

Engineering Accessible Web Applications.
An Aspect-Oriented Approach

Adriana E. Martín

Tesis DocToral en ciencias informáTicas

Engineering Accessible Web Applications.
An Aspect-Oriented Approach

Adriana E. Martín

Director: Dr. Alejandra Cechich
Codirector: Dr. Gustavo Rossi

La Plata, junio de 2012

UNIVERSIDAD NACIONAL DE LA PLATA
FACULTAD DE INFORMÁTICA

Engineering Accessible Web Applications.
An Aspect-Oriented Approach
Adriana E. Martín

Diagramación: Andrea López Osornio

Editorial de la Universidad Nacional de La Plata (Edulp)
47 N° 380 / La Plata B1900AJP / Buenos Aires, Argentina
+54 221 427 3992 / 427 4898
editorial@editorial.unlp.edu.ar
www.editorial.unlp.edu.ar

Edulp integra la Red de Editoriales Universitarias (REUN)

Primera edición, 2014
ISBN Nº 978-987-1985-28-9

Queda hecho el depósito que marca la Ley 11.723
©2014 - Edulp
Impreso en Argentina

Martín, Adriana E.
 Engineering accessible web applications, an
aspect-oriented approach. - 1a ed. - La Plata: EDULP, 2014.
 204 p.; 24x16 cm.

 ISBN 978-987-1985-28-9

 1. Informática. 2. Tesis Doctoral. I. Título.
 CDD 004

Devoted to

My gorgeous family, without whose unfailing support,
this work would not have been posible.

The people all around the world with their different
abilities that effort to honor life every day.

Acknowledgments

All my love to my precious family, especially to my great husband
Reinaldo and my esceptional daughter Erika, who unconditionally
supported this work even though sometimes this commitment
meant having to bear with my bad moods and absences. Also to
my parents and brother, who by their examples of life, inspired
my steps and encouraged me to never give up.
A huge thanks to Alejandra Cechich, who with her knowledge,
great experience and work-capacity, guide and support me at each
step through this long journey.
Special thanks to the supervisors of this thesis, again to Alejandra
Cechich and to Gustavo Rossi to accompany and advise with
wisdom when the concern came over me.
A particular acknowledgment to the Argentine Universities of
Comahue, Patagonia Austral and La Plata, which at different
levels of this process, give the scope and proper support that
enabled the development of this thesis.

Index

1. Introduction 13
 1.1 Context and Motivation 13
 1.2 Objectives 17
 1.3 Research Context 18
 1.4 Structure 18

2. Accessibility within we approaches 20
 2.1 Web Accessibility 20
 2.2 Proposals for Developing Accessible Web Applications 24
 2.2.1 Providing a Student of his/her Faculty Site 24
 2.2.2 Automatic Annotations for Accessibility 26
 2.2.3 Rules for an Accessible Composition 30
 2.2.4 Adaptation to tackle Crosscutting Concerns 33
 2.2.5 User Needs through Personas 38
 2.2.6 Model-Driven Development with AWA 40

3. Background of our proposal 43
 3.1 Introducing the Basis 43
 3.2 Aspect-Oriented Composition 43
 3.2.1 Aspectual Implementation: Advices and Pointcuts 45
 3.3 Reference Frameworks and Ontologies 46
 3.3.1 Design Decisions within a User Interface Framework 47
 3.3.2 An Ontology to share Abstract Interface Vocabulary 49
 3.4 User Interaction Diagrams 50
 3.5 Softgoal Interdependency Graphs 52
 3.6 Web Content Accessibility Guidelines Documents 54

4. An approach for engineering accessible web applications 56
 4.1 Our Approach in a Nutshell 56
 4.2 Identifying Application’s Requirements that Involve

Accessibility Needs 58
 4.3 Specifying Accessibility Concrete Concerns 59
 4.3.1 Using UIDs with Integration Points Technique 60
 4.3.2 Applying the SIG Template 62

 4.4 Discovering Crosscutting and Applying Aspects 65
 4.5 Designing with Accessible Interface Widgets 66
 4.5.1 A Mapping between Ontology Concepts
 and HTML Elements 67
 4.5.2 Association between Ontology Concepts-HTML
 Elements-WCAG Checkpoints 70

5. Applying our proposal 78
 5.1 A Case Study 78
 5.2 Our Proposal Step-by-Step on the Field 80
 5.3 A Supporting Tool for Our Approach 97
 5.3.1 Architecture’s Overview: Layers and Classes 99
	 	 5.3.2		Tool’s	Resources:	XML	Schemas	and	Specifications	 101
 5.3.3 Tool’s User Interfaces 111
 5.3.4 Some Insights about the Tool 113

6. Comparing our proposal 115
 6.1 Comparison Criteria 115
 6.2 Discussion 119
 6.3 Focusing on Ours 128
 6.3.1 Migrating to WCAG 2.0 130

7. Conclusions and future work 133
 7.1 Conclusions 133
 7.2 Future Work 135
 7.3 Publications related to this Thesis 136
 7.3.1 Journals 136
 7.3.2 Book Chapters 136
 7.3.3 International Conferences 137
 7.3.4 National Conferences 138
 7.4 Other related Publications 139
 7.4.1 International Conferences 139
 7.4.2 National Conferences 139

Appendix I 140

Appendix II 166

References 199

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 13

1. Introduction

1.1 Context and Motivation

Since 1999, when the W3C
1
-WAI

2
 introduced the “Web Content

Accessibility Guidelines 1.0” (WCAG 1.0) [45] as a set of guiding

principles, the fact that Accessibility is a main topic in Web design

upon which the success of a Web application depends, has become a

landmark statement. However, developing accessible Web

applications is usually hard for several reasons.

Firstly, there is a significant knowledge gap between developers and

Accessibility specialists. Most developers do not have the necessary

skills or training in designing and coding for Accessibility, and most

Accessibility specialists have, in turn, limited developing practice

[22]. Thus, although there are many available tools and published

sources of information on Web Application Accessibility, existing

Web Accessibility guidelines and principles (and therefore, experts on

these guidelines) do not address additional design issues that may

typically arise when developing complex Web applications. To make

matters worse, there is little evidence of design approaches dealing

with Accessibility from the beginning of the design process. In most

cases, Accessibility is regarded as a programming issue or even dealt

with when the Web application is already fully developed and,

consequently, the process of making this application accessible

involves significant redesign and recoding, which might be out of the

scope of the project and/or hardly affordable [22]. As we will show

next, the main problem with Accessibility is that it is a non-functional

software concern, which affects (crosscuts) other application concerns.

Generally speaking, a non-functional requirement is a software

requirement which does not describe what the system will do

(functional requirement), but how the system will do it; for example,

performance requirements, modularity requirements, or quality

attributes, which represent constraints on the services or functions

offered by a system [39].

Although Accessibility is a vital attribute for people with disabilities,

has not yet gained much recognition as a crucial non-functional

requirement like security, performance, accuracy and usability.

Moreover, Accessibility is a generic concern that may comprise

1 The World Wide Web Comsortium at http://www.w3.org/

2 The Web Accessibility Initiative at http://www.w3.org/WAI/

14 ADRIANA E. MARTÍN Adr

dozens of specialized concerns and, therefore, many requirements

associated with these.

For example, at the application-level, Accessibility can be specialized

according to the kind of Accessibility support given to the user, where

specific requirements related to the user‟s layout and the user‟s

technology supports are considered. While the former provides to an

accessible user‟s interaction, the user‟s technology support helps

browsing regardless of the user‟s assistive device and further, new

requirements related to current and earlier assistive devices

characteristics are associated separately --i.e. “user agents” and “until

user agents” respectively as the distinction made by the W3C‟s

UAAG 1.0 [48]. The term “user agent” is used by the W3C as a

generic description for any software that retrieves and renders Web

content for users, such as browsers, mobile phones, screen readers,

etc. On the other hand, the term “until user agent” is used by the W3C

referring to “user agents” that require developers to provide additional

support for Accessibility.

As another example, at the meta-level, Accessibility can be

specialized according to meta-features like compliance design and

content order concerns. The first one means conformance to some

Web Accessibility design principles that are articulated by guidelines,

regulations, standards or laws, while the second one refers to how to

organize the Web pages content based on research reports and studies

like quality in use surveys, conducted experiences, patterns

catalogues, etc. In both cases, these specialized concerns have their

associated requirements.

Finally, and as an example of the model-level, Accessibility can also

comprise different concerns according to the methodological phase for

the development of the Web application. Normally, these efforts are

focalized on the interface model by applying some conformance

assessment criteria, which establish associated requirements for

abstract and concrete interface widgets.

In this work we introduce our design approach, which proposes to

include Accessibility concerns systematically within a methodology

for Web application development.

Firstly, to find out how Accessibility concerns should be introduced in

the development life cycle, we analyzed how mature Model-Driven
3

3 Model-Driven Software Development (MDSD) is a software engineering

methodology that focuses on creating and exploiting domain models –i.e. abstract

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 15

Web Engineering (WE
4
) methods

5
, such as UWE [24], OOHDM [36],

OOWS [18] or WSDM [13], face this cycle. We realized that all of

them comprise several activities to focus on some specific design

concerns; however, since OOHDM fulfill many of our expectations,

we decided to join our modelling approach to this particular WE

method. As an example of the rational of choosing OOHDM as our

host WE approach, we have to mention the different views provided

by OOHDM at the user interface (UI) model. This fine-grained

treatment allows us to move from abstract interface elements, which

are those from the widget ontology [36], to concrete interface

elements --e.g. HTML elements, and link both levels of abstraction

from a UI design perspective [27] to WCAG checkpoints. Secondly,

since designing accessible Web applications involves the analysis of

different interests, we proposed to use Aspect-Oriented Software

Development (AOSD
6
) design principles to support the construction

of accessible user interfaces. The fact that we choose Aspect-

Orientation to develop our proposal ensures handling naturally the

non-functional, generic and “crosscutting”
7
 characteristics of the

Accessibility concern.
As a motivating example and to introduce properly the ideas behind

our modelling approach, let us suppose a typical login Web page

whose purpose is aiming a student‟s identification at his/her university

system, such as the SIU Guarani student registration system that is

representations of the knowledge and activities that govern a particular application

domain, rather than on the computing (or algorithmic) concepts.

4 Web Engineering (WE) is a specific domain in which MDSD can be successfully

applied to implement systems that exploit the Web paradigm. WE is the application of

systematic and quantifiable approaches, such as concepts, methods, techniques, tools,

to cost-effective requirements analysis, design, implementation, testing, operation,

and maintenance of high-quality Web applications.

5 These development proposals are also known as Model-Driven Web Development

(MDWD) approaches because they are concerned to provide methodologies and tools

for the design and development of most kinds of Web applications.

6 Aspect-Oriented Software Development (AOSD) focuses on the identification,

specification and representation of “crosscutting” concerns and their modularization

into separate functional units as well as their automated composition into a working

system.

7 “Croscutting” is a term used for certain type of functionality whose behavior causes

code spreading and intermixing through layer and tiers of an application which is

affected in a loss of modularity in their classes. Quality requirements (such as

Accessibility), exception handling, validation and login managements are all

examples of this common functionality that is usually described as “crosscutting

concerns” and should be centralized in one location in the code where possible.

16 ADRIANA E. MARTÍN Adr

used by a number of Argentine universities
8
. Figure 1.1 shows the

page for the student‟s login that provides a user interface composed of

HyperText Markup Language (HTML) elements, such as labels and

text fields. To help to an accessible interaction experience these

HTML elements must fulfill some Accessibility requirements, which

crosscut the same software artifact (the Web page for student‟s login).

For example, and as we will see in detail later, at the presentation

level an HTML label element is a basic layout Accessibility

requirement for many other HTML elements.

17

As a motivating example and to introduce properly the ideas behind our modelling

approach, let us suppose a typical login Web page whose purpose is aiming a student‟s

identification at his/her university system, such as the SIU Guarani student registration

system that is used by a number of Argentine universities
8
. Figure 1.1 shows the page

for the student‟s login that provides a user interface composed of HyperText Markup

Language (HTML) elements, such as labels and text fields. To help to an accessible

interaction experience these HTML elements must fulfill some Accessibility

requirements, which crosscut the same software artifact (the Web page for student‟s

login). For example, and as we will see in detail later, at the presentation level an

HTML label element is a basic layout Accessibility requirement for many other HTML

elements.

Figure 1.1: A Student‟s Login Web page example

Since a Web page for student‟s login requires at least two text field elements (for

student‟s ID and password respectively), the presence of their respective label elements

must be tested. So, to propitiate an accessible interaction experience on behalf of the

student, this layout requirement must crosscut the same software artifact (the Web page)

more than once, accordingly to the number of text field elements included in the

8 For example the SIU Guarani registration system, as used by the National University of Córdoba at

http://www.psi.unc.edu.ar/sistemas/sistemas-de-informacion-academica/siu-guarani

Figure 1.1: A Student‟s Login Web page example

Since a Web page for student‟s login requires at least two text field

elements (for student‟s ID and password respectively), the presence of

their respective label elements must be tested. So, to propitiate an

accessible interaction experience on behalf of the student, this layout

requirement must crosscut the same software artifact (the Web page)

more than once, accordingly to the number of text field elements

included in the presentation. Additionally, it is highly important to

consider the positioning of the label element with respect to a text

field element; this technological requirement for “until user agents”

[48] --i.e. earlier “user agents”, also crosscuts the Web page. Clearly

this kind of behavior perfectly fits the “scattering” and “tangling”

8 For example, the SIU Guarani registration system, as used by the National

University of Córdoba at http://www.psi.unc.edu.ar/sistemas/sistemas-de-

informacion-academica/siu-guarani

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 17

problems
9
, which motivate the main AOSD principles. Since these

two Accessibility requirements (presence and positioning of the label

elements), are “scattered” in the Web page with a pair of label-text

field HTML elements, the Web page is “tangled” with these

Accessibility requirements. It seems natural therefore to address

Accessibility using the Aspect-Oriented Software Development

(AOSD) approach and, it is not just a coincidence that during this

work we refer to Accessibility as a “concern”. Besides the fact that

Accessibility has become a basic quality attribute to any Web

application and to improve the evolution of the Web in general, the

term "concern" from the AOSD perspective describes accurately the

Accessibility features related to its nature. By using the AOSD

paradigm we can avoid typical problems of “crosscutting” concerns,

such as those shown in the previous Web page example. Our proposal

applies these concepts by treating Accessibility as a first-class concern

in the context of the OOHDM [36] WE approach. Specifically, we

propose the early capture of specific Accessibility concerns, which

involve user interactions and activities with the application‟s interface

by introducing some additional extensions to the User Interaction

Diagram (UID) [44] technique. As we see in Section 5.3, we also

propose a supporting tool to assist our approach.

Thus, looking for a comprehensive response to the problem of

developing accessible user interfaces (UI) for Web applications since

the early stages of design, we propose the following objectives.

1.2 Objectives

The main objective of this work is to define a WE approach (process

and techniques) to conceive, design and develop accessible Web

applications using Aspect-Oriented concepts, which enable to

address Accessibility early from requirements and through design to

implementation.

As secondary goals we state:

9 “Scattering” and “Tangling” symptoms are typical cases of “crosscutting concerns”

and they often go together, even though they are different concepts. A concern is

“scattered” over a class if it is spread out rather than localized while a concern is

“tangled” when there is code pertaining to the two concerns intermixed in the same

class (usually in a same method).

18 ADRIANA E. MARTÍN Adr

1. Studying the state-of-art of Accessibility proposals in general, and

in particular, focalizing on those proposals for designing Web

applications with the Accessibility concern in mind.

2. Studying deeply and applying some relevant related work,

selected as a result of the previous goal, to a proposed case study.

3. Defining a process for designing Web applications with

Accessibility and providing specific techniques that take

advantages of Aspect-Oriented concepts to address Accessibility

properly and from early stages of design.

4. Applying our proposal to a case study.

5. Proposing a supporting tool to help developers in applying our

proposal.

6. Comparing and discussing the main characteristics of our proposal

and the relevant related work selected as a result of previous

goals.

1.3 Research Context

This thesis has been developed and partially supported by the

following research projects:
 UNComa project 04E/072. Title: Identificación, Evaluación y

Uso de Composiciones Software. Period: 2008-2011. Director: Dr.

Alejandra Cechich.

 UNPA-UACO project 21/B107. Title: Mejora de Proceso de

Selección de Componentes para Sistemas de Información

Geográficos. Period: 2010-2011. Director: Dr. Alejandra Cechich.

 UNLP project PICT-PAE 2187. Title: Desarrollo de Familias de

Aplicaciones Web y Context Aware. Period: 2009-2011. Director:

Dr. Gustavo Rossi.

 UNComa project 04/E059. Title: Mejora del Proceso de

Desarrollo de Software Basado en Componentes. Period: 2005-

2007. Director: Dr. Alejandra Cechich.

1.4 Structure

The structure of this thesis is organized as follow:

 In Chapter 2, Accessibility within WE approaches, we firstly

introduce Web Accessibility, mainly focusing on those features

that are relevant for our work. Then, we concentrate on

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 19

introducing properly some selected related work and applying

them to a proposed case study.

 In Chapter 3, Background of our Proposal, we introduce four key

topics that we will use throughout the rest of the work, since they

are the conceptual basis of our proposal.

 In Chapter 4, An Approach for Engineering Accessible Web

Applications, we first provide a general overview of the model we

envisage to deal with Accessibility concerns within a Web

engineering approach. Then, we conduct a detailed description of

the proposed process and techniques for implementing our

proposal step-by-step.

 In Chapter 5, Applying our Proposal, we carry out clearly the

implementation of our approach following the step-by-step

process as we described in Chapter 4. To do so, we propose a

complete case study composed of 3 (three) level-deep navigation

and 2 (two) optional help anchors. We also introduce a supporting

tool that we specially develop to help developers on the design

process when applying our proposal.

 In Chapter 6, Comparing our Proposal, we first introduce an

Evaluation Framework that we develop to provide proper

comparison criteria for the approaches. Then, we carry out the

comparison and develop a discussion about the main

characteristics of the related work and our proposal.

 In Chapter 7, Conclusions and Future Work, we conclude

summarizing issues from the designer perspective and as a result

of our experience gathered at early stages of the Web development

process. Then, we state some open questions that lead to future

research.

20 ADRIANA E. MARTÍN Adr

2. Accessibility within we approaches

2.1 Web Accessibility

Generally speaking, in the World Wide Web (WWW), where users

have the freedom to choose what best meets their expectations, the

quality of a user interface (UI) can make the difference between

maintaining the Web site competitiveness (or not) within its domain --

e.g. e-Business and B2B
10

, e-Education (e-Teaching and e-Learning),

e-Government, GIS
11

 (GeoWeb, Web Mapping and Web GIS), etc.,

and even compromise the Web site survival.

In May 2006 foreword by Molly Holzschlag said [41]:

“…Berners-Lee’s vision has always had to do with the human side

of the Web. After all, it’s not machines that use the Web, but

people… Accessibility is not about disabilities; rather, it’s about

people getting to shared information that the vision of the Web has

made manifest…”

Web Accessibility is dedicated to achieving the access to the Web by

everyone, regardless of their permanent or temporary disabilities, age-

related problems, generational gaps, personal skills and preferences,

culture and developed education, etc. While it is true that Web

Accessibility emerged initially to help accessing the Web to people

with disabilities, currently there is no doubt about the spectrum of

benefits that Accessibility provides to the universe of Web users. In

this thesis, we have chosen not to provide several definitions of Web

Accessibility, as is usually done to describe its scope and

contributions (these definitions are all available at the Internet
12

).

10 Business to Business (B2B) also known as e-Biz, is the exchange of products,

services, or information between businesses rather than between businesses and

consumers.

11 A Geographic Information Systems (GIS) is a system of hardware and software

used for storage, retrieval, mapping, and analysis of geographic data. GeoWeb

consists of location-aware Web technologies usually manifested on the WWW; Web

Mapping then refers to those online applications that permit users to view or create

maps on a Web platform, usually with limited or no GIS analysis; while Web GIS

then refers to GIS that use Web technologies as a method of communication between

the elements of a GIS.

12 W3C (2005) definition at http://www.w3.org/WAI/intro/accessibility.php; ISO/TS

16071 (2003) definition at

http://www.iso.org/iso/catalogue_detail.htm?csnumber=30858; Hull (2004) definition

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 21

Instead, we prefer to introduce Table 2.1 that clearly shows how

Accessibility can help all users to face accessing the Web at different

life situations; after all, we all have different skills and abilities.

Table 2.1: Web Accessibility benefits the entire universe of Web Users

24

scope and contributions (these definitions are all available at the Internet
12

). Instead, we

prefer to introduce Table 2.1 that clearly shows how Accessibility can help all users to

face accessing the Web at different life situations; after all, we all have different skills

and abilities.

Table 2.1: Web Accessibility benefits the entire universe of Web Users

Disability People with Disability People “without Disability”

Vision Blinds Users who are driving in the

dark…

Low vision Low-vision Users Users who are using a device

with a small display...

Hearing Deafs Users who are in forced silence

(library) or using music players

with headphones…

Low hearing Low-hearing Users Users who are in noisy

environments…

Motor impaired Motor impaired Users due to

illness or traumatic injuries

(permanent or temporary)

Users who are wearing tight

clothes, protective clothing,

overalls, workware…

Users on a moving and/or

unstable vehicle --e.g. a train...

Cognitive

impaired

Users who are limited in their

abilities to process and

memorize information, to take

decisions, to learn, to

performe intellectual tasks.

Users who are tired, fatigued,

distracted, worried, sleepy,

drunk...

Communicational

impaired

Users having difficulties to

understand linguistic and

textual.

Users who have no knowledge of

the language, slogans or

symbols...

The Word Wide Web Consortium (W3C) is one of the main referents of Web

Accessibility and has worked for more than ten years in the development of a standard

called Web Content Accessibility Guidelines (WCAG
13

), which is considered a

benchmark for most of the laws on Information Technology and Communication

worldwide. The WCAG has two documents, the WCAG 1.0 [45] and the WCAG 2.0

12
 W3C (2005) definition at http://www.w3.org/WAI/intro/accessibility.php; ISO/TS 16071 (2003)

definition at http://www.iso.org/iso/catalogue_detail.htm?csnumber=30858; Hull (2004) definition at

http://ausweb.scu.edu.au/aw05/papers/refereed/arora/paper.html; Fourney and Carter (2006) definition at

http://userlab.usask.ca/papers/IEA06DF-JC.pdf; etc.

13
WCAG overview at http://www.w3.org/WAI/intro/wcag

The Word Wide Web Consortium (W3C) is one of the main referents

of Web Accessibility and has worked for more than ten years in the

development of a standard called Web Content Accessibility

Guidelines (WCAG
13

), which is considered a benchmark for most of

the laws on Information Technology and Communication worldwide.

The WCAG has two documents, the WCAG 1.0 [45] and the WCAG

2.0 [46], whose stable specifications were released in 1999 and 2008

respectively. Since their longstanding presence in the Accessibility

arena, the WCAG 1.0 has provided the basis for the promulgation of

other Accessibility standards and legislation in several countries. For

example, this is the case for the US Section 508 [38], the UK PAS 78

at http://ausweb.scu.edu.au/aw05/papers/refereed/arora/paper.html; Fourney and

Carter (2006) definition at http://userlab.usask.ca/papers/IEA06DF-JC.pdf; etc.

13 WCAG overview at http://www.w3.org/WAI/intro/wcag

22 ADRIANA E. MARTÍN Adr

[34] and the Italian Legislation on Accessibility [40]. Currently, the

migration process from WCAG 1.0 to WCAG 2.0 of these standards

and legislation is taking place. In Argentina, Web Accessibility is an

issue that has been recently included in the State's agenda. The

legislation 26.653 called “Guía de Accesibilidad para Sitios Web del

Sector Público Nacional
14

”, which adheres to WCAG 1.0 document,

was approved by Resolution 69/2011 on June 27
th
 2011. In August

2011, Argentina became a member of the W3C
15

. We will return on

WCAG and its documents in Section 4.6, and then also in Section

7.3.1 where we will explain how we carry out the migration of our

proposal.

Since 1999, when the first W3C Accessibility document was released,

a number of tools and approaches have emerged and are available to

support Web developers evaluating Accessibility of existing Web

applications. However, Accessibility has not yet gained enough

recognition as a crucial non-functional requirement such as other

quality factors. This situation may be due to several reasons, but

probably, it had much to do with the way Accessibility was first

introduced to Web developers --i.e. by showing only its side

committed with disability. This lack of knowledge within developer‟s

community, prevented them from getting involved with the cause, and

as a consequence, the work has been addressed mostly by

Accessibility specialists and entities engaged with disability. As we

shall see next in Section 2.2, the status is worse from a design

perspective, since it is a fact that there are not many efforts

considering Accessibility at early stages of the development process.

At this point, we would like to perform some considerations

concerning to the relationship between Accessibility and Web

development stages. As we already said in Chapter 1, Web

Engineering (WE) focuses on stages, which create and exploit domain

models, to face the development life cycle of Web applications.

Almost every mature WE method proposes the following five stages,

each one delivering its respective model: requirements, conceptual,

navigation, user interface and implementation. In the best cases,

Accessibility is submitted to user interface (UI) codification and

implementation stage. In most cases, Accessibility is addressed when

the application is already fully developed, and in consequence the

14 Access to Public Information by Law 26.653 at

http://www.infoleg.gov.ar/infolegInternet/anexos/175000-179999/175694/norma.htm

15 Argentina became a member of the W3C at

http://www.puntogov.com/nota.asp?nrc=2641

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 23

process of making this application accessible involves significant

redesign and recoding, which may be considered outside the project‟s

scope and budget [22].

Finally, when we talk about Web Accessibility, we must specify the

target of the Accessibility efforts since to establish the client-server

Web relationship, several components are required. This means that

Web Accessibility depends on these components working together and

improvements in specific components could substantially improve

Web Accessibility. Thus, for example, we can evaluate the

Accessibility of the following components: (i) User agents, client

devices or assistive technologies, such as PCs and notebooks, cell

phones, iPods and iPads, screen readers
16

, screen magnifiers
17

, braille

keyboards
18

, PDAs, etc., (ii) Web browsers, such as Safari, Mozilla

Firefox, Internet Explorer, Opera, etc., (iii) Authoring tools –i.e.

software that helps creating Web sites
19

, (iv) Web pages --i.e. the

content, structure, presentation and layout of Web documents and (v)

Web navigation --i.e. how the Web user moves from one Web page to

another when traveling through the cyberspace. The W3C-WAI

provides valuable standards to improve the Accessibility of these

components
20

 that are called “Essential Components of Web

Accessibility”
21

. As examples of these standards, we already

mentioned the WCAG documents [45] [46], which are focused on

explaining how to make accessible the Web content component and,

the User Agents Accessibility Guidelines (UAAG) [48] document
22

,

which provides guidelines for designing user agents that lower

barriers to Web accessibility for people with disabilities. As we are

especially interested in developing accessible Web applications, our

16 Software for the visually impaired users that reads the contents of a computer

screen, converting the text to speech.

17 A screen magnifier is software that interfaces with a computer's graphical output to

present enlarged screen content.

18 Portable units used to take notes using the Braille system; quite often use chording

techniques (key combinations), but some units are designed with a traditional

keyboard.

19 A list of some Authoring tools and their comparison at

http://www.edb.utexas.edu/minliu/multimedia/Compare%20Web%20Authoring%20T

ools.pdf

20 W3C-WAI guidelines and techniques at http://www.w3.org/WAI/guid-tech.html

21 W3C-WAI: strategies, guidelines, resources to make the Web accessible to people

with disabilities at http://www.w3.org/WAI/intro/components.php

22 UAAG overview and UAAG 2.0 working draft at

http://www.w3.org/WAI/intro/uaag.php

24 ADRIANA E. MARTÍN Adr

work focuses its efforts on designing user interfaces (UI) by applying

the WCAG recommendations to propitiate better access to content,

help navigation and improve the user experience while interacting

with the application.

2.2 Proposals for Developing Accessible Web Applications

This section reviews the most relevant proposals that aim to consider

the Accessibility concern in at least, some of the stages of the

development life-cycle. To provide a more complete description and

also to perform a more thorough analysis of these proposals, in

Section 2.2.1 we introduce a case study that we use to apply each one

of them.

Figure 2.1: A simplified University home page example

2.2.1 Providing a Student of his/her Faculty Site

In this section we present the typical situation faced by a college

student when looking for his/her respective Faculty site. Let us

assume that the student enters the home page of the University of

which depends the desired Faculty and this home page has the

appearance illustrated in Figure 2.1.

As we can see in Figure 2.1 the page offers the student a set of related

links to the Faculties that make up the University. The name of each

Faculty is an anchor the student can use to browse to his/her Faculty

site. Since links are navigation mechanisms that create a set of paths a

user may take through a site, it is very important to keep a consistent

style of presentation for links, as for every interface of components

relevant to the interaction interface-functionality. Thus, taking into

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 25

account Accessibility recommendations for links will allow users to

locate and skip navigation mechanisms more easily to find important

content. This helps people with learning and reading disabilities but

also makes navigation easier for all users. Predictability will increase

the likelihood that people will find information at your site, or avoid it

when they so desire [45]. Returning to the University home, Figure

2.2 illustrates the corresponding HTML code for this page example.

Figure 2.2: The HTML code for the University home page example

As we can see at lines 12, 13, 14, 15 and 16 of Figure 2.2, a set of five

HTML a elements is defined for a “skip” option and four Faculties,

and they are enclosed with an HTML div element at lines 11 and 17 of

the styling class “adjacentLinks”. Following, we use this simple

example to discuss the way the five approaches cited at this chapter

work for improving more accessible user interface designs.

26 ADRIANA E. MARTÍN Adr

Figure 2.3: The WSDM with Dante from [51]

2.2.2 Automatic Annotations for Accessibility

The main goal in Plessers et al. [35] is to generate annotations for

visually impaired users automatically from explicit conceptual

knowledge existing during the design process. The approach

integrates the Dante [52] annotation process into the Web Site Design

Method (WSDM) [13] that allows Web sites and Web applications to

be developed in a systematic way. The annotations are generated from

explicit conceptual knowledge captured during the design process by

means of WSDM‟s modelling concepts. These WSDM‟s modelling

concepts, used in the different phases, are described using the WSDM

OWL
23

 ontology. To generate code the authors establish a

transformation process that takes the conceptual design models as

input and generates a set of annotations as a consequence. The

transformation process consists of two annotation steps: authoring and

mobility, which resemble the original annotation process of the Dante

23 OWL Web Ontology Language at http://www.w3.org/TR/owl-ref/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 27

approach. The difference is that the authoring annotation in Dante is

manual and based on the HTML source code of the Web site. The

integration of the Dante [52] annotation process into the Web Site

Design Method (WSDM) [13] is graphically illustrated by Figure 2.3

[51].

As we can see in Figure 2.3 the transformation to an accessible design,

takes place at the “Execute mapping + Transform pages” step, where a

mapping between WSDM and Dante ontologies applies. The WSDM

key models where transformation takes place are the WSDM site

structure model and the WSDM presentation model, both outputs of

the WSDM Implementation Design phase.

By using these mapping rules, which is annotated with concepts from

the Dante‟s WAfA
24

 ontology, a relationship between the concepts in

the WSDM ontology and the WAfA ontology is established.

FACULTIES
WEB SITES

UNIVERSITY

HOME PAGE

H

Faculty Site 1

Faculty Site 2

Faculty Site n

:

L

Figure 2.4: Part of the WSDM site structure model for the University

home page example

Now, applying this proposal for developing the page example of

Section 2.2.1, Figure 2.4 shows part of the WSDM site structure

model. As we can see in Figure 2.4, we enrich this model of the

University home page with navigational aid links --i.e. the home link

and the landmark link components represented by means of the

symbols “H” and “L” respectively. From home, the landmark link

component offers a list of links that the student may choose when

browsing to his/her Faculty Web site.

Figure 2.5 provides the WSDM presentation model as a page template

for the University home page example, where the navigational aid

24 Web Authoring for Accessibility (WAfA) at

http://augmented.man.ac.uk/ontologies/wafa.owl

28 ADRIANA E. MARTÍN Adr

links “H” and “L” from Figure 2.4 are graphically highlighted in grey.

Having these WSDM key models, the transformation process consists

of two steps: (1) Authoring Annotation transformation which uses the

information specified in the WSDM models and the Dante‟s WAfA

ontology to generate the authoring annotation and, (2) Mobility

Annotation transformation which uses the output of the previous

transformation as well as the WSDM models to extend the authoring

annotation with mobility annotation to improve Accessibility.

31

Figure 2.4 are graphically highlighted in grey. Having these WSDM key models, the

transformation process consists of two steps: (1) Authoring Annotation transformation

which uses the information specified in the WSDM models and the Dante‟s WAfA

ontology to generate the authoring annotation and, (2) Mobility Annotation

transformation which uses the output of the previous transformation as well as the

WSDM models to extend the authoring annotation with mobility annotation to improve

Accessibility.

Figure 2.5: The WSDM presentation model for the University home page example

Following, we will explain the transformation process for the University home page

example taking into account the WSDM models of Figures 2.4 and 2.5:

(1) Authoring Annotation transformation. This process uses the mapping rules

between modelling concepts defined in the WSDM ontology and authoring concepts

from the WAfA ontology. The “list of text links” at the page example, can be

represented by the List concept (at WSDM ontology) and by the NavigationalList

concept (at the WAfA ontology), but this is not a straightforward one-to-one mapping.

So, assuming the set C as the set of all WSDM modelling concepts and the set I as the

set of all instances of these modelling concepts, Figure 2.6 shows the corresponding

mapping rule for the “list of links” to the Faculties web sites at the University page

example. To avoid confusion while applying this rule, the WSDMs concepts are

prefixed with “wsdm” and the WAfA concepts with “wafa”. The NavigationalList

WAfA concept is given in bold, followed by its meaning (in italic), an informal

explanation of the mapping rule and finally, a formal definition using first-order

predicate logic.

UNIVESITY NAME

HOME

Home Link

Landmark Link

FACULTIES WEB SITES
Skip Faculty Site1 Faculty Site 2 … Faculty Site n

List of Links

Figure 2.5: The WSDM presentation model for the University home page example

Following, we will explain the transformation process for the

University home page example taking into account the WSDM

models of Figures 2.4 and 2.5:

(1) Authoring Annotation transformation. This process uses the

mapping rules between modelling concepts defined in the WSDM

ontology and authoring concepts from the WAfA ontology. The “list

of text links” at the page example, can be represented by the List

concept (at WSDM ontology) and by the NavigationalList concept (at

the WAfA ontology), but this is not a straightforward one-to-one

mapping. So, assuming the set C as the set of all WSDM modelling

concepts and the set I as the set of all instances of these modelling

concepts, Figure 2.6 shows the corresponding mapping rule for the

“list of links” to the Faculties web sites at the University page

example. To avoid confusion while applying this rule, the WSDMs

concepts are prefixed with “wsdm” and the WAfA concepts with

“wafa”. The NavigationalList WAfA concept is given in bold,

followed by its meaning (in italic), an informal explanation of the

mapping rule and finally, a formal definition using first-order

predicate logic.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 29

Figure 2.6: Mapping rule for the “list of links” at the University home page example

(2) Mobility Annotation transformation. This process re-uses the

mapping rules provided by the Dante approach [52], adjusting them to

interact with the WSDM models instead of the HTML code of the

Web page. Taking the output of the previous transformation as well

as the WSDM models, we extend the NavigationalList authoring

annotation with mobility annotation to improve Accessibility. Figure

2.7 provides the mapping rule [35] for mobility annotation

transformation that applies to objects authoring annotated as a

NavigationalList. All the links in the list are text links corresponding

to the Faculties‟ names for whose Web sites access are allowed to

students. As the mapping rule from Figure 2.7 shows, the

NavigationalList authoring concept must be annotated with the

DecisionPoint and NavigationPoint mobility concepts, while the

TextLink authoring concept (required because all the links in the list

are text links) must be annotated with NavigationPoint and

TravelMemory mobility concepts. As a consequence, the

NavigacionalList, where all the links in the list are TextLink, must be

annotated with DecisionPoint, NavigationPoint and TravelMemory

mobility concepts.

Figura 2.7: Mapping rule for the NavigationalList at the University home page

example

30 ADRIANA E. MARTÍN Adr

A DecisionPoint is a choice point where alternative paths of browsing

are possible; while a NavigationPoint provides a possible route and

the user exercises some control by choosing to follow or not to follow

it; finally, a TravelMemory holds information about where the user has

been and provides means to get back there. For the particular case of

the University home page example, these mobility concepts will offer

a student a point from where it is possible to choose a Faculty name,

browse to its Web site and also get back from there to the University

home page. We must to keep in mind that authoring and mobility

concepts are from WAfA ontology, so the application of the rule for

the Pleasers proposal [35], looks like shows Figure 2.8.

33

A DecisionPoint is a choice point where alternative paths of browsing are possible;

while a NavigationPoint provides a possible route and the user exercises some control

by choosing to follow or not to follow it; finally, a TravelMemory holds information

about where the user has been and provides means to get back there. For the particular

case of the University home page example, these mobility concepts will offer a student a

point from where it is possible to choose a Faculty name, browse to its Web site and

also get back from there to the University home page. We must to keep in mind that

authoring and mobility concepts are from WAfA ontology, so the application of the rule

for the Pleasers proposal [35], looks like shows Figure 2.8.

Figure 2.8: The Pleaser et al. [35] proposal for the University home page example

The botton-half of the rule is a direct translation of the original rule, applied to the

objects annotated as a NavigationalList where all wsdm:ListItems are text elements. The

top-half of the rule formally defines a text element [35]. For further details of this

proposal, we refer the reader to [35].

2.2.3 Rules for an Accessible Composition

The work by Centeno et al. [9] presents a set of rules that, in a Web composition

process, a design tool must follow in order to create accessible Web pages. These rules

are formalized with W3C standards like XPath25 and XQuery26 expressions, defining

conditions to be met in order to guarantee that Accessible chunks of Web pages are

safely compound into a page that also results Accessible. The authors also propose

25
 W3C XML Path Language at www.w3.org/TR/xpath

26
 W3C XML Query Language at www.w3.org/TR/xquery

! i ² I: wsdm:String(i) ¢

(# x, y ² C:

wsdm:ObjetcChunkReference(i) toProperty(i, x) rang(x,y) wsdm:String(y))

% Text(i)

! i ² I: wafa:NavigationalList(i)

(! x ² I, # y ² I:

wsdm:hasChild(i,x) wsdm:ListItem(x) wsdm:hasChild(x,y) Text(y))

% wafa:DecisionPoint wafa:NavigationPoint wafa:TravelM emory

Figure 2.8: The Pleaser et al. [35] proposal for the University home page example

The botton-half of the rule is a direct translation of the original rule,

applied to the objects annotated as a NavigationalList where all

wsdm:ListItems are text elements. The top-half of the rule formally

defines a text element [35]. For further details of this proposal, we

refer the reader to [35].

2.2.3 Rules for an Accessible Composition

The work by Centeno et al. [9] presents a set of rules that, in a Web

composition process, a design tool must follow in order to create

accessible Web pages. These rules are formalized with W3C standards

like XPath25 and XQuery26 expressions, defining conditions to be

met in order to guarantee that Accessible chunks of Web pages are

safely compound into a page that also results Accessible. The authors

also propose using the “Web-Composition Service Linking System”

25 W3C XML Path Language at www.w3.org/TR/xpath

26 W3C XML Query Language at www.w3.org/TR/xquery

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 31

(WSLS) [20] as Accessibility enabled authoring tool that makes this

task feasible, and focus on how this tool incorporates Accessibility

into the process of generating new Web contents. The XPath and

XQuery expressions spot HTML nodes and attributes having

Accessibility problems. This work proposes to properly manage these

spot elements by an authoring tool, so that the author‟s attention can

be directly brought to these barriers in a semi-automated edition

process.

PROCESS-AWARE WCAG CHECKPOINTS
FOR AN ACCESSIBLE WEB PAGE COMPOSITION

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 …”
3. <html … >
:

8. <body>
:
10. <h2>Links to the Faculties WebSites</h2>
11. <div class="adjacentLinks">

12. [Skip the Navigation Bar]
13. [Faculty Site 1]
14. [Faculty Site 2]
15. [Faculty Site 3]

16. [Faculty Site 4]
17. </div>
18. </body>
19. </html>

ACCESSIBLE HTML FOR THE UNIVERSITY HOME WEB PAGE EXAMPLE

Skip the Navigation Bar

Faculty Site 1

Faculty Site 4

SET OF RULES
FOR

HTML LINKS

COMPOSITION

ACCESSIBLE LINKS IN HTML MARKUP 1

3

2

Figure 2.9: The Centeno et al. [9] proposal for the University home page example

The WSLS approach follows the AOSD separation of concerns

principle to decompose complexity and control Accessibility over six

distinguished categories: Data, Presentation, Navigation, User,

Interaction, Process and Communication. The six elements are

mediated by a service control function. Beyond the advantage of the

32 ADRIANA E. MARTÍN Adr

reuse aspect of these components, separation of concerns facilitates

also being compliant to the underlying guidelines [9].

Figure 2.9 resumes graphically the proposal at Centeno et al. [9]

applied to the page example of Section 2.2.1. As highlighted in Figure

2.9 (1), given $S1 to $S5 compoundable pieces of HTML markup

(also called HTML snippets), each one represents an accessible link to

a Faculty of the student‟s University. The composition of these

accessible chunks of Web pages, must follow some rules in order to

create an accessible “list of links” at the University home page. The

proposal provides a set of rules that are focused on formalizing the

conditions to be met so that accessible HTML snippets can be safely

compound into a page that also results accessible from the WCAG

point of view. As shown in Figure 2.9 (2), from the set of rules

provided by the proposal, we select for the page example only those

rules for HTML links composition. For example, rule 10.5 establishes

“provided that all $S1‟s and $S2‟s links have non-consecutive links

(some printable text between links), their composition could have

consecutive links without such printable characters if a $S2‟s link

appears just in front of $S1‟s link” [9]. This condition for rule 10.5

(“non-consecutive links”) is formalized with a combination of XPath

and XPointer as depicted in Figure 2.10 Since this formalization is

somewhat difficult for those unfamiliar with XPath and XPointer, the

next row of Figure 2.10 summarizes its meaning in simpler terms to

facilitate its reading; remember that "a" represents an HTML a

element that is used to define links.

Figure 2.10: XPath + XPointer pre-conditions for avoiding consecutive links without

printable non-linkable characters between them [9]

Meanwhile, rule 13.1 establishes “there should be no links sharing

both a text and a title but pointing to different targets; provided $S1

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 33

and $S2 have no such ambiguous links there exist a functional

dependency such that for every pair of (link‟s contents, link‟s title)

only a single target may be found in both $S1 and $S2. In that case,

we should also make sure that no link in $S1 is similarly described in

$S2 (and pointing to a different target), or vice-versa; if so, an

ambiguity would be introduced in the composed result” [9]. This

condition for rule 13.1 (“clear links”) is formalized with XPath as

depicted in Figure 2.11.

36

Meanwhile, rule 13.1 establishes “there should be no links sharing both a text and a title

but pointing to different targets; provided $S1 and $S2 have no such ambiguous links

there exist a functional dependency such that for every pair of (link‟s contents, link‟s

title) only a single target may be found in both $S1 and $S2. In that case, we should also

make sure that no link in $S1 is similarly described in $S2 (and pointing to a different

target), or vice-versa; if so, an ambiguity would be introduced in the composed result”

[9]. This condition for rule 13.1 (“clear links”) is formalized with XPath as depicted in

Figure 2.11.

(every $a1 in $S1//a satisfies $S2//a[text() = $a1/text() and @title = $a1/@title and

@href != $a1/@href] = ()) and

(every $a2 in $S2//a satisfies $S1//a[text() = $a2/text() and @title = $a2/@title and

@href != $a2/@href] = ())

Figure 2.11: XPath pre-condition for avoiding ambiguous links [9]

Returning to Figure 2.9, given $S1 to $S5 HTML snippets corresponding to Faculty

links and rules 10.5 and 13.1, a process-aware WCAG checkpoints takes place for Web

page composition to deliver an accessible “list of links” at page example. As we can see

in Figure 2.9 (3), the “list of links” conform rules 10.5 and 13.1 responding respectively

to the statements “non consecutive links” --i.e. printable characters between links where

included, and “clear links” --i.e. title‟s, target‟s and content‟s links are properly

specified, to avoid students get confuse while browsing his/her University home page

example. For further details of this proposal, refer to [9].

2.2.4 Adaptation to tackle Crosscutting Concerns

Casteleyn et al. [6], focus on how to extend an application with new functionality

without having to redesign the entire application. The work states that since creating a

Web application has become an increasingly complex task, various design issues like

device-dependence, privacy, security, Accessibility, localization, personalization, etc.

have become extremely relevant to the application performance. To add new

functionality, the authors propose to separate additional design concerns and describe

them independently. By using a component-based implementation, they show how to

extend a Web application to support additional design concerns at the presentation

Figure 2.11: XPath pre-condition for avoiding ambiguous links [9]

Returning to Figure 2.9, given $S1 to $S5 HTML snippets

corresponding to Faculty links and rules 10.5 and 13.1, a process-

aware WCAG checkpoints takes place for Web page composition to

deliver an accessible “list of links” at page example. As we can see in

Figure 2.9 (3), the “list of links” conform rules 10.5 and 13.1

responding respectively to the statements “non consecutive links” --

i.e. printable characters between links where included, and “clear

links” --i.e. title‟s, target‟s and content‟s links are properly specified,

to avoid students get confuse while browsing his/her University home

page example. For further details of this proposal, refer to [9].

2.2.4 Adaptation to tackle Crosscutting Concerns

Casteleyn et al. [6], focus on how to extend an application with new

functionality without having to redesign the entire application. The

work states that since creating a Web application has become an

increasingly complex task, various design issues like device-

dependence, privacy, security, Accessibility, localization,

personalization, etc. have become extremely relevant to the

application performance. To add new functionality, the authors

propose to separate additional design concerns and describe them

independently. By using a component-based implementation, they

show how to extend a Web application to support additional design

concerns at the presentation generation level. Furthermore, they

demonstrate how an Aspect-Oriented approach can support the high-

34 ADRIANA E. MARTÍN Adr

level specification of these (additional) design concerns at a

conceptual level.

37

generation level. Furthermore, they demonstrate how an Aspect-Oriented approach can

support the high-level specification of these (additional) design concerns at a conceptual

level.

Figure 2.12: Hera-S architecture [8]

The work firstly illustrates how to add adaptation to an existing Hera-based Web

application [23], using a component-based implementation. To do so, they apply the

Generic Adaptation Components (GAC) approach [16] provided by the AMACONT
27

project. Niederhausen et al. introduce further work over this foundation [32] that

proposes an Aspect-Oriented view on adaptation engineering within the AMACONT

framework. By separating the specification of adaptation from the underlying

application in the form of so-called adaptation aspects, this work proposes to add new or

modify existing adaptation concerns on demand. The authors also present an extension

of their graphical authoring tool AMACONTBuilder [15]. This extension allows Web

engineers to intuitively incorporate adaptation aspects into Web applications. Casteleyn

et al. latest implementation [7] [8] proposes a Semantic-based Aspect-Oriented

adaptation approach materialized in the form of a domain specific language, which the

authors called Semantic-based Aspect-Oriented Adaptation Language (SEAL)28. It is

presented in the context of a Web Information System (WIS) design method, Hera-S,

which combines the popular open source Resource Description Framework (RDF)
29

27
 System Architecture for Multimedia Adaptive WebCONTent at http://www-mmt.inf.tu-

dresden.de/Forschung/Projekte/AMACONT/index_en.xhtml

28
 SEAL BNF specification at http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf

29
 W3C RDF/XML syntax specification at http://www.w3.org/TR/REC-rdf-syntax/

Figure 2.12: Hera-S architecture [8]

The work firstly illustrates how to add adaptation to an existing Hera-

based Web application [23], using a component-based

implementation. To do so, they apply the Generic Adaptation

Components (GAC) approach [16] provided by the AMACONT27

project. Niederhausen et al. introduce further work over this

foundation [32] that proposes an Aspect-Oriented view on adaptation

engineering within the AMACONT framework. By separating the

specification of adaptation from the underlying application in the form

of so-called adaptation aspects, this work proposes to add new or

modify existing adaptation concerns on demand. The authors also

present an extension of their graphical authoring tool

AMACONTBuilder [15]. This extension allows Web engineers to

intuitively incorporate adaptation aspects into Web applications.

Casteleyn et al. latest implementation [7] [8] proposes a Semantic-

based Aspect-Oriented adaptation approach materialized in the form

of a domain specific language, which the authors called Semantic-

based Aspect-Oriented Adaptation Language (SEAL)28. It is

presented in the context of a Web Information System (WIS) design

method, Hera-S, which combines the popular open source Resource

Description Framework (RDF)29 called Sesame [5] and the rich

27 System Architecture for Multimedia Adaptive WebCONTent at http://www-

mmt.inf.tu-dresden.de/Forschung/Projekte/AMACONT/index_en.xhtml

28 SEAL BNF specification at

http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf

29 W3C RDF/XML syntax specification at http://www.w3.org/TR/REC-rdf-syntax/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 35

modelling capabilities of Hera [23], a model-driven approach for

engineering Web applications based on semantically structure data.

They choose Hera-S because: (i) it naturally builds on Semantic Web

data and, (ii) it was conceived with adaptation in mind. An illustrative

overview of Hera-S architecture is shown in Figure 2.12 from [8].

Basically, the architecture receives data from the actual source, which

conforms to the Domain Model (DM). The Application Model (AM)

is instantiated according to the context data provided by the Context

Model (CM), resulting in so-called Application Model Pages (AMPs).

The authors devised their own custom-made aspect language SEAL to

provide adaptation support in the context of Hera-S. By using SEAL‟s

syntax, which is based on BNF notation, they show their adaptation

engineering perspective applying pointcuts and advices expressions.

38

called Sesame [5] and the rich modelling capabilities of Hera [23], a model-driven

approach for engineering Web applications based on semantically structure data. They

choose Hera-S because: (i) it naturally builds on Semantic Web data and, (ii) it was

conceived with adaptation in mind. An illustrative overview of Hera-S architecture is

shown in Figure 2.12 from [8]. Basically, the architecture receives data from the actual

source, which conforms to the Domain Model (DM). The Application Model (AM) is

instantiated according to the context data provided by the Context Model (CM),

resulting in so-called Application Model Pages (AMPs). The authors devised their own

custom-made aspect language SEAL to provide adaptation support in the context of

Hera-S. By using SEAL‟s syntax, which is based on BNF notation, they show their

adaptation engineering perspective applying pointcuts and advices expressions.

Figure 2.13: The Hera-S AM for the University home page example

:UniversityUnit a ams:NavigationalUnit ;

ams:hasInput [a ams:Variable ;

ams:varName “U”;

ams:varType uncdb:University] ;

ams:hasAttribute [
rdfs:label “UniversityName” ;

ams:hasQuery

“SELECT N1 FROM {$U} rdf:type {uncdb:University};

rdfs:label {N1}”] ;

ams:hasSetRelationship [

rdfs:label “Faculties” ;

ams:refersTo :FacultyUnit ;

ams:hasQuery

“SELECT F FROM {$U} rdf:type {uncdb:University};

uncdb:unversityFaculty {F}”

].

:FacultyUnit a ams:NavigationalUnit ;

ams:hasInput [a ams:Variable ;

ams:varName “F”;

ams:varType uncdb:Faculty] ;

ams:hasAttribute [

rdfs:label “FacultyName” ;

ams:hasQuery

“SELECT FN FROM {$F} rdf:type {uncdb:Faculty};

rdfs:label {FN}”

].

Figure 2.13: The Hera-S AM for the University home page example

36 ADRIANA E. MARTÍN Adr

To demonstrate the practicality of their proposal, they apply and

integrate SEAL in the HydraGen engine
30

 (an implementation

generation tool for Hera-S developed externally by the University of

Eindhoven).

Now, applying this proposal for developing our University home page

example of Section 2.2.1, a Hera-S Application Model (AM) using

Turtle RDF notation
31

 would include the statements shown in Figure

2.13.

An Hera-S Application Model (AM) is specified by means of

navigational units (denoted by ams: Navigational Unit and called

shorthand: units). A unit can be used to represent a page and it is a

primitive that (hierarchically) groups elements (called attributes) that

will together be shown to the user. The type of a unit (denoted by

ams:varType) refers to a domain data and the specification of this type

is done by using the namespace-prefix from the Hera-S Domain

Model (DM). Our Hera-S AM example bellow, consists of two units,

UniversityUnit and FacultyUnit, which are of the type uncdb:

University and uncdb: Faculty respectively (in this case this

namespace-prefix from our Hera-S DM stands for “Universidad

Nacional de Córdoba Data Base”). Both units are navigational units of

Hera-S AM, each one representing a particularly grouping of

information. For example, the UniversityUnit contains one attribute

(denoted by ams: hasAttribute) representing the university‟s name and

a set of navigational relationships (denoted by ams:

hasSetRelationship) from UniversityUnit to FacultyUnit. Note that

the ams: SetRelationship “refersTo” the FacultyUnit, which specifies

what exactly to show for every faculty. Since a unit will mostly

correspond to (a) specific domain concept(s), one or several content

elements are needed in order to instantiate the unit. For example, in

the UniversityUnit the output of the SeRQL queries (denoted by

ams:hasQuery) provides a university name and a number of members

which will be used respectively to instantiate the UniversityName and

the Faculties of the UniversityUnit.

Now, by using the domain specific language SEAL it is possible to

apply the Casteleyn et al. proposal [8], to provide Aspect-Oriented

adaptation support in the context of Hera-S for the University home

page example of Section 2.2.1. As Figure 2.14 shows, we have

30 Hydragen: An implementation of Hera-S at

http://wwwis.win.tue.nl/~ksluijs/material/Singh-Master-Thesis-2007.pdf

31 W3C-Turtle at http://www.w3.org/TeamSubmission/turtle/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 37

instantiated the adaptation requirement to stand for the Accessibility

requirements of adjacent links. The adaptation aspect is composed of

a pointcut and an advice; while pointcut expressions select exactly

those elements from the Application Model (AM) where adaptation

concerns need to be applied. Advices specify exactly what needs to be

done to the element(s) selected in the pointcut [8]. Back to our

example of Section 2.2.1, the pointcut in Figure 2.14 selects sets of

relationships --i.e. consecutive links, which originate from a(ny)

University unit and target a(ny) Faculty unit. The advice is

conditioned to users using a “screen-reader” device. As we explained

above, in Hera-S the user‟s context is captured by the Context Model

(CM) and with Hera-S notational conventions, referencing this user‟s

context is done using a “cm:” -prefix.

40

Hera-S for the University home page example of Section 2.2.1. As Figure 2.14 shows,

we have instantiated the adaptation requirement to stand for the Accessibility

requirements of adjacent links. The adaptation aspect is composed of a pointcut and an

advice; while pointcut expressions select exactly those elements from the Application

Model (AM) where adaptation concerns need to be applied. Advices specify exactly

what needs to be done to the element(s) selected in the pointcut [8]. Back to our

example of Section 2.2.1, the pointcut in Figure 2.14 selects sets of relationships --i.e.

consecutive links, which originate from a(ny) University unit and target a(ny) Faculty

unit. The advice is conditioned to users using a “screen-reader” device. As we explained

above, in Hera-S the user‟s context is captured by the Context Model (CM) and with

Hera-S notational conventions, referencing this user‟s context is done using a “cm:” -

prefix.

Adaptation REQUIREMENT: for users using a screen-reader avoid consecutive links

and clearly identify the target of each one of them.

Adaptation ASPECT:

POINTCUT: type SetRelationship and from uncdb:University and to uncdb:Faculty

ADVICE: if (cm:userDevice.type = “screen-reader”) {

ADD attribute containing hasLabel “Faculty Name”, hasQuery “SELECT FN FROM

{$F} rdf:type {uncdb:Faculty}; rdfs:label {FN}”;

ADD rdf:plainLiteral “[” and “]” surrounding;

};

Figure 2.14: Aspect-Oriented adaptation using SEAL for Accessibility requirements of the

University home page example

Firstly, the advice adds an AM attribute to the relationships selected in the pointcut

showing the faculty name with the label “Faculty Name” and the corresponding query,

if the user‟s device is a “screen-reader”. Secondly, the advice also uses plain RDF(s)
32

to add square brackets surrounding the relationships selected in the pointcut.

32
 W3C-RDF:PlainLiteral: A data type for RDF Plain Literals at http://www.w3.org/TR/rdf-plain-

literal/#Syntax_for_rdf:PlainLiteral_Literals

Figure 2.14: Aspect-Oriented adaptation using SEAL for Accessibility requirements

of the University home page example

Firstly, the advice adds an AM attribute to the relationships selected in

the pointcut showing the faculty name with the label “Faculty Name”

and the corresponding query, if the user‟s device is a “screen-reader”.

Secondly, the advice also uses plain RDF(s)
32

 to add square brackets

surrounding the relationships selected in the pointcut.

Although, this approach is primarily focused on adapting an existing

Web application, we include it because the approach proposes to add

relevant design concerns, like Accessibility, in an Aspect-Oriented

manner and, it is representative of other similar works in the

adaptation field, like [1] [37]. For further details of this proposal, we

refer the reader to [6] [7] [8].

32 W3C-RDF:PlainLiteral: A data type for RDF Plain Literals at

http://www.w3.org/TR/rdf-plain-literal/#Syntax_for_rdf:PlainLiteral_Literals

38 ADRIANA E. MARTÍN Adr

2.2.5 User Needs through Personas

By using existing „„best practices of software engineering‟‟ for

Accessibility purposes, the approach by Zimmermann &

Vanderheiden [53] presents a methodology for accessible design and

testing to capture functional requirements. The approach defines a

new way to use proven tools of software engineering, like use cases,

scenarios, test cases, guidelines and checkpoints, for Accessibility

purposes; and to relate them to each other, thus facilitating automation

as much as possible. The resultant methodology or process model for

accessible design and testing consist of: (i) capturing Accessibility

requirements in a way that makes them tangible and comprehensible,

through use cases and the technique of user profiling “personas” [53],

(ii) making Accessibility requirements concrete through scenarios and

guidelines for accessible design, (iii) manual and automatic testing

based on test cases and Accessibility checkpoints that are derived

from guidelines, and (iv) complementary user testing and expert

reviews, thus evaluating intermediate and end results, and

continuously improving the overall process model.

41

Although, this approach is primarily focused on adapting an existing Web application,

we include it because the approach proposes to add relevant design concerns, like

Accessibility, in an Aspect-Oriented manner and, it is representative of other similar

works in the adaptation field, like [1] [37]. For further details of this proposal, we refer

the reader to [6] [7] [8].

2.2.5 User Needs through Personas

By using existing „„best practices of software engineering‟‟ for Accessibility purposes,

the approach by Zimmermann & Vanderheiden [53] presents a methodology for

accessible design and testing to capture functional requirements. The approach defines

a new way to use proven tools of software engineering, like use cases, scenarios, test

cases, guidelines and checkpoints, for Accessibility purposes; and to relate them to each

other, thus facilitating automation as much as possible. The resultant methodology or

process model for accessible design and testing consist of: (i) capturing Accessibility

requirements in a way that makes them tangible and comprehensible, through use cases

and the technique of user profiling “personas” [53], (ii) making Accessibility

requirements concrete through scenarios and guidelines for accessible design, (iii)

manual and automatic testing based on test cases and Accessibility checkpoints that are

derived from guidelines, and (iv) complementary user testing and expert reviews, thus

evaluating intermediate and end results, and continuously improving the overall process

model.

Figure 2.15: Components of the integrated approach and their relationships [53]

Figure 2.15: Components of the integrated approach and their relationships [53]

In this way for design projects that are employing a use case driven

methodology, this approach allows to incorporate accessible design

into the existing processes rather than having to add Accessibility as a

new process [53]. Figure 2.15 from [53] shows how basic design tools

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 39

as use cases, scenarios and test cases are linked to personas, guidelines

and checkpoints respectively for Accessibility purpose.

Figure 2.16 shows the process model for accessible design and testing

by Zimmermann & Vanderheiden [53] applied to our University home

page example of Section 2.2.1 and using WCAG 1.0 Accessibility

guidelines.

42

In this way for design projects that are employing a use case driven methodology, this

approach allows to incorporate accessible design into the existing processes rather than

having to add Accessibility as a new process [53]. Figure 2.15 from [53] shows how

basic design tools as use cases, scenarios and test cases are linked to personas,

guidelines and checkpoints respectively for Accessibility purpose.

Figure 2.16 shows the process model for accessible design and testing by Zimmermann

& Vanderheiden [53] applied to our University home page example of Section 2.2.1 and

using WCAG 1.0 Accessibility guidelines.

Figure 2.16: The Zimmermann & Vanderheiden [53] proposal for the University home page

example

Figure 2.16 shows a situation where a test case is failing because an Accessibility

requirement for adjacent links is not met. In this case, the proposed model makes it

possible to pinpoint to a particular checkpoint that is causing the failure (10.5

checkpoint), and trace it back to a particular guideline that is violated (guideline 10

from WCAG 1.0). This allows identifying a particular persona (a blind Student) who

derived in

USE CASE
“Choosing the Student’s Faculty at the

University home page”

SCENARIO
A blind Student using a
screen-reader device…

 TEST

CASE

illustrated by

PERSONA

A blind Student who is
able to use a screen-

reader device…

WCAG 1.0 ACCESSIBILITY

GUIDELINES

WCAG 1.0 CHECKPOINTS

has actors

conforms

to?

checks

derived in

linked to

10.5

FAILS

PINPOINTS

DETECTS
VIOLATION

I DENTIFIES
IM PACT

Figure 2.16: The Zimmermann & Vanderheiden [53] proposal for the University

home page example

Figure 2.16 shows a situation where a test case is failing because an

Accessibility requirement for adjacent links is not met. In this case,

the proposed model makes it possible to pinpoint to a particular

checkpoint that is causing the failure (10.5 checkpoint), and trace it

back to a particular guideline that is violated (guideline 10 from

WCAG 1.0). This allows identifying a particular persona (a blind

Student) who despite being able to use a screen-reader will not be able

to access the application because of the Accessibility barrier identified

by the test case failure. The model presented here is not only useful

for fixing the Accessibility problems, but also provides a context to

the developers for understanding the consequences of failure [53]. For

further details of this proposal, we refer the reader to [53].

40 ADRIANA E. MARTÍN Adr

2.2.6 Model-Driven Development with AWA

Accessibility for Web Applications (AWA) [29] [30] offers a domain

specific methodological framework for the development of accessible

Web applications. The AWA framework provides: (i) a specific

Accessibility process (which can be adopted by other processes),

indicating activities, artifacts and their sequence in the different

phases of integrating Accessibility criteria, and (ii) the support for

modelling and using techniques provided by Web Engineering (WE)

methods as well as Model-Driven Development (MDD), the focus of

this work.

Figure 2.17: AWA for MDA development process [29]

As shown in Figure 2.17, the strategy in AWA consists of providing a

Computational Independent Model (CIM), called domain specific

AWA-Metamodel, which can be used to build Platform Independent

Models (PIMs) and Platform Specific Models (PSMs) for accessible

applications within WE methods. The authors provide an AWA-

toCode resource and the strategy is based on a transformation Model-

to-Text (M2T) to generate code from PSMs. In this work, they also

announced that they have developed a CASE support for

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 41

metamodelling, using the Ecore plugin from the Eclipse Modelling

Framework (EMF)
33

 [29].

44

toCode resource and the strategy is based on a transformation Model-to-Text (M2T) to

generate code from PSMs. In this work, they also announced that they have developed a

CASE support for metamodelling, using the Ecore plugin from the Eclipse Modelling

Framework (EMF)
33

 [29].

Figure 2.18: The Moreno et al. [29] proposal for the University home page

Figure 2.18 shows AWA for Model Driven Architecture (MDA)
34

 applied to the

Hyperlink concept required by our University home page example of Section 2.2.1.

Here several constructors have been defined in the MetaObject Facility (MOF)
35

 to

support the abstraction of Web Accessibility concepts. The diagram develops the

concept of hyperlink that includes required attributes to enable the hyperlink to meet the

33
 EMF overview at http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.emf.doc/references

34
 OMG-MDA overview at http://www.omg.org/mda/

35
 OMG-MOF specification at http://www.omg.org/mof/

MOF CLASS

<<instance of>>

META-M ETAMODEL
MOF METHOD CLASS

 HYPERLINK AWA CLASS

href
accesskey
title
context
target
render adjacent links distinctly

…

PAGE METHOD

CLASS

<<instance of>>

METAMODEL (CIM)

<<instance of>> <<instance of>>

M ODEL (PIM)

<<instance of>>
PSM

Model-to-text

13.1
10.5

< … >

[Faculty Site 1]

< … >

Figure 2.18: The Moreno et al. [29] proposal for the University home page

Figure 2.18 shows AWA for Model Driven Architecture (MDA)
34

applied to the Hyperlink concept required by our University home

page example of Section 2.2.1. Here several constructors have been

defined in the MetaObject Facility (MOF)
35

 to support the abstraction

of Web Accessibility concepts. The diagram develops the concept of

hyperlink that includes required attributes to enable the hyperlink to

meet the WCAG standard, such as the title attribute. This attribute

contributes to satisfy the 13.1 checkpoint of WCAG 1.0 that

establishes “Clearly identify the target of each link”. To continue with

the example of Section 2.2.1, Moreno et al. [29] do not consider the

10.5 checkpoint of WCAG 1.0 as a property for the link/hyperlink

33 EMF overview at

http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.emf.doc/references

34 OMG-MDA overview at http://www.omg.org/mda/

35 OMG-MOF specification at http://www.omg.org/mof/

42 ADRIANA E. MARTÍN Adr

concept. Although, notice that as we have done at the hyperlink AWA

class in Figure 2.10, it is possible to include the “render adjacent links

distinctly” attribute, to enable meeting this Accessibility requirement,

if the presence of adjacent links makes it necessary.

A graphic element representing a hyperlink (MOF meta-object) has

been defined in the AWA-Editor, and may be included in the PIM

models, which contain knowledge provided by the AWA-Metamodel

necessary for the Web code generation in the final phase [29]. For

further details of this proposal, we refer the reader to [29] [30].

In this Chapter we presented Accessibility in the context of some WE

approaches. We reviewed and applied in a case study five different

proposals [35] [9] [6] [53] [30] that consider this quality factor in the

development process of Web applications.

After introducing background (Chapter 3) and our proposal (Chapter

4), we will apply it (Chapter 5) and we will come back to the

approaches summarized here to compare them to our proposal

(Chapter 6).

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 43

3. Background of our proposal

3.1 Introducing the Basis

In the following Sections we introduce four key topics that we will use

throughout the rest of the work, to make it self-contained. These are:

(i) Aspect-Oriented Composition, (ii) Reference Frameworks and

Ontologies, (iii) User Interaction Diagrams (UIDs), and (iv) Softgoal

Interdependency Graphs (SIGs). Our aim is not to discuss these issues

in detail; instead we intend to stress the most important concepts. We

also devote a special section to the motivation for using the WCAG

1.0 [45] instead of WCAG 2.0 [46].

3.2 Aspect-Oriented Composition

A concern is an area of interest or focus in a system. Since Dijkstra

[13], concerns are the primary criteria for decomposing software into

smaller, more manageable and comprehensible parts that have

meaning to a software engineer. Examples of concerns include

requirements, use cases, features, data structures, quality-of-service

issues, variants, intellectual property boundaries, collaborations,

patterns and contracts. Thus, Separation Of Concerns (SOC), is a long

standing idea that refers to the ability of identifying, encapsulating and

manipulating parts of software that are crucial to a particular purpose

[13]. Software engineering development methods have been created

with this principle in mind. However, traditional paradigms to

software development, such as Object-Oriented methods and

languages, are not able to modularize crosscutting concerns

effectively, because they suffer from a limitation called the “Tyranny

of the Dominant Decomposition”. This limitation means that they

allow modularization in only one way at a time, so they are unable to

solve the many kinds of concerns that do no align with that main

modularization. In other words, given one out of many possible

decompositions of the problem (most of them are core functionality

concerns), some sub-problems show, such as non-functional and

functional requirements, added after facts, etc., which cannot be

modularized. These problems are concerns that cut across many other

concerns producing “crosscutting symptoms” resulting into

representations --e.g. specifications, classes, code, etc., which are

difficult to understand and maintain.

An important issue to underline about this kind of behavior is not only

manifested for: (i) a given decomposition, but for all possible

44 ADRIANA E. MARTÍN Adr

decompositions, (ii) a given paradigm, such as object-orientation, also

in other paradigms and, (iii) at the implementation stage, also in other

stages, such as analysis and design. Usually, these crosscutting

symptoms manifest in “scattering” and “tangling” problems. We say

that the representation of a concern is scattered over an artifact, when

the code for the implementation of the concern‟s body is spread out

over multiple and different modules or classes rather than localized.

While the representation of a concern is tangled within an artifact,

when the code for the implementation of the concern‟s body is

intermixed with code that implements other concerns‟ bodies.

Scattering and tangling often go together, even though they are very

different concepts [17].

Typical examples of such crosscutting concerns are non-functional

requirements, such as security, availability, persistency, usability and

Accessibility, the main topic of this paper. However, crosscutting

concerns can also be functional requirements, such as order auditing,

validation, and in the Web engineering domain, tracing the user

navigation history [21].

SOC can be supported in many ways, such as by process, by notation,

by organization, by language mechanism and, so on. Within the broad

theme of SOC, Aspect-Oriented Software Development (AOSD) is

distinguished by providing new insight on the separation of

crosscutting concerns and in particular leads to the idea that single

hierarchical structures are too limiting to effectively separate all

concerns in complex systems
36

. AOSD aims at handling such

crosscutting concerns at the various levels of the process of software

development, by providing means to their systematic identification,

modularization and composition [17]. Crosscutting concerns are

encapsulated in separate modules, known as “aspects”, and

composition mechanisms are later used to weave them back with other

core modules, at loading time, compilation time, or run-time. Since

aspects are concerns that crosscut a primary or dominant

decomposition (other core modules), aspect “weaving” is a

composition mechanism that injects aspects into this primary or

dominant decomposition.

However, aspects, as well as their compositions, also have an

important role to play before the implementation. On one hand, the

notion of “early aspects” means it is important to consider aspects

early on in the software engineering lifecycle during analysis and

36 AOSD community at http://www.aosd.net/wiki/index.php?title=Main_Page

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 45

design, as opposed to only at the implementation and testing stages.

At these early stages of the development process, aspects will allow

the modularization of crosscutting concerns that cannot be

encapsulated by a single use case, for example, and are typically

spread across several of them. Composition, on the other hand, allows

the developers to picture the whole system and to identify conflicting

situations whenever a concern contributes negatively to others [17].

Traditionally, AOSD has focused mainly on the implementation phase

of the software lifecycle since aspects are identified and captured

mainly at coding. But aspects have been also applied to former phases

as design and even earlier as requirements to cover consistently the

entire development process [2] [28].

49

before the implementation. On one hand, the notion of “early aspects” means it is

important to consider aspects early on in the software engineering lifecycle during

analysis and design, as opposed to only at the implementation and testing stages. At

these early stages of the development process, aspects will allow the modularization of

crosscutting concerns that cannot be encapsulated by a single use case, for example, and

are typically spread across several of them. Composition, on the other hand, allows the

developers to picture the whole system and to identify conflicting situations whenever a

concern contributes negatively to others [17].

Traditionally, AOSD has focused mainly on the implementation phase of the software

lifecycle since aspects are identified and captured mainly at coding. But aspects have

been also applied to former phases as design and even earlier as requirements to cover

consistently the entire development process [2] [28].

Figure 3.1: Aspects modularization [4]

3.2.1 Aspectual Implementation: Advices and Pointcuts

Aspect-Orientation proposes a fundamentally new kind of modularization that goes

beyond generalized procedures: an aspect. An aspect is a module that can localize the

implementation of a crosscutting concern. The aspectual decomposition modularizes

scattering problems --i.e. one concern in many modules, and tangling problems --i.e.

one module, many concerns. Thus, the key to this modularization technique lies in its

module composition mechanism. Figure 3.1 shows graphically the idea supporting

aspects using an example at the implementation level. While subroutines explicitly

Aspects

15

Program

 Object 1

 data

 Object 2

 data

 Object 3

 data

 Object 4

 data

Program

 Object 1

 data

 Object 2

 data

 Object 3

 data

 Object 4

 data

Aspect

Implicit invocation

Crosscutting Concerns

7

Program

 Object 1

 data

 Object 2

 data

 Object 3

 data

 Object 4

 data

Concern Implementation

A Object 1

B Object 2

C Object 3

D Object 4

E Object 1,2,3

Typical examples: synchronisation, error handling, timing

constraints, user-interface, ...

Also concerns of a specific application, e.g.: login functionality in

webshop, business rules, ...

Figure 3.1: Aspects modularization [4]

3.2.1 Aspectual Implementation: Advices and Pointcuts

Aspect-Orientation proposes a fundamentally new kind of

modularization that goes beyond generalized procedures: an aspect.

An aspect is a module that can localize the implementation of a

crosscutting concern. The aspectual decomposition modularizes

scattering problems --i.e. one concern in many modules, and tangling

problems --i.e. one module, many concerns. Thus, the key to this

modularization technique lies in its module composition mechanism.

Figure 3.1 shows graphically the idea supporting aspects using an

example at the implementation level. While subroutines explicitly

invoke the behaviors implemented by other subroutines, aspects have

46 ADRIANA E. MARTÍN Adr

an implicit invocation mechanism [4]. This mechanism that injects

aspects into the primary or dominant decomposition is called “aspect

weaving”. The implicit invocation mechanism requires that the aspect

itself specifies “where or when” it needs to be invoked and also

“what” needs to be injected.

50

invoke the behaviors implemented by other subroutines, aspects have an implicit

invocation mechanism [4]. This mechanism that injects aspects into the primary or

dominant decomposition is called “aspect weaving”. The implicit invocation mechanism

requires that the aspect itself specifies “where or when” it needs to be invoked and also

“what” needs to be injected.

Figure 3.2: Aspects implementation [4]

Consequently, as Figure 3.2 shows, an aspect implementation consists of two

conceptually different parts: the aspect functionality code --i.e. aspect functional

implementation, and the aspect applicability code –i.e. aspect control over implicit

invocation. The aspect functionality code is not essentially different from regular code

and is executed when the aspect is invoked. This invocation of the aspect is determined

by the aspect applicability code. This code contains statements that specify where or

when the aspect needs to be invoked. In standard AOSD terminology, this aspect

applicability code is referred to as a “pointcut” expression, which must match a join

point, and the aspect functionality code is referred to as the aspect “advice” code. Since

a single aspect can consist of multiple different functionalities that need to be invoked

from various different places in the code, an aspect implementation can consist of

several pointcuts and advice code segments.

 Where / When ?

 What ?

Joinpoints

27

Program

 Object 1

 data

 Object 2

 data

 Object 3

 data

 Object 4
 data

Aspect

joinpoint: !

A join point is a point

of interest in some

artefact in the software

lifecycle through which

two or more concerns

may be composed.

Examples in implementation artefact:

- message sends

- method executions

- error throwing

- variable assignments

- ...

Figure 3.2: Aspects implementation [4]

Consequently, as Figure 3.2 shows, an aspect implementation consists of

two conceptually different parts: the aspect functionality code --i.e. aspect

functional implementation, and the aspect applicability code –i.e. aspect

control over implicit invocation. The aspect functionality code is not

essentially different from regular code and is executed when the aspect is

invoked. This invocation of the aspect is determined by the aspect

applicability code. This code contains statements that specify where or

when the aspect needs to be invoked. In standard AOSD terminology, this

aspect applicability code is referred to as a “pointcut” expression, which

must match a join point, and the aspect functionality code is referred to as

the aspect “advice” code. Since a single aspect can consist of multiple

different functionalities that need to be invoked from various different

places in the code, an aspect implementation can consist of several

pointcuts and advice code segments.

3.3 Reference Frameworks and Ontologies

Our approach involves two main elements when designing the user

interface towards achieving Accessibility of Web applications. Firstly,

a reference framework can serve us as a conceptual structure for

making design decisions when building useful user interface models

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 47

for Accessibility purpose. Secondly, ontologies can provide us with a

formal specification for the abstract interface vocabulary. In the

following sections, we introduce these two main elements.

3.3.1 Design Decisions within a User Interface Framework

There are many decisions that developers must make during the design of

a user interface. As with any complex decision-making process, it is

useful to partition the set of decisions into classes and concentrate on the

decision in each class, separately. A design decision framework consists

of a collection of design decision classes. When decisions in each of the

design decision classes are combined, an overall design is synthesized

[27]. The criteria for identifying and constructing decision classes are

separation, completeness, sufficiency, understandability, independence,

reusability and soundness.

We applied in our work the Larson‟s user interface design decision

framework [27] that defines the following five classes:

 Structural decision class, which specifies the structure of the end

users‟ conceptual model. These specifications include a

description of the conceptual objects that are consumed, produced,

and/or accessed by the end users and application functions.

 Functional decision class, which specifies functions (operations),

which the user can apply to the conceptual objects. Functional

decisions determine what requests the users can express and what

results the application functions can present to the user.

 Dialog decision class, which specifies the content and sequence of

information exchange between the user and the application. In this

class, the designer specifies the dialog style taking into account:

(i) what the units of information exchanged between the user and

the application are, (ii) how these units of information are

structured into messages exchanged between the user and the

application and, (iii) what the appropriate sequences of message

exchanged are. These units of information, which have a formally

defined meaning, are called “semantic tokens”.

 Presentation decision class, where the designer chooses

interaction objects that make up the end users‟ interface.

Informally, interaction objects are visible widgets on a screen that

the user can manipulate to enter lexical tokens and which the user

views to obtain lexical tokens. A “lexical token” is a keystroke,

48 ADRIANA E. MARTÍN Adr

mouse movement, or mouse click entered by the user or a

character, icon, or elementary sound presented to the user.

 Pragmatic decision class, which deals with issues of gesture,

space, and hardware devices. Often these decisions are determine

by designers in conjunction with ergonomic specialist.

Since the last three classes are related to the user interaction and

activities with the application‟s interface, and they are also directly

involved with Web Accessibility, we ensure their inclusion in our

approach. As an example, consider decisions involving Accessibility

requirements in the case of playing a song‟s track at a music Web site.

The Dialog decision class must describe a sequence of commands for

turn-on / turn-off the song‟s track. While in the Presentation decision

class, the designer chooses the appropriate vocabulary and widgets for

individualizing these two commands clearly to the user. Finally, in the

Pragmatic decision class, the designer chooses the hardware, such as a

mouse or a touchscreen, for selecting these commands.

Larson's framework [27] gives us a comprehensive and general view

that can be instantiated with different conceptual models, such as the

approach proposed eleven years later by Baxley in [3]. This proposal

describes a universal model of a user interface that can be applied to

any interactive medium or product based on the established model of

structure-behavior-presentation.

Table 3.1 shows how this early proposal, can be easily mapped to design

decision classes introduced by the Larson‟s framework to add additional

levels of granularity or specificity. For example, Larson‟s presentation

class (corresponding to Baxley‟s presentation tire) can be specified in

depth at layout, style and Baxley‟s text layers. This can be useful if the

design for the user interface under development requires the explicit

identification of these components at the presentation model.

Table 3.1: Mapping between Larson‟s framework [27] and Baxley‟s model [3]

53

Table 3.1: Mapping between Larson‟s framework [27] and Baxley‟s model [3]

Baxley’s Universal Model of User Interface Larson’s User Interface Design Decision Framework

Tires Layers Classes

Structure Conceptual Model Structural & Functional
Task Flow

Organization Model

Behaviour Viewing & Navigational Dialog
Editing & Manipulation

User Assistance

Presentation Layout Presentation
Style

Text

3.3.2 An Ontology to share Abstract Interface Vocabulary

Any hypermedia Web application exchange information through its user interface with

its environment in order to fulfill a task. The most abstract level is called abstract user

interface and focuses on the various types of functionality that can be played by

interface widgets with respect to the information exchange between the user and the

application.

We applied the Abstract Widget Ontology [36], which provides an abstract interface

vocabulary to represent the various types of functionality that can be played by interface

widgets with respect to the activity carried out, or the information exchanged between

the user and the application. This ontology can be thought of as a set of classes whose

instances will comprise a given interface.

As shown in Figure 3.3, an abstract interface widget can be any of the following [36]:

! SimpleActivator widget, which represents elements capable of reacting to external

events, such as mouse clicks on links or action buttons.

! ElementExhibitor widget, which represent elements able to exhibit some type of

content, such as text or images.

! VariableCapture widget, which represent elements able to receive/capture, the value

of one or more variables. As we can see in Figure 3.3, the VariableCapture widget

generalizes two distinct (sub) concepts. The first one is the ontology (sub) concept

PredefinedVariable, which represents elements that allow the selection of a subset

from a set of predefined values, such as buttons and check boxes; often this

selection must be a singleton. The second ontology (sub) concept is the

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 49

3.3.2 An Ontology to share Abstract Interface Vocabulary

Any hypermedia Web application exchange information through its

user interface with its environment in order to fulfill a task. The most

abstract level is called abstract user interface and focuses on the

various types of functionality that can be played by interface widgets

with respect to the information exchange between the user and the

application.

We applied the Abstract Widget Ontology [36], which provides an

abstract interface vocabulary to represent the various types of

functionality that can be played by interface widgets with respect to

the activity carried out, or the information exchanged between the user

and the application. This ontology can be thought of as a set of classes

whose instances will comprise a given interface.

As shown in Figure 3.3, an abstract interface widget can be any of the

following [36]:

 SimpleActivator widget, which represents elements capable of

reacting to external events, such as mouse clicks on links or action

buttons.

 ElementExhibitor widget, which represent elements able to exhibit

some type of content, such as text or images.

 VariableCapture widget, which represent elements able to

receive/capture, the value of one or more variables. As we can see

in Figure 3.3, the VariableCapture widget generalizes two distinct

(sub) concepts. The first one is the ontology (sub) concept

PredefinedVariable, which represents elements that allow the

selection of a subset from a set of predefined values, such as

buttons and check boxes; often this selection must be a singleton.

The second ontology (sub) concept is the IndefiniteVariable,

which represents elements that allow the user to enter data

(previous unknown values) through the keyboard, such as text

typed by the user in a text box on a form.

 CompositeInterfaceElement widget, which is a composition of any

of the abstract interface widget represented by the ontology‟s

previous concepts.

50 ADRIANA E. MARTÍN Adr

54

IndefiniteVariable, which represents elements that allow the user to enter data

(previous unknown values) through the keyboard, such as text typed by the user in a

text box on a form.

! CompositeInterfaceElement widget, which is a composition of any of the abstract

interface widget represented by the ontology‟s previous concepts.

Figure 3.3: Abstract Widget Ontology [36]

It becomes evident from this ontology the essential roles that interface elements play

with respect to the interaction --i.e. they exhibit information, or they react to external

events, or they accept information. Composite elements allow us to build more complex

interfaces out of simpler building blocks [36]. Once the abstract interface model has

been defined, each widget is mapped onto a concrete widget to specify the concrete

interface model. An abstract interface widget provides a type of functionality to the user

by using an interface element, while a concrete interface widget is the actual

implementation of that interface element in a given mark-up language or a runtime

environment.

Since HTML is the “lingua franca” --i.e. a means of communication between people of

different languages for publishing hypertext on the World Wide Web, in Sections 5.3.2

and 5.4 we map these ontology concepts onto HTML elements; this mapping is

presented when we describe our model for user interface concerns.

3.4 User Interaction Diagrams

A User Interaction Diagram (UID) [44] is a diagrammatic modelling technique focusing

exclusively on the information exchange between the application and the user. UIDs are

IndefiniteVariable

ContinuosGroup DiscreteGroup SingleChoices MultipleChoices

VariableCapture ElementExhibitor SimpleActivator

PredefinedVariable

AbstractInterfaceElement

CompositeInterfaceElement

Figure 3.3: Abstract Widget Ontology [36]

It becomes evident from this ontology the essential roles that interface

elements play with respect to the interaction --i.e. they exhibit

information, or they react to external events, or they accept

information. Composite elements allow us to build more complex

interfaces out of simpler building blocks [36]. Once the abstract

interface model has been defined, each widget is mapped onto a

concrete widget to specify the concrete interface model. An abstract

interface widget provides a type of functionality to the user by using

an interface element, while a concrete interface widget is the actual

implementation of that interface element in a given mark-up language

or a runtime environment.

Since HTML is the “lingua franca” --i.e. a means of communication

between people of different languages for publishing hypertext on the

World Wide Web, in Sections 5.3.2 and 5.4 we map these ontology

concepts onto HTML elements; this mapping is presented when we

describe our model for user interface concerns.

3.4 User Interaction Diagrams

A User Interaction Diagram (UID) [44] is a diagrammatic modelling

technique focusing exclusively on the information exchange between

the application and the user. UIDs are an outstanding tool to support

the communication between different stakeholders during

requirements specification and are particularly valuable considering

the interactive nature of Web applications. UIDs can be used to enrich

the use case models but they are also key graphical tools for linking

requirements at later stages of a WE development process to obtain

conceptual, navigational and user interface diagrams [43].

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 51

55

an outstanding tool to support the communication between different stakeholders during

requirements specification and are particularly valuable considering the interactive

nature of Web applications. UIDs can be used to enrich the use case models but they are

also key graphical tools for linking requirements at later stages of a WE development

process to obtain conceptual, navigational and user interface diagrams [43].

Figure 3.4: A simple UID: Enrolling a Student in an Examination Board given a Course

UIDs are simple state machines, and at the same time an effective instrument to convey

the evolution of a Web application process and to support traceability from

requirements to later design steps, smoothing the way to implementation. In Figure 3.4

we show a simple UID to express the use case “ Enrolling a Student in an Examination

Board given a Course” in the context of the SIU Guarani registration system.

To ease the comprehension of Figure 3.4, we include here some remarks about the

UID‟s notation. The ellipse represents an interaction between the user and the system

and is assigned a number representing its order in the interaction sequence. An ellipse

< 1 >

[courseSelected]

[examinationOptionSelected]

Identified
Student

… InitialOptions(optionTitle)

Student X

Student X

< 3 >

[1]

[1]

< 4 >

… Courses(courseTitle)

Registration Completed !!!

[1]

[careerSelected]

… Career(careerTitle)

Student X

< 2 >

 UID < Student’s Login >

Career X

print Registration()

Figure 3.4: A simple UID: Enrolling a Student in an Examination

Board given a Course

UIDs are simple state machines, and at the same time an effective

instrument to convey the evolution of a Web application process and

to support traceability from requirements to later design steps,

smoothing the way to implementation. In Figure 3.4 we show a simple

UID to express the use case “Enrolling a Student in an Examination

Board given a Course” in the context of the SIU Guarani registration

system.

To ease the comprehension of Figure 3.4, we include here some

remarks about the UID‟s notation. The ellipse represents an

interaction between the user and the system and is assigned a number

representing its order in the interaction sequence. An ellipse with an

arrow without a source particularly recognizes the initial interaction;

the results of each subsequence interaction, which cause processing in

the system, should be represented as a separate ellipse, connected to

the preceding interaction by an arrow. Each ellipse offers content to

the user that depends on the interaction sequence of the task

52 ADRIANA E. MARTÍN Adr

represented by the UID. For example, an ellipse can provide the user

with any of the following widgets: (i) a data entry i.e-- data entered by

the user and graphically represented by a rectangle; (ii) text i.e--

descriptive text represented by “XXXX”; (iii) a structure with their

data items or a set of structures with their data items i.e--selectable

elements represented by “element(data items)” or by “...element(data

items)” respectively. A more formal description of the original UID‟s

notation can be found in [43] [44].

In the first interaction of Figure 3.4 (indicated by <1> and an

incoming arrow), a student already identified at the SIU Guarani

system by a previous UID corresponding to the use case “Login a

Student given the Student’s ID and Password”, selects only the

examination option (represented by “[1]”) from an initial set of

options (represented by “...”). At interaction <2>, the response of the

system is the set of careers in which a student is enrolled. Notice that

this set always has at least two elements and this is because even if the

student is enrolled in only one career, the SIU Guarani system offers

examination enrolling for admission‟s courses or career‟s courses. The

student chooses one of them and the system returns at interaction <3>

a complete set of courses (related to the selected career) in which the

student is able to enroll. The student selects a course and the system

returns at interaction <4> the registration to an examination board for

the course. Additionally, the user can perform the operation “print

Registration” (indicated by a line with a black bullet) to get a receipt

of the registration completed. The complete syntax for UIDs can be

found in [44].

3.5 Softgoal Interdependency Graphs

Softgoal Interdependency Graphs (SIGs) have been intensively used

in software engineering for modelling non-functional requirements

[11] [12]. For example, a framework for integrating non-functional

requirements (NFRs) with functional ones in the use case model is

proposed in [12]. In this framework, NFRs are represented as

“softgoals” to be “satisfied”. To determine satisficeability, design

alternatives or decisions (called operationalizing softgoals) are

considered; design tradeoffs are analyzed, design rationale is recorded

and design choices are made. The entire process is recorded in a

“Softgoal Interdependency Graph” (SIG) and then the selected design

decisions (operationalizing softgoals) can be used as a framework for

architecture and design [12].

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 53

57

“softgoals” to be “satisfied”. To determine satisficeability, design alternatives or

decisions (called operationalizing softgoals) are considered; design tradeoffs are

analyzed, design rationale is recorded and design choices are made. The entire process

is recorded in a “Softgoal Interdependency Graph” (SIG) and then the selected design

decisions (operationalizing softgoals) can be used as a framework for architecture and

design [12].

Figure 3.5: Softgoal Interdependency Graph (SIG) for Student Friendliness NFR

In Figure 3.5 we partially depict a SIG for the Student Friendliness softgoal in the

context of the SIU Guaraní registration system. The light cloud indicates an NFR

softgoal, denoted with nomenclature Type[Topic] where Type is a non-functional aspect

--e.g. Student Friendliness, and Topic is the context for the softgoal --e.g. a Student

accessing the SIU Guaraní registration system. Either Type or Topic of each NFR

softgoals can be refined, one at a time, with either AND-decomposition (denoted with a

single arc) or OR-decomposition (denoted with a double arc). For example, as shown in

Figure 3.5, Student Friendliness[Student - SIU Guaraní system] is OR-decomposed into

Student Friendliness[Manifest Model] and Student Friendliness[Technical Model]. The

manifest model is the UI model through which the software represents its functioning to

the user and it is built around task, people and business objects; while the technical

model is the model with which developers feel most comfortable and it is built around

objects, method, algorithms and data structures [26].

[Technical Model]

UI Support Student Support

++

- -

Student Friendliness [Student - SIU Guaraní System]

[Manifest Model]

!

!

Ad-hoc Development
Process

Information Gathering about
Students

Accurate
Response

Accurate
On-line Help

++

- -

++

++

 ++

++

! !

X

"

Custom Keypad

++
"

Figure 3.5: Softgoal Interdependency Graph (SIG) for Student Friendliness NFR

In Figure 3.5 we partially depict a SIG for the Student Friendliness

softgoal in the context of the SIU Guaraní registration system. The

light cloud indicates an NFR softgoal, denoted with nomenclature

Type[Topic] where Type is a non-functional aspect --e.g. Student

Friendliness, and Topic is the context for the softgoal --e.g. a Student

accessing the SIU Guaraní registration system. Either Type or Topic

of each NFR softgoals can be refined, one at a time, with either AND-

decomposition (denoted with a single arc) or OR-decomposition

(denoted with a double arc). For example, as shown in Figure 3.5,

Student Friendliness[Student - SIU Guaraní system] is OR-

decomposed into Student Friendliness[Manifest Model] and Student

Friendliness[Technical Model]. The manifest model is the UI model

through which the software represents its functioning to the user and it

is built around task, people and business objects; while the technical

model is the model with which developers feel most comfortable and

it is built around objects, method, algorithms and data structures [26].

Since student friendliness is the NFR under evaluation, the focus is on

the Manifest Model token that is AND-decomposed into Student

Support[Manifest Model] and UI Support [Manifest Model]. The dark

cloud indicates an operationalizing softgoal. For example, in most

development environments the developers agree on a basic framework

and the UI is constructed in an ad-hoc manner when the screens are

coded. This kind of practice has a highly negative contribution since a

formal UI model is never constructed and this is the reason why in

54 ADRIANA E. MARTÍN Adr

Figure 3.5, the operationalizing softgoal Ad-hoc Development Process

is denied.

3.6 Web Content Accessibility Guidelines Documents

Since the WCAG has two documents (1.0 and 2.0), it is important to

make clear at this point why we chose the 1.0 document. WCAG 1.0

has been used worldwide since 1999 as a reference material or cited as

a normative from many other Accessibility documents in the world

[34] [38] [40]. Many tools and approaches also have implemented it.

Although the WCAG 2.0 has been released in December 2008 and it

is a fact that so far the rate of adoption has been relatively slow. For

example, though it appears that within UK government departments

there is a growing acceptance that websites under development should

conform to WCAG 2.0, the official government policy still remains

WCAG 1.0. As another example, in Germany, despite not using the

WCAG, all public websites are beginning to use the usability

regulation which incorporates WCAG 1.0 and migration of the

Accessibility national guideline to WCAG 2.0 is just beginning;

meanwhile in Spain, where any rule specified by legislation refers to a

national standard based on WCAG 1.0, as far as we know, there is no

regulation oriented toward WCAG 2.0 yet. Finally, since Section 508

[38] is undergoing a revision over the next couple of years [42], we

have to wait approximately until 2011-2012 for the WCAG 2.0 to be

harmonized into this Accessibility standard. At this point we

emphasize that we are pre-supporting new issues addressed by W3C-

WAI, but in light of how the migration of Accessibility regulations

toward WCAG 2.0 is evolving, we think that the WCAG 2.0 is still in

its infancy and therefore some time must pass before it is widespread

adopted.

As we already mention in Section 2.1, the situation in Argentina is

less developed, since Web Accessibility is an issue that has been

recently included in the State's agenda. The legislation 26.653 called

“Guía de Accesibilidad para Sitios Web del Sector Público

Nacional
37

”, which adheres to WCAG 1.0 document, was approved by

Resolution 69/2011 on June 27th 2011. In August 2011, Argentina

became a member of the W3C
38

. As argentine citizens committed with

37 Access to Public Information by Law 26.653 at

http://www.infoleg.gov.ar/infolegInternet/anexos/175000-179999/175694/norma.htm

38 Argentina became a member of the W3C at

http://www.puntogov.com/nota.asp?nrc=2641

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 55

Accessibility, we have much expectation about this first steps towards

an inclusive government Web for all.

In addition to the reasons stated above, we selected the WCAG 1.0

because it is a mature, committed to all possible Accessibility barriers

and stable document version and part of a series of valuable and

related Accessibility guidelines published by the W3C-WAI [50] with

which WCAG 1.0 can be applied in conjunction. We revisit this

discussion in Section 7.3.1 where we also provide some insights on

how we upgraded our approach to WCAG 2.0 [46].

56 ADRIANA E. MARTÍN Adr

4. An approach for engineering accessible

web applications

4.1 Our Approach in a Nutshell

In the spirit of modern Web Engineering approaches, we propose a

model-driven development process in which the construction of a

Web application consists of the specification of a set of conceptual

models, each addressing a different concern (such as navigation or

interface). We propose an iterative and incremental process, which

uses, as input, a set of Web application‟s requirements as provided by

any WE approach --e.g. a set of use cases, goals, etc.

The model we envisage to deal with Accessibility concerns within a

Web engineering approach is illustrated in Figure 4.1. Columns in

Figure 4.1 indicate: (i) the overall process with their main activities (in

the middle), (ii) the conceptual tools and languages used (on the right)

along with relations to the stage of the process where they are

required, and (iii) the artifacts provided as input by the WE approach

and / or delivered as output by our process (on the left). In order to

ease reading, we need to recall here some previous explanations. In

Figure 4.1, most arrows indicate an input or output, except for the

UID and SIG diagrams as shown in Figure 4.1 (2.1) and (2.2), where

the arrows are input/output. This is because there are cases in which

these artifacts could be developed once and then reused in different

Web projects. For example, the Accessibility requirements of an

image or a basic data entry form can be modeled once, and later reuse

in new projects that require these interface elements. We revisit this

issue in Chapter 5 and also in Chapter 6 where we also compare

related work with ours indicating differences, advantages and

drawbacks.

Firstly, we explain in general terms our approach to lead then to a

detailed description of the proposed techniques for implementing our

proposal step-by-step.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 57

Figure 4.1: Overview of Our Approach

As highlighted in Figure 4.1 (1), this process manages Web

application requirements looking for those that involve Accessibility

needs. This is because it is at the user‟s interface level where

Accessibility barriers
39

 finally show, so we are particularly interested

in discovering Accessibility requirements at the user interface design.

Then, as shown in Figure 4.1 (2), we propose an early capture of

Accessibility concrete concerns by developing two kinds of diagrams:

39 Probably, the best-known definition of a barrier is the one given by Giorgio Brajnik at

http://users.dimi.uniud.it/~giorgio.brajnik/projects/bw/bw.htmlhttp://www.omg.org/m

da/One: “A barrier is any condition that hinders the user's progress towards

achievement of a goal, when the user is a disabled person. A barrier is described in

terms of: (i) the category of user and the type of disability, (ii) the type of assistive

technology being used, (iii) the failure mode, that is the activity/task that is hindered

and how it is hindered, and (iv) which features in the page raise the barrier.”

SUPPORTING TOOL

58 ADRIANA E. MARTÍN Adr

the UID with Accessibility integration points and the Softgoal

Interdependency Graph (SIG) template for WCAG 1.0 Accessibility

requirements, as shown in Figure 4.1 (2.1) and (2.2) respectively. We

propose these conceptual tools basically to allow the representation of

Accessibility requirements while executing a user‟s task (the UID

technique and the SIG model are described above in Sections 3.4 and

3.5 respectively). As indicated in Figure 4.1 (3), this Accessibility

knowledge captured at early stages aids designers making decisions

through the abstract interface model, as shown in Figure 4.1 (3.1), and

then, as shown in Figure 4.1 (4) toward its implementation through the

concrete interface model as shown in Figure 4.1 (4.1).

Almost all WE approaches have an explicit development activity for

user interface design and, normally, a user interface is specified by the

abstract interface and the concrete interface models, providing

respectively the type of functionality offered to the user by the

interface elements and the actual implementation of those elements in

a given runtime environment. So, given a user‟s task, the SIG model

provides the WCAG 1.0 Accessibility checkpoints that crosscut the

interface widgets (both, abstract and concrete ones, as shown in Figure

4.1 (3.1) and (4.1) respectively), to help to an accessible user

experience.

In the following Sections, we put all the pieces together to give a

detailed step-by-step explanation of our Aspect-Oriented approach.

4.2 Identifying Application’s Requirements that Involve

Accessibility Needs

There is nothing new in saying that requirements are essential to

create a model of the most relevant functional and non-functional

application‟s concerns before writing one line of code. This is why

any WE approach uses an explicit development activity for

requirements gathering and specification. Most of these approaches

apply some combination of UML
40

 object-oriented techniques, like

actors and tasks, scenarios, use cases, etc., to capture Web

application‟s requirements and deliver a model for handling

complexity into parts. Since we are particularly interested in

discovering Accessibility concerns at the user interface design, we

propose as a first step, an iterative and incremental process over these

Web application‟s requirements looking specially those that involve

40 OMG-UML: The Unified Modelling Language at http://www.uml.org/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 59

user-system interaction but also those derived from all kind of user

activity with the application‟s interface. As an example, assume that

we take into account the following use case “Login a Student given

the Student’s ID and Password”:

64

cases, etc., to capture Web application‟s requirements and deliver a model for handling

complexity into parts. Since we are particularly interested in discovering Accessibility

concerns at the user interface design, we propose as a first step, an iterative and

incremental process over these Web application‟s requirements looking specially those

that involve user-system interaction but also those derived from all kind of user activity

with the application‟s interface. As an example, assume that we take into account the

following use case “ Login a Student given the Student’s ID and Password” :

Use Case 1: Login a Student given the Student’s ID and Password

Brief Description: This use case describes how a Student logs into the SUI Guaraní registration system.

Success End Condition: The Student is now logged into the system.

Primary Actor: Student

Description

Main Success Scenario:

Step Action

1. The system requests that the Student enter his/her ID and Password.

2. The Student enters his/her ID and Password.

3. The system validates the entered ID and Password and logs the Student into the system.

Extensions:

Step Branching Action

3.a The Student enters an invalid ID and/or Password, the system displays an error message, the use case

ends.

This use case describes the application‟s requirements for the online student‟s login

Web page example (introduced in Section 1.1 by Figure 1.1). The functionality required

for the online login involves user-system interaction, since at Step 1 of the main success

scenario, the student is requested by the system to enter his/her ID and password. At the

registration system, Step 2 is satisfied when the student enters its identity card number

as an ID and a four-digit key as a password. Then at Step 3 the system executes the

validation process yielding the student logged into the system as a success end condition

or displaying an error message to end the use case. This identification process is defined

as Step 1 and is graphically represented by (1) in Figure 4.1.

This use case describes the application‟s requirements for the online

student‟s login Web page example (introduced in Section 1.1 by

Figure 1.1). The functionality required for the online login involves

user-system interaction, since at Step 1 of the main success scenario,

the student is requested by the system to enter his/her ID and

password. At the registration system, Step 2 is satisfied when the

student enters its identity card number as an ID and a four-digit key as

a password. Then at Step 3 the system executes the validation process

yielding the student logged into the system as a success end condition

or displaying an error message to end the use case. This identification

process is defined as Step 1 and is graphically represented by (1) in

Figure 4.1.

4.3 Specifying Accessibility Concrete Concerns

After requirements‟ identification in Step 1 and because of the reasons

related to Accessibility features and its relevance to the success of the

Web, explained in Section 1.1 and Section 2.1, we propose the early

60 ADRIANA E. MARTÍN Adr

capture of Accessibility concrete concerns that involve user

interactions and activities with the application‟s interface. Mostly

because of the non-functional, generic and crosscutting nature of

Accessibility concerns of a user-system interaction, we developed two

conceptual tools as extensions of the UID and SIG techniques

(introduced earlier in Section 3.4 and 3.5 respectively): the UID

technique with integration points and SIG templates for Accessibility.

As an example, let us return to the use case “Login a Student given the

Student’s ID and Password” in Section 4.2 and consider a scenario in

which a blind student using an older “screen reader” device wishes to

log into the registration system. The picture is easy to catch, just think

about this student trying to deal with the online login Web page. It is a

fact that Accessibility concerns related to the user layout and the user

technology support must be considered to help blind student‟s

interaction and browsing regardless of its assistive device.

Specifically, in this case it means that the HTML elements required

for the identification form must be accessible for students using

“screen readers”. So, when developing the functional requirements

captured by the use case, we need a way to record Accessibility

concerns early and as a reminder for design. With this aim in mind we

developed the UID technique with integration points and SIG

template for Accessibility.

Following, in Sections 4.3.1 and 4.3.2, we describe these conceptual

tools and we show how they work together to encourage the

specification of Accessibility concrete concerns at Step 2.

4.3.1 Using UIDs with Integration Points Technique

For each application‟s requirement identified at Step 1, and at Step 2

(graphically represented by (2) in Figure 4.1), we firstly develop an

UID diagram focusing mainly on outlining integration points where

Accessibility is crucial for helping a successful information exchange

between the application and the user.

With the traditional perspective given by techniques like [11][12] in

mind (depicted in Section 3.4), we introduce the concept of UIDs‟s

integration points to model the Accessibility concerns of a user-

system interaction. Particularly, we define two kinds of UIDs

integration points as follows:

 User-UID Interaction (U-UI) integration point. This is an

integration point for Accessibility at UID interaction level --

i.e. to propitiate an accessible communication and information

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 61

exchange between the user and a particular interaction of a

UID interaction diagram.

 User-UID Interaction’s component (U-UIc) integration

point. This is an integration point for Accessibility at UID

interaction‟s component level --i.e. to propitiate an accessible

communication and information exchange between the user

and a particular UID interaction‟s component of an UID

interaction.

These integration points with different granularity provide two

alternatives for evaluating Accessibility during the interaction

between the user and the system. Then, choosing the appropriate

granularity and selecting a U-UI or U-UIc integration point allow a

better mapping of the elements composing the user interface design.

66

With the traditional perspective given by techniques like [11][12] in mind (depicted in

Section 3.4), we introduce the concept of UIDs‟s integration points to model the

Accessibility concerns of a user-system interaction. Particularly, we define two kinds of

UIDs integration points as follows:

! User-UID Interaction (U-UI) integration point. This is an integration point for

Accessibility at UID interaction level --i.e. to propitiate an accessible

communication and information exchange between the user and a particular

interaction of a UID interaction diagram.

! User-UID Interaction’s component (U-UIc) integration point. This is an

integration point for Accessibility at UID interaction‟s component level --i.e. to

propitiate an accessible communication and information exchange between the

user and a particular UID interaction‟s component of an UID interaction.

These integration points with different granularity provide two alternatives for

evaluating Accessibility during the interaction between the user and the system. Then,

choosing the appropriate granularity and selecting a U-UI or U-UIc integration point

allow a better mapping of the elements composing the user interface design.

Figure 4.2: UID with Accessibility integration points: Login a Student given the Student‟s ID

and Password

[VALIDSTUDENTINPUTDATA]

[INVALIDSTUDENTINPUTDATA]

Error in Input Data !!!

< 1 >

ID
Password

< 1.2 > IDForm

< 1.1 > KeyLockImage

SIU Guarani Registration System

Unidentified
Student

 Accessibility integration point

HTML image

 Accessibility integration point

HTML related controls

 UID < Enrolling a Student … >

Identified
Student

Figure 4.2: UID with Accessibility integration points: Login a Student given the

Student‟s ID and Password

Figure 4.2 shows the resultant UID, corresponding to the use case

“Login a Student given the Student’s ID and Password” (presented in

Section 4.2), by applying our integration points technique. Notice that

all the students (including those with disabilities) will need to interact

with this online login Web page (introduced in Section 1.1 by Figure

1.1). As we can see in the example shown in Figure 4.2, we define two

integration points at UID interaction <1> representing the student‟s

62 ADRIANA E. MARTÍN Adr

login user-system interaction to consider, from the beginning, the

Accessibility requirements that enable the access for all the students.

The development of the UID diagram with integration points at Step

2 is graphically represented by (2.1) in Figure 4.1.

Figure 4.3: SIG Template for Accessibility

4.3.2 Applying the SIG Template

After specifying the Accessibility integration points of the UID

diagrams at Step 2, we develop a SIG diagram for WCAG 1.0

Accessibility requirements. To do so, we take into consideration

proposals from the user interface design literature [27][36] introduced

in Section 3.3 as follows.

We have already seen that the dialogue class is directly represented by

UIDs since they help in modelling the content and the sequence of the

information exchange between the user and the system during

navigation. However, presentation and pragmatic classes are relevant

too, so we propose considering the three classes --i.e. dialogue,

presentation and pragmatic, when drawing a SIG for Accessibility.

Figure 4.3 shows our SIG template where the Accessibility softgoal

denoted with the nomenclature Accessibility[UID integration point] is

the root of the tree. The kind of the UID integration point is

highlighted into the root light cloud and related to a particular UID

interaction or UID interaction‟s component number. From the root

node we identify two initial branches: (i) the user technology support,

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 63

and (ii) the user layout support. The user technology support

represents the Accessibility softgoal concerns helping to enable user‟s

browsing and interaction by improving the Accessibility of user‟s

current and earlier assistive devices and technologies (PDAs,

telephones, screen readers, etc.); meanwhile, the user layout support

represents the Accessibility softgoal concerns explicitly improving

user‟s browsing and interaction focus on user‟s interface issues. The

Accessibility softgoal concerns supply to their respective supports,

prescribing on how to present and/or to logically organize the content

we wish to convey to the user. They also warn about the Accessibility

barriers as a consequence of an inappropriate choice of presentation

and/or structural objects to user‟s interaction with the content
41

.

Now, with this statement in mind, in order to associate the three

design decision classes --i.e. dialogue, presentation and pragmatic,

with the Accessibility softgoal concerns at some of the SIG‟s

branches, we take into account the following considerations:

 The concerns at the User Layout support are associated with

the dialogue and/or the presentation classes.

 The concerns at the User Technology support are associated

with the dialogue and/or the presentation classes if they help

achieving device independence, especially focused on

supporting the constraints of earlier assistive devices --i.e.

“until user agents” as defined by the W3C‟s UAAG 1.0 [48];

meanwhile, they are associated with the three classes

(dialogue, presentation and pragmatic) if they are hardware-

dependent.

For example, returning to Figure 4.2, we establish the Accessibility

softgoal for the interaction‟s components <1.1> KeyLockImage and

<1.2> IDForm to support accessible image and text input fields for all

the students by defining two User-UID Interaction‟s components (U-

UIc) integration points for the login process at UID interaction <1>.

Finally, to instantiate the SIG template for gathering Accessibility

concerns (shown in Figure 4.3) we work with the W3C-WAI WCAG

1.0 guidelines [45] as follows.

41 This last statement is compliant with the WCAG glossary that establishes three

basic topics that compose an Internet document: (i) the presentation --i.e. how the

document is rendered?, (ii) the structure -- i.e. how the document is organized

logically?, and (iii) the content --i.e. what the document communicates to the user?

64 ADRIANA E. MARTÍN Adr

To facilitate this instantiation process of the SIG template we establish

an association table for groups of related HTML elements. The

instantiation process of the SIG template is conducted as a refinement

process over the SIG tree using these association tables as a reference.

For example, Table 4.1 introduces the association table that we have

developed for the HTML control group. Basically, these association

tables have the tasks of linking each ontology concept --i.e. abstract

widget, with their respective HTML elements --i.e. concrete widgets,

and with the Accessibility concerns prescribed for those widgets by

the WCAG 1.0 checkpoints. It is important to clarify that we use

“HTML elements” as a general term, including HTML elements and

attributes, as well as embedded, internal and external objects like

scripts, applets, style sheets, etc. This means, that the allusion to

“HTML elements” is extensive to include all the possible widgets that

may exist at a concrete user interface.

We will give a deeper explanation of the function of these association

tables in Section 4.5.2 and since these association tables are

developed for groups of related HTML elements, we also provide in

Section 4.5.1 our own classification by mapping the ontology

concepts (abstract widgets) onto five groups of HTML elements

(concrete widgets).

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 65

Table 4.1: Association Table for the HTML Control Elements Group

ASPECT ONTOLOGY

WIDGETS

(ABSTRACT

WIDGETS)

HTML
ELEMENTS

 (CONCRETE
 WIDGETS)

WCAG 1.0 CHECKPOINTS AND THEIR

PRIORITIES: [1] [2] OR [3]
DESIGN DECISION

CLASS
related to

USER-APPLICATION

INTERACTION
9.4
9.5
[3]

10.2

[2]

10.4

[3]

12.3

[2]

12.4

[2]

D-P

!

P

P

D-P P DIALOG (D)
PRESENTATION (P)

PRAGMATIC !

I .
TSCONTROL

SIG’S
USER

TECHNOLOGY

SUPPORT

BRANCH

INDEFINITEVARIABLE

TEXT FIELD INPUT TEXT… ! ! !

TEXT AREA TEXTAREA… ! ! !

RELATED

CONTROLS

FIELDSET… ! !

PREDEFINEDVARIABLE

MULTIPLECHOICES

CHECK BOX INPUT CHECKBOX… ! ! M

MULTIPLE OPTION

MENU

SELECT MULTIPLE… ! ! !

RELATED OPTIONS OPTGROUP… ! !

PREDEFINEDVARIABLE

SINGLECHOICES RADIO BUTTON INPUT RADIO… ! ! M

SIMPLE OPTION

MENU

SELECT… ! ! !

I I .

LSCONTROL

SIG’S
USER LAYOUT

SUPPORT

BRANCH

INDEFINITEVARIABLE

TEXT FIELD INPUT TEXT…
! !

TEXT AREA TEXTAREA…
! !

RELATED

CONTROLS

FIELDSET…
! !

PREDEFINEDVARIABLE

MULTIPLECHOICES

CHECK BOX INPUT CHECKBOX… ! !

MULTIPLE OPTION

MENU

SELECT MULTIPLE … ! !

RELATED OPTIONS OPTGROUP… ! !

PREDEFINEDVARIABLE

SINGLECHOICES RADIO BUTTON INPUT RADIO… ! !

SIMPLE OPTION

MENU
SELECT… ! !

The development of the SIG diagram at Step 2 is graphically

represented by (2.2) in Figure 4.1.

4.4 Discovering Crosscutting and Applying Aspects

The activity of discovering Accessibility crosscutting concerns and

applying Accessibility aspects properly at the user interface design is

defined as Step 3.

We exploit the Accessibility knowledge captured by SIG diagrams

built at the user interface design activity (Step 2) to find out how

WCAG 1.0 Accessibility concerns “crosscut” interface widgets. To

achieve this, managing crosscutting in an Aspect-Oriented manner, we

66 ADRIANA E. MARTÍN Adr

use again our association tables introduced in Section 4.3.2. As we

said before, we will give a deeper explanation of the function of these

association tables in Section 4.5.2.

Let us return again to the use case “Login a Student given the

Student’s ID and Password” in Section 4.2, whose UID with

Accessibility integration points is shown by Figure 4.2 in Section

4.3.1. The purpose at Step 3 is to find out how WCAG 1.0

Accessibility concerns “crosscut” interface widgets required for the

online login Web page, aided by the abstract interface model shown in

Figure 4.1 (3.1). More specifically, the SIG diagrams and the

association tables work together to discover the required WCAG 1.0

checkpoints for helping the student‟s login but also to show how

Aspect-Oriented “symptoms” (“scattering” and/or “tangling”)

manifest their crosscutting nature on the HTML image and HTML

related control elements. For example, and as we will see in-depth

later, from guideline 10 responding to the statement “use interim
42

solutions”, satisfacing the 10.4 checkpoint is a “mandatory” goal (set

with an “M”) or required for every HTML control element, and

establishes that empty controls must be handled correctly until “user

agents”. So, to accomplish this Accessibility requirement, the

checkpoint 10.4 will be “scatered” at the login Web page of the

registration system every time that an HTML text field element

(corresponding to an IndefiniteVariable widget) is present. It is

important to highlight that providing compliance to Accessibility is, in

several cases, similar for those HTML elements sharing the same

HTML group. As we can see on Table 4.1, this is the case for the

HTML control group. For those cases where these minor differences

exist, the Aspect-Oriented paradigm provides key mechanisms to save

distances smoothly --e.g. a variation in the application of the aspect by

an aspect instantiation or by the way the “advice” (aspect functionality

code) and “pointcut” (aspect applicability code) are specified.

4.5 Designing with Accessible Interface Widgets

The development of an accessible user interface design is defined as

Step 4 and is graphically represented by (4) in Figure 4.1, while the

corresponding abstract and concrete models are graphically

represented by (3.1) and (4.1) respectively.

42 Interim is used by the W3C as a temporary recommendation to ensure that while

assistive technologies and older browsers exist they will operate correctly.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 67

Having already completed the step-by-step description of our

approach, we introduce now our classification of HTML elements and

we also give an explanation of the association tables (used at Step 2

and Step 3). We decided to introduce these conceptual tools in Section

4.5.1 and Section 4.5.2 respectively, since both are closely related to

interface widgets issues.

4.5.1 A Mapping between Ontology Concepts and HTML

Elements

Taking into account the Abstract Widget Ontology [36] described in

Section 4.3, we map the ontology concepts onto HTML elements. We

have materialized this mapping using UML class diagrams to explain

the relationships between each abstract interface widget presented by

the ontology concepts, and the concrete interface widget in HTML

elements. Figure 4.4 shows the UML class diagram for the ontology

concept VariableCapture, particularly for the ontology (sub) concepts

IndefiniteVariable, PredefinedVariable-SingleChoice and

PredefinedVariable-MultipleChoice. The ontology concept

CaptureVariable, whose functionality is to capture the value of one or

more variables, is implemented in HTML by control elements. HTML

control elements can be grouped together in a form --i.e. an HTML

related controls element, which is a possible implementation of the

ontology concept CompositeInterfaceElement. Users interact with a

form through HTML related controls by modifying their values

before submitting the form to an agent, like a Web server or a mail

server, for processing. Returning to the example of the login Web

page for the student‟s login, the abstract interface model usually

requests two IndefiniteVariable widgets of the VariableCapture type.

A CompositeInterfaceElement groups together these two widgets

required for receiving the user‟s identification and password login

values respectively. On the other hand, the concrete interface model

for the same login Web page maps these concepts on two HTML text

field widgets of the control type. An HTML related controls element

groups together these two widgets, which allow entering the text

strings typed by the user with previously unknown user‟s name and

password values.

68 ADRIANA E. MARTÍN Adr

73

groups together these two widgets, which allow entering the text strings typed by the

user with previously unknown user‟s name and password values.

Figure 4.4: Mapping between some Ontology Concepts and HTML Elements

In this way, we map the ontology concepts onto five groups of HTML elements as

follow:

! The VariableCapture maps onto the HTML control elements group, as we

shown in Figure 4.4;

! The SimpleActivator, which is capable of reacting to external events such as

mouse clicking, maps onto HTML link and button elements group;

! The ElementExhibitor, which is able to exhibit different types of content, such as

text, images or applets, maps onto HTML text and non-text elements group;

! The LogicalStructuring, which is able to logically organize the HTML content

of the document, maps onto the HTML structural elements group; and

! The ElementStyling, that is able to display the content with a certain appearance,

maps onto frame and style sheet elements group.

As shown in Figure 4.1, only three of these five groups are characterized by their

respective classes in the original abstract widget ontology [36]. Figure 4.5 shows how

we have extended this ontology with the LogicalStructuring and ElementStyling widget

classes in order to provide wider support to concrete widgets required by current user

Ontology Concepts
Abstract Interface Widgets

UML Model for HTML Elements
Concrete Interface Widgets

CompositeInterfaceElement

VariableCapture

VariableCapture
(sub) concepts

IndefiniteVariable

PredefinedVariable

SingleChoice

MultipleChoice

RelatedControls
1..*

1

…

TextField TextArea

RadioButton SingleSelectMenu

CheckBox MultipleSelectMenu

Control

Figure 4.4: Mapping between some Ontology Concepts and HTML Elements

In this way, we map the ontology concepts onto five groups of HTML

elements as follow:

 The VariableCapture maps onto the HTML control elements

group, as we shown in Figure 4.4;

 The SimpleActivator, which is capable of reacting to external

events such as mouse clicking, maps onto HTML link and

button elements group;

 The ElementExhibitor, which is able to exhibit different types

of content, such as text, images or applets, maps onto HTML

text and non-text elements group;

 The LogicalStructuring, which is able to logically organize

the HTML content of the document, maps onto the HTML

structural elements group; and

 The ElementStyling, that is able to display the content with a

certain appearance, maps onto frame and style sheet elements

group.

As shown in Figure 4.1, only three of these five groups are

characterized by their respective classes in the original abstract widget

ontology [36]. Figure 4.5 shows how we have extended this ontology

with the LogicalStructuring and ElementStyling widget classes in

order to provide wider support to concrete widgets required by current

user interfaces, which are dynamic and with a high degree of

complexity. The LogicalStructuring class, groups structural widgets to

define how the content is organized logically, for example, with

different levels of headers, by chapter, with an introduction and table

of contents, etc. While the ElementStyling class, groups presentation

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 69

widgets to define how the content is rendered, for example, as print, as

a two-dimensional graphical presentation, as a text-only presentation,

as synthesized speech, etc.

74

interfaces, which are dynamic and with a high degree of complexity. The

LogicalStructuring class, groups structural widgets to define how the content is

organized logically, for example, with different levels of headers, by chapter, with an

introduction and table of contents, etc. While the ElementStyling class, groups

presentation widgets to define how the content is rendered, for example, as print, as a

two-dimensional graphical presentation, as a text-only presentation, as synthesized

speech, etc.

Figure 4.5: Extended Abstract Widget Ontology

Since most of the HTML elements are composed by other HTML elements, an

accessible HTML element requires the Accessibility of all its components. So a deeper

look about HTML elements composition is required to work properly with Accessibility

issues. Figure 4.6 explains HTML elements composition providing a more detailed

description of the HTML control elements: text field and text area; radio button and

single option menu; and check box and multiple option menu (see Figures 4.6 (a), 4.6 (b)

and 4.6 (c) respectively).

Figure 4.6: UML Model for HTML Control Elements

HTML Text Field and Tex Area

Elements

HTML Radio Button and Single

Option Menu Elements

HTML Check Box and Multiple

Option Menu Elements

 (a) (b) (c)

…

1

1

needsA

TextField TextArea

Control Label

1
…

needsA

1

1..*

letsChoose

1

1 1 hasAssociated

SingleOptionMenu

Control Option

Label

1..*

needsA

1

1..*

letsChoose

1

1

1

…

hasAssociated

CheckBox MultipleOptionMenu

Control

Label

Option

RadioButton

IndefiniteVariable

ContinuosGroup DiscreteGroup SingleChoices MultipleChoices

VariableCapture ElementExhibitor SimpleActivator

PredefinedVariable

AbstractInterfaceElement

CompositeInterfaceElement

ElementStyling LogicalStructuring

Figure 4.5: Extended Abstract Widget Ontology

Since most of the HTML elements are composed by other HTML

elements, an accessible HTML element requires the Accessibility of

all its components. So a deeper look about HTML elements

composition is required to work properly with Accessibility issues.

Figure 4.6 explains HTML elements composition providing a more

detailed description of the HTML control elements: text field and text

area; radio button and single option menu; and check box and multiple

option menu (see Figures 4.6 (a), 4.6 (b) and 4.6 (c) respectively).

74

interfaces, which are dynamic and with a high degree of complexity. The

LogicalStructuring class, groups structural widgets to define how the content is

organized logically, for example, with different levels of headers, by chapter, with an

introduction and table of contents, etc. While the ElementStyling class, groups

presentation widgets to define how the content is rendered, for example, as print, as a

two-dimensional graphical presentation, as a text-only presentation, as synthesized

speech, etc.

Figure 4.5: Extended Abstract Widget Ontology

Since most of the HTML elements are composed by other HTML elements, an

accessible HTML element requires the Accessibility of all its components. So a deeper

look about HTML elements composition is required to work properly with Accessibility

issues. Figure 4.6 explains HTML elements composition providing a more detailed

description of the HTML control elements: text field and text area; radio button and

single option menu; and check box and multiple option menu (see Figures 4.6 (a), 4.6 (b)

and 4.6 (c) respectively).

Figure 4.6: UML Model for HTML Control Elements

HTML Text Field and Tex Area

Elements

HTML Radio Button and Single

Option Menu Elements

HTML Check Box and Multiple

Option Menu Elements

 (a) (b) (c)

…

1

1

needsA

TextField TextArea

Control Label

1
…

needsA

1

1..*

letsChoose

1

1 1 hasAssociated

SingleOptionMenu

Control Option

Label

1..*

needsA

1

1..*

letsChoose

1

1

1

…

hasAssociated

CheckBox MultipleOptionMenu

Control

Label

Option

RadioButton

IndefiniteVariable

ContinuosGroup DiscreteGroup SingleChoices MultipleChoices

VariableCapture ElementExhibitor SimpleActivator

PredefinedVariable

AbstractInterfaceElement

CompositeInterfaceElement

ElementStyling LogicalStructuring

Figure 4.6: UML Model for HTML Control Elements

For example, the label is a very important element to achieve the goal

of making a form --i.e. HTML related controls element, accessible,

because, if used correctly, it can provide helpful support to people

with disabilities. The WCAG 1.0 is very clear about the Accessibility

role of the label element when developing an HTML related controls

element. Specifically, the document provides two checkpoints, one

related to the user layout support and the other to the user technology

support --i.e. precisely the two initial branches of our SIG template for

Accessibility, to be consider when “labeling” HTML control elements

that are associated into a form --i.e. HTML related controls element.

70 ADRIANA E. MARTÍN Adr

4.5.2 Association between Ontology Concepts-HTML Elements-

WCAG Checkpoints

To develop and exploit the SIG diagrams for managing crosscutting in

an Aspect-Oriented manner, we establish five association tables, one

for each group of HTML elements defined in Section 4.5.1: (i) the

HTML control group as we shown in Figure 4.4 and Figure 4.6; (ii)

the HTML link and button group; and (iii) the HTML text and non-text

group; (iv) the HTML structural group; and (v) the HTML frame and

style sheet group. We called them association tables because of two

strong reasons. On one hand, they bind the WCAG 1.0 checkpoints

required for accomplishing Accessibility of the interface widgets

present at each HTML group --i.e. they identify the required

checkpoint for interface widgets present in a given Web page. On the

other hand, they help to classify these WCAG 1.0 checkpoints into the

two initial branches of our SIG template for Accessibility --i.e. they

provide for each HTML element present in a group, two generic

aspects working for the user‟s layout and technology Accessibility

supports respectively. This is possible because we find out that

achieving compliance to Accessibility is in several cases very similar

for those interface widgets that share the same HTML group. That is,

accomplishing Accessibility does not normally differ much between

interface widgets that share the same group, and for those cases the

Aspect-Oriented paradigm provides key mechanisms to save these

distances smoothly --e.g. a variation in the application of the aspect by

an aspect instantiation or by the way the “advice” and “pointcut” are

specified. As we said before, Table 4.1 introduces the association

table for the HTML control group. A checkpoint cell for a specific

interface widget is selected only when the HTML element requires

considering the Accessibility by the checkpoint. As we can see in

Table 4.1, this association table also indicates each checkpoint

priority level assigned by the WCAG 1.0 [45]: (i) [Priority 1]

checkpoints that “must” be satisfied, (ii) [Priority2] checkpoints that

“should” be satisfied and, (iii) [Priority 3] checkpoints that “may” be

satisfied. This information allows interface designers to keep in mind

the impact of the Accessibility barrier when not satisfying each

checkpoint. When a checkpoint cell is signed as “M” it means

“mandatory” and the HTML element implementation for the interface

widget helps by itself compliance to the checkpoint. To address

Accessibility of the HTML related controls, guidelines 9, 10 and 12

deal with the question of what to do to make a form accessible

[41][45][47].

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 71

On Table 4.1, Aspect I called “TSControl” evaluates control‟s widgets

Accessibility to improve user‟s current and earlier assistive devices

and technologies; it is further supported by softgoals to be satisfied at

the SIG‟s user technology support branch.

The association between Accessibility softgoal concerns (represented

by the WCAG 1.0 checkpoints and their priorities) and the design

decision classes is showed in the table with a "P" for the presentation

pragmatic class. Here we must remember that to associate the three

design decision classes --i.e. dialog, presentation and pragmatic, with

the Accessibility softgoal concerns at the user technology support

SIG‟s branch, we take into account the considerations described in

Section 4.3.2. Over this branch, satisfying checkpoints 9.4 and 9.5

responding to the statement “design for device-independence” of

guideline 9 and, checkpoints 10.2 and 10.4 responding to the

statement “use interim solutions” of guideline 10, are goals required

for every HTML control element. The checkpoint 9.4 establishes that

we should “create a logical tab order through links, form controls, and

objects [Priority 3]” [45]. While the checkpoint 9.5 establishes that we

should “provide keyboard shortcuts to important links (including those

in client-side image maps), form controls, and groups of form controls

[Priority 3]” [45]. Checkpoints 9.4 and 9.5 are goals required for all

the HTML control elements and are focused on providing alternative

access by tabbing navigation or access keys to HTML related controls

helping device- independency. This is important because it means that

the user may interact with the “user agent” or document with a

preferred input (or output) device --e.g. mouse, keyboard, voice, head

wand, or others [45]. If, for example, an HTML control element can

only be activated with a mouse or other pointing device, someone who

is using the page without sight, with voice input, or with a keyboard or

who is using some other non- pointing input device will not be able to

use the form --i.e. people with motor, visual or cognitive disabilities

who need these special devices to access the Web.

The checkpoint 10.2 establishes that “until user agents support explicit

associations between labels and form control, for all form control with

implicitly associated labels, ensure that the label is properly positioned

[Priority 2]” [45]. While the checkpoint 10.4 establishes that “until

user agents handle empty controls correctly, include default, place-

holding characters in edit boxes and text areas [Priority 3]” [45].

Checkpoints 10.4 is a goal not required for HTML checkBox and

radioButton elements since they have an obligatory attribute that

specifies the initial value of the control element.

72 ADRIANA E. MARTÍN Adr

On Table 4.1, Aspect II called “LSControl” evaluates control‟s

widgets Accessibility to improve user‟s interface issues, and it is

supported by softgoals to be satisfied at the SIG‟s user layout support

branch. Here, we must highlight again that to associate the three

design decision classes --i.e. dialog, presentation and pragmatic, with

the Accessibility softgoal concerns at the user layout support SIG‟s

branch, we take into account the considerations described in Section

4.3.2. Over this branch, satisfying checkpoints 12.3 and 12.4

responding to the statement “provide context and orientation

information” of guideline 12 are goals required for all the HTML

control elements. The checkpoint 12.4 establishes that “associate

labels explicitly with their controls [Priority 2]” [45]. While,

checkpoint 12.3 establishes “divide large blocks of information into

more manageable groups where natural and appropriated [Priority 2]”

[45]. Checkpoints 10.3 and 10.4 are goals required for all the HTML

control elements and are focused on providing context and orientation

information to help users understand complex pages or HTML

elements. For example, complex relationships between HTML control

elements as parts of a form on a Web page may be difficult for people

with cognitive disabilities and people with visual disabilities to

interpret.

Similarly, to Table 4.1, we developed Tables to describe the rest of the

four groups of HTML elements. Following, we include Tables 4.2,

4.3, 4.4 and 4.5 for the groups of HTML link and button, the HTML

text and non-text, the HTML structural and, the HTML frame and

style sheet elements, respectively.

These five association tables cover thirteen out of the fourteen

guidelines composing the WCAG 1.0 document [45]. Only guideline

11 (and its checkpoints 11.1, 11.2, 11.3 and 11.4) corresponding to the

statement “use W3C technologies and guidelines” is not included in

these association tables because this guideline is not required for

specific HTML elements. They remind developers using W3C

technologies (e.g., HTML, CSS, etc.) wherever possible because of

the following reasons: (i) W3C technologies include "built-in"

Accessibility features, (ii) W3C specifications undergo early review to

ensure that Accessibility issues are considered during the design

phase, and (iii) W3C specifications are developed in an open, industry

consensus process. So, since checkpoints from guideline 11 provide

generic recommendations for HTML documents, they cannot be

associated to specific elements of any HTML group.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 73

For a deeper understanding of our proposal, in Chapter 5, we illustrate

with a complete case study, which we developed around the function

for student‟s login, shown in Section 1.1 by Figure 1.1, corresponding

to a typical student‟s registration system, such as the SIU Guarani

registration system that we already mention.

Table 4.2: Association Table for the HTML Link and Button Elements Group

7
9

T
a
b

le
 4

.2
:

A
s
s
o

c
ia

ti
o

n
 T

a
b

le
 f

o
r

th
e
 H

T
M

L
 L

in
k

 a
n

d
 B

u
tt

o
n

 E
le

m
e
n

ts
 G

ro
u

p

A
S
P
E
C

T

O
N

T
O

L
O

G
Y

W
ID

G
E
T
S

(A
B

S
T
R

A
C

T

W
ID

G
E
T
S
)

H
T
M

L

E
L
E
M

E
N

T
S

 (
C

O
N

C
R

E
T
E

 W
ID

G
E

T
S
)

W
C

A
G

 1
.0

 C
H

E
C

K
P
O

IN
T
S

A

N
D

 T
H

E
IR

 P
R

IO
R

IT
IE

S
:
[
1

]
 [

 2
]

 O
R

[
3

]

D

E
S
IG

N
 D

E
C

IS
IO

N

C
L
A

S
S

re

la
te

d
 t

o

U
S
E
R
-A

P
P
L
IC

A
T
IO

N

IN
T
E
R

A
C

T
IO

N

1
.2

[
1

]

1
.5

[
3

]

9
.1

[
1

]

9
.4

9
.5

[
3

]

1
0
.5

[
3

]

1
3
.4

[
2

]

1
3
.5

[
3

]

1
3
.6

[
3

]

1
.1

[
1

]

1
3
.1

[
2

]

D
-P

D

-P

D
-P

!

D
-P

!

D
-P

D

-P

!

D
-P

!

D
-P

P

D
-P

D

IA
L
O

G

 (

 D
)

P
R

E
S
E
N

T
A

T
IO

N

(
P

)

P
R

A
G

M
A

T
IC

!

I.

T
S

L
IN

K
&

B
U

T
T
O

N

S
IG

’S

U
S
E
R

T
E
C

H
N

O
L
O

G
Y

S
U

P
P
O

R
T

B
R

A
N

C
H

S
IM

P
L

E
A

C
T

IV
A

T
O

R

L
IN

K

A
 H

R
E

F
 …

!

IM
A

G
E

 L
IN

K

A
 H

R
E

F
,
IM

G
,
S

R
C

…

!

R
E

L
A

T
E

D
 L

IN
K

S

A
 H

R
E

F
,
M

A
P
…

!

!

!

!

!

IM
A

G
E

 M
A

P

S
E

R
V

E
R

-S
ID

E

A
 H

R
E

F
,
IM

G
,
S

R
C

,

IS
M

A
P
…

!

!

!

!

!

!

!

C
L

IE
N

T
-S

ID
E

IM
G

,
S

R
C

,
U

S
E

M
A

P
,

M
A

P
,
A

R
E

A
…

!

!

!

!

!

!

!

P
U

S
H

B

U
T

T
O

N

IN
P

U
T

 S
U

B
M

IT
,
IN

P
U

T
 R

E
S

E
T
…

!

G
E

N
E

R
A

L
IZ

E
D

 &

IM
A

G
E

 B
U

T
T

O
N

B
U

T
T

O
N

,
IN

P
U

T
 I

M
A

G
E
,
IM

G
,
S

R
C

…

!

II
.

L
S

L
IN

K
&

B
U

T
T
O

N

S
IG

’S

U
S
E
R

 L
A

Y
O

U
T

S
U

P
P
O

R
T

B
R

A
N

C
H

S
IM

P
L

E
A

C
T

IV
A

T
O

R

L
IN

K

A
 H

R
E

F
…

!

IM
A

G
E

 L
IN

K

A
 H

R
E

F
,
IM

G
,
S

R
C

…

!

!

R
E

L
A

T
E

D
 L

IN
K

S

A
 H

R
E

F
,
M

A
P
…

!

IM
A

G
E

 M
A

P

S
E

R
V

E
R

-S
ID

E

A
 H

R
E

F
,
IM

G
,
S

R
C

,

IS
M

A
P
…

!

!

C
L

IE
N

T
-S

ID
E

IM
G

,
S

R
C

,
U

S
E

M
A

P
,

M
A

P
,
A

R
E

A
…

!

!

P
U

S
H

 B
U

T
T

O
N

IN

P
U

T
 S

U
B

M
IT

,
IN

P
U

T
 R

E
S

E
T
…

G
E

N
E

R
A

L
IZ

E
D

 &

IM
A

G
E

 B
U

T
T

O
N

B

U
T

T
O

N
,
IN

P
U

T
 I

M
A

G
E
,
IM

G
,
S

R
C

…

!

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 75

Table 4.3: Association Table for the HTML Text and Non-Text Elements Group

8
0

T
a
b

le
 4

.3
:

A
ss

o
ci

a
ti

o
n

 T
ab

le
 f

o
r

th
e

H
T

M
L

 T
ex

t
an

d
 N

o
n

-T
e
x

t
E

le
m

en
ts

 G
ro

u
p

A
S
P
E
C

T

O
N

T
O

L
O

G
Y

W
ID

G
E

T
S

(A
B

S
T
R

A
C

T

W
ID

G
E

T
S
)

H
T
M

L

E
L
E
M

E
N

T
S

 (
C

O
N

C
R

E
T
E

 W
ID

G
E

T
S
)

W
C

A
G

 1
.0

 C
H

E
C

K
P
O

IN
T
S

 A
N

D
 T

H
E
IR

 P
R

IO
R

IT
IE

S
:
[1

]
[2

]
O

R
 [

 3
]

D
E

S
IG

N
 D

E
C

IS
IO

N

C
L
A

S
S

re

la
te

d
to

U

S
E

R
-A

P
P

L
IC

A
T
IO

N

IN
T
E

R
A

C
T
IO

N

1
.3

[1

]

1
.4

[1

]

6
.4

[2

]

7
.1

[1

]

7
.2

[2

]

7
.3

[2

]

7
.4

7
.5

[2

]

8
.1

[1
]

[2
]

9
.2

[2

]

9
.3

[2

]

1
0
.1

[2

]

1
3
.1

0

[3

]

1
4
.2

[3

]

1
.1

[1

]

2
.1

[1

]

2
.2

[2
]

[3
]

4
.1

[1

]

4
.2

[3

]

6
.3

[1

]

1
4
.1

[1

]

D
-P

!

D
-P

!

P

!

D
-P

!

D
-P

!

D
-P

!

D
-P

!

D
-P

!

D

!

P

!

D
-P

D

-P

!

D
-P

!

P

P

P

P

P

D
-P

P

D
IA

L
O

G

(D

)

P
R

E
S

E
N

T
A

T
IO

N

(P

)

P
R

A
G

M
A

T
IC

 !

I.

T
S
T

E
X

T
&

N
O

N
T

E
X

T

S
IG

’S

U
S

E
R

 T
E

C
H

N
O

L
O

G
Y

S
U

P
P

O
R

T

B
R

A
N

C
H

E
L

E
M

E
N

T
E

X
H

IB
IT

O
R

T
E

X
T

A
L

T
, T

IT
T

L
E
,

LO
N

G
D

E
S

C
…

!

N
O

N
-T

E
X

T
,

M
U

L
T

IM
E

D
IA

 &

P
R

O
G

R
A

M
M

A
T

IC

O
B

JE
C

T
S

IM
A

G
E

IM

G
,

S
R

C
…

G
R

A
P

H
IC

A

S
C

II

A
R

T
…

!

A
U

D
IO

,

V
ID

E
O

O
B

JE
T

C

,

P
A

R
A

M

…

!

!

!

A
P

P
L

E
T
, S

C
R

IP
T
,

N
O

N
S

C
R

IP
T
…

!

!

!

!

!

!

!

!

!

II
.

L
S
T

E
X

T
&

N
O

N
T

E
X

T

S
IG

’S

U
S

E
R

 L
A

Y
O

U
T

S
U

P
P

O
R

T

B
R

A
N

C
H

E
L

E
M

E
N

T
E

X
H

IB
IT

O
R

T
E

X
T

A
L

T
, T

IT
T

L
E
,

LO
N

G
D

E
S

C
…

!

!

[3

]
!

!

!

N
O

N
-T

E
X

T
,

M
U

L
T

IM
E

D
IA

 &

P
R

O
G

R
A

M
M

A
T

IC

O
B

JE
C

T
S

IM
A

G
E
,

IM
G

,

S
R

C
…

!

!

!

[2
]

G
R

A
P

H
IC

A

S
C

II

A
R

T
…

!

A
U

D
IO

,

V
ID

E
O

O
B

JE
T

C

,

P
A

R
A

M

…

!

A
P

P
L

E
T
, S

C
R

IP
T
,

N
O

N
S

C
R

IP
T
…

!

!

76 ADRIANA E. MARTÍN Adr

Table 4.4: Association Table for the HTML Structural Elements Group

8
1

T
a
b

le
 4

.4
:

A
ss

o
c
ia

ti
o

n
 T

ab
le

 f
o

r
th

e
H

T
M

L
 S

tr
u

ct
u

ra
l

E
le

m
en

ts
 G

ro
u

p

A
S
P
E
C

T

O
N

T
O

L
O

G
Y

W
ID

G
E
T
S

(A
B

S
T
R

A
C

T

W
ID

G
E

T
S
)

H
T
M

L

E
L
E
M

E
N

T
S

 (
C

O
N

C
R

E
T
E

 W
ID

G
E

T
S
)

W
C

A
G

 1
.0

 C
H

E
C

K
P
O

IN
T
S

 A
N

D
 T

H
E
IR

 P
R

IO
R

IT
IE

S
:
[1

]
[2

]
O

R
 [

 3
]

D
E
S
IG

N
 D

E
C

IS
IO

N

C
L
A

S
S

re
la

te
d

to

U
S
E
R
-A

P
P
L
IC

A
T
IO

N

IN
T
E
R

A
C

T
IO

N

1
0
.3

[3
]

1
3
.2

[
2

]

1
3
.3

[2
]

3
.1

[
2

]

3
.2

[2
]

3
.5

[
2

]

3
.6

[2
]

3
.7

[
2

]

4
.3

[3
]

5
.1

[1
]

5
.2

[1
]

5
.3

[
2

]

5
.4

[2
]

5
.5

[3
]

5
.6

[3
]

1
3
.7

[3
]

1
3
.8

[3
]

1
3
.9

[3
]

P

D
-P

!

D
-P

!

P

P

P

P

P

P

P

P

P

P

P

P

D
-P

D
-P

D

-P

D
IA

L
O

G

(D
)

P
R

E
S
E
N

T
A

T
IO

N

(P

)

P
R

A
G

M
A

T
IC

 !

I.

T
S
S

T
R

U
C

T
U

R
A

L

S
IG

’S

U
S
E
R

T
E
C

H
N

O
L
O

G
Y

S
U

P
P
O

R
T

B
R

A
N

C
H

LO
G

IC
A

L
S

T
R

U
C

T
U

R
IN

G

V
A

L
ID

A
T

O
R

&
 P

R
O

V
ID

E
R

H
T

M
L
, H

E
A

D
, B

O
D

Y
,

T
IT

T
L

E
,

D
O

C
T

Y
P

E
…

!

IN
 G

R
ID

T

A
B

L
E

!

!

G
E

N
E

R
IC

D

IV
, S

P
A

N
...

H
E

A
D

IN
G

H

1-
H

6

B
L

O
C

K

H
E

A
D

E
R

, M
A

IN
, F

O
O

T
E

R
,

B
L

O
C

K
Q

U
O

T
E
, A

D
D

R
E

S
S
…

!

IN
 S

E
T

LI
S

T

!

II
.

L
S
S

T
R

U
C

T
U

R
A

L

S
IG

’S

U
S
E
R

 L
A

Y
O

U
T

S
U

P
P
O

R
T

B
R

A
N

C
H

LO
G

IC
A

L
S

T
R

U
C

T
U

R
IN

G

V
A

L
ID

A
T

O
R

&
 P

R
O

V
ID

E
R

H
T

M
L
, H

E
A

D
, B

O
D

Y
,

T
IT

T
L

E
,

D
O

C
T

Y
P

E
…

!

!

!

!

IN
 G

R
ID

T

A
B

L
E

!

!

!

!

!

!

!

!

G
E

N
E

R
IC

D

IV
, S

P
A

N
...

!

!

H
E

A
D

IN
G

H

1-
H

6

!

!

!

B
L

O
C

K

H
E

A
D

E
R

, M
A

IN
, F

O
O

T
E

R
,

B
L

O
C

K
Q

U
O

T
E
, A

D
D

R
E

S
S
…

!

!

!

IN
 S

E
T

LI
S

T

!

!

!

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 77

Table 4.5: Association Table for the HTML Frame and Style Sheet Elements Group

8
2

T
a
b

le
 4

.5
:

A
ss

o
ci

at
io

n
 T

ab
le

 f
o

r
th

e
H

T
M

L
 F

ra
m

e
an

d
 S

ty
le

 S
h

ee
t

E
le

m
en

ts
 G

ro
u

p

A
S
P
E
C

T

O
N

T
O

L
O

G
Y

W
ID

G
E
T
S

(A
B

S
T
R

A
C

T

W
ID

G
E
T
S
)

H
T
M

L

E
L
E
M

E
N

T
S

 (
C

O
N

C
R

E
T
E

 W
ID

G
E
T
S
)

W
C

A
G

 1
.0

 C
H

E
C

K
P
O

IN
T
S

 A
N

D
 T

H
E
IR

 P
R

IO
R

IT
IE

S
:
[1

]
[2

]
O

R
 [

 3
]

D
E
S
IG

N
 D

E
C

IS
IO

N

C
L
A

S
S

re
la

te
d

to

U
S
E
R
-A

P
P
L
IC

A
T
IO

N

IN
T
E
R

A
C

T
IO

N

6
.5

[2
]

1
0
.1

[2
]

1
.1

[1
]

3
.3

[2
]

3
.4

[2
]

6
.1

[1
]

6
.2

[1
]

1
2
.1

[1
]

1
2
.2

[2
]

1
4
.3

[3
]

D
-P

!

D
-P

P

P

P

P

D
-P

D
-P

D

-P

P

D
IA

L
O

G

(D
)

P
R

E
S
E
N

T
A

T
IO

N
 (

 P
)

P
R

A
G

M
A

T
IC

 !

I.

T
S
F

R
A

M
E
&

S
T
Y
L
E
S

H
E
E
T

S
IG

’S

U
S
E
R

 T
E
C

H
N

O
L
O

G
Y

S
U

P
P
O

R
T
 B

R
A

N
C

H

E
L

E
M

E
N

T
S

T
Y

L
IN

G

F
O

R
M

A
T

T
IN

G
 &

P
O

S
IT

IO
N

IN
G

C
S

S
, S

T
Y

L
E
, S

T
Y

L
E

S
H

E
E

T
,

LI
N

K
 R

E
L
…

S
E

C
T

IO
N

IN
G

 &

S
U

B
S

P
A

C
E

S

F
R

A
M

E
, F

R
A

M
E

S
E

T
,

N
O

F
R

A
M

E
, I

F
R

A
M

E
…

!

!

II
.

L
S
F

R
A

M
E
&

S
T
Y
L
E
S

H
E
E
T

S
IG

’S

U
S
E
R

 L
A

Y
O

U
T

S
U

P
P
O

R
T
 B

R
A

N
C

H

E
L

E
M

E
N

T
S

T
Y

L
IN

G

F
O

R
M

A
T

T
IN

G
 &

P
O

S
IT

IO
N

IN
G

C
S

S
, S

T
Y

L
E
, S

T
Y

L
E

S
H

E
E

T
,

LI
N

K
 R

E
L
…

!

!

!

!

S
E

C
T

IO
N

IN
G

 &

S
U

B
S

P
A

C
E

S

F
R

A
M

E
, F

R
A

M
E

S
E

T
,

N
O

F
R

A
M

E
, I

F
R

A
M

E
…

!

!

!

!

!

!

78 ADRIANA E. MARTÍN Adr

5. Applying our proposal

5.1 A Case Study

The SIU Guaraní student registration system is been used by a number

of public universities in Argentina. It offers online information and/or

diverse registration functionalities to their students. Since these kind

of online systems give support to an educational organization,

Accessibility is a main factor for all users but plays a key role for

students with disabilities. In the spirit of such systems, we define the

case study to apply our Aspect-Oriented approach, reusing the

Student‟s login and the University home page examples, shown in

Figures 1.1 and 2.1, respectively.

As Figure 5.1 shows, we propose a case study of 3 (three) level-deep

navigation and 2 (two) optional anchors to get some help for data

inputs ID and Password at the login Web page. The first level, shown

in Figure 5.1 (a), is the student‟s University home page where the

student selects the link to his/her respective Faculty site from a group

of consecutive and related links. We highlight that we have already

presented and explained this page example in Section 2.2.1 (as shown

in Figure 2.1), since it is the one used to exemplify the related work.

The second level, shown in Figure 5.1 (b), is the student‟s Faculty

page that provides information about this institution among other

functionalities and, offers a link to the SIU Guaraní student

registration system. Finally, the third level, shown in Figure 5.1 (c), is

the student‟s login page example, which we also have already

presented and described in Section 1.1 (as shown in Figure 1.1) and

then in Section 4.2 by the use case “Login a Student given the

Student’s ID and Password”. From this third level, the student has the

ability to browse for getting help to ID and/or Password if he/she fails

to login to the system. These two pages, shown in Figure 5.1 (d),

provide students with some helpful information and the chance to

return to the login Web page.

To carry out the implementation of our approach clearly, in Section

5.2 we follow the step-by-step process as we described in Chapter 4

and depicted in Figure 4.1.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 79

85

Figure 5.1: A Case Study

(a)

(b)

(c)

(d)

Figure 5.1: A Case Study

80 ADRIANA E. MARTÍN Adr

5.2 Our Proposal Step-by-Step on the Field

STEP 1. As highlighted in Figure 4.1 (1), we propose to manage the

requirements of the case study to identify those that involve user-

system interaction.

Specifically, we focus on those requirements at the user interface (UI)

that let the students reach the login Web page browsing through the

three level-deep navigation, which we defined above for the case

study, as follow:

 Level 1 – The Student’s University home page. The

corresponding UI design provides the interface widgets
43

 that allow

the student to choose the anchor to his/her Faculty from a set of

Faculty names, which make up the student‟s University. In this

case, as Figure 5.1 (a) shows, the UI design must include at least,

for each link to Faculties, a widget of the type SimpleActivator at

the abstract interface model mapped to the concrete interface

model on a widget of the type HTML link. Also, as shown in

Figure 5.1 (a), the UI design must include an extra link to skip the

navigation bar. All these widgets are grouped together into a

CompositeInterfaceElement at the abstract interface model and

mapped to a concrete interface model on HTML related links. To

complete de understanding of this mapping, refer to the association

table for the HTML link and button group introduced in Section

4.5.2 by Table 4.2.

 Level 2 – The Student’s Faculty page. Basically, as Figure 5.1

(b) shows, the UI design must include, for the link to the SIU

Guaraní registration system, a clear widget of the type

SimpleActivator at the abstract interface model mapped to the

concrete interface model on a widget of the type HTML link. To

complete de understanding of this mapping, refer to the association

table for the HTML link and button group introduced in Section

4.5.2 by Table 4.2.

 Level 3 – The Student’s Login page. The corresponding UI

design provides the interface widgets that allow the student to login

the SIU Guarani registration system. In this case, as Figure 5.1 (c)

shows, the UI design must include at least, for the student‟s

identification purpose, two widgets of the type IndefiniteVariable

at the abstract interface model mapped to the concrete interface

model on two widgets of the type HTML text field. The mission of

43 To make this Step-by-Step explanation clearer, whenever we use “widgets” without

specifying of which type, we are referring to both, abstract and concrete ones.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 81

these widgets is to receive the student‟s ID and Password values.

Normally, these two widgets are grouped together into a

CompositeInterfaceElement at the abstract interface model and

mapped to the concrete interface model on HTML related controls

to create a form. To complete the understanding of this mapping,

refer to the association table for the HTML control group

introduced in Section 4.3.2 by Table 4.1.

 Levels 1, 2 and 3. These three UI designs also provide text and

images for student‟s information purpose. In this case, the UI

designs must include three widgets of the type ElementExhibitor at

the abstract interface models mapped to the concrete interface

models on three widgets of the type HTML image. The mission of

these widgets is to include the University logo (as shown in Figure

5.1 (a)), the Faculty picture (as shown in Figure 5.1 (b)), and the

image of the key-lock (as shown in Figure 5.1 (c)). To complete de

understanding of this mapping, refer to the association table for the

HTML text and non-text group introduced in Section 4.5.2 by

Table 4.3.

 Level 4 – Help pages (Optional). These two UI designs provide

some instructive text about the data inputs ID and Password. In this

case, as Figure 5.1 (d) shows, each UI design must include, for

allowing the student to go back to the login page, a clear widget of

the type SimpleActivator at the abstract interface model mapped to

the concrete interface model on a widget of the type HTML link.

To complete de understanding of this mapping, refer to the

association table for the HTML link and button group introduced

in Section 4.5.2 by Table 4.2.

It is important to highlight that browsing these pages is optional

and therefore, if the student follows these help links, his/her

decision will produce a different navigation path. At this point, we

are focused on the UI models because, undoubtedly, is at the UI

level where Accessibility barrier finally show; but in Section 6.3,

we will revisit this argument to discuss the potential of our

approach to deal with situations that could affect the Accessibility

of the navigational models.

 Levels 1, 2, 3 and 4. Also, these four UI designs must consider

widgets of the type ElementStyling at the abstract interface models

mapped to the concrete interface models on widgets of the type

HTML formatting & positioning. The mission of these widgets is

to define the appearance of the content --i.e. the look-&-feel of the

UI. To complete de understanding of this mapping, refer to the

82 ADRIANA E. MARTÍN Adr

association table for the HTML frame and style sheet group

introduced in Section 4.5.2 by Table 4.5.

88

models on widgets of the type HTML formatting & positioning. The mission of

these widgets is to define the appearance of the content --i.e. the look-&-feel of the

UI. To complete de understanding of this mapping, refer to the association table for

the HTML frame and style sheet group introduced in Section 4.5.2 by Table 4.5.

Figure 5.2: UID with integration points for the Case Study

STEP 2. As highlighted in Figure 4.1 (2.1) and (2.2), for specifying Accessibility

concerns, we encourage the early capture of these Accessibility requirements by

applying the UID and SIG conceptual tools.

[INVALIDSTUDENTINPUTDATA]

Error in Input Data !!!

[VALIDSTUDENTINPUTDATA]

< 3 >

ID
Password

< 3.2 > IDForm

< 3.1 > KeyLockImage

SIU Guarani Registration System

 Accessibility integration point

HTML image

 Accessibility integration point

HTML link

 Accessibility integration point

HTML image

 Accessibility integration point

HTML related controls

 Accessibility integration point

HTML image

 Accessibility integration point

HTML related links

Unidentified
Student

< 1 >

< 1.1 > UniversityLogo

University(universityName, universityLogoImage)

 < 1.2 > … FacultyLinks(facultyName)

[SELECT1FACULTY]

< 2 >

< 2.1 > FacultyPicture

Faculty(facultyName, facultyPictureImage)

 < 2.2 > SIUGuaraniLink

 UID < Enrolling a Student … >

Identified
Student

ID Help

Password Help

< 4 >

Figure 5.2: UID with integration points for the Case Study

STEP 2. As highlighted in Figure 4.1 (2.1) and (2.2), for specifying

Accessibility concerns, we encourage the early capture of these

Accessibility requirements by applying the UID and SIG conceptual

tools.

STEP 2.1. We develop the UID diagram with integration points for the

case study. As shown in Figure 5.2, at the UID interactions <1>, <2>,

<3> and <4>, we outline the integration points that remain the

Accessibility concerns that are crucial at each navigation level

described above, as follow:

 Level 1 – UID Interaction <1>. We set <1.2> integration point

for the HTML HTML related links corresponding to the links to

Faculties.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 83

 Level 2 – UID interaction <2>. We set <2.2> integration point

for the HTML link corresponding to the link to the SIU Guarani

registration.

 Level 3 – UID interaction <3>. We set <3.2> integration point for

the HTML related controls corresponding to the form for the

student‟s identification. The Accessibility concerns, which are

required by the related HTML text fields that make up the form, are

relevant to a successful login information exchange between the

student and the application, during the execution of the

identification function.

 Levels 1, 2 and 3 – UID interactions <1, 2, 3>. We set <1.1>,

<2.1> and <3.1> integrations points for the HTML images

corresponding to the images of the University logo, the Faculty

picture and the key-lock, respectively.

 Level 4 – UID interactions <4> (Optional). As we already said

before, from Level 3, it is possible to browse to get some help for

data inputs ID and Password. Although in Figure 5.2 we have not

included details about the integration points required for these

pages, we can set them for the HTML text and the HTML link

corresponding to a helpful text and a link that clearly allows the

student to return to the login Web page, respectively.

 Levels 1, 2, 3 and 4 – UID interactions <1, 2, 3, 4>. In Figure 5.2

we have not set integrations points for the HTML formatting &

positioning to make simpler the understanding of the diagram and

because, as we will see in Step 2.2, these are Accessibility

concerns required in general for all Web pages.

STEP 2.2. We instantiate the SIG template for the Accessibility

integration points outlined by the UID interactions <1>, <2>, <3> and

<4> in Step 2.1, to identify WCAG 1.0 Accessibility requirements. In

Section 3.5, we presented the basis of the SIG‟s notation and

vocabulary and then, in Section 4.3.2, we explained how we extended

this conceptual tool into a template to handle the Accessibility

concerns. At this template, the focus of the Accessibility softgoal is

highlighted into the root light cloud. The user technology support and

the user layout support branches are specified into light clouds and

dark clouds respectively. The light clouds represent the refined

Accessibility softgoal --i.e. the required WCAG 1.0 guidelines; while

the dark clouds represent operationalizing goals --i.e. the required

checkpoints to be satisfied. At this point, note that the association

tables presented in Sections 4.3.1 and 4.5.2 help to the SIG

84 ADRIANA E. MARTÍN Adr

instantiation process. Applying the SIG template for Accessibility, we

develop the SIG diagrams at each navigation level, as follow:

 Level 1 – SIG diagram at the UID interaction <1>. As shown in

Figure 5.3, we focus the main Accessibility softgoal on the UID

interaction (U-UI) <1> called HTML University home. From this

root, we define an Accessibility softgoal for the UID interaction

component (U-UIc) <1.2> FacultyLinks, to help to accessible

related links for all the students, including those with disabilities.

In this case, to support the SIG instantiation process, we use Table

5.2 for the HTML link and button group, since the Accessibility

softgoal is defined for the HTML related links element to

Faculties. Next, we explain the refinement process for the SIG

instantiation at the UID interaction <1>.

90

conceptual tool into a template to handle the Accessibility concerns. At this template,

the focus of the Accessibility softgoal is highlighted into the root light cloud. The user

technology support and the user layout support branches are specified into light clouds

and dark clouds respectively. The light clouds represent the refined Accessibility

softgoal --i.e. the required WCAG 1.0 guidelines; while the dark clouds represent

operationalizing goals --i.e. the required checkpoints to be satisfied. At this point, note

that the association tables presented in Sections 4.3.1 and 4.5.2 help to the SIG

instantiation process. Applying the SIG template for Accessibility, we develop the SIG

diagrams at each navigation level, as follow:

! Level 1 – SIG diagram at the UID interaction <1>. As shown in Figure 5.3, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <1> called

HTML University home. From this root, we define an Accessibility softgoal for the

UID interaction component (U-UIc) <1.2> FacultyLinks, to help to accessible

related links for all the students, including those with disabilities. In this case, to

support the SIG instantiation process, we use Table 5.2 for the HTML link and

button group, since the Accessibility softgoal is defined for the HTML related links

element to Faculties. Next, we explain the refinement process for the SIG

instantiation at the UID interaction <1>.

Figure 5.3: SIG instantiation for the UID interaction <1>

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE TECHNOLOGY INDEPENDENCE

+

13.1

+ -
+

13.5 13.4 13.6 9.4

 U-UI

< 1 > HTML UNIVERSITY HOME

 U-UIC
< 1.2 > HTML RELATED LINKS

 U-UIC
< 1.1 > HTML IMAGE

10.5

USER LAYOUT SUPPORT

+ -

9.5

+ - + - + - +

+

2.2

++

2.1

++

1.1

Figure 5.3: SIG instantiation for the UID interaction <1>

Firstly, looking at the user technology support branch in Figure

5.3, a distinction between “technology independence” and

“technology dependence” is made in concordance with the

distinction made in Section 4.3.2. To help to the universal access

of devices to the HTML related links element, we chose an AND-

decomposition; but the choice for an AND/OR decomposition will

depend on the designer‟s decisions and the application‟s

constraints. For “technology independence”, satisfying goals

related to guidelines 10 and 13 for checkpoints 10.5 and 13.6

compliance are required. Otherwise for “technology dependence”,

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 85

satisfying goals related to guidelines 9 and 13 for checkpoints 9.4

and 9.5; 13.5 and 13.4 compliance are required. Now looking at

the user layout support, satisfying goals related to guideline 13 for

checkpoint 13.1, compliance is required for the HTML related

links element.

91

Firstly, looking at the user technology support branch in Figure 5.3, a distinction

between “technology independence” and “technology dependence” is made in

concordance with the distinction made in Section 4.3.2. To help to the universal

access of devices to the HTML related links element, we chose an AND-

decomposition; but the choice for an AND/OR decomposition will depend on the

designer‟s decisions and the application‟s constraints. For “technology

independence”, satisfying goals related to guidelines 10 and 13 for checkpoints 10.5

and 13.6 compliance are required. Otherwise for “technology dependence”,

satisfying goals related to guidelines 9 and 13 for checkpoints 9.4 and 9.5; 13.5 and

13.4 compliance are required. Now looking at the user layout support, satisfying

goals related to guideline 13 for checkpoint 13.1, compliance is required for the

HTML related links element.

Figure 5.4: SIG instantiation for the UID interaction <2>

! Level 2 – SIG diagram at the UID interaction <2>. As shown in Figure 5.4, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <1> called

HTML Faculty page. From this root, we define an Accessibility softgoal for the UID

interaction component (U-UIc) <2.2> SIUGuaraniLink, to help to an accessible link.

Here, to support the SIG instantiation process, we also use Table 5.3 for the HTML

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE

+

13.1 9.4

 U-UI
< 2 > HTML FACULTY PAGE

 U-UIC
< 2.2 > HTML LINK

 U-UIC
< 2.1 > HTML IMAGE

USER LAYOUT SUPPORT

9.5

+ - + -

+

2.2

++

2.1

++

1.1

Figure 5.4: SIG instantiation for the UID interaction <2>

 Level 2 – SIG diagram at the UID interaction <2>. As shown in

Figure 5.4, we focus the main Accessibility softgoal on the UID

interaction (U-UI) <1> called HTML Faculty page. From this

root, we define an Accessibility softgoal for the UID interaction

component (U-UIc) <2.2> SIUGuaraniLink, to help to an

accessible link. Here, to support the SIG instantiation process, we

also use Table 5.3 for the HTML link and button group, since the

Accessibility softgoal is defined for the HTML link element to the

SIU Guarani registration system. Next, we explain the refinement

process for the SIG instantiation at the UID interaction <2>.

Firstly, looking at the user technology support branch in Figure

5.4, “technology dependence”, for satisfying goals related to

guideline 9 for checkpoints 9.4 and 9.5, compliance are required

for the HTML link element. Now looking at the user layout

support, for satisfying goal related to guideline 13 for checkpoint

13.1, compliance is required for the HTML related links element.

86 ADRIANA E. MARTÍN Adr

92

link and button group, since the Accessibility softgoal is defined for the HTML link

element to the SIU Guarani registration system. Next, we explain the refinement

process for the SIG instantiation at the UID interaction <2>.

Firstly, looking at the user technology support branch in Figure 5.4, “technology

dependence”, for satisfying goals related to guideline 9 for checkpoints 9.4 and 9.5,

compliance are required for the HTML link element. Now looking at the user layout

support, for satisfying goal related to guideline 13 for checkpoint 13.1, compliance

is required for the HTML related links element.

Figure 5.5: SIG instantiation for the UID interaction <3>

! Level 3 – SIG diagram at the UID interaction <3>. As shown in Figure 5.5, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <3> called

HTML SIU Guarani page. From this root, we define an Accessibility softgoal for

the UID interaction components (U-UIc) <3.2> IDForm, to help to accessible

related controls. In this case, to support the SIG instantiation process, we use Table

5.1 for the HTML control group, since the Accessibility softgoal is defined for the

HTML related controls element, which is a form composed of two HTML text

fields for student identification purpose. Next, we explain the refinement process for

the SIG instantiation at the UID interaction <3>.

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE TECHNOLOGY INDEPENDENCE

+

12.4 10.4 9.5

 U-UI
< 3 > HTML SIU GUARANÍ PAGE

 U-UIC
< 3.2 > HTML RELATED CONTROLS

 U-UIC
< 3.1 > HTML IMAGE

10.2

USER LAYOUT SUPPORT

9.4

+ + - + - + -

+

2.2

++

2.1

++

1.1

+

12.3

Figure 5.5: SIG instantiation for the UID interaction <3>

 Level 3 – SIG diagram at the UID interaction <3>. As shown in

Figure 5.5, we focus the main Accessibility softgoal on the UID

interaction (U-UI) <3> called HTML SIU Guarani page. From

this root, we define an Accessibility softgoal for the UID

interaction components (U-UIc) <3.2> IDForm, to help to

accessible related controls. In this case, to support the SIG

instantiation process, we use Table 5.1 for the HTML control

group, since the Accessibility softgoal is defined for the HTML

related controls element, which is a form composed of two

HTML text fields for student identification purpose. Next, we

explain the refinement process for the SIG instantiation at the UID

interaction <3>.

Firstly, looking at the user technology support branch in Figure

5.5, we chose an AND-decomposition, as we already did at the

SIG instantiation at UID interaction <1> and for the same reasons.

For “technology independence”, for satisfying goals related to

guideline 10 for checkpoints 10.2 and 10.4, compliance are

required. Otherwise for “technology dependence”, for satisfying

goals related to guideline 9 for checkpoints 9.4 and 9.5,

compliance are required. Now looking at the user layout support,

for satisfying goals related to guideline 12 for checkpoint 12.3 and

12.4, compliance is required for the HTML related controls

element.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 87

 Levels 1, 2 and 3 – SIG diagrams at UID interactions <1, 2, 3>.

As shown in Figures 5.3, 5.4 and 5.5, we focus the main

Accessibility softgoals on the UID interactions (U-UI) <1, 2, 3>.

From these roots, we define Accessibility softgoals for the UID

interaction components (U-UIc) <1.1> UniversityLogo, <2.1>

FacultyPicture and <3.1> KeyLockImage to help to accessible

HTML image elements at each page. In this case, to support the

SIG instantiation process, we use Table 5.3 for the HTML text and

non-text group, since these Accessibility softgoals are defined for

the HTML image elements of the University logo, the Faculty

picture and the key-lock respectively. Next, we explain the

refinement process for the SIG instantiation at the UID

interactions <1, 2, 3>.

93

Firstly, looking at the user technology support branch in Figure 5.5, we chose an

AND-decomposition, as we already did at the SIG instantiation at UID interaction

<1> and for the same reasons. For “technology independence”, for satisfying goals

related to guideline 10 for checkpoints 10.2 and 10.4, compliance are required.

Otherwise for “technology dependence”, for satisfying goals related to guideline 9

for checkpoints 9.4 and 9.5, compliance are required. Now looking at the user layout

support, for satisfying goals related to guideline 12 for checkpoint 12.3 and 12.4,

compliance are required for the HTML related controls element.

! Levels 1, 2 and 3 – SIG diagrams at UID interactions <1, 2, 3>. As shown in

Figures 5.3, 5.4 and 5.5, we focus the main Accessibility softgoals on the UID

interactions (U-UI) <1, 2, 3>. From these roots, we define Accessibility softgoals

for the UID interaction components (U-UIc) <1.1> UniversityLogo, <2.1>

FacultyPicture and <3.1> KeyLockImage to help to accessible HTML image

elements at each page. In this case, to support the SIG instantiation process, we use

Table 5.3 for the HTML text and non-text group, since these Accessibility softgoals

are defined for the HTML image elements of the University logo, the Faculty

picture and the key-lock respectively. Next, we explain the refinement process for

the SIG instantiation at the UID interactions <1, 2, 3>.

Figure 5.6: SIG instantiation for the UID interactions <1, 2, 3, 4>

Looking at the user layout support branches in Figures 5.3, 5.4 and 5.5, for

satisfying goals related to guidelines 1 and 2 for checkpoints 1.1, 2.1 and 2.2,

USER LAYOUT SUPPORT

+ -

14.3

++

3.4 6.1 3.3

U-UI

< 1, 2, 3, 4 > HTML STYLESHEETS

+ + + +

Figure 5.6: SIG instantiation for the UID interactions <1, 2, 3, 4>

Looking at the user layout support branches in Figures 5.3, 5.4

and 5.5, for satisfying goals related to guidelines 1 and 2 for

checkpoints 1.1, 2.1 and 2.2, compliance are required for the

HTML image elements. In Section 4.1, we have already said, that

there are situations in which we can develop artifacts once and

then reused them, as they are required; at Step 2 in Figure 4.1

(2.1) and (2.2), we have indicated the reuse capability of our

approach with input/output arrows. Clearly, this is one of those

situations, since the Accessibility softgoal for the HTML image

element can be modeled once and then applied for the SIG

instantiation, as they are required. As Figures 5.3, 5.4 and 5.5

show, we surrounded with dotted lines the UID interaction

components (U-UIc) <1.1>, <2.1> and <3.1> for the HTML

88 ADRIANA E. MARTÍN Adr

image elements to highlight the reusable artifact applied to the

SIG diagrams of the case study.

 Level 4 – SIG diagram at UID interactions <4> (Optional). At

this level, we proceed in the same way as for the previous levels.

We do not give details about this optional level, because we

consider it doesn‟t provide new knowledge about developing the

SIG diagrams for Accessibility concerns.

 Levels 1, 2, 3 and 4 – SIG diagram at UID interactions <1, 2, 3,

4>. As shown in Figure 5.6, we focus the main Accessibility

softgoal on the UID interactions (U-UI) <1, 2, 3, 4> called HTML

Stylesheets. Here, to help the SIG instantiation process, we use

Table 5.5 for the HTML frame and style sheet group, since the

Accessibility softgoals are defined for the HTML style sheet

elements to provide formatting and positioning support to the user

layout. Next, we explain the refinement process for the SIG

instantiation at the UID interactions <1>, <2>, <3> and <4>.

Looking at the user layout support branch in Figure 5.6, for

satisfying goals related to guidelines 3, 6 and 14 for checkpoints

3.3 and 3.4, 6.1, 14.3, compliance are required for the HTML style

sheet element.

STEP 3. As highlighted in Figure 4.1 (3), for the user interface design

activity, we exploit the Accessibility knowledge captured and

organized by SIG diagrams in Step 2.2. The purpose here is to find

out how WCAG 1.0 Accessibility concerns “crosscut” the user

interface widgets (abstract and concrete ones). In order to make our

discussion clear, we focus on explaining how the SIG‟s

operationalizing goals --i.e. the required WCAG 1.0 checkpoints to be

satisfied for an accessible student‟s login -- “crosscut” the components

of each HTML element corresponding to an abstract interface

ontology widget. Since applying the required WCAG 1.0 checkpoints

to be satisfied at the user interface causes typical crosscutting

symptoms --i.e. “scattering” and “tangling” problems -- it is clear that

Aspect-Orientation is the natural approach to solve these crosscutting

symptoms. The SIG diagrams not only provide Accessibility

technology and layout support respectively for any of the HTML

elements at the user interface, but also allow Aspects to be modeled

and instantiated appropriately to avoid “scattering” and “tangling”

problems. Then Aspects can be seamless injected by the “weaving”

mechanism into the core --i.e. user interface models, to achieve the

Accessibility softgoal and as a consequence an HTML code with the

desired conformance to the WCAG 1.0. As shown in Figure 4.1 (3.1),

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 89

we work on the abstract user interface required at each navigation

level, as follow:

95

widget. Since applying the required WCAG 1.0 checkpoints to be satisfied at the user

interface causes typical crosscutting symptoms --i.e. “scattering” and “tangling”

problems -- it is clear that Aspect-Orientation is the natural approach to solve these

crosscutting symptoms. The SIG diagrams not only provide Accessibility technology

and layout support respectively for any of the HTML elements at the user interface, but

also allow Aspects to be modeled and instantiated appropriately to avoid “scattering”

and “tangling” problems. Then Aspects can be seamless injected by the “weaving”

mechanism into the core --i.e. user interface models, to achieve the Accessibility

softgoal and as a consequence an HTML code with the desired conformance to the

WCAG 1.0. As shown in Figure 4.1 (3.1), we work on the abstract user interface

required at each navigation level, as follow:

Figure 5.7: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

related links element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

! Level 1 – UI model at UID interaction <1>. As shown in Figure 5.7 through a

diagram similar to UML, whenever there is an HTML related links element at the

user interface model, Aspect I “TSRelatedLink” and Aspect II “ LSRelatedLinks”,

focused on solving technology and layout Accessibility issues respectively, are

injected to avoid the “scattered” and “tangling” nature of Accessibility checkpoints

9.4 and 9.5, 10.5, 13.4 a nd 13.5, 13.6 and 13.1 over HTML related links classes.

HTMLRELATEDLINKS (COMPOSITEINTERFACEELEMENT)

HTMLLINKTEXT

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING

SYMPTOMS

II. LSRELATEDLINKS 13.1 identifyTarget()

HTMLLINK

(SIMPLEACTIVATOR)

I. TSRELATEDLINKS 9.4 tabOrderLink() 9.5 keyAccessLink()

 10.5 nonAdjacentLinks()
 13.4 consistentNavigation()
 13.5 navigationBar()
 13.6 groupRelatedLinks()

Figure 5.7: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an

HTML related links element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

 Level 1 – UI model at UID interaction <1>. As shown in Figure

5.7 through a diagram similar to UML, whenever there is an

HTML related links element at the user interface model, Aspect I

“TSRelatedLink” and Aspect II “LSRelatedLinks”, focused on

solving technology and layout Accessibility issues respectively,

are injected to avoid the “scattered” and “tangling” nature of

Accessibility checkpoints 9.4 and 9.5, 10.5, 13.4 and 13.5, 13.6

and 13.1 over HTML related links classes.

90 ADRIANA E. MARTÍN Adr

CONFORMANCE TO WCAG 1.0

CHECKPOINTS 9.5, 10.5, 13.4, 13.5, 13.6

AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

Figure 5.8: Accessible HTML code as a result of a “seamless” injection of Aspects I

and II in the UI model at UID interaction <1>

The addition of Aspect I “TSRelatedLinks” and Aspect II

“LSRelatedLinks” reminds later, at the implementation of the

concrete interface model (as shown by Figure 4.1 (4.1),

conformance to the following Accessibility concerns for each

HTML related links element: (i) creating a logical tab order and/or

providing keyboard shortcuts for links, (ii) including non-link,

printable characters (surrounded by spaces) between adjacent

links, (iii) using navigation mechanisms in a consistent manner

and providing navigation bars to highlight and give access to the

navigation mechanism, (iv) grouping related links, identifying the

group and providing a way to bypass the group and, (v) clearly

identifying the target of each link. Figure 5.8 shows the accessible

HTML corresponding to the student‟s University home example,

whose screenshot is shown in Figures 2.1 and 5.1 (a).

 Level 2 – UI model at UID interaction <2>. As shown in Figure

5.9 through a diagram similar to UML, whenever there is an

HTML link element at the user interface model, Aspect I

“TSLink” and Aspect II “LSLink”, focused on solving technology

and layout Accessibility issues respectively, are injected to avoid

the “scattered” and “tangling” nature of Accessibility checkpoints

9.4 and 9.5, and 13.1 over HTML link classes.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 91

97

“scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5, and 13.1

over HTML link classes.

Figure 5.9: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML link

element (Concrete Interface Widget) corresponding to a SimpleActivator (Abstract Interface

Widget)

The addition off Aspect I “TSLink” and Aspect II “ LSLink” reminds later, at the

implementation of the concrete interface model (as shown by Figure 4.1 (4.1)),

conformance to the following Accessibility concerns for each HTML link element: (i)

creating a logical tab order and/or providing keyboard shortcuts for links and, (ii)

clearly identifying the target of each link.

Figure 5.10: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <2>

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING

SYMPTOMS

II. LSLINK 13.1 identifyTarget()

HTMLLINK

(SIMPLEACTIVATOR)

HTMLLINKTEXT

I. TSLINK 9.4 tabOrderLink() 9.5 keyAccessLink()

CONFORMANCE TO WCAG 1.0

CHECKPOINTS 9.5 AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

Figure 5.9: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an

HTML link element (Concrete Interface Widget) corresponding to a SimpleActivator

(Abstract Interface Widget)

The addition off Aspect I “TSLink” and Aspect II “LSLink”

reminds later, at the implementation of the concrete interface

model (as shown by Figure 4.1 (4.1)), conformance to the

following Accessibility concerns for each HTML link element: (i)

creating a logical tab order and/or providing keyboard shortcuts

for links and, (ii) clearly identifying the target of each link.

97

“scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5, and 13.1

over HTML link classes.

Figure 5.9: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML link

element (Concrete Interface Widget) corresponding to a SimpleActivator (Abstract Interface

Widget)

The addition off Aspect I “TSLink” and Aspect II “ LSLink” reminds later, at the

implementation of the concrete interface model (as shown by Figure 4.1 (4.1)),

conformance to the following Accessibility concerns for each HTML link element: (i)

creating a logical tab order and/or providing keyboard shortcuts for links and, (ii)

clearly identifying the target of each link.

Figure 5.10: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <2>

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING

SYMPTOMS

II. LSLINK 13.1 identifyTarget()

HTMLLINK

(SIMPLEACTIVATOR)

HTMLLINKTEXT

I. TSLINK 9.4 tabOrderLink() 9.5 keyAccessLink()

CONFORMANCE TO WCAG 1.0

CHECKPOINTS 9.5 AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

Figure 5.10: Accessible HTML code as a result of a “seamless” injection of Aspects I

and II in the UI model at UID interaction <2>

Figure 5.10 shows the accessible HTML code corresponding to

the student‟s Faculty page example, whose screenshot is shown in

5.1 (b).

 Level 3 – UI model at UID interaction <3>. As shown in Figure

5.11 through a diagram similar to UML, whenever there is an

HTML related controls element, which in this case comprises two

92 ADRIANA E. MARTÍN Adr

HTML text field elements at the user interface model, Aspect I

“TSRelatedControls” and Aspect II “LSRelatedControls”, focused

on solving technology and layout Accessibility issues

respectively, are injected to avoid the “scattered” and “tangling”

nature of Accessibility checkpoints 9.4 and 9.5, 10.2 and 12.4,

10.4 and 12.3 and over HTML related controls classes.

98

Figure 5.10 shows the accessible HTML code corresponding to the student‟s Faculty

page example, whose screenshot is shown in 5.1 (b).

! Level 3 – UI model at UID interaction <3>. As shown in Figure 5.11 through a

diagram similar to UML, whenever there is an HTML related controls element,

which in this case comprises two HTML text field elements at the user interface

model, Aspect I “TSRelatedControls” and Aspect II “ LSRelatedControls”, focused

on solving technology and layout Accessibility issues respectively, are injected to

avoid the “scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5,

10.2 and 12.4, 10.4 and 12.3 and over HTML related controls classes.

Figure 5.11: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

related controls element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

The addition off Aspect I “TSRelatedControls” and Aspect II “ LSRelatedControls”

reminds later, at the implementation of the concrete interface model (as shown by

Figure 4.1 (4.1)), conformance to the following Accessibility concerns for each

HTML related controls element: (i) creating a logical tab order and/or providing

keyboard shortcuts for controls, (ii) supporting explicit association between HTML

label elements and controls, (iii) handling empty controls correctly by including

default, place-holding characters and, (iv) grouping related controls with HTML

fieldset and legend elements. Figure 5.12 shows the accessible HTML code

corresponding to the student‟s login page example, whose screenshot is shown in

Figures 1.1 and 5.1 (c).

HTMLRELATEDCONTROLS (COMPOSITEINTERFACEELEMENT)

HTMLLABEL

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING

SYMPTOMS

II. LSRELATEDCONTROLS 12.4 explicitAssociation()

HTMLTEXTFIELD

(INDEFINITIVEVARIABLE)

I. TSRELATEDCONTROLS 9.5 keyAccessControl() 9.4 tabOrderControl()

 10.2 promptPosition() 10.4 defaultCharacters()
 12.3 groupRelatedControls()

Figure 5.11: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting

an HTML related controls element (Concrete Interface Widget) corresponding to

a CompositeInterfaceElement (Abstract Interface Widget)

The addition off Aspect I “TSRelatedControls” and Aspect II

“LSRelatedControls” reminds later, at the implementation of the

concrete interface model (as shown by Figure 4.1 (4.1)),

conformance to the following Accessibility concerns for each

HTML related controls element: (i) creating a logical tab order

and/or providing keyboard shortcuts for controls, (ii) supporting

explicit association between HTML label elements and controls,

(iii) handling empty controls correctly by including default, place-

holding characters and, (iv) grouping related controls with HTML

fieldset and legend elements. Figure 5.12 shows the accessible

HTML code corresponding to the student‟s login page example,

whose screenshot is shown in Figures 1.1 and 5.1 (c).

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 93

99

Figure 5.12: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <3>

! Level 1, 2 and 3 – UI models at UID interactions <1, 2, 3>. As shown in Figure

5.13 through a diagram similar to UML, whenever there is an HTML image

element, Aspect II “ LSImage”, focused on solving layout Accessibility issues, is

injected to avoid the “scattered” nature of Accessibility checkpoints 1.1, 1.2 and 2.2

over HTML image classes.

The addition of Aspect II “LSImage” reminds later, at the implementation of the

concrete interface models (as shown by Figure 4.1 (4.1)), conformance to the

following Accessibility concerns for each HTML image element: (i) adding a text

equivalent for every image with a HTML alt-text element and, (ii) not relying on

images‟ color alone to convey information. Figures 5.8, 5.10 and 5.12 show the

CONFORMANCE TO WCAG 1.0

CHECKPOINTS 9.4, 9.5, 10.2, 10.4, 12.3

AND 12.4
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

Figure 5.12: Accessible HTML code as a result of a “seamless” injection of Aspects I

and II in the UI model at UID interaction <3>

 Level 1, 2 and 3 – UI models at UID interactions <1, 2, 3>. As

shown in Figure 5.13 through a diagram similar to UML,

whenever there is an HTML image element, Aspect II

“LSImage”, focused on solving layout Accessibility issues, is

injected to avoid the “scattered” nature of Accessibility

checkpoints 1.1, 1.2 and 2.2 over HTML image classes.

The addition of Aspect II “LSImage” reminds later, at the

implementation of the concrete interface models (as shown by

Figure 4.1 (4.1)), conformance to the following Accessibility

concerns for each HTML image element: (i) adding a text

equivalent for every image with a HTML alt-text element and, (ii)

not relying on images‟ color alone to convey information. Figures

5.8, 5.10 and 5.12 show the accessible HTML corresponding to

the student‟s University home page, the Faculty page and the

login page examples, whose screenshot are shown in Figures 5.1

94 ADRIANA E. MARTÍN Adr

(a), 5.1 (b) and 5.1 (c), respectively. As we can see in these

HTML files, all the HTML image elements have their

corresponding text equivalent.

100

accessible HTML corresponding to the student‟s University home page, the Faculty

page and the login page examples, whose screenshot are shown in Figures 5.1 (a),

5.1 (b) and 5.1 (c), respectively. As we can see in these HTML files, all the HTML

image elements have their corresponding text equivalent.

Figure 5.13: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

image element (Concrete Interface Widget) corresponding to an ElementExhibitor (Abstract

Interface Widget)

! Level 4 – UI models at UID interaction <4> (Optional). At this level, we proceed

in the same way as for the previous levels. We do not give details about this optional

level, because we consider it doesn‟t provide new knowledge about developing the

user interface models.

! Level 1, 2, 3 and 4 – UI models at UID interactions <1, 2, 3, 4>. As shown in

Figure 5.14 through a diagram similar to UML, whenever there is an HTML style

sheet element, Aspect II “ LSStylesheet” focused on solving layout Accessibility

issues, is injected to avoid the “scattered” nature of Accessibility checkpoints 3.3,

3.4, 6.1 and 14.3 over HTML style sheet classes.

Figure 5.14: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

style sheet element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLIMAGE

(ELEMENTEXHIBITOR)

HTMLALT-TEXT

II. LSIMAGE 1.1 textEquivalent() 2.1 infoWithoutColor()

 2.2 useConstrastColors()

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLSTYLESHEET

(COMPOSITEINTERFACEELEMENT)

II. LSSTYLESHEET 3.3 useStylesheetLayout&Presentation()

 3.4 useRelativeUnitsPositioning()
 6.1 makeAvailableWithoutStlysheet()
 14.3 useConsistentStylePages()

Figure 5.13: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting

an HTML image element (Concrete Interface Widget) corresponding to an

ElementExhibitor (Abstract Interface Widget)

 Level 4 – UI models at UID interaction <4> (Optional). At this

level, we proceed in the same way as for the previous levels. We

do not give details about this optional level, because we consider

it doesn‟t provide new knowledge about developing the user

interface models.

 Level 1, 2, 3 and 4 – UI models at UID interactions <1, 2, 3, 4>.

As shown in Figure 5.14 through a diagram similar to UML,

whenever there is an HTML style sheet element, Aspect II

“LSStylesheet” focused on solving layout Accessibility issues, is

injected to avoid the “scattered” nature of Accessibility

checkpoints 3.3, 3.4, 6.1 and 14.3 over HTML style sheet classes.

100

accessible HTML corresponding to the student‟s University home page, the Faculty

page and the login page examples, whose screenshot are shown in Figures 5.1 (a),

5.1 (b) and 5.1 (c), respectively. As we can see in these HTML files, all the HTML

image elements have their corresponding text equivalent.

Figure 5.13: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

image element (Concrete Interface Widget) corresponding to an ElementExhibitor (Abstract

Interface Widget)

! Level 4 – UI models at UID interaction <4> (Optional). At this level, we proceed

in the same way as for the previous levels. We do not give details about this optional

level, because we consider it doesn‟t provide new knowledge about developing the

user interface models.

! Level 1, 2, 3 and 4 – UI models at UID interactions <1, 2, 3, 4>. As shown in

Figure 5.14 through a diagram similar to UML, whenever there is an HTML style

sheet element, Aspect II “ LSStylesheet” focused on solving layout Accessibility

issues, is injected to avoid the “scattered” nature of Accessibility checkpoints 3.3,

3.4, 6.1 and 14.3 over HTML style sheet classes.

Figure 5.14: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

style sheet element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLIMAGE

(ELEMENTEXHIBITOR)

HTMLALT-TEXT

II. LSIMAGE 1.1 textEquivalent() 2.1 infoWithoutColor()

 2.2 useConstrastColors()

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLSTYLESHEET

(COMPOSITEINTERFACEELEMENT)

II. LSSTYLESHEET 3.3 useStylesheetLayout&Presentation()

 3.4 useRelativeUnitsPositioning()
 6.1 makeAvailableWithoutStlysheet()
 14.3 useConsistentStylePages()

Figure 5.14: SIG‟s operationalizing goals (WCAG 1.0 checkpoints) crosscutting

an HTML style sheet element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

The addition of Aspect II “LSStylesheet” reminds later, at the

implementation of the concrete interface models (as shown by

Figure 4.1 (4.1)), conformance to the following Accessibility

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 95

concerns for each HTML style sheet element: (i) using style sheets

to control page layout and presentation, (ii) using relative rather

than absolute units in markup language attribute values and style

sheet property values, (iii) organizing documents so they may be

read without style sheets and, (iv) creating a style of presentation

that is consistent across pages. The HTML pages corresponding to

the student‟s University home page, the Faculty page, the login

page and the help pages examples, whose screenshot are shown in

Figures 5.1 (a), 5.1 (b), 5.1 (c) and 5.1 (d) respectively, keep a

consistent styling across pages. As we can see in Figures 5.8, 5.10

and 5.12, for formatting and positioning purpose, these pages use

an HTML style sheet element.

STEP 4. As highlighted in Figure 4.1 (4), for the user interface

developing activity we exploit the aspects applied for solving

Accessibility crosscutting concerns discovered in Step 3. As another

way of illustrating how these aspects were seamless injected in an

abstract user interface to obtain a concrete user interface (at the design

level) and then an accessible and well formed HTML at the

implementation level, we can express the Accessibility concerns

conveyed by aspects using a pseudo-code language. We provide some

examples for each level defined for the case study in Figure 5.1, as

follow:

 Level 1 – Aspect I and Aspect II in the UI model at UID

interaction <1>.

ASPECT I. TSRELATEDLINKS
POINTCUT ALL INTERFACE WIDGETS WITH
CompositeInterfaceElement.SimpleActivator == HTML related links
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderLink == HTML tabindex element ∧ 9.5 keyAccessLink == HTML
accesskey element ∧

10.5 nonAdjacentLinks == HTML printable characters as “[“ and “]” ∧

13.4 consistentNavigation == W3C Core Techniques for navigation ∧
13.5 navigationBar AND 13.6groupRelatedLinks == HTML map element.

ASPECT II. LSRELATEDLINKS
POINTCUT ALL INTERFACE WIDGETS WITH
CompositeInterfaceElement.SimpleActivator == HTML related links PROPERTY

ADVICE ADD ACCESSIBILITY CONDITION 13.1 identifyTarget == HTML clear link text
OR HTML tittle element.

 Level 2 – Aspect I and Aspect II in the UI model at UID

interaction <2>.

ASPECT I. TSLINK
POINTCUT ALL INTERFACE WIDGETS WITH SimpleActivator == HTML link
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

96 ADRIANA E. MARTÍN Adr

9.4 tabOrderLink == HTML tabindex element ∧ 9.5 keyAccessLink == HTML

accesskey element.

ASPECT II. LSLINK
POINTCUT ALL INTERFACE WIDGETS WITH SimpleActivator == HTML link PROPERTY

ADVICE ADD ACCESSIBILITY CONDITION 13.1 identifyTarget == HTML clear link text
OR HTML tittle element.

 Level 3 – Aspect I and Aspect II in the UI model at UID

interaction <3>.

ASPECT I. TSRELATEDCONTROLS
POINTCUT ALL INTERFACE WIDGETS WITH
CompositeInterfaceElement.IndefiniteVariable == HTML related controls
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderControl == HTML tabindex element ∧ 9.5 keyAccessControl ==

HTML accesskey element ∧

10.2 promptPosition == HTML for element ∧

10.4 defaultCharacters == HTML value element ∧

12.3 groupRelatedControls == HTML fieldset element AND HTML legend
element.

ASPECT II. LSRELATEDCONTROLS
POINTCUT ALL INTERFACE WIDGETS WITH
CompositeInterfaceElement.IndefiniteVariable == HTML related controls
PROPERTY ADVICE ADD ACCESSIBILITY CONDITION 12.4 explicitAssociation ==
HTML for element.

 Level 1, 2 and 3 – Aspect II in UI models at UID interactions

<1, 2, 3>.
ASPECT II. LSIMAGE
POINTCUT ALL INTERFACE WIDGETS WITH ElementExhibitor == HTML image
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

1.1 textEquivalent == HTML alt element OR HTML longdesc element ∧
2.1 infoWithoutColor AND 2.2 useContrastColor == W3C HTML, Core AND CSS
Techniques for color.

 Level 4 – Aspects in UI models at UID interaction <4>

(Optional). At this level, we proceed in the same way as for the

previous levels. We do not give details about this optional level,

because we consider it doesn‟t provide new knowledge about

injecting aspects in UI models.

 Level 1, 2, 3 and 4 – Aspect II in UI models at UID

interactions <1, 2, 3, 4>.

ASPECT II. LSSTYLESHEET
POINTCUT ALL INTERFACE WIDGETS WITH ElementStyling.Formating&Positioning ==
HTML stylesheet
PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS
3.3 useStyleSheetLayout&Presentation AND 3.4 useRelativeUnitsPositioning AND

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 97

6.1 makeAvailableWithoutStylesheet AND 14.3 useConsistentStylePages ==
W3C HTML, Core AND CSS Techniques for controlling layout and presentation.

These are high-level specifications to avoid “scattering” and/or

“tangling” symptoms caused by Accessibility concerns. The

pointcut/advice pair specifies that, for all HTML widget of a

specific kind (the pointcut specification), conditions satisfying

Accessibility requirements are added (the advice specification).

As a result of modelling these aspects (using SIGs prescriptions

for WCAG 1.0 checkpoints) and the addition of these aspects to

deal with the targeted interface widgets, Figures 5.8, 5.10 and

5.12 show the accessible implementations for the concrete user

interface models for the 3 (three) level-deep navigation case

study in Figure 5.1, in terms of “well formed” HTML like W3C

document [45].

103

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

3.3 useStyleSheetLayout&Presentation AND 3.4 useRelativeUnitsPositioning AND

6.1 makeAvailableWithoutStylesheet AND 14.3 useConsistentStylePages == W3C HTML, Core AND CSS

Techniques for controlling layout and presentation.

These are high-level specifications to avoid “scattering” and/or “tangling” symptoms

caused by Accessibility concerns. The pointcut/advice pair specifies that, for all HTML

widget of a specific kind (the pointcut specification), conditions satisfying Accessibility

requirements are added (the advice specification).

As a result of modelling these aspects (using SIGs prescriptions for WCAG 1.0

checkpoints) and the addition of these aspects to deal with the targeted interface

widgets, Figures 5.8, 5.10 and 5.12 show the accessible implementations for the

concrete user interface models for the 3 (three) level-deep navigation case study in

Figure 5.1, in terms of “well formed” HTML like W3C document [45].

Figure 5.15: The supporting tool within our Aspect-Oriented design process

Figure 5.15: The supporting tool within our Aspect-Oriented design process

5.3 A Supporting Tool for Our Approach

Today, no one can deny the significance of having a supporting tool.

The supporting tool and the kind of support given and features

covered by the tool is relevant, especially to a design proposal.

Related to this issue, our approach provides an initiative for a

supporting tool to assist developers in the implementation of cases,

and on the creation of their corresponding models by using reusable

98 ADRIANA E. MARTÍN Adr

components. Currently, as Figure 5.15 shows, the tool provides

assistance at Step 3 of the design process for applying the

Accessibility aspects (prescribed by the SIGs diagrams) to user

interface models --i.e. abstract and concrete user interface models.

To achieve with its main purpose, the tool must deal with the concepts

previously described, such as SIG diagrams, association tables and

abstract user interface models. Also, the tool should be at the user‟s

fingertips --i.e. the tool should be part of the users‟ development

environment. To solve the second issue, the tool was developed as an

Eclipse
44

 plug-in, integrating an XML
45

 editor in combination with the

necessary views to inform the user about the missing information

required for an accessible user interface --i.e. tags and attributes for a

well-formed and accessible markup, as we describe in Section 5.3.2,

and also to provide options to fix these missing information.

At this point, we introduce a brief explanation for the rational of

choosing XML as the markup language to support resources and their

future development as the tool evolves. Since XML allows writing our

own markup language, we are not restricted to a limited set of tags

defined by proprietary vendors. Custom tags are used to bring

meaning to the data being displayed and when stored this way, data

becomes extremely portable because it carry with their description

rather than their display. In this way, XML allows the display to be

extracted from the data and incorporated into a style sheet. Some of

the benefits of this important XML characteristic are: (i) changes to

display do not require futzing with the data, since a style sheet will

specify the display, (ii) searching the data is easy and efficient, since

tags provide the search engines with the intelligence they lack, (iii)

complex relationships like trees and inheritance can be communicated

and, (iv) the XML code is much more legible to a person coming into

the environment with no prior knowledge. Other XML properties are:

(i) it has stricter grammar rules than HTML that helps to develop well-

formed documents --e.g. forgetting a label in an XML document

makes the file unusable, (ii) it is a platform independent language and

widely distributed and, (iii) it was developed by the W3C that also

keeps its specification. The design goals of XML emphasize

simplicity, generality, and usability over the Internet.

Following we introduce the proposed tool, describing the basis of its

architecture, layers and classes, and also the resources and interfaces

44 The Eclipse Foundation at http://www.eclipse.org/
45 W3C Extensible Markup Language (XML) at http://www.w3.org/XML/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 99

through which developers interact for designing accessible user

interfaces.

5.3.1 Architecture’s Overview: Layers and Classes

Figure 5.16 shows the tool‟s architecture and its three main

layers, which are: Presentation, Object Storage and Core.

Figure 5.16: Main components of Our supporting tool

The Presentation layer represents the user interface for designers and

developers. The main classes in the Presentation layer are:

 AccessibilityTool class, which represents the XML editor.

 InterfaceParser class, which includes the functionality of

identifying and highlighting syntax errors.

 WCAConsole class, which provides functionality to show the

non-commitment to the WCAG in a structured way. The name of

this view stands for Web Content Accessibility Console, as a

general view to include all the Accessibility issues.

100 ADRIANA E. MARTÍN Adr

The Object Storage layer represents an abstraction for the different

underlying resource structures. Then, requests for information about

WCAG 1.0 checkpoints [45], present in the SIG structure or in the

tool database, are solved using the services of this layer. The main

classes for the Object Storage layer are:

 SIGHandler class, which provides the necessary functionality to

access the contained information in SIG structure file --i.e. the

checkpoints to commit for a specified tag present in the abstract

user interface.

 GuidelinesHandler class, which as the previous class, provides

the needed functionality to access the contained information in the

Guidelines file.

 CheckpointManager class, which provides the needed

functionality to access information of different checkpoints. This

class uses CheckpointManager to retrieve information about a

checkpoint from the database file and maintain a pool of

previously retrieved checkpoints.

 Checkpoint, CheckpointTag and SuggestedAttribute classes,

which represent the models for accessing information about the

element that each one represents. Specifically, SuggestedAttribute

represents an attribute that needs to be added (or deleted) in a tag -

-i.e. CheckpointTag, to meet a specific Checkpoint.

Finally, the Core layer includes those classes that play a central role

for the tool‟s functionality. Those classes are:

 CheckpointCommiter class, whose functionality includes the

analysis and determination of commitment of an HTML tag to the

WCAG recommendations. Also, it provides the functionality to

generate the element code --i.e. HTML tag or attribute, to fix the

non-commitment.

 InterfaceAnalizer class, which provides the functionality of

coordination for the analysis of the abstract user interface model.

This class has an aspect-based implementation done in AspectJ
46

,

which is the central feature that will allow the completion of the

analysis in a transparent manner --i.e. solving Accessibility

crosscutting problems by injecting aspects smoothly.

Particularly, in Figure 5.16, we focus on the Presentation layer, which

is isolated from the other layers and it is only related to the Core layer

by a dotted line, meaning that there is no straight interaction between

46 The AspectJ Development Tool at http://www.eclipse.org/ajdt/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 101

these two layers. Thus, the interaction between these two layers,

which includes reading and analyzing the abstract user interface model

under treatment, takes place in a transparent manner. This abstract

user interface model is an XML file, as we following see in Section

5.3.2. To reproduce this behavior, the tool uses the Observer pattern
47

and their classes Subject and Observer; each instance of the Subject

class maintains a list of instances of the Observer class that are

notified of the changes that occur in their respective instance of the

Subject class. By applying these design concepts, the AccessibilityTool

class plays the role of Subject, while the InterfaceAnalizer class plays

the role of Observer. Then, the aspects environment --i.e. the AspectJ

capabilities, manages the update notifications. Thus, when the

developer saves the XML document edited for the abstract user

interface model, this automatically triggers this Aspect-Oriented

functionality, which is not explicitly invoked by some element of the

Presentation layer. As shown in Figure 5.15, the consequence at Step

4.1 is the deliverable of a concrete HTML user interface model that

improves conformance to WCAG 1.0 Accessibility requirements.

5.3.2 Tool’s Resources: XML Schemas and Specifications

Figure 5.16 shows three XML files representing the input/output

resources of the tool, which are AbstractInterface, SIG, and

Guidelines. Following, we explain the relationship of these resources

with our design proposal and we also provide their respective XML

schema. Using examples, we show how to instantiate these XML

schema for specifying the XML files.

108

respective XML schema. Using examples, we show how to instantiate these XML

schema for specifying the XML files.

Figure 5.17: Model-driven principles applied to UI model development

The AbstractInterface XML file represents the abstract user interface model. As we

have explained in previous chapters, our design approach uses the model-driven

paradigm to develop high-level descriptions of the user interface structure and behavior

and, from these declarative models to obtain the end-user interface. Figure 5.17

illustrates these design concepts, which are implemented by WE methods [31], such as

OOHDM [36], which we have applied to develop our approach and supporting tool.

Figure 5.18 shows, the AbstractInterface XML schema48
 that we develop for

specifying machine-understandable abstract user interface models. The most important

tags of this XML schema are Interface, Component, Composite and Attribute.

Figure 5.18: XML schema for the Abstract User Interface model

The specification of documents based on this schema begins with an Interface element,

which can comprise Composite and Component elements. Also, a Composite element

48
 W3C XML Schema at http://www.w3.org/XML/Schema

 Level 1 Level 2 Level 3

 Concrete UI model

specification

 Abstract UI model

specification

Requirement

Model End-User Interface

Figure 5.17: Model-driven principles applied to UI model development

The AbstractInterface XML file represents the abstract user interface

model. As we have explained in previous chapters, our design

approach uses the model-driven paradigm to develop high-level

descriptions of the user interface structure and behavior and, from

47 Object-Oriented Design and Programming: Observer Pattern at

http://www.oodesign.com/observer-pattern.html

102 ADRIANA E. MARTÍN Adr

these declarative models to obtain the end-user interface. Figure 5.17

illustrates these design concepts, which are implemented by WE

methods [31], such as OOHDM [36], which we have applied to

develop our approach and supporting tool.

Figure 5.18 shows, the AbstractInterface XML schema
48

 that we

develop for specifying machine-understandable abstract user interface

models. The most important tags of this XML schema are Interface,

Component, Composite and Attribute.

Figure 5.18: XML schema for the Abstract User Interface model

The specification of documents based on this schema begins with an

Interface element, which can comprise Composite and Component

elements. Also, a Composite element can comprise Component

elements resulting in a hierarchy of elements. Each tag has a

modelling function within the AbstractInterface XML schema and its

own descriptive attributes, as follow:

 The Interface tag is the container for the structure of an abstract

user interface. The Interface tag has two descriptive attributes: (i)

name, which identifies the Interface element under develop and,

(ii) description, which states the purpose of the Interface element

and the Composite and Component elements that are comprised

within the Interface element.

 The Component tag represents the widgets that make up the

abstract user interface. The Component tag has three descriptive

attributes: (i) id, which identifies the Component element under

development, (ii) type, which assign to the Component element a

simple ontology widget and, (iii) maps-to, which links the

Component element to a simple HTML element --e.g. an HTML

48 W3C XML Schema at http://www.w3.org/XML/Schema

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 103

text field element which is usually codified by using an HTML

input element.

 The Composite tag is a container within an Interface element that

comprises Component elements. The Composite tag has two

descriptive attributes: (i) id, which identifies the Composite

element under development and, (ii) maps-to, which links the

Composite element to a composite HTML element --e.g. an

HTML related controls element which is usually codified by

using an HTML fieldset element.

 The Attribute tag represents the attributes that will be part of a

concrete HTML element conveyed by “map-to” attributes. To

complete the user interface design, the user adds some of these

attributes, while the tool suggests others to solve Accesibility

concerns.

Figure 5.19 shows the XML file specified applying the

AbstractInterface XML schema to part of the case study shown in

Figure 5.1 (c). As we can see in this specification, a Composite

element is included at line 4 to represent the student identification

FORM, which is a composite HTML element comprising two

Component elements. These two INPUTs are Component elements

included at lines 5 and 7 respectively, to represent the HTML text field

elements required for the student‟s name and password. The pair of

attributes type and maps-to allow the association between ontology

widget-HTML element --e.g. the Component elements at lines 5 and 7

are of the ontology type indefiniteVariable and maps-to HTML input

elements.

110

element --e.g. the Component elements at lines 5 and 7 are of the ontology type

indefiniteVariable and maps-to HTML input elements.

Figure 5.19: XML specification of an abstract user interface model

The SIG XML file represents the Softgoal Interdependency Graph (SIG) template for

Accessibility and, as shown in Figure 5.20, we develop the SIG XML schema for

specifying machine-understandable SIG diagrams. The most important tags of this SIG

XML schema are SIG, Node and Relation.

Figure 5.20: XML schema for the SIG template for Accessibility

The specification of documents based on this SIG XML schema begins with a SIG

element linked to a main Node element, which in turn can comprises one or more Node

elements through a Relation element. Thus, the Relation element allows a hierarchy

specification for a SIG element. Each tag has a modelling function within the SIG XML

schema and its own descriptive attributes, as follow:

1. <i nt er f ace name="student’s login" description="An interface for

the student’s login at the SIU Guarani registration system">

2. <component id="guaraniLogo" type="elementExhibitor" maps-to="IMG">

3. </ component >

4. <composi t e id="studentID" maps-to="FORM">

5. <component id="studentName" type="indefiniteVariable" maps-

to="INPUT">

6. </ component >

7. <component id="studentPassword" type="indefiniteVariable" maps-

to="INPUT">

8. </ component >

9. </ composi t e>

10. </ i nt er f ace>

Figure 5.19: XML specification of an abstract user interface model

104 ADRIANA E. MARTÍN Adr

The SIG XML file represents the Softgoal Interdependency Graph

(SIG) template for Accessibility and, as shown in Figure 5.20, we

develop the SIG XML schema for specifying machine-

understandable SIG diagrams. The most important tags of this SIG

XML schema are SIG, Node and Relation.

Figure 5.20: XML schema for the SIG template for Accessibility

The specification of documents based on this SIG XML schema

begins with a SIG element linked to a main Node element, which in

turn can comprises one or more Node elements through a Relation

element. Thus, the Relation element allows a hierarchy specification

for a SIG element. Each tag has a modelling function within the SIG

XML schema and its own descriptive attributes, as follow:

 The SIG tag is the container for the structure of a SIG diagram for

Accessibility. The SIG tag has two descriptive attributes: (i)

name, which identifies the SIG element under develop and, (ii)

description, which focus on the Accessibility softgoal of the SIG

element through its main Node element --i.e. which, as we already

explained in Section 5.2, is called the root light cloud of the SIG

diagram applying the SIG terminology.

 The Node tag represents a node, which, as we have already

explained in Section 5.2, is called a cloud of the SIG diagram

applying the SIG terminology. Thus, a Node element can

represent a root or a refined Accessibility softgoal –i.e. a white

cloud of the SIG diagram applying the SIG terminology, or an

operationalizing goal for the required checkpoints to be satisfied –

i.e. a dark cloud of the SIG diagram applying the SIG

terminology. The Node tag has two descriptive attributes: (i) type,

which specifies the type of a Node element depending on its

Accessibility softgoal and, (ii) topic, which describes the

Accessibility softgoal to be satisfied. While, the type of the Node

attribute can be one of the following:

- U-UI type, if the softgoal comprises Accessibility

requirements to be satisfied at an interaction level in the

UID diagram. We can use the U-UI type for a Node

element representing a root Accessibility softgoal in the

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 105

SIG diagram --e.g. in Figure 5.5, the U-UI root cloud for

the SIU Guarani home page.

- U-UIc type, if the softgoal represents Accessibility

requirements to be satisfied at a component level in the

UID interaction. We can use the U-UIc type for a Node

element representing a refined or an operationalizing goal

of the SIG diagram --i.e. in Figure 5.5, the U-UIc refined

cloud for the HTML related controls element representing

the student‟s identification form.

- Decomposition type, if the Node element represents an

Accessibility softgoal refinement by decomposition –i.e. in

Figure 5.5, the Decomposition cloud at the User Technology

Support branch for the HTML related controls element.

 Operationalizing type, if the Node element represents an

Accessibility operationalizing goal –i.e. in Figure 5.5, the

Operationalizing dark clouds representing Accessibility

requirements to be satisfied.

 The Relation tag applies for a parent Node element and its

children, allowing a hierarchy specification for a SIG element.

The Relation tag has only one descriptive attribute, type, which

specifies the type of the relationship established between the

parent Node element and its children. While, the type of the

Relation attribute can be one of the following:

- AND type, which represents the conjunction relationship,

where all the children representing Accessibility softgoals

must be satisfied to satisfy its parent Node element.

- OR type, which represents the disjunction relationship,

where satisfying some of the children representing

Accessibility softgoals satisfied the parent Node element.

- OPERATIONALIZING type, which represents the

Accessibility operationalizing goal of the parent Node element.

These operationalizing goals implement concrete Accessibility

requirements on which a validation can be performed to

establish conformance. For the instantiation of the Accessibility

requirements, our tool applies the WCAG 1.0 checkpoint [45],

but as we will explain in Chapter 6, our design proposal can

work also with the WCAG 2.0 success criteria [46].

 The NodeList tag is a container for a list of Node elements within

a Relation element. Therefore, the NodeList tag can comprise one

or more Node elements that are children of a parent Node element.

Figure 5.21 shows the XML file specified applying the SIG XML

schema to part of the XML specification of the abstract user interface

106 ADRIANA E. MARTÍN Adr

model in Figure 5.20. As shown at line 1, the softgoal to be satisfied --

i.e. the Accessibility concern of the SIG diagram, is set in order to

improve the Accessibility for all the students accessing the SIU

Guarani registration system. The root Node element at line 2 is of the

type U-UI because its Accessibility softgoal targets the UID

interaction representing the home page of the system. This root Node

element is decomposed into two refined Node elements at lines 5 and

19 by a Relation element of the type AND at line 3. These two Node

elements are of the type U-UIc because their Accessibility softgoals

target the IMG and FORM components at the UID interaction

representing the home page of the system. The softgoal refinement

process continues over the tree to develop the SIG diagram for

Accessibility, until specific operationalizing goals are met. For

example, at line 11 the Node element is of the type operationalizing

and in consequence instantiates the topic attribute with the checkpoint

1.1 to establish a concrete Accessibility requirement to be satisfied.

113

Accessibility, until specific operationalizing goals are met. For example, at line 11 the

Node element is of the type operationalizing and in consequence instantiates the topic

attribute with the checkpoint 1.1 to establish a concrete Accessibility requirement to be

satisfied.

Figure 5.21: XML specification of a SIG diagram for Accessibility

The Guidelines XML file represents the Accessibility guidelines from the WCAG 1.0

recommendations [45], which are stored accordingly to a structured language we

especially develop. As we have already seen in previous chapters, there is a gap

between the abstract knowledge transmitted by guidelines, which are expressed in

natural language, and their implementation using a markup language such as HTML,

1. <si g name="student’s login" description="SIG instantiation for

an accessible user interface for the student’s login at the SIU

Guarani registration system">

2. <node type=”U-UI” topic="HTML SIU Guarani Page">

3. <r el at i on type="AND">

4. <nodeLi st >

5. <node type="U-UIc" topic="IMG">

6. <r el at i on type="AND">

7. <nodeLi st >

8. <node type="decomposition" topic="USER LAYOUT SUPPORT">

9. <r el at i on type="OPERATIONALIZING">

10. <nodeLi st >

11. <node type="operationalizing" topic="1.1" / >

12. . . .

13. </ nodeLi st >

14. </ r el at i on>

15. </ node>

16. </ nodeLi st >

17. </ r eat i on>

18. </ node>

19. <node type=”U-UIc” topic=”FORM”>

20. <r el at i on type=”AND”>

21. <nodeLi st >

22. <node type=”decomposition” topic=”USER TECHNOLOGY LAYOUT”>

23. . . .

Figure 5.21: XML specification of a SIG diagram for Accessibility

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 107

The Guidelines XML file represents the Accessibility guidelines from

the WCAG 1.0 recommendations [45], which are stored accordingly

to a structured language we especially develop. As we have already

seen in previous chapters, there is a gap between the abstract

knowledge transmitted by guidelines, which are expressed in natural

language, and their implementation using a markup language such as

HTML, which is based on a technical specification
49

. Trying to reduce

this gap, we propose a structured language for guidelines, which we

called in Spanish LEP (Lenguaje de Estructura de Pautas). As Figure

5.22 shows, LEP is positioned between natural language and HTML,

simplifying not only the human comprehension of guidelines but also

their storage as structures specified by a XML schema. Therefore,

LEP is a specification language to adapt the structure of the

Accessibility guidelines from WCAG 1.0 recommendations and make

them possible to be managed by our tool.

114

which is based on a technical specification
49

. Trying to reduce this gap, we propose a

structured language for guidelines, which we called in Spanish LEP (Lenguaje de

Estructura de Pautas). As Figure 5.22 shows, LEP is positioned between natural

language and HTML, simplifying not only the human comprehension of guidelines but

also their storage as structures specified by a XML schema. Therefore, LEP is a

specification language to adapt the structure of the Accessibility guidelines from

WCAG 1.0 recommendations and make them possible to be managed by our tool.

Figure 5.22: Levels of expressiveness to Accessibility Guidelines comprehension

The W3C-WAI [50] has specified systematically the 14 (fourteen) guidelines of the

WCAG 1.0 recommendations (see the complete document at Appendix I). Each

guideline within the WCAG 1.0 recommendations [45] includes: (i) the guideline

number, (ii) the statement of the guideline (iii) the rationale behind the guideline and

some groups of users who benefit from it and, (iv) a list of checkpoint definitions. The

checkpoint definitions in each guideline explain how the guideline applies in typical

content development scenarios. Each checkpoint definition includes: (i) the checkpoint

number, (ii) the statement of the checkpoint, (iii) the priority of the checkpoint (the

priority levels are 1, 2, 3), (iv) optional informative notes, clarifying examples, and

cross references to related guidelines or checkpoints and, (v) a list of techniques where

implementations and examples of the checkpoint are discussed to facilitate the

checkpoint evaluation and conformance.

49
 W3C HTML 4 Specification at http://dev.w3.org/html5/spec/Overview.html

NATURAL LANGUAGE

STRUCTURED LANGUAGE

FOR GUIDELINES (LEP)

HTML MARKUP LANGUAGE

LEVEL OF

ABSTRACTION

GUIDELINES

COMPREHENSION

Medium

High

Low

Easy

Moderate

Complex

Figure 5.22: Levels of expressiveness to Accessibility Guidelines comprehension

The W3C-WAI [50] has specified systematically the 14 (fourteen)

guidelines of the WCAG 1.0 recommendations (see the complete

document at Appendix I). Each guideline within the WCAG 1.0

recommendations [45] includes: (i) the guideline number, (ii) the

statement of the guideline (iii) the rationale behind the guideline and

some groups of users who benefit from it and, (iv) a list of checkpoint

definitions. The checkpoint definitions in each guideline explain how

the guideline applies in typical content development scenarios. Each

checkpoint definition includes: (i) the checkpoint number, (ii) the

statement of the checkpoint, (iii) the priority of the checkpoint (the

49 W3C HTML 4 Specification at http://dev.w3.org/html5/spec/Overview.html

108 ADRIANA E. MARTÍN Adr

priority levels are 1, 2, 3), (iv) optional informative notes, clarifying

examples, and cross references to related guidelines or checkpoints

and, (v) a list of techniques where implementations and examples of

the checkpoint are discussed to facilitate the checkpoint evaluation

and conformance.

Now, to adapt this Accessibility information provided by WCAG 1.0

recommendations, we consider the formalization of those elements

that are relevant to the expressiveness of the stored structures for

providing the proper support required by the tool. Figure 5.23 shows

the Guidelines XML schema we develop based on LEP --i.e. our

supporting language, to allow the adaptation of the Accessibility

guidelines and to store their structures as machine-understandable

representations. The most important tags of the Guidelines XML

schema are Guidelines, Guideline, Checkpoint, Tag and Attribute.

115

Now, to adapt this Accessibility information provided by WCAG 1.0 recommendations,

we consider the formalization of those elements that are relevant to the expressiveness

of the stored structures for providing the proper support required by the tool. Figure

5.23 shows the Guidelines XML schema we develop based on LEP --i.e. our

supporting language, to allow the adaptation of the Accessibility guidelines and to store

their structures as machine-understandable representations. The most important tags of

the Guidelines XML schema are Guidelines, Guideline, Checkpoint, Tag and Attribute.

Figure 5.23: XML schema for the Accessibility guidelines from WCAG 1.0

As we can see in Figure 5.23, each Guideline element has a list of Checkpoint elements

and each Checkpoint element has a list of Tag elements --i.e. HTML tags, which are the

target of the Checkpoint element. For example, if a Checkpoint element establishes that

an HTML table element must summary its content --i.e. checkpoint 5.5 from WCAG

1.0, the Checkpoint element will include a Tag element for the HTML table element

and, the Tag element will include an Attribute element for the HTML summary element.

[GUIDELINE NUMBER] – [STATEMENT OF THE GUIDELINE]

[CHECKPOINT NUMBER] – [STATEMENT OF THE CHECKPOINT] – [PRIORITY OF THE CHECKPOINT]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

Provides an explanation of the checkpoint and its foundations to compliance. [SEMI-AUTOMATIC]
Requires the developer’s
manual intervention with
the tool’s support.

OR

[MANUAL]

Requires the developer’s
manual intervention
without the tool’s
support.

SAMPLE: Provides topics on how to implement the checkpoint using well-formed and accessible HTML.

SAMPLE IN LEP SPECIFICATION: Provides examples of how the checkpoints are specified in LEP.

Figure 5.24: Adapting the WCAG 1.0 checkpoints to the schema based on LEP

Figure 5.23: XML schema for the Accessibility guidelines from WCAG 1.0

As we can see in Figure 5.23, each Guideline element has a list of

Checkpoint elements and each Checkpoint element has a list of Tag

elements --i.e. HTML tags, which are the target of the Checkpoint

element. For example, if a Checkpoint element establishes that an

HTML table element must summary its content --i.e. checkpoint 5.5

from WCAG 1.0, the Checkpoint element will include a Tag element

for the HTML table element and, the Tag element will include an

Attribute element for the HTML summary element.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 109

115

Now, to adapt this Accessibility information provided by WCAG 1.0 recommendations,

we consider the formalization of those elements that are relevant to the expressiveness

of the stored structures for providing the proper support required by the tool. Figure

5.23 shows the Guidelines XML schema we develop based on LEP --i.e. our

supporting language, to allow the adaptation of the Accessibility guidelines and to store

their structures as machine-understandable representations. The most important tags of

the Guidelines XML schema are Guidelines, Guideline, Checkpoint, Tag and Attribute.

Figure 5.23: XML schema for the Accessibility guidelines from WCAG 1.0

As we can see in Figure 5.23, each Guideline element has a list of Checkpoint elements

and each Checkpoint element has a list of Tag elements --i.e. HTML tags, which are the

target of the Checkpoint element. For example, if a Checkpoint element establishes that

an HTML table element must summary its content --i.e. checkpoint 5.5 from WCAG

1.0, the Checkpoint element will include a Tag element for the HTML table element

and, the Tag element will include an Attribute element for the HTML summary element.

[GUIDELINE NUMBER] – [STATEMENT OF THE GUIDELINE]

[CHECKPOINT NUMBER] – [STATEMENT OF THE CHECKPOINT] – [PRIORITY OF THE CHECKPOINT]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

Provides an explanation of the checkpoint and its foundations to compliance. [SEMI-AUTOMATIC]
Requires the developer’s
manual intervention with
the tool’s support.

OR

[MANUAL]

Requires the developer’s
manual intervention
without the tool’s

support.

SAMPLE: Provides topics on how to implement the checkpoint using well-formed and accessible HTML.

SAMPLE IN LEP SPECIFICATION: Provides examples of how the checkpoints are specified in LEP.

Figure 5.24: Adapting the WCAG 1.0 checkpoints to the schema based on LEP

Figure 5.24: Adapting the WCAG 1.0 checkpoints to the schema based on LEP

The Guidelines XML schema based on LEP, convey information

through the following tags:

 The Guidelines, which allow beginning a new file and containing

its structure.

 The Guideline, which provides id, title and description of a specific

WCAG 1.0 guideline; also includes a list of its checkpoints.

116

The Guidelines XML schema based on LEP, convey information through the following

tags:

! The Guidelines, which allow beginning a new file and containing its structure.

! The Guideline, which provides id, title and description of a specific WCAG 1.0

guideline; also includes a list of its checkpoints.

GUIDELINE 1. PROVIDE EQUIVALENT ALTERNATIVES TO AUDITORY AND VISUAL CONTENT

CHECKPOINT 1.1 Provide a text equivalent for every non-text element (e.g., via "alt", "longdesc", or in element content).

This includes: images, graphical representations of text (including symbols), image map regions, animations (e.g.,
animated GIFs), applets and programmatic objects, ascii art, frames, scripts, images used as list bullets, spacers,
graphical buttons, sounds (played with or without user interaction), stand-alone audio files, audio tracks of video, and

video. [PRIORITY 1]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

· Use "alt" for the IMG, INPUT, and APPLET elements, or provide a text equivalent in the

content of the OBJECT and APPLET elements.

· For complex content (e.g., a chart) where the "alt" text does not provide a complete text

equivalent, provide an additional description using, for example, "longdesc" with IMG or
FRAME, a link inside an OBJECT element, or a description link.

· For image maps, either use the "alt" attribute with AREA, or use the MAP element with A
elements (and other text) as content.

[SEMI-AUTOMATIC]

SAMPLE:

<img src="guarani3w.jpg"

alt=""

longdesc="../descrip/decor.htm#guarani3w">

SAMPLE IN LEP SPECIFICATION:

<t agLi st >
<t ag id=”1” name=”IMG” type=”” condition-type=””>

<at t r i but es>
<at t r i but e name=”ALT” sample”img src="guarani3w.jpg" alt="*"
action=”add” type=”HTMLAttribute” condition=”mandatory”/ >

</ at t r i but es>
</ t ag>

</ t agLi st >

Figure 5.25: Adapting checkpoints 1.1 to the schema based on LEP

! The Checkpoint, which provides id, priority (1, 2, 3) and description of a specific

WCAG 1.0 checkpoint; also includes the appliance, which is “semi-automatic”

when the checkpoint requires the developer‟s manual intervention with the tool‟s

support or is “manual” when requires the developer‟s manual intervention without

the tool‟s support, and a list of the HTML tags concerning to the checkpoint.

! The Tag, which provides id, which is a number assigned for identification purpose

and is not related with WCAG 1.0 guidelines and checkpoints numbers, name (the

Figure 5.25: Adapting checkpoints 1.1 to the schema based on LEP

110 ADRIANA E. MARTÍN Adr

 The Checkpoint, which provides id, priority (1, 2, 3) and description of

a specific WCAG 1.0 checkpoint; also includes the appliance, which is

“semi-automatic” when the checkpoint requires the developer‟s manual

intervention with the tool‟s support or is “manual” when requires the

developer‟s manual intervention without the tool‟s support, and a list of

the HTML tags concerning to the checkpoint.

 The Tag, which provides id, which is a number assigned for

identification purpose and is not related with WCAG 1.0 guidelines

and checkpoints numbers, name (the HTML tag name), and

type/condition-type, which allow to specify the tag use case/s where

the guideline/checkpoint applies to the tag; also includes a list of its

attributes.

 The Attribute, which provides name (the HTML attribute or tag

name), action (add, modify, update or delete), type (HTML tag,

HTML attribute, text attributes, etc.), condition, which allows

specifying if the attribute is mandatory or optional, and sample,

which provides an application example.

The preservation of the WCAG philosophy was our goal when we

worked on the Accessibility guidelines seeking for a specification

manageable by the tool. Figure 5.24 summarizes the basis for

analyzing and adapting the WCAG 1.0 checkpoints to the Guidelines

XML schema based on LEP, while Figure 5.25 shows part of the

analysis and adaptation for checkpoint 1.1. For example, this

specification applies to satisfy the operationalizing softgoal in the

SIG diagram shown in Figure 5.21, line 11.

117

HTML tag name), and type/condition-type, which allow to specify the tag use case/s

where the guideline/checkpoint applies to the tag; also includes a list of its

attributes.

! The Attribute, which provides name (the HTML attribute or tag name), action (add,

modify, update or delete), type (HTML tag, HTML attribute, text attributes, etc.),

condition, which allows specifying if the attribute is mandatory or optional, and

sample, which provides an application example.

The preservation of the WCAG philosophy was our goal when we worked on the

Accessibility guidelines seeking for a specification manageable by the tool. Figure 5.24

summarizes the basis for analyzing and adapting the WCAG 1.0 checkpoints to the

Guidelines XML schema based on LEP, while Figure 5.25 shows part of the analysis

and adaptation for checkpoint 1.1. For example, this specification applies to satisfy the

operationalizing softgoal in the SIG diagram shown in Figure 5.21, line 11.

Figure 5.26: Basis of the Aspect-Oriented design cycle

5.3.3 Tool’s User Interfaces

From the user‟s point of view the interaction with the tool applies an “open-save-close”

cycle to the document under develop. The developer designs an abstract user interface

Modelling Abstract User Interface

Showing Accessibility Crosscutting
Concerns

Solving Accessibility Symptoms
Applying Aspects

Figure 5.26: Basis of the Aspect-Oriented design cycle

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 111

5.3.3 Tool’s User Interfaces

From the user‟s point of view the interaction with the tool applies an

“open-save-close” cycle to the document under develop. The

developer designs an abstract user interface for a given Web page by

editing and saving changes in an XML-based document. This mode

for developing documents is usually known as document-centered

work schema.

Figure 5.26 shows the basis of the Aspect-Oriented design cycle in the

interaction between the developer and our tool, where we can identify

the following steps:

 Modelling Abstract User Interface, the developer designs the

abstract user interface model choosing widgets from the abstract

widget ontology.

 Showing Accessibility Crosscutting Concerns, the tool shows

how the Accessibility concerns crosscut the interface widgets

selected to compose the user interface by the developer.

 Solving Accessibility Symptoms Applying Aspects, the

developer decides, based on the information provided by the tool

and the tool wraps, these Accessibility crosscutting concerns into

Accessibility aspects for their modularization and transparent

injection in the user interface under design.

118

for a given Web page by editing and saving changes in an XML-based document. This

mode for developing documents is usually known as document-centered work schema.

Figure 5.26 shows the basis of the Aspect-Oriented design cycle in the interaction

between the developer and our tool, where we can identify the following steps:

! Modelling Abstract User Interface, the developer designs the abstract user

interface model choosing widgets from the abstract widget ontology.

! Showing Accessibility Crosscutting Concerns, the tool shows how the

Accessibility concerns crosscut the interface widgets selected to compose the user

interface by the developer.

! Solving Accessibility Symptoms Applying Aspects, the developer decides, based

on the information provided by the tool and the tool wraps, these Accessibility

crosscutting concerns into Accessibility aspects for their modularization and

transparent injection in the user interface under design.

Figure 5.27: The components integrated in the Eclipse platform

For this reason, one of the main components of the tool‟s UI is the XMLEditor, which is

complemented with the view WCAConsole for showing, and allow solving the non-

Figure 5.27: The components integrated in the Eclipse platform

112 ADRIANA E. MARTÍN Adr

For this reason, one of the main components of the tool‟s UI is

the XMLEditor, which is complemented with the view

WCAConsole for showing, and allow solving the non-

commitment to the Accessibility guidelines. Figure 5.27 shows a

screenshot of these tool components integrated in the Eclipse

platform. The XMLEditor is shown in the upper box of screen in

Figure 5.27 and is used by the developer to edit the abstract user

interface model. When the developer saves the XML file and its

changes, the analysis of the structure and commitment to the

Accessibility guidelines is launched. The analysis result is

shown in a structured manner using the view WCAConsole,

which is shown in the lower box of the screen in Figure 5.27 and

also and also in Figure 5.28. The WCAConsole comprises two

other components. The one on the left side of the WCAConsole

is a tree view, which shows to the developer the missing

elements and/or errors in the implementation of elements for

every tag present in the abstract user interface. This tree view is

based on the SIG diagram for Accessibility and also shows

related tags that should be in an accessible a well-formed user

interface.

119

commitment to the Accessibility guidelines. Figure 5.27 shows a screenshot of these

tool components integrated in the Eclipse platform. The XMLEditor is shown in the

upper box of screen in Figure 5.27 and is used by the developer to edit the abstract user

interface model. When the developer saves the XML file and its changes, the analysis of

the structure and commitment to the Accessibility guidelines is launched. The analysis

result is shown in a structured manner using the view WCAConsole, which is shown in

the lower box of the screen in Figure 5.27 and also and also in Figure 5.28. The

WCAConsole comprises two other components. The one on the left side of the

WCAConsole is a tree view, which shows to the developer the missing elements and/or

errors in the implementation of elements for every tag present in the abstract user

interface. This tree view is based on the SIG diagram for Accessibility and also shows

related tags that should be in an accessible a well-formed user interface.

Figure 5.28: The WCAConsole component

The other component on the right side of the WCAConsole is a read-only description

view, which shows to the developer the following information, for each selected

element of the component on the left side:

! Attribute/Tag condition (Mandatory/Optional): Indicates to the developer

whether the selected element (tag or attribute), is mandatory, as shown in Figure

5.28, or optional, as shown in Figure 5.27, to satisfy the guideline/checkpoint.

! Action (Add/Remove): Indicates to the developer the action to perform with the

selected element (tag or attribute), if the element should be added (or must be added

if the condition is mandatory) to the abstract user interface or removed.

Figure 5.28: The WCAConsole component

The other component on the right side of the WCAConsole is a read-

only description view, which shows to the developer the following

information, for each selected element of the component on the left

side:

 Attribute/Tag condition (Mandatory/Optional): Indicates to the

developer whether the selected element (tag or attribute), is

mandatory, as shown in Figure 5.28, or optional, as shown in

Figure 5.27, to satisfy the guideline/checkpoint.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 113

 Action (Add/Remove): Indicates to the developer the action to

perform with the selected element (tag or attribute), if the element

should be added (or must be added if the condition is mandatory)

to the abstract user interface or removed.

 Sample usage: Provides to the developer an example on how to

properly use in HTML the element (tag or attribute).

 Correct code: Shows to the developer the necessary XML code to

insert the element (tag or attribute) in the abstract interface model

to commit to the Accessibility guidelines.

5.3.4 Some Insights about the Tool

Our supporting tool, which was conceived prioritizing early

Accessibility design, helps developers on the application of our

Aspect-Oriented proposal to create user interfaces. The tool provides

support at Step 3 of the design process to discover crosscutting

concerns and apply aspects from the knowledge captured about

Accessibility requirements in previous stages. Following the

approach‟s basis, the type of support and features covered by the tool

can be described as those that usually provide a Computer-Aided

Software Engineering (CASE) tool with model-driven properties. As a

CASE tool, our supporting tool results helpful in creating models of

cases. These models can be developed using reusable components and

this is possible because of two reasons. On one hand, the Accessibility

guidelines are quite independent from the Web application under

development, so there are many cases to which the same Accessibility

solution can be applied. Then, recording such recurrent situations

(e.g., using patterns) enables to reuse them, which contribute to reduce

the development effort when implementing our proposal. On the other

hand, the Accessibility aspects as we proposed, could be developed

once and be reused in different Web projects. For example, returning

to the student‟s login Web page example in Figure 5.1 (c),

establishing a logical tab order for accessing the HTML text field

elements for the student ID and password, is an Accessibility concern

that forces crosscutting in the implementation. The early identification

of this situation allows modelling a reusable Accessibility aspect that

is going to be in charge of providing an HTML tabindex element for

each text field element at the user‟s layout. Currently, since the

function for reusing components is not fully implemented, our tool

provides assistance for applying the Accessibility aspects (prescribed

by some predefined and stored SIG diagrams) to an abstract user

interface model loaded by the designer.

114 ADRIANA E. MARTÍN Adr

As visible disadvantages of our supporting tool, we believe it is

important to highlight the following issues: (i) although the part of the

approach that is supported by the tool is completely documented and

self-contained within a well-known Web engineering approach, its

comprehension requires a prior knowledge of the WCAG 1.0 (or 2.0)

guidelines and their specific terminology and also of the AOSD basis;

(ii) although the tool helps to transfer Accessibility concerns, the

engineering staff members should not be ruled by ad hoc practices, or

used to apply approaches, which have not incorporated the design and

documentation of the application under development as an standard

discipline. These two issues demand changes in the development

process that must be supported by the organizations.

As a final note, we provide our supporting tool aiming to help and, as

a consequence, encourage, Web development in designing user

interfaces with the Accessibility quality factor in mind.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 115

6. Comparing our proposal

6.1 Comparison Criteria

In order to compare and discuss the main characteristics of the

different approaches, we developed an Evaluation Framework, as

Figure 6.1 shows, which is divided into three main criteria:

Accessibility, Design and Other criteria. Each of these subjects deals

with different issues of the approaches in order to describe them and

analyze their strengths and weaknesses when developing an accessible

Web site and from a Web engineering perspective. Following, we

explain the meaning of the three main criteria through their set of

topics.

123

6. COMPARING OUR PROPOSAL

6.1 Comparison Criteria

In order to compare and discuss the main characteristics of the different approaches, we

developed an Evaluation Framework, as Figure 6.1 shows, which is divided into three

main criteria: Accessibility, Design and Other criteria. Each of these subjects deals with

different issues of the approaches in order to describe them and analyze their strengths

and weaknesses when developing an accessible Web site and from a Web engineering

perspective. Following, we explain the meaning of the three main criteria through their

set of topics.

Figure 6.1: Evaluation Framework

Accessibility criteria. We propose these criteria to assess the degree of commitment

with Accessibility by evaluating three topics: purpose, assessment and treatment.

We analyze the purpose earliest and in the context of the Accessibility criterion,

because the main focus of our evaluation is on the support given to Accessibility during

a Web site development process. Here we evaluate the degree of commitment to

Accessibility by considering only two possible scores --i.e. “medium” and “high”,

because we have already selected approaches with a certain relation with Web

Paradigm

 Main

Other

Technique

No

Yes -- Description Support

 Textual Medium
 High

Purpose
Statement Commitment

Textual Medium

High

Assessment

WCAG 1.0 or/and 2.0
Generic

Other
Not specified

Treatment
Description Completeness

Textual Partial

 Full

ACCESSIBILITY

CRITERIA

Model
Description Completeness

Textual Partial
 Full

DESIGN
CRITERIA

Supporting tool

No

Yes -- Characteristics

Background approaches
Name Purpose

 Textual

OTHER
CRITERIA

EVALUATION FRAMEWORK

within MDSD?

Figure 6.1: Evaluation Framework

Accessibility criteria. We propose these criteria to assess the degree of

commitment with Accessibility by evaluating three topics: purpose,

assessment and treatment.

We analyze the purpose earliest and in the context of the Accessibility

criterion, because the main focus of our evaluation is on the support

given to Accessibility during a Web site development process. Here

we evaluate the degree of commitment to Accessibility by considering

only two possible scores --i.e. “medium” and “high”, because we have

already selected approaches with a certain relation with Web

Accessibility. So a “low” score is out of range for the purpose of this

comparison. The differences between the “medium” and “high”

116 ADRIANA E. MARTÍN Adr

scores are set depending on whether Accessibility is the main concern

of the approach under consideration.

In addition, because the results can be broadly different depending on

the applied reference guidelines, the assessment topic aims to

establishing the Accessibility conformance criteria applied by the

approach. In this case the options are “WCAG” (1.0 or/and 2.0)
50

[48][49], “generic”, “other” or “not specified”. We are particularly

interested on those approaches applying WCAG guidelines because as

we said before it is a World-Wide reference normative. We choose

“generic” when the approach proposes to consider standards and

guidelines develop for several domains
51

, such as Accessibility for e-

Learning, software, PDF format, Java language, media and Web

content, but it does not apply directly to any particularly. An “other”

choice states that the approach can apply any “other” practice --e.g.

using an ontology, an heuristic, a markup framework, etc., to analyze

and treat Web page Accessibility at some stages of the development

process --e.g. analysis and design, implementation, etc., and to

generate an accessible Web page version. Finally, we decided to

include a "not specified" choice for those approaches whose focus is

not exclusively on Accessibility, so they do not need to model using a

particular Accessibility principle, standard or guideline.

Finally, the treatment topic refers to the way Accessibility is handled

by the approach. In addition it is important to highlight that many

other issues can be taken into account related to Web Accessibility

requirements, for example, the type of user disability --i.e. visual,

motor, cognitive, deaf, etc. For the treatment topic, we are particularly

interested in establishing how the approach deals with Accessibility

requirements during a Web site development. We believe that

Accessibility should be considered as part of the Web design process

instead of being evaluated by a post-design repair process. This is the

reason why at the analysis of this topic we are mainly interested on

establishing the degree of completeness with which the approach

handles Accessibility through the stages of the development process.

For the purpose of evaluating the treatment topic we provide a brief

description to highlight the stage (or stages) of the design process

where the approach concentrates the Accessibility efforts. Then we

evaluate the degree of completeness using only two possible scores --

i.e. “partial” and “full”, because we selected approaches with a certain

50 An Overview to WCAG Standards at http://www.w3.org/WAI/intro/wcag.php

51 A list of Accessibility resources at

http://www.accesstechnologiesgroup.com/Resources

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 117

relation with modelling Accessibility. So a “low” score is out of range

for the purpose of this comparison. We set a “full” score when the

approach allows the integration of Accessibility from an early stage,

and gives support through the whole Web design process; otherwise, a

“partial” score is set.

Design criteria. We propose these criteria to evaluate design issues of

the approaches under consideration by using three topics: paradigm,

model and techniques.

At the paradigm topic, firstly we are interested in identifying if a main

paradigm or some other combination of paradigms is used by the

approach to deal with Accessibility at design. Since our comparison is

framed within Web Engineering (WE) principles, we are also

interested in identifying if the approach follows a Model-Driven

Software Development (MDSD)
52

 as the core operational paradigm to

drive the development process. This kind of approaches are usually

classified as Model-Driven Web Engineering (MDWE) [31], since

they address the different concerns involved in the design and

development of a Web application using separate models (such as

content, navigation and presentation), and these models can then be

supported by model compilers that produce most of the application‟s

Web pages and logic right from the original models [31]. In

consequence, we propose “main”, “other” or “main/other within

MDSD” options for the paradigm topic. At this point it is important to

highlight that we are specially focusing on approaches using the

AOSD paradigm to deal with Accessibility at design, because we

believe that Aspect-Orientation allows managing Accessibility‟s

nature properly and as a first-class citizen.

The model topic refers to models provided by the approach to deal

with Accessibility, and in particular the user interface model, since it

is at the user‟s interface level where Accessibility barriers mostly

shown. We introduce in first place a brief description of the basis of

the model proposed by the approach. It is highly desirable that this

model fully maps the criteria assumed for treating Accessibility --i.e.

the treatment and model topics must be in concordance and reinforce

each other. For the purpose of the model topic evaluation, we focus on

52 As we already said, one of the best-known MDSD initiatives is called Model-

Driven Architecture (MDA) from OMG at http://www.omg.org/mda/One. The MDA

framework, together with its related acronym Model-Driven Development (MDD),

are registered trademark of the OMG, trademarks within the Unified Modelling

Language (UML) is central. Web Engineering is a specific domain in which MDSD

can be successfully applied.

118 ADRIANA E. MARTÍN Adr

what elements of an interface model are addressed by the approach

and how they are addressed taking into account the fact that these

elements are the media for holding an Accessible user-system

interaction. We suggest two possible scores, “partial” and “full”, to

define the degree of completeness with which the model specifies the

interface elements. We propose to analyze this degree of model

completeness from three perspectives: (i) the quantity and granularity

of the interface elements considered by the model; (ii) the level of

detail with which the model represents these elements; and further,

(iii) the consistency and continuity of a main paradigm with which the

approach defines and applies the model to deal with the Accessibility

of the interface elements. We attach a “full” score, when the model

provides the necessary mechanisms for dealing with the Accessibility

required by the interface elements. Otherwise, we set a “partial” score.

Again, a “low” score is out of range because of the selected

approaches for the purpose of the comparison.

Finally, we introduce the technique topic to consider the case in which

the approach proposes some proprietary technique to complement

itself. In the case of an affirmative answer, we provide a brief

description of the technique and its name --if any, and we also

evaluate this technique from the perspective of providing support to

enrich the design level and to reinforce the Accessibility treatment.

When the technique is specifically proposed to provide this kind of

support we score it as “high”; otherwise we use a “medium” score.

Other criteria. We propose these criteria to consider two additional

topics: background and supporting tool. We include the background

topic to consider the case in which the approach takes into account

and/or is based-on previous work. Since we believe that the

approach‟s basis is relevant to the approach‟s strength, for each

previous work we provide the name and the purpose within its

respective approach.

Finally, we introduce the supporting tool topic to indicate whether the

approach has an associated supporting tool or not. Also it is important

the kind of support given and features covered by the tool in order to

help to the development of an accessible Web application. Therefore,

if the approach provides a tool, some extra considerations about the

characteristics of the tool are also given here.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 119

Table 6.1: Accessibility Criteria applied to the six approaches

127

features covered by the tool in order to help to the development of an accessible Web

application. Therefore, if the approach provides a tool, some extra considerations about

the characteristics of the tool are also given here.

Table 6.1: Accessibility Criteria applied to the six approaches

ACCESSIBILITY CRITERIA

Approach Purpose Assessment Treatment

Statement Commitment Description Completeness

A1

Plessers et al.
[35]

Generate the semantic
annotations (authoring and

mobility Accessibility concepts)
for visually impaired users as a

by-product of the Web design
process.

High Other Applies its own developed
semantic annotations through a

transformation process at the
WSDM Implementation Design

phase.

Full

A2

Centeno et al.
[9]

Provide Accessibility support in a
Web composition process

managed by a design tool.

High WCAG

(1.0)

Uses a set of compliance rules,
which are based on the WCAG

1.0 checkpoints, to provide
accessible Web pages from the

composition of accessible HTML
snippets.

Partial

A3

Casteleyn et al.
[6][7][8]

Engineering Adaptation concerns
to extend an existing HERA-

based [23] Web application.

Medium Not specified Applies Aspect-Oriented
techniques to add Adaptation

concerns in a high-level
specification and separate from

the regular Web process.

Partial

A4

Zimmermann &
Vanderheiden

[53]

Introduce a process model for
Accessibility design that includes

well-known software engineering
tools.

High Generic Develops Personas to support
Accessibility requirements and

links them to Accessibility
guidelines and checkpoints for

conformance testing.!

Full

A5

Moreno et al.
[29][30]

Introduce AWA module that is a
domain-specific metamodel of the

Web Accessibility domain.

High WCAG

(1.0) (2.0)

Identifies meta-objects following

the standard WCAG.

Full

Ours

Martin et al.

Early engineering of Accessibility
concerns within a Web

development process.

High WCAG

(1.0) (2.0)

Models Accessibility as an
Aspect-Oriented concern moving

from abstract to concrete
architectural views.

Full

6.2 Discussion

At this point we are ready to evaluate the six approaches in accordance with the

characteristics defined by our Evaluation Framework. To make more understandable

our explanation, we refer to the approaches as A1 [35], A2 [9], A3 [6][7][8], A4 [53],

A5 [29][30] and Ours.

6.2 Discussion

At this point we are ready to evaluate the six approaches in

accordance with the characteristics defined by our Evaluation

Framework. To make more understandable our explanation, we refer

to the approaches as A1 [35], A2 [9], A3 [6][7][8], A4 [53], A5

[29][30] and Ours.

Accessibility criteria. Table 6.1 shows the resultant evaluation of the

Accessibility criteria applied to the six approaches. As we can see, A3

is the only one that has a “medium” score at the purpose commitment

column. We evaluate its grade of commitment to Accessibility with a

“medium” score because when analyzing its purpose statement, the

approach is not focused on the Accessibility concern, but on a wide

range of adaptation concerns --i.e. omnipresence, device

independence, personalization, localization, privacy, etc.

120 ADRIANA E. MARTÍN Adr

Accordingly to the fact stated above at the purpose commitment

column, we set A3 assessment column as “not specified”, because the

intent of this approach does not make any reference to a particularly

Accessibility conformance criteria. On the other hand and since

Accessibility is the main intent of A1, A2, A4, A5 and Ours, we set all

the approaches‟ purpose commitment with a “high” score. A2 applies

the W3C WCAG 1.0 for Accessibility conformance, and for that

reason we set the approach‟s assessment column with the “WCAG

1.0” option. We set A1 assessment column with “other” because this

approach applies its own practice to assess Accessibility instead of

using a World-Wide reference guideline. A1 uses the DANTE tool

[52] to extract visual objects from the page that support navigation.

DANTE annotates the objects based on the Web Authoring for

Accessibility (WAfA)
53

 travel ontology. We set A4 assessment

column with “generic” because this approach focuses on accessible

design by using scenarios and guidelines, where “guidelines” means

Accessibility standards or guidelines that contain interoperability

techniques and heuristics for accessible design [52]. Finally, we set

A5 and Ours assessment column with “WCAG 1.0 and 2.0”. Both

approaches originally were conceived to work with WCAG 1.0

checkpoints, but in [29], A5 shows how the proposal can work with

WCAG 2.0. Also, we have already finished the migration of Ours to

work with the W3C WCAG 2.0 success criteria.

At the treatment completeness column, A2 and A3 are the only ones

that have “partial” scores but for different reasons. A2 aims to provide

an accessible Web page (or site) during a Web composition process

that is managed by an authoring tool. We set a “partial” score at the

treatment completeness column because the main focus of A2 is not

placed on design issues but on evaluation to guarantee that no kind of

new Accessibility barriers can be introduced during a Web

composition process. On the other hand, A3 completely illustrates

how adaptation concerns can be added to an existing Hera-based Web

application at the design level using Aspect-Oriented techniques.

Despite to this fact, we also set a “partial” score for A3 at the

treatment completeness column because the approach is not focused

on adding Accessibility concerns. For A1, A4, A5 and Ours, the

treatment completeness column is set with “full” scores and this is

because these methods allow in different ways, early integration of the

Accessibility in the design process. For example, A1 takes the WSDM

design models as inputs --i.e. conceptual, navigation and

53 Web Authoring for Accessibility (WAfA) at

http://augmented.man.ac.uk/ontologies/wafa.owl

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 121

implementation, and generates a set of annotations to improve

Accessibility for visually impaired users. A4 defines a new way to

take advantage of use cases, scenarios, test cases, personas, guidelines

and checkpoints for Accessibility purposes during a design project

employing a use case driven methodology. A5 follows the standard

WCAG to model concepts and their relationships for AWA-

Metamodel at the Compute Independent Model (CIM) of the MDA

framework. Finally, Ours focuses on Accessibility requirements early

taking advantages of applying AOSD principles to handle them

properly as concerns during a Web development process.

Design criteria. Table 6.2 shows the resultant evaluation of the

Design criteria. As we can see, we set the paradigm column for A1,

A3, A5 and Ours as “main within MDSD” because these approaches

show commitment and are fully identified with a particular paradigm

to deal with Accessibility at design within different MDWE

approaches. For example, at A1 the DANTE [52] annotation process

uses a rule-based mapping model as a foundation paradigm to drive

the authoring and mobility Accessibility annotations within WSDM

[13]. A5 applies the MDA paradigm to define a domain-specific

metamodel for Accessibility within the OOWS Navigational Model

[18]. A3 and Ours apply consistently the AOSD paradigm when

focusing on solving adaptation and Accessibility concerns,

respectively. A3 adds Aspect-Oriented adaptation engineering to

elements of the HERA Application Model [23], while Ours exploits

the modelling capabilities of OOHDM Interface Models [36] to inject

Aspect-Oriented Accessibility concerns identified at requirements

elicitation. In the cases of A2 and A4, we set their paradigm column

as “other” because they implement more than one paradigm to deal

with Accessibility. A2 applies a rule-based model as a foundation

paradigm to drive the conditions under an accessible composition

process takes place. But also, A2 proposes the Service-Oriented

paradigm when using the Web Composition Service Linking System

(WSLS) [20] as the authoring tool which enables the process of

generating new and accessible Web content. Finally, A4 defines itself

like tailored for design project employing a use-case driven

methodology, so we say that A4 follows the Objet-Oriented paradigm

but combined with a user profile-based technique called “Personas”

[53].

122 ADRIANA E. MARTÍN Adr

Table 6.2: Design Criteria applied to the six approaches

130

one paradigm to deal with Accessibility. A2 applies a rule-based model as a foundation

paradigm to drive the conditions under an accessible composition process takes place.

But also, A2 proposes the Service-Oriented paradigm when using the Web Composition

Service Linking System (WSLS) [20] as the authoring tool which enables the process of

generating new and accessible Web content. Finally, A4 defines itself like tailored for

design project employing a use-case driven methodology, so we say that A4 follows the

Objet-Oriented paradigm but combined with a user profile-based technique called

“Personas” [53].

Table 6.2: Design Criteria applied to the six approaches

DESIGN CRITERIA

Approach Paradigm Model Technique

Description Completeness Description / Name Support

A1

Plessers et al.

[35]

Main
Within MDSD

Indentifies the interface elements,

which may represent Accessibility
barriers for visually impaired users, and

annotates these interface elements
with the semantic annotations.

Full Yes

Mapping rules established from

the relationship between the

concepts in the WSDM ontology
and DANTE’s WAfA ontology.

High

A2

Centeno et al.
[9]

Other Works on compositions, which are
made of accessible chunks of HTML

code, and evaluates these
compositions with the compliance

rules.

Partial Yes

Compliance rules established for

Web compositions and formalized

with W3C standards (XPath and
XQuery expressions).

Medium

A3

Casteleyn et al.
[6][7][8]

Main
within MDSD

Selects the elements (units, attributes,
relationships, etc.) from an HERA

Application Model and injects these
elements with the required Adaptation
concerns.

Partial Yes

A domain specific language,

baptized SEAL, which is custom-
made to provide Adaptation

support (through a set of
constructs for aspects

specification) in the context of
Hera-S.

Medium

A4

Zimmermann &
Vanderheiden
[53]

Other Models primary and secondary
Personas to drive the user interface

design for each use case.

Partial No

A5

Moreno et al.
[29][30]

Main
within MDSD

Defines several constructs in UML
metamodel (MOF) to support the

abstraction of Web Accessibility
concepts based on WCAG standards.

Full No

Ours

Martin et al.

Main
within MDSD

Identifies Accessibility concerns in Web
application requirements and maps

them to widgets from abstract and
concrete interface models using

Aspect-Orientation to meet the WCAG
standards.

Full Yes

Three conceptual tools:

! UID with Integration Points,
! Association Tables, and

! SIG template for Accessibility
that working together manage

Accessibility concerns in an
Aspect-Oriented manner.

High

Albeit for different reasons, A2, A3 and A4 have “partial” scores at

the model completeness column. A2 is focused on formalizing the

Accessibility conditions to be met by a Web composition of prewritten

accessible chunks of Web pages, usually called “snippets”. The

approach proposes a set of Accessibility extra conditions for a range

of possible Web compositions given a pair of accessible HTML

snippets. We set a “partial” score for A2 at the model completeness

column because the approach works over coarse-grained interface

elements (existing accessible chunks composed of fine-grained

elements as the raw material of the Web composition process) and, as

a consequence, A2 focus its design effort on the evaluation over these

coarse-grained elements. Also, it is a fact that the Service-Oriented

paradigm is not inherent of the basic model (which is rule-based) but

of the WSLS [20] proposed by the approach as the Accessibility

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 123

enabled authoring tool for the model’s implementation. A3 proposes a

general model to extend an application with new functionality,

considered as adaptation concerns, without having to redesign the

entire application. We set a “partial” score for A3 at the model

completeness column because the approach is focused on showing

how the transformations required by an adaption concern can be

specified independently from the original presentation level of a Web

application using a generic transcoding tool. Therefore the model is

not concerned on a detailed representation of the interface elements

for an accessible design, but on showing how high-level support for

adaptation specifications can be realized applying Aspect-Oriented

techniques. A4 proposes a method that draws from the work on

Accessibility guidelines and combines them with existing Object-

Oriented techniques in software development. The approach

encourages the early capture of Accessibility requirements using use

cases, personas, scenarios and guidelines, and promotes

manual/automatic testing based on test cases and Accessibility

checkpoints (derived from guidelines) and expert reviews. In this case

we set a “partial” score for A4 at the model completeness column

because the proposed model does not represent these requirements

into accessible interface elements at later stages of design. On the

other hand, we set “full” scores for A1, A4 and Ours at the model

completeness column. We set a “full” score for A1 at the model

completeness column because the approach uses the DANTE‟s WAfA

ontology to manage Accessibility of elementary interface elements for

visually impaired users. The proposed model for the transformation

process consists of two steps based on “authoring” and “mobility”

concepts and takes also into account the context of the journey --i.e.

the purpose of the user‟s navigation. The conceptual knowledge

captured at the WSDM design process is exploited by the model

during the transformation because it provides mapping rules between

modelling concepts in the WSDM ontology and the authoring

concepts form WAfA ontology. A4 defines several meta-objects in

MOF
54

 to support the abstraction of Web Accessibility concepts and

their relationships based on WCAG standards. Although A4 focuses

its efforts on the meta-model, we set a “full” score for A4 model

completeness column because the concepts provided by the approach

can become concrete interface elements at the Platform Specific

Model (PSM) for the MDA development process. Finally, we set a

“full” score for Ours at the model completeness column because from

the very beginning of the development process the approach focuses

54 OMG-MOF The Model-Object Facility at http://www.omg.org/mof/

124 ADRIANA E. MARTÍN Adr

on identifying Accessibility requirements and managing them as

AOSD concerns, consistently through abstract and concrete widgets of

the OOHDM interface models. As a result of this proposal, the

approach adds Aspect-Oriented Accessibility concerns early since

requirement elicitation are weaved together using specialized

techniques (for a thorough discussion on AOSD principles see

[2][28]).

At the techniques support column, A4 and A5 do not propose any

proprietary technique to complement themselves, since they apply

existing design tools of software engineering and concepts from the

MDA framework, respectively. As we can see at Table 6.2, A2 and

A3 have “partial” scores at the technique support column. A2 offers a

rule-based technique for a safe compound process delivering an

accessible Web page from WCAG point of view. A2 has a “medium”

score at the technique support column because the proposed technique

is close to implementation and not focused on giving support to

Accessibility design issues. Although the fact that A3 provides a

domain specific language called SEAL
55

, we set a “medium” score for

A3 at the technique support column because the purpose of this

proprietary custom-made language is to enrich the design level for

adaptation support and not to reinforce the Accessibility treatment.

A1 and Ours have “high” scores at the technique support column. A1

provides mapping rules between the concepts in the WSDM ontology

and DANTE‟s WAfA ontology which enable enriching the design

level to reinforce the Accessibility propose by taking the WSDM

conceptual models as input and annotating them with authoring and

mobility concepts. Finally, Ours provides the User-Interaction

Diagram (UID) with Integration Points and the Softgoal

Interdependency Graph (SIG) template for Accessibility linked by the

Association Tables. We set a “high” score for Ours at the technique

support column because these conceptual tools where specially

developed to provide Aspect-Oriented support at the design level for

Accessibility purpose.

55 SEmantics-based Aspect-Oriented Adaptation Language (SEAL) at

http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 125

Table 6.3: Other Criteria applied to the six approaches

133

treatment. A1 and Ours have “high” scores at the technique support column. A1

provides mapping rules between the concepts in the WSDM ontology and DANTE‟s

WAfA ontology which enable enriching the design level to reinforce the Accessibility

propose by taking the WSDM conceptual models as input and annotating them with

authoring and mobility concepts. Finally, Ours provides the User-Interaction Diagram

(UID) with Integration Points and the Softgoal Interdependency Graph (SIG) template

for Accessibility linked by the Association Tables. We set a “high” score for Ours at the

technique support column because these conceptual tools where specially developed to

provide Aspect-Oriented support at the design level for Accessibility purpose.

Table 6.3: Other Criteria applied to the six approaches

OTHER CRITERIA

Approach Background approaches Supporting tool

Name Purpose

A1

Plessers et al.
[35]

DANTE
 [52]

Used to perform the semantic
annotation process of Web

pages.

Yes

Implements WSDM-DANTE mapping

rules to automatically generate

semantic annotations.

A2

Centeno et al.

[9]

WSLS: A Service-based System for

Reuse-Oriented Web engineering
 [20]

Used as the Accessibility

enabled authoring tool.

Yes

Shows for some selected rules (based

on automatable WCAG checkpoints)

how WSLS can afford compliance to
these rules.

A3

Casteleyn et al.
[6][7][8]

Component-based AMACONT
framework

 [15][16] [32]

Used as the first
implementation of a

presentation engine for
HERA-S.

Yes

Integrates SEAL in HydraGen system,

which is the latest implementation

generation tool for Hera-S.

A4

Zimmermann &

Vanderheiden
[53]

Use Cases and Personas Applied to model user profiles

linked to their Accessibility
requirements.

No

A5

Moreno et al.

[29][30]

MDA framework Applied to support AWA for

MDA development process.
Yes

Provides AWA-MetamodelEditor for

graphical support to AWA-Metamodel.

Ours

Martin et al.

User Interaction Diagram (UID) for
modelling user-system interaction

[43]

Softgoal Interdependency Graph (SIG)

for modelling non-functional
requirements (NFRs)

[11][12]

Extended for supporting
Accessibility requirements.

Yes

Provides a supporting tool to discover

crosscutting concerns and apply

aspects at the Abstract User Interface
model.

Other criteria. Table 6.3 shows the resultant evaluation of the Other criteria. At the

background approach column, we can see that all the proposals have previous works

Other criteria. Table 6.3 shows the resultant evaluation of the Other

criteria. At the background approach column, we can see that all the

proposals have previous works and these works are fundamental

pieces to the operation of the approaches. A1 founds its work on

DANTE‟s WAfA ontology [52] that is applied to enhance the mobility

of visually impaired Web users by providing screen readers with extra

knowledge to better facilitate the audio presentation of the Web page.

A2 uses the WSLS system [20], which is a component-based system

applying the service-oriented paradigm to compound, discover and

reuse services. The GAC transcoder [16] provided by the ANACONT

framework [15] is foundational to A3, since this approach exploits a

transcoding tool for making Web application adaptive. A4 applies

uses cases and scenarios extended with the “personas” profiling

126 ADRIANA E. MARTÍN Adr

technique for describing Accessibility interfaces‟ needs and other

usage requirements of users with disabilities.

As we can see in Table 6.3, A4 is the only one that has “No” at the

supporting tool column, while A1, A2, A3, A5 and Ours offer at least

some kind of executable implementation of their proposals. A1

presented a combined approach where the mapping rules between the

WSDM [13] concepts and the DANTE [52] concepts are

implemented. This implementation allows about +/- 70% of the

DANTE concepts annotations to be generated automatically without

any extra effort from designers. A2 extends the WSLS system [20] to

afford compliance to a set of selected rules that guarantee accessible

Web composition. The tool seems to give already some promising

results since the fact that the WSLS framework is implemented on the

top of the .NET framework and gives support to XML technologies.

A3 offers a latest implementation of the approach generation tool for

HERA-S that integrates SEAL in HydraGen engine
56

 (an

implementation generation tool for Hera-S developed externally by

the University of Eindhoven), to show their adaptation engineering

perspective applying pointcuts and advices expressions. A5 provides

the AWA-MetamodelEditor for graphical metamodel support that is

based on the Graphical Modelling Framework (GMF)
57

. Finally, Ours

provides a tool at Stage 3 of the proposed development process that

helps designer and developers to produce accessible interfaces by

moving from abstract to concrete architectural views using Aspect-

Orientation --i.e. discovering crosscutting concerns and applying

aspects at the abstract user interface model from knowledge about

Accessibility obtained in previous stages. Related to Ours, it is also

important to highlight that as we have already indicated in Chapter 4

and later, we have showed with the case study in Chapter 5, there are

cases in which we can develop artifacts once and then reused them, as

we required. The reuse capabilities of Ours is a main advantage,

because propitiates the supporting tool to have a design artifacts

repository. For example, and as we have showed in Figures 5.3, 5.4

and 5.5, the Accessibility softgoal for the HTML image element can

be modeled once and then applied for the SIG instantiation any time is

required.

56 Hydragen: An implementation of Hera-S at

http://wwwis.win.tue.nl/~ksluijs/material/Singh-Master-Thesis-2007.pdf

57 The Eclipse Graphical Modelling Project (GMP) at

http://www.eclipse.org/modelling/gmp/

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 127

135

crosscutting concerns and applying aspects at the abstract user interface model from

knowledge about Accessibility obtained in previous stages. Related to Ours, it is also

important to highlight that as we have already indicated in Chapter 4 and later, we have

showed with the case study in Chapter 5, there are cases in which we can develop

artifacts once and then reused them, as we required. The reuse capabilities of Ours is a

main advantage, because propitiates the supporting tool to have a design artifacts

repository. For example, and as we have showed in Figures 5.3, 5.4 and 5.5, the

Accessibility softgoal for the HTML image element can be modeled once and then

applied for the SIG instantiation any time is required.

Figure 6.2: Scoring the six approaches for the Accessibility Criteria

To summarize the results of the six approaches‟ comparison, we score the topics related

to the Accessibility and Design criteria from 0 to 5, as follows: (i) the scores “high” and

“full” match to 5, while the scores “medium” and “partial” match to 2.5; (ii) at the

assessment topic, the option “WCAG 1.0 and 2.0” matches to 5, the option “WCAG

1.0” matches to 4, the option “generic” and “other” match to 2.5, and the option “not

specified” matches to 0; and finally (iii) at the paradigm topic, the option “main within

MDSD” matches to 5, while the option “other” matches to 2.5. Figures 6.2 and 6.3

show the scoring of the six approaches for the Accessibility and Design criteria,

respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Treatment (Completeness)

Assessment

Purpose (Commitment)

Figure 6.2: Scoring the six approaches for the Accessibility Criteria

To summarize the results of the six approaches‟ comparison, we score

the topics related to the Accessibility and Design criteria from 0 to 5,

as follows: (i) the scores “high” and “full” match to 5, while the scores

“medium” and “partial” match to 2.5; (ii) at the assessment topic, the

option “WCAG 1.0 and 2.0” matches to 5, the option “WCAG 1.0”

matches to 4, the option “generic” and “other” match to 2.5, and the

option “not specified” matches to 0; and finally (iii) at the paradigm

topic, the option “main within MDSD” matches to 5, while the option

“other” matches to 2.5. Figures 6.2 and 6.3 show the scoring of the six

approaches for the Accessibility and Design criteria, respectively.

136

Figure 6.3: Scoring the six approaches for the Design Criteria

To complete this summary, Figure 6.4 shows the average of scores for the six

approaches by Criteria. We should note that for the Other Criteria, we score only the

supporting tool topic by simply matching the options “yes” and “no” to 5 and 0,

respectively.

Figure 6.4: The average of scores for the six approaches by Criteria

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Technique (Support)

Model (Completeness)

Paradigm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Accessibility Criteria

Design Criteria

Other Criteria

Figure 6.3: Scoring the six approaches for the Design Criteria

128 ADRIANA E. MARTÍN Adr

To complete this summary, Figure 6.4 shows the average of scores for

the six approaches by Criteria. We should note that for the Other

Criteria, we score only the supporting tool topic by simply matching

the options “yes” and “no” to 5 and 0, respectively.

136

Figure 6.3: Scoring the six approaches for the Design Criteria

To complete this summary, Figure 6.4 shows the average of scores for the six

approaches by Criteria. We should note that for the Other Criteria, we score only the

supporting tool topic by simply matching the options “yes” and “no” to 5 and 0,

respectively.

Figure 6.4: The average of scores for the six approaches by Criteria

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Technique (Support)

Model (Completeness)

Paradigm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Accessibility Criteria

Design Criteria

Other Criteria

Figure 6.4: The average of scores for the six approaches by Criteria

6.3 Focusing on Ours

We dedicate this Section to provide some extra discussion about our

proposal. As we already said, Ours allows developers to produce

accessible interfaces by moving from abstract to concrete architectural

views using Aspect-Orientation. This is a main advantage, since

allows developers to keep in mind a clear picture of how these

architectural views relate each other during the development process,

while preserving their own properties: (i) the abstract view ensures

clean designs --i.e. free of crosscutting symptoms, which are separated

and modeled as aspects for their modularization; while (ii) the

concrete view provides the implementation of these designs, but as a

consequence of the weaving process that takes place at the code level.

Thus, Ours uses Aspect-Orientation to propose a smooth and open

transition between models (abstract and concrete views), since this

transition allows the independence of the way clean designs will be

implemented into accessible code.

At this point, we revisit the argument, which we stated when applying

Ours in Section 5.2, to the case study in Section 5.1, about alternatives

in the navigation path. As Figure 5.1 (d) shows, the case study offers

the student two pages to help to the login process in Figure 5.1 (c).

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 129

We highlighted that browsing these pages is optional and therefore, if

the student follows these help links, his/her decision will produce a

different navigation path. As we said before, we focus on the UI

models because, undoubtedly, is at the UI where Accessibility barrier

finally show, but notice that this is one of those cases in which

navigational issues can affect Accessibility. This is the reason why, to

improve the user‟s experience when browsing to achieve the desired

functionality, we have to consider the UI designs for each alternative

in the navigation path we have defined as important for the task‟s

functionality. This means that if we provide the user with alternatives

in the navigation path, they must be explored and modeled before

properly, because they can be relevant to Accessibility and therefore

to the success of the user‟s task. This is an advantage of Ours, because

although Ours is focused on UI models, also allows to explore

navigational models to avoid unexplored optional browsing that can

lead to user interfaces which were not considered initially.

As Figure 6.5 shows, this is possible mainly because of two reasons.

In first place, the UID is the conceptual tool used by OOHDM to state

transformations between Web application requirements (use case

model) and the conceptual, navigational and interface models. As

Figure 6.5 shows, this is the same principle that Ours propitiates

between Web applications requirements and accessible UI models.

Ours uses two conceptual tools (the UID with integration points and

SIG template for Accessibility), with which the interaction between

OOHDM models links and reinforces Accessibility needs.

138

As Figure 6.5 shows, this is possible mainly because of two reasons. In first place, the

UID is the conceptual tool used by OOHDM to state transformations between Web

application requirements (use case model) and the conceptual, navigational and

interface models. As Figure 6.5 shows, this is the same principle that Ours propitiates

between Web applications requirements and accessible UI models. Ours uses two

conceptual tools (the UID with integration points and SIG template for Accessibility),

with which the interaction between OOHDM models links and reinforces Accessibility

needs.

Figure 6.5: Ours within MDSD paradigm

In second place, since Ours is conceived within the MDSD paradigm, models are

related to each other and as a consequence of an iterative and incremental development

process. Thus, Ours allows: (i) going back from UI models to navigational models to

look for alternatives in the navigation path, (ii) assessing the need and relevance of

these alternatives to the functionality under develop, and (iii) going forward from

navigational models to UI models to check the Accessibility of the UI related to these

alternatives.

6.3.1 Migrating to WCAG 2.0

We have already given part of our motivation for applying WCAG 1.0 [45] instead of

WCAG 2.0 [46] in Section 3.6.

In first place, and to avoid linking the selection of the WCAG 1.0 only to issues related

to the adoption rate in the world, it seems appropriate to highlight that as we are

concerned with Accessibility, we have a few quibbles about the decision made on the

usefulness of certain checkpoints in the WCAG 2.0 document.

3

WEB APPLICATION REQUIREMENTS

CONCEPTUAL DESIGN NAVIGATIONAL DESIGN

USER INTERFACE DESIGN

ABSTRACT MODEL CONCRETE MODEL

UID with integration points + SIG template for Accessibility

1

2

Figure 6.5: Ours within MDSD paradigm

In second place, since Ours is conceived within the MDSD paradigm,

models are related to each other and as a consequence of an iterative

and incremental development process. Thus, Ours allows: (i) going

back from UI models to navigational models to look for alternatives in

the navigation path, (ii) assessing the need and relevance of these

130 ADRIANA E. MARTÍN Adr

alternatives to the functionality under develop, and (iii) going forward

from navigational models to UI models to check the Accessibility of

the UI related to these alternatives.

6.3.1 Migrating to WCAG 2.0

We have already given part of our motivation for applying WCAG 1.0

[45] instead of WCAG 2.0 [46] in Section 3.6.

In first place, and to avoid linking the selection of the WCAG 1.0 only

to issues related to the adoption rate in the world, it seems appropriate

to highlight that as we are concerned with Accessibility, we have a

few quibbles about the decision made on the usefulness of certain

checkpoints in the WCAG 2.0 document.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 131

Table 6.1: Association Table for the HTML Control Elements Group using WCAG

2.0

For example, WCAG 1.0 provides the checkpoint 12.3 which

basically states that the information should be grouped to divide large

blocks of information into more manageable groups and this is

especially true for the HTML related controls element (a set of

HTML text field elements). The WCAG 2.0 version from January

2006 was also clear on this point, providing the criterion 4.1.3, which

basically says that the label of each user interface control in the Web

content that accepts input from the user can be programmatically

determined and explicitly associated with the control. Unfortunately,

132 ADRIANA E. MARTÍN Adr

success criterion 4.1.3 has been removed and WCAG 2.0 relies on

success criterion 1.3.1 to cover the labeling of related controls, which

is not explicit enough to safeguard the absence of this important

accessibility barrier. In this sense, we fully agree with the statement

about the WCAG 2.0 on [41]: “not having any success criteria

specifically dealing with forms is certainly a mistake”.

However, aware that the new guidelines and the move to

technological neutrality are undoubtedly good, we don‟t see major

inconveniences to upgrade our approach to WCAG 2.0 when

necessary. As we discussed before, our approach is based on the use

of UIDs with integration points and the SIG template for Accessibility

linked by association tables. These conceptual tools are able to

support the success criteria from WCAG 2.0 instead of checkpoints

from WCAG 1.0 applying some straightforward redefinitions and

adjustments. As an example, Table 7.1 shows the association table for

HTML control elements group using WCAG 2.0 success criteria. We

highlight that to realize this upgrade we use the comparison provided

by W3C-WAI in [49], since there are still some discrepancies at the

Accessibility community
58

 when providing mappings between the

WCAG 1.0 checkpoints onto the WCAG 2.0 success criteria.

58 Examples of these comparisons at

http://www.w3.org/WAI/WCAG20/from10/comparison/;

http://wipa.org.au/papers/wcag- migration.htm;

http://www.usability.com.au/resources/wcag2./

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 133

7. Conclusions and future work

7.1 Conclusions

Web Engineering (WE) is essential to the development of systems that

are accessible, usable and acceptable to everybody. Accessibility

relies on formulating and promulgating principles, methods and tools

of universal design in order to develop applications that are accessible

and usable by everybody. Web Engineering starts with a perceived

problem and represents a problem solving process, which aims to

come up with a model of the implementation of the proposed solution.

The discipline of design therefore provides the interface between

understanding and creation, and a multitude of acceptable solutions

for designing Accessibility may exist, as we summarized in this work.

The multiplicity of feasible directions is significant, as it implies a

need to choose from among a set of potential alternatives that address

different aspects of the problem and provide different levels of

solutions with regard to the users‟ needs. However, as we have

already seen in Chapter 2, when we presented and applied related

works, there are not so many similar efforts for early design with the

principles of Accessibility in mind. In general, the WE proposals do

not consider Accessibility as a main driver of the process; which

might hinder the identification and evaluation of relevant design

elements from early stages.

In this work, we presented a novel WE approach to conceive, design

and develop accessible Web applications using Aspect-Oriented

concepts, which enabled us to address Accessibility early from

requirements and through design to implementation. In Chapter 5, we

used a real application example of 3 (three) level-deep navigation and

2 (two) optional anchor, to illustrate our ideas and point out the

advantages of a clear separation of concerns throughout the

development life-cycle. First of all, Aspect-Orientation capabilities

constitute an important driver to efficiently capturing the orthogonal

properties that are typical of the Accessibility‟s nature. Secondly,

organizing these properties into a model-driven approach gives us

better visibility of the components at different levels --i.e. from its

conceptualization to its instantiation by particular Accessibility rules.

This is especially important when reasoning about the different

properties, because their complexity may be adequately addressed.

In addition, we provided explicit analysis and design techniques

aiming at facilitating the capture of early Accessibility concerns.

134 ADRIANA E. MARTÍN Adr

These techniques might be combined with traditional WE methods,

which would help introduce and deploy our approach in the industry.

However, we must take into account that the inclusion of new

conceptual tools for treating Accessibility requires an extra effort for

developers to get familiar with them. In this sense, we are currently

incorporating our ideas into design tools to assist developers to design

model-driven accessible Web applications. In Section 5.3, we have

introduced a supporting tool that is already developed to provide

support at Step 3 of our Aspect-Oriented design process, which

applies the Accessibility aspects to user interface models (abstract and

concrete ones).

Since our proposal is strongly linked to the model-driven paradigm,

we would like to close this section, reflecting on the

advantages/disadvantages of model-driven approaches and how this

issue benefits/affects our proposal. It is a fact that applying "unified",

model-driven approaches brings the benefit of having full

documentation and automatic application generation at the expense of

introducing some bureaucracy into the development process. Since

our proposal suggests the early treatment of the Accessibility concerns

through models, we may still be influenced by this reality and its

disadvantages --i.e., time and cost consuming, complexity, learning

effort, etc. Related to the project team and development environment,

we believe it is important to highlight the following issues: (i)

although our approach is completely documented and self-contained

within a well-kwon Web engineering approach, its application

requires a prior knowledge of the WCAG 1.0 (or 2.0) guidelines and

their specific terminology; (ii) although our approach helps to transfer

Accessibility requirements, the engineering staff members should not

be ruled by ad hoc practices, or used to apply approaches, which have

not incorporated the design and documentation of the application

under development as an standard discipline. These two issues

demand changes in the development process that must be supported

by the organizations. In this sense, for Web development, quality is

often considered as higher priority than time-to-market with the

mantra later-and-better [33] even though they mean extra time and

cost consuming. However, since the Accessibility guidelines are quite

independent from the Web application under development, there are

many cases to which the same Accessibility solution can be applied.

Then, recording such recurrent situations (e.g., using patterns) might

contribute to reuse them, which supplies to reduce the development

effort when implementing our proposal. This is possible because

aspects could be developed once and be reused in different Web

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 135

projects. This reinforces what we have already said in Sections 4.1,

5.2 and 6.2 for SIGs diagrams, about how our proposal propitiates the

reuse of design artifacts.

7.2 Future Work

Considering the extensibility of our approach, it is important to

highlight, that although in this work we focused on visual disabilities,

the proposal can be extended to all kinds of disabilities as the

conceptual tools we provided (the UID with integration points and

SIG template for Accessibility) are generic enough to capture

Accessibility requirements for all types of impairments. The reason

why we use visual impairment is based on the fact that accomplishing

Accessibility requirements for blind people, to a certain extent, covers

Accessibility requirements for other disabilities. For example, the

checkpoint 1.1 of the WCAG 1.0 establishes that text equivalents must

be written to convey all essential content; therefore ensuring

compliance to checkpoint 1.1 is vital for visually impaired users. The

fact is that the absence of non-text equivalents represents a critical

Accessibility barrier for people with visual disabilities, but ensuring

text-equivalent also improves Accessibility for users with deafness,

cognitive and learning disabilities. So, we considered the treatment of

visual impairments as a good starting point.

Finally, we should further validate our proposal working with WCAG

2.0 [46] beyond the case study, which we used in Section 5.1 to apply

our Aspect-Oriented approach, and make some comparisons between

case studies that we have been applying during the validating process.

To do so, we are currently following two different but related paths:

(i) migrating the supporting tool to work with the WCAG 2.0 version

of our approach and extending the tool‟s functionality to cover all the

approach‟s development process to propitiate industry adoption and,

(ii) analyzing deeply the impact of applying our proposal on quality

attributes of the resulting system, such as reuse, extensibility and

modularity, and the developing effort required when using the

approach. We are currently carrying out some guided experiments in

the area of Web-based systems for academic domains and the

petroleum industry.

136 ADRIANA E. MARTÍN Adr

7.3 Publications related to this Thesis

The partial results obtained during this investigation have been

published and presented in different forums. Following, in Sections

7.3.1, 7.3.2, 7.3.3 and 7.3.4, we present some of these work ordered

according to whether they correspond to Journals, Book Chapters,

International Conferences and National Conferences, respectively.

7.3.1 Journals

 (WWWJ 2010) World Wide Web: Internet and Web

Information Systems Journal
59

Title: Engineering Accessible Web Applications. An Aspect-

Oriented Approach
Authors: Adriana Martín, Gustavo Rossi, Alejandra Cechich,

Silvia Gordillo

In: World Wide Web: Internet and Web Information Systems

Journal (WWWJ)

ISBN: 978-1-59904-847-5

Volume-Number: 13 (4)

Pages: 419-440

DOI: 10.1007/s11280-010-0091-3

Abstracted/Indexed in: Academic OneFile, ACM Computing Reviews,

ACM Digital Library, Cabell's, Computer and Communication Security

Abstracts, Computer Science Index, Current Abstracts, Current

Contents/Engineering, Computing and Technology, DBLP, EBSCO, EI-

Compendex, Gale, Google Scholar, INSPEC, io-port.net, Journal Citation

Reports/Science Edition, OCLC, Science Citation Index Expanded (SciSearch),

SCOPUS, Summon by Serial Solutions.

Impact Factor: 1.0

7.3.2 Book Chapters

 (Book Chapter 2008) Handbook of Research on Web

Information Systems Quality
60

Title: Comparing Approaches to Web Accessibility Assessment

Authors: Adriana Martín, Alejandra Cechich, Gustavo Rossi

59 (WWWJ 2010) at

http://www.informatik.uni-

trier.de/~ley/db/journals/www/www13.html#MartinRCG10

60 (Chapter XI) at http://www.igi-global.com/bookstore/chapter.aspx?titleid=21973

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 137

In: Coral Calero, Mª Ángeles Moraga and Mario Piattini (Editors)

Handbook of Research on Web Information Systems Quality,

2008

ISBN13: 9781599048475 - ISBN10: 1599048477 - ISBN13:

9781599048482

Publisher: IGI Global

Chapter: XI

Pages: 181-205

DOI: 10.4018/978-1-59904-847-5.ch011

7.3.3 International Conferences

 (W4A 2011) World Wide Web 8th International Cross-

Disciplinary Conference on Web Accessibility
61

Title: Accessibility at Early Stages: Insights from the Designer

Perspective
Authors: Adriana Martín, Alejandra Cechich, Gustavo Rossi

In: Proceedings of 8th International Cross-Disciplinary

Conference on Web Accessibility (W4A), Hyderabad, Andhra

Pradesh, India, 2011

ISBN: 978-1-4503-0476-4
Publisher: ACM

Pages: 9

DOI: 10.1145/1969289.1969302

 (ICSEA 2010) 5th International Conference on Software

Engineering Advances
62

Title: Supporting an Aspect-Oriented Approach to Web

Accessibility Design
Authors: Adriana Martín, Rafaela Mazalú, Alejandra Cechich

In: Proceedings of 5th International Conference on Software

Engineering Advances (ICSEA), Nice, France, 2010

ISBN: 978-0-7695-4144-0

Publisher: IEEE

Pages: 20-25

DOI: 10.1109/ICSEA.2010.10

61 (W4A 2011) at http://www.informatik.uni-

trier.de/~ley/db/conf/w4a/w4a2011.html#MartinCR11

62 (ICSEA 2010) at http://www.informatik.uni-

trier.de/~ley/db/conf/icsea/icsea2010.html#MartinMC10

138 ADRIANA E. MARTÍN Adr

 (LA-WEB 2007) Fifth Latin American Web Congress
63

Title: A Three-Layered Approach to Model Web Accessibility for

Blind Users
Authors: Adriana Martín, Alejandra Cechich, Silvia Gordillo,

Gustavo Rossi

In: Proceedings of 5th Latin American Web Congress (LA-WEB),

Santiago de Chile, Chile, 2007

ISBN: 0-7695-3008-7

Publisher: IEEE

Pages: 76-83

DOI: 10.1109/LA-WEB.2007.56

7.3.4 National Conferences

 (ASSE 2011) 12th Argentine Symposium on Software

Engineering
64

Title: AO -WAD: A Supporting Tool to Aspect-Oriented Web

Accessibility Design

Authors: Rafaela Mazalú, Fabián Huenuman, Adriana Martín,

Alejandra Cechich

In: Proceedings of 12th Argentine Symposium on Software

Engineering (ASSE), Córdoba, Argentina, 2011

ISBN: 1850-2792

Pages: 108-119

 (CACIC 2009) XV Congreso Argentino en Ciencias de la

Computación
65

Title: Hacia una Herramienta de Soporte para el Modelado Web

con Accesibilidad
Authors: Rafaela Mazalu, Adriana Martín, Alejandra Cechich

In: Proceedings of XV Congreso Argentino en Ciencias de la

Computación (CACIC), San Salvador de Jujuy, Jujuy, Argentina,

2009

ISBN: 978-897-24068-4-1

Pages: 663-672

63 (LA-WEB 2007) at

http://www.informatik.uni-trier.de/~ley/db/conf/la-web/la-

web2007.html#MartinCGR07

64 (ASSE 2011) at http://www.40jaiio.org.ar/node/85

65 (CACIC 2009) http://redunci.info.unlp.edu.ar/files/indice_Cacic_2009.pdf

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 139

7.4 Other related Publications

Following, in Sections 7.4.1 and 7.4.2, we present other related work

ordered according to whether they correspond to International

Conferences and National Conferences, respectively.

7.4.1 International Conferences

 (CIbSE 2010) XIII Congreso Americano en “Software

Engineering
66

Title: Diseño de Interfaces Guiado por Restricciones de

Accesibilidad Web
Authors: Brenda Bustos, Adriana Martín, Alejandra Cechich

In: Proceedings of XIII Congreso Americano en “Software

Engineering” (CIbSE), Universidad del Azuay, Cuenca, Ecuador, 2010

Pages: 229-242

 (LA-WEB 2005) Third Latin American Web Congress
67

Title: A Model-Driven Reengineering Approach to Web Site

Personalization
Authors: Adriana Martín, Alejandra Cechich

In: Proceedings of 3rd Latin American Web Congress (LA-WEB),

Buenos Aires, Argentina, 2005

ISBN: 0-7695-2471-0

Publisher: IEEE

Pages: 14-22

DOI: 10.1109/LAWEB.2005.5

7.4.2 National Conferences

 (CACIC 2008) XIV Congreso Argentino en Ciencias de la

Computación
Title: Extendiendo MVC para Diseñar Interfaces de Usuario

Accesibles

Authors: Brenda Bustos Torres, Adriana Martín, Alejandra Cechich

In: Proceedings of XIV Congreso Argentino en Ciencias de la

Computación (CACIC), Chilecito, La Rioja, Argentina, 2008

ISBN: 978-987-24611-0-2

Pages: 1163-1174

66 (CIbSE 2010) at http://www.uazuay.edu.ec/cibse/2_sessions.php

67 (LA-WEB 2005) at

http://www.informatik.uni-trier.de/~ley/db/conf/la-web/la-web2005.html#MartinC05

140 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 141

142 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 143

144 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 145

146 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 147

148 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 149

150 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 151

152 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 153

154 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 155

156 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 157

158 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 159

160 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 161

162 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 163

164 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 165

166 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 167

168 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 169

170 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 171

172 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 173

174 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 175

176 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 177

178 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 179

180 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 181

182 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 183

184 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 185

186 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 187

188 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 189

190 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 191

192 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 193

194 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 195

196 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 197

198 ADRIANA E. MARTÍN Adr

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 199

REFERENCES

[1] Baumeister, H., Knapp, A., Koch, N. & Zhang, G.. Modelling

Adaptivity with Aspects. In ICWE (2005)

doi.org/10.1007/11531371_53

[2] Baniassad, E. L. A., Clements, P. C., Araújo, J., Moreira, A.,

Rashid, A., Tekinerdoga, B.: Discovering Early Aspects. IEEE

Software 23(1), 61-70 (2006)

[3] Baxley, B. Universal Model of a User Interface. DUX (2003)

doi:10.1145/997078.997090

[4] Brichau, J., D‟Hondt, T. Aspect-Oriented Software

Development: An Introduction. AOSD Europe Project.

http://www.aosd-europe.net/. Accessed 15th April 2010.

[5] Broekstra, J., Kampman, A., van Harmelen, F. Sesame: A

Generic Architecture for Storing and Querying RDF and RDF

Schema. ISWC 2342, 54-68 (2002)

[6] Casteleyn, S., Fiala, Z., Houben, G-J., van der Sluijs, K.

Considering Additional Adaptation Concerns in the Design of

Web Applications. AH (2006) doi:10.1007/11768012_28

[7] Casteleyn, S., Van Woensel, W., Houben, G-J. A Semantics-

based Aspect-Oriented Approach to Adaptation in Web

Engineering. In HT (2007)

doi.acm.org/10.1145/1286240.1286297

[8] Casteleyn, S., Van Woensel, W., van der Sluijs, K., Houben,

G.J.: Aspect-Oriented Adaptation Specification in Web

Information Systems: a Semantics-based Approach. New

Review of Hypermedia, Taylor and Francis 15(1), 39-91 (2009)

[9] Centeno, V., Kloos, C., Gaedke, M., Nussbaumer, M. Web

Composition with WCAG in Mind. W4A (2005)

doi:10.1145/1061811.1061819

[10] Ceri, S., Brambilla, M., Fraternali, P. The History of WebML

Lessons Learned from 10 Years of Model-Driven Development

of Web Applications. Conceptual Modelling (2009) doi:

10.1007/978-3-642-02463-4_15

[11] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-

Functional Requirements in Software Engineering. Kluwer

Academic Publishers, Boston (2000)

[12] Chung, L., Supakkul, S. Representing FRs and NFRs: A Goal-

oriented and Use Case Driven Approach. SERA (2004)

doi:10.1007/11668855_3

[13] De Troyer, Casteleyn, S., Plessers, P. WSDM: Web Semantics

Design Method. In: Rossi, G., Pastor, O., Schwabe, D., Olsina,

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kampman:Arjohn.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Harmelen:Frank_van.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/semweb2002.html#BroekstraKH02
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fiala:Zolt=aacute=n.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Houben:Geert=Jan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sluijs:Kees_van_der.html
http://www.informatik.uni-trier.de/~ley/db/conf/ah/ah2006.html#CasteleynFHS06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Houben:Geert=Jan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kloos:Carlos_Delgado.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gaedke:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Nussbaumer:Martin.html
http://www.informatik.uni-trier.de/~ley/db/conf/w4a/w4a2005.html#CentenoKGN05
http://www.informatik.uni-trier.de/~ley/db/conf/birthday/mylopoulos2009.html

200 ADRIANA E. MARTÍN Adr

L. (eds.) Web Engineering: Modelling and Implementing Web

Applications. pp. 303-351. Springer-Verlag, London (2008)

[14] Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall,

NJ (1976)

[15] Fiala, Z., Hinz, M., Meissner, K. Developing Component-based

Adaptive Web Applications with the AMACONTbuilder. WSE

(2005) doi:10.1109/WSE.2005.5

[16] Fiala, Z., Houben G.J. A Generic Transcoding Tool for Making

Web Applications Adaptive. CAiSE (2005) doi:10.1.1.124.7045

[17] Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented

Software Development. Addison-Wesley, Vancouver BC (2004)

[18] Fons, J., Pelechena, V., Pastor, O., Valderas, P., Torres, V.

Applying the OOWS Model-Driven Approach for Developing

Web Applications. The Internet Movie Database Case Study. In:

Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web

Engineering: Modelling and Implementing Web Applications.

pp. 65-108. Springer-Verlag, London (2008)

[19] Frasincar, F., Houben, G.J., Vdovjak, R. Specification

Framework for Engineering Adaptive Web Applications.

WWW (2002) doi:10.1.1.9.9912

[20] Gaedke M., Nussbaumer, M., Meinecke, J.: WSLS: A Service-

Based System for Reuse-Oriented Web Engineering. In: Matera,

M., Comai, S. (eds.) Engineering Advanced Web Applications,

pp. 26-37. Rinton Press, NJ (2004)

[21] Gordillo, S., Rossi, G., Araújo, Moreira, J.A., Vairetti, C.,

Urbieta, M. Modelling and Composing Navigational Concerns

in Web Applications. Requirements and Design Issues. LA-

WEB (2006) doi:10.1109/LA-WEB.2006.21

[22] Hoffman, D., Grivel, E., Battle, L.: Designing Software

Architectures to Facilitate Accessible Web Applications. IBM

Systems Journal 44(3), 467-484 (2005)

[23] Houben, G-J., van der Sluijs, K., Barna, P., Broekstra, J.,

Casteleyn, S., Fiala, Z., Fransincar, F. Hera. In: Rossi, G.,

Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:

Modelling and Implementing Web Applications. pp. 163-302.

Springer-Verlag, London (2008)

[24] ISO International Organization for Standardization/Technical

Specification. Ergonomics of human-system interaction -

Guidance on Accessibility for human-computer interfaces.

http://www.jtc1access.org/documents/swga_204/ISO_DIS_9241

-171__E_.pdf (2002);

http://www.iso.org/iso/catalogue_detail?csnumber=30858

(2003). Accessed 15 April 2010.

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 201

[25] Koch, N., Knapp, A., Zhang, G., Baumeister, H. UML-Based

Web Engineering: An Approach Based on Standards. In: Rossi,

G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:

Modelling and Implementing Web Applications. pp. 157-191.

Springer-Verlag, London (2008)

[26] Kreitzberg C. B., Little, A.: Useful, Usable and Desirable:

Usability as a Core Development Competence.

http://msdn.microsoft.com/en-us/magazine/dd727512.aspx

(2009). Accessed April 15
th
 2009.

[27] Larson, J.: Interactive Software: Tools for Building Interactive

User Interfaces. Prentice Hall, NJ (1992)

[28] Moreira, A., Araújo, J., Rashid, A. A Concern-oriented

Requirements Engineering Model. CAiSE (2005)

doi:10.1007/11431855_21

[29] Moreno, L., Martinez, P., Ruiz, B. A MDD Approach for

Modelling Web Accessibility. IWWOST (2008)

doi:10.1.1.163.9478

[30] Moreno, L. AWA, AWA, Methodological Framework in the

Accessibility Domain for Web Application Development. PhD

Thesis.

http://www.sigaccess.org/community/theses_repository/phd/lour

des_moreno.php (2010) Accessed April 15
th
 2010.

[31] Moreno, N., Romero, J., Vallecillo, A. An Overview of Model-

Driven Web Engineering and the MDA. In: Rossi, G., Pastor,

O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling

and Implementing Web Applications. pp. 109-155. Springer-

Verlag, London (2008)

[32] Niederhausen, M., Fiala, Z., Kopcsek, N., Meissner, K. Web

Software Evolution by Aspect-Oriented Adaptation

Engineering. WSE (2007) doi:10.1109/WSE.2007.4380237

[33] Offutt, J. Quality Attributtes of Web Software Applications.

IEEE Software, 19(2), 2002, 25-32 doi:10.1002/stvr.425

[34] PAS 78. Publicly Available Specification: A Guide to Good

Practice in Commissioning Accessible Websites, ICS 35.240.30.

Disability Rights Commission (DRC) http://www.hobo-

web.co.uk/seo-blog/pas-78/ (2006-2011). Accessed 15 April

2010.

[35] Plessers P. , Casteleyn S. , Yesilada Y. , De Troyer O. ,

Stevens R. , Harper S. & Goble C. Accessibility: A Web

Engineering Approach. WWW (2005)

doi:10.1145/1060745.1060799

[36] Rossi. G., Schwabe, D. Modelling and Implementing Web

Applicactions with OOHDM. In: Rossi, G., Pastor, O.,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.9478

202 ADRIANA E. MARTÍN Adr

Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and

Implementing Web Applications. pp. 109-155. Springer-Verlag,

London (2008)

[37] Schauerhuber, A., Wimmer M., Schwinger, W., Kapsammer, E.

& Retschitzegger, W. Aspect-Oriented Modelling of Ubiquitous

Web Applications: The AspectWebML Approach. ECBS MBD

(2007) doi:10.1109/ECBS.2007.20

[38] Section 508. Electronic and Information Technology

Accessibility Standards

http://www.section508.gov/index.cfm?fuseAction=stdsdoc

(2000-2010). Accessed 15 April 2010

[39] Sommerville, I.: Software Engineering 8th Edition. Pearson

Education Limited, Harlow (2007)

[40] Stanca Law. Italian Legislation on Accessibility.

http://www.pubbliaccesso.it/biblioteca/documentazione/guidelin

es_study/index.htm (2004). Accessed 25 January 2010.

[41] Thatcher, J., Burks, M., Heilmann, Ch., Henry, S., Kirpatrick,

A., Lauke, P., Lawson, B., Regan, B., Rutter, R., Urban, M.,

Waddell, C.: Web Accessibility - Web Standards and

Regulatory Compliance. Friendsof ED, USA (2006)

[42] Update of the 508 Standards - Draft Information and

Communication Technology (ICT) Standards and Guidelines

and the Telecommunications Act Guidelines.

http://www.access-board.gov/sec508/refresh/draft-

rule.htm#e106 (2010). Accessed July 14
th
 2011.

[43] Vilain, P., Schwabe, D.: Improving the Web Application Design

process with UIDs, IWWOST Workshop Program.

http://users.dsic.upv.es/~west/iwwost02/papers/vilain.pdf

(2002). Accessed June 1
st

2009.

[44] Vilain, P., Schwabe, D., Sieckenius de Souza, C. A

Diagrammatic Tool for Representing User Interaction in UML.

UML (2000) doi:10.1007/3-540-40011-7_10

[45] W3C: Web Content Accessibility Guidelines 1.0. (WCAG 1.0).

http://www.w3.org/TR/WCAG10/ (1999). Accessed April 15
th

2010.

[46] W3C: Web Content Accessibility Guidelines 2.0 (WCAG 2.0).

http://www.w3.org/TR/WCAG20/ (2008). Accessed April 15
th

2010.

[47] W3C: HTML Techniques for Web Content Accessibility

Guidelines 1.0. http://www.w3.org/TR/WCAG10-HTML-

TECHS/ (2000). Accessed April 15
th
 2010.

http://www.access-board.gov/sec508/refresh/draft-rule.htm#e106
http://www.access-board.gov/sec508/refresh/draft-rule.htm#e106

ENGINEERING ACCESSIBLE WEB APPLICATIONS.

AN ASPECT-ORIENTED APPROACH 203

[48] W3C: User Agent Accessibility Guidelines 1.0 (UUAG 1.0).

http://www.w3.org/TR/WAI-USERAGENT/ (2002). Accessed

April 22
th
 2010.

[49] W3C-WAI: Comparison of WCAG 1.0 Checkpoints to WCAG

2.0. http://www.w3.org/WAI/WCAG20/from10/comparison/

(2008). Accessed April 22
th
 2010.

[50] W3C-WAI: Web Content Accessibility Guidelines (WCAG) 1.0

Documents. http://www.w3.org/WAI/intro/wcag10docs.php

(2006). Accessed April 22
th
 2010.

[51] Woods, S. Websites for Visually Impaired Users. Thesis

http://wise.vub.ac.be/Downloads/Theses/Woods-thesis.pdf

(2006-2007). Accessed April 15
th
 2009.

[52] Yesilada, Y., Harper, S., Goble, G. & Stevens, R. DANTE:

Annotation and Transformation of Web Pages for Visually

Impaired Users. WWW (2004)

doi.acm.org/10.1145/1013367.1013540

[53] Zimmermann, G. & Vanderheiden, G.: Accessible Design and

Testing in the Application Development Process:

Considerations for an Integrated Approach. Universal Access in

the Information Society 7(1-2), 117-128 (2008).

Esta edición de 150 ejemplares
se terminó de imprimir en Estudiocentro,

Bolívar, Buenos Aires, Argentina,
en el mes de mayo de 2014.

	RedUNCI-tesis MARTÍN okQ tapa.pdf
	Página 1

	RedUNCI-tesis MARTÍN okQ contratapa.pdf
	Página 1

