + 2 . Represente gráficamente. 

−1

2

EJERCICIO 7.3.14: 

Hallar una ecuación del plano que es paralelo al dado por 2  x −  y +2  z = 6  y pasa por el punto (2, 1, 0). Represente gráficamente. 

EJERCICIO 7.3.15: 
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Una ecuación de un  plano es  2  x + 3 y −  z = 3. Represente gráficamente. 

a) Hallar un vector normal al plano y unitario. 

b) Hallar dos vectores paralelos al plano. 

c) Determinar una ecuación de un plano que pasa por (2, 2, 1) y es perpendicular al plano

dado. 

EJERCICIO 7.3.16: 

⎧ x = 2 + λ.3 + μ.2

⎪

Una ecuación de un  plano es  ⎨  y = 1+ λ.0 + μ.4    con  λ ∈ \ y μ ∈ \

⎪ z =1+ λ.1+ μ.3

⎩

Y  la de otro es  5  x −  3 y −   z = 5,  ¿estos planos son paralelos?, ¿son perpendiculares? 

Justifique su respuesta. 

EJERCICIO 7.3.17 : 

Dados los puntos  A(2, 1, 3) ,  B (− 2, 5, 6),  C( 3, 2, 0) y  D(3, 1, 7), hallar una ecuación del JJJG

JJJG

plano que contiene   AB  y es paralelo a   CD . Represente gráficamente. 

EJERCICIO 7.3.18: 

a) Escribir una ecuación de la recta que pasa por  Q (0, 3, 2) y es paralela al plano de ecuación 

3 x -  y + 2 = 0 y al plano que pasa por  Q, el origen y  P(1, 0, 2) . Represente gráficamente. 

b) Escribir una ecuación para la recta que pasa por el origen y es perpendicular al plano de ecuación 5  x − 3 y −    z = 5. Represente gráficamente. 

EJERCICIO 7.3.19: 

Se define como ángulo entre dos planos al ángulo entre  vectores normales a cada uno de ellos. 

a) Hallar el ángulo entre los planos de ecuaciones 3 x −    y + 2 = 0  y  5  x −   3 y −    z =5

⎧ x = 2 + λ.3 + μ.2

⎪

b) Hallar el ángulo entre los planos de ecuaciones ⎨ y = 1+ λ.0 + μ.4    con λ ∈\ y μ ∈\   

⎪ z =1+ λ.1+ μ.3

⎩
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y   6  x  −  4  y +  z  = 5. Represente gráficamente. 

EJERCICIO 7.3.20: 

a) Idee una manera de encontrar la distancia entre un punto del espacio y un plano. Repre-

sente para lograrlo. 

b) Halle la distancia entre P(2, 1, 0) y el plano de ecuación  4  x − 2  y + 2  z = 5

EJERCICIO 7.3.21: 

a) Idee una manera de encontrar la distancia entre una recta del espacio y un plano. 

 x +1

 y

b) Halle la distancia entre el plano

=

=  z + 2 ;  y el plano de ecuación  

−1

2

4  x − 2  y + 2  z  = 5 
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ANEXO 1 − Intersecciones de planos 

Veamos algunas posibles situaciones al analizar la intersección entre planos. 

¾ Tres planos pueden interceptarse en un punto

¾ Dados tres planos, pueden interceptarse en una recta
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¾ Dados tres planos, pueden ser dos paralelos y uno secante. 

¾ Planos secantes dos a dos. Los tres planos forman una superficie prismática. 

¾ Dos planos coincidentes y uno secante
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¾ Planos paralelos y distintos dos a dos

¾ Planos 

coincidentes
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ANEXO 2: Intersecciones analíticas de un cono con un plano. 

Las cónicas, estudiadas en el Capítulo 5, se denominan así pues ya desde la antigüedad se 

las pensaba como intersecciones de un cono con planos de diferente inclinación. 

A modo de ilustración de los comentarios vertidos en el capítulo, demostraremos analítica-

mente las intersecciones que se generan la intersecar un cono de la forma:  2

2

2

 x +  y =  z  con 

distintos planos. Este es un cono con eje en el eje  z. 

Se hará en forma particular con un ejemplo concreto con la esperanza de no complicar al 

lector con cuentas generales. 

Para profundizar los conceptos acerca de plano y sus ecuaciones, deberá revisar el Capítu-lo 7. 

Primer caso: 

Cono   2

2

2

 x +  y =  z  cortado con un plano perpendi-

cular al eje del cono, es decir un plano de la forma 

 z = k. Supongamos un plano particular, digamos  z = 

4. 

El eje del cono está dirigido por el vector (0, 0, 1) y el 

plano   z = 4 tiene como vector normal al vector 

G n = (0,0,1),  luego el plano y el eje del cono son per-

pendiculares. 

Así se tiene que la intersección es:  

2

2

2

 x +  y = 4 ,  esto es la ecuación de una circunfe-

rencia. 
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Segundo caso:  

Cono   2

2

2

 x +  y =  z  cortado con un plano oblicuo al eje del cono (el eje  z), que no sea paralelo a la generatriz y que forme con el eje un ángulo mayor que el que forma el eje 

con la generatriz. 

En nuestro caso, son generatrices del cono las rectas  x = z,  y = z,  etc., y  todas ellas forman un ángulo de 45° con el eje, luego precisamos tomar un plano que forme un ángulo 

mayor a 45°. 

1

Por ejemplo: el plano 

 y +  z = 3  

2

G ⎛ 1 ⎞

Su vector normal es   n = 0, ,1

⎜

⎟ ,  y si hacemos cuentas el ángulo que se forma entre el 

⎝ 2 ⎠

vector director del eje y éste es: 

(

) ⎛ 1 ⎞ =

⎜

⎟ (

) ⎛ 1 ⎞

0,0,1 . 0, ,1

0,0,1 . 0, ,1 .cosθ

⎜

⎟

⎝ 2 ⎠

⎝ 2 ⎠

5

1 = 1. 

.cosθ  

4

Si despejamos, θ = 26 33

° ′54′ , por lo que el plano y el eje del cono forman un ángulo de 

63 26

° 6

′ ′ . 

Resolvamos la intersección:  

2

2

2

⎧ x +  y =  z

⎪⎨1  y+ z=3

⎪⎩2

1

Tenemos, despejando de la segunda ecuación :   z = 3 −  y , que al ser reemplazada en la 2

primera :  
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2

⎛

1

2

2

⎞

 x +  y = 3 −  y

⎜

⎟

⎝

2 ⎠

Operando: 

1

2

2

2

 x +  y = 9 − 3 y +  y

4

3

2

2

 x +  y + 3 y = 9  

4

Completando cuadrados: 

3

2

 x + .( 2

2

 y + 2. . 

 y  2 + 2 ) = 9 + 3

4

3

 x + .(  y + 2)2

2

= 12

4

Dividiendo a ambos miembros por 12, 

y simplificando : 

2

 x

3

+

.(  y + 2)2 =1 

12 4.12

 x

(  y + )2

2

2

+

=1 

12

16

Obtenemos entonces:  

 x

(  y + 2)2

2

( ) +

=1 

2

2

4

2 3

que es la ecuación de una elipse 

Tercer caso:  

Cono   2

2

2

 x +  y =  z  cortado con un plano oblicuo al eje del cono, que sea paralelo a la generatriz. 
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En nuestro caso, son generatrices del cono las rectas  x = z, y = z, etc, y todas ellas forman un ángulo de 45° con el eje, luego precisamos tomar un plano que forme un ángulo de 45°. 

Por ejemplo: el plano  −  y +  z = 1 

G

Verifiquémoslo. Su vector normal es   n = (0, 1

− , )

1 , y si hacemos cuentas el ángulo que se 

forma entre el vector director del eje  z y éste es:  

(0, 0,1).(0, −1,1) = (0, 0,1) . (0, −1,1) .cosθ  

1 = 1. 2.cosθ  

Y despejando θ = 45° , por lo que el plano y el eje del cono forman un ángulo de  45° . 

Resolvamos la intersección:  

2

2

2

⎧ x +  y =  z

⎨⎩− y+  z =1

Tenemos, despejando de la segunda ecuación : 

 z = 1+  y , que reemplazando en la primera : 

 x +  y = ( +  y)2

2

2

1

Operando: 

2

2

2

 x +  y = 1+ 2  y +  y

2

 x = 1+ 2  y  

Que se puede reescribir como: 

1 ⎛

1

2

⎞

 x = 4. 

 y +

⎜

⎟

2 ⎝

2 ⎠

que es la ecuación de una parábola. 

Cuarto caso:  
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Cono   2

2

2

 x +  y =  z  cortado con un plano oblicuo al eje del cono, que forma con el eje del cono un ángulo menor al que forman el eje   z  y la generatriz. 

En nuestro caso, son generatrices del cono las rectas  x = z, y = z, etc, y todas ellas forman un ángulo de 45° con el eje, luego precisamos tomar un plano que forme un ángulo menor a 

45°. Por ejemplo: el plano  2  y +  z = 4  

G

Su vector normal al plano es   n = (0, 2, )

1 , y si hacemos cuentas el ángulo que se forma entre 

el vector director del eje  z y éste es:  

(0,0, )

1 .(0,2, )

1 = (0,0, )

1 . (0, 2, )

1 .cosθ

1 = 1. 5.cosθ  

Si despejamos, θ = 63 2

° 6 6

′ ′ , por lo que el plano y el eje del cono forman un ángulo de 

26 33

° ′54′  

Resolvamos la intersección:  

2

2

2

⎧ x +  y =  z

⎨⎩2 y+  z = 4

Tenemos, despejando de la segunda ecuación:   z = 4 − 2 y , que al ser reemplazada en la primera  

 x +  y = ( −  y)2

2

2

4 2

Operando: 

2

2

2

 x +  y = 16 −16 y + 4 y

2

2

 x − 3 y +16 y = 16  

Completando cuadrados: 

⎛

8 64 ⎞

64

2

2

 x − 3.  y − 2. . 

 y +

=16 − 3. 

⎜

⎟

⎝

3

9 ⎠

9
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2

⎛

8 ⎞

144 −192

2

 x − 3.  y −

=

⎜

⎟

⎝

3 ⎠

9

48

Dividiendo a ambos miembros por  −

: 

9

2

⎛

8 ⎞

27.  y −

2

9.  x

⎜

⎟

⎝

3 ⎠

−

=1 

48

−

48

−

Simplificando y reordenando: 

2

⎛

8 ⎞

9.  y −

2

3 x

⎜

⎟

⎝

3 ⎠

+

= 1 

16

−

16

2

⎛

8 ⎞

 y −

⎜

⎟

2

⎝

3 ⎠

 x

−

= 1 

16

16

9

3

Obtenemos entonces:  

2

⎛

8 ⎞

 y −

⎜

⎟

2

⎝

3 ⎠

 x

−

=1 

2

2

⎛ 4 ⎞

⎛ 4 ⎞

⎜ ⎟

3

⎜

⎟

⎝ ⎠

⎝ 3 ⎠

que es la ecuación de una hipérbola. 
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CAPITULO 8 

Números complejos

Introducción 

En  este  capítulo  introducimos  uno  de  los  conceptos  más  importantes  de  la 

Matemática. 

En  el  Renacimiento  los  matemáticos  pensaban  que  ya  se  habían  descubierto 

todos  los  números.  Todos  los  números  estaban  ubicados  en  la  recta  numérica,  una línea  recta  infinitamente  larga  cuyo  "centro"  es  el  0.  Las  fracciones  ocupan  los espacios  entre  los  enteros  y  los  irracionales  se  intercalan  entre  ellos.  Todos  los números así ubicados responderían a todos los problemas que se pudieran plantear. 

Pero en el siglo XVI el italiano Rafaello Bombelli estudiando las raíces cuadradas 

de distintos números se planteo una pregunta imposible de contestar:¿  cuál es la 

1

−  

? Los candidatos ( 1 y -1) no respondían al problema ya que al cuadrado dan 1. 

Otro  italiano,  también  del  siglo  XVI,  Gerolamo  Cardano  operó  con  raíces 

cuadradas de números negativos, tratando de resolver el problema: "dividir el número 

10 en dos partes, de tal forma que una de las partes, multiplicada por la otra, de 40". 

Cardano en su trabajo plantea como solución a los números  5 + −15 y 5- -15  

y admite que operando como si esos números fueran números reales solucionaban el 

problema. 

La solución introducida por Bombelli fue crear un número nuevo que indicó con  i 

l amado   número  imaginario,  que  se  definía  como  respuesta  a  la  pregunta  cuál  es  la raíz  cuadrada  de -1?  Para  otros  historiadores  es  Leonardo  Euler  (mediados  del  siglo XVIII) quien introduce a  i  como símbolo para representar a 

1

− . 

La  existencia  de  los  números  negativos  tenía  sustento  en  la  realidad  pues  se

asocian con las deudas.  Pero no había nada del mundo real que avalara la existencia 

del número imaginario. 

Pero a fines del siglo XVIII y principios del XIX los matemáticos Caspar Wessel, 

Jean  Argand  y  Karl  Gauss,  encontraron  de  manera  independiente  una  interpretación 
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geométrica  para  los  números  "imaginarios":   los  números  imaginarios  representan rotaciones.  

i 

-1 

1 

-1 

1 

-1 

1 

El operador -1 

El operador -1 

El operador i equivale 

transforma 1 en -1 

aplicado dos v eces 

a una rotación de 90Ůna rotación de 

transforma 1 en  

aplicado dos veces 

 

180° 

(-1) .(-1) = 1 

transforma 1 en  

Una rotación   

de 360° 

i . i = - 1 

Se  verá  una  de  las  posibles  maneras  de  abordar  los  números    complejos  que  nos permiten resolver  (con ojos del siglo XX o XXI) el problema de las raíces (de cualquier 

índice)  de  los  números  negativos  o    solucionar  la  ecuación   x2  +1  =0    de  inocente apariencia. 

1. Definiciones básicas

Designemos por 

el conjunto de los números reales con las operaciones de suma y 

producto habituales. 

Consideremos el conjunto de todos los pares ordenados de números reales. 

El  conjunto  de  los  números  complejos  que  notaremos 

,  es  el  conjunto  de 

elementos de  la forma    z = (  a, b)   con   a ∈   y   b ∈      

esta manera de expresar al complejo z, se llama forma de par ordenado  
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 a =  c



Igualdad:  Si  a,  b,  c,  d  son reales ( , 

 a b) = ( c,  d ) si y sólo si    Y

 b =  d

Por lo tanto  si  a,  b son reales en general ( a,  b) ≠ ( b,  a) . Analice si vale la igualdad en algún caso. 

En el conjunto C se definen dos operaciones: la suma , que   indicaremos por + y la  

multiplicación , que indicaremos por  . que están dadas por las siguientes igualdades: (S) 

( a,  b) + ( c,  d ) = ( a +  c,  b +  d )  (M) 

  ( a,  b).( c,  d ) = ( . 

 a c − . 

 b d , . 

 a d + . 

 b c)

En la igualdad (S) hay tres apariciones del símbolo +. La primera de ellas es la que estamos definiendo, se da "el como" sumar dos complejos. Las otras apariciones de + 

está indicando la conocida suma entre números reales. 

Para la igualdad (M) caben similares consideraciones para .  y + . 

EJEMPLO 8.1.1: 

Calculemos: 

a) (2,1) + (1,3) = (2+1, 1+3) = (3, 4)

b) (-3, 1) + (3, 0) = (-3 + 3, 1+ 0) = ( 0, 1)

c) (2,5) + ( 3, −3) = (2 + 3,5 + ( 3

− )) = (2 + 3, 2)

d) (1, 2).(3,5) = (1.3 − 2.5,1.5 + 2.3) = (3 −10,5 + 6) = (−7,11)

e) (3, −1).(1,1) = (3.1− ( 1

− ).1, 3.1+ ( 1

− ).1) = (3 +1, 3 −1) = (4,2)

f) (0 ,-2).(1,0) = (0.1 - (-2).0, 0.0 +(-2).1) = ( 0 + 0, 0 -2 ) =(0, -2)
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NÚMEROS COMPLEJOS – CAPÍTULO  8

Unas definiciones importantes respecto a nomenclatura: 

Dado   z = ( a, b)   ∈    con  a y  b reales, 

  a  se l ama  parte real del complejo  z,   a = Re(z) 

  b  se l ama  parte imaginaria del complejo  z,  b = Im(z) 

  Representación gráfica

Se sabe que la recta está cubierta por los números reales. 

Como los complejos son pares ordenados de reales los representaremos sobre un par 

de  rectas  perpendiculares  (horizontal  y  vertical).  La  parte  real  del  complejo  se representa sobre la recta horizontal y la parte imaginaria sobre la vertical. 

 b 

  z 

Si  z = ( a, b) 

  a 

¡bien! 

Llamaremos eje real al eje horizontal y eje imaginario al eje vertical. 

Observar que la nomenclatura de “imaginario” o “parte imaginaria” de un complejo no 

significa que por ellos no se estén aludiendo a números reales. 
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2. Propiedades de la suma y la multiplicación

La suma de complejos verifica las conocidas propiedades de esta operación en R. 

Por eso veremos que estas propiedades se verifican fácilmente. 

 Para la Suma: 

Sean   z ∈ ,  z ∈ ,  z ∈

1

2

3

(MS) Si    z =  z   entonces cualquiera sea  z ∈    z +  z = z +  z

  Monotonía 

1

2

1

2

(AS  

)      z + ( z +  z ) = ( z +  z ) +  z

  Asociativa 

1

2

3

1

2

3

(CS)

 z +  z =  z +  z

 Conmutativa 

1

2

2

1

(NS)  Existe un único elemento  e ∈   tal que para todo z ∈     e + z = z ,  siendo       e= ( 0,0)     e es el  Elemento  Neutro de la suma      

(OS) Para todo  z ∈   existe un único  z'  ∈   tal que    z+ z'  = (0,0), siendo   z’= ( -a,-b) z'  es el  Opuesto de z 

 Notación:  

Al ( 0,0) se lo llama el  cero complejo. Puede notarse también como  0  ó  0

. 

Al    z'  = ( -a, -b) se lo anota   - z   si   z = ( a,-b).  

EJERCICIO 8.2.1 

a) Verificar las propiedades antes mencionadas para (-2,3), (1,4) y (3, -5). 

Representar cada complejo dado y el resultado de las operaciones. 

b) Hallar los opuestos de cada uno de esos complejos y representarlos en un

mismo gráfico. 

c) Ídem a) y b) para (-1,0) , (2, 0) y (0,3). 
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 Demostración de (MS):

Consideremos z = ( a ,  b ) , z = ( a ,  b )  y   z = ( a,  b) 1

1

1

2

2

2

Por definicion  z +  z = ( a +  a,  b +  b)

1

1

1

z +  z = ( a +  a,  b +  b)

2

2

2

 a =  a

1

2

Por hipotesis  z =  z  lo cual equivale a  

1

2

 b =  b

1

2

como la propiedad de monotonia vale en   se tiene

 a +  a =  a +  a

1

2



lo que equivale a z +  z = z +  z

1

2

  b +  b =  b +  b

1

2

♦

 Demostración de (CS):

Consideremos z = ( a ,  b )  y  z = ( a ,  b ) 

1

1

1

2

2

2

Por definicion  z +  z = ( a +  a ,  b +  b )

1

2

1

2

1

2

y como  a ,  a ,  b ,  b   son números reales  a +  a =  a +  a  y  b +  b =  b +  b 1

2

1

2

1

2

2

1

1

2

2

1

por propiedad conmutativa de la suma en  . 

Por lo tanto z +  z = ( a +  a ,  b +  b ) = ( a +  a ,  b +  b ) =  z +  z 1

2

1

2

1

2

2

1

2

1

2

1

♦

EJERCICIO 8.2.2: 

Demostrar las propiedades (AS), (NS) y (OS) antes mencionadas. 

EJEMPLO 8.2.3: 

Hallar  z tal que (2, 3) +  z = ( 6, 1) 

Por la existencia del opuesto  y monotonía sumando a ambos miembros  - (2,3), 

asociando y propiedad del  0 se tiene: 

-(2, 3) + (2, 3) +  z = -(2, 3) + (6, 1) 

 (0,0) + z = (-2, -3) + (6, 1) 

 z = (-2 + 6, -3 + 1) 

 z = (4, -2) 
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Dados los complejos  z1  y  z2 se define la resta    z1 - z2 =  z1 + ( - z2) También la multiplicación satisface propiedades similares a las que se verifican en R. 

  Para  la Multiplicación: 

Sean   z ∈ ,  z ∈ ,  z ∈


1

2

3

 (M)  Si   z =  z   entonces cualquiera sea  z ∈    z .  z = z .  z

 Monotonía 

1

2

1

2

 (AM)   z . ( z .  z ) = ( z .  z ).  z

 Asociativa 

1

2

3

1

2

3

 (CM)   z .  z =  z .  z

 Conmutativa 

1

2

2

1

 (D) 

 z .( z +  z ) =  z .  z +  z .  z

 Distributiva de la multiplicación en la suma 

1

2

3

1

2

1

3

 (NM)  Existe un único elemento  u ∈  tal que para todo  z ∈    u. z = z       u es el  Elemento neutro de la multiplicación. Se verá que  u = (1,0)  

 (IM)  Para todo  z ∈

y  z ≠  ( 0,0) ,  existe un único  z*  ∈  tal que      z .  z* = (1,0) 

  z* es  el Inverso de z 

EJERCICIO 8.2.4: 

Verificar las propiedades antes mencionadas para  ( -2, 8) , (- 1, 5)  y  (4,3). 

Representar los resultados. 

 Demostración de (D):

Consideremos z = ( a ,  b ),  z = ( a ,  b ) y  z = ( a ,  b ) 1

1

1

2

2

2

3

3

3

Por definicion de suma   z +  z = ( a +  a ,  b +  b )

2

3

2

3

2

3

Por definición de producto z .(z +  z ) = ( a ( a +  a ) −  b ( b +  b ),  a ( b +  b ) +  b ( a +  a )) 1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

y como  a ,  a ,  a ,  b ,  b ,  b   son números reales se tiene que: 1

2

3

1

2

3

 a ( a +  a ) =  a a +  a a  ,  b ( b +  b ) =  b b +  b b  , 1

2

3

1 2

1 3

1

2

3

1 2

1 3

 a ( b +  b ) =  a b +  a b  y    b ( a +  a ) =  b a +  b a 1

2

3

1 2

1 3

1

2

3

1 2

1 3
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por propiedad distributiva del producto en la suma en  .  

Por lo tanto z .( z +  z ) = ( a a +  a a −  b b −  b b ,  a b +  a b +  b a +  b a ) =

1

2

3

1 2

1 3

1 2

1 3

1 2

1 3

1 2

1 3

por definición de suma ( a a −  b b ,  a b +  b a ) + ( a a −  b b ,  a b +  b a ) =

1 2

1 2

1 2

1 2

1 3

1 3

1 3

1 3

por definición de producto ( a ,  b ).( a ,  b ) + ( a ,  b ).( a ,  b ) =  z .  z +  z .  z 1

1

2

2

1

1

3

3

1

2

1

3

En consecuencia  z .( z +  z ) =  z .  z +  z .  z 1

2

3

1

2

1

3

♦

EJERCICIO 8.2.5: 

Demostrar las propiedades (MM), (AM), (CM)  antes mencionadas. 

EJERCICIO 8.2.6: 

Demostrar que  u = ( 1, 0)  cumple ser el neutro de la multiplicación  y representar.   

 Notación:  

A  u = ( 1,0) se lo l ama unidad compleja. Puede notarse como  1  ó  1  . 

Para   z ≠  ( 0,0)    a  *

 z , el inverso multiplicativo de z   se lo anota    z-1. 

EJERCICIO 8.2.7: 



−



Demostrar que dado 

 a

 b

 z = ( a, b)  ≠  ( 0,0) ,   entonces  *

 z = 

, 

  . 

2

2

2

2

  a +  b

 a +  b 

Le quedó claro ¿por qué   z = ( a, b)  ≠  ( 0,0) ? 

EJEMPLO 8.2.8: 

Calcular el inverso de z = (-1, 3), además verificar que el producto de z y su inverso es 

 1 



−1

−3

  −1 3

− 

1

Si  z = (−1, 3) entonces  z− = 

, 

 = 

, 

   además

2

2

2

2

 (−1) + 3 (−1) + 3   10 10 

 1

−

3

− 



−1

−3

3

−

−1

 1

9

3

3 

 10



(-1,3).

, 

 =  −1. 

− 3. 

, −1. 

+ 3. 

 = 

+

, 

−

 = 

, 0  = (1, 0)

 10 10  

10

10

10

10 

 10 10 10 10   10


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 z

Dados los complejos  z

−

 1  y  z2  , con  z2  ≠ (0,0) se define la  división

1

1 =  z .  z

1

2

 z 2

EJERCICIO 8.2.9: 

Dados  z1= (-2, 0) ,  z2 = ( 3, 5) ,  z3 = (4, 1) ,  z4 = (0, 3) a) Calcular sus opuestos. Representar. 

b) Calcular  z1  +  z2   ,   z4  -  z2    , 

  z3  +  ( z4 -  z2 ) 

c) Calcular sus inversos. Representar. 

 z −  z

d) Calcular  

−1

1

4 +  z 3

 z 2

EJEMPLO 8.2.10: 

Resolver la ecuación   (2, 1) + (3, 4) .  z = (2, -5) 

Por existencia del opuesto de (2, 1), monotonía y asociatividad de la suma  y 

propiedad del  0 se tiene:      

(-2, -1) + (2, 1) + (3, 4) .  z = (-2, -1) + (2, 5) 

(0,0) +  (3, 4) .  z = (-2, -1) + (2, 5) 

(3, 4) .  z = (-2 + 2, -1+ 5) 

(3, 4) .  z = (0, 4) 

Por existencia del inverso de (3, 4), monotonía y asociatividad de la multiplicación y 

propiedad del  1  se tiene:      

1

−

1

(3, 4) .(3, 4).  z

(3, 4)−

=

.(0, 4) 



3

−4



. 

 1 z  =  

, 

.(0, 4)

2

2

2

2

 3 + 4

3 + 4 

 3 −4 

 z = 

, 

.(0, 4)

 25 25 

 3

−4

3

−4



 z =

.0 −

.4, 

.4 +



.0

 25

25

25

25



 16 12 

 z = 

, 



 25 25 

482

NÚMEROS COMPLEJOS – CAPÍTULO  8

EJERCICIO 8.2.11: 

Resolver las siguientes ecuaciones: 

a) (-3, 4) .  z = (2, -3). (2, 6)

b) (5, 1) + (9, -2) . z = (-10, 2) + (6, -3)

c) (3, 0) - (6, 4) + (2, 1) = (5, -3).  z

d) (3, -8).  z + (0, 6) = (-3, 2).  z - (-2, 0)

e) (4, 3).  z + (4, -5) = (4, 3) .  z

f) (-2,1). z – (3, 0).(2, 2) = (0, 0)

g) Representar cada una de las soluciones y sus opuestos. 

3. Identificación

Se verá un subconjunto especial de C,  el conjunto 

( a,  b) ∈

:  b = 0 . 

0  = {

}

Son  elementos  de 

:  (1,0),  (0,0),  (-1,0),  (-3,0),  etc.,  todos  aquellos  complejos  de 

0

componente imaginaria nula. 

Vamos a representar algunos de los elementos de  

en el plano: 

0

¿Qué observamos? 

Todos  estos  complejos, 

por  ser  de  componente 

imaginaria  nula,  quedan 

representados  sobre  el  eje 

horizontal 

(-3,0)  (-1,0) (0,0)  (1,0) 

EJERCICIO 8.3.1: 

a) Calcular: (2,0) + ( -3,0) =

(-1,0) + ( 4, 0) = 

( a ,0) + ( a , 0) =

1

2

b) Calcular los opuestos de (17,0) ; (-3,0) ; (1,0)

c) Calcular el opuesto de  ( a, 0)

d) Calcular:    (3,0) . (6.0) =

(4,0). (-7,0) = 

( a , 0) ⋅ ( a , 0) =

1

2
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e) Calcular el inverso de  ( a, 0) , siendo   a ≠ 0

Entre el conjunto  0   y R existe de una función biyectiva que a cada complejo 

¡Ya lo 

de parte imaginaria nula le asigna  su parte real: 

( a, 0) →  a

pruebo! 

Además por los resultados del ejercicio anterior se tiene: 

( a , 0) + ( a , 0)

→

 a +  a

1

2

1

2

( a , 0) ⋅ ( a , 0)

→

 a ⋅  a

1

2

1

2

Por lo cual resulta que:

sumar y multiplicar en 

y luego aplicar la función con imagen en  R, es equivalente 

0

a aplicar la función y sumar o multiplicar en R, por lo tanto  se identifica a 

  con  R .  

0

Esto es: 

( a, 0) ≈  a    y qué en la práctica se usa ( a,0)  = a

Esta identificación nos da R  ⊆ C ,  de modo que un número real resulta ser precisamente un número complejo de componente imaginaria nula. 

Por las otras identificaciones conocidas resulta que todos los conjuntos numéricos 

están contenidos en el conjunto de los números complejos. 

EJEMPLO 8.3.2: 

a) Calcular (3, 0) . (2, 5) = ( 3. 2 -0.5, 3. 5 + 0. 2 ) = ( 3. 2 , 3. 5 ) = ( 6, 15)

b) Calculemos en general ( r, 0) . ( a, b) = ( r . a - 0.b , r . b + 0. a ) = (  r .a , r. b ) Según la identificación con R los números (3, 0) y (r, 0), son los números reales 3 y  r respectivamente. Luego, por el ejemplo anterior: 
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  Multiplicar un complejo  z = ( a, b)  por un número real  r 

resulta multiplicar cada una de las componentes del complejo por ese real 

  r . z = r. ( a, b)  =  (  r. a  , r. b )  

En  la  introducción  de  este  capítulo  mencionamos  que  los  complejos  habían  surgido como respuesta de solución para la ecuación  2

 x +1 = 0 , a ese número lo llamaron  i. 

Si se calcula (0,1) . (0,1) : 

(0,1) . (0,1)  = (0.0 - 1.1, 0.1+ 1.0) = ( -1, 0) 

Luego por la identificación resulta que      

(0,1) . (0,1) =  -1 

Designando con    i  a   (0,1)  se tiene que 

       i2 = - 1 

 (se hace una abuso de “notación “ ya que por ahora no se definió potencia de 

 complejos) 

Al número  i  se lo l ama  unidad imaginaria y su representación es: i = (0,1) 

Luego la ecuación 

¡Sirven para 

algo! 

 x2 +1 =0 

que no tiene solución en R , si tiene en C la solución    z = i 

Compruebe que también  - i   satisface esa ecuación!! 
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4. Otra forma para   z

Consideremos un complejo cualquiera   z = ( a, b). 

Verifiquemos que   ( 0, b ) = ( 0,1).(  b ,0) : 

( 0,1).(  b,0) = ( 0. b -1.0 , 0.0 + 1. b ) =(  0 , b )  

Además:  ( a, b)  = ( a,0)  + ( 0, b)  

Luego  por  la  identificación  hecha  con  R  y  por  definición  de   i,  resulta  que  todo complejo 

 z = ( a, b )  = a + i b 

La expresión      z =  a + i b   se llama forma binómica de  z 

Por conmutatividad de la multiplicación en C, vale que 

 z = ( a, b)  = a + i b = a + b i 

según el caso usaremos lo más conveniente. 

EJEMPLO 8.4.1: 

Pasar a la forma binómica los complejos (-2, 1) ; (4, 4) ; (1,0) ; (0, 7) ; ( 0, 0) ; (0, -10) Dado  z = (-2, 1) , la parte real de  z  es -2 y la imaginaria de  z  es 1 luego (-2, 1) = -2 +  i.  1 = -2 +  i 

Razonando similarmente obtenemos: 

(4, 4) =  4 +  i. 4 
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(1, 0) = 1 +  i . 0  = 1 

(0, 7) = 0 +  i . 7 = 7.  i 

(0, 0) = 0 +  i . 0  = 0 

(0, -10) = 0 +  i .(-10)  = -10 .  i 

El contexto nos indicará si el 1 ó el  0 es en R ó en C  pero por la identificación ¿cómo 

son?? 

EJEMPLO 8.4.2: 

Pasar a la forma par ordenado los complejos  3 + 2  i  ;  4 ;  -8  i  ;  0 ;  12.  i Comparando  z = 3 + 2  i  con la forma general se tiene que:  Re( z) = 3  e  Im( z) = 2 por lo cual escribimos:   

  z = 3 + 2  i = (   3 , 2) 

4 = ( 4, 0) 

-8  i  = (0, -8) 

0 = (0, 0) 

12.  i = ( 0 , 12)

Las operaciones que se han definido en el conjunto de los complejos pueden 

enunciarse usando la forma binómica de la siguiente manera: 

 (S' )        ( a +  i b) + ( c +  i d ) = ( a +  c) +  i ( b +  d )   (M' )      ( a +  i b) ⋅ ( c +  i d ) = ( . 

 a c − . 

 b d ) +  i ( . 

 a d + . 

 b c)

EJERCICIO 8.4.3: 

Usando las dos formas de expresar un complejo (binómica y par ordenado), verificar 

la equivalencia de (S) y (M) con (S') y (M') respectivamente. 
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En la resolución de un cálculo no "mezcle" ambas formas de expresión de los 

complejos. 

En los cálculos en forma binómica la  i opera algebraicamente como si fuera un real pero con la condición que al cuadrado da -1. 

Esto nos permite realizar la multiplicación aplicando la propiedad distributiva de la 

multiplicación en la suma: 

( a +  i .  b) ⋅ ( c + . 

 i d ) = . 

 a c + . 

 a . 

 i d + . 

 i . 

 b c + . 

 i . 

 b . 

 i d =

2

= . 

 a c + . 

 i ( . 

 a d + . 

 b c) +  i . . 

 b d = ( . 

 a c − . 

 b d ) + . 

 i ( . 

 a d + . 

 b c)

EJERCICIO 8.4.4: 

Dados  z = (-3, 4) ;  v = (-5, -5) ;  w = (0, 2) ;  u = (3, 3) ; s = (2, 0) ;  t = (5, -1) a) Representarlos. 

b) Expresarlos en forma binómica. 

c) Hal ar sus opuestos e inversos en ambas formas. 

d) Hal ar  z. v ;  3 .w + s  ; s - 2.t ;  u + w.t ;  w.z + 4. u

EJERCICIO 8.4.5: 

Dado  z = a + i  b: 

a) Hal ar en esa forma su opuesto - z. 

b) Si además  z 

1

0 , exp resar su inverso  z−

≠

en forma binómica. 

c) Haga los puntos anteriores para (3, - 2 ) y para   ( 0 , 8) . 

d) Hal ar los inversos y opuestos de  3+2 i  y  -7-6 i

  Un dúo de complejos:

Todo complejo  z = ( a, b)  = a + i  b  tiene asociado el complejo ( a, - b)  = a -  b i , llamado el  conjugado de z,  que se anota   z ,  y  es tal que  Re( z) = Re( z )   e    Im( z) = − Im( z ) 488
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 Z =(a,, b)

 z =  (a, -b) 

Observar que un complejo y su conjugado son simétricos respecto del eje horizontal (o 

real). 

Esto permite enunciar la siguiente:    

♦ PROPIEDAD 8.4.6:

Un complejo es un número real si y sólo si coincide con su conjugado. 

Lo que simbólicamente se expresa: 

 z ∈ R ⇔

 z =  z

Demostración: 

Si   z ∈ R esto significa que  z = ( a, b)    con  b = 0.  Es entonces  z = ( a, 0)  = a. 

Así:   -  b = 0 .  Luego   z =( a , -b)  = ( a, 0)  = a.  Por tanto  z =  z . 

Si  z = z ,  significa que ( a, b)  = ( a,- b) que por igualdad de complejos se tiene que son iguales ambas componentes, entonces   b = - b  de donde  b = 0. 

Por lo cual resulta     z = z = ( a, 0)  = a.  Es decir   z ∈ R  (por la identificación....)

♦
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Las siguientes son otras importantes propiedades de la conjugación: 

♦ PROPIEDAD 8.4.7

Dado    z ∈  :

a)  z =  z

b)  z +  z = 2 Re( z)

 z −  z = 2 Im( z) i

c)

2

2

 z ⋅  z = Re( z) + Im( z)

♦ PROPIEDAD 8.4.8:

Dados   z ∈   y   z ∈

1

2

a)  z +  z =  z +  z

1

2

1

2

b)

 z ⋅  z =  z ⋅  z

1

2

1

2

Demostración de a): 

Consideremos z =  a +  b i  y  z =  a +  b i 

1

1

1

2

2

2

Por definicion  z +  z = ( a +  a ) + ( b +  b ) i

1

2

1

2

1

2

Por definición de conjugado z +  z = ( a +  a ) − ( b +  b ) i    (1) 1

2

1

2

1

2

Por otro lado z =  a −  b i  y   z =  a −  b i  entonces 

1

1

1

2

2

2

z +  z =  a −  b i +  a −  b i = ( a +  a ) − ( b +  b ) i (2)

1

2

1

1

2

2

1

2

1

2

como (1) es igual a (2) se tiene que  z +  z =  z +  z

1

2

1

2

♦

EJERCICIO 8.4.9: 

Verificar la propiedad 8.4.7  para los complejos: 

 z = -2 + i 5 ;    z = ( 7 , 0 ) ;  z = -9 i ;    z = (  -4 , -3)  ;  z = (  0 ,  -5)  ;   z = 1 + i 490
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EJERCICIO 8.4.10: 

Verificar la propiedad 8.4.8  para los complejos: 

  z1 = 6 + i  7   y    z2 = -9 + i  2  ;  z1 =( 5 , -3 ) y   z2 = ( 0  , 5) EJERCICIO 8.4.11: 

Demostrar las propiedades 8.4.7 y  8.4.8 b) 

Idea de las demostraciones: considerar   z = a + i b   ó   z = ( a ,  b) como más le resulte...y haga las cuentas. 

Ídem para   z1 = a1 + i  b1  y   z2 = a2 + i  b2  ó   z1 =( a1 ,  b1 ) y   z2 = (a2  ,  b2) como le resulte mejor. 

EJEMPLO 8.4.12: 

Comprobar que para  z  ≠ 0 , 

−

 z− = (  z z ) 1

1

. 

.  z





Dado  

 a

− b

 z = ( a, b)  con 

-1

 a o  b no nulos, z = 

, 

  

2

2

2

2

  a +  b

 a +  b 

Por propiedad anterior : 

2

2

 z ⋅  z = Re( z) + Im( z)  =   2

2

 a +  b

es decir un número real no nulo (porqué no nulo???) 

Luego tiene inverso, que también es real: 

−1

2

2

−1

(  z.  z )

= (  a +  b ) . 

Multiplicando el conjugado de  z por este real se tiene: 

¿??? 

1

−

2

2

−1

( . 

 z z ) .  z = (  a +  b ) . ( a, − b) = (

2

2

−1

2

2

−1

(  a +  b ) .  a, (  a +  b ) .(− b)) =



 a

− b



= 

, 



2

2

2

2

  a +  b

 a +  b



Como queríamos comprobar. 

Esto es: el inverso de un complejo  z es un número real por el conjugado de  z  y ese número real es el inverso del producto del complejo por su conjugado, que es siempre 

positivo. Esto determina que el inverso de  z  está sobre una recta que pasa por el 

origen y por  el conjugado de  z . Analice si más cerca o más lejos del origen que   z . 

Haga un gráfico de la situación. Considere algunos ejemplos pertinentes. 
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Una consecuencia importante es el siguiente ejercicio. 

EJERCICIO 8.4.13: 

z

Dados   z

1

 1  =  a1  +  i    b1    y     z2  =  a2  +  i    b2    ,  si  además   z2 ≠ 0 , calcular en  forma 

z2

binómica. 

Esta manera de dividir se conoce como regla practica de dividir: 

multiplicar numerador y denominador por el conjugado del divisor. 

EJEMPLO 8.4.14: 

Sean 

z

 z1 = 2 + i  4   y   z2 = 3 + i 5, 

1

calcular 

. 

z2

z

(2 + 4 i).(3 − 5i)

1 =

=  aplicando propiedades anteriores y distributiva de la 

z

(3 + 5 i).(3 − 5 i)

2

−

 i +

 i +

+  i

multiplicación:  6 10

12

20

26 2

13

1

=

=

=

+

 i  

9 + 25

34

17

17

5. Más definiciones importantes

En  el  cálculo  con  los  números  complejos  es  importante  tener  presente  cual  es  la representación gráfica, por ello es útil introducir nuevas definiciones que permitirán dar 

interpretaciones más geométricas de estos números. 

El  módulo   de un complejo  z = ( a, b)  = a + i b  es   el número real positivo determinado por 

2

2

 a +  b  y se anota   z . 

Así definido, el módulo es la distancia al origen del punto del plano que representa al 

complejo   z (por el teorema de Pitágoras). 

Mirar el gráfico. 

 b

 z = (a, b) 

 z

0 = (0,0) 

 a

492
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En el caso que el complejo sea un real (vía la identificación...) esta definición coincide 

con la de valor absoluto en R  (comprobarlo), es así que se ha usado idéntica notación 

para este nuevo concepto, ya que extiende lo conocido en R. 

Siguen inmediatamente de la definición las siguientes 

♦ PROPIEDADES 8.5.1

a)   z ≥ 0  

b)   z = 0   si y sólo si    z = 0 

c)   i) Re( z) ≤ Re( z) ≤  z  , 

 ii) Im( z) ≤ Im( z) ≤  z

d)   z = − z =  z

e) 

2

 z

=  z.  z

Demostración de c)  i) 

Consideremos z =  a +  bi 

Re( z) =  a y por ser  a un número real   a ≤  a

Por lo tanto  Re( z) ≤ Re( z)

2

2

2

Por otro lado  z =  a +  b  y  por ser  b ≥ 0 

2

2

2

se tiene que   a ≤

 a +  b

2

Además   a =  a

2

2

2

Por lo tanto  Re( z) ≤ Re( z) =  a =

 a ≤

 a +  b  = z

Entonces se cumple que  Re( z) ≤ Re( z) ≤ z

♦

EJERCICIO 8.5.2: 

Probar las otras propiedades de 8.5.1 

(Idea de demostración: considere  z = ( a, b )     ó     z = a + i b  y aplique las definiciones ) 493

[image: Image 6929]

[image: Image 6930]

[image: Image 6931]

[image: Image 6932]

[image: Image 6933]

[image: Image 6934]

[image: Image 6935]

[image: Image 6936]

[image: Image 6937]

[image: Image 6938]

[image: Image 6939]

[image: Image 6940]

[image: Image 6941]

[image: Image 6942]

[image: Image 6943]

[image: Image 6944]

[image: Image 6945]

[image: Image 6946]

[image: Image 6947]

[image: Image 6948]

[image: Image 6949]

[image: Image 6950]

[image: Image 6951]

[image: Image 6952]

[image: Image 6953]

[image: Image 6954]

[image: Image 6955]

[image: Image 6956]

[image: Image 6957]

[image: Image 6958]

[image: Image 6959]

[image: Image 6960]

[image: Image 6961]

[image: Image 6962]

[image: Image 6963]

[image: Image 6964]

[image: Image 6965]

[image: Image 6966]

[image: Image 6967]

[image: Image 6968]

[image: Image 6969]

[image: Image 6970]

[image: Image 6971]

[image: Image 6972]

[image: Image 6973]

[image: Image 6974]

[image: Image 6975]

[image: Image 6976]

[image: Image 6977]

[image: Image 6978]

[image: Image 6979]

[image: Image 6980]

[image: Image 6981]

[image: Image 6982]

[image: Image 6983]

[image: Image 6984]

[image: Image 6985]

[image: Image 6986]

[image: Image 6987]

[image: Image 6988]

[image: Image 6989]

[image: Image 6990]

[image: Image 6991]

[image: Image 6992]

[image: Image 6993]

[image: Image 6994]

[image: Image 6995]

[image: Image 6996]

[image: Image 6997]

[image: Image 6998]

[image: Image 6999]

[image: Image 7000]

[image: Image 7001]

[image: Image 7002]

[image: Image 7003]

[image: Image 7004]

[image: Image 7005]

[image: Image 7006]

[image: Image 7007]

[image: Image 7008]

[image: Image 7009]

[image: Image 7010]

[image: Image 7011]

[image: Image 7012]

[image: Image 7013]

[image: Image 7014]

[image: Image 7015]

[image: Image 7016]

[image: Image 7017]

[image: Image 7018]

[image: Image 7019]

[image: Image 7020]

[image: Image 7021]

[image: Image 7022]

[image: Image 7023]

[image: Image 7024]

[image: Image 7025]

[image: Image 7026]

[image: Image 7027]

[image: Image 7028]

[image: Image 7029]

[image: Image 7030]

[image: Image 7031]

[image: Image 7032]

[image: Image 7033]

[image: Image 7034]

[image: Image 7035]

[image: Image 7036]

[image: Image 7037]

[image: Image 7038]

[image: Image 7039]

[image: Image 7040]

[image: Image 7041]

[image: Image 7042]

[image: Image 7043]

[image: Image 7044]

[image: Image 7045]

[image: Image 7046]

[image: Image 7047]

[image: Image 7048]

[image: Image 7049]

[image: Image 7050]

[image: Image 7051]

[image: Image 7052]

[image: Image 7053]

[image: Image 7054]

[image: Image 7055]

[image: Image 7056]

[image: Image 7057]

[image: Image 7058]

[image: Image 7059]

[image: Image 7060]

NÚMEROS COMPLEJOS – CAPÍTULO  8

EJERCICIO 8.5.3: 

Justificar el siguiente gráfico: 

  Interpretación geométrica de la suma de complejos

  b1 + b2 

 z1 +   z2  

 b1 

 z1

  b2 

 z2  

 a

  a2 

 a1 + a2 

 1 

EJERCICIO 8.5.4: 

a) Dados dos complejos  z1 y  z2  , ¿ qué representa  z −  z ? Haga una interpretación 1

2

gráfica. 

b) Si los complejos   z1 ,  z2  y   z3    son  los vértices de un triángulo (represente en el plano...)  qué  relación  se  verifica  entre  la  longitud  de  uno  cualquiera  de  los  lados con la suma de las longitudes de los otros lados? 

Este ejercicio permite interpretar la desigualdad establecida en: 

♦ PROPIEDAD 8.5.5 (Desigualdad triangular  o desigualdad de Minkowski)

 z +  z ≤  z +  z

1

2

1

2

Demostración: 

Teniendo presente lo demostrado en propiedades anteriores para cualquier  z= ( a, b): 2

 1. z =  z ; 2.  z +  z = 2 Re( z)

(  número real) ; 3. 

2

2

 z ⋅  z = Re( z) + Im( z)  = z

  ( otro 

 real) 

 4.  z ≥ 0   ; 

 5. 

 a = Re( z) ≤ Re( z) ≤  z   ; 

 6.  

 z = − z =  z

Y  lo demostrado para cualquier par de complejos: 

 7.  z +  z =  z +  z   ; 

 8. z ⋅  z =  z ⋅  z

; 

 9.  z .  z =  z .  z

1

2

1

2

1

2

1

2

1

2

1

2

494

NÚMEROS COMPLEJOS – CAPÍTULO  8

Vamos a comenzar calculando: 

2

 z +  z

= ( z +  z )(  z +  z ) = ( z +  z )(  z +  z ) =

1

2

1

2

1

2

1

2

1

2

Por 3. 

Por 7. 

y aplicando distributiva 

=  z .  z +  z .  z +  z .  z +  z .  z =  

1

1

2

1

1

2

2

2

Por 3. 

Por 3. 

=

2

2

 z

+  z .  z +  z .  z +  z

=

1

1

2

2

1

2

(  observando que:   z .  z =  z .  z =  z .  z  ) 1

2

1

2

2

1

=

2

2

 z

+ 2. Re( z .  z ) +  z

(1) 

1

1

2

2

Por 2. 

Los sumandos de (1) son números reales y aplicando propiedad del valor absoluto al 

término central ( todo número real es menor o igual que su   valor absoluto) y monotonía de la suma de reales, podemos escribir:    

(1) 

2

2

2

2

2

2

≤  z

+ 2. Re( z .  z ) +  z

≤  z

+ 2.  z .  z +  z

=  z

+ 2.  z .  z +  z

=

1

1

2

2

1

1

2

2

1

1

2

2

Por 5. 

Por 9. 

* 

=   z

+ 2.  z .  z +  z

= (  z +  z )2

2

2

1

1

2

2

1

2

Por 6. 

Por  cuadrado de 

binomio 
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Resumiendo los pasos y teniendo en cuenta *  se tiene: 

 z +  z

≤ (  z +  z )2

2

1

2

1

2

Esta  desigualdad  es  entre  números  reales  de  base  no  negativa,  si  tomamos  raíz 

cuadrada  a  ambos  miembros  la  desigualdad  se  mantiene  en  el  mismo  sentido  y  así obtendremos la desigualdad triangular que queríamos probar. 

♦

EJERCICIO 8.5.6: 

Cómo  deben  ser  los  complejos  para  que  se  dé  la  igualdad  en  la   Desigualdad 

 Triangular? 

  Algo de la geometría en complejos o complejos de geometría... 

Por medio de la noción de módulo se pueden describir muchos conjuntos del plano, 

entre ellos algunos que se han tratado en nuestros capítulos de Geometría Analítica. 

El conjunto   A = { z ∈ :  z −  z =  r ∧  r ≥ 0  es el conjunto de todos los complejos que 0

}

están a distancia  r del complejo  z0 , esto es la circunferencia de centro en  z0  y radio  r.  

Justifique!!!!  

Voy! 

!!! 

 r 

 z0 

EJEMPLO 8.5.7: 

Representar el conjunto   A = { z ∈ :  z − 2 +  i ≤ }

3

Consideramos   z =  a +  bi , entonces  

2

2

 z − 2 +  i = ( a − 2) + ( b +1) i = ( a − 2) + ( b +1) 496
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2

2

Como se pide   z − 2 +  i ≤ 3, 

( a − 2) + ( b + 1) ≤ 3  

2

2

Por lo tanto  ( a − 2) + ( b + 1) ≤ 9  

Si consideramos la igualdad, es la ecuación de una circunferencia con centro en (2,-1) 

y radio 3. 

Por lo tanto  A  representa la región del plano formada por todos los puntos que distan 3 

unidades o menos del punto (2,-1). 

EJERCICIO 8.5.8: 

Analizar qué puntos son, hallar una expresión cartesiana y representar los siguientes 

conjuntos del plano: 

a)  B = { z ∈ :  z −  z ≤  r ∧  r ≥ 0

0

}

b)  C = { z ∈ :  z −  z <  r ∧  r ≥ 0

0

}

c)  E = { z ∈ :  z − (2, 4) ≤ }

2

d)  D = { z ∈ :  z − 3 + 2 i ≥ }

1

e)  F = { z ∈ :  z = 2 }

5

EJERCICIO 8.5.9: 

Sean   z ,  z  y  z  tres complejos tales que  z =  z =  z = 1 con  z +  z +   z = 0

1

2

3

1

2

3

1

2

3

Probar que son vértices de un triángulo equilátero inscripto en la circunferencia unidad. 

( circunferencia unidad: la circunferencia con centro en el origen y radio 1) (Idea de la demostración: Para probar que   z −  z =  z −  z =  z −  z  haga un trabajo 1

2

2

3

3

1

similar al realizado en la demostración de la desigualdad triangular) 
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EJERCICIO 8.5.10: 

Considerando   z =  x +  i y

 o

 z = ( , 

 x y),  como le resulte mejor, determinar

que representa el conjunto de complejos que satisfacen:   z + 1 ≤ 4 −  z −1

Haga el gráfico. 

EJERCICIO 8.5.11: 

Demostrar   z −  z ≤  z −  z

1

2

1

2

6. Otras formas:  la polar y  ... 

Ya  hemos  visto  que  hay  dos  maneras  equivalentes  de  representar  un  número 

complejo:  la  forma  de  par  ordenado  y  la  binómica,  pero  estas  no  son  las  únicas. 

Veremos otras que revelan más "geometría" que las anteriores. 

Hemos definido el módulo de un complejo. Si trazamos una flecha que una el origen 

del sistema de referencia con el punto del plano que representa al complejo  z (como en la siguiente figura), la longitud de esa flecha es precisamente el módulo de  z. 

Si   z ≠ 0   también  lo  es  su  módulo,  por  lo 

cual  la  flecha  que  une  el  origen  con   z, 

efectivamente  forma  un  ángulo  θ   con  el 

 z 

semieje horizontal positivo. 

Este  ángulo  θ   ,  medido  en  radianes, 

queda definido salvo un múltiplo entero de 

2π ,  se  llama   argumento  de  z  ,   se  anota 

 arg(z).   

Si  z =  0  se conviene que el argumento de z 

 es 0. 

Para la medición de θ  se considera que el sentido positivo es el antihorario, como en 

Trigonometría. (Ver gráfico siguiente) 

 z 

  b 

θ

 a 

498
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De los infinitos valores congruentes con  θ   (todos los que difieren con θ  en múltiplos 

enteros  de  2π )  se  l ama  argumento  principal  de   z  y  se  anota   Arg(z),  aquel  que cumple:  

0 ≤  Arg ( z) < 2π

Los números   z  y  Arg(z)  son las coordenadas polares de  z,  ellos determinan unívocamente a  z  y así escribimos: 

 z =  z

que es la forma polar de  z 

 Arg (  z)

 a =  z .  cos  θ

Como es inmediato (mire el gráfico anterior): 

 b

 =  z .  sen  θ



Esto permite escribir 

 z = a + i b =  z .  cos θ +  i z .  sen θ =  z .( cos θ +  i sen θ ) siendo θ = arg( z) =  Arg( z) + 2 k π , con  k ∈ Z  

que es la forma trigonométrica de  z 

Recapitulando:  

Dado un complejo en la forma  z = ( a, b )     ó     z = a + i b   

para determinar el 

 b

 argumento de z  consideramos que θ   es el tal que   tag  θ =   a

y para determinar el  módulo de z ,  se usa que 

2

2

 z =

 a +  b

Así se lo podrá expresar en forma polar o trigonométrica. 
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Por  otra  parte,  si  el  complejo  está  dado  en  la  forma   z =  z

ó 

 Arg (  z)

 z =  z .(cosθ +  i sen θ )

para  determinar  las   componentes  de  z   se 

usa: 

  a =  z .  cos  θ

 b =  z .  sen θ



−

−

Como  es  sabido   b

 b

 b

 b

=

y 

=

luego  para  determinar  el  argumento  de  un 

 a

− a

− a

 a

complejo  z,  es "altamente recomendable" que realice al menos un esquema de  z para determinar su posición en el plano y no confundir el argumento. 

EJEMPLO 8.6.1: 

Expresar  z = (3, 3) en distintas formas. 

3

  z = ( 3,3)  

θ  

3

Luego  z = 3 + 3  i  en forma binómica. 

Para determinar el módulo: 

2

2

2

 z = 3 + 3 =

2.3 = 3 2

Para  el  argumento: 

3

 tag  θ =

= 1   y  observando  que  ambas  componentes  son 

3

positivas, además por la representación realizada, se concluye que el lado terminal del 

π

ángulo θ  es del primer cuadrante, luego el   Arg(z)=

y 

4

π

 arg(z)=  θ =

+ 2 k π

con   k ∈ Z    Luego la forma polar es   z = 3 2 π

4

4

π

π

Y la forma trigonométrica es   z = 3 2 ( cos

+  i sen

)  

4

4
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EJEMPLO 8.6.2: 

Hal ar módulo  y argumento de  v = 5.  z + w  sien do  z= ( -1, 0)    y   w= 4 + i   3

Primeramente  debemos  calcular  5.  z  +  w,  para  lo  cual  tenemos  que  l evar  los complejos   z  y   w a la misma forma (o par ordenado o binómica). Eligiendo binómica:   z = -1,       luego 5.  z = - 5      

 v = 5.  z + w = - 5 + 4 + i   3  = -1 + i   3

Determinemos el módulo de  v:  v =

2

2

(−1) + ( 3) = 1 + 3 =

4  = 2 

Y ahora el argumento principal de  v: 

 a = −1  b =

3

3

3

 tag  θ = −1

-1

El punto que representa 

a   v está en el segundo cuadrante, 

¡OJO! 

entonces  el argumento principal de  v  es  2 π  

3

• Importante:

Para hallar θ , usamos la calculadora y ponemos 

3

 arc tg (

)  , obtendremos: 

1

−

π

−

radianes   o  -60º , dependiendo si estamos usando radianes o grados. 

3

Ese resultado nos daría un complejo en el 4to cuadrante, pero el complejo  v está en el 2do  cuadrante.  Esto  ocurre  porque  la  calculadora  no  diferencia  entre 

3

− 3

 arc tg (

)   y    arc tg (

) ,  en  ambos  casos  nos  dará  el  resultado  de   arc tg (− 3) y 

1

−

1

toma por defecto ángulos en el 4to. cuadrante. 
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Lo mismo ocurrirá si queremos calcular el 

1

−

 arc tg (

)   para  hallar  el  argumento  de  un 

1

−

π

complejo en el 3er. cuadrante, la calculadora nos dará como respuesta 

radianes o

4

45º . En estos casos la maquina toma por defecto ángulos en el primer cuadrante. 

Por  lo  tanto  es  importante  saber  en  qué  cuadrante  se  encuentra  el  complejo  para calcular correctamente el ángulo. 

Por  eso   se  aconseja  que  cada  vez  que  tiene  que  calcular   el  argumento  de  un 

 complejo,  al  menos  haga  un  esquema  de  ese  complejo,  para  darse  cuenta  en  que cuadrante está ubicado. 

En nuestro ejemplo, para obtener θ , debemos sumar π  o 180º para obtener el ángulo 

correcto, entonces: 

π

2

θ = −

+ π =

π    o   θ = -60º +180º = 120º

3

3

EJEMPLO 8.6.3: 

Expresar  z en forma binómica sabiendo que   z = 5 5π4

Sabemos que: 

5

5

 a = 5.  cos

π

y    b = 5.  sen  π

4

4

2

2

 a = 5.(−

)

y    b = 5. (−

)

2

2

2

2

 a = 5. 

−

y   b = −5. 

2

2

el argumento principal es del 3er. cuadrante por eso son negativos  a y  b entonces: 5. 2

5. 2

 z =  −

−

 i


2

2
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EJERCICIO 8.6.4: 

Expresar en forma polar y trigonométrica: 

  z = ( -1,1)  

  w= 3- 3 i 

  u = ( 0, -4)  

  v = (  -5, 0)  

  t = 2 i 

  s = 3 - 7 i 

Hay que tener presente que 

=

θ +

θ

=

=

θ +

θ

=

1

 z

1

 z ( cos  1  i sen  1)

1

 z

,     2

 z

2

 z ( cos  2

 i sen  2 )

2

 z

 Arg ( 1

 z )

 Arg (  z 2 )

  son iguales si y sólo si 



=



=



1

 z

 z 2

1

 z

 z 2

1

 z =  z 2



⇔ 

⇔ 

cosθ =

θ ∧

θ =

θ

 θ = θ +

π

∈ Z



=

1

cos 2

 sen  1  sen  2

1

2

2  k

,  k

 Arg( 1

 z )

 Arg( 2

 z )

EJEMPLO 8.6.5: 

Analicemos si 

 17

17

= +

=

π +

π  son iguales. 

1

 z

1  i   y    z 2

2( cos

 i sen

)

 4

4

Pasemos  1

 z  a la forma trigonométrica y polar: 

π

π

π  

1

 z =

2( cos

+  i sen

) = 2

 4

4

4

Escribamos ahora   z  en la forma trigonométrica y polar: 

2

 17

17

 z

π

=

π +

π



2

2( cos

 i sen

) =

2

 4

4

4

Notemos que   z  en su forma trigonométrica no está usando el argumento principal, ya 2

que  17 π > 2π , para expresarlo en forma polar hacemos entonces: 

4

17

16

1

1

1

π =

π + π = 4π + π

π  

siendo ahora  1 π  el argumento principal. 

4

4

4

4

4

4
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En consecuencia se cumple que: 

π

17

π

17

=

=

π ∧

=

π

1

 z

 z 2

y

cos

cos

 sen

 sen

4

4

4

4

17

π

siendo 

π =

+ 2.2.π  , por lo tanto  Arg (

=

1

 z )

 Arg ( z 2 )

4

4

Luego los complejos dados son iguales. 

EJEMPLO 8.6.6: 

Representar en el plano los siguientes conjuntos  , 

 A B y A ∩  B : 



π

π 

 A = { z ∈

 z − −  i ≥ }

3

:

1

2

2

 B =   z ∈

:

≤  Arg(  z) ≤

  



4

4 

Consideramos   z =  a +  bi , entonces 

2

2

 z − 1 − 2 i = ( a − 1) + ( b − 2) i = ( a − 1) + ( b − 2) 2

2

Como se pide   z − 1 − 2 i ≥ 2, 

( a − 1) + ( b − 2) ≥ 2

2

2

Por lo tanto  ( a − 1) + ( b − 2) ≥ 4  

Si  miramos  la  igualdad,  es  la  ecuación  de  una  circunferencia  con  centro  en  (1,2)  y radio 2. 

Por lo tanto  A representa la región del plano formada por todos los puntos que distan 2 

unidades o más del punto (1,2). 
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Veamos ahora el conjunto  B: 

Como el conjunto está formado por los complejos que tienen argumento entre 

π

3π

 y

, entonces :

4

4

Por lo tanto si ahora graficamos   A ∩  B , resulta: 

7. Multiplicación en forma polar y trigonométrica

Vamos a definir la potenciación y radicación en los números complejos. 

Las  formas  polar  y  trigonométrica  de  un  complejo  tienen  ventajas  en  los  cálculos  de estas operaciones  y además permiten visualizar el alto contenido geométrico de estos 

conceptos. Comenzaremos por la multiplicación. 

Para  entender  estos  aspectos  es  imprescindible  tener  presente  resultados  de 

Trigonometría. 
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Comenzaremos por la multiplicación de dos complejos en forma trigonométrica. 

Sean   z =  z ( cos  θ +  i sen  θ )

 z =  z ( cos  θ +  i sen  θ ) . 

1

1

 1

 1

2

2

 2

 2

Calculemos el producto de los mismos: 

 z ⋅  z =  z ( cos  θ +  i sen  θ ).  z ( cos  θ +  i sen  θ ) =

1

2

1

 1

 1

2

 2

 2

por conmutatividad de la multiplicación

=   z .  z

( cos  θ +  i sen  θ ).( cos  θ +  i sen  θ ) =

1

2

 1

 1

 2

 2

distribuyendo la multiplicación en la suma

2

=  z .  z

( cos  θ .  cos  θ +  i sen  θ .  cos  θ +  cos  θ .  i sen  θ +  i sen  θ  sen  θ ) =

1

2

 1

 2

 1

 2

 1

 2

 1

 2

conmutando y recordando que  i2= -1     

=  z .  z

( cos  θ .  cos  θ +  i sen  θ .  cos  θ +  i cos  θ .  sen  θ −  sen  θ  sen  θ ) =  

1

2

 1

 2

 1

 2

 1

 2

 1

 2

agrupando la parte real y la imaginaria 

=  z .  z

( ( cos  θ .  cos  θ −  sen  θ  sen  θ ) +  i ( sen  θ .  cos  θ +  cos  θ .  sen  θ ) ) =  

1

2

 1

 2

 1

 2

 1

 2

 1

 2

recordando seno y coseno de la suma de ángulos: 

=  z .  z

(  cos ( θ  +  θ ) +  i sen ( θ  + θ ) )  

cos(α + β ) = cosα cos β −  sen α  sen β

1

2

 1

 2

 1

 2

 sen(α + β ) = cosα  sen β +  sen α cos β

Por lo cual concluimos que: 

 z .  z =  z ( cos  θ +  i sen  θ ).  z ( cos  θ +  i sen  θ ) = 

1

2

1

 1

 1

2

 2

 2

=  z .  z

(  cos ( θ  +  θ ) +  i sen ( θ  + θ ) )  

1

2

 1

 2

 1

 2

 z1.z2 

El producto de dos complejos tiene 

θ + θ

1

2

por  módulo el producto de los módulos de los factores 

 z

y 

 2 

 z1 

θ

por  argumento la suma de los argumentos de los factores (*) 

2

θ1 

Luego es también: 

1

 z .  z 2 = 1

 z .  z 2  Arg( z z

1 . 2 )

(*) ver el ejemplo y observación posterior  

506

NÚMEROS COMPLEJOS – CAPÍTULO  8

EJEMPLO 8.7.1: 

Calcular  z =  (-3 + 3  i).( 9 -9 i ) 

   Lo realizaremos en forma polar por lo cual pasaremos los factores a esa forma. 

 -3+3i 

3

− + 3 i = 3 2

(verifique!!)

3π

4

7

9 - 9 i = 9 2

π

(y.... verifique)

4

 9 - 9i 

Luego el producto es 

 z = 3 2

. 9 2

= 3. 2.9 2  

= 

3

7

3

7

π

π

π + π

4

4

4

4



3

7

10

5

si sumamos los argumentos de los factores obtenemos  π +

π =

π =

π  

4

4

4

2

que no es argumento principal de  z, pues es mayor que 2π . 

En este caso particular "sacando una circunferencia", es decir restando  2π , se obtiene el 



5

π

 Arg (z)=  π − 2π =

. Por lo tanto 

2

2

 z = 54 π

2

Por razones de espacio no lo representamos... es un punto que está a 54 unidades de 

distancia del origen y sobre el eje vertical positivo. 

Recordando  que  en  la  forma  polar  de   z   se  debe  considerar  el     Arg(z)    y  que 0 ≤  Arg( z) < 2π   para  cualquier   z,  es  importante  practicar  como  encontrar  un  ángulo α , 0 ≤ α < 2π   congruente con   β ,  para cualquier  β . 
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Es entonces: 

 Arg( 1

 z .  z 2 ) =  Arg( 1

 z ) +  Arg( 2

 z ) + 2 k π   con   k ∈ Z

Otro ejemplo fortalecedor de la idea: 



1

 z = 1

− ;  z 2 = 3

−

 Arg( 1

 z ) =  Arg( z 2 ) = π ; 

1

 z . 2

 z = 3

 Arg( 1

 z . 2

 z ) = 0 = π + π + 2.(−1).π

EJERCICIO 8.7.2: 

Calcular      

 z = 3.(3, 5

− )

 w = ( 7

− , 6).(2, 8

− )

 u = (−2 − 3 i).( 1

− +  i)  

 v = (-4, 4). (0, 8) -1

 t =  (3 - 3  i ).(5 - 6 i ) 

EJEMPLO 8.7.3: 

Calculemos   1

 z .  z 2. 3

 z , para una terna genérica de complejos. 

Como vale la propiedad asociativa haremos  ( 1

 z .  z 2 ). 3

 z    y para ello se considera: 

 z =  z ( cos  θ +  i sen  θ )

 z =  z ( cos  θ +  i sen  θ )

 z =  z ( cos  θ +  i sen  θ )

1

1

 1

 1

2

2

 2

 2

3

3

 3

 3

. 

O equivalentemente: 

1

 z = 1

 z

 z 2 =  z 2

3

 z = 3

 z

θ

θ

θ

1

2

3

considerando  θ =  Arg ( z ) para   j = 1, 2, 3

 j

 j

Por resultado anterior tenemos: 

1

 z .  z 2 =

para cualquier par de complejos 

1

 z .  z 2  Arg( z .  z )

1

2
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Luego aplicando ese resultado y la asociatividad de la suma y multiplicación de reales: 

( 1

 z .  z 2). 3

 z = ( 1

 z .  z 2

). 3

 z

= ( 1

 z .  z 2 ). 3

 z

= ( 1

 z .  z 2 . 3

 z )  Arg( z .  z .  z )

 Arg( z .  z )

θ

 Arg(( z .  z ).  z )

1

2

3

1

2

3

1

2

3

Es  decir  al  multiplicar  tres  complejos  resulta  que  el  producto  tiene  por  módulo  el producto  de los tres módulos y por argumento....la suma de los tres argumentos más 

un múltiplo entero de  2π  (si pretendemos encontrar el argumento principal). 

¿Qué está pensando? ¿Puede generalizar? 

♦ PROPIEDAD 8.7.4:

Dados  1

 z ,  z 2, 3

 z ,...  z  complejos se tiene que: 

 n

1

 z .  z 2. 3

 z ....  zn = 1

 z

 z 2 3

 z ...  z

o equivalentemente

 n Arg ( 1

 z .  z 2. 3

 z ...  z )

 n

 n

 n

 z

(

=

 z )

∏  j

∏  j

 n

(  n

∀ )(  n ∈

∧  n > 0 )

 Arg ( ∏  z )

 j  1

=

 j  1

 j

=

 j  1

=

Recordando que:

 Arg(

=

+

+

+

+

+

π

Z

1

 z .  z 2. 3

 z ...  z )

 Arg(

 n

1

 z )

 Arg( z 2 )  Arg( 3

 z )

... 

 Arg ( z )

2 k   con  

 n

 k ∈

Demostración: 

Como es una propiedad para un número natural  n de números complejos haremos la 

demostración por inducción sobre el número de complejos que se multiplican: 

 P(1):  1

 z =

se cumple obviamente. 

1

 z

 Arg ( z )

1

Veamos que si se cumple  P( h), entonces se cumple  P( h+1): 

 P( h):  1

 z .  z 2. 3

 z ....  h

 z =

es la hipótesis inductiva. 

1

 z z 2 3

 z ...  h

 z Arg( z .  z .  z ...  z )

1

2

3

 h

 P( h+1):  1

 z .  z 2. 3

 z ....  zh  1

+ =

es la tesis inductiva. 

1

 z z 2 3

 z ...  h

 z

1

+  Arg( z .  z .  z ...  z )

1

2

3

 h  1

+

1

 z .  z 2. 3

 z ....  zh  1 = (

+

1

 z .  z 2. 3

 z ...  z ) . 

 h

 h

 z +1 = ( 1

 z z 2 3

 z ...  z

)

 h

 zh  1

 Arg( z .  z .  z ...  z )

+  Arg( z )

1

2

3

 h

 h  1

+

es igual a * por HI

*
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Ahora consideramos que tenemos el producto de dos complejos en forma polar, uno 

es  

, por lo tanto, por lo mostrado 

1

 z z 2 3

 z ...  h

 z

y el otro   z

 Arg ( z .  z .  z ...  z )

 h  1

+  Arg( z )

1

2

3

 h

 h  1

+

al principio de este apartado se tiene: 

1

 z .  z 2. 3

 z ....  zh  1 = (

+

1

 z z 2 3

 z ...  z

)

 h

 zh  1

=

 Arg ( z .  z .  z ...  z )

+  Arg( z )

1

2

3

 h

 h  1

+

( 1

 z z 2 3

 z ...  z )

 h

 zh  1

+

= 1

 z z 2 3

 z ...  zh zh  1

 Arg (( z .  z .  z ...  z ).  z )

+  Arg( z .  z .  z ...  z .  z )

1

2

3

 h

 h  1

+

1

2

3

 h

 h  1

+

Por lo tanto P( h+1) es verdadera y en consecuencia se cumple la proposición 

para todo  n natural mayor que 0. 

♦

EJEMPLO 8.7.5: 

Calcular 

. 

1

 z .  z 2. 3

 z  siendo  1

 z = 1

− +  i     z 2 = 45

3

 z = 5 − 5 i

π

3

Comencemos por escribir todos los complejos en forma polar, tenemos entonces 

1

 z = ( 2) 3

 z 2 = 45

3

 z = ( 50)7

π

π

π

4

3

4

Veamos ahora  que: 



1

 z .  z 2 . 3

 z =

2.4. 50 =

2.4.5. 2 = 40

Y 

3

5

7

(9 + 20 + 21)

50

25

 Arg(



1

 z ) +  Arg( z 2 ) +  Arg( 3

 z ) =

π +

π +

π =

π =

π =

π

4

3

4

12

12

6

En forma trigonométrica podríamos escribir que 

25

25

1

 z .  z 2. 3

 z = 40(cos

π +  i sen

π )

6

6

Pero como  25 π  no es argumento principal, para forma polar hacemos 

6

25

24

1

1

1

π =

π +

π = 4π +

π

π , por lo tanto en forma polar se tiene 

6

6

6

6

6

1

 z .  z 2. 3

 z = 401π

6
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8. Potenciación  en C

Habiendo definido multiplicación, lo natural es que surja el concepto de la potencia. 

Se verá que si el complejo se da en las formas trigonométrica o polar se tiene una 

forma muy cómoda y sencil a de realizar esa operación. 

Definición (recursiva) de potenciación natural para los complejos: 

Si

 z ∈

- { }

0 :

1



si

 n = 0

 n

 z = 

 n  1

  z.  z −

si

 n ≥ 1

Si

 z = 0 :

 n

 z = 0

para

 n ≥ 1

Claramente  que  para  exponente  no  nulo  la  potencia  es  un  producto  (de  factores 

iguales) luego, por los resultados del parágrafo anterior, será conveniente (sobre todo 

si  el  exponente  es  "grande")  realizar  las  potencias  de  un  complejo  cuando  éste  lo expresamos en  forma  polar  o trigonométrica,  es  sabido  que  en  la forma  binómica  se puede abordar usando la fórmula de Newton para las potencias de binomios, pero no 

es nada practica en este caso. 

¿Qué sugieren los resultados y ejemplos anteriores? 

EJEMPLO 8.8.1: 

Calcular  2

 z , para cualquier  z

Considerando el resultado del apartado 7. para dos complejos cualesquiera: 

Expresando  a   z  en forma trigonometrica o polar, 

 z =  z (  cos  θ +  i sen  θ ) =  z  θ

considerando 

=

=

1

 z

 z 2

 z  se obtiene:

2

2

2

 z =  z .  z (  cos ( θ  +  θ ) +  i sen ( θ  + θ ) ) =  z (  cos (2  θ ) +  i sen (2   θ ) ) =  z

2

 Arg (  z )

2

Siendo   Arg( z ) = 2  Arg( z) + 2 k π ≅ θ + θ

con  k ∈ Z
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EJEMPLO 8.8.2: 

Calcular  3

 z , para cualquier  z 

Se considerarán resultados anteriores para tres complejos cualesquiera. 

Se considera   z  como: 

 z =  z (  cos  θ +  i sen  θ ) =  z  θ

siendo en particular     1

 z =  z 2 = 3

 z =  z   se obtiene:

3

3

3

 z =  z .  z z (  cos ( θ  +  θ + θ ) +  i sen ( θ  + θ + θ ) ) =  z (  cos (3  θ ) +  i sen (3   θ ) ) =  z 3

 Arg (  z )

3

donde   Arg( z ) =  3 Arg(z) + 2k π   ≅ 3θ  con  k ∈ Z

EJERCICIO 8.8.3: 

a) Analizar que conclusión general, esto es para cualquier  n natural, puede formular. 

b) Si  n = 0 ¿qué precaución debe tomarse? 

c) Si  z=  0 ¿necesita fórmula para calcular sus potencias? ¿Cuánto valen? ¿Hay

alguna indefinida? 

Se verá algo muy práctico y súper útil: 

♦ Fórmula de De Moivre para potencia natural de un complejo no nulo:

Si

 z ∈

− { }

0

y

 z =  z

=  z ( cos +  i sen )

θ

θ

θ

 n

 n

 z =  z

( cos(n θ ) +  i sen( n θ ) )

En el caso de la forma polar recordar que se debe considerar el argumento principal, 

luego  
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 n

 n

 z =  z

 Arg (  n

 z )

donde   Arg(  n

 z ) =  n Arg(z)+ 2k π   ≅  n θ  con  k ∈ Z  

EJERCICIO 8.8.4: 

Demostrar la Fórmula de De Moivre para potencia natural de un complejo no nulo. 

(¿por qué método si es para todo natural???) 

¡Inducción! 

EJEMPLO 8.8.5: 

Calcular  15

 z   siendo  z = 33π

2

Aplicando la fórmula de De Moivre para esta situación tenemos: 

15

15

15

 z = 3 entonces   z

=  z

= 3

= 14348907   (en  general  y  como  en  este  caso,  se 

dejará indicada la potencia cuando el resultado es "grande" o "muy chico") 3

15

3

 Arg( z) =

π   entonces  Arg ( z ) = 15. π + 2  k π ,  k ∈Z

2

2

3

45

π

π

π

15. π =

π = 22π +

= 2.11.π +

≅

2

2

2

2

2

15

π

entonces 

 Arg( z ) = 2

Por lo tanto: 

15

15

 z

= 3



π

2

EJERCICIO 8.8.6: 

Calcular  z43 ; z5; z13 .  Representar (al menos los argumentos)  

a)  z = 2-2 i      b)  z = ( 0, 7)     c)  z = - 9 + 9  i

d)  z = (-5 , 0)     e)   z = -1 -  i
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EJEMPLO 8.8.7: 

Busquemos la forma trigonométrica y polar del inverso de un complejo no nulo. 

 z =  z ( cos θ +  i sen θ ) =  z

≠ 0

 Arg (  z)

entonces   z ≠ 0

-1

1

−

−1

Supongamos que   z =   z

( cos α +  i sen α ) =  z

−1

 Arg (  z

)

Por propiedad del producto de un complejo por su inverso: 

1

−

−1

 z.  z

=  z z

(cos(θ + α ) +  i sen(θ + α ) ) = 1 = 0

1

Entonces por igualdad de complejos: 

1

 z z− = 1

y    θ + α = 0 + 2 k π con  k ∈Z



−1

1

−

 z

=  z

y    α = -θ +2 k π   con   k ∈Z

Por lo tanto  1

−

−1

 z

=  z

1

−

−1

 Arg (  z

)   siendo   Arg ( z

)= −  Arg( z) + 2 k π    con  k∈Z

 z 

θ  

θ

−  

 z-1 

9

EJEMPLO 8.8.8:      

π  

7

Calcular el inverso de   z = 4

9

9

1

 z−  

2π −

π

π

7

7

 z 

9

−

π

7
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Como 

1

1

−

1

 z = 4  entonces   z− = 4

= 4

Para hallar el argumento principal: 

−1

9

5

 Arg( z

) = − π + 2.1.π =

π  

7

7

Así resulta:  1

−

1

 z

=

5

4 π

7

EJERCICIO 8.8.9: 

Calcular en forma polar y trigonométrica los inversos de: 

a)  z = 2-2 i      b)  z = ( 0, 7)     c)  z = - 9 + 9  i

d)  z = (-5 , 0)     e)   z = -1 -  i

Representar en un mismo gráfico cada complejo con su inverso. 

Se generaliza la definición de potencia de exponente natural, al caso de exponente entero  m para un complejo arbitrario, observar que por la identificación de los reales dentro de los complejos, esta definición no tiene que entrar en contradicción con la de 

los números reales. Al igual de la definición hecha para potencia natural. 

Para exponente entero como sigue: 

Si

 z ∈

- { }

0 :

  m

 z

si

 m ≥ 0

 m

 z

=  −1

( z )− m

si

 m < 0

Si

 z = 0 :

 m

 z

= 0

para

 m ≥ 1

Para  z = 0  NO existe la 

potencia de exponente 

negativo (como en 

reales...) 
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EJEMPLO 8.8.10: 

Calcular 

5

 z−  siendo  z = 2 3π

2

Calculemos el inverso de  z  y  elevemos a la 5: 

1

−

1

−1

3

π

 z

=

; 

 Arg( z

) = − π + 2π =

2

2

2

5

(

 

 z− )5

1

1

=  

 2 

1

−

5

 Arg ( (  z

) )

π

π

con  Arg( (  z− )5

1

) = 5. 

+ 2.(−1).π =

2

2

♦ Fórmula de De Moivre para potencia entera m de un complejo no nulo:

Si

 z ∈

− { }

0

y

 z =  z

=  z ( cos +  i sen )

θ

θ

θ

 m

 m

 z

=  z

( cos(m θ ) +  i sen( m θ ) )

En el caso de la forma polar recordar que se debe considerar el argumento principal, 

luego  

 m

 m

 z

=  z

 Arg(  m

 z )

donde   Arg(  m

 z ) =  m Arg(z)+ 2k π   ≅

. 

 m  θ  con  k ∈ Z

Demostración: 

Como   z ∈ − { }

0

y

 z =  z

=  z ( cos +  i sen ), 

θ

θ

θ

 m

 m

 z

=  z

( cos(m θ ) +  i sen( m θ ) )

(∀ m)( m∈

)  
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Resta probar la propiedad para los enteros negativos. 

Sea   z ∈ − { }

0

y

 z =  z

=  z ( cos +  i sen ),  tenemos que probar:

θ

θ

θ

 m

 m

 z

=  z

( cos(m θ ) +  i sen( m θ ) )

(∀ m)( m∈

∧  m < 0)  

Como  m < 0,  - m > 0,  además  m=(-1)(-m),  l amando  n = -m,  se tiene m

1

−

− m

−1

= (

)

= (

) n

 z

 z

 z

con    n ∈

Se  sabe  que 

1

−

1

−

 z

=  z

( cos(- θ ) +  i sen(−θ ) ) ,  por  lo  tanto  vale  para 

1

(

) n

 z−

, la  Formula 

de De Moivre para potencia natural, y entonces 

 m

1

−

− m

1

−

 n

1

−

 z

= ( z

)

= ( z

) = (  z

) n (cos( n ( θ

− )) +  i sen( n ( θ

− )) =

−1 − m

 m

(  z

)

(cos(− m ( θ

− )) +  i sen(− m ( θ

− )) =  z

(cos( m θ ) +  i sen( m θ ))

Con lo que queda probada la fórmula para este caso. 

♦

EJERCICIO 8.8.12: 

Calcular  z -3 ;  z -14  ; z - 83    y   representar (al menos los argumentos...)  

a)  z = 2-2 i      b)  z = ( 0, 7)     c)  z = - 9 + 9  i

d)  z = (-5 , 0)     e)   z = -1 -  i

♦ PROPIEDAD 8.8.13:

 z ∈

− { }

 n m

 n. 

Si

0

a)

( z )

 m

=  z

b)

 n

 z .  m

 n m

 z

=  z +

Para  n y  m enteros. 

EJERCICIO 8.8.14:  

Probar las propiedades anteriores.  Puede aplicar la formula de De Moivre. 
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  Un caso particular…las potencias de i

Veamos que cuando el complejo es   z =  i,  las potencias tienen un comportamiento especial. 

Usando la definición de potencia 

0

 i = 1 

1

0

 i = . 

 i i =  i

2

1

 i = . 

 i i = . 

 i i = -1 

3

2

 i = . 

 i i = . 

 i (−1) =  i

−

4

3

2

 i = . 

 i i = . 

 i (  i

− ) =  i

−

= 1

5

4

 i = . 

 i i = . 

 i  1 =  i

6

5

2

 i = . 

 i i = . 

 i i =  i = 1

−

7

6

 i = . 

 i i = . 

 i ( 1

− ) = − i

8

7

2

 i = . 

 i i = . 

 i (  i

− ) =  i

−

= 1

Las potencias se repiten cíclicamente de a 4, lo que nos permite enunciar: 

♦ PROPIEDAD 8.8.13:

Dado  ∈  ,  m

 r

 m

 i

=  i ,  siendo  m = 4 q +  r

0 ≤  r < 4 . 

Elevar  i  a una potencia  m,  es igual a elevar  i al resto de esa potencia en la división por 4 

Demostración: 

Dado  m, por el Teorema Algoritmo de la División existen y son únicos  q y  r tales que m = 4 q +  r

0 ≤  r < 4 ,  q es el cociente y  r es el resto. 

Se tiene entonces que   m

4.  q +  r

4.  q r

4

=

=

. 

= ( ) q .  r = 1 q.  r

 r

 i


 i

 i

 i

 i

 i

 i =  i , como queríamos 

probar. 

♦
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9. Radicación en C

Consecuencia elemental de haber definido la potencia de un complejo es analizar si 

existe su operación inversa… 

Iniciemos con una aplicación de la fórmula de De Moivre calculando las raíces de la 

ecuación 

       z  n = 1. 

Que ya se vio que es muy práctico expresar en este caso a z  en forma trigonométrica 

o polar. 

Para algunos  n naturales y mayores o iguales que 2. 

Esto es hallar los complejos  z, tales que elevados a la  n dan 1. 

Considerando como es usual  z =  z ( cos θ +  i sen θ ) =  z Arg( z) n

 n

 n

 z =  z

( cos n θ +  i sen n θ )

 n

=  z

Z

 n

donde   Arg( z ) =  n θ + 2 k π   para   k ∈

 Arg (  z )

por otra parte  1 =1( cos  0 +  i sen  0 ) = 1 0

e imponiendo la igualdad propuesta     n

 z = 1 por igualdad de complejos se tiene:

 n

 z ( cos n θ +  i sen n θ ) = 1( cos  0 +  i sen 0 )

 entonces

 n

 z

= 1

∧       n θ = 0 + 2 k π    con   k ∈ Z

Por lo tanto el módulo de  z es 1 y el argumento de  z es: 

0 + 2 k π

2 k π

 arg(z) = θ =

=

con  k ∈Z

 n

 n

y recordar que  Arg ( z) es de la forma:

2 k π

 Arg( z) =

con  k ∈Z  y tal que 0 ≤  Arg ( z) < 2π

 n

¿Serán necesarios todos los valores enteros   k? 

Es decir: ¿ hay infinitas soluciones distintas de la ecuación???? 

Por el Teorema Algoritmo de la División,  para todo entero  k vale 

 k = . 

 c n +  r   siendo únicos el cociente  c y el resto  r. Ademas 0 ≤  r   <  n 519
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Reemplazando entonces en la expresión del argumento principal: 

2 k π

2( . 

 c n  +   r)π

2 cn π

2 r π

 Arg( z) =

=

=

+

cumpliendo las condiciones 

 n

 n

 n

 n

0 ≤  r <  n

∧  0 ≤  Arg ( z) < 2π

Resulta así que los valores de  r  posibles son  n,  de 0  a    n -1 . 

Además: 

2 cn π = 2 c π   con  c∈Z  (un multiplo de circunferencia) 

 n

2 r π

Considerando las limitaciones para el argumento principal:  Arg (  z) =

con  r = 0, ...,  n − 1  

 n

Por lo cual la ecuación   z  n = 1 tiene  n raíces complejas. 

Todas las raíces son de módulo 1 (es decir que son  n puntos sobre la circunferencia unidad) y los argumentos de esos complejos son 

2π

2.2π

2.( n − 1)π

0, 

, 

, 

, 

 n

 n

 n

Para cualquier  n, una de las raíces es real (cuando  r toma el valor 0). ¿Habrá otra? 

Observar que los argumentos están en progresión aritmética de diferencia  2π , es 

 n

decir son  n puntos de la circunferencia unidad de modo que el arco que separa uno de otro se corresponde con un ángulo central de abertura  2π . 

 n

Si  z  n = 1, z toma  n  valores distintos y escribimos esos valores como: 

 z =

+

0

(cos 0

 i sen 0)

2π

2π

=

+

1

 z

(cos

 i sen

)

 n

 n

2.2π

2.2π

 z 2 = (cos

+  i sen

) ..... 

 n

 n

2.( n − 1)π

2.( n − 1)π

 z  1 = (cos

+  i sen

)

 n−

 n

 n

EJERCICIO 8.9.1: 

Haga un esquema de la representación de las raíces de la ecuación  z  n = 1 
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EJERCICIO 8.9.2: 

a) Resuelva y represente las soluciones de  z  3 = 1  . Si une las raíces ¿qué

obtiene? 

b) Resuelva y represente las soluciones de  z  4 = 1  . Uniendo las raíces... 

Se hará con mayor generalidad el trabajo anterior. 

Para lo cual definimos: 

Dado   z ∈   se llama  raíz  n-ésima de  z  con   n ∈

∧

 n ≥ 1 , y se anota 

 n z  a los complejos  w  tales que   n

 w =  z . 

¿Qué ocurre si  n = 1 ? Poco interesante!!! 

También como aplicación de la fórmula de De Moivre se puede deducir que 

para cualquier   z ∈ −{ }

0  existen  n  raíces  n- ésimas de  z  dadas por:

 w =  w ( cos θ +  i sen  θ ) =

 k

 k

 k

 k

 k

 w Arg( w )

 k

 Arg( z) + 2.  k π

con 

 n

 w =

 z

y 

 Arg( w ) =

para  k = 0, 

,  n − 1

 k

 k

 n

Todas las raíces tienen igual módulo, son   n puntos de la circunferencia 

centrada en el origen y radio   n z  y la diferencia entre los argumentos de raíces 

consecutivas es  2π . 

 n

EJERCICIO 8.9.3: 

a) Probar la fórmula de las raíces  n-ésimas de un complejo no nulo. Haga un

esquema de la representación. Analice que obtiene si une las raíces. 

b) Si  z = 0 tiene raíz  n-ésima, ¿Cuántas distintas? 

c) Calcule  3

4

7

 z

;  z ; 

 z  y reprente cada caso en un mismo sistema , para los 

complejos:

1)

 z = ( 4

− , 0); 

2)

 z = 3 − 6 i

3)

 z = −1+  i  3

4)

 z = − 3 −  i

5)  z = (0,−8)

521

[image: Image 8689]

NÚMEROS COMPLEJOS – CAPÍTULO  8

EJEMPLO 8.9.4: 

Hal ar las raíces quintas de 1. 

Para hal ar las raíces quintas de 1, tenemos que hal ar los complejos que 

cumplen  5

 z = 1 Sabemos que  1 = 1 y

 Arg(1) = 0 , tenemos entonces que: 

0 + 2 k π

0 + 2 k π

 z = cos

+  i sen

0 ≤  k ≤ 4

 k

5

5

Por lo tanto: 

0 + 2 0

 .  π

0 + 2 .  0 k π

 z



0 =  cos

+  i sen

=  cos  0 +  i sen 0 = 1

5

5

2 1

 .  π

2 .  1π

2π

2π

1

 z =  cos

+  i sen

=  cos

+  i sen

5

5

5

5

2 .  2π

2 .  2π

4π

4π

 z 2 =  cos

+  i sen

=  cos

+  i sen

5

5

5

5

2 3

 .  π

2 .  3π

6π

6π

3

 z =  cos

+  i sen

=  cos

+  i sen

5

5

5

5

2 4

 .  π

2 4

 .  π

8π

8π

 z 4 =  cos

+  i sen

=  cos

+  i sen

5

5

5

5

Graficamos las raíces quintas y observamos que al trazar los segmentos entre 

el as queda formado un pentágono regular, ya que las raíces son equidistantes 

entre sí, pues el ángulo 

que central que las separa es igual…. 
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EJEMPLO 8.9.5: 

Resolver la ecuación 

4

4.  z + 2  i = 2

−

Por las propiedades de la suma y la multiplicación se llega a (¿está seguro???, 

hágalo!)  

4

2

− − 2 i

 z =

4

4

2

 z =

5

2

π

4

Luego, para hallar las soluciones de la ecuación se calculan las raíces cuartas  de 

2

5

2

π

4

Aplicando la fórmula, hallamos las soluciones que son los cuatro complejos: 

 2 

 2 

 z = 4 

 5 = 4 



0









2

π

2







 5

4

π

4

16

 2 

 2 

 z = 4 

 5

= 4 



1



 π +2.1. 





2

π

2







13

4

π

4

16

 2 

 2 

 z = 4 

 5

= 4 



2



 π +2.2. 





2

π

2







 21

4

π

4

16

 2 

 2 

 z = 4 

 5

= 4 



3



 π +2.3. 





2

π

2







 29

4

π

4

16

Verifique y esquematice las soluciones. ¿Qué obtiene si une los puntos? 

EJEMPLO 8.9.6: 

Sabiendo que una de las raíces cúbicas de un complejo 

π

π

 z,  es   w = 3 (cos

+  i sen

 ) , 

6

6

hallar las restantes raíces y el complejo  z. 

Como sabemos que todas las raíces  n-ésimas de un complejo tienen el mismo módulo 

y sus argumentos difieren en  2π , en esta situación  n = 3, por el o las otras raíces n

deben ser: 
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π

2π

π

2π

5π

5π

y 

1

 w = 3 (cos(

+

 ) +  i sen(

+

 )) = 3 (cos

+  i sen

 )

6

3

6

3

6

6

π

4π

π

4π

9π

9π

. 

2

 w = 3 (cos(

+

 ) +  i sen(

+

 )) = 3 (cos

+  i sen

 )

6

3

6

3

6

6

Además por ser raíces cúbicas, todas ellas elevadas al cubo deben dar como 

resultado el complejo  z, entonces: 

3

π

π

π

π

 w = 3 (  cos  3

+  i sen  3

) = 3 (  cos

+  i sen

)  

6

6

2

2

Por lo tanto 

π

π

 z = 3 (cos

+  i sen

) = 0 + 3 i  = 3 i 

2

2

EJERCICIO 8.9.7: 

Resolver las siguientes ecuaciones: 

3

a) (3 − 3 i).  z − (2 +  i) = 0

35

b)

 z

− (7 +  i  7 3) = 5 +  i  5 3

6

c) (4, 0).(−8, −8).  z + (−1,1).(2, 2) = (−2, 2)

10. Raíces primitivas de la unidad

 En este apartado  n es mayor o igual que 2. 

•

Comencemos calculando las raíces cuadradas de 1:

2

 w = 1 ⇔

 w = 1

1 =  cos  0 +  i sen  0

Ya que  1 =1 y  Arg(1) = 0 , tenemos entonces que: 

0 + 2 0

 .  π

0 + 2 .  0π

0

 w =  cos (

) +  i sen (

) = 1 + 0 i = 1

2

2

0 + 2 1

 .  π

0 + 2 .  1π

1

 w =  cos (

) +  i sen (

) = −1 + 0 i = −1

2

2

En este caso hay sólo raíces reales. 
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•

Calculemos las raíces cúbicas de 1:

3

3

 w = 1 ⇔

 w = 1

1 =  cos  0 +  i sen  0

Tenemos entonces: 

0 + 2.0π

0 + 2.0π

0

 w =  cos(

) +  i sen(

) = 1 + 0 i = 1

3

3

0 + 2.1π

0 + 2.1π

1

3

1

 w =  cos(

) +  i sen(

) = −

+

 i

3

3

2

2

0 + 2.2π

0 + 2.2π

1

3

=

+

= −

−

2

 w

 cos(

)

 i sen(

)

 i

3

3

2

2

•

Si calculamos las raíces cuartas de 1 al calcular  0

 w , dará 1, ya que en principio

es cierto que 1 n = 1, para cualquier  n.  En particular para  n = 4

Notemos además que

0 + 2.0π

   Arg(

. 

0

 w ) =

= 0 y

0

 w = 1

4

0 + 2.1π

0 + 2.1π

π

π

1

 w =  cos(

) +  i sen(

) =  cos

+  i sen

= 0 + 1 i =  i

4

4

2

2

0 + 2.2π

0 + 2.2π

=

+

=

π +

π

2

 w

 cos(

)

 i sen(

)

 cos

 i sen

= 1

− + 0  i = 1

−

4

4

0 + 2.3π

0 + 2.3π

3π

3π

3

 w =  cos(

) +  i sen(

) =  cos

+  i sen

= 0 − 1 i =  i

−

4

4

2

2

Comentario importante (en particular para los alumnos de Lic. en Matemática que 

luego verán otras situaciones similares…): Se dará un concepto muy importante dentro 

del Algebra. Este concepto es sólo un ejemplo de concepto que trasciende el tema de 

los números complejos ya que es ejemplo de un elemento que puede generar todos 

los elementos de un conjunto. 

 w es raíz  n-ésima primitiva de orden  n de 1 si: n

 n ' 

 w = 1     y      (  n

∀ ')( 0 <  n ' <  n entonces  w

≠ 1) . 

Es decir que  w  es raíz  n-ésima de 1 y además  n es el menor natural tal que   n w = 1  
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0

 w  no es primitiva para ningún  n, ya que 

 n ' 

0

 w = 1 entonces  ( 0

 w )

= 1 para todo  n ' > 0

 Para  n = 2 ,  1

 w  es primitiva de orden 2, 

ya que 

y se cumple que 

2

1

−

=

≠

1

 w = −1

( 1)

1      y      (-1)

1

 Para  n= 3   1

 w  y  2

 w  son primitivas de orden 3:

2π

2π

=

+

1

 w

 cos(

)

 i sen(

),  se cumple que :

3

3

3

1

2

(

=

≠

≠

1

 w )

1

y

( 1

 w )

1

y ( 1

 w )

1. ¡Seguro! 

4π

4π

=

+

2

 w

 cos(

)

 i sen(

),  se cumple:

3

3

3

1

2

(

=

≠

≠

2

 w )

1

y

( 2

 w )

1

y  ( 2

 w )

1. Porqué?? 

Observar que la definición significa que una raíz  n-ésima de 1  w es primitiva de orden  n si no es raíz de raíz de 1 para ningún  n’<  n. 

Es para ese  n que  w aparece por primera vez como raíz de 1 ….. 

EJERCICIO 8.10.1: 

Hal ar las raíces cuartas, quintas y sextas de 1. 

Hal ar cuáles de ellas son primitivas de ese orden. 

¿Será que para todo  n hay raíces primitivas de orden  n de 1??? Acá está la respuesta: 

♦PROPIEDAD 8.10.2:

Para todo  n > 0,  1

 w  (la dada por la fórmula para  k = 1) es raíz primitiva de orden  n de 1. 

Demostración: 

Como 

2π

2π

1 =  cos  0 +  i sen  0   , 

entonces 

1

 w =  cos

+  i sen

 n

 n

 n

. 

 n  2π

. 

 n  2π

(

=

+

=

π +

π



1

 w )

 cos

 i sen

 cos  2

 i sen  2 = 1

 n

 n
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Resta probar que si  n’, es un natural tal que  0 < n’ < n, entonces  

 n ' 

(

. 

1

 w )

≠ 1

Supongamos por el absurdo que existe  n’ ,  0 < n’ < n , tal que 

 n ' 

(

, entonces 

1

 w )

= 1

 n ' 

 n '.2π

 n '.2π

(

, por lo tanto 

1

 w )

=  cos

+  i sen

= 1 =  cos  0 +  i sen  0

 n

 n

 n '.2π = 0 + 2 k π  con  k ∈

entonces   n '.2π = . 

 n  2 k π

 n

haciendo cuentas resulta

 n ' = . 

 n k

Entonces si  k es negativo  n’  también lo es, y si  k es positivo  n’ > n,  absurdo, ya que habíamos supuesto que  0 < n’ < n. 

Por lo tanto    1

 w  es primitiva de orden  n de 1. 

♦

Para cualquier 

2π

2π

 n se sabe que 

entonces 

, ya que 

1

 w =  cos

+  i sen

= ( 1) k

 k

 w

 w

 n

 n

2 k π

2 k π

 k  2π

 k  2π

 w =  cos

+  i sen

y

( 1

 w ) k =

+

por De Moivre. 

 k

 cos

 i sen

 n

 n

 n

 n

Esto significa que todas las raíces  n-ésimas de 1 se expresan como potencia de  w 1 

Esta observación se generaliza: 

♦ PROPIEDAD 8.10.3

 w es raíz  n-ésima primitiva de la unidad de orden   n si y sólo si  0

1

2

1

, 

, 

,...,  n

 w

 w w

 w −  son 

todas las raíces  n- ésimas de 1. 

Demostración: 

Veamos primero que si  w es raíz  n-ésima primitiva orden  n de la unidad entonces 0

1

2

1

, 

, 

,...,  n

 w

 w w

 w −  son todas las raíces de orden  n de 1. 

Como por hipótesis  w es raíz primitiva de la unidad de orden  n, se tiene: 

 n

 n ' 

 w = 1   y     si  0 <  n ' <  n  entonces   w

≠ 1 
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Para cualquiera de la lista es  (  h ) n = (  n ) h = (1) h

 w

 w

=1      (  h

∀ )( 0 ≤  h <  n  ) , entonces 

0

1

2

1

, 

, 

,...,  n

 w

 w w

 w −  son raíces  n-ésimas de 1. 

Falta ver que son todas las raíces  n-ésimas de 1, para esto veremos que son todas 

distintas, así se comprobará que son  n.  (Por el absurdo) 

Supongamos que   t

 s

 w =  w   para   s y  t,  con  s distinto de   t   y tales que 0 ≤  s <  n   y    0 ≤  t <  n  ,  entonces 

 t

 s

−

= 0    y      s (  t− s

 w

 w

 w w

− 1) = 0    suponiendo que    s <  t , 

luego   s

 s

0

o

(  t s

 w

 w −

=

− 1) = 0 , pero   w ≠ 0  porque   w ≠ 0   (justifique!!!!) entonces 

 t − s −1 = 0 entonces    t− s

 w

 w

= 1 . 

Absurdo,  porque  w es primitiva de orden  n  de 1 y además 0 <   t - s < n. Por lo tanto t s

 w − ≠ 1 . 

Por lo tanto   0 1 2

1

, 

, 

,...,  n

 w

 w w

 w −  son todas raíces  n-ésimas de la unidad y son todas 

distintas, por lo tanto al ser  n son todas las raíces  n-ésimas de 1. 

Veamos ahora el recíproco, es decir que si la hipótesis es    0 1 2

1

, 

, 

,...,  n

 w

 w w

 w −  son 

todas las raíces  n- ésimas de 1, entonces  w es raíz  n-ésima primitiva de la unidad de orden  n.  

Hay que probar que   n

 n ' 

 w = 1   y     si  0 <  n ' <  n  entonces    w

≠ 1. 

Como 

1

 n

1

=

elevando a la   a ambos miembros se tiene que  

=(

) n

 w

 w

 n

 w

 w

y como  1

 w  es raíz 

 n –ésima de 1 por hipótesis,  1

(

) n

 w

= 1 y por lo tanto  w es raíz   n –ésima de 1. 

Falta ver que  w es primitiva. 

Supongamos que existe 

 n ' 

 n '   , 0 <  n ' <  n   tal que   w

= 1, entonces como se sabe que 

0

 w = 1, tenemos que  0

 n ' 

 w =  w . 

Absurdo, pues entonces dos de los complejos de la lista, que por hipótesis son todas 

las raíces 

 n-ésimas de 1,  serían iguales  entonces no habría  n raíces sino a lo sumo   n- 1, por lo tanto no serían  todas las raíces  n-ésimas de 1 que se sabe que son  n. 

En consecuencia  w es primitiva de orden  n de 1. 

♦
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Lo que sigue significa que para  n > 2, hay más de una raíz primitiva de orden  n de 1: 

♦ PROPIEDAD 8.10.4:

Si  w es raíz  n-ésima primitiva orden  n de la unidad entonces   w  es raíz  n-ésima primitiva de orden  n de la unidad. 

Demostración: 

Como  w es primitiva de orden  n,  n

 n ' 

 w = 1   y     si  0 <  n ' <  n     w

≠ 1  . 

Se quiere ver que    n

 n ' 

 w = 1   y     si  0 <  n ' <  n     w

≠ 1 . 

Por propiedades de la conjugación:   n

 n

 w =  w = 1 = 1    por lo tanto   w  es raíz de orden  n 

de 1. 

Supongamos por el absurdo que existe 

 n

 n’ , 

' 

0 <  n ' <  n   tal que   w

= 1, entonces 

tenemos que   n' 

 w

= 1  y aplicando el conjugado a ambos miembros   n ' 

 w

= 1 , por lo tanto: 

 n ' 

 w

= 1 . Absurdo, porque  w es raíz primitiva de orden  n de 1. 

♦

Es decir,  si un complejo es raíz primitiva de orden  n de 1 su conjugado también lo es. 

¿Qué ocurre si un real es primitiva de orden   n (caso  n = 2) ? 

En lo que sigue se verán algunas propiedades que permitirán determinar para cada  n 

cuáles son las primitivas de orden  n de 1. 

♦PROPIEDAD 8.10.5:

Sea  w raíz  n-ésima primitiva orden  n de la unidad. Si   k

 w = 1, 

 k ∈

entonces  n divide 

a  k.  

Demostración: 

Por hipótesis   k

 w = 1, 

 k ∈

y como  n  es natural no nulo, por el Teorema Algoritmo de 

la División tenemos que   k = . 

 c n +  r

0 ≤  r <  n , para  c y  r únicos. Entonces 

 k

 c.  n+ r

 c.  n

=

=

.  r = (  n ) c.  r = (1) c.  r

 r

=

entonces     k

 r

 w

 w

 w

 w

 w

 w

 w

 w

 w =  w = 1

↑

Porque  w es raíz  n-ésima

Pero como  w es primitiva de orden  n  y   0 ≤  r <  n  entonces  r =  0   para no contradecir la hipótesis,  en consecuencia   k = . 

 c n  por lo cual   n divide a  k. 

♦ 
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♦ PROPIEDAD 8.10.6:

 k

 w  es raíz  n-ésima primitiva de orden  n de la unidad si y sólo si ( k, n) = 1, es decir  k  y n son coprimos. 

Demostración: 

Probaremos primero que si ( k, n)  =  1 entonces   k

 w  es primitiva de orden  n de 1, siendo 

2 k π

2 k π

=

+

 k

 w

 cos

 i sen

 n

 n

 n

para que 

 k

 w  es raíz  n- ésima de 1, falta probar que 

' 

(

)

≠ 1

para un  '  con  0 < ' 

 k

 w

 n

 n <  n

sea primitiva de orden  n.  

Sabemos también por observación anterior que 

= (

. 

1 ) k

 k

 w

 w

Supongamos que  

 n ' 

 k n ' 

(

)

= ((

=    con  < 

< 

, entonces   

 k.  n ' =

y 

 k

 w

1

 w ) )

1

0

 n ' 

 n

( 1

 w )

1

como  1

 w  es primitiva, por propiedad 8.10.5, vale que   n n '.  k . 

Como  ( k, n) = 1 entonces  n no divide a  k, entonces   n n '  Absurdo porque  n’ < n  y n′ ≠ 0 . 

Por lo tanto   k

 w  es primitiva de orden  n de 1. 

Se probará que si   k

 w  es raíz  n-ésima primitiva de orden  n la unidad entonces ( k, n) = 1, es decir  k y  n son coprimos. 

Sea  d = ( k, n) ,  entonces   d k  y  d n   así    k = d.h   y   n = d.q  para  h y  q enteros. 

Observar que son enteros los números  

 n

 k

 q =

y que   h =

 d

 d

 n

 k

 k

 k

Luego   (

) q = (

 k q

 k q

 n

 d

 d

 d

=

=

=

=

=    ya que   k =  h.  

 k

 w

1

 w )

1

 w

1

 w

( 1

 w )

1

1

 d

Pero entonces   q = 0  ó    q ≥  n  ya que    k

 w  es primitiva,  pero como  n = d .q  , 0<  q ≤  n

por lo tanto  q = n  y en consecuencia  d = 1. Se tiene entonces que  n y  k son coprimos. 

♦
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EJEMPLO 8.10.10: 

Calcular las raíces primitivas de orden 8 de 1: 

Hay que hallar las   k

 w  tales que ( k,  8) = 1 ,  entonces  (1,8) = (3,8) = (5,8) = (7,8) = 1 . 

Las primitivas son:     

2π

2π

1

 w =  cos

+  i sen

8

8

2.3π

2.3π

3

 w =  cos

+  i sen

8

8

2.5π

2.5π

=

+

5

 w

 cos

 i sen

8

8

2.7π

2.7π

7

 w =  cos

+  i sen

8

8

EJERCICIO 8.10.11 

a) Calcular las raíces primitivas de orden 7 de 1 y representarlas. 

b) Calcular las raíces primitivas de orden 12 de 1 y representarlas. 

EJERCICIO 8.10.12 

 n

Probar que si  n  es par y  z  es raíz primitiva de orden  n  de 1, entonces  2

 z = 1  

11. Exponente Fraccionario

Se han definido potencias naturales y potencias enteras en los casos posibles, se va a 

generalizar a los exponentes fraccionarios. 

 p

Para todo  ∈ − { }

0

,  q

 z

 z

como las raíces  q-ésimas de   p

 z

. 

 p

Es decir que si   z =  z ( cos  θ +  i sen θ ) , 

 q

 z  tiene   q resultados: 

 q

 p

 p θ + 2 k π

 p θ + 2 k π

 u =

 z

( cos

+  i sen

)

0 ≤  k ≤  q − 1 

 k

 q

 q
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No es lo mismo intercambiar el orden de las operaciones, no es lo mismo las raíces  q-

ésimas de    p

 z , que calcular las potencia  p- ésima de las raíces  q- ésimas de  z. 

Mirar los siguientes ejemplos. 

EJEMPLO 8.11.1: 

3

Sea  z =  2 +  2  i , hallar  2

 z . 

Como 

π

 z = 8

y

 Arg( z) =

, tenemos al aplicar la definición: 

4

3

3

π

π

 z = ( 8) ( cos  3

+  i sen  3

)   entonces las raíces cuadradas de  z al cubo son: 

4

4

π

π

3

+ 2.0π

3

+ 2.0π

3

3

3π

3

4

4

π  

0

 u = ( 8) ( cos

+  i sen

) = (2 2) ( cos

+  i sen

)

2

2

8

8

π

π

3

+ 2.1π

3

+ 2.1π

3

3

11π

11

4

4

π  

1

 u = (2 2) ( cos

+  i sen

) = (2 2) ( cos

+  i sen

)

2

2

8

8

Si calculáramos primero las raíces cuadradas de  z y luego las eleváramos al cubo 

resulta: 

Raíces cuadradas de  z 

π

π

+ 2.0π

+ 2.0π

4

4

π

π

0

 w =

2 2 ( cos

+  i sen

) = 2 2 ( cos

+  i sen

)

2

2

8

8

π

π

+ 2.1π

+ 2.1π

9π

9

4

4

π  

1

 w =

2 2 ( cos

+  i sen

) = 2 2 ( cos

+  i sen

)

2

2

8

8

Elevando al cubo las raíces cuadradas de  z: 

3

3

3π

3π

0

 w

= ( 2 2) ( cos

+  i sen

)

8

8

3

3

27π

27π  

1

 w

= ( 2 2 ) ( cos

+  i sen

)

8

8

En este caso se cumple que 

3

3  ya que tienen el mismo módulo 

0

 u = ( 0

 w )

y

1

 u = ( 1

 w )

y sus ángulos son iguales o congruentes. 
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EJEMPLO 8.11.2 

4

Hal emos ahora para el mismo   z ,  2

 z . 

De acuerdo a la definición:  4

4

π

π

4

 z = ( 8) ( cos  4

+  i sen  4

) = (2 2) ( cos  π +  i sen π )  

4

4

Calculando las raíces cuadradas: 

4

π + 2.0.π

π + 2.0π

4

π

π

0

 u = (2 2) ( cos

+  i sen

) = (2 2) ( cos

+  i sen

)

2

2

2

2

4

π + 2.1π

π + 2.1π

4

3π

3π  

1

 u = (2 2) ( cos

+  i sen

) = (2 2) ( cos

+  i sen

)

2

2

2

2

Veamos ahora si calculamos primero las raíces cuadradas de  z: 

π

π

+ 2.0.π

+ 2.0π

4

4

π

π

0

 w = (2 2)( cos

+  i sen

) = (2 2)( cos

+  i sen

)

2

2

8

8

π

π

+ 2.1π

+ 2.1π

9π

9

4

4

π  

1

 w = (2 2) ( cos

+  i sen

) = (2 2)( cos

+  i sen

)

2

2

8

8

Elevando ahora a la cuarta ambas raíces resulta: 

4

4π

4π

π

π  

0

 w

=

(2 2)( cos

+  i sen

) = (2 2)( cos

+  i sen

)

8

8

2

2

4

9π

9π

π

π  

1

 w

=

(2 2)( cos

+  i sen

) = (2 2)( cos

+  i sen

)

2

2

2

2

En este caso, encontramos distintos resultados si intercambiamos el orden, ya que las 

raíces cuadradas de  z a la cuarta nos dan 2 complejos solución y la potencia cuarta de las raíces cuadradas de  z  nos da un único complejo como solución. 

No podemos intercambiar el orden de las operaciones. 

Pero se tiene la siguiente propiedad: 

♦ TEOREMA 8.11.3:

 p

Sea  ∈

− { }

0

,  q

 z

 z  por definición son las raíces  q-ésimas  de   p

 z  y coinciden con 

 q

(

)  p

 z

, si y sólo si  ( p, q)  =  1. 
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Demostración: 

 p

Probaremos primero que si ( p, q)  =  1 los resultados de   q

 z , definido como 

 q

 p

 q

 z

coinciden con los complejos  (

)  p

 z

. 

Sea   z =  z ( cos θ +  i sen θ ) , un complejo no nulo. 

Sean los conjuntos: 



+

+



 q

 p

. 

 p  θ

2 h π

. 

 p  θ

2 h π

 T =  u



:  u =

 z

( cos

+  i sen

)

0 ≤  h ≤  q − 1

 h

 h





 q

 q





+

+



 p

θ

2 k π

θ

2 k π

 P = ( w ) :

 q

 w =

 z ( cos

+  i sen

)

0 ≤  k ≤  q − 1

 k

 k





 q

 q



Queremos ver que  T = P.  

En el conjunto  T  tiene   q elementos, veamos cuántos hay en el conjunto  P. 

Los   k

 w  son  q distintos por ser raíces  q-ésimas de  z. 

Vamos a probar que al elevarlos a la   p obtengo  q valores distintos. 

θ + 2 k π

θ + 2

 q

 k π

 w =

 z ( cos

+  i sen

) así 

 k

 q

 q

 p

 q

 p

θ + 2 k π

θ + 2 k π

( w ) = (

 z ) ( cos  . 

 p

+  i sen . 

 p

)

 k

 q

 q

 p

θ + 2 k π

. 

 p  θ + . 

 p  2 k π

 arg(( w ) ) = . 

 k

 p

=



 q

 q

Por el teorema Algoritmo de la División, como  q es no nulo:   k.  p = . 

 c q +  r  con  0 ≤  r <  q  

Entonces 

 p

. 

 p  θ + ( cq +  r)2π

. 

 p θ +  cq 2π +  r 2π

. 

 p θ

2 r π

 arg (( w ) ) =

=

=

+ 2 π

 k

 c +



 q

 q

 q

 q

 p

. 

 p  θ + 2 r π

 p

 arg (( w ) )

como  0 ≤  r <  q   entonces  (

) ∈

luego   ⊆

 k

 k

 w

 T

 P

 T

 q

Se probará  que  P  tiene  q elementos. 

Vamos a considerar 2 raíces  q-ésimas distintas de   z,  sean 

 w   y    w

con   t ≠  j  queremos probar que  ( w )  p ≠ ( w ) p . 

 t

 j

 t

 j
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θ + 2  t π

θ + 2 π

θ +

π

θ +

π

 q

 t

 p

 q

 p

2.  t. 

2.  t

 w =

 z ( cos

+  i sen

)  así ( w ) = (

 z ) ( cos  p

+  i sen p

)

 t

 t

 q

 q

 q

 q

θ + 2  j π

θ + 2 π

θ +

π

θ +

π

 q

 j

 p

 q

 p

2  j

2  j

 w =

 z ( cos

+  i sen

)  así ( w ) = (

 z ) ( cos  p

+  i sen p

)

 j

 j

 q

 q

 q

 q

Los módulos de estos complejos son iguales, para ver que son diferentes 

( w )  p  y  ( w )  p  

 t

 j

analicemos sus argumentos. 

Si sus argumentos fueran congruentes  la diferencia debe ser un múltiplo de 2π , 

entonces  

θ + 2  t π

θ + 2  j π

 p

−  p

= 2 h π

 h ∈ ,  luego haciendo cuentas:

 q

 q

 p θ +  p  2  t π −  p θ −  p  2  j π

2π  p ( t −  j)

= 2 h π   y resulta

= 2 h π

 q

 q

Dividiendo por 

 p t −  j

2π  se tiene 

.(

) =  h  por lo cual   .  p( t −  j) = .  hq  lo que significa  que q

 q . 

 p ( t −  j)   pero como por hipótesis  p y  q son coprimos, entonces   q t −  j . 

Pero  0 ≤  t <  q  y 0 ≤  j <  q   y además    t – j  es no nulo y entonces 0<  t −  j <  q . 

Absurdo pues en estas condiciones que   q t −  j ,  así los argumentos no son congruentes por lo tanto  ( w )  p ≠ ( w )  p . 

 t

 j

Como   P ⊆  T  y   P  tiene  q elementos y  T   tiene  q elementos, entonces  P = T. 

Veamos ahora que tomando los conjuntos  P y  T como antes, si  P = T   entonces ( p, q ) = 1. 

Lo que equivale a demostrar que:  (  p,  q) ≠ 1 entonces   P ≠  T  

Y esto se probó en el Ejemplo 8.11.2.   

♦
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Ejercicios Adicionales de todo el Capitulo. 

1. Escribir en su forma binomial mínima   a + b i, con   a ∈  y  b ∈ , y como pares ordenados ( a, b)  los siguientes números complejos:

2

 i

3 i

a) 6 − 8 i − (5 + 2  i ) − (9 − 7  i )

d) 

+

−

1 −  i

2

− + 2  i

1 −  i

3

b) (2 + 5 i)(−4 − 6  i)(−1 + 3 i)

e) (1 −  i) (1 −  i)

2

4

1 4  +  2 i

3  +  4 i

(1  +   i)

(1  +   i)

c)

(

+

) 

f ) 2  i

+ 5  i

2  i

1 − 2  i

2 + 3 i

2 −  i

(2 −  i  2

)

2. Calcular y expresar el resultado en forma binómica:

18 

19

a)  i

+   i

53

7

21

2

b)   i

− 3 i +  i (1 − (2 i) ) 

43

203

13

c) −  i (− i)

+ 2  i−

3. Siendo   a ∈ ,  b ∈

y

 b ≠ 0 ,  calcular  la  parte  real,  la  parte  imaginaria  y  el

conjugado de los siguientes números complejos: 

a)

 i +  a 

1 + 2 i

b)

3 −  i

 a

c)   bi

1

d)

 a +  bi

4. Sean  z, w dos números complejos cualesquiera, demostrar:

a) Re( z +  w) = Re( z) + Re( )

 w , 

Im(  z +

)

 w = Im(  z) + Im( )

 w  

b) Re( z )

 w = Re( z) Re( w) − Im( z) Im( )

 w ,    Im(  z )

 w = Re(  z) Im( )

 w + Im( )

 z  Re( )

 w

536

NÚMEROS COMPLEJOS – CAPÍTULO  8

5. Sean   z ∈   y   w ∈ , demostrar las siguientes propiedades:

2

2

a)

 z =  z

b)

. 

 z w =  z w

 z

 z

c)

=

para   w ≠ 0

 w

 w

d)

 z.  w = 0  si y sólo si  (  z = 0 ∨  w = 0)

6. Sean  z ∈ ,  para 1 ≤ ≤ , demostrar por inducción: 

 j

 j

 n

 n

 n

 n

 n

a)   z =   z

b)

 j

 j

 z

∏  j =

 z

∏

 j

 j =1

 j = 1

 j  1

=

 j  1

=

7. Hallar los conjugados de:

2

3

53

a)

1 −  i +  i

+  i 

c) 1 +  i +  i +  i + ... +   i

 i

b) (1 − 2 i)(2 −  i)( i + 1)

d) 1 +

 i

1 + 1+  i

8. Probar las siguientes equivalencias:



1

a)

 w

0

 w

0

b)

 w

1

 w−

=

⇔

=

= ⇔

=  w  

9. Sean   z ∈   y   w ∈ , demostrar:

2

2

2

2

 z +  w

+  z −  w

 z

+  w

=

2

10. Dados   z ∈   y   w ∈ , analizar la validez del siguiente enunciado:

2

2

 z +  w = 0 ⇔ ( z = 0  y   w = 0)  
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11. Representar  gráficamente  los  conjuntos  de  puntos  del  plano  que  satisfacen  las condiciones: 

a)   z − 2 =  3 

g) Re( z(1 + 2 i)) = 0

b)

 z ≤  a con  a

+

∈

h) Re( z) + Im( z)  = 2. Re( z) + Im(  z )

c)  z + 1 − 2 i − 2 > 0 

i)

Im( z) ≥ 2   y

 z + 1 +  i   < 4 

d)

Im( z z) = 0

j) − 1 ≤ 1 −  z   +  i

< 0 

e) Re( z) ≤ 1 

k)

 z(4 + 3 i)

= 10

2

2

− Re ( z) Im (  z )

 z

f )

 z +  z = 3 

l) 

+

= 0

6 i − 2

6 i + 2 i





12. Sean 

 z

 z ∈

y   w ∈

, mostrar que si  Im

=



 0 entonces   z +  w =  z +  w

  w 

13. Escribir en forma polar y trigonométrica los siguientes números complejos:

-1

a) 2 + 2 3 i 

c)

(1 +  i)

1 -  i

π

π

b) 

d)

 sen

+  i sen

3 −  i

6

6

14. Calcular:

20

8

-4

a) (1 − 3  i)

c) (1 −  i) ( 3. 3 + 3 i)

 j

200





12

1

− +

3  i

b) (−2 +  i)

d)  





2



 j  1

=





15. Dados

π

π

 x = 3 ( cos

+  i sen

), 

 y = 1 +  i   y    z = 2

, calcular: 

3π

6

6

2

5

3







 x y

17

 x

a)

b)

 z





 4

 z



  y 
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π

16. Dado   z ∈ ,  de  módulo  1  y  argumento  θ , 0 ≤ θ < 

,  hal ar  el  módulo  y  el 

2

argumento de  

 z + 1 en función de θ . (Indicación: representar gráficamente) 

17. Analizar para qué valores de   n ∈ , el valor de  (1+ ) n

 i  es:

a) Real positivo

b) Real negativo

c) Imaginario puro

18. Demostrar aplicando la fórmula de De Moivre , para   n ∈

a) ( . ) n

 n

=

. 

 n

 z z

 z

 z

1

2

1

2

 n

 n





b) 

 z

 z

1

1

 z ≠ 0

entonces



 =

2

 n

  z 2 

 z 2

19. Dado   w ∈   tal  que 

2

1 +  w +  w = 0 ,  encontrar  la  relación  de   w  con  las  raíces

cúbicas de    z = 1. 

20. a) Si 

3 i − 1

 z =

, calcular las raíces terceras de   z z . 

6  i

b) Representarlas en el plano complejo teniendo en cuenta una propiedad de simetría. 

¿Cuál? 

21. Determinar   a   y   b  para  que   z = 1+  i   sea  una  solución  de  la  ecuación 5

3

 z + . 

 a z +   b  =  0. 

22. Encontrar los complejos  z que son solución de las siguientes ecuaciones:

a)

3

2

(2 i  z − 4 − 4 i)( z −  i) = 0

c)

2

2

2

2

( z + 1 +  i) ( z − 1 −  i) = 4

b) 

 z

3

 z

 i

2

+

= 0

d) 

−

−

= 0  

2

2

 z + 9

 z + 6 . 

 i z − 9 

2

( i +  z)( z −  i) 

( z +  i)

 z −  i
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23. Hallar las raíces sextas de   z = −1+  i  y representar gráficamente. De acuerdo con la figura, ¿existe alguna raíz sexta  w que también verifique  6

 w =  z ? 

24. a) Un pentágono regular centrado en el origen de coordenadas cartesianas tiene 

uno  de  sus  vértices  en  el  punto  (-2,  0).  Calcular  usando  números  complejos  las coordenadas de sus restantes vértices. 

b) Ídem a), para un hexágono regular centrado en (-1, 1) y con un vértice en (-1,4). 

25. Cuáles de los siguientes números complejos son raíces  n-ésimas de 1? 

a)  cos  3π +  i sen  3π

b) 

3

3

 cos

π +  i sen  π  

c) 

15

15

 cos

π +  i sen

π  

4

4

18

18

26. Probar que el producto, cociente y potencia de exponente natural de las raíces

 n-ésimas de 1 son también raíces  n-ésimas de 1. 

27. a) Sea   z ∈  tal que existen enteros positivos  n  y   m  tales que   n m

 z =  z

= 1. 

Probar que si  d = ( n , m) entonces   d

 z = 1 . 

b) Probar  que  si   n  y   m   son  números  naturales  coprimos,  entonces  si   z ∈   y n

 m

 z =  z

= 1  entonces  z = 1. 

28. a) Probar que calculada una de las raíces  n-ésimas de un complejo, las demás se pueden  obtener  haciendo  su  producto  con  cada  una  de  las  raíces   n-ésimas  de  la unidad. 

b) Calcular las raíces quintas de  i. 

29. Determinar en cada caso la totalidad de soluciones en C

a)

3

3

( z + 1) =  z

e) 4

 z = 4 + 3 i

b)

6

6

( z − 1) =  i z

f) 2

 z + 2  i z + 1 = 0

c)

6

5

( z − 2) = ( z − 3)

g)

4

( z + 1) + 1 = 0

d)

2

4

( z − 3  z + 1) = 1

h)

6


30

( z + 2  i)

= 0
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30. Para cada   n ∈ , definimos en C el conjunto:   G = { z ∈ :  n

 z =

, de todas las 

 n

}

1

raíces   n-énesimas de 1. 

a) Sean  m y   n números naturales, sea  d = ( m, n), probar que   G ∩  G =  G . 

 n

 m

 d

b) Probar que   G ⊂  G  si y sólo   n m . 

 n

 m
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CAPITULO 9 

Polinomios en una indeterminada

En este capítulo trabajaremos con polinomios con coeficientes en un cuerpo conmutativo  K, por ejemplo el de los números racionales, reales, complejos o los 

con  ∈

y   número primo. 

 p

 p

 p

Las propiedades y definiciones son válidas en ese contexto. Es importante resaltar esto ya que muchas de las propiedades no se verifican si se trabaja con polinomios con coeficientes en 

conjuntos que no son cuerpo. 

1. Definiciones básicas

Se l ama polinomio en una indeterminada  x  a una expresión de la forma: n

 n-1

2

 P( x) =  a x +  a x

+ ... +  a x +   a x +  a

 n

 n-1

2

1

0

para  an , an-1 , ........, a2 , a1 , a0   elementos de  K , que son los coeficientes.  

Recordar que por la identificación establecida, los números complejos incluyen a los reales, es decir los reales son un caso particular. 

Se designa por  [ x],  [ x] y  [ x]  a los conjuntos de polinomios con coeficientes en 

, 

y 

respectivamente. Y 

[ x] a los polinomios con coeficientes en 



 p

 p

 x  no representa una variable real ni compleja. 

Se la l ama  indeterminada.  

Por ejemplo si 

5

4

 P( x) = 4 x + 2 x − 3 x +1; en este polinomio

 a = 4;  a =

2;  a =  a = 0;  a = −3;  a = 1 son los coeficientes. 

5

4

3

2

1

0
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Los exponentes de  x  son números naturales . 

NO ES un polinomio una expresión de la forma 

2

−

2

 H ( x) = 3 x

+ 2 x +  x + 3 ; pues está  x elevada a –2  en uno de los términos. 

Se l ama grado de un polinomio al mayor  n tal que  an   sea distinto de 0. 

En el ejemplo,  P( x) es de grado 5, pues  a   5= 4  ≠ 0 y al no estar explícitos otros  ai  con  i > 5, significa que  a   i= 0 para   i > 5 

El polinomio 

4

7

 Q( x) = 3 x + 8 x −  x  tiene grado 7 pues  a

  

  

 0 = 0;  a1 = 8 ;  a2 =  a3 = 0 ;  a4 = 

3 ; 

 a



 5 =  a6 = 0 ;  a7  = -1 

Se l ama polinomio nulo y se anota  0( x) al polinomio cuyos coeficientes son todos 0. Es decir: 0( x) = 0xm +0 xm-1 +.........+0x +0 

Observar que de acuerdo a la definición el polinomio  0( x) NO TIENE GRADO. 

Además se admite que se puede escribir de muchas maneras, por ejemplo 

 0( x) = 0x2 +0 = 0x10 + 0x8 + 0x +0 

EJERCICIO 9.1.1 

Analizar si las siguientes expresiones son polinomios; en caso afirmativo hal ar su grado 

1

1

3

-2

4

3

2

 T ( x)  =   x -  

 x

+   x   ; 

 P(  x)  =

 x -  2 x -   7  x  +   x

; 

3

3

1

6

 R( x)  =  2 x  - 7 -  i  +

; 

 Q( x)  =   x

+   x  -  0, 7; 

 x

1

2

3

5

2

 S ( x)  =  4 x  -  

 x -1  +  3 i  x

-   x  ;  U ( x)  =  (2 +  3  i)  x +  (3  -   )

 i   x -1

3
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EJEMPLO 9.1.2 

Consideremos 

2

4

5

2

4

 P( x)  =  3 x   +  2 x  -   x   +  1  +  0  +  0 x

y  Q( x)  =  2 x  +  3 x   +  1  -   x

Mirando con atención se percibe que para igual potencia de   x  el coeficiente de  P( x) es igual al coeficiente de  Q( x) .  

Dados dos polinomios no nulos cualesquiera 

 P( x)  = a

         

 n   xn + an-1  xn-1 + .......... + a1 x + a0

y   Q( x)  = bm   xm + bm-1  xm-1 + .........+ b1  x + b0 

el os son iguales  si se cumple  

gr( P( x)) = gr( Q( x)) 

Y 

si     a  



 i = bi      0 ≤  i ≤ gr( P( x)) = gr( Q( x)) 

lo anotaremos  P( x)  = Q( x) 

El polinomio nulo   0( x) es igual a si mismo en cualquiera de las formas que se presente. 

2. OPERACIONES: suma, producto por un elemento de  K y multiplicación

De alguna manera los polinomios pueden considerarse como una extensión del cuerpo 

numérico. De ahí que se han definido sobre el os operaciones del mismo tipo a las 

definidas en   K, además pretendiendo que conserven las “buenas” propiedades de esas operaciones sobre  K.  

Recordatorio, que nos servirá de motivador para lo que sigue e interesa definir: 

I) Un término   es una expresión algebraica donde hay números, letras (que simbolizan números) o números y letras. 

II) Términos semejantes son aquel os que tienen la misma parte literal, por ejemplo: 544
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4

  3a2 bc-1  

y 



2

-1

-

 a   bc

son semejantes. 

5

 3 ab-8  

y 

 3a-1b 

no son semejantes 

4/9 

y 

-3 

son semejantes (¿porque?) 

III) Al sumar términos semejantes se puede reducir la expresión, por ejemplo:

−

−

−

4

−

4

−

11

2

1

2

1

2

1

2

−1

3 a bc + (

) a bc

= (3 + (

)) a bc

=

 a bc

5

5

5

IV) Al multiplicar términos se opera respetando las leyes de potenciación y la conmutatividad de producto, por ejemplo: 

3

−

25 −

3 25

−

−

15

2

3

1

2

3

1

2

−

2

 a b c

 a bc =

. 

 a b ca bc =

 ab c

5

7

5 7

7

Para el caso de las operaciones con polinomios usaremos el mismo criterio, aunque es de 

destacar nuevamente que  x  no simboliza un número. 

EJEMPLO 9.2.1 

Para calcular  P( x)  = 2x3 + 4x5 - x2 + 2  más  Q( x)  = x4 – 2x5 + 3x3 + x2 –1, cuyo resultado anotaremos  P( x) +  Q( x), se suman los coeficientes de los términos de igual grado (es decir, de x elevada al mismo exponente). En el ejemplo: 

 P( x)  + Q( x)  = ( 2+3)  x3 + ( 4 -2)  x5 + ( -1+1)  x2 + x4 + ( 2-1)   =   5x3 + 2x5 + x4 + 1 

esto se expresa también diciendo que se “suma coeficiente a coeficiente”. 

¿??? 

Qué ocurre si realizamos  P( x) +  0( x) =.........? 

Es por eso que a  0( x) se lo l ama polinomio nulo, pues para la suma se comporta como el número 0 de  K. 

Decimos así que el polinomio nulo es el elemento neutro en la suma de polinomios 

545
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En general: 

Sean  P( x) y  Q( x) ambos no nulos, con grado  n y  m respectivamente. 

 P( x)  = an  xn + an-1 xn-1 + .......+ a1 x + a0   y    Q( x)  = bm  xm + bm-1 xm-1 + ......+ b1 x + b0 

Si  m = n:   P( x)  + Q( x) = (  a

  

  

  

  

  

  

 n + bn)  xn + ( an-1 + bn-1 )  xn-1 + .... + ( a0 + b0 ) Si  m < n:   P( x)  + Q( x) =  a

  

  

  

  

 n  xn + .....+ ( am + bm )  xm + ..... + ( a0 + b0 ) 

Completar un polinomio  es explicitar con 0 los coeficientes de las potencias de  x que no se presentan. 

EJEMPLO 9.2.2 

a)  H( x)  = x4 + 3x3 + 4

Completar  H( x) significa escribir  H( x)  = x4 + 3x3 + 0x2 + 0x + 4 

1

b) 

3

5

2

 T ( x)  =

 x -  2 x   +   x

el completado de  T( x ) es 

3

1

5

4

3

2

 T ( x)  = -  2 x   + 0 x +

 x +  x +0 x + 0 

3

En algunas situaciones es conveniente  “ordenar”  un polinomio. Por el o se entiende escribirlo según potencias crecientes o decrecientes de  x. En el caso de  T( x) hemos dado el ordenado y completado según potencias decrecientes 

EJERCICIO 9.2.3 

Complete y ordene según potencias crecientes los polinomios: 

 P( x)  = 3x2 - 2x4 + 10 

 Q( x)  = x3 - 4x2 + 5x4 + x 

 R( x)  = ( 2-i)  x3 + 4x2 - ( 7-5i)  x4 + x + 3i Luego, utilizando la idea de ordenar un polinomio en la definición de la suma de 

 P( x) y  Q( x), con grado  n y  m respectivamente, para el caso de  m < n, como  P( x) ≠  Q( x) podemos afirmar que completaremos  Q( x) hasta el grado de  P( x)   y entonces P( x) +  Q( x) = (  a

  

  

 n + bn)  xn  +  .... +  ( a0 + b0 ) 

Por la definición dada es inmediato que valen las siguientes propiedades de la suma: 
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

Si  P( x) , Q( x) y  T( x) son polinomios con coeficientes en  K entonces se cumplen las propiedades:

 Asociativa: (  P( x) + Q( x) ) +  T( x)   =  P( x)  +(  Q( x)  +  T( x) )     (I)  Conmutativa:   P( x) + Q( x)  =   Q( x) +  P( x) (II) 

Demostración de (II): 

Sean  P( x) =  an xn + an-1xn-1 + ....+ a1x + a0   y    Q( x) =  bm xm + bm-1xm-1 + ....+ b1x + b0 

Si  m < n,  completando  Q( x) ,  se tiene que: 

 P( x) + Q( x) = (  a

  

  

  

  

  

  

 n + bn)  xn + ( an-1 + bn-1 )  xn-1 + .... +  ( a0 + b0 )  = 

por la propiedad conmutativa de la suma en  K  es igual a 

= (  b

  

  

  

   

 n   + an)  xn + (  bn-1   + an-1 )  xn-1 + .... +  ( b0 + a0) =  Q( x) +  P( x) 

♦

EJERCICIO 9.2.4 

a) Justifique que  P( x)  + Q( x) es un polinomio. Cómo puede decir que es la suma en el conjunto K [ x] de polinomios  x con coeficientes en  K ? 

b) Demuestre la propiedad (I) . 

c) Realice  

¿¿?? 

 P( x)  + Q( x) en el caso de

 P( x)  = x4 +3x - 2 x2 + 3   y       Q( x) =  2x2 – 3x – 3 - x4  

¿Qué observa? ¿Que diría? 

EJERCICIO 9.2.5 

Dado un polinomio cualquiera  P( x) ,  determinar cuál es su opuesto. ¿Cómo anotaría el opuesto de  P( x)? 

Sea 

 n

 n  1

 P( x) =  a x +  a

 x − + ... +  a x +  a , existe un polinomio  Q( x) tal que  P( x)  + Q( x)  = 0( x), n

 n  1

−

1

0

decimos que  Q( x) es el opuesto de  P( x), siendo 

 n

 n  1

 Q( x) = − a x −  a

 x − − ... −  a x −  a

 n

 n  1

−

1

0

E indicaremos a  Q( x) por   - P( x) . 
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Resumiendo, la suma definida en   K[ x] , siendo   K =

con  p ∈

y  p número primo, 

 p

, , 

, es cerrada, asociativa, conmutativa, tiene elemento neutro y elemento opuesto. 

Resulta entonces que el conjunto de los polinomios en una indeterminada sobre un cuerpo 

conmutativo   K, dotado de la operación +, se verifica que (  K[ x] , +) tiene  la estructura de grupo conmutativo 

EJERCICIO 9.2.6 

Dados los siguientes polinomios, en cada caso, complete y ordene según potencias 

decrecientes de  x  y hal e el opuesto: 

 P( x)  = x4 – x6 + 1 – 2x     ,  Q( x) = x2     ,  R( x) =1 – x2 + x4 



4

5

8

 S ( x)  =  (1+  i)   x -2 x + 5 +   x + (  3  - 7  i)  x     ,  T( x)  = 5 i x9 - 2 x4 + i – 1

3

2

3

2

 H(x)=  3 x + 4 x + 5      R( x) = 4 x + 3 x + 2   en  7 [  x]

Restar   al polinomio  P( x) el polinomio  Q( x) es  realizar   P( x)  + ( -Q( x)) =  P( x)  -  Q( x) EJEMPLO 9.2.7 

Calcular  P( x)  + Q( x)  y  P( x)  -  Q( x)   siendo P( x)  = 3x2 - x4 + 3x –1     y     Q( x)  = x3 + x2 – 2x +3 

Las operaciones se pueden realizar utilizando una disposición similar a la utilizada para operar con números de varias cifras. Para el o se elige una forma (creciente o decreciente) de ordenar las potencias, luego se disponen uno debajo del otro de modo que queden encolumnados los 

términos semejantes. Por último se suman los coeficientes. Veamos en el ejemplo: 

 P( x)  

 - x4 + 0x3 + 3x2 + 3x – 1 

 Q( x)  

  x3 + x2   - 2x + 3 

 - x4 +  x3   + 4x2 + x   + 2 

luego  P( x)  + Q( x)  = - x4 + x3 + 4x2 +x+2 
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 P( x)  

 - x4 - 0x3 + 3x2 + 3x  - 1 

  - Q( x)  

  - x3  -   x2  + 2x  - 3 

 - x4  -  x3 + 2x2 +  5x - 4 

Resulta  P( x)  - Q( x) = - x4 – x3 + 2x2 + 5x – 4 

EJEMPLO 9.2.8 

Calcular  P( x)  + Q( x) para 

5

3

5

2

 P( x) = 3 x − 2 x + 8

y

 Q( x) = 4 x + 3 x +  ix + 2 −  i

5

4

3

2

 P( x)

3 x + 0 x − 2 x + 0 x + 0 x + 8

+ 

5

4

3

2

 Q( x)

4 x + 0 x + 0 x + 3 x +  ix + 2 −  i

_____________________________ 

 P( x)  + Q( x) = 

5

4

3

2

7 x + 0 x − 2 x + 3 x +  ix +10 −  i

EJEMPLO 9.2.9: 

Calcular  P( x)  + Q( x) para 

5

3

5

2

 P( x) = 3 x − 2 x −  i

y

 Q( x) = −3 x + 2 x + 2 −  i

5

4

3

2

 P( x)

3 x + 0 x − 2 x + 0 x + 0 x −  i

+ 

5

4

3

2

 Q( x)

− 3 x + 0 x + 0 x + 2 x + 0 x + 2 −  i

______________________________ 

  P( x)  + Q( x)  = 

5

4

3

2

0 x +0 x −2 x +2 x +0 x+2−2 i

Observar que el grado de una suma de polinomios puede ser igual al mayor de los de los 

grados o menor que él. 

El grado de una suma de polinomios, no es un valor determinado. 

Pues puede dar el polinomio nulo o si tiene grado resulta: 

gr ( P( x) +Q( x)) ≤  Max{ gr ( P( x)), gr ( Q( x))}

No tiene un valor fijo pero tiene una cota superior si el resultado de la suma no es el polinomio nulo. 
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Veamos el siguiente ejemplo: dado un complejo  r y un polinomio  P( x) se realiza  r. P( x) de modo que resulte un polinomio, así: 

( 3 i) . ( 4x4 – 2x + 3 ) se resuelve multiplicando los coeficientes del polinomio por  3 i. Resultará así un polinomio. ¿Por qué? Se podría considerar que el  3i  distribuye en la suma formal que es el polinomio. Se obtiene así: 

 3i.4x4 + 3 i. ( -2) x + 3 i . 3 = 12 i x4 – 6 i x + 9 i 

Generalizando 

  Producto por escalar:

Dados  P( x)  = a



 n xn  +  an-1 xn-1 + .....+ a1 x  +  a0 ∈  K [  x]

y    r ∈  K

Se define: 

 r. P( x)  = r. a

  

 n  xn  +  r.an-1 xn-1 + ...  +  r. a1 x  +  r.a0

EJERCICIO 9.2.10 

a) Justifique que   r. P( x)   es un polinomio en  x con coeficientes en  K. 

b) Probar que valen:

( r + t ) . P( x) =  r . P( x)   + t . P( x)  (en este caso + significa cosas distintas, porque??) ( r . t ) . P( x) =  r . (  t . P( x))   (en este caso algunos . significan cosas distintas, porque??) r . (  P( x) +  Q( x)) =  r . P( x) +  r . Q( x)  1K . P( x) =  P( x) 

EJERCICIO 9.2.11 

Efectuar las operaciones indicadas y en cada caso indicar cuál es el grado del resultado: 

1

1

3

2

4

3

2

(3 x - 2 x -   x +   x)  +

( x -   x  +   x   +

) =

2

3

1

1

1

4

2

4

2

3

-2

(2 x -  3 x +   x -  1)  -  5  i ( x +

 x -

 x +   x -  5  ) =

2

2

25

1

4

3

3

2

3

4

2

( x - 2 x +   x ) +  (3 x -   x + 2 x + 1 )  +

(3  -12  x -  3 x + 3  x  ) =

3

2

2

-1( x   +  3 x  -  1)  +  ( x   +  3 x  -  1)  =

82

41

21

0. ( x   +  28 x

-  

 x  -1 )  =

3
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4

3

4

3

(2 + 3  i) ( x -  2 x  +   x  )  -  (5 +   i) ( 4 x +  (1-  2  i)  x  +   x + 5  i )

  Multiplicación de polinomios

Se define la multiplicación de polinomios con la pretensión que algunas propiedades de la multiplicación de los números se sigan satisfaciendo, por ejemplo que el resultado sea un 

polinomio, que sea asociativo y valga la distributividad del producto en la suma, entre otras. 

Para establecer la definición se considera 

al  ser  x una indeterminada debemos analizar y definir su comportamiento: 

 xn . xm = xn+m      para  n, m naturales 

 a. xn = xn . a

para  a un elemento de  K y  n natural 

Se va a introducir la operación, con lo que se pretende lograr para el a, por un ejemplo para luego generalizar: 

EJEMPLO 9.2.12 

2

Realizar la multiplicación de 

3

2

4

 P( x) = 3 x +  4 x -

por   Q( x) = 2 x -   x , será multiplicar cada 

3

término de  P( x) por cada término de  Q( x) y sumar. Aplicamos lo que se definió con las potencias de la indeterminada  x  y su conmutación con los números. Luego se tiene así: 3

4

3

2

4

2

-2

4

-2

 P( x).  Q( x)  =  3 x  . 2 x

+  3 x  . (- x)  +  4 x  . 2 x

+  4 x  . (- x)  +  (

)2  x

+  (

).(- )

 x   =

3

3

3

4

3

2

4

2

-2

4

-2

= 3. 2 x  .  x

+  3(-1)  x  .  x  +  4 . 2 x  .  x

+  4(-1) x  .  x  +  (

)2 x

+  (

)(-1)  x   =

3

3

7

4

6

3

4

2

=  6 x

-  3 x

+  8 x

-  4 x

-

4

 x

+

 x  =

3

3

7

6

13

4

3

2

=  6 x

+  8 x

-

 x

-  4  x

+

 x 

3

3

Observe que al multiplicar  P( x) de grado 3 por  Q( x) de grado 4 se ha obtenido un polinomio de grado 7. 

Vamos a ir generalizando paulatinamente: 

Observemos como resulta producto de la siguiente multiplicación, siendo: 

3

2

2

 P( x) =  a x +  a x +  a x +  a

y

 Q(  x) =  b x +  b x +  b

3

2

1

0

2

1

0
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3

2

2

2

 P( x).  Q( x) =  a x ( b x +  b x +  b ) +  a x ( b x +  b x +  b ) +

3

2

1

0

2

2

1

0

2

2

+  a x( b x +  b x +  b ) +  a ( b x +  b x +  b ) =

1

2

1

0

0

2

1

0

3

2

3

3

2

2

2

2

=  a x b x +  a x b x +  a x b +  a x b x +  a x b x +  a x b +

3

2

3

1

3

0

2

2

2

1

2

0

2

2

+  a xb x +  a xb x +  a xb +  a b x +  a b x +  a b

1

2

1

1

1

0

0 2

0 1

0 0

Por cómo se definió el comportamiento del producto de las diferentes potencias de  x, y su comportamiento por los elementos de  K: 

Agrupando por las potencias de  x: 

5

4

3

2

 P( x).  Q( x) =  a b x + ( a b +  a b ) x + ( a b +  a b +  a b )  x + ( a b +  a b +  a b )  x 3 2

3 1

2 2

3 0

2 1

1 2

2 0

1 1

0 2

+( a b +  a b ) x +  a b =

1 0

0 1

0 0

=

5

4

3

2

(   a b ) x + (   a b ) x + (   a b ) x + (   a b ) x + (   a b ) x +   a b = 

 i

 j

 i

 j

 i

 j

 i

 j

 i

 j

 i

 j

 i+  j =5

 i+  j =4

 i+  j =3

 i+  j =2

 i+  j  1

=

 i+  j =0

5

=  (   a b )  k

 x

 i

 j

 k =0  i+  j = k

EJERCICIO 9.2.13 

¿Cómo resultará en general el grado del producto de polinomios no nulos? ¿Qué ocurre si uno de los factores es  0( x)? 

Grado de la multiplicación de polinomios no nulos de  K [ x] 

¡Si! 

Si gr ( P( x)) =  n y gr ( Q( x)) =  m entonces gr ( P( x) .Q( x)) =  n + m Sean los polinomios 

 n

2

 P( x) =  a x + ... 

 m

+

+

+

=

+

+

+

el

 n

2

 a x

1

 a x

0

 a

y

 Q( )

 x

 b x

... 

 m

1

 b x

0

 b

 n+ m

producto entre ambos es :   P( x).  Q( x) =  (   a b )  k i j x

 k =0  i+  j= k

A partir de la definición podemos ver que: 
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Si   P( x) ∈  K[ x],  Q( x) ∈  K[ x] y  T ( x) ∈  K[ x] ,  K  cuerpo conmutativo, valen las siguientes propiedades de la multiplicación: 

Asociativa:  P( x). ( Q( x) .T( x))  = ( P( x) .Q( x)) .T( x) Conmutativa:  P( x) .Q( x)  = Q( x) .P( x) Distributiva de la multiplicación respecto de la suma: 

  P( x).( Q( x) +T( x))  = P( x) .Q( x) +  P( x).  T( x) Unidad: existe el polinomio  1( x) = 1 K  tal que  P( x) .1( x)  =P( x) Por el cumplimiento de estas propiedades entonces ( K[ x] ,+, . )   es un  anillo conmutativo con unidad. 

¡¡No todo polinomio tiene inverso multiplicativo!! Pues si  P( x) =  x 2, ¿por qué polinomio tendría que multiplicarlo para que el resultado de  1( x) ? Claramente ese factor no es polinomio. Los exponentes deben ser números naturales… 

EJERCICIO 9.2.14 

Para  K cuerpo conmutativo. Demuestre que los únicos polinomios invertibles de  K[ x]  (es decir con inverso multiplicativo) son los polinomios de grado cero. En otras palabras, los elementos no nulos de  K. 

Recordatorio:   ( A, +, .) es un dominio de integridad si es un anil o conmutativo con unidad y además para dos elementos  a y  b cualesquiera de  A,  si  a.b = 0 entonces  a = 0 ó  b = 0. 

♦ LEMA 9.2.15

Sea  K cuerpo conmutativo, entonces ( K [ x], +, . ) es un dominio de integridad . 

Demostración: 

Sean 

 n

2

 P( x) =  a x + ... 

 m

 n

+ 2

 a x + 1

 a x + 0

 a

y

 Q( )

 x =  b x

+ ... 

 m

+ 1

 b x +

polinomios de 

0

 b

 K[ x], 

si  P( x) .Q( x) =  O( x), entonces por la definición  y la suposición: n+ m

 P( x) .Q( x) =   (   a b )  k =  O( x), así todos los coeficientes son 0. 

 i j x

 k =0  i+  j= k
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Además el coeficiente principal de  P( x) .Q( x) es   a b = 0 y por ser  K cuerpo, si   a ≠ 0,  existe n m

 n

1

 a −  por lo tanto 

1

−

1

1 .  b

 a

.( a .  b )

 a −

=

=

.0 entonces  b = 0 . 

 n

 K

 m

 n

 n

 m

 n

 m

Por lo tanto 

 m  1

 Q( x)

−

=  m

 b  1 x

+ ... 

−

+ 1

 b x +

, por lo tanto el coeficiente principal de 

0

 b

 P( x) .Q( x) es 

 a b

= 0 y por ser  K cuerpo, si   a ≠ 0, 

1

−

−1

1 .  b =  a

.( a .  b

) =  a

.0 entonces  b

= 0 . 

 n m  1

−

 n

 K

 m

 n

 n

 m  1

−

 n

 m  1

−

Y así se puede seguir,  para 

 m−2

 Q( x) =

+

+

+

y resultará que 

 m

 b −2  x

... 

1

 b x

0

 b

1

−

−1

1 .  b

, luego se demuestra que todos los

−2 =  a

.( a .  b −2 ) =  a

.0 entonces  b −2 = 0

 K

 m

 n

 n

 m

 n

 m

coeficientes de  Q( x) son 0, es decir  Q( x) =  O ( x) Análogamente si se considera   b ≠ 0, y  P( x) .Q( x) =   O( x), se l ega a   P( x) =   O ( x). 

 m

Luego se tiene entonces que ( K [ x],+, .) es un dominio de integridad. 

♦

Para realizar la multiplicación de polinomios puede hacerse también una disposición práctica de los mismos, análoga a la usada para multiplicar a mano números, ya que los números en base 

10 tienen una estructura polinomial.  Para hacer 2354 x 123, se dispone 

2354 

x  123 

y se van multiplicando cada una de las cifras 2354 por c/u de las 123 y luego se suman….los números que quedan encolumnados, como ya se sabe hacer. 

Dados  P( x)   y  Q( x) ,  si gr ( P( x)) ≥ gr ( Q( x)) o el número de términos no nulos de  P( x) es mayor o igual que el número de términos no nulos de  Q( x) se disponen los polinomios P( x)  

x   Q( x) 

Habiendo ordenado y completado previamente los polinomios (es para “guardar lugar” a las 

sucesivas potencias de  x  que puedan ir surgiendo por la multiplicación). 

Se entenderá mejor con el siguiente ejemplo: 

EJEMPLO 9.2.16 

2

3

4

2

 P( x)  =  4 x -  2 x +  3 x  +  1  ;  Q( x)  =  

 x +   x -  3 , es    gr ( P( x)) > gr ( Q( x)), 3

entonces se procede a  multiplicar cada término de  P( x) por los sucesivos  términos de  Q( x), al 554
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cambiar de término “corremos un lugar” a la izquierda sucesivamente hasta terminar  Q( x), para encolumnar los términos de igual grado: 

4

3

2

- 2 x + 4 x +0 x + 3 x  +  1

2 2

 x +   x -  3  

3

4

3

2

6 x -12 x +   0 x -  9 x  -  3

Lu ego su  

mamos 

5

4

3

2

- 2 x +  4 x + 0 x + 3 x +   x

los términos 

4

8

2



6

5

4

3

2

-

 x +  

 x +  0 x +  2 x +  

 x

semejantes que 

3

3

3

ha  brán qu  

edado 

encolumnados. 

4

2

11



6

5

4

3

2

- 

 x +  

 x +10 x -10 x +

 x

-  8 x  - 3  

3

3

3

Apliquemos este esquema para los polinomios: 

2

3

2

4

3

2

 P( x)  =  3 x +  4 x +  0 x  -  

y 

 Q( x)  =  2 x +  0 x +  0 x -   x  + 0 

3

El gr ( Q( x)) > gr ( P( x)) pero el número de términos no nulos de  P( x) es mayor que el número de términos no nulos de  Q( x), luego se dispone: 

2



3

2

3 x +  4 x +  0 x  -   3

4

3

2

2 x +  0 x +  0 x -   x  + 0

Luego sumamos 

2

los térm inos 



4

3

2

-3 x -  4 x +  0 x +  

 x  +  0

3

semejantes que 

4



h   

a   

b  

r   

á   

n  



q   

u  

e  

d  

a  

d  

o    



7

6 

5

4

3

2

6 x +  8 x +  0 x +

 x + 0 x +  0 x

3

encolumnados. 

13

2



7

6

5

4

3

2

6 x +  8 x +  0 x -

 x - 4 x +  0 x +  

 x  +  0

3

3

Al tener definido la multiplicación, se tiene el caso particular de cuando ambos factores 

coinciden, pero como la multiplicación es asociativa se puede definir: 
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  Potencia natural de polinomios

Para    n ∈

∧

 P( x) ≠ 0( x)

 1( x)

si

 n = 0

 P( x) n = 

 n-1

  P( x).  P( x)

si

 n ≥ 1

Para  n ∈

− { }

0

∧

 P( x)  =  0( x)  : 

 P( x) n = 0( x)

EJERCICIO 9.2.17 

a) Dados los polinomios

 P( x)  =  3 x2  -  2 x +  1  

 ,    R( x)  = - 3 x2  +  x 

   y       Q( x)  = - 5 x4  +  3 x2  -  2  

efectuar las siguientes operaciones: 

i)  P( x) . ( Q( x) –  R( x))    ; 

i )  P( x) .  Q( x) –  P( x) .  R( x) i i)  P( x) .  Q( x) + 3( P( x)  +  R( x))

; 

iv)  Q( x)  – 5/3  x 2  .  P( x)

v)  R 2( x) – 2 x .  Q( x)

vi) P( x)3

b) Sin hacer los cálculos determinar el grado de:

i) ( x -  3) 2  ; 

i ) ( x2  -  3  i ) 2  . ( x  + ( - 1+ 2  i ) ) 3      i i) ( x3  -  3 x2  - i ) 2  . (3/5  x2  -  4 i x + 1) EJERCICIO 9.2.18 

Efectuar las operaciones indicadas: 

a) ( x +  5). ( x -  6) 2 

; 

b) (4 x -  1) 3  - (4 x +  1) 3 

c) ( x - (2 +  2  i )) 2 . ( x +  3) 3 

; 

d) ( x –  3  i ).(  x +  3  i )

EJERCICIO 9.2.19 

Sean los   polinomios de  7 [ x]

5

3

2

6

4

3

2

 P( x) = 3  x + 2  x + 4  x + 3  x + 2     y  Q( x) = 2  x + 4  x + 3  x + 3  x + 2

Calcular: a)  P( x) .  Q( x) + (  P( x) -   Q( x) )    b)  P2( x) 556
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3. Divisibilidad y División

En este apartado se evidenciará aún más la semejanza entre la teoría de los números enteros y la teoría de polinomios. Hay conceptos que se “duplican” en esta teoría teniendo de 

referencia la de los enteros. 

En  el conjunto  K [ x],  de polinomios en una indeterminada  x con coeficientes en el cuerpo conmutativo  K,  Q( x) divide a  P( x), si existe en   K[ x] un polinomio  C( x) tal que: P( x) =  C( x) .  Q( x) 

Se anota   Q( x)  P( x) . 

EJEMPLO 9.3.1 

Puede verificarse que el polinomio   x2  -  1 divide al polinomio 3 x4  +  2 x3  -  4 x2  -  2 x +  1  

pues existe el polinomio    3 x2  +  2 x –  1  de ya que: 

Compruebo, así

(3 x2  +  2 x –  1 )  . ( x2  -  1)  =  3 x4  +  2 x3  -  4 x2  -  2 x +  1      

practico multiplicar

 x +  1 divide a 2 x2  -  2 ,  pues existe 2 x –  2 tal que 2 x2  -  2  = (2 x –  2)( x +  1) x - i  divide a  x2  +  1 , pues existe  x + i  tal que  x2  +  1 = ( x - i) ( x + i) EJERCICIO 9.3.2 

Probar las siguientes propiedades de la divisibilidad de polinomios de  K[ x],  K cuerpo conmutativo. 

a) La divisibilidad es reflexiva y transitiva. 

b) Demostrar que si

 k ∈  K  y  k ≠ 0 entonces para todo  P( x)∈  K[ x],  k P( x) c) Si  P( x)  Q( x)  y  P( x)   R( x)  entonces  P( x)   m( x) .  Q( x) +  n( x).  R( x), cualesquiera sean  m( x) y  n( x)  en  K[ x]. 

d) Si  P( x)  Q( x)  y   P( x)  Q( x) +  R( x)  entonces  P( x)   R( x). 

e) Sean  D( x) ∈  K[ x] ,  P( x) ∈  K[ x] y  Q( x) ∈  K[ x], si  P( x) Q( x) entonces  D( x).  P( x) D( x).  Q( x) f) Demostrar que si  P( x)  Q( x) y   Q( x) no nulo entonces  gr( P( x))   gr( Q( x)) g) Demostrar que si  P( x)  Q( x) y  Q( x)  P( x) y   Q( x) no nulo entonces gr( P( x)) = gr( Q( x)) h) Si  P( x)  Q( x) y gr( P( x)) = gr( Q( x))  entonces existe  b ∈  K tal que  P( x) =  b . Q( x). 
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i) Demostrar que si  P( x)  Q( x) y  Q( x)  P( x)  y ambos mónicos entonces  P( x) =   Q( x). 

(un polinomio es mónico si su coeficiente principal es 1)

¡Gracias! 

j) Todo polinomio  P( x) ∈  K[ x] divide a  O( x). 

Lo ayudamos con  b): Consideremos 

 n

2

 P( x) =  a x + ... 

 n

+ 2

 a x + 1

 a x + 0

 a

y

 k ∈  K   y  k ≠ 0 K

Se quiere encontrar  C( x)  en  K[ x]  tal que   k. C( x) =  P( x). 

Al ser  k no nulo en un cuerpo, tiene inverso en  K ,  por lo tanto por 9.2.10 , es un polinomio 1

−

−1

 n

1

−

2

−1

−1

 k

.  P( x) =  k .  a x + ... +  k . 

sea este el polinomio  C( x) buscado. 

 n

2

 a x +  k . 1

 a x +  k . 0

 a

Luego,  k. C( x) =  P( x). De acuerdo???? 

Ayudamos con f): Si  P( x)  Q( x)  y   Q( x) no nulo entonces  existe  C( x)  en  K[ x]  tal que C( x) .  P( x) =  Q( x), como (  K[ x],  +,  .)  es un anil o de integridad, luego no son nulos los polinomios  C( x)  ni   P( x), por lo cual ambos tienen grado. 

Usando que el grado de un producto es la suma de los grados de los factores: 

gr( C( x)) + gr( P( x)) = gr( Q( x))  , y como son números naturales,  es  gr( P( x))   gr( Q( x)) A g) se la regalamos…. También a h). 

EJERCICIO 9.3.3 

¡Ojo! 

Analizar la validez en  K[ x],  K cuerpo conmutativo de: 

 P( x)   R( x)  y   Q( x)   R( x)  entonces    P( x) .  Q( x)   R( x) Al igual que en los números enteros, también en la teoría de los polinomios hay un que 

compensa que no la divisibilidad se cumpla. 

El siguiente teorema  es similar al del capítulo de números enteros. 

♦ TEOREMA 9.3.4:   Algoritmo de la división en   K[ x]

Sea  K un cuerpo conmutativo. Dados los polinomios  P( x) y  Q( x) de   K[ x] , si  Q( x) ≠  0( x) entonces existen y son únicos  C( x) y  R( x) en   K[ x]  que satisfacen: P( x) =  C( x) .  Q( x) +  R( x)     con   R( x) =  0( x)    ó    gr( R( x)) < gr( Q( x))  C( x) es el cociente y  R( x) es el resto. 
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Demostración: 

Observar que si  R( x) =  0( x),  Q( x) divide a  P( x). 

Se construye un conjunto apropiado para hal ar el cociente y el resto. 

Sea  ( x) = { T( x)∈  K[ x] :  T( x) =  P( x) -  H( x).  Q( x), para algún  H( x) ∈  K[ x]  } 

( x) ≠ ∅ , ya que por ejemplo  P( x) ∈  ( x) porque  P( x) =  P( x) –  0( x).  Q( x) Caso a): Si  Q( x)|  P( x), entonces  P( x) =  Q( x).  W( x), para algún  W( x) ∈  K[ x]  , entonces se tiene que   0( x) =  P( x) –  Q( x).  W( x). 

Tomamos entonces  R( x) =  0( x)  y    C( x) =  W( x)  cumpliendo la existencia del cociente y resto. 

Caso b): Si  Q( x) no divide a  P( x),  se tiene que  0( x)∉  ( x)  podemos considerar T  = { gr (  T( x)) :  T( x) ∈  ( x) }  ⊆

y  T  ≠ ∅ ,  luego por el Principio de Buena Ordenación

existe   m el mínimo de  T .  Por lo tanto existe en   ( x)  un  polinomio de grado mínimo  m. 

Sea  S( x) ese polinomio de grado mínimo  m, luego 

(A) 

 S( x) =  P( x) -  H( x).  Q( x), para algún  H( x) ∈  K[ x]  

Se probará que gr ( S( x)) < gr ( Q( x)). 

Supongamos que  gr( S( x)) ≥  gr( Q( x))  así se tiene que para n

2

 Q( x) =  a x + ... 

 m

 n

+ 2

 a x + 1

 a x + 0

 a

y

 S( )

 x =  b x

+ ... 

 m

+ 1

 b x + 0

 b

con  m  ≥   n, así  m –n es un número natural. 

Como  K es cuerpo existe 

1

 a −   y  se construye un polinomio en  ( x):

 n

−1

 G( x) =  S ( x) −  a

.  b .  m− n

 x

 Q( x)

 n

 m

, 

 m

1

−

 m− n

 n

1

−

 m− n

Que calculando es, 

 b x

+ ... +  b x +  b − ( a

 b x

) a x − ... − ( a

 b x

) a

 G( x) =  m

1

0

 n

 m

 n

 n

 m

0 = 

 m

 m

1

−

 m− n

 n  1

−

1

−

 m− n

=  b x + ... +

+

−

−

−

 m

1

 b x

0

 b

 b x

( a

 b x

)

 m

 n

 m

 n

 a  1 x

... 

( a

 b x

)

−

 n

 m

0

 a

Y haciendo más cuentas resulta que  gr(  G( x) ) < gr( S( x)), y además es expresable, usando (A): 

−1

 G( x) =  S ( x) −  a

.  b .  m− n

 x

 Q( x)

1

−

 m− n

 n

 m

= 

 a

.  b .  x

 Q( x)

 P( x) -  H( x).  Q( x) -   n

 m

=  P( x) -  D( x).  Q( x) 

Es decir que  G( x) es un elemento de  ( x) , lo que es  un absurdo, ya que  S( x) es un polinomio de menor grado del conjunto  ( x) . 

Por lo tanto no se debe poder fabricar el polinomio  G( x) . Por lo cual gr( S( x)) < gr( Q( x)) Hemos probado que el cociente y resto existen.  S ean entonces  R( x) =  S( x) y  C( x) =  H( x). 
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Veamos que cociente y resto son únicos con las condiciones   R( x) = 0( x)  ó  gr( R( x)) < gr( Q( x)) Se consideran que existen dos parejas de polinomios que operan como cociente y resto. 

Sea  P( x) =  C( x) .  Q( x) +  R( x) =  B( x) .  Q( x) +  U( x) Con  R( x) = 0( x)   ó  gr( R( x)) < gr( Q( x))  y   U( x) = 0( x)   ó   gr( U( x)) < gr( Q( x))    (**) Caso a): supongamos   R( x) ≠ 0( x) y  U( x) = 0( x) , se tiene que ( C( x)- B( x)) .  Q( x)  =  –  R( x) Por lo tanto  Q( x)| R( x) y entonces gr( Q( x)) ≤ gr( R( x)), absurdo , este caso no puede darse. 

Caso b): supongamos   R( x) = 0( x)  y  U( x)  ≠ 0( x) , es análogo al anterior. 

Caso c): supongamos   R( x) = 0( x)  y  U( x) = 0( x) , se tiene que ( C( x)- B( x)) .  Q( x)  = 0( x)  como   K[ x] es un dominio de integridad, entonces  C( x) -  B( x) = 0( x) ó   Q( x) = 0( x) ,  pero   Q( x) ≠  0( x) luego   C( x) -  B( x) = 0( x)  y entonces  C( x) =  B( x) Caso d): supongamos  R( x) ≠  0( x)  y  U( x)  ≠ 0( x), se tiene que ( C( x) -  B( x)) .  Q( x)  =   U( x) –  R( x) (*) 

Si  U( x) =  R( x)  y  Q( x)  ≠ 0( x)  entonces  C( x) =  B( x) Si  U( x) -  R( x)  ≠ 0( x) , entonces vale que el  gr( U( x) -  R( x)) ≤ máx{gr( R( x)), gr( U( x))}< gr( Q( x)), pero de la e x presión (*) se deduce que gr( Q( x))  ≤  gr( U( x)- R( x)), que es un absurdo, por (**) luego debe ser  U( x) =  R( x)  y así  C( x) =  B( x) Por lo tanto, el cociente y resto existen y son únicos. 

♦

EJEMPLO 9.3.5 

Como    x 2  + 4 x + 5 = ( x+3)( x+1) + 2   (verifique!!!) entonces  al  dividir x 2 + 4 x + 5   por    x +1,      es     C( x) =  x+3    y     R( x) = 2 

Como el divisor es de grado 1, el resto  R( x) de no ser 0( x), debe tener grado 0 es decir debe ser un número (elemento de  K). 

Es evidente que para dividir polinomios y poder determinar si un polinomio es divisible por otro es necesario un algoritmo o mecanismo para resolver la cuestión. Que se explicará con un 

ejemplo. 
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Si se quiere dividir  P( x) por  Q( x),  con  Q( x) ≠ 0( x) Si gr( Q( x)) > gr( P( x)): 

resulta de acuerdo al teorema anterior que el cociente  C( x) = 0( x)  y el resto   R( x) =  P( x) pues P( x) = 0( x) .  Q( x) +  R( x) 

Si gr( Q( x)) ≤ gr( P( x)), nos iremos aproximando al cociente y al resto por sucesivas restas (es análogo al mecanismo de la división de números de varias cifras). 

Lo explicaremos en el siguiente ejemplo: 

Sean  P( x) =  x 5  + 2  x 3  +  x – 2  y  Q( x) =  x 3  - 3 x 2  + 1 realizaremos la división de  P( x) por  Q( x), hal ar  C( x) y  R( x) de modo que  P( x) =  C( x) .  Q( x) +  R( x) con  R( x) = 0( x) ó gr( R( x)) < gr( Q( x)).   ¿? 

Observar que  C( x).  Q( x) debe tener grado 5 (como el de  P( x) ya que el grado del resto no influye en el grado de la suma a cumplir para verificar la igualdad deseada) y también por la igualdad a satisfacer se determina cual es el coeficiente de  x 2  en  C( x); se hace una disposición (como la que figura más abajo) teniendo en cuenta: 

1º) Se han completado  P( x) y  Q( x) para “guardar lugar” a las sucesivas potencias, para  Q( x) no es imprescindible. 

2º)  x 5  =  x 2  .  x 3  de al í que en  C( x) esté  x 2  . Se busca un término que multiplicado por el primer término de  Q( x) dé el primer término de  P( x), busco  A tal que 3

5

2

. 

 A .  x =  x  entonces  A =   x  

3º) Se multiplica por  x 2  cada uno de los términos de  Q( x), que se irán colocando debajo de P( x) ordenadamente por grado. Como a  P( x)  le queremos restar  x 2 .  Q( x), “cambiamos” el signo y sumamos. 

5

4

3

2

3

2

 x +  0 x +  2 x +  0 x   +   x  -  2

 x   -  3  x   +  0 x  +  1

-  x 5  + 3 x 4  +  0 x 3   -     x 2 

 x2 

se está formando  C( x) 

4º) A  P( x) le restamos  x 2 .  Q( x); y “bajamos” el término siguiente (en este caso  x). 
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5º) Como  P( x) -  x 2  .  Q( x) tiene grado 4, el próximo término de  C( x) será   A tal que 3

4

. 

 A x = 3.  x  entonces  =

 A  3.  x     

de grado 1 y con coeficiente 3 para que por la siguiente resta se anule 3  x 4  así: 5

4

3

2

3

2

 x +  0 x +  2 x +  0 x   +   x  -  2

 x   -  3  x   +  0 x  +  1

-  x 5  + 3 x 4  + 0 x 3   -     x 2  



 x2  +  3 x 

0   + 3  x 4  + 2 x 3   -   x 2   +    x 

construyendo   C( x) 

6º) Se multiplica por 3 x .  Q( x) y se van colocando sus términos bajo  P( x) -  x 2  Q( x) “cambiados” 

de signo. 

7º) Se resta a ( P( x) -  x 2 .  Q( x)) el polinomio  3 x.  Q( x);  se baja el término siguiente: - 2 

5

4

3

2

3

2

 x +  0 x +  2 x +  0 x   +   x  -  2

 x   -  3  x   +  0 x  +  1

-  x 5  + 3 x 4  + 0 x 3   -     x 2 

 x2  +  3 x 

0   + 3  x 4  + 2 x 3   -   x 2   +    x 

construyendo   C( x) 

- 3  x 4  + 9 x 3  - 0 x 2   -  3 x 

0   + 11 x 3  -  x 2   -  2 x  -  2 

8º) Se considera que 11 es el siguiente término de  C( x) 

9º) Se multiplica  Q( x) por 11 y se colocan esos términos ordenadamente. 

10º) A ( P( x) -  x 2   .  Q( x)  - 3 x .  Q( x)) se le resta 11.  Q( x). 

5

4

3

2

3

2

 x +  0 x +  2 x +  0 x   +   x  -  2

 x   -  3  x   +  0 x  +  1

-  x 5  + 3 x 4  +  0  x 3   -     x 2 

 x2  +  3 x +  11  

0   + 3  x 4  + 2 x 3   -   x 2   +    x 

construyendo   C( x) 

- 3  x 4  + 9 x 3  - 0 x 2   -  3 x 

0   + 11 x 3  -  x 2   -  2 x  -  2 

-  11 x 3 + 33  x 2  + 0 x - 11 

0   + 32  x 2  - 2 x   - 13 
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POLINOMIOS EN  UNA INDETERMINADA – CAPITULO 9 

Como  P( x) –  x 2  .  Q( x) – 3 x .  Q( x) – 11 .  Q( x)  es   32 x 2  - 2 x – 13  y de grado 2 . 

Como el divisor   Q( x) es de grado 3, hemos concluido,  y así  

 R( x) = 32 x 2  - 2 x – 13 es el resto de la división y cumple: P( x) -  x 2  .  Q( x) – 3 x .  Q( x) – 11 .  Q( x) =  R( x) Es decir 

 P( x) – ( x 2  + 3 x + 11) .  Q( x) =  R( x) entonces 

 P( x) = ( x 2  + 3 x + 11) .  Q( x) +  R( x) y por el teorema del algoritmo de la división  C( x) y  R( x) son únicos. 

Veremos un caso muy simple pero no por eso no  importante. 

Que ocurre cuando el divisor es de grado 1: 

EJEMPLO 9.3.6 

Hal e el cociente y el resto de la división  T( x) = 2 x 4  + 3 x + 1 por  S( x) =  x + 3: 4 

3

2

2 x +  0 x +  0 x

+  3 x  +  1 

 x  +  3

4

3 

3

2

-2 x

-  6 x

2 x -  6 x +  18 x - 51

3

2

0

-   6 x +  0 x

3

2 

6 x +  18 x

2

0

+  18 x

+  3 x

2

-  18 x

-  54 x 

0

-   51 x  +  1 

51 x  +  153

0 

+  154

Observar que por el mecanismo antes expuesto hemos arribado a  R( x) = 154 que tiene grado 0 

pues  S( x) que es el divisor de este ejemplo tiene grado 1. 
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EJEMPLO 9.3.7 

Hal e el cociente y el resto de la división  T( x) =  2 x 4  + 3 x + 1 por  S( x) =  x + 3 utilizando la regla de Ruffini (la introducimos en un ejemplo) 

1º) Se disponen en un cuadro los coeficientes del dividendo, previamente ordenado según 

potencias decrecientes y completado, y el término independiente del divisor cambiado de signo. 

coeficientes del dividendo (completado) 

2 

0 

0 

3 

1 

independiente del divisor 

cambiado de signo 

- 3 

2º) Luego “se baja” el coeficiente de mayor grado del dividendo. 

2 

0 

0 

3 

1 

-3 

2 

3º) Se multiplica ese coeficiente (en este caso 2) por el término independiente del divisor cambiado de signo (en este caso – 3 ) y se coloca ese resultado (- 6) bajo el coeficiente 

siguiente del dividendo. 

2 

0 

0 

3 

1 

-3 

-6 

2 

4º) Se suma el 2º coeficiente del dividendo con –6, esa suma se multiplica por -3 y se colocan bajo el siguiente coeficiente de  T( x). 

2 

0 

0 

3 

1 

-3 

-6 

18 

2 

-6 

5º) Se suman esos números y se sigue de manera análoga 

2 

0 

0 

3 

1 

-3 

-6 

18 

-54 

153 

2 

-6 

18 

-51 

154 

resto 
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6º) Como este caso, en algún momento habremos recorrido todos los coeficientes del 

dividendo. Hemos terminado. 

El último número obtenido resulta ser el resto  R( x), en este caso   R( x) = 154. 

Los otros números, son los sucesivos coeficientes del cociente  C( x). Como la división es por un polinomio de grado 1, el grado del cociente es en 1 menor que el grado del dividendo, que es 3. 

Se obtiene de este modo   C( x) = 2 x 3  - 6 x 2  + 18 x –51. 

IMPORTANTE!!!! 

La regla de Ruffini es aplicable sólo cuando el divisor es de grado 1. 

Por este hecho parece que es poco provechosa, pero luego verá que en muchas 

oportunidades se deben considerar divisores de grado 1. 

EJEMPLO 9.3.8 

Divida aplicando la regla de Ruffini 

a)  H( x) =  x 5  - 3 x 2  + 2 x     por   x – 2. 

b)  M( x) = 2 x 4  - 2 x 3  +  x –1    por   x – 1

a) 

1 

0 

0 

-3 

2 

0 

2 

2 

4 

8 

10 

24 

1 

2 

4 

5 

12 

24 

Así resulta que: 

 R( x) = 24 

;  C( x) =  x 4  + 2 x 3  + 4 x 2  + 5 x + 12 

b) 

2 

-2 

0 

1 

-1 

1 

2 

0 

0 

1 

2 

0 

0 

1 

0 

 R( x) = 0     ; 

 C( x) = 2 x 3  + 1 

Observar que en este caso    x –1 divide a   2 x 4  - 2 x 3 +  x – 1 es decir: 2 x 4  - 2 x 3  +  x – 1 = ( x – 1).( 2 x 3  + 1) 
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EJERCICIO 9.3.9 

Determinar el cociente  C( x) y el resto  R( x) de la división de  P( x) por  Q( x): a)  P( x) =  x 2  - 3 x +2

,  Q( x) =  x + 1 

b)  P( x) =  x 3  - 4 x -  x 2

,  Q( x) = 2 x – 1 

c)  P( x) =  x 3  - 3 x +1

, 

 Q( x) = 3 x 2  + 2 

d)  P( x) = -12 x +10 x 2  + 4 x 2  + 9      , 

 Q( x) =  x 3  - 2 x +3 

e)  P( x) =  x 3  - 1

, 

 Q( x) =  x 2  - 1 

f)  P( x) =  x 3  - 1

, 

 Q( x) =  x + 1 

Verifique que  P( x) =  Q( x) .  C( x) +  R( x) en los casos a), c), d) . 

4. Teorema del Resto y Raíces

Ya se destacó en ejemplos anteriores, que si el divisor es de grado 1 el resto 

  R( x) =  0( x)  ó el gr( R( x)) = 0 , es decir  R( x) es un elemento de  K. 

Al definir polinomios y las operaciones entre el os hemos destacado que son sumas formales y que la  x  NO es un número. Ahora bien, que ocurre si reemplazamos la  x por un número y realizamos las operaciones que quedan indicadas en C ó en general en  K? 

¿????? 

Es claro que el resultado es  un número complejo ó un elemento de  K. 

Esta observación conduce a la siguiente definición: 

Dados un polinomio  P( x) = 

 n

 n  1

 a


−

+

+

+

+

de 

 n x

 an  1 x

... 

−

1

 a x

0

 a

 K[ x]  y   a un elemento de  K se 

llama valor numérico de  P( x) en   x =  a  al elemento de  K obtenido realizando las operaciones que se habían dado como formales, en la situación actual se realizan en el cuerpo  K 



 n

 n  1

 a . 

−

+

+

+

+

que se anota 

 n a

 n

 a  1.  a

... 

−

1

 a .  a

0

 a

 P( a). 

Se dice que se “especializa el polinomio   P( x) en   a” 
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Por ejemplo: 

 P( x) = 3 x 4  - 2 x + 1 

 P(0) =  3. 04  - 2.0 +1 = 1 

 P(1) = 3 .14  - 2.1 +1 = 2    

 P(-1/3) = 3.(-1/3)4  - 2. (-1/3) + 1= 16/27 

EJERCICIO 9.4.1 

Hal e  P(-3) ;  P(0)  ;  P(1/2) ;  P(1+i)   Para   P( x) =  x 3  - 2 x 2  +  x EJEMPLO 9.4.2 

Para los polinomios  T( x) =  2 x 4  + 3 x + 1,  H( x) =  x 5  - 3 x 2  + 2 x   y   M( x) = 2 x 4  - 2 x 3  +  x –1, hal ar el valor numérico de  T( x) en –3 ;  H( x) en 2 y M( x) en 1 

 T(-3) = 2. (-3)4  + 3.(-3) + 1 = 2 . 81 – 3 . 3 + 1 = 154 

 H(2) = 25  - 3.2 2  + 2.2 = 24 

 M(1) = 2.14  - 2.13  + 1  - 1 = 0 

Observe que esos valores numéricos no son más que el resto de las divisiones hechas en cada ejemplo 9.3.7 y 9.3.8. 

La situación es general pues se tiene el: 

♦ TEOREMA 9.4.3:  Teorema del Resto

El resto de dividir un polinomio  P( x)  por  d( x) =  x +  a , es el valor numérico   P(- a) Demostración: 

Por el Teorema del Algoritmo de la división, siendo   d( x) =  x +  a un polinomio no nulo (1)      P( x) =  C( x) . ( x +  a) +  R( x), además   R( x) = 0( x)  ó  gr( R( x)) = 0  ya que gr( ( x + a)) = 1 

Es por tanto:  R( x) =  r0 ,  siendo  r0   un elemento de  K,  posiblemente 0. 

Así valor numérico de  R( x)  para cualquier especialización de   R(  x)   por  k de   K,  es siempre  r0 

. 

La igualdad polinómica  (1),  evaluada en  – a: 

 P(- a)  =   C(- a). (- a +a) +  R(- a) 

 P(- a)  =   C(- a).0 +  r0 

 P(- a) = r0 =  R(- a) 

Que es lo que queríamos demostrar. 

♦

567

POLINOMIOS EN  UNA INDETERMINADA – CAPITULO 9 

La importancia del teorema del Resto es obvia: permite determinar si un polinomio  P( x) es divisible por otro de grado 1 sin realizar la división. 

Además más adelante tendrá una aplicación muy ligada a otro concepto importante que ya se 

definirá. 

EJERCICIO 9.4.4 

Utilizando el teorema del Resto, determinar si  P( x) es divisible por  Q( x) en cada uno de los siguientes casos: 

a)  P( x) =  x 4  - 54 x 3  - 2 x 2   + 7

 Q( x) =  x + 3 

b)  P( x) = 8 x 4  + 24 x 3  +  x + 3

 Q( x) =  x – 3 

c)  P( x) = 2 x 3  + 6 x 2  -  x – 7

 Q( x) =  x – 1 

d)  P( x) =  x 4  - 1

 Q( x) =  x – 1 

e)  P( x) =  x 4  - 1

 Q( x) =  x + 1 

f)  P( x) =   x 4  + 1

 Q( x) =  x – 1 

g)  P( x) =  x 4  + 1

 Q( x) =  x + 1 

h)  P( x) =  x 5  + 1

 Q( x) =  x – 1 

i)  P( x) =  x 5  + 1

 Q( x) =  x + 1 

j)  P( x) =  x 5  - 1/32

 Q( x) =  x –1/2 

k)  P( x) =  x 5  + ½

 Q( x) =  x + ½ 

En cuatro casos a elección aplique la regla de Ruffini para calcular el cociente y resto. 

EJERCICIO 9.4.5 

a) Analicemos la siguiente expresión que resulta de dividir  P( x) de  K[ x],  K cuerpo conmutativo, por un polinomio   a.x +  b: 

 P( x) = ( . 

 a x +  b).  Q( x) +  R( x)  y si   a ≠ 0 entonces    

−1

 P( x) = ( x +  a .  b). . 

 a Q( x) +  R( x)   , 

expresión que resulta de dividir  P( x) por el polinomio 

1

 x

 a−

+

.  b . 

Enuncie el Corolario del teorema del Resto que se deduce de la anterior expresión  para el 

caso que   D( x) =  a  x +  b, para  a y  b  elementos de   K  y  a ≠ 0 . 
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b) Utilizando el teorema del resto generalizado en a), determinar si  P( x) es divisible por  Q( x) en cada uno de los siguientes casos: 

i)  P( x) = 4 x 3  + 6 x 2  -  x – 9

 Q( x) = 2 x + 5 

i )  P( x) = 5 x 4  - 6 x 3  -  x + 8

 Q( x) = 3 x - 1 

EJEMPLO 9.4.6 

a) Comprobar que  x 3  - 23    y   x 4  - 24   son divisibles por    x – 2

Si  Q( x) =  x 3  - 23   para analizar si es divisible  por   x  - 2 se evalúa  Q(2) = 23  - 23  = 0  por el teorema del Resto se tiene que  x – 2 divide a  Q( x). 

Por lo cual  Q( x) = ( x – 2).  N( x), con  N( x) polinomio, calcule  N( x). 

Si  P( x) =  x 4  - 24  se evalúa  P(2) = 24  - 24  = 0, por el teorema del Resto resulta que x – 2 divide a  P( x). 

Es decir  x 4  - 24  = ( x – 2) .  C( x), con  C( x) polinomio. Calcule  C( x). 

b) Puede afirmar que   x n  - 2  n   con  n número natural es divisible por  x – 2? 

Sea   H( x) =  x n  - 2 n .  Evaluando  H(2) = 2  n  - 2  n  = 0 cualquiera sea  n número natural. 

Luego  x – 2 divide a  H( x). 

EJEMPLO 9.4.7 

Comprobar que  x 4  - 34   es divisible por  x + 3. 

Si  T( x) =  x 4  - 34  evaluando  T (-3) = (-3)4  - 34 =  34  - 34  = 0. Entonces de acuerdo al teorema del resto podemos afirmar que  x + 3  divide a    x 4  - 34 . 

  x 4  - 34  = ( x + 3) .  C( x), con  C( x) un polinomio. Calcúlelo. 

 ¿Puede afirmar que  x n  - 3  n  con  n número natural es divisible por  x + 3? 

Si  S( x) =  x n  - 3  n   con  n número natural,  para que resulte divisible por  x + 3 debe ser S(-3) = 0 
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 S(-3) = (-3)  n  - 3  n  = 3  n  - 3  n   = 0           si  n es par. 

 S(-3) = (-3)  n  - 3  n  = - 3  n  - 3  n  = -2.3  n   si  n es impar. 

Por lo tanto si  n es par   x n  - 3  n   es divisible por  x + 3. 

EJERCICIO 9.4.8 

Analizar la divisibilidad de   x n  + 2  n  para  n número natural por   x + 2 y por  x – 2. 

Dado un polinomio  P( x) con coeficientes  en  K ,  un valor  a de  K tal que  P( a) = 0 se l ama raíz de  P( x). 

En los ejemplos anteriores, 1 es raíz de  M( x). 

También es claro que 2 es raíz de  Q( x) y de  P( x) del ejemplo  9.4.6, y que 3 es raíz de  T( x) del ejemplo anterior. 

MUY IMPORTAMTE: 

¡NO OLVIDAR! 

♦ PROPOSICIÓN 9.4.9

Sea   P( x) de  K[ x],  K cuerpo conmutativo. 

a) Si  a es un elemento de   K  que es raíz de   P( x)  entonces   x -   a  divide a   P( x). 

b) Si  a es un elemento de   K  y   x –  a  divide a  P( x) entonces  a es raíz de   P( x). 

Demostración: 

a) Sea  a raíz de  P( x), entonces por la definición de raíz,  P( a) = 0, entonces por el Teorema del Resto, 0 es el resto en la división de  P( x) por  x-  a, por lo tanto  x-  a divide a  P( x). 

b) Sea  a tal que  x -  a  divide a   P( x), entonces por la definición e x iste  C( x) tal que P( x) = ( x-  a).  C( x), entonces  P( a) = ( a- a).  C( a) = 0, por lo tanto  a es raíz de  P( x) 

♦

IMPORTANTE: conocer raíces de  P( x) es conocer divisores de  P( x). 
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EJERCICIO 9.4.10 

Dado el polinomio  P( x) = 3 x 2  + 5 x – 2; 

Verificar que –2 es raíz de   P( x); que 1 no es raíz de  P( x). 

Divida  P( x) por  x + 2 ¿qué prueba?, y divida  P( x) por  x – 1 ¿qué prueba? 

Escriba  P( x) como producto de polinomios de grado 1. 

EJERCICIO 9.4.11 

a) Dado el polinomio 

4

 P( x) =  x + 1 hal ar todas las raíces en C y todas las raíces en R. 

Factorear  como producto de polinomios de  [ x] y como polinomios de  [ x]

b) Dado el polinomio

4

 P( x) = 3.  x + 2 ∈

hal ar sus raíces. Factorearlo. 

5 [  x]

5. Divisibilidad: otras definiciones importantes

El conjunto de polinomios   K[ x] es semejante desde el punto de vista estructural con el conjunto de los números enteros  Z . En   K[ x]  se definió la relación de divisibilidad que tiene las mismas implicancias que tiene en Z, hay conceptos de Z  que tienen su correlato en  K[ x]. 

Dos polinomios  P( x) y  Q( x) de  K[ x] son asociados si  P( x) Q( x) y  Q( x) P( x). 

EJEMPLO 9.5.1 

Consideremos los polinomios 

5

2

5

2 

 P( x)  =    x -  3 x +  2 x

y     Q( x)  =  3  x -  9 x +  6 x

El os son asociados. Pues: 

5

2

5 

2 

 Q( x)  =  3  x   -  9 x +  6 x  =  3. (  x -  3 x + 2 x )  =  3.  P( x) 1

1

5

2

5

2

 P ( x)  =    x -  3 x +  2 x   =  (  ) . ( 3  x

-  9 x +  6 x )  =  ( ).  Q( x)

3

3

Pues    P( x) Q( x)   y     Q( x) P( x) EJERCICIO 9.5.2 

Qué puede afirmar sabiendo que   P( x) y  Q( x) son asociados: 

Si  P( x) =  0( x) , cómo es  Q( x)? 

Si no son nulos, ¿qué relación hay entre los grados de ambos polinomios? 

¿En qué difieren…?(mire 9.5.1) 

571

POLINOMIOS EN  UNA INDETERMINADA – CAPITULO 9 

EJERCICIO 9.5.3 

Hal ar polinomios asociados con: 

a)  P( x) = 3 x 2 - 2 x 4 + 10

b)  Q( x) =  x 3 - 4 x 2 + 5 x 4 +  x

c)  R( x) = (2-i)  x 3 + 4 x 2 - (7-5i)  x 4  +  x + 3i

♦ EJEMPLO 9.5.4

Demostrar que si  P( x) y  Q( x) son asociados entonces ambos tienen los mismos divisores. 

Demostración:  

Al ser  P( x) y  Q( x)  asociados,  P( x) Q( x)   y     Q( x) P( x). 

Hay que probar que todo divisor de  P( x)  lo es de  Q( x), y que todo divisor de   Q( x) lo es de P( x). 

Sea  T( x) en  K[ x] tal que  T( x) P( x) , como  P( x) Q( x)  por transitividad   T( x) Q( x) . 

Sea  H( x) en  K[ x] tal que  H( x) Q( x) , como  Q( x) P( x)  por transitividad   H( x) P( x) . 

♦

Por 9.5.4 y 9.4.9, vale que si  P( x) y  Q( x) son asociados entonces ambos tienen las mismas raíces en  K. 

EJERCICIO 9.5.5 

a) Probar que todo polinomio no nulo tiene por asociado un polinomio mónico. Es decir un

polinomio de coeficiente principal 1. 

b) Demostrar que dos polinomios mónicos que se dividen mutuamente son iguales. 

c) **Probar que la relación en  K[ x] , para  K cuerpo conmutativo:  P( x) y  Q( x)  son asociados es una relación de equivalencia en  K[ x]. Cómo son las clases de equivalencia por esa relación de algunos polinomios que Ud. se proponga. 

** Es un ejercicio muy interesante y que aclara porque el comportamiento de un polinomio y un asociado tienen igual comportamiento respecto de la divisibilidad: son equivalentes… 
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Existencia del máximo común divisor en  K[ x]

El máximo común divisor en  K [ x]  está garantizado por el siguiente teorema que para este daremos una idea de la demostración.¿ LO MOSTRAMOS?. 

Es realmente una replica del concepto que se da en el conjunto de los números enteros. 

El siguiente teorema nos da las condiciones para la existencia y unicidad. 

♦ TEOREMA 9.5.6

Sean  P( x) y  Q( x) polinomios en   K [ x]   no simultáneamente nulos, entonces existe un polinomio mónico  d( x) en   K [ x] que cumple: 

1)  d( x) P( x)   y   d( x) Q( x) 2) Si existe   d*( x) en   K [ x]  tal que  d*( x) P( x)  y  d*( x) Q( x) entonces  d*( x) d( x) 3)  d( x) =  m( x) .  P( x)  +   n( x) .  Q( x)   con  m( x)  y   n( x) en   K [ x]

4)  d( x) es único

El polinomio mónico que cumple 1) y 2) se l ama máximo común divisor entre  P( x) y  Q( x). 

Si  P( x) =  Q( x) =  0( x) el máximo común divisor no existe. (Piense porqué …) Demostración: 

Idea: se construye un conjunto de polinomios 

M( x) =  { G( x) :  G( x) =  s( x).  P( x) +  h( x).  Q( x) ∧  G( x) ≠  O( x) ∧  s( x) ∈  K[ x] ∧  h( x) ∈  K[ x] }

Por construcción todos los polinomios de M( x) tienen grado y además es no vacio. 

Se considera G  ={ gr( G( x)) :   G( x) en M( x) }  ⊆

. Por el Principio de Buena Ordenación tiene 

un elemento mínimo  m. 

Por lo tanto existe un polinomio  D( x) de M( x) de grado  m.  Es fácil probar que  d( x) el mónico asociado con  D( x) cumple las cuatro condiciones. 

Hay que aplicar el teorema del Algoritmo de la División y pasos similares al teorema de la teoría de enteros y pasos similares al teorema del Algoritmo de la División demostrado para  K [ x]   

♦

Al máximo común divisor entre  P( x) y  Q( x), polinomios no simultáneamente nulos, lo anotamos por  d( x) = ( P( x),  Q( x)). En la definición se pide que sea mónico para que sea único. 
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EJEMPLO 9.5.7 

a) Sea   P( x) en  K [ x] no nulo entonces ( P( x) ,  O( x) ) =  P*( x),  siendo  P*( x) el mónico asociado con  P( x). 

b) Sean   P( x) y  Q( x) en   K [ x] no simultáneamente nulos, ( P( x) ,  Q( x) ) = ( Q( x) ,  P( x) ) c) Sean   P( x) y  Q( x) en   K [ x] no simultáneamente nulos, ( P( x) ,  Q( x) ) = ( P^ ( x) ,  Q( x) ), siendo  P^ ( x) cualquier asociado con  P( x). 

Se demostrará a): 

Claramente  P( x) P( x)   y   P( x) O( x),  luego  P( x)  verifica 1) de la definición. 

Además es evidente que si  d*( x) en   K [ x]  tal que  d*( x) P( x)  y  d*( x) O( x) entonces d*( x) P( x), por lo tanto también  P( x)  verifica 2). 

Luego por ser  P( x) no nulo existe el mónico asociado, el es  P*( x). 

Le quedan  por hacer b) y c). 

El siguiente teorema da una herramienta para calcular el máximo común divisor cuando existe: 

♦ TEOREMA 9.5.8

Sean  P( x) y  Q( x) en  K [ x] y  Q( x) ≠ 0, si  R( x) es el resto de la división entre  P( x) y  Q( x), entonces  

( P( x),  Q( x)) = ( Q( x),  R( x)) La aplicación reiterada del teorema 9.5.8 hasta l egar al último  resto no  nulo se conoce como algoritmo de Euclides para el cálculo del máximo común divisor entre polinomios. 

Observar que el gr(  R( x)) <  gr( Q( x)), por lo tanto en la división de  Q( x) por  R( x), el grado del resto será menor que el grado de  R( x), y así sucesivamente, de modo que aplicando reiteradamente se alcanza el resto nulo, pues si en un paso se l ega a un polinomio de grado 0 

al paso siguiente se obtiene resto  O( x). 

Demostración: 

Como  Q( x) ≠ 0 existe   d( x) = ( P( x),  Q( x)), entonces  d( x) |  P( x)  y  d( x) |  Q( x), por lo tanto e x isten polinomios  C( x) y  H( x) tales que   P( x) =  d( x).  C( x)  y   Q( x) =  d( x).  H( x)   (I) También existe   d *( x) = ( Q( x),  R( x)), entonces  d*( x) |  Q( x)  y   d*( x) |  R( x), por lo tanto existen polinomios  F( x) y  G( x) tales que   Q( x) =  d*( x).F( x)  y    R( x) =  d*( x).  G( x)  (II) 574
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Además por el teorema del Algoritmo de la División   P( x) =  Q( x).  M( x) +  R( x),    (III) Reemplazando   Q( x) y  R( x) en (III) usando (II) se tiene: 

      P( x) =  d*( x).  F( x) +  d*( x).  G( x), entonces haciendo cuentas en  K[ x] 

  P( x) =  d*( x).( F( x) +  G( x)), por lo tanto  d*( x) |  P( x). 

Y como  d*( x) |  Q( x) entonces   d*( x) divide al máximo común  d( x) = ( P( x),  Q( x)) (parte 2) del teorema 9.5.6) 

Reemplazando en (III)  las expresiones de  P( x) y  Q( x) por (I) se tiene: d( x).  C( x) =  d( x).  H( x) +  R( x) entonces    d( x).( C( x) -  H( x)) =  R( x), por lo tanto  d( x)| R( x). 

Y como  d( x) |  Q( x) entonces   d( x) divide al máximo común   d’( x) = ( Q( x),  R( x)). 

Se tiene que  d( x) |  d*( x)  y   d*( x) |  d( x) por lo tanto son asociados, y como ambos son mónicos se tiene que  d( x) =  d*( x). 

♦

EJERCICIO 9.5.9 

Formalice el algoritmo de Euclides para el cálculo del máximo común divisor de polinomios. 

Idea: Dados   P( x) y  Q( x) en  K [ x] y  Q( x) ≠ 0, si  R( x) es el resto de la división entre  P( x) y  Q( x), entonces   ( P( x),  Q( x)) = ( Q( x),  R( x)). Si  R( x) =  O( x), por el 9.5.7, ya se resolvió. 

Si  R( x) ≠  O( x),  se considera   R1 ( x)  el resto de la división entre  Q( x) y  R( x)  y  por 9.5.8, así ( P( x),  Q( x)) = ( Q( x),  R( x)) = ( R( x),  R1 ( x)) . Si  R1 ( x) =  O( x), por el 9.5.7, ya se resolvió. 

Si  R1 ( x) ≠  O( x),  se considera   R2 ( x)  el resto de la división entre  R( x) y  R1 ( x) y por la propiedad 9.5.8, ( P( x),  Q( x)) = ( Q( x),  R( x)) = ( R( x),  R1 ( x)) = ( R1 ( x),  R2 ( x)), etc…. 

Como los grados de los sucesivos restos son cada vez número naturales más pequeños, luego 

están acotados por 0.  Si en algún paso hay un resto  Rk ( x)  =  O( x) el proceso se termina y el máximo común divisor es  Rk -1 *( x)  el mónico asociado con  Rk -1 ( x). 

Si en caso se l ega a  Rk-1 ( x)  de grado 0, en el paso siguiente  Rk ( x)  =  O( x). 

Y así  Rk -1 *( x) = 1( x) = 1, que es el mónico asociado a cualquier polinomio de grado 0. 
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EJERCICIO 9.5.10 

Calcule el máximo común divisor entre: 

a)  P( x) = 3 x 2  - 2 x + 1    y     Q( x) = -3 x 2  +   x b)  Q( x) = (-5 - i)  x 4  + 3 x 2  - (1+ 2i)  y   P( x) = - i  x 2  + (1 + 2i)  x c)  P( x) = 9 x 2  - 6 i  x  - 1   y     Q( x) = 9  x 2  + 1

Dos polinomios   P( x) y  Q( x) en  K [ x] son coprimos si el máximo común divisor entre el os es 1. 

EJERCICIO 9.5.11 

Sean  P(x),  Q(x) y  R(x) en  K[ x].  K cuerpo conmutativo. 

a) ( P(x),  Q(x)) = 1 si y sólo si existen  m( x) y  n( x) ∈  K[ x] tales que   P(x) .  m ( x) +  Q(x) .  n ( x) = 1. 

b) Si  P(x)   Q(x) .  R(x)   y  ( P(x),  Q(x) ) = 1  entonces   P(x)  R(x). 

c) Sean ( P(x),  Q(x)) = 1. Si  P(x)   R(x)   y   Q(x)   R(x)  entonces   P(x) .  Q( x)  R(x) EJERCICIO 9.5.12 

a) Sean  P(x) =  a x + b,   Q(x) =  c x + d polinomios de  K[ x],  K cuerpo conmutativo, con  a.c ≠ 0. 

Si  a/b ≠  c/d, entonces ( P(x),  Q(x)) = 1. 

b) Si   k ∈  K ,  k  ∈  K, cuerpo conmutativo,  k ≠  k  si y solo si  x −  k  y   x −  k  son coprimos. 

1

2

1

2

1

2

c) Probar que para todo  n y para todo  m,  (

 n

 m

 x −

son coprinos si   k ≠  k . 

1

 k )  y ( x −  k 2 )

1

2

Existencia del mínimo común múltiplo en  K[ x]

El mínimo común múltiplo en  K [ x]  está garantizado por el siguiente teorema  del cual daremos una idea de la demostración. ¿LO MOSTRAMOS? 

♦ TEOREMA 9.5.13

Sean  P( x) y  Q( x) polinomios en   K [ x]   no simultáneamente nulos, entonces existe un polinomio mónico  m( x) en   K [ x] que cumple: 

1)  P( x) m( x)   y   Q( x) m( x) 2) Si existe   m*( x) en   K [ x]  tal que  P( x) m*( x)   y   Q( x) m*( x) entonces  m( x) m*( x) 3)  m( x) es único

El polinomio que cumple 1) y 2) se l ama mínimo común múltiplo entre  P( x) y  Q( x). 

Si  P( x) =  O( x)   o   Q( x) =  O( x) el mínimo común múltiplo entre el os se define por  O(x). (Piense porqué …) 
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Demostración: 

Idea: es análoga a la del teorema del máximo común divisor. Para   P( x) y  Q( x)  no nulos. Se define un conjunto: 

S( x)= { T ( x)∈  K [ x]:  P( x)  T ( x) ∧  Q( x)  T ( x) ∧  T ( x) ≠  O( x }

)  . 

Este conjunto es no vacío, pues  P( x).  Q( x) es uno de sus elementos. 

Se considera G el conjunto de los grados de los elementos de S ( x).  También G es no vacio y por el Principio de Buena ordenación tiene un elemento mínimo  m. El polinomio  M( x) de S( x) que tiene ese grado  m es un que tiene las propiedades 1) y 2) . (probarlo!!!!!). 

Como  M( x) no es  O(x), tiene un mónico asociado, que es el mínimo común múltiplo  m( x). 

Por ser mónico sale que es único. 

Como en el caso de los números enteros, el algoritmo para calcularlo es la combinación de dos algoritmos: 

 H ( x)

 m( x) =

siendo  H ( x) el mónico asociado con  P( x).  Q( x) ( P( x),  Q( x))

El concepto de mínimo común múltiplo entre polinomios es el que permite entre otras cosas 

cuando hay que sacar el común denominador entre fracciones racionales poder hacerlo… 

EJERCICIO 9.5.14 

Calcular el mínimo común múltiplo entre los polinomios 

a)  P( x) = 3 x 2 - 2 x 4 + 10    y   Q( x) =  x 3 - 4 x 2 + 5 x 4 +  x b)  R( x) = (2-i)  x 3 + 4 x 2 - (7-5i)  x 4  +  x + 3i   y  T( x) = 4 i  x 4 - 4 x 2 - (5-2i)  x  + 1

Se dará el concepto de  K[ x], para   K  cuerpo conmutativo,  que se asemeja al de número primo. 

Ya que en muchas situaciones se tiene por objetivo hacer una descomposición de un polinomio cualquiera como producto de polinomios más “simples”, es importante saber cuándo se ha 

concluido esa tarea, es decir cuando no habrá más factores salvo asociados. 

Dado  P( x) en   K[ x], diremos que  P( x) es irreducible sobre  K  (ó en  K[ x] ) si  P( x) no es constante y los únicos divisores de  P( x) en  K[ x] son los polinomios constantes y los polinomios asociados con  P( x). 

577

POLINOMIOS EN  UNA INDETERMINADA – CAPITULO 9 

Todo polinomio  P( x) admite a las constantes y asociados por divisores. 

Por el o a éstos divisores se los l ama  divisores triviales del polinomio  P( x). 

Estos divisores triviales "juegan el papel"  que en enteros cumplen 1, -1,  m  y  - m para cualquier entero  m. 

Es así que los polinomios irreducibles no se pueden "descomponer" en factores salvo los triviales. 

También se define como polinomio primo sobre  K  si además de ser irreducible sobre  K es mónico. 

EJEMPLO 9.5.15 

a)  x  2 + 1 no es irreducible sobre C  pero si lo es en R[ x] y en Q [ x]

Es claro que   x  2 + 1= ( x -  i) ( x +  i )  por lo tanto tiene divisores no triviales en C [ x] 

Pero  x  2 + 1 sólo tiene divisores triviales en R[ x] y en Q [ x] 

  x  2 – 2 es irreducible en  Q [ x]  pero no sobre R. 

Pues   x  2 – 2 =    ( x − 2 ).( x + 2 )  y ésta es la única (salvo asociados) factorización de x 2 – 2 no trivial (como se verá)  resulta reducible en  R[ x] y  no sobre Q . 

EJERCICIO 9.5.16 

Cualquiera sea el cuerpo conmutativo   K,  demostrar que  los polinomios de grado 1 son irreducibles sobre  K.  

EJERCICIO 9.5.17 

a) Demostrar: Sean  P( x) ∈  K[ x], con gr( P( x))  > 1 y   a ∈  K  . 

Si   a es raíz de  P( x) entonces  P( x) no es irreducible b) ¿La recíproca de a) es verdadera?? 

Analicemos el polinomio 

4

 P( x) =  x + 1 ∈ [ x] . 

Para hal ar sus raíces igualamos a 0 el polinomio y se buscan los valores de  x*  de C tales que 2

2

2

2

2

2

2

2

4

 x = 1

− →  x =

+  i

,  x = −

+  i

,  x = −

−  i

,  x =

−  i

1

2

3

4

2

2

2

2

2

2

2

2
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Es claro que ningún número real elevado a la cuarta da como resultado un número negativo, 

por lo tanto no tiene raíces reales. 

Resulta entonces que 

4

 P( x) =  x + 1 se factorea como 

2

2

2

2

2

2

2

2

( x −

−  i

)( x +

−  i

)(  x +

+  i

)(  x −

+  i

)

2

2

2

2

2

2

2

2

Multiplicando el primer factor con el tercero y el segundo con el último tenemos que: 

2

2

( x − 2 2 x +1)( x + 2 2 x +1)

Compruebe usando lo que sabe de “diferencia de cuadrados”. 

Escribimos entonces a  P( x) como producto de dos polinomios con coeficientes reales que no son ni asociados ni constantes, por lo tanto  P( x) es reducible en  R[ x] pero no tiene raíces reales. 

Por lo cual la recíproca de b) del ejercicio anterior no vale en general. 

EJERCICIO 9.5.18 

Demostrar:  Sean  P( x) ∈  K[ x]  y  T( x) ∈  K[ x]  ,  K cuerpo conmutativo,   con   P( x) irreducible sobre  K, entonces  (  P( x),  T( x) ) = 1 si   P( x) no divide a  T( x)   o (  P( x),  T( x) ) =  P*( x),  siendo P*( x) el mónico asociado con  P( x)  en el caso que   P( x)  divide a  T( x) .  (¿Que le recuerda??????) 

♦ Proposición 9.5.19

Cualquiera sea  K  cuerpo conmutativo. Sean  P( x),  Q( x) y  T( x) en  K[ x]. 

Si  P( x) es irreducible sobre  K[ x] y  P( x) Q( x).  T( x) entonces  P( x) T( x) ó  P( x) Q( x) Demostración: 

Sea  P( x) irreducible sobre  K[ x] tal que  P( x) Q( x).  T( x)  entonces  puede que  P( x) divida a  T( x). 

Y ya está. 

Si  P( x) no divide a  T( x), por 9.5.18 (  P( x),  T( x) ) = 1  entonces por el ejercicio 9.5.11, partes a) y b) resulta que  P( x) Q( x)

♦
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♦ Proposición 9.5.20

Cualquiera sea  K  cuerpo conmutativo. Sean  P( x),  Q  j ( x) para j= 1, ...,  m   en   K[ x]. 

Si  P( x) es irreducible sobre  K y  P( x) Q 1( x).  Q 2( x). ... .  Qm( x) entonces  P( x) Q  j( x) para algún j, j = 1, ...,  m. 

EJERCICIO 9.5.21 

Demostrar el enunciado anterior por inducción completa. 

♦ Teorema 9.5.22

Todo polinomio no constante de  K[ x] es divisible por un polinomio irreducible sobre  K. 

Demostración: 

(Idea) Sea W ( x) = { T ( x)∈  K [ x]: T ( x)no es divisible por polinomio irreducibl }

e  . 

Si este conjunto es no vacío, entonces tiene asociado un conjunto H  de los grados de los 

polinomios de W ( x).  Y también será H no vacío. 

Por el principio de Buena Ordenación H   tiene un mínimo  m, luego existe en W ( x) un polinomio S( x) de grado  m.  Justifique que  S( x)  no es irreducible, y entonces hay dos factores no triviales de modo que    S( x) =  L( x).  U( x) . 

Además justifique que ambos no pueden estar en W ( x). 

Luego existe un polinomio irreducible que divide a  L( x), por ejemplo. Por lo cual dividirá a  S( x). 

Y así l ega a un absurdo. 

♦

EJERCICIO 9.5.23 

Cualquiera sea  K  cuerpo conmutativo, existen infinitos polinomios irreducibles sobre  K. 

(Idea: es casi copiar la demostración en los números enteros) 

6. Raíces complejas en polinomios con coeficientes reales

Para muchas aplicaciones es importante encontrar las raíces de un polinomio. 

Cuando  P( x) es un polinomio de C [ x], 

 n

 n  1

 P( x) =  a .  x +  a

.  x − + ... +  a .  x +  a  y  en 

 n

 n  1

−

1

0

particular todos los coeficientes    a  para 0 ≤  j ≤  n  son números reales, se demuestra que j
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algunas raíces de  P( x) "aparecen de a pares", trayendo esto una ventaja pues reduce el número de raíces a buscar. 

Para demostrar este resultado es conveniente recordar algunas propiedades de la conjugación de complejos:  

 z ∈ R ⇔  z =  z              z ⋅  z =  z ⋅  z 1

2

1

2

 z =  z

 z +  z =  z +  z

 k

 k

1

2

1

2

 z =  z

♦ Teorema  9.6.1:

Sea    P( x) ∈ [ x]  ,  P( x)  = an.  x n +  an-1.  x n-1  + ... +  a1.  x +  a 0   tal que   a ∈   para todo j

 j, 

  j = 0,...,  n. 

Si    z ∈  es raíz de  P( x) también lo es su conjugado. 

Es decir:  si   P( z) = 0 entonces  P(  z  ) = 0 

EJERCICIO 9.6.2: 

Demostrar el teorema 9.6.1. 

Idea: Sabiendo que  P( z) = 0 conjugue la igualdad y aplique propiedades de la conjugación que se han recordado antes del enunciado del teorema…… 

¿Si   P(  z  ) = 0, es  P( z) = 0 ? Justifique. 

♦ Teorema 9.6.3: Teorema  Fundamental del Algebra

Todo polinomio     P( x) ∈ [ x]  de grado positivo no nulo, admite una raíz en   . 

Aceptaremos este teorema sin demostración ya que para el o se usan herramientas que 

exceden los contenidos del libro. 

OBSERVACIÓN: 

Luego si    P( x)∈ [ x]   todas las raíces de  P( x) están en   . 

Debido a ese resultado se dice que  

es algebraicamente cerrado. 
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♦ Lema 9.6.4

Todo polinomio  Q( x) de grado impar y coeficientes reales tiene al menos una raíz compleja de parte imaginaria nula. (Es decir una raíz real!!!) 

Demostración: 

Probaremos el enunciado por inducción completa. 

Consideremos el esquema  

 P( n):  Si  Q( x)∈ [ x] con todos los coeficientes en R  y  gr ( Q( x)) = 2.  n + 1, entonces   Q( x) tiene al menos una raíz real. 

 P(0): Si  Q( x)∈ [ x] con todos los coeficientes en R  y  gr ( Q( x)) = 2.0 + 1, entonces   Q( x) tiene al menos una raíz real 

 b

−

Si gr(  Q( x)) = 1 entonces  Q( x) =  a x + b.  Con  a no nulo. Luego el valor es un número real 

 a

 b

−

por ser cociente de números reales con denominador no nulo, y 

anula al polinomio 

 a

¡SI! 

(¿seguro?) 

Por lo tanto  Q( x) tiene una raíz real y se cumple  P(0). 

Veamos que si vale   P( k) entonces vale  P( k+1): 

Es decir, suponemos que si un polinomio de  Q( x) ∈ [ x] , con coeficientes reales tiene grado 2.  k+1 tiene al menos una raíz real, debemos probar que entonces si  T( x)∈ [ x] , con todos los coeficientes reales tiene grado 2( k+1)+1= 2.  k+2+1 tiene al menos una raíz real. 

Sea  T( x) ∈ [ x] ,  como todo número real es un complejo, es un polinomio a coeficientes complejos, por lo tanto, por el teorema 6.3 tiene una raíz en 

. Sea  α ∈

, tal que  T (α ) =0. 

Caso a) si en particular α ∈

resulta  que  T( x) tiene una raíz real y queda probado. 

Caso b) si  α ∉  por teorema anterior, α  tambien es raíz de  T ( x)  entonces ( x − α )  T ( x)   y   ( x − α )  T ( x)  entonces por ser ambos de grado 1 y además distintos, por lo tanto   ( x −α ).( x − α )  T ( x) (9.5.11 y 9.5.12) 
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Es decir que se tiene    T ( x) = ( x − α ).( x − α ).  D( x) D( x) es un polinomio de grado 2 k+1 entonces por hipótesis inductiva  D( x) tiene al menos una raíz real.  Sea  β ∈

tal que   D(β ) = 0

 T (β ) = (β − α )(β − α ).  D(β ) luego ,  T (β ) = 0  por lo tanto β ∈

es raíz de  T( x) y queda

probado P(2.( k+1)+1). 

Por lo cual vale que para todo polinomio con todos sus coeficientes reales y de grado impar tiene al menos una raíz real. 

♦

♦ Corolario 9.6.5: (del Teorema Fundamental del Algebra)

Para todo polinomio  P( x) ∈ [ x]  de grado    n ≥1 , existen números complejos  1

 z ,  z 2, ,  n

 z

tales que:    

 n

 P( x) =  a

( x −  z )

∏

 n

 i

 i  1

=

siendo los  1

 z ,  z 2, ,  z     no necesariamente todos distintos y raíces de 

 n

 P( x)  y   a   es el 

 n

coeficiente principal de  P( x). 

EJERCICIO 9.6.6:  

Demostrar por inducción el corolario anterior. 

EJERCICIO 9.6.7: 

Demostrar que los polinomios irreducibles de 

[ x] son los de grado uno y los de grado dos 

que no tienen raíces reales. 

♦ Teorema 9.6.8: Teorema Fundamental de la Aritmética para polinomios

Sea  K =  , , o   , entonces todo polinomio no nulo ni constante de  K[ x] es producto finito de polinomios irreducibles sobre  K. Esa factorización es única salvo asociados. 

La demostración sigue los pasos de la demostración del teorema análogo para enteros 

(recordar que es por la aplicación del Segundo Principio de Inducción), pero en esta teoría de polinomios como no se ordenan los polinomios irreducibles, no sale la unicidad salvo 

asociados. 

♦ Corolario 9.6.9:

Todo polinomio  P( x) ∈ [ x]  de grado  n  tiene a lo sumo  n raíces distintas. 
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Demostración: 

Sea  P( x) de grado  n  ≥ 1, entonces por el corolario 9. 6.5

 n

 P( x) =  a

( x −  z )

∏

 n

 i

 i  1

=

siendo los   iz   no necesariamente todos distintos y raíces de  P( x) . 

Supongamos por el absurdo que  P( x) tiene  n +1 raíces, si  c es la raíz    n +1, distinta de las n

anteriores. entonces   P( c) = 0  pero como  P( x) =  a . 

( x −  z )

 n ∏

, se tiene que

 i

 i  1

=

 n

 P( c) =  a . 

( c −  z )

, luego es absurdo que

 n ∏

y se sabe que 

 i

 c −  z ≠ 0

para todo 1

 i

≤  i ≤  n

 i  1

=

 P( c)= 0 pues  K[ x] es un dominio de integridad. 

♦

EJERCICIO 9.6.10: 

a) Comprobar que –1 y 3 son raíces de  P( x) = 2 x 3  - 5 x 2  - 4 x  + 3. Hal e todas las raíces de P( x). 

b) Hal e las raíces de  P( x) = ( x – 3)2 . ( x + 2) ;  T( x) = ( x + 7) ( x – 5) x c) Hal e las raíces de  P( x) = ( x 2 + 3)2 . ( x - 2) ;  T( x) = ( x 4 + 7). ( x +1- 5i).  x 3

EJERCICIO 9.6.11 

a) Comprobar que 2 i es raíz de  P( x) = 2  x 3  +  x 2 + 8  x  + 4

b) ¿Pueden tener todas las raíces de  P( x)  parte imaginaria no nula? 

c) ¿Cuál es otra raíz de  P( x)? 

d) Hal e todas las raíces de  P( x). 

EJERCICIO 9.6.17: 

a) Compruebe que  -3i es raíz de  P( x) =   x 5  + 3i  x 4 -   x  -3i b) Evalúe   P( 3i ). 

c) ¿Se contradice el Teorema 9.6.1 ? Justifique. 

EJERCICIO 9.6.18: 

Verificar que si  x 1 y  x 2  son  raíces de la ecuación de segundo grado con coeficientes reales 584
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 a, b y  c:    a x 2   +  b  x +  c = 0 entonces resulta que   a x 2   +  b  x +  c =  a ( x-  x 1 )( x-  x 2) (Idea: use la expresión que da la fórmula para hal ar las raíces y haga TODAS las 

operaciones.....) 

b) Cómo puede factorear un polinomio  P( x)  = a x 2   +  b  x +  c  con coeficientes reales. 

7. Raíces múltiples

Recordar que cuando se calculan las raíces de la ecuación :    a x 2   +  b  x +  c = 0  se tiene la posibilidad que si el discriminante es 0 se tiene que  x 1 =   x 2 . 

Por lo tanto por b) de 9.6.18,  P( x)  = a x 2   +  b  x +  c  =  a ( x-  x 1 ) 2

Se va a generalizar esta situación. 

Para cualquier cuerpo conmutativo  K. Diremos que   a ∈  K   es raíz con multiplicidad  m de un polinomio  P( x) ∈  K [ x]  si  m es la mayor potencia de     x –  a  que  divide al polinomio  P( x), Esto es:   

 m

 m  1

( x

 a)

 P( x)  y  ( x

 a) +

−

−

 P( x) 

Se dice que  a es raíz múltiple de  P( x) si m >1. 

Observar que el polinomio nulo 0( x) no permite definir raíces múltiples. Queda indeterminada la multiplicidad. 

♦Teorema 9.7.1

Sea  a∈  K  ,  K cuerpo conmutativo,  y sea  P( x) ∈  K [ x]

 a es raíz con multiplicidad  m de  P( x)  si y sólo si  existe  G( x) en  K[ x] tal que P( x) =  G( x).( x –  a)m    y    G(a) ≠ 0. 

EJERCICIO 9.7.2 

a) Demostrar el Teorema 9.7.1. 

b) Demostrar la siguiente propiedad:

Sea   P( x) ∈  K [ x] .  K cuerpo conmutativo. Si    a ∈  para j

 K

 j =1,...  k, (para distintos subíndices

son elementos distintos de  K) son raíces de  P( x) de respectivas multiplicidades k

 m

 m  para 1 ≤

≤

entonces

 j

 j

 j

 k

( x −  a )

 P( x)

∏

 j

 j  1

=
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¡Algo tenés que hacer! 

Se ayuda con b) :    

Por la parte a)  y la definición de raíz múltiple: 

1

(

 m

 x −

además esta situación se da 

1

 a )

 P( x), 

para cada una de las otras raíces, es decir:     



2

 m

3

(

 m

 k

 m

 x − 2

 a )

 P( x), ( x − 3

 a )

 P( x), 

, ( x −  a )

 P( x)

 k

Como  si    h ≠  t para 1 ≤  h ≤  k  ∧1 ≤  t ≤  k  entonces  ( x −  a )  h m  y ( x −  a )  t

 m  son coprimos  (por 

 h

 t

 k

EJERCICIO 9.5.12 c))   y por EJERCICIO 9.5.11 c)  entonces 

 m

( x −  a )  j P( x)

∏

 j

 j  1

=

Como el grado de un producto es la suma de los grados de cada factor: 

  k



 m

 gr 

( x −  a )  j  =

+

+

∏

, y si este producto es un divisor de 

 j

1

 m

 k

 m





 P( x), 

  j  1

=



. 

1

 m +

+  m ≤  gr( P( x))

 k

Es decir el número de raíces, contando cada una de el as tantas veces como su orden de 

multiplicidad,  es menor o igual que el grado de  P( x). 

EJEMPLO 9.7.3 

Determinar la multiplicidad de -1 como raíz de  P( x) =  x 4  + 2  x 3  + 2  x 2 + 2  x  + 1 

Primero verifiquemos que -1 es raíz de  P( x) aplicando el teorema del resto: P(-1) = (-1)4  + 2 (-1)3  + 2 (-1)2 + 2 (-1)  + 1= 1  - 2 + 2 - 2 + 1 = 0 

Luego ( x + 1)   P( x). 

Determinemos la mayor potencia de ( x + 1) que divide a  P( x). 

Para el o se divide  P( x) por  x + 1  y  se usará la regla de Ruffini 1 

2 

2 

2 

1 

-1 

-1      -1      -1     -1 

1 

1 

1 

1 

0 

Como era sabido el resto dio 0. 

El cociente es el polinomio    x 3  +   x 2  +   x + 1 

que  se indicará por  C 1 ( x), luego    C 1 ( x) =  x 3  +   x 2  +   x + 1 
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Además  P( x) = ( x + 1 ). ( x 3  +   x 2  +   x + 1) = ( x + 1).  C 1 ( x) Siguiendo con nuestro propósito, se dividirá  C 1 ( x) por  x + 1 ,  también aplicando Ruffini: 1 

1 

1 

1 

-1 

-1      -1      -1 

1 

1 

1 

0 

El resto dio 0.  El nuevo cociente es el polinomio    x 2  +   x + 1 , que  se indicará por  C 2 ( x), luego    C 2 ( x) =   x 2  +   x + 1   

Por lo tanto:  C 1 ( x) =   x 3  +   x 2  +   x + 1= ( x + 1 ).(  x 2  +   x + 1)  = ( x + 1).  C 2 ( x) Se tiene entonces: 

 P( x) = ( x + 1 ).  C 1 ( x) = ( x + 1).[ ( x + 1).  C 2 ( x) ] = ( x + 1)2.  C 2 ( x) Será    C 2 ( x) =   x 2  +   x + 1  divisible por  x + 1 ?? 

Aplicando Ruffini....: 

1 

1 

1 

-1 

-1 

0 

1 

0 

1 

Como el resto es 1,  x + 1   NO divide a   C 2 ( x). 

Por lo cual la mayor potencia de  x + 1 que divide a  P( x) es 2. 

Entonces - 1 es raíz de multiplicidad 2 de  P( x). Por lo cual es múltiple. 

Cuando la multiplicidad de una raíz  a es 2, se dice que  a es doble.  

Si la multiplicidad de una raíz  a es 3 se dice que  a  es triple.  

EJERCICIO 9.7.4 

a) Determinar un polinomio  P( x) ∈

tal que tiene mínimo grado, es mónico y admite las

3 [  x]

raíces  2 como doble; 1 como simple y 0 como triple  . 

4

b) Dado el polinomio  P x = ( 2

( )

 x + 3) ∈ [ x]   determinar sus raíces y sus respectivas 

multiplicidades. 
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8. Polinomio derivado

Recodemos que  x no es una variable de  K. 

Para   K = ,    o    y   P( x) =  a n.  x n +  a n-1.  x n-1 + ... +  a 1.  x +  a 0 en  K[ x]. 

Se puede asociar a  P( x) una función 

 P:  K→ K dada por 

 P(t) =  a n.tn +  a n-1.tn-1 + ... +  a 1.t +  a 0 

que es una función, l amada función polinómica 

En el caso que  K = ,    o   esa asociación del polinomio a la función polinómica  es una biyección. Es por el o que en esos casos de  K muchas veces se identifica el polinomio con la función polinómica. 

En Análisis Matemático I, ya se aprendió a derivar funciones de variable real por un 

procedimiento de pasaje al límite. 

Al derivar una función polinómica real 

 f(t) =  a n.tn +  a n-1.tn-1 + ... +  a 1.t +  a 0    resulta   f ’(t) =  n.   a n.tn-1 + ( n-1)  a n-1.tn-2 + ... +  a 1 

Además,  f ’(t) es otra función polinomial de grado  n-1 y además es otra función real factible de volver a derivar, y es claro que después de  n pasos se obtiene una función real constante, cuya derivada es la función nula. 

Una función real cualquiera g(t) se puede aproximar por medio de funciones polinómicas, 

l amadas polinomios de Taylor asociados a g(t). En el caso particular que g(t) sea una función polinómica se ha visto que el error de aproximación es nulo si se considera la función 

polinómica de Taylor de grado mayor o igual al grado de la función polinómica dada. 

Vamos ahora a definir al “derivado” para todo  P( x) en  K[ x]  y todo cuerpo  K. Se tiene la pretensión que sea un polinomio y que, en el caso de pensar en la función polinómica real 

asociada, los conceptos de Análisis Matemático I y Algebra coincidan. 

Este mecanismo: la de la generalización de una idea motivadora que luego sea alcanzada 

como caso particular es permanente en el quehacer del matemático. 
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Un polinomio  P( x) en  K[ x] se puede escribir de la siguiente manera: n

 P( x) =  a +  a x + ... 

 n

 j

+  a x =   a x

0

1

 n

 j

 j =0

Luego, definimos el polinomio derivado de  P( x) como: 

 n

 j  1

 DP( x) =  P '( x) =   j.  a x −

 j

 j=0

La definición del polinomio derivado requiere de una definición extra. 

Pues si   K = ,    o   la multiplicación de un numero natural por un elemento de  ,    o es algo que se sabe hacer, pero si  K es otro cuerpo hay que decir algo…. 

Dado  m ∈ 

y  a ∈  K: 

 m ∈

– {0},  m.a = a +  a + ...+  a 

M 

Se suma  a,  m veces en   K 

  m = 0 

 m.a =  0.  a = 0K

Asociada a la definición M se definen para los cuerpos la característica de un cuerpo. 

Un cuerpo  K es de característica  h   si  h ∈

– {0}, es el menor  h  tal que 

 h.1K = 1K +  1K + ...+  1K  = 0 K

Se suma  1K,  h veces en   K 

Se demuestra que  h es primo. Esto lo demostrara en una materia de Algebra posterior. 

Compruebe que 

son de característica 

2 , 

3 , 

5 , 

, 

 p

 p, para   p = 2, 3, 5,….. , 

respectivamente. 

Pero al sumar 1, en   K = ,    o   un número  h > 0 de veces nunca da 0. Se define para estos cuerpos que su característica es 0. 

EJEMPLO 9.8.1: 

a) Sea  P( x) = 3 x 5 + 2 x + 1 ∈ [ x]

 P ’( x) = 5.3.  x 5-1 + 1. 2  x 1-1 = 15  x 4 + 2 
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b) Sea  Q( x) =(1- 3i)   x 10 + (3+2i)  x 5 + 1 ∈ [ x]

 Q’( x) = 10. (1-3i).   x 9 + 5.(3+2i)  x 4 = (10-30i)  x 9 + (15+10i)  x 4 

c) Sea T( x) =

7

2

5  x + 5  x + 2.  x + 5∈ 7 [  x]

6

 T (

′  x) = 7.5  x + 2.5  x + 2∈

.  Luego debemos usar la definición  M :

7 [  x]

¡JA! 

7.5 = 5 + 5 + 5 + 5 + 5 + 5 + 5 = 7.5 = 0  . Además   2.5 = 5 + 5 = 2.5 = 10 = 3

6

 T (

′  x) = 0  x

1

+ 0  x + 2 = 3  x + 2∈

. 

7 [  x]

Observar que no es como estaba acostumbrado en el caso de Análisis Matemático I que al 

derivar una función polinómica de grado  h,  la función derivada también es polinómica y de grado  h-1…… 

 Propiedades del polinomio derivado:

i) Dado  P( x) ∈  K[ x],  P ’( x) ∈  K[ x] (por definición) i ) Una vez obtenido  P ’( x) podemos obtener el derivado de él de la siguiente manera: D( P ’( x)) =  P ' ( x) =  (n-1).n.   a n.  x n-2 + ( n-2). ( n-1)  a n-1.  x n-3 + ... +  a 2 

y así sucesivamente, dado  P ' ( x) ∈  K[ x], obtenemos  P ' '( x), etc. 

En general: 

 Dr ( P( x)) =  D ( Dr-1( P( x)))  para   r  > 1 

Se conviene   D 0 ( P( x)) =  P( x)  

Observar que si  P( x) ∈  K[ x], con    K = ,    o   , 

 n

 n  1

 P( x) =  a .  x +  a

.  x − + ... +  a .  x +  a  y 

 n

 n  1

−

1

0

gr( P( x)) =  n 

 r

 n

 n− r  1

 P ( x) = ( n −  r + 1)

( n −1). . 

 n a .  x + ( n −  r)

( n −1) a

.  x

− + ...+  a

 n

 n  1

−

 r

Luego 

 P  n( x) = 1.2. ... .( n-1).  n.  an =  n!.  an P n( x)  ≠ 0( x). 

Además: 

  P  n+j( x) = 0( x), para   j > 0. 
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Más Propiedades: 

Sea  K cuerpo conmutativo y sean  P( x) y  Q( x) en  K[ x], entonces valen:   D( P( x) +  Q( x)) =  D( P( x)) +  D( Q( x))  D( P( x).  Q( x)) =  D( P( x)).  Q( x) +  P( x).  D( Q( x)) EJERCICIO 9.8.2: 

Demostrar las propiedades anteriores. 

Y para la última se sugiere probar para el caso  P( x) =  at.  x t  y   Q( x) =  bn xn y luego aplicar la propiedad 1). 

La noción de polinomio derivado introducida en los casos de    K = ,    o  ,  nos va a permitir caracterizar las raíces múltiples de un polinomio. 

Recordar que en Análisis Matemático  ha visto que la función real 

2

2

 f ( x) =  x + 2.  x + 1 = ( x + 1)   admite a  -1 como raíz doble. 

Si derivamos:   f (

′  x) = 2.  x + 2 = 2.( x + 1)  se ve que -1 es raíz también de la derivada. 

Este hecho se va a generalizar para polinomios de  K , cuerpo conmutativo: 

♦ Teorema 9.8.3:

Sea  P( x) ∈  K[ x]-{0( x)}. Sea  a ∈  K ,  K  cuerpo conmutativo  y   a es raíz de  P( x). 

  a es raíz múltiple de  P( x) entonces  a es raíz de  P ’( x). 

Demostración: 

Como hipótesis general se tiene  P( a) = 0 porque  a es raíz de  P( x). Observar que por ser P( x) no nulo y teorema del Resto y sus corolarios   x –a  es un divisor de  P( x). 

Sea  m la multiplicidad de  a como raíz de  P( x). Con   a  múltiple, es entonces   m > 1. 

Luego:  

 P( x) = ( x- a) m.  G( x), con  G( a) ≠ 0,  m > 1. (por  Teorema 9.7.1) P ’( x) =  m.( x- a) m-1.  G( x) + ( x- a ) m.  G'( x) = ( x- a) m-1.[ m.  G( x) + ( x- a).  G'( x)] 

Como  m -1 > 0, luego ( x- a) m-1  P ’( x). 

 P or lo tanto  a es raíz de  P ’( x) 

Observación: dependiendo de la característica del cuerpo, podría ser  P ’( x)= O(x) 

♦
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Pero este resultado se puede mejorar si consideramos la fórmula de Taylor para polinomios de coeficientes reales o complejos que vale en  esos conjuntos y se pasa a formular: Propiedad 9.8.4:  

Sea  P( x) ∈  K[ x],  K =    o  , con   gr( P( x) =  n. Se tiene la siguiente fórmula: P '( c)

 P ' ( c)

 n

 P ( c)

2

 P( x) =  P( c) +

( x −  c) +

( x −  c) + ... +

( x −  c) n

1! 

2! 

 n! 

Fórmula de Taylor de  P( x) según potencias de  x - c  ó alrededor de  x = c Sin demostración: La idea es pensar que: 

 P( x) =  a n ( x -  c) n + ... +  a1 ( x -  c) +  a0, con  a n ≠ 0. 

Observar que  P( c) =  a0  ,  derivar y especializar en  c los sucesivos polinomios derivados. 

Lo siguiente es un resultado que da además de la definición una manera de determinar la 

multiplicidad de un valor  a como raíz de un polinomio. 

Es fundamental desde el punto de vista teórico más  que practico. 

♦ Teorema 9.8.5 :

Sea  P( x) ∈  K[ x],  para   K =    o    y sea   a ∈  K  raíz de  P( x). 

 a es raíz de multiplicidad  m  , m > 1, de  P( x) 

si y sólo si 

 P( a) =  P’( a) =  P”( a) = ..... =  P( m-1)( a) = 0  ∧    P( m ) ( a) ≠ 0. 

Demostración: 

Recordemos que el teorema del Algoritmo de la División asegura que el cociente y resto de una división son únicos. 

Sea  P( x) ∈  K[ x],  a ∈  K, raíz de  P( x) con multiplicidad  m,  m >1, entonces por definición de raíz múltiple sabemos que 

 m

 m  1

+

( x −  a) |  P( x)

 y

( x −  a)

|  P( x)

Por lo tanto  ( ) = ( − ) m

 P x

 x

 a

.  C( x) +  R( x)  con  R( x) =  O( x) Considerar el desarrol o de Taylor de  P( x) alrededor de  a : 

 P '( a)

 P ' ( a)

 m

 P ( a)

 n

 P a

 m

( )

2

 P( x) =  P( a) +

( x −  a) +

( x −  a) + ... +

( x −  a) + ... +

( x −  a ) n

1! 

2! 

 m! 

 n! 

Y sacando factor común   ( − ) m

 x

 a

se tiene: 
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( m  1

− )

 P′ ( a)

1

 P′′ ( a)

2

 P

( a)

 m  1

 P( x) =  P( a) +

( x −  a) +

( x −  a) +

+

( x −  a) − +

1! 

2! 

( m −1)! 

( m)

( m  1

+ )

( n)





 m

 P

( a)

 P

( a)

 P

( a)

+( x −  a) 

+

( x −  a) +

+

( x −  a) n− m 



 m! 

( m + 1)! 

 n! 





Por lo tanto el resto de la división de  P( x)  por  ( − ) m

 x

 a

es: 

 m  1

 P '( a)

 P ' ( a)

 P − ( a)

2

 m  1

 R( x)

 P( a)

( x a)

( x a)

... 

( x

 a) −

=

+

−

+

−

+

+

−

1! 

2! 

 m −1! 

Y este resto es 0(x). 

Cada termino de  R( x)  es un polinomio que tiene un grado menos que el siguiente, por tanto el único termino de grado  m- 1 es el  polinomio  

( m  1

− )

 P

( a)

 m  1

( x

 a) −

−

 m−

( m − 1)! 

luego si  ( 1)

 P

( a) ≠ 0  se contradice que  R(x)=O(x). 

Y así analizando cada termino descendiendo en los grados, cada polinomio derivado evaluado 

en  a debe ser 0 sino se contradice que  R(x)=O(x). 

Es decir, resulta que  P( a) =  P ’( a) = ...... =  P(m-1)( a) = 0 

( m  1

+ )

(n)





 m+

 P

( a)

 P

( a)

Si 

( m)

 P

( a) = 0 , entonces 

1

 n− m  1

 P( x) = ( x −  a)



+ .... +

( x −  a)

−   

( m +



1)! 

 n! 



Pero entonces 

 m  1

+

( x −  a)

|  P( x)

Absurdo, porque contradice la hipótesis. Luego  ( m)

 P

( a) ≠ 0 . 

Queda como ejercicio la recíproca. 

♦

EJERCICIO 9.8.6 

Demostrar la otra implicación del teorema anterior: usar Taylor en potencias de  x-a y usar las hipótesis y el teorema del algoritmo de la división. 

♦ Corolario 9.8.7

Sean  P( x) ∈  K[ x],  K = 

, 

o

y    a ∈  K raíz de  P( x). 

 a es raíz de multiplicidad  m , m >1, de  P( x) si y sólo si  a es raíz de multiplicidad  m -1 de  P ’( x). 
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EJERCICIO 9.8.8 

Demostrar el corolario anterior: aplicar a  T( x) el Teorema 9.8.5 siendo  P ’( x)= T( x) EJERCICIO 9.8.9 

Demostrar el siguiente teorema como corolario del teorema 9.6.1 

♦ Teorema 9.8.9:

Sea    P( x)∈ [ x]  ,  P( x)  = an.  x n +  an-1.  x n-1  + ... +  a1.  x +  a 0   tal que   a ∈   para todo j

 j, 

 j = 0,...,  n.  Si    z ∈

es raíz de multiplicidad  m de  P( x) también lo es su conjugado. 

8. Factorización

Por los resultados anteriores podemos concluir que: Todo polinomio de C [ x] se factores según sus raíces. Siendo  b es el coeficiente principal de  P( x) se tiene 

 s

 m

 b

(x −  a )  j =  P( x)

∏

 j

 j  1

=

. 

EJEMPLO 9.8.1 

El polinomio  P( x)=  x 4 - 8  x 3 + 20  x 2  -32  x + 64 

se factorea  P( x) = ( x - 4)2 (  x 2 + 4)   en R[ x] 

Esto está significando que 4 es raíz doble. El polinomio  x 2 + 4 es irreducible sobre R. 

Son raíces de  x 2 + 4 los complejos 2i y -2i . 

La factorización por irreducibles en C [ x] es  P( x) = ( x - 4)2 .(  x + 2i) .( x - 2i ). 

EJERCITACIÓN ADICIONAL 

1. Probar las siguientes propiedades del producto de polinomios en  K[ x]. (Donde  K =  , Q, R, C ó un anil o conmutativo cualquiera) 

a)  P( x) .  Q( x) =  Q( x) .  P( x) b)  P( x) . ( Q( x) .  R( x)) = ( P( x) .  Q( x)) .  R( x) 2. Analizar si los siguientes polinomios de  K[ x], son invertibles (donde se indica) a)  P( x) =

2

2 x + 3    K anil o
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2

b)  P( x) = 3 x −1 ;  K=R

c)  P( x) = 4 ; en  K= Z

d)  P( x) = 4 ; en  K= Q

e)  P( x) =  x ; en K = C

f)  P( x) = 1 + 2i ; en K = C

g) En general. ¿Cuáles son los polinomios invertibles de  K[ x] ? 

3) Probar la propiedad distributiva del producto en la suma de  K[ x]

4) Determinar todos los polinomios  p( x) de  R [ x] que verifican:

2

 p ( x) +  x =  xp( x) +1

2

2

 p ( x) =  x (  p( x) +  x +1)

5)¿Cómo son  p( x) y  q( x) polinomios con coeficientes en R ? si 2

2

 p (  x ) +  q (  x ) = 0

6) Sea  K un cuerpo, probar que no existen polinomios no nulos  p( x),  q( x) en  K[ x] tales que 2

2

 p ( x) +  xq ( x) = 0

7) Probar las siguientes propiedades de la divisibilidad de polinomios de  K[ x],  K cuerpo. 

a) La divisibilidad es reflexiva y transitiva. 

b) Si  P(x)  Q(x), y  P(x)   R(x) ; entonces  P(x)   m(x) .  Q(x) +  n(x) .  R(x), cualesquiera sean m(x) y  n(x) ∈  K[ x]. 

c) Si  P(x)  Q(x), y  P(x)  Q(x) +  R(x), entonces  P(x)   R(x). 

d) Si  P(x)  Q(x) y gr( P(x)) = gr( Q(x)), entonces existe b ∈  K tal que  P(x) = b .  Q(x). 

8) Analizar la validez en  K[ x],  K cuerpo, para polinomios   P(x),  R(x) y  Q(x): P(x)   R(x) y  Q(x)   R(x), entonces  P(x) .  Q(x)   R(x) 9) Sean

2

3

2

2

 p( x) =  x + 9, 

 q( x) =  x + 8, 

 h( x) =  x − 5 x + 6, 

 t( x) =  x − 3. 

a) ¿Cuáles de los polinomios dados son irreducibles en 

[ x]?. 

b) ¿Ídem sobre 

[ x]?. 

c) ¿Ídem sobre 

[ x]?. 

10) Para los siguientes pares de polinomios:

i. 

5

4

2

 P( x) =  x − 4 x − 3 x + 1  Q( x) = 3 x + 2 x + 1. Ii. 

4

3

2

 p( x) =  x − 2 x +1  q( x) =  x −  x + 2  
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11) Si  P(x) y  Q(x) son polinomios de 

[ x], con todos los coeficientes en 

y  P(x)   Q(x), 

demostrar que el coeficiente principal de  P(x) divide al coeficiente principal de  Q(x), y además P(0)  Q(0). 

 s

12) Sean  P(x) ∈

[ x], con todos los coeficientes en   y   r =  ∈ 

con (s, t) = 1 tales que

 t

 P(r) = 0, entonces   s P(0)  y  t divide al coeficiente principal de  P(x). 

13) Determinar las raíces racionales de:  P(x)=

4

2

12 x − 6 x +  x + 5  y  Q(x)= 5

2

 x + 2 x −  x . 

14) Probar que (2 x + 3)  y (2 x +1)  son factores de

5

4

3

2

4 x + 4 x −13 x −11 x +10 x + 6  sin

hacer la división. 

15) Hal ar el valor de k para el cual

4

3

 kx + 3 kx +  x + 3  tiene como factor a  (x - 2) . 

16) Sean  f(x) , g(x) ∈  K[ x],  K cuerpo,  f(x)   y  g(x) de grado positivo. Sea  H(x) = ( f(x) , g(x)). 

De un método para obtener una factorización prima de  H(x) a partir de la de  f(x) y  g(x) .  

Probar que 

 n ( ) = (  n ( ),  n

 H

 x

 f

 x g ( x)) , para cualquier  n ∈

. 

17) Sabiendo que 1 es raíz de

3 n

3

 p( x) =  x

− 2 nx − 2 x  ∈ 

[ x], con n ∈

. Calcular su

multiplicidad 

18) Sea   P(x) ∈  K[ x],  K cuerpo. 

a) Demostrar que si  ( x −  a)   P(x) y  ( x −  a)   P’(x), entonces 2

( x −  a)   P(x). 

b) Demostrar que ( P(x),  P’(x)) = 1 si y sólo si  P(x) tiene todas sus raíces simples. 

19) Sea  P(x) =  n

 x +  a  ∈ 

[ x], a ≠ 0. Probar que toda raíz de  P(x) es simple. 

20) Sea  K cuerpo,  P(x) ∈  K[ x]. Si  P(x) es irreducible sobre  K entonces ( P(x),  P’(x)) = 1. 

21) Sean  p(x) y  q(x) ∈  K[ x],  q(x) irreducible sobre  K[ x]. Entonces 2

 q ( x) |  p( x)

⇔

 q( x) |  p( x) ∧  q( x) |  p '( x) . ¿Si se elimina la hipótesis de  q(x) irreducible, que ocurre?. 

22) Determinar la multiplicidad de las siguientes raíces :

a) 3 de  P(x) =  3

2

( x − 27)( x − 9)  

b) –2 de  P(x) = 

4

3

2

3 x + 6 x +12 x + 24 x +18  

c) i de  P(x) =

6

4

2

3 x + 9 x + 9 x + 3

23) Si  P(x),  Q(x) ∈  K[ x],  K cuerpo y existen   c ,  c ,  .......,  c   ∈    K    tales que 0

1

 n

 P( c )  =   Q( c )  con  n ≥ max {gr( P(x)), gr( Q(x))}, entonces  P(x) =  Q(x). 

 i

 i

24) a) Demostrar que un polinomio  P(x) = 

2

 ax +  bx +  c  ∈ 

[ x] es irreducible si y sólo si

2

 b < 4 ac
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b) Sea  P(x) = 2

 x − 2  en 

[ x]. Es irreducible en 

[ x]?. 

c) Analice si en 

[ x] vale a). 

25) Criterio de irreducibilidad en 

[ x] (de Eisenstein)

 n

( )   =   

.  i

 S e a P x

 a x  co n  lo s   a

∈

, 

 gr (  P (  x ))   > 0

 i

 i

 i = 0

 S e a   p   u n   p r im o   ta l   q u e    i )   p   n o   d ivid e   a   an ii )   p   d iv id e   a   a

∀  k ,   0   ≤   k <  n

 k

2

 iii )   p

 n o   d ivid e   a   a 0

entonces  P(x) es irreducible en 

[ x]. 

26) Demostrar que  P(x) =

4

3

2

3 x + 6 x + 4 x +14  es irreducible en 

[ x]

27) Demostrar que todo polinomio  n

 x −  p ,  p primo es irreducible en 

[ x] (para todo  n y todo

 p). 

28) Sea  P(x) = 4

 x − 4 x +1 ∈ 

[ x]. Sin calcular las raíces de  P(x), probar que todas sus

raíces son simples. (Idea: Suponga que α es una raíz de multiplicidad ≥ 2 y use lo que sabe de P’(α)). 

29) Considerar  P(x) =  n

 x −  nx +  n −1 en 

[ x], con n ≥ 1. 

Calcular la multiplicidad de 1 como raíz de  P(x). 

Demostrar que si β ∈ 

– {1} es raíz de  P(x), entonces β es raíz simple de  P(x). 

 P( x)

30) Sea  K cuerpo. Si  P(x) ∈  K[ x]  Probar que  g( x) =

siendo d( x) = ( P(x),  P’(x)), tiene las 

 d ( x)

mismas raíces que  P(x) pero todas simples. 

31) Sin hal ar las raíces, encontrar otro polinomio que tenga las mismas raíces de  p(x), pero todas simples: 

a)

5

4

3

2

 p( x) =  x −13 x + 68 x −176 x + 220 x −10  

b) 

3

2

 p( x) =  x + 2 x −  x +1

32) a) Encontrar  b, c ∈ 

para que  1+i  sea una raíz de 

3

2

 P( x) =  x +  bx +  cx + 6

b) Hal ados  b, c escribir  P(x) como producto de polinomios primos en   [ x] y en 

[ x]

33) a) Construir un polinomio mónico de mínimo grado que tenga raíces:  2 − 5 i   doble, 1−  i  5

triple,   3 +  i  simple. 

b) Igual que en a) y además que el polinomio tenga coeficientes reales. 
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34) a) Hal ar el polinomio mónico de grado mínimo que admita a 2, -1 y -3 como raíces dobles y a -7 como raíz simple. 

b) Hal ar el polinomio de 

[ x] de grado mínimo, con coeficiente principal -3 que admita a 1 +

2 i  como raíz doble, a  i  como raíz simple y a -3 como raíz triple. 

c) Hal ar el polinomio de 

[ x] de grado mínimo, con coeficiente principal -3 que admita a 1 +

2 i  como raíz doble, a  i  como raíz simple y a -3 como raíz triple. 

 n

35) Probar que  p( x)

 i

=   x  tiene todas sus raíces simples. 

 i =0

 n

 i

 x

36) Probar que  p( x) = 

tiene todas sus raíces simples. 

=

 i

 i  0

! 

 Adicionales en con K =

 p

37) Enumerar todos los polinomios de grado menor o igual que 5 de:

[ x]

 y

[ x]. 

3

2

38) En

[ x] hal ar el cociente y el resto de la división de  P(x) = 3

2

 x +  x +1 por  x + 1. 

3

39) Probar que en  K de característica  p, los polinomios  P(

 p

 x ) son reducibles. 

40) Criba para determinar polinomios irreducibles en cuerpos finitos  K (por ejemplo p, con p

primo) 

Los polinomios de grado 1 son irreducibles en  K[ x]. 

Analizar: si  P(x) ∈  K[ x] es reducible en  K[ x], entonces  P(x) es divisible por un polinomio gr(  p( x))

irreducible de grado a lo sumo 

. 

2

Sólo hay un número finito de polinomios de grado dado. Enumerar los irreducibles mónicos de grado 1, luego los de grado 2, los de grado 3, etc., siguiendo hasta l egar a los de grado 

 gr(  p( x))  y así comprobar si  P(x) es irreducible o no. 

2

41) Hal ar los polinomios irreducibles de

[ x]

de grado ≤ 5. Análogo para

[ x]

. 

2

3
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CAPÍTULO 10

Matrices 

Uno de los objetivos del Algebra es encontrar condiciones para que existan soluciones y 

algoritmos para resolver ecuaciones. En este Capítulo estudiaremos los sistemas de 

ecuaciones lineales que son modelo de muchas situaciones problemáticas. 

Los sistemas de ecuaciones lineales aumentaron particularmente su importancia con la 

creación de la Geometría Analítica que permitió reducir el estudio de la posición relativa de rectas o planos al estudio de sistemas de ecuaciones lineales. 

Cómo resolvemos la distribución de una herencia entre varios herederos, o cómo se 

distribuyen los alumnos en las aulas para la toma de un examen, etc., si tales circunstancias están sujetas a otras condiciones, conducen al planteo de varias ecuaciones con varias 

incógnitas y en algunas situaciones  son ecuaciones lineales. 

(Son ecuaciones lineales aquellas en que las incógnitas están elevadas a la potencia 1). 

Por ejemplo: "El señor González tiene dos hijos para repartir su fortuna de $2500000. 

El mayor recibirá el doble que el menor. ¿Cuánto recibirá cada uno?" 

Si indicamos por  x: la cantidad de $ que recibirá el hijo mayor. 

por  y: la cantidad de $ que recibirá el hijo menor. 

Las condiciones descriptas llevan al planteo de: 

 x + y =  2500000 

 x =  2 y 

que es un sistema de ecuaciones, no es otra cosa que una cierta cantidad de ecuaciones (en este caso dos) con cierta cantidad de incógnitas (en este ejemplo dos). 

Una  solución   para un sistema de ecuaciones  es un juego de valores numéricos (en el ejemplo un par) de las incógnitas, que resuelve simultáneamente todas las ecuaciones. 

Resolver un sistema de ecuaciones es encontrar soluciones del mismo. Puede suceder que no existan soluciones, que exista una sola o que haya más de una. 

Para encarar el estudio general de los sistemas de ecuaciones lineales haremos 

primeramente el estudio de unos  objetos algebraicos,  llamados matrices, que facilitarán las cosas y que además de aplicarse en los sistemas de ecuaciones sirven para representar entre otros distintos fenómenos físicos, económicos y geométricos. 
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Las matrices permitirán justificar entre otras cosas los métodos de sumas y restas y 

determinantes seguramente ya conocidos y aplicados para resolver los sistemas dos por dos. 

1. Cálculo Matricial Básico (primeras definiciones)

La teoría de matrices requiere la definición de unos objetos (las matrices) formados a su vez con elementos de un conjunto  K. De acuerdo  que se elija como K,  las matrices tendrán distintas posibilidades y propiedades. En este curso se tomará  K como un cuerpo conmutativo (por ejemplo  _, \  o ^ o algún ]  p ,  con  p primo)  y en aquellas ocasiones que se considere otro conjunto numérico se aclarará. 

Recordar que un cuerpo es una terna ( K, +, . ) , que por abuso de notación sólo se indica por  K. 

La suma + sobre  K cumple las propiedades de ser cerrada, asociativa, existe el neutro (el nulo que indicamos por 0 o 0 K), todo elemento tiene opuesto y es conmutativa. 

La multiplicación . sobre  K cumple las propiedades de ser cerrada, asociativa, existe el neutro (la unidad que indicamos por 1 o 1 K), todo elemento no nulo tiene inverso multiplicativo y es conmutativa. 

Además la multiplicación se distribuye en la suma. 

También es posible considerar como  K algún conjunto donde estén definidos una suma y un producto y además con "buenas" propiedades. 

La teoría que pretendemos desarrollar se limitará a definir operaciones algebraicas (suma 

entre matrices, producto de matriz por un número y producto entre matrices) y estudiar las 

propiedades de esas operaciones en estos objetos, muchas propiedades son similares a las 

que se verifican sobre los números complejos. 

Una  matriz  de   m  filas y  n  columnas es un conjunto de  m   x   n elementos del cuerpo  K 

dispuestos en un cuadro, formando  m filas y  n columnas. 

Para poder indicar la fila y columna que ocupa un elemento se utilizan dos subíndices, el 

primero indica la fila y el segundo la columna. 

Las matrices las designaremos por letras mayúsculas. 

Para indicar que los  m x  n  elementos forman una matriz los encerramos entre paréntesis. 

Una matriz genérica es la siguiente: 
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 Elemento genérico: 

⎛ 1

 a  1

12

 a

13

 a

" 1

 a j " 

1

 a n ⎞

⎜

⎟

 a

Ya va!! 

⎜ 21

2

 a  2

23

 a

" 2

 a j " 

2

 a n ⎟

Claro!!! 

⎜

⎟

#

#

#

#

#

#

Bueno lo hago… 

 A =  ⎜

⎟   

Si!!! 

⎜  a  1

" 

" 

⎟

 i

 i

 a  2

 i

 a  3

 i

 a j

 i

 a n

⎜

"  ij

 a

⎟

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

" 

" 

⎝ 1

 m

 m

 a  2

 m

 a  3

 m

 a j

 m

 a n ⎠

Notación: 

Para referirse brevemente  a una matriz se indicará    A = (  i

 a j )1≤  i≤  m  o simplemente

1 ≤  j≤  n

"  A es  m x  n". 

Cuando no importa precisar el orden  o tipo (número de filas y columnas) o él se 

sobrentiende, se dice "la matriz  A". 

Al conjunto de matrices  m x  n de elementos de  K  se lo acostumbra a anotar   m n K × . 

También es costumbre indicar a los elementos de una matriz con la letra minúscula 

correspondiente a la mayúscula que se utiliza para designar la matriz, seguida de dos 

subíndices. Esto es,  si  B  es la matriz, su elemento genérico lo designamos por   i b j  o

 k

 b p , 

Recuerde que los índices "son mudos" y los pares de subíndices indican fila y columna. 

Si  T es otra matriz, como designa sus elementos??? 

Ya veo.. 

EJEMPLO 10.1.1: 

Sean las siguientes matrices: 

⎛ 2 +  i  0

1

−

⎞

⎛0⎞

⎜ 2

⎟

⎜1⎟

 A = ⎜

1

4

−

⎟

 B ⎜ ⎟

=



 C = (1 −3 −  i)

⎜ 3

⎟

⎜0⎟

⎜ 0

 i

3 3 i⎟

−

− +

⎜ ⎟

⎝

⎠

0

⎝ ⎠

⎛ 2 12 ⎞

⎛0 0⎞

⎜

⎟

 D = ⎜



 E = 0

4  

0 0⎟

⎝

⎠

⎜

⎟

⎜1 5⎟

−

⎝

⎠

 A es una matriz 3 x 3, que por tener igual número de filas que de columnas se dice 

cuadrada. Escribimos que 

3 3

 A

×

∈^

1

 a  1 = 2 +  i

22

 a

= 1

33

 a = 3

− + 3 i , ellos son los elementos de la diagonal principal de  A. 

Las matices cuadradas ( m  x   m) desplegadas forman un cuadrado, por eso se habla de diagonales. Observar que los elementos sobre la diagonal que va del extremo superior 

izquierdo al inferior derecho, tienen igual índice de fila que de columna. A ésta se la llama diagonal principal. La otra diagonal   es la secundaria .  
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¡Ya los digo! 

Otros elementos de  A son  23

 a = -4;  12

 a = 0 ; etc. 

 B tiene 4 filas y una columna, por el o se dice matriz columna. Esta se puede considerar como 

4 1

×

4 1

 B ^

ó  B

×

∈

∈ \

Tiene un elemento no nulo que es el  21

 b = 1 y podemos afirmar que

 ij

 b = 0 para todo  i y para   j = 1 tal que1 ≤  i ≤ 4  ∧   j=1∧   i ≠ 2

 C tiene una fila y 2 columnas, por ello se dice matriz fila. 

1 2

 C

×

∈^

¡Ya los digo! 

Cuál es  11

 c = ....  y  cual  es   12

 c = .......? 

 D es cuadrada y tiene la particularidad que todos sus elementos son 0, por eso se dice matriz nula, como es 2 x 2, es la nula 2 x 2. Entonces

?? 

?? 

 D ∈ ^  ó  D ∈ \  ? 

Esto lo podemos expresar como 

 dij = 0 para todo  i y para todo  j tal que1 ≤  i ≤ 2  ∧  1 ≤  j ≤ 2

 E es 3 x 2, es una matriz rectangular (no cuadrada) pues el número de filas es distinto del número de columnas. La matriz  E es elemento de qué conjunto?? 

(De la geometría elemental se sabe que los rectángulos tienen diagonales pero no se define 

para este tipo de matrices). 

Si…¡Ya los digo! 

Cuál es  11

 e = ....  y    3

 e  2 = ..... y 22

 e = ....? 

¾  ¿Qué es la igualdad de matrices? 

Para que dos matrices  A y  B sean iguales se debe verificar: 

•

Que sean de igual tipo. 

Esto es: el número de filas de  A igual al número de filas de  B e igualmente para columnas.  

 m n

×

Esto significa que se habla de la igualdad en   K

para  m y  n fijos. 

•

Que los elementos sean respectivamente iguales. 

Esto es que si   A = (  ij

 a )1≤ i≤  m   y   B = (  ij

 b )1  i≤≤ m

 ij

 a =  ij

 b  para todo  i,  1 ≤  i ≤  m  y para

1≤  j≤ n

1≤  j≤ n

todo  j , 1 ≤  j ≤  n  

Es decir que 
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Dadas las matrices 

 A = (  ij

 a  1)≤ i≤ m B = (  ij

 b  1)≤ i≤ s

1≤  j≤  n

1≤  j ≤  p

⎧ m= s ∧

 n=  p

⎪

 A =  B  si y solo si  ⎨ a = b  para todo  i, 1≤ i ≤  m  y  para todo  j, 1≤ i ≤  n

⎪  ij ij

⎩

Si lo imaginamos visualmente significa que al superponer  A con  B, coincidan sus elementos. 

  Suma de matrices 

Esta operación se  define para matrices de igual orden o tipo. 

Esto es de igual número de filas e igual número de columnas. 

 m n

×

Fijemos esto en  m  x  n. Es decir trabajaremos con elementos de   K

¿Cuál es la pretensión? 

 m n

×

 m n

×

•

Que sumando dos matrices de  K

se obtenga una matriz de   K

. 

•

Que esa operación tenga "buenas propiedades". Esto es, que llegue a tener las

propiedades que cumple la suma definida en los conjuntos numéricos:  ], , 

_ \,^ ó ]  p  . 

Son  además las que verifica la suma definida en  K[ x], para   K =  ],_, \,^ ó ]  p Dadas las matrices   A = (  ij

 a )1≤  i≤ m  y    B = (  ij

 b )1≤ i≤ m  llamamos suma de   A y B y lo 

1≤  j≤ n

1≤  j≤ n

anotamos   A + B   a una matriz   C = (  ij

 c )1≤ i≤ m  cuyo elemento genérico es dado por: 

1≤  j≤ n

 i

 c j =  ij

 a +  ij

 b

para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n

Observar que se suman los elementos que están en igual posición (fila y columna) en 

ambos sumandos para obtener la matriz suma. 

 m n

×

 Comentario formal: se usa el mismo símbolo + para indicar la suma de matrices de   K

y para indicar la suma en  K, pero eso no debe traer confusión pues el contexto determinará de que se habla. 

"  Visualicemos" nuevamente: si superponemos las matrices a sumar,  sumamos los elementos que "se tocan" y así obtenemos la matriz suma. 
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EJEMPLO 10.1.2: 

1)

Sumar 

las 

matrices

−

−

⎛ + −

+

− + ⎞

 A = (1 3

)1  B=( 2 4 3

2 0 5

4 3 1 )

1 ( 2) 3 4

1 3

 A +  B = ⎜⎝2 ( 4) 0 3 5 1 ⎟

−

+ −

+

+ ⎠

luego

 A +  B = ( 1

−

7 2

2

−

3 6)

2) Sumar las matrices

⎛ 3

0

1−  i ⎞

⎛ 5

2 4 + 4 i ⎞

⎜

⎟

⎜

⎟

 A =

6

−  i

1

8

 B = 3 +  i  6

4 −  i

⎜

⎟

⎜

⎟  

⎜ 0

2 3 i

5 ⎟

⎜ 0 2

2 i ⎟

− +

−

⎝

⎠

⎝

⎠

⎛

3 + 5

0 + 2

(1−  i) + (4 + 4 i)⎞ ⎛ 8

2 5 + 3 i ⎞

⎜

⎟ ⎜

⎟

 A +  B =

6

−  i + (3 +  i)

1+ 6

8 + (4 −  i)

= 3 − 5 i  7 12 −  i

⎜

⎟ ⎜

⎟

⎜

0 0

( 2 3 i) 2

5 ( 2 i)

⎟ ⎜ 0

3 i  5 2 i ⎟

+

− +

+

+ −

−

⎝

⎠ ⎝

⎠

⎛

5 + 3

2 + 0

(4 + 4 i) + (1−  i)⎞ ⎛ 8

2 5 + 3 i ⎞

⎜

⎟ ⎜

⎟

 B +  A = (3 +  i) + ( 6

−  i)

6 +1

(4 −  i) + 8

= 3 − 5 i  7 12 −  i

⎜

⎟ ⎜

⎟

⎜

0 0

2 ( 2 3 i)

2 i  5

⎟ ⎜ 0

3 i  5 2 i⎟

+

+ − +

− +

−

⎝

⎠ ⎝

⎠

¿Que observa?? 

¿Valdrá en general que   A+ B =  B + A?  ¡Justifique su opinión! 

EJEMPLO 10.1.3 

¿Cuáles de las siguientes matrices son sumables? Halle la suma en esos casos: 

⎛0 0 0⎞

⎛3 −  i ⎞

⎛ 2

4

− ⎞

⎛ 4 −  i ⎞

⎜

⎟

⎜

⎟

 A =

 B =

 C = 0 0 0

 D =

⎜

⎟

⎜

⎟

4

⎝3 2 i

0 ⎠

⎝ 3  i

⎜

⎟

⎜

⎟

−

+ ⎠

⎜0 0 0⎟

⎜ 6 ⎟

−

⎝

⎠

⎝

⎠

⎛ 3

2

1

− ⎞

⎜

⎟

⎛

2

−

4 0⎞

⎜ 1

⎛

2

−

4⎞

⎟

⎜

⎟

 E =

3

−

7

 F =

 G =

3

− +

⎜

⎟

2 i  0 0

⎜ 2

⎟

⎝ 3

− + 2 i  0

⎜

⎟

⎠

⎜

⎟

⎜ −

⎟

⎝

0

0 0⎟

⎜ 4 8 0

⎠

⎝

⎠

Para que las matrices se puedan sumar se tiene que verificar  que sean de igual tipo. 

Por lo tanto son sumables:   A con  F  ya que ambas son 2 x 2 y por otra parte  C,  E y  G que son 3 x 3. 

Si operamos: 
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⎛ 3

2

1

− ⎞ ⎛ 0 + 3

0 + 2 0 + ( 1

− )⎞ ⎛ 3

2

1

− ⎞

⎛ 0

0

0 ⎞

⎜

⎟ ⎜

⎟ ⎜

⎟

⎜

⎟

⎜ 1

⎟ ⎜

1

⎟ ⎜ 1

 C E

0

0

0

3 7

0

0 ( 3)

0 7

3 7 ⎟

+ =

+

−

=

+

+ −

+

=

−

⎜

⎟

⎜ 2

⎟ ⎜

2

⎟ ⎜ 2

⎟

⎜ 0 0 0 ⎟

⎜ 4

−

8

0 ⎟ ⎜0 + ( 4

− )

0 + 8

0 + 0 ⎟ ⎜ 4

−

8

0 ⎟

⎝

⎠

⎜

⎟ ⎜

⎟ ⎜

⎟

⎝

⎠ ⎝

⎠ ⎝

⎠

⎛ 2

4

− ⎞

⎛

2

−

4⎞ ⎛

2 − 2

4

− + 4⎞ ⎛0 0⎞

 A +  F =

+

=

=

⎜⎝3 2

⎟

⎜

⎟ ⎜

⎟ ⎜

⎟

−  i

0 ⎠

⎝ 3

− + 2 i  0⎠ ⎝(3 − 2 i) + ( 3

− + 2 i) 0 + 0 ⎠ ⎝0 0⎠

¿Qué le sugieren estos dos ejemplos? 

¿Cómo es  C ? ¿Qué ocurre cuando se suma con otra matriz? ¿Qué propiedad tiene? 

¿Cómo llamaría a  F  o a  A?  ¿Qué son una respecto de la otra? ¿Cómo anotaría a  F,  a  A? 

Queda para que complete las sumas de  C con  G y de  E con  G. 

¾  Propiedades de la suma de matrices

 m× n

 m× n

 m× n

•

Por la definición dada si  A∈  K

y  B ∈  K

entonces  A +  B ∈  K

, esto 

 m n

×

significa que la suma de matrices es cerrada en   K

 . 

 m× n

•

Si  , 

 A   B y  C son elementos de  K

entonces ( A +  B) +  C =  A + ( B +  C) luego vale m n

×

que la suma de matrices es asociativa en  K

.   

 m n

×

 m n

×

•

Dadas 

 A∈  K

y  B ∈  K

entonces  A +  B =  B +  A  luego vale que la suma de 

 m n

×

matrices es conmutativa en   K

. 

 m n

×

 m n

×

•

Existe 

el 

neutro en  K

, la matriz nula de   K

que indicaremos por  O   siendo  

 O = (

=

≤ ≤

≤ ≤

 i

 o j )1≤ i≤ m  tal que   io j  0 para todo  i,  1  i m y para todo  j,  1  j n  y para toda 1≤  j≤ n

 m× n

 A∈  K

entonces  A +  O =  A .   

 m n

×

 m n

×

•

Para toda matriz  A  ∈  K

existe una matriz   B  ∈  K

tal que  A +  B =  O  esto 

 m n

×

 m n

×

es para toda   A  ∈  K

, existe la opuesta en   K

y para indicar su relación con  A  la 

indicaremos por -  A. 
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 m n

×

Es claro que para cada   K

existe una matriz nula hay veces que puede resultar 

necesario especificar de que nula se habla por ello en determinadas circunstancias se precisa anotando  O m x n. 

⎛0 0 0⎞

⎛0 0⎞

Esto es   O 2 x 3  y   O 2 x 2  indican las matrices:  2

 O  3 =

⎟

2

 O

×

×2 =

⎜0 0 0

⎜0 0⎟

⎝

⎠

⎝

⎠

EJERCICIO 10.1.4 

a)

Verificar  la propiedad asociativa de la suma de matrices para tres matrices a elección

3 2

×

en  ^

. 

b)

Verificar  la propiedad conmutativa de la suma de matrices para dos matrices que Ud. 

4 4

×

elija en  \

. 

 m n

×

c)

Demostrar esas propiedades de la suma de matrices en   K

. 

 m n

×

d)

Demostrar las restantes propiedades de la suma de matrices en  K

 .  


Solución de una parte de c): 

La propiedad conmutativa: 

Sean   A = (  ij

 a )1≤ i≤ m  y    B = (  ij

 b )1≤ i≤ m  consideremos la suma de  A con  B 

1≤  j≤ n

1≤  j≤ n

 A + B =   C = (  ij

 c )1≤ i≤ m  cuyo elemento genérico es dado por: 

1≤  j≤ n

 i

 c j =  ij

 a +  ij

 b

para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n

Como vemos cada   ij

 c  es suma de dos números de  K y en  K vale la propiedad conmutativa de la suma luego: 

 ij

 c =  ij

 a +  ibj =  ibj +  ij

 a

para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n

Pero el último miembro de la igualdad indica el elemento genérico de la suma de las 

matrices  B y  A en ese orden por la definición dada de la suma de matrices. 

Como dos matrices son iguales si coinciden en sus elementos genéricos resulta que 

 A +  B =  B +  A. 

 m n

×

Observar que en la demostración se usó además de la definición de suma en   K

    la 

propiedad conmutativa en  K, similarmente ocurrirá con las otras propiedades: la validez  se m n

×

desprende de la definición de la suma en   K

y de la propiedad respectiva en  K. 
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  Multiplicación  de escalar por matriz 

Se llaman escalares a los elementos de  K. 

De alguna manera las matrices generalizan los conceptos de vectores en el plano y el espacio, por eso es que se llaman escalares a los números para diferenciarlos de los otros objetos 

llamados vectores. Además es habitual considerar el achicamiento o estiramiento producido al multiplicar un vector por un número, esta operación es la que generalizaremos seguidamente. 

¿Cuál es la pretensión? 

 m n

×

•

Que dado un número en  K y una matriz de  K

obtener por resultado de la 

 m n

×

operación una matriz de   K

 .  

 m n

×

Sea una matriz  A∈  K

y un elemento α ∈  K ,   si   A = (  ij

 a )1≤ i≤ m   se define    

1≤  j≤ n

α .  A = (  ij

 b )1≤ i≤ m  donde para cada  i,1≤  i ≤  m y para cada  j,1≤  j ≤  n 1≤  j≤ n

= α

 ij

 b

.  iaj

Esto es, cada elemento de  A  se multiplica por α . 

OBSERVACIÓN: hay trabajos que definen la multiplicación de escalar por matriz como de 

matriz por escalar esto es  

 A .α = (  ij

 b )1≤ i≤ m  donde para cada  i,1≤  i ≤  m y para cada  j,1≤  j ≤  n 1≤  j≤ n

=

α

 ij

 b

 ij

 a . 

Pero por la conmutatividad de  K,  resulta que α .  A =  A .α  

Otra observación formal: Para indicar la multiplicación de escalar por matriz se ha usado 

también el .  que simboliza la multiplicación entre elementos de  K, pero el contexto hará comprender  de cual producto se trata. 

EJEMPLO 10.1.5 

⎛ 2 −  i

0 ⎞

Dados   A =

α =

⎜

⎟

3  calcular el producto: 

⎝ 2

1+  i⎠

⎛3.(2 −  i)

3.0 ⎞ ⎛6 − 3 i

0 ⎞

α .  A =

=

⎜



⎝ 3.2

3.(1

⎟ ⎜

⎟

+  i)⎠ ⎝ 6

3 + 3 i⎠
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EJEMPLO 10.1.6 

⎛ 2

3

−

4 ⎞

Sean  A =

α =

⎜

⎟

1+  i  calcular el producto: (recordar que  2

 i = 1

− )

⎝ 0 1−  i  2 i ⎠

⎛(1+  i).2 (1+  i).( 3

− )

(1+  i).4 ⎞ ⎛ 2 + 2 i

3

− − 3 i  4 + 4 i ⎞

α .  A =

=

⎜



⎝(1

⎟ ⎜

⎟

+  i).0 (1+  i).(1−  i) (1+  i).2 i⎠ ⎝ 0

2

2

− + 2 i⎠

EJEMPLO 10.1.7 

⎛ 4

0

0

0 ⎞

⎜

⎟

−

Dada 

0

3 i  0

0

 A ⎜

⎟

=

observamos que los elementos no nulos están sobre la 

⎜ 0 0 0

0 ⎟

⎜

⎟

⎝ 0

0

0 5 + 2 i ⎠

diagonal principal (esto es una matriz cuadrada, puede interpretarse por ello como un 

“cuadrado” y como tal tiene dos diagonales, la principal es la que va del elemento de 

subíndices 11 al de subíndices 44, en este caso. Por eso es una matriz diagonal. 

Particularmente en el siguiente caso, es una diagonal con todos los elementos iguales, por 

eso se llama matriz escalar (nombre que se justificará luego). 

⎛ 4 0 0 0⎞

⎛1 0 0 0⎞

⎜ 0 4 0 0⎟

⎜0 1 0 0⎟

De acuerdo a la definición es claro que:   A ⎜

⎟ 4.⎜

⎟

=

=



⎜ 0 0 4 0⎟

⎜0 0 1 0⎟

⎜

⎟

⎜

⎟

0 0 0 4

0 0 0 1

⎝

⎠

⎝

⎠

⎛1 0 0 0⎞

⎜0 1 0 0⎟

Se anota como   I

⎜

⎟

4×4 =

. Por lo cual  A = 4.  I

⎜0 0 1 0⎟

4 4

×  

⎜

⎟

⎝0 0 0 1⎠

En general una matriz escalar   es de la forma: 

⎛λ 0 " 0 0 ⎞

⎛1 0 " 0 0⎞

⎜ 0 λ

⎜

⎟

" 0 0 ⎟

⎜

⎟

0 1 " 0 0

⎜

⎟

⎜ # # % # # ⎟    con  λ ∈  K  que es expresable como  λ.⎜ # # % # # ⎟

⎜

⎟

⎜

⎟

⎜ 0 0 " λ 0 ⎟

⎜ 0 0 " 1 0⎟

⎜ 0 0 " 0 λ ⎟

⎜

⎟

⎝

⎠

⎝ 0 0 " 0 1⎠

⎛1 0 " 0 0⎞

⎜0 1 " 0 0⎟

⎜

⎟

La matriz  ⎜ # # % # # ⎟ es muy especial, le pondremos nombre: la identidad de tipo 

⎜

⎟

⎜0 0 " 1 0⎟

⎜0 0 " 0 1⎟

⎝

⎠

 n x  n (o de orden  n),  tal que sus elementos son el 1 de  K   en la diagonal principal y el 0 de  K 

fuera de ésta. Esta matriz se puede describir como sigue:  

1 

⎧⎪   si  i =  j

 I

⎪

 n = (  i

 e j )1  i

≤ ≤ n  tal que   i

 e j = ⎨

1≤

⎪

 j≤ n

0   

⎪⎩

si  i ≠  j
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EJEMPLO 10.1.8 

⎛ 2

−

0 1⎞

⎜ 3 2 0⎟

−

Sea   A

⎜

⎟

= ⎜

hallar   -1.  A ;  0.  A ;  2.  A  

3

0 7⎟

⎜

⎟

⎝ 1

9 3

−

⎠

⎛ −1.( 2

− )

1

− .0

−1.1⎞ ⎛ 2

0

1

− ⎞

⎜ 1.( 3)

1.2

1.0⎟ ⎜ 3

2 0 ⎟

− −

−

−

−

-1.  A ⎜

⎟ ⎜

⎟

=

=

es decir .... -  A. 

⎜ −1.3

−1.0

−1.7⎟ ⎜ 3

−

0

7

− ⎟

⎜

⎟ ⎜

⎟

⎝

1.1

1.( 9)

1.3⎠ ⎝ 1 9

3

−

− −

−

−

− ⎠

⎛ 2

−

0 1⎞

⎛0 0 0⎞

⎜ 3 2 0⎟

⎜0 0 0⎟

−

0.  A  0.⎜

⎟

⎜

⎟

=

= " =

¿está de acuerdo? Es la  O

⎜

4 x 3 

3

0 7⎟

⎜0 0 0⎟

⎜

⎟

⎜

⎟

⎝ 1

9 3⎠

⎝0 0 0

−

⎠

⎛ 2.( 2

− )

2.0

2.1⎞ ⎛ 4

−

0

2 ⎞

⎜ 2.( 3) 2.2 2.0⎟ ⎜ 6 4 0 ⎟

−

−

2.  A ⎜

⎟ ⎜

⎟

=

=



⎜ 2.3

2.0

2.7⎟ ⎜ 6

0

14⎟

⎜

⎟ ⎜

⎟

⎝ 2.1

2.( 9) 2.3⎠ ⎝ 2

18 6

−

−

⎠

Claramente 1.  A= A  

Además compruebe que 2.  A = (1 + 1) . A = A + A 

¾  Propiedades de la multiplicación de  escalar por matriz

 m× n

•

Por la definición dada si  A∈  K

y α ∈  K        entonces       α . 

 m× n

 A∈  K

.   

•

Dada 

 m n

 A K ×

∈

entonces   1 .  A =  A

Hay dos clases de "distributividad": 

 m n

×

 m n

×

● Dados  A∈  K

,  B ∈  K

y  α ∈  K  entonces  α  . ( A +  B) = α .  A +α .  B  luego vale que la multiplicación por el escalar se distribuye en la suma de matrices. 

 m× n

● Dados

 A  ∈  K

,   α   ∈ K  y β ∈  K  entonces    (α + β ) .  A = α .  A + β .  A  luego vale que la multiplicación de una matriz por una suma de escalares se distribuye en   la suma de escalares .  
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Se verifica una especie de asociatividad: 

 m n

×

•

Dados 



 A  ∈  K

,   α ∈  K  y β ∈  K    entonces    (α. β ) .  A = α . (β . )

 A . 

Observar con atención los distintos usos del símbolo " . " en la propiedad anterior. 

EJERCICIO 10.1.9 

a)

Verificar las propiedades  para al menos dos casos por propiedad. 

b)

Demostrar al menos dos propiedades de la multiplicación  de escalar por matriz. 

Lo ayudamos en b):  

 m n

×

 m n

×

Sean   A∈  K

,  B ∈  K

y  α ∈  K  entonces  α  . ( A +  B) = α .  A +α .  B  

Sea   A+B =  C = (  ij

 c )1≤ i≤ m   donde 

1≤  j≤ n

 i

 c j =  ij

 a +  ij

 b

para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n

α . ( A +  B) = α .  C  es decir es 

α . 

= α

 ij

 c

(.  ij

 a +  ij

 b ) para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n

Como vale la propiedad distributiva de la multiplicación en  K en la suma en  K ,  se tiene α . 

= α

+α

 ij

 c

.  ij

 a

.  ibj  para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n   (*) Por otra parte si se trabaja con el segundo miembro de la igualdad a 

demostrar:α .  A +α .  B =  T +  F  donde α .  A =  T = (  it j ) 1  i m  y  α

≤ ≤

.  B =  F = (  fi j)1≤ i≤ m   por 

1≤  j≤ n

1≤  j≤ n

tanto    it j =α .  i

 a j  y  fi j =α .  ib j  para cada  1 ≤  i ≤  m  ∧ para cada 1 ≤  j ≤  n (**) , y además 

α .  A+α .  B =  T +  F = G = ( g

=

+

 i j ) 1≤ i≤ m

tal que cada    gi j it j fi j  (***)

1≤  j≤ n

Luego comparando (*) y (***) y teniendo en cuenta (**) resulta la igualdad pretendida. 

EJERCICIO 10.1.10 

Realizar los siguientes cálculos: 2.  B  ;  i. B   ;    3.  A + (2 -  i).  B  ;  A +  4  i B 

para los casos: 

⎛ 2 ⎞

⎛ 0 ⎞

⎜

⎟

⎜ ⎟

⎛ 2

1

− ⎞

⎛ 1

−

0⎞

a)   A =

0

 B = 3 i

⎜

⎟

⎜ ⎟     

b)  A =

 B =

⎜

⎟

⎜

⎟   

⎜

⎝ 2 1 ⎠

⎝ 3 2

3⎟

⎜ 4 ⎟

−

⎠

⎝

⎠

⎝ ⎠

⎛ 2

1

−

7⎞

⎛ 0

1

5

− ⎞

c)  A = ⎜

⎟

 B = ⎜

⎟  

⎝ 2

3 0⎠

⎝ − 2 2 0 ⎠
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EJERCICIO 10.1.11 

Hallar  X tal que  4.  X = 3. 

−  A + 2.  B  para: 

⎛ 2

1

− ⎞

⎛ 1

−

0⎞

a) 

 A =

 B =

⎜



2 1 ⎟

⎜ 3 2⎟

⎝

⎠

⎝

⎠

⎛ 2

1

−

7⎞

⎛ 0

1

5

− ⎞

b) 

 A = ⎜

⎟

 B = ⎜

⎟  

⎝ 2

3 0⎠

⎝ − 2 2 0 ⎠

  Una definición importante: La trasposición y la matriz traspuesta 

Dada una matriz  A se le asocia otra matriz si se intercambian ordenadamente las filas con las columnas. 

 m n

Precisando, para una matriz  A

 K ×

∈

,  A = (  ij

 a )1≤ i≤ m  se define como  

1≤  j≤ n

 n m

la traspuesta de  A  a la matriz de   K ×  que se anota 

 t

 A  dada por:

 t

 A = ( *

 a ij )1

donde para cada  i, 1 ≤  i ≤  n y para cada  j, 1 ≤  j ≤  m

≤ i≤ n

1≤  j≤ m

*

 a ij =  a ji

La trasposición de matrices es una función   t:  m× n

 n× m

→

, 

 t

 K

 K

 A

6  A , a cada

matriz  A se le asigna su traspuesta. 

Lo que hace esta operación es colocar ordenadamente las filas como columnas, así  se 

pasa de una matriz  m  x  n  a otra  n  x  m 

⎛  a

 a

...  a

⎛  a

 a

...  a

11

12

1 ⎞

⎞

 n

⎜

⎟

11

21

1

 m

⎜

⎟

 a

 a

...  a

⎜

 a

 a

 a

 t

... 

21

22

2 n

 A

⎟

=

⎜ 12

22

 m 2 ⎟

=

⎜



 A

... 

... ... ... ⎟

⎜ ... ... ... ... ⎟

⎜

⎟

⎜

⎟

 a

 a

 a

⎝

 a

 a

 a

⎝  n

 n

... 

 m

 m

... 

1

2

 mn ⎠

1

2

 mn ⎠

EJEMPLO 10.1.12 

⎛ 2 −  i

0 ⎞

Dada 

2×2

 A =

∈

⎜

^

como es 2 x 2, su traspuesta es también 2 x 2:  

⎝ 2

1 ⎟

+  i ⎠

⎛ −

 t

2  i

2 ⎞

 A = ⎜



⎝ 0

1 ⎟

+  i ⎠

611

MATRICES – CAPÍTULO 10

EJEMPLO 10.1.13 

⎛ 2

0 ⎞

⎛ 2

3

−

4 ⎞

⎜

⎟

a)

Sea 

2 3

×

 t

3×2

=

∈

⎜

⎟ ^

entonces   ∈^  y  es 

 t

 A

 A

 A = −3 1−  i  

⎝ 0 1  i  2 i

⎜

⎟

−

⎠

⎜ 4 2 i ⎟

⎝

⎠

⎛0⎞

⎜1⎟

b)

Si 

⎜ ⎟

4 1

 B

×

=

∈ \

 t

 B

×

=

∈ \

⎜

entonces se tiene  

(

)

1 4

0 1 0 0

0⎟

⎜ ⎟

⎝0⎠

EJEMPLO 10.1.14 

Sean, como en un ejemplo anterior:  

⎛ 3

0

1−  i ⎞

⎛ 5

2 4 + 4 i ⎞

⎜

⎟

⎜

⎟

 A = −6 i

1

8

 B = 3 +  i  6

4 −  i

⎜

⎟

⎜

⎟  

⎜ 0

2 3 i

5 ⎟

⎜ 0 2

2 i ⎟

− +

−

⎝

⎠

⎝

⎠

Se ha calculado  A+ B: 

⎛ 8

2 5 + 3 i ⎞

⎜

⎟

 A +  B = 3 − 5 i  7 12 −  i

⎜

⎟  

⎜ 0

3 i  5 2 i ⎟

−

⎝

⎠

Si se traspone   A+B se obtiene : 

⎛ 8

3 − 5 i

0 ⎞

(

⎜

⎟

 A +  B) t =

2

7

3 i

⎜

⎟

⎜5 3 i  12  i  5 2 i⎟

+

−

−

⎝

⎠

Por otra  parte, si trasponen   A y  B y se suman: 

⎛ 3

−6 i

0 ⎞

⎛ 5

3 +  i

0 ⎞

 t

⎜

⎟

⎜

⎟

 A =

0

1

2

− + 3

 t

 i

 B =

2

6

2

⎜

⎟

⎜

⎟

⎜1  i  8

5 ⎟

⎜ 4 4 i  4  i  2 i⎟

−

+

−

−

⎝

⎠

⎝

⎠

⎛ 8

3 − 5 i

0 ⎞

 t

 t

⎜

⎟

 A +  B =

2

7

3 i

⎜

⎟

¿Qué observa? 

⎜5 3 i  12  i  5 2 i⎟

+

−

−

⎝

⎠

EJEMPLO 10.1.15 

⎛ 2

3

−

4 ⎞

Dados   A = ⎜

⎟

α = 1+  i

⎝ 0 1−  i  2 i ⎠

⎛ 2 + 2 i

3

− − 3 i  4 + 4 i ⎞

ya se ha calculadoα .  A = ⎜

. 

⎝ 0

2

2 2 ⎟

− +  i ⎠
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⎛ 2 + 2 i

0 ⎞

Trasponiendo se tiene:    (α . ) t ⎜

⎟

 A = −3 − 3 i

2



⎜

⎟

⎜ 4 4 i

2 2 i ⎟

+

− +

⎝

⎠

Si se traspone  A y se multiplica por el escalar: 

⎛ 2

0 ⎞

⎛ 2 + 2 i

0 ⎞

 t

⎜

⎟

⎜

⎟

 A =

3

−

1−  i

α.  t

 A =

3

− − 3 i

1−  i

⎜

⎟

⎜

⎟    

¿Qué observa? 

⎜ 4 2 i ⎟

⎜ 4 4 i

2 2 i ⎟

+

− +

⎝

⎠

⎝

⎠

EJERCICIO 10.1.16 

a)

Verificar:

1) ( A +  B) t

 t

 t

=  A +  B

2) (α. ) t

 A = α.  t

 A

3) (  t ) t

 A

=  A

Para las matrices y escalares siguientes: 

⎛ 2

4

−  i

5 ⎞

⎛ 0

6 + 4 i  1 ⎞

1) y 3) con  A =

 B =

⎜⎝ 9 2 2 ⎟

⎜

⎟

−

− +  i ⎠

⎝7 + 2 i

0

2

− ⎠

⎛ 3 ⎞

⎛ 2 ⎞

⎜ 1 ⎟

⎜ 1⎟

−

 C ⎜

⎟

 F

⎜ ⎟

=

=

⎜ 3

− ⎟

⎜ 9 ⎟

⎜

⎟

⎜ ⎟

0

2

⎝

⎠

⎝ ⎠

2

−

1

⎛ 2

1

−

6 +  i  2 3⎞

2) con α =

−  i

 A =

3

3

⎜⎝ 1 3

⎟

−

−  i

2

0 0⎠

⎛0 2

4

− ⎞

1

⎜

⎟

β = −

 B = 6 0

3

−  

2

⎜

⎟

⎜1 0 3 ⎟

⎝

⎠

b)

Demuestre al menos una de las propiedades enunciadas en a). 

c)

¿Cuál es la traspuesta de  O

 m n

 K ×

∈

? Ejemplifique lo que afirma. 

d)



Si 

D

 n× n

∈ \

es diagonal, ¿cuál es su traspuesta? Ejemplifique. 

e)

¿Qué pasa con la traspuesta de

 n n

 In K ×

∈

, siendo  In la matriz identidad de orden  n ? 

Ejemplifique  para algunos  n y demuestre en general. 

Se hará alguna parte de b), ¿Qué tal la 2) ?: 
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 m n

Sean   A

 K ×

∈

,  A = (  ij

 a )1≤ i≤ m ,   la matriz 

1≤  j≤ n

 t

 A = ( *

 a ij )1

donde para cada  i, 1 ≤  i ≤  n y para cada  j, 1 ≤  j ≤  m

≤ i≤ n

1≤  j≤ m

*

 a ij =  a ji

α .  A = (  ij

 b )1≤ i≤ m = B donde para cada  i,1≤  i ≤  m y para cada  j,1≤  j ≤  n 1≤  j≤ n

= α

 ij

 b

.  iaj

(α . ) t

 t

 A =  B  donde para cada  i,1 ≤  i ≤  m y para cada  j,1 ≤  j ≤  n

*

*

= α

=

= α

 i

 b j

( .  ij

 a )

 bji

.  a ji  (1) por definicion de la multiplicación por escalar y traspuesta. 

Por otra parte: 

α.  t

 A =  C = (  ij

 c )1≤ i≤ n  donde para cada  i,1≤  i ≤  n y para cada  j,1≤  j ≤  m 1≤  j≤ m

*

= α

α

 ij

 c

.  a ij  = .  aji  (2) por la definición de la multiplicación por escalar y traspuesta. 

Comparando (1) y (2) se tiene la igualdad buscada. 

2. Multiplicación  entre  Matrices

Otra operación entre matrices es la multiplicación. 

La definición que seguidamente se dará pareciera antojadiza pero es debido a las 

aplicaciones que la teoría de matrices tiene, una de las cuales será aprovechada en este 

Curso: la resolución de los sistemas de ecuaciones. También es aplicable en el capítulo de 

transformaciones lineales. 

Históricamente se asigna a Arthur Cayley el haber introducido la multiplicación matricial 

precisamente para esta aplicación a mediados del siglo XIX. 

×  n

 n

Sean 

 m

∈

y      

×  p

 A K

 B ∈  K

dos matrices tales que (como se destaca) el número

de columnas de  A es igual al número de filas de  B. 

 m p

Con ellas se define una matriz  C∈

×

 K

 ,  llamada producto de  A por  B. 

Se anota    C = A .B 

Esta operación es definible entre elementos de distintos conjuntos (muy particulares) y  el producto resulta en otro conjunto. 
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Si  A = (  ij

 a  1)≤ i≤ m   y    B = (  ij

 b  1)≤ i≤ n  la  matriz    C = A .B 

1≤  j≤ n

1≤  j ≤  p

está definida por: 

 C = (  ij

 c  1)≤ i≤ m tal que el elemento genérico es dado por: 

1≤  j≤  p

 n

 ij

 c = ∑  ik

 a .  k

 b j

 k  1

=

⎛ 11

 b

1

 b  2

13

 b

" 1

 b j " 1

 b p ⎞

⎜

⎟

⎜ 21

 b

22

 b

23

 b

" 2

 b j " 2

 b p ⎟

⎜

⎟

     Para calcular  cij se 

#

#

#

#

#

#

"superponen" y 

   B=       ⎜

⎟

⎜ #

#

#

" 

" 

# ⎟

multiplican los 

 kj

 b

⎜

⎟

elementos de  

⎜ #

#

#

#

#

# ⎟

la fila  i-ésima de  A con 

⎜  b

⎟

" 

" 

⎝ 1

 n

 n

 b  2

 n

 b  3

 n

 b j

 n

 b p ⎠

los de la  

 j-ésima columna de  B. 

⎛ 1

 a  1

12

 a

13

 a

" 

" 

1

 a n ⎞

Y se suman. 

⎜

⎟

⎜ 21

 a

2

 a  2

23

 a

" 

" 

2

 a n ⎟

⎜ #

#

#

#

#

# ⎟

  A=  ⎜

⎟

 a

⎜ 1 i

 i

 a  2

 i

 a  3 "  iak " 

 i

 a n ⎟

⎜ #

#

#

#

#

# ⎟

⎜

⎟

⎜  a

⎟

⎝ 1

 m

 m

 a  2

 m

 a  3

" 

" 

 m

 a n ⎠

⎛ 11

 c

12

 c

1

 c  3 " 1

 c j " 1

 c p ⎞

⎜

⎟

⎜ 21

 c

22

 c

2

 c  3 " 2

 c j " 

2

 c p ⎟

⎜

⎟

#

#

#

#

#

#

  C =  ⎜

⎟  

⎜  c  1

" 

" 

⎟

 i

 i

 c  2

 i

 c  3

 i

 c j

 i

 c p

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜ c

⎟

" 

" 

⎝ 1

 m

 m

 c  2

 m

 c  3

 m

 c j

 n

 c p ⎠

EJEMPLO 10.2.1 

⎛ 0 1 ⎞

⎜ 3 2⎟

−

⎛ 2 i

0

3

Calcular el producto de las matrices 

⎞

 A ⎜

⎟

=

 B =



4 5

⎜⎝ 1 4 ⎟

⎜

⎟

−

 i

− ⎠

⎜

⎟

0 6

⎝

⎠

4× 2

3

La matriz   A ∈ ^

y      

2

 B

×

∈ ^

por lo cual es posible calcular   C = A.B    que es

4×3

elemento de  ^

615

MATRICES – CAPÍTULO 10

Se usan: 

Para calcular   c

2i 

11

Fila 1 de  A                            

Columna 1 de  B 

0         1

1 

Luego   c 11 = 0.2 i +1.1 = 1

Se usan: 

Para calcular   c

0 

12

Fila 1 de  A  



0



1

Columna 2 de  B 

-4 

Luego   c 12 = 0.0 +1.( 4)

− = 4

−

Se usan: 

Fila 1 de  A  

3 

Para calcular   c13



Columna 3 de

0         1

 B 

- i 

Luego   c 13 = 0.3 +1.(  i

− ) =  i

−

Por el momento se ha calculado la primera fila de  C. 

Para calcular la segunda fila de  C, se trabaja con la segunda fila de  A y con cada una de las columnas de  B: 

Se usan: 

Para calcular   c

2i 

21

Fila 2 de  A  



Columna 1 de

3       -2

 B 

1 

Luego   c  21 = 3.2 i + ( 2).1

−

= 2

− + 6 i

Se usan: 

Para calcular   c

0 

22

Fila 2 de  A                           

Columna 2 de

3       -2 

 B 

-4 

Luego   c  22 = 3.0 + ( 2).(

−

4)

− = 8

Se usan: 

3 

Para calcular   c

Fila 2 de  A  

23



Columna 3 de

3       -2  

 B 

- i 

Luego   c  23 = 3.3 + ( 2).(

−

 i

− ) = 9 + 2 i
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Por el momento se han calculado la primera y segunda fila de  C. 

Se usan: 

Para calcular   c

2i 

31

Fila 3 de  A                           

4         5

Columna 1 de  B 

1 

Luego   c 31 = 4.2 i + 5.1 = 5 + 8 i

Se usan: 

0 

Para calcular   c32

Fila 3 de  A                           

4         5

Columna 2 de  B 

-4 

Luego   c 32 = 4.0 + 5.( 4)

− = 20

−

Se usan: 

3 

Para calcular   c33

Fila 3 de  A                           

4         5

Columna 3 de  B 

- i 

Luego   c 33 = 4.3 + 5.(  i

− ) = 12 − 5 i

Para calcular la cuarta fila de  C,  se usa la cuarta fila de  A y las columnas de  B: Se usan: 

2i 

Para calcular   c41

Fila 4 de  A  



Columna 1 de

0         6

 B 

1 

Luego   c  41 = 0.2 i + 6.1 = 6

Se usan: 

0 

Para calcular   c

Fila 4 de  A  

42



0         6

Columna 2 de  B 

-4 

Luego   c  42 = 0.0 + 6.( 4)

− = 2

− 4

Se usan: 

Fila 4 de  A  

3 

Para calcular   c43



0         6

Columna 3 de  B 

- i 

Luego   c  43 = 0.3 + 6.(  i

− ) = −6 i

⎛

1

4

−

 i

−

⎞

⎜ 2 6

⎟

− +  i

8

9 + 2 i

Por tanto se tiene:       C = ⎜

⎟

⎜

  

5 + 8 i

20

−

12 − 5 i⎟

⎜

⎟

⎝

6

24

6 i

−

−

⎠
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¿Es posible multiplicar  B por  A? Como 

4× 2

2 3

 A∈ ^

y       B

×

∈^

el número de columnas

de  B (3) es distinto del número de filas de  A (4),  luego  no está definida esa multiplicación. 

Por esta observación podemos concluir que el producto de matrices NO es conmutativo . 

Cuando como en esta situación no es posible realizar la multiplicación entre dos matrices se dice que ellas no son multiplicables . 

En el caso que la multiplicación sea posible se dice que las matrices son multiplicables . 

EJEMPLO 10.2.2 

⎛ 6

4

− ⎞

⎛ 3 1⎞

Sean   A =

 B =

⎜

. Por ser ambas 2x2, es posible calcular  A.B y  B.A 

⎝ 2 8 ⎟

⎜

⎠

⎝ 2 4⎟

−

⎠

⎛6

4

− ⎞ ⎛ 3 1⎞ ⎛6.3 + ( 4). 

− ( 2)

−

6.1+ ( 4

− ).4⎞ ⎛ 26

10

− ⎞

 A.  B =

⎟. 

=

=

⎜



⎝ 2 8 ⎜

⎠ ⎝ 2 4⎟ ⎜

⎠ ⎝ 2.3 8.( 2)

2.1 8.4 ⎟ ⎜

⎠ ⎝ 10 34 ⎟

−

+

−

+

−

⎠

⎛ 3 1⎞ ⎛ 6

4

− ⎞ ⎛ 3.6 +1.2

3.( 4

− ) +1.8 ⎞ ⎛ 20

4

− ⎞

. 

 B A =

⎟. 

=

=

⎜



⎝ 2 4 ⎜

⎠ ⎝ 2 8 ⎟ ⎜

⎠ ⎝ 2.6 4.2

2.( 4) 4.8⎟ ⎜

⎠ ⎝ 4 40⎟

−

−

+

− − +

−

⎠

Como se observa están definidos     A.B y  B.A    pero  A.B ≠  B.A. 

 "El orden de los factores altera el producto"  chau refrán…. 

EJERCICIO 10.2.3 

Dadas  A  y   t

 A  cualesquiera, ¿es calculable   A.  t

 A ? 

a) Dadas  A y   t

 A  cualesquiera, ¿es calculable     t

 A .  A? 

b) Verifique lo afirmado en a) y b) para las matrices:

⎛ −2 +  i ⎞

⎜ 0 ⎟

⎛ 2 3 +  i ⎞

⎛3 0

1

− ⎞

⎜

⎟

 A =

 B =

 C =

⎜

⎟

⎜

⎟

⎜

⎟  

⎝ 0

1 ⎠

⎝3 1 2

 i

⎠

⎜ 3 ⎟

⎜

⎟

⎜⎝ 4 ⎟

− ⎠
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EJERCICIO 10.2.4: 

a)

Dadas 

las 

matrices

⎛ 2 3 +  i ⎞

⎛3 0

1

− ⎞

⎛1 2 +  i

1

− −  i ⎞

 A =

 B =

 C =

⎜



⎝ 0

1 ⎟

⎜

⎠

⎝3 1 2 ⎟

⎜

⎠

⎝0

1

4 ⎟

− ⎠

Calcular   A.(B+C)  y  A.B+A.C . Qué observa? 

Cómo llamaría a lo que observa? 

b)

Dadas 

las 

matrices

⎛ 0 0⎞

⎛3 0

1

− ⎞

 A =

 B =

⎜

Calcular  A.B,  ¿   que observa??? 

⎝ 5 1⎟

⎜

⎠

⎝3 1 2 ⎟

−

⎠

c)

Dadas 

las 

matrices

⎛ 2

4 0

0 ⎞

⎛3 0 −1⎞

⎜

⎟

 A =

 B = −

⎜

⎟

1 5 0 3 −  i     Calcular   A.B,  ¿que observa??? 

3 1 2

⎜

⎟

⎝

⎠

⎜1  i  0 0 2 ⎟

+

⎝

⎠

d) Demostrar: sean 

 m×  n

∈

y      

 n×  p

 A K

 B ∈  K

, si  A tiene una fila nula entonces  A.B

tiene una fila nula para toda  B y  si  B tiene una columna nula entonces  A.B tiene una columna nula cualquiera sea  A. 

Siempre que los productos y las sumas estén definidos se satisface: 

 A.(B+C) = A.B + A.C 

es decir, la multiplicación de matrices es distributiva en la suma. ¡Demostrarlo!   

EJERCICIO 10.2.5 

⎛ 2

0 1 ⎞

⎛ 2

1 ⎞

⎜

⎟

⎜

⎟

⎛ 4 0 8

1

− ⎞

a) Dadas las matrices:  A =

4

−

3 i  0

 B =

 i

−

2 +  i

 C =

⎜

⎟

⎜

⎟

⎜



⎜

⎟

⎜

⎟

⎝ 6 7 2 0 ⎟

1

3

2

−

⎝

⎠

⎝ 3

0

⎠

⎠

Verifique que  A.(B.C) = (A.B).C 

Es decir vale en este ejemplo y también  en general la asociatividad de la multiplicación de matrices . 

b) Demostrar que para cualquier terna de matrices multiplicables vale:   A.(B.C) = (A.B).C
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EJEMPLO 10.2.6 

⎛ 2

1

− ⎞

⎛ 2 0⎞

Sean   A =

 B =

⎜⎝ 6 3 ⎟

⎜

⎠

⎝ 4 0⎟

−

⎠

⎛ 2

1

− ⎞ ⎛ 2 0⎞ ⎛ 2.2 + ( 1

− ).4 2.0 + ( 1

− ).0⎞ ⎛0 0⎞

 A.  B =

⎟. 

=

=

⎜



⎝ 6 3 ⎜

⎠ ⎝ 4 0⎟ ⎜

⎠ ⎝ 6.2 3.4

6.0 3.0 ⎟ ⎜

⎠ ⎝0 0⎟

−

−

+

−

+

⎠

¡Un producto de matrices puede dar la matriz nula sin que los factores lo sean! 

⎛ 8

4

− ⎞

⎛ 2 0⎞

Sean   C =

 B =

⎜



⎝ 12 6 ⎟

⎜

⎠

⎝ 4 0⎟

−

⎠

⎛ 8

4

− ⎞ ⎛ 2 0⎞ ⎛8.2 + ( 4).4

−

8.0 + ( 4).0

−

⎞ ⎛0 0⎞

 C.  B =

⎟. 

=

=

⎜⎝ 12 6 ⎜

⎠ ⎝ 4 0⎟ ⎜

⎠ ⎝ 12.2 6.4

12.0 6.0 ⎟ ⎜

⎠ ⎝0 0⎟

−

−

+

−

+

⎠

 Atención!   

 A.B = C.B con  B  NO nula   y     A ≠  C 

Este ejemplo ilustra claramente que el producto entre matrices es MUY distinto a los 

productos definidos entre los objetos de los conjuntos numéricos o de polinomios que 

seguramente son los ejemplos que el alumno conoce. Hay otros ejemplos que también 

sorprenden a los no matemáticos. 

Se verá seguidamente una propiedad del producto de matrices que SI es similar a una 

propiedad del producto de los conjuntos numéricos o de polinomios: 

EJERCICIO 10.2.7 

Sean las matrices 

⎛ 2

0 1 ⎞

⎛ 2

1 ⎞

⎛1 0 0⎞

⎜

⎟

⎜

⎟

⎛1 0⎞

⎜

⎟

 A =

4

−

3 i  0

 B =

 i

−

2 +  i

⎜

⎟

⎜

⎟

 I 2 =

 I 3 =

⎜

⎟

0 1 0

⎜

⎟

⎜

⎝0 1

1

3

2⎟

⎜ 3

0 ⎟

−

⎠

⎜

⎟

⎝

⎠

⎝

⎠

⎝0 0 1⎠

a)

Calcular 



 A.  I 3   e    I 3 .  A. ¿Qué observa? 

b)

Calcular 



 B.  I 2   e    I 3 .  B. ¿Qué observa? 
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Porqué piensa que se llama matriz identidad de orden  n a la matriz escalar  n x  n , con los únicos elementos no nulos están en la diagonal y ellos son 1: 

⎛1 0 " 0 0⎞

⎜0 1 " 0 0⎟

⎜

⎟

1 

⎧⎪   si  i =  j

 I = ⎜ # # % # # ⎟

tal que   e

⎪

=

 n

= (  ie j  1)≤ i≤ n

⎨

⎜

⎟

 i j

0 

⎪⎪⎩   si  i ≠  j

1

⎜0 0 " 1 0

≤  j≤ n

⎟

⎜0 0 " 0 1⎟

⎝

⎠

Cuando se desprende del contexto es usual no poner el subíndice que indica el orden de la 

identidad. 

EJERCICIO 10.2.8 

a)

Probar 

que 

si 

 m n

 A K ×

∈

entonces  . 

 A In =  A =  Im.  A

b)

Probar 

que 

si 

 n n

 A K ×

∈

entonces  . 

 A In =  A =  In.  A

c)

¿Cuánto  vale   In .In , para cualquier orden  n? 

Vamos a ayudar con a): 

⎛1 0 " 0 0⎞

⎜0 1 " 0 0⎟

⎜

⎟

1 

⎧⎪   si  i =  j

Sea 

 m n

 A K ×

∈

y sea 

⎪

 I = ⎜ # # % # # ⎟

con   e = ⎨

 n

= (  ie j  1)≤ i≤ n

 i j

⎜

⎟

0 

⎪⎪⎩   si  i ≠  j

1

⎜0 0 " 1 0

≤  j≤ n

⎟

⎜0 0 " 0 1⎟

⎝

⎠

Sea  C = . 

 A In = (  ic j )1≤ i≤ m  tal que cada elemento genérico: 

1≤  j≤ n

 n

 ij

 c = ∑

, analizando la definición de la identidad y de la sumatoria, es de observar 

 i

 a k.  k

 e j

 k  1

=

que el índice que varía en la sumatoria es el índice de la columna de los elementos de  A y el de la fila de  In ,  por lo tanto los elementos que aporta en esta suma la matriz identidad son todos nulos salvo el que se encuentra en la diagonal, es decir que el índice de fila es igual al de columna. Como el que varia es  k, debe ser  k = j  por lo cual   

 n

 ij

 c = ∑

. 

 ik

 a .  k

 e j =  i

 a j.  ej j =  i

 a j.1 =  i

 a j

 k  1

=

Por tanto hemos comprobado que el elemento genérico de  C es igual al elemento de genérico de  A, es decir  . 

 A In =  A . 

Le queda demostrar la otra igualdad:   Im.  A =  A   , es similar!!!! 
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EJERCICIO 10.2.9 

⎛ 2

0 1 ⎞

⎛ 2

1 ⎞

⎛ 2 0 0⎞

⎜

⎟

⎜

⎟

⎜

⎟

a)

Sean 

 A =

4

−

3 i  0

 B =

 i

−

2 +  i

⎜

⎟

⎜

⎟

 E = 0 2 0

⎜

⎟  

⎜ 1 3 2⎟

⎜ 3

0 ⎟

−

⎜

⎟

⎝

⎠

⎝

⎠

⎝ 0 0 2⎠

Calcular  E. A  y   E .B. 

b) ¿Qué observa en lo hallado en a)? ¿Qué nombre se ha puesto a las matrices como  E ? 

¿le queda claro el porqué? 

EJERCICIO 10.2.10 

 n n

Considere el conjunto   K × . 

a)

¿Es posible definir la suma entre dos de sus elementos? 

b)

¿Qué propiedades tiene esa operación? Haga una lista. 

c)

¿Es posible definir la multiplicación entre dos elementos cualesquiera del conjunto? 

d)

¿Qué propiedades tiene esa operación? Haga una lista. 

e)

Piense en todos los conjuntos que conoce que tienen definidas en ellos dos

operaciones con las mismas propiedades que la suma y la multiplicación de matrices. Diga 

cuales son. 

¿Recuerda cómo se llama esa estructura algebraica? 

¿A...? 

3. La Potenciación de Matrices

Al tener definida la multiplicación entre matrices es natural generalizar convenientemente la operación de potencia. 

Tiene la misma limitación en su definición como en los números y en los polinomios, la 

potencia de exponente 0 del elemento nulo no está definida, en la teoría de matrices tampoco. 

×

Para una matriz 

 n n

 A∈  K

∧  A ≠  n

 O × n  y   k ∈ `  se define

⎧ I

 k =

 k

⎪  n

si

0

 A = ⎨

 k  1

⎪⎩ . 

 A A −

si  k ≥1

Si    A =  O

,  k ≥1, 

 k

 n n

 A =  A

×

, 

es decir  

 k

 n

 O n =  n

 O n

para    k

×

×

∈ ` −{0} 

¿Por qué  A tiene que ser cuadrada para definir la potencia de  A? 
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EJERCICIO 10.3.1 

⎛ 3

0

1 ⎞

⎛ 1

−

4

3

− ⎞

⎜

⎟

⎜

⎟

Sean   A =

4

2

−

8

 B = 9

2

−

5

⎜

⎟

⎜

⎟ . 

⎜ 2 3 10⎟

⎜ 0 1 3 ⎟

−

⎝

⎠

⎝

⎠

2

3

2

4

a) Calcular   A ,  A ,  B ,  B

b) Comprobar que  . 

 A B ≠ . 

 B A

2

2

c) Verificar que ( A +  B).( A −  B) ≠  A −  B

2

2 2

d) Analizar que  ( . 

 A B) ≠  A .  B

2

2

2

e) Comprobar que ( A +  B) ≠  A + 2. . 

 A B +  B

EJERCICIO 10.3.2 

a)

Compruebe con las matrices

⎛ 2

3 i ⎞

⎛7

 i ⎞

⎛1 0⎞

 A =

 B =

 I =

⎜

las siguientes igualdades: 

⎝1

⎟

⎜

⎟

⎜

⎟

−  i  0 ⎠

⎝ 0 2 −  i ⎠

⎝0 1⎠

2

 i)  A.(3.  B) = 3. . 

 A B

 ii)

. 

 A B = ( . 

 A B).  B

2

 iii)

. 

 A ( . 

 B )

 A = ( . 

 A B).  A

 iv) (4.  I ).  A = 4.  A

 v)  I =  I

b)

Conjeture si valen en general (para matrices cualesquiera) las igualdades anteriores. 

¿Cómo las enunciaría? 

EJERCICIO 10.3.3 

Dadas las matrices 

⎛ 2

0 1 ⎞

⎛ 2

1 ⎞

⎜

⎟

⎜

⎟

 A =

4

−

3 i  0

 B =

 i

−

2 +  i

⎜

⎟

⎜

⎟

⎜ 1 3 2⎟

⎜ 3

0 ⎟

−

⎝

⎠

⎝

⎠

Compruebe las siguientes igualdades: 

2

 t

 t

a) (  t

 A ) = ( 2

 A )  

b)

( . )

 t

=

.  t

 A B

 B A

Para las matrices dadas podría realizar   t .  t

 A B  ? Justifique. 

EJERCICIO 10.3.4 

a)

Sea 

2 2

 I

×

∈^

demostrar por inducción que para todo   ∈ èntonces   n

 n

 I =  I

b)

Vale para identidades de cualquier orden lo demostrado en a)? 

c) Vale para identidades 

 n n

 I

 K ×

∈

? Justifique. 
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4. Matrices Invertibles

Al ver que existe una matriz identidad la pregunta que podría plantearse naturalmente es: 

¿Será que para toda matriz no nula existe otra matriz que multiplicadas entre sí el producto es la identidad? 

Claramente hay que ser muy cuidadoso. Qué se entiende por "  multiplicadas entre sí", pues ya se ha destacado que el producto NO siempre está definido. Es factible que en un 

determinado orden si esté definido, pero no en el otro. Un buen remedio para ello es considerar un conjunto de matrices cuadradas, pero aún allí no es conmutativa la multiplicación. 

EJEMPLO 10.4.1 

⎛ 1

⎛ 2 0⎞

0⎞

Sea   A = ⎜

y sea   B

⎜ 2

⎟

=

Calculemos  A.  B y   B.A: 

4

⎟

⎝  i  1⎠

⎜

⎟

⎜⎝ 2 i  1⎟

−

⎠

⎛ 1

⎛ 1

⎞

2. 

0.( 2

⎞

+

−  i) 2.0 + 01

2 0

0

⎜

⎜

⎟

2

⎟

⎛

⎞

⎛1 0⎞

. 

 A B = ⎜

⎟. 2

= ⎜

⎟ =



4

⎜

⎟

 i  1 ⎜

⎟

⎝

⎠

⎜

1

⎟ ⎝0 1

⎝ 2 i  1⎠ ⎜ 4 .  i

1.( 2 i) 4 .0

 i

1.1

⎠

−

+ −

+

⎟

⎝

2

⎠

⎛ 1

⎞

⎛ 1

1

0 ⎛ 2 0⎞

.2 0.4

⎞

+

 i

.0 + 01

⎛1 0⎞

. 

 B A ⎜ 2

⎟. 

⎜

⎟

2

2

⎟

=

=

=

⎜



4

⎜

⎟

⎜

⎟

 i  1

⎜

⎟

⎝

⎠

⎝ 0 1

⎝ 2 i  1⎠

⎝ 2 .  i 2 1.4 i

2 .  i 0 1.1

⎠

−

−

+

−

+

⎠

Para este par de matrices vale que  A.B = B.A=I 

Dada 

 n n

 A K ×

∈

se dice invertible   si existe 

 n n

 B K ×

∈

tal que      A.B.=B.A=I

   (*) 

  B se dice inversa de  A 

Una tal matriz   B  que cumpla (*) es única.  Por lo cual se anota  A-1.  (Ya lo probaremos…) EJEMPLO 10.4.2 

⎛1  i ⎞

Sea   A = ⎜

¿existe  B tal que   A. B = B. A = I ? 

0 0⎟

⎝

⎠

Para que ambas multiplicaciones estén definidas también  B debe ser 2x2. 

⎛  a b ⎞

Se considera por lo cual 

2 2

 B =

y se pretende demostrar que  B

×

∈

⎜

⎟

^

, cumpliendo 

⎝  c d ⎠

que conmute con  A y que ese producto sea la identidad: 
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⎛1  i ⎞ ⎛  a b ⎞ ⎛  a +  ic b +  id ⎞ ⎛1 0⎞

. 

 A B =

⎟. 

=

=

⎜0 0 ⎜

⎟ ⎜

⎟ ⎜

⎟

⎝

⎠ ⎝  c d ⎠ ⎝ 0

0 ⎠ ⎝0 1⎠

⎛  a b ⎞ ⎛1  i ⎞ ⎛  a ai ⎞ ⎛1 0⎞

. 

 B A =

. 

=

=

⎜

⎟ ⎜

⎟ ⎜

⎟ ⎜

⎟

⎝  c d ⎠ ⎝0 0⎠ ⎝  c ci ⎠ ⎝0 1⎠

Claramente esto es imposible. (¿De acuerdo??) 

 Por lo tanto no toda matriz no nula de  2 2

×

^

 es invertible.  

Un poco más adelante se encontrarán condiciones para la existencia de inversa de matrices 

y métodos para calcular. 

EJEMPLO 10.4.3 

 n n

Demostrar que dada   A

 K ×

∈

si existe una matriz que cumple (*), ésta es única. 

Por lo tanto si se verifica que para una matriz  A hay una matriz  B que cumple (*), ésta es la inversa de  A. 

Para demostrar que hay solamente una matriz que cumple (*), supondremos que hay dos y 

demostraremos que son iguales: 

Dada 

 n n

 A K ×

∈

, sean  B y  C tales que  A.B = B.A =I  (*)    y también    A.C = C.A =I   (*)’

Usando que  B = B. I ,  sea    B = B. I  =  B.  ( A.C)   por  (*)’, la multiplicación de matrices es asociativa, por tanto:    

 B  =  B.  ( A.C) = ( B.   A) .C  y por (*) se tiene: B  = ( B.   A) .C  =  I.C = C,  por propiedad de la identidad. 

Luego, es lo que queríamos demostrar que hay una única matriz que verifica (*). 

Observación: Es demostrable (con herramientas de Algebra Lineal) que dada 

 n n

 A K ×

∈

si

existe 

 n n

 B K ×

∈

tal que  A. B = I    , entonces  B es la inversa de  A.    (Es decir hay que comprobar solamente una sola parte de la definición)        

EJERCICIO 10.4.4 

a)

Dado 

 n >  0, sea  I  la identidad de orden  n,  ¿es  I invertible? 

b)

Cuál es su inversa? 

c)

Si 

 n n

 A K ×

∈

es invertible, ¿cuál es la inversa de  A- 1 ? 
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EJERCICIO 10.4.5 

×

×

−

a)

Probar 

que 

si 

 n n

 n n

 A∈  K

 B ∈  K

(  A B) 1

1

−

−1

y 

son invertibles entonces 

. 

=  B .  A

b)

Demuestre la generalización de a) para un número cualquiera de matrices, esto es:

1

−

⎛  h

⎞

 h

si

 n× n

−1

 A ∈

≤ ≤

⎜

⎟

 j

 K

,para 1  j h son invertibles entonces  ∏  Aj

= ∏  h

 A −  j  1

+

⎜

⎟

⎝  j  1

=

⎠

 j  1

=

1

−

 t

c)

Probar 

que 

si 

 n× n

 t

(  t

 A K

 A

 A )

( 1

es invertible entonces   es invertible y 

 A−

∈

=

)

Solución de a): 

1

−

1

Si  A  y  B son invertibles entonces existen  A  y  B−  tales que: 1

−

1

. 

 A A

=  A− .  A =  I         :

1

−

1

. 

 B B

=  B− .  B =  I           : :  

Si se prueba que 

1

−

−1

 B .  A  opera como la inversa de  A.B (es decir,  cumple (*) de la definición) ella es su inversa por ejercicio y observación anterior. 

1

−

1

−

1

−

1

−

1

−

1

( . 

 A B).( B .  A )

( .(

 A

. 

 B B )).  A

( . 

 A I ).  A

. 

 A A−

=

=

=

=  I

Por   : 

Por 

Por   :: 

Por  ser  I  la 

asociatividad 

identidad 

de la 

de la 

multiplicación 

multiplicación 

Queda para justificar que también 

1

−

1

( B A− ).( AB) =  I . (Hágalo para practicar, pues por la

observación que con Algebra Lineal es suficiente probar una sola igualdad, y ya está)  

EJERCICIO 10.4.6 

Sean  

 n× n

 A∈  K

, 

 n× n

 B ∈  K

, 

 n× n

 C ∈  K

y  O es la matriz nula de   n× n

 K

. 

Si  A es invertible entonces:

a)  . 

 A B =  O entonces  B =  O

b)  C.  A =  O entonces  C =  O

c) . 

 A B = . 

 A C entonces  B =  C

d) Observar que para 

 n× n

 A∈  K

, si  A es invertible

Como puede generalizar las igualdades demostradas en a), b) y c). Es decir pensar en que 

conjunto de matrices pueden estar en cada parte  B y  C. 
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Lo ayudaremos en b):  

Sean  

 n× n

 A∈  K

, 

 n× n

 C ∈  K

y  O es la matriz nula de   n× n

 K

. 

Si  A es invertible entonces:

 C.  A =  O =(  io  j  1)≤  i≤ n   tales que   io  j = 0 para todo  i y para todo  j de 1 a  n 1≤  j≤ n

Por ser  A invertible, 

1

. 

 A A− =  I , por lo tanto veremos como lo usamos:

1

−

1

( C. )

 A .  A

. 

 O A−

=

(no debe multiplicar a izquierda por la inversa de  A, pues recordar que

la multiplicación no es conmutativa) 

Como el producto de matrices si es asociativo: 

1

−

1

 C.( . 

 A A )

. 

 O A−

=

=  O  la última igualdad

se da por el EJERCICIO 10.2.4 parte d), y entonces 

1

 C.( . 

 A A− ) =  C.  I =  C =  O . 
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Sistemas de ecuaciones lineales

Se entiende que ya se saben resolver sistemas lineales de dos ecuaciones con dos 

incógnitas. Se darán definiciones  para generalizar ese proceder.  Además se aplicarán las 

nociones estudiadas sobre las Matrices para justificar los métodos de resolución. 

1. Definiciones  básicas

Recordemos la forma de los sistemas con  algunos ejemplos: 

⎧1

⎪ .  x −  y = 0

3

⎧  x  

+ 2 

 y 

− 4 

 z 

=  

8

⎨2

⎨

⎪

⎩ − x +  2  y  +   z  =  3

⎩  x +  y =1

En estos sistemas se han representado las incógnitas por  x, y   y   x, y    y   z,  como es costumbre para los sistemas de pocas incógnitas. 

Esta costumbre se basa en que un sistema de dos ecuaciones lineales con dos incógnitas 

puede estar e x presando la búsqueda de la intersección de dos rectas del plano y las coordenadas en el plano es habitual indicarlas por  x e  y. 

Las ecuaciones lineales de tres variables con coeficientes reales son la e x presión analítica de planos del espacio usual (el espacio euclídeo de tres dimensiones con sistema de referencia de coordenadas  x, y, z). Sistemas de ecuaciones de ese tipo son interpretables como la búsqueda de la intersección de planos (tantos como ecuaciones). 

Cada uno de los sistemas del ejemplo es interpretable geométricamente: el primero, 

determinar la intersección de dos rectas del plano y el segundo, determinar la intersección de dos planos. 

Un  sistema de  m ecuaciones con  n incógnitas es lineal  cuando puede llevarse a la forma:  
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⎧ 11

 a  1

 x +

12

 a

2

 x +

13

 a

3

 x + " + 1

 a j xj +" +

1

 a n n

 x

= 1

 b

⎪⎪

+

+

+ " +

+" +

 a

21

 a

1

 x

22

 a

2

 x

23

 a

3

 x

 a 2  j xj

2

 a n n

 x

= 2

 b

 i  j

⎪⎪ #

#

#

#

#

#

⎨



  i  p  or la



ecuación   

 a

+

+

+ " +

+" +

=

⎪ 1 i  1

 x

 i

 a  2 2

 x

 i

 a  3 3

 x

 i

 a j xj

 i

 a n n

 x

 i

 b

⎪

(fila) 

⎪

#

#

#

#

#

#

⎪ a  1

 m  1

 x +

 m

 a  2 2

 x +

 m

 a  3 3

 x +

" +

 m

 a n n

 x

=

⎩

 m

 b

   j por la incógnita 

(columna) 

donde  1

 x ,",  n

 x   son las incógnitas y  11

 a , 12

 a ,",  a

, 1

 b ,", 

 m n

 m

 b  representan  elementos

de   K, siendo   K un cuerpo conmutativo (por lo general serán  números racionales, reales, complejos  ó los otros conocidos). 

Los  11

 a , 12

 a ,",  mn

 a

se llaman coeficientes del sistema  y los  1

 b ,",  m

 b  se llaman

términos independientes del sistema. 

¾  ¿Qué es solucionar un sistema de m ecuaciones con n incógnitas? 

Es hallar  n  valores  * *

*

1

 x , 2

 x , " ,  n

 x  de  K  tal que al sustituir con ellos las incógnitas (de igual

subíndice) en el sistema, cada una de las ecuaciones se satisfaga, esto es las igualdades se verifiquen. 

¿Será posible resolver todo sistema? ¿Cuántas  n-uplas de  K  serán solución de un sistema  

dado? Estos son los puntos que se estudiarán. Para ello será muy útil lo estudiado de matrices. 

Recordatorio 

A continuación recordaremos el método se sumas y restas en sistemas 2 x 2 como 

introducción al conocido método eliminación de Gauss para sistemas generales de  m 

ecuaciones con  n incógnitas. 

El método de sumas y restas se basa en dos observaciones. 

•La primera es que si un par de números  x*   e  y*  verifican una ecuación, por ejemplo: 2  x –  y = 1, también verifican la nueva ecuación que resulta de multiplicar ambos miembros en la ecuación por un  número distinto de cero. Esto se debe a la monotonía de la multiplicación en  K. 
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 a= b

 a.c=b.c

En el ejemplo, si la ecuación  2  x –  y = 1 se multiplica por 2 resulta 2 . (2  x –  y ) = 2. 1 es decir    4  x – 2  y = 2. Compruébelo para  x*  = 1   e   y* = 1 

•La segunda observación es que si se tienen dos ecuaciones que son verificadas por dos

números   x* e  y* se puede obtener una tercera  ecuación verificada por ambos, sumando miembro a miembro (o restando) las dos ecuaciones iníciales. Esto se debe a la monotonía de la suma en  K. 

 a= b 

     c=d 

   a+c=b+d 

Por ejemplo si  x* e  y*    verifican las ecuaciones del sistema 

⎧  x +  y = 4

⎨⎩2 x +   5 y = 2

−

restando miembro a miembro las ecuaciones resulta: 

( x +  y) – (2  x + 5  y) = 4 – (-2) 

      -x – 4  y = 6     es la nueva ecuación que también verifican  x* e  y*. 

Comprobarlo con  x* =  22 / 3   e    y* = -10/3  para las tres ecuaciones, las dos del sistema originalmente dado y esta nueva. 

Naturalmente también se puede sumar miembro a miembro. 

El  método de sumas y restas consiste en modificar una de las ecuaciones usando la 

primera observación y sumar (o restar) miembro a miembro con la otra ecuación para obtener 

una nueva ecuación pero con una sola incógnita. 

⎧ x   – 5 y =   4

En el ejemplo: 

⎨3

⎩  x +  y =   8

En el primer paso se elige una ecuación; en este caso (no es obligatorio) optamos por la 

primera:  x – 5  y = 4; de esta ecuación optamos por elegir la variable  x (tampoco es obligatorio, podría ser la  y). La idea es multiplicar ambos miembros de la ecuación elegida por un número que iguale los coeficientes de las  x de las dos ecuaciones. 

Como en la segunda ecuación el coeficiente de  x es 3 y en la primera es 1, multiplicamos ambos miembros de la primera ecuación por 3. 
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La ecuación se transforma en: 

3( x – 5 y) =3.4    

es decir  

3 x – 15 y = 12 

Ahora se tiene un sistema con las dos ecuaciones 

3 x – 15 y = 12 

3 x  +   y  = 8 

Hemos conseguido tener 3 x en ambas ecuaciones. Restando miembro a miembro la 

segunda a la primera resulta: 

(3 x – 15 y) – (3 x  +   y ) = 12 – 8 

Tal como lo planeamos "desaparece"  x  de la primera ecuación 

0  x -15  y –  y = 4  y resulta el sistema 

⎧ 16

−  y =  4

⎨3

⎩  x +  y =   8

De la primera ecuación es elemental hallar  y*:   

 y * = -1/ 4 

Para hallar el valor de  x*  hacemos algo similar. 

Recordemos las ecuaciones originales: 

⎧ x   – 5 y =   4

⎨3

⎩  x +  y =   8

Multiplicando por 5 la segunda ecuación: 

⎧  x   – 5 y =   4

⎨15

⎩  x +  5 y =  40

Sumando miembro a miembro la primera ecuación a la segunda, resulta: 

⎧ x   – 5 y =   4

⎨16

⎩ .  x = 44
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es inmediato hal ar  x*  de la segunda: 

 x* =  44/16   

es decir     x* = 11/ 4 

Hemos hallado la solución del sistema, es el par  de números x* = 11/4  e   y* = -1/4 

Otra situación  es la de infinitos pares que son solución. Un ejemplo es el sistema: x +  y = 1 

2 x + 2 y = 2 

Nótese que la segunda ecuación es la primera multiplicada por dos. 

Es un sistema 2 x 2, pero en la práctica es como tener una ecuación ya que ambas imponen 

iguales condiciones a las variables salvo el aspecto formal. Ambas dan la misma información. 

Si aplicamos sumas y restas para solucionarlo, multiplicamos por 2 la primera ecuación y 

restamos miembro a miembro ésta a la segunda: 

 2x + 2 y = 2 

 2x + 2 y = 2 

 2x + 2 y = 2 

( 2x + 2 y)-( 2 x + 2 y )= 2 - 2 

⎧2.  x + 2.  y = 2

es decir    ⎨⎩

0 = 0

En este caso son solución todos los pares de números reales que sumen 1. 

Es imprescindible determinar la intención que se persigue al resolver un sistema, ¿importan las soluciones complejas en general, solamente las reales o del  K en que están los 

coeficientes? Esto estará claro en el contexto del planteo y resolución del sistema. 

Analice la diferencia en el ejemplo anterior. Ayúdese representando en cada caso el 

conjunto solución (soluciones reales o soluciones complejas). 

Hay sistemas que presentan la situación especial de ausencia de solución. Un sistema que resulta sin solución, por simple observación es: 

 x +  y = 1 

 x +  y = 2 

632

SISTEMAS DE ECUACIONES LINEALES – CAPÍTULO 11

No es posible que dos números sumen 1 y 2 simultáneamente. 

Aplicando sumas y restas, al pretender eliminar una de las incógnitas, restando miembro a 

miembro la primera ecuación a la segunda se llega a: 

   x +  y = 1 

0 = 1   

(es una igualdad falsa) 

Luego, ningún par de números puede verificar simultáneamente ambas igualdades.   

La interpretación geométrica subyacente 

Cada ecuación de un sistema lineal de dos ecuaciones con coeficientes reales y dos 

incógnitas representa una recta. 

Resolver el sistema significa hallar un par de números reales que cumplan las dos 

ecuaciones, es decir las coordenadas de un punto del plano que pertenezca a las dos rectas 

(que esté en la intersección). 

 ¿Cuál es la situación de dos rectas del plano? 

 Dos rectas pueden ser paralelas y distintas, luego no habrá solución. 

 Dos rectas pueden ser paralelas e iguales,  luego habrá más de una solución (las 

coordenadas de todo punto que esté sobre la recta). 

 Dos rectas pueden cortarse, luego habrá solución única (las coordenadas del punto de intersección). 

EJERCICIO 11.1.1 

Resuelva e interprete geométricamente. Represente geométricamente las ecuaciones. 

⎧3 x − 2 y = 0

⎧  x = 3 +  y

1. 

⎨

2.  ⎨

⎩  x + 3 y = 1

⎩2 x − 3 =  y

⎪⎧1  x − 4 y = 2

⎧ 3 x −  y = 0

3.  ⎨2

4.  ⎨

⎪

− 6 x + 2 y =

⎩  x − 8 y = 1

⎩

0

EJERCICIO 11.1.2 

Piense en tres planos del espacio usual. ¿Cuáles son las posibles posiciones relativas? 

Qué puede decir de las posibilidades al solucionar un sistema lineal 3 x 3 con coeficientes reales. 
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¾  Algunos problemas sencillos cuya resolución lleva a plantear sistemas

 de ecuaciones. 

EJERCICIO 11.1.3 

Resolver los siguientes problemas. Plantear el sistema y resolver por sumas y restas: 

1. 

Un par de zapatos y un pullover cuestan $ 98. Si el pullover cuesta $16 más que los

zapatos, ¿cuánto cuesta el pullover? 

2. 

Un vendedor de artículos de pesca vende 2 riles y 5 cañas en $270. Al día siguiente, 

vende 4 riles y 2 cañas en $220. ¿Cuál es el precio de cada artículo? 

3. 

Un avión pequeño puede cargar 950 kilos de equipaje distribuidos en dos

compartimentos. En un vuelo el avión va totalmente cargado y un compartimento lleva 150 kilos más que el otro. ¿Cuánto equipaje hay en cada uno? 

4. 

Una parte de $12000 se invirtió al 6% de interés y el resto al 7,5%. Si los ingresos

anuales por dichas inversiones fueron de $810, ¿cuánto se invirtió a cada tasa? 

5. 

Un campesino tiene que alimentar los animales que siguen una dieta estricta con dos

mezclas alimenticias. 

Mezcla  

Proteínas 

Carbohidratos 

Mezcla A 

15% 

5% 

Mezcla B 

12% 

9% 

Cada animal debe recibir 15 gramos de proteínas y 7,5 de carbohidratos. ¿Cuántos gramos 

debe usar de cada mezcla para lograrlo? 

6. 

La edad del padre es el triple de la del hijo. Dentro de 5 años el padre será 30 años

mayor que el hijo. ¿Cuantos años tienen? 

7. 

La 

gráfica 

de 

 f(x) = a x2 +b x + c pasa por los puntos (1,  k1), (2,  k2), (3,  k3). 

Hallar  a, b y  c  para los casos  k1     = -2  k2  =1    k3 = 6 

   k1     = 8   k2  =-5    k3 = 4 

2. Los  sistemas con otra mirada:  MATRICIAL…

Se verá algún ejemplo para comprender  el porqué del estudio de matrices. 

¡Veamos! 

Dado 

 x - 5 y = 4 

(S) 

3 x +  y = 8 

se lo puede representar como la siguiente igualdad matricial: 

634

SISTEMAS DE ECUACIONES LINEALES – CAPÍTULO 11

⎛1

5

− ⎞ ⎛  x ⎞ ⎛ 4⎞



. 

=

⎜

⎟ ⎜ ⎟ ⎜ ⎟

(M) 

⎝3 1 ⎠ ⎝  y ⎠ ⎝8⎠

pues el producto del primer miembro es la matriz 2 x 1: 

⎛1 x + ( 5

− ) y ⎞

⎜

⎟

⎝ 3 x +1 y ⎠

y la igualdad matricial planteada en (M) (dos matrices son iguales si son iguales elemento a elemento....) conduce a (S). 

Es así que: 

⎛1

5

− ⎞ ⎛  x ⎞ ⎛ 4⎞



. 

=

⎜

⎟ ⎜ ⎟ ⎜ ⎟

⎝3 1 ⎠ ⎝  y ⎠ ⎝ 8⎠

Matriz de los 

Matriz de los 

Matriz de las  

términos   

coeficientes 

incógnitas 

independientes 

La matriz de los coeficientes se designará por  A, la matriz de las incógnitas por  X  y la de los términos independientes por  B. 

Los elementos de la primera columna de  A son los coeficientes de la primera incógnita y la segunda columna de   A tiene los coeficientes de la segunda incógnita. 

El elemento de la fila 1 de  B es el término independiente de la primera ecuación y el elemento de la fila 2 de  B es el término independiente de la segunda ecuación. 

Se tiene entonces:  

 A. X =  B 

Esta vinculación, destacada para este caso particular, que se extiende naturalmente a 

cualquier sistema es causal de que el cálculo matricial sea aplicable en los sistemas lineales. 

EJERCICIO 11.2.1 

Escribir un sistema lineal de  m ecuaciones con  n incógnitas como una igualdad matricial. 

Justifique porqué son equivalentes ambas formas. 
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Las operaciones realizadas para resolver el sistema del ejemplo por sumas y restas se 

interpretarán matricialmente: 

En (S)        

        En (M) 

Multiplicar la 1er. ecuación por 3: 

Multiplicar la 1er. fila de  A y de  B por 3 

3

⎧  x −15 y = 12

⎛3.1 3.( 5

− )⎞ ⎛  x ⎞ ⎛3.4⎞

⎨



. 

=

⎜

⎟ ⎜ ⎟ ⎜

⎟  

⎩ 3 x +  y = 8

⎝ 3

1 ⎠ ⎝  y ⎠ ⎝ 8 ⎠

Restar la 2da. ec. a la 1er. ec.: 

Restar la 2da. fila a la 1er. fila de  A y de  B 

⎧ 16

−  y = 4

⎛0

1

− 6⎞ ⎛  x ⎞ ⎛4⎞

⎨



. 

=

3

⎜

⎟ ⎜ ⎟ ⎜ ⎟

⎩  x +  y = 8

⎝ 3

1 ⎠ ⎝  y ⎠ ⎝8⎠

Obtener una matriz con un único elemento no nulo en una de sus filas, al interpretarlo como sistema permite encontrar el valor de la incógnita que se corresponde con la columna que ese elemento ocupa. En el ejemplo el elemento no nulo es de posición fila 1 columna 2, por lo cual permite hallar   y*  que es la 2da. incógnita. 

¿Qué se hizo para hallar   x* ? 

En (S)        

       En (M) 

Multiplicar la 2da. ecuación por 5    

Multiplicar la 2da. fila de  A y de  B por 5 

⎧  x − 5 y = 4

⎛ 1

5

− ⎞ ⎛  x ⎞ ⎛ 4 ⎞

⎨



. 

=

⎜

⎟ ⎜ ⎟ ⎜

⎟

15

⎩  x + 5 y = 40

⎝5.3 5.1⎠ ⎝  y ⎠ ⎝5.8⎠

Sumar la 1er. ec. a la 2da. ec. 

Sumar la 1ra. fila a la 2da. fila de  A y de  B

⎧ x − 5 y = 4

⎛ 1

5

− ⎞ ⎛  x ⎞ ⎛ 4 ⎞

⎨



. 

=

⎜

⎟ ⎜ ⎟ ⎜

⎟

⎩ 16 x = 44

⎝16 0 ⎠ ⎝  y ⎠ ⎝ 44⎠

Y a partir de esta igualdad matricial es posible determinar   x*. 

Observar que la matriz   X   no se altera en la manipulación de las ecuaciones. Además las mismas operaciones sobre los elementos de las filas de la matriz de los coeficientes se realizan sobre esas mismas filas en la matriz de los términos independientes. Se parte de matrices  A y de   B y luego de realizadas las operaciones se llega a otras matrices del mismo tipo, pero seguramente distintas. Las soluciones del último sistema se aceptan como soluciones del 
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sistema original, basándose en las observaciones iniciales de monotonía de suma y 

multiplicación. 

Las operaciones realizadas sobre estas matrices se pueden sistematizar. Se tiene por 

objetivo encontrar un método para solucionar sistemas, ello parece alcanzable al quedar con un único elemento no nulo por fila y columna de la matriz de los coeficientes. En ese caso 

habrá solución única. ¿Será siempre posible? 

3. Operaciones elementales sobre las  filas de una matriz

Examinando el ejemplo anterior: 

¿Qué tipo de operaciones se han realizado para lograr el ideal de un único elemento no nulo por fila y columna de la matriz de los coeficientes? 

Se multiplicaron filas (o ecuaciones) por números no nulos y se sumó una  fila (o ecuación) a otra. 

Para sistematizar se realizarán más definiciones. 

Se llaman operaciones elementales sobre las filas de una matriz a los siguientes tres tipos de operaciones sobre las filas de una matriz  A m  x  n: 

1. 

Multiplicar una fila de  A por una constante c no nula. 

Para fijar ideas, la fila  i de  A se multiplica por  c,  c ≠ 0 , la matriz resultado de esta operación se indicará Mi( c) (A) 

⎛ 1

 a  1

12

 a

13

 a

" 1

 a j " 

1

 a n ⎞

⎜

⎟

La fila  i de  A 

 a

⎜ 21

2

 a  2

23

 a

" 2

 a j " 

2

 a n ⎟

⎜

⎟

es la única 

#

#

#

#

#

#

 A =  ⎜

⎟   

que se 

⎜  a

" 

" 

⎟

1

 i

 i

 a  2

 i

 a  3

 i

 a j

 i

 a n

⎜

⎟

modificará 

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

" 

" 

⎝ 1

 m

 m

 a  2

 m

 a  3

 m

 a j

 m

 a n ⎠
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⎛ 1

 a  1

12

 a

13

 a

" 1

 a j " 

1

 a n ⎞

⎜

⎟

La fila  i de  

⎜ 21

 a

22

 a

2

 a  3

" 2

 a j " 

2

 a n ⎟

M i (  c)( A) es la   

⎜

⎟

#

#

#

#

#

#

única distinta   

M

⎜

⎟

i( c) (A)=



⎜ . 

 c a

" 

" 

⎟

1

. 

 i

 c i

 a  2

. 

 c i

 a  3

. 

 c a

. 

 ij

 c i

 a n

respecto de las  

⎜

⎟

⎜ #

#

#

#

#

# ⎟

filas  A 

⎜  a

⎟

" 

" 

⎝

1

 m

 m

 a  2

 m

 a  3

 m

 a j

 m

 a n ⎠

Dada      A = ( a

*

 s p )1≤ s≤ m  

se obtiene     

 M ( c)( )

 i

 A = ( as p )1≤ s≤ m   

1≤  p≤ n

1≤  p≤ n

⎧ . 

 c a

si

⎪  i p

 s =  i

con  

*

 as p = ⎨ a     si 

⎪⎩  s p

 s ≠  i

¿Qué puede afirmar si  c =1? 

2. 

Sumar a una fila de  A un múltiplo de otra fila de  A

Para fijar ideas, a la fila  i de  A se suma la fila  j multiplicada por  c,  la nueva matriz  resultado de esta operación se indica      S i j ( c) (A). 

La fila  i de  A 

⎛ 1

 a  1

12

 a

13

 a

" 1

 a k " 

1

 a n ⎞

⎜

⎟

es la única 

21

 a

22

 a

23

 a

" 2

 a k " 

2

 a n

⎜

⎟

que se 

⎜ #

#

#

#

#

# ⎟

 A =  ⎜

⎟   

modificará 

 a

⎜ 1 i

 i

 a  2

 i

 a  3 "  i

 a k " 

 i

 a n ⎟

⎜ #

#

#

#

#

# ⎟

⎜

⎟

⎜  a

⎟

⎝ 1

 m

 m

 a  2

 m

 a  3 "  m

 a k " 

 m

 a n ⎠

La fila  i de  

S i j( c)( A) es la 

⎛

11

 a

1

 a  2

" 1

 a k

" 

1

 a n

⎞

⎜

⎟   única distinta   

21

 a

2

 a  2

" 2

 a k

" 

2

 a n

⎜

⎟  respecto de las  

⎜

#

#

#

#

#

⎟

Si

⎜

⎟     filas  A 

j( c) (A)=  a



⎜ 1 + . 

 i

 c a  1 j

 i

 a  2 + . 

 c a j 2

"  a + . 

 c a

"  a + . 

 ik

 jk

 in

 c in

 a ⎟

⎜

⎟

⎜

#

#

#

#

#

⎟

⎜

 a

" 

" 

⎟

⎝

1

 m

 m

 a  2

 mj

 a

 mn

 a

⎠
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Dada      A = ( a

 i

*

 s p )1≤ s≤ m  

se obtiene     

 S ( c)( )



 j

 A = ( as p )1≤ s≤ m

1≤  p≤ n

1≤  p≤ n

⎧ a + . 

 c a

si

⎪  i p

 j p

 s =  i

con 

*

 as p = ⎨  a

si 

⎪⎩  s p

 s ≠  i

Para pensar: 

Para que ésta operación sea interesante al menos  A debe tener 2 filas, sino ¿en que se transforma? ¿Con qué limitaciones? 

¿Qué ocurre si  c = 0? 

3. 

Intercambiar dos filas de  A

Para fijar ideas, la fila  i de  A se intercambia con la fila   j   de   A,  el resultado de esto se indicará  Pi j( A) 

Esta operación está definida si el número de filas de  A es mayor que 1. ¿Por qué? 

⎛ 1

 a  1

12

 a

13

 a

" 1

 a k " 

1

 a n ⎞

⎜

⎟

21

 a

22

 a

23

 a

" 2

 a k " 

2

 a n

⎜

⎟

⎜ #

#

#

#

#

# ⎟

Las filas  i  y j 

⎜

⎟

 a

⎜ 1 j a j 2

 a j 3 "  a jk "  a jn ⎟

de  A son las 

 A =  ⎜



#

#

#

#

#

⎟

⎜

# ⎟

únicas que se 

⎜  a  1 i

 i

 a  2

 i

 a  3 "  i

 a k " 

 i

 a n ⎟

modificarán 

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

⎝ 1

 m

 m

 a  2

 m

 a  3 "  m

 a k " 

 m

 a n ⎠

⎛ 1

 a  1

12

 a

13

 a

" 1

 a k " 

1

 a n ⎞

⎜

⎟

21

 a

22

 a

23

 a

" 2

 a k " 

2

 a n

⎜

⎟

Las filas  i  y  j de  

⎜ #

#

#

#

#

# ⎟

 P 

⎜

⎟

i j  (A) están   

 a

⎜ 1 i

 i

 a  2

 i

 a  3 "  i

 a k " 

 i

 a n ⎟

intercambiadas  

 P  i j ( A)   =  ⎜



#

#

#

#

#

⎟

#

⎜

⎟

respecto de su   

⎜  a  1 j a j 2

 a j 3 "  a jk "  a jn ⎟

posición en  A 

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

⎝ 1

 m

 m

 a  2

 m

 a  3 "  m

 a k " 

 m

 a n ⎠
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Dada      A = ( a

*

 s p )1≤ s≤ m  

se obtiene  

 P ( )



 i j A = ( as p )1≤ s≤ m

1≤  p≤ n

1≤  p≤ n

⎧  a

si 

 ip

 s =  j

⎪

con        *

 a =

 a

si =

 sp

⎨

 jp

 s i

⎪  a

si 

⎩  sp

 s ≠  i ∧  s ≠  j

En el ejemplo desarrollado para resolver el sistema no se usó operación de tipo 3 pero son 

útiles en otros casos. 

EJEMPLO 11.3.1 

⎛ 2

0

3 ⎞

⎜

⎟

4

−

5

1

⎜

⎟

Dada   A = ⎜ 3

−

1

7 ⎟  , calculemos P

⎜

⎟

 24( A),  S 5 3( 7) (A)  y  M1 ( -3) (A) 

0

4

6

⎜

⎟

⎜⎝ 2 7 1⎟

−

− ⎠

Al calcular  P 2 4  ( A), el resultado de la operación es una matriz del mismo tipo que  A, donde todas sus filas coinciden con las de  A salvo la 2 y 4 que resultan intercambiadas: 

⎛ 2

0

3 ⎞

⎜

⎟

0

4

6

⎜

⎟

= ⎜ −

⎟

24

 P ( )

 A

3

1

7  

⎜

⎟

4

−

5

1

⎜

⎟

⎜⎝ 2 7 1⎟

−

− ⎠

Al calcular  S 5 3( 7) (A), resulta de la operación una matriz del mismo tipo que  A, donde  todas sus filas coinciden con las de  A salvo la 5, cuyos elementos son para cada columna, la suma del elemento de la fila 5 más 7 multiplicado por  el elemento de la fila 3: 

⎛

2

0

3

⎞ ⎛ 2

0

3 ⎞

⎜

⎟ ⎜

⎟

4

−

5

1

4

−

5

1

⎜

⎟ ⎜

⎟

 S 5 

⎜

−

⎟ = ⎜ −

⎟

3( 7) (A) =

3

1

7

3

1

7  

⎜

⎟ ⎜

⎟

0

4

6

0

4

6

⎜

⎟ ⎜

⎟

⎜⎝2 7.( 3) 7 7.1 1 7.7⎟ ⎜

⎠ ⎝ 19 0 48⎟

+

−

− +

− +

−

⎠

Calculando   M  1(-3) (A) resulta una matriz del mismo tipo que  A, donde  todas sus filas coinciden con las de  A salvo la fila 1, cuyos elementos son el resultado de multiplicar por -3 los de la fila 1 de  A: 
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⎛ 3.2

−

3.0

−

3

− .3⎞ ⎛ 6

−

0

9

− ⎞

⎜

⎟ ⎜

⎟

4

−

5

1

4

−

5

1

⎜

⎟ ⎜

⎟

 M

⎜ −

⎟ = ⎜ −

⎟

1 ( -3) (A) = 

3

1

7

3

1

7  

⎜

⎟ ⎜

⎟

0

4

6

0

4

6

⎜

⎟ ⎜

⎟

⎜⎝ 2

7

1 ⎟ ⎜

⎠ ⎝ 2

7

1⎟

−

−

−

− ⎠

4. Matrices elementales

Dada la matriz   Im   identidad de orden   m  es posible realizar sobre ella operaciones elementales sobre sus filas. 

Si se realiza una única operación elemental sobre las filas de  Im   se obtiene una matriz elemental. 

¡Estas matrices son importantes en las justificaciones del  tema de sistemas de ecuaciones! 

Ya que la multiplicación matricial esta asociada a resolución de sistemas. 

Por la definición,  las matrices elementales son   m x  m. ¿Por qué? 

Dependen sobre que identidad se trabaje!!! Cual es el tipo de la elemental….. 

EJEMPLO 11.4.1 

⎛1 0 0 0⎞

⎜

⎟

0 1 0 0

Sea   I

⎜

⎟

4 = ⎜

. 

0 0 1 0⎟

⎜

⎟

⎝ 0 0 0 1⎠

⎛1 0 0 0⎞

⎜

⎟

0 1 0 0

Para 

⎜

⎟

13

 P ( I 4 ) se deben intercambiar las filas 1 y 3 de  I 4 = ⎜0 0 1 0⎟

⎜

⎟

¡Intercambiar! 

⎝0 0 0 1⎠

⎛0 0 1 0⎞

⎜

⎟

0 1 0 0

Resulta:   P

⎜

⎟

13( I 4 ) = ⎜



1 0 0 0⎟

⎜

⎟

⎝0 0 0 1⎠

Observar que esta matriz tiene todas sus filas no nulas. 

Todos los elementos no nulos son 1. En las filas de la identidad no afectadas por la 

operación sus elementos no nulos están en la diagonal (obvio!) . 
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El "1" de la primera fila "se desplazó" a la tercera fila por la misma columna y el "1"de la tercera fila hizo lo propio a la primera fila. 

La descripción formal los elementos de la matriz 

⎛0 0 1 0⎞

⎜

⎟

0 1 0 0

 P

⎜

⎟

13( I 4 ) =

= (  s

 e p  1)≤ s≤4

⎜1 0 0 0⎟

1≤  p≤4

⎜

⎟

⎝0 0 0 1⎠

⎧

1

⎪





si  s =  p ∧  s ≠ 1∧  s ≠ 3

⎪⎪

Es dado por     e

= 1

⎨





si  s = 1∧  p = 3

 sp

1

⎪





si  s = 3 ∧  p = 1

⎪⎪⎩0



si no

¿Cómo es la matriz que se obtiene multiplicando una fila de la identidad por una constante 

no nula? 

Si calculamos: 

⎛1 0 0 0⎞

⎜

⎟

0 1 0 0

 M

⎜

⎟

2 ( 1

− +  i)( I 4 ) se debe multiplicar por  -1+   i la fila 2  de  I 4 = ⎜



0 0 1 0⎟

Multiplicar  

⎜

⎟

⎝ 0 0 0 1⎠

por 

⎛1

0

0 0⎞

 -1+i 

⎜

⎟

0

1

− +  i  0 0

 M

⎜

⎟

2 ( 1

− +  i)( I 4 )  = ⎜



0

0

1 0⎟

⎜

⎟

⎝0

0

0 1⎠

Observar que esta matriz tiene también todas sus filas no nulas. 

Todos los elementos no nulos están en la diagonal. En las filas de la identidad no afectadas por la operación sus elementos no nulo son 1 (obvio!) . El "1" de la segunda fila al multiplicarlo por  -1+ i  resulta ese valor (es claro, por la tabla del 1...). 

Describiendo formalmente los elementos de la matriz 

⎛1

0

0 0⎞

⎜

⎟

0

1

− +  i  0 0

 M

⎜

⎟

2 ( 1

− +  i)( I 4 ) =

= (  s

 e p  1

) ≤ s≤4

⎜0

0

1 0⎟

1≤  p≤4

⎜

⎟

⎝0

0

0 1⎠

⎧ 1





si  s =  p ∧  s ≠ 2

⎪

con      e = ⎨ 1

− +  i







si  s =  p ∧  s = 2

 sp



⎪ 0



si no

⎩
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Por último se analizará la matriz  4

 S  2 (− i)( I 4 ) , para calcular

⎛1 0 0 0⎞

⎜

⎟

4

0 1 0 0

 S

⎜

⎟

2 (  i

− )( I 4 ) se debe multiplicar por  -  i la fila 2 y sumarla a fila 4  de  I 4 = ⎜



0 0 1 0⎟

⎜

⎟

⎝0 0 0 1⎠

Multiplicar por 

 -i la fila 2   y sumar

a la fila 4 

⎛1 0 0 0⎞

⎜

⎟

0 1

0 0

4

 S

⎜

⎟

2 (  i

− )( I 4   ) =⎜



0

0 1 0⎟

⎜

⎟

⎝0 − i  0 1⎠

Observar que esta matriz también es de filas no nulas. 

En las filas de la identidad no afectadas por la operación sus elementos no nulos son 1 y 

están en la diagonal (obvio!). 

El "1" de la segunda fila al multiplicarlo por   - i  resulta ese valor (por la tabla del 1...) y al sumarlo con el 0  de la fila 4 columna 2, el resultado es -  i , los restantes elementos de la fila 2 

son 0, luego no afectan al sumarse elemento a elemento con la fila 4. 

La descripción formal está dada por: 

⎛1 0 0 0⎞

⎜

⎟

4

0 1

0 0

 S

⎜

⎟

2 (  i

− )( I 4 ) =

= (  s

 e p  1)≤ s≤4

⎜ 0 0 1 0⎟

1≤  p≤4

⎜

⎟

⎝ 0

 i

−

0 1⎠

⎧ 1







si  s =  p

⎪

 e = ⎨  i

−

si    s = 4 ∧  p = 2

 sp



⎪ 0



si no

⎩

Dada la matriz identidad de orden   m se conviene en designar:  

 E =  P ( I )

 i

 i

=

=

≠

 i j

 i j

 m

 E ( c)  S

( c)( I )

 j

 j

 m

 E ( c)  M ( c)( I )  c  0

 i

 i

 m

EJERCICIO 11.4.2 

a) Escribir las matrices 

3

 E

, 

 E

,  E − −  i  para los casos   m =  5    y  m = 6

2 (5)

32

 E ,  24

1

( 4

)

b) Describir para cualquier  m, las matrices  

 E ( c)

 i

 i

con  c ≠0 ,  i

 E j  y  

 E

( c)

 j

. 

Lo ayudamos con una parte de b): 
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Se analizará como es   E ( c) = ( e

1

)

 i

 s p ≤ s m

≤

con  c ≠ 0 , esta matriz es   M ( c)( I )

 i

 m , definida

1≤  p m

≤

como la matriz que resulta al multiplicar la fila  i-ésima de la identidad por  c ≠ 0. 

Miremos (aproximadamente, por los …) el aspecto de ella: 

1

⎛

0

0 0 0⎞

⎜

⎟

⎛1 0

0 0 0⎞

⎜

⎟

⎜

⎟

⎜

⎜

⎟

⎜0 1

0 0 0⎟⎟

⎜

⎟

⎟

⎜

⎟

⎜

0 1

0 0 0

⎟

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

 I = ⎜

⎟

⎜

⎟ i −ésima fila

= ⎜

⎟

 m

( )

⎜

⎟ −ésima  fila

⎜0 0 0 1 0 0⎟⎟

 i

 E c

 i

⎜

⎟

⎜

⎟

0 0 0

 c  0 0⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎜

⎟

0 0

0 0 1⎟

⎝

⎠

⎜0 0

0 0 1⎟

⎝

⎠

1

⎧⎪       s =  p ≠  i

⎪⎪

Por lo tanto los elementos genéricos están dados por   e

= ⎨ c    

 s p

 s =  p =  i

⎪⎪⎪0       si no    

⎪⎩

Haga un trabajo similar para los otros casos de elementales. 

EJERCICIO 11.4.3 

a)

Usar lo calculado en el ejercicio anterior  para calcular 

32

 E .  A  , 

3

 E  2 (5) .  A

⎛ 1

0

1

− ⎞

⎜

⎟

 i

2 i

0

⎜

⎟

y     E

= ⎜

−

⎟

1 ( 4

− −  i) .  A  siendo  A

1

2

0

¿?? 

⎜

⎟

4 i

1

1 − 2 i

⎜

⎟

⎜ 0 1

3 ⎟

⎝

⎠

Observar que la elemental debe ser de tipo 3 x 3, pues 3 es el número de columnas de  A. 

b) Calcular  P 32 ( A);  S 3 2(5)( A) y  M 1( -4-i)( A) comparar con la parte a) ¿Qué puede decir? 

5. Camino a la resolución de sistemas: más de teoría de

matrices 

De acuerdo al ejercicio anterior se observa que dada esa   A, resulta: 

32

 E .  A =

 E

− −

− −

32

 P ( )

 A  ; 

3 2 (5).  A =  3

 S  2 (5)( )

 A    y    

 E 1 ( 4  i) .  A = M 1( 4  i)( )

 A

Este resultado no es puntual. Además de valer en el ejemplo vale para toda matriz 

 A

 m n

 K ×

∈

y cada operación elemental según lo establece el siguiente teorema:
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♦TEOREMA ( Elemental) 11.5.1

Para toda matriz   A

 m n

 K ×

∈

es equivalente realizar sobre  A una operación elemental que

premultiplicar  A por la matriz elemental correspondiente a esa operación. Es decir: a)

 i

 i

 i

 E j .  A = P ( )

 i j A  ;  b)      E j ( c) .   A  = S j ( c)( )

 A   ;  c)  

 E ( c)

 i

.   A = M ( c)( )

 A


 c ≠ 0

 i

Demostración: 

Sea  

⎛ 11

 a

12

 a

1

 a  3 " 1

 a k " 

1

 a n ⎞

⎜

⎟

⎜ 21

 a

2

 a  2

23

 a

" 2

 a k " 

2

 a n ⎟

⎜ #

#

#

#

#

# ⎟

⎜

⎟

 a

⎜ 1 j a j 2

 a j 3 "  a jk "  a jn ⎟

 A = 

 m× n

∈  K

⎜

⎟



#

#

#

#

#

⎜

# ⎟

⎜  a

" 

" 

⎟

1

 i

 i

 a  2

 i

 a  3

 i

 a k

 i

 a n

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

⎝ 1

 m

 m

 a  2

 m

 a  3 "  m

 a k " 

 m

 a n ⎠

Se va a probar  a): 

En la definición de la operación se analizó el resultado de aplicar   P  i j  a la matriz  A: 

⎛ 1

 a  1

12

 a

13

 a

" 1

 a k " 

1

 a n ⎞

⎜

⎟

21

 a

22

 a

23

 a

" 2

 a k " 

2

 a n

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜

⎟

 a

⎜ 1 i

 i

 a  2

 i

 a  3 "  i

 a k " 

 i

 a n ⎟

 P  i j ( A)   =  ⎜



#

#

#

#

#

⎟

#

⎜

⎟

⎜  a  1 j a j 2  a j 3 "  a jk "  a jn ⎟

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

⎝ 1

 m

 m

 a  2

 m

 a  3 "  m

 a k " 

 m

 a n ⎠

Es decir que para    A = ( a

*

 s p )1≤ s≤ m    se obtiene   P ( )

 i j A = ( as p )



1≤ s≤ m

1≤  p≤ n

1≤  p≤ n

⎧  a

si 

 ip

 s =  j

⎪

con   *

 a =

 a

si =

 sp

⎨

 jp

 s i

() 

⎪  a

si 

⎩  sp

 s ≠  i ∧  s ≠  j

Se va a realizar el producto     i

 E j .  A. 

Sea      i

 E j .  A = C = ( c

1

)

 s p ≤ s ≤ m  que por definición de producto de matrices cada 

1≤  p ≤ n

 m

 c

= ∑ e . 

 s p

 s k

 k

 a p . Teniendo en cuenta las características de la matriz   i

 E j , hay en el a tres

 k  1

=

tipos de filas: la  i-ésima, la  j-ésima y cualquier fila diferente de estas dos. 
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En la fila  i-ésima, el elemento no nulo es un 1 en posición  i j , en la fila  j-ésima, el elemento no nulo es un 1 en posición    j i ,  en las otras filas el elemento no nulo es 1 en posición   s s. 

 m

Por lo tanto:   c = ∑ e .  a =  e .  a =1. 

 i p

 i k

 k p

 i j

 j p

 a j p =  aj p

 k  1

=

 m

 c

= ∑ e .  a =  e .  a =1. 

 j p

 j k

 k p

 j i

 i p

 i

 a p =  i

 a p  

 k  1

=

 m

y  para  s ≠  i y  s ≠  j,  c

= ∑ e .  a =  e .  a =1. 

 s p

 s k

 k p

 s s

 s p

 as p =  as p . 

 k  1

=

Comparando los elementos de la matriz  C con los obtenidos en (), son iguales elemento a elemento, por lo cual vale la igualdad propuesta. 

Para probar b): 

En la definición de la operación se analizó el resultado de aplicar    i

 S ( c)

 j

a la matriz  A:

⎛

11

 a

1

 a  2

" 1

 a k

" 

1

 a n

⎞

⎜

⎟

21

 a

 a 22

" 2

 a k

" 

2

 a n

⎜

⎟

⎜

#

#

#

#

#

⎟

S i

⎜

⎟

 j( c) (A)=

 a



⎜ 1 + . 

 i

 c a  1 j

 i

 a  2 + . 

 c a j 2

"  a + . 

 c a

"  a + . 

 ik

 jk

 in

 c a jn ⎟

⎜

⎟

⎜

#

#

#

#

#

⎟

⎜

 a

" 

" 

⎟

⎝

1

 m

 m

 a  2

 mj

 a

 mn

 a

⎠

Así que    A = ( a

 i

*

 s p )1≤ s≤ m    se obtiene   S ( c)( )

 j

 A = ( as p )



1≤ s≤ m

1≤  p≤ n

1≤  p≤ n

⎧ a + . 

 c a

si

⎪  i p

 j p

 s =  i

con    *

 as p = ⎨

() 

 a

si 

⎪⎩  s p

 s ≠  i

Se va a realizar el producto     

 i

 E j ( c) .  A . 

Sea      

 i

 E j ( c) .  A = C = ( c

1

)

 s p ≤ s ≤ m  que por definición de producto de matrices cada  

1≤  p ≤ n

 m

 c

= ∑ e . 

 i

 s p

 s k

 k

 a p . Teniendo en cuenta las características de la matriz   

 E j ( c) , hay en ella

 k  1

=

dos tipos de filas: la  i-ésima   y cualquier fila diferente de esta. 

En la fila  i-ésima, hay sólo dos elementos no nulos que son un 1 en posición  i i  y   c en posición  i j , en las otras filas un solo elemento no nulo que es 1 en posición   s s. 

 m

Por lo tanto:   c

= ∑ e .  a =  e .  a +  e .  a =1.  a + .  ca =  a + . 

 i p

 i k

 k p

 i i

 i p

 i j

 j p

 i p

 j p

 i p

 c a j p  

 k  1

=
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 m

y  para  s ≠  i,  c

= ∑ e .  a =  e .  a =1. 

 s p

 s k

 k p

 s s

 s p

 as p =  as p . 

 k  1

=

Comparando los elementos de la matriz  C  con los obtenidos en (  ), son iguales 

elemento a elemento, por lo cual vale la igualdad propuesta. 

Para probar c): 

Con definición de la operación se analizó el resultado de aplicar    M ( c) con  c ≠ 0

 i

a la

matriz  A: 

⎛ 11

 a

12

 a

13

 a

" 1

 a j " 

1

 a n ⎞

⎜

⎟

⎜ 21

 a

2

 a  2

23

 a

" 2

 a j " 

2

 a n ⎟

⎜

⎟

#

#

#

#

#

#

 M

⎜

⎟

 i( c) (A)=



⎜ . 

 c a

" 

" 

⎟

1

. 

 i

 c i

 a  2

. 

 c i

 a  3

. 

 c a

. 

 ij

 c i

 a n

⎜

⎟

⎜ #

#

#

#

#

# ⎟

⎜  a

⎟

" 

" 

⎝

1

 m

 m

 a  2

 m

 a  3

 m

 a j

 m

 a n ⎠

Es que para   A = ( a

*

 s p )1≤ s≤ m   se obtiene   M ( c)( )



 i

 A = ( as p )1≤ s≤ m

1≤  p≤ n

1≤  p≤ n

⎧ . 

 c a

si

⎪  i p

 s =  i

con   *

 as p = ⎨

. 

() 

 a

si 

⎪⎩  s p

 s ≠  i

Se va a realizar el producto        E ( c)

 i

.  A:

   Sea        E ( c)

 i

.  A = C = ( c

1

)

 s p ≤ s ≤ m  que por definición de producto de matrices cada   

1≤  p ≤ n

 m

 c

= ∑ e . 

 s p

 s k

 k

 a p . Teniendo en cuenta las características de la matriz   

 E ( c)

 i

, hay en ella

 k  1

=

dos tipos de filas: la  i-ésima   y cualquier fila diferente de ésta. 

En la fila  i-ésima, hay un elemento no nulo  que es  c en posición  i i  y    en las otras filas el elemento no nulo es 1 en posición   s s. 

 m

Por lo tanto:   c

= ∑ e .  a =  e .  a = . 

 i p

 i k

 k p

 i i

 i p

 c i

 a p

 k  1

=

 m

y  para  s ≠  i,  c

= ∑ e .  a =  e .  a =1. 

 s p

 s k

 k p

 s s

 s p

 as p =  as p . 

 k  1

=
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Comparando los elementos de la matriz  C con los obtenidos en (  ), son iguales 

elemento a elemento, por lo cual vale la igualdad propuesta. 

♦ 

EJEMPLO 11.5. 2 

Calcular  32

 E . 3

 E  2    para el caso  m =  5 . 

De acuerdo al resultado anterior este producto equivale a realizar sobre  32

 E  la operación

elemental correspondiente, esto es: permutar la fila 2 con la fila 3 de  32

 E . 

⎛1 0 0 0 0⎞

⎜

⎟

0 0 1 0 0

Hay que permutar! 

⎜

⎟

= ⎜

⎟

32

 E

0 1 0 0 0    

⎜

⎟

¿Qué resultará? 

0 0 0 1 0

⎜

⎟

⎜0 0 0 0 1⎟

⎝

⎠

⎛1 0 0 0 0⎞

⎜

⎟

0 1 0 0 0

⎜

⎟

= ⎜

⎟

32

 E .  32

 E =  32

 P ( 3

 E  2 )

0 0 1 0 0   ¿está claro??? 

⎜

⎟

0 0 0 1 0

⎜

⎟

⎜0 0 0 0 1⎟

⎝

⎠

¿Qué se puede concluir? ¿Cuál es la inversa de  32

 E ? 

EJEMPLO 11.5.3 

Calcular 

1

 E

−

1 (( 4

− −  i) ) .  E 1 (−4 −  i)  para el caso  m = 5. 

Por los resultados anteriores esto equivale a multiplicar por (- 4 -  i) -1  la fila 1 de  1

 E ( 4

− −  i)  :

⎛ 4

− −  i  0 0 0 0⎞

Hay que multiplicar   

⎜

⎟

0

1 0 0 0

la fila 1 por el 

⎜

⎟

− − = ⎜

⎟

inverso de -4 - i 

1

 E ( 4  i)

0

0 1 0 0    

                              

⎜

⎟

0

0 0 1 0

⎜

⎟

⎜ 0

0 0 0 1⎟

⎝

⎠

¿Qué resultará? 
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⎛1 0 0 0 0⎞

⎜

⎟

0 1 0 0 0

⎜

⎟

1

−

−

− −

− −

= ⎜

⎟

1

 E (( 4

− −  i) ). 1

 E ( 4

− −  i)  =

1

 M 1(( 4  i) )( 1

 E ( 4  i))

0 0 1 0 0   

⎜

⎟

0 0 0 1 0

⎜

⎟

⎜0 0 0 0 1⎟

⎝

⎠

 ¿ Está claro?? 

¿Tiene inversa  1

 E (−4 −  i) ? ¿Cuál es? 

EJEMPLO 11.5.4 

Calcular para  m = 5, 

3

 E  2 ( 5

− ) . 

3

 E  2

(5) . 

Aplicando los resultados del teorema se tiene que este producto equivale a sumar a la fila 3 

de 

3

 E  2 (5)  la fila 2 multiplica por -5. 

⎛1 0 0 0 0⎞

⎜

⎟

0 1 0 0 0

Hay que sumar a 

⎜

⎟

3

 E

la fila 3 la fila 2   

2 (5) = ⎜ 0

5 1 0 0⎟   

                                    

¿Qué resultará? 

⎜

⎟

0 0 0 1 0

multiplicada por -5. 

⎜

⎟

⎜0 0 0 0 1⎟

⎝

⎠

⎛1 0 0 0 0⎞

⎜

⎟

0 1 0 0 0

⎜

⎟

3

 E  2 ( 5

− ) . 

3

 E  2 (5) = 

3

S 2 ( 5

− ) (

3

 E  2

(5) ) = ⎜ 0 0 1 0 0⎟  ¡Es claro! 

⎜

⎟

0 0 0 1 0

⎜

⎟

⎜0 0 0 0 1⎟

⎝

⎠

¿Es invertible 

3

 E  2 (5) ? 

Si el producto de una matriz cuadrada por otra es la identidad, una es la inversa de la otra, por definición de inversa y observaciones posteriores. 

¡Luego éstas elementales de los ejemplos anteriores son invertibles! 

EJERCICIO 11.5.5 

a)

Haga el mismo análisis que en los ejemplos previos para las matrices  3

 E  4 (3 + 2 i) , 

2

¿?? 

2

 E ( ) , 

3

14

 E  para el caso de  m = 6

⎛0 1⎞

b)

¿Cuál es la inversa de  ⎜

⎟ ? Justifique. (piense que matriz es….) 

⎝1 0⎠
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⎛1 0 −2⎞

⎜

⎟

c)

¿Cuál es la inversa de  0 1

0

⎜

⎟ , por qué? 

⎜0 0 1 ⎟

⎝

⎠

⎛1 0 0 0⎞

⎜

⎟

0 0 0 1

d)

Identifique la matriz y halle su inversa:  ⎜

⎟

⎜



0 0 1 0⎟

⎜

⎟

0 1 0 0

⎝

⎠

EJERCICIO 11.5.6: 

Demostrar que  toda matriz elemental es invertible y su inversa es una elemental del mismo 

tipo. (Idea: guiarse por los resultados obtenidos en los ejercicios anteriores y el Teorema Elemental.) 

Dadas las matrices  A  y  B  de 

 m n

 K × , se dice que   A es equivalente por filas con  B si B se obtiene luego de aplicar a  A  un número finito de operaciones elementales por filas. 

De acuerdo el  Teorema Elemental, esta definición se expresa matricialmente por: B =  E .  E  1.". 1

 E . 

 k

 k

 A

−

donde las matrices   E  son elementales para 1

 j

≤  j ≤  k

(Como la multiplicación de matrices es asociativa se puede no poner paréntesis…, pero es 

importante el orden, pues la multiplicación no es conmutativa) 

Esta relación definida entre matrices  m  x  n tiene las siguientes propiedades: 1)  A es equivalente por filas con  A

Pues vale que  I. A=A y la identidad  I  (de qué orden?) se puede interpretar por ejemplo, como el producto de una matriz elemental y su inversa, luego de aplicar dos operaciones 

elementales a  A, se obtiene  A. 

2) Si  A es equivalente por filas con  B,  entonces  B es equivalente por filas con  A Si  A es equivalente por filas con  B vale que 

 B =  E .  E  1.". 1

 E . 

 k

 k

 A

−

por tener inversa cada una de las elementales,  se tiene que la inversa

de   E .  E

−

1. 

. 

 k

 k

1

 E

− " 

existe, y además

1

( E .  E  1. . 

− " 1

 E )

 k

 k

es el producto de las inversas de los 

factores con el orden cambiado. 

Por tanto 

1

( E .  E

−

−

−

−

−

1. 

. 

− " 1

 E )

 k

 k

=

1

1

1

1

1

 E . 2

 E

.".  E  1 . 

 k−

 k

 E

además cada uno de los 

factores es una matriz elemental , luego se tiene  

1

−

1

( E .  E

−

1.". 

−

1

 E )  B = ( E .  E  1.". 

−

1

 E ) ( E .  E  1.". 

−

1

 E ). 

 k

 k

 k

 k

 k

 k

 A

1

−

1

−

1

−

1

−

1

 E . 2

 E

.".  E  1 .  E . 

 k−

 k

 B =  A , lo que significa que  B  es equivalente por filas con   A. 
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Esta simetría de la equivalencia por filas entre matrices hace que ante la expresión: 

"  A  es equivalente por filas con  B" se considere indistintamente que  B  se obtuvo de  A luego de un número finito de operaciones elementales o que  A se obtuvo de  B luego de un número finito de operaciones elementales, ya que la inversa de una operación (o matriz) elemental es elemental. 

3) Si  A es equivalente por filas con  B   y   B es equivalente por filas con  C   entonces  A es equivalente por filas con  C. 

La justificación de esta propiedad queda como ejercicio (Idea: escriba las igualdades 

matriciales que tiene por hipótesis y piense como es una cantidad finita más otra cantidad 

finita….)  

   A es equivalente por filas con  B  (por 1), 2) y 3) es una relación de equivalencia dentro del conjunto de matrices   m n

 K × ) se  designa por 

 A ∼  B o simplemente 

 f

 A ∼  B

Este símbolo se usa para expresar las relaciones este tipo,  o también los símbolos 

≈ o

que son una deformación gráfica de la igualdad. La justificación de este comentario 

tiene raíces profundas que quedan para averiguar o para aceptar en lo ya visto en el tema 

relaciones de equivalencia. 

EJEMPLO 11.5.7 

⎛ 1

0

1

− ⎞

⎜

⎟

 i

2 i

0

⎜

⎟

Sea    A = ⎜ 1

2

−

0 ⎟ se realizarán algunas operaciones elementales sobre  A para 

⎜

⎟

4 i

1

1 − 2 i

⎜

⎟

⎜ 0 1

3 ⎟

⎝

⎠

obtener una matriz  B equivalente por filas con  A. 

Observar que al realizar una operación elemental sobre una matriz la matriz que se obtiene 

es una equivalente por filas. Por el Teorema Elemental se van a aplicar operaciones 

elementales y queda como ejercicio el escribir la matriz elemental correspondiente y comprobar que equivale a realizar el producto matricial en cada caso. 
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⎛ 1

0

−1 ⎞

⎛ 1

0

1

− ⎞

⎛ 1

0

1

− ⎞

⎜

⎟

⎜

⎟

⎜

⎟

 i

2 i

0

0

2 i

 i

0

2 i

 i

⎜

⎟

⎜

⎟

⎜

⎟

 A = ⎜ 1

2

−

0 ⎟ ∼ ⎜ 1

2

−

0 ⎟ ∼ ⎜ 0

2

−

1 ⎟

 f

 f

∼  f

⎜

⎟

⎜

⎟

⎜

⎟

4 i

1

1 − 2 i

4 i

1

1 − 2 i

4 i

1

1 − 2 i

⎜

⎟

⎜

⎟

⎜

⎟

⎜ 0 1

3 ⎟

⎜ 0 1

3 ⎟

⎜ 0 1

3 ⎟

⎝

⎠

⎝

⎠

⎝

⎠

↑

↑

2da.fila

3ra.fila

− .1

 i  ra.fila

1. 

− 1ra.fila

⎛1 0

1

− ⎞

⎛1 0

1

− ⎞

⎛1 0

−1 ⎞

⎜

⎟

⎜

⎟

⎜

⎟

0 2 i

 i

0

1

3

0 1

3

⎜

⎟

⎜

⎟

⎜

⎟

∼ ⎜ 0

2

−

1 ⎟ ∼ ⎜ 0 −2

1 ⎟ ∼ ⎜ 0 0

7 ⎟

 f

 f

 f

∼  f

⎜

⎟

⎜

⎟

⎜

⎟

0

1

1 + 2 i

0

1

1 + 2 i

0 1 1 + 2 i

⎜

⎟

⎜

⎟

⎜

⎟

⎜0 1

3 ⎟

⎜ 0 2 i

 i ⎟

⎜ 0 2 i

 i ⎟

⎝

⎠

⎝

⎠

⎝

⎠

↑

↑

↑

4ta.fila

2da.fila por

3ra.fila

4

− .  i 1ra.fila

5ta.fila

−( 2).2da.f

−

ila

⎛1 0

−1 ⎞

⎛1 0

1

−

⎞

⎛1 0

1

−

⎞

⎜

⎟

⎜

⎟

⎜

⎟

0 1

3

0 1

3

0 1

3

⎜

⎟

⎜

⎟

⎜

⎟

∼ ⎜ 0 0

7

⎟ ∼ ⎜0 0

7

⎟ ∼ ⎜0 0

1

⎟

 f

 f

 f

∼  f

⎜

⎟

⎜

⎟

⎜

⎟

0 0

2

− + 2 i

0 0

2

− + 2 i

0 0

2

− + 2 i

⎜

⎟

⎜

⎟

⎜

⎟

⎜⎝0 2 i

 i

⎟

⎜

⎠

⎝0 0

5 i ⎟

⎜

⎠

⎝0 0

5 i ⎟

−

−

⎠

↑

↑

↑

1

4ta.fila

5ta.fila 

.3ra.fila

7

1. 

− 2da.fila

- 2 .  i 2da.fila
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⎛1 0

0

⎞

⎛1 0

0

⎞

⎛1 0

0 ⎞

⎛1 0 0⎞

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

0 1

3

0 1

0

0 1

0

0 1 0

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

∼ ⎜ 0 0

1

⎟ ∼ ⎜0 0

1

⎟ ∼ ⎜0 0

1 ⎟ ∼ ⎜ 0 0 1⎟

 f

 f

 f

 f

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

0 0

2

− + 2 i

0 0

2

− + 2 i

0 0

0

0 0 0

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

⎜⎝0 0

5 i ⎟

⎜

⎠

⎝0 0

5 i ⎟

⎜

⎠

⎝0 0

5 i ⎟

⎜

⎠

⎝ 0 0 0⎟

−

−

−

⎠

↑

↑

↑

↑

1ra.fila

2da.fila

4ta.fila

5ta.fila

1

+ .3ra.fila

- 3.3ra.fila

-(-2+2 i).3ra.fila

-(-5 i).3ra.fila

⎛ 1

0

1

− ⎞

⎛1 0 0⎞

⎜

⎟

⎜

⎟

 i

2 i

0

0 1 0

⎜

⎟

⎜

⎟

Se ha obtenido que   A = ⎜ 1

−2

0 ⎟ ∼ ⎜ 0 0 1⎟

 f

=  B

⎜

⎟

⎜

⎟

4 i

1

1 − 2 i

0 0 0

⎜

⎟

⎜

⎟

⎜ 0 1

3 ⎟

⎜0 0 0⎟

⎝

⎠

⎝

⎠

Como así también  A lo es a cada una de las matrices intermedias….. 

EJEMPLO 11.5.8 

⎛1 2 3⎞

⎜

⎟

Dada   A = 0 1 2

⎜

⎟ se hallará  una matriz   B equivalente por filas con  A: 

⎜ 3 2 0⎟

⎝

⎠

⎛1 2 3⎞

⎛1 2

3 ⎞

⎛1 0

1

− ⎞

⎛1 0

1

− ⎞

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

 A = 0 1 2 ∼

0

1

2 ∼

0

1

2 ∼

0 1

2

⎜

⎟  f ⎜

⎟  f ⎜

⎟  f ⎜

⎟ ∼  f

⎜ 3 2 0⎟

⎜0 4 9⎟

⎜ 0 4 9⎟

⎜0 0 1⎟

−

−

−

−

−

⎝

⎠

⎝

⎠

⎝

⎠

⎝

⎠

↑

↑

↑

3ra.fila

1ra.fila

3ra.fila

3.1

− ra.fila

2.2

−

da.fila

−( 4).2da.f

−

ila

⎛1 0

1

− ⎞

⎛1 0 0⎞

⎛1 0 0⎞

⎜

⎟

⎜

⎟

⎜

⎟

∼

0 1

2 ∼

0 1 2 ∼

0 1 0

 f ⎜

⎟  f ⎜

⎟  f

=  B

⎜

⎟

⎜0 0 1 ⎟

⎜0 0 1⎟

⎜0 0 1⎟

⎝

⎠

⎝

⎠

⎝

⎠

↑

↑

↑

(-1).3ra.fila

1ra.fila

2da.fila

1.3

+

ra.fila

2.3

−

ra.fila

EJEMPLO 11.5.9 
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⎛0 1 3 1 ⎞

⎜

⎟

Sea    A = 0

0

2

0

⎜

⎟  se hallará  B una matriz equivalente por filas con  A: 

⎜0 2 3 2⎟

−

−

⎝

⎠

⎛ 0

1

3

1 ⎞

⎛ 0 1 3 1 ⎞

⎛ 0 1 3 1 ⎞

⎛ 0 1 0 1 ⎞

⎜

⎟

⎜

⎟

⎜

⎟

⎜

⎟

 A = 0

0

2

0 ∼

0 0 2 0 ∼

0 0 1 0 ∼

0 0 1 0

⎜

⎟

 f ⎜

⎟

 f ⎜

⎟

 f ⎜

⎟ ∼  f

⎜ 0

2 3

2 ⎟

⎜ 0 0 9 0⎟

⎜ 0 0 9 0⎟

⎜ 0 0 9 0⎟

−

−

⎝

⎠

⎝

⎠

⎝

⎠

⎝

⎠

↑

↑

↑

3ra. fila + 

1

1ra.fila

.2da.fila

2.1ra.fila

2

−3.2da.fila

⎛ 0 1 0 1⎞

⎜

⎟

∼

0 0 1 0

 f

=  B

⎜

⎟

⎜ 0 0 0 0⎟

⎝

⎠

↑

3ra. fila + 

9.2da.fila

En estos tres ejemplos se ha trabajado sobre  distintas matrices  A, con el objetivo de llevarlas en cada caso  a una matriz  lo “más similar posible”  en su forma a la matriz identidad. 

El mismo objetivo se tiene cuando el fin perseguido es con estas operaciones resolver 

sistemas de ecuaciones y si el sistema queda luego de las operaciones en la forma: 

1

⎧  x + 0 y

= 3

⎧1 x + 0 x + 3 x = 3

−

⎪

1

2

3

⎪

⎨

2

o 

⎨0 1

 x + 1 2

 x +

2 3

 x = 0

⎪0 x + 1 y =

⎩

⎪

3

0

⎩ 1

 x + 0 2

 x +

0 3

 x = 0

Y en esta forma las soluciones salen de manera muy natural, como se analizó en los 

ejemplos desarrollados en 1.  y cuando en 2.  se vio la conexión entre sistemas y matrices. 

Pero como se verá más adelante este trabajo es fructífero para el cálculo de la inversa de 

una matriz (obvio que cuadrada) 

Se analizará que cualquier matriz de 

 m n

 K × es  posible de llevar a una matriz de estas

características. 

Vamos a hacer una definición para saber de que hablamos cuándo se dice  lo “más similar 

posible”  en su forma a la matriz identidad… 

Una matriz  A

 m n

 K ×

∈

se dice escalonada y reducida por filas, si  cumple las siguientes

condiciones: 

•

Si 

tiene 

 r filas no nulas, son las  r primeras. 
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•

Los 

elementos principales de cada fila no nula son 1 K. 

Se llama elemento principal al primer elemento no nulo de una fila, esto es el no nulo que está en la columna de posición más  hacia la izquierda de la fila. 

Es decir:    a (=1 ) es principal de la fila  i si (  k

∀ )(  k <  j entonces   a = 0)

 i j

 K

 i k

•

Además 

los elementos principales se dan de izquierda a derecha, esto es si una fila

es anterior a otra en el orden natural, la columna donde está el principal de la fila de menor numeración es anterior al de la otra. Esto es: 

 a (=1 ) es principal de la fila  i  y   a (= 1 ) es principal de la fila  h, i j

 K

 h k

 K

si  i <  h  entonces   j <  k

•

En 

la columna donde hay elemento principal de alguna fila, el resto de los

elementos es 0 K. 

Luego, si   a (=1 ) es principal de la fila  i,  entonces (∀ k)(  k ≠  i entonces  a

= 0 )

 i j

 K

 k j

 K

Por lo cual el aspecto de una matriz escalonada y reducida por filas genérica es: 

⎛ 0

1

0 " 1

 a "0" 

0

 k

" 1

 a n ⎞

⎜

⎟

0

0

1 " 

Las filas no 

2

 a "0" 

0

 k

" 2

 a n

⎜

⎟

⎜#

#

#

# #

#

#

#

⎟

nulas son 

⎜

⎟

" " " " 0 "1" 

0

⎜

" ⎟

las  r 

 A = (  ij

 a  1)≤ i≤ m = ⎜ 0 0 0

" " 

1

"  a ⎟

primeras 

1≤  j≤ n

 r n

⎜

⎟

⎜ 0

0

0

" " 

0

"0 ⎟

⎜

⎟

El bloque de 0 son 

⎜ #

#

#

#

#

# ⎟

⎜ 0 0 0

" " 

" 

"0 ⎟

⎝

⎠

las últimas  n-r filas 

EJEMPLO 11.5.10 

a)

Son ejemplo de matrices escalonadas y reducidas por filas TODAS las matrices nulas

(de cualquier tipo). Piense porque. 

b)

Son ejemplo de matrices escalonadas y reducidas por filas TODAS las identidades (de

cualquier orden). Piense porque. 

c)

Las 

matrices 

 B  de los ejemplos 11.5.7, 11.5.8 y 11.5.9. 

EJEMPLO 11.5.11 

Las siguientes son escalonadas y reducidas por filas: 
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⎛ 0 1 2⎞

⎛1 −3 i  0⎞

⎛0 1⎞

⎜

⎟

⎜

⎟

 A = ⎜

⎟  

 B = 0 0 0  

 C = 0

0

1

⎝0 0⎠

⎜

⎟

⎜

⎟

⎜ 0 0 0⎟

⎜

⎟

⎝

⎠

0

0

0

⎝

⎠

⎛1 0⎞

⎛0 0 1 0 0 0⎞

⎛1 2 0 0⎞

⎜

⎟

⎜

⎟

0 1

⎜

⎟

0 0 0 0 1 0

⎜

⎟

 D = 0 0 1 0

⎜

⎟

⎜

⎟

 E =

 F = ⎜ 0 0 ⎟  

⎜

⎜0 0 0 0 0 1⎟

⎜

⎟

0 0 0 1⎟

⎝

⎠

⎜

⎟

0 0

0 0 0 0 0 0⎟

⎜

⎟

⎝

⎠

⎜0 0⎟

⎝

⎠

Observar que las columnas anteriores (si es que existen) al primer elemento principal es un bloque de columnas nulas, como en los ejemplos  A, B y  E. 

EJERCICIO 11.5.12 

a)

Escribir 3 matrices escalonadas y reducidas por filas no cuadradas, de distinto tipo. 

b)

Escribir todas las matrices escalonadas y reducidas por filas 2 x 2. ¿Cuántas son? 

¿Cuáles de ellas tienen 2 filas no nulas? 

c)

Escribir todas las matrices escalonadas y reducidas por filas 3 x 3. ¿Cuántas son? 

¿Cuáles de ellas tienen 3 filas no nulas? 

d)

Escribir matrices escalonadas y reducidas por filas 4 x 4 con 4 filas no nulas. 

e)

Escribir matrices escalonadas y reducidas por filas  n  x  n con  n filas no nulas. 

f)

Saque alguna conclusión de lo anterior. 

EJEMPLO 11.5.13 

Hallar una matriz reducida por filas y escalonada equivalente por filas con la matriz 

⎛ 0 0 1 2 0 ⎞

Son los principales  

⎜

⎟

2 1

0

0

2



de "menor   

" 

 A ⎜

⎟

= ⎜



0 4

8

−

1

5 ⎟

columna... 

⎜

⎟

⎝1 0 0 0

7

− ⎠

Todas las filas de  A son no nulas. En la primer columna hay dos elementos no nulos, como uno de ellos es 1, elegimos la fila a la cual pertenece (la 4) para permutar con la primera cuyo elemento de posición  11 es 0. Así se obtiene: 

⎛1 0 0 0

7

− ⎞

⎜

⎟

*

2 1

0

0

2

 A

⎜

⎟

∼

=

=

 f

14

 P ( )

 A

 A

⎜

. 

0 4

8

−

1

5 ⎟

⎜

⎟

⎝ 0 0 1

2

0 ⎠

Para cumplir con la definición hay que transformar en 0 el elemento de posición  21   que es 2. 

Para el o se trabaja con la fila 1. Se suma a la fila 2,  la fila 1 multiplicada por -2: 
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⎛ 1

0

0

0

7

−

⎞ ⎛1 0 0 0

7

− ⎞

⎜

⎟ ⎜

⎟

−

−

−

−

−

−

*

2

*

**

2 2.1 1 0 0 0 0 0 2 2.( 7)

0 1

0

0 16

 A

⎜

⎟ ⎜

⎟

∼

−

=

=

=

 f S  1 ( 2)(  A )

 A

⎜ 0

4

8

−

1

5

⎟ ⎜0 4

8

−

1

5 ⎟

⎜

⎟ ⎜

⎟

⎝ 0

0

1

2

0

⎠ ⎝0 0 1

2

0 ⎠

Con el 1 de la segunda columna (que es principal de la segunda fila...), trabajamos 

transformando en 0 el resto de la columna, esto es el 4 de la fila 3, para ello sumamos a la fila 3 la fila 2 multiplicada por -4:  

⎛ 1

0

0

0

7

−

⎞ ⎛1 0 0 0

7

− ⎞

⎜

⎟ ⎜

⎟

**

3

**


***

0

1

0

0

16

0 1

0

0 16

 A ∼  S

⎜

⎟ ⎜

⎟

−

=

=

=

1 ( 4)(  A )

 A

⎜0 − 0 4 − 4.1

8

− − 0 1 − 0 5 − 4.( 7

− )⎟ ⎜ 0 0

8

−

1 33 ⎟

⎜

⎟ ⎜

⎟

⎝ 0

0

1

2

0

⎠ ⎝ 0 0 1

2

0 ⎠

Observar que a la izquierda del principal hay 0, luego al sumar múltiplos de esa fila no se alteran los elementos de las otras filas que estén en columnas anteriores. 

Mirando atentamente se puede optar por "transformar" el  -8 en 1 para obtener el principal de la fila 3 o permutar las filas 3 y 4. La primera opción involucra trabajar en las otras columnas con fraccionarios, que si se están realizando las operaciones "a mano" es preferible entonces la segunda opción. Por lo tanto: 

⎛1 0 0 0

7

− ⎞

⎜

⎟


***

***

****

0 1

0

0 16

 A

⎜

⎟

∼

=

=

 f

34

 P ( A )  A

⎜0 0 1 2 0 ⎟

⎜

⎟

⎝0 0

8

−

1 33 ⎠

¿Qué se debe hacer? "Barrer" la tercera columna utilizando el elemento principal de la 3er. 

fila. Se suma a la fila 4 la fila 3 multiplicada por 8: 

⎛ 1

0

0

0

7

−

⎞ ⎛1 0 0 0

7

− ⎞

⎜

⎟ ⎜

⎟


****

4

****

*****

0

1

0

0

16

0 1 0

0

16

 A

⎜

⎟ ⎜

⎟

∼

=

=

=

 f S  3 (8)(  A

)  A

⎜ 0

0

1

2

0 ⎟ ⎜ 0 0 1

2

0 ⎟

⎜

⎟ ⎜

⎟

⎝ 0 + 0 0 + 0

8

− + 8.1 1 + 8.2 33 + 0⎠ ⎝0 0 0 17 33⎠

Con dos operaciones más se logra lo pedido; falta transformar en 1 el elemento principal de la fila 4 y luego "barrer" la columna 4: 

⎛1 0 0

0

7

−

⎞ ⎛1 0 0 0

7

−

⎞

⎜

⎟

0 1 0

0

16

⎜

⎟


*****

1

−


*****

******

0 1 0 0

16

 A

⎜

⎟ ⎜

⎟

∼

=

=

=

 f M  4 (17

)( A

)  A

⎜0 0 1

2

0

⎟ ⎜0 0 1 2

0

⎟

⎜

⎟ ⎜

⎟

⎜

1

−

1

⎝0 0 0 17.17

33.17− ⎟⎠ ⎝0 0 0 1 33 / 17⎠
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⎛1 0 0

0

7

−

⎞ ⎛1 0 0 0

7

−

⎞

⎜

⎟ ⎜

⎟


******

3

******

*******

0 1 0

0

16

0 1 0 0

16

 A

⎜

⎟ ⎜

⎟

∼

−

=

=

=



 f S  4 ( 2)(  A

)  A

⎜0 0 1 2 − 2.1 0 − 2.33 / 17⎟ ⎜0 0 1 0

6

− 6 / 17⎟

⎜

⎟ ⎜

⎟

⎝0 0 0

1

33 / 17

⎠ ⎝0 0 0 1 33 / 17 ⎠

La última matriz es reducida por filas y escalonada. 

Por  la transitividad de la equivalencia por filas se tiene que: 

⎛ 0 0 1 2 0 ⎞

⎛1 0 0 0

7

−

⎞

⎜

⎟

2 1

0

0

2

⎜

⎟

0 1 0 0

16

 A ⎜

⎟

=

⎜

⎟

⎜




*******

∼

=

0 4

8

−

1

5 ⎟

 f A

⎜0 0 1 0

6

− 6 / 17⎟

⎜

⎟

⎜

⎟

⎝1 0 0 0

7

− ⎠

⎝0 0 0 1 33 / 17 ⎠  

EJERCICIO 11.5.14 

a)

Escriba cada una de las matrices elementales correspondientes a las operaciones

elementales que afectaron sucesivamente a la matriz  A del ejemplo anterior. 

b)

Escriba la igualdad matricial que justifica que  A


*******

∼  f A

. 

♦ TEOREMA 11.5.15

Sea  K un cuerpo conmutativo. Toda matriz   A

 m n

 K ×

∈

es equivalente por filas a una matriz

reducida por filas y escalonada . 

Demostración: 

Vamos a demostrar por inducción sobre el número de filas de  A.  Considerar el esquema P( t): Si  A

 t n

 K ×

∈

entonces  A es equivalente por filas a una matriz reducida por filas y

escalonada . 

Se debe probar que  (  m

∀ )(P( m)) es verdadera. 

Veamos que P(1) es verdadera: 

Sea   A

1  n

 K ×

∈

   es decir    con 1 fila. 

Si  A es nula no hay nada que probar. 

Si  A es no nula. Significa que la matriz  A tiene una única fila  y no nula. 

Por lo tanto existe  1

 a

≠ 0 ∧ 1

 k

≤  k ≤  n , se elige entre ellos el de menor  k  (que es el

elemento principal de la fila 1)  

Se multiplica por el inverso de  1

 a k  la fila de  A,  así se obtiene una matriz escalonada y

reducida por filas equivalente por filas con  A, pues se obtuvo a partir de  A luego de un número finito de operaciones elementales (una sola). 

Por tanto P(1) vale. 
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Se acepta como hipótesis inductiva que vale P( h). 

Esto es, toda matriz 

 h n

 A K ×

∈

es equivalente por filas a una reducida por filas y

escalonada. 

Se debe probar P( h+ 1),  es decir que si 

( h  1)  n

 A K + ×

∈

entonces es equivalente por filas a

una reducida por filas y escalonada. 

Consideremos   A = ( a  1

)

 ij ≤ i≤  h  1

+ . 

1≤  j≤ n

Si   A es nula no hay nada que probar. Vale por definición. 

Sea   A no nula. 

Entonces existe   a

≠ 0

 u k

. De todos ellos (a lo sumo ( h+ 1)   x  n) se elige el de menor  k. 

Supongamos que es 

0

1

 ik

 a ≠  el elemento principal de la fila  i-ésima y de menor índice de

columna. 

Si este elemento no está en la fila 1 (es decir   i ≠ 1),  mediante una operación elemental, permutar dos filas de la matriz  A: la  i- ésima fila con la fila 1, se lleva a la  primera fila el principal de menor índice de columna. La matriz así obtenida es equivalente por filas con  A, se tiene entonces 

*

*

 A ∼

1

 P ( )

 A =  A = ( a

1

)

 f

 i

 s j ≤ s ≤  h  1

+ . 

1≤  j≤ n

Sino ( i = 1) se considera  A* =A 

Como  *

 a

*

1 k ≠ 0  se multiplica la fila 1 de  *

 A  por el inverso de  a

. Así se obtiene:

1

1 1

 k

*

*

1

−

*

*

1

⎛0"0

1

 a

−

" 

⎞

1

.( a

)

 a

.( a

)

1

 k  1

1

+

1

 k

1 n

1 1

 k

⎜

⎟

⎜

**

**

0"0

 a

∗∗

⎟

2

 a

 a

1

 k

2 1

 k  1

2 n

+

⎜

⎟

⎜ #

#

#

#

#

#

⎟

**

 A = ⎜

⎟

**

**

**

⎜ #

 a

 a

" 

 a

⎟

1

 pk

 p  1

 k  1

 p n

+

⎜

⎟

⎜

#

#

#

#

#

⎟

⎜

**

**

**

⎟

⎜0"0  a

" 

⎟

 h  1

 a

 a

+

⎝

1

 k

 h  1

+ 1

 k  1

 h  1

+  n

+

⎠

(Imagine como es la cosa si  k1 =1) 

Puede ser que hubiera más de un elemento no nulo en la columna  k1, se elije cualquiera. 

Con el 1 obtenido en la primera fila se "barre" esa columna 

Se obtiene así una sucesión de matrices definidas por:   

**

 q  1

+

**

**

**

**

 A q =  S  1(− a q  1 )( A

) para  q ≥ 1 (y 1

 q ≤  h + ), siendo 

 A



= 

 A . 

+ 1

 k

 q  1

−

0

**

**

**

Además si   a q  1 = 0 la matriz   A  es igual a la anterior  A

. 

+ 1

 k

 q

 q  1

−

Al cabo de  h  operaciones elementales (a lo sumo) se obtiene una matriz: 
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***

***

⎛0"0 1  a

" 

⎞

1

 a

1

 k  1

1 n

+

⎜

⎟

⎜


***

***

0"0 0

 a

⎟

2

 a

1

 k  1

2 n

+

⎜

⎟

⎜ #

#

#

#

#

⎟ Considerando estas filas 


***

 A

= ⎜

⎟


***

***

se tiene una matriz  B de 

⎜ #

0

 a p

" 

 a

⎟

1

 k  1

 p n

+

⎜

⎟  h filas 

⎜

#

#

#

#

#

⎟

⎜


***

***

⎟

⎜0"0 0  a

" 

⎟

 h  1

 a

+

⎝

1

 k  1

 h  1

+  n

+

⎠

Consideremos la submatriz   B en  A*** determinada por las filas 2 a  h+1  de  A*** . Por hipótesis inductiva es posible llevar   B (que tiene  h filas)  a una matriz reducida por filas y escalonada equivalente.  Las primeras columnas de  B es un bloque de ceros, las  operaciones que se realizan sobre las filas de  B con ese objetivo   no afectan ese bloque. 

Por lo tanto  se realizan las operaciones necesarias sobre esas filas de  A*** , se llega a una matriz equivalente por filas con  A*** y cuyo aspecto es: 


****

****

****

⎛0"0 1  a

" 

" 

⎞

1

 a

 a

1

 k  1

1  p

1 n

+

⎜

⎟

⎜0"0 0

⎟

⎜

⎟


****

#

#

 A

= ⎜

 C

⎟

Siendo  C   la 

⎜

*

#

0

 B

⎟

⎜

⎟

⎜

#

#

⎟

⎜

⎟

⎝0"0 0

⎠

submatriz de  A****  que resulta equivalente con  A***  al trabajar sobre las filas de su submatriz   B. 

La submatriz  C es reducida por filas y escalonada equivalente con las columnas no nulas de B.   

¿Qué falta para terminar la demostración? 

Si la submatriz  C es no nula, habrá elementos principales en sus filas no nulas, que son 1 

por definición. A lo sumo hay una cantidad  M que es menor o igual que el mínimo entre el número de sus filas ( h ) y de sus columnas (  n - ( k1 +1) + 1) De acuerdo??. 

Luego para las columnas donde la submatriz  C tenga elemento principal (1) se deben 

"barrer" los elementos de la fila 1 de  A****  . Esto producirá una sucesión de matrices equivalentes dadas por: 


****

1

****

****

****

 A

 j =  S j  1(− a

+

1

)(

 k+  j

 A

 j  1)

para 1 ≤  j ≤  M







, y  a

≠  

−

1

0, 

 k+  j


****

****

sien

 A

0

do  

= 

 A


****

****

****

Ademas si   a

1

= 0 la matriz   A

es igual a la anterior 

 p

 p−  j

 A

 p−  j  1. 

−

Por fin!! 
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Se ha llegado a una matriz reducida por filas y escalonada equivalente con  A,  siendo  A de h +1  filas. Por lo tanto vale para   h +1. 

Luego se han cumplido las etapas que exige el método de demostraciones por inducción, 

por lo cual afirmamos que toda matriz  A

 m n

 K ×

∈

es equivalente por filas a una matriz

escalonada y reducida por filas. 

♦ 

Dada la matriz  A, la reducidas por filas y escalonada equivalente con  A   se designará  AR . 

¡Espero! 

Se llama rango de  A al número de filas no nulas de  AR .   

Más adelante se verá la importancia de este número. 

EJERCICIO 11.5.16 

Hallar para cada una de las siguientes matrices la matriz reducida por filas y escalonada 

equivalente y decir cuál es el rango: 

⎛ 0

2 i  1⎞

⎜

⎟

⎛ 3 6

9

−

0 1⎞

 A = 1 −  i

4 1

 B =

⎜

⎟

⎜

⎟

⎜

⎟

⎝ 2 0

4

−  i  1 3⎠

3

2 0

⎝

⎠

⎛0 0

2

5

−

2 ⎞

⎜

⎟

⎛ 0 1⎞

0

0

3

2

6

−

⎜

⎟

⎜

⎟

0

0

⎜0 2

4

−

0

3 ⎟

⎜

⎟

 C = ⎜

⎟  D = ⎜ 1

−

1⎟  

1

2

4

6

 i

⎜

⎟

⎜

⎟

4

3

⎜  i

2

−

0

0

9 ⎟

⎜

⎟

⎜ 2 0⎟

⎜

⎟

⎜

⎟

⎝

⎠

⎝0 4

0

1

1 ⎠

EJERCICIO 11.5.17 

a) Hallar las matrices reducidas por filas y escalonadas equivalentes para las siguientes

matrices y dar su rango: 

⎛ 2 1 0 3⎞

⎛ 0

2 i  1 ⎞

⎛ 2 0 1⎞

⎜

⎟

⎜

⎟

⎛ 3

5

− ⎞

⎜

⎟

2

4

−

0 0

 A

1  i

4 1

 B

 C

4 1 2

 D ⎜

⎟

=

−

=

=

=

⎜

⎟

⎜

⎟

0

1

⎜

⎟

⎜ 2 0 1 5⎟

⎜

⎟

⎝

⎠

3

2 0

⎜ 0 6 0⎟

⎝

⎠

⎝

⎠

⎜

⎟

0

0

3 1

⎝

⎠

b) ¿Alguna conclusión  sobre las matrices escalonadas y reducidas por filas equivalentes a

una matriz cuadrada? 
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Se tiene el siguiente teorema (cuya demostración resulta de pensar bien, no sea mal 

pensado!): 

♦ TEOREMA 11.5.18

Sea   K un cuerpo conmutativo. Para toda matriz  

 n n

 A K ×

∈

   (matriz cuadrada),  la matriz

equivalente por filas con  A es  AR     que tiene una fila nula o es la matriz   I n . 

Demostración: 

Al decir una fila nula, obvio que puede ser más de una…. 

Si  AR no tiene filas nulas, tiene  n filas no nulas, piense cómo ubica  n elementos 1, uno por fila y uno por columna de izquierda a derecha…… 

♦ 

Reflexione el porqué por operaciones elementales se puede anular una fila no nula de una 

matriz  A (sea ella cuadrada o no) 

??? 

¿Cuáles son las matrices de rango 0? 

Ejemplifique!!! 

6. Más sobre matrices invertibles

Las matrices cuadradas pueden ser invertibles y las matrices elementales ayudarán a 

determinar cuáles lo son.( Recordatorio:  C es invertible si existe  B  tal que  A. B = B. A = I ) Se sabe que las matrices elementales son invertibles  (11.5.6)  y que el producto de 

matrices invertibles es invertible. 

El siguiente teorema da un criterio sencillo usando operaciones elementales o matrices 

elementales (conceptos relacionados) para determinar las matrices invertibles y además 

sugiere un método para calcular la inversa de una matriz. 

♦ TEOREMA 11.6.1

Sea   K un cuerpo conmutativo. Dada 

 n n

 A K ×

∈

son equivalentes las siguientes

afirmaciones: 

a)  A es invertible. 

b)  A  ∼  f In
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c)  A es producto finito de matrices elementales. 

Demostración: 

a) entonces b) entonces c) entonces a)

Se demostrará haciendo una cadena cerrada de implicaciones:  

Así resultará la equivalencia de las tres afirmaciones. 

Comenzando por,   a)  entonces b) :  

Se tiene por hipótesis que  A es  n  x  n e invertible. 

Por 11.5.17,  A es equivalente por filas con  A R    tal que   A R tiene  una fila nula o   A R =  In Supongamos que  A /∼  I . Por lo tanto,  A



 f

 n

  R  tiene una fila nula. (Por 11.5.18)

Por definición de equivalencia por filas y sus propiedades existe un número finito  k de matrices elementales (cada una se indica por  E  t )  y así    A =  E .  E  1. . 

− " 1

 E .    (

 A *)

 R

 k

 k

Usando que  A tiene inversa, se multiplica a ambos miembros de la igualdad (*) por  A - 1 a derecha (recordar que la multiplicación de matrices  NO es conmutativa): 

1

−

1

 A .  A =  E .  E

−

1.". 

−

1

 E . . 

 R

 k

 k

 A A   (**) 

por ser el producto asociativo y propiedad de la identidad: 

(**)´ 

1

−

−1

 A .  A =  E .  E  1.". 

−

1

 E . . 

 A A =  E .  E  1.". 

−

1

 E .  I =  E .  E  1.". 

 R

 k

 k

 k

 k

 n

 k

 k −

1

 E

Sea  B primer miembro de esta cadena de igualdades (**)´, es una matriz con una fila nula (ejercicio 10.2.4), achicando se tiene:  

(***)      B =  E .  E  1.". 

 k

 k

1

 E

−

Cada uno de los factores del segundo miembro de la expresión de  B en (***)  es invertible y por lo tanto el producto también. 

Multiplicando la igualdad (***) miembro a miembro a derecha por la inversa del segundo 

miembro se tiene:  

1

−

1

. 

 B ( E .  E

−

1. 

. 

− " 1

 E ) = ( E .  E  1. . 

− " 1

 E ).( E .  E  1. . 

− " 1

 E )

 k

 k

 k

 k

 k

 k

=  In

Por ser  B una matriz con una fila nula, resulta que la matriz del primer miembro tiene una fila nula, absurdo pues es igual a la identidad de orden  n, que tiene todas sus filas no nulas. 

El absurdo proviene de suponer que  A /∼  I .  Luego vale que   A ∼  I . 



 f

 n  



 f

 n

Para b) entonces c):  

La hipótesis es que  A ∼

 I . 



 f

 n

Por la definición de equivalencia por filas y sus propiedades:   A =  E .  E  1.". 1

 E . 

 k

 k

 I

−

 n . 

Por la propiedad de multiplicar por la identidad queda   A =  E .  E  1.". 

 k

 k

1

 E

−

Luego vale c). 
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Para c) entonces a):  

La hipótesis es que  A es producto finito de matrices elementales. 

Luego vale que  A es invertible, ya que cada elemental tiene inversa y el producto de matrices invertibles es una matriz invertible. 

Por lo tanto se ha cumplido con el circuito de implicaciones propuesto y de este modo las 

tres afirmaciones resultan equivalentes. 

♦ 

EJERCICIO 11.6.2: 

¿Cuáles de las matrices del ejercicio 11.5.17  son invertibles? 

  Método para analizar la existencia de la inversa de A y hallarla. 

Claramente este interrogante sólo tiene sentido para matrices cuadradas 

 n n

 A K ×

∈

. 

El teorema 11.6.1 asegura que dada   A, A es invertible si  A ∼

 I . 



 f

 n

Esto se analizará haciendo operaciones elementales sobre  A con el objetivo de l egar a   A R  

y comparando  A R con  I n 

Mirando con espíritu crítico la demostración del teorema anterior podemos encontrar 

fácilmente la inversa de  A obviamente en el caso que  A R  = In 

Por la definición de equivalencia por filas: 

 I =  E .  E  1.". 1

 E . 

 n

 k

 k

 A

−

Como el teorema 11.6.1 asegura que  A-1  existe, multiplicando a derecha (importante recordar que el producto de matrices NO es....) la igualdad precedente por  A-1 se obtiene: 1

−

1

 I .  A =  E .  E

−

1.". 

−

1

 E . . 

 n

 k

 k

 A A  , 

por tanto,  por propiedades de la identidad y producto entre una matriz y su inversa resulta: 1

 A− =  E .  E  1.". 

 k

 k−

1

 E

Es decir la inversa de  A resulta ser el producto de todas las matrices elementales que permiten llegar a la identidad  In  a partir de  A. 

664

SISTEMAS DE ECUACIONES LINEALES – CAPÍTULO 11

¾  El método

•

Disponemos un rectángulo o "matrición" formal ( la matriz  A seguida de  In) A = (  ij

 a )1≤ i≤ n

1≤  j≤  n

⎡ 11

 a

12

 a

" 

1

 a

1 0 " 0

 n

⎤

⎢

⎥

⎢ 21

 a

2

 a  2 " 

2

 a

0 1 " 0

 n

⎥

⎢ #

#

%

# # # % # ⎥

⎢

⎥

⎢ a

⎣ 1

 n

 n

 a  2 "  a  0 0 " 1

 nn

⎥⎦

•

Se realizan sucesivas operaciones elementales sobre las filas del "matrición" con el objetivo de llevar el sector correspondiente a la matriz   A a  AR , la escalonada y reducida por filas equivalente con  A. 

Esto produce en la parte correspondiente a  In  la acumulación del producto de las 

sucesivas elementales que permiten pasar de  A a  AR 

•

Si  AR  = In  (en el sector izquierdo del "matrición") la matriz  A es invertible y su inversa 1

 A− =  E .  E  1.". 

 k

 k−

1

 E  ha quedado en el sector derecho del "matrición" , donde de partida 

estaba  In 

•

Si 

 AR tiene una fila nula entonces  A no es invertible por el teorema 11.6.1. 

EJEMPLO 11.6.3 

Analizar si las siguientes matrices son invertibles, y en caso afirmativo hallarlas: 

⎛1 0 3⎞

⎛1 0 3⎞

⎜

⎟

⎜

⎟

 A = 0 2 1

 B = 0

2

−

1

⎜

⎟

⎜

⎟  

⎜ 2 6 9⎟

⎜ 2 1 9⎟

⎝

⎠

⎝

⎠

Formamos el matrición para la matriz  A y comenzamos a operar sobre la columna 1, 

sumando a la fila 3 la fila 1 multiplicada por -2. Esta operación sobre  A equivale a premultiplicar A por la elemental  3

 E  1( 2

− ) . 

En estos ejemplos se detallan todos los pasos formales para que se vea la idea subyacente 

atrás de las operaciones elementales y lo que se describió en la demostración del teorema. En la  práctica  uno  realiza  las  operaciones  elementales  sin  escribir  las  matrices  elementales. 

¡Ellas están detrás justificando nuestro proceder! 

665

[image: Image 9304]

[image: Image 9305]

[image: Image 9306]

[image: Image 9307]

SISTEMAS DE ECUACIONES LINEALES – CAPÍTULO 11

⎡1 0 3 1 0 0⎤

⎡ 1

0

3

1

0

0 ⎤

⎢

⎥

⎢

⎥

0 2 1 0 1 0 ∼

0

2

1

0

1

0

⎢

⎥  f ⎢

⎥

⎢2 6 9 0 0 1⎥

⎢2 − 2.1 6 − 0 9 − 2.3 0 − 2.1 0 − 0 1− 0⎥

⎣

⎦

⎣

⎦

Haciendo las cuentas indicadas se tiene: 

⎡1 0 3 1 0 0⎤

⎡1 0 3 1 0 0⎤

Esta es la elemental 

⎢

⎥

⎢

⎥

0 2 1 0 1 0 ∼

0 2 1 0

1 0

3

⎢

⎥

− , ¿de 

 f ⎢

⎥  

 E  1( 2)

⎢2 6 9 0 0 1⎥

⎢0 6 3 2

−

0 1⎥

⎣

⎦

⎣

⎦

acuerdo? 

Se debe transformar en 1 el elemento principal de la fila 2 (del sector de  A... ). Para ello se multiplica por 2-1  la fila 2.  Del lado derecho quedará acumulado el producto de 

1

−

3

2

 E (2 ).  E  1( 2

− ) : 

⎡1

0

3

1

0

0

1 0 3 1

0 0

⎤

⎡

⎤

⎢

−

⎥

⎢

⎥

1

1

−

1

0 2 1 0

1 0 ∼ ⎢0 2.2

1.2

0 1.2−

0

 f

⎥

⎢

⎥

0 6 3 2

−

0 1

⎢0

6

3

2

−

0

1⎥

⎢

⎥

⎣

⎦

⎢⎣

⎥⎦

haciendo las cuentas indicadas se obtiene: 

⎡1 0 3 1

0 0⎤

⎡1 0 3 1 0 0⎤

⎢

⎥

Queda para comprobar (así 

⎢

⎥

1

1

0 2 1 0

1 0 ∼ ⎢0 1

0

0⎥

⎢

⎥  f

−

⎢

2

2

⎥

practica) que 

1

3

2

 E (2 ).  E  1( 2

− )  es 

⎢0 6 3 2

−

0 1⎥

⎣

⎦

⎢0 6 3 −2 0 1⎥

⎣

⎦

ésta! 

Se debe "barrer" la columna 2. 

Para lo cual se sumará a la fila 3 la fila 2 multiplicada por -6. 

Esto equivale a premultiplicar por  3

 E  2 ( 6

− ) . 

Del lado derecho quedará el producto  3

 E

1

−

3

2 ( 6

− ) 2

 E (2 ).  E  1( 2

− ) . 

⎡

⎤

⎡1 0 3 1

0 0⎤

⎢ 1

0

3

1

0

0 ⎥

⎢

⎥

⎢

⎥

1

1

1

1

⎢0 1

0

0⎥

⎢

∼

0

1

0

0 ⎥   

⎢

2

2

 f

⎥

⎢

2

2

⎥

⎢0 6 3 −2 0 1⎥

⎢

1

1

⎥

⎣

⎦

⎢0 − 0 6 − 6.1 3 − 6. 

2

− − 0 0 − 6. 

1 − 0⎥

⎢⎣

2

2

⎥⎦

¡Claro! 

haciendo las cuentas indicadas: 

⎡1 0 3 1

0 0⎤

⎡1 0 3 1

0

0⎤

⎢

⎥

⎢

⎥

Queda para comprobar  que 

1

1

1

1

⎢0 1

0

0⎥ ∼ ⎢0 1

0

0⎥

3

1

−

3

⎢

2

2

 f

⎥

⎢

2

2

⎥

 E  2 ( 6

− ) 2

 E (2 ).  E  1( 2

− )  es  

⎢0 6 3 2 0 1⎥

⎢0 0 0 2 3 1⎥

−

−

−

⎣

⎦

⎣

⎦   ésta! 
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Como la  AR tiene una fila nula,  A no es invertible y su rango es 2. 

Sea realizará un trabajo similar con  B. 

Se forma el matrición y se opera sobre la columna 1, sumando a la fila 3 la fila 1 multiplicada por -2. 

Esta operación sobre  B equivale a premultiplicar  B por la elemental  3

 E  1( 2

− ) , que se

acumula en la parte que esta la identidad. 

⎡1 0 3 1 0 0⎤

⎡ 1

0

3

1

0

0 ⎤

⎢

⎥

⎢

⎥

0

2

−

1 0 1 0 ∼

0

2

1

0

1

0

⎢

⎥  f ⎢

⎥

⎢2 1 9 0 0 1⎥

⎢2 − 2.1 1− 0 9 − 2.3 0 − 2.1 0 − 0 1− 0⎥

⎣

⎦

⎣

⎦

Haciendo las cuentas indicadas se tiene: 

Esta es la elemental 

3

⎡

−

1

0

3 1 0 0⎤

⎡1 0 3 1 0 0⎤

 E  1( 2) , ¿de

⎢

⎥

⎢

⎥

0

2

−

1 0 1 0 ∼

0

2

−

1 0

1 0

⎢

⎥

acuerdo? 

 f ⎢

⎥  

⎢2 1 9 0 0 1⎥

⎢0 1 3 2

−

0 1⎥

⎣

⎦

⎣

⎦

Se debe transformar en 1 el elemento principal de la fila 2 (del sector de  B... ). Para ello se multiplica por (-2)-1 la fila 2 (también se pueden permutar las filas 2 y 3) . 

Del lado derecho quedará acumulado el producto de 

1

−

3

2

 E (( 2)

−

).  E  1( 2

− ) : 

⎡1

0

3

1

0

0

1

0

3 1

0 0

⎤

⎡

⎤

⎢

−

⎥

⎢

⎥

1

1

−

1

0 −2 1 0

1 0 ∼ ⎢0

2.(

−

2

− )

1.( 2)

−

0 1.( 2)−

−

0

 f

⎥

⎢

⎥

0

1

3 2

−

0 1

⎢0

1

3

2

−

0

1⎥

⎢

⎥

⎣

⎦

⎢⎣

⎥⎦

haciendo las cuentas indicadas se obtiene: 

¡Y  bueno! 

⎡1 0

3 1

0

0⎤

Queda para comprobar (así 

⎡1 0 3 1 0 0⎤

⎢

⎥

⎢

⎥

1

−

1

−

practica!!!) que  

0 2 1 0

1 0 ∼ ⎢0 1

0

0⎥

⎢

⎥  f



⎢

2

2

⎥

⎢

1

−

3

0 1 3 2

−

0 1⎥

−

−

⎣

⎦

⎢

2

 E (( 2) ).  E  1( 2)  es ésta! 

0 1

3

2

−

0

1⎥

⎣

⎦

Se barre la columna 2. Para el o se suma a la fila 3 la fila 2 multiplicada por -1. 

Esto equivale a premultiplicar por  3

 E  2 ( 1

− ) del lado donde se había puesto  B. 

En la  derecha quedará el producto  3

 E

−

2 ( 1

− ) . 

1

3

2

 E (( 2)

−

).  E  1( 2

− ) . 
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⎡

⎤

⎡1 0

3 1

0

0⎤

⎢ 1

0

3

1

0

0 ⎥

⎢

⎥

⎢

⎥

1

−

1

−

1

−

1

−

⎢0 1

0

0⎥

⎢

∼

0

1

0

0 ⎥

⎢

2

2

 f

⎥

⎢

2

2

⎥

⎢0 1 3 2

−

0

1⎥

⎢

−1

1

⎥

−

⎣

⎦

⎢0 − 0 1−1.1 3 −1. 

2

− − 0 0 −1. 

1 − 0⎥

⎢⎣

2

2

⎥⎦

haciendo las cuentas indicadas: 

¡Ya voy! 

⎡

⎤

⎡1 0

3 1

0

0⎤

⎢1 0 3 1

0

0⎥

⎢

⎥

⎢

⎥

1

−

1

−

1

−

1

−

¡Queda para comprobar  que 

⎢0 1

0

0⎥

⎢

∼

0 1

0

0⎥

⎢

2

2

 f

⎥

⎢

2

2

⎥

3

−

−

−

−

⎢

 E  2 ( 1) . 

1

3

2

 E (( 2) ).  E  1( 2)

0 1

3

2

−

0

1⎥

⎢

7

1

⎥

⎣

⎦

⎢0 0

2

−

1⎥

⎢⎣

es ésta! 

2

2

⎥⎦

¿Qué se debe hacer todavía?  Multiplicar por el inverso de 7/2 la fila 3 y luego barrer la 

tercer columna y así se obtendrá la identidad en el lado izquierdo, esto significa que  B es invertible. 

Por tanto, primero premultiplicamos  por  3

 E (2 / 7) :

⎡

⎤

⎡

⎤

⎡

⎤

⎢1 0 3 1

0

0⎥

⎢ 1

0

3

1

0

0 ⎥

⎢1 0 3 1

0

0 ⎥

⎢

⎥

⎢

⎥

⎢

⎥

1

−

1

−

1

−

1

−

1

−

1

−

⎢0 1

0

0⎥

⎢

∼

0

1

0

0 ⎥

⎢

∼

0 1

0

0    ⎥

⎢

2

2

 f

⎥

⎢

2

2

 f

⎥

⎢

2

2

⎥

⎢

⎥

⎢

⎥

⎢

⎥

7

1

2

2 7 2

2 1 2

2

0 0

1

4

−

1

2

⎢0 0

2

−

1⎥

⎢0. 

0. 

. 

2. 

−

. 

1. ⎥

⎢

⎥

⎢⎣

2

2

⎥⎦

⎢⎣ 7

7 2 7

7 2 7

7 ⎥⎦

⎢⎣

7

7

7 ⎥⎦

¡Otra cuenta más! 

En el bloque derecho de la última matriz queda el producto 

−

3

 E (2 / 7) .  3

 E  2 ( 1

− ) . 

1

3

 E 2 ((−2) ).  E  1(−2) (verifíquelo) 

Para barrer la tercera columna primero a la fila 1 le sumamos la fila 3 multiplicada por -3 y luego a la fila 2 le sumamos la fila 3 multiplicada por ½. 

Estas operaciones equivalen a premultiplicar por  1

 E  3( 3

− )  y luego por  2

 E  3 (1/ 2) , 

obteniendo así: 

⎡

⎤

⎡

4

−

1

2 ⎤

⎢

1− 3. 

0 − 3. 

0 − 3. 

1 0

3 1

0

0 ⎥

⎢ 1 0 0

⎥

⎢

⎥

7

7

7

⎢

⎥

1

−

1

−

⎢

1

−

1

−

⎥

⎢    0 1

0

0 ⎥

⎢

∼

0 1

0

0

∼ es decir:

2

2

 f

⎥

⎢

2

2

 f

⎥

⎢

⎥

⎢

⎥

0 0

1

4

−

1

2

⎢

⎥

0 0

1

4

−

1

2

⎢

⎥

⎢⎣

7

7

7 ⎥⎦

⎢

7

7

7

⎥

⎣

⎦
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⎡

⎤

⎡

19

3

−

6

− ⎤

⎢ 1 0 3 1

0

0 ⎥

⎢ 1 0 0

⎥

⎢

⎥

7

7

7

⎢

⎥

1

−

1

−

⎢

−1

1

−

⎥

⎢    0 1

0

0 ⎥

⎢

∼

0 1

0

0

2

2

 f

⎥

⎢

2

2

⎥

⎢

⎥

⎢

⎥

0 0

1

4

−

1

2

⎢

⎥

0 0

1 −4

1

2

⎢

⎥

⎢⎣

7

7

7 ⎥⎦

⎢

7

7

7 ⎥

⎣

⎦

Luego, por último: 

⎡

19

−3

6

− ⎤

⎡

19

3

−

6

− ⎤

⎢ 1 0 0 7 7 7 ⎥

⎢

⎥

⎢

⎥

1

0

0

7

7

7

⎢

⎥

⎢

1

−

1

−

⎢

1 1

4

−

1

−

1

2

0 1

0

0 ⎥

⎥

⎢

∼

0 + 0 1+ 0 − +

0 +

+

0 +

2

2

⎥

 f ⎢

⎥

⎢

⎥

2 2

7

2

7

7

⎢

⎥

0 0

1

4

−

1

2

⎢

⎥

0

0

1

4

−

1

2

⎢

⎥

⎢

7

7

7 ⎥

⎣

⎦

⎢

7

7

7 ⎥

⎣

⎦

que haciendo cuentas resulta: 

⎡

19

−3

6

− ⎤

⎡

19

3

−

6

− ⎤

⎢ 1 0 0 7 7 7 ⎥

⎢

⎥

⎢

⎥

1

0

0

7

7

7

⎢

⎥

⎢

1

−

1

−

⎢

1 1

4

−

1

−

1

2

0 1

0

0 ⎥

⎥

⎢

∼

0 + 0 1+ 0 − +

0 +

+

0 +

2

2

⎥

 f ⎢

⎥

⎢

⎥

2 2

7

2

7

7

⎢

⎥

0 0

1

4

−

1

2

⎢

⎥

0

0

1

4

−

1

2

⎢

⎥

⎢

7

7

7 ⎥

⎣

⎦

⎢

7

7

7 ⎥

⎣

⎦

⎡

19

−3

6

− ⎤

⎡

19

3

−

6

− ⎤

⎢

1 0 0

1 0

0 7

7

7 ⎥

⎢

⎥

⎢

⎥

7

7

7

⎢

⎥

⎢

1

−

1

−

⎢

4

−

5

−

2

0 1

0

0 ⎥

⎥

⎢

∼

0 1 0

2

2

⎥

 f ⎢

⎥

⎢

⎥

7

14

7

⎢

⎥

0 0

1

4

−

1

2

⎢

⎥

4

−

1

2

⎢

⎥

⎢

7

7

7 ⎥

⎣

⎦

0 0 1

⎢

7

7

7 ⎥

⎣

⎦

Por lo tanto el rango de  B es 3 y  la inversa de  B existe, es 

⎛ 19

3

−

6

− ⎞

⎜ 7 7 7 ⎟

⎜

⎟

⎜ 4

−

5

−

2



1

 B−

⎟

= ⎜

y es el producto: 

7

14

7 ⎟

⎜

⎟

4

−

1

2

⎜

⎟

⎜

⎟

⎝ 7

7

7 ⎠



1

−

2

 B

=  E

−

3 (1 / 2) . 1

 E  3( 3

− ) . 3

 E (2 / 7) . 3

 E  2 (−1) . 

1

3

 E 2 ((−2) ).  E  1(−2)

EJERCICIO 11.6.4 

Hallar el rango y analizar si es que existen las inversas de 
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⎛ 2 0 0 0⎞

⎜

⎟

⎛5 0 0⎞

⎛ 2

 i ⎞

⎛ 4

6

− ⎞

3 1

5

7

⎜

⎟

⎜

⎟

 A =

 B =

 C =

 D = 0

2

−

0

⎜

⎟

⎜

⎟

⎝1

3

− ⎠

⎝ 2

−

3

⎜

⎠

2 4

3

−

0⎟

⎜

⎟

⎜0 0 1⎟

⎜

⎟

⎝

⎠

⎝ 0 1 0 2⎠

??? 

EJERCICIO 11.6.5 

¿ Qué relación hay entre el rango y la propiedad de ser invertible para matrices 

 n n

 A K ×

∈

? 

7. Resolución de sistemas lineales de  m ecuaciones con  n

incógnitas 

Ya se tiene lo necesario para justificar el método de eliminación (o sumas y restas) que 

empleamos en la resolución  de los sistemas 2 x 2 dados como ejemplo en el  Recordatorio 

del apartado introductorio a los sistemas de ecuaciones. 

Un sistema de  m ecuaciones lineales con  n incógnitas se expresa matricialmente como A.X =B 

Siendo:       A

 m× n

∈  K

,  A = (  ij

 a  1

) ≤ i≤ m  la matriz de los coeficientes

1≤  j≤  n

 X = ( xj )

la matriz de las incógnitas  (es formal) 

1≤  j≤  n

 m  1

 B ∈  K × ,  B = (  ib  1

) ≤ i≤ m  la matriz de los términos independientes 

Resolver el sistema       A.X =B  

es hallar una matriz  

*

 n  1

×

*

 X ∈  K

,  X = ( *

 x j )

tal que 

1≤  j ≤  n

*

. 

 A X =  B

Al resolver los sistemas del ejemplo se partió de un sistema y luego de un determinado 

número de operaciones se resolvió un sistema que formalmente no es el mismo  (en su 

aspecto), pero se  admitió que las soluciones del último sistema (el resuelto) son las soluciones del "original". Para justificar ese proceder para cualquier sistema, se demostrará un teorema luego de la siguiente definición: 
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Dos sistemas  1

 A .  X = 1

 B  y  2

 A .  X = 2

 B   son equivalentes  si  tienen el mismo conjunto

solución. 

Esto es, toda solución de  1

 A .  X = 1

 B  es también solución de  2

 A .  X = 2


 B  y además toda

solución de  2

 A .  X = 2

 B  es solución de  1

 A .  X = 1

 B . 

Si  1

 A .  X = 1

 B  y  2

 A .  X = 2

 B  son equivalentes se indicará por

1

 A .  X = 1

 B

∼

2

 A .  X = 2

 B

La notación utilizada para esta relación quedará justificada  pues las propiedades de la 

relación igualdad entre conjuntos, permiten demostrar que la relación   

“  1

 A .  X = 1

 B  y  2

 A .  X = 2

 B  son equivalentes si tienen el mismo conjunto solución” 

definida sobre el conjunto de sistemas de  m ecuaciones lineales con  n incógnitas, cumple 

•

Todo sistema es equivalente a sí mismo:

Cualquiera sea el sistema 1

 A .  X = 1

 B ,  1

 A .  X = 1

 B  es equivalente a  1

 A .  X = 1

 B

•

Hay simetría en la relación definida:

Si 

1

 A .  X = 1

 B  es equivalente a  2

 A .  X = 2

 B , entonces  2

 A .  X = 2

 B  es equivalente a

1

 A .  X = 1

 B

•

Vale la transitividad de esta relación:

Si  1

 A .  X = 1

 B  es equivalente a  2

 A .  X = 2

 B  y  2

 A .  X = 2

 B  es equivalente a  3

 A .  X = 3

 B , 

entonces  1

 A .  X = 1

 B  es equivalente a  3

 A .  X = 3

 B

Por lo tanto, la relación definida sobre los sistemas es una relación de equivalencia (es una relación reflexiva, simétrica y transitiva) ¡¡ por eso el nombre de sistemas equivalentes!! 

 Ah! 

EJERCICIO 11.7.1 

Demostrar al menos una de las propiedades antes mencionadas, sobre los sistemas 

equivalentes. 

♦ TEOREMA 11.7.2 (Equivalencia de Sistemas)

671

SISTEMAS DE ECUACIONES LINEALES – CAPÍTULO 11

Sean  1

 A .  X = 1

 B  y  2

 A .  X = 2

 B  dos sistemas de  m ecuaciones con  n incógnitas tales que

2

 A    y   2

 B  se obtuvieron luego de aplicar una misma operación elemental sobre   1

 A   y  sobre  1

 B  

respectivamente. Entonces ambos sistemas son equivalentes. 

Demostración: 

Se debe probar que las soluciones de  1

 A .  X = 1

 B  y  2

 A .  X = 2

 B  son las mismas, es  decir

que toda solución de uno de ellos es solución del otro y recíprocamente. 

Sea  E  la matriz que representa a la operación elemental aplicada sobre  A1  y sobre  B1 tal que:   

2

 A =  E. 1

 A

y      2

 B =  E. 1

 B       (e)

Dada  *

 n  1

 X

 K ×

∈

solución de  1

 A .  X = 1

 B  esto es

*

1

 A .  X = 1

 B     (1)

Si se multiplican ambos miembros de esta igualdad (1) por la matriz  E  (a izquierda) resulta: 

*

 E. 1

 A .  X =  E. 1

 B   y reemplazando por (e):

*

2

 A .  X = 2

 B  es decir   *

 X  es  solución de  2

 A .  X = 2

 B . 

Considerando ahora  **

 n  1

 X

 K ×

∈

solución de  2

 A .  X = 2

 B , es decir 

**

2

 A .  X

= 2

 B

Toda matriz elemental es invertible, entonces  al  multiplicar ambos miembros de esta 

igualdad por la inversa de la matriz elemental   E  (a izquierda) resulta: 

1

−

**

1

 E . 

−

2

 A .  X

=  E . 2

 B  pero, por la validez de (e) resulta 

**

1

 A .  X

= 1

 B  es decir

**

 X  es  solución de  1

 A X = 1

 B . 

        ♦ 

Si se realiza más de una operación elemental sobre  1

 A .  X = 1

 B  para llegar a  2

 A .  X = 2

 B , se

tiene el siguiente resultado: 

COROLARIO 11.7.3 

Sean  1

 A .  X = 1

 B  y  2

 A .  X = 2

 B  dos sistemas de  m ecuaciones con  n incógnitas tales que

1

 A ∼

2

 A    y  

 f

1

 B ∼  f  2

 B  . Si  2

 A   y   2

 B  se obtuvieron luego de aplicar las mismas operaciones

elementales sobre   1

 A   y  sobre  1

 B  respectivamente. 

Entonces ambos sistemas 1

 A .  X = 1

 B  y  2

 A .  X = 2

 B  son equivalentes. 

Si!! 

EJERCICIO  11.7.4: 

Demostrar el Corolario. (Si se anima….) 
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(Idea: Casi igual que el teorema, use que las matrices elementales son invertibles y un 

producto finito  de matrices invertibles es invertible, es para aplicar el método de inducción completa) 

Este Corolario justifica el método que se conoce como eliminación gaussiana  o método de 

Gauss-Jordan. 

EJEMPLO 11.7.5 

Resolver el sistema:  

⎧ 1

 x +

2

 x +

3

 x +

4

 x = 2

⎛1 1

1

1 ⎞ ⎛ 1

 x ⎞ ⎛ 2 ⎞

⎪

⎜

⎟ ⎜

⎟ ⎜ ⎟

⎪2 1

 x + 5 2

 x + 3 3

 x + 2 4

 x = 1

2

5

3

2

 x

1

⎨

2

⎜

⎟.⎜ ⎟ ⎜ ⎟

=

3

⎜

−

−

⎟ ⎜

⎟ ⎜ − ⎟

1

 x −

2

 x −

2 3

 x +

4

 x = 1

−

⎪

3

1

2 1

3

 x

1

⎪

⎜

⎟ ⎜

⎟

⎟

⎜

⎜

⎟

⎟

3 x +

 x +

 x = 5

⎝ 0 3

1

1 ⎠  x

⎝

⎠ ⎝ 5

⎩

2

3

4



4

⎠

Se aplicarán operaciones elementales para llevar la matriz de los coeficientes  A  a su equivalente reducida por filas y escalonada. 

Como se mostró antes si esas mismas operaciones elementales se realizan sobre la 

columna  B de los términos independientes el sistema resultante será equivalente. 

Para trabajar con ambas matrices a la vez se lo hace con la matriz ampliada o matriz orlada, que se construye colocando a la derecha de las columnas de  A la columna que se corresponde con  B. 

En el ejemplo la matriz orlada resulta: 

⎛1 1

1

1

2 ⎞

⎜

⎟

2

5

3

2

1

 A B

⎜

⎟

⎡

⎤ =

⎣

⎦ ⎜3 1

−

2

−

1

1

− ⎟

⎜

⎟

⎜ 0 3 1 1 5 ⎟

⎝

⎠

Se trabajará con esta matriz con el objetivo de llevar  A a su   R

 A

Se eliminarán los elementos de la 1er. columna de las filas 2 y 3, haciendo uso del principal de la fila 1: 
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⎛1 1

1

1

2 ⎞

⎛ 1

1

1

1

2

⎞

⎜

⎟

⎜

⎟

2

5

3

2

1

2 − 2.1 5 − 2.1 3 − 2.1 2 − 2.1 1 − 2.2

 A B

⎜

⎟

⎜

⎟

⎡

⎤ =

⎣

⎦ ⎜

∼

3

1

−

2

−

1

1

 f

− ⎟

⎜ 3

1

−

2

−

1

1

−

⎟

⎜

⎟

⎜

⎟

⎜ 0 3 1 1 5 ⎟

⎜ 0

3

1

1

5

⎟

⎝

⎠

⎝

⎠

Es así: 

⎛1 1

1

1

2 ⎞

⎛ 1

1

1

1

2

⎞

⎜

⎟

⎜

⎟

0

3

1

0

3

−

0

3

1

0

3

−

 A B

⎜

⎟

⎜

⎟

⎡

⎤

⎣

⎦ ∼  f ⎜

∼



3

1

−

2

−

1

1

 f

− ⎟

⎜3 − 3.1 1

− − 3.1

2

− − 3.1 1 − 3.1

1

− − 3.2⎟

⎜

⎟

⎜

⎟

⎜ 0 3 1 1 5 ⎟

⎜ 0

3

1

1

5

⎟

⎝

⎠

⎝

⎠

Por tanto: 

⎛1 1

1

1

2 ⎞

⎛1 1

1

1

2 ⎞

⎜

⎟

⎜

⎟

0

3

1

0 −3

0

3

1

0

3

−

 A B

⎜

⎟

⎜

⎟

⎡

⎤

⎣

⎦ ∼  f ⎜

∼



3

1

−

2

−

1

1

 f

− ⎟

⎜0

4

−

5

−

2

−

−7⎟

⎜

⎟

⎜

⎟

⎜0 3 1 1 5 ⎟

⎜0 3 1 1 5 ⎟

⎝

⎠

⎝

⎠

Se multiplica la fila 2 por el inverso de 3 para obtener 1 como principal de esa fila: 

⎛1

1

1

1

2

⎞ ⎛1 1

1

1

2 ⎞

⎜

⎟ ⎜

⎟

1

−

1

−

1

−

1

⎜0 3.3

1.3

0

3.3

−

⎟ ⎜0 1 3−

0

−1

 A B

⎟

⎡

⎤ ∼  f

=

⎣

⎦

⎜



0

4

−

5

−

2

−

−7 ⎟ ⎜0

4

−

5

−

2

−

7

− ⎟

⎜

⎟ ⎜

⎟

⎜0

3

1

1

5

⎟ ⎜

⎝

⎠ ⎝0 3

1

1

5 ⎟⎠

Así obtenido 1 como principal de la fila 2, se barre la columna 2; para la 1er. fila: 

1

⎛1 1

1

1

2 ⎞

⎛1 1−1.1 1−1.3−

1

2 − 1.( 1

− )⎞

⎜

⎟

⎜

⎟

1

−

1

⎜0 1 3

0

−1

−

⎟

⎜

1

0

1

3

0

−

⎟

⎡  A B⎤

⎣

⎦ ∼  f

∼  f

⎜0 4

−

5

−

2

−

7

− ⎟

⎜

7

⎟

0

−4

5

−

2

−

−

⎜

⎟

⎜

⎟

⎜0 3 1

1

5 ⎟

⎜

5

0

3

1

1

⎟

⎝

⎠

⎝

⎠

1

⎛1 1

1

1

2 ⎞

⎛1 0 2.3−

1

3 ⎞

⎜

⎟

⎜

⎟

1

−

1

⎜0 1 3

0

1

−

− ⎟

⎜

1

0

1

3

0

− ⎟

⎡  A B⎤

⎣

⎦ ∼  f

∼  f

⎜

para la 3er. fila: 

0

4

−

5

−

2

−

7

− ⎟

⎜

7⎟

0

4

−

−5

2 −

−

⎜

⎟

⎜

⎟

⎜0 3 1

1

5 ⎟

⎜

5

0

3

1

1

⎟

⎝

⎠

⎝

⎠

1

−

1

⎛1 0 2.3

1

3 ⎞

⎛1

0

2.3−

1

3

⎞

⎜

⎟

⎜

⎟

1

−

1

⎜

1

0

1

3

0

− ⎟

⎜ 0

1

3−

0

1

−

⎟

⎡  A B⎤

⎣

⎦ ∼  f ⎜

∼

7 ⎟

 f ⎜

⎟

−

1

−

7

− + 4.( 1

− )

0

4

−

5

−

2

−

⎜

⎟

⎜ 0

4

− + 4.1

5

− + 4.3

2

−

⎟

⎜

5 ⎟

⎜

5

0

3

1

1

0

3

1

1

⎟

⎝

⎠

⎝

⎠
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1

−

1

⎛1 0 2.3

1

3 ⎞

⎛1 0

2.3−

1

3 ⎞

⎜

⎟

⎜

⎟

1

−

1

⎜

1

0

1

3

0

− ⎟

⎜0 1

3−

0

1

− ⎟

⎡  A B⎤

⎣

⎦ ∼  f ⎜

∼



7 ⎟

 f ⎜

⎟

−

−1

1

− 1

0

4

−

5

−

2

−

⎜

⎟

⎜0 0

1

− 1.3

2

−

⎟

⎜

5 ⎟

⎜

5

0

3

1

1

0 3

1

1

⎟

⎝

⎠

⎝

⎠

para la 4ta. fila:  

1

−

1

⎛1 0

2.3

1

⎞

⎛1

0

2.3−

1

3

3

⎞

⎜

⎟

⎜

⎟

1

−

−1

⎜0 1

3

0

1

− ⎟

⎜0

1

3

0

1

−

⎟

⎡  A B⎤

⎣

⎦ ∼  f ⎜

⎟ ∼  f ⎜

⎟

−1

1

11

−

−

1

− 1

⎜0 0

1

− 1.3

2

−

⎟

⎜ 0

0

11.3

−

−2

⎟

⎜

5 ⎟

⎜⎜

1

−

5 − 3.( 1

− )⎟

⎝0 3

1

1

⎠

⎝ 0 3 3.1 1 3.3

1

⎟

−

−

⎠

1

⎛1 0

2.3−

1

3 ⎞

⎜

⎟

1

⎜0 1

3−

0

1

− ⎟

Haciendo las cuentas se tiene ⎡  A B⎤

⎣

⎦ ∼  f ⎜

⎟

1

−

11

⎜0 0

11.3

2 −

−

−

⎟

⎜

8

0 0

0

1

⎟

⎝

⎠

Se transformará en 1 el principal de la fila 3, multiplicando por el inverso de -11.3-1 , es decir 

-3.11-1 

−1

1

⎛1 0

2.3

1

3

⎞ ⎛1 0 2.3−

1

⎞

⎜

⎟ ⎜

3 ⎟

−1

−1

⎜

1

0 1

3

0

−

⎟ ⎜0 1

3

0

1⎟

−

⎡  A B⎤ ∼ ⎜

⎟ = ⎜

⎟

⎣

⎦  f

3



⎜

−1

3

3

6

11

− .(− )⎟ ⎜

3

0 0

1

− 1.3 (− )

2

− .(− )

0 0

1

⎟

⎜

11

11

11

⎟ ⎜

11

⎟

8

⎜

8

0 0

0

1

⎟ ⎜0 0

0

1

⎟

⎝

⎠ ⎝

⎠

Con la fila 3 se barre la columna 3: 

⎛

2

3 ⎞

⎛

2 2

2 6

2 ⎞

⎜1 0

1

⎟

1 0

− .1 1− . 

3 − .3

⎜

⎟

3

3 3

3 11

3

⎜

⎟

⎜

⎟

⎜

1

−

− ⎟

1

0 1 3

0

1

−

⎜

−1

0 1

3

0

⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟ ∼



 f ⎜

⎟

⎜

6

3

3

⎟

6

0 0

1

⎜ 0 0

1

⎟

⎜

11

⎟

⎜

11

⎟

⎜

⎟

0 0

0

1

⎜

⎟

⎜

8 ⎟

0 0

0

1

8

⎝

⎠

⎝

⎠

⎛

1

−

1

⎞

1

−

1 0

0

7.11

⎛1 0 0 7.11

1 ⎞

⎜

⎟

1

⎜

⎟

⎜

1

− − 3− .3⎟

1

−

−

1

−

1

−

1

−

6

1

⎜ 0 1 3

0

⎟

⎜ 0 1 3 − 3 .1 0 − 3 .. 

⎟

⎡

⎤ ∼ ⎜

⎟

11

 A B

3 ∼ ⎜

⎟

⎣

⎦



 f

6

 f

⎜ 0 0 1

⎟

⎜

6

3

⎟

⎜

⎟

0 0

1

11

⎜

⎟

11

⎜ 0 0 0

1

8 ⎟

⎜

⎟

⎝

⎠

⎜ 0 0

0

1

8

⎟

⎝

⎠
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1

⎛1 0 0 7.11−

1⎞

⎜

⎟

1

⎜ 0 1 0

2

− .11−

0⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟  

1

−

3

⎜ 0 0 1 6.11

⎟

⎜

8

0 0 0

1

⎟

⎝

⎠

Con el 1 de la 4ta. fila se barre la columna 4: 

1

−

1

−

1

−

⎛

⎞

⎛

1

1 0 0

7.11

1

1 0 0 7.11 − 7.11 .1 1 − 7.11− .8⎞

⎜

⎟

⎜

⎟

1

−

1

⎜ 0 1 0

2.11

−

0⎟

⎜ 0 1 0

2.11−

−

0

⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟ ∼  f ⎜

⎟ = 

1

−

3

1

−

3

⎜ 0 0 1 6.11

⎟

⎜ 0 0 1

6.11

⎟

⎜

8⎟

⎜

8

0 0 0

1

0 0 0

1

⎟

⎝

⎠

⎝

⎠

⎛1 0 0

0

1

45.11− ⎞

−

⎜

⎟

1

⎜0 1 0

2.11−

−

0

⎟

=  ⎜

1

⎟

0 0 1

6.11−

3

⎜

⎟

⎜0 0 0

1

8

⎟

⎝

⎠

⎛1 0 0

0

1

−

1

⎞

⎛1 0 0

0

45

− .11

45

− .11− ⎞

⎜

⎟

⎜

⎟

1

−

1

−

1

−

1

⎜0 1 0

2.11

−

0

⎟

⎜0 1 0

2

− .11 + 2.11

0 + 2.11− .8⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

∼

1

⎟  f

−

⎜

1

⎟

0 0 1

6.11

3

0 0 1

6.11−

3

⎜

⎟

⎜

⎟

⎜0 0 0

1

8

⎟

⎜0 0 0

1

8

⎟

⎝

⎠

⎝

⎠

1

−

1

⎛1 0 0

0

45.11 ⎞

⎛

−

1 0 0

0

4

− 5.11− ⎞

⎜

⎟

⎜

⎟

⎜0 1 0

0

1

−

1

⎟

⎜0 1 0

0

16.11 . 

16.11− . ⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

∼



1

⎟  f

−

⎜

1

−

1

−

⎟

1

0 0 1 6.11

3

0 0 1 6.11 − 6.11 .1

⎜

⎟

⎜

3 − 6.11− .8⎟

⎜0 0 0

1

8

⎟

⎜0 0 0

1

⎟

⎝

⎠

8

⎝

⎠

Y resulta: 

1

⎛1 0 0 0 45.11− ⎞

−

⎜

⎟

1

⎜0 1 0 0 16.11− ⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟

0 0 1 0

1

⎜

37.11−

−

⎟

⎜0 0 0 1

⎟

8

⎝

⎠

Reinterpretando esta matriz ampliada como ecuación matricial se tiene: 

1

⎛1 0 0 0 ⎞ ⎛  x

⎛

⎞

45

− .11− ⎞

1

⎜

⎟

⎜

⎟ ⎜

⎟

1

0 1 0 0

 x

⎜ 16.11− ⎟

⎜

⎟ ⎜ 2

. 

⎟ =

⎜0 0 1 0 ⎟  x

⎜

⎟

⎜

⎟

1

3

⎜ 37

− .11− ⎟

⎜

⎟ ⎜

⎟

0 0 0 1

⎜

⎟

⎝

⎠ ⎝ 4

 x ⎠ ⎝ 8 ⎠
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Que por los resultados anteriores es un sistema equivalente al dado. 

El producto del primer miembro es la matriz columna de las incógnitas. 

La solución es única y es la matriz columna de 4 filas: 

*

⎛

⎞

1

 x

−

1

⎛ 45.1

−

1 ⎞

⎜

⎟ ⎜

⎟

*

1

⎜  x

−

2 ⎟

⎜ 16.11 ⎟

⎜

⎟ = ⎜

⎟

*

1

⎜  x

−

3 ⎟

⎜ 37.1

−

1 ⎟

⎜⎜ * ⎟⎟ ⎜

⎟

⎝  x  4 ⎠ ⎝

8

⎠

El método de resolución es fácil pero trabajoso. Es importante al menos ayudarse con una 

calculadora. 

EJEMPLO 11.7.6 

Resolver el sistema:  

⎧ 1

 x +

2

 x +

2 3

 x + 2 4

 x = 5

⎛1 1 2 2 ⎞ ⎛ 1

 x ⎞ ⎛ 5 ⎞

⎪

⎜

⎟ ⎜

⎟ ⎜ ⎟

⎪2 1

 x −

2

 x +

3 3

 x −

4

 x = 4

2

1

−

3

1

−

 x

4

⎨



2

⎜

⎟.⎜ ⎟ ⎜ ⎟

=



5

⎪

⎜

−

⎟ ⎜

⎟ ⎜ ⎟

1

 x −

2

 x +

8 3

 x

= 10

5

1 8

0

3

 x

10

⎪

⎜

⎟ ⎜

⎟

⎟

⎜

⎜

⎟

⎟

3

⎩

2

 x +

3

 x +

4

 x = 5

⎝ 0 3 1 1 ⎠ ⎝ 4

 x ⎠ ⎝ 5 ⎠

Se empleará el mismo método de eliminación del ejemplo anterior. Construida la matriz 

ampliada: 

⎛1 1 2 2 5 ⎞

⎜

⎟

2

1

−

3

1

− 4

 A B

⎜

⎟

⎡

⎤ =

⎣

⎦ ⎜5 1

−

8

0 10⎟

⎜

⎟

⎜ 0 3 1 1 5 ⎟

⎝

⎠

Se trabaja con el propósito de llevar las columnas correspondientes a  A  a la reducida por filas y escalonada equivalente. 

Con el 1 principal de la 1ra. fila se barrerá la 1er. columna. Para ello es necesario eliminar el 2 de la segunda fila y el 5 de la tercera fila. 

Se realizarán esas dos operaciones sobre esas filas de manera simultánea: 

⎛1 1 2 2 5 ⎞

⎛ 1

1

2

2

5

⎞

⎜

⎟

⎜

⎟

2

1

−

3

1

− 4

2 − 2.1

1

− − 2.1 3 − 2.2 −1 − 2.2 4 − 2.5

 A B

⎜

⎟

⎜

⎟

⎡

⎤ =

⎣

⎦ ⎜

∼

5

1

−

8

0 10

 f

⎟

⎜ 5 − 5.1

1

− − 5.1 8 − 5.2 0 − 5.2 10 − 5.5⎟

⎜

⎟

⎜

⎟

⎜ 0 3 1 1 5 ⎟

⎜ 0

3

1

1

5

⎟

⎝

⎠

⎝

⎠

Se obtiene así: 
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⎛1 1

2

2

5 ⎞

⎜

⎟

0

3

−

1

−

5

−

6

−

 A B

⎜

⎟

⎡

⎤

⎣

⎦ ∼  f ⎜



0

6

−

2

−

1

− 0 1

− 5⎟

⎜

⎟

⎜0 3 1

1

5 ⎟

⎝

⎠

se transforma en 1 el principal de la 2da. fila multiplicando por el inverso de -3: 

⎛1 1

2

2

5 ⎞

⎜

⎟

1

−

1

⎜0 1 3

5.3−

2

 A B

⎟

⎡

⎤

⎣

⎦ ∼  f ⎜



0

6

−

2

−

1

− 0 15

− ⎟

⎜

⎟

⎜0 3 1

1

5 ⎟

⎝

⎠

Con el principal de la segunda fila se barre la 2da. columna, las tres operaciones necesarias se realizarán en simultaneo: 

1

−

1

⎛1 1

2

2

⎛

⎞

1

1 −1.1

2 −1.3

2 −1.5.3−

5

5 −1.2 ⎞

⎜

⎟

⎜

⎟

1

−

1

−

1

−

1

⎜0 1 3

5.3

2

⎜0

1

3

5.3−

2

⎟

 A B

⎟

⎡

⎤

⎣

⎦ ∼  f

∼  f ⎜

⎟

⎜

−

−

−

− ⎟

1

−

1

0

6

2

10

15

−

1

− 5 + 6.2

⎜0

6

− + 6.1

2

− + 6.3

1

− 0 + 6.5.3

⎟

⎜

⎟

⎜⎝0 3 1

1

5 ⎟

⎜

⎠

⎜

1

−

1

−

5 − 3.2 ⎟

⎝0

3 − 3.1

1 − 3.3

1 − 3.5.3

⎟⎠

Resulta:  

1

−

1

⎛1 0 5.3

3−

3 ⎞

⎜

⎟

1

−

1

−

⎜

2

0 1

3

5.3

⎟

⎡  A B⎤

⎣

⎦ ∼  f ⎜

siguiendo con el objetivo, se permutan las filas 3 y 4: 

3⎟

0 0

0

0

−

⎜

⎟

⎜

2

⎝0 0

0

4

⎟

−

⎠

1

−

1

−

1

−

1

⎛1 0 5.3

3

3 ⎞

⎛1 0 5.3

3−

3 ⎞

⎜

⎟

⎜

⎟

1

−

1

−

1

−

1

⎜

2

−

⎟

⎜

2

0 1

3

5.3

0 1

3

5.3

⎟

⎡  A B⎤

⎣

⎦ ∼  f ⎜

∼

3⎟

 f ⎜

−

2 ⎟

0 0

0

0

0 0

0

4

−

⎜

⎟

⎜

⎟

⎜

2 ⎟

⎜

3

⎝0 0

0

4

−

⎠

⎝0 0

0

0

− ⎟⎠

transformando en 1 el principal de la 3er. fila, multiplicando por el inverso de -4 esa fila: 1

−

1

⎛1 0 5.3

3−

3 ⎞

⎜

⎟

1

−

1

−

2

⎜

⎟



0 1

3

5.3

⎡  A B⎤

⎣

⎦ ∼  f ⎜

1 ⎟

0 0

0

1

2−

−

⎜

⎟

⎜0 0

0

0

3 ⎟

−

⎝

⎠

Para lograr la  AR  reducida por filas escalonada equivalente con  A, se debe barrer  la cuarta columna, haremos las dos operaciones necesarias de manera simultánea: 
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−1

1

−

⎛

⎞

⎛

1

−

1

−

1

−

−1

1 0 5.3

3

3

1 0 5.3

3 − 1.3

3 − 1.3

⎞

⎜

⎟

⎜

⎟

1

−

−1

2

⎜

⎟

⎜

−1

1

−

−1

−1

0 1

3

5.3

0 1

3

5.3 − 1.5.3

2 − 1.5.3 ⎟

⎡  A B⎤

⎣

⎦ ∼  f ⎜

∼

−1 ⎟

 f ⎜

⎟

−1

0 0

0

1

2

−

⎜

⎟

⎜ 0 0

0

1

2

−

⎟

⎜⎝0 0 0

0

3 ⎟

⎜

− ⎠

0 0

0

0

⎟

3

−

⎝

⎠

  ¿Qué ocurre si reinterpretamos el sistema matricial?: 

⎛ 8 ⎞

1

⎛1 0 5.3− 0⎞

⎜

⎟

⎛ 1

 x ⎞

3

⎜

⎟

⎜

⎟

⎜

⎟

1

−

⎜

⎟  x

⎜ 1 ⎟

0 1

3

0 ⎜ 2

. 

⎟ =

⎜

⎟ ⎜  x

⎜

⎟

3 ⎟

0 0

0

1

3

⎜

⎟

⎜

⎟

⎜

⎟

1

−

⎜

⎟  x

⎜ −2

⎝ 0 0

0

0

⎟

⎠ ⎝ 4 ⎠ ⎜⎝ 3 ⎟

− ⎠

Si se efectúa la multiplicación indicada en el primer miembro, resulta que el elemento de la cuarta fila del producto se debe igualar con el de la cuarta fila del segundo miembro: 

0 1

 x + 0 2

 x + 0 3

 x + 0 4

 x = 3

−

Lo que significa que ninguna 4-upla de elementos de   K  lo cumple. 

El sistema NO tiene solución. 

En general si al resolver por este método un sistema  A.X = B,  si por operaciones 

elementales sobre la matriz ampliada  ⎡  A B⎤

⎣

⎦  se llega a una matriz equivalente cuyo aspecto

es: 

⎡ 11

 a

12

 a

1

 a  3 " 

1

 a n

1

 b ⎤

⎢

⎥

⎢ 21

 a

2

 a  2

23

 a

" 

2

 a n

2

 b ⎥

⎢

⎥

⎢

⎥

⎢ #

#

#

# # # ⎥

el sistema no tiene solución si  k

 b ≠  0 . 

⎢ 0

0

0

" 

0

⎥

 k

 b

⎢

⎥

⎢ #

#

#

#

# ⎥

⎢ a

⎥

⎢⎣ 1

 m

 m

 a  2

 m

 a  3 #

 m

 a n m

 b ⎥⎦

Pues esta línea significa cuando se reinterpreta como sistema: 

0. 1

 x + 0. 2

 x +" + 0.  n

 x =  k

 b

Es decir:   0 = b ≠

 k

 0  lo que es absurdo. 

EJEMPLO 11.7.7 

Resolver el sistema:  
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⎧ 1

 x +

3 2

 x −

3

 x − 2 4

 x = 1

⎛1 3

1

−

2

− ⎞ ⎛ 1

 x ⎞ ⎛1⎞

⎪

⎜

⎟ ⎜

⎟ ⎜ ⎟

⎪3 1

 x −

2

 x +

3

 x −

4

 x = 3

3

1

−

1

1

−

 x

3

⎨



2

⎜

⎟.⎜ ⎟ ⎜ ⎟

=

5

⎪

⎜

−

⎟ ⎜

⎟ ⎜ ⎟

1

 x − 5 2

 x + 3 3

 x

= 5

5

5

3

0

3

 x

5

⎪

⎜

⎟ ⎜

⎟

⎟

⎜

⎜

⎟

⎟

3

⎩

2

 x +

3

 x +

4

 x = 5

⎝0 3

1

1 ⎠ ⎝ 4

 x ⎠ ⎝5⎠

Se empleará el mismo método de eliminación. Construida la matriz ampliada: 

⎛1 3

1

−

2

− 1⎞

⎜

⎟

3

1

−

1

1

− 3

 A B

⎜

⎟

⎡

⎤ =

⎣

⎦ ⎜5 5

−

3

0 5⎟

⎜

⎟

⎜0 3 1 1 5⎟

⎝

⎠

Por operaciones elementales se eliminarán los elementos de la 1ra. columna utilizando el 1 

de la 1ra. fila: 

⎛ 1

3

−1

2

−

1

⎞

⎜

⎟

3 − 3.1

1

− − 3.3 1 − 3.(−1)

1

− − 3.( 2

− ) 3 − 3.1

 A B

⎜

⎟

⎡

⎤

⎣

⎦ ∼  f ⎜

resulta entonces: 

5 − 5.1

5

− − 5.3 3 − 5.( 1

− ) 0 − 5.( 2)

−

5 − 5.1⎟

⎜

⎟

⎜ 0

3

1

1

5

⎟

⎝

⎠

⎛1

3

1

−

2

− 1⎞

⎜

⎟

0

1

− 0 4

5 0

 A B

⎜

⎟

⎡

⎤

⎣

⎦ ∼  f ⎜

Transformamos en 1 el elemento principal de la fila 2: 

0

2

− 0 8 10 0⎟

⎜

⎟

⎜0 3

1

1 5⎟

⎝

⎠

⎛1

3

1

−

2

−

1⎞ ⎛ 1

3

1

−

2

−

1⎞

⎜

⎟ ⎜

⎟

1

−

1

−

1

−

1

−

1

⎜0

1

− 0.( 1

− 0)

4.( 10

− )

5.( 1

− 0) 0⎟ ⎜0

1

2

− .5

2−

−

0

 A B

⎟

⎡

⎤ ∼  f

=

⎣

⎦

⎜



0

20

8

10

0⎟ ⎜ 0

20

8

10 0⎟

−

−

⎜

⎟ ⎜

⎟

⎜ 0

3

1

1

5⎟ ⎜ 0

3

1

1 5⎟

⎝

⎠ ⎝

⎠

Se barre la columna 2 con operaciones elementales convenientes: 

1

−

1

⎛1

3

1

−

2

⎛

−

⎞

1

3 − 3.1

1

− − 3.( 2

− .5 )

2

− − 3.( 2−

−

)

1

1⎞

⎜

⎟

⎜

−

⎟

1

1

−

1

−

1

⎜0

1

−2.5

2

−

0

⎜0

1

2

− .5

2−

−

0⎟

 A B

⎟

⎡

⎤

⎣

⎦ ∼  f

∼  f ⎜

⎟

⎜

⎟

−1

1

0

2

− 0

8

10 0

−

0

⎜0

2

− 0 + 20.1 8 + 20.(−2.5 ) 10 + 20.( 2

−

) ⎟

⎜

⎟

⎜⎝0 3

1

1 5⎟

⎜

−1

1

−

5⎟

⎠

⎜⎝0 3− 3.1

1 − 3.( 2.5

−

)

1 − 3.( 2

−

)

⎟⎠

y haciendo las cuentas, se tiene: 

1

−

1

⎛1 0

5

2−

−

1 ⎞

⎜

⎟

−1

1

⎜

¡ATENCION! 

0 1

2

− .5

2−

−

0⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟  

0 0

0

0 0

⎜

⎟

⎜

1

−

1

− 5

0 0 11.5

5.2

⎟

⎝

⎠

¿Es ésta situación como en el ejemplo anterior? 

NO, pues también es 0 el elemento que corresponde a los términos independientes. 
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Interpretado como sistema conduce a la ecuación: 

0. 1

 x + 0. 2

 x + 0. 3

 x + 0. 4

 x = 0  o sea 0 = 0

Por lo cual continuamos. Permutando las filas 3 y 4: 

1

−

1

⎛1 0

5

2−

−

1⎞

⎜

⎟

1

−

1

⎜0 1 −2.5

2−

−

0⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟  Se transforma en 1 el elemento principal de la fila 3: 

1

−

1

− 5

⎜0 0 11.5

5.2

⎟

⎜

0

0 0

0

0

⎟

⎝

⎠

1

−

1

−

1

−

1

⎛1 0

5

2

−

1

⎞ ⎛1 0

5

−2−

1

⎞

⎜

⎟ ⎜

⎟

1

−

1

−

1

−

1

⎜

0

−

−

−

⎟ ⎜

0

0 1

2.5

2

0 1 −2.5

−2

⎟

⎡ A B⎤

⎣

⎦ ∼  f

=

⎜

1

− ⎟

⎜

1 ⎟

1

−

1

−

1

−

1

−

1

5.5.11

− 25.11−

⎜0 0 11.5 .5.11

5.2 .5.11

⎟ ⎜0 0

1

25.22

⎟

⎜

0

⎟ ⎜

0

0 0

0

0

0 0

0

0

⎟

⎝

⎠ ⎝

⎠

Para concluir se barre la columna 3 con el 1 de la fila 3 por dos operaciones elementales: 

1

−

1

⎛1 0

5

2−

−

1

⎞

⎜

⎟

1

−

1

−

⎜

0

0 1

2

− .5

2

−

⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

∼

1 ⎟

 f

1

− 25.11−

⎜0 0

1

25.22

⎟

⎜

0

0 0

0

0

⎟

⎝

⎠

1

−

1

−

1

−

1

−

1

−

1

−

1

⎛1 0

5

5 .1. 

2

5 .25.22

1 5 .25.11− ⎞

−

−

−

−

⎜

⎟

1

−

1

−

1

−

1

−

1

−

1

−

1

⎜0 1 −2.5 + 2.5 .1

2

−

+ 2.5 .25.22 0 + 2.5 .25.11− ⎟

∼  f ⎜

⎟

1

−

1

⎜0 0

1

25.22

25.11−

⎟

⎜

⎟

0 0

0

0

0

⎝

⎠

Haciendo las cuentas: 

1

−

1

⎛1 0 0

8.11

6.11− ⎞

−

⎜

⎟

1

−

1

⎜0 1 0 −22

10.11− ⎟

⎡ A B⎤

⎣

⎦ ∼  f ⎜

⎟  Ahora se interpreta como sistema: 

1

−

1

⎜0 0 1 25.22 25.11− ⎟

⎜

⎟

0 0 0

0

0

⎝

⎠
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⎧

8

6

 x

−

 x =

1

−

1

⎛

⎪ 1

4

1 0 0

8

− .11 ⎞ ⎛  x

⎛

⎞

6.11− ⎞

11

11

1

⎜

⎟

⎜

⎟

⎪

1

−

⎜

⎟

1

⎜

1

10

0 1 0

2

− 2

−

⎟

⎪

⎜ 2

 x

⎜10.11 ⎟

⎪

 x

−

 x =

. 

⎟ =

⎜

⎟

⎜

⎟  

2

4

⎨

22

11

1

−

⎜  x ⎟

1

⎜ 0 0 1 25.22

3

⎟

⎜ 25.11− ⎟

⎜

⎟

⎪

25

25

⎜

⎪

 x

+

 x =

0 0 0

0

⎟

⎜

⎟

⎝ 4

 x ⎠

⎝

⎠

⎝

0

⎠

3

4

22

11

⎪⎪⎩

0 = 0

Este sistema tiene infinitas soluciones. 

Por la manera que se ha trabajado, conviene despejar de la manera:  

6

8

1

 x =

+

4

 x

11 11

10

1

2

 x =

+

4

 x

11

22

(S) 

25

25

3

 x =

−

4

 x

11

22

Al  dar valores arbitrarios complejos a   x4 , se obtienen los de  x1, x2   y   x3 .  

Tiene infinitas soluciones en 

pues para cualquier valor complejo que tome  x4  quedará 

determinada una 4-upla con los valores que resulten al sustituir en las condiciones (S). 

Por ejemplo una solución es: 

6

10

25

la 4-upla       *

*

*

*

 x  1 = ,  x  2 =

,  x  3 =

,  x  4 = 0

11

11

11

Otros ejemplos de solución del sistema son las 4-uplas: 

*

14

*

31

*

25

*

 x  1 =

,  x  2 =

,  x  3 =

,  x  4 = 1  

11

22

22

*

6

8

*

10

1

*

25 25

*

 x  1 =

+

 i,  x  2 =

+

 i,  x  3 =

−

 i ,  x  4 =  i

11 11

11 22

11 22

EJEMPLO 11.7.8 

Resolver el sistema: 

⎧2 1

 x + 6 2

 x

= 0

⎪⎨− 1 x − 3 2 x = 0 

⎪⎩ 1 x + 3 2 x = 0

La particularidad que se quiere destacar de este sistema es que los términos 

independientes son todos 0. 

Por ello se llama sistema homogéneo. 
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Es un caso particular de sistemas de la forma: 

 A.X =0 



 m  1

 B = 0∈  K × , 0 = (  i

 o  1

)

∧  o = 0,  para todo  i tal 1

≤ i≤ m

 i

≤  i ≤  m

⎧2 1

 x + 6 2

 x

= 0

⎛ 2

6 ⎞

⎛0⎞

⎪

⎜

⎟⎛  x ⎞ ⎜ ⎟

⎨− 1

 x − 3 2

 x

= 0  



1

1

−

3

−

= 0

⎜

⎟⎜

⎟ ⎜ ⎟

⎪

⎜

⎟⎝ 2

 x ⎠ ⎜ ⎟

⎩ 1

 x +

3 2

 x

= 0

1

3

0

⎝

⎠

⎝ ⎠

Se formará la matriz orlada. ¿ Qué ocurrirá con la columna de los términos independientes? 

Se sumarán 0ś  ó permutarán 0ś. Esos elementos no se modificarán. 

¿Está de acuerdo? Piense bien y se dará cuenta.... 

Por esta razón si el sistema es homogéneo se trabaja sólo con  A en lugar de la matriz ampliada [ A| O]. 

En este ejemplo para tener un 1 como principal de la 1ra. fila se permutan las filas 1 y 3; luego se barre la primer columna sumando a la fila 2 una vez la fila 1 y restando a la fila 3 dos veces la fila 1: 

⎛ 2

6 ⎞

⎛ 1

3 ⎞

⎛

1

3

⎞

⎜

⎟

⎜

⎟

⎜

⎟

[ ]

 A =

1

−

3

− ∼

1

−

−3 ∼

1

− + 1.1

3

− + 1.3

⎜

⎟  f ⎜

⎟  f ⎜

⎟  y haciendo cuentas se obtiene: 

⎜ 1 3 ⎟

⎜ 2 6 ⎟

⎜ 2 2.1 6 2.3 ⎟

−

−

⎝

⎠

⎝

⎠

⎝

⎠

⎛1 3⎞

⎜

⎟

[ ]

 A ∼

0 0

 f ⎜

⎟  

⎜0 0⎟

⎝

⎠

⎛1 3⎞

⎛0⎞

⎧  x + 3 x = 0

⎜

⎟⎛  x ⎞ ⎜ ⎟

1

2

⎪

Reconstruyendo el sistema: 

1

0 0

⎜

⎟⎜

⎟ = 0

⎜ ⎟

⎨0 1

 x + 0 2

 x = 0  

⎜

⎟⎝ 2

 x

0 0

⎠ ⎜0⎟

⎪

⎝

⎠

⎝ ⎠

0

⎩ 1

 x + 0 2

 x = 0

Las dos últimas ecuaciones no imponen condiciones sobre las incógnitas. 

La primera ecuación 

1

 x + 3 2

 x = 0 es la que da la condición que deben cumplir los elementos de los pares solución Hay infinitas soluciones en C, todos los pares:  *

*

 x  1 = 3. 

−  x  2 . Por ejemplo 

*

*

 x  1 = 0,  x  2 = 0 ; 

*

*

*

*

*

*

 x  1 = 3, 

−

 x  2 = 1; 

 x  1 = 3

−  i,  x  2 =  i; 

 x  1 = 6,  x  2 = 2

−
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Es de destacar que el par  *

*

 x  1 = 0,  x  2 = 0  es solución. 

Esta solución se puede desprender sin hacer las operaciones, por las características de los términos independientes es inmediato (seguro??). 

Cualquiera sea el sistema  homogéneo   

     A.X =0 

de   m ecuaciones con  n incógnitas, la  n-upla tal que todos sus elementos son 0 es una solución.   

El sistema puede admitir otras soluciones (como en el ejemplo). 

La solución de todos 0 se llama  solución nula o solución trivial (esto es porque siempre es solución) 

EJERCICIO 11.7.9 

Compruebe las afirmaciones hechas sobre las soluciones de los sistemas homogéneos. 

EJERCICIO 11.7.10 

Resuelva los siguientes sistemas por eliminación: 

⎧  x +  z −  w = 0

⎧ x +  z −  w = 0

⎧  x − 3 y + 5 z = 6

⎪

⎧  x + 2 y + 2 z +  w = 4

⎪  x y z

2

⎪

− −

= −

⎪

⎪

⎪  x −  y −  z = 0

⎨

⎨ 3 x + 2 y + 2 z = 3

⎨ 2 x + 3 y + 3 z −  w = 2

⎨

 x −  y −  w = −3

 x −  y −  w = 0

⎪

⎪ 7 x  12 y  4 z  5 ⎪2 x  2 y  4 z  4 w  6 ⎪

−

−

+

=

−

−

+

=

⎪⎩  y +  z −  w =1 ⎩

⎩

⎪⎩  y +  z −  w = 0

EJERCICIO 11.7.11 

a)

Dé un sistema 2 x 2 con  A de elementos en R con infinitas soluciones. ¿Puede decir

algo sobre la matriz de los coeficientes? 

b)

Dé un sistema 2 x 2 con  A de elementos en C con infinitas soluciones. ¿Puede decir

algo sobre la matriz de los coeficientes? 

c)

Dé un sistema 2 x 2 con  A de elementos en R con solución única. ¿Puede decir algo

sobre la matriz de los coeficientes? 

d)

Dé un sistema 2 x 2 con  A de elementos en C con solución única. ¿Puede decir algo

sobre la matriz de los coeficientes? 

e)

Si 

cambia 

por 

 n  x  n, qué respuesta puede dar a preguntas similares a las anteriores. 

EJERCICIO 11.7.12 

a)

¿Puede encontrar un sistema  m  x  n con solución única? 

b)

Si un sistema es homogéneo ¿cuándo tiene solución única? 
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CAPÍTULO 12 

Determinantes y sus aplicaciones

Se introducirá un concepto ligado a las matrices, sus  determinantes,  que en este Curso se  aplicará  en  el  cálculo  de  inversa  de  matrices,  determinar  si  una  matriz  es  invertible  y además  a la resolución de sistemas. 

También el determinante dará otra posibilidad de definir rango de matrices, que permitirá 

obtener de una manera más eficiente el teorema fundamental sobre los sistemas de ecuaciones que es el teorema de Rouché-Frobenius que caracteriza los sistemas por su conjunto solución. 

La demostración del teorema se hará en este Curso en un capítulo posterior como aplicación 

de espacios vectoriales. 

1. ¿Qué es un determinante? 

El determinante es un "valor" asociado a una matriz. 

 ¿Qué valor? ¿ De qué manera se asocia? 

Dada una matriz   A  de   n filas y  n columnas de elementos de  K, cuerpo conmutativo, el determinante de  A es un elemento de  K, único para cada matriz. 

Esta función  se puede expresar 

det :  n× n

 K

→  K   es decir  det( )

 A ∈  K

Notaciones: 

para indicar el determinante de  A se utilizan indistintamente  det(A) ,  D(A) ó   A

⎛ 11

 a

12

 a

1

 a n ⎞

⎜

⎟

⎜ 21

 a

22

 a

2

 a n

y si   A

⎟

= ⎜

⎟  para referirse a su determinante se anota: 

⎜

⎟

⎜  a

⎟

⎝ 1

 n

 n

 a  2

 n

 a n ⎠

11

 a

12

 a

1

 a n

21

 a

22

 a

2

 a

 det( )

 n

 A =  A =

 a  1

 n

 n

 a  2

 n

 a n
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⎛ 1

0 −1⎞

1

0

1

−

⎜

⎟

Es así que dada   A = 3 i + 2 1

0

 det( )

 A = 3 i + 2 1

0

⎜

⎟

pero ¿cuál es el 

⎜ 0

3 i  1 ⎟

⎝

⎠

0

3 i  1

valor   det(A)? 

De las muchas maneras de definir el determinante de una matriz se adopta la que se considera más sencilla y que permitirá concluir las propiedades que interesan en este Curso de manera rápida. 

Para abordar la definición de  det(A), que es recursiva, habrá que introducir algunas definiciones complementarias. 

•

Dada una matriz de  una fila y una columna:

 A = (  11

 a )  entonces   det(A  )= 11

 a   = 11

 a

•

Dada una matriz genérica de  n fila y  n columnas:

    El elemento genérico: 

⎛ 11

 a

12

 a

13

 a

1

 a j

1

 a n ⎞

⎜

⎟

 ij

 a

⎜ 21

 a

22

 a

23

 a

2

 a j

2

 a n ⎟

 i :la fila 

⎜

⎟

    j:la columna 

 A =  ⎜

⎟   

⎜  a  1

⎟

 i

 i

 a  2

 i

 a  3

 i

 a jij

 a

 i

 a n

⎜

⎟

⎜

⎟

⎜  a

⎟

⎝ 1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n ⎠

Se llama cofactor de 

 i+  j

 ij

 a   o cofactor respecto de   ij

 a  y se anota   ij

 A  al número  (−1) .  Mij  , 

 los exponentes de -1  indican la suma de la posición de fila y columna en que se encuentra el elemento  ij

 a dentro de la matriz. 

Siendo   Mij  el determinante de la matriz que se obtiene de  A si se suprimen la fila  i  y la columna  j , es decir de una matriz de orden  n-1 (¿para lo cual cómo debe ser  n ?). Por lo cual a Mij  se lo llama menor, que siendo precisos es el menor correspondiente al elemento   ij a . 
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11

 a

12

 a

13

 a

1

 a j

1

 a n

SACARLAS! 

21

 a

22

 a

23

 a

2

 a j

2

 a n

 Mij =  a 1 i ia 2  ia 3

 i

 a j

 i

 a n

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

Es así que: 

11

 a

1

 a  2

1

 a j  1

−

1

 a j  1

+

1

 a n

21

 a

2

 a  2

2

 a j  1

−

2

 a j  1

+

2

 a n

 M =  a

 a

 a

 a

 a

 ij

 i  11

−

 i  1

− 2

 i  1

−  j  1

−

 i  1

−  j  1

+

 i  1

−  n

 i

 a  11

+

 i

 a  1

+ 2

 i

 a  1

+  j  1

−

 i

 a  1

+  j  1

+

 i

 a  1

+  n

 n

 a  1

 n

 a  2

 n

 a j  1

−

 n

 a j  1

+

 n

 a n

EJEMPLO 12.1.1 

Si  

⎛ 2

3 ⎞

2

3

 A =

 det

⎟

( )

 A =

⎜⎝−1  i−⎠

−1

 i

−

los menores son: 

2

3

2

3

 M 11 =

=  i

− =  i

−

 M 12 =

= 1

− = −1

1

−

 i

−

1

−

 i

−

2

3

2

3

 M 21 =

= 3 = 3

 M 22 =

= 2 = 2

−1 − i

−1

 i

−

Por lo tanto los cofactores son:  

1 1

+

2

1+2

3

11

 A = ( 1

− )  M 11 = ( 1

− ) (  i

− ) =  i

−

12

 A = ( 1

− )  M 12 = ( 1

− ) ( 1

− ) = 1

2 1

+

3

2+2

4

21

 A = ( 1)

−

 M 21 = ( 1)

− .3 = 3

−

22

 A = ( 1)

−

 M 22 = ( 1

− ) .2 = 2

687

DETERMINANTES – CAPÍTULO 12

•

Dada 

 n n

 A K ×

∈

,  n ≥ 2 se llama determinante de  A al valor:

 n

 n

 det( )

 A = ∑  iak iAk = ∑ as j s

 A j  para cualquier  i  y para cualquier  j 

 k  1

=

 s  1

=

Observar que la primer sumatoria se extiende sobre los índices de columna de los elementos de la fila  i de  A, por eso se dice que es el desarrollo por la fila  i.  

La segunda sumatoria se extiende sobre los índices de fila de los elementos de la columna  j de A, se lo llama desarrollo por la columna  j. 

Es así que el cálculo del determinante de una matriz  A de orden  n involucra el cálculo de  n determinantes de matrices de orden  n-1, los menores correspondientes a los elementos de la fila (o columna) por la cual se desarrolla  det(A). 

Se ha planteado que esos desarrollos son iguales y que ese único valor es el determinante de A. Es demostrable por inducción sobre el número de filas o columnas... que ambos desarrollos coinciden (en el Curso se lo aceptará  sin demostración, está en el Apéndice del capítulo). 

EJEMPLO 12.1.2 

a)

Usando los cofactores calculados en el ejemplo anterior, calcular el  determinante de la

matriz  

⎛ 2

3 ⎞

 A = ⎜⎝ 1

⎟

−

−  i ⎠

 2

Por la fila 1:   det(A) = ∑  1k

  a

1

 A k = 1

 a  1 1

 A  1 + 1

 a  2 1

 A  2 = 2.(− i) + 3.1 = 3 − 2 i

 k=1

b)

Comprobar para esta matriz que por cualquier fila o columna el valor del desarrollo es

único 

 2

c)

Por la fila 2:  det(A) = ∑  2k

  a

2

 A k = 2

 a  1 2

 A  1 + 2

 a  2 2

 A  2 = 1.(

−

3

− ) + (− i).2 = 3 − 2 i

 k=1

 2

Por la columna 1:   det(A)= a

∑  A =  a A +  a A =

 i

− + −

− = −  i

1

11 11

21 21

2.( ) ( 1).( 3) 3 2

 s 1

 s

 s =1

 2

Por la columna 2:   det(A)= a

∑  A =  a A +  a A = + − i = −  i

2

12 12

22 22

3.1 ( ).2 3 2

 s 2

 s

 s =1
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EJEMPLO 12.1.3 

Comprobar que está bien definido el determinante (es decir no depende de la fila o columna por la que se desarrolle) para la matriz 

⎛ 11

 a

12

 a ⎞

 A = ⎜

⎟  

⎝ 21

 a

22

 a ⎠

Por la fila 1: 

2

2

1+ k

1 1

+

1+2

 det( )

 A = ∑ 1

 a k . 1

 A k = ∑ 1

 a k .( 1)

−

 M 1 k = 11

 a ( 1)

−

.  M 11 + 12

 a ( 1)

−

.  M 12

 k  1

=

 k  1

=

calculando los menores, 

11

 a

12

 a

11

 a

12

 a

 M 11 =

= 22

 a

= 22

 a

 M 12 =

= 21

 a

= 21

 a  

21

 a

22

 a

21

 a

22

 a

reemplazando en el desarrollo definido: 

1 1

+

1+2

1 1

+

1+2

 det( )

 A = 11

 a ( 1

− ) .  M 11 + 1

 a  2( 1

− ) .  M 12 = 11

 a ( 1

− ) . 22

 a + 12

 a ( 1

− ) . 21

 a = 11

 a . 22

 a − 12

 a . 21

 a

Por la fila 2: 

2

2

2+ k

2 1

+

2+2

 det( )

 A = ∑ 2

 a k . 2

 A k = ∑ 2

 a k .( 1

− )

 M 2 k = 21

 a ( 1

− ) .  M 21 + 12

 a (−1)

.  M 22

 k  1

=

 k  1

=

calculando los menores necesarios para este caso: 

11

 a

12

 a

11

 a

12

 a

 M 21 =

= 12

 a

= 12

 a

 M 22 =

= 11

 a = 11

 a  

21

 a

22

 a

21

 a

22

 a

reemplazando en el desarrollo: 

2 1

+

2+2

2 1

+

2+2

 det( )

 A = 21

 a ( 1

− ) .  M 21 + 22

 a ( 1

− )

.  M 22 = 21

 a ( 1

− ) . 12

 a + 22

 a ( 1

− )

. 1

 a  1 = − 21

 a . 1

 a  2 + 22

 a . 1

 a  1

Por la columna 1: 

2

2

 s  1

+

1 1

+

2 1

 det( )

 A = ∑ a .  A = ∑ a .( 1

− )  M =  a (−1) .  M +  a (−1) + .  M  

 s 1

 s 1

1

 s

 s 1

11

11

21

21

 s  1

=

 s  1

=

usando los cálculos de los menores  y reemplazando: 

1 1

+

2 1

+

1 1

+

2 1

 det( )

 A

+

= 11

 a ( 1

− ) .  M 11 + 21

 a ( 1

− ) .  M 21 = 11

 a ( 1

− ) . 22

 a + 21

 a ( 1

− ) . 12

 a = 11

 a . 22

 a − 21

 a . 12

 a
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Por la columna 2: 

2

2

 s+2

1+2

2+2

 det( )

 A = ∑ a .  A = ∑ a .( 1

− )

 M

=  a ( 1

− ) .  M +  a (−1) .  M  

 s

 s

 s 2

 s  2

12

12

22

22

2

2

 s  1

=

 s  1

=

usando los cálculos de los menores y reemplazando: 

1+2

2+2

1+2

2+2

 det( )

 A = 12

 a (−1)

.  M 12 +  a 22(−1) .  M 22 = 12

 a (−1)

.  a 21 +  a 22(−1) . 11

 a = − 12

 a . 21

 a + 22

 a . 11

 a

¿Qué se ha comprobado? Que es independiente por la fila o columna que se desarrolle:  

11

 a

1

 a  2

 det( )

 A =

= 1

 a  1. 22

 a − 12

 a . 2

 a  1 

21

 a

2

 a  2

y este valor concuerda con (el concepto que alguno de los alumnos puede haber estudiado 

antes…) la  forma práctica de cálculo de determinante para matrices 2 x 2: 

¡Yo lo sabía! 

 Multiplicar entre si los elementos de la diagonal principal y restar el producto de los 

 elementos de la diagonal secundaria. 

EJEMPLO 12.1.4 

Calcular el determinante de la matriz 

⎛ 1

0 2 i ⎞

⎜

⎟

 A =

2

0 −1

⎜

⎟

⎜ 22  i  5 0 ⎟

+

⎝

⎠

Según la definición, es indistinto calcular el determinante de una matriz por cualquier fila o columna. Si se están realizando las cuentas a mano es importante elegir la fila o columna que tenga la mayor cantidad de 0, pues esa elección permitirá no calcular algunos menores. 

En este ejemplo ese cálculo no es muy complicado ya que los menores son 2 x 2 y vimos que 

hay una regla práctica muy práctica, pero este no es el caso en órdenes superiores. 
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Por las características de esta matriz se elige la columna 2:   

¡Obvio! 

1

0 2 i

1+2

2

1

−

2+2

1

2 i

3+2 1

2 i

 det( )

 A =

2

0

1

− = 0.( 1)

−

+ 0.( 1)

−

+ 5.( 1)

−

22 +  i  0

22 +  i  0

2

1

−

22 +  i  5 0

Es así que los cálculos son muy sencillos, en un principio se tendrían que calcular tres menores 2 x 2, pero sólo uno será necesario calcular: 

3+2 1

2 i

 det( )

 A = 5.( 1

− )

= 5.( 1

− ).[1.( 1

− ) − 2.2 i] = 5

− .[ 1

− − 4 i] = 5 + 20 i

2

1

−

Observación: los exponentes de -1  en la definición de los cofactores de un elemento (suma de los índices de fila y columna) son sucesivamente pares e impares. Los correspondientes a los elementos de la diagonal son pares. En la práctica, una vez determinado el signo de un cofactor se usa el opuesto para el correspondiente al elemento vecino. 

EJERCICIO 12.1.5 

a) Verificar que el determinante de la matriz

⎛ 11

 a

12

 a

1

 a  3 ⎞

⎜

⎟

 A =  a

⎜ 21

22

 a

 a 23 ⎟  es    

⎜

⎟

⎝ 3

 a  1

32

 a

33

 a ⎠

11

 a

12

 a

13

 a

21

 a

22

 a

23

 a

= 11

 a . 22

 a . 33

 a + 21

 a . 32

 a . 13

 a + 12

 a . 23

 a . 31

 a − 13

 a . 22

 a . 31

 a − 12

 a . 21

 a . 33

 a − 23

 a . 32

 a . 11

 a

31

 a

32

 a

3

 a  3

(Idea: calcúlelo por la fila o columna que prefiera) 

b) Idee una forma práctica de recordarlo. 

El cálculo manual de los determinantes es trabajoso. Además en los elementos electrónicos al requerir del cálculo de varios productos, si el orden de la matriz es grande, utilizan mucha memoria de máquina. Pero hay una serie de propiedades que haciendo buen uso de ellas facilitan la tarea. 

Seguidamente se enuncian  propiedades que luego se aplicarán en los ejemplos. 
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Propiedades de los determinantes 12.1.6 

Teorema 1: 

♦ Sea 

 n× n

∈

entonces 

 t

 A K

 det(A)= det(A )

Es inmediata a partir de la definición. 

Calculando el determinante de  A por cualquier fila o cualquier columna se obtiene igual resultado y las filas de  A  son las columnas de su traspuesta y viceversa. 

Teorema 2: 

♦Sea

 n× n

 A∈  K

, si una fila (o columna) de  A se multplica por  k ∈  K, se obtiene  la matriz  A'   y entonces   det(A') = k. det(A)  

Demostración:  

Calcular el determinante de  A' por la fila (o columna) que se multiplicó por la constante  k. 

Observemos como es  A',  para fijar ideas supongamos que la fila  i-ésima de  A es la multiplicada por la constante  k, y todas las otras filas de  A no se modifican: 

⎛ ′

′

′ ⎞

11

 a

1

 a  2

1

 a n

⎜

⎟

⎜

⎟

⎜

⎟

⎧  a

⎪

 s p        si  s ≠  i

 A′ =

′

′

′

= ′

⎜

′ =

 i

 a  1

 i

 a  2

 i

 a n ⎟ ( as p )1≤ s≤ n    tal que   as p ⎨

1≤  p≤ n

=

⎜

⎟

 k

⎪

.  a

⎩

 s p      si  s

 i 

⎜

⎟

⎜ ′

′

′ ⎟

⎝  n

 a  1

 n

 a  2

 n

 a n ⎠

 n

 n

 det( A )′ = ∑ a′ .  A′ = ∑ k.  a .( 1

− ) i+ h M ′  , como el menor   M ′  no tiene la fila  i-ésima de i h

 i h

 i h

 i h

 i h

 h  1

=

 h  1

=

 A ńi su columna  h-ésima, y siendo la única fila que difieren  A y  A ĺa  i-ésima, luego M ′ ih =  Mih

por lo tanto por la definición de determinante y propiedades de la sumatoria 

 n

 n

 det( A )

′ = ∑ a′ .  A′ =  k.∑  a .( 1

− ) i+ h Mih =  k.  det( )

 A

 i h

 i h

 i h

 h  1

=

 h  1

=

♦
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Corolario 3: 

♦ Sea

 n× n

 A∈  K

, si una fila (o columna) de  A es nula,   entonces   det(A)= 0

(Idea de la demostración: calcular el determinante de  A por la fila (o columna) nula o aplicar propiedad anterior para  k = 0) 

Teorema 4: 

♦ Sea  

 n× n

 A∈  K

con  n ≥ 2. Si se intercambian dos filas (o columnas), se obtiene  de   A la

matriz  A'   y entonces   det(A') = -  det(A)  

Demostración:        

Se realiza por inducción sobre el número de filas de  A. 

Formalicemos la propiedad a demostrar enunciando un esquema proposicional y probar que 

vale para todo  n natural mayor o igual que 2. 

 P( t): Sea  

 t× t

 A∈  K

con  t ≥ 2. Si se intercambian dos filas (o columnas), se obtiene  de  A la

matriz  A'   y entonces   det(A') = -  det(A)  

La base de la inducción es 2.  ¿De acuerdo? 

 P( 2): Sea  

2 2

 A K ×

∈

. Si se intercambian dos filas (o columnas), se obtiene  de  A la matriz  A' 

y entonces   det(A') = -  det(A)  

⎛  a

 a ⎞

 a

 a

Sea 

11

12

 A = ⎜

⎟ , como se sabe 

11

12

 det( )

 A =

= 11

 a . 22

 a − 12

 a . 21

 a . 

⎝ 21

 a

22

 a ⎠

21

 a

22

 a

⎛  a

 a ⎞

Si intercambiamos dos filas de  A, resulta 

21

22

 A′ = ⎜

⎟ , y se sabe que     

⎝ 11

 a

12

 a ⎠

21

 a

2

 a  2

 det( A )′ =

= 21

 a . 12

 a − 11

 a . 22

 a . 

11

 a

1

 a  2

Por lo cual sólo resta mirar con atención ambos cálculos, y ver que  P( 2) es válida. 

Luego prosigamos, aceptando que para cualquier  h >2,  vale  P( h), esto es: 693
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 P( h): Sea  

 h× h

 A∈  K

con  h ≥ 2. Si se intercambian dos filas (o columnas), se obtiene  de  A la 

matriz  A'   y entonces   det(A') = -  det(A)  

Ahora debemos probar  P( h+1), es decir : 

 P( h+1):Sea 

( h  1

+ )×( h  1

+ )

 A∈  K

con  h ≥ 2. Si se intercambian dos filas (o columnas),  se obtiene

de   A la matriz  A'   y entonces   det(A') = -  det(A) . 

Como el determinante de una matriz no cambia por cual fila se desarrolle, y como en este caso se tiene más de dos filas en  A y en  A´ se desarrollan los determinantes de ambas matrices por una fila  m distinta de las dos que se han intercambiado. 

Para fijar ideas, supongamos que son la  i-ésima y la  j-ésima las que se intercambiaron en  A. 

Por lo cual la matriz  A´  es como  A  salvo que en su fila  i  están los elementos   de   la   fila  j  de  A  y en su fila  j  los elementos de la fila  i  de  A.   

⎛ ′

′

′

⎞

11

 a

1

 a  2

1

 a h  1

+

⎜

⎟

⎜

⎟

⎜

⎟

′

′

′

⎜  i

 a  1

 i

 a  2

 i

 a h  1

+

⎟

 A′ = ⎜

⎟ = ( a′ s p )1≤ s≤ h  1+ tal que      

⎜

⎟

1≤  p≤  h  1

+

⎜  a′1

′

′

 j

 a j 2

 a jh  1

+

⎟

⎜

⎟

⎜

⎟

⎜ ′

′

′


⎟

⎝  h

 a  11

+

 h

 a  1

+ 2

 h

 a  1

+  h  1

+ ⎠

⎧ as p     si  s ≠  i ∧ s ≠  j

⎪⎪

′ s

 a p = ⎨  aj p

si  s =  i

⎪⎪⎩  iap

si  s =  j

Donde la matriz  A es 

⎛ 11

 a

1

 a  2

1

 a h  1

+

⎞

⎜

⎟

 h  1

+

⎜ 21

 a

22

 a

2

 a h  1

 A

+ ⎟

=

 det( )

 A = ∑  a A

⎜

⎟  así  

 m k m k

⎜

⎟

 k  1

=

⎜

⎟

⎝  h

 a  11

+

 h

 a  12

+

 h

 a  1

+  h  1

+ ⎠

+

Siendo   A

= (− )

1  m k

 m k

 Mmk
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 h  1

+

+

Por la definición   det( A )

′ =

′

′

∑

′

= −

′

 mk

 a .  mk

 A  . Siendo  A

( )

1  m k

 m k

 M mk

 k  1

=

Analicemos detenidamente los elementos que están en las expresiones de ambos 

+

+

determinantes:   ′

′

= −

′

 m

 a k =  m

 a k  , además  A

( )

1  m k

 m k

 M mk   y   A

= (− )

1  m k

 m k

 Mmk

La expresión de los cofactores difieren en   M ′ mk  y  M mk , pero éstos son determinantes de matrices  h x  h,  y los   M ′ mk   son determinantes de matrices que tienen permutadas dos filas (la  i y la  j  de  A) respecto de los    M mk . Luego por hipótesis inductiva vale que M ′ mk  = -  M mk . 

Y reemplazando y aplicando propiedades de sumatoria se obtiene:   

 h  1

+

 h  1

+

 det( A )

′ = ∑  mk

 a .( 1

− )  mk

 A

= −1.∑  mk

 a .  mk

 A

= 1

− .  det( )

 A

 k  1

=

 k  1

=

Por lo cual, se ha probado que vale  P( h+1). 

Luego vale para todo  n mayor que 2. Luego obtenemos lo que queríamos demostrar 

♦ 

Teorema 5: 

♦ Sea  

 n n

 A K ×

∈

con  n ≥ 2. Si tiene dos filas (o columnas) iguales  entonces  det(A)=0

(Idea de la demostración: Se intercambian esas dos filas (o columnas),  piense  que  resulta y se aplica la propiedad anterior)     

¿? 

Teorema 6: 

♦ Sea 

 n× n

 A∈  K

con  n ≥ 2. Si tiene dos filas (o columnas) proporcionales  entonces  det(A)=0

Observar que significa ese enunciado, es decir que significa dos filas proporcionales en una matriz: 
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11

 a

12

 a

13

 a

1

 a j

1

 a n

11

 a

12

 a

1

 a  3

1

 a j

1

 a n

 a  1

 h

 h

 a  2

 h

 a  3

 h

 a j

 h

 a n

 a  1

 h

 h

 a  2

 h

 a  3

 h

 a j

 h

 a n

 A =

=

 a  1 i

 i

 a  2

 i

 a  3

 i

 a j

 i

 a n

 ka  1

 h

 k h

 a  2  k h

 a  3

 k hj

 a

 k hn

 a

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

(Idea de la demostración: Se aplican la segunda propiedad demostrada y la inmediata anterior) Teorema 7: 

♦ Sea 

 n× n

 A∈  K

, si los elementos de la fila  i  de  A son binomios, de la forma

1

2

 ij

 a +  i

 a j  para 1 ≤  j ≤  n  entonces el determinante de  A es igual a la suma de los determinantes de dos matrices  1

2

 A

y   A  que tiene todas sus filas como las de  A, salvo la fila  i . En  la fila  i de  1

 A

está  1

≤ ≤

 ij

 a (1 ≤  j ≤  n)  y en la fila  i de  2

 A  está  2 ij

 a

(1  j n)

También vale de manera similar si una columna de  A cumple la propiedad que sus elementos sean binomios. 

Observar como es el aspecto de las matrices que verifican la situación del enunciado:  

11

 a

12

 a

13

 a

1

 a j

1

 a n

21

 a

22

 a

23

 a

2

 a j

2

 a n

 A = 1

2

1

2

1

2

1

2

1

2

 a  1 i +  a  1 i

 i

 a  2 +  ia 2

 i

 a  3 +  ia 3

 i

 a j +  ij

 a

 in

 a +  in

 a

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

Y las  A 1  y   A 2 :
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11

 a

12

 a

13

 a

1

 a j

1

 a n

11

 a

12

 a

13

 a

1

 a j

1

 a n

21

 a

22

 a

23

 a

2

 a j

 a 2 n

21

 a

22

 a

23

 a

2

 a j

2

 a n

1

2

 A =

 A =

1

1

1

1

1

2

2

2

2

2

 a  1 i

 i

 a  2

 i

 a  3

 ij

 a

 in

 a

 a  1 i

 i

 a  2

 i

 a  3

 ij

 a

 in

 a

 a  1

 n

 n

 a  2

 n

 a  3

 nj

 a

 nn

 a

 a  1

 n

 n

 a  2

 n

 a  3

 nj

 a

 nn

 a

Demostración:  

Se calcula el determinante de  A por esa fila  i tan particular: 

 n

1

2

 det( )

 A = ∑( a ik +  a ik )  iAk  aplicando propiedades del cuerpo  K y de sumatoria: k  1

=

 n

 n

1

2

 det( )

 A = ∑  a ik iAk + ∑  a ik iAk

 k  1

=

 k  1

=

pero las dos sumatorias que se están sumando son los determinantes de  1

2

 A

y   A

desarrollados por esa misma fila  i, pues los cofactores de las tres matrices respecto a los elementos de sus respectivas  i-ésimas filas son iguales, pues es la  i-ésima es en única fila en que difieren las tres matrices. 

♦ 

Recomendación: así practica un poco, haga la demostración si se verifica para una fila…. 

SI!! 

Teorema 8: 

♦ Sea

 n× n

 A∈  K

, si los elementos de la fila  i  de  A son suma de  m términos,  de la forma 1

 m

 ij

 a + … +  ij

 a  para 1 ≤  j ≤  n  entonces el determinante de  A es igual a la suma de los determinantes de  m matrices  1,…y   m

 A

 A  que tiene todas sus filas como las de  A, salvo la fila  i. 

En  la fila  i de  1

 A  está  1

 m

 ij

 a (1 ≤  j ≤  n) ,...  y en la fila  i de   m

 A  está   ij

 a

(1 ≤  j ≤  n) . 
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Similar resultado si es una columna de  A, con esas características. 

(Idea de la demostración: por inducción sobre el número  m  de términos y aplicar la demostración de la propiedad anterior y la idea de su demostración) 

Teorema 9: 

♦ Sea  

 n× n

 A∈  K

con  n ≥ 2. Si a una fila (o columna) de  A se le suma un múltiplo de otra fila (o columna), se obtiene la matriz  A'   y entonces   det(A') =  det(A) 

11

 a

1

 a  2

13

 a

1

 a j

1

 a n

 a  1

 h

 h

 a  2

 h

 a  3

 h

 a j

 h

 a n

 A =

 a  1 i

 i

 a  2

 i

 a  3

 i

 a j

 i

 a n

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

11

 a

12

 a

13

 a

1

 a j

1

 a n

 a  1

 h

 h

 a  2

 h

 a  3

 h

 a j

 h

 a n

 A' =

 a  1 i +  ka  1

 h

 i

 a  2 +  k h

 a  2

 i

 a  3 +  k h

 a  3

 i

 a j +  k h

 a j

 i

 a n +  k h

 a n

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

(Idea de la demostración: calcular el determinante de  A'  por esa fila tan particular y aplicar propiedades anteriores, los teoremas 7 y 6) 

 Observación: Este resultado se generaliza. Para lo cual se darán algunas definiciones. 

Una   combinación lineal de filas de una matriz es sumar ordenadamente los elementos de esas filas previamente multiplicadas  por un escalar (una constante para cada fila). 

La nomenclatura pone de manifiesto que las filas de una matriz pueden  en algunas 

circunstancias considerarse  como (o representar) las coordenadas de vectores. 

Una definición análoga vale para  combinación lineal de columnas de una matriz. 

¡De Ud. esa definición! 

¡Ya voy! 

Un ejemplo de combinación lineal sumada a una fila de una matriz  A es el siguiente: 698
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⎛ 1 5

7

−

0⎞

⎜ 2

⎟

 i  2 −  i  1

 A ⎜

⎟

=

si a la fila 3 se suma una combinacion lineal de las otras filas

⎜ 4 6

4

−

2⎟

⎜

⎟

⎝ −3 3

1

7⎠

1, 2 y 4 multiplicadas respectivamente por los escalares 8, -9, 4 i  se obtiene 

⎛

1

5

7

−

0

⎞

⎜

2

⎟

 i

2− i

1

 A' ⎜

⎟

= ⎜4+8.1 (+ 9−).2 4

+ .(

 i  3

− ) 6+8.5+( 9

− ).  i+4 .3

 i

4

− +8.( 7

− )+( 9

− ).(2− i)+4 .  i 1 2+8.0+( 9

− ).1+4 .7

 i ⎟

⎜

⎟

⎝

3

−

3

1

7

⎠

Teorema 10: 

♦ Sea  

 n× n

 A∈  K

con  n ≥ 2. Si a una fila (o columna) se le suma una combinación lineal de

las otras filas (o columnas), se obtiene la matriz  A'   y entonces   det(A') =  det(A) 11

 a

12

 a

13

 a

1

 a j

1

 a n

 a  1

 h

 h

 a  2

 h

 a  3

 h

 a j

 h

 a n

 A =

 a  1 i

 i

 a  2

 i

 a  3

 i

 a j

 i

 a n

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

11

 a

12

 a

1

 a  3

1

 a j

1

 a n

21

 a

2

 a  2

23

 a

2

 a j

2

 a n

 A' 

 n

 n

 n

 n

 n

=  a 1 i + ∑ kha  1 h ia 2 + ∑ kh ha 2  ia 3 + ∑ kh ha 3

 i

 a j + ∑ kh h

 a j

 i

 a n + ∑ kh h

 a n

 h  1

=

 h  1

=

 h  1

=

 h  1

=

 h  1

=

 h≠ i

 h≠ i

 h≠ i

 h≠ i

 h≠ i

 a  1

 n

 n

 a  2

 n

 a  3

 n

 a j

 n

 a n

(Idea de la demostración: por inducción y aplicación de la propiedad anterior) 

EJERCICIO 12.1.7 
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a) Demostrar las propiedades análogas a estas últimas para columnas. 

b) Verificar el Teorema 10, para la matriz dada previamente al enunciado de ese Teorema. 

EJEMPLO 12.1.8 

Verificaremos algunas propiedades de los determinantes dadas en el punto 12.1.6 en la matriz 

⎛ 2

3 ⎞

 A = ⎜⎝ 1 ⎟

−

 i

− ⎠ cuyo determinante ya fue calculado y es 3-2 i 

La 1: 

⎛ 2

3  t⎞ ⎛

−

−

 t

2

1

 t

2

1⎞

 A =

=

⎜

 A =

= 2.(  i

− ) − ( 1

− ).3 = 3 − 2 i

⎝ 1

⎟

⎜

⎟

−

 i

− ⎠ ⎝3

 i

− ⎠  

3

 i

−

La 2: 

Consideremos  k = 9  y multipliquemos la fila 2 de  A: 

⎛ 2

3 ⎞ ⎛ 2

3 ⎞

2

3

 A' =

=

 A' =

= 2.( 9

−  i) − ( 9).3

−

= 27 −

⎜

⎟ ⎜

⎟

18 i

⎝9.( 1

− ) 9.(  i

− )⎠ ⎝ 9

−

9

−  i ⎠

9

−

9

−  i

que efectivamente es  9. (3-2 i) 

La 4: 

Si se intercambian las filas de  A  se tiene: 

⎛ 2

3 ⎞

⎛ 1

−

− i ⎞

 A =

⎟   entonces  A′ =

⎜⎝ 1

⎜

⎟

−

 i

− ⎠

⎝ 2

3 ⎠

1

−

 i

−

 A' =

= 1

− .3 − (  i

− ).2 = 3

− + 2 i   que efectivamente es el opuesto del  det(A) 

2

3

La 9: 
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Si a la fila 1 de  A se le suma 10 veces fila 2: 

⎛ 2

3 ⎞

⎛ 2 +10.(−1) 3 +10.(− i)⎞ ⎛ −8 3 −10 i ⎞

 A =

⎟ entonces   A' =

=

⎜⎝ 1

⎜

⎟ ⎜

⎟

−

− i ⎠

⎝

−1

− i

⎠ ⎝ −1

− i ⎠

−8 3 −10 i

 A' =

= 8

− (− i) − (3 −10 i)(−1) = 8 i + 3 −10 i = 3 − 2 i

−1

−

como se quería 

 i

comprobar. 

EJEMPLO 12.1.9 

⎛ 1

0

0⎞

⎜

⎟

Sea la matriz  A =

33

−  i  1237 0

⎜

⎟ . ¿Cuánto vale  det(A)? 

⎜  i

4

0⎟

−

⎝

⎠

Claramente al desarrollarlo por la columna 3 dará 0, y como por definición por cualquier fila o columna que se desarrolle el valor coincide, ese es su valor. 

EJEMPLO 12.1.10 

Consideremos la siguiente matriz con dos fila iguales:   

¡Por supuesto! 

⎛ 2 0 8 4⎞

⎜ 0 1 5 ⎟

 i

 A ⎜

⎟

= ⎜

, el determinante conviene calcularlo por la columna 2 (¿por qué?) 

2 0 8 4⎟

⎜

⎟

3 0 1 6

⎝

⎠

2 0 8 4

2 8 4

0 1 5  i

 A =

=1 2 8 4 = y calculado por la regla practica para 3x3

2 0 8 4

3 1 6

3 0 1 6

= 2.8.6 + 2.1.4 + 8.4.3− 3.4.8 −1.4.2 − 2.8.6 = 0

como se pretendía comprobar. 

EJERCICIO 12.1.11 

701

DETERMINANTES – CAPÍTULO 12

Verificar las propiedades de los determinantes para las matrices: 

⎛ 3

5 0 3 ⎞

⎛ 2

4

−

0 ⎞

⎜

⎟

⎛ 2 0 1⎞

⎜

⎟

2

4 1 7

⎜

⎟

 A = 3 9 i  2 −  i

⎜

⎟

×

⎜

⎟       

 B =





3 3

 C = ⎜ 5 3 0⎟   ∈ 7   

⎜

⎜ 3

−

5

−

0

3

− ⎟

1 3

0 ⎟

⎜

⎟

⎝

⎠

⎜

⎟

⎜1 2 3⎟

⎝ 2

2 2 1 ⎠

⎝

⎠

EJEMPLO 12.1.12 

Las propiedades demostradas permiten "bajar" el orden de los determinantes. Por esto se entiende que dada una matriz a la que se quiere evaluar su determinante por operaciones sobre sus filas o columnas se puede llevar a una matriz que tenga más elementos 0 que la dada y así resultará de más fácil cálculo. 

⎛ 2 1

5

−

0 2 ⎞

⎜ 3 4 3 0 1 ⎟

⎜

⎟

 A = ⎜ 4 2 0 4

1

− ⎟   Si sobre esta matriz que en su columna 4, que ya tiene dos 0 se va 

⎜

⎟

⎜ 2 9 1 1 4 ⎟

⎜ 1 3 2 1 2 ⎟

⎝

⎠

a transformar en 0 otro de sus elementos por medio de sumar múltiplos de filas, no se modifica el determinante de  A y su cálculo resulta más sencillo, para lo cual por ejemplo a la fila 3 sumaremos la fila 5 multiplicada por  - 4: 

2 1

5

−

0 2

2

1

−5

0

2

2

1

5

−

0 2

3 4 3 0 1

3

4

3

0

1

3

4

3 0 1

 A = 4 2 0 4

1

− = 4− 4.1 2− 4.3 0− 4.2 4− 4.1 −1− 4.2 = 0 −10

8

−

0 −9

2 9 1 1 4

2

9

1

1

4

2

9

1 1 4

1 3 2 1 2

1

3

2

1

2

1

3

2 1 2

podemos obtener otro 0 en la columna 4 sumando a la fila 4 la fila 5 multiplicada por -1: 

2

1

−5 0 2

2

1

−5

0

2

2

1

5

−

0 2

3

4

3 0 1

3

4

3

0

1

3

4

3 0 1

 A = 0 −10 −8 0 −9 = 0

−10

−8

0

−9 = 0

1

− 0

8

−

0 −9

2

9

1 1 4

2 1. 

− 1 9 1

− .3 1 1.2

−

1 1.1

−

4 1

− .2

1

6

1

−

0 2

1

3

2 1 2

1

3

2

1

2

1

3

2 1 2

¡Obvio! 
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desarrollando el determinante por la columna 4:     

2

1

−5 0 2

2

1

5

−

2

2 2

− .1 1 2

− .6 −5 2

− .(−1) 2 2

− .2

3

4

3 0 1

3

4

3

1

3 3

− .1 4 3

− .6 3 3

− .( 1

− ) 1 3

− .2

 A = 0

1

− 0

8

−

0

9

− =−1

=

0

1

− 0

8

−

9

−

0

1

− 0

8

−

9

−

1

6

−1 0 2

1

6

1

−

2

1

6

1

−

2

1

3

2 1 2

Al determinante de orden 4 se le anularán otros elementos de su primer columna. 

(¿cómo?? Mire muy bien!!!!) ¿Qué se hizo?.... 

¿…? 

Bien!!! se dio cuenta: a la 1ra. fila se resta  2. 4ta. fila  y a la 2da. fila se resta 3. 4ta fila. 

0 −11

3

−

−2

−11

3

−

2

−

0

1

− 4 6 −5

 A =

= 1. 

−

14

−

6 −5

0

1

− 0 −8 −9

10

−

−8 −9

1

6

−1 2

Por las características de la matriz  A se tendrían que haber calculado 3 determinantes de orden 4, pero por las operaciones realizadas sobre las filas y columnas queda a calcular un determinante de orden 3. 

Sobre este determinante se pueden realizar operaciones tendientes a lograr 0 en alguna fila o alguna columna (es decir seguir bajando el orden) o calcularlo por la regla práctica. 

Queda  como ejercicio ese cálculo de la manera que mejor le resulte. 

EJEMPLO 12.1.13 

Consideremos las siguientes matrices: 

⎛1 0 0⎞

⎛1 0⎞

⎜

⎟

1

 I = ( )

1

 I 2 =

 I 3 =

⎜

⎟

0 1 0

0 1

⎜

⎟

⎝

⎠

⎜0 0 1⎟

⎝

⎠

¿Cuánto valen sus determinantes? 

1 0

1

 I = 1 = 1

 I 2 =

= 1.1− 0.0 = 1 ¿cómo se puede calcular el determinante de  I

0 1

 3 ? 

Se lo hará por la fila 1 (la dificultad es similar por cualquiera de sus filas o columnas): 703
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1 0 0

1 0

0 0

0 1

1 0

 I 3 = 0 1 0 = 1. 

+ 0. 

+ 0. 

= 1. 

= 1.  I 2 = 1

0 1

0 1

0 0

0 1

0 0 1

EJERCICIO 12.1.14 

a)

Calcular el determinante de  I4 . 

b)

Cuánto vale el determinante de  In  para cualquier  n >0.  Demuestre por inducción. 

EJEMPLO 12.1.15 

 Se ha probado que para cualquier orden n > 0, el determinante de la identidad  In  es 1 

 ¿Cuánto valdrán los determinantes de las matrices elementales? 

•

Consideremos 

la 

elemental  i

 E j , esta es la matriz que se obtiene de  In   ( n > 1) al permutar dos filas, por Teorema 4, los determinantes son opuestos uno de otro luego: 

 det(  i

 E j) =  det

− ( In) = 1

−

•

Consideremos la elemental

 i

 E

, esta es la que se obtiene de  I

 j ( c)

 n ( n > 1) al sumar a  la fila

 i , la fila  j multiplicada por  c.  Por el Teorema 9, los determinantes de ambas matrices coinciden, luego: 

 det(  i

 E j( )

 c ) =  det( In) =1

•

Consideremos la elemental   E ( c) ,  con  c ≠ 0 , esta es la que se obtiene de  I i

 n , al 

multiplicar su  fila   i por  c  no nulo .  Por el Teorema 2, el determinante de la matriz resultante es  c por el determinante de la identidad: 

 det(  i

 E ( c)) = . 

 c det( In) =  c ( c ≠ 0)

 Por lo tanto los determinantes de las matrices elementales son no nulos. 

EJERCICIO 12.1.16 

Comprobar para  n = 4, el valor de tres ejemplos de matrices elementales. 

Otra serie de Teoremas 12.1.17   
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♦ Teorema 1:

 Sea 

 n× n

 B ∈  K

y sea  E una matriz elemental entonces  det(E.B)= det(E).det(B)

Idea de la demostración: se consideran cada una de las tres operaciones elementales posibles y su correspondiente matriz  E. Se aplica el Teorema 2, 4 ó 9 (12.6) según sea el caso, considerando que el producto de la matriz elemental por  B, es realizar la operación correspondiente sobre las filas de  B y   se usan los valores calculados en el último ejemplo. 

Para ilustrar se hará para el caso  E =  Ei j  es decir se demostrará:      

 det(  i

 E j. )

 B =  det(  i

 E j).  det( )

 B

Se sabe que   Ei j . B = Pi j ( B), es decir permutar dos filas en la matriz  B,  en este cado para fijar ideas la  i-ésima y la  j-ésima de  B. 

Luego  Pi j ( B) =  B′  (*) que por el teorema 4 de 12.6,  det( B′ ) = -1.  det( B ) , pero como se sabe 

-1=  det ( Ei j) , por lo cual por (*):  det( B′ ) =  det ( Ei j) .  det( B ) , por lo cual: det ( Ei j . B)  = det ( Ei j) .  det( B ). 

Para las otras matrices elementales es similar. 

♦ 

Generalizando el Teorema anterior: 

♦ Teorema 2:

  Sea  

 n× n

 B ∈  K

y sean  1

 E , ,  m

 E  matrices elementales entonces

 det( 1

 E . 

 m

 E .B)= det 1

 (E ). det( m

 E ).det(B)

(Idea de la demostración: por inducción sobre  m) 

Una caracterización ¡MUY importante! 
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♦ Teorema 3:

    Sea 

 n× n

 A∈  K

.  A es invertible si y sólo si     det(A) ≠  0

Demostración: Toda matriz cuadrada   A  n x  n es equivalente por filas a la identidad  In o a una AR reducida por filas y escalonada con una fila nula. Si  A es invertible es   A ∼  f In . 

Luego por definición si   A ∼  f In   vale que  A = 1

 E . 2

 E .….  h

 E .  In   y por el teorema anterior vale:

 det ( )

 A =  det( 1

 E .  E 2.….  Eh.  In) =  det( 1

 E ).  det( 2

 E ).….  det(  h

 E ).  det( In) , como todos los factores

del tercer miembro no son nulos y  K es un cuerpo, resulta que  det( A) ≠ 0. 

Resta probar que si:   det(A) ≠  0  entonces   

 A  es invertible. 

Que equivale a su contrarrecíproca:   A no es invertible  entonces   det(A) =  0   

Sea  A no invertible, por lo cual  A es equivalente por filas con  AR reducida por filas y escalonada con una fila nula. Y por definición   A ∼  f R

 A  vale que  A = 1

 E . 2

 E .….  h

 E .  R

 A

Del teorema anterior,  det  ( )

 A =  det( 1

 E .  E 2.….  Eh.  R

 A ) =  det( 1

 E ).  det( E 2).….  det( Eh).  det(  R

 A )

Pero al tener  AR  una fila nula, el factor  det ( AR) = 0, por lo cual  det ( A) = 0 

♦ 

♦ Teorema 4:

Sean  

 n× n  y 

 n n

 A K

 B K ×

∈

∈

entonces   det(A.B)= det(A).det(B)

(Idea de la demostración: Considere los casos que  A sea invertible o no, combinada con la sugerencia dada para la demostración del Teorema 3) 

EJEMPLO 12.1.18 

⎛ 2 0 1 ⎞

⎜

⎟

La matriz   A = 3 1 −5

⎜

⎟  ¿es invertible? 

⎜ 5 1 4⎟

−

⎝

⎠

Para determinarlo calculemos el determinante (por la columna 2): 

706

DETERMINANTES – CAPÍTULO 12

2 0 1

2 1

2 1

 A = 3 1 −5 = 1. 

−1. 

= [2(−4) − 5.1] −[2.(−5) − 3.1] =

5

4

−

3 −5

5 1

4

−

= 8

− − 5 +10 + 3 = 0

Luego,  A  no es invertible. 

EJEMPLO 12.1.19 

⎛ 2 i

1

− ⎞

⎛ 0 1⎞

Dadas las matrices  A =

 B =

⎜

comprobar el teorema 4. 

⎝ 4

⎟

⎜

⎟

 i ⎠

⎝ 4

−

 i ⎠

⎛ 2 i

1

− ⎞ ⎛ 0 1⎞ ⎛2 .  i 0 + ( 1

− ).( 4

− ) 2 .  i 1+ ( 1

− ).  i ⎞ ⎛ 4

 i ⎞

. 

 A B =

⎟. 

=

=

⎜



⎝ 4

⎜

⎟ ⎜

⎟ ⎜

⎟

 i ⎠ ⎝ 4

−

 i ⎠ ⎝ 4.0 + .  i( 4

− )

4.1+ .  ii ⎠ ⎝ 4

−  i  3⎠

4

 i

. 

 A B =

= 4.3 − ( 4

−  i).  i = 12 − 4 = 8

4

−  i  3

Además: 

2 i

1

−

0 1

 A =

= 2 .  ii − 4.( 1

− ) = 2

− + 4 = 2

 B =

= 0.  i −1.( 4)

− = 4

4

 i

4

−

 i

por lo que se ha verificado: 

. 

 A B =  A .  B  pues 8 = 2.4  

EJEMPLO 12.1.20 

Si la matriz  A es invertible, ¿hay relación entre el determinante de  A y el de su inversa? 

Sea  A invertible, esto significa: 

1

−

1

Existe   A  tal que  . 

 A A− =  I . 

−

−

Por el teorema 4:  

1

1

 I = . 

 A A

=  A .  A  y como el determinante de la identidad vale 1: 

−

−

−



1

1

1 =  A .  A

entonces      A = (  A ) 1
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EJERCICIO 12.1.21 

Hallar el valor de  x en los siguientes casos: 

6  x  4

3 − x =1

4 2 9 = 166

−

2 4

2 5  x

EJERCICIO 12.1.22 

⎛ 2 0

1

− ⎞

⎛ −2 5

1

− ⎞

⎜

⎟

⎜

⎟

a)

Para las matrices:  A = 3 0

2

 B = 1

0

4

−

⎜

⎟

⎜

⎟  

⎜ 4 1 6⎟

⎜ 0 1 1 ⎟

−

⎝

⎠

⎝

⎠

 t

2

Verificar:

2

 A =  A

2 A = 8  A  por que??? 

. 

 A B =  A .  B

 B =  B

 A +  B ≠  A +  B  . 

¿Tienen inversa? De ser afirmativo, ¿cuánto valen los determinantes de las inversas? 

⎛ 2 0 1⎞

⎜

⎟

×

b)

Para 

3 3

 C = ⎜ 5 3 0⎟   ∈ 7  , ¿es  C invertible? (use el ejercicio 12.11). 

⎜

⎟

⎜1 2 3⎟

⎝

⎠

3

3

Verificar que   C =  C   y que  5.  C = 6

EJERCICIO 12.1.23 

Calcular el determinante: 

2 0

0

1

4

3 1

7

1

−

2

 A = 1 0

3

−

4

6

0 1 10

6

−

−8

2

3

−

1

7

9

¿La matriz  A es invertible? ¿Por qué? 

Sin calcularla, ¿puede decir qué tipo de matriz es la reducida por filas y escalonada equivalente por filas con  A ? 
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EJERCICIO 12.1.24 

a)

Calcular el determinante:

2 0

0

1

4

3 1

2

−

1

−

2

 A = 1 0

−3 4

6

0 1

0 −6

8

−

2

3

−

1

7

9

b)

¿La 

matriz 

 A es invertible? ¿Por qué? 

c)

Sin calcularla, ¿puede decir qué tipo de matriz es la reducida por filas y escalonada

equivalente por filas con  A? 

EJERCICIO 12.1.25 

a)

Con las matrices de los ejercicios 8 y 9 de este apartado comprobar que el determinante de

un producto de matrices es el producto de los determinantes correspondientes. 

b)

Comprobar que el determinante no se distribuye en la suma de matrices. 

2. Otro método para calcular inversas

Se presentará otra relación entre el determinante de una matriz y su inversa. 

Ya se probó que una matriz  A tiene inversa si y sólo si el determinante de  A es no nulo. Además que el determinante de la inversa de  A es el inverso del determinante de  A. 

Para poder avanzar en nuestro objetivo serán necesarias más definiciones.... 

Dada 

 n n

 A K ×

∈

se llama matriz adjunta de  A la matriz cuyos elementos son los respectivos

cofactores de los elementos de  A: 

Si   A = (  ij

 a  1)  i n  entonces

 Adj( )

 A = (  ij

 A

≤ ≤

1

) ≤ i≤ n  esto significa: 

1≤  j≤ n

1≤  j≤ n

⎛ 11

 a

1

 a n ⎞

⎛ 11

 A

1

 A n ⎞

⎜

⎟

⎜

⎟

 A =

entonces la adjunta es    Adj( )

 A =

⎜

⎟

⎜

⎟

⎜  a

⎟

⎜

⎟

⎝ 1

 n

 n

 a n

 A

⎠

⎝ 1

 n

 n

 A n ⎠
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El cálculo de la matriz adjunta es tedioso, pues involucra el cálculo de  n  x  n determinantes de orden  n-1 pues el cofactor respecto de 

 i+  j

 ij

 a  es   ij

 A  =  ( 1

− ) .  Mij  y   Mij  es el determinante de la

matriz que se obtiene de  A si se suprimen la fila  i y la columna  j. 

EJEMPLO 12.2.1 

Comencemos por uno "cortito". Sea 

⎛ − i  3⎞

 A = ⎜ 1 0⎟

⎝

⎠

1 1

+

1+2

11

 A = (−1)  M 11 = 0 = 0

12

 A = ( 1

− )  M 12 = − 1 = 1

−

2 1

+

2+2

21

 A = (−1)

 M 21 = − 3 = 3

−

22

 A = ( 1

− )

 M 22 =  i

− =  i

−

⎛ 0

1

− ⎞

entonces por definición:       Adj( )

 A = ⎜⎝ 3 ⎟

−

 i

− ⎠

EJEMPLO 12.2.2 

Algo más complicado: 

⎛ 2 3 0

1

− ⎞

⎜ 0 1 3 4 ⎟

Si   A

⎜

⎟

= ⎜

para calcular la adjunta hay que tener paciencia: 

− i  0 2 1 ⎟

⎜

⎟

0 4 0 1

⎝

⎠

se deben calcular 16 determinantes de orden 3. 

1 3 4

0 3 4

11

 A = 0 2 1 = 2 +12 − 32 = 18

−

1

 A  2 = −  i

−

2 1 = 3

−  i

4 0 1

0 0 1

0 1 4

0 1 3

13

 A =  i

−

0 1 = 16

−  i +  i = 15

−  i

1

 A  4 = −  i

−

0 2 = 12 i

0 4 1

0 4 0

3 0

1

−

2 0

1

−

21

 A = − 0 2 1 = −(6 + 8) = 1

− 4

2

 A  2 =  i

−

2 1 = 4

4 0 1

0 0 1

2 3

1

−

2 3 0

23

 A = −  i

−

0 1 = −(4 i − 8 + 3 i) = 8 − 7 i

24

 A =  i

−

0 2 = 1

− 6

0 4 1

0 4 0
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¡Que se le va 

Hay que seguir!! Ya se hizo la mitad!! 

a hacer!!! 

3 0

1

−

2 0

1

−

31

 A = 1 3 4 = 9 +12 = 21

32

 A = − 0 3 4 = 6

−

4 0 1

0 0 1

2 3 −1

2 3 0

33

 A = 0 1 4 = 2 − 32 = 30

−

34

 A = − 0 1 3 = 24

0 4 1

0 4 0

3 0

1

−

2 0

1

−

41

 A = − 1 3 4 = −(9 − 2 − 24) = 17

4

 A  2 = 0 3 4 = 6 − 3 i −16 = 1

− 0 − 3 i

0 2 1

 i

−

2 1

2 3

1

−

2 3 0

43

 A = − 0 1 4 = −(2 −12 i −  i) = 2

− +13 i

44

 A = 0 1 3 = 4 − 9 i

 i

−

0 1

 i

−

0 2

a pesar del cansancio se arma la matriz 

⎛ −18

3

−  i

15

−  i

12 i ⎞

⎜ 14

4

8 7

⎟

−

−  i

16

−

 Adj( )

 A

⎜

⎟

= ⎜



21

6

−

30

−

24 ⎟

⎜

⎟

⎝ 17

10 3 i

2 13 i  4 9 i

− −

− +

− ⎠

Se seguirá trabajando con las matrices de los ejemplos anteriores, para ilustrar un resultado general: 

• Se calculará el determinante de la matriz de 12.2.1

 i

−

3

 A =

= 3

−

1 0

• Se hallará la traspuesta de la adjunta de  A

⎛ 0

1

 t

− ⎞

⎛

− ⎞

⎛

− ⎞

 Adj A =

⎟

(  Adj A ) t

0

1

0

3

( )

entonces 

( ) =

=

⎜⎝ 3

⎜

⎟

⎜

⎟

−

 i

− ⎠

⎝ 3

−

 i

− ⎠ ⎝ 1

−

 i

− ⎠
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• Calcular el producto de  A por la traspuesta de su adjunta:

⎛ −

⎞⎛

− ⎞ ⎛ − + −

− − +

− ⎞ ⎛ −

⎞

 A (  Adj A ) t

 i  3

0

3

.  i 0 3.( 1)

.(

 i

3) 3.(  i)

3 0

. 

( ) =

=

=

⎜

= - 3.  I 

⎝ 1 0⎟⎜

⎠⎝ 1

⎟ ⎜

⎟ ⎜

⎟

−

 i

− ⎠ ⎝ 1.0 + 0.( 1

− ) 1.( 3

− ) + 0.(  i

− ) ⎠ ⎝ 0

3

− ⎠

• Se calculará el determinante (usando los adjuntos ya calculados) de la matriz dada en 12.2.2

2 3 0 −1

2 0

1

−

2 3 0

0 1 3 4

 A =

= 4. 0 3 4 +1. 0 1 3 = 4.( 1

− 0 − 3 i) + 4 − 9 i = 3

− 6 − 21 i

− i  0 2 1

− i  2 1

− i  0 2

0 4 0 1

el desarrollo se hizo ¿porqué fila? ¿por cuál otra línea (fila o columna) era también conveniente? 

• Se hallará la traspuesta de la adjunta de  A

⎛ 18

−

3

−  i

15

−  i

12 i ⎞

⎛ 18

−

14

−

21

17 ⎞

⎜ 14

4

8 7

⎟

⎜

⎟

−

−  i

16

−

−

−

− −

 A

⎜

⎟

(  Adj A ) t

3 i

4

6

10 3 i

 Adj( )

así

( )

⎜

⎟

=

=



⎜ 21

6

−

30

−

24 ⎟

⎜ 15

−  i  8 − 7 i

30

−

2

− +13 i ⎟

⎜

⎟

⎜

⎟

⎝ 17

10

− − 3 i

2

− +13 i  4 − 9 i ⎠

⎝ 12 i

16

−

24

4 − 9 i ⎠

• Calcular el producto de  A por la traspuesta de su adjunta:

⎛ 2 3 0

1

− ⎞ ⎛ 18

−

14

−

21

17 ⎞

⎜

⎟ ⎜

⎟

−

−

− −

 A (  Adj A ) t

0 1 3 4

3 i

4

6

10 3 i

. 

( )

⎜

⎟.⎜

⎟

=

= 

⎜ − i  0 2 1 ⎟ ⎜ 1

− 5 i  8 − 7 i

3

− 0

2

− +13 i ⎟

⎜

⎟ ⎜

⎟

⎝ 0 4 0 1 ⎠ ⎝ 12 i

16

−

24

4 − 9 i ⎠

⎛ 2

− .18−3.3 i  1. 

− 12 i

2

− .14+3.4 1. 

+ 16

2.21−3.6) 1

− .24

2.17+3.( 1

− 0−3 ) i  1. 

− (4−9 ) i ⎞

⎜ 1. 

− 3 i−3.15 i +4.12 i  1.4+3.(8−7 ) i−4.16

1. 

− 6−3.30+4.24 1.( 10

− −3 ) i+3.( 2

− 13

+  i)+4.(4−9 ) i⎟

=⎜

⎟ =

⎜ .1

 i  8−2.15 i  1

+ .12 i

.1

 i  4+2.(8−7 )

 i  1

− .16 − .2

 i  1−2.30 1

+ .24

− .1

 i  7+2.( 2

− 1

+ 3 ) i  1

+ .(4−9 ) i ⎟

⎜

⎟

⎝ 4.( 3

− ) i  1

+ .12 i

4.4 1. 

+ ( 1

− 6)

4.( 6

− ) 1

+ .24

4.( 1

− 0−3 ) i  1. 

+ (4−9 ) i

⎠

⎛ 3

− 6−21 i

0

0

0

⎞

⎜

0

36 21

⎟

− −  i

0

0

⎜

⎟

=

=( 3

− 6−21) i.  I

⎜

0

0

3

− 6−21 i

0

⎟

⎜

⎟

⎝

0

0

0

3

− 6−21 i⎠
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En estos ejemplos de verifica: 

.(

( )) t

 A Adj A

=  A .  I    (*)

resultado que es una propiedad general de las matrices cuadradas. (Se demostrará en 12.2.7) EJERCICIO 12.2.3 

a) Verificar la propiedad  (*) para las matrices:

⎛ 3 0

 i

− ⎞

⎛ 2

3

− ⎞

⎜

⎟

 A =

 A =

⎜

⎟

2 1 8  

⎝ 4 6

⎜

⎟

−

⎠

⎜ 0  i  2 ⎟

−

⎝

⎠

 t

b) Verificar para esas matrices que  (  Adj( )

 A ) .  A =  A .  I

 ¿Qué provecho es posible sacar de (*) si A es invertible? 

En ese caso el determinante de  A es no nulo, por lo cual ese escalar tiene inverso. Es así que multiplicando (*) por el inverso del determinante resulta: 

1

 A −  A (  Adj A ) t

1

. . 

( )

 A −

=

 A .  I =  I

Por  propiedad del producto de un escalar por matriz se tiene: 

1

.( − .(

( )) t

 A A

 Adj A ) =  I

y como  A es invertible, multiplicando a izquierda por la inversa de  A , resulta una igualdad que además se obtiene otro método para calcular la inversa de una matriz: 

1

−

1

−

=

.(

( )) t

 A

 A

 Adj A
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EJEMPLO 12. 2.3 

⎛  i

−

3⎞

 i

−

3

Es así que para   A = ⎜

como   A =

= 3

−

≠ 0  la matriz es invertible. 

1 0⎟

⎝

⎠

1 0

 t

⎛

− ⎞

Se ha calculado  (  Adj A )

0

3

( ) = ⎜

entonces  

⎝ 1

⎟

−

 i

− ⎠

⎛ 0 1 ⎞

−

−

 t

− ⎛ 0

−3⎞ ⎛ 0

1

1

1

⎞

 A

( 3) .(  Adj( )

 A )

1

( 3) . 

⎜

⎟

= −

= −

=

⎜

⎟ ⎜

⎟ =

⎜ 1

−

1

− ⎟

1 1

⎝ −1

 i

− ⎠ ⎝3

3  i

⎜

⎠ ⎜

 i ⎟

⎝ 3 3 ⎟⎠

Si prefiere... 

EJEMPLO 12. 2. 4 

⎛ 2 3 0

1

− ⎞

2 3 0

1

−

⎜ 0 1 3 4 ⎟

0 1 3 4

Para   A

⎜

⎟

=

 A =

= 36

− − 21 i

⎜

se calculó 

por lo tanto 

− i  0 2 1 ⎟

− i  0 2 1

⎜

⎟

0 4 0 1

⎝

⎠

0 4 0 1

existe la inversa de  A. 

⎛ −18

14

−

21

17 ⎞

⎜

⎟

 t

3

−  i

4

6

−

1

− 0 − 3 i

También se ha calculado  (  Adj( )

 A )

⎜

⎟

= ⎜

se tiene entonces 

15

−  i  8 − 7 i −30 −2 +13 i ⎟

⎜

⎟

⎝ 12 i

16

−

24

4 − 9 i ⎠

⎛ 18

−

14

−

21

17 ⎞

⎜

⎟

1

−

1

−

−

− −

 i − (  Adj A ) t

1

−

3 i

4

6

10 3 i

 A

( 36 21 ) . 

( )

( 36 21 i) .⎜

⎟

= − −

= − −

⎜



−15 i  8 − 7 i

30

−

2

− +13 i ⎟

⎜

⎟

⎝ 12 i

−16

24

4 − 9 i ⎠

Si quiere puede realizar las cuentas de multiplicar cada elemento por el inverso de -36 -21  i para obtener los elementos de la inversa. 
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EJERCICIO 12.2.5 

 t

a)

Verificar 

que . 

 A (  Adj( )

 A ) =  A .  I  para las siguientes matrices:

⎛ 2 0

1

− ⎞

⎛ 3

 i ⎞

⎜

⎟

 A =

 B =

⎟

2 3

5

−

⎜⎝3 i  1

⎜

⎟

− ⎠

⎜ 0 2 7 ⎟

⎝

⎠

1

−

1

−

 t

b)

Utilizando 

la 

expresión 

 A =  A .(  Adj( )

 A )  calcular, si es que existe,  la inversa de 

⎛ 2 0

1

− ⎞

⎛ 3

 i ⎞

⎜

⎟

 A =

 B =

⎟

2 3

5

−

⎜⎝3 i  1

⎜

⎟

− ⎠

⎜ 0 2 7 ⎟

⎝

⎠

♦ LEMA 12.2.6:

 n

Sea 

 n× n

 A∈  K

,  K  cuerpo conmutativo, entonces ∑  iak.  Ajk = 0 para  i ≠  j  . 

 k  1

=

Demostración: 

Dada la matriz  A = ( as p  1

) ≤ s≤ n se construye la matriz   A = ( asp  1)≤ s≤ n  tal que tiene todas sus 1≤  p≤ n

1≤  p≤ n

filas como las filas de  A,  pero en su fila  j-ésima se repite su fila  i-ésima, esto es:     

⎧ a

⎪  s p  

si  s ≠  i

 as p = ⎨

. 

⎪⎩  ia p  si    s =  j

Luego por construcción   A  tiene dos filas iguales. 

Por lo cual su determinante vale 0. 

Como el determinante de una matriz desarrollado por cualquier fila (o columna) tiene igual valor, se lo desarrollará por la fila  j: 

 n

 det( )

 A = ∑ a jk Ajk  ahora bien, sustituyendo por sus valores:      

 k  1

=

 n

 det( )

 A = ∑  a A  pues   A jk

 i k

 j k

=  Ajk

 k  1

=

Debido que en la única fila que difieren ambas matrices  A y   A   es  la     j-ésima, entonces los cofactores de los elementos de las filas  j de ambas matrices son iguales. 

 n

Luego,    ∑

. 

 i

 a k Ajk = 0 

 k  1

=

♦
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Se ha hecho uso de lo que se afirma seguidamente, pero ya se tiene todo lo necesario para 

demostrar el 

♦ TEOREMA 12.2.7

 t

Sea 

 n n

 A K ×

∈

,  K  cuerpo conmutativo, entonces  . 

 A (  Adj( )

 A ) =  A .  I

Demostración: 

Si   A = (

, 

 ij

 a  1)  i n  entonces

 Adj( )

 A = (  ij

 A

≤ ≤

1

)  i≤  n

≤

1≤  j n

≤

1≤  j n

≤

⎛ 11

 a

1

 a n ⎞

⎛ 1

 A  1

1

 A n ⎞

⎜

⎟

⎜

⎟

 A =

entonces la adjunta es    Adj( )

 A =

⎜

⎟

⎜

⎟  por lo tanto 

⎜  a

⎟

⎜

⎟

⎝ 1

 n

 n

 a n

 A

⎠

⎝ 1

 n

 n

 A n ⎠

(  Adj( )

 A ) t = ( * i

 A j )

*

1

donde para cada  i y para cada  j, 

=

 i n

 i

 A j A

≤ ≤

 j i  .  (1) 

1≤  j≤ n

 n

 n

Se calcula  . 

 A (  Adj( )

 A ) t =  C = (  s

 c p )1≤ s≤ n  siendo cada 

*

 s

 c p = ∑ ask.  k

 A p = ∑  s

 a k .  Apk  por 

1≤  p≤ n

 k  1

=

 k  1

=

definición de producto de matrices y (1). 

 n

⎧det( )

 A

si   s =   p 

Si se analiza como son los   s

 c p = ∑  s

 a k .  Apk = ⎨

por definición de 

⎩

 s ≠  p

 k  1

0

si 



=

determinante y Lema anterior. 

Es decir la matriz producto  C es diagonal, más aun escalar, con los elementos de la diagonal iguales a  det ( A),  es así que   .(

( )) t

 A Adj A

=  C =  A .  I

♦ 

3. Otro método para resolver algunos sistemas de ecuaciones

En un sistema de ecuaciones  A.X  =  B de  n ecuaciones con  n incógnitas la matriz de los coeficientes es cuadrada (obvio!!!!) , sea    A = (



 n n

 K ×

∈

 ij

 a  1)≤ i≤ n

1≤  j≤ n

Si  A es invertible, una manera de calcular la solución del sistema es, multiplicando a izquierda de la igualdad matricial por su inversa  A-1: 
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. 

 A X =  B

1

−

1

 A . . 

 A X =  A− .  B

1

 I.  X =  A− .  B

1

 X =  A− .  B

(**) 

Observar que  si A es invertible la solución del sistema cuadrado es única. 

Además tener presente que el producto de matrices No es conmutativo…. 

En el siglo XVIII Cramer, un matemático suizo, ideó un método que utiliza la expresión de la inversa de  A dada en el parágrafo anterior, que se conoce como regla de Cramer o método de los determinantes. 

⎛ 1

 x ⎞

⎛ 1

 A  1

2

 A  1

 A  1

 n ⎞

⎛ 1

 b ⎞

⎜ ⎟

⎜

⎟

⎜ ⎟

⎜ 2

 x ⎟

⎜ 1

 A  2

2

 A  2

 n

 A  2 ⎟

⎜ 2

 b ⎟

⎜ ⎟

⎜

⎟

⎜ ⎟

1

−

1

−

La idea es considerar   X = ⎜

⎟

 A =  A .⎜

⎟

 B = ⎜ ⎟  

⎜  i

 x ⎟

⎜ 1

 A i

2

 A i

 n

 A i ⎟

⎜  i

 b ⎟

⎜ ⎟

⎜

⎟

⎜ ⎟

⎜ ⎟

⎜

⎟

⎜ ⎟

⎜ ⎟

⎜

⎟

⎜ ⎟

⎝  n

 x ⎠

⎝ 1

 A n

2

 A n

 n

 A n ⎠

⎝  n

 b ⎠

si se calcula el segundo miembro de (**): 

⎛ 11

 A

21

 A

 A  1

 n ⎞ ⎛ 1

 b ⎞

⎛ 11

 A . 1

 b

+ 21

 A . 2

 b +

+ A  1 n.  n

 b ⎞

⎜

⎟ ⎜ ⎟

⎜

⎟

⎜ 12

 A

22

 A

 n

 A  2 ⎟ ⎜ 2

 b ⎟

⎜ 12

 A . 1

 b

+ 22

 A . 2

 b +

+  n

 A  2.  n

 b ⎟

⎜

⎟ ⎜ ⎟

⎜

⎟

1

−

1

−

1

 A .  B =  A ⎜

⎟.⎜ ⎟ =  A − ⎜

⎟  

1

 A i

2

 A i

 n

 A i

 i

 b

⎜ 1

 A i. 1

 b

+ 2

 A i. 2

 b +

+

⎜

⎟ ⎜ ⎟

 n

 A i.  n

 b ⎟

⎜

⎟ ⎜ ⎟

⎜

⎟

⎜

⎟ ⎜ ⎟

⎜

⎟ ⎜ ⎟

⎜

⎟

⎜

⎟

1

 A n

2

 A n

 n

 A n

 n

 b

1

 A n. 1

 b

+ 2

 A n. 2

 b +

⎝

⎠ ⎝ ⎠

+

⎝

 nn

 A .  n

 b ⎠

La igualdad (**) de matrices establece la igualdad elemento a elemento: 

*

−1

*

−1

1

 x =  A .( 11

 A . 1

 b + 21

 A . 2

 b +

+  A  1 n.  n

 b )

2

 x =  A .( 12

 A . 1

 b + 22

 A . 2

 b +

+  n

 A  2.  n

 b )

*

−1

*

−1

 i

 x =  A .( 1

 A i. 1

 b + 2

 A i. 2

 b +

+  n

 A i.  n

 b ), , 

 n

 x =  A .( 1

 A n. 1

 b + 2

 A n. 2

 b +

+  n

 A n.  n

 b )
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 Se construye la matriz:  

1

C = (  ij

 c  1)  i n  tal que para todo  h,  1 ≤  h ≤  n,  hk

 c

=  hk

 a

 si k ≠ 1 y  c  1

 h =  h

 b

≤ ≤



1≤  j≤ n

Extendiendo la matriz para visualizarla: 

⎛ 1

 b

1

 a  2

1

 a n ⎞

⎜

⎟

1

 C =



⎜

⎟ es una matriz como  A salvo en la columna 1, que se  colocan los 

⎜

⎟

⎝  n

 b

 n

 a  2

 n

 a n ⎠

elementos de la matriz columna  B. 

Observar que los adjuntos de los elementos de la primer columna de  C1    coinciden con los respectivos adjuntos de los elementos de   A.  Esto es  11

 C = 11

 A , ,  C  1 i =  A 1 i, ,  C  1

 n =  A  1

 n

Pues la única diferencia entre ambas matrices es la columna 1. 

Si se desarrolla el determinante de  C1  por la columna 1, ¿qué observa? ¿Cuál es la expresión? 

1

 C = 1

 A  1. 1

 b + 2

 A  1. 2

 b +

+  A  1 n.  n

 b          está de acuerdo!! 

*

1

−

Por lo tanto  1

 x =  A . 1

 C

Haciendo un trabajo análogo, construyendo   C 2  una matriz como  A salvo en la columna 2 , que se colocan los elementos de la matriz columna  B. (descríbala y extiéndala para verla...)   Bien!! 

Comprobará que 

2

 C = 1

 A  2. 1

 b + 2

 A  2. 2

 b +

+  n

 A  2.  n

 b  si se desarrolla por la columna 2. 

*

1

−

Por lo tanto  2

 x =  A .  C 2

Trabajando análogamente, se construye   i

 C  una matriz como  A salvo en la columna  i ( para   i

entre 1 y  n)  que se colocan los elementos de la matriz columna  B. (descríbala y extiéndala para verla...)  

Bien!! 

Comprobará que   i

 C = 1

 A i. 1

 b + 2

 A i. 2

 b +

+  n

 A i.  n

 b  si se desarrolla por la columna  i. 

*

1

−

Luego:     

 i

 x =  A .  i

 C

Por la expresión de la solución: cada incógnita es producto del inverso de un determinante (del de  A) por otro  determinante, es el nombre vulgar que tiene el método de resolución. 

718

DETERMINANTES – CAPÍTULO 12

EJERCICIO 12.3.1 

Resolver por la regla de Cramer los siguientes sistemas: 

⎛ 1

−

3 8 i

4

− ⎞⎛  x ⎞ ⎛ 0 ⎞

⎛ 2 0 −3⎞⎛

1

1

 x ⎞ ⎛ 3 ⎞

⎜

⎟⎜ ⎟ ⎜

⎟

⎜

0

2

3

−

1

 x

4

4 6 0 ⎟⎜ ⎟ ⎜ ⎟

⎜

⎟⎜ 2 ⎟ ⎜

⎟

2

 x

=

3

−

⎜

⎟⎜

⎟ ⎜

⎟



=

⎜

⎜1−  i  0 5

2 ⎟⎜  x ⎟ ⎜ 3

− ⎟

1 3 0 ⎟⎜ ⎟ ⎜ ⎟

3

⎝

⎠⎝ 3

 x ⎠ ⎝ 1 ⎠

⎜

⎟⎜ ⎟

⎟

⎜

⎜ ⎟

⎟

⎝ 0

1

4

−

0 ⎠⎝ 4

 x ⎠ ⎝ 1 ⎠

⎛ −1 3 8

4

− ⎞⎛ 1 x ⎞ ⎛ 0 ⎞

⎜

⎛ 2 0 −3⎞⎛  x ⎞ ⎛ 0⎞

0 2

3 1 ⎟⎜ ⎟ ⎜ ⎟

−

1

⎜

⎟⎜ 2

 x

−4

⎟ ⎜

⎟

=

⎜ 4 6 0 ⎟⎜ ⎟ ⎜ ⎟

 x

= 0

⎜





0 0 5

2 ⎟⎜

⎜

⎟⎜ 2 ⎟ ⎜ ⎟

3

 x ⎟ ⎜ 3 ⎟

⎜

⎜

⎟⎜

⎟ ⎜ ⎟

⎜

⎟⎜ ⎟

⎟

⎜

⎜ ⎟

⎟

⎝1 3 0

 x

⎠⎝

⎠ ⎝ 0⎠

⎝ 0 0 0

3

⎟

⎠

3

⎝ 4

 x ⎠ ⎝ 1 ⎠

4. Rango de matrices

Dada una matriz 

 m n

 A K ×

∈

se ha probado que por operaciones elementales sobre sus filas es

posible llevarla a una matriz reducida por filas y escalonada   R

 A . 

Se darán definiciones que nos permitirán conocer qué tienen en común estas matrices 

equivalentes. 

También se podrá dar un criterio para saber si los sistemas de ecuaciones lineales tienen 

solución y cuántas. 

⎛ 2 4 7 1 ⎞

⎜ 0 3 0 3⎟

−

⎜

⎟

⎜ 1 2 0 1 ⎟

Consideremos la matriz   A = ⎜

⎟ son   submatrices de A matrices cuyos 

3 1 2

2

−

⎜

⎟

⎜ 5

−

9 1 2 ⎟

⎜

⎟

⎜ 0 7 3 0 ⎟

⎝

⎠

elementos son elementos de  A y tal que forman parte de las mismas filas o columnas dentro de  A. 

No tienen porqué estar todos seguidos dentro de  A. 

Son ejemplo de submatrices: 

⎛ 2 7⎞

⎛ 2

2

− ⎞

1

 B =

⎟

2

 B =

⎜



0 0

⎜1 2 ⎟

⎝

⎠

⎝

⎠
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⎛0 3 0 −3⎞

⎜

⎟

también   3

 B = 3 1 2

2

−

⎜

⎟   La matriz  A es submatriz de ella misma. 

⎜0 7 3 0 ⎟

⎝

⎠

El mayor orden de  submatriz cuadrada en  A es 4 x 4. Las de menor orden son  1 x 1. Por lo cual en general una matriz tiene varias submatrices. 

⎛ 2 4 7 1 ⎞

⎜ 0 3 0 3⎟

−

⎛ 2 7 1 ⎞

⎜

⎟

⎜

⎟

⎜ 1 2 0 1 ⎟

No es submatriz de  A,  C = 0 3 −3

⎜

⎟    

 A = ⎜

⎟  

⎜

⎜ 3 1 2

2

−

1 2 0 ⎟

⎟

⎝

⎠

⎜ 5

−

9 1 2 ⎟

⎜

⎟

⎜ 0 7 3 0 ⎟

⎝

⎠

Se llama rango de una matriz  A al orden del mayor menor no nulo. 

Esto es el rango de  A es  r  si existe una submatriz  B de  A,   r  x  r  tal que  det(B) ≠ 0  y para toda submatriz  D de orden  r +1 (si existe) su determinante es 0. 

Para referirse al  rango de A se anota r(A) , si  A se sobre entiende se usa simplemente  r. 

Compare esta definición de rango de  A, con la definición dada anteriormente. Observar que coinciden!!! 

¡Cuánto tengo que  

pensar! 

Si  A es  m  x  n, el rango de  A  es a lo sumo el mín { m ,n}.  ¿Por qué? 

EJERCICIO 12.4.1 

¿Cómo es  A si  r(A) es 0? 

EJEMPLO 12.4.2 

⎛ 0 2 3⎞

⎜

⎟

La matriz   A =

3

−

1 5

⎜

⎟  es cuadrada. 

⎜ 7 0 1⎟

⎝

⎠
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La mayor submatriz cuadrada de  A es propiamente  A. El rango será 3 si el  det(A) es no nulo: 0 2 3

 A = −3 1 5 = 2.5.7 − 7.1.3 + 3.2.1 = 55 ≠ 0    por lo tanto el rango es 3 

7 0 1

Observación: Son equivalentes para toda matriz  A cuadradas  n  x  n : 

 ● El rango de A es n. 

 ● La matriz A es invertible. 

 ● El det(A) es no nulo. 

EJEMPLO 12.4.3 

⎛ 2 0 6 0⎞

⎜

⎟

Como   A = 3 1 2 3

⎜

⎟  no es cuadrada hay que considerar submatrices propias de  A. 

⎜ 5 1 8 3⎟

⎝

⎠

Se debe comenzar calculando los determinantes de orden 3 (son los de orden máximo que se 

pueden extraer de  A)  

2 0 6

1

 B = 3 1 2 = 0 ya que la fila 3 es suma de las otras dos filas. 

5 1 8

Se saca una de las columnas de  B 1 y  se calcula      

2 0 0

2

 B = 3 1 3 = 0 ya que la fila 3 es suma de las otras dos filas. 

5 1 3

Pero mirando con atención la matriz  A, como su tercera fila es suma de las otras dos cualquier determinante de orden 3 es 0. 

Por lo tanto el rango es 2. Pues hay submatrices 2 x 2  de   A con determinante no nulo, por 0 6

ejemplo  3

 B =

= 6

− ≠ 0  

1 2
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Observación:  Por operaciones elementales sobre las filas de una matriz  A se llega a la reducida por filas escalonada. Si esta matriz reducida tiene una fila nula significa que esa fila de la matriz  A  es una combinación lineal de las otras filas. Cualquier menor que tenga parte de esas filas será 0. Por la definición de reducida por filas y escalonada si tiene  r filas no nulas ninguna de esas filas es combinación lineal de las otras filas. 

Se acepta que  el rango se conserva por operaciones elementales por filas. 

EJERCICIO 12.4.4 

a)

Verificar en las matrices del ejemplo anterior que el rango se conserva por operaciones

elementales. 

b)

Verificar que las matrices dadas tienen igual rango que sus respectivas reducidas por filas y escalonada. 

c)

Analizar el valor que obtuvo como rango de las matrices reducidas por filas y escalonadas

de b). 

d)

Anímese y conjeture en general para ese tipo de matriz. 

e)

Demostrar que el rango se conserva por operaciones elementales por filas. (Idea: hágalo

para cada una de las operaciones elementales por filas). 

5. Volviendo a los sistemas

Cómo ya se ha visto en varios ejemplos hay sistemas que tienen solución única, otros no tienen solución y los hay con infinitas soluciones. 

Es usual designar como: 

•

incompatible al sistema que no tiene solución

determinado: solución única 

•

compatible al sistema que tiene solución

. 

indeterminado: infinitas soluciones  

Se tiene el siguiente teorema, que sin resolver el sistema permite realizar esta clasificación 722
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Teorema de Roché-Frobenius*: Sea  . 

 A X =  B  un sistema de  m ecuaciones con  n incógnitas. 

● El sistema es compatible si y sólo si el rango de  A es igual al rango de la matriz orlada [ A ⎢ B]. 

● El sistema es compatible determinado si y sólo si el rango de  A es igual al rango de la matriz orlada [ A⎢ B] e igual a  n. 

● El sistema es compatible indeterminado si y sólo si el rango de  A es igual al rango de la matriz orlada [ A⎢ B] y menor que  n. 

*La demostración de este teorema se hará cuando se vea el tema de espacios vectoriales. 

EJEMPLO 12.5.1 

Analizar la compatibilidad del siguiente sistema: 

⎛1 −2 1 ⎞⎛ 1

 x ⎞ ⎛ 2 ⎞

⎜1 3 2⎟⎜ ⎟ ⎜ ⎟

−

2

 x

=

1

−

⎜

⎟⎜

⎟ ⎜ ⎟

⎜3 4

3⎟⎜ ⎟ ⎜ ⎟

−

⎝

⎠⎝ 3

 x ⎠ ⎝ 3 ⎠

El sistema es 3 x 3. 

Si el rango  r de  A es 3, también lo será el de la ampliada, pues  A es submatriz de la ampliada y como más filas no hay, esa es la "mayor aspiración de rango" para [ A⎢B]. 

De ser  r = 3 la solución es única. 

•

Cálculo del rango de  A:

Como  A es cuadrada se calcula primeramente el determinante de  A, pues es la mayor submatriz de  A 

1

2

−

1

 A = 1 3

2

− = −9 + 4 +12 − 9 + 8 − 6 = 0  luego el rango no es 3. 

3 4

3

−
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1

2

−

Si es 2,  pues 

= 3 + 2 = 5 ≠ 0 .  Si tiene solución tendrá infinitas. 

1 3

•

¿Cómo resolvemos si tiene? Se calcula el rango de la ampliada:

⎛1

2

−

1 2 ⎞

⎜

⎟

[ A B] = 1

3

2

−

1

−

⎜

⎟

⎜3 4

3 3 ⎟

−

⎝

⎠

Hay que comenzar evaluando determinantes de orden 3. 

Por lo ya realizado hay que considerar 3 columnas de [ A⎢B] descartando una columna de  A y que una de ellas sea la columna  B. 

Si algún menor de orden 3 es no nulo el rango de la ampliada es 3. 

1 −2 2

1 3 −1 = 9 + 8 + 6 −18 + 6 + 4 ≠ 0  luego el rango de la ampliada es 3. 

3 4

3

•

Conclusión:

 r( A)  =2  distinto de  r([ A⎢B]) =3 el sistema NO tiene solución. Es decir es incompatible. 

EJEMPLO 12.5.2 

⎛ 3 −2 1

1

− ⎞⎛ 1 x ⎞ ⎛0⎞

⎜ 2 1 3 1 ⎟⎜ ⎟ ⎜ ⎟

−

⎜

⎟⎜ 2

 x

0

¿Admite soluciones no trivales el sistema    

⎟ ⎜ ⎟

=

⎜

? 

1 3

1

−

2 ⎟⎜ 3

 x ⎟ ⎜ 0⎟

⎜

⎟⎜ ⎟

⎟

⎜

⎜ ⎟

⎟

⎝ 2

1

−

2

1 ⎠⎝ 4

 x ⎠ ⎝0⎠

Admitirá soluciones no triviales si  el rango de  A es menor que 4. 

Observar que todo sistema homogéneo  A.X =0 es compatible. 

A esta conclusión puede arribarse aplicando el Teorema de Roché -Frobenius, ya que 

claramente el rango de  A coincide con el rango de la ampliada que en este caso es [ A⎢ 0] o también comprobando que la matriz nula satisface la igualdad matricial  A.X =0  . 

Prosigamos con el ejemplo. 
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•

Cálculo del rango de  A

Primero se evalúa el determinante de  A,  es la submatriz de mayor orden... 

3

2

−

1 −1

2 1 −3 1  por ser un determinante de orden 4 se bajará el orden 

1 3 −1 2

2 −1 2

1

¡Estoy pensando que 

operaciones está haciendo! 

3

2

−

1 −1 3 + 3.( 1

− )

2

− − 2( 1

− ) 1−1

1

−

0 0

0

1

−

2 1

3

−

1

2 + 3.1

1− 2.1

−3 +1 1

5

1

−

2

−

1

=

=

1 3

1

−

2

1+ 3.2

3 − 2.2

−1+ 2 2

7

1

−

1

2

2 −1 2

1

2 + 3.1

−1− 2.1

2 +1

1

5

3

−

3

1

0 0

0

1

−

5 −1 −2

5 −1

2

−

1

 A =

= −( 1

− ). 7 −1 1 = 15

− + 42 − 5 −10 +15 + 21 = 48 ≠ 0

7 −1 1

2

5

3

−

3

5 −3 3

1

Es entonces el rango de  A igual a 4. 

• Conclusión

 r( A)  = 4  coincide con el número de incógnitas. La solución es única. 

Por lo tanto no hay soluciones distintas de la trivial. 

EJERCICIO 12.5.3 

Analizar la compatibilidad de los siguientes sistemas y resolver .... los compatibles 

⎛ 2

4

1 −1⎞⎛ 1

 x ⎞ ⎛ 2 ⎞

⎜

⎟⎜

⎟

⎛1 2

2

− ⎞⎛

⎜

⎟

 x ⎞ ⎛ 3⎞

1

2 −2 1

⎜

⎟⎜

⎟

1

⎜

 x

⎜

⎟

2 4

2 ⎟⎜ ⎟ ⎜ ⎟

 y = 2

⎜ −

− ⎟⎜ 2 ⎟

⎜

⎟⎜ ⎟ ⎜ ⎟   3 1

1

2

= ⎜ 3

− ⎟

⎜

⎜

⎟⎜ ⎟ ⎜

⎟

3

1

4⎟⎜  z ⎟ ⎜1⎟

−

−

⎝

⎠⎝ ⎠ ⎝ ⎠

⎜ 2

1

3 −1⎟⎜  x ⎟ ⎜ 2

3

⎟

⎜⎝ 3 1

−

1

−

2 ⎟⎜ ⎟ ⎜ ⎟

⎠  x

⎝ ⎠ ⎝ 3

4

⎠
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⎛ 4 1

5 −3⎞⎛  x ⎞ ⎛ 4⎞

⎛1

2

−

0 ⎞⎛  x ⎞ ⎛0⎞

1

⎜

⎟⎜

⎟ ⎜ ⎟

⎜

2 2

4

2

−

 x

3

2 0 2 ⎟⎜ ⎟ ⎜ ⎟

 i

 y = 0

⎜

⎟⎜ 2 ⎟ ⎜ ⎟

⎜

⎟⎜ ⎟ ⎜ ⎟   

=

⎜

⎜1 1

2

1

− ⎟⎜  x ⎟ ⎜ 2⎟

5

6 2 i ⎟⎜  z ⎟ ⎜0⎟

−

3

⎝

⎠⎝ ⎠ ⎝ ⎠

⎜

⎟⎜

⎟

⎟

⎜

⎜

⎟

⎟

⎝ 3 −1 −1 1 ⎠⎝ 4

 x ⎠ ⎝1⎠

⎛1 2 5⎞  x ⎛3⎞

⎛ ⎞

⎜

⎟

⎜ ⎟

⎜ ⎟

⎜ 2 4 2⎟  y = ⎜ 2⎟  es un sistema 3×3 en 

⎜ ⎟

7

⎜

⎟⎜ ⎟ ⎜ ⎟

⎜ 3 6 3⎟  z

⎜1⎟

⎝ ⎠

⎝

⎠

⎝ ⎠
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CAPITULO 13 

Elementos de estructuras algebraicas 

1. Espacios vectoriales

Consideremos un ejemplo conocido por la mayoría que son los vectores que han 

usado en la Física del colegio. Este ejemplo es el motivador para la generalización del 

concepto para otros conjuntos que tienen propiedades similares si los estructuramos  

con operaciones convenientes. 

Será usual como en otros capítulos del libro que los conjuntos que se han dotado de 

alguna estructura definida sobre ellos hablemos libremente nombrando al conjunto 

subyacente como si fuera el conjunto conjuntamente con su estructura. 

Es decir, por ejemplo, es usual que cuando hablamos de los números enteros digamos 

el anil o   cuando lo más riguroso sería decir el anil o  (  , +, . ) 

Consideremos el plano  2 = {( a,  b) :  a ∈

∧

 b ∈ } , como el conjunto de los 

vectores con inicio en el origen de coordenadas y final en el punto ( a, b). Podemos representar estos vectores en el plano: 

 b 

      a 

Se definen sobre este conjunto de vectores una   suma y un  producto por un escalar entre elementos de   (son los escalares, se pueden poner en una escala) y los de 

2 . Recordar que ( , +, .  ) es un cuerpo conmutativo. 

Designamos con el signo  ⊕    a  la suma ,  de manera que 2

2

2

⊕ :

×

→

. 

Sean   u = ( a,  b) y  v = ( , 

 c d ) vectores,  definimos 

 u ⊕  v = ( a,  b) + ( , 

 c d ) = ( a + , 

 c b +  d )  

Donde en cada componente,  + es la suma usual en los números reales. 
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Designamos con el signo  ⊗    al  producto por escalar  de manera que 2

2

⊗ :

×

→

. 

Sea   u = ( a,  b)  un vector y  k  un escalar , definimos 

 k ⊗  u = ( k.  a,  k.  b)  

Donde en cada componente  . es el producto usual en los números reales. 

•  Propiedades de  ⊕ :

 AsociatiVa: para toda terna de vectores   u,  v,  w  en 

2 , se cumple: 

 u ⊕ ( v ⊕ )

 w = ( u ⊕  v) ⊕  w  

 Existencia del Elemento Neutro: existe un vector  0  tal que para todo vector    u  de 2 , 

se cumple: 

 u ⊕ 0 = 0 ⊕  u =  u  resulta  0 = (0, 0)

 Existencia del Elemento Opuesto: para todo    u  vector de 

2  existe otro vector tal que 

sumados  da el elemento neutro, 

*

2

*

2

*

*

(  u

∀ )(  u

∃

)( u ∈

∧  u ∈

tal que  u ⊕  u =  u ⊕  u = 0 ) . 

Si   u

( a,  b),  entonces resulta   u•

=

= (− a,  b

− ) . Usualmente a   u•  se lo anota - u

 Conmutativa: para todo par de vectores   u,  v  de 

2 , se cumple que   u ⊕  v =  v ⊕  u

Es decir que ( 2 , ⊕  )  es un grupo conmutativo. 

•  Propiedades de  ⊗ :

Para todo par de vectores  u  y   v  de  2  y para todo par de escalares  k y  t  se cumple: a) ( k +  t) ⊗  u =  k ⊗  u ⊕  k ⊗  u

b) ( k.  t) ⊗  u =  k ⊗ ( t ⊗  u)

c)  k ⊗ ( u ⊕  v) = ( k ⊗  u) ⊕ ( k ⊗  v)

d) 1⊗  u =  u

Por cumplir estas propiedades ( 2 , ⊕  ) y 

2

2

⊗ :

×

→

, decimos que 

2    es un 

espacio vectorial sobre el cuerpo   . 
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Dado

3 = {( a,  b,  c) :  a ∈

∧  b ∈

∧  c ∈ } y el cuerpo ( , +, .  ),  definimos 

(similarmente  que en  2  ) 

la operación  ⊕  por  ( a,  b,  c) ⊕ ( d, , 

 e f ) = ( a +  d ,  b + , 

 e c +  f )  y  

el producto por el escalar  ⊗ como   k ⊗ ( a, , 

 b c) = ( k.  a,  k. , 

 b k.  c) . 

Así definidas las operaciones se puede verificar que se cumplen propiedades similares 

a las destacadas para el caso de   2  .  Por lo cual: 

3 es  un espacio vectorial sobre el cuerpo  

 . 

Vamos a generalizar los conceptos dados anteriormente para esos ejemplos 

conocidos. 

Algunos ejemplos son generalizaciones muy naturales y otras no tanto. Veremos que 

es un concepto que engloba de alguna manera la mayoría de los temas tratados a lo 

largo del Curso. 

Un  espacio vectorial   V  sobre un cuerpo conmutativo   K, es un conjunto  V,  cuyos elementos l amaremos  vectores y a los elementos de  K  llamaremos escalares.  El cuerpo es ( K, +,  . ). 

Hay  una suma definida sobre  V,   ⊕ : V × V →  V  y un producto de  elementos escalares por vectores que da por resultado un vector, formalmente ⊗ :  K × V →  V . 

• ( V, ⊕ ) es un grupo conmutativo. 

• Para todo par de vectores   u  y   v  y para todo par de escalares  k y  t  se cumplen a) ( k +  t) ⊗  u =  k ⊗  u ⊕  t ⊗  u

b) ( k.  t) ⊗  u =  k ⊗ ( t ⊗  u)

c)  k ⊗ ( u ⊕  v) = ( k ⊗  u) ⊕ ( k ⊗  v)

d) 1 ⊗  u =  u

(1  designa la unidad de cuerpo  K) 

 K

 K

Muchas veces por simplificación decimos que  V es un  K- espacio vectorial 
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EJEMPLO 13.1.1 

Dado  el  natural  fijo     n,  

 n   es  el  conjunto  de  las   n-uplas   x = (

de 

1

 x , 2

 x , 3

 x ,.....,  x )

 n

números reales, con la suma definida de la siguiente manera: 

Dadas dos  n-uplas   x = (

y  

, 

1

 x , 2

 x , 3

 x ,.....,  x )

 n

 u = ( u ,  u ,  u ,.....,  u )

1

2

3

 n

 x ⊕  u = (

, y el producto por un escalar  c (un número 

1

 x +  u ,  x +  u ,  x +  u ,.....,  x +  u ) 1

2

2

3

3

 n

 n

real) definido así:    c ⊗  u = ( . 

 c

, es un espacio vectorial sobre 

1

 u ,   . 

 c  2

 u ,   . 

 c  3

 u ,.....,   . 

 c u )

 n

. 

En cada componente + es la suma en los reales y  .  la multiplicación en los reales. 

¡Probarlo! 

Si,¡trabajo! 

En particular para  n = 2 y  n = 3 los elementos de los espacios vectoriales respectivos 2

3

, 

(pares y ternas de números reales, son los ejemplos que motivaron la 

definición de espacios) pueden representarse gráficamente como segmentos 

orientados con su extremo inicial en el origen de un sistema de coordenadas 

cartesianas (con dos ejes  x e  y  para  2  y con  tres ejes  x,  y,  z  para  3 ) y su extremo final en el punto cuyas coordenadas son las componentes de los vectores 

correspondientes. Para  n > 3 no tenemos idea intuitiva para una representación 

gráfica. 

Recordatorio: 

Sean en 

 m n

 K × :  A = ( a

 B =  b

 A +  B =  C = ( c

con 

 i j )

 ij )1≤ i≤ m

(  ij )1≤ i≤ m

1≤ i≤ m

1≤  j ≤ n

1≤  j≤ n

1≤  j≤ n

 c =  a +  b  para cada  i y para cada  j. 

 i j

 i j

 i j

 k ⊗  A =  D = ( d

con   d

=  k.  a  para cada  i y para cada  j. 

 i j )1≤ i≤ m

 i j

 i j

1≤  j≤ n

EJEMPLO 13.1.2 

Dados los naturales  m y  n,  fijos,    m n

 K ×  es el conjunto de las  matrices de  m filas y  n 

columnas con elementos  en un cuerpo conmutativo  K. 

 m n

 K × con  la  operación  de  suma  usual  de  matrices  y  producto  por  un  escalar,  ya definidos en el capítulo en que se tratan las matrices, resulta que   m n

 K × es un espacio 

vectorial sobre  K. (probarlo ó mirarlo en el capítulo de matrices.)  Los  vectores no son flechas!!!!! 
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Recordatorio: 

( a 1,  b 1) + ( a 2,  b 2) = ( a 1 +  a 2,  b 1+  b 2) k ⊗ ( a,  b) = ( k.   a,  k.  b)  con  k  real. 

EJEMPLO  13.1.3  

El conjunto de los números complejos  

= {( a,  b) :  a ∈   ∧   b ∈ }  cumple que

( , +)  es un grupo conmutativo y el producto por un escalar real cumple las 4 

propiedades de producto por escalar pedidas en la definición de espacio vectorial por 

lo tanto   es un espacio vectorial sobre  . 

EJEMPLO  13.1.4  

El conjunto de los números complejos  

= {( a,  b) :  a ∈   ∧   b ∈ }  cumple que

( , +)  es un grupo conmutativo y como  producto por un escalar complejo se 

considera el producto usual entre los complejos. Observar que este producto cumple 

las 4 propiedades de producto por escalar pedidas en la definición de espacio vectorial 

por lo tanto   es un espacio vectorial sobre  . 

•Los ejemplos 13.1.3 y 13.14 ¡SON MUY IMPORTANTES! 

Nos ilustran que un conjunto  V  de vectores puede ser espacio vectorial sobre 

cuerpos distintos. 

Por eso es que somos bastante rigurosos de escribir  sobre K ó  K-espacio…. 

Cambiando de  K  las cosas cambian mucho como veremos más adelante… 

EJEMPLO 13.1.5  

El conjunto  K[ x] de todos los polinomios con coeficientes en   K, K  cuerpo conmutativo, con la suma en  K[ x] y el producto por un escalar usuales forman un espacio vectorial sobre  K. Probarlo!!!! (Ver capitulo de polinomios) 

¡Todo lo que tengo 

que hacer! 
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EJEMPLO  13.1.6. 

Sea el conjunto F ( , ) = {  f :  f  es función  ∧   f :

→

} . 

Para    f ∈F ( , )  ,  g ∈ F ( , )   y   r ∈

Se define    f ⊕  g :

→

,  como (  f ⊕  g )( x) =  f ( x) +  g ( x) (  x

∀ )( x ∈

) . 

Claramente   f ⊕  g es un elemento de F ( , ) . Así (F ( , ),⊕)  es un grupo 

conmutativo. 

Se define   r ⊗  f :

→

,  como ( r ⊗  f )( x) =  r.  f ( x)

(  x

∀ )( x ∈

) 

También obviamente    r ⊗   f es un elemento de F ( , ) . Luego, el conjunto de funciones de dominio real y codominio real es un  - espacio vectorial. 

Demostración: 

•Veamos que (F  (

, 

), ⊕)  es un grupo conmutativo:

Hay  que  ver  que  ⊕  es  asociativa,  hay  un  neutro  para  la  operación,  que  todo

elemento tiene opuesto y que además la operación es conmutativa. 

Por como está definida la operación ⊕ en F ( , ) veremos que las propiedades de la 

+ sobre los números reales son las que mandan… 

Sean   f ∈F ( , )  ,  g ∈ F ( , ) y   h ∈F ( , ) . Hay que probar que las funciones (  f ⊕  g) ⊕  h  y   f ⊕ ( g ⊕  h)  son iguales. Esto significa que para todo  x del dominio (los números reales) ambas coinciden. 

((  f ⊕  g) ⊕  h)( x) = (  f ⊕  g)( x) +  h( x) (  x

∀ )( x ∈

)  (*) por la definición de ⊕. 

Si aplicamos nuevamente la definición de ⊕ se tiene  

((  f ⊕  g) ⊕  h)( x) = (  f ⊕  g)( x) +  h( x) = (  f ( x) +  g( x)) +  h( x) (∀ x)( x ∈

)  (**) 

Observar que el tercer miembro de la igualdad (**) es una suma de números reales, y 

como la suma en   es asociativa entonces  vale  

((  f ⊕  g) ⊕  h)( x) = (  f ( x) +  g ( x)) +  h( x) =  f ( x) + ( g( x) +  h( x)) (∀ x)( x ∈

)  (***) 

Aplicando la definición de ⊕ en el tercer miembro resulta 

((  f ⊕  g) ⊕  h)( x) =  f ( x) + ( g ( x) +  h( x)) =  f ( x) + ( g ⊕  h)( x) (∀ x)( x ∈

)  (****) 

Pero nuevamente por definición de ⊕ 

((  f ⊕  g) ⊕  h)( x) =  f ( x) + ( g ⊕  h)( x) = (  f ⊕ ( g ⊕  h))( x) (  x

∀ )( x ∈

)  

Y el primer y último miembro de esta igualdad nos demuestra la igualdad deseada. 
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Cuál será el neutro de (F  ( , ),⊕) ? Tiene que ser una función que por la suma ⊕

no modifique  el valor de cualquier otra… Veamos, la designaremos por  O y le 

haremos cumplir la condición    f ⊕  O =  O ⊕  f =  f   y por la definición significa que (  f ⊕  O)( x) = ( O ⊕  f )( x) =  f ( x) (  x

∀ )( x ∈

) , es decir 

(  f ⊕  O)( x) =  f ( x) +  O( x)

(  x

∀ )( x ∈

)  (*), 

( O ⊕  f )( x) =  O( x) +  f ( x)

(  x

∀ )( x ∈

)  (**) 

Pero además    f ( x) +  O( x) =  O( x) +  f ( x) =  f ( x) (  x

∀ )( x ∈

)  

Son igualdades en el conjunto de los números reales, por lo tanto:  

 O(x) debe ser  0  para todo x real. Es decir es la función constante nula. 

Cuál será el opuesto de cada  f  de (F  ( , ),⊕) ? De existir debe ser una función

que sumada con   f  de por resultado  O.  La anotaremos   f  y le haremos cumplir la condición para poder determinar su existencia: 

(  f ⊕

 f )( x) = (

 f ⊕  f )( x) =  O( x)

(  x

∀ )( x ∈

)  es decir, 

(  f ⊕

 f )( x) =  f ( x)+

 f ( x)

(  x

∀ )( x ∈

)  (*), 

(

 f ⊕  f )( x) =

 f ( x) +  f ( x)

(  x

∀ )( x ∈

)  (**) 

Pero además    f ( x)+

 f ( x) =

 f ( x) +  f ( x) =  O( x) = 0

(  x

∀ )( x ∈

)  

Son igualdades en el conjunto de los números reales, por lo tanto:   f ( x)  debe ser el opuesto de  f( x)  para cada x real. Es decir se tiene así 

 f ( x) = −  f ( x)

(  x

∀ )( x ∈

) . Por 

simplicidad 

y 

nemotecnia 

anotaremos 

a 



 f = −  f  

definida 

como 

(−  f )( x) = −  f ( x)

(  x

∀ )( x ∈ ) . 

Es obvio que  −  f ∈ F ( , ) . 

Veamos que el grupo (F  ( , ),⊕) es conmutativo. 

Es decir que para    f ∈F ( , )  y   g ∈ F ( , ) vale que   f ⊕  g =  g ⊕  f Por lo tanto hay que probar   (  f ⊕  g)( x) = ( g ⊕  f )( x) (  x

∀ )( x ∈

) , lo que significa 

(  f ⊕  g )( x) =  f ( x) +  g( x)

(  x

∀ )( x ∈

)  (*)  

( g ⊕  f )( x) =  g( x) +  f ( x)

(  x

∀ )( x ∈

)  (**) 

Los segundos miembros de (*) y (**) son números reales. Además como en   la + es 

conmutativa,  esos  segundos  miembros  son  iguales,  por  lo  tanto  concluimos  que  el 

grupo  

(F  ( , ),⊕) es conmutativo. 
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• Hay  que  probar  ahora  que  dadas   f ∈ F (

, 

)  y   g ∈ F ( , 

) y dados   r ∈  y  k ∈

se verifican las cuatro propiedades requeridas para ser espacio vectorial. 

a) ( k +  r) ⊗  f =  k ⊗  f ⊕  r ⊗  f

Lo que significa   (( k +  r) ⊗  f )( x) = ( k ⊗  f ⊕  r ⊗  f )( x) (  x

∀ )(  x ∈

)

(( k +  r) ⊗  f )( x) = ( k +  r).  f ( x) (  x

∀ )( x ∈

)  (*) por definición del producto por el 

escalar. 

El segundo miembro de (*) es un producto de números reales, el primer factor es una 

suma  

 k +  r  en 

y el .  es distributivo en la suma, por lo tanto  

(( k +  r) ⊗  f )( x) = ( k +  r).  f ( x) =  k.  f ( x) +  r.  f ( x) (  x

∀ )( x ∈

)  (**) 

Por otra parte,  ( k ⊗  f ⊕  r ⊗  f )( x) = ( k ⊗  f )( x) + ( r ⊗  f )( x) (  x

∀ )( x ∈

) (***) por 

definición de la suma ⊕ en  F ( , ) . 

Ahora apliquemos la definición del producto por el escalar en el segundo miembro de 

(***), 

( k ⊗  f ⊕  r ⊗  f )( x) = ( k ⊗  f )( x) + ( r ⊗  f )( x) =  k.  f (  x) +  r.  f (  x) (∀ x)(  x ∈

) (****) 

Es así que comparando los últimos miembros de las igualdades (**) y (****), como son 

iguales, vale la igualdad buscada. 

b) ( k.  r) ⊗  f =  k ⊗ ( r ⊗  f )

Esto significa  ( ( k.  r) ⊗  f )( x) = ( k ⊗ ( r ⊗  f ))( x) (  x

∀ )( x ∈

)  

( ( k.  r) ⊗  f )( x) = ( k.  r).  f ( x) (∀ x)( x ∈

)  (*)  por definición del ⊗. 

Los tres números del segundo miembro de (*) son números reales y ese producto es en 

donde el producto . es asociativo por lo cual se tiene 

(( k.  r) ⊗  f )( x) = ( k.  r).  f ( x) =  k.( r.  f ( x)) (∀ x)( x ∈

)  (**) 

Ahora analizaremos el segundo miembro, 

( k ⊗ ( r ⊗  f ))( x) =  k.(( r ⊗  f )( x)) (  x

∀ )( x ∈

) por definición de ⊗ en F ( , 

) . 

Si aplicamos otra vez la definición de ⊗, resulta que  
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( k ⊗ ( r ⊗  f ))( x) =  k.(( r ⊗  f )( x)) =  k.( r.  f ( x)) (∀ x)( x ∈

) (***) 

Observemos que los terceros miembros de (**) y (***) son iguales, por lo tanto se tiene 

la igualdad buscada. 

c)  k ⊗ (  f ⊕  g) = ( k ⊗  f ) ⊕ ( k ⊗  g) Hay que probar entonces que 

( ( k ⊗ (  f ⊕  g))( x) = (( k ⊗  f ) ⊕ ( k ⊗  g))( x) (∀ x)( x ∈

)  

Miremos inicialmente el primer miembro de la igualdad a demostrar 

( k ⊗ (  f ⊕  g))( x) =  k.((  f ⊕  g)( x)) (  x

∀ )( x ∈

) por la definición de ⊗. Además, 

( k ⊗ (  f ⊕  g))( x) =  k.((  f ⊕  g)( x)) =  k.(  f ( x) +  g( x)) (  x

∀ )( x ∈

) (*) por la 

definición de ⊕ en F ( , ) . 

En el tercer miembro de (*)  son tres números reales, un producto de  k en una suma. 

Por propiedades de los números reales, el producto se distribuye en la suma de reales, 

por lo cual: 

( k ⊗ (  f ⊕  g))( x) =  k.((  f ⊕  g)( x)) =  k.(  f ( x) +  g( x)) =  k.  f ( x) +  k.  g( x) (  x

∀ )( x ∈

) (**) 

Analicemos el segundo miembro de la igualdad a demostrar, 

(( k ⊗  f ) ⊕ ( k ⊗  g))( x) = ( k ⊗  f )( x) + ( k ⊗  g)( x) (  x

∀ )( x ∈

)por la definición de 

⊕ en F ( , 

) . Aplicando ahora la definición de ⊗, se tiene: 

(( k ⊗  f ) ⊕ ( k ⊗  g ))( x) = ( k ⊗  f )( x) + ( k ⊗  g )( x) =  k.  f ( x) +  k.  g( x) (∀ x)( x ∈

) (***) 

Comparando los últimos miembros de (**) y (***),  que como son iguales,  se 

demostrado la igualdad deseada. 

d) 1 ⊗  f =  f

Hay que probar  (1 ⊗  f )( x) =  f ( x)

(  x

∀ )( x ∈

)

(1 ⊗  f )( x) = 1 .  f ( x)

(∀ x)( x ∈

) por definición del ⊗. 

Se pretende que  (1 ⊗  f )( x) = 1 .  f ( x) =  f ( x) (  x

∀ )( x ∈

)  por definición de la 

multiplicación de los reales y la propiedad del 1  en la multiplicación, se obtiene lo que 

R

queríamos probar. 

Por lo tanto F ( , ) es un espacio vectorial sobre el cuerpo  . 

Observar que acá los vectores tampoco son flechitas!!!! 
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EJERCICIO  13.1.7 

Generalicemos el Ejercicio 13.1.6: 

a) Sea el conjunto F ( , 

 A

) = {  f :  f  es función  ∧  A ⊆

∧   f :  A →

}. 

Para    f ∈F ( , 

 A

)  ,  g ∈ F ( , 

 A

)   y   r ∈



Se define   f ⊕  g :  A → ,  como (  f ⊕  g)( x) =  f ( x) +  g( x) (∀ x)( x ∈ ) A . 

Se define   r ⊗  f :  A → ,  como ( r ⊗  f )( x) =  r.  f ( x) (  x

∀ )( x ∈  A)  

Así (F ( , 

 A

), ⊕)  es un grupo conmutativo.  Y F ( , 

 A

)  es un 

- espacio vectorial. 

b) Sean  A un conjunto y F ( , 

 A

) = {  f :  f  es función  ∧   f :  A → } . 

Para    f ∈F ( , 

 A

)  ,  g ∈ F ( , 

 A

)   y   r ∈



Se define   f ⊕  g :  A → ,  como (  f ⊕  g)( x) =  f ( x) +  g( x) (∀ x)( x ∈ ) A . 

Se define   r ⊗  f :  A → ,  como ( r ⊗  f )( x) =  r.  f ( x) (  x

∀ )( x ∈ )

 A  

Así ( F ( , 

 A

), ⊕)  es un grupo conmutativo.  Y F ( , 

 A

)  es un 

- espacio vectorial. 

c) Sean   A un conjunto  y  ( K, +,.)  un cuerpo conmutativo. Sea ahora

F ( , 

 A K ) = {  f :  f  es función  ∧   f :  A →  K} . 

Para    f ∈F ( , 

 A K )  ,  g ∈ F ( , 

 A K )   y   r ∈  K   

Se define   f ⊕  g :  A →  K,  como (  f ⊕  g)( x) =  f ( x) +  g( x) (∀ x)( x ∈ ) A . 

Se define   r ⊗  f :  A →  K,  como ( r ⊗  f )( x) =  r.  f ( x) (∀ x)( x ∈ ) A  

Así (F ( , 

 A K ), ⊕)  es un grupo conmutativo.  Y F ( , 

 A K )  es un  K- espacio vectorial. 

EJERCICIO 13.1.8 

Sea  V  un espacio vectorial sobre el cuerpo   K. Demostrar que valen: 

a) Cualquiera sea   v ∈ V  y dado el 0 ∈  K  entonces 0 ⊗  v = 0

 K

 K

 V

b) Cualquiera sea   k ∈  K  y dado  0 ∈ V  entonces  k ⊗ 0 = 0

 V

 V

 V

c) Cualquiera sea   v ∈ V  y dado  1 ∈  K  entonces (-1 ) ⊗  v = −  v K

 K

d) Si   v ∈ V  con 1 ≤  i ≤  n y  k ∈  K    entonces  k ⊗ ( v ⊕  v ⊕ ...⊕  v ) =

 i

1

2

 n

=   k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v ) (Idea: use inducción…) 1

2

 n
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e) Si   v ∈ V   y  k ∈  K  con 1 ≤  i ≤  n   entonces ( k +  k + ... +  k ) ⊗  v =  

 i

1

2

 n

=   k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v (Idea: use inducción…) 1

2

 n

f) Sean   v ∈ V  y  k ∈  K,  si  k ⊗  v = 0  entonces  k = 0  o  v = 0

 V

 K

 V

EJERCICIO 13.1.9 

Probar que un conjunto formado por un único vector con las características del vector 

nulo, esto es sea  N = { 0}. Se define en  N una suma ⊕  por :  0 ⊕ 0 = 0 ,  probar que ( N,   ⊕  ) es un grupo conmutativo. 

Para cualquier cuerpo conmutativo  K se define  ⊗ :  K ×  N →  N ,  k ⊗ 0 = 0 , para cualquier escalar  k de  K. Probar que  N es un espacio vectorial sobre  K.  

2. Subespacios

Consideremos  un subconjunto  U  de  V   y  V  es un espacio vectorial sobre  K,   U  es un subespacio de  V sobre  K, si  U es en sí mismo un espacio vectorial sobre  K. 

El espacio vectorial  V   sobre el cuerpo conmutativo   K  tiene definidas  las operaciones de suma ⊕ sobre  V  y ⊗ el producto por el escalar  de  K ×  V en  V. 

La idea es que las operaciones ya definidas sobre  V,  se restringen a los vectores que son   elementos de U (que son desde ya elementos de  V ) y se cumplan las propiedades para ser espacio vectorial sobre  K. 

Anotaremos con los mismos símbolos las operaciones restringidas a  U.  Luego debe 

cumplirse: 

• ( U, ⊕) grupo conmutativo

• ⊗:  K ×  U → U, para todo par   u  y   v  de  U  y para todo par de escalares  k y  t cumplen a) ( k +  t) ⊗  u =  k ⊗  u ⊕  k ⊗  u

b) ( k.  t) ⊗  u =  k ⊗ ( t ⊗  u)

c)  k ⊗ ( u ⊕  v) = ( k ⊗  u) ⊕ ( k ⊗  v)

d) 1 ⊗  u =  u

(1  designa la unidad de cuerpo  K ) 

 K

 K
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No todo subconjunto de  V es un subespacio de  V.     

Para ser  U un subespacio vectorial de  V, como  U con la suma tiene que ser un grupo abeliano, 

el vector nulo de  V (que es único) debe estar en él y las operaciones definidas en  V 

deben ser cerradas en ese subconjunto  U.  Estos requisitos sacan MUCHOS 

subconjuntos de  V  con la posibilidad de ser subespacios. 

Observe por ejemplo  A 

2

⊆

tal que  A = {( a,  b) :  a = }

1 , si suma dos vectores de  A, se 

sale  “afuera“  del conjunto   A.  Y claramente el (0,0) no está en   A,  por tanto la suma de  2  restringida a  A no es grupo.  

♦

PROPIEDAD 13.2.1

Sea  V   un espacio vectorial sobre un cuerpo conmutativo   K. Las operaciones son 

⊕ la suma sobre  V  y ⊗ el producto por el escalar  de  K ×  V en  V.  Si el conjunto  U 

está incluido en  V.  

 U es un subespacio vectorial de  V sobre  K  si y sólo si se satisfacen las siguientes condiciones: 

(1)   U ≠ ∅

(2) Si   u ∈ U  y  v  ∈  U entonces    u ⊕  v  también pertenece a  U

(3) Si  c es cualquier escalar y   u  cualquier vector de  U,  entonces   c ⊗  u ∈  U 

Demostración: 

Sabiendo que   U es un subespacio de  V sobre  K  debemos demostrar (1), (2) y (3). 

Por ser ( U, ⊕) grupo conmutativo, al menos   o∈ U , por lo cual vale (1). 

También por ser grupo ( U, ⊕), la operación ⊕ es cerrada en  U. Por lo tanto se cumple (2). 

Por ser  U un espacio vectorial sobre  K, se verifica que  ⊗:  K ×  U→  U. Es decir que vale (3). 

Por otra parte si  U  es un subconjunto de  V que cumple (1), (2) y (3), veamos que es un subespacio de  V sobre  K. 

• Es decir que ( U, ⊕) es un grupo conmutativo. 

Se tiene por (2) que la operación ⊕ es cerrada en  U. 
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Hay que ver que en  U,  ⊕ es asociativa, hay un neutro para la operación, que todo

elemento tiene opuesto y que además la operación es conmutativa. 

Por ser ⊕ la suma sobre  V  la que opera sobre  U, está claro que es asociativa, pues se verifica para toda terna de vectores de  V  en particular para los de  U.  

La existencia del neutro en  U se obtiene por (1) y (3): pues existe  u ∈ U  ya que  U  no es vacío. Además por ser  K  un cuerpo existe  0 ∈  K ,  0 ⊗  u ∈ U  por la (3) y por propiedad del ejercicio 13.1.8,   0 ⊗  u ∈ U  y  0 ⊗  u = 0 . 

Como todos los vectores de  V  tienen opuesto en particular los de  U  lo tienen, pero además están en  U  por la parte (3) y ejercicio 13.1.8. 

También la conmutatividad de  V se hereda para los elementos de  U. 

Ahora hay que probar que vale lo siguiente: 

• ⊗:  K ×  U → U,  para todo par   u  y   v  de  U  y para todo par de escalares  k y  t se cumplen 

a) ( k +  t) ⊗  u =  k ⊗  u ⊕  k ⊗  u

b) ( k.  t) ⊗  u =  k ⊗ ( t ⊗  u)

c)  k ⊗ ( u ⊕  v) = ( k ⊗  u) ⊕ ( k ⊗  v)

d) 1 ⊗  u =  u

(1  designa la unidad de cuerpo  K ) 

 K

 K

Por (3) vale que ⊗:  K ×  U → U,  además las propiedades de a) a d) valen pues ellas valen para todo par   u  y   v   de  V  por lo cual se verifican para  u  y   v  en  U  y con los escalares  k y  t   de  K.  

♦

EJEMPLO 13.2.2 

Sea  U  ={

2

( x,  y) ∈

:  x −  y = }

0  probemos que es un subespacio de 

2  sobre 

Hay que probar que el subconjunto  U  cumple las tres propiedades de la Propiedad 

13.2.1. 

(1)  Claramente hay varios vectores en  U. Por ejemplo (1, 1), (-4,-4). En particular (0,0). 

Luego  U ≠ ∅
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En muchas oportunidades  probar que el vector nulo de  V está en el  U es muy sencil o, y así determinar que  U es no vacio,  se confunde el pensar que son intercambiables la condición  U ≠ ∅  con la condición que este  0 en  U. 

(2)  Dados dos vectores de  U  hay que probar que la suma de ellos está en  U. 

Se usará en este caso el símbolo +  para  la suma de  2 . Sean 

 u = ( u ,  u )  y  v = ( v ,  v )  elementos de  U.  Por lo tanto se sabe que 1

2

1

2

 u −  u = 0 y  además  v −  v = 0  (*). 

1

2

1

2

Realizando la suma  u +   v = ( u +  v ,  u +  v )  y analizando si es vector de  U: 1

1

2

2

( u +  v ) − ( u +  v ) =  u +  v −  u −  v = ( u −  u ) + ( v −  v ) por ditributividad de 1

1

2

2

1

1

2

2

1

2

1

2

la multiplicación,  conmutatividad y asociatividad de la suma en los reales. Ahora 

aplicando (*) resulta que  ( u +  v ) − ( u +  v ) = 0 . Por lo tanto  u +   v ∈ U

1

1

2

2

(3)  Considerando   c es cualquier escalar y  u  cualquier vector de  U,  veremos que   c ⊗  u  ∈  U 

Si   u = ( u ,  u )  ∈ U  se verifica  u −  u = 0  (*). 

1

2

1

2

 c ⊗  u = ( . 

 c u , . 

 c u ) , para ver que está en   U:  . 

 c u − . 

 c u = . 

 c ( u −  u ) = 0 

1

2

1

2

1

2

Habiendo usado  propiedad distributiva de la multiplicación y (*). 

Por cumplir  U   las condiciones (1), (2) y (3) de la Propiedad 13.2.1,  U es un subespacio de 2  sobre  . 

EJEMPLO 13.2.3 

Dado el conjunto  U = {

2×2

 A ∈

:  a

= 3.  a

∧   a +  a

= 0

11

22

21

12

}

Probar que 

2×2

 U  es un subespacio del  -espacio vectorial 

.(Ver ejemplo 13.1.2). 

Hay que probar que  U 

2×2

⊆

cumple las tres propiedades de la Propiedad 13.2.1. 

 0 0

(1)  El vector nulo en  2×2  es el vector (o la matriz)   0 = 

   y efectivamente 

 0 0

cumple las dos condiciones que definen al conjunto  U  pues: 

0  =  3.0    y    0+  0=  0,  por  lo  tanto  0 ∈ U  y  queda  probada  la  propiedad  (1)  de  la Propiedad 13.2.1. 
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(2)   Sean   A ∈ U ,  B ∈ U ,  hay que probar que   A +  B ∈ U. 

 A ∈ U    si y sólo si      a =3 a    ∧    a +  a = 0  

11

22

21

12

 B ∈ U    si y sólo si      b =3 b    ∧    b +  b = 0  

11

22

21

12

  a +  b

 a

+  b

   c

 c



11

11

12

12

11

12

 A +  B





=

= 

 , para que  A+B sea elemento de  U 

  a

+  b

 a

+  b

   c

 c



 21

21

22

22   21

22 

debe cumplir que:   c = 3 c  y que  c +  c = 0

11

22

21

12

 c =  a +  b = 3  a + 3 b   porque  A ∈ U  y  B  ∈   U ,  sacando factor común 3 queda 11

11

11



22

22

 c =  a +  b = 3( a +  b ) = 3 c  .  Además vale que: 11

11

11

22

22

22

 c +  c = ( a +  b )  + (   a +  b )=  ( a +  a ) + ( b +  b ) = 0 + 0 = 0 . 

21

12

21

21

12

12

21

12

21

12

luego   A +  B ∈ U .Por lo tanto vale (2) de la Propiedad 13.2.1. 

(3)  Si  c es cualquier escalar  y   A ∈ U ,   hay que probar que  c ⊗  A  ∈ U

 . 

 c a

. 

 c a





11

12

 c ⊗  A = 

  

. 

 c a

. 

 c a



21

22 

Como 

por la conmutatividad de la 

1

 a  1= 3. 2

 a  entonces 

2

. 

 c  1

 a  1= . 

 c  3. 2

 a  2 = 3.( . 

 c a )

22

multiplicación en  . 

Además  usando  propiedad  distributiva 

. 

 c a +   . 

 c a =   . 

 c a +   a

=  c  0

. = 0 , 

21

12

( 21


12 )

entonces   c ⊗  A  ∈ U . Es decir vale (3) de la Propiedad 13.2.1. 

Como se cumplen las tres propiedades,  U es un subespacio de  2×2  sobre  . 

EJERCICIO 13.2.4 

Probar que para todo espacio vectorial  V sobre el cuerpo  K, 

a)  V  es subespacio de  V sobre el cuerpo  K. 

b) {0  es subespacio de  V sobre el cuerpo  K.  

 V }

Por ser {0  y  V subespacios para cualquier espacio vectorial  V  sobre  K, se V }

acostumbra a referirse a ellos como subespacios triviales de  V. 

741

ELEMENTOS DE ESTRUCTURAS ALGEBRAICAS – CAPITULO 13

EJEMPLO 13.2.5 

Probar que   S = {( x ,  x ,  x ,  x )  :  x − 2 x = 0  ∧   x = 5 x }

4

1

2

3

4

1

2

3

4

⊆

4

es un subespacio del  -espacio vectorial 

. La operación de suma en 

4 se anotará + 

. 

Para hacer la demostración usaremos la Propiedad 13.2.1. 

(1)  El vector nulo  0 = (0, 0, 0, 0)    de  4 cumple las condiciones que definen al conjunto S,  luego   S ≠ ∅ , por lo cual vale (1).   

(2)  Sean   u = ( u ,  u ,  u ,  u )  y    v = ( v ,  v ,  v ,  v ) dos vectores pertenecientes a  S,  hay 1

2

3

4

1

2

3

4

que probar que el vector  u +  v ∈  S .   

 u − 2 u = 0  ∧   u = 5 u   porque   u ∈  S

y   v − 2 v = 0   ∧    v = 5 v   porque  v ∈  S

1

2

3

4

1

2

3

4

 u +  v = ( u +  v ,  u +  v ,  u +  v ,  u +  v ) = ( w ,  w ,  w ,  w ) 1

1

2

2

3

3

4

4

1

2

3

4

Veamos que   w   cumple las condiciones para estar en  S: 

 w − 2 w = ( u +  v ) − 2( u +  v ) =   u − 2 u +  v − 2 v = 0 + 0 = 0

1

2

1

1

2

2

1

2

1

2

↑

distribuyendo el 2 y agrupando convenientemente

De   u =5 u ,  v =5 v  sumando miembro a miembro se obtiene que 3

4

3

4

 u +  v =5 u + 5 v = 5( u +  v )  , es decir:   w = 5 w 3

3

4

4

4

4

3

4

Por lo tanto   u +  v  cumple las condiciones para estar en  S. 

(3)  Si c es cualquier escalar y   v ∈  S,   hay que probar que c ⊗  v  ∈  S. 

Donde   c ⊗  v = ( . 

 c v ,   . 

 c v ,   . 

 c v ,   . 

 c v )

1

2

3

4

c.  v − 2c.  v   =  c.( v − 2 v )  =  c.0  = 0  (porque como  v ∈  S  vale que   v − 2 v = 0) 1

2

1

2

1

2

y de    v =5 v  se obtiene  c.  v =5.c.  v . 

3

4

3

4

Luego   c ⊗  v  ∈  S

Quedaron así  probadas las tres condiciones de la Propiedad 13.2.1, entonces  S es un subespacio de  4   sobre   
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EJEMPLO 13.2.6 

Analizar si   H = {( x ,  x ,  x ) :  x .  x = 0 }

3

⊆

es subespacio de  3  sobre 

1

2

3

1

3

(1)  El vector nulo de  3  es (0, 0, 0) y 0.0 = 0, l uego pertenece a  H. Asi  H ≠ ∅  

(2)    u = (1, −5, 0) ∈  H  porque 1.0 = 0,   y   v = (0,  - , 

2 3) ∈  H   porque 0.3 = 0, 

sin embargo en la suma   u +  v = (1,  -7,3)  resulta  1.3 ≠ 0. 

Tomando dos vectores de  H  su suma no está en  H,  entonces   H  NO  es un subespacio de  3  sobre  . 

EJERCICIO 13.2.7  

Explique claramente si  2

3

es subespacio de 

sobre 

o no lo es. 

EJERCICIO 13.2.8 

Probar  que  el  conjunto  de  soluciones  de  un  sistema  lineal  homogéneo  de   m 

ecuaciones y  n  incógnitas, es un subespacio del espacio vectorial   n  sobre  . 

Observación: Si un sistema homogéneo   m por  n es compatible determinado, el subespacio es el conjunto unitario {(0,0,...,0 }

)  es el subespacio nulo de

 n  sobre  , es el menor  subespacio posible. 

EJERCICIO 13.2.9 

Probar que el conjunto  = {

 nxn

∈

: . 

=

. ,  con   una matriz fija   nxn

 S

 A

 K

 A B

 B A

 B

 K

} es 

subespacio vectorial de   nxn

 K

sobre  K 
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3. Combinación lineal. Vectores generadores. 

Vamos a dar conceptos muy importantes que determinan características intrínsecas de 

los espacios vectoriales. También en este apartado quedará claro porque en cada 

oportunidad se destaca que el espacio vectorial es sobre  K (Mirar los ejemplos 13.1.3  

y 13.1.4). 

Una de las aplicaciones de los vectores es la Física y ellos sirven por ejemplo para 

estudios sobre fuerzas, en ese tema se acostumbra en varias oportunidades a buscar 

la “resultante” entre algunas fuerzas. La resultante es una fuerza que reemplaza con 

su efecto la suma de otras fuerzas o de múltiplos de otras fuerzas. Esto determino la 

necesidad de las operaciones ya definidas y con esas definiciones resulta lo siguiente: 

Un vector   v de un espacio vectorial  V  sobre  K,  es  combinación lineal  de los vectores 

 v ,  v ,...,  v   ∈   V  sobre  K, si existen escalares   c ,  c ,...,  c    tales que 1

2

 k

1

2

 k

 k

 v =   c ⊗  v ⊕  c .  v ⊕ ...⊕  c ⊗  v  = ( c ⊗ v ) 1

1

2

2

 k

 k

 j

 j

 j  1

=

(Usamos por simplificación el símbolo de sumatoria para indicar la suma de k vectores 

de   V) 

EJEMPLO 13.3.1 

Dado el vector 

2

(5, 7) ∈

, podemos escribirlo como (5,0) + (0,7) = 5.(1,0) + 7.(0,1) 

Se han simbolizado por simplificación, el producto por un escalar con . y la suma de 

vectores con +. 

Decimos  entonces  que  el  vector  (5,7)  es  combinación  lineal  de  los  vectores  (1,0)  y (0,1) sobre los reales.      Mire cuales son los escalares de esta 

combinación lineal. 

Claramente cualquier vector  ( a,  b)  podrá expresarse como combinación lineal de esos vectores, ya que  ( a,  b) =  a.(1, 0) +  b.(0,1) . 

Estos vectores (1,0) y (0,1)  generan  2 sobre  porque todo vector puede expresarse 

como combinación lineal de ellos sobre los reales. 

Mire cuales son los escalares de esta 

combinación lineal. 
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EJEMPLO 13.3.2 

Analicemos si el (5,7) es combinación lineal de (2,1) y (-3,2). 

Tenemos que plantear que  (5,7) =  k .(2,1) +  k .(−3, 2) , y ver si existen   k  y  k  en los 1

2

1

2

números reales que verifiquen esa igualdad. (Acá también se han simbolizado por 

simplificación, el producto por un escalar con . y la suma de vectores con + ) 

Usando las operaciones de  2  sobre  , se tiene entonces que: 

(5, 7) = ( k  2 − 3 k ,  k + 2 k ) , por la igualdad entre pares ordenados, podemos entonces 1

2

1

2

plantear el sistema de ecuaciones: 

5

 = 2 k − 3 k

 2 − 3   k  5 



1

2



, expresado en forma matricial: 

1



. 

=

   

7 =  k +



2 k

1

2   k

   7

1

2

2



Calculamos el determinante de la matriz de los coeficientes: 2.2-(-3).1= 4+3= 7 

Como el determinante es distinto de 0, el sistema tiene solución única en los reales. 

Podemos encontrar la solución por el método de Cramer haciendo: 

5

− 3

2 5

7

2

+

1 7

−



10 21

31

14 5

9

 k =

=

=

y    k =

=

=

,    por lo tanto: 

1

7

7

7

2

7

7

7

31

9

(5, 7) =

(2,1) +

(−3, 2) ,  es decir (5, 7) es combinación lineal de los vectores dados. 

7

7

Mire cuales son los escalares de esa 

combinación lineal. 

Será  que  cualquier  vector  ( a,  b) puede  expresarse  como  combinación  lineal  de  los vectores (2,1) y (-3,2)? 

¿? 

Para ello debemos plantear: 

( a,  b) =  k .(2,1) +  k .(−3, 2)  y entonces se tiene que: 

1

2

 a = 2 k − 3 k

 2 − 3   k    a 



1

2



y

1



. 

=

    ,  el  determinante  de  la  matriz  de  los 

 b =  k +



2 k

1

2   k

   b

1

2

2



coeficientes  es  el  que  ya  se  calculó  y  es  distinto  de  0,  por  lo  tanto  el  sistema  tiene solución única para cualquier vector  ( a,  b) . 

Resolviendo de manera similar al caso particular: 
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 a

− 3

2

 a

 b

2

+

1  b

−



2 a  3 b

2 b a

 k =

=

y

 k =

=

,      por  lo  tanto  existen  los 

1

7

7

2

7

7

números  reales  que  permiten  expresar  ( a,  b)  .  Justifique  que   k   y   k  son  números 1

2

reales; 

¡Si!¿Cuáles son los 

escalares en este caso? 

+

−

y así   

2 a

3 b

2 b

 a

( a,  b) =

.(2,1) +

.(−3, 2)

7

7

Decimos entonces que estos dos vectores  (2, 1) y (-3, 2)  generan  2  sobre  , ya 

que todo vector puede expresarse como combinación lineal de ellos. 

Compare los resultados de los ejemplos 13.3.1 y 13.3.2 observando  a los escalares 

que permiten generar a los vectores. ¿Qué puede decir? 

No pasa que cualquier par de vectores de  2  sean generadores de  2  sobre  . 

Acá tenemos el siguiente 

EJEMPLO 13.3.3   

Veamos si el (5,7) es combinación lineal de los vectores (2,4) y (1,2) sobre los reales. 

Analizamos  si  existen  escalares  tales  que  (5,7) =  k .(2, 4) +  k .(1, 2) (otra  vez 1

2

simbolizamos  el producto por un escalar con . y la suma de vectores con + ) entonces 

5

 = 2 k +  k

 2 1    k  5 



1

2



,  entonces:   

1



. 

=

     y calculando el determinante de la 

7 = 4 k +



2 k

 4 2  k

   7

1

2

2



2 1

matriz  A del sistema es: 

= 4 − 4 = 0 . 

4

2

Como el determinante es 0, este sistema no tiene solución única ya que el r(A) = 1 y el 

sistema  tiene  2  incógnitas.  Analicemos  el  rango  de  la  matriz  ampliada  tomando  una submatriz: 

1 5 = 7 −10 = −3,  por  lo  tanto  r(A|B)=2,  el  sistema  es  incompatible,  no  tiene 

2

7

solución. Decimos entonces que el vector (5,7) no puede escribirse como combinación 

lineal de los vectores dados. 

Por ello (2,4) y (1,2) no es un sistema de generadores de  2  sobre  . 

746

ELEMENTOS DE ESTRUCTURAS ALGEBRAICAS – CAPITULO 13

EJEMPLO 13.3.4 

 2 0 1 

1 2 0 

 0

−4

1 

Dadas las matrices:   A =

,  B =

,  D =











 

0

3

2

3 1

1

−6

−











3

0 

del  espacio  vectorial 

2 3

×

sobre 

,  analicemos  si  la  matriz    D   es  una  combinación 

lineal de las matrices  A y  B  sobre los reales. 

Planteemos la igualdad y determinemos si existen los escalares reales (se usa + para 

suma de los vectores, las matrices,  y para el producto por el escalar el .): 

 0

4

−

1 

 2 0 1 

1 2 0 



=  k





.

 + k . 

, 

1

2





−6

−



3

0 

 0 3 2 

3 1 1 

usando las propiedades de las operaciones de  2×3 sobre   tenemos entonces: 

 0

4

−

1 

 2 k +  k

2 k

 k



1

2

2

1



=



 

 . 

−6

−



3 0  3 k

3 k + 3 k

2 k +  k

2

1

2

1

2



Por la igualdad de matrices obtenemos: 

0=2 k +  k

1

2

−4=2 k 2



1

 =  k 1



Se tiene entonces de las ecuaciones 2 y 3, que    k = 1 y  k = 2

− . 

−6 = 3 k

1

2



2

−3 = 3 k + 3 k

1

2

0 = 2 k + k



1

2

Esos valores satisfacen todas las ecuaciones, es decir son solución del sistema; por lo 

tanto decimos que  D es combinación lineal de  A y de  B sobre R ya que D = 1.  A + (-2).  B 

Algunos de los ejemplos anteriores nos sugieren las siguientes definiciones: 
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Si   v ,  v ,...,  v  son vectores de un espacio vectorial  V    sobre  K, el conjunto  S de todas 1

2

 m

las combinaciones lineales de esos vectores sobre  K,  es decir: 

 m





 S =  u

 :  u = (c ⊗  v  )  ∧  c ∈  K  para 1 ≤  i ≤  m   es un subespacio de  V , l amado i

 i

 i



 i  1

=



subespacio generado por los  vectores  v ,  v ,...,  v  sobre  K. 

1

2

 m

(Observación: acá se ha simbolizado la suma de m vectores de  V con el símbolo de 

sumatoria) 

 S  cumple  las  propiedades  de  subespacio.  (¡Ya  lo  demostraremos!  Ver  EJEMPLO 

13.3.5) 

A los vectores   v ,  v ,...,  v  se los l ama generadores de  S sobre  K.  

1

2

 m

Para indicar esta situación se usa la siguiente notación,  S =  v ,  v ,...,  v   o 1

2

 m

 S = { v ,  v ,...,  v

1

2

 m }

Dado un subespacio  T   de un espacio vectorial  V  sobre  K, un conjunto  G es un conjunto de generadores de  T sobre  K si se cumple: 

1)  G ⊆  T

2) Todo vector de  T es combinación lineal sobre  K de los vectores de  G. 

Si un conjunto de vectores  genera  el espacio vectorial   V sobre  K,  es 

  v ,  v ,...,  v  =  V, decimos que  v ,  v ,...,  v  generan  V  sobre  K o que 1

2

 m

1

2

 m

{ v ,  v ,...,  v  es un conjunto generador de  V  sobre  K.    En este caso todo vector 1

2

 m }

de  V  se puede escribir como combinación lineal sobre  K  de los   v ,  v ,...,  v . 

1

2

 m

De ser así,  V  admite un número finito de generadores sobre  K. 

Más adelante presentaremos ejemplos que no siempre es posible encontrar conjuntos 

finitos que generen a un espacio. 

En los ejemplos 13.3.1 y 13.3.2, vimos conjuntos de vectores con la propiedad que 

todo vector de  2 es combinación lineal de ellos sobre los reales, entonces esos 

vectores son generadores de  2  sobre  , y podemos escribir que 

2

2

= (1, 0), (0,1)

y que 

= (2,1), (−3, 2) , como vemos el conjunto de 

generadores de un espacio vectorial no es único. 
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EJEMPLO 13.3.5 

Si    v ,  v ,...,  v  son vectores de un espacio vectorial  V    sobre  K,  entonces 1

2

 m

 m





 S =  u

 :  u = (c ⊗  v  )  ∧  c ∈  K  para 1 ≤  i ≤  m   es un subespacio de  V sobre  K.  

 i

 i

 i



 i  1

=



Para demostrar lo deseado debemos analizar que se verifican las tres condiciones de 

la Propiedad 13.2.1. 

Claramente varios vectores son elementos de   S, cada uno de los   v ,  v ,...,  v  y 1

2

 m

también el nulo de  V, considerando todos los escalares como el 0 K, por lo tanto S ≠ ∅ , por lo cual se verifica (1) de 13.2.1. 

Para (2), consideremos los vectores 

 m

 u = ( h ⊗  v )  con los  h ∈  K  para todo  i,1 ≤  i ≤  m y i

 i

 i

 i  1

=

 m

 w =  ( r ⊗  v )  con los  r ∈  K  para todo  i,1 ≤  i ≤  m,  ambos por su definición en  S. 

 i

 i

 i

 i  1

=

No olvidar que por lo tanto son vectores del espacio vectorial  V sobre  K, por lo cual valen las propiedades que relacionan ambas operaciones (la suma de vectores y 

producto por el escalar y las propiedades  d) y e) del EJERCICIO 13.1.8).  Se sumarán 

aplicando esas propiedades obteniéndose: 

 m

 m

 m

 u ⊕  w =  ( h ⊗  v )  ⊕ ( r ⊗  v ) =  ( ( h +  r ) ⊗  v )  siendo i

 i

 i

 i

 i

 i

 i

 i  1

=

 i  1

=

 i  1

=

 h +  r ∈  K  para cada  i,1 ≤  i ≤  m . 

 i

 i

Por lo cual   u ⊕  w ∈  S . 

Para (3), sean  u∈  S  y   k ∈  K ; tenemos que probar   k ⊗  u ∈  S . 

 m

Por definición de  S,   u = ( h ⊗  v )  con los  h ∈  K  para todo  i,1≤  i ≤  m; y por los i

 i

 i

 i  1

=

comentarios usados para demostrar (2), 

 m

 m

 m

 k ⊗  u =  k ⊗  ( h ⊗  v )  = ( k ⊗ ( h ⊗  v )  )= ( k.  h ⊗  v )   con i

 i

 i

 i

 i

 i

 i  1

=

 i  1

=

 i  1

=

 k.  h ∈  K  para cada  i,1 ≤  i ≤  m . Por lo tanto   k ⊗  u ∈  S . 

 i
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EJEMPLO 13.3.6 

a) Analicemos que característica tienen los vectores del subespacio

 S = (3, 0, 0), (0, 2, 0)  del espacio vectorial

3 sobre 

. 

Por simplificación de notación, + designa la suma de vectores en  3  y   el producto 

por el escalar real, pensar y el contexto no le permitirá equivocarse. 

Todo vector de  S es una combinación lineal sobre los reales de estos dos vectores, 

entonces: 

si   u ∈  S  entonces  u =  k .(3,0, 0) +  k .(0, 2, 0) , para  k 1

2

1 y  k 2   números reales, entonces 

( u ,  u ,  u ) = (3.  k , 2.  k , 0) 

1

2

3

1

2

Ya que los escalares son arbitrarios y varían en todo el conjunto de los números reales 

en cada una de las componentes y de manera independiente una de la otra, entonces 

la única condición que hay sobre esas ternas de reales es sobre la tercera 

componente. 

Por lo tanto  S es el subespacio de las ternas de reales de tercera componente nula. 

b) Sea  H = {

3

( a, , 

 b c) ∈

:  a +  b = }

0 . Dejamos para probar que  H es subespacio de 

3 sobre los reales (sale muy fácil…). Busquemos un conjunto de generadores de

 H. 

Todo vector de  H debe cumplir que la suma de la primera y la segunda componente es 

0, entonces si el vector   v ∈  H ,  con   v = ( a, , 

 b c) es   a +  b = 0  por lo cual despejando 

 b = - a,  entonces podemos escribir   v = ( a, − a,  c) . 

Usando las operaciones de  3 sobre 

(+ designa la suma de vectores en  3  y el 

producto por el escalar real) resulta que 

 v = ( a, − a, 0) + (0, 0,  c) =  a.(1, −1, 0) +  c.(0, 0,1) . 

Hemos encontrado entonces que cualquier vector de  H puede expresarse como 

combinación lineal de los vectores (1,-1,0) y (0, 0,1), por lo tanto esos vectores 

determinan un conjunto generador de  H. 

Observar como se ha descompuesto al vector   v = ( a, − a,  c) como combinación lineal sobre los reales:    v = ( a, − a, 0) + (0, 0,  c) =  a.(1, −1, 0) +  c.(0, 0,1)  y porque NO 

 v = ( a, − a,  c) = ( a, 0, 0) + (0, − a, 0) + (0, 0,  c) =  a .(1, 0, 0) + (− a).(0,1, 0) +  c.(0, 0,1) Los generadores de un espacio deben ser vectores del espacio. Y los vectores (1,0, 0) 

y (0,1, 0) NO son vectores de  H. 
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EJERCICIO 13.3.7 

Hal ar un conjunto de generadores de 

  a b 



2  x  2

 S =

∈





:  a +  b = 0

∧

 c = 2 d  sobre 

. 

  c d







4. Dependencia e Independencia lineal de vectores

Volvamos a los ejemplos motivadores de este capítulo. 

Consideremos el espacio   2 = {( a,  b) :  a ∈

∧

 b ∈ } que es el conjunto de los 

vectores con inicio en el origen de coordenadas y final en el punto ( a, b). Veamos algunos ejemplos y su representación: 

Los

o  ve

v c

e t

c or

to es

e    u y



y  v  es

e tán

tá  s

ob

o re 

e u

n

u a

n  

 v

mis

i ma

ma r

ec

e t

c a. 

ta  

. 



Un

U o 

o d

e 

e el

e los

lo  

s es 

s u

n

u  m

úl

ú ti

ltipl

p o 

lo e

sca

c l

a ar

la  

 u  

del

e  o

t

o ro. 

o  

. 

5

Por

Po  e

j

e em

je pl

p o, 

lo  

, sup

u o

p n

o ga

g m

a os

o  

.  u = 

=  v

3

5

por

o  lo

l  

o cu

c al

a   .  u - 

-  v = 0

3

Los vectores   r  y  w  NO están sobre una 

misma recta. 

 w  

 r

Ninguno de ellos es un múltiplo escalar 

del otro. Justifique….. 

Para obtener al  0  como suma de estos 

vectores ó múltiplos escalares de ellos, 

los escalares deben ser 0 para lograrlo. 
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Se hará una generalización de estas situaciones. Ya se han visto ejemplos muy 

dispares de espacios vectoriales y en la mayoría de ellos no se tiene la posibilidad de 

su representación gráfica, pero  aún así se usa un lenguaje que tiene que ver con lo 

destacado en estas dos situaciones geométricas: estar en una misma recta o no estar 

en una misma recta (ser dependientes en una recta o ser vectores en rectas 

independientes) 

Sean  v ,  v ,...,  v  vectores de  V , espacio vectorial sobre  K. 

1

2

 k

Los vectores son linealmente dependientes sobre  K  si existen escalares c , c ,..., c

1

2

 k

no todos nulos tales que 

 k

c ⊗  v ⊕  c ⊗  v ⊕ ...⊕ c ⊗  v  = (c ⊗  v ) = 0

1

1

2

2

 k

 k

 j

 j

 j  1

=

Los vectores   v ,  v ,...,  v  de un espacio vectorial  V  sobre  K,  son linealmente 1

2

 k

independientes sobre  K  si la igualdad 

 k

c ⊗  v ⊕  c ⊗  v ⊕ ...⊕ c ⊗  v  = (c ⊗  v ) = 0  se cumple sólo si 1

1

2

2

 k

 k

 j

 j

 j  1

=

c ,c ,...,c  son todos nulos 

1

2

 k

EMPLO 13.4.1 

El vector  (3, 6)

2

∈

es combinación lineal del vector (1, 2) sobre   porque  (3, 6) = 

3.(1, 2).  En forma equivalente: 3.(1, 2) + (-1).(3, 6) = (0, 0) = 0 , entonces los vectores (1, 2) y (3, 6) son linealmente dependientes sobre  . 

Si los escalares  c ,  j = 1,...,  k , son todos nulos, la relación 

 j

c ⊗  v ⊕  c ⊗  v ⊕ ... ⊕ c ⊗  v  =0  se cumple claramente. 

1

1

2

2

 k

 k

La definición dice que los vectores son linealmente independientes si se cumple 

únicamente  en ese caso. 

Si la relación  c ⊗  v ⊕  c ⊗  v ⊕ ... ⊕ c ⊗  v  =0  se cumple también cuando algún 1

1

2

2

 k

 k

escalar es no nulo, los vectores son linealmente dependientes. 
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EJEMPLO 13.4.2 

Determinar si los vectores  u = ( 1

− , 2.0),  v = (−3, 0, 2),  w = (0,1,1)  de  

3 , son o no 

linealmente independientes sobre R. 

Sea   c .  u +  c .  v +  c .  w = (0,0,0) =  (− c − 3 c ,  2 c +  c ,  2 c +  c ) = (0,0,0) 1

2

3

1

2

1

3

2

3

Se obtiene el siguiente sistema homogéneo: 

− c − 3 c = 0



    

1

2

−1 − 3 0

 c

0



1



    

2 c +  c = 0

, pasando a forma matricial tenemos que  2

0 1 .  c

= 0 , 

1

3

2



    





    

2 c +  c = 0



0

0 1



  c

0

   

2

3

3

el determinante de la matriz A de los coeficientes es 6.  Así es que el rango  de la 

matriz  A del sistema al igual que el de la ampliada es 3 e igual al número de 

incógnitas;  por lo tanto el sistema tiene única solución  y por ser homogéneo ella es la 

trivial   c =  c =  c = 0 . 

1

2

3

Por lo tanto  los vectores dados son linealmente independientes sobre R. 

EJEMPLO 13.4.3 

Analicemos si las siguientes matrices de  2 x 2 son linealmente independientes sobre R:     

1 3 

 2 6 

 A =

 B =







  

 4 2 

8 4 

1 3 

 2 6  0 0

Planteamos que:   k . 

+  k





. 

=

. Veamos cuales escalares la 

1

2 

 



 4 2

8 4   0 0

cumplen. 

Aplicando las operaciones del espacio  2 x 2  sobre R y la igualdad en  2 x 2 , queda 

 k + 2 k = 0

1 2 

1

2







3

  k + 6 k = 0

3 6

entonces el sistema: 

1

2



(1) .  La matriz del sistema es:  

  . 

4 k + 8 k = 0



 4 8 

1

2







2 k + 4 k =



0

 2 4

1

2

Como el sistema es homogéneo podemos trabajar sólo con ella. 

Aplicando  varias operaciones elementales sobre ella resulta equivalente por filas a 
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1 2 





0

0



  y reinterpretando como sistema, se tiene que  +

=

es la única ecuación 



 k

2 k

0

0

0 

1

2





 0 0

¡SI! 

significativa del mismo. 

Por lo cual   k = 2

−  k , es decir el conjunto solución de (1)  es {( 2

−  k ,  k ) :  k ∈

. El 

2

2

2

}

1

2

sistema (1) admite infinitas soluciones en R, por lo tanto las matrices no son 

linealmente independientes sobre R, es decir son linealmente dependientes 

sobre R. 

Por ejemplo podemos armar la combinación lineal: 

1 3 

 2 6   0 0

−2. 

+ 1. 

=







 

. 

 4 2

8 4   0 0

Algo del lenguaje usual en este tema. 

Dada las definiciones de vectores linealmente dependientes o independientes sobre  K 

:  

Si los vectores   v ,  v ,...,  v  de un espacio vectorial  V  sobre  K  son linealmente 1

2

 k

dependientes sobre  K, { v ,  v ,...,  v  se dice que el conjunto es dependiente sobre 1

2

 k }

 K o que es un conjunto dependiente. 

Si los vectores   v ,  v ,...,  v  de un espacio vectorial  V  sobre  K  son linealmente 1

2

 k

independientes sobre  K, { v ,  v ,...,  v  se dice que el conjunto es libre sobre  K o 1

2

 k }

que es un conjunto libre. 
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♦PROPIEDADES 13.4.4

Dado un espacio vectorial  V  sobre el cuerpo  K : 

a) Si  0 ∈{ v ,  v ,...  v ⊆  V , entonces el conjunto { v ,  v ,...  v  es linealmente 1

2

 n }

1

2

 n }

dependiente sobre  K. 

b) El conjunto { }

 v ⊆  V  es linealmente independiente sobre  K si y sólo si   v ≠ 0  

c) Si    S = { v ,  v ,...  v ⊆  V  es un conjunto linealmente independiente sobre  K entonces 1

2

 n }

cualquier subconjunto  no vacío  T  de  S, es  T  linealmente independiente sobre  K. 

d) Si { v ,  v ,...  v ⊆  V  es un conjunto  linealmente dependiente sobre  K y  u∈ V

1

2

 n }

entonces { v ,  v ,...  v ,  u  también el linealmente dependiente sobre  K . 

1

2

 n

}

e) Si { v ,  v ,...  v ⊆  V  es un conjunto linealmente independiente sobre  K  entonces 1

2

 n }

todo vector generado por este conjunto se expresa de una manera única como 

 v =  k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v

1

1

2

2

 n

 n

Demostración: 

a) Como  0 ∈{ v ,  v ,...  v , existe uno de los vectores entre  v = 0, 1 ≤  i ≤  n,  sea 1

2

 n }

 i

 v = 0  entonces  0 = 0 ⊗  v ⊕ 0 ⊗  v ⊕ ... ⊕ 1 ⊗  v ⊕ ... ⊕ 0 ⊗  v , por lo tanto uno de j

1

2

 K

 j

 n

los escalares es no nulo y entonces el conjunto es linealmente dependiente. 

b) Observar que lo dicho es equivalente (por la contrarrecíproca) a demostrar:

El conjunto { }

 v ⊆  V  es linealmente dependiente sobre  K si y sólo si   v = 0 . 

Si   v = 0 , por a) es dependiente. 

Veamos la recíproca, para ello al considerar que { }

 v ⊆  V  es linealmente dependiente 

sobre  K,  entonces existe   c ∈  K  tal que  c ≠  o  y  c ⊗  v = 0 . 
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Como  K es un cuerpo, todo elemento no nulo es invertible, por lo cual existe el inverso de  c y vale entonces:  −1

−1

1

 c

 K   y  c

(  c

 v)

 c−

∈

⊗

⊗

=

⊗ 0 . Usando las propiedades del 

producto por el escalar: 

−1

1

( c .  c)

 v

 c−

⊗

=

⊗ 0 = 0 . 

Además vale que 

1

 c− .  c = 1  por lo cual resulta:  1 ⊗  v =  v = 0

 K

 K

c) Sea  T ⊆  S . Si  T = S resulta que  T es linealmente independiente trivialmente. 

Sea  T ⊆  S ∧  T ≠  S ,  sin pérdida de generalidad se puede considerara que son los primeros vectores de  S siendo así   T = { v ,  v ,...  v  con  j <  n. 

1

2

 j }

Hay que ver que si  

    0 =  k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v  entonces  para todo  i,1 ≤  i ≤  j,  k = 0 . 

1

1

2

2

 j

 j

 i

 K

Podemos sumar el vector nulo a ambos miembros con la siguiente escritura: 

0 ⊕ 0 = 0 =  k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v   ⊕ 0 ⊗  v

⊕ ... ⊕ 0 ⊗  v  y como  S  es 

1

1

2

2

 j

 j

 K

 j  1

+

 K

 n

linealmente independiente todos los escalares son nulos, en particular los que afectan 

los vectores de  T,  por lo tanto  T es linealmente independiente sobre  K. 

d) Como ejercicio. 

e) Supongamos que  hay dos combinaciones lineales  con distintos escalares que

expresan a   v  con los vectores de { v ,  v ,...  v ⊆  V , es decir: 1

2

 n }

 v =  k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v =  t ⊗  v ⊕  t ⊗  v ⊕... ⊕  t ⊗  v (*) 

1

1

2

2

 n

 n

1

1

2

2

 n

 n

Hay que mostrar que   k =  t , para todo  i, 1 ≤  i ≤  n . 

 i

 i

A partir de  (*), tenemos  que: 

0 = ( k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v ) − ( t ⊗  v ⊕  t ⊗  v ⊕... ⊕  t ⊗  v ) 1

1

2

2

 n

 n

1

1

2

2

 n

 n

Y por propiedades de las operaciones en el espacio  tenemos que: 

0 = ( k −  t ) ⊗  v ⊕ ( k −  t ) ⊗  v ⊕ ... ⊕ ( k −  t ) ⊗  v 1

1

1

2

2

2

 n

 n

 n

Como los vectores son linealmente independientes entonces 

 k −  t = 0

para todo  i, 1 ≤  i ≤  n entonces  k =  t

para cada 1 ≤  i ≤  n  

 i

 i

 i

 i

Por lo tanto todo vector se escribe de manera única como combinación de vectores 

linealmente independientes. 

♦
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5. Base y dimensión

Desarrollaremos un concepto totalmente importante dentro de esta rama de la 

Matemática, que va a confirmar algunos conceptos que tenemos incorporados 

intuitivamente o culturalmente en los ejemplos motivadores. 

¿Cómo son los vectores que están en la recta numérica  R? 

0

Todos están en “una dirección”. 

Piense y opine sobre los vectores del plano usual y del espacio usual. 

¿? 

Tiene en apartados anteriores ya algo que le puede servir. 

Sean    v ,  v ,...,  v ,  n vectores de un espacio vectorial  V sobre  K 

1

2

 n

El conjunto   B = { v ,  v ,...,  v  es una base  de 1

2

 n }

 V  sobre   K,  si  cumple  las  siguientes 

condiciones: 

1)    v ,  v ,...,  v  son linealmente independientes sobre  K. 

1

2

 n

2)     v ,  v ,...,  v  generan  V sobre  K. 

1

2

 n

Un espacio vectorial  V  sobre  K tiene dimensión  n, si admite una base de n vectores y lo anotamos  dim  V =  n . 

 K

Además,  como  n es un número natural decimos que es un espacio de dimensión 

finita. 

Veremos que la definición de dimensión no es ambigua pues se demostrará más 

adelante que todas las bases de un espacio tienen igual número de vectores.  

Por razones que quedarán claras más adelante en cuanto a su importancia que sea 

así, las bases se consideran como conjuntos ordenados de vectores. Para indicar esta 

situación los vectores de la base los colocaremos entre paréntesis. 
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EJEMPLO 13.5.1 

a) En el ejercicio 13.3.1 se demostró que {(1,0) , (0,1) } generan el espacio

2  sobre  . Es inmediato probar que los conjuntos siguientes son

respectivamente las bases canónicas

((1,0),(0,1)),   ((1,0,0),(0,1,0),(0,0,1))  , ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1))

de los espacios  2

3

4

, 

y 

sobre R. Y así, las dimensiones de estos espacios 

son: 

2

3

4

dim

= 2,   dim

=3  y   dim

= 4

Veamos para el caso de  3  sobre R que  ((1,0,0),(0,1,0),(0,0,1)) es base. 

Se deben comprobar las dos condiciones de la definición.  Por simplificación 

indicaremos con . el producto por el escalar y  con  +  la suma en  3 . 

1) ((1,0,0),(0,1,0),(0,0,1))  son libres sobre R:

Sea   k .(1, 0, 0) +  k .(0,1, 0) +  k .(0, 0,1) = 0, veremos que los escalares son nulos. 

1

2

3

Haciendo las operaciones indicadas resulta: 

( k .1, 0,0) + (0,  k .1, 0) + (0, 0,  k .1) = 0 = (0, 0, 0)  y también: 1

2

3

( k ,  k ,  k ) = 0 = (0, 0, 0) ,  es decir:   k = 0,  k = 0,  k = 0 . 

1

2

3

1

2

3

2)  3 = (1, 0,0), (0,1, 0),(0, 0,1)  sobre R: 

Sea ( a, b, c) un vector cualquiera de  3 , por lo tanto haciendo uso de las 

propiedades de las operaciones se tiene:  ( a,  b,  c) = ( . 

 a  1, 0, 0) + (0, . 

 b  1, 0) + (0, 0, . 

 c  1)

y además: 

( a,  b,  c) = . 

 a (1, 0, 0) + . 

 b (0,1, 0) + . 

 c (0, 0,1) . Luego generan. 

Por ser  ((1,0,0),(0,1,0),(0,0,1))  una base de  3  sobre R, se tiene que la

dimensión de 

3

dim

=3 . 

Esta base se la llama canónica pues es muy sencil o trabajar con ella y los 

escalares que permiten escribir cualquier vector (terna de reales) de  3  sobre R 

son exactamente las componentes de la terna. 

Ya se ha dicho que en Matemática el término canónico se usa para indicar que 

algo es sencil o o simple. 
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De manera análoga para los otros espacios y se deja para realizarlo el lector. 

 1 0 0 1 0 0 0 0 

b) Es inmediato comprobar que  B C =  

,   

  ,  

,   

     es la 

  0 0  0 0  1 0  0 1 

base canónica del espacio 

2×2  sobre R  y entonces la 

2×2

dim

= 4. 

Se deben comprobar las dos condiciones de la definición.  Por simplificación 

indicaremos con . el producto por el escalar y  con  +  la suma en  2×2 . 

 1 0 0 1 0 0 0 0 

1)   

,   

  ,  

,   

     son libres sobre R: 

  0 0  0 0  1 0  0 1 

 1 0 

 0 1 

 0 0

 0 0

 0 0 

Sea   k .

  +  k .

  + k .

 +  k . 

=



 0 =

, veremos que 

1

2

3

4





 0 0 

 0 0

 1 0

 0 1 

 0 0 

los escalares son nulos. 

Haciendo las operaciones indicadas resulta: 

  k .1 0

 0  k .1  0

0 

 0

0 

 0 0

1

2



  +  

  +

+ 

= 0 =



 





 . 

 0

0 

 0

0

 k



.1 0



  0  k .1

 0 0

3

4



  k

 k 

 0 0

Por lo tanto queda:   1

2

=



 

  . 

 k

 k



  0 0

3

4



De lo cual se tiene:   k = 0,  k = 0,  k = 0,  k = 0 . 

1

2

3

4

 1 0  0 1  0 0  0 0

2) Es  2×2 = 

,   

  ,  

,   

  sobre R: 

 0 0  0 0  1 0  0 1

Consideremos una matriz cualquiera de  2×2  y veamos que está generada por 

las cuatro matrices dadas. Usando las propiedades de las operaciones: 

  a b   . 

 a  1 0 

 0

. 

 b  1

 0

0 

0

0 

 

=



 

  +  

  +

 +  

. 

  c d   0

0 

 0

0   . 

 c  1 0  0  d.1

  a b 

1 0

 0 1 

 0 0 

 0 0 

Y por eso: 

=





. 

 a 

  +  . 

 b 

  + . 

 c 

 +  d.

. Por lo tanto 

  c d 

0 0

 0 0 

1 0 

 0 1 

genera. 

 1 0 0 1 0 0 0 0 

Es así que  B

×

C =  

,   

  ,  

,   

    es base de 2 2  sobre R. 

  0 0  0 0  1 0  0 1 
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Observar que los elementos de la matriz coinciden con los escalares que permiten 

escribirla como combinación lineal de los elementos de  B C  sobre R. 

Por eso la llamamos base canónica.     

EJEMPLO 13.5.2 

Probar que  B = (

)

2

(1, 0), (1,1)  es una base de 

sobre  . 

Por simplificación indicaremos con . el producto por el escalar y  con  +  la suma en 

2 . 

1) Veamos que los vectores de  B son linealmente independientes sobre R :

Consideramos la combinación lineal sobre R  de esos vectores igualada al nulo de 

2 : 

 k .(1, 0) +  k .(1,1) = (0, 0) , entonces por las propiedades de las operaciones 1

2

resulta 

 k +  k = 0

( k .1+  k .1,  k .1) = (0, 0) . Y por la igualdad entre vectores es  1

2



1

2

2

 k =



0

2

por lo tanto   k =  k = 0  entonces los vectores son independientes. 

1

2

2) Para ver que se cumple la segunda condición:

Sea  (  x ,  x  un vector cualquiera de  2 ,  hay que ver que se puede escribir como 1

2 )

combinación lineal de (1,0) y (1,1) sobre R. 

Planteamos  (  x ,  x =  c .(1,0) +  c .(1,1)  y se debe probar que existen   c ∈  y  c ∈

1

2 )

1

2

1

2

(  x ,  x =  c .(1,0) +  c .(1,1) =  c +  c ,  c   entonces por igualdad de vectores 1

2 )

1

2

( 1

2

2 )

 x =  c +  c    y    x =  c , y como  (  x ,  x ∈

cada componente es un número real. 

1

2 )

2

1

1

2

2

2

Luego   c =  x −  c   =   x −  x ,  por lo cual resultan números reales   c  y  c . 

1

1

2

1

2

1

2

Así es que  (  x ,  x = ( x −  x ).(1,0) +  x .(1,1) . Entonces todo vector de  2  es 1

2 )

1

2

2

combinación lineal sobre R  de (1,0) y (1,1). 

Por lo tanto   B = (

)

2

(1, 0), (1,1)  es una base de 

sobre  . 
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Observar que para  B los escalares son más complicados de hallar respecto de las 

cuentas que se realizan para determinar los escalares cuando se considera la base 

canónica. 

Usaremos en este caso las cuentas ya realizadas, para el vector  

(5,3) = (5-3). (1,0) + 3.(1,1) = 2. (1,0) +3.(1,1) 

Esta base no es la única, vimos también que  (1, 0),(0,1) también lo es y pronto 

demostraremos que podemos encontrar infinitas bases del espacio  2 sobre R. Lo 

que se mantiene constante es la cantidad de vectores de todas ellas. 

Observación: Sea   K’ es subconjunto de  K  y  V es un espacio vectorial sobre el cuerpo  K.  Si  K’ es cuerpo entonces   V  es un  K’-espacio vectorial. (Probarlo!!!) Por ejemplo  2 x 2  es un 

- espacio vectorial, también es un  - espacio vectorial y 

además un 

-espacio vectorial. 

EJEMPLO 13.5.3 

  a b c 

Tomemos el conjunto  2 x 3

2  x 3

y sea  A ∈

, 

 A = 



  d e

 f 

Busquemos una base  2 x 3  sobre  . 

También para simplificar anotaremos  con  +  la suma de matrices y . el producto por el 

escalar. 

Escribiendo la matriz como combinación lineal de otras matrices: 

  a  0 0  0  b  0  0 0  c   0 0 0   0 0 0   0 0 0 

 A =

+

+

+

+

+

=



 

 

 

 

 



 0 0 0   0 0 0  0 0 0   d  0 0  0  e  0  0 0  f 

1 0 0 

 0 1 0 

 0 0 1 

 0 0 0

 0 0 0

 0 0 0

= . 

 a

+ . 

 b

+ . 

 c

+  d. 

+ . 

 e

+  f . 

























 0 0 0

 0 0 0

 0 0 0

1 0 0 

 0 1 0 

 0 0 1 

Tenemos entonces que el conjunto: 

1 0 0   0 1 0   0 0 1   0 0 0  0 0 0  0 0 0

 B = 

,

,

,

,

, 

 c





 0 0 0  0 0 0  0 0 0 1 0 0   0 1 0   0 0 1 

761

ELEMENTOS DE ESTRUCTURAS ALGEBRAICAS – CAPITULO 13

genera  2 x 3  sobre  . Y hemos conseguido que los complejos   a,  b,  c,  d, , e f  permiten 

escribir  A.  

Además   B  es linealmente independiente sobre  , ya que planteando la combinación c

lineal: 

1 0 0 

 0 1 0 

 0 0 1 

 0 0 0

 k . 

+  k . 

+  k . 

+  k . 

+

1 



2 



3 



4 



 0 0 0

 0 0 0

 0 0 0

1 0 0 

 0 0 0

 0 0 0  0 0 0

+  k . 

+  k





. 

=

5

6 

 



 0 1 0 

 0 0 1   0 0 0

Entonces haciendo las cuentas en el  -espacio  2 x 3  resulta: 

  k

 k

 k 

 0 0 0

1

2

3

=



 

 por lo tanto por la igualdad de matrices los escalares son 

 k

 k

 k



  0 0 0

4

5

6



todos nulos y resulta linealmente independiente. Por lo tanto   B  es una base de   2 x 3  

 c

sobre   y la l amamos la base canónica de  2 x 3  sobre   (justifique este nombre!!!). 

Como   B  tiene 6 elementos es la

2  x 3

dim

= 6 . 

 c

Notar que si los escalares son números reales no puedo generar todas las matrices de 

 2 +  i

0

4 i 

elementos complejos. Por ejemplo dada   A = 

 no puede escribirse como 

2

−



2

3 

combinación de matrices de  2 x 3 con escalares en  R. (También para simplificar 

anotaremos  con  +  la suma de matrices y . el producto por el escalar) 

Con la restricción que los escalares sean reales una combinación posible es: 

 1 0 0

  i  0 0

 0 1 0

 0  i  0

 A = 2. 

+ 1. 

+ 0. 

+ 0. 

+

















 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 1

 0 0  i 

 0 0 0

 0 0 0

+ 0. 

+ 4. 

+ 2. 

+ 0. 

+

















 0 0 0

 0 0 0

 1 0 0

 0  i  0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

+( 2

− )

+ 0. 

+ 3. 

+











 0.



 0 1 0

 0  i  0

 0 0 1

 0 0  i 

En general, si escribimos los elementos de la matriz como números complejos en 

forma binaria tenemos:  
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  a +  b i a +  b i a +  b i 

1

1

2

2

3

3

 A = 

  

 a +  b i

 a +  b i

 a +  b i

 4

4

5

5

6

6 

Realizaremos un trabajo similar al ejemplo particular anterior con la restricción de 

escalares reales: 

  a +  b i  0 0  0  a +  b i  0  0 0  a +  b i 

1

1

2

2

3

3

 A =

+

+

+



 

 



 0

0

0   0

0

0   0 0

0



 0

0

0   0

0

0   0 0 0



+

+

+

=



 

 



 a +  b i



0

0

0

 a +  b i

0

0

0

 a +  b i

4

4

 

5

5

 

6

6 

1 0 0 

 i  0 0 

 0 1 0 

 0  i  0 

=  a . 

+  b





. 

+  a





. 

+  b





. 

+

1

1

2

2 



 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 1 

 0 0  i 

 0 0 0

 0 0 0 

+  a . 

+  b





. 

+  a





. 

+  b





. 

+

3

3





 0 0 0

 0

4

4

0

0 

1 0 0 

 i  0 0 

 0 0 0

 0 0 0

 0 0 0

 0 0 0

+  a . 

+  b





. 

+  a





. 

+  b





. 

5

5

6

6 



 0 1 0 

 0  i  0 

 0 0 1 

 0 0  i 

Entonces queda explicito que 

1 0 0   i  0 0  0 1 0  0  i  0  0 0 1  0 0  i  



,

,

,

,

,

,

 0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0 

 B ' 





=



 c





 0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0 



,

,

,

,

,

 

1 0 0   i  0 0   0 1 0   0  i  0   0 0 1   0 0  i  

genera  2 x 3 , siendo   a ,  b ,  a ,  b ,  a ,  b ,  a ,  b ,  a ,  b ,  a ,  b  números reales.. 

1

1

2

2

3

3

4

4

5

5

6

6

Es inmediato probar que los  vectores de  ' 

 B  son linealmente independientes sobre R. 

 C

Por lo tanto  ' 

 B  es una base de  

2  x 3  sobre 

. 

 C

Y entonces 

2  x 3

dim

= 12 . 
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Como se ve en este ejemplo el conjunto  2 x 3 es espacio vectorial tanto sobre el 

cuerpo   y como sobre el cuerpo  . 

Acá queda manifiesta la importancia en destacar sobre qué cuerpo de escalares se 

está considerando el espacio. Son dos espacios vectoriales distintos. En un caso es 

un espacio de dimensión 6 y en otro de dimensión 12…. 

Por eso para cualquier espacio  V  hay que explicitar sobre que cuerpo es  K-espacio. 

EJEMPLO 13.5.4 

a) Consideremos  [ x] como  espacio vectorial. En este espacio, cualquier

polinomio no puede escribirse como combinación lineal sobre   de un número

finito de elementos. 

Sea   P ⊆ [ x]  y  P finito, es de la forma   P = { P ( x),  P ( x),...,  P ( x) , y sean todos no 1

2

 n

}

nulos. Por lo tanto existe para cada   P ( x) con  j tal que 1≤  j ≤  n  su grado.  Cada grado j

es un número natural. Así si   G = { gr( P ( x)),  gr( P ( x)),...,  gr( P ( x)) =  m ,  m ,...,  m  es P

1

2

 n

} { 1 2

 n }

el conjunto de los grados existe el   máx( G ) =  máx ({ m ,  m ,...,  m

=  m . 

 P

1

2

 n })

El número  m es un número natural y cualquier polinomio de grado mayor que  m  no se puede expresar como combinación lineal de los vectores de  P, pues cualquier 

combinación sobre   de ellos como   r .  P ( x) +  r .  P ( x) + ... +  r .  P ( x)  es de  grado ≤  m.  

1

1

2

2

 n

 n

Es así que por ejemplo  P( x) =  xm+1∉{ P ( x),  P ( x),...,  P ( x) . Por lo cual no puede existir 1

2

 n

}

un conjunto finito que genere  [ x] sobre  . 

Por lo cual no hay una base de  [ x] sobre  finita. Decimos entonces que  [ x]es de dimensión infinita. 

Observar que en este ejemplo analizamos  [ x] sobre  , pero realmente no se usó 

ninguna característica de los números reales más que la ser cuerpo. Por lo tanto vale 

la generalización  que no hay una base de   K[ x]  sobre  K finita. Decimos entonces que K[ x] es de dimensión infinita sobre  K. 
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b) Si consideramos 

[ x] = {

3

2

 p( x) ∈ [ x] :  p( x) =  a x +  a x +  a x +  a

, es 

4

3

2

1

0 }

inmediato probar que

[ x]  es un espacio vectorial sobre

. 

4

Podemos observar que cualquier   p( x) de

[ x] es combinación lineal real del 

4

conjunto   B = {

2

3

1,  x,  x ,  x }. 

Por lo tanto  B genera 

[ x]  sobre

y además  B es linealmente independiente 

4

(probarlo!!!). 

Entonces  B es base de 

[ x] sobre   y  dim

[ x] = 4  . A   B = (

2

3

1, , 

 x x ,  x ) se la 

4

4

l ama base canónica de 

[ x] sobre  . 

4

EJEMPLO 13.5.5 

a)

es un espacio vectorial sobre   de dimensión 1 sobre , ya que todo

complejo  z puede escribirse como 1.  z =  z. 1

Claramente que  B = {1} es libre. Luego se tiene que  B es base de   sobre  . 

b)

es un espacio vectorial sobre  de dimensión 2 sobre  , ya que todo

complejo

 z =  a +  b.  i puede escribirse como   a.1 +  b.  i. 

Claramente que    B = {1,  i} es base de    sobre 

. 

EJEMPLO 13.5.6. 

Encontrar una base y la dimensión de  U = {

2×2

 A ∈

:  a = 3 a

∧   a +  a

= 0

11

22

21

12

}

subespacio de 2×2  sobre 

. (Queda para que pruebe que es subespacio sobre  ) 

Sea   A∈ U  entonces   a =3 a    y    a = − a . Por las propiedades de las operaciones, 11

22

21

12

podemos escribir 

  a

 a

 3 a

 a



 3 0

 0

1 

11

12

22

12



 = 

 =  a . 

+




  a .

  con    a

∈

,  a

∈



  −



22

12

22

12

 a

 a

 a

 a

0

1

1

−







0

21

22

12

22





 



3 0  0 1

El conjunto 



 B = 

,   

  genera   U  sobre 

ya que un elemento cualquiera 

0 1  1

−

0 

de  U se puede escribir como combinación lineal sobre   de estos vectores. 
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Veamos que los vectores de  B son linealmente independientes sobre  . 

Para ello consideremos 

 3 0

 0

1 

 0 0

 k . 

+  k . 

=







 

  que es equivalente a

1

2

0 1

−





 1 0 0 0

  k .3  k   0 0

1

2



=

por lo cual  k =  k =



 



0

1

2

− k

 k



  0 0

2

1



Por lo tanto  B es una base de  U sobre   y así  dim  U = 2  

EJEMPLO 13.5.7. 

Encontrar una base y la dimensión de   S = {( x ,  x ,  x ,  x )  :  x − 2.  x = 0  ∧   x =5.  x 1

2

3

4

1

2

3

4

}

subespacio de

4



sobre    . 

   Dado un vector en  S, cumple  las condiciones    x − 2.  x = 0  y    x = 5.  x  que definen a 1

2

3

4

 S,  entonces se puede escribir: 

( x ,  x ,  x ,  x ) = (2.  x ,  x ,  5 x ,  x ) =  x .(2,1, 0, 0) +  x .(0, 0,5,1),  x ∈  y  x ∈ . 

1

2

3

4

2

2

4

4

2

4

2

4

Como   x ,  x   varían en todo R , independientemente uno del otro,  todo vector de  S 

2

4

está generado por  los vectores  (2,1,0,0) y (0,0,5,1) , y es inmediato probar que ellos 

son independientes: 

 c .(2,1, 0,0) +  c .(0, 0,5,1) = (0, 0,0, 0)  

1

2

 c .(2,1, 0, 0) +  c .(0, 0,5,1) = (2.  c ,  c ,5.  c ,  c ) = (0, 0, 0, 0) entonces  c =   c = 0  

1

2

1

1

2

2

1

2

Luego  B = {(2,1,0,0),  (0,0,5,1 }

)  es una base del subespacio  S  y  la   dim  S = 2 . 

En lo que sigue presentaremos dos Lemas que nos permitirán demostrar que todas las 

bases de cualquier espacio vectorial de dimensión finita tienen el mismo número de 

vectores. 

¡Paciencia! 

♦ LEMA 13.5.8

¡Son largos! 

Dados un espacio vectorial  V sobre un cuerpo  K , un conjunto{ v ,  v ,...  v ⊆  V  y un 1

2

 n }

conjunto  { k ,...,  k ⊆  K  tales que { v ⊕  k ⊗  v ,  v ⊕  k ⊗  v ,...,  v ⊕  k ⊗  v  es 2

2

1

3

3

1

 n

 n

1}

2

 n }

linealmente dependiente sobre  K, entonces  { v ,  v ,...  v  es linealmente dependientes 1

2

 n }

sobre  K. 
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Demostración: 

Como por hipótesis{ v ⊕  k ⊗  v ,  v ⊕  k ⊗  v ,...,  v ⊕  k ⊗  v  es linealmente 2

2

1

3

3

1

 n

 n

1}

dependiente, existe una combinación no trivial 

 r ⊗  v ⊕  k ⊗  v ⊕  r ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  r ⊗  v ⊕  k ⊗  v

= 0 , entonces por las 

2

( 2

2

1 )

3

( 3

3

1 )

 n

(  n

 n

1 )

propiedades de las operaciones 

 r ⊗  v ⊕  r .  k

⊗  v ⊕  r ⊗  v ⊕  r .  k

⊗  v ⊕ ... ⊕  r ⊗  v ⊕  r .  k

⊗  v = 0 , y 

2

2

( 2 2 )

1

3

3

( 3 3 )

1

 n

 n

(  n n )

1

agrupando convenientemente se tiene: 

( r k +  r k + ... +  r k ) ⊗  v ⊕  r ⊗  v ⊕  r ⊗  v ⊕ ... ⊕  r ⊗  v = 0 

2

2

3 3

 n

 n

1

2

2

3

3

 n

 n

con algún  r ≠ 0,  2 ≤  i ≤  n

 i

Por lo tanto { v ,  v ,...  v  es linealmente dependiente sobre  K.  

1

2

 n }

♦

♦ LEMA 13.5.9

Dado un espacio vectorial  V sobre un cuerpo  K y un conjunto  S = { v ,  v ,...  v ⊆  V . 

1

2

 n }

Entonces todos los conjuntos de  n+1 vectores del subespacio generado por  S es un conjunto linealmente dependiente sobre  K.  

Demostración: 

Lo mostraremos por inducción sobre el número de vectores de  S: 

P(1): Sea   S = { v , y sea  T = { u ,  u , tal que   T  es generado por  S. Entonces  T es 1

2 }

1}

linealmente dependiente sobre  K.  

Como  T  es generado por  S,  se tiene que   u =  k ⊗  v   y    u =  h ⊗  v , tenemos que ver 1

1

2

1

que  T es linealmente dependiente sobre  K. 

Supongamos que   v ≠ 0,  u ≠ 0  y    u ≠ 0, en caso contrario la demostración es 1

1

2

trivial (por 13.4.4) 

Entonces   k ≠ 0 y  h ≠ 0 , entonces: 



−1

−1

1

 v

 k

 u   entonces    u

 h

( k

 u )

( . 

 h k −

=

⊗

=

⊗

⊗

=

) ⊗  u

1

1

2

1

1

Entonces 

1

 u

( . 

 h k −

⊕ −

) ⊗  u = 0 , por lo tanto son linealmente dependientes sobre  K . 

2

1

Por lo cual vale P(1). 
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P(h): Sea   S = { v ,  v ,...  v  entonces cualquier conjunto  T de  h+1 vectores generado 1

2

 h }

por  S es linealmente dependiente sobre  K. 

P(h) se acepta como hipótesis inductiva. 

P(h+1): Sea   S = { v ,  v ,...  v

entonces cualquier conjunto  T de  h+2 vectores 

1

2

 h  1

+ }

generados por  S  es linealmente dependiente sobre  K. 

Veremos que P(h+1) es válida. 

Sean  T = { u ,  u ,...  u

⊆  v ,  v ,...  v

, (espacio generado por  S sobre  K). Entonces 

1

2

 h+ 2}

{ 1 2  h  1+}

existen escalares tales que: 

1

1

1

 u =  k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k

⊗  v

1

1

1

2

2

 h  1

+

 h  1

+

2

2

2

 u =  k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k

⊗  v

2

1

1

2

2

 h  1

+

 h  1

+

 h+2

 h+2

 h +2

 u

=  k

⊗  v ⊕  k

⊗  v ⊕ ... ⊕  k

⊗  v

 h+2

1

1

2

2

 h  1

+

 h  1

+

Consideremos a todos los vectores  u ∈ T  no nulos, sino, un conjunto de vectores que i

contiene al vector nulo es linealmente dependiente sobre  K   y se cumple P(h+1). 

Sin pérdida de generalidad, supongamos que alguno de los escalares que afectan a 

 v  es distinto de 0, sino resultaría que { u ,  u ,...  u

⊆  v ,...  v

, lo que también 

1

2

 h+ 2}

{ 2  h  1+}

1

trivialmente l eva a que  { u ,  u ,...  u

⊆  v ,...  v

y por hipótesis inductiva 

1

2

 h  1

+ }

{ 2  h+ }1

tendríamos que { u ,  u ,...  u

es linealmente dependiente sobre  K  y también hemos 

1

2

 h  1

+ }

probado, en 13. 4.4 d),  que entonces { u ,  u ,...  u

es linealmente dependiente sobre 

1

2

 h+ 2 }

 K. 

Sea por ejemplo  1

 k ≠ 0 , entonces  existe su inverso en  K. 

1

Y usando las propiedades de las operaciones en  V sobre  K se tiene: 
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1

1

−

1 −1

1

1

( k )

⊗  u =  v ⊕ ( k )

⊗ ( k ⊗  v ⊕ ... ⊕  k

⊗  v

)  entonces calculemos los vectores: 

1

1

1

1

2

2

 h  1

+

 h  1

+

1

1

−

2

2

 u − ( k )

⊗ ( k ⊗  u ) =  k ⊗  v

2

2

⊕  k ⊗  v ⊕ ... ⊕  k

⊗  v

−

2

1

1

1

1

1

2

2

 h  1

+

 h  1

+

2

− (  k ⊗  v

1

1

−

2

1

1

⊕ (( k ) .  k ) ⊗ ( k ⊗  v ⊕ ... ⊕  k

⊗  v

)) =

1

1

1

1

2

2

 h  1

+

 h  1

+

2

2

1 −1

2

1

1

=  k ⊗  v ⊕ ... ⊕  k

⊗  v

− (( k ) .  k ) ⊗ ( k ⊗  v ⊕ ... ⊕  k

⊗  v

))

2

2

 h  1

+

 h  1

+

1

1

2

2

 h  1

+

 h  1

+

Tenemos entonces que 

1 −1

2

 u − (( k ) .  k ) ⊗  u ∈  v ,  v ,...,  v

. 

2

1

1

1

{ 2 3

 h+1}

Del mismo modo hacemos: 

1 −1

3

3

 u − ( k )

⊗ ( k ⊗  u ) =  k ⊗  v

3

3

⊕  k ⊗  v ⊕ ... ⊕  k

⊗  v

−

3

1

1

1

1

1

2

2

 h  1

+

 h  1

+

3

−(  k ⊗  v

1

1

−

3

1

1

⊕ (( k ) .  k ) ⊗ ( k ⊗  v ⊕ ... ⊕  k

⊗  v

)) =

1

1

1

1

2

2

 h  1

+

 h  1

+

3

3

1 −1

3

1

1

=  k ⊗  v ⊕ ... ⊕  k

⊗  v

− (( k ) .  k ) ⊗ ( k ⊗  v ⊕ ... ⊕  k

⊗  v

)

2

2

 h  1

+

 h  1

+

1

1

2

2

 h  1

+

 h  1

+

Y tenemos que 

1 −1

3

 u − (( k ) .  k ) ⊗  u ∈  v ,  v ,...,  v

. 

3

1

1

1

{ 2 3

 h+1}

Podemos realizar  proceso similar con todos los vectores y obtenemos que 

{

1

1

−

2

1 −1

3

1 −1

 h+2

 u − (( k ) .  k ) ⊗  u ,  u − (( k ) .  k ) ⊗  u , ...,  u

− (( k ) .  k

) ⊗  u

⊆  v ,  v ,...,  v

2

1

1

1

3

1

1

1

 h+2

1

1

1}

{ 2 3

 h+1}

Entonces por hipótesis inductiva 

{

1 −1

2

1 −1

3

1

1

−

 h+2

 u − (( k ) .  k ) ⊗  u ,  u − (( k ) .  k ) ⊗  u , ...,  u

− (( k ) .  k

) ⊗  u  es linealmente 

2

1

1

1

3

1

1

1

 h+2

1

1

1}

dependiente sobre  K. 

Y por el Lema 13.5.8 { u ,  u ,...  u

es  linealmente dependiente sobre  K. 

1

2

 h+2 }

Por lo tanto vale P(h+1) y queda probado el lema. 

♦

Los Lemas demostrados permiten hacer la demostración del siguiente resultado que 

permite que esté bien definida la dimensión de un espacio sobre el cuerpo que lo 

algebriza: 

♦ TEOREMA 13.5.10:

 Sea  V  un espacio vectorial sobre  K. Sean   B =  b ,  b ,...,  b y   B =  c ,  c ,...,  c

2

{ 1 2

 k }

1

{ 1 2

 n }

bases de  V  sobre  K,  entonces   B =  B . 

1

2
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Demostración: 

Por hipótesis se tiene que  V =  B  y también que  V =  B . 

1

2

Se debe demostrar que  n = k. Consideremos los siguientes casos: 

a) Si  n < k,  ya que  B ⊆  V  los vectores de   B  serían dependientes sobre  K por el 2

2

Lema 13.5.9, absurdo porque   B  es base. 

2

b) Si  n > k,  como  que  B ⊆  V  los vectores de   B  serían dependientes sobre  K por 1

1

el Lema 13.5.9, absurdo porque   B  es base.  

1

Por lo tanto  n = k. 

♦

♦ PROPOSICIÓN 13.5.11:

Sea  V  un  K -espacio vectorial tal que  dim  V =  n . 

 K

a) Si   S = { v ,  v ,...,  v  es linealmente independiente sobre  K, entonces  S  es base de 1

2

 n }

 V sobre  K. 

b)  V  no puede generarse con un conjunto con menos de  n vectores. 

c) Si  T = { u ,  u ,...,  u  tal que  T genera  V  sobre  K,  entonces  T es base de  V sobre  K.  

1

2

 n }

Demostración: 

a) Hay que probar que  S  genera  V.  Es decir   que todos los vectores de  V se escriben como combinaciones lineales sobre  K  de vectores de  S. 

Sea   v ∈ V . 

Si  v ∈  S , entonces claramente está generado por  S ya que 

 v = 0 ⊗  v ⊕ 0 ⊗  v ⊕ ... ⊕1 ⊗  v ⊕ ... ⊕ 0 ⊗  v

1

2

 K

 n

Si   v ∉  S , consideremos el conjunto   H = { v ,  v ,...,  v ,  v . 

1

2

 n

}

Los elementos de  H son elementos de  V  y por hipótesis  V es un conjunto generado por una base de  n vectores, como  H  tiene  n+1  vectores entonces, por el Lema 13.5.7,  H es linealmente dependiente sobre  K.  

Entonces existe una combinación lineal sobre  K del vector nulo 

(*)        k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v ⊕  k

⊗  v = 0  con alguno de los   k ≠ 0 . 

1

1

2

2

 n

 n

 n  1

+

 i

770

ELEMENTOS DE ESTRUCTURAS ALGEBRAICAS – CAPITULO 13

Si   k

= 0  entonces en (*) sólo están los vectores de  S con algún escalar no nulo, así 

 n  1

+

 S = { v ,  v ,...,  v  sería un conjunto dependiente sobre  K, lo que es absurdo porque 1

2

 n }

por hipótesis es linealmente independiente sobre  K. 

Entonces debe ser   k

≠ 0  , tiene inverso multiplicativo y por las propiedades de las 

 n  1

+

operaciones del espacio  podemos escribir 



−1

 v = −( k

)

⊗ ( k ⊗  v ⊕  k ⊗  v ⊕ ... ⊕  k ⊗  v )  . 

 n  1

+

1

1

2

2

 n

 n

Por lo tanto   v  es combinación lineal sobre  K de los vectores de  S, entonces  S genera V y en consecuencia es base de  V sobre  K.  

b) Supongamos que existe un conjunto   H ⊆  V  tal que H =  h <  n  y  H genera  V sobre K. 

Además sabemos que existe una base  B de  V con  n vectores, ya que  dim  V =  n . 

 K

Como   B ⊆  V , los vectores de  B son combinación lineal de los vectores de  H, y por el Lema 13.5.9,  B resulta linealmente dependiente sobre  K, absurdo. 

Por lo tanto no existe tal conjunto  H  y  V  no puede generarse con menos de  n vectores. 

c) Hay que probar que   T = { u ,  u ,...,  u  es linealmente independiente sobre  K,  pues 1

2

 n }

ya  por hipótesis se tiene que  T genera  V sobre  K. 

Sea la combinación lineal    k ⊗  u ⊕  k ⊗  u ⊕ ... ⊕  k ⊗  u = 0  (**) y supongamos que 1

1

2

2

 n

 n

algún escalar es distinto de 0. Sin pérdida de generalidad podemos suponer que 

 k ≠ 0  y haciendo cuentas en el espacio resulta que: 

1



−1

 u = −( k )

⊗ ( k ⊗  u ⊕ ... ⊕  k ⊗  u )    y  así     u ∈  u ,...,  u

, por lo tanto 

1

{ 2

 n }

1

1

2

2

 n

 n

 T − { u =  T =  V , pues para cada vector de  V su expresión como combinación sobre  K 

1}

de  { u ,  u ,...,  u  se reemplaza en ella 

1

 u  por 

( k )−

−

⊗ ( k ⊗  u ⊕ ... ⊕  k ⊗  u ) . 

1

2

 n }

1

1

2

2

 n

 n

Pero como  V  tiene dimensión   n sobre  K   y  T − { u  tiene  n- 1 vectores, por el inciso b) 1}

 V no puede generarse con menos de  n vectores. Por lo tanto todos los escalares de (**) son nulos y  T  así es linealmente independiente sobre  K y en consecuencia  T  es base de  V sobre  K. 

♦
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Por las propiedades anteriores se pueden aplicar y afirmar: 

1) Los vectores   u = (−1, 2.0),  v = (−3, 0, 2),  w = (0,1,1)  de  

3 , que son 

independientes constituyen una base de  3  sobre 

porque su dimensión es 3 sobre 

. 

2) Cualesquiera sean 4 vectores

3 , son linealmente dependientes sobre 

. 

3) Cualesquiera sean  2 vectores de 

2 ,  son base de 

2  sobre

si y sólo si son 

independientes sobre , ya que 

2

dim

= 2. 

4) Recordemos que 

[ x] = {

2

 p( x) ∈ [ x] :  p( x) =  a x +  a x +  a es un 

espacio 

3

2

1

0 }

vectorial. Sea   B = {

2

 x +1, 2

− ,  x − }

3 , como  dim

= , basta ver que 

3 [  x]

3

 B es 

linealmente independiente o que  B es generador sobre 

para afirmar que  B es base. 

Veamos que  B es generador de 

[ x] sobre 

: 

3

Se simplificará  la notación de las operaciones del espacio indicando con . el producto 

por el escalar y por + la suma de los vectores…polinomios. 

Sea 

2

 p( x) =  a x +  a x +  a , tenemos que ver si existen escalares reales tales que 2

1

0



2

2

 a x +  a x +  a =  k .(  x + 1) +  k .( 2

− ) +  k .(  x − 3) , entonces 

2

1

0

1

2

3



2

2

 a x +  a x +  a =  k .  x +  k .  x + ( k − 2 k − 3 k ) , igualando los polinomios se tiene: 2

1

0

3

1

1

2

3

 a =  k

2

3



 a =  k

1

1

 a =  k − 2 k −3 k

 0

1

2

3

− a +  a −  a

De donde  (

3 )

0

1

2

=  k  . 

2

2

Y como los coeficientes de  p( x) son números reales también los   k1 ,  k2   y  k3.  Por lo (− a +  a − 3 a )

tanto 

2

0

1

2

2

 a x +  a x +  a =  a .(  x + 1) +

.(−2) +  a .( x − 3)  y  B es generador 

2

1

0

1

2

2

de 

[ x]  sobre 

y en consecuencia base de  de 

[ x] sobre 

. 

3

3

Veamos una propiedad que permitirá construir bases a partir de un conjunto libre: 
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♦ TEOREMA 13.5.12

Sea  V  un  K-espacio tal que  dim  V =  n , entonces para todo conjunto K

{ v ,  v ,...,  v  con  r <  n, de vectores linealmente independientes sobre  K, existen 1

2

 r }

vectores   v ,  v ,...,  v  tales que { v ,  v ,...,  v ,  v ,...,  v  es base de  V  sobre  K.  

1

2

 r

 r  1

+

 n }

 r  1

+

 r +2

 n

Demostración: 

Como  r < n por propiedad anterior  V ≠ { v ,  v ,...,  v , por lo tanto existe 1

2

 r }

 v ∈ V

tal que  v ∉{ v ,  v ,...,  v  y obvio que  v ≠ 0 , llamemos   v  a ese vector, y se 1

2

 r }

 r  1

+

tiene que { v ,  v ,...,  v

es linealmente independiente sobre  K. (Compruébelo, es 

1

2

 r  1

+ }

fácil!!!) 

Si   r + 1  < n  también  V ≠ { v ,  v ,...,  v

, por lo tanto existe 

1

2

 r  1

+ }

 u ∈ V

tal que  u ∉{ v ,  v ,...,  v

, l amemos   v

a ese vector   u ∈ V  , y así es que 

1

2

 r  1

+ }

 r +2

{ v ,  v ,...,  v  es linealmente independiente sobre  K. 

1

2

 r +2 }

Podemos entonces seguir agregando vectores (tantos como  n- r)  hasta l egar a  n vectores, ya que por la parte b) de la proposición 13.5.11,  V  no puede generarse 

sobre  K con menos de  n vectores. 

Por lo tanto existen vectores { v ,  v ,...,  v  tales que  V = { v ,  v ,...,  v  y 1

2

 n }

 r  1

+

 r +2

 n }

{ v ,  v ,...,  v ,  v ,...,  v  es base de  V  sobre  K.  

1

2

 r

 r  1

+

 n }

♦

En el estudio de los subespacios  S de  V, es importante saber su dimensión para poder compararlos con el espacio  V y también para varias aplicaciones. 

Veamos la relación que  existe  entre las dimensiones de los subespacios y la de los 

espacios de dimensión finita: 
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♦ Teorema 13.5.13

Sea  V  un  K- espacio vectorial tal que  dim  V =  n < ∞  . Sea  U  un subespacio de  V 

 K

sobre  K.  

a) dim  U ≤  n . 

 K

b)  U =  V  si y sólo si  dim  U =  n

 K

Demostración: 

a) Por hipótesis  U ⊆  V  y  U subespacio sobre  K. 

Sea   B  una base de  U sobre  K  y sea   B  una base de  V sobre  K. 

 U

 V

Supongamos por el absurdo que  dim  U >  n . 

 K

Entonces   B =  h >  n    y   B =  n , entonces los vectores de   B  resultan linealmente U

 V

 U

dependientes sobre  K  por el lema 13.5.9.  Absurdo pues   B  es una base de  U  sobre U

 K. 

Por lo tanto  dim  U ≤  n . 

 K

b) Si  U=V  claramente  dim  U =  n . 

 K

Si   dim  U =  n , toda base  B de  U sobre  K  tiene  n vectores linealmente K

independientes sobre  K  y por la parte a) de la proposición 13.5.11, es  B base de  V 

sobre  K, por lo tanto  U= B  =  V. 

♦

El espacio nulo  N ={ }

0 sobre  K es un espacio de dimensión 0. (Ver ejercicio 13.1.9) 

Las opciones de base para el espacio nulo { }

0 son sus subconjuntos: 

 B = { }

0

∨

 B = ∅ , pero la primera no es linealmente independiente y la segunda no 

genera al vector nulo. 

Se establece por convención que  dim { }

0 = 0 . 

 K

También si se considera el subespacio {0 para cualquier espacio vectorial  V sobre 

 V }

 K, se tiene que su dimensión sobre  K es 0 por definición. 
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En el ejemplo 13.5.4 se estudio el caso del espacio  [ x] como espacio vectorial sobre y se dijo que al no ser generado por ningún conjunto finito sobre los reales es por 

definición un espacio de dimensión infinita. Como en otras situaciones el infinito no es 

algo muy dócil… Mirar el siguiente ejemplo: 

EJEMPLO 13.5. 14 

Sea   H[ x] ⊆ [ x],  H[ x] = { P( x) :

=

(es decir todos los polinomios con coeficientes

0

 a

}

0

reales con término independiente 0). 

Claramente el polinomio O( x) está en  H[ x]. Por lo tanto  H[ x] es no vacío. 

Además vale que si  P( x)  y  Q( x) son elementos de  H[ x], el polinomio  P( x)  +  Q( x) también está en  H[ x]. 

El producto por un escalar real definido en  [ x] como espacio vectorial sobre  , 

restringido a los polinomios de  H[ x] cumple que 

 r.  P( x) ∈  H[ x] para todo real  r  y  P( x)∈  H [ x] . 

Por lo tanto   H[ x] es subespacio  [ x] sobre  . 

Haciendo un razonamiento similar al del ejemplo 13.5.4 se llega a que ningún conjunto 

finito de vectores de   H[ x] es generador de  H[ x] sobre  .  Por lo tanto también la dimensión de H[ x] es por definición infinita. 

Pero claramente   H[ x]  ≠   [ x] . Por ejemplo   x  + 1  ∈   [ x] pero  x + 1∉   H[ x] . 

Pero si tienen la misma dimensión sobre  . 

Comparar con 13.5.13…… 

6. Operaciones entre subespacios

Dados dos subespacios   U  y  W  de un  K-espacio vectorial  V, como  U  y  W son conjuntos vamos a analizar que operaciones conjuntistas entre ellos producen nuevos 

subespacios de  V sobre  K. 

I) Analicemos si la intersección  U ∩  W  cumple las condiciones para ser subespacio de V sobre  K. (Dadas en la propiedad 13.2.1) 
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1) Como  U y  W son subespacios de  V sobre  K, ambos tienen como elemento al vector nulo, por lo tanto:  ( 0 ∈ U

∧

0 ∈ W ) entonces 0 ∈ U ∩  W , por lo 

 V

 V

 V

tanto  U ∩  W ≠ ∅  

2) Sean  s ∈ U ∩ W   y   s ∈ U ∩ W , aplicando la definición de intersección resulta 1

2

 s ⊕  s ∈ U

∧

 s ⊕  s ∈ W  por ser ambos subespacios,  entonces se tiene 

1

2

1

2

que   s ⊕  s ∈ U ∩ W

1

2

3) Sean   s ∈ U ∩ W ∧  k ∈  K , por la definición de intersección se tiene k ⊗  s ∈ U

∧

 k ⊗  s ∈ W  por ser ambos subespacios de  V sobre  K , resulta entonces que   k ⊗  s ∈ U ∩ W

Tenemos entonces que  U ∩ W  es subespacio de  V sobre  K. 

EJERCICIO 13.6.1 

a) Sea el espacio  3  sobre  . Sean los subespacios  T = {( a,  b,  c) :  a +  c = }

0  y 

 S = {( a, , 

 b c) :  b = }

0 sobre R  (probar que son subespacios…..practique!!!). 

Hallar el subespacio  T ∩  S .  Además hallar una base de  T ∩  S  sobre R. 

Compare las dimensiones  sobre R de:  3,  T ,  S  y de  T ∩  S . 

b) Justificar que dados dos subespacios   U  y  W  de un  K-espacio vectorial  V, entonces   U ∩ W ≠ ∅

 c)  Probar que dados dos subespacios   U  y  W  de un  K-espacio vectorial  V,  entonces U ∩ W  es subespacio de  U  sobre  K  y  U ∩ W  es subespacio de  W  sobre  K. 

Consideremos el espacio  2 sobre R. 

Sean los conjuntos   S = {  a b a +  b = }

2

⊆

 T = {  a b b = }

2

( , ) :

0

y 

( , ) :

0 ⊆

. Es obvio ver que 

ambos son subespacios de  2 sobre R. 

El dibujo de ellos es:  

Como  T coincide con el eje  x 

no se ve fácil…. 
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 S es la otra recta. 

El vector (-1,1) ∈  S . 

El vector (1,0) ∈ T . 

Por lo tanto (-1,1) ∈  S ∪  T  y además (1,0) ∈  S ∪  T . 

(-1,1) + (1, 0) = (0, 1) . Pero (0,1) ∉  S  y también (0,1) ∉ T , por lo cual (0,1) ∉  S ∪  T . 

Por lo cual por no cumplir las condiciones para ser subespacio (13.2.1),  S ∪  T  no es un subespacio de  2 sobre R. 

Por lo tanto se cumple que dados  dos subespacios   U  y  W  de un  K-espacio vectorial V, la unión de  U  y  W ,  NO ES SUBESPACIO!!!, salvo casos muy particulares. 

EJERCICIO 13.6.2 

Dado un  K-espacio vectorial  V,  analizar en qué casos particulares de subespacios   U 

y  W  de  V,  la unión de  U  y  W  es subespacio de  V sobre  K.  

La definición que sigue es para “remediar” de alguna manera que la unión no sea 

subespacio en general. Luego de la definición analizaremos porque lo de “remediar” 

…. 

Dados dos subespacios   U y  W, de un espacio vectorial  V sobre  K, se define el conjunto      

 U +  W = { h ∈ V :  h =  u ⊕  w ∧  u ∈ U ∧  w ∈ W}

 U +  W es un subespacio de  V sobre  K. 

EJEMPLO 13.6.3 

Dados dos subespacios   U  y  W, de un espacio vectorial  V sobre  K, entonces  U +  W 

es un subespacio de  V sobre  K. 

Hay que probar que  U +  W  cumple las condiciones de la propiedad 13.2.1.. 
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Claramente  U ⊆  U +  W  y además  W ⊆  U +  W ,  pues   u =  u ⊕ 0 ∈ U +  W  y también 

 w = 0 ⊕  w ∈ U +  W .   Es así que  U +  W  es no vacío pues ambos son no vacios. 

Es así que  U ∪  W ⊆  U +  W .  (*). 

Sean dos vectores de  U +  W  :    h =

⊕

=

⊕

si sumamos: 

1

 u  1

 w  1  y  h  2

 u  2

 w  2

 h ⊕

=

⊕

⊕

⊕

=

⊕

⊕

⊕

pues valen en  V  las 

1

 h  2 ( u  1

 w  1 )   ( u  2

 w  2 ) ( u  1

 u  2 )   (  w  1

 w  2 )

propiedades de asociatividad  y conmutatividad de la suma ⊕. 

Por ser   U  y  W  subespacios de  V   resulta que    u ⊕

∈

⊕

∈

por lo 

1

 u  2  U    y   w  1

 w  2  W

tanto   h ⊕

∈

+

. 

1

 h  2

 U

 W

Sean  cualquier escalar   k ∈  K  y cualquier vector  h ∈ U +  W , por lo cual   h =  u ⊕  w . 

Es así que     k ⊗  h =  k ⊗ (  u ⊕  w ) =  k ⊗  u ⊕  k ⊗  w  por las propiedades de producto por escalar.  Como   U  y  W  son subespacios de  V  sobre  K,  se tiene que: k ⊗  u ∈ U  y   k ⊗  w∈ W  resulta que   k ⊗  h ∈ U +  W . 

Por lo tanto se cumplen las condiciones de 13.2.1.. 

La observación (*):   U ∪  W ⊆  U +  W ,  permite demostrar (que no lo haremos en este texto) que el subespacio  U +  W  es el “menor subespacio generado por  U ∪ W ”. 

El concepto de espacio generado escapa a nuestro interés. 

♦ Teorema 13.6.3:

Sean  U y  W subespacios  de un espacio vectorial  V sobre  K  y con  dim  V =  n < ∞ , K

entonces     

dim ( U + W ) = dim  U + dim  W − dim ( U ∩ W )

 K

 K

 K

 K

Demostración:   

 U ∩ W  es un subespacio de  V    sobre  K, entonces  dim ( U ∩ W ) ≤  n . 

 K

Si  dim ( U ∩ W ) =  n  entonces  U ∩ W =  V , por lo tanto  U=V y  W=V  y  U+ W = V  por lo K

tanto vale el teorema. 
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Sean  dim ( U ∩ W ) =  r <  n  y   dim  U >  r   y   dim  W >  r . 

 K

 K

 K

Podemos tomar una base sobre  K de la intersección:   B =  b ,  b ,...,  b 0

{ 1 2

 r }

Por el Teorema 13.5.10 podemos extender   B  a una base de  U  y también a una base 0

de  W. Sean   B =  b ,  b ,...,  b ,  u ,...  u B =  b ,  b ,...,  b ,  w ,...  w

bases de  los 

1

{ 1 2

 r

1

 s }

2

{ 1 2

 r

1

 p }

subespacios  U y   W  respectivamente. 

Veamos que   B = { b ,  b ,...,  b ,  u ,...  u ,  w ,...  w  es base de  U + W sobre  K.  

1

2

 r

1

 s

1

 p }

1)  B genera  U + W  sobre  K:

Si   v ∈ U +  W   entonces   v =  u ⊕  w  con  u ∈ U  y con  w ∈ W . 

Es así que    u es generado por  B   sobre  K  y  w  es generado por  B  sobre  K , 1

2

pero  B ⊆ B  y   B ⊆  B . Luego    v es generado por  B sobre  K . 

1

2

2) Hay que ver que  B  es linealmente independiente sobre  K :

Sea  (1) la igualdad: 

 k ⊗  b ⊕  k ⊗  b ⊕ ... ⊕  k ⊗  b ⊕  l ⊗  u ⊕ ... ⊕  l ⊗  u ⊕  h ⊗  w ⊕ ... ⊕  h ⊗  w = 0  

1

1

2

2

 r

 r

1

1

 s

 s

1

1

 p

 p

entonces  usando las propiedades de las operaciones en el espacio vectorial  V 

sobre  K,  despejando: 

( k ⊗  b ⊕  k ⊗  b ⊕ ... ⊕  k ⊗  b ⊕  l ⊗  u ⊕ ... ⊕  l ⊗  u ) = (

−  h ⊗  w ⊕ ... ⊕  h ⊗  w )

1

1

2

2

 r

 r

1

1

 s

 s

1

1

 p

 p

Por definición de las bases  B 1 y  B 2 , resulta que el primer miembro de la igualdad (1) representa un vector de  U y el segundo miembro de la igualdad (1) representa 

un vector de  W.  Pero al ser iguales,  el vector pertenece a ambos espacios 

entonces es de  U ∩  W . Designémoslo por  m . 

Por lo tanto   m ∈ U ∩ W , entonces     m =  t ⊗  b ⊕  t ⊗  b ⊕ ... ⊕  t ⊗  b 1

1

2

2

 r

 r

 m −  m = ( k ⊗  b ⊕  k ⊗  b ⊕ ... ⊕  k ⊗  b ⊕  l ⊗  u ⊕ ... ⊕  l ⊗  u ) −

1

1

2

2

 r

 r

1

1

 s

 s

− ( t ⊗  b ⊕  t ⊗  b ⊕ ... ⊕  t ⊗  b ) = 0

1

1

2

2

 r

 r

Es así que entonces por las propiedades de las operaciones vale que: 

( k −  t ) ⊗  b ⊕ ( k −  t ) ⊗  b ⊕ ... ⊕ ( k −  t ) ⊗  b ⊕  l ⊗  u ⊕... ⊕  l ⊗  u = 0  

1

1

1

2

2

2

 r

 r

 r

1

1

 s

 s

que es una combinación lineal de los vectores de la base   B , por lo tanto 

1
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 k −  t = 0 para 1 ≤  i ≤  r ∧  l = 0 para 1 ≤  j ≤  s i

 i

 j

Entonces reemplazando en (1) se tiene que: 

 k ⊗  b ⊕  k ⊗  b ⊕ ... ⊕  k ⊗  b ⊕  h ⊗  w ⊕ ... ⊕  h ⊗  w = 0 que es una combinación 1

1

2

2

 r

 r

1

1

 p

 p

lineal de los vectores de   B , por lo tanto 

2

 k = 0

para  1 ≤  i ≤  r    y   h = 0

para  1 ≤  j ≤  p  

 i

 j

Por lo tanto  B es linealmente independiente sobre  K  y en consecuencia es una base de  U + W  sobre  K, con  r +  p +  s elementos.  Luego  dim ( U +  W ) =  r +  p + . 

 s  

 K

Además es  dim  U =  r +  s , dim  W =  r +  p , dim ( U ∩  W ) =  r , entonces K

 K

 K

efectivamente vale: 

dim ( U +  W ) = dim  U + dim  W − dim ( U ∩ W ) =  r +  s +  r +  p −  r K

 K

 K

 K

♦

EJEMPLO 13.6.4  

Hal ar un conjunto de generadores sobre R de  U + W  siendo 

  a b 



1 0 0 1 

2  x  2

 U = 

∈

:  a +  b = 0





 y   W = 

, 



 

  

  c d







1 0



  0 0

Para simplificar  anotaremos por + la suma de matrices y por . el producto por el 

escalar. 

Usando las definiciones de los subespacios  U y de  W sobre  K y de la suma de ellos, así si 

  a −  a 

1 0

0 1 

 h ∈ U +  W  entonces  h =

+  k





. 

+  t





.

 , por las propiedades de las 

  c

 d 

1 0

0 0

operaciones de  2×2  sobre  se tiene que 

1 −1 

 0

0 

 0 0

1 0

 0 1 

 h = . 

 a

+





. 

 c

+  d





. 

+  k





. 

+  t





.  

  

 0

0 

1

0 

 0 1 

1 0

 0 0

1 −1  0

0   0 0  1 0   0 1 

Entonces   B = 

,

,

,

,   

  genera  U+W sobre  K. 

 0

0



 1

0   0 1  1 0  0 0

¿Puede ser  B base sobre  K ? 
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Este conjunto de generadores tiene 5 vectores y 

2  x  2

dim

= 4 , como 

2  x  2

 U +  W ⊆

, claramente  B no puede ser base de un subespacio de  2×2  sobre  , 

pues 5 vectores en un espacio de dimensión 4 son vectores linealmente dependientes 

sobre R. 

Para hallar una base  tenemos que “sacar” algún vector de  B y ver si es linealmente independiente sobre R. 

Este proceso de “sacar” algún vector con el propósito que lo que quede sea un 

conjunto libre, depende de las características del conjunto. Hay que mirar con atención 

los vectores que se tienen y quedarse con los que a simple vista son independientes 

(en este caso si los elementos no nulos se dan en posiciones distintas dentro de las 

matrices, nos asegura que entre sí no son múltiplos escalares) y se pueden conservar 

otros algo más complicados pero que no nos resulten a la vista suma de otros. 

Luego de esa elección habrá que probar si efectivamente son libres. 

1 −1   0

0   0 0   0 1 

Consideremos   B ' = 

,

,

,   

 ⊆  B  con el criterio descripto. 

 0

0



 1

0   0 1  0 0

Construimos la combinación lineal: 

1 −1 

 0

0 

 0 0

 0 1   0 0

 k . 

+  k





. 

+  k





. 

+  k





. 

=

. 

1

2

3

4



 



 0

0 

1

0 

 0 1 

 0 0  0 0 

Realizando las operaciones indicadas, resulta: 

  k

−  k +  k 

 0 0

1

1

4

=



 

 , por lo tanto   k = 0 para 1 ≤  i ≤ 4  y entonces los 

 k

 k



  0 0

 i

2

3



vectores de  B’ son linealmente independientes sobre R. 

Hemos encontrado una base de  U +  W  sobre R y como tiene 4 vectores vale que 2  x  2

2  x  2

dim ( U +  W ) = 4

∧

dim

= 4

entonces  U +  W =

. 

¿El subespacio  U ∩  W , puede ser el nulo? Justifique!!! Queda para Ud. hallar cuál es. 
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EJERCICIO 13.6.5: 

Hal ar la dimensión de  U +W  sobre R, siendo 

1 2

 2 3 1 0 

 U = 

 y   W = 

, 



 

  

 0 1





1 2



 0 1

EJERCICIO 13.6.6: 

Hal ar  V  tal que 

3

 U +  V =

siendo  U = {(1, 2,3),(1,0,0 }

) . Es único el  V ? 

Dados dos subespacios   U  y  W  de un espacio vectorial  V  sobre  K, decimos que  S es suma  directa de  U  más   W  y se nota  

 S =  U ⊕  W  si y sólo si     S =  U +  W    y    U ∩ W = { }

0 . 

EJEMPLO 13.6.7: 

Sean   S = ( a, , 

 b  0) :  a ∈

∧  b ∈

y

 S = (0, , 

 x y) :  x ∈

∧  y ∈

subespacios 

1

{

}

2

{

}

de  3  sobre R. 

Veamos si   S +  S  es suma directa. 

1

2

Debemos analizar   S ∩  S . Tomamos un vector 

1

2

 v ∈  S ∩  S  entonces  v ∈  S

∧

 v ∈  S

, por lo tanto   v = ( a, , 

 b  0) = (0, , 

 x y) , se tiene 

1

2

1

2

entonces que  a =  0,  b =  x   y   0 =  y , entonces   v = (0, , b  0)  , es decir que todos los 

vectores con primer y tercer componente nula están en la intersección, por lo tanto no 

es suma directa. 

Nuestro resultado es correcto pues cada subespacio es de dimensión 2 sobre R, y por 

la propiedad 13.6.3 si la intersección fuera nula se superaría a 3 que es la dimensión 

de  3  sobre R. 

EJERCICIO 13.6.8: 

Sean   S = ( a, , 

 b  0) :  a,  b ∈

y

 S = (0, 0,  y) :  y ∈

subespacios de  3  sobre R. 

1

{

}

2

{

}

Analizar si   S +  S  es suma directa. 

1

2
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♦ Proposición 13.6.7:

Sea  S un subespacio de vectorial de  V sobre  K  tal que   S =  S ⊕  S , con  S  y  S  

1

2

1

2

subespacios de  V  sobre  K. Entonces todo vector se  S se expresarse de manera única como la suma de un vector de   S  y un vector de   S . 

1

2

Demostración: 

Sea   v ∈  S  entonces   v =  s +  s ,  s ∈  S ,  s ∈  S  por ser  S  suma directa de   S  y   S . 

1

2

1

1

2

2

1

2

Supongamos que existen vectores  u ∈  S ,  u ∈  S  tales que  v =  u +  u  entonces 1

1

2

2

1

2

haciendo las cuentas usando las propiedades 

 v −  v = 0 =  s +  s −  u −  u = ( s −  u ) + ( s −  u )   por lo tanto 1

2

1

2

1

1

2

2

− ( s −  u ) = ( s −  u )

y además    s −  u ∈  S

y

 s −  u ∈  S  y como  los vectores 

1

1

2

2

1

1

1

2

2

2

son iguales está en la intersección,  pero   S ∩  S = 0 , por lo cual 

1

2

{ }

−( s −  u ) = 0 y ( s −  u ) = 0 por lo tanto   s =  u y

 s =  u . Es decir hay 

1

1

2

2

1

1

2

2

una única forma de escribir a   v . 

♦

7. Una selección de Ejercicios

1) Establecer si  (1, 2

− , 3

− , −3)  es o no una combinación  R-lineal de los vectores

(0,1, 2, 3),  (-1,1,1,0). ¿Esos 3 vectores son dependientes o independientes en R4 

sobre R? 

2) Determinar si los siguientes vectores de

3  son linealmente independientes o 

dependientes sobre R: 

a) (1, 2 , 4)  (3, 6, 2)  (0, 0, 1)

b) (1, 2 , 0)  (0, 6, 2)  (4 , 8, 0)

¿En algún caso puede afirmar que formen una base de  3  sobre R? 
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3) Determinar si los siguientes conjuntos de vectores de sobre R2  son linealmente

dependientes o independientes sobre 

: 

a)

{ (-4, 5),   (2, 7) }

b)

{ (3, 5, -2), (-3, 0, 4),  (3, 1, 2)}

4) Establecer  si  los  siguientes  conjuntos  son  o  no  subespacios  del  respectivo  R-

espacio  vectorial.  En  los  casos  que  sea  subespacio  encontrar  una  base  del  mismo sobre R. 

a) R = {(  x ,  x ) ∈  2  :   x = 3 x } 

1

2

1

2

b) U = {(  x ,  x ) ∈  2  :   x .  x = 9 } 

1

2

1

2

c) V = {(  x ,  x ) ∈  2  :   x = 5} 

1

2

1

d) W = {(  x ,  x ,  x ) ∈  3  :   x +  x +  x = 0 } 

1

2

3

1

2

3

e) Z = {(  x ,  x ,  x ) ∈  3  :  2 x − 3 x = 0 } 

1

2

3

1

2

f) Y = {(  x ,  x ,  x ) ∈  3  :   x + 8 x = 0 } 

1

2

3

1

3

g) T´= {(  x ,  x ,  x ) ∈  3  :   x = 0  ;  x +  x = 5 } 

1

2

3

1

2

3

h) S = {(  x ,  x ,  x ,  x ,  x ) ∈  5  :   x = 2 x −  x  ,  x = 3 x } 

1

2

3

4

5

3

1

2

4

2

i) U =  {(  x ,  x ,  x ,  x ) ∈  4  :   x =  x + x  ,  x =  x + 5} 

1

2

3

4

4

3

2

2

1



  a

 a 



j) M =

11

12

2  x  2



∈





:   a −  a

= 0 ,  a +  a

= 0

11

22

21

12

 a

 a









21

22





  a

 a 



k) N = 

11

12

2  x 2



∈





:   a

+  a

+  a

= 0 ,  a

= 5 a   

11

12

22

21

12

 a

 a









21

22





  a

 a

 a 



l) O = 

11

12

13

2  x 3



∈





:   a  +  a −  a

= 0 ,  a

= 3.  a   

11

22

23

21

13

 a

 a

 a









21

22

23



  a a 



11

12







m) P =  

3 x 2

  a    a

∈

:   a  +  a − 9 a

= 0 ,  a

= 6 a   

21

22

11

22

32

21

31











 a

 a

 31

32









  a

 a 



n) Q = 

11

12

2  x  2



∈





:   a .  a = 0 

11

12

 a

 a









21

22


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5) Sean los R- subespacios de  2 ,  V = {( x, y):   x = 0}    y   W  ={( x, y):   y = - x}. 

a) Probar que:  V = {(0,1 }

)    y   W = {(1, 1

− }

)

b) Hallar  V ∩ W

c) Describir  V + W

6) a) Hallar el subespacio  T  de  3 , C- generado por: { (1,    0,    1) ;  (0,    1 ,    1)}. 

b) Hallar un conjunto de generadores del  subespacio  T  de  3 , sobre  R. 

7) Determinar el subespacio de  2 × 2 , generado sobre R por las matrices: 

1 0 

 0 1

 0 0

 A =

 B =

 C =











  

0 −



1

 0 0

1 0

8) Los siguientes conjuntos de vectores ¿generan el mismo subespacio de  3   sobre 

? 

 A = {(1,  - 1,  - 1) ; (3,    0,    1)}  y    B ={(-2,  - 1,    0) ; (5,  - 2,    3)} 

9) Sea el 

-espacio  F ( , ) = {  f :  f  es función ∧  f :

→

} (13.1.7). 

a) Probar que  S = {  f :  f ' −  f = }

0 ⊆  F ( R, R) es un subespacio sobre 

. 

b) Probar que {  x, − x

 e e } ⊆  S  y que es un conjunto libre sobre  . 

c) Si sabe ecuaciones diferenciales lineales podría probar que {  x ,  x

 e e− } es 

-base 

de  S . 

10) Sea  S  el subespacio de  3  sobre 

,  que satisface: 

2 x -   x =  0



1

2



Hallar un conjunto  finito que genere a  S sobre 

. 

 x   +  5 x

=  0

 3

2

11) Analizar si el vector   x  es combinación lineal de los vectores dados en el espacio vectorial 

2 x 2

sobre 

:

5

5

1 0

 1 0

 2 1

 0 0 

a)   x = 

,  v  = 

,  v  = 

,  v  =

1

2

3





 0 2

 0 0

 0 1

 0 0 
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1 2

1 0

 0 1

 0 0

 0 0 

b)   x = 

,  v  = 

,  v  = 

,  v  = 

,  v  =

1

2

3

4





1 1

 0 1

 0 0

 1 0

 0 2

12) Sea  V  un  K- espacio vectorial. Sean   v ,  v ,...,  v  vectores de  V.  Probar que si 1

2

 n

 t ≠ 0 ∧  t ∈  K , entonces   { v ,  v ,...,  v =  v ,  v ,...,  t ⊗  v ,...,  v  para cualquier 1

2

 n }

{ 1 2

 i

 n }

 i,1 ≤  i ≤  n . 

13) Sean

3

 v ,  v ,  v ∈

, decir si son o no linealmente independientes sobre  . 

1

2

3

Indicar en 

cada caso cuál es el espacio que generan: 

a)   v  = (1,    0,    0) ;    v  = (0,    1,    0) 1

2

b)   v  = (1 ,  1,    0) ;    v  = (1,    0,    0)  ;    v  = (0 ,    1,    0) 1

2

3

14) Sean  S  y  T  subespacios de  3  sobre   definidos por: 

 S   =  {( x ,  x ,  x ) :   x +   x   =  0 ;  x -   x

=  0}

1

2

3

1

3

2

3

 T   =  {( x ,  x ,  x )  :   x +  2 x

+   ax

=  0}  a fijo. 

1

2

3

1

2

3

¿Existen valores de  a  tales que  S +  T   sea suma directa? 

15) Estudiar si los siguientes conjuntos son base del espacio vectorial dado sobre  :

a) {

2

3

1,  x + 3,  ( x + 3) ,  ( x + 3) } ⊆

[ x]

4

1 0 0 1 1 1  1 1

b) 

2×2



,

,

,

 ⊆

1 1



 1 1   0 1 1 0

16) Encontrar una base  B  de  4  sobre R que contenga a los vectores (0,    0,    1,    1)  y (1,    1,    0,    0). 

17) Demostrar que los siguientes conjuntos son bases de

4 sobre R: 

 B =   v = (1,  1,  0,  0);  v  = (0,  1,  0,  0);  v = (0,  0,  1,  1);  v = (0,  0,  0,  1) ; 1

{ 1

2

3

4

}

 B =  u = (1,  2,  0,  0);  u = (0,  1,  2, −1);  u = (1, −1, −1, −1);  u = (0,  1,  1,  0) 2 

{ 1

2

3

4

}
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18) Demostrar que el conjunto  S = {

2

2



 x  +  1;  x −  1;  x −  1;  x   +   }

1 es un sistema de 

generadores de 

[ x]sobre R. Encontrar un subconjunto  U  de  S  que sea una base 

3

de 

[ x]  sobre R. 

3

19) Decir para qué valores de  a  los vectores ( a ,  0,    1) ; (0,    1 ,  1) y (2 ,  - 1,   a) forman una base de   3  sobre R. 

20) Encontrar la dimensión del subespacio generado por los siguientes conjuntos de

vectores: 

a) {(1,    2); (0,    1); (-1,    3)}   en  2  sobre R. 

 i   1  1  +   i   1  -   i 

b) 

2×2



,

  en 

sobre  

0  1  +



 i



  0 

2



21) Decir si los siguientes conjuntos son o no bases:

a) {  (1,0) ; (1,3) ; (0,2) }   de  2  sobre  . 

b) {  (1,0,2) ; (1,3,0) }   de  3  sobre 

c) {

2

1,   - 2 x,  x   +  2 x  +  1 }

de 

[ x] sobre  . 

3

d) {  (1,0) ; (2,1)}   de  2  sobre  . 

 2   3 + i  3   0 9     9 + 3i  0   0

2x2



, 

, 

, 



 

 

 

 de 

sobre  . 

e)  0   i



  0    i   0   3 + i  1    i 

2x2

¿Y de 

sobre  ? 

22) a) Probar que {

2

1,  x,  x ,  ...,  n

 x }  es independiente en 

[ x] sobre  . 

 n  1

+

b) Probar que {

2

1,  x,  x ,  ...,  n

 x }   es base en 

[ x] sobre  . 

 n  1

+

c) ¿Es {

2

3

1,  x ,  x }  base de 

[ x] sobre  ? Justifique. 

4

d) ¿Es  { 2 3

x , x , x + 1,  }

2  base de 

[ x] sobre  ? Justifique. 

4

23) Si 

2 2

 V

×

=

a) Hallar una base de  V sobre  . ¿Cuál es la  dim  V ? 

b) Hallar una base de  V sobre  . ¿Cuál es la  dim  V ? 
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24) Sea  V es un conjunto de vectores tal que admite la estructura de espacio vectorial sobre R y también de espacio vectorial sobre C. Si  V tiene sobre 

dimensión  n, 

entonces sobre R tiene dimensión  2n. 

  x     y 



25) Sea 

2  x  2

 V =  K

y sean  U = 

:   x ∈  K ∧  y ∈  K ∧  z ∈  K   y 

 - y    z







  a     b 



  W =  


:   a ∈  K ∧  b ∈  K ∧  c ∈  K 

  c  -  c







Probar que: 

a)  U y  W son subespacios de  V sobre  K. 

b) Hallar las dimensiones de  U,  de  W,  de  U+W  y de  U ∩ W  sobre K. 

26) Si 

3

 V =

, probar que  S  y  S'  son subespacios de  V y hal ar bases y dimensiones para   S, S,   S + S'  y   S ∩  S '   sobre  : 

a)  S = {( a,0,0) :  a ∈ },  S ' = {(0, , 

 b b) :  b ∈ }

b)  S = {( a,  a,0) :  a ∈ },  S ' = {(0, , 

 b b) :  b ∈ }

c) Analizar si en a) y en b) la suma es directa. 

27) En  3  sobre   ¿puede la suma {(2,  0,  1);  (1,  2,  3)}  + {(1,  2, -1);  (0,  1,  2)}  ser directa? Justifique. 

28) Probar que el R- espacio vectorial  4 ≠  S ⊕  S , donde: 

1

2

 S

= {

4

( x,  y,  z,  t) ∈

:   x +  y +  t = 0   ∧   x -  y = 0

1

}

 S

= {

4

( x,  y,  z,  t) ∈

:   x = 0,  y -  t = 0,  x -  z +  t = 0

2 

}
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CAPÍTULO 14 

TRANSFORMACIONES LINEALES 

Se han estudiado a lo largo de este Curso y de otros Cursos, distintos tipos 

de funciones. 

Además, se han  visto  varios  ejemplos  de  K- espacios  vectoriales  y  propieda-

des y conceptos relacionados con ellos. 

En este Capítulo se trabajará con un tipo especial de funciones definidas en-

tre  los  conjuntos  subyacentes  de  espacios  vectoriales  definidos  sobre  un 

mismo cuerp o K. 

En lo que sigue se trabajará con espacios sobre cuerpos conmutativos. 

1. Primeras definiciones

Sean  V  y  V ′  espacios vectoriales sobre  K. 

Una función   f : V → V ′ , es una transformación  K- lineal si cumple: 1) Si    v ,  v ∈ V  entonces   f ( v ⊕  v =  f v †  f v 1

2 )

( 1 ) ( 2 )

1

2

Suma en  V 

Suma en  V ′

2) Si   k ∈  K,  v ∈ V  entonces   f ( k ⊗  v) =  k f ( v) Producto externo en  V 

Producto externo en  V ′

La imagen por  f de vectores de  V son vectores de  V ´. 
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Se dice que es una transformación  K−lineal de  V en  V ′ , para enfatizar que los espacios son sobre el cuerpo  K. 

Queda claro a partir de la definición que tanto dominio como codominio de-

ben ser algebrizados como espacios sobre el mismo cuerpo, pues debe tener 

sentido que se pueda hacer el producto por el mismo escalar en los elemen-

tos de  V  y de  V ′ . 

Analicemos  qué  significa  cada  una  de  las  condiciones  que  se  exigen  en  la 

definición: 1) se puede resumir como “primero sumo los vectores en  V  y  lue-

go aplico la función   f , resulta igual que “primero aplico  f a los vectores de  V  y luego sumo sus imágenes en  V ′ ”. 

2) se puede resumir como “primero multiplico por el escalar el vector en  V  y

luego aplico la función   f ” , resulta igual que “multiplicar por el escalar en   V ′ a la imagen por  f del vector de   V”. 

EJEMPLO 14.1.1: 

Sean 

2

 V =

y 

3

 V ′ =

,  V y  V ′  son espacios vectoriales sobre  . 

 f (( a,  b)) = (3 a − , 

 b a,0)

¿Será  f  una transformación lineal de  2 en  3 ?. 

Claramente es función (justifique), sean   v =  a ,  b  y   v =  a ,  b . 

2

( 2 2 )

1

( 1 1 )

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en ambos espacios  y como . el producto por el escalar en ambos casos. 

Se tiene   v +  v =  a +  a ,  b +  b , y para 

1

2

( 1

2

1

2 )

 k ∈

 v = (  a b)

2

y 

, 

∈

es   k.  v = (  k.  a,  k.  b)  

Y para   u =  a ,  b ,  c  y  u =  a ,  b ,  c  de  3 , y para 1

( 1 1 1 )

2

( 2 2 2 )

 k ∈

 u = (  a b c)

3

y 

, , 

∈

es   k.  u = ( k.  a,  k. , 

 b kc)  

Luego: 
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 f ( 1

 v +  v 2 ) =  f (( a +  a ,  b +  b

por definición de  f

1

2

1

2 ) )

=

= (3.( a +  a −  b +  b ,  a +  a , 0   en cada componente son operaciones en 1

2 )

( 1

2 )

1

2

)

=

=  (3.  a −  b + 3.  a −  b ,  a +  a , 0

por definición de la suma en  V ´

1

1

2

2

1

2

)

=

= (3.  a −  b ,  a , 0 + 3.  a −  b ,  a , 0 por definición de  f 1

1

1

) (

2

2

2

)

=

=  f ( v +  f v

1 )

( 2 )

 f ( k.  v) =  f (( k.  a,  k.  b)) por definición de  f

=

= (3.  ka −  kb,  ka, 0) en cada componente son operaciones en 

=

= ( k.(3 a −  b),  k.  a, 0) por el producto por el escalar en  V ´

=

=  k.(3 a −  b,  a, 0) por definición de  f

=

=  k.  f ( v)

Luego,  f  es una transformación R-lineal. 

EJEMPLO 14.1.2: 

Sean 

2

 V =

y 

2  x  2

 V ′ =

, ambos espacios sobre R  y 

  a +  b  0 

 f ((  a,  b)) = 





 b

−

 a 

Puede verificarse fácilmente que  f es función. 

Para simplificar se hará un abuso de notación  simbolizando como +  la suma 

en ambos espacios  y como . el producto por el escalar en ambos casos. 
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Sean   v =  a ,  b  y   v =  a ,  b ,   entonces    v +  v =  a +  a ,  b +  b ,  y  para 1

2

( 1

2

1

2 )

2

( 2 2 )

1

( 1 1 )

 k ∈

 v = (  a b)

2

y 

, 

∈

es   k.  v = (  k.  a,  k.  b) . Y recordar como se definen la suma en  2×2 ( elemento a elemento) y la multiplicación de un escalar por una matriz 

(multiplica cada elemento por el escalar). 

Analicemos si  f es una transformación lineal. 

 f ( 1

 v +  v 2 ) =  f (( a +  a ,  b +  b

por definición de  f

1

2

1

2 ) )

=

  a +  a +  b +  b

0



1

2

1

2

= 

 en cada entrada son operaciones en 



− b −  b

 a +  a 

1

2

1

2

=

  a +  b +  a +  b

0



1

1

2

2

= 

 por la suma en  V´



 b

−

−  b

 a +  a 

1

2

1

2

=

  a +  b

0 

  a +  b

0 

1

1

2

2

= 

 + 

 = por definición de  f

 − b

 a   − b

 a 

1

1

2

2

=

=  f (( a ,  b )) +  f (( a ,  b )) =  f ( 1

 v ) +  f ( v 2

1

1

2

2

)

 f ( k.  v) =  f (( k.  a,  k.  b)) por definición de  f

=

  k.  a +  k.  b

0 

= 

 en cada entrada son operaciones en 



− kb

 ka 

=

  k( a +  b) 0 

= 

 por el producto por el escalar en  V ´



 b

−

 a 

=

  a +  b  0 

=  k.

 por definición de  f

 − b

 a 

=

=  k.  f (( a,  b)) =  k.  f (  v)

Luego,  f  es una transformación R-lineal. 
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EJEMPLO 14.1.3: 

Sean los R-espacios vectoriales 

2

 V =

y 

2 2

 x

 V′ =

, y la función 

  a +  b  1 

 f ((  a,  b)) = 





 b

−

 a 

no es transformación lineal porque si bien   f   puede verificarse que es una 

función, al analizar si es una transformación  R-lineal: 

  a +  a +  b +  b

1



 f ((  a +  a ,  b +  b ))

1

2

1

2

= 

    pero 

1

2

1

2



 b

−

−  b

 a +  a 

1

2

1

2

  a +  b

1    a +  b

1 

  a +  a +  b +  b

2



 f ((  a ,  b )) +  f ((  a ,  b ))

1

1

2

2

1

2

1

2

= 

 + 

 = 

  

1

1

2

2



 b

−

 a   − b

 a  

− b −  b

 a +  a 

1

1

2

2

1

2

1

2

Luego, queda claro que no toda función es transformación  R-lineal. 

EJEMPLO 14.1.4: 

Sean los R-espacios vectoriales  V = [ x]  y  V ′ = [ x]  

La función  D (la de derivación) es una transformación R-lineal: 

 D (  p (  x) +  q(  x)) =  D(  p(  x)) +  D( q (  x))   y     D( . 

 c p (  x)) = . 

 c D (  p(  x))

Muy fácil queda par Ud. el desarrollo. 

♦  PROPIEDAD 14.1.5 

Cualquiera sea   f : V 

→ V ′ , donde  V  y  V ′  son  K−espacios vectoriales y  f  es una transformación  K−lineal de  V en  V ′ , se cumple: 

 f (0 ) = 0

 V

 V  śon  0  y  0  los vectores nulos de los espacios  V y  V ′  respectivamente. 

 V

 V ´

Demostración: 
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 f (0 ) =  f (0 ⊗  v    porque  0 = 0 ⊗  v , el nulo de  V es igual al producto del V

 K

)

 V

 K

escalar 0 K por cualquier vector de  V.  

 f (0 ⊗  v) = 0

 f v  porque   f es una transformación  K-lineal 

 K

 K

( )

0

 f ( v) = 0

porque   f ( v) es un vector de  V′  y el vector nulo de  V′

 K

 V  ćoincide  con  el  producto  del  escalar  0 K    por  cualquier 

vector de  V ′  . 

♦

EJEMPLO 14.1.6: 

Dado el espacio real  2 , se definen las funciones: 

2

2

 p :



→

dada por  p

 x,  y

=  x,0 se denomina la proyección 1 de 

2  

1 ((

)) (

)

1

y 

2

2

 p :



→

siendo   p

 x,  y

= 0,  y  se denomina la proyección 2 de 

2  

2 ( (

)) (

)

2

Es la proyección 1 del punto (x, y) 

Dibuje la  p 2  para algún punto. 

En general dado un cuerpo  K, se define la proyección i-ésima como: 

 p :

 n

 n

 K 

→  K

donde 

 i

 p (  x ,  x ,.....,  x ,.....,  x

= 0,0,.....,  x ,.....,0  

 i

1

2

 i

 n )

(

 i

)

Es  elemental  probar  que  las  proyecciones  son  transformaciones   K- lineales. 

Tanto en el caso particular como en la generalización. 
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Para  cualquier  transformación   K-lineal  se  definirán  dos  subconjuntos  de  los espacios   V  y   V´  relacionados  con  las  transformaciones  lineales.  Estos  subconjuntos más adelante se verán que importantes resultan para clasificar las 

transformaciones lineales. 

Se define el Núcleo de  f  como el conjunto de elementos de  V que por la función  f  van al vector nulo de  V´. Es decir: 

 Núc(  f ) = { v∈ V :  f ( v) = 0 V´}

La Imagen de  f es el subconjunto de   V´ que son correspondientes por la función  f de vectores de  V . Es decir: 

 Img(  f ) = { u ∈ V´:(∃ v)(  v∈ V ∧  f ( v) =  u ) }

Por  la  PROPIEDAD  14.1.5  se  tiene  que  para  toda  transformación   K-lineal 

 f (0 ) = 0 , por lo cual   Núc(  f ) ≠ ∅   e   Img(  f ) ≠ ∅

 V

 V  ÉJEMPLO 14.1.7 

Con las definiciones de 14.1.6. 

¿Cuál es   Núc (  p ) = (

{ ,  x y)

2

∈

:  p

, 

 x y

= 0, 0

? 

1

1 ((

)) (

)}

Como   p

 x,  y

=  x,0 ,  si    ( x, 0) = (0, 0) resulta  que   x = 0 .    Y  para  la  compo-1 ((

)) (

)

nente segunda  y no hay condición. 

Luego:   Núc (  p = 0,  y :  y ∈



1 )

(

{

)

}

¿Cuál es   Img (  p ) = (

{  u,  v)

2

∈

: ∃ (

(

, 

 x y))( (  x,  y)

2

∈

∧  p

, 

 x y

=

, 

 u v ) ? 

1

1 ( (

)) (

) }

Como   p

 x,  y

=  x,0 . Por lo cual   Img (  p = (

{  x,0):  x∈ }  

1 )

1 ((

)) (

)
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♦  TEOREMA 14.1.8 

Sea   f : V 

→ V ′  una transformación  K−lineal. Entonces: 

a)  Núc(  f ) = { v∈ V :  f ( v) = 0  es un subespacio de  V  sobre  K. 

 V ´}

b)  Img(  f ) = { u∈ V´:(∃ v)( v∈ V ∧  f ( v) =  u ) }es un subespacio de  V′  sobre  K. 

c) Si   B = { b ,........,  b  es una base e  V, entonces   Img(  f ) ={  f ( b ,........,  f b 1 )

(  n )}

1

 n }

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma  en  ambos  espacios    y  como  .  la  multiplicación  por  el  escalar  en  ambos 

casos. 

Demostración : 

a) Debemos analizar que se verifican las condiciones de la Propiedad 13.2.1:

i) Claramente   Núc(  f ) ⊆  V

i ) 0 ∈  Núc(  f )  porque   f (0 =

, por lo tanto   Núc(  f ) ≠ ∅

 V )

0

 V

 V  í i) Sean   v ∈  Núc(  f )  y   v ∈  Núc(  f ) , hay que ver que   v +  v ∈  Núc(  f ) 1

2

1

2

Como  f es  K- lineal:   f ( v +  v =  f v +  f v = 0 + 0 = 0

1

2 )

( 1)

( 2 )  V´  V´  V ív) Sean   k ∈  K,  v∈  Núc(  f ) , queremos ver que   k.  v ∈  Núc(  f ) Por la linealidad de  f  resulta   f ( k.  v) =  k.  f ( v) =  k.0 = 0

 V ´

 V ´

Por tanto  Núc(  f ) es subespacio de  V   sobre  K.  

b) Debemos analizar que se verifican las condiciones de la Propiedad

13.2.1:

i) Es obvio que   Img(  f ) ⊆  V í ) 0 ∈  Img(  f )  pues   f (0 =

, por lo tanto   Img(  f ) ≠ ∅  

 V )

0

 V ´

 V  í i)

Dados

 w ∈  Img(  f ) y   w ∈  Img(  f ) , 

queremos 

ver 

que 

1

2

 w +  w ∈  Im(  f ) : 

1

2

Como   w ∈  Img(  f ) y  w ∈  Img(  f ) ,  existen   v  y  v  en  V

tales  que 

1

2

1

2

 w =  f v  y     w =  f v

, luego   w +  w =  f v +  f v , pero  f es transforma-

1

2

( 1)

( 2 )

2

( 2 )

1

( 1)

ción  K- lineal,  así resulta   w +  w =  f v +  f v =  f v +  v  con   v  +  v  en  V

1

2

( 1)

( 2 )

( 1 2 )

1

2
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iv) Si   k ∈  K  y  w ∈  Img( f ), queremos ver que   k.  w∈  Img(  f ) Como   w∈  Img(  f ) , entonces hay algún   v   en  V  tal que   f ( v) =  w Consideremos   k.  w , se tiene entonces   k.  w =   k .  f ( v) =  f ( k .  v)  pues  f  es k-  lineal y además como   k .  v   es en  V ,  k.  w∈  Img(  f ) Es entonces que   Img(  f )  es un subespacio de  V ′  sobre  K. 

c) Se quiere probar que todo vector de la imagen de  f es combinación lineal

sobre  K de los vectores que son imagen por  f de los vectores de la base  B  de V. 

Sea   w∈  Img(  f ) , entonces hay algún   v   en  V  tal que   f ( v) =  w . 

Como  B es base de  V  sobre  K, para cualquier   v   en  V  existen escalares tales que 

 v =  h .  b + ........ +  h .  b . 

1 1

 n

 n

Por ser  f  transformación  K-lineal resulta 

 w =  f ( v) =  f ( h .  b + ........ +  h .  b =  h .  f b + ... +  h .  f b 1 1

 n

 n )

1

( 1 )

 n

(  n )

Por lo tanto   w∈{  f ( b ,........,  f b . 

1 )

(  n )}

Por otra parte si   u ∈{  f ( b ,........,  f b , existen elementos de  K tales 1 )

(  n )}

que: 

 u =  m .  f b

+  m .  f b

+ ... +  m .  f b

, que como  f   es transformación 

1

( 1)

2

( 2 )

 n

(  n )

 K- lineal, se puede expresar   u =  f ( m .  b +  m .  b + ... +  m .  b  y por lo 1 1

2

2

 n

 n )

tanto  u ∈  Img (  f )

♦
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La demostración de c) vale para todo espacio  V de dimensión finita  n > 0 sobre   K.  Además  el  conjunto  {  f ( b ,........,  f b  en general no es una base, 1 )

(  n )}

es sólo un conjunto de generadores de la imagen. 

EJEMPLO 14.1.9: 

Se ha visto que el espacio  2 = (

{ 1,0);(0, )

1 }  sobre R. 

Consideremos las proyecciones definidas en 14.1.6. En particular se obtiene 

 p

1,0

= 1, 0

1 ((

)) (

)

 p

0,1 = 0,0

1 ((

)) (

)

Luego,  Img(  p ) = 1, 0 , 0, 0 .  Pero  este  conjunto  no  puede  ser  una  base 1

(

{

) (

)}

porque es dependiente por estar  (0,0) . 

Para obtener una base se deben eliminar los vectores dependientes. 

En  este  caso  claramente  quedará  el  (1,0) y  {(1,0)}  que  es  una  base  de  la 

 Img(  p ) . 

1

En  general,  si  tenemos  los  vectores  generadores  de  un  espacio  vectorial  y 

deseamos obtener una base, deberemos eliminar los vectores  dependientes 

de ese conjunto. 

Por este hecho para espacios de dimensión finita la dimensión de la imagen 

es menor o igual que la dimensión del conjunto de partida. 

Sean  V  y  V´ espacios vectoriales sobre el cuerpo  K  y si   f : V 

→ V ′  es una 

transformación  K- lineal inyectiva se denomina monomorfismo. 

♦  PROPIEDAD 14.1.10 

Sean  V  y  V´ espacios vectoriales sobre el cuerpo  K  y sea   f : V 

→ V ′  una 

transformación  K−lineal. 

 f  es monomorfismo si y sólo si   Núc(  f ) = {0 V }
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Demostración: 

Simplificando la notación designaremos con  +  y  .  las operaciones de suma 

y producto por el escalar de manera igual en ambos espacios  V  y  V´. 

Sea   f  monomorfismo y supongamos   u ∈  Núc(  f ) . Por definición del núcleo y sus propiedades 

 f ( u) = 0   y    f  0

= 0    entonces  u = 0

pues   f  es monomorfismo. 

 V ´

(  V )  V´

 V

Luego   Núc(  f ) = {0 V }

Para  la recíproca,  sea   f ( u) =  f ( w) , como  V´  tiene la estructura de grupo: f ( u) −  f ( w) = 0 V´

Ya que   f es transformación  K- lineal: 

 f ( u −  w) = 0 . Por lo tanto   u −  w∈  Núc(  f ) = {0 V }

 V  Ĺuego   u −  w = 0 , y resulta que   u =  w . 

 V

Por lo tanto   f  es monomorfismo, ya que es inyectiva. 

♦

♦  PROPIEDAD 14.1.11 

Sean  V  y  V´ espacios vectoriales sobre el cuerpo  K. 

Sea   f : V 

→ V ′  un monomorfismo. 

Si   L = { v ,........,  v ⊆ V  y   L es libre (conjunto de vectores linealmente inde-1

 r }

pendientes sobre  K)  entonces  f ( L)  es libre en  V ′ . Siendo f (  L) = {  f ( v ,........,  f v

1 )

(  r )}

Demostración: 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y  V´. 
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Sea   k .  f v + ........ +  k .  f v = 0 . Debe probarse que:   k = ........ =  k = 0

1

( 1)

 r

(  r )  V´

1

 r

 K

0

=  k .  f v

+ ........ +  k .  f v

=  f k .  v + ........ +  k .  v

por  ser   f    una  trans-

 V ´

1

( 1)

 r

(  r )

( 1 1

 r

 r )

formación  K- lineal. 

Pero entonces   k .  v + ........ +  k .  v ∈  Núc f = 0

porque  f e s monomorfismo 

1

1

 r

 r

( ) {  V }

(propiedad 14.1.9) 

Luego   k .  v + ........ +  k .  v = 0

y como  { v ,........,  v  es libre sobre  K, resulta 

1

 r }

1

1

 r

 r

 V

que    k = ........ =  k = 0 . 

1

 r

 K

♦

Si   f  es un monomorfismo de  V en  V ′  y  la dimensión de  V es finita sobre  K, entonces   f  aplica bases del dominio en bases de la imagen de  f. 

EJEMPLO 14.1.12 

Sean  V  y  V´ espacios vectoriales sobre el cuerpo  K. 

Sea   f : V 

→ V ′  la función definida por   f ( u) = 0  para todo vector  u ∈  V

 V  És MUY fácil probar que  f  es transformación  K- lineal. 

Se denomina transformación nula. 

Hallemos su núcleo: claramente su núcleo es todo el espacio  V. ¿Sí? 

Justifique. 

EJEMPLO 14.1.13 

Sea la transformación R-lineal   f :

[ x]

2  x  2



→

definida como: 

2

  a

0



 f ( a +  a .  x)

0

= 



0

1

 − a

 a −  a 

1

0

1
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Puede comprobar que efectivamente es una transformación R-lineal. 

Por simplificación notaremos por  +  y  .  las operaciones de suma y producto 

por el escalar de manera igual en ambos espacios vectoriales. 



 0 0

Calcularemos   Núc (  f ) =   p (  x)∈

 x :  f p x

= 

  

2 [

]

( ( ))



 0 0 

Sea   p (  x) =  a +  a .  x∈

[ x] , así 

0

1

2

  a

0

  0 0

 f (  p(  x)) =  f ( a +  a .  x)

0

= 

 = 



0

1

 − a

 a −  a   0 0 

1

0

1

Por lo cual 

 a = 0

0



−  a = 0   entonces   p x = 0 + 0.  x  es decir el vector nulo de 

[ x] . 

1

( )

2



 a −  a = 0

0

1



Por lo tanto  f  es un monomorfismo. 

Calculemos la   Img(  f )  ={

2×2

 A∈

: (∃  p (  x) ) (  p (  x)∈

 x ∧  f

 p x

=  A

2 [

]

( ( ))

}

Usando 14.1.8, dada  B una base de 

 x  sobre R, por ejemplo   B = {1+  x, }

3 . 

2 [

]

Es base pues  dim

 x = 2  y   B = {1 +  x, }

3  es libre sobre R . 

2 [ ]



 1

0   3 0 



Luego la imagen se genera con:  f (  B) = {  f (1+  x),  f (3)} = 

,

  

 1

−

0



  0 3

Este  conjunto  genera  la  imagen  de   f     sobre  R  y  es  base  de  la  imagen  por 



 1

0   3

0 



14.1.11 pues   f  es un monomorfismo   Img (  f ) = 

 , 

  

 1

−

0



  0 3

En este ejemplo se cumple que 

dim (  Img (  f )) = 2

dim (  Núc (  f )) = 0

Por lo tanto: 

dim (  Img (  f )) + dim (  Núc (  f )) = dim (

 x  

2 [ ])

En general se cumple, como en este caso,  que si  V  y  V´ espacios vectoriales sobre el cuerpo  K  y   f : V 

→ V ′  es una transformación  K-lineal con la di-

mensión de  V finita sobre  K  vale que      
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dim ( Img (  f )) + dim (  Núc (  f )) = dim  V . 

 K

 K

 K (

)

Ya se probará!!! 

EJEMPLO 14.1.14 

La derivación   d :

 x 

→

 x  es una transformación R- lineal. 

4 [

]

[ ]

Anotaremos   d (  p(  x)) =  p′(  x)  

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios. 

Para esta transformación lineal calcularemos el 

 Núc (  d ) = {  p (  x)∈

 x :  d p x

= 0  x

para   p(  x)

2

3

=  a +  a .  x +  a .  x +  a .  x

4 [

]

( ( ))

( )}

0

1

2

3

Aplicando las definiciones de  d  y el núcleo es 

 Núc (  d (  p(  x))

2

) =  a + 2.  a .  x + 3.  a .  x = 0  x  

1

2

3

( )

Entonces por igualdad de polinomios debe ser:

 a = 0

1

2.  a = 0   a = 0

2

2

3.  a = 0   a = 0

3

3

∴ a =  a =  a = 0

1

2

3

Luego   p(  x) =  a . Cualquier sea el   a ∈  de  p( x). 

0

0

Esta transformación obviamente no es un monomorfismo, pues en el núcleo 

de  d  no está solamente el polinomio nulo. Y puede ser generado sobre R por 

cualquier  real  no  nulo,  por  ejemplo   Núc( d) = { }

1 .  Desde  ya  que  { }

1 es  una 

base sobre R del subespacio de los polinomios constantes de 

 x  

4 [

]

Busquemos la imagen de  d.  Consideremos una base de 

 x  sobre R. 

4 [

]

Por  ejemplo   B = {

2

3

1,1 +  x,1 −  x ,  x + }

 x ,    es  base  sobre  R  porque  está  formado 

por cuatro vectores, todos son de distinto grado. Luego es libre y generador 

de 

 x , por lo tanto es una base de 

 x  sobre R. 

4 [

]

4 [

]

Calculemos   d ( B) : 
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 d (  B) = { d ( )  d ( +  x)  d (

2

−  x )  d ( 3

 x +  x)} = {

2

1 , 

1

, 

1

, 

0,1, 2

− . , 

 x  3 x + }

1

Está claro que no es una base (está el 0( x) = 0). Si eliminamos el 0, se obtie-

ne: 

 B = {

2

1, −2.  x,3 x + }

1   que  es  un  conjunto  de  elementos  linealmente  indepen-

 I

dientes (pues todos los polinomios tiene distinto grado) y además generador 

por 14.1.8, por ello forman una base de la imagen. 

Vemos que también  se verifica: 

dim (  Img (  d )) + dim (  Núc (  d )) = dim (

 x  ya que  dim (  Img ( d )) = 3, 

4 [ ])

dim (  Núc ( d )) = 1 y  dim (

 x

= 4  

4 [ ])

♦  TEOREMA 14.1.15 

Dados   V  y  V´ espacios vectoriales sobre el cuerpo  K. Con  dim  V =  n < ∞  

 K

Sea   f : V 

→ V ′  una transformación  K−lineal. Entonces: 

dim  V = dim (  Núc (  f )) + dim

 Img f



 K

 K

 K (

( ))

Demostración: 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y  V´. 

Por hipótesis   dim  V =  n

 K

Analizaremos dos casos: 

1) El  Núc ( f ) no tiene base. 

Si el núcleo no tiene base, significa que   Núc(  f ) = {0 . 

 V }

Por lo tanto  f  es un monomorfismo. 

Si  B es una base de  V, como  dim  V =  n , entonces   B =  n . 

 K

Y   f ( B) es una base de   Img (  f )  por las propiedades 14.1.8 y 14.1.11. 

Así   f ( B) =  n  y entonces   f (  B) es un conjunto de   n vectores linealmente independientes sobre  K. 

Luego, si   Núc(  f ) = {0 , por definición  dim  Núc f =  y se cumple: K (

( )) 0

 V }
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dim  V = dim (  Núc (  f )) + dim (  Img(  f )  pues   n = 0 +  n ; por lo tanto el teo-K

 K

 K

)

rema vale. 

2) El  Núc ( f )  tiene base. 

Por lo cual   Núc(  f ) ≠ {0 , sea   B  una base de   Núc(  f ) sobre  K. 

 V }

 N

Por ser el núcleo de  f  un subespacio de  V sobre  K, resulta que 

dim

 Núc f

≤  n . 

 K (

( ))

Por lo cual consideremos   B =  r ≤  n

 N

Analicemos ahora: 

i) Si   r =  n . 

Se tiene que   Núc(  f ) =  V . 

Por lo tanto  f  es la transformación nula. 

Entonces   Img( f ) = {0  y resulta por definición que dim  Img f =  

 K (

( )) 0

 V ′ }

Luego se tiene:

dim  V = dim (  Núc(  f )) + dim

 Im f

ya que   n =  r + 0 ; y por lo tanto 

 K

 K

 K (

( ))

el teorema vale. 

i ) Si   r <  n .  Sea  B = { b ,........,  b  una base del   Núc(  f )  sobre  K.  

 N

1

 r }

Luego existe  B  base de  V sobre  K  construida como: 

 B =  B ∪ { b ,  b ,........,  b

(Por 13.5.12) 

 N

 r  1

+

 r+2

 n }

De 14.1.8    f ( B)  genera   Img(  f ) . 

Por propiedades de la imagen por una función: 

 f (  B) =  f (  B ) ∪  f ({ b ,  b ,........,  b N

 r  1

+

 r +2

 n })

Claramente   f ( b ) = 0 , para todos los   b ∈  B  por definición del núcleo. 

 i

 i

 N

Así   f {

(  b ,  b ,........,  b  es el conjunto generador efectivo  de la 

 r  1

+

 r +2

 n })

 Img(  f )  

Probaremos  que es base, es  decir que 

 f {

(  b ,  b ,........,  b ={  f ( b ,  f b ,........,  f b  es un conjunto r  1

+ )

(  r+2 )

(  n )}

 r  1

+

 r +2

 n })

de vectores linealmente independiente sobre  K. 
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Ya  sabemos  que  generan  la  imagen  de  f.  Analicemos que son  libres 

sobre  K.  

Sea   k .  f b

+  k .  f b

+ ......... +  k

.  f b

= 0

. 

1

(  r  1+) 2 (  r+2 )

 n− r

(  n )  V′

Hay que demostrar que los escalares  kj para 1≤  j ≤  n −  r  son el 0 K. 

Como  f es transformación  K- lineal resulta: 

0

= 

′ =  k .  f

 b

+  k .  f b

+ .... +  k

.  f b

 V

1

(  r  1+) 2 (  r+2 )

 n− r

(  n )

=   f ( k .  b +  k .  b +  k .  b

1

 r  1

+

2

 r +2

 n− r

 n )

Por lo tanto:   k .  b

+  k .  b

+  k

.  b ∈  Núc (  f )  

1

 r  1

+

2

 r +2

 n− r

 n

Luego,  se puede escribir como combinación lineal de 

 B = { b ,........,  b

 N

1

 r }

Es decir existen escalares   t  para 1≤  i ≤  r  y 

 i

 k .  b

+  k .  b

+  k

.  b =   t .  b + ....... +  t .  b , 

1

 r  1

+

2

 r +2

 n− r

 n

1 1

 r

 r

operando en el espacio  V sobre  K  resulta 

 t .  b + ....... +  t .  b −  k .  b

−  k .  b

−  k

.  b = 0

1 1

 r

 r

1

 r  1

+

2

 r +2

 n− r

 n

 V

Luego como  B es base de  V sobre  K, vale que 

 t = 0    con 1 ≤  i ≤  r

 i

 K

 k = 0

con  r + 1 ≤  j ≤  n −  r

 j

 K

De donde {  f ( b

,  f b

,........,  f b

es base de   Img(  f )  sobre  K.  

 r  1

+ )

(  r+2 )

(  n )}

Por lo tanto,  dim

 Núc f

=  r   y  dim (  Img(  f ) =  n −  r

 K

)

 K (

( ))

Finalmente se tiene: 

dim  V = dim (  Núc (  f )) + dim (  Img(  f )  ya que   n =  r + ( n −  r ) ; y por lo K

 K

 K

)

tanto el teorema vale. 

♦

Otro caso particular de transformación lineal es el endomorfismo, que es una 

transformación  K-lineal de  V en  V. Es decir, el espacio de salida y de l egada es el mismo, de allí lo de “endo” 

¡Ah! 
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Se define además el conjunto   End ( V ) = {  f :  f  es un endomorfismo de  V  

 K

}

Hay varios ejemplos interesantes, ya vimos algunos. 

EJEMPLO 14.1.16 

En ejemplos anteriores se definió y trabajó con las transformaciones 

2

2

 p :



→

,  así   p  es un endomorfismo de  2  

1

1

2

2

 p :



→

,  también   p  es un endomorfismo de  2  

2

2

Por lo ello   p ∈  End ( 2  y   p ∈  End ( 2

2

)

1

)

Más definiciones

•Una transformación  K – lineal   f : V 

→ V ′ ,suryectiva,  f es un epimorfismo . 

•Si la transformación  K-lineal  f : V 

→ V ′ , biyectiva,  f es un isomorfismo . 

•Un endomorfismo  f   de  V  que además es un monomorfismo,  f  es un automorfismo. 

Se define el conjunto 

 Aut

 V =  f

 f

 V

 V =

 K (

) { :  es un monomorfismo de   en  }

= {  f :  f  es una transformación  K - lineal inyectiva de  V  en  V }

Las propiedades de estos tipos de transformaciones lineales tienen interesan-

tes consecuencias. 

Estas categorías de transformaciones  K-lineales existen, ya se vieron ejem-

plos y se verán otros. 

Dado un espacio vectorial  V sobre  K.  Una función que resulta muy sencil o de probar que pertenece a todas estas categorías es  id : V →  V . 

 V
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♦  PROPIEDAD 14.1.17 

Sea  V  un espacio vectorial de dimensión finita sobre  K ,  si   f  es un automorfismo entonces: 

dim  V = dim ( Img(  f )

 K

 K

)

Y además  f  es epimorfismo. 

Demostración: 

Como  V es de dimensión finita sobre  K, se cumple que: 

dim  V = dim (  Núc (  f )) + dim (  Img(  f ) ;  como     f    es  un  automorfismo,    por K

 K

 K

)

tanto  f  es inyectiva y luego  dim ( Núc(  f )) = 0 . 

 K

Así  dim  V = dim  Im f

. 

 K

 K (

( ))

Pero además como   f  es un automorfismo, es decir que va de  V en  V, por lo cual   Img( f ) ⊆  V   .  Como  la  imagen  es  subespacio  de   V  resulta  que V =  Img(  f )   (13.5.13), y  por  lo tanto  f   es suryectiva.  Luego  f    es también  un epimorfismo. 

♦

♦  PROPIEDAD 14.1.18 

Sea  V  un espacio vectorial de dimensión finita sobre  K  y si   f  es un endomorfismo, son equivalentes: 

a)  f  es monomorfismo

b)  f  es epimorfismo

c)  f  es isomorfismo

Demostración: 

Para hacer la demostración haremos una “cadena de implicaciones”. 

Veremos que si vale a) entonces vale b); que si vale b) entonces vale c) y por 

último si vale c) entonces vale a). Así se cierra el ciclo, lo que las hace a to-

das equivalentes…. 

Si  f es monomorfismo, entonces   Núc(  f ) = {0  por la propiedad 14.1.10 

 V }
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Luego  dim  V = dim ( Img(  f )  por la propiedad 14.1.16  y así   V =  Img(  f ) . 

 K

 K

)

Por lo tanto  f es un epimorfismo. 

Si  f es epimorfismo,  dim  V = dim ( Img(  f ) . Luego por 14.1.15, K

 K

)

 Núc(  f ) = {0

,así    f  resulta ser inyectiva y por lo tanto  f  es un isomorfismo. 

 V }

Si  f  es un isomorfismo se cumple trivialmente que  f es monomorfismo. 

♦

EJERCICIO 14.1.19 

Sean ( V, ⊕), ( V’, ) y ( V’’,   ) espacios vectoriales sobre el cuerpo conmutativo  K.  Demostrar:  

a) Si   f : V 

→ V ′ es una transformación  K-lineal biyectiva (isomorfismo) en-

tonces

1

 f −  es un isomorfismo. 

b) Si   f : V 

→ V ′ y   g : V ' 

→ V '  son transformaciones  K−lineales entonces

 g

 f : V →  V '  es transformación  K-lineal. 

2. Homomorfismos

En este punto se harán  nuevas abstracciones,  que no son difíciles de com-

prender y  sus consecuencias son interesantes e importantes. 

Sean ( V, ⊕), ( V’, ) espacios vectoriales sobre un cuerpo conmutativo  K. 

Al conjunto de todas las transformaciones lineales de  V  en   V ′ se lo anota Hom ( V ,  V ′  . 

 K

)

EJERCICIO 14.2.1 

Sean ( V, ⊕), ( V’, ) espacios vectoriales sobre un cuerpo conmutativo  K. 

Si   f : V 

→ V ′ y   g : V 

→ V ′ son transformaciones  K-lineales, entonces: 

 f +  g  es una transformación  K-lineal, y cualquiera sea   k ∈  K  entonces   k.  f es transformación  K- lineal. 

Se definen: (i) 

(  f +  g) ( v) =  f ( v)  g ( v)

para  v ∈ V
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(i )  ( k.  f )( v) =  k ∗  f ( v)

para  v∈ V , siendo  ∗ el producto por el escalar en  V’ 

Por  el  ejercicio  14.2.  1    resulta  que   Hom ( V ,  V ′   es  un   K−espacio  vectorial K

)

sobre  K. Pues  ( Hom ( V ,  V′),+  es un grupo conmutativo por la definición (i), K

)

donde el elemento neutro es la transformación nula. Y el producto por el esca-

lar está definido en (i ). El lector puede verificar estos hechos. 

EJERCICIO 14.2.2 

Definir un endomorfismo de 

3 3

×  que no sea automorfismo. 

5

EJEMPLO 14.2.3 

Demostrar que 

[ x]  es isomorfo a 

3 . 

3

La demostración puede hacerse verificando que para cualquier base 

 B = { b ,  b ,  b  de  

[ x]  sobre R , si se define   f  por: 

1

2

3 }

3

 f ( v) =  f ( a ⊗  b ⊕  a ⊗  b ⊕  a ⊗  b =  a ,  a ,  a  claramente es un 1

1

2

2

3

3 )

( 1 2 3 )

isomorfismo (pues las coordenadas de un vector en una base son únicas) o 

como Corolario del siguiente teorema. 

♦  TEOREMA 14.2.4: 

Sean  V  y   V ′  espacios vectoriales sobre  K.  

Sea   B = { b ,........,  b  una base de  V  sobre  K.  Sea   g :  B → V′  una función. 

1

 n }

Entonces existe una única transformación lineal   f : V 

→ V ′  tal que   f

=  g . 

 B

Dónde   f  quiere decir  f  restringida a  B 

 B

Además: i)   f  es monomorfismo si y sólo si  g  es inyectiva y   g ( B)  es libre. 

i )  f  es epimorfismo si y sólo si   g ( B)  genera  V ′

Demostración: 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y  V´. 
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Si   g  es una función de  B  en   V ′ ; para ver la existencia de la transformación lineal    f  basta con ver como se define para cada vector   v ∈ V  y probar sus propiedades. 

Cualquiera 

sea 

 v ∈ V , 

se 

escribe 

de 

manera 

única 

como 

 v =  k .  b + ........ +  k .  b . 

1 1

 n

 n

Definimos entonces  f  por: 

 f ( v) =  k .  g b + ........ +  k .  g b

1

( 1)

 n

(  n )

No hay  ambigüedad  pues   g  es función  y  por ser  B   base  de   V   sobre   K, los k ,  1  ≤   i  ≤   , 

 n  son únicos, por lo tanto   f es función. 

 i

Por lo tanto todo vector   v ∈ V  tiene un único correspondiente. 

Veamos ahora que  f  es transformación lineal. 

Sean vectores arbitrarios del espacio  V: 

 u =  l . 1

 b + ........ +  l .  b

1

 n

 n

 w =  h . 1

 b + ........ +  h .  b

1

 n

 n

 u +  w = ( l +  h .  b + ........ +  l +  h .  b 1

1 )

1

(  n

 n )

 n

 f ( u +  w ) =  f ( ( l +  h .  b + ........ +  l +  h .  b ) =

1

1 )

1

(  n

 n )

 n

=  ( l +  h .  g(  b ) + ........ +  l +  h .  g(  b  ) 1

1 )

1

(  n

 n )

 n

Por definición de  f.  

Si se aplican las propiedades de las operaciones del espacio  V ŕesulta igual 

a 

( l .  g b + ........+  l .  g b +  h .  g b + ........+  h .  g b =

1

( 1)

 n

(  n )) ( 1 ( 1 )

 n

(  n ))

=  f ( u) +  f ( w)  y nuevamente por definición de  f . 

Considerando   k ∈  K  y   v ∈ V

 f ( k.  u ) =  f (  k.( l .  b + ........ +  l .  b ) =

1 1

 n

 n )

=  f ( ( k.  l .  b + ........ +  k.  l .  b ) por las propiedades del espacio  V

1 1

 n

 n )

Y por la definición de  f  y las propiedades de  V  ŕesulta:

 k.  l .  g b

+ ........ +  k.  l .  g b

=  k.  l .  g b

+ ........ +  l .  g b

=  k.  f u

1

( 1)

 n

(  n )

( 1 ( 1)

 n

(  n ))

( )
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Veamos ahora que   f =  g : 

 B

Esto significa que ambas funciones coinciden en los vectores de  B.  

Dado    b ∈  B,  1 ≤  i ≤  n . Luego se tiene la única combinación: i

 b = 0.  b + ...... + 1.  b + ...... + 0.  b  . 

 i

1

 i

 n

Es decir la combinación tiene el 1 de  K afectando al  b i  y 0 de  K afectando al resto de los vectores de la base. 

Por la definición de  f: 

 f ( b ) = 0.  g ( b + ...... + 1.  g b + ...... + 0.  g b =  g b i

1 )

(  i )

(  n )

(  i )

Veamos ahora que  f  es única (con la propiedad de extender a  g): 

Supongamos que existe   h : V 

→ V ′  transformación lineal tal que:   h

=  g

 B

Probaremos que  h = f 

Dos funciones son iguales si  tienen igual dominio, codominio (cosa que se da 

por la definición de ambas) y cuando coinciden para todo elemento del domi-

nio. 

Sea   v ∈ V : 

 f ( v) =  k .  g b + ........ +  k .  g b  por definición de  f 1

( 1)

 n

(  n )

=  k .  h b

+ ........ +  k .  h b

 g  y  h coinciden sobre B

1

( 1)

 n

(  n )

=  h ( v)  por ser  h transformación  K -lineal

Por lo tanto:  h = f,  es decir que  f   es única . 

i)  f  es monomorfismo si y sólo si  g  es inyectiva y   g ( B)  es libre: Si  f  es monomorfismo,  f  es inyectiva. 

Entonces, vectores distintos del dominio ( V ) tienen por correspondientes vec-

tores distintos. En particular para los vectores de  B ⊆  V  donde  f  y  g coinciden. 

Luego  g  es inyectiva. 

 g (  B) =  f (  B) =  f (  B) . 

 B

Como   B    es  libre,  f (  B)  es  libre  sobre   K  por  la  propiedad  14.1.11.y  por  lo tanto   g ( B) es libre. 
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Si  g  es inyectiva y   g ( B)  es libre, queremos ver que  f  es monomorfismo. 

Calcularemos el   Núc(  f ) y se analizará si   Núc(  f ) = {0 V }

Sea   w∈ V , tal que   w∈  Núc (  f ) , entonces   f ( w) = 0 V′

Como  B es base,  w =  l .  b + ........ +  l .  b , y por la definición de  f 1 1

 n

 n

 f ( w) =  l .  g b + ........ +  l .  g b = 0 . 

1

( 1)

 n

(  n )  V′

Pero como   g ( B)  es libre sobre  K,  entonces   l = ........ =  l = 0 . 

1

 n

Por lo tanto   w = 0  y así   Núc(  f ) = {0 , luego   f  es un monomorfismo. 

 V }

 V

i )  f  es epimorfismo si y sólo si   g ( B)  genera  V ′

Si  f  es epimorfismo, entonces   Img(  f ) =  V ′  

Y por la propiedad 14.1.8 es    Img(  f ) =  f ( B) =  g (  B) . Ya que  f  y  g coinciden sobre  B. 

Luego   g ( B) =  V ′  por ello    g ( B)  genera  V ′ sobre  K.  

Si   g ( B)  genera  V ′  sobre  K,  g ( B) =  V ′ y entonces   f ( B) =  V ′ (  f  y  g coinciden sobre  B) 

Por lo tanto por 14.1.8,  Img(  f ) =  V ′  y   f  resulta ser un epimorfismo. 

♦

Sean  V  y  V´ espacios vectoriales sobre  K. Si  V  es de dimensión finita sobre K,    este  teorema  permite  definir  transformaciones     K-lineales  desde     V  en cualquier  V ′  conociendo el valor de una función sobre una base  B de  V. 

EJERCICIO 14.2.5 

COROLARIO:  Dada   B = { b ,........,  b

base  de   V   sobre   K 

y  sean 

1

 n }

 w ,  w ,......,  w   vectores  arbitrarios  de un  espacio  vectorial  W  sobre  K,  existe 1

2

 n

una única transformación lineal   f : V 

→ W  tal que   f ( b =  w , 1≤  i ≤  n . 

 i )

 i

Luego,  para  conocer  un  homomorfismo  basta  conocerlo  en  una  base  de  un 

espacio dominio de dimensión finita sobre  K.  
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EJEMPLO 14.2.6 

Sean los R-espacios  3  y  2  y sean los vectores  (1,0, )

1 ;   (0,1, )

1  y  (2,0,0) de 

3  que son base. Se define 

 g ((1,0, )

1 ) = (3, 4)

 g ((0,1, )

1 ) = (−2,7)  

 g ((2,0,0)) = (0, )

1

Veamos que los vectores  (1,0, )

1 ;   (0,1, )

1  y  (2,0, 0)  forman una base de  3 : 

1

0

1

0 1

0

1

1 = 2. 

= 2.(− )

1 = −2 ≠ 0  

1 1

2

0

0

Como son linealmente independientes, y son tres, entonces: 

Si designamos por   B = { b ,  b ,  b = 1,0,1 ,  0,1,1 ,  2,0,0  es una base de 1

2

3 }

(

{

) (

) (

)}

3 . 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y  V´. 

Y cualquier vector de  3  se puede escribir como: 

(  x,  y,  z) =  k .  b +  k .  b +  k .  b , luego aplicando el teorema 14.2.4, se define 1

1

2

2

3

3

 f ((  x,  y,  z)) =  k .  g b +  k .  g b +  k .  g b . 

1

( 1) 2 ( 2 ) 3 ( 3 )

Los  valores  de   g ( b

se  conocen  y  falta  conocer  los  valores  de 

 i )

 k  para 1 ≤  i ≤ 3 . 

 i

(  x,  y,  z) =  k . 1,0,1 +  k . 0,1,1 +  k . 2,0,0 . 

1 (

)

2 (

)

3 (

)

 x =  k

+ 2 .  k

1

3

 y =  k  2

 z =  k

+  k

=  k

+  y

Operando en el espacio se tiene que: 

1

2

1

 k

=  z −  y

1

 x =  z −  y +  y + 2 .  k  3

 x +  y −  z =  k  3

2

Por las operaciones de  3  se tiene: 
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  x +  y −  z 

 f (  x,  y,  z) = (  z −  y).(3, 4) + . 

 y ( −2, 7) +

.(0, )

1 =







2





 x

 y

 z 

= 3 z − 3 y − 2  y, 4 z − 4  y + 7  y +

+

−

=







2

2

2 



 x

7

7 

 f (  x,  y,  z) =  −5 y − 3 z, +

 y +

 z 



2

2

2 

Analicemos si  f es un monomorfismo. 

La  g  es inyectiva  y genera  2 . Pero   g ( B)  no es libre sobre R, pues son tres vectores en un espacio de dimensión 2 sobre R. 

Luego,  f  no es inyectiva porque: 

(  Img f ) +

(  Núc(  f )) =

( 3

dim

( )

dim

dim

)

dim (  Núc (  f )) = 3 − dim (  Img(  f )) = 3 − 2 = 1 ≠ 0

Es decir  f  no es un monomorfismo. 

Calculemos el   Núc(  f ) . Queremos ver cuando: 

 5

−  y − 3 z = 0

 x  7 7

+

 y +

 z =



0

 2 2

2

Resolviendo se llega a: 

5

 z =

 y

3

53

 x = −

 y

3

 53

5 

 −

 y,  y, 

 y  ∈  Núc (  f )  por lo cual 



3

3 

 53

5 

. 

 y  −

, 1, ∈  Núc (  f )



3

3 





Es decir: 

53

5

 Núc (  f ) =  −



,1,  . Confirmándose que:  dim (  Núc (  f )) = 1. 



3

3 
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EJEMPLO 14.2.7 

Definir una transformación 

- lineal 

2×2

 f :



→

 x  

3

3 [ ]

3

3



 1 0   0 1   0 0   0 0 

Sean   B = 

;

;

;

  y   B = {

2

1,  1 + 1.  x,  1 + 2.  x + 1.  x

2

}

1

 0 0



  0 0   1 0   0 1 

bases de  2×2  y  

 x  sobre 

respectivamente. 

3

3

[ ]

3

3

Por simplificación a los elementos de 

no se los anotó como clase de equi-

3

valencia, pero no perder la noción que así son. Esto es 0 = 0,1 =1  y  2 = 2 . 

Ídem para lo que se usará más abajo como  a, b, c y  d. 

Se  sabe  que  si  la  transformación  se  define  sobre  una  base  se  conoce  para 

cualquier vector, extendiéndola por linealidad… (Teorema anterior). 

Por lo tanto se definirá una  f de modo que: 

  1 0

  0 1

2

 f  

  = 1 

 f  

  = 1 + 2.  x + 1.  x

  0 0 

  0 0 

  0 0

  0 0

 f  

  = 1 + 1.  x 

 f  

  = 0

  1 0 

  0 1  

De hecho  f  NO es única. 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y  V´. 

La forma explícita de   f  es, usando las operaciones definidas en ambos espa-

cios vectoriales: 

   a b 

 1 0 

 0 1 

  0 0 

 0 0

 f  

  = . 

 a f  

  + . 

 b f  

  + . 

 c f  

  +  d.  f  

  =

   c d  

  0 0  

 0 0  

 1 0  

  0 1  

= . 

 a  1 + . 

 b (

2

1 + 2 x +  x ) + . 

 c (1 +  x) +  d.0 = (  a +  b +  c).1 + (2 b +  c) 2

.  x + . 

 b x

Claramente es   Img(  f ) =  f (  B =  B =

 x  

1 )

2

3 [ ]

3

Para el   Núc(  f ) , que por definición es 



  a b 

   a b 



 Núc (  f )

2×2

= 

 ∈

:  f  

 = 0 , es decir: 

3



  c d





   c d 


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   a b 

 f  

  =  a +  b (

2

+

 x +

 x ) +  c ( +  x) +  d = ( a +  b +  c) + (  b +  c) 2

.1

. 1

2. 

1. 

. 1 1. 

.0

2. 

.  x + . 

 b x = 0

   c d  

Que por igualdad de polinomios, equivale a: 

2.0 +  c = 0



 a +  b +  c = 0

 c = 0





2 b +  c = 0

  a + 0 + 0 = 0





 b = 0

 a = 0

  d   cualquiera





  a b 



 0 0 

 0 0

Así,  Núc(  f ) = 

 :  a =  b =  c = 0  y como  

 =  d.

 . 

  c d







 0  d 

 0 1 



 0 0

Por lo que resulta:   Núc(  f ) = 

  . 

 0 1





Observar que por cómo hemos definido a  f,  es un epimorfismo y claramente 

como se debe cumplir:  dim

( Img(  f )) + dim

( Núc (  f ))

2×2

= dim

3

3

3 (

3

)

Y efectivamente se cumple que: 

 dim

( Img(  f )) + dim

( Núc (  f ))

2×2

= 3 + 1 = dim

3

3

3 (

3

)

¿Podría haberse definido una transformación 

- lineal 

3

2×2

 f :



→

 x  que fuera isomorfismo?? 

3

3 [ ]

3

¿¿?? 

EJERCICIO 14.2.8:  

Hallar 

una 

transformación 

C-lineal 

 f :

[ x]

6



→

tal 

que 

4

 Núc (  f ) = {

2

 x −1,  x }  

  Una relación importante

Dos  espacios  vectoriales     V   y     V ′ sobre   K se  dicen  isomorfos  si  existe un isomorfismo entre ellos. 

Si dos espacios son isomorfos lo anotaremos  V ≈ V ′ , que se lee los espacios 

 V y  Vśon isomorfos. 
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Sea   f : V 

→ V ′   un       f    isomorfismo  entre  los  espacios  vectoriales     V   y V ′ sobre  K ,  si  V  y   V ′  son de dimensión finita sobre  K, entonces: dim  V = dim ( Img(  f )) = dim  V ′

 K

 K

 K

Por la propiedad 14.1.15. 

 f

En algunas oportunidades se anota  V ≈ V ′ , para indicar cuál es el isomorfismo entre los espacios. 

♦  COROLARIO 14.2.9  

Sean  V y  V´ espacios vectoriales sobre un cuerpo  K. 

 V

 V ′  es una relación de equivalencia dentro del conjunto de espacios vecto-

riales sobre  K. 

Demostración: 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y  V´. 

i) Es reflexiva: ¿es  V

 V ?. 

Existe   id   que  es  una  transformación   K-  lineal  biyectiva.  La  demostración V

queda como ejercicio. 

Bueno… 

i ) Es simétrica: ¿Si  V

 V ′  entonces  V ′

 V ? 

Si  V

 V ′ , entonces existe    f : V 

→ V ′  tal que  f  es un isomorfismo y por lo 

tanto  por  ser   f 

biyectiva  su  función  inversa  también  es  biyectiva 

1

 f − : V ′ 

→ V  que es biyectiva. 

Además 

1

 f −  es una transformación  K- lineal: 

1

 f − ( w

 w )

1

 f −

+

=

 f u

+  f u

, porque 

1

 f −  es biyectiva y entonces existen 

1

2

( ( 1) ( 2 ))

 u  y   u  tales que:   w =  f u

y    w =  f u

. 

1

( 1)

2

( 2 )

1

2
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Como  f  es transformación lineal resulta: 

1

 f − (  f ( u )  f ( u ))

1

 f − (  f ( u

 u ))

1

 u

 u

 f − ( w )

1

 f −

+

=

+

=

+

=

+

 w

1

2

1

2

1

2

1

( 2 )

Luego: 

1

 f − ( w

 w )

1

 f − ( w )

1

 f −

+

=

+

 w

1

2

1

( 2 )

Queda como ejercicio, comprobar que 

1

 f − ( k w)

1

. 

 k.  f −

=

( w)

Luego 

1

 f −  es  K-lineal y por lo tanto la relación de isomorfismo es simétrica. 

(es la demostración de 14.1.19). 

i i) Es transitiva:  ¿Si  V

 V ′  y  V ′

 V ′   entonces  V

 V ′ ? 

Si  V

 V ′ , existe  f : V 

→ V ′  y   f  es un isomorfismo  y si  V ′

 V ′ , existe 

 g : V ′ 

→ V ′  y   g  es un isomorfismo. 

Luego existe   g f : V 

→ V ′  que es una composición de biyectivas y por eso 

resulta   g f  biyectiva. Por 14.1.19 es una transformación  K-lineal. 

Luego, la relación es transitiva. 

Por  las  tres  propiedades  verificadas,  la  relación  de  isomorfismo  entre  espa-

cios vectoriales es una relación de equivalencia. 

♦

♦  COROLARIO 14.2.10  

Todo espacio  V  de dimensión  n sobre  K es isomorfo a   n

 K . 

Demostración: 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios  V  y   n

 K . 

Sean   B = { b ,........,  b  una base de  V sobre  K  y   B′ ={ e ,........,  e  la base ca-1

 n }

1

 n }

nónica de   n

 K  sobre  K. 
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Se  define   f  sobre  la  base  y  luego  se  extiende por  linealidad  por  el  teorema 14.2.4:   f ( b =  e , con 1≤  i ≤  n  y se extiende luego como transformación lineal i )

 i

para cualquier   v =  k . 1

 b + ........ +  k .  b  de  V: 

1

 n

 n

 f ( v) =  k .  f b + ........ +  k .  f b =  k .  e + ........ +  k .  e =

1

( 1)

 n

(  n ) 1 1

 n

 n

= ( k ,........,  k


1

 n )

Y por el mismo teorema resulta un isomorfismo. 

♦

EJEMPLO 14.2.11 

a) Sean

2 2

 V

×

=

, como C-espacio, así la 

2×2

dim

= 4  y como 

4

dim

= 4 , 

resulta que  2×2

4 . Es decir ambos espacios son isomorfos. 

b) También resulta  2

2 1

×

1×2 , por lo que es equivalente pensar en 

  a 

( a,  b) , en     o en  ( a b) , según sea conveniente. 

  b 

EJEMPLO 14.2.12 

Definir un isomorfismo entre  2×2  y  4  ambos como R-espacios. 



 1 0

 0 1

 0 0

 0 0

Sean   B =  b = 

;  b = 

;  b = 

;  b = 

  y 

1

1

2

3

4



 0 0 

 0 0

 1 0

 0 1 

 B =  e ,  e ,  e ,  e

las bases canónicas sobre R de ambos espacios respecti-

2

{ 1 2 3 4}

vamente. 

Se define   g ( b =  e  que es  inyectiva para 1  i  4 ; además así definida resul-i )

 i

ta   g ( B)   libre. Y como   g ( B =  B  genera a  4  sobre  , por lo tanto, la trans-1 )

2

formación lineal asociada  f  es un isomorfismo. 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios vectoriales. 

Veamos ahora cuánto vale  f  : 

  a b 

 1 0

 0 1 

 0 0 

 0 0 



 = . 

 a 

 + . 

 b 

 + . 

 c 

 +  d.



  c d 

 0 0 

 0 0 

 1 0 

 0 1 
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   a b 

 f  

  = . 

 a g ( b + . 

 b g b

+ . 

 c g b

+  d.  g b

=

1 )

( 2 )

( 3 )

( 4 )

   c d  

= . 

 a e + . 

 b e + . 

 c e +  d.  e = ( a,  b,  c,  d )

1

2

3

4

Si se define: 



 g ( b =  e

1 )

2 

 g ( b =  e

2 )

4 

 claramente  g es distinta que  g, por lo cual genera otra función, digamos  f . 

 g ( b =  e 

3 )

1 

 g ( b =  e

4 )

4 



Además no resultará isomorfismo. 

La forma explícita resulta: 

   a b 

 f  

  = . 

 a g ( b + . 

 b g b

+ . 

 c g b

+  d.  g b

=

1 )

( 2 )

( 3 )

( 4 )

   c d  

= . 

 a e + . 

 b e + . 

 c e +  d.  e = ( c,  a, 0,  b +  d )

2

4

1

4

El teorema 14.2.4  dice que la  f  es única una vez determinada la  g. 

Si dos espacios vectoriales tienen distinta dimensión finita nunca se puede 

encontrar un isomorfismo entre ellos. Al igual si uno tiene dimensión finita y el 

otro no. 

EJEMPLO 14.2.13: 

Sea el espacio vectorial que es suma directa de dos espacios vectoriales. 

 V =  V ⊕  V =  v :  v =  v +  v  con  v ∈ V ,  i = 1,  2 (+ es la suma en  V) 1

2

{

1

2

 i

 i

}

Como  V ∩ V = 0  y la expresión de cada vector de la suma es única. 

1

2

{ }

Se definen: 

 p v =  p

 v +  v

=  v  y análogamente   p

 v =  p

 v +  v

=  v

2 ( )

2

 V  1

 V ( 1

2 )

1 ( )

1

 V  2

 V ( 1

2 )

1

2

Es  fácil  probar  que  ambas  funciones  son  transformaciones  lineales.  Queda 

como ejercicio la demostración. 

¿siempre yo….? 
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Hallemos   Núc(  p : 

1 )

 Núc (  p =  v ∈ V :  p v = 0 ; como   v =  v +  v ,  p v +  v

=  v = 0

1 ( 1

2 )

1 )

{

1 ( )

}

1

2

1

Por lo tanto   v =  v  resultando   Núc(  p =  V  . 

1 )

2

2

Por otra parte   Img (  p =  V . Verifique. 

1 )

1

Realizar un trabajo análogo para   p  

2

Estas proyecciones generalizan las proyecciones sobre los ejes coordenados 

pues  2 =  S ⊕  S , siendo: 

1

2

 S =

 x, 0 :  x ∈

=

1, 0

1

(

{

)

}

(

{

)}

 S =

0,  y :  y ∈

=

0,1

2

(

{

)

}

(

{

)}

La notación de   p  como   p

se lee proyección sobre  V  paralelamente a  V

1

1

 V  2

 V

1

2

y la de    p  como   p

se lee proyección sobre  V  paralelamente a  V . 

2

2

 V  1

 V

2

1

En este sentido se destaca la similitud con las proyecciones del plano euclí-

deo  con  coordenadas  ortogonales  que  son  sobre  un  eje  paralelamente  al 

otro…. 

EJERCICIO 14.2.14:  

Sea  D  el conjunto de todas las funciones reales que sean derivables para 

todos los órdenes. 

D = { :   : → ∧ exite    n

 f

 f

 D (  f ) para cualquier  n ∈ } ⊂F ( , )

Se conviene que si  n= 0, la  D0 (f)= f. 

Probar que D  es un subespacio vectorial de F ( , ) . 

EJEMPLO 14.2.15: 

Sea   L =  D − . 

 a I ,  a  es  un  número  real  fijo,  D :D 

→D   es  la  derivación    y 

 a

 I :D 

→D es la identidad. 
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Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar el espacio vectorial. 

Como   L   es  suma  de  transformaciones  lineales  resulta  ser  una  transforma-

 a

ción lineal, que aplicada a  f da: 

 L (  f ) =  f ′ − . 

 a f

 a

Calcularemos   Núc( L . 

 a )

Como   Núc(  L ) = {  f :  f ′ − . 

 a f = }

0 ,  resulta  que  los  elementos  que  están  en  el 

 a

 Núc (  L  son las  f ∈D  que verifican :   f ′ = . 

 a f , es decir : 

 a )

 f ′ (  x) = . 

 a f (  x)       (  x

∀ )( x ∈

)

Probemos que   E ∈  Núc L : tal que   E

 a.  x

( x) =   e

 a

(  a )

 a

(  a.  x )

 a. 

= . 

 x

 D e

 a e

Veamos que si   f ∈  Núc(  L  entonces   f =  k.  E : a )

 a

Sea   f ∈  Núc( L  entonces   f ′ − . 

 a f = 0   (*) 

 a )

′

 a.  x

 a.  x

 a. 

  f 

 f .′ e

− . 

 a f . 

 x

 e

 e .(  f ′ − . 

 a f )

Calculando 

=

=

=





0  por (*). 

 a.  x

2.  a.  x

2.  a.  x

  e



 e

 e

Por lo tanto   f ( x)

. 

=  k     ∴  f ( x) =  k.  a x

 e



 a.  x

 e

La recíproca es inmediata. Si 

. 

( ) = .  a x

 f x

 k e

, demostrar que   f ∈  Núc( L . 

 a )

Es decir, las soluciones de la ecuación diferencial:   f ′ − . 

 a f = 0  que son las 

 f ∈  Núc (  L  son un subespacio que además verifica   Núc(  L = {  a.  x e } 

 a )

 a )

3. Matrices asociadas a una transformación lineal

La  siguiente  definición  entre  otras  cosas  explicara  el  porqué  de  la  definición 

del producto de matrices y además tiene aplicaciones dentro de la teoría de 

las transformaciones lineales muy importantes. 

Sean  V y  V’ dos  K-espacios vectoriales de dimensión finita sobre  K. 
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



Consideremos   B = ( b ,........,  b  y   B′ =  b′,........,  b ′  bases ordenadas de  V y 1

 n )

1

 m 





 V ′  respectivamente (por eso las hemos indicado entre paréntesis…). 

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios vectoriales. 

Dada   f : V 

→ V ′  una transformación  K- lineal. 

Se l ama matriz asociada a  f  respecto de  B  y   B′  : 

  a

 a

... 

 a



11

12

1 n





 a

 a

... 

 a

[





 f ]

21

22

2 n

=

 BB′

 ... 

... 

... 

... 





  a

 a

...  a

1

 m

 m 2

 mn 

los elementos de la matriz se construyen así: 

 f ( b

 a .  b ′

........ 

 a .  b ′

=

+

+

1 )

11 1

1

 m

 m



en general:

 f ( b

 a b ′

 a

 b ′

=

+

+

≤  i ≤  n

 i )

. 

........ 

. 

1

1 i

1

 mi

 m

Calculamos los transformados por  f de la base  B y los expresamos en  B´. 

Las coordenadas del transformado del  i-ésimo vector de la base, son los ele-

mentos de la  i-ésima columna de la matriz. 

EJEMPLO 14.3.1:  

Sea la transformación R-lineal 

3

4

 t :



→

definida por: 

 t ((  x,  y,  z)) = (  x,  x +  y,  z,  x −  z) Si consideramos  como bases: 

 B = ((1, 2, )

1 ; (0,1, 4) ;(0, 0, )

1 )  base de  3  sobre R 

 B′ = ( e = 1, 0, 0,0 ;  e = 0,1, 0,0 ;  e = 0,0,1,0 ;  e = 0, 0, 0,1  base de  4  so-1

(

) 2 (

) 3 (

) 4 (

))

bre R. 
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Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar de manera igual en ambos espacios vectoriales. 

Calculamos los transformados de la base  B y los expresamos en  B´. 

Resulta que: 

 t ((1, 2, )

1 ) = (1,3,1,0) = 1.  e + 3.  e + 1.  e + 0.  e

1

2

3

4

 t ((0,1, 4)) = (0,1, 4, −4) = 0.  e + 1.  e + 4.  e + −4 .  e 1

2

3

(

) 4

 t ((0,0, )

1 ) = (0,0,1, − )

1 = 0.  e + 0.  e + 1.  e + −1 .  e

1

2

3

( ) 4

Luego: 

 1

0

0 





3

1

0

[





 t]

=



 BB′

 1 4

1 





 0 −4 −1

Trabajemos ahora con otra base   B′ de  4  sobre R , sea:  ´´

 B = ( e ,  e ,  e ,  e . 

1

4

2

3 )

Así se obtiene: 

 t ((1, 2, )

1 ) = (1, 3,1, 0) = 1.  e + 0.  e + 3.  e + 1.  e

1

4

2

3

 t ((0,1, 4)) = (0,1, 4, −4) = 0.  e + −4 .  e + 1.  e + 4.  e 1

(

) 4

2

3

 t ((0, 0, )

1 ) = (0, 0,1, − )

1 = 0.  e + −1 .  e + 0.  e + 1.  e

1

( ) 4

2

3

Luego: 

 1

0

0 





0

4

−

1

−

[





 t ]

=



 BB´´

 3 1

0 





 1

4

1 

IMPORTANTE: 

Es decir que si cambiamos el orden de los vectores de una base, la matriz 

asociada cambia. Luego por eso no es irrelevante que las bases se conside-

ren ordenadas. 

Además claramente si cambiamos alguna de las bases. 
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EJEMPLO 14.3.2:  

Tomemos un endomorfismo de

 x  sobre R y se considera la base  B = B´

3 [

]

Sea   B = (

2

1 +  x,  x ,  2) una base de 

 x  sobre R y sea la transformación: 

3 [

]

 d :

 x 

→

 x , donde   d (  p (  x)) =  p′ (  x)  (el polinomio derivado de  p) 3 [

]

3 [

]

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar en el espacio vectorial. 

Determinemos la matriz asociada a la transformación. 

1

 d (1 +  x) = 1 = 0.(1 +  x)

2

+ 0.  x +

.2

2

 d ( 2

 x ) = 2 x = 2.(1 +  x)

2

+ 0.  x + (− )

1 .2

 d ( 2) = 0 = 0.(1 +  x)

2

+ 0.  x + 0.2

Hemos encontrado aquí una combinación lineal de los transformados de ele-

mentos de la base en elementos de la base, pero como la expresión es única, 

entonces es esa la combinación. 

Luego, la matriz asociada es:  





 0 2 0





[ d ] =  0

0

0   

 B





1



1

−

0 

 2



Se  anota  [  f ]  en lugar de  [  f ] si se considera la base  B = B´. Esto vale en B

 BB

general para cualquier endomorfismo en que se considera una sola base. 

 Volviendo a  Hom ( V,  V ′ … 

 K

)

Recordemos que es el conjunto de todas las transformaciones  K-lineales en-

tre los espacios  V  y  V ′ . 

 Hom ( V ,  V ′) = {  f :  f  es una transformación  K -lineal,  f : V 

→ V ′

 K

}

825

[image: Image 9322]

[image: Image 9323]

[image: Image 9324]

[image: Image 9325]

[image: Image 9326]

[image: Image 9327]

[image: Image 9328]

[image: Image 9329]

[image: Image 9330]

[image: Image 9331]

[image: Image 9332]

[image: Image 9333]

[image: Image 9334]

[image: Image 9335]

[image: Image 9336]

[image: Image 9337]

[image: Image 9338]

[image: Image 9339]

[image: Image 9340]

[image: Image 9341]

[image: Image 9342]

[image: Image 9343]

[image: Image 9344]

[image: Image 9345]

[image: Image 9346]

[image: Image 9347]

[image: Image 9348]

[image: Image 9349]

[image: Image 9350]

[image: Image 9351]

[image: Image 9352]

[image: Image 9353]

[image: Image 9354]

[image: Image 9355]

[image: Image 9356]

[image: Image 9357]

[image: Image 9358]

[image: Image 9359]

[image: Image 9360]

[image: Image 9361]

[image: Image 9362]

[image: Image 9363]

[image: Image 9364]

[image: Image 9365]

[image: Image 9366]

[image: Image 9367]

[image: Image 9368]

[image: Image 9369]

[image: Image 9370]

[image: Image 9371]

[image: Image 9372]

[image: Image 9373]

[image: Image 9374]

[image: Image 9375]

[image: Image 9376]

[image: Image 9377]

[image: Image 9378]

[image: Image 9379]

[image: Image 9380]

[image: Image 9381]

[image: Image 9382]

[image: Image 9383]

[image: Image 9384]

[image: Image 9385]

[image: Image 9386]

[image: Image 9387]

[image: Image 9388]

[image: Image 9389]

[image: Image 9390]

[image: Image 9391]

[image: Image 9392]

[image: Image 9393]

[image: Image 9394]

[image: Image 9395]

[image: Image 9396]

[image: Image 9397]

[image: Image 9398]

[image: Image 9399]

[image: Image 9400]

[image: Image 9401]

[image: Image 9402]

[image: Image 9403]

[image: Image 9404]

[image: Image 9405]

[image: Image 9406]

[image: Image 9407]

[image: Image 9408]

[image: Image 9409]

[image: Image 9410]

[image: Image 9411]

[image: Image 9412]

[image: Image 9413]

[image: Image 9414]

[image: Image 9415]

[image: Image 9416]

[image: Image 9417]

[image: Image 9418]

[image: Image 9419]

[image: Image 9420]

[image: Image 9421]

[image: Image 9422]

[image: Image 9423]

[image: Image 9424]

[image: Image 9425]

[image: Image 9426]

[image: Image 9427]

[image: Image 9428]

[image: Image 9429]

[image: Image 9430]

[image: Image 9431]

[image: Image 9432]

[image: Image 9433]

[image: Image 9434]

[image: Image 9435]

[image: Image 9436]

[image: Image 9437]

[image: Image 9438]

[image: Image 9439]

[image: Image 9440]

[image: Image 9441]

[image: Image 9442]

[image: Image 9443]

[image: Image 9444]

[image: Image 9445]

[image: Image 9446]

[image: Image 9447]

[image: Image 9448]

[image: Image 9449]

[image: Image 9450]

[image: Image 9451]

[image: Image 9452]

[image: Image 9453]

[image: Image 9454]

[image: Image 9455]

[image: Image 9456]

[image: Image 9457]

[image: Image 9458]

[image: Image 9459]

[image: Image 9460]

[image: Image 9461]

[image: Image 9462]

[image: Image 9463]

[image: Image 9464]

[image: Image 9465]

[image: Image 9466]

[image: Image 9467]

[image: Image 9468]

[image: Image 9469]

[image: Image 9470]

[image: Image 9471]

[image: Image 9472]

[image: Image 9473]

[image: Image 9474]

[image: Image 9475]

[image: Image 9476]

[image: Image 9477]

[image: Image 9478]

[image: Image 9479]

[image: Image 9480]

[image: Image 9481]

[image: Image 9482]

[image: Image 9483]

[image: Image 9484]

[image: Image 9485]

[image: Image 9486]

[image: Image 9487]

[image: Image 9488]

[image: Image 9489]

[image: Image 9490]

[image: Image 9491]

[image: Image 9492]

[image: Image 9493]

[image: Image 9494]

[image: Image 9495]

[image: Image 9496]

[image: Image 9497]

[image: Image 9498]

[image: Image 9499]

[image: Image 9500]

[image: Image 9501]

[image: Image 9502]

[image: Image 9503]

[image: Image 9504]

[image: Image 9505]

[image: Image 9506]

[image: Image 9507]

[image: Image 9508]

[image: Image 9509]

[image: Image 9510]

[image: Image 9511]

[image: Image 9512]

[image: Image 9513]

[image: Image 9514]

[image: Image 9515]

[image: Image 9516]

[image: Image 9517]

[image: Image 9518]

[image: Image 9519]

[image: Image 9520]

[image: Image 9521]

[image: Image 9522]

[image: Image 9523]

[image: Image 9524]

[image: Image 9525]

[image: Image 9526]

[image: Image 9527]

[image: Image 9528]

[image: Image 9529]

[image: Image 9530]

[image: Image 9531]

[image: Image 9532]

[image: Image 9533]

[image: Image 9534]

[image: Image 9535]

[image: Image 9536]

[image: Image 9537]

[image: Image 9538]

[image: Image 9539]

[image: Image 9540]

[image: Image 9541]

[image: Image 9542]

[image: Image 9543]

[image: Image 9544]

[image: Image 9545]

[image: Image 9546]

[image: Image 9547]

[image: Image 9548]

[image: Image 9549]

[image: Image 9550]

[image: Image 9551]

[image: Image 9552]

[image: Image 9553]

[image: Image 9554]

[image: Image 9555]

[image: Image 9556]

[image: Image 9557]

[image: Image 9558]

[image: Image 9559]

[image: Image 9560]

[image: Image 9561]

[image: Image 9562]

[image: Image 9563]

[image: Image 9564]

[image: Image 9565]

[image: Image 9566]

[image: Image 9567]

[image: Image 9568]

[image: Image 9569]

[image: Image 9570]

[image: Image 9571]

[image: Image 9572]

[image: Image 9573]

[image: Image 9574]

[image: Image 9575]

[image: Image 9576]

[image: Image 9577]

[image: Image 9578]

[image: Image 9579]

[image: Image 9580]

[image: Image 9581]

[image: Image 9582]

[image: Image 9583]

[image: Image 9584]

[image: Image 9585]

[image: Image 9586]

[image: Image 9587]

[image: Image 9588]

[image: Image 9589]

[image: Image 9590]

[image: Image 9591]

[image: Image 9592]

[image: Image 9593]

[image: Image 9594]

[image: Image 9595]

[image: Image 9596]

[image: Image 9597]

[image: Image 9598]

[image: Image 9599]

[image: Image 9600]

[image: Image 9601]

[image: Image 9602]

[image: Image 9603]

[image: Image 9604]

[image: Image 9605]

[image: Image 9606]

[image: Image 9607]

[image: Image 9608]

[image: Image 9609]

[image: Image 9610]

[image: Image 9611]

[image: Image 9612]

[image: Image 9613]

[image: Image 9614]

[image: Image 9615]

[image: Image 9616]

[image: Image 9617]

[image: Image 9618]

[image: Image 9619]

[image: Image 9620]

[image: Image 9621]

[image: Image 9622]

[image: Image 9623]

[image: Image 9624]

[image: Image 9625]

[image: Image 9626]

[image: Image 9627]

[image: Image 9628]

[image: Image 9629]

[image: Image 9630]

[image: Image 9631]

[image: Image 9632]

[image: Image 9633]

[image: Image 9634]

[image: Image 9635]

[image: Image 9636]

[image: Image 9637]

[image: Image 9638]

[image: Image 9639]

[image: Image 9640]

[image: Image 9641]

[image: Image 9642]

[image: Image 9643]

[image: Image 9644]

[image: Image 9645]

[image: Image 9646]

[image: Image 9647]

[image: Image 9648]

[image: Image 9649]

[image: Image 9650]

[image: Image 9651]

[image: Image 9652]

[image: Image 9653]

[image: Image 9654]

[image: Image 9655]

[image: Image 9656]

[image: Image 9657]

[image: Image 9658]

[image: Image 9659]

[image: Image 9660]

[image: Image 9661]

TRANSFORMACIONES LINEALES  – CAPÍTULO 14

En el conjunto   Hom ( V ,  V ′  se definió una suma y un  producto externo que lo K

)

algebrizó como  K−espacio vectorial (14.2.1) 

Veamos que es isomorfo a un espacio de matrices. 

♦  TEOREMA 14.3.3: 

Sean  V  y  V ′   K−espacios vectoriales de dimensión finita. Si   B = ( b ,........,  b  y 1

 n )





 B′ =   b ′ ,........,  b ′  son bases ordenadas, sobre  K,  de  V  y  V ′  respectivamen-1

 m 





te, con   B = , 

 n B′ =  m  

Existe un isomorfismo entre los  K- espacios vectoriales   Hom ( V ,  V ′   y   mxn K

. 

 K

)

Demostración: Sea τ

:  Hom

′

, definido por: 

′

( V ,  V )

 m× n



→  K

 BB

 K

τ

Nota : τ  es la letra griega tau 

 f =  f

 BB′ (

) [ ] BB′

Tenemos que probar que τ

es una transformación   K- lineal biyectiva. 

 BB′

Simplificando la notación escribiremos con  +  y  .  las operaciones de suma y 

producto por el escalar en ambos espacios vectoriales. 

i)  τ

:  Hom

′

,  τ

es  función  porque  la  matriz  asociada  a 

′

( V ,  V )

 m× n



→  K

 BB

 K

 BB′

cada transformación es única, ya que las coordenadas de todo vector en una 

base son únicas. 

i ) Veamos que es una transformación  K-lineal:

? 

1) τ

 f +  h

′

τ

=

 f

′

+τ

 h

 BB (

)

 BB (

)

 BB′ (

)

Sabemos que:  (  f +  h)( v) =  f ( v) +  h( v)  para cualquier vector. 

En   Hom ( V ,  V ′  

En   V´ 

 K

)
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(  f +  h) ( b =  f b +  h b =

1 )

( 1) ( 1)

Por las 

propiedades 

 a .  b ′

 a .  b ′

........ 

 a .  b ′

 c .  b ′

 c .  b ′

........ 

 c .  b ′

=

+

+

+

+

+

+

+

=

de las 

11 1

21

2

1

 m

 m

11 1

21

2

1

 m

 m

operaciones 

( a

 c

.  b ′

 a

 c

.  b ′

........ 

 a

 c

.  b ′

=

+

+

+

+

+

+

11

11 )

1

( 21

21 )

2

( 1

 m

1

 m )

 m

En general, para cualquier otro vector de la base, por ejemplo el  i-ésimo: 

(  f +  h) ( b =  f b +  h b =

 i )

(  i ) (  i )

 a .  b ′

 a .  b ′

........ 

 a .  b ′

 c .  b ′

 c .  b ′

........ 

 c .  b ′

=

+

+

+

+

+

+

+

=

1 i

1

2 i

2

 mi

 m

1 i

1

2 i

2

 mi

 m

( a

 c

.  b ′

 a

 c

.  b ′

........ 

 a

 c

.  b ′

=

+

+

+

+

+

+

1 i

1 i )

1

( 2 i

2 i )

2

(  mi

 mi )

 m

Por lo tanto: 

  a +  c

 a

+  c

... 

 a +  c

... 

 a

+  c



11

11

12

12

1 i

1 i

1 n

1 n





 a

+  c

 a

+  c

... 

 a

+  c

... 

 a

+  c

 21

21

22

22

2 i

2 i

2 n

2 n 

τ

 f

 h

 f

 h





+

=

+

=

=  

 BB′ (

) [

]

... 

... 

... 

... 

... 

... 

 BB′







... 

... 

... 

... 

... 

... 







 a

+  c

 a

+  c

... 

 a

+  c

... 

 a

+



 c

1

 m

1

 m

 m 2

 m 2

 mi

 mi

 mn

 mn 

  a

 a

... 

 a

... 

 a 

  c

 c

... 

 c

... 

 c 

11

12

1 i

1 n

11

12

1 i

1 n



 



Por suma 

 a

 a

... 

 a

... 

 a

 c

 c

... 

 c

... 

 c

 21

22

2 i

2 n 

 21

22

2 i

2 n 

de 

 ... 

... 

... 

... 

... 

... 

=

+  ... 

... 

... 

... 

... 

...  =

matrices 



 



 ... 

... 

... 

... 

... 

...   ... 

... 

... 

... 

... 

... 



 



  a

 a

...  a

...  a    c

 c

... 

 c

... 

 c 

1

 m

 m  2

 mi

 mn

1

 m

 m 2

 mi

 mn

= [  f ]

+ [ h]

=τ

 f



′

+τ

 h

′

′

 BB (

)

 BB′ (

)

 BB

 BB

Por la definición de matriz asociada tanto a  f como a  h y de τ

. 

 BB′

? 

2) τ



′ (  k.  f ) =  k.τ

 f

 BB

 BB′ (

)

Sabemos  que:  ( k.  f )( v)  k.  f ( v)  k.α .  b′  k.α .  b ′ ........  k.α .  b ′

=

=

+

+

+

para  cual-

1 1

2

2

 n

 m

quier vector. Si lo aplicamos a los vectores de la base  B: 





( k.  f ) ( b

 k.  f b

 k.  a .  b ′

 a .  b ′

........ 

 a .  b ′

=

=

+

+

+

 =

1 )

( 1)

11 1

21

2

1

 m

 m





P or las propiedades 

 k.  a .  b ′

 k.  a .  b ′

........ 

 k.  a .  b ′

=

+

+

+

11 1

21

2

1

 m

 m

de las operaciones 
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En general, para cualquier otro vector de la base, por ejemplo el  i-ésimo: 

( k.  f )( b

 k f b

 k a b ′

 a b ′

 a b ′

=

=

+

+

+

=

 i )

. (  i )

.( . 

. 

........ 

. 

1 i

1

2 i

2

 mi

 m )

 k.  a .  b ′

 k.  a .  b ′

........  k.  a .  b ′

=

+

+

+

1 i

1

2 i

2

 mi

 m

Por lo tanto: 

  k.  a

 k.  a

... 

 k.  a

... 

 k.  a



11

12

1 i

1 n





 k.  a

 k.  a

... 

 k.  a

... 

 k.  a



21

22

2 i

2 n 

τ





′

 k f =  k f

=

=

 BB ( . 

) [ . ]

... 

... 

... 

... 

... 

... 

 BB′





 ... 

... 

... 

... 

... 

... 





  k.  a

 k.  a

...  k.  a

...  k.  a

1

 m

 m 2

 mi

 mn 

  a

 a

... 

 a

... 

 a



11

12

1 i

1 n

Por la definición  





 a

 a

... 

 a

... 

 a

 21

22

2 i

2 n 

de  multiplicación 

 k.  ... 

... 

... 

... 

... 

... 

=

=  k.[  f ]

=  k.τ



′

 f

′

 BB (

)

 BB





de 

escalar 

por 

 ... 

... 

... 

... 

... 

... 





matriz . 

 a

 a

...  a

...  a

1

 m

 m 2

 mi

 mn 

i i) Veamos que τ

es un monomorfismo, para ello busquemos su Núcleo. 

 BB′

 Núc (τ

=  f ∈  Hom

 V V ′

′

τ

 f =

 BB )

{

 K (

, 

) :  BB′ ( ) 0  m n

× }

 K

Es decir que para cualquier vector de la base  B su transformado debe ser el 

0  V´ , para que los elementos de su matriz asociada sean cero. 

 0

0

... 

0

... 

0 





0

0

... 

0

... 

0





[  f ]

... ... ... ... ... ...

=



 BB′





... ... ... ... ... ...





 0

0

... 

0

... 

0 

 f ( b ) 0.  b ′ 0.  b ′ ........ 0.  b ′

=

+

+

+

con 1 ≤  i ≤  n  

 i

1

2

 m

De aquí tenemos que si   v ∈ V ,  v = α .  b + α .  b + ........ + α .  b  y como 1 1

2

2

 n

 n

 f ( b ) = 0   para todo  b ∈  B , resulta que para todo   v ∈ V ,  f ( v) = 0

 i

´

 i

 V

 V  Ĺuego  f  es la transformación nula. 

Por lo tanto   Núc (τ

=  O

, luego τ

es un monomorfismo sobre 

 BB′ )

{  Hom ( V,  V )

 K

}

 BB′

 K.  
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iv) Veamos que es un epimorfismo. 

Debemos estudiar que la imagen son todas las matrices. 

Claramente   Img (τ

⊂

. 

′ )

 m× n

 K

 BB

Sea ahora 

 m n

 A

 K ×

∈

. 

  a

 a

... 

 a

... 

 a 

11

12

1 i

1 n





 a

 a

... 

 a

... 

 a

 21

22

2 i

2 n 

 A

 ... 

... 

... 

... 

... 

... 

= 



 ... 

... 

... 

... 

... 

... 





  a

 a

...  a

...  a 

1

 m

 m  2

 mi

 mn

Debemos ver que existe,  f : V 

→ V ′  una transformación lineal tal que 

[  f ]

=  A

 BB′

Se define para ello   f : V 

→ V ′  tal que restringida a la base  B sea: 

 f ( b )  a .  b ′  a .  b ′ ........  a .  b ′

=

+

+

+

con 1≤  i ≤  n  y por 14.2.4 

 i

1 i

1

2 i

2

 mi

 m

hay una única transformación lineal que coincide en la base. Luego   f  es la 

transformación deseada y [  f ]

=  A

 BB′

♦

Si  V  y  V ′   K−espacios vectoriales de dimensión finita  n y  m respectivamente dim ( Hom ( V ,  V ))  m n  dim (  m n

 K ×

′

=

×

=

 K

 K

 K

)

Piense que ocurre si  V  y  V ′   K−espacios vectoriales de dimensión finita  m  y  n respectivamente. 

EJEMPLO 14.3.4: 

Sea 

3

3

 id

 id

. 

3 (  x,  y,  z ) = (  x,  y,  z )

3 :



→

donde 

(

)

Sea   B = ( b = 1,0,0 ,  b = 0,3,1 ,  b = 0,0, 5

−

1

(

) 2 (

) 3 (

))

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en el espacio  y como . el producto por el escalar. 
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 id  3 ( b =  b =1.  b + 0.  b + 0.  b

1 )

1

1

2

3

 id  3 ( b =  b = 0.  b +1.  b + 0.  b

2 )

2

1

2

3

 id  3 ( b =  b = 0.  b + 0.  b + 1.  b

3 )

3

1

2

3

Así  la matriz de la transformación es: 

 1 0 0





 id 



3

= 0

1

0









 B





 0 0 1 

EJEMPLO 14.3.5: 

Sea  V  un espacio vectorial sobre  K de dimensión finita  n. 

Sea   id : V 

→ V  donde   id

 v =  v . 

 V ( )

 V

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en el espacio  V y como . el producto por el escalar. 

Sea   B = ( b ,........,  b , para cada vector de la base  B: 

1

 n )

 id ( b ) =  b = 0.  b + ...... +1.  b + ...... + 0.  b V

 i

 i

1

 i

 n

Luego, la matriz de la transformación es : 

 1 ... 0 ... 0 





... ... ... ... ... 





[ id





=

=  I

 V ]

0

... 

1

... 

0

 n

 B





... ... ... ... ...





 0 ... 0 ... 1 

Si se toma la misma base de partida y de l egada, la matriz que se obtiene es 

la identidad. 

¿Qué ocurre si no son iguales las bases del espacio y la transformación sigue 

siendo la identidad? 

¿??? 

Sea 

3

3

 id

 id

. 

3 (  x,  y,  z ) = (  x,  y,  z )

3 :



→

donde 

(

)
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Sean las bases   B = ( b = 1,0,0 ,  b = 0,3,1 ,  b = 0,0, 5

−

y   B = ( e ,  e ,  e  la 

 C

1

2

3 )

1

(

) 2 (

) 3 (

))

base canónica de  3 . 

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en el espacio  y como . el producto por el escalar. 

 id  3 ((1, 0, 0)) = (1, 0, 0) = 1.  e + 0.  e + 0.  e

1

2

3

 id  3 ((0, 3, )

1 ) = (0, 3, )

1 = 0.  e + 3.  e + 1.  e

1

2

3

 id  3 ((0, 0, −5)) = (0, 0, −5) = 0.  e + 0.  e + −5 .  e

1

2

(

) 3

Luego, la matriz de la transformación es: 

 1 0

0 





 id 

3

= 0

3

0









 B C

 B





 0 1

5

− 

La matriz de la transformación identidad será la matriz identidad en el caso de 

que la base de partida y de llegada sean las mismas, en otro caso no. 

EJEMPLO 14.3.6:  

Se  desea  calcular  la  transformación,  conociéndose  la  matriz  asociada a  dos 

bases determinadas y conocidas. 

Por ejemplo hallar 

2×2

3

 f :



→

, considerando las bases 

 1 0  0 1  0 0  0 0

 B =  

;

;

;

  de  2×2

 C

  0 0  0 0  1 0   0 1 

 B = ((

) (

) (

))

3

1, 0,1 ; 0,1, 0 ; 0, 0, 5  de 



Dada la matriz asociada a esas bases: 

 1 −1 0 −1







[  f ]

= 2

0

1

5  

 B B





 C





 0

4

1

0 

Por simplificación se hará un abuso de notación simbolizando como +  la su-

ma en ambos espacios  y como . el producto por el escalar en ambos casos. 
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Por la definición de la matriz asociada a una transformación lineal respecto a 

las bases significa que: 

  1 0

 f  

  = 1.(1,0, )

1 + 2.(0,1,0) + 0.(0,0,5) = (1, 2, )

1  

  0 0 

  0 1

 f  

  = 1

− .(1,0, )

1 + 0.(0,1,0) + 4.(0,0,5) = ( 1

− ,0,19) 

  0 0 

  0 0

 f  

  = 0.(1,0, )

1 + 1.(0,1,0) + 1.(0,0,5) = (0,1,5)  

  1 0 

  0 0

 f  

  = 1

− .(1,0, )

1 + 5.(0,1,0) + 0.(0,0,5) = ( 1

− ,5, − )

1

  0 1  

Se sabe además que: 

  a b 

 1 0

 0 1 

 0 0 

 0 0



 = . 

 a 

 + . 

 b 

 + . 

 c 

 +  d.



  c d 

 0 0 

 0 0 

 1 0 

 0 1 

Se tiene entonces que si  f es una transformación lineal: 

   a b  

 1 0 

  0 1 

 0 0

  0 0 

 f  

  = . 

 a f  

  + . 

 b f  

  + . 

 c f  

  +  d.  f  

  =

   c d  

  0 0  

  0 0  

 1 0  

  0 1  

= . 

 a (1, 2, )

1 + . 

 b ( 1

− ,0,19) + . 

 c (0,1,5) +  d.( 1

− ,5, − )

1

Por lo tanto haciendo las cuentas, resulta: 

   a b 

 f  

  = ( a −  b −  d, 2 a +  c + 5 d,  a + 19 b + 5 c −  d )  

   c d  

EJEMPLO 14.3.7 

Ídem ejemplo anterior pero sustituyendo la base de  2×2  por: 



 1 0

 0

1 

 0 0

 0 0 

 B =   b = 

;  b = 

;  b = 

;  b = 

  

1

1

2

3

4



 0 1 

 0 −3

1 0

1 1 

Es decir hallar  

2×2

3

 f :



→

, considerando las bases  B

×

1 de 

2 2

y   B = ((

) (

) (

))

3

1, 0,1 ; 0,1, 0 ; 0, 0, 5  de 

. 
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 1

1

−

0

1

− 

Y sea 





[  f ]

= 2

0

1

5  

 B





1  B





 0

4

1

0 

Por simplificación se hará un abuso de notación simbolizando como +  la su-

ma en ambos espacios  y como . el producto por el escalar en ambos casos. 

Por ser  B

×

1  base de 

2 2 tiene que: 

  a b 



 = α .  b + α .  b + α .  b + α .  b =

1 1

2

2

3

3

4

4

  c d 

Haciendo las cuentas en 

2×2



α

α



1


2

= 



α + α

α − 3α + α

3

4

1

2

4 

Por igualdad de matrices resulta: 

α =  a

1

α =  b

2

 d = α − 3α + α  α =  d −  a + 3 b

1

2

4

4

α + α =  c 

   α =  c −  d +  a − 3 b

3

4

3

Además, por la definición de la matriz asociada a una transformación respecto 

de dos bases fijas: 

  1 0

 f  

  = 1.(1,0, )

1 + 2.(0,1, 0) + 0.(0,0,5) = (1, 2, )

1

  0 1  

  0

1  

 f  

  = 1. 

− (1,0, )

1 + 0.(0,1,0) + 4.(0,0,5) = ( 1

− ,0,19)

  0 −3 

  0 0

 f  

  = 0.(1,0, )

1 + 1.(0,1,0) + 1.(0,0,5) = (0,1,5)

  1 0 

  0 0

 f  

  = 1. 

− (1,0, )

1 + 5.(0,1,0) + 0.(0,0,5) = ( 1

− ,5, − )

1

  1 1  

Por lo cual: 

   a b  

 f  

  = . 

 a (1, 2, )

1 + . 

 b ( 1

− , 0,19) + ( c −  d +  a − 3 b ).(0,1,5) +

   c d  

+ ( d −  a + 3 b).( 1

− ,5, − )

1 =

= ( a −  b −  d +  a − 3 b, 2 a +  c −  d +  a − 3 b + 5 d − 5 a + 15 , b a + 19 b + 5 c − 5 d + 5 a − 15 b −  d +  a − 3 b)

   a b 

Y así: 

 f  

  = (2 a − 4 b −  d, 2

−  a + 12 b +  c + 4 d , 7 d +  b + 5 c − 6 d )  

   c d  
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Estos dos ejemplos muestran que las bases asociadas son determinantes 

para la definición de la matriz asociada a una transformación lineal. 

4. Composición de transformaciones lineales

Ya se ha probado que la composición de transformaciones lineales, cuando 

es posible,  es una transformación lineal. Se estudiará qué relación tiene este 

hecho con las matrices asociadas. 

♦  PROPIEDAD 14.4.1 

Sean  V ,  V ′ y  V ′   K-espacios vectoriales de dimensión finita sobre  K. 

Con dimensiones   n, m y  p respectivamente. 









Sean 

´

 B = ( b ,........,  b ,  B′ =  b ′,........,  b ′ , 

' 

 B ´

′ =  b ′ ,........,  b ′ bases ordena-

1

 n )

1

 m 







1

 p





das de  V ,  V ′ y  V ′ respectivamente. 

Si   f : V 

→ V ′ ,  g : V ′ 

→ V ′  son transformaciones  K-lineales. 

Entonces: 

[ g f ]

= [  g]

⋅ [  f ]

 BB′

 B B

′ ′

 BB′

Demostración: 

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en los espacios  y como . el producto por el escalar en esos casos. 

Definamos las matrices asociadas a   f  y a  g como 

  a

 a

... 

 a



11

12

1 n





 a

 a

... 

 a





 A = [  f ]

21

22

2 n

=

siendo   f ( b =  a b′ +

+  a

 b′

≤  i ≤  n  

 i )

. 

........ 

. 

, 1

 BB′

 ... 

... 

... 

... 

1 i

1

 mi

 m





  a

 a

...  a

(1) 

1

 m

 m 2

 mn 

  b

 b

... 

 b



11

12

1 m





 b

 b

...  b





 B = [  g]

21

22

2 m

=

siendo  g ( b′ =  a b′ +

+  a

 b′

≤  k ≤  m

 k )

. 

........ 

. 

, 1

´

 B B " 

 ... 

... 

... 

... 

1 k

1

 pk

 p





  b

 b

...  b





(2) 

1

 p

 p 2

 pm 
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Además,  aplicando  la  definición  de  composición  de  funciones  y  usando  que 

son  transformaciones  lineales  sobre   K  en  lo  determinado  en  (1)  y  (2)  para cualquier vector de la base  B, por ejemplo el  i-ésimo:  

 g (  f ( b =  a g b′ +

+  a

 g b′

=

 i ))

. 

........ 

. 

1 i

( 1)

 mi

(  m )

=  a .  b .  b′ + ........ +  b .  b′ +  a .  b .  b′ + ........ +  b .  b′ + ........ +  a .  b .  b′ + ........ +  b

.  b′

=

1 i ( 11 1

1

 p

 p )

2 i ( 12 1

 p 2

 p )

 mi ( 1 m  1

 pm

 p )

= ( a .  b +  a .  b + ........ +  a .  b

.  b′ + ........... + ( a .  b +  a .  b

+ ........ +  a .  b

.  b′ =

1 i

1

 p

2 i

 p  2

 mi

 pm )

1 i

11

2 i

12

 mi

1 m ) 1

 p

 m

 m









=.   b .  a .  b′ + ........   b .  a .  b′

1 k

 ki

1

 pk

 ki

 p

  k  1

=



  k  1

=



Luego para cualquier otro vector de  B será análogo el resultado, por lo cual 

podemos formar las columnas de [ g f ] BB′

Es decir:  

 m

 m

 m





   b .  a

... 

 b .  a

... 

 b .  a 

1 k

 k 1

1 k

 ki

1 k

 km

  k  1

=

 k  1

=

 k  1

=







[  g

 f ]

=

... 

... 

... 

... 

... 

 BB′





 m

 m

 m





   b .  a

...   b .  a

...   b .  a

 pk

 k 1

 pk

 ki

 pk

 km 

  k  1

=

 k  1

=

 k  1

=



Calculemos   B ⋅  A =  C . 

Por definición de producto de matrices, el elemento genérico de la fila  s y co-

lumna  i está dado por: 

 m

 c =   b .  a

 si

 sk

 ki

 k  1

=

Y por lo tanto analizando y por definición de igualdad de matrices se tiene: 

 m

 m

 m





   b .  a

... 

 b .  a

... 

 b .  a 

1 k

 k 1

1 k

 ki

1 k

 km

  k  1

=

 k  1

=

 k  1

=







[  g

 f ]

=

... 

... 

... 

... 

... 

=  B.  A

 BB′







 m

 m

 m





   b .  a

...   b .  a

...   b .  a

 pk

 k 1

 pk

 ki

 pk

 km 

  k  1

=

 k  1

=

 k  1

=



♦
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EJEMPLO 14.4.2 

MUY IMPORTANTE!!! 

Sean las transformaciones  K- lineales: 

2×2

3

 f :



→

, considerando las bases  B

×

1 de 

2 2 , 



 1 0

 0

1 

 0 0

 0 0 

 B =   b = 

;  b = 

;  b = 

;  b = 

  

1

1

2

3

4



 0 1 

 0 −3

1 0

1 1 

 1 −1 0 −1

y 





 B = ((

) (

) (

))

3

1, 0,1 ; 0,1, 0 ; 0, 0, 5  de 

con  [  f ]

= 2

0

1

5  

 B





1  B





 0

4

1

0 

del ejercicio 14.3.7. 

3

4

 t :



→

definida por: 

 t (( x,  y,  z)) = ( x,  x +  y,  z,  x −  z)  

*

 B = ((1, 2, )

1 ; (0,1, 4); (0, 0, )

1 )  base de  3  sobre R 

 B′ = ( e = 1, 0, 0,0 ;  e = 0,1, 0,0 ;  e = 0,0,1,0 ;  e = 0, 0, 0,1  base de  4  so-1

(

) 2 (

) 3 (

) 4 (

))

 1

0

0 





3

1

0

bre R con [





 t ]

=

del ejercicio 14.3.1.. 

 B* B′

 1 4

1 





 0 −4 −1

Claramente se puede hacer la composición de  f  c on  t 

2×2

 f

3

 t

4

2×2

4



→



→

es decir   t

 f :



→

. 

¿¿Para calcular la matriz asociada a la composición podemos aplicar direc-

tamente el teorema 14.4.1 teniendo estas matrices calculadas?? 

NO, pues para que sea aplicable haciendo el producto observar que la “base 

central” debe ser la misma. ¿Qué queremos expresar con “base central”? 

Cuando es factible una composición de funciones, en particular de transfor-

maciones lineales el espacio de llagada de la primera transformación debe 

coincidir con el espacio de partida de la segunda transformación que se apli-

ca. Luego en ese espacio HAY QUE CONSIDERAR LA MISMA BASE. 

Eso es lo que referimos como “base central”. Y en el ejemplo planteado  B 

≠ B*. 
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Por lo cual se calcula la matriz [ t] que resulta ser (verifique…) 

 BB′

 1 0

0 





1

1

0

[





 t]

=

. 

 BB′

 1 0 5 





 0 0 −5

Por lo tanto [ t f ]

= [ t]

.[  f ]

= 

1

 B C

 B

 B C

 B

1

 B B

 1 0

0 

 1

−1

0

−1



  1 −1 0 −1





1

1

0

3

−1

1

4

=  

 







. 

= 

También verifique!!!. 



2

0

1

5





1

0

5 

 1 19

5

1

−



 



 0

4

1

0 





 0 0 −5

 0 −20 −5

0 

Una recomendación para recordar lo que dice el teorema 14.4.1, es diagra-

marlo así: 

 f



→

' 

 g

 V

 V 

→ V " es decir   g

 f : V 

→ V " 

 B

´

 B

 B " 

 B

 B " 

Y así queda claro: [ g f ]

= [  g]

⋅ [  f ]

 BB′

 B B

′ ′

 BB′

Si no le gustan las recetas no lo use….. 

En la definición de existencia de la matriz inversa de una dada 

 A

 n× n

∈  K

,  para  K  cuerpo conmutativo se pidió que existiera otra matriz 

 n× n

 B ∈  K

tal que  . 

 A B = . 

 B A =  I  , en el siguiente ejercicio se verá que con la 

 n

ayuda del Algebra Lineal alcanza con tener una sola igualdad: 

EJEMPLO 14.4.3 

Probar que si

 n× n

∈

y  

 n× n

 A

 K

 B ∈  K

y además  A ⋅  B =  I , entonces 

1

 A

 B−

=

 n

 n n

 A

 K ×

∈

y

 n n

 B

 K ×

∈

entonces por el teorema 14.3.3 existen 

 f ∈  Hom ( V ,  V ′) ,  g ∈  Hom ( V ,′ V  para espacios vectoriales  V  y V´, ambos de K

 K

)

dimensión  n, fijando una base  B*   de  V  sobre  K  y fijando una base  B**   de  V´ 

sobre  K  y se pueden considerar que  [  f ]

=  A  y  que  [  g]

=  B  . 

 B* B**

 B** B*

De acuerdo con la hipótesis:   A ⋅  B = [  f ]

⋅ [  g]

= [  f

 g]

=  I


* **

** *

**

 n

 B B

 B

 B

 B

837

TRANSFORMACIONES LINEALES  – CAPÍTULO 14

Entonces   f g =  id  por el isomorfismo τ  

 V  Ćomo  idV ´   es inyectiva, entonces  g resulta inyectiva. Y como  idV´  es suryectiva, resulta que  f es suryectiva. (Ver en el capítulo de funciones  las propie-

dades de la composición de funciones inyectivas y suryectiva,) 

Por tanto,  como  n =  dim  V = dim (  Núc (  f )) + dim (  Img(  f )  y también K

 K

 K

)

 n = dim  V´= dim ( Núc (  g )) + dim

 Img g

 K

 K

 K (

( ))

Como  g es inyectiva entonces  dim (  Núc (  g )) = 0 por lo tanto 

 K

 n = dim ( Img (  g ))  luego   V =  Img g  es por tanto  g un isomorfismo. 

 K

( )

De manera similar se puede probar que  f es un isomorfismo. 

Al ser  g un isomorfismo, tiene inversa. Es decir existe  1

 g − . 

Vale que:  

 f =  f

 idV ´

Por la propiedad de  g y su inversa: 

(

1

 f

 f

 g g −

=

)

Asociando de otra manera la composición de las transformaciones: 

: 

(

)

1

 f

 f

 g

 g −

=

1

 f

 id

 g −

=

 V  Éntonces: 

1

 f

 g−

=

Por lo cual:  [  f ]

1

 g −





=

 B* B**



 B* B**

Además se tiene:   f g =  id

es decir que 

1

 g −

 g =  id

y 

1

 g

 g − =  id

 V ´

 V ´

 V



1

 g

 g −





= [ id

=  I





y por el teorema 14.4.1: 

 V ] B*

 n

 B*

 I

 g

 g −





=

⋅

=  B ⋅  A

 n

[ ]

1

 B** B*



 B* B**
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Luego, como:   A ⋅  B =  I  y   B ⋅  A =  I , entonces: 1

 A

 B−

=

 n

 n

Y también como 

1

 f

 g −

=

, entonces 

1

 g

 f −

=

Luego, tenemos: 

1

−

1

 B

 f −





= 



lo que significa algo MUY IMPORTANTE!!! 

 B** B*

1

−

 A−

 B

[  f ]

1

1

  f − 

=

=

=

 B* B**



 B** B*

Entonces: 

Las matrices invertibles son matrices que se corresponden con isomorfismos. 

Es decir, hay un isomorfismo entre las matrices invertibles y los isomorfismos. 

♦PROPIEDAD 14.4.4

Corolario del ejercicio 14.4.3 

 f  es invertible si y sólo si   A = [  f ]

es invertible 

 B *

 B

EJERCICIO 14.4.5 

Hallar explícitamente   g f , si se sabe que: 

3

3

 f :



→

, 

3

4

 g :



→

y 

que:  

 2 2 1

 1 2 3





0

1

0







[





 f ]

= 0

0

0

[ g]

=

 B B





 B B′





 C

 C





 C

 C

1

0

0

 1 0 2





 0 0 1 

Siendo  BC   la base canónica de R3   y   BĆ   la base canónica de R4. 

EJEMPLO 14.4.6 

Analizar si la transformación lineal es invertible y calcular en ese caso su in-

versa, si  

 1

3

−

1 





 f :

 x 

→

 x , con  [  f ]

=

=  A  y   B = (

2

1,  x,  x

 C

)

3 [ ]

3 [ ]

0

4

0





 C

 B





 1

2

2 
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Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en el espacio  y como . el producto por el escalar. 

Por la matriz asociada se puede calcular la forma explícita de  f  pues se sabe 

cuánto vale en una base: 

 f ( )

2

1 = 1.1 + 1.  x  

 f (  x)

2

= 3

− .1 + 4.  x + 2.  x

 f ( 2

 x )

2

= 1.1 + 2.  x  

Así 

2

2

 f (  p( x)) =  f ( a +  a x +  a x ) =  a .  f (1) +  a .  f ( ) x +  a .  f (  x ) = 

0

1

2

0

1

2

= 

2

 a (1.1 + 1.  x ) + 

2

 a ( 3

− .1 + 4.  x + 2.  x ) + 

2

 a (1.1 + 2.  x ) = 

0

1

2

=

2

( a − 3.  a +  a ).1 + 4.  a .  x + ( a + 2.  a + 2.  a ).  x 0

1

2

1

0

1

2

Para analizar que la matriz es invertible, lo que equivale a que la transforma-

ción lo sea, se hará  por el criterio del determinante (det( A)≠0 si y sólo si  A es invertible) 

1

3

−

1

1 1

det  A =  A = 0

4

0 = 4. 

= 4.( 2 − )

1 = 4 ≠ 0

1 2

1

2

2

Por lo tanto existe  1

 A−   y 

1

−

1

 A

 f −





= 



. 

 C

 B

Se calculará la inversa de  A  por el método de la adjunta…. 





 2

2

−1

 8

0

−4 









1

−

1

−

 t

1





adj  A =

8

1

−5



  (verifique!!!). Luego:   A

=  A

.(adj  A) = 0

0  







4



 4

−

0

4 





5

 1

1 

−

−



4



Así  queda: 





 2

2

−1







1







1



 f −

=

0

0





. 





 C

 B

4





5

 1

1 

−

−



4



La transformación 

1

 f − :

 x 

→

 x  se 

3 [ ]

3 [ ]

determina a partir de la matriz, sobre los vectores de la base: 
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1

 f − ( ) =

+ (− ) 2

1

2.1

1 .  x  





1

−

1

5

 f

(  x)

2

= 2.1 +

.  x + −



.  x

4

 4 

1

 f − ( 2

 x )

2

= 1

− .1 + 1.  x

Para obtener su forma explícita 

1

−

1

−

2

1

−

1

−

1

−

2

 f

(  p( x)) =  f

( a +  a x +  a x ) =  a .  f

(1) +  a .  f

(  x) +  a .  f

(  x ) = 

0

1

2

0

1

2





= 

1

5

 a .(2.1 + (− ) 2

1 .  x ) +

2

 a .( 2.1 +

.  x + −



 .  x ) + 

2

 a .( 1

− .1 + 1.  x ) = 

0

1

4

 4 

2

= 

1

5

2

(2.  a + 2.  a − 1.  a ).1 + ( .  a ).  x + (−1.  a −

.  a +  a ).  x

0

1

2

1

0

1

2

4

4

EJERCICIO 14.4.7 

Analizar si la transformación lineal 

3

3

 f :



→

es invertible, de la que se 

da su matriz asociada. En caso de serlo, hallar 

1

 f −

 2

0

1

Sabiendo que 





[  f ]

= 1

2

−

3



 . Siendo  BC   la base canónica de R3. 

 C

 B





 0

0

1

5. Cálculo de transformaciones empleando matrices

Se  verá  otra  aplicación  de  las  matrices  asociadas  a  las  transformaciones  li-

neales para bases determinadas. 

Si  V es un espacio de dimensión finta  n sobre  K  y dada   B = ( b ,........,  b  una 1

 n )

base  de   V  sobr e  K   entonces  todo  vector  se  expresa  de  manera  única  por   v =  v .  b + ........ +  v .  b

1 1

 n

 n

Si se define   f ( b =  e , con 1≤  i ≤  n , como en el Corolario 14.2.10, así se tie-i )

 i

ne 
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  v 

1





 n

 V ≈  K   y 

 n

 n  1

 K

 K ×

≈

   determinando   v

( v ,........,  v

... 

1

 n )









  vn 

Los elementos de la matriz son las coordenadas de   v  en la base  B. 

Como  V , 

 n

 n  1

 K  y  K ×  todos tienen dimensión  n se justifica que los tres son isomorfos, además de que las coordenadas en una base son únicas!!! 

Se define la matriz de un vector asociado a una base  B, por 

  v 

1





   v

... 

 v

=



   B





  vn 

♦  PROPIEDAD 14.5.1 

Sea  f : V 

→ V ′  una transformación  K- lineal. 

Si la matriz asociada a  f  respecto de  B   y   B′ es 

  a

 a

... 

 a



11

12

1 n





 a

 a

... 

 a

[





 f ]

21

22

2 n

=

 BB′

 ... 

... 

... 

... 





  a

 a

... 

 a

1

 m

 m 2

 mn 

entonces 





 f

 ( v)

[  f ]

 v

=

⋅





 BB′

 

 B′

 B

Demostración: 

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en ambos espacios  y como . el producto por el escalar en ambos casos. 

Sea   B = ( b ,........,  b  la base de  V.  Como   v =  v .  b + ........ +  v .  b ,  aplicando la 1

 n )

1 1

 n

 n

transformación lineal   f  y la definición de su matriz asociada resulta que: 





 f ( v)  v .  f b

........ 

 v .  f b

 v .  a .  b ′

 a .  b ′

........ 

 a .  b ′

=

+

+

=

+

+

+

+

1

( 1)

 n

(  n ) 1 11 1

21

2

1

 m

 m 













 v .  a .  b ′

 a .  b ′

....... 

 a

.  b ′  .......  v .  a .  b ′

 a .  b ′

....... 

 a

.  b ′

+

+

+

+

+

+

+

+

+

=

2

12

1

22

2

 m 2

 m

 n

1 n

1

2 n

2

 mn

 m 









( v .  a

 v .  a

........ 

 v .  a

.  b ′

........ 

 v .  a

 v .  a

........ 

 v .  a

.  b ′

=

+

+

+

+

+

+

+

+

1

11

2

12

 n

1 n ) 1

( 1

1

 m

2

 m 2

 n

 mn )

 m
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Y entonces por la definición de la matriz asociada a un vector en una base: 

  v .  a +  v .  a + ........ +  v .  a



1

11

2

12

 n

1 n





+

+

+









 f

 ( v)

 v .  a

 v .  a

........ 

 v .  a

1

21

2

22

 n

2 n

=









 B′

... 





  v .  a

+  v .  a

+ ........ +  v .  a

1

1

 m

2

 m 2

 n

 mn 

Se calculará el producto:   [  f ]



⋅  v =  c  , con 

′

 

  ij

 BB



 B

1 ≤  i ≤  m y   j  = 1 y tal que cada 

 c =  c  vale: 

 ij

1

 i

 n

 n

 n

 c =   f .  v =   a .  v =   v .  a

=  v .  a

+  v .  a

+ ........ +  v .  a , 

1

 i

 jk

 k 1

 jk

 k

 k

 jk

1

1

 j

2

 j 2

 n

 jn

 k  1

=

 k  1

=

 k  1

=

con lo que queda demostrada la igualdad propuesta. 

♦

EJEMPLO 14.5.2 

 1 −3 1 

Sea 





 f :

 x 

→

 x , con  [  f ]

= 0

4

0  y   B = (

2

1,  x,  x

. 

 C

)

3 [ ]

3 [ ]





 C

 B





 1

2

2 

Hallar  

2

 f (2 + 3.  x + 5.  x ) . (En el espacio la suma la representamos por + y el producto por el escalar por . ) 

 2 





La matriz del polinomio en la base   B = (

2

1,  x,  x

es  p( x) =  3  por lo tanto 

 C

)







5











1

3

−

1   2 

7 − 3 3



 



(

2





 f (2 + 3.  x + 5.  x )) = 0

4

0



 .   3  = 

4 3



 C

 B



 

 



 1

2

2 

5



 12 2 3 

+



  C

 B

y de allí el transformado buscado es 

2

 f (2 + 3.  x + 5.  x ) = ( 7 − 3 3 ).1+ 4 3 .  x + (12 + 2 3 ).  x 2 
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EJERCICIO 14.5.3 

 2 2 1





0

1

0

Sea 

3

4





 g :



→

tal  que  su  matriz  [ g]

=

con   B

 B B′





 C      la  base 

 C

 C

1

0

0





 0 0 1 

canónica de R3   y   BĆ   la base canónica de R4. Hallar [ g((-3,5,6))]  BĆ   . 

 Cambio de base

Como  vimos  en  un  ejemplo  hay  veces  que  para  calcular  la  matriz  de 

una  composición  de  transformaciones  lineales  usando  el  producto  de 

las matrices asociadas hay que cambiar la base del espacio de partida 

o de l egada según sea el caso. Se verá un resultado que es aplicable

para solucionar esa situación, también usando matrices. 

1) Supongamos que se tiene

 f

 V 

→ V ′  y se conoce su matriz:  [  f ] 1 B  2

 B

1

 B

2

 B

Se quiere hallar la matriz de  f  asociada  [  f ]

. Esto es cambiar la base del 

′

1

 B  2

 B

espacio de llegada. 

Es sabido que: 

 f

 i V

 d

 V 

→ V

′

′ 

→ V ′  donde   id

 f

 f

 V ′

=

1

 B

2

 B

′

2

 B

Por lo tanto: 

[  f ]

=

=

⋅

′

[ id

 f

 id

 f

 V ′

]

′

[  V′ ]

′

[ ]

1

 B  2

 B

1

 B  2

 B

2

 B

2

 B

1

 B  2

 B

[ id

es una de las matrices que se define como matriz cambio 

 V ′ ]

′

2

 B

2

 B

de base. 

2) Supongamos que se tiene

 f

 V 

→ V ′  y se conoce su matriz:  [  f ] 1 B  2

 B

1

 B

2

 B
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Se  quiere  hallar  la  matriz    f   asociada  [  f ]

. Esto es cambiar  la  base  del 

′

1

 B

2

 B

espacio de partida. 

Ya que: 

 i V

 d

 f

 V 

→ V 

→ V ′  donde   f

 id =  f

 V

 B ′

1

 B

2

 B

1

Por lo tanto: 

[  f ]

= [  f id

=  f

⋅  id

′

 V ] ′

[ ]

[  V ] ′

1

 B

2

 B

1

 B

2

 B

1

 B  2

 B

1

 B

1

 B

[ id

es otra de las matrices que se define como matriz cambio de ba-

 V ] ′

1

 B

1

 B

se. 

3) Es un caso particular de estas situaciones. Qué pasa si  f  va de  V en  V ? 

Sea 

 f

 V 

→  V  y se tiene que su matriz asociada:  [  f ] 1 B  2

 B

1

 B

2

 B

Y se quiere hallar la matriz de  f  asociada [  f ]

. 

3

 B

4

 B

Esto es cambiar las bases del espacio en la partida y la llegada de  f. 

Vale que:   

 i V

 d

 f

 i V

 d

 V 

→ V 

→  V 

→  V  además   id

 f

 id =  f

 V

 V

3

 B

1

 B

2

 B

4

 B

Por lo tanto: 

[  f ]

= [ id

 f

 id

=  id

⋅  f

⋅  id

 V

 V ]

[  V ]

[ ]

[  V ]

3

 B

4

 B

3

 B

4

 B

2

 B

4

 B

1

 B  2

 B

3

 B  1

 B

4) Y si lo que se quiere es  [  f ] = [  f ]

y se conoce: [  f ]

3

 B

3

 B

3

 B

 B

Ya que:   

 id V

 f

 id V

 V 

→ V 

→ V 

→  V  y    id

 f

 id =  f

 V

 V

3

 B

 B

 B

3

 B

Por lo cual: 

[  f ] = [ id

 f

 id

=  id

⋅  f

⋅  id

 V

 V ]

[  V ]

[ ] [  V ]

3

 B

3

 B

 B  3

 B

 B

3

 B B

En este caso tan especial resulta que: [

−

 id ]

1 =  id

 V

[  V ]

 B  3

 B

3

 B B
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Las matrices que representan a un mismo   f ∈  End V  en distintas bases, se 

 K (

)

dicen similares o semejantes.    Es decir, si  A = [  f ] y  B = [  f ] entonces  A y 1

 B

2

 B

 B están asociadas en un mismo endomorfismo en distintas bases, entonces  A 

y  B son semejantes. 

Por el resultado anterior  

1

 A

 C B C −

=

⋅

⋅

, siendo   C = [ id

. 

 V ] B  3

 B

Esta  definición  se  generaliza  a  matrices  cuadradas  pues  por  el  teorema 

14.3.3, ellas siempre están en correspondencia con endomorfismos para ba-

ses fijas. 

  A  y   B  son    semejantes  si  y  sólo  si  existe  una  matriz   C  invertible  tal  que: A ⋅  C =  C ⋅  B  

EJERCICIO 14.5.4 

Probar que la semejanza de matrices es una relación de equivalencia. 

EJEMPLO 14.5.5 

Sea   f :

[ x]

3 1

×



→

y sean respectivamente   B = (

2

1,  x + 1,  x

y 

1

)

3



 0 

 1 

 −1



 

 





 B =  w = 1 ,  w = 0 ,  w =

1

las bases de 

 x   y  

×   sobre 

3 [ ]

3 1

2

 1

 

2

 

3







 

 







 1 

 0 

 0 

 0

1

2 

Si 





[  f ]

=

1

−

0

4





1

 B  2

 B





 2

5

6 

 f   será un isomorfismo si su matriz asociada es invertible, para ello podemos 

analizar su determinante. 

0

1

2

(

1

−

4

1

−

0

det [  f ]

= −

= −

+

= −

− −

+

−

=

 B B )

1 0

4

1. 

2. 

1.( 6 8)

2.( 5)

1 2

2

6

2

5

2

5

6

= 14 − 10 = 4 ≠ 0
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Luego,  f  es isomorfismo pues es invertible al igual que su matriz asociada. 



 1

 0

 0



 

 

 

Sea   B ′ =  u = 0 ,  u = 1 ,  u = 1 otra base de  3 1

×   sobre  . 

2

 1

  2

  3

 



 

 

 



 1 

 1 

 0 

Cuál será [  f ]

? 

′

1

 B  2

 B

Por lo anterior 

 id  3 1

×

[  f ]

 id



=

⋅

 f

3 1

×

3 1

 x

×



→



→

′

×

 f

3 1

[ ]





con    3 [ ]

1

 B  2

 B

 B B ′

1

 B  2

 B

2 2

2

 B

 B ′

 B

2

1

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en ambos espacios  y como . el producto por el escalar en ambos casos. 

Se calculará   id



3 1

×





: 

′

2

 B

2

 B

 0

 

 id

=

=

+

+

×

 w

1

0.  u

1.  u

0.  u

3 1 ( 1 )

 

1

2

3

 

 1 

 1 

 

 id

=

=

+ −

+

×

 w

0

1.  u

( 1).  u

1.  u

3 1 ( 2 )

 

1

2

3

 

 0

 1

− 





 id

=

= −

+

+

×

 w

1

( 1).  u

1.  u

0.  u

3 1 ( 3 )





1

2

3





 0 

Así resulta: 

 0

1

−1







 id



=

−



×

1

1

1

3 1





′





2

 B

2

 B





 0

1

0 

 0

1

−1  0

1

2 

Luego: 



 



[  f ]

= 1

1

−

1 ⋅

1

−

0

4 ¡¡ termine las cuentas!!  

′



 



1

 B  2

 B



 



 0

1

0   2

5

6 
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6. Rango de matrices

Recordemos algunas cuestiones ya estudiadas en el capítulo correspondiente 

a matrices y determinantes. 

El rango de una matriz  A se conserva por operaciones elementales. 

Es decir: Si   A ∼  A′  entonces   r (  A) =  r (  A′) . 

 f

El   r (  A)  es el número de filas no nulas de   A  , siendo   A  la matriz reducida R

 R

por filas y escalonada equivalente con   A y es por lo cual el número máximo 

de filas linealmente independientes de  A. 

También el   r (  A) =  r si existe una submatriz  B de  A de orden  r x  r con det( B) ≠0 y toda submatriz  D de  A de orden mayor que  r x  r es tal que det(D) = 0. 

De ello se desprenden las propiedades ya estudiadas (con otros números…) 

♦ PROPIEDAD 14.6.1

 A ∼

 I   si y sólo si   r (  A) =  r

 f

 r

♦ PROPIEDAD 14.6.2

( ) = (  t

 r A

 r A )

♦ COROLARIO 14.6.3

El número de filas linealmente independientes en  A  coincide con el número 

de columnas linealmente independientes de  A. 

Se ligarán ahora esos conceptos con las transformaciones lineales. 

Sea   f ∈  Hom ( V ,  V ′  se llama rango de 

dim

 Img(  f )  y nulidad de 

 K

)

 f  a la 

 f 

 K (

)

a la  dim

 Núc f

. 

 K (

( ))
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TEOREMA 14.6.4 

Sean  V  y  V ′  espacios vectoriales de dimensión finita sobre  K  y 

 f ∈  Hom ( V ,  V ′ . 

 K

)

Sean   B una base de  V sobre  K  y  B′ una base de  V ′  sobre  K   si   A = [  f ] , BB′

entonces 

 r (  A) = dim (  Img(  f )  

 K

)

Demostración: 





Sean    B = ( b ,........,  b  y   B′ =  b ′,........,  b ′  bases ordenadas de  V  y  V′  res-1

 n )

1

 m 





pectivamente. 

Es  sabido  que 

 Img(  f ) = {  f ( b ,........,  f b

,  por  lo  tanto  una  base  de 

1 )

(  n )}

 Img(  f )  es un subconjunto de   f (  B) . 

El   r (  A)  es el número máximo de filas de  A que son linealmente independientes y coincide con el número máximo de columnas linealmente independien-

tes de  A. 

Es decir un subconjunto de  { 1 2

, 

,........,  n

 A A

 A }  siendo las   i

 A ,  1 ≤  i ≤  n  las colum-

nas de  A. Por la definición de la matriz asociada en las bases dadas y pode-

mos expresarla: 

  a

 a

... 

 a



11

12

1 n





 a

 a

... 

 a

 21

22

2 n 

 A =

= ( 1

2

 A

 A

... 

 n

 A )

 ... 

... 

... 

... 





  a

 a

...  a

1

 m

 m 2

 mn 

  a 

1 i





 a

Cada   i





 A  es la columna  i-ésima de  A, es decir   i

2 i

 m  1

 A =

∈  K ×

 ... 





  ami 

Por simplificación se hará un abuso de notación  simbolizando como +  la su-

ma en ambos espacios  y como . el producto por el escalar en ambos casos. 

Para probar la propiedad se hará en etapas. 

 n

 n

Veamos que para   k ∈  K :    k .  f b =

 k A =  O O∈ K ×

 i

(  i )

 i

 m  1

0     si y sólo si 

. 

, 

 i

 i

 i  1

=

 i  1

=
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Por la definición de la matriz asociada a la transformación y a las bases da-

das:  

 n

 n

  n



 n

 n





 k .  f b  k  a b ′     k a b ′

=

=

 =  

 i

(  i )

. 

. 

 i

 ji

 j

( .  i ji ). 

0

 j





 i  1

=

 i  1

=

  j  1

=



 j  1

=   i  1

=



Como los elementos   b ′  de la base  B´ son linealmente independientes sobre j

 K, queda      

 n

 k .  a = 0    (  j

∀ )(1 ≤  j ≤  m)  

 i

 ji

 i  1

=

Así, si se extienden estas sumas, que se verifican simultáneamente: 

si  j = 1    k .  a +  k .  a + ........ +  k .  a = 0

1

11

2

12

 n

1 n

si  j = 2    k .  a +  k .  a + ........ +  k .  a

= 0

1

21

2

22

 n

2 n

... 

si  j =  m    k .  a

+  k .  a

+ ........ +  k .  a

= 0

1

1

 m

2

 m 2

 n

 mn

Y por lo tanto: 

1

2

 k .  A +  k .  A + ........ +  k .  n

 A = 0 , que es lo mismo que decir: 

1

2

 n

 n

 k .  i

 A = 0

 i

 i  1

=

Analizar que todos los pasos son “reversibles” ….. 

La demostración del teorema:  

Sea   r =  r (  A) ,  el  número  máximo  de  columnas  linealmente  independientes. 

Supongamos, sin pérdida de generalidad y por comodidad, que son las  r pri-

meras. 

Por lo tanto al considerar: 

 k .  f b +  k .  f b + ........ +  k .  f b = 0  por lo anterior, 1

( 1) 2 ( 2 )

 r

(  r )



1

2

 k .  A +  k .  A + ........ +  k .  r

 A = 0 , y como las columnas son libres, entonces: 

1

2

 r

 k =  k = ........ =  k = 0  

1

2

 r

Por lo tanto:  dim  Img(  f ) ≥  r . 

 K

Supongamos que  dim  Img(  f ) >  r

 K

Es decir: {  f ( b ,........,  f b  es linealmente independiente, con   s >  r . 

1 )

(  s )}
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Consideramos 

1

 k .  A + ........ +  k .  s

 A = 0  si y sólo si   k .  f b

+ ........ +  k .  f b

= 0

1

( 1)

 s

(  s )

1

 s

Entonces   k = ........ =  k = 0

1

 s

Por lo tanto hay  s columnas de  A linealmente independientes. Absurdo. 

Por lo tanto dim  Img(  f ) =  r =  r A  

 K

( )

♦

♦ PROPIEDAD 14.6.5 (Corolario del teorema 14.6.4)

Sea  V un espacio vectorial de dimensión finita sobre  K. 

Las matrices semejantes tienen igual rango. 

Demostración: Sea   f ∈  End V  entonces existen matrices 

 K (

)

 A = [  f ]

y

 B = [  f ]

para bases convenientes de  V sobre  K 

1

 B  2

 B

3

 B

4

 B

Y entonces por el teorema anterior,  r (  A) = dim  Img(  f ) =  r B

 K

( )

♦

EJERCICIO 14.6.6 

Hallar la  dim  Img(  f ) , en los siguientes casos: 

 1 2 3

a)  f :

 x 

→

 x  y  [  f ]

=

3 [ ]

2 [ ]





1

 B  2

 B

 0 1 2

 1

2 

b)





 f :

[ x]

3 1

×



→

y [  f ]

=

0

0  

2

 BB*









 1

−

−3

 2

0

1

c)





3

3

 f :



→

y [  f ]

= 1

2

−

3





 C

 B





 0

0

1

Sea  V un espacio vectorial de dimensión finita sobre  K. Si   f ∈  End V . Se K (

)

l ama determinante de  f,  al  det  A , siendo   A = [  f ]  para alguna base  B de  V. 

 B
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Es decir el determinante de  f es el determinante de cualquiera de sus matri-

ces asociadas. 

♦ PROPIEDAD 14.6.7

Sea  V un espacio vectorial de dimensión finita sobre  K. Si   f ∈  End V . 

 K (

)

 f  es  no  singular  (es  invertible)  si  y  sólo  si   dim

 Img( f ) =  n   si  y  sólo  si 

 K (

)

 r (  A) =  n  si y sólo si  det  f ≠ 0

Demostración: 

Queda como ejercicio (es simplemente encadenar todos los resultados ante-

riores) 

♦
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CAPÍTULO 15 

Aplicación de las transformaciones lineales

a los sistemas de ecuaciones

En este capítulo se usarán las herramientas que provee el Algebra Lineal para justificar resultados  importantes de  los  sistemas de  m ecuaciones lineales y  n incógnitas. Además se aplicarán las identificaciones del capitulo anterior entre las matrices columnas de  n filas, las n-uplas y las matrices de coordenadas de un vector asociadas a una base. 

1. Sistemas nuevamente…

Dado un sistema  . 

 A X =  B ,  m ×  n , es decir de  m ecuaciones con  n incógnitas, verificar que se puede expresar como  

1

2

 x .  A +  x .  A + ........ +  x .  n

 A =  B  

1

2

 n

Siendo: 

  a 

  b 

1 i





1





 a

 b

 i

 2 i 





 A =

la columna 

2

la 



 i-ésima de la matriz de los coeficientes del sistema y   B =

... 

 ... 









  a

  b

 mi 

 m 

columna de los términos independientes.  Siendo  x1 , x2, … , x n  los elementos de la matriz de las incógnitas   X.  

Recordemos que una  n-upla   s = ( s ,........, 

 n

 s ∈  K  es solución si y sólo si 

1

 n )

1

2

 s .  A +  s .  A + ........ +  s .  n

 A =  B

1

2

 n

Es decir,  . 

 A X =  B  tiene solución  si y sólo si  B es combinación lineal sobre   K de 1

2

, 

,........,  n

 A A

 A

o sea

∈{ 1

2

, 

,........,  n

 B

 A A

 A } . 

Así se tiene: 
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♦  TEOREMA 15.1.1 : 

Sea un sistema  . 

 A X =  B , de  m ecuaciones con  n incógnitas. 

 A.X = B tiene solución si y sólo si 

 A

 A

=

 A A

 A B

 K {

1

 n }

 K {

1

2

dim

,........, 

dim

, 

,........,  n , }

♦ 

O equivalentemente: 

♦  TEOREMA 15.1.2  

Sea un sistema  . 

 A X =  B , de  m ecuaciones con  n incógnitas. 

 A.X  =  B tiene solución  si  y  sólo  ( ) = ( *

 r A

 r A ) , siendo  * = ( 1

2

, 

,........,  n

 A

 A A

 A ,  B)  la matriz am-

pliada. 

♦ 

Como 

 m n

 A

 K ×

∈

, existen espacios vectoriales sobre  K,  de dimensiones  m  y  n sobre  K, V  y   V´  respectivamente, y para bases fijas convenientes  BV  y   B’V´ respectivas ,  tales que Hom ( V ,  V )

 m n

 K ×

′ ≈

, por lo tanto existe  f ∈  Hom ( V ,  V ′    tal que [  f ]

=  A , donde 

 K

)

 K

 BB′

 r (  A) = dim  Im f  (resultado del capítulo anterior). 

 K

( )

Además si se considera el subconjunto  S 0  de  Kn (haciendo identificaciones destacadas en el capitulo anterior y usando la matriz de las coordenadas de un vector en la base canónica): 

 S = { s = (  s ,........,  s

 A s =

=  s =  s

 s

 s A +

 s A =

=

 n ) :

.  t

}

0

{

( ,........,  n )

1

: . 

........ .  n

0

0

1

1

1

 n

}

= { s = (  s ,........,  s :  f s = 0 =  Núc f

1

 n )

( )

}

( )

Por  lo  cual,  S 0  es  el  conjunto  de  soluciones  del  sistema  homogéneo  . 

 A X = 0 asociado  a 

. 

 A X =  B  es también el conjunto de elementos del   Núc (  f ) . 

Por lo tanto: 

♦  PROPIEDAD 15.1.3  

Sea un sistema  . 

 A X =  B , de  m ecuaciones con  n incógnitas. El conjunto  S 0 de soluciones de A.X = 0 es un subespacio de 

 n

 K . 

La demostración se deja al lector. 

♦ 

Notación: En un  K-espacio vectorial  V, 

si  T ⊆  V ,  w∈ V  se define  w +  T = {  s :  s =  w +  t  con   t ∈ T}

Se tienen todas las herramientas para demostrar la siguiente propiedad: 
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♦  PROPIEDAD 15.1.4 :  

Sea el sistema  . 

 A X =  B , de  m ecuaciones con  n incógnitas. El conjunto  S de soluciones de 

. 

 A X =  B   es  el  conjunto  vacío  o  bien 

*

 S =  c +  S ,  donde  *

 c   es  una  solución  particular  de 

0

. 

 A X =  B  y   S =  Núc f  tal que  [  f ]

=  A  para    f ∈  Hom V V ≈  K ×

′

,con bases conve-

 K (

, 

)

 m n

0

( )

' 

 V

 B B′ ' 

 V

nientes  BV  y   B’V´ 

Demostración:  

Si   S ≠ ∅  entonces existe  *

 s ,  *

 s ∈  S . 

Veamos que  *

 s +  S ⊆  S

0

Sea 

*

 v ∈  s +  S , entonces 

*

 v =  s +  u  con   u ∈  Núc (  f ) , o equivalentemente  . 

 A u = 0 ; por propie-

0

dades de las operaciones 

*

*

. 

 A v = . 

 A s + . 

 A u = . 

 A s =  B . 

Por lo tanto:   v ∈  S . 

Veamos que 

*

 S ⊆  s +  S  

0

Sea   w∈  S .    Entonces vale que    . 

 A w =  B  y además por hipótesis   

*

. 

 A s =  B , entonces 

*

 w −  s ∈  S  pues haciendo “cuentas”  A (

*

.  w −  s ) =  B −  B = 0

0

Y como 

*

=

+ (

*

 w

 s

 w −  s )  resulta que 

*

 w ∈  s +  S 0

♦ 

EJEMPLO 15.1.5 

Sea el sistema 

3.  x + 2.  x −  x +  x =1

1

2

3

4

 

 x −  x + 2.  x = 3

2

3

4

  x −  x

+  x = 4

1

2

4

 3

2

−1 1 

La matriz del sistema es 





 A = 0

1

1

−

2



 . 





 1 −1

0

1 

Las filas de  A son vectores libres debido a los 0 que están en la segunda y tercer fila de  A, claramente permiten observar que ninguna suma de las tres filas pueden dar el vector nulo 

de  K 4. 

 3

2

−1 1 1 





*

 A = (  A B) = 0

1

1

−

2 3



  





1

1

−

0

1 4





A lo sumo,  r (  A) = 3 (no hay más que tres filas….) 

 3 2 −1

Sea la submatriz:  





 M = 0 1 −1



 , su determinante es : 





 1 1

0 
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3

2

−1

1

1

−

2

1

−

0

1

−1 = 3. 

+

= 3

− − 2 +1 = 4

− ≠ 0 .  Así,  r (  A) = 3. 

1

0

1

−1

1

1

0

(Lo que confirma lo dicho antes sobre la independencia de las filas de  A) 

Por lo tanto,  r (  A) =  r ( *

 A ) = 3  porque  M es submatriz de  A y es submatriz de  *

 A ,  y  no  hay 

posibilidades de agregar filas para obtener una submatriz de mayor orden que  M. 

Determinaremos una solución particular. 

Para ello buscaremos un  *

 s  y luego solucionaremos el sistema homogéneo. 

Es posible imponer condiciones para hallar una solución particular *

 s  para simplificar  el  pro-

blema. 

Sea  *

 s = (...,...,...,0) , con lo que queda: 

3.  x + 2.  x −  x = 1

1

2

3

 

 x −  x = 3

2

3

    x −   x

= 4

1

2

Por  lo  tanto  se  pueden  calcular  las  *

 x

1 ≤  i ≤ 3   con  el  Método  de  Determinantes  o  de 

 i

Cramer:  

1

2

−1

3

1

−1

4

−1

0

*

3 − 8 + 4 − 1

1

 x =

=

=

1

3

2

−1

4

−

2

0

1

−1

1

−1

0

3

1

−1

0

3

−1

1

4

0

*

1

− + 3 + 12

7

 x =

=

= −

2

4

−

4

−

2

3

2

1

0

1

3

1

−1 4

*

12 + 6 − 1 + 9

13

 x =

=

= −

3

4

−

4

−

2





Luego, una solución particular será 

1

7

13

*

 s =  , − , −

, 0

 2

2

2



Resolvamos ahora el sistema homogéneo: 
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

−

 permutando  

−

 restando a f3 

3

2

1 1 0

1

1

0

1 0

 1 −1 0

1 0

f1 con f3

el triple de f1













0

1

−1 2 0

∼

0

1

−1 2 0

∼

0

1

−1

2 0

























1

1

−

0

1 0

3

2

−1 1 0

0

5

−1 −2 0













sumando a f1 la f2

restando a f3 el 

 1 0 −1

3

1

0  multiplicando f3 por 

quintuple de f2

4





∼

0

1

−1

2 0





∼





0

0

4

−12 0







−

 sumando a la f1  

 sumando a la f2

1

0

1

3 0

1

0

0

0 0

 1 0 0

0 0

la f3

la f3













0

1

−1

2 0

∼

0

1

−1

2 0

∼

0

1

0

−1 0

























0

0

1

−3 0

0

0

1

−3 0

0

0

1

−3 0













*

 x = 0

1



Es decir: 

*

*

 x =  x

2

4

 *

*

 x =



3.  x

 3

4

Así,  S = 0,  t,3 t,  t :  t ∈

, o de otra manera    S = 0,1,3,1

0

(

{

)}

0

(

{

)

}





Por lo tanto 

*

1

7

13

 S =  s +  S =  , − , −

, 0 + λ. 0,1, 3,1 , para  λ ∈  

0

(

)

 2

2

2







Luego: 

1

7

13

 s =  , − + λ, −

+ 3.λ, λ  , para cada  λ ∈  es una solución del sistema. 

 2

2

2



El conjunto   S  no es un subespacio porque el  0∉  S . 

*

 S =  s +  S   es el subespacio  S

variedad o hi-

0

 0  desplazado un vector fijo  s*,  S se denomina  

  

  

perplano   El  conjunto  de  soluciones  de  los  sistemas  de  ecuaciones  no  homogéneos  son 

 . 

traslaciones de subespacios, son variedades. 

En  3  podría pensarse gráficamente de la siguiente manera:

Se obtendría un plano   S , desplazado por un vector  *

 s , paralelo a un subespacio   S  de 

3 . 

0
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♦  PROPIEDAD 15.1.6  

Para todo sistema lineal homogéneo  . 

 A X = 0 , de  m ecuaciones con  n incógnitas, se verifica 

que  dim  S ≥  n −  m . 

 K

0

Siendo   S =  Núc f  tal que [  f ]

=  A  para bases convenientes  B

0

( )

 V  y   B’ V´ de  V y  V´ 

 V

 B B′ ' 

 V

respectivamente  pues existe   f ∈  Hom ( V ,  V )

 m n

≈  K ×

′

 K

Demostración: 

Sea   S =  Núc f  

0

( )

dim  V =  n = dim  S + dim

 Im f ≤ dim

 S +  m  

 K

 K

0

 K

( )

 K

0

Pues  dim  Im (  f ) ≤  m = dim  V ′  

 K

 K

Por lo tanto:  dim  S ≥  n −  m  

 K

0

♦ 

Observación 1:   S  tiene al menos   n −  m  vectores linealmente independientes que son solu-0

ciones de  . 

 A X = 0 . 

Observación 2: Si el número  m de ecuaciones es menor que el número  n de incógnitas, es decir   m <  n , entonces  dim  S > 0 , por lo tanto   S  tiene otro vector distinto del  0

. 

 K

0

0

 n

 K

Es decir el sistema  . 

 A X = 0  admite soluciones distintas de la trivial, y ellas son infinitas si  K 

lo  es  pues   S   es  un  subespacio  de   n

 K ,  son  todas  las  combinaciones  lineales  sobre  K  de 

0

elementos de una base de   S . 

0

♦  PROPIEDAD 15.1.7 : 

Sea  . 

 A X =  B   un  sistema  de   m  ecuaciones  con   n  incógnitas,    un  sistema  con  solución ( ( ) = ( *

 r A

 r A )) . 

Si   S =  Núc f  tal que [  f ]

=  A   para bases convenientes  B

0

( )

 V  y   B’ V´ de  V y  V´ respec-

 V

 B B′ ' 

 V

tivamente pues existe   f ∈  Hom ( V ,  V )

 m n

≈  K ×

′

 K

 S = 0  si y sólo si  dim  Im f =  r A =  n . 

 K

( )

( )

0

{ }

Por lo tanto  . 

 A X =  B  tiene solución única. 

Demostración: 

Recordemos que  dim  V =  n = dim  S + dim  Im f  

 K

 K

0

 K

( )

Si   S = 0 , entonces  dim  S = 0 , entonces  dim  Im f =  r A =  n . 

 K

( )

( )

0

{ }

 K

0

Si  dim  Im f =  r A =  n , entonces  dim  S = dim  Núc f = 0 . Por lo tanto   S = 0 . 

0

{ }

 K

0

 K

( )

 K

( )

( )

Además toda solución   s ∈  S , 

*

 s =  s + 0 . Por lo tanto 

*

 s =  s  única. 

♦ 
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♦  PROPIEDAD 15.1.8 : 

Sea . 

 A X =  B , un sistema de  m ecuaciones con  n incógnitas, un sistema con solución, ( ( ) = ( *

 r A

 r A ))

Siendo [  f ]

=  A  para bases convenientes   BV  y   B’ V´ de espacios  V y  V´  respectiva-V

 B B′ ' 

 V

mente  pues existe   f ∈  Hom ( V ,  V )

 m n

≈  K ×

′



 K

Si   r (  A) =  r <  n  entonces el sistema tiene más de una solución (infinitas si   K  es infinito), que dependen de   n −  r  valores arbitrarios. 

Demostración: 

Sea   S =  Núc f . 

0

( )

Si  dim  Im f =  r =  r A  entonces  dim  S =  n −  r , pues  dim  V =  n = dim  S + dim  Im f K

 K

0

 K

( )

 K

( )

( )

 K

0

Dado el conjunto { u ,........,  u

si es base de   S  sobre  K  es  { u ,........,  u

=  S

1

 n− r }

1

 n− r }

0

0

Como 

*

 S =  s +  S , dada   s ∈  S , 

*

 s ∈  s +  S

0

0

Es decir cada 

*

 s =  s +  u , para algún    u ∈  S , por lo 

0

cual    u =  k .  u + ........ +  k

.  u

. 

1

1

 n− r

 n− r

Así entonces : 

*

 s =  s +  k .  u + ........ +  k

.  u

, y dándole valores arbitrarios a los  n −  r  ele-

1

1

 n− r

 n− r

mentos  k   de  K se obtiene cada una de las soluciones. 

 i

♦ 

Cómo ya se ha visto antes hay sistemas que tienen solución única, otros no tienen solución 

y los hay con más de una solución. 

Es usual designar como: 

•

incompatible al sistema que no tiene solución

Determinado: posee solución 

•

compatible al sistema que tiene solución

única 

. 

Indeterminado: posee más de 

una solución  

Resumiendo todo lo anterior, respecto a un sistema de  m ecuaciones lineales y  n incógnitas, 

. 

 A X =  B , se tiene el siguiente teorema de Roché-Frobenius: 
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♦  TEOREMA 15.1.9  

Teorema de Roché-Frobenius: 

Dado un sistema lineal  . 

 A X =  B , sistema de  m ecuaciones con  n incógnitas. 

El sistema tiene solución, es compatible, si y sólo si  ( ) = ( *

 r A

 r A ) , el rango de la matriz del 

sistema es igual al rango de la matriz orlada. 

Si  ( ) = ( *

 r A

 r A ) =  n  el sistema tiene solución única, y diremos que es compatible determinado 

Si  ( ) = ( *

 r A

 r A ) <  n  el sistema tiene más de una solución, que dependen de   n −  r  valores, y diremos que es compatible indeterminado. 

♦ 

EJEMPLO 15.1.10 

Analizar la compatibilidad del siguiente sistema, de incógnitas en  : 

1 −2

1  







1

 x

2











1

3

−2



 2

 x

= −1

















 3

4

−3 3

 x 

 3 

El sistema es 3 x 3. Si el rango de  A es 3, también lo será el de la ampliada, pues  A es submatriz de la ampliada y como 3 es el número de filas, esa es la "mayor aspiración de rango" 

para  (  A B) . 

Si el rango es 3, la solución es única. 

•

Cálculo del rango de  A:

Como  A es cuadrada se calcula primeramente el determinante de  A, pues  A es la mayor submatriz de  A 

1

−2

1

 A = 1

3

2

−

= −9 + 4 + 12 − 9 + 8 − 6 = 0  luego el rango no es 3. 

3

4

−3

Por lo tanto, el sistema no tiene solución única. 

1 −2 

1

2

−

Si tomamos la submatriz 

 , resulta que 

= 3 + 2 = 5 ≠ 0 .  Así el rango de  A  es 2. 

1

3 

1

3

Es decir que, si tiene solución, tendrá infinitas soluciones. 

•

¿Cómo sabremos si el sistema tiene solución? 

Calculamos el rango de la matriz ampliada : 

1 −2

1 2 





(  A B) = 1 3

2

−

1

−









3

4

−3 3




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Hay que comenzar evaluando determinantes de orden 3. Debemos considerar 3 columnas 

tales que una de ellas sea la columna  B (pues por lo visto antes si son sólo columnas de  A el determinante es 0). 

Si algún menor de orden 3 es no nulo el rango de la ampliada es 3. 

1

2

−

2

1

3

−1 = 9 + 8 + 6 − 18 + 6 + 4 ≠ 0  luego el rango de la ampliada es 3. 

3

4

3

•

Conclusión:

 r (  A) = 2   distinto de   r ((  A B)) = 3    el sistema NO tiene solución. Es decir es incompatible. 

EJEMPLO 15.1.11 

 1

−2

−1

Sea 





 A =

2

−

4

2



  





 1

−

2

1 

a) Hallar el rango de  A. 

b) Hallar el conjunto solución en  3  de  . 

 A X = 0



10 





c) Hallar el rango de *

 A =  A  20

−



  





10

−





 10 

d) Hallar una solución de





. 

 A X =

2

− 0









 −10

Solución: 

a) Claramente la segunda fila es el opuesto del doble de la primera fila, y la tercera es el opuesto de la primera. Por ello estas dos filas son combinaciones lineales de la primera, y por lo tanto el rango de  A es 1. Es decir   r (  A) =1 

Así toda la información del sistema está dada por una sola ecuación. 

b) Resolviendo, por operaciones elementales sobre las filas, se anulan dos de ellas y queda: x − 2.  x −  x = 0 . 

1

2

3

Por lo tanto los números reales solución deben cumplir 

*

*

*

 x = 2.  x +  x

1

2

3
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Las soluciones son los vectores de la forma : ( *

*

*

*

2.  x +  x ,  x ,  x )

*

=  x .( 2,1, 0)

*

+  x . 1, 0,1 . 

2

3

2

3

2

3 (

)

Por lo tanto se tiene que   S = 2,1, 0 , 1, 0,1

0

(

{

) (

)}

c) Para calcular el rango de   ( *

 r A ) , se analizará la relación que cumplen los elementos de

la columna 

 10 







 B= 

2

− 0



   . 





 1

− 0 

Como   b = 2

− .  b  y   b = −  b  ya que   – 20 = -2. 10 y −10 = −(10),  se tiene que cumplen igual 2

1

3

1

relación estas filas de  B que las filas de la matriz  A,  por lo tanto es   r ( *

 A ) = 1

d) El conjunto solución es 

*

 S =  s +  S . 

0

 10 

Se puede verificar que una solución particular de 





. 

 A X =

2

− 0

*



  es   s = (10, 0, 0) , luego 





 −10

 S = (10, 0, 0) + (

{ 2,1,0) ,(1,0, )1}

EJEMPLO 15.1.12 

 3 −2

1

−1 



 

1

 x

0







 

2

1

−3

1

 x

0

¿Admite soluciones no triviales el sistema   

 2 

 

=

? 

 1 3

1

2  



 

−

3

 x

0







 







 

 2

1

−

2

1  4

 x 

 0

Admitirá soluciones no triviales si el rango de  A es menor que 4. 

Observar que todo sistema homogéneo de  m ecuaciones con  n incógnitas  AX=0 es compatible. 

A esta conclusión puede arribarse aplicando el Teorema de Roché − Frobenius, ya que cla-

ramente el rango de  A coincide con el rango de la ampliada que en este caso es(  A  0)  o

 0

también comprobando que la matriz nula 

 

*

 n

 X =

∈  K

 

satisface la igualdad matricial  A.X=0.  

 

 0

Esta solución  X* se llama trivial. 

Prosigamos con el ejemplo. 
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•

Cálculo del rango de  A:

Primero se evalúa el determinante de  A,  que   es la submatriz de  A de mayor orden... 

3

2

−

1

1

−

2

1

−3

1  por ser un determinante de orden 4 se bajará el orden 

1

3

−1

2

2

−1

2

1

3

2

−

1

1

−

3 + 3.( 1

− )

−2 − 2( 1

− )

1 − 1

1

−

0

0

0

−1

2

1

−3

1

2 + 3.1

1− 2.1

−3 + 1

1

5

−1 −2

1

=

=

1

3

−1

2

1 + 3.2

3 − 2.2

−1 + 2

2

7

−1

1

2

2

−1

2

1

2 + 3.1

−1 − 2.1

2 + 1

1

5 −3

3

1

0

0

0

−1

5

−1 −2

5

−1 −2

1

 A =

= −( 1

− ). 7

1

−

1 = 1

− 5 + 42 − 5 −10 + 15 + 21 = 48 ≠ 0

7

−1

1

2

5

3

−

3

5

3

−

3

1

Luego, el rango de  A es igual a 4. 

•

Conclusión

  r( A)  = 4  coincide con el número de incógnitas. La solución es única. 

Por lo tanto no hay soluciones distintas de la trivial. 

EJERCICIO 15.1.13  

Analizar las soluciones de los siguientes sistemas 

 x +  x = 0

 x +  x = 1

1

2

1

2





 x −  x = 0

 x −  x = 0

1

2

a) 

1

2

b) 

 x − 2.  x = 0



 x − 2.  x = 0

1

2

 1

2

2.  x + 2.  x = 0

2.  x + 2.  x = 2

1

2

1

2

EJERCICIO15.1.14  

Analizar la compatibilidad de los siguientes sistemas y resolver... los compatibles 

 2

4

1

1 



− 

1

 x

 2 













 1

2

−2    x 

 3

1

2

−2

1 



1











    

 x





a) 2

4

2

 y = 2

2











      

b)

3

−

1

1

−2

= −3



    













 3

1

−

4

−    z   1 

2

1

3

1

−









 2 

3

 x



 

 



 3

−1

−1

2 

 3 

 4

 x 
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 4

1

5

−3   x 

 4

 1

2

−

0    x 

 0

1



 

  



    

2

2

4

−2

 x

3



 

  

c) 2

0

2 i

 y = 0

2



    

d)

=



 





    

1

1

2

1

 

−

3

 x

2

 5

6

−

2 i    z   0 



 

  

 3 −1 −1

1   4

 x   1 

EJERCICIO 15.1.15 

 1

−

2

1    x 

 0

1



 

  

a) Sea el sistema . 

 A X =

3

−1

2 .  x

= 0



 

. 

2 

 



 

  

 0

1

λ    x   0

3



Para que  λ ∈  el sistema tiene solución única? 

Para que  λ ∈  el sistema tiene infinitas soluciones?. 

 1

−

2

1    x 

1

1

b) Sea el sistema



 

  

. 

 A X =

3

1

−

2 .  x

= 1



 

. De ser posible hallar  λ ∈  para que : 

2 

 



 

  

 0

1

λ    x  1

3

i)

El sistema tenga solución única. 

i )

Admita infinitas soluciones. 

i i)

No tenga solución. 

2. Algunas aplicaciones

EJEMPLO 15.2.1 

Analizar si los vectores   a = (1,0,3) ,  b = (0,1, 2

− )  y   c = (2,1,3)  son base de  3 . 

Queremos ver si son linealmente independientes sobre R, es decir que si se cumple 

 k .  a +  k .  b +  k .  c = 0 , entonces   k =  k =  k = 0 . 

1

2

3

1

2

3

1. 

  k + 0.  k + 2.  k = 0

1

2

3



Este problema equivale a resolver el sistema: 0.  k +1.  k +1.  k = 0

1

2

3

3.  k + −2 .  k + 3.  k =



0

1

(

) 2

3

Dicho sistema homogéneo  posee tres incógnitas reales   k ,  k ,  k . Si el rango de la matriz 1

2

3

del sistema es 3 la solución es única y por lo tanto los tres vectores son linealmente independientes. 

Calculemos entonces el determinante de la matriz del sistema: 

864

APLICACIÓN DE LAS TRANSFORMACIONES LINEALES... – CAPÍTULO 15

 1

0

2 







det 0

1

1 = −1 ≠ 0











 3 −2 3 

Por lo tanto los tres vectores forman una base de  3 . 

EJERCICIO 15.2.2 

Para poder determinar una función polinómica   y =  p(  x) , con   p(  x)  mónico de quinto grado, cuántos puntos de su gráfica debemos conocer al menos para que quede determinado? 

Idea de la solución: Sea entonces   p(  x)

2

3

4

5

=  a +  a .  x +  a .  x +  a .  x +  a .  x +  x  hay que lograr 0

1

2

3

4

plantear un sistema que tenga al menos cuatro ecuaciones con cuatro incógnitas y que ten-

ga solución única (para que el polinomio quede determinado)  
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