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iBienvenidos!

Matematica B es una materia del segundo semestre del primer ano de todas
las carreras de la Facultad de Ingenieria de la UNLP. En esta asignatura se
estudiaran los conceptos y métodos mas importantes del Cdlculo Integral y
Vectorial para funciones reales de una y varias variables, junto con aplica-
ciones a problemas geométricos y fisicos, ademas de una introduccién a las
ecuaciones diferenciales ordinarias de primer orden y a las series numéricas.

La matematica ocupa un lugar central en la formaciéon de un ingeniero, no
s6lo como herramienta de calculo, sino como un lenguaje capaz de describir
y modelar fenémenos del mundo real. Los modelos mateméticos permiten
representar situaciones reales, comprender sus dindmicas, anticipar compor-
tamientos futuros y, en consecuencia, tomar decisiones fundamentadas para
proyectar, optimizar o controlar sistemas y procesos. Desde el calculo de
areas, volumenes, longitudes y centros de gravedad, hasta el analisis del mo-
vimiento de un fluido, las fuerzas y la distribuciéon de masas, los conceptos y
herramientas abordados en esta materia seran clave para modelar y resolver
problemas de la ingenieria.

En Matematica A, los problemas de la recta tangente y de la velocidad sir-
vieron para introducir el concepto de derivada, idea central del Cdlculo Dife-
rencial. En Matematica B, los problemas del drea y del desplazamiento per-
mitiran introducir el concepto de integral definida y establecer su conexion
profunda con la derivada, a través del Teorema Fundamental del Célculo.
En Matematica C se abordard otra importante rama de la mateméatica —el
Algebra Lineal— y se continuard el estudio de Ecuaciones Diferenciales y
Series Numéricas iniciado en esta asignatura.

Las clases de Matematica B son tedrico-practicas y promueven un estudio
activo, donde el estudiante es protagonista al interactuar, resolver problemas
y debatir con sus pares, guiado por los docentes. Asi, se adquieren no solo
técnicas matematicas, sino también habilidades para razonar, argumentar y
enfrentar problemas complejos.

Aspiramos a que el transito por Matematica B sea significativo, fortaleciendo
el pensamiento critico y la capacidad de abstraccion. Esperamos que este libro
potencie ese recorrido, ofreciendo una base solida para futuras asignaturas y
para la practica de la ingenieria, donde la matematica se revela como una
aliada imprescindible para pensar, disenar, modelar, construir e innovar en
contextos complejos y cambiantes.
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Capitulo 1

Integral en una variable

El concepto de integral definida tuvo su origen en un problema geométrico:
el calculo del area de una region plana cuya frontera no estda formada en su
totalidad por segmentos rectilineos. Es éste uno de los grandes problemas de
la historia de la matematica pues, mas alla de su importancia dentro de la
propia disciplina, esta relacionado con incontables aplicaciones.

Las figuras planas con bordes rectos se denominan en geometria poligonos
(tridngulos, rectdngulos, trapecios, rombos, entre otras). Estdn compuestas
por una secuencia finita de segmentos rectos consecutivos que encierran una
region en el plano, y los puntos de unién entre los segmentos se llaman
vértices.

( _ | | ) O O .
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Sabemos que si una figura plana tiene bordes rectos, es posible calcular su
area, particionando por ejemplo en tridngulos, y sumar sus areas, como se
muestra en la figura siguiente.



CAPITULO 1. INTEGRAL EN UNA VARIABLE

Area del poligono = Aj + Az + As + Ay

En esta primera parte del curso estudiaremos como resolver, desde la ma-
tematica, el problema de calcular el area de una figura plana cualquiera
sea.

Actividad

En cada una de las tres situaciones de la siguiente actividad nos referimos a
un movil que se desplaza sobre una recta. Observaran en cada caso la relacién
entre, el area de la region limitada por la grafica de la funcion velocidad y el
eje de las abscisas en un intervalo de tiempo dado, y el desplazamiento del
movil en ese intervalo. Entenderemos por desplazamiento a la distancia que
existe entre la posicién inicial y la final de un cuerpo en movimiento.

» Situacién 1: Un automévil se desplaza en linea recta y su velocidad es
constante e igual a 80 km/h.

 Calculen el desplazamiento entre ¢ = 0 y ¢t = 4 (¢ representa el
tiempo y se supone expresado en horas).

 Grafiquen la velocidad en el intervalo [0, 4], colocando la variable
independiente ¢ en el eje de abscisas y v(t) en el eje de ordenadas.

o Comparen el desplazamiento entre ¢t =0 y t =4 con el drea
debajo de la grdfica de la funcién velocidad en el intervalo [0, 4].

» Situacién 2: Un automovil se desplaza en linea recta y su velocidad en
el tiempo ¢t es v(t) = 20t (km/h) .

 Calculen el desplazamiento en [0, 1], en [1,2], en [2,3] y en [3,4].
« Calculen el desplazamiento en [0, 4].

o Grafiquen la velocidad y comparen, en cada intervalo, el despla-
zamiento con el area debajo de la grafica de v(t).

= Situacién 3: Un automovil se desplaza en linea recta y su velocidad en
el tiempo t es v(t) =t* (km/h) .

o ;Cuantos kilometros se desplaza el automévil entre ¢t = 0 y
t=47.



1.1. AREA DEBAJO DE UNA GRAFICA

« Grafiquen la velocidad. Senialen en el gréafico la region cuya area
coincide (omitiendo unidades) con el desplazamiento en [0, 4]. ; C6-
mo calcularian el area senalada?

1.1. Area debajo de una gréafica

Para una funcién lineal o lineal a trozos, el calculo del area de la region
limitada por la grafica de la funcién y el eje x en un intervalo dado es facil:
basta con sumar areas de rectangulos y triangulos. Pero, jcémo calculamos
el drea debajo de la grafica de v(t) = t* en el intervalo [0,4] ? Podemos
aprozimar el valor del area con la suma de las areas de un niimero finito de
rectangulos como en los siguientes ejemplos:

» Ejemplo 1: Dividamos el intervalo [0,4] en subintervalos de longitud
1. Sumemos las areas de los rectangulos que tienen base en cada uno
de esos subintervalos y altura igual al valor de la funcién en el punto
medio del subintervalo.

16 /

Area = v() - 1+0(E) - 1+03) - 1+v(E) 1=

» Ejemplo 2: Dividamos el intervalo [0,4] en subintervalos de longitud
%. Sumemos las areas de los rectangulos que tienen base en cada uno
de esos subintervalos y altura igual al valor de la funcién en el punto
medio del subintervalo.




CAPITULO 1. INTEGRAL EN UNA VARIABLE

» Ejemplo 3: Si dividimos el intervalo [0, 4] en subintervalos de longitud
%6 y repetimos el procedimiento... jcudntos términos debemos sumar?

Para escribir la suma, en este caso, seria conveniente contar con una
notaciéon abreviada, y lo haremos usando la notacion llamada sigma.

s D

Notacién sigma

La letra griega Z (sigma) es el simbolo que se utiliza para indicar de
manera abreviada una suma de varios términos:

n

Zai:a1+a2+a3+...+an
i=1

donde 7 es un indice que puede tomar valores naturales o enteros, en
este caso toma los valores naturales desde 1 hasta n, y a; es el término
general de la sumatoria.

Propiedades de la notaciéon sigma Las propiedades de la notacion sig-
ma, tienen validez por ser propiedades de la operaciéon suma en el conjunto
de los niimeros reales. Algunas propiedades son:

= La conmutatividad y la asociatividad de la adicién, hacen que el resul-
tado de una serie (finita) de adiciones, no dependa del orden en el cual
los términos son considerados.
t t t
L] Zal—i-sz = Z[az—kbz]
t

" Zai—zbi:Z[ai—bi]

1=s

t t+p
" Zai = Z Ai—p
i=s i=s+p
n t t
= YAt Y a=) a
=1 i=n+1 i=1

» Y C=C-(n—m+1) donde C representa una constante

n

n
. Z Ca; =C Z a; donde C representa una constante
i=m

i=m

10



1.1. AREA DEBAJO DE UNA GRAFICA

" 1
=Y Q= — (suma de los primeros n nimeros naturales)

. ii2 ~ nn+1)2n+1)
=5 6
nimeros naturales)

(suma de los cuadrados de los primeros n

Volviendo a la actividad y con esta notacion la suma del ejemplo 1 se puede
expresar de la siguiente manera:

()

2t —1

2
La expresion ) es el término general de la sumatoria. Si se reemplaza

en el término general el indice ¢ sucesivamente por 1, 2, 3 y 4 intercalando el

signo + , se obtiene:
1\?2 3\ 2 5\ 2 7\ 2
() +G) +G) + ()

La suma del ejemplo 2 se puede expresar de la siguiente manera:
28: 1 (2@' — 1)2
=12 4
¢Puedes dar una expresion que dependa de n para esta suma? Ezpresen us-

tedes la suma del ejemplo 3 usando la notacion sigma, e intenten encontrar
su suma en funcion de n.

Volviendo al problema que nos ocupa y al procedimiento seguido en los ejem-
plos, debemos decir que, para establecer la altura de los rectangulos, en vez
de elegir el punto medio de cada uno de los subintervalos, podriamos haber
elegido el extremo derecho, el extremo izquierdo o un punto cualquiera inte-
rior. También, los subintervalos con los que dividimos al intervalo [0,4] en
cada ejemplo podrian haber tenido longitudes diferentes.

Considerando cada vez mas rectangulos, con bases (todas) cada vez maés
pequenas, esperamos tener una mejor aproximacion para el area de la regién.
Cierto es que el procedimiento es tedioso.

= Para ayudarte con este procedimiento puedes usar la aplicacion de
GeoGebra y observar los valores que se obtienen de las sumas a medi-
da que se aumenta la cantidad de rectangulos. ; Estas sumas, convergen
a un valor?

11



CAPITULO 1. INTEGRAL EN UNA VARIABLE

Hemos visto cémo podemos hallar de manera aproximada el area debajo de
la grafica de una funcién pero... jcudl es el valor exacto?

1.2. Integral definida

Suma de Riemann

Se llama Suma de Riemann para una funciéon f acotada en el intervalo
cerrado [a, b] a lo siguiente:

n

Z f(z})Aw;

=1

dondeP:a=29 <1 < ..<zi1<x<..<x,=>besunaparticion
del intervalo [a,b] , Ax; = x; — x;_1 es la longitud del subintervalo
[Ti—1, 2]y |P] = mdx{Az;} es la norma de la particién|P| =} €
[Tio1, 7).

Definicién de integral definida

Si para una cierta funcion f, existe el limite de la Suma de Riemann
cuando n (cantidad de intervalos) tiende a infinito y la norma de la
particién |P| tiende a cero y es independiente de los valores de z} €
[zi—1, 4], se dice que la funcién es integrable y se anota:

b n
/a f(x)dx = |7Li|r£o;f(x:)Axi

Advertir que, la integrabilidad, de una funcién es una propiedad local, es
decir que depende del intervalo en el cual se lo esté analizando. Ademéas en
general, para cualquier funciéon dada, no es sencillo analizar su integrabilidad
en un intervalo a partir de la definiciéon, ya que habria que contar con una
forma general de la suma de Riemann para luego a ello calcularle el limite, y
en caso de existir, se obtendria el valor de la integral definida. Pero hay un
resultado importante que arroja el siguiente teorema que soluciona algunos
de los inconvenientes antes mencionados.

12



1.2. INTEGRAL DEFINIDA

Volvamos al problema del movil, y del calculo del desplazamiento.

Célculo de la suma de Riemann (superior) de la funcién f(z) = z?
en el intervalo [0, 4]:

Para ello tomaremos los valores del extremo superior para cada subintervalo
y luego calcularemos el limite cuando el nimero de subintervalos tiende a
infinito.

Paso 1: Definicion de la suma de Riemann superior

Consideremos que dividimos el intervalo [0,4] en n subintervalos de igual
longitud. La longitud de cada subintervalo seré:

Los puntos de divisién son:

Ai
x¢:0+i~Ax:—Z parai=0,1,2,...,n
n

La suma de Riemann usando el valor en el extremo superior de cada subin-
tervalo se define como:

n

S, = Zf(a:z)Ax

i=1

Donde f(x;) = (%)2.
Paso 2: Ezxpresion de la suma de Riemann

Sustituyendo f(z;) = (ﬂ>2 y Ax = %:

n

Esto se simplifica a:

Paso 3: Usar la formula para la suma de los primeros n cuadrados

13



CAPITULO 1. INTEGRAL EN UNA VARIABLE

La suma de los primeros n cuadrados es:

7

" 2 n(n+1)(2n+ 1)
= 6

1

Sustituyendo esto en .S,,:

_ 64 n(n+1)(2n+1)

Simplificamos:

64(n+1)(2n+1)

S, =
6m2

Paso 4: Calcular el limite cuando n tiende a infinito

El limite de S,, cuando n tiende a infinito es el valor de la integral definida
de f(z) = z? en el intervalo [0, 4]:

An+ 1 1
lm S, — 1fm OH2HDER 4D

n—00 n—o0 6n2

Expandiendo y simplificando:

4. (202 1) 128 64
lim §, = 1 01 (24 3n+1) 128 64
n—00 n—00 612 6 3

Por lo tanto, el valor de la suma de Riemann en el limite, que es el valor de
la integral definida, es:

4 64
/ 2?dr = — ~ 21,33
0 3

Observaciéon: En este caso, hemos logrado encontrar una expresién general
para la Suma de Riemann en funcién de n, lo que nos ha permitido calcu-
lar su limite cuando n tiende a infinito. Dado que este limite existe, hemos
obtenido el valor exacto de la integral definida de la funcién f(x) = 2? en el
intervalo [0,4]. Sin embargo, no siempre es posible encontrar una expresién
en funciéon de n para la Suma de Riemann de otras funciones. Mas adelan-
te, exploraremos otro procedimiento que, bajo ciertas condiciones, permite
calcular una integral definida sin recurrir al limite de las Sumas de Riemann.

14



1.2. INTEGRAL DEFINIDA

Teorema

Si una funcién f : [a,b] — R es continua en [a,b] o es continua
a trozos en [a,b] (o sea, es continua en [a,b] salvo en finitos puntos
1,02, ..., ¢, enlosque existen los limites laterales) entonces la funcién
f es integrable en [a,b] y su integral vale el niimero que resulta del
limite de la suma de Riemann.

\. J

Este Teorema es fundamental, ya que nos asegura que toda funcién continua
o continua a trozos, es integrable. Esto quiere decir que el limite de la suma de
Reimann existe, y ese valor es el que se asigna a la integral definida, aunque
aln no tengamos alguna otra estrategia para calcularlo. La demostracién no
la presentaremos aqui en este curso, pues requiere del conocimiento de una
matematica més avanzada.

Ejemplo de funciones integrables, en cualquier intervalo cerrado de la recta

real, son las funciones polindmicas: ag + a1 + asx® + ... + a,a™, funciones

escalonadas, funcién exponencial:e”, seno: sen(z) y coseno: cos(z). (Y la

composicion de estas funciones, resultan ser funciones integrables? Si, pues la

composicion de funciones continuas, es una funcién continua, asi por ejemplo:
2 x2 4 : bl

cos(z® 4+ 1), €*°, (sen(x))*, son integrables.

Sin embargo, el teorema no asegura, por ejemplo que funciones como f(z) =
1/x sea integrable en el intervalo [0, 1] ya que esta funcién no es continua
en z = 0 donde presenta una asintota vertical. Pero, si es integrable, en el
intervalo [1,2] o en el intervalo [—3, —2], por ejemplo.

1.2.1. Propiedades de la integral definida

1. Se define / fla)dz =0

a b
2. Si a < b se define, /b flz)dx = —/a f(x)dx

3. Linealidad de la integral: Si f y g son funciones integrables en el
intervalo [a,b] y K es una constante real, entonces

[+ gtz = [ @i+ [ olwyic

/abe(x)d:c =K bf(x)d:c

a



CAPITULO 1. INTEGRAL EN UNA VARIABLE

4. Aditividad en el intervalo de integracién: Si f es una funcién
integrable en el intervalo [a,b] y a < ¢ < b entonces

[ fwdr= [ f@yae+ [ jyar

5. Integral de una funcién constante: Si f(z) = C Vz € [a,b] con C
constante entonces

/abf(x)dx — /abC'dac — C(b—a)

6. Monotonia: Si f y ¢ son funciones integrables en el intervalo [a,b] y
f(z) < g(z) Yz € [a, b] entonces

/ab f(z)dx < /abg(as)das

7. Acotamiento: Si f es una funcion integrable en el intervalo [a,b] y
m < f(x) < M Vx € [a,b], entonces

m(b—a) < /abf(x)dx < M(b—a)

Las demostraciones de las propiedades anteriores se desarrollan a partir de
la definicién de la integral mediante las sumas de Riemann y a partir de las
propiedades de la sumatoria. Algunas resultan bastante obvias cuando las
funciones involucradas son continuas en el intervalo de integraciéon como se
aprecia en los siguientes gréaficos:

v

a b

16



1.2. INTEGRAL DEFINIDA

Funciones pares, impares y periédicas

Los conceptos de paridad y de periodicidad de una funcién son importantes
en carreras de ingenieria, ya que su conocimiento permite realizar calculos
de modos mas sencillos e inferir caracteristicas cualitativas de una funciéon
(como por ejemplo, de su derivada o integral, en caso de existir). Asimismo,
las funciones periédicas son herramientas de modelizacion de fenémenos fisi-
cos que presentan un comportamiento ondulatorio, como vibraciones, ondas
mecanicas, ondas acusticas, ondas gravitacionales, que son de estudio comin
en diversas especialidades de la ingenieria.

Definiciones

» f es par si para todo z en su dominio se cumple que f(z) =
f(=x).

» f es impar si para todo x en su dominio se cumple que f(x) =
~f(-a).

» f es periddica con periodo T > 0 si satisface que f(z) =
f(z+T) para todo z en su dominio. En tal caso también cumple
fle+2T) = f(x+T+T) = f(x+T) = f(x), y en general
f(z+nT) = f(z) para n = 0;1;2;.... Basta entonces conocer los
valores de f(z) en cualquier intervalo de longitud 7" para deter-
minar su valor f(z) en cualquier z del dominio. Al valor 1/7 se
lo denomina frecuencia.

\. J

Los ejemplos mas comunes de funciones pares son las funciones polinémicas
con potencias pares. Ejemplo de funciones impares son las funciones poli-
némicas con potencias impares. Ejemplos de funciones periddicas son las
funciones trigonométricas, que en combinaciones adecuadas se emplean en el
andlisis armonico. Sin embargo existen otras, como por ejemplo, la funciéon
mantisa. También una funcién puede se par y periédica como es el cos(z), o
impar y peridédica como es el sen(z)y la tag(z).

La grafica de las funciones pares presentan una simétrica respecto del eje de
las ordenadas. La grafica de una funcién impar, presenta simetria respecto
al origen de coordenadas.

Algunas propiedades que cumplen las funciones pares, impares y periddicas,
son:

1. Si f es impar, entonces [, f(z)dx =0

2. Si f es par, entonces [, f(z)dx =2 [ f(x)dx

17



CAPITULO 1. INTEGRAL EN UNA VARIABLE

3. Si f(z) es periddica, entonces [T f(z)dx = [P f(x)dx, para a y ben
el dominio de f.

Intenta probar y comprender algunas de estas propiedades mediante una
grafica y las definiciones.

Ademas, se verifican las siguientes propiedades, que no las estaremos demos-
trando:

= Toda funcién continua se puede descomponer en la suma de, una fun-
cién par y de una impar.

» La tnica funcion que es tanto par e impar es la funcién nula.

» La suma de una funciéon par y una impar no es ni par ni impar, a menos
de que una de las funciones sea la nula.

= La suma de dos funciones pares es una funcién par y la suma de dos
funciones impares es una funcién impar.

» El producto de dos funciones pares es una funciéon par, de dos funciones
impares es una funcion par, de una funcién par y una funciéon impar es
una funciéon impar.

= Siuna funcién es par y existe su derivada, ésta es impar y si una funcién
es impar, su derivada de existir, es par.

= La suma y producto de funciones periédicas de un mismo periodo es
también periédica con el mismo periodo.

= Si una funcién es periddica y existe su derivada, ésta es también perio-
dica.

= Podes visualizar algunas funciones pares e impares, y sus propiedades
usando la aplicaciéon de GeoGebra.

1.2.2. Ejercicios
Usando los conceptos de paridad, dar los valores de las integrales siguientes:

w [* xcos(x)dr = ...

18



1.3. TEOREMA DEL VALOR MEDIO PARA INTEGRALES

o [N (x — sen(x)dr = ...
s 2 (x/exp(x?))da = ...
Calcular, usando propiedades y conociendo que fol f(x)dx =4
s [ 3f(x)dx
= Jo(f(z) = 2)dw
= [' f(x)dz en el caso que f sea par.

Calcular, usando propiedades y sabiendo que [?, f(z)dz =2y [?, g(z)dx =
—1:

= J2(3f(x) + g(x))da
= 2 (f(2) = 29(x) + 4)dx
En cada caso dar cotas para la integral dada:
7% 3cos(x)d
s [? 2%dx

14 %dm

1.3. Teorema del valor medio para integrales

Teorema del valor medio para integrales

Si f es una funcién continua en el intervalo [a,b] existe un nimero ¢
en ese intervalo tal que

[ Fwydr = fe)b

Demostracién: Siendo f continua en el intervalo [a,b] , existen z,, y zp en
ese intervalo tales que, Va € [a, b] es

flam) < f(2) < flowm)
Entonces, por propiedad de la integral definida,

fm)b—a) < [ f@)ie < floa) - a)

19



CAPITULO 1. INTEGRAL EN UNA VARIABLE

y dividiendo por b-a resulta:

Fla) < 2SO <y

La continuidad de f permite ahora afirmar que, para algin c¢ entre z,, y xps

b
(y por lo tanto en [a, b] ) es W = f(¢) y por lo tanto:
—a

[ F@)d = )b )

Interpretacion geométrica del Teorema del Valor Medio
El caso particular de una funcién f no negativa en [a, b] nos permite dar una
interpretacion geométrica del teorema:

¥

*> IC)

Observar que desde el punto de vista geométrico, significa que siempre pue-
de hallarse un rectangulo de base b — a con area igual a la regiéon bajo la
grafica de la funcién ( suponiendo f con valores positivos), cuya altura queda
determinada por el valor de f(c) para ¢ cierto punto del intervalo.

Valor promedio de f en un intervalo

Si f es una funcién integrable en [a, b] se llama valor promedio de f en

ese intervalo a:
Jo f(x)da

fP:ﬁ

Ademas, el teorema anterior se podria enunciar: Si f es una funciéon continua
en [a, b] entonces existe ¢ € [a, b] tal que el valor promedio de f en ese intervalo
es igual a f(c).
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1.4. FUNCION INTEGRAL

1.4. Funcién integral

Funcién integral

Si f es una funcién integrable en el intervalo [a, b], podemos definir una
nueva funcién ¢ asignando a cada = € [a,b] la integral de f desde a
hasta z. -

O sea: g(x) :/ f)dt , si x€la,b]

Asi definida la funcién g se llama funcion integral de f en [a,b].

Si f es una funcién acotada e integrable en el intervalo [a, b], entonces g(x)
es una funciéon continua. Se entiende intuitivamente que esto es cierto inter-
pretando a g(x) en términos de dreas de regiones. Formalmente lo podemos
justificar recurriendo a la propiedad de acotamiento:

Supongamos que A < f(z) < B Vz € [a,b].
zo+h
Sia<xy<xo+h<b entonces g(xg+ h) — g(xg) = / ’ f(t)dt

0
por lo tanto A . h < [g(xg+ h) — g(z9)] < B . h y como hlir(r)l+ Ah=0y
hlir(l)q+ B.h =0 resulta hlir(r)1+ [g(xo 4+ h) — g(z)] =0, o sea,

hlir& g(xo + h) = g(xo) para todo xy € [a,b)
De la misma manera se demuestra que hligl* g(xo + h) = g(xo) Vo € (a,bl.

Entonces g(x) es continua.

Ejemplos: Calculemos la funcién integral para los siguientes casos sencillos
y en los que mediante consideraciones geométricas podremos obtener el valor
de la integral definida:

1) f(z) =4 en el intervalo [0, 1]

g(x) = /Ox Adt

Interpretando que la integral entre 0 y = bajo g(x) en este caso se puede
calcular como el area de un rectangulo de base z y altura 4, obtenemos que:

g(x) =4z
en el intervalo [0, 1].
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

2) f(z) =z en el intervalo [0, 1]

g(x) = /Ox tdt

Interpretando que la integral planteada es el drea de un tridangulo de base x
y altura x, obtenemos que:

para x en [0, 1].

3) f(x) =2z + 1 en el intervalo [0, 4] Calculen en este caso

g(z) = /Ox(Qt +1)dt

Hallar la expresiéon de g(z) interpretando que la integral calcula en este caso
el area de una trapecio. ;Qué obtienen?

Pregunta: ;Encuentran alguna relacién entre las funciones f(z) y g(z) ha-
lladas?

Estudiaremos luego la derivada de g(z) (y ello nos conducird nada menos
que a resolver el problema del célculo de la integral definida) pero antes les
proponemos algunos ejercicios en relacion a las definiciones y propiedades
presentadas hasta el momento.

1.4.1. Ejercicios

1. Graficar en un mismo sistema de coordenadas las funciones f(x) = x
y g(z) = Vx en el intervalo [0,1]. 4) ;Cual de las dos funciones es
mayor o igual que la otra en todos los z del intervalo [0, 1|7 4) ;Cudl es

1 1
el signo de / g(x)dx — / f(z)dz? iit) {Qué representa esa diferencia?
0 0

3173 2

2. Estudiar la funcién f(x) = o % — 2z +4 en el intervalo [-2,3].

7); Cuéles son los valores minimo y maximo absolutos de f en ese in-

tervalo? i) ;Qué cotas puede dar para / 32 f(z)dz?

3. Sea f(x) =3x+2, x €[2,5] ysea g la funcién integral de f en ese
intervalo. i) Interpreten geométricamente g(z) y hallen su expresién
analitica.

ii) {Es derivable la funcién ¢? Hallen ¢'(x) y compéarenla con f(x) .
iii) Representar f y g en el mismo sistema de coordenadas.
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4. Siendo ¢ la funcién integral de la funcion f que muestra el siguiente
grafico , i)Evalten g(—2), ¢(0), ¢g(1) y g¢(2) .7) Hallen la expresién
analitica de la funcién g. 77) ;Es derivable g7 ;Cudl es su derivada?

-2 0 2

=2

= Podes visualizar en esta aplicacion un ejemplo de funcién integral con

GeoGebra.

1.5. Concepto de primitiva o antiderivada

[ Concepto de primitiva o antiderivada ]

Si para todo z de un intervalo de nimeros reales [ es F'(z) = f(x),
decimos que F' es una primitiva de f en ese intervalo.

Por ejemplo, F'(z) = sen(x) es una primitiva de f(x) = cos(x) en cualquier
intervalo I de ntumeros reales. Notar, también que F(x) = sen(z) + 1 es
una primitiva, y es més, F(x) = sen(x) + C es primitiva con C' constante
cualquiera. Con lo cual la primitiva de una funcién no es tinica, son
infinitas, y dos cualesquiera de ellas, difieren en una constante.
Es decir que si F(z) y G(z) son primitivas de f(z), F(z) — G(z) = C (C
constante), Ademads, notar que para una funcién integrable f(x), la funcién
integral ¢g(z) es una primitiva de ella.
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

Actividad

Calculemos algunas primitivas. Completar la Tabla.

k (constante)

" sin #—1

Lsiz#0

T

sen(z)

cos(x)

sec?(x)

1422
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1.6. TEOREMA FUNDAMENTAL DEL CALCULO INTEGRAL

1.6. Teorema Fundamental del Calculo Inte-
gral

Teorema Fundamental del Calculo Integral. Parte I

Si f es una funcién continua en el intervalo [a,b] entonces la funcién

integral g(z) = / f(t)dt es derivable en (a,b) , continua en [a,b] y

9@ = ([ Fwa) = 1) va € (@)

Demostracion:

Sea f continua en [a,b] y = € (a,b)

i) si h es positivo y préximo a cero, es:

z+h

o+ —gta) = [ s~ [ swae= [T s

a x

T

Como f es continua en [,z + h] , por el teorema del valor medio para in-
tegrales resulta que la ultima integral es igual a f(c)h para algin nimero c
entre z y z+h y por lo tanto:

gle +h) —g(x)

= f(¢) paraalgin centre x y xz+h

h
Entonces ( h) ( )
. glx+h)—glx) .
hlg(rJl‘*‘ h B hlgél‘*‘ J(e) = /(@)

pues, cuando h tiende a cero por derecha, ¢ tiende a z y, ya que f es continua,
f(c) tiende a f(x).

ii) si h es negativo y proximo a cero, con igual razonamiento es, para algin
numero c¢ entre x+h y x:

g@) —gla+h) = [ f)dt = f(e)(~h)

z+h

por lo tanto:

gz +h) —g(x)
h

= f(¢) paraalgin centre x+h y x
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

y entonces
gz +h)—g(x) _
hlggl_ h B hlggl_ f(e) = flw)
Por i) y ii) ,
g'(x) = f(z)
Observacion:

» Hay que tener cuidado con las funciones integrales de la forma g¢(z) =
/ f(t)dt donde f es acotada pero no es continua en todos los puntos

del intervalo |a,b]. El Teorema Fundamental no se aplica en esos casos.

» El Teorema Fundamental del Célculo Integral puede adaptarse a casos
mas generales, usando la regla de la cadena para derivadas: Si f es
una funcién continua en el intervalo [a,b] entonces la funcién integral

h(x)
g(x) = / f(t)dt es derivable en (a, b) , continua en [a,b] v ¢'(x) =
f(h(z)).h'(x) Vo € (a,b) (Suponer h(z) derivable en el intervalo).

Ejemplo: El Teorema Fundamental del Célculo podemos usarlo cuando tra-
bajamos con la derivada de una funciéon definida por una integral. Este teo-
rema nos permite calcular la derivada de funciones que estan definidas como
integrales, si se cumplem las hipotesis.

Supongamos que tenemos una funcién definida como:

Usamos el teorema para encontrar la derivada:

g'(x) = cos(x)

Otro ejemplo, es

F(x):/jetht

Usamos el teorema para obtener su derivada:

F'(z) =€".
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Teorema Fundamental del Calculo Integral. Parte II. Regla
de Barrow

Si f es una funcién continua en el intervalo [a,b] y F es una primitiva

b
de f en el intervalo. Entonces / f(z)dx = F(b) — F(a).

Demostracion: Sea g(x) la funcién integral de f(z) y F(z) una primitiva. Es
decir que, g(z) = / f(t)dt . Resulta entonces que la funcién g(z) — F(z)

es continua en [a,b] , derivable en (a,b) y es tal que (¢ — F) (z) = ¢'(z) —
F'(z) = f(z) — f(x) =0 Vz € (a,b) .

Entonces g(x) — F(z) es por lo tanto una funcién constante en [a, b] :
g(x) — F(z) =C Vx € [a,b]
En particular:

g(a) — F(a) = C (de donde se deduce C'= —F(a) ya que g(a) = 0)
g(b) — F(b) = C', entonces:

[ #tdt = F@) ~ Fla)

Notacion

Escribimos )

[ fydr = F@)

para expresar la diferencia F'(b) — F'(a). Donde F(z) es una primitiva
de f(z) en un intervalo I con [a,b] C I.

Es decir que la integral definida [’ f(z)dz puede determinarse conociendo
solo los valores que toma una primitiva en los puntos a y b.

Importante:

Hemos demostrado un resultado que muestra que la derivacion y la integra-
cién son procesos inversos, conectando el Célculo Diferencial con el Calculo
Integral. El Céalculo Diferencial surgié del problema de la recta tangente,
mientras que el Calculo Integral lo hizo de un problema (en apariencia no re-
lacionado) del célculo del area. Isaac Barrow (1630-1677), profesor de Isaac
Newton en Cambridge, descubrié que en realidad estos dos problemas estaban
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

intimamente relacionados. Luego, fueron Newton y Leibniz quienes explota-
ron esta relacion y la usaron para desarrollar el calculo como un método
matematico sistematico.

1.6.1. Ejemplos

4
3 43 64
= ——-0= 3 (jvean que hemos calculado en este

4
/ 22dr = r
0 3 3

0
renglén el valor exacto del area debajo de la grafica de f(x) = x
intervalo [0, 4]!)

2 en el

1

1 x4
3
do = —

/_31: . 4

/027r sen(x)dx = —cos(x)

4 _2)4
4 4 4 4 4

-3
2

= —cos(2m) — [—cos(0)] = —-1+1=0

0

Calculemos la funcion integral para

1,si —1<z<0

J() = {sen(az) +1,si0<xz<7/2

05

Observar que la funcién f(z) es continua, entonces podemos definir la
funcion integral en ese intervalo, y la misma cumplird que su derivada
es la funcién dada, por el Teorema Fundamental.

La funcién integral es:



1.6. TEOREMA FUNDAMENTAL DEL CALCULO INTEGRAL

En este caso la funcién g(x) serd a trozos, ya que f(x) lo es.
Si—1<z<0,
g(a:):/ ldt =2 +1
-1

Si0<z<m/2
0 x

g(x) = / 1dt—i—/ (sen(t)+1)dt =1—cos(x)+x+1=2—cos(z)+x
-1 0

Resultando ser la funcién integral:

r+1, 81 —1<2<0
g(x) = .
2—cos(z)+uz, si0<zx<m/2

1 .:c /2

-15 -1 -05 0 05 1 158 2 255

Notar que en este caso, por ser la funcién f(z) positiva, la funcién g(z)
calcula el area encerrada por: arriba del eje x, por debajo de la funcion
f(x) y entre x = —1y x, para z < 7/2.

Por ejemplo, g(7/2) ( g(7/2) =2 — cos(w/2) + /2 =2+ 7/2 ) es el
area total debajo de f(z).
Ademas, por el Teorema Fundamental del Célculo, podemos afirmar

que la funcién integral hallada g(x), es derivable y continua en el in-
tervalo (verificarlo), y que ¢'(z) = f(x).

Observacion

Observar que para una funcién continua f(x) en un intervalo y por el Teorema
Fundamental del Célculo Integral, si g(x) es su funcién integral, es decir que
g (x) = f(x), es posible conocer el comportamiento de g(x) a partir del
comportamiento de f(z). Es decir, que se cumple lo siguiente:
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

f(x) 9(z)
positiva crece
negativa decrece
cero en un punto P | en P existe posible punto critico

1.6.2. Ejercicios

1. ;Son verdaderas o falsas las siguientes afirmaciones? Tachar la igual-
dad cuando responden que es falsa y recuerden siempre justificar sus

respuestas.
b

b
i) Si f es continua en [a,b] y « € R | / af(x)dr = a/ f(z)dz.

a

it) Si f y g son continuas en |a, b| ,

[ @)+ st do = [ f(ada + [ g(ado
[ 1) - st do = [ f(aia — [ a(orda

/abf(x)g(x)dx = /abf(x)dx /abg(:v)dx

2. En los siguientes incisos verificar que los integrandos son funciones con-
tinuas o seccionalmente continuas en los intervalos de integracién, cal-
cular las integrales e interpretar geométricamente los resultados.

a) fo (2% + 22 + 2)dx
b) fi e*da

c) ffi dx

d) [?, || dx

e) [*,(3x — 5)dx

£) Jo (1 =22 — 32%)da
g) [Zr2d
h

muf—ﬁm
j) fog(cosﬁ + 2send)df

)
) 625
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1.6. TEOREMA FUNDAMENTAL DEL CALCULO INTEGRAL

k) fg sec’t dt

) oz do

m) f%% ﬁ dx

n) i S5 di

0) [2, f(z) dz donde

f($):{x+1 si—1<z<1

33—z stl<ax<3

p) fog f(z) dz donde

e}

sen(2z) si

flo) = {003(293) st

q) Siendo p # —1 y suponiendo que 0 ¢ [a,b] [° zPdx

INE
IA A
8 R
VANVA
CIENNE

. Calculen el valor promedio de la funcién f en el intervalo dado:

i)f(x) = senx en [0, 7] i) f(x) = /r en [4,9]

1 . 1 st —2<2<0
iii) f(x) = ;en[l,él] w) f(x) = 1 si0es<o

. En los siguientes incisos, analicen si es posible aplicar el teorema del
valor medio para integrales y, cuando sea posible, encuentren todos los
numeros ¢ cuya existencia garantiza dicho teorema.

i)f(z) =2*+1en [—1,2]
i) () = 2] en [=1,4

—22—-1 51 —2<z<0
1 si 0<ax<6

MUﬂ@z{

. En los siguientes incisos, hallen la expresiéon analitica de la funcién
integral de f en el intervalo dado. En cada caso realizar un esbozo de
las graficas de f y de su funcién integral.

st —2<x<1
) = - = —-2.3
i) f(z) {1m1<x§3 en [-2,3
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

0< <1
ZZ) f(x) B {f:; si_1x<_:1: <2 n [0’ 2]
iti) f(z) = {x silswsl en [0,2]

sen(fx) sil <wx <2

En cada caso, y a partir de las graficas de f(x) y de F/(z), en un mismo
sistema de coordenadas, observar: i) ;Qué sucede en las graficas de f
y de F' en los puntos en los que F'(x) = 07 7i);En qué intervalos es F
creciente? ;En qué intervalos es F' decreciente? ;Qué pueden decir de
f en esos intervalos? 4ii); Qué pasa con la grafica de F' en los puntos
donde f'(x) =07

6. Calcular las derivadas de las siguientes funciones:

0"

i) F(x):/;\/:jdt )G(x):/:z\/:ﬁdt

i) H(z) = 2 + 2% + / ¢ dt
0
i) T(z) = 2x —/ cos(mt?) dt en x = —1
~1

7. En los siguientes incisos, hallar la ecuacién de la recta tangente a la
grafica de f en el punto que tiene la abscisa indicada.

' o [T 1
i) f(z)= —/2 Tt enz=1L

1.2
it) f(x) =3 +/ sec(t — 1)dt en x = —1.
1
8. Hallar una funcién continua f tal que: /I f@t) dt = xe%—/x e Lf(t) dt.
0 0

9. Analizar la validez de las siguientes afirmaciones siendo h(z) = / f(t) dt,
0
fl(z) <0 VzeRy f(1) =0.
i) h es dos veces derivable como funcion de z.
it) by 7, Son funciones continuas.
T

iii)La grafica de h tiene recta tangente horizontal en x = 1.
iv)h tiene un maximo local en x = 1.

v)h tiene un minimo local en z = 1.

vi)La grafica de h tiene un punto de inflexién en z = 1.

vi)La grafica de T corta al eje z en x = 1.
x
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Volvamos al problema del calculo de la integral definida. Si conociéramos tal
valor numérico: ; Cudles magnitudes escalares podremos calcular mediante su
uso? Veamos a continuacién que segin sea la funciéon a integrar, la integral
calcula diversos valores fisicos y geométricos.

1.7. Aplicaciones geométricas de la integral
definida

1.7.1. Areas de figuras planas

Tal como habiamos mencionado, mediante la integracion es posible calcular
el valor del area de figuras planas. Veamos algunas situaciones.

1. Si f es una funcién continua y positiva en [a,b] (como se observa en
el grafico). El area encerrada debajo de la grafica de f en el intervalo
[a,b] y por encima del eje x, entre las rectas de ecuacion x = ay z = b,
se calcula por:

Area(R) = /ab f(x)dz

Esa region del plano puede describirse analiticamente de la siguiente
manera;

R:{(:c,y)ERZ / agxgb,()gygf(:c)}

2. Consideremos ahora una funcién f continua y que toma valores nega-
tivos en [a,b] (no hay regiones arriba del eje z). El area de la region
ubicada entre la grafica de f y el eje z, en el intervalo [a, ] . se calcula
por:
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

b
Area(R) = / (—f(2))dx
En estos casos el valor numérico de la integral definida estd en unidades de

area (ejemplo, metros cuadrados, kilometros cuadrados, ect. ).

Actividad: Describir analiticamente las siguientes regiones y analizar como
plantear una integral que calcule el area de cada una de ellas:

s f
A Y
¥ R
Q b
> /—T
X
R »
a b X
m

En general: Si f(z) y g(x) son funciones continuas en [a,b] y g(z) < f(z) en
ese intervalo, queda definida una regién plana que puede describirse analitica-
mente de la siguiente manera: R = {(a:, y) ER® / a<z<b, gz)<y< f(x)}

b
y cuya area se calcula con: / [f(x) —g(x)] dz .
Ejemplo: Calcular el drea de la regién R limitada por las curvas y = 22 y

T4y =2
Graficamos ambas curvas y visualizamos la region:
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Los puntos de interseccion los hallamos resolviendo el sistema de ecuaciones

y =

T+y=2
dichos puntos son: (—2,4) y (1,1). Podemos describir en forma analitica la
region limitada por las curvas de la siguiente manera:

R:{(:E,y)ERQ/ —2§x§1,x2§y§2—x}

Entonces:

1
1 2 3 2 2
ot = [ ooy = (-5 -5)| G-(5)-

Considerar ahora la siguiente situacion:
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

Vean que en el intervalo [a,b] es ¢g(x) < f(x) y que en el intervalo [b, | es
f(x) < g(x). La regién limitada por las graficas de f y ¢ se describe analiti-
camente de la siguiente manera:

R={(w,y) eR’/a <z <b, g(z) <y < f@)U{(z,y) eR*b<a <c flz) <y<gla)}

Entonces:

drea(R) = [ f() ~ o)) o+ ["lo(e) ~ fa)] dr

En ocasiones resulta conveniente considerar que la region esta limitada por
las graficas de funciones de la variable .

Z—x=f(y)

1.7.2. Volumen de un sélido de revolucién

Imaginar que la grafica de la funcién f(z) = /z con x € [0, 1] rota alrede-
dor del eje ... Cada punto (x, /z) de la curva describe una circunferencia
centrada en (x,0) y de radio /x, generandose una superficie que, decimos,
es una superficie de revolucion.
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v

v

% X
1

Dicha superficie esta limitando a un solido V que, decimos, es un sélido
de revolucion. Podemos interpretar que dicho sélido es el generado al rotar
alrededor del eje x la region limitada por y = /2 ;y=0;2=0y z = 1.

v

Para calcular el volumen del sélido de revolucién V vamos a reproducir -
adaptandolo a este nuevo problema- el procedimiento que utilizamos para
calcular el area debajo de la grafica de una funciéon continua y no negativa en
un intervalo cerrado (jlo recuerdas?) En ese caso, aproximamos el area de la
region sumando las areas de rectangulos. Ahora aproximaremos el volumen
del s6lido considerando soélidos cilindricos como el que muestra la siguiente
imagen:
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SeaP:axg=0<x; <..<wzi1<x<..r,=1 una particion del intervalo
0,1] ; sea Az; = 2; — 2,1 y sea x} € [x;_1, ;] (cualquiera).
Siendo asi,

m[f(@})]) Az

es el volumen de un cilindro de radio f(z}) y altura Az;, como el que muestra
la imagen anterior.
Entonces

j T [f(27)]" Awi = vol(V)

1

)

n

vol(V) = Ifm Zw[f(:v;")]QAxi:/Olﬂ[f(x)]zdx

|P|—0 i1
Como habiamos mencionado que f(z) = /z,

1 9 1 22|}
Uol(V):/ W[\/E] dl’:ﬂ'/ :L'dZE:T('?
0 0

=-7
0

Si f es una funcién continua y no negativa en un intervalo cerrado [a,b]
vy R ={(z,y) eR?/a<z<b; 0<y< f(z)}, el volumen del sélido de
revolucién que genera R al rotar alrededor del eje z puede calcularse con
la siguiente integral definida:

Volumen = /b 7 [f ()] dx

a
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Actividad: Les proponemos ahora que piensen en los solidos generados y en
como calcular el volumen en las siguientes situaciones:

1. Una regién R que puede describirse en la forma
R={(z,y) eR?’/e<y<d; 0<z<g(y}h
rota alrededor del eje y.

2. Una region R que puede describirse en la forma
R={(z,y) eR*/a<a<b; 0< f(z) <y < g(a)},
rota alrededor del eje .

3. Una region R que puede describirse en la forma

R={(z,y) €ER?/c<y<d; 0< fly) <o < gyl
rota alrededor del eje y.

4. Una regién R que puede describirse en la forma
R={(z,y) eR*/a<a<b;y < flr) <y < g(a)},
rota alrededor de la recta horizontal y = yq.

5. Una region R que puede describirse en la forma
R={(z,y) eR?’/e<y<d;z < fly) <z =g}

rota alrededor de la recta vertical z = zg.

Ejemplo: Sea R la regiéon limitada por y = vdz e y = x.

- N W & O
h 1

Cuando R rota alrededor del eje x genera un sélido (de revolucién) que tiene
una cavidad. El siguiente grafico muestra un corte de dicho sélido (plano zy):
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El volumen del s6lido puede obtenerse en este caso como la diferencia entre los
volumenes de V; (sélido generado por Ry = {(:v,y) ER?/0<2<4;0<y< \/ﬂ},
rotando alrededor del eje z ) y V4 (sdlido generado por

Ry = {(z,y) eR?/0 <2 <4; 0<y<z}, rotando alrededor del eje z) o

sea, de la siguiente manera:

vol—/:w[\/ﬂrdx—/;ﬂ[xfdx

(Tarea: completar el célculo de las integrales y verificar que el resultado es

%

Si la misma region R rota alrededor del eje 3, el corte en el plano xy del sélido
generado se ve de la siguiente manera:

N W e O
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El volumen puede calcularse como la diferencia entre los volimenes de dos

solidos , a saber: el solido V; generado por

R, = {(x,y) cR?0<y<4;0<z< y} rotando alrededor del eje y y V5
2

generado por Ry = { (z,y) €R?/0<y<4;0<x< %1} rotando también

alrededor del eje y. Entonces, en este caso es:

4 4 272
’UOl:/ ﬂ[y}Qdy—/ ﬂ[y] dy
0 0 4
128

(Completar el célculo de las integrales y verificar que el resultado es 5z )

» Puedes utilizar esta aplicacion de GeoGebra para visualizar y calcular
el volumen de un sélido de revolucién.

1.7.3. Longitud de un arco de curva

Sea f una funcién continua en el intervalo [a,b] y con derivada también
continua en ese intervalo y sea C': y = f(x) ; x € [a, b].

A
¥

Sb) 8
L
@) = ¢

Con la intencién de calcular la longitud de C, consideremos
Pira=xy<..<xiq <z <..<x, =0 (particion del intervalo [a, b]).
Esa particién determina puntos P; = (x;, f(x;)),con i = 0...n, en el arco de

~~

curva C'y lo divide en n sub-arcos P;_{P;.
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Si aproximamos la longitud de cada uno de esos sub-arcos con la longitud
del segmento P;_; P;, tendremos:

Zd (P41, P) Z \/ —xi1)? 4 [f(z;) — f(xi_l)]Q ~ Long(C)

Siendo (para cada i = 1...n) f continua en [z;_1,x;] y derivable en (z;_1, z;),
en virtud del teorema del valor medio de Lagrange podemos afirmar que
existe z} € (z;_1, ;) tal que f(x;) — f(xi—1) = f'(«f)(z; — x;—1). Entonces

Long(€) ~ 3 f(a— ria) i) o — i) = 31+ [P

Long(C) = lim Z V314 [f'(z A:E,

|’P\~>0

Longitud(C) = /ab V14 [f'(2)]de

Ejemplo: Calcular la longitud del arco de curva y = V23 de extremos
A=(0,0)y B=(4,8).

3
Siendo y = f(z) = Va3, es f'(z) = 5 Vo (funcién que es continua en

[0,400)) y la longitud del arco de curva se calcula entonces de la siguiente
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manera:

/ﬁdx_/ ,/ (4 + 92) /mcxx_

CZ(4492)° —217(\/@—8)

l\')\’—‘
C«O\I\D

1

9
0
1.7.4. Ejercicios. Areas de figuras planas

1. En los siguientes incisos, hallen el drea de la regién limitada por las
curvas dadas.
i) y=a;y=ux i)y =1x% y=—2"+2 dii)y=2x;y=71"
wy=z;y=2>—-2 v)dr+y*=0;y=2x+4
vi)r+1=2(y—2)? ;0+6y=7

2

2. Grafiquen la region limitada por: zy =2 ; 20=y ; = =2y.
i)Para describir la regién y calcular luego su érea, les parece que ofrece
alguna ventaja en este caso el considerar las curvas que conforman la
frontera de la regién como graficas de funciones de z o de y?
i1) Describan analiticamente la regién y calculen su érea.

3. ;Para qué valores de m la recta y = ma y la curva y = 2% definen una
region? jCual es la expresion en funcién de m del area de dicha region?

4. Calculen el area de la region del plano limitada por la grafica de la
funcién f(z) = 3z% — 322 — 62y el eje z.

1.7.5. Ejercicios. Volumen de sélidos de revolucién

1. Calculen el volumen del s6lido que genera la regién del plano limitada
por la grafica de f(z) =4 — 22 y el eje x en el intervalo [0, 2]al rotar:
i) alrededor del eje z i) alrededor del eje y

2. En los siguientes incisos, calculen el volumen del sélido que genera la
region R al rotar como se indica .
a) R limitada por y = 2 ¢ y = 1 rota alrededor del eje .
b) R limitada por y = 2 e y = x rota alrededor del eje z.
¢) R limitada por y = 22, = 1 e y = 0 rota alrededor del eje z.
d) R limitada por y = 22, x = 1 e y = 0 rota alrededor del eje ¥.

e) R limitada por y = —, x = 1, x = 4 e y = 0 rota alrededor del eje z.
x

f) R limitada por z = /4 —y, x = 0 e y = 0 rota alrededor de la recta
T =2
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1
ﬁ?
integrales con las que se calcula:
i) el area de R.

it) el volumen del sélido que genera R al rotar alrededor del eje .

i11) el volumen del sélido que genera R al rotar alrededor de la recta

3. Siendo R limitada por y = x =12 =3 ey = 0, planteen las

y=—1.
iv) el volumen del sélido que genera R al rotar alrededor de la recta
r =4

4. Calculen mediante integrales :
a) el volumen de una esfera de radio a.
b) el volumen de un cono circular recto, siendo r el radio de la base y
h la altura.

1.7.6. Ejercicios. Longitud de arco de curva plana

1. Calcular la longitud del segmento de recta 2x —4y+6 = 0 con extremos
(—3,0) y (1,2) mediante una integral definida. Comprobar el resulta-
do usando la féormula de distancia entre dos puntos. ;En qué variable
integraron? Repetir el calculo integrando en la otra variable.

: 1
2. Calcular la longitud del arco de curva C': y = 2 z3 b3 <z <T.

3. Un cable suspendido entre dos torres eléctricas que distan entre si 40
metros adopta la forma de una catenaria de ecuacién

y = 20 cosh(;—o) . —20 <z <20

, Cuanto mide el cable?

1.8. Aplicaciones fisicas de la integral defini-
da

1.8.1. Desplazamiento de un moévil en linea recta

Supongamos que v(t) mide el valor de la velocidad de un mdévil que se des-
plaza en linea recta, siendo t el tiempo, variable independiente. La funcion
velocidad en un intervalo de tiempo puede ser positiva (significa que el mévil
se mueve hacia adelante sobre la recta) o negativa (significa que el mévil se
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mueve en direccion hacia la izquierda segin los valores de crecimiento del
eje).

Entonces la integral definida calcula el desplazamiento realizado por el movil
desde el tiempo a hasta b.

b
Desplazamz’enw:/ v(t)dt

a

Y la distancia total recorrida en el intervalo de tiempo se calcula por:

b
Distancia total recorrida :/ lu(t)] dt
a

El resultado numérico es en la unidad de medida de longitud.

Ejemplo Sea v(t) la velocidad de un mévil en el intervalo de 0 a 10 seg. y
supongamos que v(t) =5 —t , dada en m/seg.

En este caso, el Desplazamiento=;°(5 — t)dt = 0 metros.

Y la distancia total recorrida en el intervalo de tiempo es:

Distancia total recorrida=[y"|5 —t|dt = [J(5 — t)dt + [;°(t — 5)dt = 25
metros.
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L'~d

I L 1 fl
T

A

1.8.2. Masa de una barra con densidad variable conti-
nua

Consideremos una barra o alambre lo suficientemente delgado como para ser
tratado como un objeto unidimensional. Lo colocamos sobre el eje x, con el
extremo izquierdo de la barra en x = a y el extremo derecho de la barra en
x = b. Podemos calcular la masa de la barra orientada a lo largo del eje x
integrando su funcién densidad. Si la barra tiene una densidad constante d
(homogénea), dada en términos de masa por unidad de longitud, entonces la
masa de la barra es solo el producto de la densidad y la longitud de la barra:

Masa = (b—a)d

Sin embargo, si la densidad de la varilla no es homogénea, el problema se
vuelve un poco mas complicado. Cuando la densidad de la barra varia de un
punto a otro, denotemos con

d(x)
a la densidad de la barra en cualquier punto x.
Yi
X_, 1 X:’
o
| |
-
— T ebkabasiliahaiaiade +—-x
a b
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1.8. APLICACIONES FISICAS DE LA INTEGRAL DEFINIDA

Con la intencién de calcular la masa, consideremos una particion del intervalo
y una suma de Riemman asociada a la particién

Pia=xy<..<xi1 <z <..<x, =0 (particion del intervalo |[a, b]).
Esa particién determina puntos P; = (x;,d(z;)),con i = 0...n, en la barra y
la divide en segmentos.

Si aproximamos la masa de la barra en cada segmento con la longitud del
segmento P;_1P;, tendremos: que la masa m; del segmento de la barra de
ri_1 a x; se aproxima por la longitud de tal segmento por el valor de la
densidad en un punto del intervalo. Con lo cual al tomar el limite de la suma
de Riemman y suponiendo que la integral existe, resulta:

b
Masa:/ d(x)dx

1.8.3. Trabajo

El concepto de trabajo es importante para el ingeniero cuando necesita de-
terminar la energia necesaria para realizar diferentes tareas fisicas. Es ttil
conocer la cantidad de trabajo realizado cuando una grta eleva una viga de
acero, cuando se comprime un muelle, cuando se realiza un lanzamiento, o
cuando un vehiculo transporta una carga. En el lenguaje cotidiano, el tér-
mino trabajo se utiliza para indicar la cantidad total de esfuerzo requerido
para realizar una tarea. En fisica tiene un significado técnico que esta en re-
lacién con la idea de fuerza. Intuitivamente se puede pensar una fuerza como
el hecho de empujar un objeto o tirar de él. Decimos que se hizo un trabajo
cuando una fuerza mueve un objeto.

Existen muchos tipos de fuerzas: centrifuga, gravitacional, etc. Una fuerza
cambia el estado de reposo o de movimiento de un cuerpo. Para las fuerzas
gravitacionales en la tierra se suelen utilizar unidades de medida correspon-
dientes al peso de un objeto. Cuando la fuerza es constante todo parece
sencillo pero cuando se aplica una fuerza variable a un objeto se necesita
el calculo para determinar el trabajo realizado ya que la fuerza varia segin
el objeto cambia de posicién. (Referencia: Resnick, R., Halliday, D. (1970).
Fisica: parte 1.)

En fisica el modo general de definir el trabajo W (magnitud escalar) realizado
por una fuerza F para mover un objeto en la direccién de un desplazamiento
d es el producto escalar de la fuerza por el desplazamiento:

W=Fd
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Y

En términos de la definicién del producto escalar y llamando a F' = ‘]3

d= ‘cﬂ y a 6 al angulo formado entre los vectores, resulta:

W = ‘ﬁ‘ . ‘d“ .cos(0)

d

A partir de esta definicién general, vemos ahora el caso particular cuando el
desplazamiento es en linea recta y la fuerza actia en la misma direccion del
movimiento, y como calcular el trabajo.

Trabajo realizado por una fuerza en la direccion del desplazamiento
en linea recta La figura siguiente interpreta este caso particular, es decir
el caso en que el dngulo 6 es cero, por lo tanto el cos(6) = 1.

i

—_ =

| =
d

= Si la fuerza F' aplicada al objeto es constante y tiene la misma
direccion y sentido que el desplazamiento que suponemos ademas es en
linea recta, entonces, en este caso el trabajo es:

W =Fd

donde F' es la magnitud de la fuerza y d es el desplazamiento ocurrido.

» Sila fuerza F tiene la misma direccién y sentido que el despla-
zamiento pero es variable, en este caso, supongamos que un objeto
se mueve a lo largo de una linea recta desde x = a hasta x = b debido
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1.8. APLICACIONES FISICAS DE LA INTEGRAL DEFINIDA

a una fuerza que varia continuamente y su magnitud es F'(z), entonces
para calcular el trabajo, se procede del siguiente modo.

Consideramos una particion que divide al intervalo [a, b] en subinterva-
los tal como se ha realizado con anterioridad, y consideramos la suma
de Riemman para tal particion, obtenemos que, en cada subintervalo el
trabajo realizado se aproxima a F'(z})Ax;, tomando limite, el trabajo
total realizado por el objeto al moverse desde a hasta b por la fuerza
esta dada por:

n

W= lim > F(z})Az;

|P|—0 P}

Entonces si un objeto se mueve a lo largo de una recta debido a la accion
de una fuerza que varia continuamente cuya magnitud es F'(z) y actia
sobre el objeto en la misma direccién y sentido que el desplazamiento,
entonces el trabajo realizado por la fuerza conforme el objeto se mueve
desde = = a hasta z = b es posible calcularlo por (en el caso que F sea
integrable):

W:/abF(x)dx

Ejemplo: Ley de Hooke Un ejemplo de lo anterior es el célculo del tra-
bajo requerido para alargamiento o compresion de un resorte que realiza una
fuerza variable. Supongamos que estiramos el resorte de modo que su ex-
tremo se mueve hasta una posicion x , el resorte ejerce una fuerza sobre el
agente que lo estira cuya valor es aproximadamente

F(z)=—kx

siendo k£ una constante de proporcionalidad, que depende del material, del
calibre (grosor), del alambre, de la temperatura, etc. Notar que la fuerza no
depende de la longitud natural del resorte, sino solo de su desplazamiento.
El sentido de la fuerza es siempre opuesto al desplazamiento del extremo con
respecto al origen. Es decir, cuando se estira el resorte z > 0 y F' es negativo,
cuando se comprime z < 0y F' es positivo. La fuerza F' siempre esta dirigida
hacia el origen. Esta se conoce como Ley de Hooke que indica que para un
cierto rango llamado rango de elasticidad o limite eldstico, la fuerza necesaria
para deformar un resorte es proporcional a la distancia que se ha deformado.
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=

Para estirar un resorte debemos aplicar sobre él una fuerza igual a F' pero
de sentido contrario. La fuerza aplicada es por consiguiente F' = k.x y el
trabajo Wx efectuado por la fuerza aplicada al estirar el resorte de manera
que su extremo se mueva de 0 a zy es muy sencillo de calcular (drea de un
tridngulo):

W = /Omf koadr = (1/2).k.(xf)*

Esto ultimo resultado es 1til por ejemplo para estimar la constante k.

En fisica e ingenieria muchas magnitudes escalares pueden ser calculadas a
partir de la integral definida de una funcién adecuada (segin sea el caso). A
las mencionadas anteriormente, existen muchas otras aplicaciones, como son
el calculo de momentos, centros de masa y fuerza ejercida por la presion de
un liquido.

Ademas mencionar que las unidades del valor numérico de la integral definida
para el caso en que se calcule una magnitud fisica o geométrica dependera de
las unidades de los ejes x e y. Si por ejemplo el eje horizontal esta en segundos,
y el eje vertical estd en metros sobre segundos al cuadrado, la integral estara
en unidades de metros sobre segundo. Este caso se presenta por ejemplo en
cinematica cuando integramos la funcién aceleracién a(t).

1.8.4. Ejercicios. Aplicaciones fisicas de la integral de-
finida

1. Un moévil se mueve en linea recta con velocidad v(t) = ¢* — 2t, metros
por segundo, donde t es el tiempo en segundos. ;Cual es la distancia
total que recorre el mévil entre t = 0 y t = 3 segundos? ;Cudl es el
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1.9. INTEGRAL INDEFINIDA

desplazamiento del mévil entre ¢ = 0 y t = 3 segundos? Graficar en
cada caso.

2. La densidad lineal de una barra de 4 metros varia en cada punto de
la misma directamente proporcional a la distancia de ese punto a un
punto exterior colocado a 2 metros del extremo derecho de la barra,
donde la densidad es de 5kg/m. Calcular la masa total de la barra.
Esquematizar la situacién.

3. Una particula se mueve a lo largo de una linea recta por accién de una
fuerza f(z) (kilos) cuando la particula estd a x metros del origen. Si
la fuerza es f(z) = x® + 4, calcular el trabajo realizado conforma la
particula se mueve de x = 2 a x = 4 metros.

4. Un resorte tiene una longitud natural de 14 cm. Si una fuerza de 500
dinas se requiere para estirar el resorte 2 cm. (dina: fuerza que, aplicada
a la masa de un gramo, le comunica una aceleracién de 1 centimetro en
un segundo al cuadrado). Calcular el trabajo que se realiza para estirar
el resorte de su longitud natural hasta una longitud de 18 cm.

1.9. Integral indefinida

Como hemos visto, el problema del calculo de la integral definida de una
funcién continua en un intervalo cerrado queda resuelto una vez hallada una
primitiva de la funcién. Para diversas funciones hemos llevado adelante con
éxito la busqueda de primitivas, pero sabemos que esa tarea no siempre es
sencilla. A diferencia de lo que sucede con el célculo de derivadas, no hay re-
glas que conduzcan, a través de su aplicacion sistemética, a la determinacion
de las primitivas de cualquier funcién. En las siguientes pdginas conocere-
mos algunas técnicas que nos permitiran, en algunos casos, hallar primitivas.
Antes de eso, definiremos lo que se entiende por integral indefinida y adop-
taremos una notacion muy conveniente para referirnos a todas las primitivas
de una funcién.
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

Propiedad

Si F(z) es una primitiva de f(z), entonces toda otra primitiva de f tiene
la forma F(x) 4+ C , siendo C una constante arbitraria. F'(z) 4+ C se
llama primitiva general de f(z).

El simbolo / f(z) dz se lee: integral indefinida de la funcion fy repre-
senta la primitiva general de f(x). Es decir que si F(z) es una primitiva
de f(z):

/f(:zc) dr = F(z) + C

Ejemplos:
3

/dex:%nLC’
/1d —2i+C
7 r =2z

1
/—d:c:ln|x\+0
xZ

Nota: Aunque no lo indicamos, es importante tener en cuenta que las igual-
dades anteriores son validas en determinados intervalos de nimeros reales.
La primera es valida en cualquier intervalo / incluido en R, la segunda, en
cualquier I C (0,00) y la dltima en I C (0,00) 0 I C (—00,0).

1.9.1. Ejercicios

Conociendo las derivadas de algunas funciones y las reglas de derivacion,
podran ustedes hallar las siguientes integrales indefinidas:

) 1
1)fﬁdx

. 1

W=
1
iii) [ T2

iv) [ (2% + V/3)) dv

1
v)[ o

vi) [(cos(3x) + 3senx) dx

dx

dx
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L |
vii) | 22
X
3_3 2 1
viti) f 2 L gy

\/E
ix) [ y*(y* — 3) dy
x)[(t* 4+ 1) dt

1.10. Técnicas de integracién: Método de sus-
titucion

Dada la siguiente integral: [(z* + 3x)30(4x3 +3) dx Para resolverla conviene

observar que si llamamos g(z) a (z* + 3x) entonces ¢'(x) = 42 + 3 y la

30

(*
g'(x)

integral resulta ser : [ [g(z)] x)dx. Observamos asi que el integrando no
31
es otra cosa que la derivada de [g(;:l)] y que por lo tanto:
31 4 31
/($4+3$)30(4JZ3+3) dr = / [g(x)]?)o g/(ZE)dI — [9(3371)] +C — [(23 —;1337)] —|—C

Método de Sustitucion

En general, siendo F' una primitiva de f,

| #a@)g (@) dz = Flg(a) +C

ya que, en virtud de la regla de la cadena es : [F(g(x))] = f(g(z)).¢'(x).
Lo anterior justifica que en una integral de la forma [ f(g(z))¢'(z) dx
reemplacemos a g(x) por u y escribamos:

[ 19(@)g @) dw = [ flu)du = F(u) + C = Flg(a)) +C

\. J

Ejemplos:

s [(22 + 3)cos(z? + 3x)dx
siendo u = 2 + 3z , du = (2x + 3)dx
y la integral se resuelve de la siguiente manera:

/(2x+3)cos(az2+3x)da: = /cos(u)du = sen(u)+C = sen(2*+3z)+C
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

» (523 + 3x — 8)(5a? + 1)dx
siendo u = 5z® + 3z — 8 , du = 3(5z* + 1)dx
1
Resulta entonces: (5z® + 1)dz = gdu

y la integral se resuelve de la siguiente manera:

1 142 1
/@ﬁ+&p@xaﬁ+nmx=/ugdu:§%44kzégﬁ+&m@f+c

Observacion: Cambio de variable en integrales definidas Para una
integral definida

/abf(x)dx

el cambio de variable x = g(u) introduce el factor ¢’(u) en el integrando y
modifica los limites de integracion para la variable u, resultando a = g(c)

y b:g(d)’ . p
| f@yde = [ fgw)g (w)du

5
Para calcular / z(z® +1)* dz podemos aplicar el método de sustitucién de
-1
la siguiente manera:

1
siendo u =22+4+1 , du=2xdzr ,asique axdv = idu . Resulta entonces:

264 24
=g~ g =0T

8

5 2% 1 1 /26 1 u4]*
2 3 3 3

1 d:/‘ %izf/ du ==L

/71x(x+)as 2u2u22uu242

Como habran observado, los limites de integracion de la integral expresada
en la variable u no son los mismos que en la variable z .

r=-1 = u=(-1)2+1=2

r=5 = u=5+1=26

1.10.1. Ejercicios

1. Integrar aplicando el método de sustitucion.

t [
i) alrj—if dx ii)/% dr  iii) /tg5x sec’r dr iv)/tgx dx
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V) /ctga: dx
Vi)/ 3z*(22° 4+ 9)° dx

Vii)/cos(Sa: +2)dx

zsen v x? + 4 1\ 2/1
Viii)/x Va?+4ddr ixX)| ————dx X)/ <1 + ) () dt
Vaz+4 t t2

xi) /m e dr Xii)/ . j_ dx Xiii)/(senx + cosx)? dx
61’

t —1 t
Xiv) /60083 dt Xv)/ \/ ’ dx Xvi)/ 5 dt
(2 + sent) 5 t*+4
1 1

. Calcular las siguientes integrales definidas realizando un cambio de va-
riable.

2 w 2 1
1)/ Inz dx ii)/ cos (;) dx iii)/ T i iv)/ ver +1e"dx
1 0 0

X -7 l‘2+1

1.11. Meétodos de integracién: Integracion por

partes

Recordar que si u(z) y v(z) son funciones derivables entonces

[u(@)v(@)] = ' (z)v(x) + () ()

Integrando ambos miembros de esa igualdad resulta:

u(z)v(z) = /u(x)v'(:v)d:v + /U(:B)u'(:v)d:v

y de alli se obtiene lo siguiente:
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

Regla de integracién por partes

/u(x)v/(x)dx = u(x)v(x) — /v(x)u’(x)dm

que usualmente se escribe:

/udv:uv—/vdu

Como se observa, la férmula traslada el problema de integrar u(z)v'(z) al de
integrar v(z)u'(z) (y serd de utilidad cuando pueda aplicarse y esa segunda
integral sea mas sencilla que la primera, o al menos no tan complicada).

Observacién: Para el caso en que la integral sea definida, y se encuentre
la primitiva por el método de integracién por partes, se aplica luego la regla
de Barrow del siguiente modo:

Ejemplos:
] /x e’ dr
Seau=x ; dv=e¢€"dx
entonces: du=dr ; v=¢€"

y, resulta: /xe”’cdw:xex—/exdw:xex—ex—l—C

(iNoten que si se hacia u = e* ; dv = x dr (que era otra posibi-
2

x
lidad) quedaba: du = e*dx ; v = 5 Y la integral a resolver era mas

complicada que la original!)

] / x Ilnx dx
d(Inx
En este caso, considerando que ( y ) = — conviene hacer:
x x
wu=Inxr ; dv=uxdx
1 72
entonces: du=—dr ; v=—
T 2
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y, resulta:

2 2 q 2 2 2
/mlmdmz%lnx— % ;dx:%lnx—/gdx:%lnx_%+0
/332 e’ dx
Seau=a2? ; dv=¢e"dx
entonces: du=2xdxr ; v=¢"

y, resulta: /xZemda:::ﬁe —/Qxexdx:x2e”—2/xexd:c:(*)
Noten que la integral que ha quedado para resolver se resuelve apli-
cando otra vez la integracién por partes (de hecho, es la integral que

resolvimos en el ejemplo 1)

() =22 —2[xe" — €|+ C =12 e" — 27 " + 2" + C

/ e’ cosx dx
Seau=¢€" ; dv=cosxdx
entonces: du=e€e"dx ; v=senx

y resulta: /ex cosr dr = e*senx — /eﬂc senxdx

La integral a resolver es de la misma dificultad que la original. Apli-
quemos nuevamente el método de integracion por partes a esa integral:

u=ce dv = senx dx

du =e"dr v = —cosx
/egC senxdr = —e”cosx — /ew(—cosz)dz

Por lo tanto:

/e”C cosx dx = e*senz — {—el’cos:z: - /e“(—cosa:)dx]

/ez cosx dr = €*(senx + coszx) — /excosxdx

2 / e’ cosx dr = e*(senz + cosz) + C

0 sea: .
/e”C cosx dx = 5 e”(senx + cosx) + C
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1.11.1. [Ejercicios

1. Integren aplicando el método de integracion por partes.

i) / r2cosz dx

ii) / x senz dx

iii) /x sec’z dx

iv) / Inz dx

\9) / arctgxr dx

vi) / arcsenz dx

vii)/(lnw)2 dx

viii) / e*senx dx

2. Calcular el 4rea de la regiéon limitada por:
a)y=Inx; y=0 ; z=06.
V3

b)y = arcsenx ; y=0 ; T=—

3. Calcular volumen del solido de revolucion que genera la region limitada
por:y=Inx; y=0 ; z=>5, rotando alrededor del eje .

1.12. Meétodos de integracion: uso de identi-
dades trigonométricas

] /senzx dr 'y /003233 dx

Teniendo en cuenta que cos2z = cos*x — sen’x

2r=1

y que sen’z + cos
se obtiene:
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9 1 — cos2x

senyx = ————
2

9 1+ cos2x

COs™T = ————

De modo que:

1 — cos2 1 1 2
/senzx dx = /# dx = 5/(1—0032x)dw =3 (a: _xen x>+C

1 2
/coszx dxzf—l—c;sx AT = oo,

] /thx de y /CthZ‘ dx

Usamos para estas integrales las siguientes identidades:

tg*x = sec’r — 1

2

ctg’x = cosec’r — 1

/t92$d$:/<8602$—1) dr =tgex —xz + C

/cthx dr = / (cosech — 1) dr = ....cccoveenei..

n / senr dx

Tratandose de la funcién seno elevada a una potencia par, usamos la
identidad que nos permitié integrar sen?z:

1— Ak
/sen4x dr = / {sen%cr dr = / [C;Sﬂ dr =

1 2
= 1 / (1 — 2c082x + cos 2x> dr =

:i[/ldx —/20032xdm —|—/<1+62084x> dm}:
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CAPITULO 1. INTEGRAL EN UNA VARIABLE

1 1
:4[/1(195 —/20032xdm +2/(1+cos4x)dx] =

1 1 sendx

4[x—sen2x+2<x+ 1 ) =
B 3 sen2x  sendx
3T TT Tm

n /senSx dz

Tratandose de la integral de una potencia impar de sen(z) usaremos la
relacién pitagérica (sen® + cos® = 1) de la siguiente manera:

/sen% dr = /sen% sent dxr = / (1 — cost) senx dx =

= /sena: dx — /cos% SENT AL = oo,

(una sustitucién en la segunda integral del tltimo renglén permitird
completar el calculo)

1
I/ \/1—x2d.’£
0

El procedimiento que seguiremos en este caso se conoce como "susti-
tucion trigonométrica". Teniendo presente que 1 — sen’u = cos’u rem-

plazamos x por "sen u "

Siendo x = senu resulta: dr = cosu du y ademas:
=0 = u=0

] — T
T = u=—
2

V1 —122 = Vcostu = ‘cosu‘ = cosu (pues, u € [0, 5] — cosu >0 )

y resulta entonces que :

1 s
2 2
/ vV1—22dx = / cosu cosu du = / cos*u du =
0 0 0

1 r2 1
:—/2(1+0052u) du:{u—i-
2 Jo 2

us
Sen2u] 2 T

2 |, 4

¢ Qué interpretacion geométrica puede hacer del resultado anterior?
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1.12.1. Ejercicios

1. Calcular el volumen del sélido que genera la regién del plano limitada
por las curvas: y =x+senx ; y =0 y x =7, cuando rota alrededor
del eje .

2. Integrar:
i) /Sec2x dr i) /tg2x dr  ii) /tggx dx iv) /6086621’ dx
3. Sabiendo que
sen(A+B) = senAcosB+cosAsenB ;  sen(A—DB) = senAcosB—cosAsenB

cos(A+B) = cosAcosB—senAsenB ; cos(A—B) = cosAcosB+senAsenB

mostrar la validez de las siguientes igualdades y usarlas para integrar
en los incisos que estan a continuacién.

senA cosB = ; [sen(A — B) + sen(A + B)]
senA senB = ; [cos(A — B) — cos(A + B)]

cosA cosB = ; [cos(A — B) + cos(A + B)]

i)/sean cos3z dx ii)/senSx sendzx dx iii)/cosélx cosbz dx

2 2

4. Calcular el rea de la regiéon del plano limitada por la elipse — + LA

16 9
5. Integrar: i) / V14 22 dx , mediante la sustitucion z = senh(u).

4
ii)/ Va2 — 1 dz , mediante la sustitucion z = cosh(u).
1

Recordar estas identidades hiperbdlicas:

et —e "t et +e”

sinh(z) = cosh(z) = 5

61



CAPITULO 1. INTEGRAL EN UNA VARIABLE

tanh(z) = sinh(z) e® —e™®
"~ cosh(z)  erde

y sus derivadas:

d d
e sinh(z) = cosh(x) . cosh(x) = sinh(x)

d
. tanh(x) = sech?(r)

1.13. Meétodos de integracion: fracciones sim-
ples

El método de las fracciones simples o fracciones parciales puede aplicarse
P(z)

para integrar funciones racionales, donde P(x) y Q(x) son funciones

(x
polinomiales y el grado de P es menor que el grado de Q.

Ejemplos:

[
?+ax—2
r+5
2+ x—2
del numerador es menor que el grado del denominador. El denominador
se factoriza como el producto de dos factores lineales diferentes: z — 1

y & + 2, y siendo asi, podremos determinar dos constantes A y B tales
que :

Observar que es un cociente de polinomios y que el grado

x+5 z+5 A B

Pir—2 @-D@+2) o-1 112

Para ello, efectuamos la suma de las dos ultimas fracciones:

A B Alx+2)+B(xr—1) Ax+2A+Bxr—B

-1 712 @-D@+2  @-D@+2

(A+B)z+2A— B
(z— 1)z +2)
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Para que sea

z+5 (A+B)z+2A— B

(x —1)(x+2) (x —1)(x+2)

debe cumplirse que:

A+B=1
2A—-—B =5

Resolviendo ese sistema de ecuaciones se tiene: A = 2y B = —1 de
modo que :
T +5 2 1

x2—|—x—2:x—1_m+2

y resulta :

e L e e L L R B R

dx

/ —22% + 4z + 2
3 +a?—ov—1

i) Observar que el integrando es una funcién racional y que el grado
del denominador es mayor que el grado del numerador.

ii) Factorizamos el denominador: 2® + 2> —x — 1 = (x — 1)(z + 1)
Como en esa factorizacion el factor lineal x — 1 aparece sélo una vez
y el factor lineal x + 1 estd elevado al cuadrado, podremos determinar
constantes A, By C tales que:

222 +4x + 2 A B C

a:3+x2—x—1_x—1+(m+1)2+x+1

iii) Para determinar esas constantes efectuamos la suma en el segundo
miembro y planteamos un sistema de ecuaciones:

—22%+4r+2  Alx+1)?+Bxz—-1)+C(z+1)(z—1)

a2 —z—1 (x —1)(z+1)2

(A+C)a*+(2A+B)z+ (A—B-C)
&=z +1)

63



CAPITULO 1. INTEGRAL EN UNA VARIABLE

Para que la igualdad se cumpla, debe ser:

A+C=-2
2A+ B =14
A-B-(C=2
Resolviendo ese sistema de ecuaciones se tiene: A = 1; B = 2 vy
C = -3 de modo que :
—2x2—|—4x—|—2d / 1 n 2 3 d
xr = — xTr =
BHa?-—xr—1 r—1 (x+1)2 z+1

:/$i1dx+/(x+21)2 dx_/(xj—l) dx =

2 —3zn\x+1\+c
r+1

:ln’x—l‘ —

202+ 1 —5

] / dx
v +32+r+3

i) Observamos que el integrando es una funcién racional y que el grado
del denominador es mayor que el grado del numerador.
ii) Factorizamos el denominador: (z+3)(2%+1) Como en esa factoriza-
cién aparece el factor lineal x+3 y el factor cuadrético 2241 podremos
determinar constantes A, By C tales que:

20 +x—-5 A +Bx+C
3 +3224+2+3 x+3 241

iii) Efectuando la suma en el segundo miembro y resolviendo un siste-
ma de ecuaciones como hicimos en los ejemplos anteriores obtenemos:
A=1, B=1; C=-2 demodo que:

202+ 2 —5
/ ar= |
3+ 324+ 2+ 3

1 T 2
= d /7(1 —/7d =
/x+3 T 2 +1 v 2 +1 .

= ln‘x + 3‘ + ;ln‘ﬁ + 1‘ — 2arctgx + C

1 " Tz — 2
r+3 x22+1

dr =
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1.13. FRACCIONES SIMPLES

/x3+x2+3x+3

xt+ 222 +1 *
2422 +3r+3 B+ +3x+3 Ar+B Cx+ D
22241 (224102 (@2+1)2 2241
Ar+ B+ (Cx+D)(z*+1) Cax*+Dx*+ (A+C)z+B+D
) (@ + 12 ) @+ 17
entonces:
C=1
D=1
A+C=3
B+D=3
porloque A=2 y B =2, demodo que:
x3—|—$2—|—3x+3 2z + 2 x+1
/ 4 2 _/[ 2 2 ] dx =
x*+22° + 1 (22 +1)2 x +1

2z 2 x 1
=[|-——d /7d /7d /7d
/(ZL‘2+1)2 v (22 +1)? v 2?2 +1 v 211"

Resolvemos a continuacion la segunda de esas integrales y dejamos las
otras a manera de ejercicio:

haciendo x = tgu , resulta: dz = sec’u du y ademaés:
1+ 2% =1+ tg*u = sec*u, de modo que:

2 1
[ e =2 sagsectdu=2 [ costudu= [ [1+ costu] du=

sen2u
=u 5 + C = u+ senu cosu + C = u + tgu cos*u+ C =
x
= t +C=u+tgu ———+ C =arct C
u+tgu o2 U gu1+t92u+ arctgzr + 1—|—x2+

.,Cémo procedemos cuando grado(P) > grado(Q))? En ese caso, para integrar

el cociente de polinomios

procederemos primero a dividir: P(z) =
T

Q(z).C(x) + R(z) donde grado(R) < grado(Q) entonces:
P@) o s [ B@)
Q<x)dx—/C( )d +/Q($>d
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1.13.1. [Ejercicios

1. Integrar:
) dz B 202 —x+4 x?+1
i) /:U2 — ii) /7303 i dzx iii) /7332 — dzx

2. Explicar cémo se aplica el método de descomposicion en fracciones
simples en las siguientes integrales:

. a:3—:c+1d . —x3+2x2+1d 22 +1 q
2 / perp / v+ 12 1“)/ 2 — 122+ 12
Observacién importante: La primitiva de muchas funciones elementales no
es ninguna funcion elemental (funciones elementales son todas las funciones
que ustedes conocen y las que se pueden obtener a partir de ellas por medio
de suma, resta, multiplicacion, divisién o composicién).

Por ejemplo, no existe una funcién elemental F(z) que sea primitiva de
fla) = e

iNo estamos diciendo que f(x) = e no tiene primitivas! Ya que,

F(z) = /x e’ dt
0

es una primitiva de
flz) =€
Jpor qué?

. . oy 2
Lo que estamos afirmamos es que ninguna primitiva de f(z) = e es una

funcion elemental. Otras funciones cuyas primitivas no son funciones elemen-

. et senx
tales son, por ejemplo: — , sen(x?) | ey x3+1 , ;Pueden

mostrar una primitiva de cada una de estas funciones?
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Capitulo 2

Integral impropia. Sucesiones y
series numéricas

2.1. Integral Impropia

e

Definicién de Integral Impropia

Son integrales en las que el dominio de integracién no es acotado, y/o
en las que el integrando no es una funcién acotada en el dominio de
integracion. Son de la forma:

+oo
. / f(z)dz donde a es un nimero real fijoy f(x) es una funcién

continua en [a, +00)

a

/ f(z)dz donde a es un nimero real fijo y f(x) es una funcién
—0o0

continua en (—oo, a).

+oo
. / f(z)dz siendo f una funcién continua en R.
— 00

b
. / f(z)dz  donde f(x) es una funcién continua en (a,b] y
Ifm f(z) = +o0

z—at
b
. / f(z)dz  donde f(x) es una funcién continua en [a,b) y
lfm f(z) = £o0

r—b—

b
. / f(z)dz siendo f una funcién continua en [a,c) y en (c,b),

con lim f(z) =xoc0y lim f(x)=+oc0
T—c™ z—ct
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Asi por ejemplo, son integrales impropias:

oo

/ re* *dr  (El integrando es una funcién continua en el dominio de inte-
0

gracién pero este, es no acotado)

2 1
/ de (La funcién a integrar tiene una discontinuidad infinita en
1 (z—

x =1, dado que lim = +o0. El valor x = 1 punto que se encuentra

z—1t ((L’ — 1)2
en el extremo izquierdo del intervalo acotado de integracion. )

En el caso que se le pueda asignar un valor finito a una integral
impropia, diremos que converge. Caso contrario diverge.

¢ Como estudiaremos la convergencia de una integral impropia?

400
» Caso / f(z)dx donde a es un nimero real fijo y f(z) es una funcién

continua en [a, +00). (Intervalo no acotado)
b
Se evalua la integral definida 7(b) = / f(z)dz . Siexiste y es finito el

lfm I(b) =1

b—~+o00

en ese caso se dice que la integral impropia es convergente y se le asigna
+oo
el valor / flx)de =1
a

De manera analoga se analiza la convergencia o divergencia de la inte-
a

gral impropia de la forma / f(x)dx donde a es un nimero real fijo
—0o0

y f(z) es una funcién continua en (—o0, a.

+oo
» Caso / f(z)dzr siendo f una funcién continua en R (Intervalo no
—00

acotado).

a

Analizaremos, para algtiin niimero real a , las integrales impropias / f(x)dx

—0o0

y / x)dx . Si ambas integrales son convergentes y convergen a nu-

meros [; e I, diremos que / f(z)dz es convergente , que converge

a I + I, y que podemos a81gnarle ese valor.
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2.1. INTEGRAL IMPROPIA

a +o0

Si / f(z)dx es divergente o (x)dx es divergente entonces di-
—0o0 Too a

remos que / f(z)dx es divergente. O sea:

+oo a +o0
/ fl@)de =1 + I, «— L flo)de =1, A / fla)de = I

b
Caso: / f(z)dz  donde f(x) es una funcién continua en (a,b] y

a
lim f (x) = oo (Existencia de una asintota vertical en z = a.)
T—a

b
Se evalia la integral definida I(c) = / f(z)dz para ¢ un valor tal
que a < c <b. ‘

Si existe y es finito el
lim I(c) =1

c—at

en ese caso se dice que la integral impropia es convergente y se le asigna
b
el valor / flx)de =1

De manera andloga se estudia la convergencia o divergencia de la in-
b

tegral impropia de la forma / f(z)dz  donde f(x) es una funcién
continua en [a,b) y liril f(z) = oo . Existencia de una asintota ver-
r—0"

tical en x = b.

b
Caso: / f(z)dx siendo f una funcién continua en [a,c) y en (c,b],
con ¢

lim f(z) = ooy lim f(x) = +oo (Existencia de una asintota verti-
T—c™ z—ct

calenx =c,a<c<b.)

c b
Analizaremos las integrales impropias / fx)dx y / f(z)dx . Si

ambas integrales son convergentes y convergen a numeros I; e [ di-

b
remos que / f(z)dx es convergente , que converge a Iy + Iy y que
podemos asiénarle ese valor.

c b
Si / f(z)dz es divergente o / f(z)dz es divergente entonces diremos

C

b
que / f(z)dz es divergente.
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= Para este capitulo puedes utilizar varias de las aplicaciones creadas en
GeoGebra.

Actividad:

Supongan que en una empresa se estima que, al cabo de x semanas de ini-
ciada una operacion, se estard recaudando a razén de f(x) = ze3~* millones
de pesos por semana. Siendo asi, calculen la recaudacion total de las tres pri-
meras semanas y piensen cémo expresarian la recaudacion total si el tiempo
fuese ilimitado (y cémo la calcularian).

Ejemplos

< 3
. / ze’ Tdx
0

Observamos que el integrando f(x) = ze
en R y positiva.

3—x

es una funcién continua

b
Por lo tanto, siendo b € R, b > 0, podemos calcular / ze>dz apli-
0
cando la regla de Barrow:

b

=3t _pedt el

b
F(b) = / re’  dy = [—e*" — xe? 7]
0 0

Tal integral, en este caso, calcula el area encerrada entre el eje x, la
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funcién f para x entre 0 y b.

b
Como  lim e’ P dr = lim (=€’ —be¥ P e) =
b—+o0 Jo b—+o0

oo
decimos que la integral impropia / ze* %dx es convergente, que con-
0

verge a €2, y que podemos asignar a esa integral impropia el valor e,
0 sea:

< 3 3
/ ze’ fdr =e
0

(Podriamos estar mencionando en este caso que el area infinita, existe,

y es €.

o~ 1
n —dx

1 \/E
1 b1
- . 1,00]. Caleul / —d
f(zx) es continua en [1,00]. Calculemos  /E x

NG

b1
[ Loy
1 X

7 i:2\/——2

b1
Como lim ——dx = lim (2b—2) = +00
b—+oo J1 \/E b—+oo
. . : | .
concluimos que la integral impropia / de es divergente y no po-
1 x

demos asignarle un valor.

. /12(36_1”2(&

-02 0 02 04 0.6 08 12 14 1.8 18 2 22 24
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fz) =

1
——— es una funcién continua en (1, 2]
(z —1)?
1i ! =+
zi{{l* (I’ — 1)2 -
2 1
Siendo ¢ € R tal que 1 < ¢ < 2, podemos calcular / de
c \r —

2 1
¢ (x—1)2 r—1|,

) 2 1 )
Como cl_l}% . mdl’ = CEI%(_]. + c_ 1

) = +oo concluimos

2 1

que / Wd:c es una integral impropia divergente. No podemos
1 (z—

asignar un valor a esa integral.

] / —dw es una integral impropia pues h = 400

0+\/_

f (x) = —— es una funcién continua en el intervalo (0, 1] de modo que,

\/5

1
para ¢ € R tal que 0 < ¢ < 1 podemos calcular / —dx

VL

1 1
/C 7 i -2 Ve
1
Como Clir(l)l+ ﬁdm_}ggi@_2\/—)—2
concluimos que / \/_dx es una integral impropia convergente , que

converge a 2 y podemos asignarle ese valor, o sea:
1]
—dr =2
/0 &

2.1.1. Ejercicios

1. En los siguientes incisos, expliquen por qué la integral es impropia, ana-
licen si se le puede asignar un valor y, cuando corresponda, indiquen
cual es ese valor.

R P N A—— a7 s
a)/1 dz )/oo(x—l)Qx C)/O e “dx )wae x
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1 zg ¢ +o00 > +o00 1 p L 400 1 J
e)/_ooxe s )/_Ooe x g)/2 71+m2x )/0 31+xx

2z 2

i)/o1 \/% j)/o2 oo k)/ogw_xl)gdx 1)/02de

+oo
2. Expliquen por qué / cosx dr es una integral impropia divergente.
0

too 2 oo ]
3. Muestren que: a)/ dx = n(3) b)/ de =
1

4% — 1 2 g 2+ 1
+oo T 1 +oo x
T dr == d/ e
C)/l (x2+1)2x 4 )_oo 22wt
+oo 1 5 44
e) sia>0,/ e “dr = — f)/ S, P
0 a 1 Vo—u 3

2
d=va 0 [ V3
1 22 4

Y Vi

2.2. Sucesiones numéricas

La palabra sucesion tiene en Matematica un significado que concuerda con
el del lenguaje corriente: se trata de un conjunto de objetos dispuestos en un
orden determinado, de manera que hay uno que ocupa el primer lugar, uno
que ocupa el segundo lugar,etc.

Hay sucesiones finitas (que empiezan y terminan) y sucesiones infinitas.

Si a cada n € N estd asociado un nimero real a, entonces se dice que el
conjunto ordenado

a, ay , Az, . . ., Ap,. ..

define una sucesion numérica infinita. Decimos que a; es el primer término
de esa sucesion, ay es el sequndo térrmino, etc.

a, es el término enésimo de esa sucesion y, para cada n, a,;1 es el término
siguiente al término a,. Para definir una sucesién numérica debe quedar es-
tablecido, de alguna manera, qué nimero es el que esta en cada lugar de la
lista. Frecuentemente se define una sucesiéon dando alguna regla o férmula
para el término enésimo, por ejemplo:

1

—  pneN
mt1

an
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define la sucesion:

1 1 1
"87277 64’
A veces hay dos o mas féormulas , por ejemplo:

1

a1 =0 ; az, =1, n€N

define la sucesion:
0,1,0,1,0,1,. ..

A veces una sucesién se define dando cudles son los primeros términos y a
continuacién una férmula de recurrencia que indica cémo se obtienen los
siguientes términos a partir de los anteriores.

Las sucesiones aparecen en infinidad de situaciones y en la realidad también.
Son 1tiles para modelar, describir, y predecir en el tiempo ciertos fenémenos
econdmicos (préstamos, cuotas, intereses bancarios), biolégicos (crecimiento
de bacterias, poblaciones), procesos de produccién, entre otros.

Ejemplo de sucesiones:

Sucesion de Fibonacci La sucesion a; = a; = 1 ap = Ap_1 +
Qp_o para n >3

define la que se conoce como sucesion de Fibonacci que aparece vinculada a
una gran variedad de cuestiones y cuyos primeros términos son:

1,1,2,3,5,8,13,21, 34, 55, ...

Esta secuencia fue descrita por primera vez en el siglo XIII por el matematico
italiano Leonardo de Pisa, también conocido como Fibonacci (Fibonacci fue
un célebre matemdtico italiano, conocido también como Leonardo de Pisa,
que vivio entre 1.170 y 1.250 y a quien se atribuye la introduccion en Europa
del sistema de numeracion indo-ardbigo.). Sin embargo, la secuencia ya habia
sido estudiada por mateméticos indios en siglos anteriores.

La sucesion de Fibonacci exhibe muchas propiedades matematicas interesan-
tes y se encuentra en varias areas de la naturaleza y las ciencias. Por ejemplo,
se puede observar en el crecimiento de las conchas de los caracoles, en la dis-
posicion de las hojas en ciertas plantas, en la formacion de pétalos de flores
e incluso en la estructura de galaxias espirales.

Ademas, la relacién entre los nimeros de Fibonacci también es notable. A
medida que los nimeros de la sucesién aumentan, su cociente se aproxima
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al nimero dureo o la proporcién aurea, denotada por la letra griega (phi),
que tiene un valor ¢ = ”—2\/5 y es aproximadamente 1,61803. Esta proporcion
aurea se considera estéticamente agradable y se ha utilizado en el diseno de

obras de arte, arquitectura y musica.

La sucesion de Fibonacci es una de las secuencias mas conocidas y estudia-
das en matematicas. Tiene una amplia gama de aplicaciones y es un ejemplo
interesante de como los patrones matematicos pueden encontrarse en la na-
turaleza y en el mundo que nos rodea.

Sucesion aritmética
Seaa;=a ; a,=a,1+d para n>2

define una sucesion en la que el primer término es a y luego, a partir de

= 2, cada término se obtiene sumando un niimero fijo d al término anterior:
a, a+d, a+2d, a+3d, ...
La misma sucesién queda definida diciendo:

an=a+ (n—1)d paran>1

Sucesion geométrica

Sea a; = a Gp, = ap_1 T para n > 2 define una sucesiéon en
la que el primer término es a y luego, a partir de n = 2, cada término
se obtiene multiplicando el término anterior por un ntmero fijo r # 0 :
a, ar, ar®, ar® ..

La misma sucesion queda definida diciendo:

an =ar"t paran > 1.

Notacién general de una sucesion

{a,} , {an}, , {an},—,  son notaciones que se utilizan para indicar la
sucesion cuyo término enésimo es a,.

Por ejemplo:  {(—=1)"} , {n’}, , {1}00

nJn=1
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2.2.1. Convergencia de una sucesion

Definicién de convergencia de sucesiones

Decimos que {a,} es una sucesién convergente y que converge a L

cuando existe el limite lirf a, = L . Esto significa que los términos
n—-+0oo

de la sucesion se acercan tanto como se quiera a L considerando valores
de n suficientemente grandes.
Cuando esto no sucede decimos que la sucesion {a,} es divergente.

Ejemplos:

1 1
lim — =0 por lo que la sucesién {} es convergente (converge a 0).
n—+oo n, n

lirll n® = 400 de modo que la sucesién {n®} es divergente.
n—-+00

1_1)13 (—1)" no existe de modo que la sucesién {(—1)"} es divergente.

Las figuras siguientes ilustran varias maneras en las que una sucesién puede

ser convergente:

~
A
-
- -
d -
ST Y | S Ltz peeessneeneTeBaeboy o e
L
L
L...-.‘.. A T
L-S "';".‘." e s
.. &
N, 2 N.
~ &
-
Lte deeees s st e Lt+g
- - - &
L S—— L.gL
I-¢ - ... N e LrE Jedmrcmmemcciceccccccccccc s ccc e e ——
1 ' W, N,

Observamos que si {a,} converge a L entonces, para ¢ > 0 cualquiera, to-
dos los términos a, excepto eventualmente un nimero finito de ellos (que

corresponden a n < N,) estan en el intervalo (L — €, L + ).
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Sucesiones mondétonas

Una sucesion {a,} es creciente si a,, < a,.1 para todo n.
Una sucesién {a,} es decreciente si a,, > a,.1 para todo n.
Las sucesiones crecientes o sucesiones decrecientes se llaman mondtonas

Ejemplo de sucesion mondtona:
In(n)

Sea por ejemplo la sucesion { } Veamos que es una sucesion decrecien-

n
te a partir de n = 3, o sea,

In(n+1) < In(n)

< si n>3.
n+1 n
Para probarlo podemos estudiar la funcién f(z) = :
x
f es continua en (0, +00) y es derivable.
, 1 —Inx ,
f(m):T<O si x>e

Inx
de modo que f(x) = — es decreciente (estrictamente) cuando = > e
x

In(n)
n
La convergencia o divergencia de una sucesion mondtona se puede determi-

nar con un criterio sencillo:

y por lo tanto , { } es decreciente si n > 3.

Teorema de Monotonia: Toda sucesion monotona y acotada, es convergente.

Que una sucesién {a,} esté acotada, significa que existe un ntimero real
M > 0 tal que
la,| < M, VnéeN.

Esto significa que todos los términos de la sucesion estan dentro del intervalo
[_M ) M ]

Vamos a definir ahora una sucesion que se denomina factorial.
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Factorial

Se define el factorial como una sucesiéon numérica que le asigna a cada
numero natural n el producto de todos los naturales desde 1 hasta n.
Esto se anota del siguiente modo utilizando el simbolo !. Es decir:

n'=1-2-3---n
para todo natural n > 1. Y se define

ol=1

El factorial, también se puede definir recursivamente como n! = n(n — 1)!
paran>1y 0! =1.

Asi, se construye la sucesién, n! = 0!, 1!, 2!/ 3! ... donde,
=1
20=1-2=2
31=1-2-3=6
41=1-2-3-4=24
5l=1-2-3-4-5=120
y asl se sigue.
La sucesién n! es claramente creciente, y por ejemplo la sucesion {'} es
n!
1 1 1
= < —

(n+1)!  (n+1)n! = nl

decreciente. Ya que para todo n es

2.2.2. Ejercicios

1. Escriban los cuatro primeros términos de las sucesiones que se definen
a continuacién: i) a, =3" , n>1 i) b, = (=1)"n* , n>1
ii)ea=1vy cp,=c,1+3, n>2

2. Escriban una férmula para el término general de las siguientes sucesio-
nes: i) 1,2,4,8,16,... 1ii) 1,8,27,64,125,... iii) 2,5,8,11,14,...

iv) 3,-9,27,—81,243, ...

3. Analice si las siguientes sucesiones son convergentes o divergentes:

el
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)} vii){sen(nm)}
Viii){n3e_"}
ix) {r"} (consideren los casos:|r| > 1 ,|r| <1y |r|=1)

. Los matematicos griegos, en tiempos remotos, dieron respuesta al pro-
blema del céalculo del area del circulo considerando una sucesion de
poligonos inscriptos cuyas areas, al aumentar suficientemente el nime-
ro de lados, representan practicamente el area buscada. Consideremos
la sucesién de {P,}>° | ... donde P, es un poligono regular con n lados
(n mayor o igual a 3), inscripto en un circulo de radio 1.

AOOC

Es posible probar que el area de un poligono regular de n lados, cono-
ciendo su radio r es:
2 o1 2
nre sin( <X
Area(n) = nrZsin(y)
2

De este modo se genera la sucesion de los valores del area de un poligono
regular de n lados, para n mayor a 3. Tomar limite a este tltimo valor
para n acercandose al infinito, y r = 1, para obtener finalmente que
dicha sucesion )
T)

n sin (<
2

converge al nimero 7, drea de un circulo de radio 1.

Area(n) =
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2.3. Series numeéricas

Serie numérica

o0
Dada la sucesién numérica {a,}, el simbolo > a, denota lo que lla-

n=1
mamos serie numérica. Informalmente podriamos decir entonces que

una serie numérica es una suma de infinitos sumandos: a; + as + as +
e Ayt

pero es necesario precisar en qué sentido podemos hablar de suma en
este contexto.

Sucesién de Sumas Parciales

Dada {a,} podemos sumar un nimero finito de términos sucesivos y
formar una nueva sucesiéon denominada Sumas Parciales {5, }

Sn:&1+a2+a3+...—|—an 3 lel

.

[e.9]
Es la sucesién {S,} lo que se llama serie numérica y se representa »  a,.

n=1

Definicién de convergencia de una serie

o
La serie Z a, es convergente y converge a S o tiene suma igual a S

n=1
cuando la sucesién de Sumas Parciales {5, } converge a S.

Es decir que, existe el limite 1i_>m S, = 5,y en este caso se anota:
n o

Z a, =S
n=1

o0
Por el contrario, si {S,} no converge decimos que la serie » _ a, es

n=1
divergente ¥ que no tiene suma.

Ejemplos:
X 3 1
» La serie Z 1o es convergente y su suma es 3
n=1
3 3 3 3
En efecto: SL A S RS
n efecto S 1O+102+103+ +10"
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lo tant 1 S s + 3 + 3 + ...+ 5
orlotanto —S5, = —+-—+—+ ...+ ——
P 10 102 108 104 10m+1
1 3 3
Entonces S, — 1—05,1 =10~ 1ot de donde
3 1
0 (1 - n> 1
o= 4000 i s, =
n—oo

1— —
10

oo oo

> ¢ conc#0 y > (—1)" son series divergentes.
n=1 n=1

En efecto:

En el primer caso, S, = nc asi que lim S, = +00 (sic>0)o
lim S, = —oco (sic<0).

n—oo

s —1 sinesimpar
En el caso de > (—1)" resulta S, = { _ P por lo
o1 0 sinespar

que lim S, no existe
n—oo

Propiedad de la suma / resta de series:

oo oo
Sean Z an Y Z b, dos series convergentes y o y 8 dos constantes. Enton-

n=1 n=1

ces, la serie Y (aa, + 8b,) es convergente y su suma es igual a A+ B

n=1

donde A es la suma de la serie de términos a, y B es la suma de la serie de
términos b,,.

Demostracion:
Por las propiedades de las sumas finitas podemos escribir:

zn:(aak+ﬁbk):azn:ak+ﬂzn:bk
k=1

k=1 k=1
7}1_)120 ;; ar=Ay nlggl(} ;;1 b, = B y entonces, por propiedades de los limites:
nh_{goz:(aak%—ﬁbk) :nh_g)lo (aZak—l—ﬁZbk) =aA+ B

k=1 k=1 k=1

81



CAPITULO 2. INTEGRAL IMPROPIA. SUCESIONES Y SERIES
NUMERICAS

Como corolario de la propiedad anterior resulta:

Si Z a, convergey Z b, diverge, entonces Z (an + b,) diverge.

n=1 n=1 n=1
Atencién
Siendo Z anp Y Z b, ambas divergentes, Z (an, +b,) podria ser
n=1 n=1 n=1

convergente o divergente, como se ve en los siguientes ejemplos:

m sta,=1yb,=—-1Vn, Z an, 'y Z b, son ambas divergentes y

n=1 n=1
o0
> (an +b,) es convergente.
n=1

msia, =1yb,=1Vn, Z an Y Z b, son ambas divergentes y
n=1 n=1
Z (an + b,) es divergente.
n=1

En resumen:

20, Y > by Z(an + bn)
Ambas convergen Converge
> a, converge, Y. b, diverge Diverge
> a, diverge, > b, converge Diverge
Ambas divergen Indeterminado

2.4. Serie geométrica

La serie geométrica resulta de sumar los términos de una sucesion geométrica.
Los términos de una sucesion de este tipo son de la forma:

a;ar;ar2;ar3;”.

Notar que el cociente de cada término con su inmediato anterior es siempre
constante e igual a r.
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7

Serie geométrica de razén r

Si r es un namero real fijo,
oo
n o __ 2 3
Zar =a+ar+ar°+ar° + ...
n=0

es una serie geométrica de razon r y primer término a.

\. J

Las series geométricas son las series infinitas mas simples y pueden ser utili-
zadas como una introduccién bésica a la Serie de Taylor y Serie de Fourier,
que se estudiaran en Matematica C.

Como veremos a continuacién, la convergencia o divergencia de una serie de
este tipo depende de r.

En este caso la sucesion de sumas parciales es:
Sl = a

Se =a+ar
S3 = a + ar + ar’

en general
S, =a+ar+ar’+ard+ ... +ar™!

Si r =1 entonces S,, = an por lo que nh_)ngo Sp, = 400 y la serie diverge.
Suponiendo r # 1, podemos escribir:

7Sy = ar + ar® + ar® + ar* + ...+ ar”

Sp — 1S, =a(l—r")

g a(l—r")
R
, a
Entonces, Irl <1 — lim S, =
n—00 1—17r
r] >10r=-1— lim S, no es un nimero real.
n—oo

oo
Si |r| >1 entonces Y r" diverge.

n=0
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~ '

Suma de una serie geométrica

Si|r] <1 la serie geométrica converge :

Zar”:a+ar+ar2+...

n=0

¥y Su summa es

De manera coloquial, se puede decir que la suma de una serie geométrica
con razén menor a uno, es el cociente entre entre el primer término a y uno
menos la razon.

Ejemplo

n

o0
n La serie Z

n=0
y primer término a = %, entonces es convergente ya que el médulo de
1/3
1-2/3

1 = 1/342/9+4/27+.... es geométrica con razén r = 2

7 es menor a 1 y su suma es

= Consideremos un niimero periddico por ejemplo, 2,99999. .., con parte
entera 2 y parte periédica 9. Se puede escribir:

> 9
2’99999'”:2+ZW

n=1

La serie 0%, 7o= es geométrica con el primer término a = 9/10 y la

razén r = 1/10. La suma de una serie geométrica infinita con |r| < 1
esta dada por:

Aplicando esto a nuestro ejemplo, tenemos:

9/10 ., 9/10

2,09999 ... — 2 _
! T 1m0 9/10

Por lo tanto:
2,99999...=2+1=3
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2.5. Serie telescopica

Dada una sucesion {b,}, la serie de términos a, = b, — b,;1 es una serie
telescopica.

En este caso es S,, = Z ap = Z (b, — bry1) = b1 — bpyq
k=1 k=1
de modo que {S,} converge si y sélo si {b,} converge y, siendo asi,

o

Zan—z (by, — bys1) = by — L donde L:nli)rlolobn
n=1

Ejemplo:

El comportamiento de la serie Z 1 puede estudiarse observando que
1 1 1"

ap = = (verifiquenlo),

an2 -1 4n—2 4n+2

o sea que a, = b, — b, siendo b, =

dn — 2 )
Por lo tanto, S, = it a, =b; — by =— —
or lo tanto, al—zag—i— +a 1 M=
y resulta: nh_)ngo S, = 3
> 1
L 1 i =.
uego, aserlenz::l4 3 7 converge a o

2.5.1. Ejercicios

1. En los siguientes incisos, estudien el comportamiento de la serie y hallen
su suma cuando sea posible.

)3 (-3) g WX () WX (va- vaT)

n=1 n=1 =1 n=1
0 1 0 1 s n+2
Z Sty ey BADD DY oy s BALD DL by
i) 327 ) T S () (2)]
n=1 7n n=1 6n n=1 5 5

2. Muestren que 2,999... = 3

3. Se deja caer una pelota desde una altura inicial de 15m sobre una losa
de concreto. La pelota alcanza una altura igual a los dos tercios de la
altura anterior en cada rebote. Hallen la expresién de la altura en su

85



CAPITULO 2. INTEGRAL IMPROPIA. SUCESIONES Y SERIES
NUMERICAS

enésimo rebote. Calculen cudl seria la suma de los metros recorridos
suponiendo que la pelota rebotara indefinidamente.

1 1 1 1
4. Hallenlasumadelaserie4—6+7r+1+§+1+§+...2—n+...

2.6. Criterios de convergencia

No siempre es posible establecer la convergencia o divergencia de una serie
de manera directa, como lo hicimos con las series geométricas y las teles-
copicas, considerando las sumas parciales y analizando si tienden, o no, a
un limite finito cuando n tiende a infinito. En general, con escasa frecuencia
podremos estudiar el comportamiento de una serie de esta manera. De alli la
importancia de contar con criterios de convergencia que permitan eludir la
expresion de las sumas parciales y la evaluacion de su limite. Estudiaremos
a continuacion algunos de estos criterios.

Importante: Estos criterios sélo dan condiciones suficientes que bajo cier-
tas condiciones aseguran la convergencia y/o divergencia de una serie.

2.6.1. Criterio de divergencia

Condiciéon necesaria para la convergencia
o0

Si a, converge entonces lim a,, = 0.
Z n & n=oo

n=1

Demostracion:
Sea S,=a;+as+..+a,
[o@)

nh_}rgo S, =95 €R pues 221 a, es por hipétesis convergente.
—

También es entonces li_>m Sn_1 =S8y por lo tanto:
n oo

lim an:T}Lrlgo(Sn—Sn_l) =S-5=0.

n—o0

Importante: el contrareciproco del enunciado anterior, es 1til y se enuncia
del siguiente modo.

o0
Criterio de la divergencia: Si lim a, # 0 entonces Z a, diverge.
n—oo
n=1
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= n—2
Ejemplo: Dada la serie Z o observamos que

n=1

. on—=2 m(l-2)
lim = D —

S nlo

por lo tanto, en virtud de la condicion necesaria para la convergencia, con-
cluimos que la serie dada es divergente (si fuera convergente el limite anterior
deberia ser igual a 0).

Atencion: h’_)m a, = 0 es una condicién necesaria pero no suficiente para la
n o0

[e.e] o0
convergencia de Z a, . Prueba de ello es por ejemplo la serie Z — que,
n=1 n=1
como veremos, diverge, siendo lim — = 0.
n—oo n,

2.6.2. Criterio de la integral

Sea f una funcién continua, decreciente y positiva para = € [1,400) y sea
a, = f(n) . Entonces:

oo

+oo
Z a, converge siy solo si / f(x)dx converge.

n=1 1

Demostracion: Como puede apreciarse en los siguientes graficos, si f satisface
las hipotesis del enunciado, debe ser:

kZiIf(k) < /lnf(w)dw < :Z::f(k)
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i Jemnmncenenagless

n

Las sucesiones S, = Y a, =Y f(k) e I, = / f(z)dz son crecientes y
k=1 !

k=1

se tiene entonces:

+oo
Si la integral impropia / f(x)dx converge a un nimero A, entonces, para
1

todon, S,—ar =Y f(k) < /n f(z)dz < A de modo que {S,} es acotada
k=2 !

y por lo tanto conve;gente.

Reciprocamente, si {S,} converge a un nitimero S, entonces, para todo n,
n—1

resulta / f(z)dz < > f(k) = Sh1 < Sy esto conduce a concluir que
1 k=1

+oo
/ f(ﬂ?)dﬂ? es Convergente.
1

2.6.3. Serie-p o p-serie
Aplicaremos el criterio de la integral al comportamiento de las p-series.
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a D

p-Serie

Las p-series (o series p) son las series de la forma

D
n=1 n

con p > 0.
Para el caso de p = 1 se denomina serie armonica:

> 1
> —=1+1/2+1/3+ ...
n=1 n
. 1 . . .
Siendo p > 0, f(x) = — es continua, positiva y decreciente en [1,400) .
x
, 1
Ademads, a,, = e f(n).
o L o |
1 =7 stp#1
/ —dr =
1 aP b
In|z|]| =Ilnb sip=1
1
b1 stp>1
i [ —de={p—1""
boteo 1w +oo st p<1

/+°° 1 J converge st p > 1
1 xP

—dzx :
diverge st p <1

Entonces, por el criterio de la integral,

i I {converge stp>1

o P ' diverge si p <1

1 & 1 > 1
Ejemplo: Las series »_ —, > —75 > —73 son divergentes, mientras que
n’ =in n

n=1 n=1

> 1 > 1

E — Yy E — SOn convergentes.
2 3

n=1 n n=1 n
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2.6.4. Criterio de comparaciéon

Si Z ap ¥ Z b, son tales que 0 < a,, < b, para todo n y la serie Z by,

n=1 n=1 n=1
oo
es convergente, entonces también es convergente la serie Z Qp,.
n=1
Demostracion:

Sea S, = aj; +as + ... + a, y sea S la suma de la serie de términos {b,}
Para todo n es:

n 1 1
0<8,=> ap<) ap <> b <S
=1 =1 1

3
+
3
+

B
Il

De modo que {S,} es una sucesién creciente y acotada y por lo tanto, con-
vergente.

oo [o.¢] [o.¢]
Si Z an Y Z b, son tales que 0 < a,, < b, para todo n y la serie Z an,

n=1 n=1 n=1
00

es divergente, entonces es divergente la serie Z by,

n=1

Ejemplos:

>, cos(+)
» Dada Z 1

n=1

, Observamos que para todo n es

1 1
0<—-<1< g , por lo que 0 < cos(—) < 1 vy se verifica enton-
n

n
1 o)
cos(= 1 1
ces: 0 < 5 ("> < - < = Sabemos que la serie Z — s
n?+1 n?+1 n oy
convergente (es una p-serie con p > 1). Entonces, por el criterio de
0 1
. ) . cos()
comparacion, concluimos que la serie Z 5 +”1
n
n=1

es convergente.

> 1

= Dada ————— , observamos que para todo n es 2n > /2n
;::1 n+ van aner
1 1

or lo tanto 0 < < . Como sabemos, la serie
yp n+2n n—+ v2an

Z — diverge, por lo que también diverge, por propiedad de las series,

n=1
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. _— 1 1 11
la serie de términos a, = ——— = — = —.— . Entonces por el
n+2n 3n 3n
o0
1
criterio de comparacion, concluimos que la serie Z —— = debe

—in+ V2n

ser divergente.

Nota: Si se suprime un ntmero finito de términos del comienzo de una
serie, la convergencia o divergencia no cambia. Por lo tanto el criterio de
comparacion es valido si la desigualdad 0 < a, < b, se verifica para todo
n > Ny siendo Ny algtin ndimero natural (una observacién similar corresponde
también hacer en los otros criterios).

2.6.5. Criterio del cociente

Qn,
Sea {a,} tal que a, > 0 para todo n y lim .

n—oo an

Entonces: i) Si L <1 la serie ) a, converge.
n=1
ii) Si L > 1 la serie Y _ a, diverge.
n=1

iii) Si L =1 el criterio no decide.

(Omitimos las demostracion en este criterio y en los que siguen).

Ejemplo:
0o 2
Veamos si es posible determinar el comportamiento de la serie Z 30 apli-
n=1
cando 621 criterio del cociente: ( o 1y
n Ap+1 n + n n +
a, = — > 0 para todo n = P— =
gn ~ P — gl 3n 32
2 1
T S | T G-t N
lim = lim ———— = lim =—<1.
n—oo n—o0 3n2 n—o0 37’1% 3
o) 2

Entonces, por el criterio del cociente, concluimos que la serie Z 5, conver-

ge.

n=1
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2.6.6. Criterio de comparacién en el limite

Sean las series Z Qn Y Z b,, con a, > 0y b, > 0 para todo n y sea el

n=1 n=1

a
limite: lim — = L. Si L es un nimero real finito y positivo (0 < L < 00),
n—oo
n

entonces ambas series convergen o ambas divergen.

El criterio de comparacién al limite permite determinar la convergencia o di-
vergencia de una serie comparandola con otra serie de referencia (por ejemplo
p-series), siempre que la relacién entre sus términos individuales, a medida
que n tiende a infinito, sea un nimero positivo y finito. Si > b,, es una se-
rie conocida cuya convergencia o divergencia es clara, entonces la serie Y a,
tendra el mismo comportamiento (convergencia o divergencia) que Y- b,.

Ejemplo

Consideremos la serie > 07 n%ﬂ de términos positivos. Queremos determi-

nar si esta serie converge o diverge. Para ello, la compararemos con la serie

] #, que es una serie convergente por ser serie p con p =2 > 1.

Primero, calculamos el limite de la relacién entre los términos:

1 2
, 211 , n , 1
lim 2 1+ = lim 5 = lim - =

Como el limite es L = 1, que es un nimero positivo y finito, el criterio de
comparacion al limite nos indica que ambas series, > 7, n21+1 vy #, tendran
el mismo comportamiento.

Dado que >, 7712 es una serie convergente, concluimos que la serie >
también converge.

00 1
n=1 p24+1

. . . = 2n+3
Ejemplo: Para estudiar el comportamiento de la serie Z 21
n

n=1
2n+3 1 (2432
5n2+1 n \5+ =

Es decir que, para "n grande.®! comportamiento del término general de a,, es

observemos que 0 < a, =

como % Esto implica comparar con la serie cuyo término general es b, = — |
n
b, > 0 para todo n > 1, serie armonica divergente.

Calculamos el limite:
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Z — es divergente. Entonces, por el criterio de comparacion en el limite,
n=1
i 2n+3 di ;

———— es divergente.

5n? + 1 &

n=1

2.6.7. Criterio de la raiz (optativo)

Sea {a,} tal que a,, > 0 para todo n y lim {/a, = L.

Entonces: i) Si L <1 la serie Y a, converge.
n=1
ii) Si L > 1 la serie » _ a, diverge.

n=1
iii) Si L =1 el criterio no decide.

1 n
Ejemplo: Sea a, = [] .
n)

In(
1 n
an = >0 Vn>2
In(n)
A Van = lim prey =0< 1.

00 1 n
Entonces, por el criterio de la raiz, la serie Z [ n >1 converge.
n(n

n=2

2.7. Convergencia absoluta

Algunas series pueden ser con términos positivos y negativos, por ejemplo:

i) a, = (—1) L5 1 sus primeros términos son:

1,2,-3,4,5,—6,7,8,—9, ...

ii) a, = sin (%") -n? Sus primeros términos son:

0,?-4,—1-9,0,?-16,—1-25,...
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iii) a, = n?> — 5n Ejemplo de sus primeros términos:

0,—4,—6,—6,—4,0,6,12,18, ...

La pregunta ahora es: ;Cémo estudiaremos la convergencia de series que son
de términos positivos y negativos? ya que los criterios desarrollados se aplican
a series de términos positivos.

Las técnicas desarrolladas para determinar la convergencia de series de térmi-
nos positivos, vamos a aplicarlas para series de términos positivos y negativos,

utilizando la serie que resulta de tomar el valor absoluto del término general
oo

de la serie, es decir, analizando la serie Z |a,,| . Tal aplicacién es posible por
n=1
el teorema siguiente. Como veremos a continuacién, la convergencia absoluta

de una serie implica su convergencia.

e '

Teorema

[e.e] (o)

Si la serie ) |a,| converge entonces la serie »  a, también converge.
n=1 n=1

Ademas, se dice en este caso que la serie es absolutamente convergente.

Demostracion:

Sea b, = a, + |a,|
o0

Para todon es b, >0 y b, < 2]a,|. Como »_ |a,| se supone convergente,
n=1

por propiedad de las series es convergente la serie de términos 2 |a,| y, por
el criterio de comparaciéon, también converge la serie de términos b,. Luego,
siendo a, = b, — |a,|, otra vez por propiedad de las series, se concluye que
la serie de términos a,, es convergente.

[o.¢]

) ) sen(n

Ejemplo de esto es la serie Z g )
n=1 n

tivos. Esta serie es convergente ya que la serie de los médulos, es una serie p

con p = 2, que es convergente. Por lo tanto la serie también lo es.

, cuyos términos son positivos y nega-
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2.8. Series alternadas

Serie alternada

e}

Una serie alternada es una serie infinita de la forma Z(—l)"an con
n=1

a, > 0 para todo n.

\. J

Veamos como analizar la convergencia de estas series. Por un lado, si la serie
en médulo converge, la serie alternada también converge y en este caso se
dice que la serie es absolutamente convergente.

Pero en el caso que la serie de los moédulos diverge, no se sabe si la serie
alternada converge o no. En este caso, podemos analizar la convergencia por
el siguiente criterio.

Criterio de Leibniz

Sea {a,}, tal que a,, > 0 para todo n, si {a,} decreciente y lim a,, =0,
0o n—oo
entonces la serie alternada »_(—1)""a, converge.

n=1

Ejemplo: serie arménica alternada

Analizar la convergencia de la serie denominada serie armdnica alternada
o0

Z(—mﬂi - 1/241/3—..

n=1

1
i)—>0Vn eN.
n

1 1
ii) {} es decreciente pues <—-VneN.
n n + n
iii) lim — =0
n—oo n,

nfll

Entonces, por el criterio de Leibniz la serie Z(—l) converge. Recordar

n=1
que la serie en modulo es divergente, es una serie p con p = 1.

En Matematica C, mediante otras herramientas matematicas encontraran el
valor al cudl converge la serie armoénica alternada. El ejemplo anterior pone
[e.9] oo

en evidencia que una serie Z a, puede ser convergente y la serie Z lan| ser
n=1 n=1
divergente. Ejemplo de esto es la serie armonica y la serie armonica alternada.

Cuando esto sucede se denomina de la siguiente manera.
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~ '

Convergencia condicional

Una serie se denomina condicionalmente convergente cuando la serie
o0 oo

> a, es convergente y la serie Y _ |a,| es divergente.
n=1 n=1

Ejemplo: Para determinar el comportamiento de Z ‘
n!

(-2

estudiemos pri-

o0

mero la serie Z

— | n!
—2\n n
‘( ) =—>0Vn
n! n!
(_2)n+1 (—2)" _ 2n+1 . on B 2
(n+D' | n | (n+1D)! 0l n41
-9 n+1 —\"
lim (=2) : (=2) = lim = 0 < 1 . Entonces, por el criterio
n—oo | (n 4 1)! n! n—00 n +
) —9\n
del cociente, la serie Z ( ') es convergente y por lo tanto también con-
—| n!
verge la serie Z . La serie Z es absolutamente convergente.
~ nl — nl

2.8.1. Aproximacion de la suma de una serie conver-
gente por una suma parcial

o0
Si se sabe que una serie Z a, es convergente, se puede tomar una suma
k=1

n

parcial S,, = Z ap como aproximacién a la suma S de la serie. Damos a
k=1
continuacion una estimacién de la diferencia o error |[S — S, |.

La propiedad siguiente es muy 1til para saber si una suma parcial S,, de una
serie alternante convergente, es aceptable o no para aproximar a su suma S.
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Propiedad

[e o]

Si una serie Z(—l)”“an satisface las condiciones del criterio de Leib-
n=1

niz y S es su suma, entonces el error que se comete al aproximar S con

la suma parcial S,, es, en valor absoluto, menor o igual que a,1; .
O sea, [S = S,| < anta.

Este propiedad permite por un lado, conocer el error cometido al aproximar
la suma S de una serie convergente (que en la mayoria de las veces es des-
conocida) por una Suma parcial. También es 1til para estimar la cantidad
minima de términos a sumar para obtener determinado error para estimar la
suma S.

2.9. Ejercicios

1. a) Vean si es posible determinar el comportamiento de las siguientes
series aplicando la condicién necesaria de convergencia.

20 —n+3 | on = /10 1
i _ ii — i — - —
XET viy wi(iow)
b)Analicen si son convergentes o divergentes las series de los incisos
ii) y iii).
. : - &Kn(n) L
2. Estudien el comportamiento de la serie Z aplicando el criterio
n=2

de la integral.

3. Estudien el comportamiento de las siguientes series aplicando el criterio
de comparacion.

RSN | e 1 oy e 1
1) ;m 11) ;m 111) n;lm

4. Estudien el comportamiento de las siguientes series aplicando el criterio
de comparacion en el limite.

R | L e 1 V)
D2y Wigenes WA

n=1 n=1 n=1

5. Estudien el comportamiento de las siguientes series aplicando el criterio
Qo1 ) ' [e's) 50 n . 00 6277,
e la raiz. i E — ii E —

) \/ﬁ ) n=1 n"

n=1

6. Vean si es posible determinar el comportamiento de las siguientes series
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NUMERICAS

)2y v

aplicando el criterio del cociente. i
n=1 n! n=1 n+ 1

7. Vean si es posible determinar el comportamiento de las siguientes series
aplicando el criterio de Leibniz.

D I DY E IS DY
8. Muestren que Z es convergente y aproximen su suma con error
n=1
1
menor que .
1000
9. Analicen si las siguientes series son convergentes o divergentes.
B 1 | - S€"<1)
i ii — il —_—
'L Vhw VLU YL ves
> 1 e n+2 e N
V);n2+n+1 )nzlrﬂ n—1 Vll);nZ—i—l
o1 e n! = 10 A n?+3
Vm)nglrﬂ—l—l 1X)nz::12n!+1 X)nz::l; Xl);4n—5n2
=10 X n X 4y/n—1
Xn)nz::1 e Xul)nz::l W Xiv) 2:21 12 n
> 1 (4n® 4 5)cos(L) e n”
XV) nz::l S z:: g xvii) 7; I

10. Analicen si las siguientes series son absolutamente convergentes, con-
dicionalmente convergentes o divergentes.

N R DU D P
e (=D > cos(n) .. X (—n)"
iv) n:1m )nz::l an Vl)nz::l o

11. Representacién de un ntimero con cifras decimales peridédicas como su-
ma de una serie geométrica. (i) Representa el nimero periédico 3,99999...
como la suma de una serie geométrica infinita. (77) Explica de manera
general como cualquier nimero con cifras decimales peridédicas puede
ser expresado como la suma de una serie geométrica infinita. Desarrolla
el método para calcular su suma en términos generales.
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Capitulo 3

Ecuaciones diferenciales

Un modelo matemdtico es la traduccion al lenguaje matematico de algo que
sucede en la realidad; es una descripciéon (por medio de una funcién, una
ecuacién, un sistema de ecuaciones, etc) de un fenémeno del mundo real y
que tiene por finalidad comprenderlo y hacer predicciones acerca del com-
portamiento futuro del mismo. Las ecuaciones diferenciales (cuyo estudio
comenzaran ustedes en este capitulo) se presentan como modelo mateméti-
co de infinidad de fenémenos en las diferentes ramas del conocimiento, en
especial de la ingenieria.

Para obtener un modelo matematico que describa un fenémeno, quiza baste
contar con modelos de baja resolucién; por ejemplo, en los cursos basicos de
fisica el lector habra advertido que al modelar el movimiento de un cuerpo
que cae cerca de la superficie de la Tierra, se hace caso omiso de la resistencia
del aire. Pero si el lector es un cientifico cuyo objeto es predecir con exac-
titud la trayectoria de vuelo de un proyectil de largo alcance, debera tener
en cuenta la resistencia del aire y demas factores, como la curvatura de la
Tierra. Dado que las hipétesis acerca de un sistema implican con frecuencia
la razon o tasa de cambio de una o mas de las variables, el modelo matemati-
co de las hipotesis es una o mas ecuaciones donde intervienen derivadas. En
otras palabras, un modelo matematico puede ser una ecuacion o sistema de
ecuaciones diferenciales. Una vez formulado un modelo matematico (sea una
ecuacién diferencial o un sistema de ellas), llegamos al problema de resolver-
lo, que no es facil en modo alguno. Una vez resuelto, comprobamos que el
modelo sea razonable si su solucién es consistente con los datos experimen-
tales o los hechos conocidos acerca del comportamiento del sistema. Si las
predicciones que se basan en la soluciéon son deficientes, podemos aumentar
el nivel de resolucién del modelo o elaborar hipétesis alternativas sobre los
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mecanismos del cambio del sistema; entonces, se repiten los pasos del pro-
ceso de modelado. Al aumentar la resoluciéon, aumentamos la complejidad
del modelo matematico y la probabilidad de que debamos conformarnos con
una solucion aproximada. A veces, una misma ecuacién diferencial puede ser
modelo matematico de distintos fenémenos.

Las ecuaciones diferenciales se clasifican de distinto modo, por ejemplo en
ordinarias o parciales.

Una ecuacion diferencial ordinaria es una igualdad que involucra una variable
independiente, una funciéon de esa variable y derivadas de esa funcion respecto
de la variable independiente.

Cuando la ecuacion involucra a derivadas parciales de una funcion de varias
variables, la ecuacién diferencial es de tipo parcial.

Ademas, las ecuaciones ordinarias, se pueden clasificar segiin el orden, o si
son lineales o no lineales.

El orden de una ecuacién diferencial ordinaria se define como el grado de la
derivada mas alta presente en la ecuacién. En otras palabras, es el niimero de
veces que se deriva la funcion incognita respecto a la variable independiente.

Por ejemplo:

] % + y = 0 es una ecuacién diferencial de primer orden porque la deri-
vada mas alta es Z—Z, que es la primera derivada de y.

d2y dy o <z . .
» -4 — 35242y = 0 es una ecuacion diferencial de segundo orden porque

. ’ 2 .
la derivada mas alta es %, que es la segunda derivada de y.

3 2 ., . .
] 37‘3 + 4372 —y = 0 es una ecuacién diferencial de tercer orden porque

. /7 5 .
la derivada mas alta es %, que es la tercera derivada de y.

El orden de la ecuacién es importante porque influye en los métodos utilizados
para resolver la ecuacion y en la naturaleza de las soluciones posibles.

Ademas, se define el grado de una ecuacién diferencial al mayor exponente
al que aparece elevada la derivada de mayor orden.

Mas ejemplos:

» 4" +(y)?+x = cosz esuna ecuacién diferencial ordinaria de segundo
orden y grado 1.

» (Y2 + 9y =12° es una ecuacién diferencial ordinaria de orden 3 y
grado 2.
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3.1. ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER
ORDEN

0%y 0%y o . . S
v 4@ es una ecuacion diferencial parcial (ver que aqui la incog-

nita es una funcién de dos variables: t y z )

» Las ecuaciones ¥y = 2x e ¢y = x + y son ecuaciones diferenciales
ordinarias de primer orden y grado 1.

En este curso estudiaremos las ecuaciones diferenciales ordinarias de primer
orden. Luego en Matemadtica C, continuards estudiante este tema, abordando
las ecuaciones diferenciales de sequndo orden y los sistemas de ecuaciones
diferenciales.

3.1. Ecuaciones diferenciales ordinarias de pri-
mer orden

Ecuacién diferencial ordinaria de primer orden

Una ecuacion diferencial ordinaria de primer orden es una ecuaciéon que
involucra a: x variable independiente, y(x) es la funciéon dependiente

de z y de su derivada y/'(x) = j—g :

Esta ecuacién puede ser escrita, en ciertos casos, de una o varias de las
siguientes formas:

1. Forma explicita:

dy

2. Forma implicita:
F(z,y(z),y'(x)) =0

3. Forma diferencial:

P(z,y)dx + Q(z,y)dy = 0

4. Forma lineal:

5. Forma separable:



CAPITULO 3. ECUACIONES DIFERENCIALES

En problemas donde la variable independiente modela el tiempo suele utili-
zarse a t como variable independiente y a x(t) variable dependiente.

Ejemplos
» ¢/ (z)y(z) — z = 0 forma implicita.

s y — 2y = x forma lineal

dy

7 =z +y forma explicita

% = cos(y).z forma explicita

» (y — x)dx 4+ xdy = 0 forma diferencial

dy

ot 2y = 22 forma lineal

dy
Y

. = xdx forma separable

El objetivo de una ecuacién diferencial es lograr encontrar una funcién y(z)
que verifique la igualdad. Para ellos estudiaremos diversos métodos. Cada
método dependerd de su aplicabilidad segiin sea la forma en que pueda ser
escrita la ecuacién diferencial ordinaria de primer orden.

Solucion de una ecuacién diferencial ordinaria

Una solucidn en un intervalo I es una funcién y = ¢(x) derivable
en [ tal que, al reemplazar en la ecuacién diferencial y(x) por ¢(x) e

y'(z) por ¢'(z) la igualdad se cumple. El intervalo puede ser abierto
I = (a,b), cerrado I = [a,b] o I = (00, b).

Soluciones explicitas o implicitas. Veremos que segin sean los métodos
de resolucién de una ecuacion diferencial de primer orden, se puede obtener la

solucién en forma explicita, es decir, y = f(x), o en forma implicita G(z,y) =
0.

Ejemplo: Verificaremos a continuaciéon que la funciéon y = 2e* — x — 1 es
una solucién de y' = = + y.

Siendo y = 2e® — x — 1 resulta ¢y = 2¢” — 1 r+y=2e"—1
y por lo tanto 3/ = x +y .

En general para resolver la ecuacion

/

Yy =2z
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ORDEN

podemos integrar y obtener como soluciéon no una, sino toda una familia de
funciones de la variable x

y=2>+C
de un pardmetro C'. Esa familia de funciones es lo que llamamos solucion
general de la ecuacién.

Para cada valor determinado de C' se obtiene una solucion particular de la
ecuacion. Por ejemplo:
y=1>-5

\

es una solucién particular.

Lo mismo podemos decir para una ecuacién diferencial ordinaria de primer
orden cualquiera: la solucion general es una familia de funciones, de una
variable, dependiente de un parametro tal que, para cada elecciéon de ese
parametro se obtiene una solucion particular.

La solucién general de una ecuacién diferencial se presenta a veces definida
de un modo tmplicito.

Asi por ejemplo:
23
yr- o -5 = C  define de manera implicita la solucién general de la

ecuacion y — 22 + (z — y?)y’ = 0. Verifiquemos que eso es cierto:

En ocasiones, una solucion de una ecuacion diferencial dada no se obtiene a
partir de la solucion general. Esas soluciones se llaman singulares.
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—C\?
Ejemplo 1: Por ejemplo, como pueden ustedes verificar, y = (:1: 5 )
3
es solucién general de la ecuacién diferencial 3y’ = — v/y2. También pueden

verificar que y = 0 es solucién de esa ecuacion (solucién trivial), pero vean

— 0
que, cualquiera sea la elecciéon de C) la funcion y = (m8> es diferente de
la funcién y = 0, o sea, y = 0 es una solucién singular de y' = 3 Vy? (es

solucién pero no se obtiene a partir de la solucién general).

Ejemplo 2: Por ejemplo, la familia de funciones: y = sen(z+ C') es solucion
general de la ecuacién diferencial (y')? + y* = 1. Una solucién particular es,
por ejemplo, y = sen(x), o y = sen(x + 1). Notar ademds, que las funcio-
nes y = 1 e y = —1 son soluciones singulares (estas verifican la ecuacién
diferencial, pero no se pueden encontrar a partir de la familia de soluciones).

Familia de funciones asociada a una ecuacién diferencial

Dada una familia de funciones dependiente de un pardmetro y = p(z,C) o
¢(z,y,C) = 0, llamamos ecuacion diferencial asociada a aquella que tenga a
dicha familia como solucién general.

Veremos en los siguientes ejemplos como hallamos la ecuacién diferencial
asociada a una familia dada.

Ejemplos:
» Para hallar la ecuacién diferencial asociada a y = Cz? el primer
= Ca?
paso es derivar: y = 2Cx . A continuacién, a partir de y/ o
Yy =Lz

tendremos que deducir una tercera ecuacion en la que no aparezca C.
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En este caso, por ejemplo:

2
y'zQC’x—>y'x:20x2—>y':;y

es la ecuacion diferencial asociada a la familia de pardbolas con vértice
en (0,0).

Dada la familia de circunferencias 2% + > = C para hallar la ecua-
cion diferencial asociada bastara con derivar de manera implicita: 2z +
2yy’ =0 o sea:

z+yy =0

es la ecuacion diferencial asociada a tal familia.

Campo de direcciones Dada y' = f(z,y), si en diferentes puntos (x,y)
de un sistema de coordenadas cartesianas trazamos pequenos segmentos con
pendiente igual a f(x,y) obtenemos lo que se llama campo direccional o
campo de pendientes de esa ecuacién diferencial. Los segmentos del campo
direccional de ¢y = f(x,y) son tangentes a las curvas correspondientes a las
soluciones de esa ecuacion diferencial y su observacion puede ayudarnos a
reconocer dichas curvas.

La siguiente imagen fue obtenida usando los comandos CampoDirecciones y
ResuelveEDO en GeoGebra y muestra el campo direccional de 3y = z+y y la
curva de ecuacién y = 2e” —x — 1 (una solucién de esa ecuacion diferencial).

,,,,,,,,,

3.1.1. Ejercicios

1. En los siguientes incisos, verificar que la funcién dada es solucion de la

ecuacion diferencial que la acompaiia.
, senx
i)y =

; xy 4y =cosx
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1

ii)y:Ce*Q’”—i—gex oy +2y=¢€"
if) y=2+CvV1+a? ; (1+2%)y —ay= -2
iV)erI/ edt + Ce®  ; y —y = et

0
Viy=zV1—22 ; yy =x—223

. e’

Wy—s Sl o=y e

x

2. Obtener la ecuacién diferencial asociada a:
i)y=Cux ii)y=Csenx iii)y=sen(z+C) iv) 2 +2y*=C
Vizy=C vi)z? —y?=C vii) y? = Cz® viii)y = Ce™

Métodos de resolucién de ecuaciones diferenciales ordinarias
Métodos analiticos

A continuacién estudiaremos algunos métodos que permiten encontrar la
solucion analitica de cierto tipo de ecuaciones diferenciales ordinarias de
primer orden. Las soluciones analiticas implican encontrar una expresion ma-
tematica exacta para la funcién desconocida que satisface la ecuacion dife-
rencial. Estas soluciones proporcionan una comprensiéon profunda del com-
portamiento de la funcién en todo el dominio de la variable independiente.
Sin embargo, encontrar soluciones analiticas es posible solo para un conjunto
limitado de ecuaciones diferenciales. Los métodos que estudiaremos aqui son:

= Método de variables separables

= Diferencial exacta

» Ecuaciones lineales de primer orden
Métodos numéricos

En los casos que no sea posible encontrar una solucién analitica, es posible
obtener soluciones numéricas. Las soluciones numéricas implican aproxi-
mar la solucion de una ecuacion diferencial utilizando métodos numéricos y
computacionales. Estos métodos dividen el dominio de la variable indepen-
diente en pequenos intervalos y calculan la soluciéon en puntos discretos dentro
de cada intervalo. Estos métodos son estudiados en materias mas avanzadas,
requieren de calculos computacionales y del uso de algoritmos.

En resumen, las soluciones analiticas proporcionan expresiones matematicas
exactas para la funcién desconocida, mientras que las soluciones numéricas
aproximan la solucién utilizando métodos computacionales. Ambos enfoques
son importantes y se utilizan en diferentes situaciones dependiendo de la
complejidad de la ecuacion diferencial y los objetivos del analisis.

106
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3.2. Ecuacion diferencial de variables separa-
bles

Variables separables

Una ecuacion diferencial ordinaria de primer orden de wvariables sepa-
rables es aquella que se pueda expresar en la forma

Siendo asi,
/p(ﬂf)dﬂf = /q(y)dy +C

define implicitamente la soluciéon general de la ecuacién diferencial de
la forma

Plz)=Q(y) +C
siendo P(z) y Q(y) primitivas de las funciones p(x) y q(y).

Notar que la constante de integracion sélo basta con colocarla de un miembro
de la igualdad.

En efecto: derivando respecto de z la ultima igualdad resulta
p(z) = q(y)y

de modo que p(x)—i—q(y);li = 0y entonces p(z)dz = q(y)dy (o sea, la igualdad

expresada en la ecuacién diferencial se cumple).
Ejemplos:

» La ecuacién 2zdr = —ydy tiene la forma p(x)dz = q(y)dy.
La solucion general queda definida implicitamente por
2
J2xdr = [—ydy+C o sea: x2+%:C.
» 3e”tgy + v (2 — €®) sec’y = 0 puede expresarse en la forma
3etg(y) de = — (2 — %) sec®y dy, suponiendo (2 — %) tgy # 0,
se pueden separar las variables dividiendo por esa expresiéon ambos
miembros de la igualdad:

3e” sec?y d
r=— Y
2—e tg(y)
A continuacién se integra para obtener
3ln‘2 —e"| = ln‘tg(y)‘ + G4
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La expresion del renglon anterior define implicitamente la solucién ge-
neral de la ecuaciéon diferencial. Podemos aplicar las propiedades de los
exponentes y logaritmos para simplificar esa expresion:

t
ol = -
‘ tg(y) ‘:efcl
(2—e")3
tgy | o
(2—e")3 =
tg(y)

lo que podemos escribir en la forma: ;=C con C#0

(2—e)
Observamos ademas que tg(y) = 0 también define soluciones de la ecua-
cién diferencial, de manera que podemos decir que la solucién general
estd dada por: tg(y) = C(2—¢e")® con C €R.

3.2.1. Ejercicios

1. Hallen la solucién general:
i)(1+y*)de+(1+2%)dy=0 ii) (1 +y?)dz + zydy =0
iii) (xy? + y?)y + (22 —y2?) =0  iv) ylnydr + xdy = 0
v) (xy? +x)dr + (y2? +y)dy =0 vi) (1 +¢e)yy = ev

2. Hallen y = ¢(x), que sea solucién particular de la ecuacién diferencial
y(4z +6)dr — (2 + 3z +2)dy =0  con p(0) =4,

3.3. Ecuacion diferencial exacta

- )

Ecuacién diferencial exacta

La ecuacién diferencial P(x,y)dz + Q(z,y)dy = 0 es una ecuacion
diferencial exacta en D C R? si existe una funcién f(z,y) tal que
V(z,y) € D,

P(r,y) = 9 (a.)

Qz,y) = gi(%y)

Siendo asi, f(z,y) = C define implicitamente a la solucién general.
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3.3. ECUACION DIFERENCIAL EXACTA

En efecto: al derivar respecto de z en f(x,y) = C se tiene

of L Of
(9:1: (9y N
of  Ofdy
oz oy dy dx =0
of of
axd +ayd y=0

. of
y, siendo P(z,5) = 2L(2,y) v Q) = 2L (z,y), resulta

dy
P(z,y)dz + Q(x,y)dy = 0

ox

Ejemplo: dada 2zdx + 2ydy = 0 es facil reconocer una funciéon f(z,y)
0 0
tal que 2x = af(x,y) y 2y = af(x,y) Una funcién que cumple esas
T Y

condiciones es por ejemplo f(x,y) = 2?+y?. Entonces, la ecuacién diferencial
2xdr + 2ydy = 0 es exactay 22+ y? = C define en forma implicita la
solucion general de esa ecuacion.

No todas las ecuaciones de la forma P(z,y)dr + Q(z,y)dy =0 son exactas
y no siempre es facil reconocer a simple vista si una ecuacion es exacta o no.
Conviene tener en cuenta que, si P(x,y)dr + Q(z,y)dy = 0 es exacta en

D, osea, s existe f(z,) tal que P(o.y) = 50 (5,9) ¥ Qlay) = 5 (w.0)

V(xz,y) € D C R? | suponiendo que las derivadas parciales de P y @) sean
continuas, debe ser:

2 2
or _ of _ 9f 8—Q Si es ademés D = (a,b) X (¢,d). vale también

Oy  Oydr Oxdy  Ox’

la afirmacién reciproca de la anterior. Resumiendo:

Criterio de exactitud: Supongamos que P(z,y) v Q(x,y) tienen deriva-
das parciales de primer orden continuas en el rectangulo D = (a,b) x (¢, d).

La ecuacién diferencial P(x,y)dz+Q(z,y)dy =0 es exacta en D siy s6lo
. JoP  0Q

— en cada punto de D.

Yoy T ox

Ejemplos:
» Dada (y — 2?)dx + (x — y?)dy = 0 , observamos que

P(z,y)=y—a°
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Qz,y) =z —y’

P y @ son funciones polinomiales, tienen derivadas parciales continuas
en D = R? y se cumple, en cada punto de ese conjunto, que

0P _0Q

oy  Oxr
La ecuaciéon (y — z?)dz + (z — y*)dy = 0 es una ecuacién diferencial
exacta en D = R2, o sea :
Existe una funcién f(x,y) tal que, para todo (z,y) € R? se cumplen
las siguientes dos igualdades:

0
)= Play) =y -

Z(a:,y):cz(x,y):x—y

2

Veremos a continuacién como hallamos esa funcion f:

of 3

L (w,y) = Ple,y) =y—a* = f(o,y) = [(y=a2)de = yo - +g(0)
(g9(y), por el momento desconocida, es la constante de integracién res-
pecto de z)

of 2

ay(:v,y) =Qry)=z—y sa+gd W) =c-y" =>4y =—y —

_y3
— g(y) Z/—dey=T+C

De modo que

23 P
f(%y)—yﬂﬁ—?—g
es una funcion tal que
gi(x,y) = P(z,y) =y —2°
of 2

Fy(a%y) = Q(l‘,y) =T =Y

y por lo tanto la ecuacién que define implicitamente a la solucién

general es:

ZL'S y3
T Jd
=377

(verificarlo).
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» ;Es exacta la ecuacion diferencial (2zy — e®)dx +dy =0 7
Observamos que
P(z,y) =2zy —€*

Qz,y) =1
P(z,y) y Q(z,y) son funciones que tienen derivadas parciales continuas
en D = R2
oP oQ
o S
oy . ox
or , 0Q
dy = Ox

Concluimos entonces que (2zy — e*)dz + dy =0 no es exacta.

3.3.1. Ejercicios

1. Comprueben que las siguientes ecuaciones son exactas y obtengan su
solucion general.
i) 6rydr+ (3z%42y)dy = 0 ii) (y>+6xy)dw+ (3zy?+32*>—2y)dy = 0

2. Hallen la solucién particular de ycos(zy)dx + [1 + xzcos (xy)|dy = 0
cuya grafica pasa por (0, 1).

3.4. Ecuaciéon diferencial lineal de primer or-
den

Las ecuaciones diferenciales ordinarias se clasifican ademaés en lineales o no
lineales.

En general una ecuacién diferencial lineal ordinaria de orden n puede expre-
sarse en la forma

y™ 4 ap_ 1 (2)y" Y+ ag (@)Y + aolz)y = f(z) (3.1)

donde a;(x), ¢ = 0,...,n — 1y f(z), son funciones definidas en un cier-
to intervalo I C R. Ademas, si f(z)=0 la ecuacién diferencial se denomina
homogénea y si no, se la denomina no homogénea.

Las ecuaciones diferenciales lineales surgen en numerosos problemas corrien-
tes. Por ejemplo, la ecuacién de segundo orden lineal homogénea, " +%y =0,
modela el movimiento de una masa unida a un resorte.
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CAPITULO 3. ECUACIONES DIFERENCIALES

Pero la importancia de las ecuaciones diferenciales lineales proviene ademaés
del hecho que resultan més faciles de resolver y comprender que las ecuacio-
nes diferenciales no lineales. A diferencia de estas ultimas, en las lineales es
valido, como veremos, el principio de superposicion, el cual permite obtener
soluciones de problemas complejos mediante la superposicion de soluciones
de problemas mas sencillos.

r

Ecuaciéon diferencial lineal de primer orden

Una ecuacién diferencial lineal de primer orden es de la forma:

Y +p(x) y=q(z)

con p(x) y q(z) funciones de una variable real definidas en un cierto
intervalo I C R. Si g(x) = 0, la ecuacion diferencial resulta ser:

Y +plx)y=0

y se la denomina ecuacion diferencial de primer orden lineal homogénea.

\. J

Ejemplos:
o + 20y =€
Yy = senx
» 22y + 2y = e (aqui, suponiendo z # 0, se divide por z? para llevar la
ecuacion a la forma general: v + — y = 6—2
x x
3.4.1. Propiedades fundamentales de ecuaciones dife-
renciales lineales homogéneas

Las ecuaciones diferenciales lineales poseen propiedades especiales, que per-
miten establecer las propiedades fundamentales de sus soluciones aun sin
conocerlas explicitamente.

Solucién trivial, como puede verse facilmente y(z) = 0 es solucién de la
ecuacion homogénea.
Ademaés, si y;(z) e yo(x) son soluciones de la ecuacion homogénea, la com-
binacién lineal

y(a) = ciyi(z) + caya()

es también solucién de la homogénea, para cualquier valor de las constan-
tes ¢ y co. Es decir, si y(x) es solucion, cy(x) también lo es, y si y1(z) e ya(x)
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son soluciones, y;(x) + y2(x) también lo es.

La propiedad anterior se conoce como propiedad de superposicion: Si
y1(z) e yo(z) son dos soluciones de una ecuacién diferencial lineal homogé-
nea, cualquier combinacién lineal de ellas es también una solucién.

3.4.2. Solucion de la ecuacion lineal homogénea de pri-
mer orden

Dada la ecuaciéon
y +plx)y=0 (3.2)
es facil observar que se puede resolver por separacion de variables escribiendo

que
y' = dy/dr
resulta que
dy/dx + p(x)y =0
entonces dy/y = —p(x)dzx.

Integrando ambos miembros, la solucién general de la ecuacion diferencial
lineal de primer orden homogénea es:

y(x) = Ce 7

como es facil verificar, donde C' es una constante y [ p(x)dx una primitiva
de p(z) en el intervalo I donde es continua.

Actividad 1: Hallar la solucién general de
y' +ay=0

(es decir que p(z) es constante a). Este tipo de ecuacién diferencial, en la que
no aparece x explicitamente, se denomina autonoma. Graficar algunas de las
familias de soluciones segin sea a positivo o negativo.

Actividad 2: Probar que la soluciéon general de
y +ay=0
es y(z) = ce™* /2, y que la tnica solucién que satisface y(0) = 1 es y(z) =

e—x2/2
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3.4.3. Solucion de la ecuacion diferencial lineal no ho-
mogénea de primer orden

Consideremos ahora el caso general
Y + () y = q(z)
Actividad: En el caso que p(z) y ¢(z) sean constantes a y b, la ecuacién
diferencial queda de la forma
Yy +ay=>

Analizar si es posible resolverla mediante alguna de las técnicas ya estudiadas.
., Qué obtuviste?

Veamos entonces el caso mas general donde p(z) y ¢(z) son funciones conti-
nuas en un intervalo abierto 1.

La solucion general de esta ecuacion esta dada por la suma de la soluciéon
general y,(z) de la ecuacién homogénea més una solucién particular y,(z)
de la ecuacion no homogénea:

y(z) = yn(v) + yp(z)

donde
m(z) = Ce [

es la solucion general de la ecuaciéon homogénea.

Demostracion:

Dado que y;, + p(z)yn = 0y y, + p(x)y, = q(x), vemos yn(z) + y,(z) es
también solucion de la ecuaciéon no homogénea. Entonces esto muestra que la
diferencia y(z) — y,(z) es una solucién y;(t) de la ecuacién homogénea
para y(z) en general solucién de la ecuacién no homogénea. Por lo tanto
y(z) — yp(x) = yn(x) y entonces y(x) = yu(x) + yp(z).

Importante: Para resolver la ecuacién general de la no homogénea debemos
pues resolver la ecuaciéon homogénea y luego encontrar alguna solucion par-
ticular y,(x) de la no homogénea mediante algin método.

Método para hallar una solucién particular de la ecuacién diferen-
cial lineal no homogénea La ecuacion es

Y +plr)y = q(x)
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Vimos previamente que la solucién general de la ecuaciéon homogénea es:
yn(z) = Ce~ [ p@)de

Para hallar una solucion particular, utilizaremos un método denominado va-
riacion de parametros.

Consiste en proponer una solucion de la forma
ypla) = v(x)e 7
con v(z) una funcién a determinar.

Notar que consiste en "variar el parametro"C' en la soluciéon de la homogénea
y que este resultado sea una solucion particular de la no homogénea.

Reemplazando en la ecuacion diferencial no homogénea se obtiene
Ule—fp(:c)dz — q(x)
Por lo tanto,

, q(x)

v= e—fp(:t:)da:

entonces

v(x) = /efp(z)dxq(x)dx

Una solucién particular es entonces

pplw) = e [ [ efpteq ()i

y la solucion general es

y(:c) — C’effp(w)dz + e*fp(x)dw(/q(x)efp(z)dxdx>

Resumen:
1) Proponer que la solucion general es de la forma y(z) = yn(x) + y,(z).

2) Hallar la solucién general de la homogénea y; () (es de variables separa-
bles).

3) Hallar y,(x) haciendo variar la constante C' en la solucién homogénea
proponiendo que sea una soluciéon particular de la no homogénea.

4) Volver a 1) y armar la soluciéon general.
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Ejemplo

Resolvemos la ecuacion:

2
o _ 1)3
y-o7y=@E+1)
. , 2
Reconocemos en la ecuacién la forma y' + p(x) y = ¢(x), con p(x) = — I
x

vy q(z) = (x4 1)

1) Proponemos que y(z) = yn(z) + y,(x).
2) Hallamos la solucién general de la ecuaciéon homogénea yp,:

2
r+1

/

y_

y=20

Es esta una ecuaciéon diferencial de variables separables:

dy 2

d
Y x—i—lx

Integrando resulta:
ln‘y’ = 2ln‘x + 1‘ + K

Operando y aplicando exponencial a ambos miembros, se obtiene:
yn(x) = C(z +1)°

3) Buscamos por el método de variacién de pardmetros, una solucién parti-
cular y, de la ecuaciéon no homogénea, proponiendo que:

Yp(x) = v(2).(x + 1)°

Reemplazando en la ecuaciéon diferencial no homogénea, resulta que:

V(z)=(z+1)

Obtenemos:
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(Notar que aqui, para v(z) dado que estamos buscando una solucién parti-
cular, podemos considerar para la constante de interaccién cualquier valor
deseado, por ejemplo en este caso, cero).

Reemplazamos ahora esa funcién v en lo anterior
(x+ 1)
rT) = ———
yp( ) 5
4) Resultando la solucién general de la ecuacion:

y(x) = yn(z) + yp(x) = C(z + 1)* + ;(x +1)*

Algunas de las graficas de la familia de soluciones se observa en la siguiente
figura.

Si ademaés, nos interesara, por ejemplo, hallar la soluciéon particular que sa-
tisface y(0) = 3, despejamos el valor de C haciendo:

1 1
3:C(0+1)2+§(0+1)4 — 3=5+C = C=

DN | Ot

) 1
v la solucién particular buscada es: y(x) = 5(3: +1)? + 5(3: + 1)

3.4.4. Otro método para resolver la ecuacion diferen-
cial lineal de primer orden

Otra forma de resolver la ecuacién diferencial lineal de primer orden, es su-
poner que la solucion general es el producto de dos funciones:

y(e) = u(z)v(z)
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En este caso se debe cumplir que:
(uv) 4+ p(x) wo = g(z)

w'v 4w + px) uv = q(x)

Agrupando:
(v + p(x) u).v + uv' = q(x)

y si suponemos ademds que u(x) es una solucién de la ecuacién homo-
génea, es decir que el primer sumando es cero:

v +plr)u=0

Resulta que v deber ser tal que

y despejando v'(z) = q(x)/u(z), luego

v(x) :/qixidx%—C’

ul\x

Resumen:

1) Proponer que la solucién general es el producto de dos funciones: y(z) =

2) Encontrar u suponiendo que es una solucién de la ecuacién homogénea.

3) Hallar v resolviendo: v(z) = [ Mdm +C.

u(z)
4) Volver al paso 1) y armar la soluciéon general.

Ejemplo: Resolver usando este método:

, 2
z+1

y y=(x+1)°

Veamos que se obtiene el mismo resultado que por el otro método.
1) Proponer que y = u.v

2) Hallar u. Para ello resolvemos:
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Es esa una ecuaciéon diferencial de variables separables:

du 2

— = dx

U r+1
Integrando resulta: (consideramos la constante cero de integracion, ya que
estamos buscando sélo una solucion.

ln‘u‘ = 2ln‘x + 1‘
Aplicando propiedades del logaritmo:
2
ln’u‘ = ln‘x + 1‘
Aplicando exponencial a ambos miembros, resulta:

u=(r+1)°

3) Buscar v que sea solucién de
V(z)a+1)? = (e + 1) = () = (e +1)

de donde 2
v(x) :/(:c—i—l)d:c:(x—;)—l—(}'

4) Resulta asi que la solucién general de la ecuacion es:

(z+1)°

y(z) = uv = (x + 1)% l ;

vl

Distribuyendo:
1
y(w) = Cle+1)" + 5@+ 1)*

Observacién: Notar que es la misma solucién encontrada por el otro mé-
todo. Existe otro método para hallar la solucion general de la ecuaciéon no
homogénea de primer orden, que aqui no desarrollaremos, que se conoce como
"factor integrante”.

Actividad 1: Hallar la solucién general de dy/dx + ay = b con a y b
constantes. Luego hallar la solucién para el caso: dy/dx+y = 2 con y(0) = 1.

Actividad 2: Hallar la familia de curvas tales que la pendiente en cada uno
de sus puntos A = (z,y), coincide con la resta entre, la abscisa del punto A
y su ordenada.
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= Luego de resolver puedes visualizar la familia de soluciones en Geo-
Gebra.

3.4.5. Ejercicios

1. Hallar la solucién general de las siguientes ecuaciones diferenciales:
D)y + 20y = 2we ™ i) wy =y + asenx iii) ¥ + 2y = 2 + 2

2. Hallen la solucion particular de y' —ytgx = secx que satisface y(0) = 0.

3. Hallen la ecuacién de la curva que pasa por el punto (0,1) y es tal que
en cada punto (z,y) su pendiente es igual a = + y.

4. Un cuerpo de masa m se arroja desde cierta altura. Sobre el cuerpo,
ademds de la fuerza de gravedad (F}), actta la fuerza de resistencia del
aire (I,) y ésta tltima es proporcional a la velocidad (v(t)).
Fr=mg y F,=Fkwv(t) (donde k es un factor de proporcionali-
dad) De acuerdo a la segunda ley de Newton, Fy + F» = m.a(t) donde

dv
t) = —.
a(t) = —
dv ,
Entonces: mg—l—kv:mazmv
dividiendo porm : g+ — v =1’
m
.k
osea: vV ——wv=g

m
Observen que se trata de una ecuacion diferencial lineal. Hallen la solu-
ci6n general. Determinen luego la constante suponiendo que v(0) = vy.

3.5. Problema de valor inicial

F

Problema de valor inicial (PVI)

Se llama problema de wvalor inicial al problema de hallar, para una
ecuacién diferencial dada, la o las soluciones (si existen) que satisfacen
lo que se denomina una condicion inicial o sea, una condicién de la
forma y(xo) = yo.
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Considerando que resolver una ecuacion diferencial es, por lo general, una ta-
rea dificultosa (tengan presente que hemos visto cémo resolver sélo algunas
pocas ecuaciones sencillas, con un formato determinado) comprenderan que
resulta de mucho interés, dado un problema de valor inicial, poder decidir,
antes de abordar la btisqueda de la solucion, si dicha solucion existe y si es
unica. El teorema que enunciamos a continuacion se refiere a ello:

3.5.1. Teorema de existencia y unicidad de solucién de
un problema de valor inicial

Teorema de existencia y unicidad de solucion de un problema
de valor inicial

Dado el problema de valor inicial (PVI)

{y/ = f(1'7y)

y(xo) =Y

(Existencia) Si f(x,y) es continua en algin rectangulo R = [a,b] x
[c,d] C R? que tiene en su interior al punto (zg,yo) entonces el PVI
tiene al menos una solucién y(x) definida en algtin intervalo I que
contiene a xy.

(Unicidad) Si ademaés —f es continua en ese rectangulo R, existe y

dy
es Unica una solucién y(z) definida en algtn intervalo I centrado en x
que satisface el PVI.

VA

d

I
L
s
I I
R | .
a ("‘U'i-‘ﬂ) b

-y

\. J

El teorema anterior garantiza, bajo las hipdotesis mencionadas, que, en algin
intervalo I al que pertenece x, existe una y s6lo una soluciéon del PVI, o,
dicho de otra manera, que, alrededor de z( esta definida una tnica funcién
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cuya grafica pasa por (zg,yo) y tiene, en cada punto (z,y) pendiente igual a

f(z,y).

Importante: El teorema anterior da condiciones suficientes (pero no necesa-
rias) para la existencia y para la unicidad de la solucién de un PVI. Esto
implica que si las hipdtesis no se cumplen, no es posible garantizar la exis-
tencia y unicidad de la solucién al problema.

Ejemplos:

» El teorema anterior puede aplicarse al PVI:
y(xo) = yo

cualquiera sea (rg,79) € R?, y garantiza la existencia y unicidad de
la solucién en algin intervalo que contiene a g, dado que f(x,y) =

Iy + efxyZ

R2.

y a—(x, y) = x + e * 2y son funciones continuas en todo
Y

» ; Cudl es el conjunto de puntos (g, yo) para los que se podria garantizar

aplicando el ?;ceorema anterior la existencia y unicidad de soluciéon del
r_ 3/
pvr. {4 T VY ? f(x,y):§W y ﬁ(:U,y):isonfun—
y(z0) = Yo 2 y vy

ciones continuas en {(x,y) /y > 0} y en {(x,y) /y < 0} de manera que
para todo (xg, yo) con yo # 0 el teorema se aplica y garantiza existencia
y unicidad de solucion.
Para puntos (xg,0) con zy € R, el teorema puede aplicarse para garan-

tizar la existencia de solucién (vean que f(z,y) = = v/y? es continua en
0 1
R?), pero no asegura la unicidad, ya que af(x, y) = —~ 1o es continua
Y

en los puntos (zg,0).

v+ 2%y =0
y(xo) = yo
quier punto (o, yo) € R? con xy # 0 y garantiza la existencia y unicidad
de la solucién en algin intervalo que contiene a zy, dado que
2
y- of
Ty =—=y =—
flay)=-"75Vy o
y en {(x,y) /z > 0}.

= El teorema anterior puede aplicarse al PVI:{ , para cual-

(x,y) = ——Z son funciones continuas en {(z,y) /= < 0}
T
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2 .ZUQ — 0
El teorema no se puede aplicar en vy , cualquiera sea yo
y(0) = yo
2
ya que f(x,y) = ~Y 1o es continua en los puntos (0, yp)

T2

3.5.2. Ejercicios
1. ;Se aplica el teorema de existencia y unicidad de solucién en los si-
2 2,/
+ %y =0
guientes casos? ;Existe la solucién? ;Es unica? i) {y(O) z
y =

y(0) =1

2. En los siguientes incisos senalar para qué puntos (zg,yo) es posible
aplicar el teorema para garantizar la existencia y la unicidad de la

3 {y2 + 2%y =0
ii)

solucion.
2 2 / / Yy — 1
LY =yt Y=V —y—2 |y =
i) ii) iii) rT—y
y(2o) = Yo y(xo) = 1o y(z0) = o

3. En los siguientes incisos, ver primero si pueden garantizar la existencia
y unicidad de solucion y, a continuacion, resuelvan.

Jave)yyy=er | Ysenw=ylny [y =ytgr+a
i) ii) 77 iii)

y(0) =1 v(5)=c y(0) =2
iv) Hallar una curva que pase por (0, —2) y sea tal que la pendiente de

la recta tangente a la curva en cada punto (z,y) sea igual a la ordenada
del punto aumentada en 3 unidades.

3.6. Modelado de problemas

Veamos a continuacién algunos fenémenos que son modelados con ecuaciones
diferenciales ordinarias.

= Modelo de crecimiento de una célula
Supongamos que una célula que tiene una masa inicial mg esté crecien-
do en un medio ideal. Siendo asi, la masa de esa célula puede consi-
derarse como una funcion del tiempo ( m = m(t)) que aumenta a una
velocidad proporcional al estado en cada instante (por lo menos durante
algin intervalo de tiempo):

m/(t) = K m(t)
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Lo antes dicho se traduce en un PVI:

{m’(t) = K m(t)

m(0) = my

Resuelvan para tener la expresién de m(t). ;Qué tipo de solucién se
encuentra en estos casos? Graficar. Suponiendo que la masa inicial se
duplica cuando t = 35, determinen el valor de K.

= Modelo de crecimiento restringido de una poblacién
Cierto es que las poblaciones y los organismos no crecen indefinida-
mente. Hay limitaciones para el crecimiento. Supongamos que existe
un limite superior fijo (B) para el tamano de una poblacion, de modo
que la velocidad de crecimiento del nimero de individuos existentes
tiende a cero cuando el nimero de individuos tiende a ese limite supe-
rior. Tiene sentido entonces suponer que, el niimero de individuos es
una funcién del tiempo N(t), que crece a una velocidad proporcional
a la diferencia entre B y el estado de la poblacion en cada t. Siendo
Ny el niimero inicial de individuos presentes, lo dicho anteriormente se

traduce en:
N'(t) =K [B— N(t)]
N(0) = Ny

Resolver para obtener la expresion de N(t). Graficar lo obtenido.

= Modelo de enfriamiento de Newton

Consideremos una sustancia cuya temperatura es mas alta que la del
ambiente que la rodea. La experiencia dice que la temperatura descen-
derd hasta igualar la del medio externo. Pensemos por ejemplo en un
recipiente con un liquido a temperatura ambiente que se coloca en la
heladera. La ley de enfriamiento de Newton establece que, bajo deter-
minadas condiciones, la velocidad de enfriamiento es proporcional a la
diferencia entre la temperatura de la sustancia y a la del medio (mds
frio) que la rodea. Siendo t el tiempo; T la temperatura de la sustancia
en el instante inicial (t = 0) ; T'(¢) la temperatura de la sustancia en el
tiempo t, T, la temperatura del ambiente, lo dicho antes se modela de
la siguiente manera mediante un PVI:

T'(t) = K [T(t) - T
T(0) = T

Resuelve para obtener la expresién de T'(t). Graficar. Como ejemplo,
supongan que la temperatura ambiente es 20° y que en 20 minutos
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la temperatura de un cuerpo baja de 100° a 60°. Hallen la expresion
de T'(t) en este caso y respondan: jen cuanto tiempo la temperatura
llegarda a los 30°7

Modelo de desintegracién radioactiva

El radiocarbono se desintegra proporcionalmente a su cantidad existen-
te en cada instante. Conocer su decaimiento se utiliza principalmente
en la datacion por radiocarbono, una técnica empleada para determi-
nar la edad de materiales organicos antiguos. La base cientifica detras
de esta técnica es el conocimiento de que el carbono-14 (*C) es un
isétopo radiactivo que se desintegra con el tiempo a una tasa conocida
(con una semivida de aproximadamente 5600 anos, es decir, el tiempo
requerido para que una cantidad de este elemento se reduzca a la mi-
tad). Esto permite calcular el tiempo transcurrido desde la muerte de
un organismo hasta el presente midiendo la cantidad de *C restante en
una muestra. El PVI correspondiente para obtener la expresién de C/(t)
en el tiempo ¢, conociendo una cantidad inicial Cy de radiocarbono que
se desintegra a una velocidad proporcional a la cantidad existente en
cada instante, resulta ser:

C'(t) = —kC(t)

donde k es la constante de desintegracién proporcional.

Resolver, tal ecuacion diferencial con condicion inicial, y como ejemplo,
suponiendo que se ha encontrado un hueso fosilizado que contiene la
milésima parte de la cantidad de radio carbono inicial, determinen la
edad del fosil.

Modelo de decaimiento exponencial

Las ecuaciones diferenciales de decaimiento exponencial son utilizadas
para modelar fenémenos en los que una cantidad disminuye con el tiem-
po de acuerdo con una tasa proporcional a su valor actual.

Este tipo de modelo es cominmente aplicado en diversos campos, como
la fisica, la biologia, la economia y la quimica, entre otros. Ejemplos
son algunos de los mencionados anteriormente. La forma general de una
ecuacion diferencial de decaimiento exponencial es:

dy
=
Donde y es la cantidad que esta disminuyendo con el tiempo, t es el
tiempo, dy/dt es la tasa de cambio de y con respecto al tiempo y k es la
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constante de proporcionalidad que determina la rapidez de decaimiento.
Si suponemos que ¥ es el valor inicial de y en ¢t = 0, la solucién de esta
ecuacién diferencial (variables separables) es de la forma:

y(t) = yo e

Este modelo se utiliza para describir diversas situaciones en las que una
cantidad disminuye de forma continua, como la desintegraciéon radiac-
tiva, la degradacién de farmacos en el organismo, el enfriamiento de un
objeto caliente, el decaimiento de una poblacién de bacterias o el creci-
miento y decaimiento de una inversion financiera, entre otros ejemplos.
En resumen, las ecuaciones diferenciales de decaimiento exponencial
son herramientas matematicas utilizadas para modelar y predecir la
disminucién de una cantidad en funciéon del tiempo, asumiendo que
la tasa de cambio es proporcional a su valor actual. Estas ecuaciones
tienen aplicaciones en diversos campos y su solucién general muestra
coOmo la cantidad disminuye exponencialmente con el tiempo.

= Modelo de un circuito en serie

Un circuito en serie es aquel en el que los componentes eléctricos estan
conectados uno tras otro, de modo que la corriente fluye a través de ca-
da componente en el mismo camino. Para describir matematicamente
el comportamiento de un circuito en serie, se puede utilizar una ecua-
cion diferencial. La ecuacion diferencial que modela un circuito en serie
depende de los componentes especificos presentes en el circuito. Sin em-
bargo, en general, se puede utilizar la ley de Kirchhoff para escribirla.
Esta establece que la suma algebraica de todas las caidas de tension es
tqual a la tension total suministrada, es decir, la suma algebraica de
las diferencias de potencial eléctrico en un circuito cerrado es iqual a
cero. Supongamos que tenemos un circuito en serie con una fuente de
energia E(t) y una resistencia R conectada en serie (constante), y ¢ el
tiempo.
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La ecuacion diferencial que describe la corriente I(¢) en el circuito es:

Lﬂ + R.I(t) = E(t)
dt

Donde L es una constante que mide la inductancia del circuito, dI/dt
es la derivada de la corriente con respecto al tiempo y E(t) es la funcién
que describe la fuente de energia electromotriz en funcién del tiempo.
Esta ecuacion diferencial describe como cambia la corriente en el cir-
cuito en serie a medida que varia la fuente de voltaje y la resistencia.
Observar que la ecuaciéon es del tipo lineal de primer orden. Resolver
esta ecuacién permite obtener E(t en funcién del tiempo y comprender
como se comporta el circuito. En resumen, un circuito en serie se puede
modelar utilizando una ecuacién diferencial que relaciona la fuente de
energia electromotriz, y los componentes presentes en el circuito. La
ecuacion diferencial permite analizar el comportamiento dinamico de
tal fuente en el circuito a medida que cambian las variables involucra-
das.

3.6.1. Ejercicios

Expresar mediante ecuaciones diferenciales, las siguientes situaciones. Luego
resolver.

1.

Una particula se mueve a lo largo de una recta, de manera que su
velocidad en el instante t es 2sent.

Cien gramos de aztcar de cafia que estan en agua, se convierten en
dextrosa a una velocidad que es proporcional a la cantidad que atn no
se ha convertido. Hallese la ecuacion diferencial que exprese la velocidad
de conversion después de t minutos (Indicacion: puede suponer q(t) el
nimero de gramos convertidos en t minutos).

. La poblaciéon P de una ciudad aumenta a una velocidad proporcional

a la poblacion y a la diferencia entre 200.000 y la poblacion.

. Supongamos que inicialmente (en t = 0) tenemos 100 gramos de una

sustancia radiactiva con una constante de desintegracién de A = 0,1 h™".
Encontrar la cantidad de sustancia que queda después de 5 horas.

. Para cierta sustancia, la velocidad de cambio de la presién de vapor P

respecto de la temperatura T, es proporcional a la presion de vapor e
inversamente proporcional al cuadrado de la temperatura.
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6. Aplique la ley de enfriamiento de Newton al siguiente caso: la tempera-
tura del aire es de 20°C y el cuerpo se enfria en 20 minutos desde 100°C

hasta 60°C, ; dentro de cuanto tiempo su temperatura descendera hasta
30°C?

7. Dar la solucion general de la ecuacién diferencial para un circuito en
serie, suponiendo que E(t) es constante F (una bateria por ejemplo) y
que 1(0) = 0 (corriente inicial es cero). Graficar la solucién obtenida
para valores de t positivos e interpretar que sucede con el comporta-
miento del circuito en el tiempo.

3.7. Familias de curvas ortogonales

Dos curvas C) y Cs se dicen ortogonales en un punto comin Py = (g, yo)
cuando las respectivas rectas tangentes son perpendiculares entre si.

Sies C1:y=pi(x) v Cy:y=gs(x),siendo p; y ¢y derivables en xq, con
O (xg) # 0y @h(xo) # 0, entonces Cy y Cy son ortogonales en Py si y sélo si
O () s (z0) = —1, 0 sea:




3.7. FAMILIAS DE CURVAS ORTOGONALES

Familia de curvas ortogonales

Dos familias de curvas F; y F2 son mutuamente ortogonales si cada
curva de una de las familias es ortogonal con cada curva de la otra
familia en todo punto comun.

Siy' = fi(x,y) es la ecuacién diferencial asociada a F; e v/ = fo(z,y)
es la ecuacion diferencial asociada a JF; entonces, en los puntos en los
que fi(z,y) #0y fa(z,y) # 0, debe ser

1
fQ(xuy)

fl(x7y> - -

Este estilo de situaciones es un problema comun en electrostatica, termo-
dindmica e hidrodindmica, que involucra encontrar una familia de curvas,
cada una de las cuales sea ortogonal a las de una familia de curvas conocida.
Ejemplos:

» Sea F| :y = Cz*, con C # 0 (familia de pardbolas)
Para hallar la familia de curvas F, ortogonal a Fi:
1°) Hallamos la ecuacion diferencial asociada a Fi:

y = O2?
"'=20%
2
de alli, ¢z =2y—y = ?y (x #0)
x

2°) Resolvemos la ecuacién diferencial y' = ~9n
)

dy _ T
de 2y

xdxr 4+ 2ydy =0
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2

x 2

il —C
5 TV

2
Fa % +y? = C con C > 0 es una familia de elipses. F; y F; son

ML

Y
o /)

NSS7;
/ \

» Las familias F; : 22 —y? = C y F, : 2y = C son mutuamente or-
togonales. Podemos mostrarlo obteniendo las ecuaciones diferenciales
asociadas a cada una de ellas:

La ecuacion diferencial asociada a F; es:

mutuamente ortogonales.

/

g
Z\
vﬁ/

2 — 2yy =0

O sea

/

x

Yy =—=fi(z,y)
Yy

La ecuacion diferencial asociada a Fy es:

y+ay =0

O sea

y/ = _% - f2($7y)

1
f2(x7y>

Vemos que se verifica , siz #0yy#0 | fi(z,y) = —
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3.7.1. Ejercicios

1. Muestren que las familias 7 : 2°+y*—2ax = 0y Fy : 2% +y*—2by = 0
(a y b constantes reales) son mutuamente ortogonales.

2. En los siguientes incisos hallen la familia ortogonal a la familia de curvas
dada: i) y? = Oz ii) y = Cx iii) y = Ce™® iv) 22 +3y* = C (C > 0).
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Capitulo 4

Integral doble

Actividad Si f(x,y) es una funcién continua, definida sobre un rectangulo
R =[a,b] x [c,d] C R* y es tal que f(z,y) >0 V(z,y) € R, su grafica es
una superficie S de ecuacién z = f(z,y) y queda definido, entre el plano xy
y esa superficie un sélido V que se describe analiticamente de la siguiente
manera;

V={(2.y.2) €R¥/(x,9) € RAO< 2 < f(z,)]

., Cémo procederian para calcular el volumen de ese sélido?

4.1. Definicion de integral doble

Sea f(x,y) una funcién definida y acotada en una regién R
R C [a,b] x [c,d] C R? como la que muestra la figura siguiente
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Si se consideran n + 1 puntos de division en [a,b] y m + 1 puntos en [c, d]
y se trazan rectas paralelas a los ejes coordenados pasando por esos pun-
tos, el rectangulo [a,b] X [c,d] queda dividido en n X m subrectdngulos R;.
Supongamos que, entre ellos, Ry, R, ..., Ry, son los que estan incluidos en R.

El conjunto P = { Ry, Rs, ..., Ry} es una particion de Ry, siendo 6; la longitud
de la diagonal de R;, la norma de esa particion es ’P‘ = max {0;,7 = 1..k}.

k
Sea J, =Y _ f(P/)AR;, donde P} es un punto cualquiera de R; y AR; es el

i=1
area de R;.
Ya
- R;
Py
Ao [
\ ™
pZ
LJ
8 - — '
—
b -
o +
{ 1o
a b x
k
Si Ili|m > F(PY)AR; existe, y arroja siempre el mismo resultado indepen-
P|—=0%
i=1

dientemente de las particiones y de los P elegidos, decimos que f es inte-

k
grableen Ry es:ff f(z,y)dA = lim Zf(PZ*)ARl
R "P|—>0 i=1
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Importante:

» Si f(z,y) es continua en la regién R cerrada y acotada, entonces es
integrable sobre R.

» También son integrables sobre R las funciones que son acotadas y
continuas en R salvo en un nimero finito de subconjuntos de area
nula (como curvas y puntos).

» Si f(x,y) es continua en Ry f(x,y) > 0, siendo

V={(@,9,2) €R*/(e.y) e RAO< 2 < fla,y)}

k
ff f(z,y)dA = lim > f(P/)AR; = volumen del sélido V
R |79|—>0 i=1

4.1.1. Ejercicios

= [nterpreten geométricamente f f f(z,y)dA suponiendo:

R
i) f(x,y) <0 V(z,y) € R ii) f(x,y) toma valores positivos y valores
negativos en R iii) f(z,y) =1 V(z,y) € R

» Siendo R = [a,b] X [¢,d] y f(z,y) = K V(z,y) € R , muestren que
f f(z,y)dA = area (R).K

» Dividiendo a R = [0,2] x [0,2] en cuatro cuadrados de igual érea y
eligiendo en cada uno de ellos el vértice superior derecho, aproximen

el volumen del sélido que esta por arriba del cuadrado R y por debajo
del paraboloide z = 16 — 2% — 2y? .

» Dividiendo a R = [0,2] x [1,2] en cuatro rectdngulos de igual area y
eligiendo el punto medio en cada uno de ellos obtengan una aproxima-

cion del valor de f f (z — 3y*)dA ;Representa esa integral el volumen
R

de un soélido?

4.1.2. Propiedades de la integral doble

1. Aditividad en la regiéon de integracién: Si f(x,y) es integrable
sobre
R = Ry U R, siendo Ry N Ry un conjunto de area nula entonces

fj};f(x,y)dA:le f(x7y)dA+fR2f(fv,y)dA
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2. Linealidad: Si f(z,y) y g(x,y) son integrables sobre R y «a y [ son
numeros reales entonces

[[asen+ sote.inar=e [[ swar + s [[ oepas

3. Monotonia: Si f(x,y) y g(z,y) son integrables sobre R y
flzy) < g(x,y) ¥(x,y) € R entonces

fo(x,y)dAﬁng(x,y)dA

4. Acotamiento: SiV(z,y) € R es ‘f(:c,y)‘ < M entonces

‘fL f(x,y)dA‘ < M.area(R)

Teorema del valor medio

Si f(x,y) es continua en R C R? entonces existe P* € R tal que

f fR F(,y)dA = F(P*) drea(R).

Valor promedio

Siendo f(z,y) integrable sobre R, se llama valor promedio de f en R

a fR :
area(R)
Asi que el teorema anterior puede ser enunciado de la siguiente manera:

Si f(z,y) es continua en R C R? entonces el valor promedio de fp en
R coincide con el valor de f en algin P* € R .

fp

En caso de que sea f(z,y) > 0 en todo R, el teorema puede interpretarse
geométricamente de la siguiente manera: el volumen del sélido

V ={(z,y,2) € R¥/(z,y) € RA0 < 2 < f(z,y)} coincide con el de un cilin-
dro sélido con base en R y altura f(P*).
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_— gréficade !

Céalculo de la integral doble

Supongamos que f(x,y) es continua en R = [a,b] X [c, d].
Entonces, para cada zg € [a,b], f es continua en el segmento
S(zo) = {(20,y)/c <y < d}.

Ya
R
A
S(x,)
Ca
[ ¢ ] >
a X, b ox

Existe por lo tanto

A(xo) = /Cdf(l‘o,y)dy

., Cémo se puede interpretar esa integral? Suponiendo f(z,y) > 0 en R |
esa integral puede interpretarse como el area de la seccién plana obtenida al
intersecar el solido V = {(z,y,2) € R*/(z,y) € RA0O < 2z < f(x,y)} con el

plano x = x.
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Seccion

transversal de
drea Afxp)

i |7

d
v v

Lo que interpretamos para xy ocurre para todo z en [a, b], quedando definida
la funcion

A@) = [ 7 vy

Al variar x las secciones producidas barren todo el sélido, lo que nos lleva a
b

concluir que / A(z)dz representa el volumen del sélido, o sea:

vol(V') = /ab /cdf(x,y) dy dx

b
Anélogamente, A(y) = / f(x,y)dx es el area de una seccién del sélido

perpendicular al eje y y pgr lo tanto
d b
vol(V) = [* [ fw,y) da dy

2 Seccion

z —7‘(>\cy) transversal de
\ drea Afys)
« ¥ -\
3 Yo d
. . 4 y

La interpretacion geométrica anterior nos permite comprender el siguiente
resultado que se conoce como Teorema de Fubini:
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Teorema de Fubini

Para toda funcién f(x,y) continua en un rectangulo R = [a,b] X [c, d],

fo(:B,y)dAz/ab/cdf(:E,y)dydx:/cd/abf(x,y)da:dy

Ejemplo: Calcular // (1 — 62%y) dA siendo R = [0,2] x [~1,1],
R

— 62%y) dA = A — 62%y)dydr = i — 221d =
(1—0627y) dA = (1= 6z7y)dydr = | [y —327y7]| do=
R 0o J-1 0 1
2 2

/ 1 — 322 — (=1 — 32)]dx = / 2 = 4
0 0
(0]
ff(l — 62%y) dA = /1 /2(1 — 62°%y)dwdy = /1 (x—2x3y) 2dy =
R -1.Jo ~1 0

1
=4
—1

/1 (2 —16y) dy = (2y — 8y°)

-1

Supongamos que f(z,y) es continua en una regién tipo I
Esto es, en una region que se describe en la forma

R={(z,y) /Ja<x <bA fi(z) <y < folz)}

x.y)
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El teorema de Fubini se extiende a esta situacion resultando:

[[ s aa=[" [ sy dy o

Ejemplo: Integrar f(z,y) = 2xy en la regiéon R limitada por las curvas
y=a>y v+y=2.

y=2.x

Podemos apreciar en el grafico que la regién R es una regién tipo I : toda
recta vertical que pase por un punto interior corta a la frontera en dos puntos
exactamente : uno en la curva y = 22 y el otro en la recta y = 2x.

Para describir analiticamente la region R buscamos primero las abscisas de
los puntos de interseccién de las curvas:

Z/:x2 2
— 4+ -2=0—= xrx=-202x=1
T+y=2

de manera que R = {(z,y)/ —2<z<1A2*<y<2-—x}y entonces:

1 2—x 1 y=2—2x
ff?xydA:/ / 2zy dydx:/ ry? dr =
R 2 Ja? -2 -
1 1 4 JOC 1
= / [2(2—x)*—2°]dx = / (dx—da’+a3—2%)de = (2072 — —2 + & — = _
-2 -2 3 4 6 )|,

4 1 1 32 32 45
— (2 4+-_-2)— St R P
( 3+4 6) <8+3+ 3> 4
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Supongamos que f(z,y) es continua en una region tipo II
Esto es, en una region que se describe en la forma

R={(z,y)/c<y<dAgly) <z< gy

g:
x.y)

>
»
X

El teorema de Fubini se extiende a esta situacién resultando:

[[[ e aa= [7 [ty az ay

Ejemplo: Integrar f(z,y) = 2xy en la regiéon R limitada por las curvas
r=1y>y 2—x=1y>

\,‘?\-x -yt

x =yt

Podemos apreciar en el grafico que la regiéon R es una regién tipo II : toda
recta horizontal que pase por un punto interior corta a la frontera en dos
puntos exactamente: uno sobre la curva x = 3% y otro sobre la curva

r =2y
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Para describir analiticamente la regiéon R buscamos las ordenadas de los
puntos de interseccion de las curvas:

T = y? ) )
2—xrx=y

de manera que R={(z,y)/ —1<y<1Ay?<x<2-—9y*}

y entonces:
1 p2—y? 1 r=2-y?
fo:vydA:/ / med:pdy:/ 2y dy = ...
R -1Jy? -1 p=y?
(completen)

Algunas regiones son tanto de tipo I como de tipo 11

Ejemplo: Sea R la regién limitada por y = 2% y y = 2z

4 /
y=2x
’ y.x’
L
v
- »
0 2

Vean que R puede describirse en la forma
R:{(x,y)/Oga:SQ/\mzﬁySQx} (Tipo I)

y también en la forma

R= {(:Ey)/0<y<4/\32/_x§ \/g} (T'ipo 11)

De manera que la integral de una funcién f(z,y) sobre esta regién R puede
calcularse integrando primero respecto de y después respecto de x o vice-

versa:
fffxy ) dA = // (x,y) dyda:—// f(z,y)dzdy
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Hay regiones que no son de tipo I ni de tipo II ; qué podemos hacer para poder
integrar en ese caso? Lo que se hace es tratar de subdividir la regién en un
numero finito de subregiones que sean de tipo I o II y aplicar la propiedad
de aditividad en la regién de integracion.

Ejemplo: Siendo R la regién limitada por y = x4+ 1,y = —ox — 1,y =1
y y = 2x — 1 , plantear el cdlculo de ff f(x,y)dA integrando i) primero
R

respecto de y y luego respecto de z ii) primero respecto de x y luego respecto
de .

R no es de tipo I ni de tipo II.
Puede describirse como union de dos regiones tipo I: R = R; U Ry siendo:

Ri={(zy)/-1<a<0A-z-1<y<z+1}
Ry={(z,9) /0 <z <1A20-1<y<1}

De acuerdo a esa descripcion:

[ sia= [ [ sedvar [ [ s gy

En este caso R también puede describirse como uniéon de dos regiones tipo

II: R = R; U Ry siendo:

1
RlZ{(x,y)/—léySO/\—y—1gx§y‘;}

1
RQ:{(xa?J)/OS?JSl/\y—ISxSy;}
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De acuerdo a esa descripcion:

i vl
ﬂfxydA // :L'ydxdy—l—// f(z,y)dzdy
y—1

4.1.3. Ejercicios

1. En los siguientes incisos, grafiquen la regién de integracién y calculen
luego la integral:

3 2 4 2 0 1
i) / / (4—yH)dydz i) / / z/ydrdy iii) / / (x+y+1)dxdy
0 0 0 Jo _1J=
8 rlny T [rsent 2 y12
iv) / / " drdy V) / / y dydz i) / / dxdy
1 Jo 0 Jo 1 Jy

2. Dibujen un sélido cuyo volumen se calcula con las siguientes integrales:

// 4 — gz — 2y)dzdy // — 2% — y)dady

3. En los siguientes incisos, planteen el calculo de la integral invirtiendo
el orden de integracion:

4— 23:
/ / f(z,y)dydx / / (x,y)dzdy iii / / (x,y)dzdy

4. Calculen las siguientes integrales (de ser necesario, inviertan el orden
de integracién para realizar el célculo)

T T 3 r1 .
/ / sen dyd:z: ii) / / Senydyda: iii) / /\/_eyddydq:
0 Jz Yy 0 3

5. Integrar:

a) f(z,y) = L enla region R limitada pory=z;y=2x;x =1y
Y
T =2.
b) f(z,y) = 2* + y* en el tridngulo de vértices (0,0); (1,0) y (0, 1).

¢) f(u,v) =v— /uen laregién R limitada por u+v =1 y los ejes
coordenados en el primer cuadrante.

d) f(s,t) = e’lnt en la regiéon R limitada por s =Int ;t =2 ys=10
en el primer cuadrante.

e) f(z,y) =y — 22% en la regién R = {(m,y)/‘x‘ + ‘y‘ < 1}.

f) f(x,y) = xy en la region R limitada por y = = ; y = 2z y
T+y=2.
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= Para la visualizacion y calculo de integrales multiples puedes ayudarte
de las aplicaciones creadas en (GeoGebra.

4.2. Aplicaciones de la integral doble

= Area de una region plana

f fR dA = drea(R)

= Volumen de un sélido
Hemos visto ya que, para f continua y no negativa en todos los puntos
de una regién R, si V = {(z,y,2) € R*/(z,y) € RAO < z < f(z,y)},

fj}; f(z,y)dA = Volumen(V)

=f{xy)

1 by

v

{ xy & R,

Para un solido V que no estd apoyado en el plano zy sino que se
encuentra limitado por dos superficies, graficas de funciones continuas
f v g definidas en la misma regiéon R, con f(x,y) < g(z,y), es decir,
para

V={(z,y,2) €R¥/(x,y) € RA f(z,y) < 2 < g(x,9)}, es:

Volumen(V) = ff];[g(x:y) — f(z,y)]dA
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2 > a(xy)

> fixy)

/&

= Masa y centro de masa de una placa delgada

La masa M de una placa bidimensional R que tiene una densidad su-
perficial de masa variable descrita por una funcién p(z,y) estd dada

i [[ oo

y las coordenadas del centro de masa pueden calcularse de la siguiente
manera:

[, = p(x, y)dA

. v oz, y)dA
M Y

M

7= y=

= Centroide de una placa delgada o centro geométrico Si la den-
sidad de una placa delgada es homogénea en todos los puntos (x,y) de
la placa e igual a p(z,y) = K, el centro de masa, en este caso se llama
centroide y coincide con el centro geométrico.

JJpw A Jly a4

Area(R) ; Area(R)

T = y=

4.2.1. Ejercicios

1. En los siguientes incisos, calculen empleando integrales dobles el area
de la regién limitada por las curvas dadas.
Dy=2%; y=8-—2? i)y=2; 0=9y> ii)y=2%; y=a0+2
ivyz=9y*>; 2=8—y* v)y=—-a2*+3; y=-1
vi)y=xz ; y=ax+2; x=3; v=0.
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2. Calculen el valor promedio de:
i) f(z,y) = 2% + y* en la regién limitada por y = 2> — 4 ; y = 3u.
ii) T(z,y) = 50+ 22 + 2y en la regién limitada por y = 2% ; y = 8 —a?

3. Calculen el volumen del sélido V = {(x, y,2)/(z,y) € RAO< 2 < a? + y2}
siendo R el tridngulo limitado por lasrectasy =2 ;y =0y x+y = 2.

4. Calculen el volumen del sélido limitado por:
a) y=a2? ; y=2—12> ; 2=y concon z>0.
b) 2’ +y*=4;2+y=3;x=0;y=0; 2 =0 en el primer octante.
¢c) Z24+y*=4;2=2y; x=0;2=0 en el primer octante.
d) x4+2y+z2=2;2=2y; =0;2z=0.
e) y=a*; 2+y=4con z>0.
fl)z=2>4+9y*+4;2=0; y=0; 2=0 ;2+y=1
g z+y+2z=3;x=0; y=0; z>1 en el primer octante.
h) x+y+z=3;2=0;y=0;2=0; z=1 en el primer octante.
5. Hallen el centro de masa de una lamina delgada cuya forma coincide

con la regién R limitada por x = y? y x = 1siendo p(z,y) = y*+z+1
la funciéon densidad de masa.

4.3. Cambio de variables en la integral doble

Antes de entrar en el tema del cambio de variables nos referiremos al producto
vectorial o producto cruz de vectores:

El producto cruz de @ = (ay, ag, az) por b= (bl, by, bs) se denota @ x b.

@ x b es un vector perpendicular a a y a b y cuyo moédulo es el area del
paralelogramo determinado por @ y b.

= ((Igbg — &3b2)z— (albg — agbl)j—F (CleQ — (Igbl)];

S
Q
i
Q
)
)
w
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axb

b |@xB] = 1a|B| sin 6

b
Hemos visto que en la integral definida / f(z)dz, el cambio de variable

x = g(u) nos permite establecer que, siendo a = glc) y b=g(d),

/ab f(x)dx = /Cdf(g(u))g’(u)du

Noten que el cambio de variable introduce el factor "¢'(u)” en el integrando

y modifica los limites de integracion. Lo propio ocurre, como veremos a con-
tinuacion, cuando se realiza un cambio de variables en la integral doble.

Veremos a continuaciéon como se modifica una integral doble con un cambio
de variables.

Un cambio de variables viene dado por una transformaciéon 7' de una region
S del plano uv en una region R del plano zy de la forma

T(u,v) = (z,y) = (X(u,v),Y (u,0))

por la que cada punto (z,y) de R es imagen de un tnico punto (u,v) de S'y
donde X e Y tienen derivadas parciales continuas en cada punto de S. Siendo
T uno a uno, existe la funciéon inversa

Tfl(:v,y) = (U,'U> = (U(vaU)?V(xay))
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4.3. CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE

u

Escribimos habitualmente: 7T : v =X(u,v) T-1. u=U(z,y)
y =Y (u,v) v = )

En esta situacién, supongamos que S es un rectangulo de vértices (u,v);
(u+Au,v); (u+Au, v+ Av) ; (u, v+ Av). Las imagenes de esos vértices en el
plano zy son los puntos M,Q),P y N vy, siendo Au y Av pequenos, la imagen
de S es aproximadamente un paralelogramo R determinado por los vectores
MN y M (@ cuya area es el médulo del producto cruz de esos vectores.

A
v (w,v+Av) (et v AY) y » 2
Q ’
(2] (wtduv) 2 4
> N .
" X

De acuerdo a lo dicho, es AR = drea(R) ~ ‘M_'N X MQ’ siendo :
MN = (X (u+ Au,v) — X (u,v) , Y(u+ Au,v) —Y(u,v))
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—

MQ = (X(u,v+ Av) — X(u,v), Y(u,v+ Av) — Y(u,v))

Si Au y Av son cercanos a cero,
X (ut+Au,v)—X (u,v) = X, (u,v)Au

X (u, v+Av)—X (u, v) = X, (u,v)Av

En consecuencia,

MN =~ (X, (u,v)Au, Yy (u, v) Au)

0 sea 5 5
N~ | PPN, YY
MN =~ <auAu, auAu>
Por lo tanto:
P
%Au @Au 0
U U
ox 9y
5 Av 5 Av 0
Entonces,
ARz\MT/\/xM@\z\(
or oy
<ax @ B % ay> B ou Ou
8u 81) 81} 8& aj @
ov  Ov

Oz Oy

Y (utAu, v)=Y (u,v) = Y, (u,v)Au

Y (u, v+Av)=Y (u,v) = Y, (u,v)Av

—

MQ@Q =~ (X, (u,v)Av, Y, (u,v)Av)

- ox oy
MQ ~ <8/UA/U7 &)AU>

B Ordy 0Oxdy

Ov Ou

se llama jacobiano de x e y respecto de u 'y v (el nombre refiere al matema-
tico alemén Carl Gustav Jacobi que vivié entre 1804 y 1851) . Usaremos la

d(z,y)
O(u,v)

Con esa notacién podemos escribir:

notacion

O(z,
AR~ ’a(u, v)
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o, a veces , J, para referirnos al jacobiano.

O(z,
o(u,
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Ahora podemos enunciar:

Cambio de variables en la integral doble

Sean R y S regiones de los planos zy y wv relacionadas por
r = X(u,v)
Y= Y(u> U)

un unico punto de S, y sea f una funciéon continua en R. Si X y Y

tienen derivadas parciales continuas

(z,y)
O(u,v)

fj}; fz,y)dzdy = ffsf(X(u,v),Y(u, U))‘ggz:i; ’dudv

de tal manera que cada punto de R es imagen de

es distinto de cero en S entonces

en Sy

Nota: En las condiciones anteriores es posible demostrar que J; = , €
T-1

decir que el Jacobiano de una transformacion y el de su inversa son inversos:

zy) 1
d(u,v)  O(u,v)
Iz, y)

Observacién: Cuando se realiza un cambio de variables en una integral do-
ble, estamos mapeando una regién en el plano desde un sistema de coordena-
das (z,y) a otro sistema de coordenadas (u, v) mediante una transformacion.
El jacobiano J(u,v) es el determinante de la matriz jacobiana, que descri-
be cémo cambian las derivadas parciales de las coordenadas originales con
respecto a las nuevas variables. Matematicamente, el jacobiano esta dado
por:

Este valor mide cémo las dreas pequenas (infinitesimales) en el nuevo sistema
de coordenadas (u,v) se transforman en areas en el sistema original (x,y). Es
decir, si tomas un pequeno rectdngulo en el sistema (u,v), su imagen bajo la
transformacion puede ser un paralelogramo en el sistema (z,y), y el jacobiano
es el factor de escalado del area entre estos dos elementos diferenciales.
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Ademas, si estamos calculando areas:

» Si J(u,v) > 1, el drea en el sistema original es mayor que en el nuevo
sistema: la transformacion “expande” las areas.

» Si J(u,v) < 1, el drea en el sistema original es menor que en el nuevo
sistema: la transformacién “contrae” las areas.

» Si J(u,v) =1, las dreas se conservan: no hay cambio en la proporcién
del area.

» Si J(u,v) < 0, hay una inversién en la orientacién (por ejemplo, la
transformacién puede cambiar la direccién de los ejes o hacer un reflejo).

En resumen, el jacobiano actia como un factor de escala que ajusta la integral
para tener en cuenta la deformacion (expansion o contraccion) de las dreas
bajo la transformacion entre los sistemas de coordenadas.

20

—2

Ejemplo: Dada ﬂ <I n y) dA , donde R es la regién limitada por
R\TTY

lasrectas x —2y =0 ;2 —2y =4 ;2+y=1;x+y =4, evallen las
dificultades que presenta su calculo.

Tr+y

z—2y\” v\ 20
del integrando se simplifica: < y) — ()
Tty
Ademas, con ese cambio de variables se tiene:
r+y=1 — u=1
r+y=4 — u=4
r—2y=20 — v=10

20
_9 =
Vean que en ﬂ (x y) dA , haciendo {u . —HQJ , la expresion
R
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x—2y=4 — v=4

oo\ 2
Luego: ff ( y) dA vean que,
R\ Tty

2u+wv
— xr =
siendo u=rty resulta 3
v=x— 2y y =

u (%

3

y el jacobiano de z,y respecto de u y v es

Wl WIN
Wl

inverso al jacobiano de x,y respecto de u y v.

Por lo tanto,

ffR (J:x;i/y)mdxdy :/14/04 (Z)m
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4 4 20 1 1 w0 4 914
FLC |- 5] 5] -
1 Jo \u 3 3 —19 1 21 0
4.3.1. Ejercicios
Calculen usando un cambio de variables adecuado:
i) ) (z4y)%dA siendo R = {(z,y)/z >y —Ly>z,0+y>12+y <2}

R
)Elareadelareglonthmtadaporyz4x+2;y:4x—|—5;y:3—2x;

y=1-2z.

iii) El area de la regién R limitada por y = e ;y=¢e"+1;y =3 —¢";
y=205—e".

iv) El area de la regién del primer cuadrante limitada por las curvas zy = 1,
zy=4,y=xey=2x.

v) Sea T el tridngulo cuyos vértices son (0,0), (1,0) y (0, 1). Calcule la inte-

gral / / W=/ g A utilizando la transformacién u =y — z, v = y + .
R

4.4. Coordenadas polares

Actividad: Grafiquen el s6lido V' limitado por los paraboloides
z=a2?+1y? y 2 =8—122—y>2 Describanlo analiticamente.; Cémo se calcula
su volumen?

Sistema de coordenadas polares en el plano

Se define, a partir de un punto O llamado polo, una semirrecta horizontal
llamada eje polar y una unidad de medida u.

Cualquier punto P del plano puede individualizarse en este sistema por medio
de su distancia al polo ( 7 ) y la medida del d4ngulo entre el eje polar y el
segmento OP que se ve en la figura siguiente (6).

.\P(r. 8)
~
e 8
o eje polar o e
u —t

(r,6) son las coordenadas polares de P

Cada par (r, ) conr > 0y 0 <
n 0

< 27 corresponde a un tnico punto
P # (0,0). Los pares (0, 6) co 7

0
< 6 < 27 cualquiera, corresponden al
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4.4. COORDENADAS POLARES

(0,0).

Aunque lo habitual es usar el angulo que se encuentra entre 0 y 27, noten
que el punto representado por las coordenadas polares (7, #) se representa
también por (7, 6 + 2k7) donde k es un entero cualquiera.

En un sistema de coordenadas cartesianas ubiquemos un sistema polar ha-
ciendo coincidir el eje polar con el semieje positivo de las z.

Coordenadas polares
y
A (1,6)
4 N (X, Y)
’ |
("] | X _ e
o X
x = rcost r=ya?+y?
Entonces: Y .
y:'rsene tgHZE six #0
3
(ng siz=0ey>0y 92% si x=0 e y<0)

Dadas las coordenadas polares de un punto, podemos usar las igualdades
anteriores para obtener sus coordenadas cartesianas y viceversa.

Ejemplos:

. ™ .
» Si (4, -) son las coordenadas polares de P, sus coordenadas cartesianas

se calculan de la siguiente manera:

x:4cosz:2

3
y:4seng:2\/§

= Si (2, —2+/3) son las coordenadas cartesianas del punto P, sus coorde-
nadas polares se calculan de la siguiente manera:

r= 22+ (—2V3)2 =4
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t99:_2\/§=—\/§

o
siendo P un punto del cuarto cuadrante, es 6 = 5

También podemos obtener la ecuacién en coordenadas polares a partir de la
ecuacion en cartesianas y viceversa.

Ejemplos:
s 224yl =4 srtP=4—30r=2
w22+ (y—2)2=4 — 2?2 +y*—4dy=0—=1r?>—drsenf =0 — r = 4senf

my=1 —rsenf =1

4
Vo=

-y:\/gx—nng:\/g—)H:g 3

. ngétgﬁzl—m/:x , = >0 (semirrecta)

w = 4cosh — r? =drcosh — 2+ y* = 4w — (v — 2)? +y* =4

m rcos =2 —x =2

» La curva cuya ecuacién en coordenadas polares es r = 3(1 + cosf)

es una cardioide. En la siguiente figura se ve una tabla con valores
aproximados de r para algunos valores de 6 y se ve la curva graficada.
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Y N I”(A.s;';{,
\ /s / R
- X NG, W (561:74)
~ \ . / \
~ \
~ . < /
e 0
- / \
- / \ - N
- / g \ L(561:14m)
/ ’ \
, (:3m) \
/ * \
0 0 tr | in | tm | E2n | 3m T Irm | im | 3n | 37 | 4m | 27
cos 0 1 0.87 | 0.5 0 -0.5 |-0.87| -1 [-0.87| -0.5 0 0.5 | 0.87 1
r 6 5.61 | 45 3 1.5 | 039 0 039 | 1.5 3 4.5 | 5.61 6

» 72 = 9c0s20 — r* = 9r?(cos*0 — sen?0) — (2* +y*)? = 9(z? — y?)
Esta curva es una lemniscata o lemniscata de Bernoulli. Pueden verla
graficada en la siguiente figura.

Para algunas regiones del plano, la descripciéon en coordenadas polares es
mucho més sencilla que en coordenadas cartesianas. Piensen por ejemplo en
la region limitada por las circunferencias a2 + y? = 4 y 2% + y? = 16.

Las ecuaciones de las curvas que limitan a la regiéon en coordenadas polares

sonr=2yr=4.
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Los puntos que pertenecen a la region tienen coordenada polar r entre 2 y 4
y no hay ninguna restriccion para el angulo 6. Podemos escribir:

R={(r0)/0<0<2nAN2<r <4}

4.4.1. Ejercicios
Grafiquen en el plano zy las regiones que se definen a continuaciéon y descri-
banlas luego en coordenadas polares.

i) R limitada por 2> +y*=4; y=2 e y=—x con y > 0.

ii) R limitada por 2> +y*=4; y=4 ; y= V3z ; y=—+v3zx ;con
y > 0.

iii) R limitada por 22 +y*=4 e y=1 con y > 1.

iv) R limitada por 22 +y?> —4y =0 .

v) R limitada por 2?4+ y?> —4x =0 .

vi) R limitada por 22 +¢y* -4 =0y 2?2 +¢y*—4y=0 .

vil) R={(z,y)/x* +y* >4 N2>+ (y — 2)? <4} .
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COORDENADAS POLARES

4.5. Cambio de variables en la integral doble
usando coordenadas polares

Dada f(z,y)dA, donde f es una funcién continua en la regién del plano

cerrada y acotada R, plantearemos su calculo con el cambio de variables

definido por
x = rcosf
y = rsenf)

El jacobiano de z e y con respecto a r y 0 es:

or Oy
or or cos sent
J = = =r
(l?? @ —rsenf rcost
00 00

Cambio de variables cartesianas a polares

Suponiendo que la regién R en las coordenadas polares r y 6, se describe
R={(r,0)/0: <0 <0, Ng(0) <r <h(h)}

resulta:

ff (e, y)dA /92 /h(e)f( 8, rsend)rdrdd
x, = rcost, rsenf)rdr
R Y 01 Jg(0)

Ejemplos:

» Plantear el cdlculo de ff [8—2(z*+y*)]dA con R = {(x,y)/x® + 1 < 4},
R

usando coordenadas polares.

R es un circulo de radio 2 que podemos describir en coordenadas pola-
res diciendo: R = {(r,0)/0 <60 <27 A0 <r <2}.

. x = rcosf ) )
Ademas, siendo , el integrando se transforma de la si-
y = rsenf)

guiente manera:
8§—2(z* +vy*) — 8—2r?
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Entonces:
ffR[s 2?4 yP)]dA = /02” /02[8 — % rdrdo)

» Plantear el calculo del volumen del sélido V limitado por z = 22 + y?
y z = 2y usando coordenadas polares.

Eliminando z entre las dos ecuaciones de las superficies que limitan al
sélido se obtiene la ecuacién de un cilindro proyectante % + y* = 2y
Observamos asi que el solido se proyecta en la region R limitada por
22+ (y —1)2 =1y V se describe de la siguiente manera:

V= {(w,y,z)/(x,y) ERNZP+1y* <2< Qy}
por lo que
vol (V') = //R[2y — (2% +y?)]|dA

T = rcost

y = rsenf)

Con el cambio de variables {

P+ y—-17°=1 — r=2send

160
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r-2 siné

f
a
\
v

Asi que la region R se describe de la siguiente manera en términos de
ryo:
R={(r,0)/0 <0 <mA0<7r<2senb}

Ademas,
2y — (22 +y%) — 2rsenf —r?

Entonces,
T  r2senf
vol (V) = ff 2y — (2* + y?)|dA = / / (2rsenf — r*)rdrdf
R 0 JO

= Plantear el calculo del area de la region del plano interior al cardioide
r = 14 cosf y exterior a la circunferencia r = 1 usando coordenadas
polares.
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En la regiéon R , el angulo 6 toma valores comprendidos entre 0 y g

3m
y entre > y 2m. Por su parte, r toma valores que van desde 1 hasta
1+ cosf.

R:{(re)/[0<9<2v3<9<27r]/\1<r<1+c039}

1+cosf 27 pl4cosf
Asi, area(R ff dA = / / rdrd@—i—/ / rdrdf

R podria describirse también de la siguiente manera:

R = {(r@)/—§9< AN1<r —1—0059}

1+cosf
de modo que: darea(R f f dA = / / rdrdf

4.5.1. Ejercicios
1. Integren: i) f f ¢” 9’ dA siendo R la region limitada por 22 + 4% = 1

In(x? + y?)
4y =9 ii f f ——=———"dA siendo R la regién limitada por
ey VTP ’ !
iyt =1y22+y?=e.
2. Calculen el area de las siguientes regiones:
T s
i) R limitada por 6 = 1 0= 5 ¥ = 4cosb.
ii) R exterior a r =4 e interior a r = 8send.
iii) R interior a r = 1 y exterior a la cardioide r = 1 + cosf.
iv) R limitada por la lemniscata r? = 9cos26.

3
v) R limitada por rsenf =4 ; 0 = g (0= Zﬁ
3. Calculen el volumen de los solidos que se describen a continuacion:
i) V limitado por 22 +y* =4 ; 2=0 y z2=4—y.
ii) Esfera solida de radio a.

iii) V limitado por z = 4 — 22 —y? y z = a2+ y°.

4. Calculen la masa de la placa metdlica limitada por 22 + (y —2)? =4 ;
y=z ; y=-x e y=28 siendo f(z,y) = 2%+ y? la funcién
densidad de masa.

5. Calculen el valor promedio de f(x,y) = va?> —x? —y? en el circulo
definido por 2% + y? < %
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Capitulo 5

Integral triple

5.1. Definiciéon de integral triple

Sea V un solido acotado cuya frontera sea unién finita de superficies suaves
unidas a lo largo de curvas suaves o suaves a trozos, y sea f(x,y,z) una
funcién (escalar) a valores reales, definida y acotada sobre el sélido V.

<4

Supongamos que V estd incluido en el paralelepipedo [a,b] x [¢,d] X [e, f].
Trazando, por un nimero finito de puntos de [a, b], de [c,d] y de [e, f], planos
paralelos a los planos coordenados, el paralelepipedo [a,b] X [c,d] X [e, f]
queda dividido en un ntmero finito de paralelepipedos V; con volumen AVj.
Supongamos que Vi, Vs, ..., Vi son los que estan incluidos en V.

P ={Vi,Vs,...,Vi} es una particion de V y su norma es la mayor de todas
las longitudes de las diagonales de los V;.
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Sea P € V; (cualquiera) y sea

k
Je =3 f(P)AY,

(6%, yi*,a)

La integral triple de f(z,y,z) sobre V que se denota fff f(z,y,2)dV, es
v

el limite de J; para ‘77’ — 0, si ese limite existe y es un nimero real que no
depende de las particiones ni de los P considerados.

Si f(z,vy,2) es continua sobre V o es acotada y tiene a lo sumo discontinui-
dades en un ntimero finito de subconjuntos de V' de volumen nulo, entonces
f es integrable sobre V.

Propiedades de la integral triple

1. Aditividad en el sdlido de integracién: Si f es integrable sobre
V =Vi UV, donde V; y V, tienen en comun a lo sumo puntos de una
superficie , entonces

ffﬁf(%y,z)dV—ffw f(%yaZ)dVJrff% fla,y, z)dVv

Vs
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2. Linealidad: Si f y ¢ son integrables sobre V' y «, 5 € R, entonces

ff‘fx/(af+ﬁg)dv:O‘ff‘fvdeJrﬁfffvng

3. Monotonia: Si f y g son integrables sobre V y V(x,y,z) € V es
f(z,y,2) < g(z,y,2) , entonces

(o< o

4. Propiedad de acotamiento: Si ‘f(q:,y,z)‘ <M VY(z,y,2) eV,

vafdv‘ < Muol(V)

Teorema del valor medio

Si f(z,y,2) es continua en V C R? entonces existe P* € V tal que

fffv fz,y,2)dV = f(P*) vol(V).

Siendo f(z,y, z) integrable sobre V', se llama valor promedio de f en

Va fp
T Sy
vol (V)
Asi el teorema anterior puede ser enunciado de la siguiente manera:

Si f(z,y,2) es continua en V' C R3 entonces el valor promedio de f en
V' coincide con el valor de f en algiin P* € V.

fp

Aplicaciones de la integral triple

. fffv dV = Volumen(V),

» Si f(z,y,2) es la funcién densidad volumétrica de masa, continua y
f(x,y,z) > 0 en todos los puntos de V, entonces

f f fv F(z,y,2)dV = Masa(V)
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» Centro de masa de un sélido V (7,7,%z) Si f(z,y, 2) es la funcién
densidad volumétrica de masa, y f es continua y f(x,y,z) > 0 en todos
los puntos de V, entonces

. fff/mf(w,y,z)dv

masa(V)

(Lo

B masa(V')

(e

a masa( )

El centro de masa de un soélido se puede suponer como el punto donde
esta concentrada toda la masa y donde confluyen las fuerzas externas
que actuan sobre él. Es sumamente util conocer el centro de masa,
porque facilita resolver problemas de mecanica en los que se necesi-
ta describir o conocer el movimiento de objetos sometidos a diversas
fuerzas.

5.1.1. Calculo de la integral triple

Si el sélido V es proyectable sobre el plano zy , o sea, si existe una region R,
del plano zy y dos funciones continuas g(x,y) y h(z,y) tales que

V = {(2,9,2)/(x,y) € Ruy A gz, y) < 2 < h(z,9)}

siendo f(z,y,z) continua en V,

h(z,y)
ff f(z,y,2)dV = ff j z,y,2)dz)dA,,
7y

(la integral doble se calculard a su vez integrando respecto de z y respecto y
de acuerdo a la descripciéon que se haga de R, o bien también realizando un
cambio de variables)

Describan ustedes en qué condiciones un sélido es proyectable sobre el plano
xz y cuando es proyectable sobre el plano yz y cémo se calcula la integral
triple en estos casos.

166



5.1. DEFINICION DE INTEGRAL TRIPLE

5.1.2. Ejercicios

1.

Calculen las siguientes integrales. Describan el sélido sobre el que se
integra y hagan un esquema grafico del mismo.

2 rl p4 1 rx prr—y
i) / / / v2y  zdzdydr i) / / / xdzdydx
1 Jo J2 0o Jo Jo

1 pl—z ,2 2 rl pl—z
. 1) Comprueben que / / / dxdydz = / / / dydzdx
0 Jo 0 o Jo Jo

ii) Interpreten geométricamente el resultado de la integral.

. En los siguientes incisos, describan el solido limitado por las superficies

dadas y calculen su volumen mediante una integral triple.
i) x+y+22=2;2x+2y+ 2z =4 (en el primer octante) .
ii)2=0;2=9;2=0;0=1;y=1;y=—1

iii) x +2=1; y+ 2z =2 (en el primer octante) .

iv) 224+ 22 =1; 22 + y* =1 (en el primer octante) .

VP +y2=4;2=0;0+2=3.

Calculen el valor promedio de f(z,y,z) = xyz en el cubo limitado por
los planos coordenados y porz =2, y=2 y z=2.

Calculen la masa del solido limitado por x + y 4+ z = 2 y los planos
coordenados , siendo p(z,y, z) = 2z la funcién densidad de masa.

. Hallar el volumen de un prismoide como se muestra en la figura y

probar que es igual a V' = %(Al + 4A,, + A), donde A; y A, son las
bases de la figura, h es la altura (distancia entre las dos caras paralelas)
y A, el drea de la seccion con plano a mitad de altura (h/2) entre las
dos caras paralelas. Probar primero, por ejemplo con

PRISMOIDE E_%ml*hr%m;

Ay :As =Area de las caras
paralelas extremas

Am =Area de la seccion
a h/2
h =Altura del prismoide.

Nota: En geometria, un prismatoide es un poliedro cuyos vértices se
encuentran en dos planos paralelos. Sus caras laterales pueden ser tra-
pezoides o tridangulos. Si ambos planos tienen el mismo ntimero de vér-
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tices, y las caras laterales son paralelogramos o trapezoides, se conocen
como prismoides. Los prismoides se utilizan mucho en topografia en tra-
bajos de ingenieria para calcular los volimenes de tierra para desmontes
o terraplenes. Considerar, por ejemplo el caso con valores simples, de
un prismoide con las siguientes caracteristicas:

» La base inferior es un cuadrado con vértices en (0,0,0), (2,0,0),
(2,1,0) y (0,1,0).

» La base superior es un cuadrado con vértices en (0,0, 1), (1,0,1),
(1,1,1) y (0,1,1).

» La altura del prismoide es 1 unidad.

5.2. Cambio de variables en la integral triple

Sean V' y V* subconjuntos del espacio zyz y uvt respectivamente, que estan
relacionados por

r = X(u,v,t)
y =Y (u,v,t)
z = Z(u,v,t)

de tal manera que cada punto de V' es imagen de tinico punto de V*.

Supongamos que f(x,y, z) es continua en V', que X, Y y Z tienen derivadas
parciales continuas en V* y que, en V*, el jacobiano de z,y y z respecto de
u, v y t es diferente de cero, o sea:

oxr Oy 0z
du Ou Qu dy 0z or 0z or Oy
O@,y.2) _| 0z Oy 0= oz | Ov Ov | gy | dv v _%82 ov v
O(u,v,t) ov Ov Ov ou By 82 | gy 9. | Ou| gy y
or Oy O ot ot ot ot ot ot
ot ot ot

entonces

ff £ (&, 2) Vs = ffwf (u,0,1), (uvt)Z(uvt))‘g((ZZ’t‘quvt
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5.3. Coordenadas cilindricas

Se asigna a cada punto P = (z,y, 2) la terna (r,0,z) donde (r,6) son las
coordenadas polares de la proyeccién en el plano xy del punto P y z es la
coordenada original.

(r,0, z) son las coordenadas cilindricas del punto P y esas coordenadas veri-
fican:

r>0 ; 0<6<2r ; z€eR

Coordenadas cilindricas

x =rcosf
La relacion entre ambas ternas estd dada por: (y =rsenf

2=z

tg@zg stx #0
T

{r:m

3
(ng si x=0ey>0y 02% si x=0 e y<0)

\. J

(Se podria también ubicar el sistema polar en el plano zz y mantener la coor-
denada y original o ubicar el sistema polar en yz y mantener la coordenada
x original).

Actividad

= Obtengan las coordenadas cartesianas del punto P cuyas coordenadas

7r
—,—3).
6’ )

cilindricas (r, 6, z) son (1,

= Obtengan las coordenadas cilindricas del punto P cuyas coordenadas
cartesianas son (1, —1,2).
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= Grafiquen las superficies cuyas ecuaciones en coordenadas cilindricas
: . 3m .
son: i) r=2 ii)@=0 iii)6= - iv) r = 2send
= Escriban las ecuaciones en coordenadas cilindricas de las siguientes su-
perficies: i) x> + 4> =1 ii) Semiplano y =z ;con = >0

i) 2= V2Z+1y?2 iv)z=2+9* v) z=V4—22—y2.

La descripcién en coordenadas cilindricas de algunos solidos es mucho mas
sencilla que en coordenadas cartesianas. Piensen por ejemplo en el sélido
limitado por las superficies 22 +y? =1 ;22 +y*=9;2=0y 2 = 5.

) z=5§

Las ecuaciones en coordenadas cilindricas de las superficies que limitan al
solidoson: r=1;r=3;2=0y z2=25.

Los puntos que pertenecen al sélido tienen coordenada cilindrica 6 cualquiera
(entre 0 y 27), coordenada cilindrica r entre 1 y 3 y z entre 0 y 5.

V=A{(r0,2)/0<0<2rAN1<r<3A0<z<5}

Actividad Grafiquen y describan en coordenadas cilindricas el sélido V
limitado en el primer octante por 22 +y> =9 ;22 +y?> =16 ;y = 2;y = V3
y2=1yz=4.

Cambio de variables en la integral triple usando coordenadas cilin-
dricas

Para el cambio de variables definido por

T = rcos
y = rsenf
z=2z
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resulta
0r 0y 02
or Or oOr cos  senf 0O
M: 9z Oy 0z | _ —rsenl rcosd 0 |=r
a(r,0,2) 06 906 00
or oy 0z 0 01

9z 0z 0z

Entonces, entendiendo que V* es la descripcion del solido en coordenadas
cilindricas, el diferencial de volumen resulta:

dV =dz.dy.dz = dz.r.dx.dy

y la integral triple:

fff‘; f(z,y, z)dxdydz = ffj‘; f(rcost,rsend, z)r dzdrdf

Ejemplos:
» Siendo V el sélido limitado por 22 + (y —1)2 =1 ; 2 = 22 + ¢y y
z = 0, plantear el calculo de f(x,y,2)dV usando coordenadas

1%
cilindricas.

Escribamos las ecuaciones de las superficies que limitan al sélido en
coordenadas cilindricas:

Pry-12=1 — 22+3y°=2y — 1r=2send
2

z:x2+y2 — zZ=7
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z

y
L r=2send
R,,
:

R, x
Proyeccidn del sélido sobre el plano xy

as

\

V:{(T’,@,Z)/OSHSW A0 <r < 2send /\O§2§r2}

Entonces:

m™ p2send pr2
ff\fv flz,y,2)dV :/o /o /0 f(rcost, rsenf, z)rdzdrdf

= Plantear el calculo de [ [ [i,(z%+y?)dV siendo V el sélido limitado por

P4y’ =4;2=0y 2= 22+ 2

>
X

-,
.,

Proyeccién del sélido sobre el plano xy

Escribamos las ecuaciones de las superficies que limitan al sélido en
coordenadas cilindricas:
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z=\/124+y> — z=r

V={(rbz/0<<2r NO<r<2AN0<z<r}

Ademés, el integrando (2% + y?) se transforma en 7. Entonces:

ffj;(xz +y?)dV = /027r /02 /OT r3dzdrdf

5.3.1. Ejercicios

1. Calculen usando coordenadas cilindricas f f f xyzdV siendo V el soli-
1%
do limitado por 22 + 4%+ 2% = 16 y los planos coordenados en el primer

octante.

. Calculen el volumen de los siguientes sé6lidos usando coordenadas cilin-
dricas:

i) V limitado por z = 2% + y? y 2z = 4.

ii) V limitado por 2y = 22+ 2% y 22 +y*+ 22 = 3 (en este caso conviene
ubicar el sistema polar en el plano zz).

iii) V limitado por z? 4+ y* + 2% = a?.

iv) V limitado por z = 2®> + % v 2z = 22 + 32

. Calculen la masa del sélido limitado por 2%+ 42 + 2% = 16 en el interior
de 72 + y? = 4z y en el primer octante, suponiendo que §(x,y,2) = z
es la funcién densidad de masa.
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5.4. Coordenadas esféricas

Coordenadas esféricas

A cada punto P con coordenadas cartesianas (z,y, z) se le asigna la
terna (p, 8, p) donde: p es la distancia desde P hasta el origen de coor-
denadas (0,0,0)); 0 es el angulo medido desde =™ hasta el segmento
OP' siendo P' = (x,y,0) la proyeccién de P en el plano zy, como
muestra la figura; ¢ es el angulo medido desde 2zt hasta OP.

A

z

—fxwv.z)

(P, 6, @)

(p, 0, ) son las coordenadas esféricas del punto P y verifican:

p=>0 ;3 0<0<2r ; 0<p<m

La relacién entre las coordenadas cartesianas de P = (z,y,2) y sus
coordenadas esféricas (p, 8, ¢) estd dada por:

p= VETF T2

x = p cost seny y
tgd = = (six #0)
x

y = p senf seny

Z = pcosp si z#0)

El siguiente grafico muestra la relacién entre las coordenadas cartesianas,
cilindricas y esféricas. Las ecuaciones que convierten de un sistema a otro se
derivan de relaciones en el tridngulo rectangulo.
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P(x. y.2)
T, P(r, 6, 2)
T~._ P 6.9)

X

Notar que existe una vinculacion entre las coordenadas cilindricas y esféricas
del siguiente modo: Siendo que

x = rcosf
y = rsenf
Entonces observando el tridngulo O P” P: se tiene que

r = p sen(y)

De este modo es mas sencillo recordar la relacién entre las coordenadas car-
tesianas y esféricas (pasando antes por la relacién entre las coordenadas ci-
lindricas y el radio r) del siguiente modo:

x =1 cos = (p senp)cost
y =1 sent = (p seny)send

2 = p cosy

Actividad

= Hallen las coordenadas cartesianas del punto P cuyas coordenadas es-

féricas son (2 /2, g, g)

= Hallen las coordenadas esféricas del punto P cuyas coordenadas carte-

sianas son (1,1,1)

= Grafiquen las superficies cuyas ecuaciones en coordenadas esféricas son:
s

Dp:4ﬁ)0:£ i) =7
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= Escriban la ecuacion en coordenadas esféricas de las siguientes superfi-
cies:
)22+ 92+ (x—1)?=1 ii)2=4 iii) 2= Va2 +¢y? ivly= 3z

V) 224y + 22 =4 vi) 2 =22 + y?

La descripcion analitica de algunos solidos es en coordenadas esféricas mas
sencilla que en coordenadas cartesianas. Veamos por ejemplo el solido limi-
tadopor 22 + 12+ 22 =1 ; 22+ + 22 =9 yz= Va2 + 92

Las ecuaciones en coordenadas esféricas de las superficies que limitan al sélido
son:
Py =1 = p=1

P4yt +2=9 — p=3

» = /I2+y2 - ]_Ziw N ]_:tgsp —)Sp:

z

N

Los puntos que pertenecen al sélido tienen coordenada 6 que toma cualquier
T
valor entre 0 y 27 ; coordenada ¢ que toma valores entre 0 y 17 coordenada

p tomando valores entre 1 y 3.

V:{(p,e,go)/oge<27erggo§Z /\1§p§3}

Actividad describan en coordenadas esféricas los siguientes sélidos:

= V limitado por z = /a2 + 42 , z=4.
s V limitado por z = /4 —2? —y?> vy los planos coordenados en el

primer octante.
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» V limitado por z = Va2 +y? ;2= /3(2? +4?)

» Viimitadopory = ;y= V3z ;22 +y>+22 =4 ya’+y’+22 =16
con r>0y y=>0.

» V limitado por 2 +y? +22=4 ;2= V22 +y2 y z=4.

Cambio de variables en la integral triple usando coordenadas esfé-
ricas.

Para el cambio de variables definido por

x = p cost seny

y = p senf seny

Z = p cosyp
resulta
ox @ 0z
dp dp Op

dr,y,z) | dxr Jy Oz

= = = —p’seny (verifiquen)

e g g
dp 0o Op

Entonces, entendiendo que V* es el s6lido V' descripto en coordenadas esfé-
ricas resulta, para f continua sobre V:

ffj; f(z,y, 2)dzdydz =

= ff f(p cost seny, p send seny, p cosp)p*senpdpdpdd
V*

Ejemplo: Plantear usando coordenadas esféricas el cdlculo del volumen del

solido limitado por 22 +y? + 22 =1y V3 2 = /22 + o2
Las superficies que limitan al sélido son :
una superficie esférica: 2> + > +22=1 — p=1
0
y un semicono : V3 z= 22+ 42 — tgp=+3 — p=7
v={pbpf<osm n0se<T no<pst)

wl| A
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Entonces:

2r %l
vol(V') = fff av :/ /3 / p*senpdpdpdd
v o Jo Jo

Observacién

En este capitulo hemos encontrado distintas formas de describir un mismo so-
lido V' en 3D, utilizando para ello el sistema de coordenadas mas conveniente
segun sea la geometria de V. Emplear un sistema (u otro) de coordenadas
tendra ventajas y desventajas que se debe analizar al tratar de obtener la
solucién buscada a un problema. Notar que la solucion no dependerd del
sistema de coordenadas escogido, y en principio cualquier sistema (bien apli-
cado) sirve para resolverlo. Una buena eleccién del sistema, puede lograr que
los calculos para resolver el problema sean mucho mas sencillos que con otro.

En general las coordenadas cartesianas sirven muy bien para describir soli-
dos cuyas superficies por borde incluyen planos. En el caso que las superficies
que son borde del sélido, poseen una simetria cilindrica (cilindros circulares
rectos, paraboloides, conos) es 1til en estos casos describir V' usando coor-
denadas cilindricas. Por ultimo, cuando el sélido posea una simetria esférica
(esferas) es conveniente utilizar coordenadas esféricas.

En fisica, es muy comun utilizar coordenadas cilindricas o esféricas para
modelar sistemas tridimensionales con simetrias especificas. Las coordena-
das cilindricas, modelan sistemas que exhiben una simetria cilindrica, como
cilindros, tubos o estructuras alargadas, flujos en tuberias o conductos cilin-
dricos, distribucién de carga eléctrica o corriente en estructuras como cables
o conductores, ondas sonoras o vibraciones en tubos o cilindros, procesos ter-
modinamicos en sistemas con pistones y cilindros, las coordenadas cilindricas
son ttiles para describir la expansion y compresion de gases, entre otros. Las
coordenadas esféricas, modelan sistemas con simetria esférica o radial, como
planetas, atomos o particulas que irradian desde un punto, campos gravi-
tatorios y eléctricos en torno a objetos con simetria esférica, ondas que se
propagan desde una fuente puntual, como ondas de sonido o ondas electro-
magnéticas en el espacio, entre otros.

5.4.1. Ejercicios

1. Calculen usando coordenadas esféricas el volumen de los siguientes s6-
lidos:

i) V limitado por 22 + 2 + 22 =4 : 2= Va2 + 2y V32 = V22 + 2
ii) V limitado por z = y/22+ 3?2y z = 1.
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iii) V' limitado por arriba por el semicono ¢ = % y por debajo, por la

esfera p = 2cosp
iv) V limitado por 2 = Va2 + 32, 22 +¢y*+22=16y 2=0.

. En los siguientes incisos calculen el valor promedio de f en el sélido
dado.
i) f(p,0,p) = p en el sélido definido por p < 1

ii) f(p,0, ) = pcosp en el solido definido por p <1y 0<p < g

. En los siguientes incisos el volumen del sélido V' haciendo un cambio
de variables adecuado.

i) V limitado por z =22 +4? ; 2? + > —y =0y 2 = 0.

ii) V limitado por z = /16 — 22 —y2 y 2?+y*> =6z .

iii) V limitado por 4 = 2? +¢* ; 22 + ¢y =22y 2 = 0.

iv) V limitado por 2? + y* 4+ (z — 1)? =1;2* +y* =6z y z = 1.

v) V limitado por arriba por z = 9 — 22 — 52 por debajo por z = 0 y
con 22 +y*>1

vi) V limitado por z = /2?2 +y? ; 2 =1y 2 =2.
vii) V limitado por arriba por 2%+ y? + 22 = 4 y por debajo por z = 1.
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Capitulo 6

Integral de linea

6.1. Introduccion al Calculo Vectorial

Para avanzar con el estudio de los temas necesitaremos algunos conceptos
referidos a magnitudes escalares, vectoriales y sus operaciones, ademas de
los ya estudiados en Mateméatica A (concepto de vector, sus componentes y
operaciones de suma y producto por escalar).

= Magnitud escalar: es aquella que queda totalmente determinada dan-
do un sélo nimero real y una unidad de medida. Fenémenos/situaciones
que se modelan por una magnitud escalar, son: tiempo, medidas de
longitud, medidas de superficie, masa, densidad, volumen, potencia,
temperatura, trabajo, presion, energia.

= Magnitud vectorial: es aquella que queda determinada completa-
mente mediante un niimero real, una unidad de medida, una direccién
y un sentido. Ejemplo: fuerza, velocidad, momento/momentun, torque
(producto vectorial de dos fuerzas), gradiente y aceleracion.

Para representar las magnitudes vectoriales se toman segmentos orientados,
es decir, segmentos de recta cada uno de ellos determinado entre dos puntos
extremos dados en un cierto orden. Estos segmentos orientados se denomi-
nan cominmente vectores. Se componen de un segmento, un punto inicial
(origen) y de un puntos final o extremo. La recta que contiene al vector de-
termina la direccién del mismo y la orientacion sobre la recta, definida por
el origen y el extremo del vector, determina su sentido.

A los vectores de médulo unidad se los denomina versores. A los versores
se los indica cominmente con una letra en negrita sobre la que se coloca una
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v derecha o invertida, segin el autor.

Sea (O;x,y,z) un sistema de coordenadas ortogonales. Sobre cada uno de
los ejes, y con su sentido coincidente con el sentido positivo de aquellos, se
colocan los versores i, j, k. Sus componentes son 7 = (1,0,0), 7 = (0,1,0) y
k= (0,0,1) y se denominan versores fundamentales.

Todo vector (ay,as,as) puede ser entonces escrito en la forma (aq,as,a3) =
a1t + asj + azk. Esta descomposicién candnica de un vector como suma de
tres vectores en la direccion de los ejes coordenados es muy importante y
util.

6.1.1. Producto escalar

El producto escalar (también llamado producto punto) es una operacion entre
dos vectores

u, v
(denominada a veces como producto punto) que da como resultado un niimero
(un escalar), y estd definido como

W+ U= |dl||v] cos b
donde @ es el angulo que forman los dos vectores.

Considerando las componentes de los dos vectores el producto escalar se
calcula por:
U-U=uvg + ugVa + - -+ + upvy,

Usando ese resultado es posible establecer el siguiente criterio para determi-
nar si dos vectores son perpendiculares (ortogonales):

Propiedades :

= Dos vectores , ¥ son perpendiculares si y solo si u - v = 0.
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n
£l
=
Il
=

» el vector = es unitario, su médulo es 1.

2 0 (W) =TT+ D
s ii=jj=k-k=1
u ; j:;'];:;’]g:

La proyeccién ortogonal de un vector b sobre un vector @ es un vector
en la direccién de @ cuya magnitud es (componente de b en la direccién
de @) |l;| cosf donde cosf es el angulo entre los dos vectores. Notar que si
/2 < cosf < m esa magnitud es negativa.

‘,
o

6.1.2. Producto vectorial

El producto vectorial (o también llamado producto cruz) es una operacién
entre dos vectores de dimensién 3, y el resultado es un vector ortogonal al
plano formado por los dos vectores y tiene la direccion segun el giro de la
mano derecha.
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En coordenadas cartesianas el vector resultado del producto vectorial es po-
sible calcularlo mediante una operacion que se denomina determinante

T gk
UX U= U1 Ug U3
U1 V2 U3

donde i, j, k son los Vectores unitarios en la direccion de los tres ejes z, v, 2.

Propiedades

= U X ¥ corresponde a un vector perpendicular a ¥ y ¢ cuyo modulo es
| x U] = |ul|v|sin® donde 0 es el angulo entre los vectores.

|t x 9] es igual al area del paralelogramo determinado por 4 y .

Los vectores 4 y ¢ son paralelos (colineales) si y s6lo si @ x ¢ = 0.
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b
|

E—

a

—_

b| sen@

Producto mixto

El producto mixto es una expresion entre 3 vectores

=
=
g

y se define por

y esta definido como

(4, U, W] =i - (U x W)
Para tres vectores no coplanares, el valor absoluto del producto mixto da por
resultado el volumen del paralelepipedo que se forma con esos vectores.

<

vV

6.2. Curvas en el plano y en el espacio

Nuestro proximo paso sera el estudio de la integral de linea. El dominio de
integracion pasara a ser una curva del plano o del espacio y el integrando
un campo escalar (funcién a valores reales) o la componente de un campo
vectorial en una direccién dada, definidos sobre la curva. Para poder abordar
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CAPITULO 6. INTEGRAL DE LINEA

la definicion, el calculo y las propiedades de este nuevo tipo de integrales nos
ocuparemos previamente de las curvas y su representacién vectorial paramé-
trica, y de los campos vectoriales.

6.3. Parametrizacion de curvas

Toda curva plana puede darse por un par de ecuaciones paramétricas:
r=X(t)
y=Y(t)

donde I es un intervalo de niimeros reales llamado intervalo paramétrico y
X(t) e Y(t) son funciones a valores reales.

tel

Ejemplo:

T =acost . s
Para a > 0, t € [0,27] son las ecuaciones paramétricas

y=asent
de la circunferencia que tiene radio a y centro en el origen de coordenadas:
22 +y% = a® . Observemos que las ecuaciones paramétricas definen la curva y
le imprimen una orientacion: en este caso, al considerar valores crecientes de
t, recorremos la curva en el sentido indicado por la flecha en el siguiente dibujo
(sentido antihorario), iniciando ese recorrido en el punto de coordenadas (a, 0)
y finalizando en el mismo punto.

3

A

= Para el estudio de los temas de este capitulo puedes ayudarte de las
aplicaciones creadas en GeoGebra.
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6.3. PARAMETRIZACION DE CURVAS

Actividad:

. L. T =asent
= Las ecuaciones paramétricas ; t € [0,27] corresponden
Yy = a cos

a la misma circunferencia 2% + y* = a® . ;Cudl es la orientacién que
esta parametrizacion imprime a dicha circunferencia?

x = acos (2t)

» Las ecuaciones paramétricas t € [0,27] también

y = a sen (2t)
definen la circunferencia 2% + y? = a® . Al tomar t todos los valores
desde 0 hasta 27 , jcuantas veces se recorre la curva?

r=3cost

» Las ecuaciones paramétricas t €[0,2m] corresponden
y=4sent
a una elipse: despejando cos t 'y sent vy considerando que
2 2
sen? t+cos? t = 1, se obtiene: — + g 1. Grafiquen esa elipse e in-

diquen en el grafico la orientacion definida por la parametrizacion dada.

Para las siguientes curvas, hallen la ecuaciéon en x e y , grafiquen e
indiquen en el gréafico la orientacién, el punto inicial y el punto final.

— — — 4
C’lz{x 2 cos(—t) t €[0,27] CQI{:U 2+ dcos t t € [0,27]

y = 3 sen(—t) y=3+3sent
=142 t =2+4 t

Gy 4T TITEN i c02m) 0 T T IR o,
y = 2+ 2cost y=3+3sent

Escriban ecuaciones paramétricas para:
i) la circunferencia con centro en (2,3) y radio v/2 recorrida en sentido
antihorario, con punto inicial (2 4+ v/2,3)

2 2
ii) la porcién de elipse — + vo_ 1, ubicada en el primer cuadrante,
desde (2,0) hasta (0, 3).
iii) (x —3)? +4(y — 2)®> = 4 recorrida en sentido horario, con punto
inicial (3, 3)

187



CAPITULO 6. INTEGRAL DE LINEA

=1+2t
» Verifiquen que las ecuaciones paramétricas v * t €10,1] co-
y=2+3t

rresponden al segmento de recta desde (1,2) hasta (3,5).

Vean si las siguientes ecuaciones paramétricas corresponden al mismo
segmento de recta. Grafiquen e indiquen la orientacién en cada caso.

T e, PEOEE e 1,0)
y=143% y=5+3t

Escriban ecuaciones paramétricas para:
i) el segmento de recta desde (0,0) hasta (4, —3)
ii) el segmento de recta desde (5,2) hasta (1, —1)

» Dada y = 1 — 22, haciendo x = t se tiene la parametrizacion trivial:

r=t
teR
y=1-—1

Grafiquen e indiquen la orientacion de la parabola definida por esta
parametrizacion.

Consideren luego las siguientes ecuaciones paramétricas, vean si corres-
ponden a la misma curva, grafiquen e indiquen la orientacién.

Lo

t>0

y=1-—1

= —¢
¢ teR
y=1—1

{xzt tell,2]

y=1—12

—3—t¢

’ tel,2
y=1-(3-1)

Escriban ecuaciones paramétricas para las siguientes curvas:
i) la porcién de pardbola y = 222 — 1 desde (1,1) hasta (3,17).
ii) la porcién de parabola y = 222 — 1 desde (3,17) hasta (1,1).

2 2 _ 1
O {x _:— Y 5 C es una curva de R? (es la interseccién de una
yrz=
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6.3. PARAMETRIZACION DE CURVAS

superficie cilindrica con un plano).

T = cost
y = sent t € [0,27] es una descripcién paramétrica de C'.

z =2 —sent

Grafiquen la curva C e indiquen su orientacion de acuerdo a la para-
metrizacion dada.

2?2+ 42+ 22 =16

= Sea (':
z =12y
Identifiquen las superficies cuya interseccion define a la curva C' en este
caso.
Reemplazando z por 2y en la primera ecuacion resulta: 22 + 8y? = 16,
. 2%+ 8y? =16 . .
de manera que el sistema 5 es equivalente al primero
2 =2y
(define la misma curva C') y de alli se obtiene la siguiente parametri-
zacion:
x =4 cost
C:qy= +2sent te]0,2n]
2z =22 sent

Escriban ecuaciones paramétricas para las siguientes curvas. Indiquen
en un grafico la orientacién considerada en la curva:

2 2 2:4 — 2 2 — 2 2
NeRR SRR e TN Y e T T
=1 z2=4 z =2

2 2:1 2 2:1 2 2:1
iv) C: Ty v) C: vy vi) C': vty
y+z=2 z= r+y+z=1

502 4 42 + 2% = 125 2 42 4 22 =95
Vi) ¢ 0T YA viii) ¢ T YT
Yy =2z y=3

Representacion vectorial paramétrica de curvas

Una funcién vectorial 7 es una funcion cuyo dominio es un conjunto de nu-
meros reales y cuya imagen es un conjunto de vectores.
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CAPITULO 6. INTEGRAL DE LINEA

Para cada ¢ en el dominio de 7 es:

F(t) = X (t)i+ Y (t)] (sila imagen de 7 es un conjunto de vectores del plano)
o 7(t) = X()i+Y(t)]+ Z(t)E (si la imagen de 7 es un conjunto de vectores
del espacio)

X(t), Y(t) y Z(t) son las componentes de 7 (son funciones reales a valo-
res reales).

Para simplificar la notacion, escribiremos a veces:

Una curva (del plano o del espacio) puede describirse con una funcién vecto-
rial:

0, si C es una curva del espacio:

C:7=rt)= (X(t),Y(t),Z(t) tel

El extremo de cada vector 7(t) corresponde a un punto de la curva.

C

Ejemplos:

» Parametrizaciéon de un segmento desde el punto A al punto

B.

Sean A y B dos puntos del plano o del espacio. El segmento que los
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6.3. PARAMETRIZACION DE CURVAS

une se puede parametrizar de la siguiente manera:

C:r=7t)=A+(B—-A)t,tel0,1]

Por ejemplo, si A = (1,—1,2) y B = (1,0, 3), entonces el segmento de
A a B se parametriza por:

C:7=7t) = (1,—1,2) + ((1,0,3) — (1,—1,2))t , t € [0, 1]

C:7=7t)=(1,-1,2)+(0,1,1)t, t € [0,1]

Resultando:
C:r=7t)=(1,-14+t2+1t), t€]0,1]
?+y?=1
Hemos visto que C' : Y puede describirse por medio de
y+z=2
T = cost
las ecuaciones paramétricas ¢ y = sent t €[0,2n]

z=2—sent
C:7=r7(t) = (cost, sent, 2—sent) ; t € [0,2n] es una descripciéon
vectorial paramétrica de C.

Siendo a y b nimeros reales diferentes de cero, la ecuacién vectorial

C:7=7r(t)={(acost,asent, bt) ,t€R

corresponde a una hélice circular (resorte). X(t) =acost e Y(t) =
a sen t, de modo que la curva se halla sobre un cilindro circular de
radio a (C' es una hélice circular de radio a). Ademéds, para todo t, es:
Xt+2m)=X(@); Y(t+2r)=Y(t) ; Z(t+2m)=Z(t)+b 271 0 sea
que, a At = 2w, corresponde AX = AY =0y AZ =27 b (C es una
hélice circular de paso |b| 27 )
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CAPITULO 6. INTEGRAL DE LINEA

Vector tangente

SiC o =17(t) = (X(@),Y(t),Z(t) cont € I,y X(t), Y(t) y Z(t) son
derivables en ¢y € I, entonces existe 7 '(tg) = (X'(to), Y (to), Z'(to)) que, si
es diferente del vector nulo, define la direccién tangente a la curva C' en el
extremo de 7(tp).

i Tt + At) — T(to)
(ko) = Al}tr—{lo At

7' (to) apunta en el sentido en el que se recorre la curva para valores crecientes
del parametro.

7(ty + At) -7(ty)

P, 7(ty + At)

7(to)

Si 7 /(t) existe y 7 '(to) # 0, se define como vector tangente a la curva
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6.3. PARAMETRIZACION DE CURVAS

C': 7= 7(t) en el punto correspondiente a ty, al vector unitario

sy 0
T =)

Ejemplo:

Para C : 7= 7(t) = (4 cost, 4 sent, 3t), t € R (hélice circular de radio 4
y paso 67),

7'(to) = (—4 sen ty, 4 costy, 3)
Tity) = 7' (to) _<—4sent0 4 cos tg 3>
YT\ 5 5 5

En particular, por ejemplo, 7’ (Z) = <—2 V2, 22, 3> tiene la direccion

tangente a la curva en el punto correspondiente a ty = % que es el punto
= —2v2 242 3
Py =(2 \/22\/573%) y para ese punto es T' = (Z) = < 5\/_, \5/_7 5> _

6.3.1. Longitud de un arco de curva

Sea C:7=7(t), cont € [a,]

=

Nos proponemos calcular la longitud de C.
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CAPITULO 6. INTEGRAL DE LINEA

Supondremos que C' es suave entendiendo por ello que 7'(t) es continua y
que 7'(t) # 0. Geométricamente esto significa que el vector tangente existe
en cada punto y que varia con continuidad sobre la curva.

b—a
Dividamos el intervalo [a,b] en n subintervalos de longitud —— mediante
n
n+1lpuntosa=ty <ty <..<t,=0b
Uniendo con lineas rectas los sucesivos pares de puntos P, = (X (¢;), Y (¢;), Z(t;))
v Piy1 = (X(tis1), Y (tiy1), Z(tix1)) obtenemos una aproximacion poligonal
de C. La longitud de dicha poligonal es:

S0 = 30 VX (tir) ~ X + V(i) — Y0P + [Z(tier) — 200

Por el teorema del Valor Medio de Lagrange, aplicado a las funciones X (t),
Y(t)y Z(t) en [t;, t;41], existen ¢;, d;, e; € (t;,t;11) tales que

X(tiy1) — X(t:) = X'(ci)(tigs — i)
Y(ti1) = Y(t:) =Y'(di)(tiys — t;)
Z(tiv1) — Z(t:;) = Z'(ei) (tiys — i)

Entonces

5, = Z X+ YV @)P + (2P (fiar — 1)

y, considerando que la poligonal se aproxima a la curva cuando n tiende a
infinito, se tiene:
longitud de C = L5 = lim S,
n—oo

por lo que concluimos, teniendo presente que X , Y y Z son funciones con-
tinuas en [a, b], que la longitud de C' es:

= [ IXWR+ V0P + [ZOF d

Es decir,

Ejemplo: .
Sia#0yb#0,C:7=7(t)=acosti+asentj+btkcontec]l0?2n]
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6.3. PARAMETRIZACION DE CURVAS

es una espira de hélice circular de radio a y paso |b| 27. Su punto inicial es
A = (a,0,0) y su punto final es B = (a,0,b 27).

7'(t) = (—a sent, acost, b)
(0] = v+ PR

Entonces, la longitud de C' es:

2
LB:/ Va2 +b2dt = Va2 + b 2n
0

Funcién longitud de arco

Sea C : 7 =7(t), cont € |a,b], curva suave, con punto inicial A y punto
final B. Para cada t € [a, b],

s:ﬂw:Zﬁwmnm

es la longitud del arco de curva entre A = (X (a), Y (a), Z(a))y P = (X(¢),Y (t), Z(t)).
S, asi definida, se llama funcion longitud de arco y s es el parametro longitud
de arco.

s® P

r(t)

., Qué podemos afirmar acerca de la funcién S?

» S(a)=0y S(b)=LE
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w S'(t) = |F'(t)] >0 Vt € (a,b)
= S es estrictamente creciente , Im(S) = [0, L]

Entonces:
1. S:la,b] = [0,L5] ; s=5(t) admite funcién inversa.
2. h:[0,L%] = [a,b] ; t=h(s) esla funcién inversa de S.
3. Componiendo S con h resulta: (h o S)(t) = h[S(t)] :lt

1
WSS (t) =1 = H[St)] =Hh(s) = = :
SIS S0 = 1) = 505 =
4. C : 7= 7(h(s)) = 7*(s) con s € [0,LF] es la descripcién de la curva
C' en términos del pardmetro longitud de arco. Nos referiremos a esta
descripcién como representacion natural o parametrizacion natural .

Ejemplo:

Dada C:7=7(t)=acosti+asent] con t € [0,2n], obtendremos su
representacion natural.

7'(t) = —asenti+acost)
[7(8)] = a
t 2T
s:S(t):/adu:at ; 5(271'):/ a du = 2ma
0 0
s
t=2
a
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C:F:F(S> = a cos <S> i+asen <S> j con sé€ [0, 27al
a a a

6.3.2. Ejercicios

1. Calculen la longitud de las siguientes curvas:
3

t — - —
Cy:7=7(t) = §i+t2j + 2tk cont € [0,4].
7= F(t) = elcost i + e'sent] + e'k desde A = (1,0, 1) hasta
B = (—€",0,€").
7 = 7(t) = 3cosh(2t) 7 + 3senh(2t)] + 6tk con t € [0,1].

2. Obtengan la funcién longitud de arco y la representacién natural de la
curva:
i) una espira de hélice circular de radio a y paso |b| 2.
ii) C: 7= F(t) = elcost i + e'sent] , t € [0,1].

6.4. Campos vectoriales

En fisica y matematica tenemos variados ejemplos que nos muestran la ne-
cesidad del empleo de vectores, para describir ciertos comportamientos y/o
resultados. Acabamos de ver, que la direccién de una curva, queda en cada
punto definida por el vector tangente. La variacion del mismo, nos permite
estudiar su forma. Recordemos también que - bajo ciertas condiciones - po-
demos conocer en que direcciéon se produce la mayor rapidez de cambio de
una funcién de dos 6 tres variables en un punto dado. Tal direccion es la del
gradiente en ese punto particular y el médulo del mismo, mide la magnitud
de ese cambio. En cada punto en que el gradiente esté definido, tenemos la
posibilidad de conocer el comportamiento de tal funcién. Sabemos también
que sobre todo cuerpo de masa m actiia una fuerza: la fuerza de gravedad,
que se representa por medio de un vector de direccion vertical hacia abajo.
También la velocidad de una particula mévil, requiere de un vector para su
descripcion. Podriamos mencionar la velocidad de una particula de un fluido
en movimiento - liquido o gas - . Esta recurrencia al empleo de vectores -
variables en cada punto - permite definir una funcion que a cada punto (del
plano o del espacio) le hace corresponder un tinico vector. Estas funciones se
definen como:
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Campo vectorial

Un campo vectorial en es una funcion a valores vectoriales que asigna
a cada punto P € D un tnico vector F(P).
Un campo vectorial en R? es una funcién definida sobre un dominio
D C R%:

F:D—R?

F(z,y) = P(z,y)i + Q(z,y)]

Las componentes del campo vectorial Fson P y @, funciones a valores
reales definidas sobre D. Un campo vectorial en R es una funcién
definida sobre un dominio D C R3:

F:D-——R?

F(z,y,2) = P(x,y,2)i + Q(z,y,2)] + R(z,y, 2)k

Las componentes del campo vectorial F son P, @ y R, funciones a
valores reales definidas sobre D.

Para simplificar la notacién, a menudo escribiremos:

F=(P,Q) o F=(P,QR)

Salvo indicacion explicita, entenderemos que el dominio de un campo vecto-
rial F' es el mayor dominio posible, esto es, el conjunto de todos los puntos
de R3 (0 R?) en el que estdn definidas las componentes de F'.

Representacion grafica de campos vectoriales

La visualizacién que podemos hacer de un campo vectorial F consiste en
dibujar, aplicados en unos cuantos puntos (z,y), el correspondiente vector
F (z,y). Cuantos mas vectores dibujemos mejor interpretacién tendremos del
campo vectorial.

En la siguiente imagen estan representados algunos vectores del campo vec-
torial F(x,y) = (z,y)
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6.4. CAMPOS VECTORIALES

Podemos utilizar la graficadora de campos vectoriales del Libro de Geogebra
https://www.geogebra.org/m/GwRc5mQP para tener una represen-

tacion. Por ejemplo en la imagen siguiente usando GeoGebra se observan
algunos vectores del campo vectorial

F=({—2 ’
Va? +y? Va? oy

Su dominio es R? — {(z,y)/z = y = 0}. Notar ademas, que el campo es uni-
tario. Todos los vectores del campo son siempre de longitud 1.

Autor: Laura del Rio

w o H e AT T
Pya oo PO P s sy By N
R o G GRRRRDTR B 5P o it T =5 % % N
cambiar la escala con la que se muestran los vectores. / / / / = L s \ \ \ \
PpsE S A
Py ey ‘ r/ r/ / / \\ \ l\ l\
\/»"_ +y '[ J ’/ / / e P \
SR O U S O
ol L
) g Y 1 570 / 5 0 2 4 6 8
bV Y N N
s b e e & B N OH -
escala=1 \ \ \ \ \ \ ? / "
Ejemplos:
LB L 2 . ,
1) Sea el campo vectorial F' = ( —, 1/ La primera componente del esta
Ty —

definida en (z,y) € R? si y s6lo si z # 0. La segunda componente, esté
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definida en (z,y) € R? si y s6lo si y # 1.
Dom(F) = {(:c,y) ER*/z 0Ny # 1}

Su grafica es:

N e e o I R
Vs sl e
NS e 4
R R S e G e

N Nw e

t!hll\\\‘4 i 4

IR
it

--------

~
———
e
———
—————
[,
————
e —
——————

-------

--------

x Y z
72 +y2’ x2+y2’ 12 +y2
estan definidas en (z,vy, z) € R3 si y sélo si 22 + y? # 0.

2) Sea el campo vectorial F = < > Las componentes

Dom(F) = R* —{(x,y,2)/z =y = 0}

Algunos campos particulares

Campo vectorial constante o uniforme Son campos vectoriales cuyas
componentes son constantes en todo punto de su dominio, su médulo es
contante.
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6.4. CAMPOS VECTORIALES

Ejemplo de ello es el campo: F= (1,2). Sus componentes estan definidas en
todo (z,y) € R? y son continuas. Su dominio es Dom/(F) = R?

/Y /

~

NN NN,
N N
OO

Campo vectorial paralelo Son campos vectoriales cuyos vectores tienen
todos la misma direccién. Ejemplo de ello es el campo vectorial F = (y,0).
Los vectores del campo tiene la direccién del versor i. Sus componentes estan
definidas en todo (z,y) € R? y son continuas. Su dominio es Dom(F) = R2.

Campo vectorial radial Cuando las componentes del campo vectorial
son tales que todos los vectores apuntan directamente hacia o directamente
lejos del origen, se llaman campos radiales. En estos casos se dice que existe
una simetria esférica del campo, y la magnitud del campo depende
sélo de su distancia al origen. Es decir que si llamamos

r=(x,y, 2)

r= /224y + 22

entonces el campo puede ser expresado como
F = F(7)
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y su modulo es

F‘:F

donde F = f(r) es la magnitud del campo.

En un campo radial, el vector ubicado en el punto (z, y) es perpendicular
al circulo centrado en el origen que contiene el punto (z, y), y todos los
demds vectores en este circulo tienen la misma magnitud. Analogamente
para campos en tres dimensiones. Estos campos son muy utilizados en fisica
para modelar campos eléctricos y gravitatorios.

Ejemplo de esto es:

= El campo vectorial F = (—x,—y) es radial. Las componentes estan
definidas para todos (z,y) € R2 y su dominio es Dom(F) = R2,
El médulo de este campo es: ]ﬁ\ = 22+ 4% = r. El campo puede
escribirse como F = —F.

N
EE

N

\

Ny Bt
NN

W

—a e

\
\

3 5

/‘m
[ -

j///
A

R .
Sl AT

o

T Y
22 + 2 22 1 2
nentes del campo vectorial estdn definidas en (z,y) € R? si y s6lo si
22+ 42 # 0. Dom(F)=R2—{(0,0)}. El médulo de este campo es:
]ﬁ| = W =1y el campo puede escribirse como F = =T
Observar que estos campos vectoriales sobre los puntos de un circulo
toman un mismo valor que sélo depende del radio.

/ﬂ
/
/

T

= El campo vectorial F = < > es radial. Las compo-

—
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s ~
N S S S0
D T T T T T I R B A A
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.
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““‘\\\\f/tfyr,,
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e e e e e “ h s = = -
/'2\\
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-

[ A A A D D D R
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A -

= Sea el campo vectorial F =
p $2+y2+22’x2+y2+22’$2+y2+22
Las componentes estdn definidas en (z,y, 2) € R? si y s6lo si 2 + y* +

22 # 0.
Dom(F) = R® —{(x,y,2)/z =y = z = 0}
Es un campo radial, se puede escribir como F= — T
r
Observaciones

= Los campos vectoriales son importantes herramientas matematicas para
modelar en ingenieria diversos fendémenos. Se utilizan en fisica, para
representar por ejemplo la velocidad y la direcciéon de un fluido en el
espacio, o la intensidad y la direccion de fuerzas como la gravitatoria o
la fuerza electromagnética. Ejemplos de campos vectoriales son:

o Campo de velocidades de un fluido.

o Campos eléctricos. Modelan el espacio o una regién del espacio
que se modifica por la presencia de cargas eléctricas.

o Campos magnéticos. Modelan el campo de fuerza creado como
consecuencia del movimiento de las corrientes eléctricas y de los
materiales magnéticos.

o Campos electromagnéticos.
« Campos gravitatorios.

= Los campos vectoriales, que describen ciertos fenémenos fisicos pueden
depender, ademas de la posicion, también del tiempo. Por ejemplo un
campo de velocidades de un fluido en movimiento describe la velocidad
de una particula, en funciéon de las coordenadas del punto por donde
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CAPITULO 6. INTEGRAL DE LINEA

pasa, pero si ademas esa velocidad se modifica de acuerdo con el ins-
tante en que eso ocurre, el vector resulta dependiente de t (tiempo).
Los campos vectoriales independientes del tiempo son llamados cam-
pos vectoriales estacionarios. En este curso sélo trabajaremos con
el caso de campos estacionarios.

= Las lineas que en cada punto son tangentes al vector campo que pasa
por el mismo punto, son llamadas lineas de campo y también en cier-
tos casos particulares, lineas de flujo o lineas de corriente. Cabe
aclarar que el nombre de lineas de corriente es mas adecuado para las
trayectorias descriptas por las particulas de un fluido en movimiento,
donde hay dependencia del tiempo (campo no estacionario). En la figu-
ra siguiente se observan las lineas de corriente y campo de velocidad del
aire alrededor de un ala (material brindado por la Cétedra de Fluidos-
Ing. Aeroespacial).

veIocity,[rr_]/s]
34.65
32.53

Para campos estacionarios, es comin decir lineas de campo a esas tra-
yectorias, pero en tal caso las lineas comClden Es decir que si el campo
vectorial es F (z,y) = P(IB )i+ Q(z, y) 7, una linea de corriente es una
curva 7(t) = x(t)i +y(t)] tal que verifica 7/ (t) = F(7(t)). Resolver este
tipo de problemas requiere del conocimiento de sistemas de ecuaciones

diferenciales.
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=

Ejemplo: en la figura que sigue se observa el campo de direcciones tan-
gente en cada punto a la familia de soluciones de la ecuacion diferencial
y'(z) = x + y. Como ejercicio puedes resolver la ecuacién diferencial
para hallar la familia de curvas que se encuentra graficada.
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6.5. Campos conservativos. Funciéon potencial

Recordemos:

» Si f es una funcién definida en D C R?, que admite derivadas parciales
en Py € D, el gradiente de f en P, es:

- af

Vf(Po): g

P v
8y< 0)J

P g
81'( o) +

» Si f es una funcién definida en D C R?, que admite derivadas parciales
en Py € D, el gradiente de f en P, es:

V(R = (R + L (ROT+ LR
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CAPITULO 6. INTEGRAL DE LINEA

= Si las derivadas parciales de f son continuas, la derivada direccional de
f en Py y en la direccién de un vector unitario u, es

Daf(Py) =V f(Py) -l

= El campo v f es normal a las curvas/superficies de nivel de f y, en cada
punto Py € D, Vf(F,) indica la direccién de maximo crecimiento de

f

Definicién de campo conservativo

Un campo vectorial F es un campo conservativo en D (D C R? o
D C R3) si es un campo gradiente en D, o sea, si existe un campo
escalar f tal que Vf(P) = F(P) , VP € D. Si esto sucede, decimos

que f es una funcion potencial de F' en D.

Ejemplos:

= Mostraremos que el campo vectorial F = (2zy, 2? + y%,22) es con-
servativo en R? hallando una funcién potencial de F', o sea, hallando

f(x,y,2) tal que, ¥(z,y,2) € R®: (i) of _ 21y (i1) of _

ox dy
of

S
0z &

2 + y? (4ii)
Por (i), debe ser:  f(z,y,2) = /Qxy dr = 2%y + g(y, z) (noten que
se ha integrado con respecto a x y la constante de integracién puede
depender de y y de z).
Siendo f(z,y,2) = 2%y + g(y, 2) , resulta: of = z% + o9
dy dy
0
Por (ii), concluimos que: z? + 879 = 2% + 9
Y
o 3
Por lo tanto: 8—g =y?> ydealli g(y,z)= % + h(z).
)

3
Entonces, f(z,y,2) = 2%y + % + h(z) y resta hallar h(z).
0
Contando con la expresion anterior de f, se tiene que: 9/ =K (2).
z
Entonces, por (iii), debe ser: h'(z) = 2z y de alli: h(z) = 2* + C'.
3
Y

Entonces, f(z,y,2) = z%y+ 5 + 22+ C es (cualquiera sea C' € R), una
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funcién potencial de F' en R? y el campo vectorial F' es conservativo
3
en R°.

= Para determinar si F (x,y) = (zy,y?) es un campo conservativo en R?
veremos si existe f(x,y) tal que, V(z,y) € R?

i) of _ x
or Y

i) g]yc =y
Para que se cumpla i) debe ser:

22
flz,y) = /xy dr =Sy +9(y)
2 2
Siendo f(x,y) = %y +g(y) resulta g;; = % +d'(y)
2 2

x x
Por ii) concluimos que 0} +d'(y) = v* , luego ¢'(y) = v* — b lo que
es absurdo pues g depende tnicamente de la variable y. Entonces, la
conclusion es que no existe una funcién potencial de F'(z,y) = (zy, y?)
en R? o sea que que dicho campo vectorial no es conservativo en R?

6.5.1. Ejercicios

1. Indiquen el dominio de los siguientes campos vectoriales, determinen
si son conservativos en ese dominio y hagan una representacion grafica
de los mismos.

i) F(z,y) =yi i) F(z,y)=secx j iii) F(z,y,2)=—zk
v) Fo,y) = —megi + ———57
1V) Y \/.TQ + y2 \/Z‘Q + y2
2. Muestren que los siguientes campos \Lectoriales son conservativos en R3.

i) F(z,y,2) = (20— 3y)i — 32j + 2 k

— —

ii) F(z,y,2) = yz cos(zyz) i + vz cos(zyz) ] + xy cos(zryz) k

3. Supongamos el planeta Tierra, de masa M, ubicado en el origen de
coordenadas y un objeto de masa m ubicado en el punto P de coor-
denadas (z,y, z). Si ﬁ(:c,y, z) es la fuerza de atraccién que ejerce la
Tierra sobre el objeto entonces

‘F(m,y,z)‘ =G Mign
7l
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donde G es la constante gravitacional y 7= (x,y, z).

Ademas, F (x,y,2) apunta hacia el origen, en la direccién del vector

— M = -
sea: F(.ﬁlj,y,z):GiT <_T> :—CTY]\fﬂiL3
7] 7l |7]

Siendo ¢ = G M m , se tiene la siguiente expresién para el campo
vectorial F"

7
-, 0
7

ﬁ(l‘7y, Z) = —C <x,y’z>
\/(a:2 +y? 4 22)3

Notar que este es un campo radial, y comprueben que F es un campo
gradiente hallando su funciéon potencial.

6.6. La divergencia y el rotor

Sabemos que la variacién de una funcién se estudia por medio de las deri-
vadas (parciales y/o totales). El campo vectorial, es formalmente una fun-
cién. ;Coémo puede entonces estudiarse el cambio punto a punto de su direc-
cién y magnitud? Supongamos que las componentes de un campo vectorial
ﬁ(:c,y,z) = P(z,y,2) i + Q(z,y,2) j + R(x,y, 2) k admiten derivadas par-
ciales con respecto a cada una de las variables. Estas derivadas son:

op o°P OP
oxr Oy 0z
9@ 09 04
oxr Oy 0z
OR R OR
or 0Oy 0z

Una combinacién entre ellas permite estudiar el cambio de direccién y el
cambio de moédulo. Las derivadas que se encuentran en la diagonal van a
contribuir al célculo de la definicién de la magnitud escalar divergencia, y
las restantes derivadas contribuyen a la definicién de la magnitud vectorial
rotor.
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6.6. LA DIVERGENCIA Y EL ROTOR

Rotor y divergencia de un campo vectorial

Dado F(z,y,z) = P(z,y,z) i+ Qz,y,2) ] + R(z,y,2) k,

en los puntos de coordenadas (z,y, z) en los que existan las derivadas
parciales de las componentes de F , se definen la divergencia de F y el
rotor de F de la siguiente manera:

e 9P 0Q 0OR
dwF(:v,y,Z)——aij—aijfaz

- OR 0 > OoP OR)\ - 0 oP\ -

rotF(,y,2) = (ay‘ai?) H(@z_ax) “(aig‘ay) ¢

Observaciéon importante: Para un campo vectorial en el plano
F(z,y) = P(r,y) i+ Q(z,y) j

es posible calcular el rotor extendiéndolo con componente 0 en k. Resultando
ser el campo rotor:

i j k
» ) I 00 P
iF=| 2 2 (o0, & _T\_
" br By 92 < rr ay>
P(z,y) Qz,y) 0
(G2 -
or Oy

Notar que para un campo vectorial en el plano, su rotor es un campo vectorial
con componente solo en la direcciéon ortogonal a ese plano.

Notar que la divergencia de un campo vectorial es un campo escalar
y que el rotor de un campo es un campo vectorial.

Ejemplo:

1) Para el campo vectorial F(z,y,2) = 227 — 2zy j +y22 k es
P=2a>: Q=-2zy : R=yz?

Luego, .
divF (z,y,z) =2z — 2z + 2yz = 2yz

rotﬁ(m,y,z) = (22 —0) i+07+ (—2y —0) k=22i—2yk

209



CAPITULO 6. INTEGRAL DE LINEA

2) Para el campo vectorial F(z,y,2) =y% i+ 22 ] +yz k es

P=y* . Q=22 ; R=yz

entonces oL
i 7k
rotF = 9 9 9 =(z—2,0,2 —2y)
or 0Oy 0z
y? w2 yz
Operador nabla
El vector simbolico 5 5 P
G- 25,05
oz T oyl T oz

se llama operador nabla. Su uso permite expresar de manera sintética el
gradiente y el Laplaciano de un campo escalar f, la divergencia y el rotor

de un campo vectorial F':

o _(ofofofN _[9 9 9
Vf=grad (f) _<8x’6’y’5’z>_<6’x’5’y’8z>f

2 2 2
_f O 0

_— ' B Iy
V*f = Laplaciano(f) = Af = (V- V)f o0 oy + .9
e . = 0P 0Q OR o 0 0

v div Ox + oy + 0z <(’3x’8y’8z> (P,Q, k)

e P (OR_0Q) (9P ORY . (0Q 0P ._
VxF-rotF-( >z+<az 8x>j+<833 0y>k_

. Qué interpretaciéon podemos darle a la divergencia?

Consideremos un tubo a través del cual fluye agua. Podemos imaginar dentro
del tubo una superficie cerrada (indicada por las lineas de punto). El agua
pasa a través de esta superficie. El agua entra por un lado y sale por el otro.
El liquido puede circular en cualquier forma irregular; la cantidad que entra
debe ser igual a la que sale. Se probara mas adelante que esto equivale a decir
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6.6. LA DIVERGENCIA Y EL ROTOR

que el agua es mcompreszble que circula de tal manera que si representamos
su velocidad por el campo V la divergencia de V debe ser idénticamente nula.
Este es el origen de la denominacion divergencia: el agua no puede divergir
de un punto, pues dejaria un vacio, tampoco puede converger a un punto,
pues es incompresible.

El movimiento del aire es diferente. Supongamos un tubo de aire comprimido
con cierre en un extremo. Un cierre similar acaba de ser removido del otro
extremo y el aire sale hacia fuera. Consideremos la superficie cerrada, sena-
lada con linea de puntos. Como el aire se expande, es mas el aire que sale por
un lado de la superficie que el que entra por el otro. En consecuencia, hay
una divergencia de aire. Hay divergencia distinta de cero en todos los puntos
en que el aire se expande. Si la velocidad del aire esta representada por el
campo vectorial 17, la divergencia del vector 17, es distinta de cero.

Podemos completar esta presentacion, enfatizando que la divergencia de un
campo vectorial es una funcion escalar. Hay divergencia de un punto o hacia
un punto (positiva o negativa), pero no hay asociada a este concepto idea
alguna de direccién.

! \ II

» _ _: ___:’:\1 l.II ;I » \r
—» iﬂ- S ,/ E— I':;I E—
—» - I \ I

;,Qué interpretacién podemos darle al rotor?

Imagine un gran tanque circular, conteniendo agua, la cual ha sido movida
con una pala. Los vectores representan la velocidad V.

Tanque visto de arriba

Sl

'/ / '\ rueda de prueba

,‘\‘\.//j

Al lado del tanque se muestra una pequena rueda con paletas. Si esta rueda
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montada sobre un mecanismo libre de friccion, se sumerge en el centro del
tanque, girara en sentido contrario a las agujas del reloj. En cualquier punto
que se coloque la ruedita girara, pues aunque no esté en el centro, el agua corre
mas rapidamente por un lado de la ruedita que por el otro. El movimiento
de la rueda esta indicando que el campo de velocidades tiene un rotor no
nulo. El nombre rotor esta vinculado con el movimiento en lineas curvas.
Sin embargo un movimiento rectilineo de un fluido puede tener también un
rotor no nulo. Supongamos que el agua fluye en un canal, en tal forma que
su velocidad sea mayor, cerca de la superficie que en el fondo. Toda particula
se mueve sobre una recta.

Recurriendo a la ruedita “exploradora” podemos observar que girara en sen-
tido de las agujas del reloj, pues la corriente es mas rapida en las capas
superiores. Esto significa que el rotor no es nulo. También puede darse mo-
vimiento curvilineo con rotor nulo. Se puede concebir que la curvatura y la
variacion de velocidad estén relacionadas de tal manera que la ruedita quede
sin girar. Es posible entonces, la existencia de movimientos de fluidos curvos,
cuyos campos de velocidades sean de rotor nulo.

—— Y]

— = \)
\\\.\l
R

)

El rotor de un campo vectorial es un vector. Si imaginamos el rotor como
un torbellino, es evidente que este gira alrededor de un eje que puede ser
vertical, horizontal, o con cualquier inclinacién. La direccion de tal eje es por
definicion la direccion del vector que representa al rotor. Supongamos el canal
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de la figura donde en la parte recta el agua circula con velocidad uniforme. Es
evidente que alli la rueda exploradora no girara. Es posible también que en
la parte curva el agua circule con rotor nulo. ;Cémo es esto? Bueno, para ello
es necesario que el agua circule con mayor velocidad en la margen interna
del canal en la proporcion justa. Por causa de la curvatura de las lineas
de corriente, mas de la mitad de las paletas de la ruedita exploradora son
dirigidas en el sentido de las agujas del reloj. La velocidad, sin embargo, es
mayor segun supusimos en la orilla interior y aunque sean empujadas menos,
en el sentido opuesto, reciben un impulso mayor. se mueve mas rapidamente,
su eje esta en la direccion del rotor. Las componentes del rotor se encuentran
colocando el eje de la ruedita paralelo a cada uno de los ejes coordenados. El
sentido del rotor esta determinado por el sentido de rotacion de la ruedita.
Se determina de acuerdo con la regla de la mano derecha - o tornillo derecho

rot 1?

* y ot F

El concepto de rotor y divergencia se continuaran trabajando mas adelante,
cuando estudiemos el Teorema de Stokes y el Teorema de Gauss.

6.6.1. Ejercicios

1. Calculen la divergencia y el rotor de los siguientes campos vectoriales:
i) Fz,y,2) =2*i+y?> j+ 22k

—

ii) F(z,y,2) = e"cos y i+ eVcosx j + 2 k

2. Grafiquen los siguientes campos vectoriales y calculen la divergencia y
el rotor de los mismos.
i) Fla,y) = i+2j

it) F(z,y) = (y+10)7
- T

i) F(z,y) = i+ ——

i+ j
VTR VT

3. Sea f un campo escalar y F un campo vectorial. Indiquen si los si-
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guientes son campos escalares o vectoriales:
i) grad(f) ii) div(grad(f)) iil) rot(grad(f)) iv) div(rot(grad(f)) v)
rot(rot(F))

4. a) Suponiendo que existen las derivadas parciales del _campo escalar f
y de las componentes de los - campos vectoriales F y G , muestren que:
)dw(F + G) = divF + divG y dw(F G) — divF — de
ii)rot(F + G) = rotF + rotG y rot(F G) = rotF — rotG
111)dw(fF) fdwF + grad(f) - F
iv)rot(fF) = frotF + grad(f) x F

b) Suponiendo que existen y son continuas las derivadas parciales de
segundo orden del campo escalar f y de las componentes de F', muestren
que:

i) div(rotF) =0
i) rot(Vf) =0

Observacién: las dos ultimas propiedades seran de una valiosa utili-
dad. En particular la dltima, nos asegura que un campo gradiente, tiene
rotor nulo. Inversamente, mas adelante probaremos que bajo ciertas hi-
potesis, si un campo vectorial tiene rotor nulo, es un campo gradiente.
El reconocer que un campo es un campo conservativo es fundamental.
Ya que, permitird simplificar el andlisis/célculo de problemas fisicos y
matematicos, aplicar principios de conservacién de energia, y revelar
informacion sobre la simetria y las propiedades del sistema, lo que faci-
litara la comprension y resolucién de problemas en diversas disciplinas
cientificas.

6.7. Integral de linea de una funcién escalar

El concepto de integral de linea es una generalizacion natural de la integral
definida. El proceso que conduce a su formulacion se genera de la misma
forma. Una funciéon de dos o tres variables, definida en una curva, reemplaza
a la funciéon de una variable definida en un intervalo.

Sea C' un arco de curva suave que, con valores crecientes del pardmetro, se
recorre desde A hasta B y w = f(P) una funcién a valores reales, definida y
acotada sobre C'.
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Consideremos una particion P que, por medio de un ntimero finito de puntos

A= PFP,P,...P_1,P,.. P, = B, divide a C en n subarcos P;_1P; con
longitudes AS;, parai=1,...,n.

Sea |P| = max {AS;/i =1,...,n} la norma de esa particién y sea P} un

punto (cualquiera) perteneciente al subarco P;_1P;.

Sea J, = > f(P/)AS; . La integral de linea de f a lo largo de la curva C
i=1

es el limite de J,, cuando |P| tiende a cero, siempre que ese limite exista y no
dependa de las particiones consideradas ni de los puntos P;* elegidos, o sea:

o= o s

Calculo de la integral de linea
Supongamos f continua sobre el arco de curva suave C'.

a) En funcién del pardmetro longitud de arco:
Supongamos que C' esta representada en funcion del parametro longitud de
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arco, esto es:

C:7=7(s) = (x(s),y(s),2(s)), con s¢€]l0,L5]

Tomar n + 1 puntos de divisién en la curva C equivale a tomar una particion
en [0, LE]:

80:0<81<82<...<Si_1<Si<...<8n:L§

que divide a ese intervalo en n subintervalos [s;_1, s;] de longitud AS;.
P es el extremo de 7(s}) para algin s} € [s;_1, s;].

n n

Butonces J, = 3° f(P)AS: = 3 F(7(s)AS: = 3 (F 0 7) (55) AS,

=1 =1 1=1

g = fof es continua en [0, L5] (;por qué?) y se tiene entonces :

lim Jn:/OLg (f o7)(s)ds

|P|—0

luego,
[ty zas= [ (o )ds= [ rwsds = [ Fals)u(s). =(o)ds

b) En funcién de un parametro t:
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Consideremos ahora la curva suave
C:7=r(t) = (x(t),y(t),z(t)), con tE€la,b

Como hemos visto, C' : ¥ = 7(h(s)) = 7 *(s) con s € [0, L] donde s es el
parametro longitud de arco y h es la funcién inversa de la funciéon longitud
de arco. Entonces,

LB

[ fay.2)ds = [T 5 (7 (s) ds

y haciendo, en la ultima integral, el cambio de variable t = h(s) resulta:

[ty s = [ 1@ ol

Propiedades de la integral de linea

» Si k es constante:

/Clcfds:k/cfds

= Si fy g son integrables sobre C' entonces:

/C(f—l—g)ds:/cfds +/ngs

= La integral de linea de un campo escalar es independiente de la para-
metrizacion y de la orientacién de la curva. Puede anotarse que:

/Cfds:/_cfds

siendo —C' la misma curva C recorrida en el sentido contrario.

» Sila curva C a lo largo de la cual se calcula la integral de linea de una
funcion f es uniéon de un ntimero finito de curvas suaves como se ve por
ejemplo en la figura siguiente:

217



CAPITULO 6. INTEGRAL DE LINEA

¢

C=C,v(CuC(

En ese caso, si f es integrable en cada cada una de las curvas suaves:

Lfds:Llfds+LQfds+/C3fds

= Si la trayectoria de integracion es una curva cerrada, se suele indicar:

fcfds

Interpretaciones de la integral de linea

» Si la funcién f es 1, la integral de linea calcula la longitud de C, es
decir:
/ 1 ds = Longitud(C)
c

» Supongamos que C' representa un alambre y f(z,y,z) es la funcién
densidad lineal de masa entonces la masa del alambre se calcula con la
integral de linea de f a lo largo de C"

/ f ds = Masa del alambre C
c

» Supongamos que C' es una curva del plano y que f(z,y) es una funciéon
continua, con f(x,y) > 0 sobre C. Siendo asi, el drea de la superficie
cilindrica que se levanta verticalmente sobre la curva C' y que tiene en
cada punto (x,y,0) € C altura igual a f(z,y), se calcula con la integral
de linea de f a lo largo de C.
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- — grificadef
N AT D
—-— -
//_,,,.-v-"""

— Superficie S

v

L]
N L/ N C—s cuna

/ fds= Area de la super ficie S
c

Ejemplo: Calcularemos / zy3ds, siendo C el segmento de recta y = 2z de
c
extremos A = (—1,-2)y B = (1,2).

1

/a:3ds—/18t4\/5dt—8\/5t5 —1—6
Cy - Ja - 5_1_\/5'

Nota: En el ejemplo hemos parametrizado el segmento C' haciendo
Jr =1
Ny =2t

de un campo escalar f alo largo de C', podriamos haber usado cualquier otra

parametrizacién de ese segmento, incluso aquellas que lo orienten de manera
diferente.

con t € [—1,1] pero, a los fines de calcular la integral de linea
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6.7.1. Ejercicios
1. Calculen / (:1:’2+y2) ds siendo:
c

a) C:y=3x,desde A= (0,0) hasta B = (2,6).

b) C: 22+ y*> =1, desde A = (0,1) hasta B = (1,0) en sentido
antihorario.

¢) C:22+y*>=1,desde A = (0,1) hasta B = (1,0) en sentido
horario.

d) C': trayectoria que coincide con el eje = desde el punto (0, 0) hasta
el (1,0) y es paralela al eje y desde el punto (1,0) hasta el (1,1).

e) C' : trayectoria que coincide con el eje y desde el punto (0,0)
hasta el (0,1) y es paralela al eje x desde el punto (0, 1) hasta el
(1,1).

2. Calculen:

a) / ze?ds siendo C' el segmento de recta desde (—1,2) hasta (1, 1).
c

b) / x ds siendo C : y = 22 desde el origen de coordenadas hasta
c
el punto (2,4).

r=t
c)/(2:r;+92)ds siendo C: ¢y =1t> con0<t<1
c
z=13
x = 4cost
d)/($2+y2+z2)ds siendo C': Sy =4sent con (0 <t < 2w
c
z =3t

3. Calculen mediante una integral de linea:

a) el area de la superficie que se eleva verticalmente desde el segmento
de recta de extremos (—2,0,0) y (2,0,0) hasta z = 4 — 2% — %

b) el area de la superficie que se eleva verticalmente desde el arco de
zy

elipse 22 +4y? = 4 ubicado en el primer cuadrante hasta z =
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6.8. Integral de linea de un campo vectorial

Sea C' un arco de curva suave que, con valores crecientes del parametro,
se recorre desde A hasta B y F un campo vectorial definido sobre C'; con
componentes continuas. Llamaremos integral de linea del campo vectomal F
a lo largo de C' a la integral de la componente tangencial del campo Falo
largo de C', o sea, a la integral del campo escalar F-Talo largo de C':

/ﬁ-fds
c

F.T = |F||T|cos6 < 0

6.8.1. Trabajo y Circulacion
Interpretacién de [, F - T ds :

N

Si F es un campo de fuerzas, dividido el arco C en n subarcos P;_1P; de lon-
gitud AS; y siendo P un punto arbitrario en cada subarco, (F : T) (Pf).AS;

es una aproximacion del trabajo que realiza Falo largo del subarco P;_{P;.
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CAPITULO 6. INTEGRAL DE LINEA

n

> (F : T) (P’)AS; es una aproximacién del trabajo W que realiza F a lo
i=1

largo de la trayectoria C' desde A hasta B, siendo esa aproximacién tanto
mejor cuanto mas pequenas sea todas las longitudes A.S;.

El trabajo W que realiza Falo largo de la trayectoria C' desde A
hasta B es:

n

W= lim > (F-T)(P;)AS;

IP|—=0 =

Entonces se define, el trabajo del siguiente modo.

Trabajo realizado por un campo de fuerzas F para mover una particula
sobre la curva C desde A hasta B se calcula mediante:

W:/ﬁ-fds
C

Circulacién: Si la curva C' es cerrada (punto inicial igual al punto final,
A = B) la integral la escribimos del siguiente modo

Circulacion = ]{ F.Tds
c

y la llamaremos Circulacién de Falo largo de C' en la direccién del
tangente

4
/

T [JF

A=B

6.8.2. Calculo de la integral de linea de un campo vec-
torial en la direccién tangente a una curva

Vamos a describir el calculo de la integral: |- F-Tds
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SiC:7=7(t) con te€ a,b] entonces

—

e ol bo = — =/ o — i =/ o
/CF-Tds:/a (F-T) (7)) I7 (t)|dt—/ F (7)) - T (7)) |7/ ()| dt =

a

= [[F ) Ly el = [F @) o

|7(t)] a

Entonces:

Ejemplo: Sea ﬁ(x, y,z) = 2xy i+ Y2z ] +xz k un campo de fuerzas y
Citi+t2j+(1—20)k con tel01]

Calcularemos el trabajo realizado por F al desplazar una particula desde
A < 7(0) hasta B <> 7(1) a lo largo de C'

F(r(t)) = (26°," — 27t — 2t7)

() = (1,2t, -2)
F(F (1)) -7'(t) = 2t° + 2> — 4% — 2t + 4t

25

1
W:/ D L U5 _ A6 _ o 4 42) dt — .. = 2
0 ( T * ) 42

Notaciones varias: para la integral de linea de F = (P,Q, R) alo largo de
C son:

Forma diferencial:

/ﬁ-df
C

Otra forma normalmente utilizada para escribir una integral de linea de un
campo vectorial es la siguiente. Consideremos que F' es un campo vectorial
en R? de la forma F(z,y) = (P,Q) y C es una curva parametrizada por
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CAPITULO 6. INTEGRAL DE LINEA

m(t) = (z(t),y(t)), a <t < b entonces:

L dF
/CF-dr:/CF-d—tdt (6.1)
b dr d
— / (P,Q)- (g;) dt (6.2)
_ [ (pdr,
_/a <P T HQ dt)dt (6.3)
:/CPd:H—Qdy (6.4)

Esta notacién puede extenderse a campos vectoriales en R3:

/ Pdz + Qdy + Rdz
C

Otra notacion es utilizando los cosenos directores del vector tangente a la
curva:

/ (P cosa+ Q cosfp + R cosy)ds
c
donde:
= P @y R son funciones de las coordenadas x, y y z.

= cosq, cos 3y cosy son los cosenos directores del vector tangente a la
curva C.

= ds es el elemento diferencial de longitud a lo largo de la curva C'.

Los cosenos directores son las componentes del vector unitario en la direccién
de un vector dado. Especificamente, si tenemos un vector v con componentes
Uz, Uy ¥ Vs, los cosenos directores cos a, cos 3 y cosy se definen como los cose-
nos de los angulos que el vector v forma con los ejes z, y y 2 respectivamente.
Estos se calculan como:

Vg
cosa = ——, cosfl=

v’

donde ||v|| es la magnitud del vector v, dada por:

[vl| = \/v2 + v2 + v?

En el contexto de una curva C|, si consideramos un vector tangente unita-
rio T a la curva en un punto, los cosenos directores cosa, cos 3 y cos~y de
este vector tangente son las proyecciones del vector tangente en los ejes x,

Uy v,
—, OS’Y =
vl Il
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y v z, respectivamente. Estos cosenos directores son utilizados para expre-
sar la integral de linea en términos de las componentes del campo vectorial
proyectadas en la direcciéon del vector tangente a la curva. Esta notacién
permite interpretar la integral de linea como la suma de las componentes del
campo vectorial proyectadas en la direccién del vector tangente a la curva,
multiplicadas por el elemento diferencial de longitud.

Cualquiera sea la notaciéon a utilizar, el calculo se efectiia como se ha expli-
cado y ejemplificado anteriormente.

Observacién importante: Si llamamos —C' al arco de curva que coincide
con C' pero tiene orientaciéon contraria, los vectores tangentes a C' 'y a —C'
son opuestos por lo que el signo de F'-T' cambia, resultando entonces:

—

/ﬁ-deZ—/ F.Tds
c —c

A

6.8.3. Ejercicios

1. Calculen el trabajo realizado por Falo largo de C:

(
b) F = (2z,—2y) y C es el segmento de recta desde A = (4,2) hasta
B =(0,4).
¢) F = (y,z)y C es la frontera del cuadrado de vértices (0,0), (1,0),

(1,1) vy (0,1) recorridos en ese orden.
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e) F'=(z,0,322) y Cesel cuarto de elipse 7 = #(t) = (2cost, 3sent, 1)
desde A = (2,0,1) hasta B = (0,3,1).

f) F = (x,—z,2y) y C es la trayectoria cerrada formada por los
segmentos C desde (0,0,0) hasta (1,1,0); Cy desde (1, 1,0) hasta
(1,1,1) y C5 desde (1,1, 1) hasta (0,0,0).

2. Calculen / y2de 4+ 2*dy + xyzdz a lo largo de:
c
a) el eje x, desde (—1,0,0) hasta (1,0,0)

_ 2
Y= desde (0,0,1) hasta (1,1,1)

z=1

b) la pardbola {

¢) la parabola ctbica {Z - g desde (0,2,0) hasta (1,2,1)
y —=

3. Calculen / (x cosa + y cosfs + z cosy) ds a lo largo de
c
C: 7= 7(t) = 3cost i + 3sent j +4t k con t € [0,2n]

6.9. Teorema de Green

George Green (1793-1841) fue un matemdtico britinico que llevd a cabo di-
versos trabajos sobre dindmica de los fluidos, sobre las fuerzas de atraccion
y, en particular, sobre la aplicacion del andlisis matemdtico al estudio del
electromagnetismo.
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6.9. TEOREMA DE GREEN

Teorema de Green

Sea C' una curva del plano, cerrada, simple, suave a trozos y con orien-
tacién antihoraria y sea ﬁ(x,y) = P(x, y);+ Q(x,y)j’. Si las compo-
nentes de F' tienen derivadas parciales continuas en un dominio abierto
D que contiene a C'y a la region R limitada por C', entonces:

ch(x,y)dx + Q(z,y)dy = ffR (8822 — gj) dA .

Nota: Una curva C' es cerrada si el punto inicial y el final coinciden y es
simple si no se corta a si misma.

Demostracion: Presentamos aqui una demostracion para regiones del tipo I
y Il a la vez. En este caso se demuestra que:

]{dex:ffR (—Z)dA

jéQdysz(?ﬁ)dA

con lo cual queda demostrado el teorema de Green. Para probar la primera
igualdad suponemos R de tipo I de la forma:

227



CAPITULO 6. INTEGRAL DE LINEA

R={(z,y) eR*:a<a<bgi(r) <y < gaa)}

donde ¢;(z) y ¢g2(x) son funciones continuas en [a, b]. Calculando la integral
doble de la primera igualdad tenemos:

ng dA = //g )8Pazydyd:c—

_ /a”[p@,gg@» ~ P(z, g1 (x)))da

Ahora calculemos la integral de linea para la primera igualdad. El borde de
R puede ser escrito como la unién de las curvas C; y Cs. Para C; utilicemos
las siguientes ecuaciones paramétricas t =z y y = ¢1(z) con a < z < b Para
Cy utilicemos las siguientes ecuaciones paramétricas = x y y = go(x) con
a < z < b entonces

Por lo que:

fcpdb»c:/a P(a:,y)dx—/CQP(xay)dx
_ /abP(x,gl(x))d$ - /abP(a:,gz(x))dx
-/ '[P, gy (@) — Pla, go()]da
_ _/ (2, 95(%))dz — P(x, g1 (x))]dx

fdA

De manera analoga se puede demostrar la segunda igualdad, describiendo R
del tipo II.
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Notacion vectorial del Teorema de Green
Siendo F'(x,y) = P(z,y)i + Q(z,y)J,

i (0.0 9Q 0P\ _(0Q 0Py
rotF—VxF—<0,0,ax 8y>_<8x ay)k

La igualdad del teorema de Green puede escribirse por lo tanto de la si-

guiente manera:
fﬁ~d?szrotﬁ-EdA
c R

6.9.1. Aplicaciones del Teorema de Green

1. Evaluar la circulacién de un campo fcﬁ - dr mediante una
integral doble

» Ejemplo 1: Siendo R la regién del plano limitada por y = z2,
y = 0y x = 2, evaluar aplicando el teorema de Green la circulacion
del campo vectorial F = (23 + ), 3zy?%), a lo largo de la curva
frontera de R, con orientacién antihoraria.

Graficamos para comprender la regiéon R y su frontera:

-2 -1 0 5 2 3 4

-1

Debemos verificar que se satisfacen las hipdtesis del teorema:

C es la curva frontera de R y es una curva cerrada, simple, suave a
trozos y con orientacién antihoraria (consiste en el segmento des-
de (0,0) hasta (2,0), seguido por el segmento desde (2,0) hasta
(2,4) seguido por la porcién de pardbola de ecuaciéon y = x? que
va desde (2,4) hasta (2,0)).

P = 234+y?, Q = 32y son las componentes del campo vectorial F.
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CAPITULO 6. INTEGRAL DE LINEA

P y Q son funciones polinomiales, tienen por lo tanto derivadas
parciales continuas en D = R2. C' y R estdn incluidas en ese
conjunto D.

Por el teorema de Green, podemos entonces afirmar que:

]2(:zc?’—l—y?’)dﬂz:%—?;ngdy:j]l:z (gf—gj) dA

de modo que el valor de la circulacién puede obtenerse resolviendo
la integral doble:

ffR@g_(?;yD)dA:fL(?’yQ—?’yQ)dA:fLoczA:o

Comentario: El célculo directo de la circulacién (sin la aplica-
cién del teorema) implicaria en este caso resolver tres integrales
de linea (;cudles?).

= Ejemplo 2: Siendo C' la circunferencia de radio 1 centrada en el
origen y con orientacién antihoraria, calcular aplicando el teorema

de Green % (By — €*)dx + (Tx — sec y)dy .
c

La circunferencia C' es cerrada, simple , suave y se supone con
orientacién antihoraria. F' = {3y — e® , Tz — sec y). Sus compo-
nentes tienen derivadas parciales continuas en los puntos (z,y) €

R? tales que y # (2k + 1)% para k € Z. En particular, las compo-

nentes de I tienen derivadas parciales continuas en

D:{(x,y)eRz/—72T<y<72T}
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C y laregion R limitada por C' estan incluidas en ese conjunto D.
Entonces, por el teorema de Green:

%0(39 —e")dr + (Tx — sec y)dy = ffR(7 —3)dA =

:4ffdA:4dT€a(R):47T
R

Pregunta: ;cudl es el valor de la circulacién si se orienta a la
circunferencia en sentido horario?

2. Célculo del area de una region del plano mediante una integral
de linea

Si consideremos un campo vectorial F(z,y) = (P(z,y), Q(z,y)) cuyas
componentes tienen derivadas parciales continuas en D = R? y tales

0 0P
que —Q — — = 1. Entonces, si C' es cerrada, simple, suave a trozos

or Oy

y con orientacion antihoraria y R es la regiéon limitada por C, por el
teorema de Green, en este caso, es:

%ﬁ-d?szldA:dreadeR.
c R

Por ejemplo es posible utilizar el campo vectorial F (x,y) = (0,z) re-

sultando:
jl{xdy:ffldA:dreadeR.
c R

También es posible utilizar el campo vectorial ﬁ(x, y) = <—g, :§>

Resulta entonces que, el area de la regiéon R puede calcularse con la
integral de linea de F' a lo largo de C.

2
Ejemplo: el area de la region R del plano limitada por la elipse % +
a

2
%2 = 1 se puede calcular mediante la integral de linea utilizando por
ejemplo el campo vectorial F= <—‘g, §> alolargo de C' : 7= 7(t) =

{a cost,b sent) , con t € [0,27].
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SEEEP,

o b sent a cost
i) = (-5 25

7'(t) = (—a sent, b cost)

Fn) -7 = %
N 2
fF-df’:/ a—bdt:abW:dreadeR.
c 0o 2

Nota: Si la region a la que se le quiere calcular el area mediante una integral
de linea usando este resultado, tiene por borde una curva suave a trozos, en
ese caso se deberd calcular la suma de las integrales de linea de cada trozo,
recorridas en sentido antihorario.

6.9.2. Generalizacion del teorema de Green

Consideremos ahora una regién anular R como la que muestra la figura si-
guiente. Noten que R estd limitada por dos curvas cerradas Cy y Cj.

G

frontera deR =G LG
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Orientemos a C] con orientacién antihoraria y a Cy con orientacién horaria y
consideremos dos curvas auxiliares v, y 2. Asi R puede verse como la unién
de dos regiones R; y Ry cada una de las cuales tiene una curva cerrada como
frontera.

Ct

ct

C1=C{ucf C,=Clu C2 R =R,UR,

La curva frontera de R; es la curva cerrada C’l1 Uy U 021 Um
La curva frontera de Ry es la curva cerrada C3 U (—v) U C? U (—v;)

Si F' es un campo vectorial cuyas componentes tienen derivadas parciales
continuas en un conjunto D C R? que contenga a C;, a Cy y a R, entonces ,
por el teorema de Green podemos afirmar que:

ﬁ-dF-l—/ ﬁ-dF-l—/ ﬁ-dF+/ ﬁ-dfsz rolF -k dA
C} Y2 021 71 Ry

/ﬁ-d?+/ ﬁ-dFJr/ ﬁ-dﬂ/ ﬁ.dfsz rotF - T dA
c3 —72 ct -n Ro

y sumando miembro a miembro:

74 Fodi+ ﬁ-df:ffrotﬁ.EdA
Cy Ca R

Caso particular: Si, en las condiciones anteriores, se tiene ademas que
Y(xz,y) € D es rotF(xz,y) =0, entonces

f Foditd F-di=0
Cl 02
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O sea

f ﬁ-df:—?f Foai=d F.ai
C1 Cs —Co

(las integrales de linea arrojan el mismo resultado si ambas curvas estan
orientadas de la misma manera)

6.9.3.

Ejercicios

1. Evalten las siguientes integrales aplicando el teorema de Green siempre
que sea posible:

a)

b)

h)

% (2% — y)dx + y*dy siendo C : 22 + y? = 1 con orientacién anti-
c

horaria.

% (y? +x)dx + (32 + 2zy)dy siendo C : 22 +y? = 4 con orientacién
c

horaria.

% (y* — 2z )dx +y*dy siendo C la frontera del cuadrado de vértices
c

(0,0), (0,1), (1,1) y (1,0) con orientacién antihoraria.

%C 2 i e d$+x2 i 7 dy siendo: i) C : #*+y* = 1 con orientacién

antihoraria. ii)Cs : (z — 2)* + 42 = 1 con orientacién antihoraria.

%c xQ—eryz dx + 2 j_ 2 dy siendo: i) Cy : 2* +y? = 1 con orienta-

.z . . .. 2 . .z .
cién antihoraria. ii) Cy : 2% + (y — 2)” = 1 con orientacién antiho-
raria.

% (v* + 32%y)dx + (xy + 2°)dy siendo C' la frontera de la regién
c

limitada por y = 2% e y = 2z, con orientacién antihoraria.

% (ye™ + y)dx + (2z + ze™)dy siendo C' la frontera de la region
c

limitada por y = 22 e y = 4, con orientacién antihoraria.

j{ (ysec’r — 2)dx + (tgz — 4y?)dy siendo C' la frontera de la region
c

limitada por x = 1 — %% y 2 = 0, con orientacién antihoraria.

2. Calculen el area de las siguientes regiones mediante una integral de
linea:

a)
b)

R limitada por la elipse 422 + 3% = 16.
R limitada por y = 2% e y = 4.
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¢) R limitada por y = 2% e y = 2u.
d) R limitada por la curva C' : 7= 7(t) = (cos’t, sen®t) t € [0, 2]
. Muestren que la circulacion de F = (xy?, 2%y + 2z) a lo largo de la

frontera de un cuadrado, depende del area del cuadrado y no de su
ubicacién en el plano.

. Sea F = (P(x,y),Q(x,y)), Py Q con derivadas parciales continuas en
D =R2—{(0,0)} y rotF(z,y) =0 Y(z,y) € D {Qué pueden afirmar
acerca de j{ F.dr para las curvas que aparecen en la siguiente figura?

Nombren y orienten las curvas. Justifiquen sus afirmaciones.

‘ -

=~
S~ N

T Y
x2+y27$2+y2

. Calculen la circulacion de F} = < > y la circulacion de

— x

Fy={(— Y 5 5 a lo largo de la curva C' de la figura siguien-
r? +y? w2 P

te. Sugerencia: recuerden que en un ejercicio previo han calculado la

circulacién de esos campos a lo largo de la circunferencia 2% 4 y? = 1.

ﬂl
¥

’\C
‘l .
I 1 >
-1 1 x
-1 4
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6.10. Independencia del camino

El resultado de / F. dF depende, en general, del campo vectorial F y de
c

la curva C, pero no siempre es asi. Para algunos campos vectoriales F' el
resultado de / F. dr’ es el mismo para todas las curvas de cierto conjunto D
c

que tengan el mismo punto inicial A y el mismo punto final B. Cuando esto
sucede decimos: la integral de linea de F' es independiente del camino en D.
Maés precisamente:

Definicién. Independencia del camino

La integral de linea de F es independiente del camino en D (D C R?
o D C R?) si, para todo par de puntos A, B € D y para todo par de
trayectorias C y C5 con punto inicial A y punto final B incluidas en

D, es
/ﬁ. dF:/ P dr
Cl C2

La importancia de conocer que una integral es independiente del camino se
relaciona con varios conceptos fundamentales en matematicas y fisica, espe-
cialmente en el contexto de calculo y teoria electromagnética. El saber que
una integral sea independiente del camino es fundamental, ya que simplifica
calculos, esto implica que, para calcular la integral definida, no es necesario
conocer el camino exacto a lo largo del cual se integra la funcién, si no que
solo importan los valores iniciales y finales del intervalo.
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Dominios conexos y simplemente conexos

Un conjunto D es conero si para todo par de puntos de D pueden
conectarse por medio de una trayectoria incluida en D.

Un conjunto D es simplemente conezxo si es conexo y ademds, para
toda curva cerrada C' C D, la regiéon R limitada por C' también esta
incluida en D.

£ S Py - \\\ p S
£ \ i :',f P “O £ \\
! \
f ) A S— \ /
L / ( ) \\.\ // = ~ g o d
.'\ I.‘ '.\ = ol
\ 4 -’ 3
" CONexo pero s:mp!emente conexo
hoconexo )
no Sfmp;emente cohexo

\. J

Observacién: Un subconjunto D de R? es simplemente conexo si toda C
cerrada es frontera de una regiéon plana R incluida en D. Bésicamente es
una regioén sin agujeros, sin huecos, ni siquiera un hueco formado por un
tinico punto. Un subconjunto D de R? es simplemente conexo si toda C
cerrada es frontera de una superficie S incluida en D. Por ejemplo: D = R3
es simplemente conexo, D = R? — {(0,0,0)} es simplemente conexo, pero
D =R3—{(z,y,2)/z =y = 0} no es simplemente conexo.

Vemos ahora un resultado importante que nos permite conocer si una integral
de linea es independiente del camino.

Teorema fundamental para integrales de linea

Sea F' un campo vectorial con componentes continuas en D (D C R?
o D C R3) y C una curva suave a trozos contenida en D desde A a B.
Si F es conservativo en D (es decir que existe una funciéon potencial f
tal que F=V /) entonces la integral de linea de F es independiente
del camino en D y

/Cﬁ. df:/oﬁf. d7 = f(B) — f(A)

Demostracion:
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SiF=VfyC:7=t) = (x(t),y(t),z(t)) cont € [a,b] entonces

[ F.ar= [ Vr. df:/abﬁf(r(m-f'(t) dt:/abg’(t) dt = g(b) — g(a)

donde g(t) = f (z(t), y(t
Entonces

~—
I

—~
~+

~—

) = f(7(t)) es continua en [a, b]

Observacion:

El resultado anterior es sumamente importante, pues da una condicién sufi-
ciente para la independencia del camino, ya que el calculo se reduce —prescin-
diendo de la curva— a evaluar la funcién potencial en el extremo B y restarle
el valor que toma en A, resultando ser una diferencia de potencial.

Una interpretacién fisica:

Si el campo es un campo de fuerzas conservativo entonces el trabajo reali-
zado para desplazar una particula entre dos puntos es independiente de la
trayectoria, sélo depende del valor del potencial en el punto inicial y en el
punto final. Notar ademas que, si los puntos A y B se encuentran sobre las
misma curva equipontencial en estos casos, no se realizara trabajo, ya que
no hay cambio de potencial. Ejemplo de ello es el trabajo realizado por el
campo potencial gravitatorio, donde la funciéon potencial mide la altitud sobre
el nivel del mar. Cuando se mueva una particula sobre una curva de altura
constante, no hay cambio de potencial gravitatorio, y en ese caso no hay
trabajo.

Ejemplo: El campo vectorial F = (2z, 3y?) tiene componentes continuas en
D = R? por ser polindmicas, y es conservativo en ese conjunto, ya que su
rotor es el vector cero, siendo f(z,y) = 2% + y* una funcién potencial de F
en D = R?. Entonces, por ejemplo, VC' con punto inicial (0,0) y punto final
(1,1), por el teorema fundamental para integrales de linea podemos afirmar
que

/ F.di=f(1,1) - f(0,0) =2 —0=2.

c

Veamos ahora algunos otros resultados validas que colaboran con el conoci-
miento de independencia del camino.

Observacion 1:

Si la integral de linea de un campo vectorial F es independiente del camino
en cierto conjunto D entonces la integral de linea de F' a lo largo de cualquier
curva cerrada incluida en D es igual a cero.
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Demostraciéon:

En efecto, sea C' C D una curva cerrada y Ay B dos puntos de C', C' = C1UC),
donde Cy C D con punto inicial A y punto final B y C5 C D con punto inicial
B y punto final A:

C,
B
A C,
C:CIUCZ
entonces,
74 F.di = / Fodi+ | F.ai=| F.ar— [ F.di=0
C 01 CQ Cl *CQ
ya que F.dr = F.dr pues C7 y —C5 son dos curvas de D con punto

C1 *CZ
inicial A y punto final B.

Observacion 2:

Si la integral de linea de F es igual a cero a lo largo de toda curva cerrada
C C D entonces, la integral de linea de F' es independiente del camino en D.

Demostracion:

En efecto, para todo par de puntos A, B € D y para todo par de trayectorias
Cy y Cy con punto inicial A y punto final B incluidas en D, C} U (—C5) es
una curva cerrada incluida en D por lo que

/ﬁ.df+/ Fodi=0
Cl —CQ

y entonces

Observacion 3:
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Sea F' un campo conservativo con componente con derivadas parciales con-
tinuas en D entonces rotF = 0 en D.

Demostracion:

Para realizar esta demostracion se calcula el rotor del campo vectorial, que
al ser un campo gradiente, es calcular rot(ﬁ f) y comprobar que su valor
es = 0. Este resultado fue realizado en el ejercicio de la seccién de campos
vectoriales.

Observacion 4:

Sea F' con componentes con derivadas parciales continuas en D C R2, D
simplemente conexo. Si rotF' = 0 en D entonces 7{ F-di =0 para toda C'
c

cerrada en D.
Demostracion:

Para justificar la validez del enunciado anterior, consideremos C' cerrada,
simple y suave a trozos incluida en D. Como D se supone simplemente conezo,
la region R limitada por C' estd incluida en D y como las componentes de
F tienen derivadas parciales continuas en D se puede aplicar el teorema de
Green para concluir que:

j{ﬁ-dF:ffrotﬁ-EdA:fdeAzo.
C R R

El siguiente teorema retine alguno de los resultados tratados a lo largo de esta
seccién y es valido para campos vectoriales de R? y de R? en un conjunto
simplemente conezo.
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e )

Teorema. Equivalencias: campo conservativo e independencia
del camino

Si F es un campo vectorial con componentes con derivadas parciales
continuas en un dominio simplemente conexo D (D C R* o D C R? )
entonces las siguientes afirmaciones son equivalentes:
1. F es conservativo en D.
2. La integral de linea de F es independiente del camino en D y
ademas si C' tiene punto inicial A y punto final B, existe f funcién

potencial de F, tal que / F.di = f(B) — f(A).
c

3. ]{ F - di = 0 para toda C cerrada en D. (Circulacién nula alre-
c

dedor de toda curva cerrada en D).
4. rotF = 0 en D. En este caso el campo F' en D se denomina
irrotacional.

\. J

Comentarios:

i) Decir que las 4 afirmaciones son equivalentes significa que, verificindose las
hipétesis requeridas, si una de las afirmaciones es verdadera entonces todas
las demas también lo son.

ii) Si una de las afirmaciones no se cumple, entonces ninguna se cumple.

iii) Observar que las proposiciones 1), 2) y 3) son equivalentes en un con-
junto conexo.

iv) Para probar el teorema se debe demostrar que 1) = 2), 2) = 3),
3) = 4) y 4) = 1). Notar que algunas de estas implicaciones, y otras, las
hemos enunciado y probado en las observaciones mencionadas antes.

v) Este teorema nos ofrece una herramienta para afirmar si un campo es
conservativo, solo calculando su campo rotor. Por otro lado, nos brinda una
forma mas simple para calcular una integral de trabajo, mediante su funcién
potencial evaluada en el punto final de la curva menos en el punto inicial, o
bien considerar realizar la integral de linea por un camino conveniente. Por
otro lado, el célculo de una circulacién, bajo las hipdtesis del teorema, es
cero.

6.10.1. Ejercicios

1. En los siguientes incisos, muestren que el campo vectorial es conserva-
tivo en R? 0 en R3 (segtin corresponda) y utilicen esa informacién para
calcular la integral de linea a lo largo de la curva propuesta.
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F = (2zy,22 —1) y C desde (1,0) hasta (3,1).

ye xe™ — 2y) y C desde (1,0) hasta (0,4).

{
{

¢) F = (224 2zy,22 222) y C desde (2,1,3) hasta (4, —1,0).
(2zcosz — 22,2z — 2y, y — x?senz) y C desde (3, —2,0) has-

ta (1

—

2. Calculen el trabajo realizado por el campo de fuerzas F' = (—y, —z) al
desplazar una particula a lo largo de la parabola y = 22 desde (1,1)
hasta (—1,1) y desde ese punto hasta el (1,1) a lo largo de la recta
y=1.

3. Grafiquen el campo vectorial F = (0, ). Hallen tres trayectorias dife-
rentes C7 , Cy y C3 que vayan desde (2,0) hasta (—2,0) tales que:
Fodi=0 | / F.di>0 vy / Fdif <0
o Cs Cs
;Es F' un campo conservativo en R? ?

4. Evaltien las siguientes integrales aplicando, siempre que sea posible,
algun resultado teorico.

a) / xdr+ydy+zdz donde C : r = r(t) = (cost, sent, 2t) t € [0, 27|
c

b) / (332 + 1) dz + (y* — 3y + 2)dy donde C : y = /16 — 22 desde
c
(—4,0) hasta (4,0)

c) / V[ -dfsiendo f(z,y,2) = 22+ 132+ 2% y C el segmento de
C
recta desde (1,1, 1) hasta (2,1, 2).

d) /Cﬁf -dr'siendo f(z,y) =2?+y? y C la elipse 422 + 3y = 4.

5. ;Cudles de los siguientes son campos vectoriales son conservativos en
el conjunto D indicado?

a) F = (3zz,2% xcosy) ; D = R3
¢) F=(z,0,z);D=R3
Q) Fe 592 p_gs_10,0,0))

Nrrarl
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<—y,£l?> . D:Rz—{(070)}

o v
e
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Capitulo 7

Superficies e integrales de
superficie

7.1. Superficies

Para poder abordar la definicién, el cdlculo y las propiedades de las integrales
de superficie necesitaremos describir las superficies mediante una ecuacién
vectorial paramétrica, como lo hemos hecho antes con las curvas al estudiar
las integrales de linea.

Una descripcion vectorial paramétrica de una superficie S consiste en una
ecuacion de la forma 7 = 7(u,v) con (u,v) € R, donde u y v son los
parametros, R (dominio paramétrico) es una region del plano uv y, para
cada (u,v) € R, #(u,v) = 0P, siendo P un punto de S.

Las componentes del vector 7(u,v) son tres funciones de las variables
uy v, a valores reales: 7(u,v) = X(u, )i+ Y (u, v)]+ Z(u,v)k
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X (u,v)
(u,v) ; (u,v) €R
Z(u,v)

I
>~<

x
Y
z

es un sistema de ecuaciones paramétricas de S.

Ejemplos:

» Consideremos la superficie S definida por la ecuacién z? + y* = a?.

S es una superficie cilindrica. Tomando como referencia las coordenadas
cilindricas, un punto P € S queda individualizado por el angulo de giro
(0) y la cota (2), ya que r es constante e igual a a para todos los puntos
de S.

Podemos entonces describir la superficie S mediante el siguiente sistema
de ecuaciones paramétricas:

T = a cosu
y=asenu ;0<u<2r ; veER
Z=0
s Z
//"'_'—_-‘\
|
P(x,,2)
I Y
7 ’ ':~ v
O ] L
- a
7 P*

S:F:F(u,v):acosuz+asenuf+vg; 0<u<2m ; veER

= Si S es la superficie esférica definida por la ecuacién 22 + y? + 22 = a2,

considerando ahora las coordenadas esféricas como referencia, un punto
de S queda identificado por las coordenadas 6 y ¢ (p es constante e
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igual a a en todos los puntos de S) . Se tiene entonces la siguiente
descripcion paramétrica de S:

T = a cosu senv
y=asenusenv ;0<u<2r; 0<v<nm

Z = a Cosv

: 4

X

S:F:F(u,v):acosusem;ﬁ—asenusenv}—i—acosvE; 0<u<22r ; 0<v<Tm

En este caso el dominio paramétrico, R = {(u,v)/0 <u <27 A0 <v <7},
es una region cerrada y acotada del plano uv y S es una superficie aco-
tada.

Sea S el paraboloide definido por la ecuacién z = 2%+ 4%, La superficie
S es la grafica de la funcién f(z,y) = 2% +y* Haciendou =z yv =y
r=u
se tiene la parametrizacion trivial para S: (y =v
z = f(u,v) = u® +v?
(trivial pues los pardmetros u y v representan aqui a las mismas varia-
bles x e y).

S:F=Fuv)=ui+ vj+ W+0*)k; (u,0) €R?

Sea S una superficie helicoidal, su borde es una hélice. Esta superficie no
es posible representarla en coordenadas cartesianas, pero si en forma
paramétrica. El helicoide tiene forma de tornillo de Arquimedes. Se
puede describir mediante las siguientes ecuaciones paramétricas:
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r = ucos(v)
y = usen(v)

zZ ="

= Para la visualizacion y célculo de integrales de superficie puedes ayu-
darte de las aplicaciones creadas en GeoGebra.

Actividad

Parametrizar las siguientes superficies:
» S:a2?+y? =4 limitadapor 2=0 y z=4
» S:2249y? =25 limitadapor z=0 e y+2=06
» S:2?4+y? =4 limitadapory+z=4 e y—2=4
» S:224+9y?=1limitadapor 2 =0 y z+y+z2=4
224+ 9y? =1 limitadaporzr = -1 y x=1
tz= VATt y?
2= /22 + 3?2 limitada por z =0y z = 4
: z = 22 + 3?2 limitada por z = 2y
cAxr+By+Cz+D =0
tz= 22+ y? con x® +y? <4
n S +y? +22 =16 con z < 2% +y?

Direccion normal a una superficie

u
N &1 »n &”1n »nn »”n »nn W,

248



7.1. SUPERFICIES

Consideremos S : ¥ = 7(u,v) ; (u,v) € Ry un punto Py de S que proviene de

. . r r . .
(uo,v9) € R mediante 7. Supondremos que W y E® existen y son continuas
u v
r or

or
en (up, vg) y que 8—(u0, Vo) Y a—(uo, vp) son no nulos y no colineales (cuando
U v

estas condiciones se cumplen en todos los puntos de R diremos que S es una
superficie suave).

Vo o |- e—p—

A4

or

%(uo, vp) define la direccién tangente a C,, : 7= 7(u, vy) en By

(Cy se lama u-curva y es la imagen de un segmento horizontal que pasa por
(up,vp) y esta contenido en R).

—
" --®

or

a—(uo, vo) define la direccién tangente a C, : 7 = 7(ug,v) en Fy
v

(C, se llama v-curva y es la imagen de un segmento vertical que pasa por
(uo,vp) y esta contenido en R).
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or or
es ortogonal a — (ug, v9) y a — (ug, vo) (es ortogonal a C, y

or " or
ou Ov ou ov

(u0,v0)
a C, en Py) y se puede mostrar que lo mismo es cierto para cualquier curva
contenida en S pasando por F.

- or  or or
Denotaremos con la letra N al vector — x — 0 a su opuesto — X

ou Ov ( ov
u0,v0)
or

ou

y nos referiremos a N como el vector normal a S en F.

(uosv0)

or or
El plano determinado por a—r(uo,vo) y —T(uo,vo) es el plano tangente a S
u

ov

en Py (N es normal a ese plano).

7.2. Area de una superficie

Sea S una superficie suave y acotada:
S:r=r(u,v); (u,v) € R

Definamos una particién en R por medio de rectas de la forma u = cte y

v = cte. Estas rectas producirdn en S un conjunto de u — curvas y de
v — curvas generando una subdivision de la superficie en porciones S;. jQué
relacion hay entre las areas de dichas porciones S; y las areas de los rectan-
gulos R; en los que se ha dividido R?
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AV|R,
A

!

Supongamos que R; se transforma en S; siendo P; <> 7(u;, v;)
Sean AS; =dareadeS; y AR;=areade R; = AulAv

AS; = AS} = area de un paralelogramo (porcion del plano tangente a S en P;)

oF . .
aﬁZ(Uz',Ui)AU y Ty = g(“u%‘)Av

de lados: 7_’1 = 5
v

u-cuiva
AsigAs;:\zj@\:@x& Autw = |7, 0T AR,
ou Ov (us00) ou Ov (us00)
O sea:
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Resulta entonces que:

Area de S = Z ’]\7
i=1

AR;
P

y de alli:

dudv

Area de S = ff ‘N?w

Ejemplo: Calcular el drea de S : 224+ y? = 4 limitada por z =0y z+y = 4.

S 7= 7(u,v) =2 cosu i+2 senu]'—l—v l;; 0<u<2r ; 0<wv<4-—2senu

a_' — - —
—r:—2senui—|—2005uj—|—0k
ou
oF - - .
S 07 +0 1k
ov
i ik
. oF  OF B ..
N:lxl: —2senu 2cosu 0 | =2cosut+ 2 senuj + 0k
ou  Ov
0 0 1
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2w p4—2senu
Entonces, drea (S) = ff 2dA,, = / / 2 dv du = 16m.
o Jo

Si la superficie S es la grafica de una funcién, o sea, por ejemplo,

S:z:f(m,y) ) (Ivy)ER

=u
podemos escribir una parametrizacion trivial para S: Sy =wv
z = f(u,v)

S:7=u,v)=ui+ vj+ flu,v)k; (u,v) €R

or - of - or - Of »
%_12+0‘7+8uk 8U—Oz+1j+ vk
ik
. oFr  OF of of - Of
_or or |1 g L |_ 9= OF
Nu,v) =2 % o du gul Tyl T K
of
0 1 R
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Ya que en lo anterior es u = x y v = y, podemos decir que:

Si S:z=f(z,y) ; (x,y) € R vy f tiene derivadas parciales continuas,

v/ 9 _9f
N_i< ox’ 8y’1>

Area(S) = fRzy J <g£> + (Z) +1 dxdy

Ejemplo: Calcular el drea de S : z = 22 4 y? limitada por z = 1

X

of of o
Iz 2 a—y—Qy , N =+ (=2x,—-2y,1)
drea(S):ff \/(21‘)2+(2y)2+1 dA,, =

R

2 rl
:ff \/4(x2+y2)+1 dAzy:/ / Var2 +1 rdrdf =
R 0 0

5 du m
:27r/1 Vi =2 (5v5-1).
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Ejemplo: Calcular el area de S : 2x — 3y + 4z — 3 = 0 limitada por x = 0,
r=2,y=0 ¢ y=3.

7

p
2 -~ Y
V > =i

X

Observacién: El vector @ =27 —3 j + 4k es normal al plano dado, pero no
es necesariamente el vector requerido para el calculo del area. Para calcular
el area de una superficie debemos comenzar por dar una representacion vec-
torial paramétrica o una representacion explicita (como grafica de funcion)
de la misma y calcular consecuentemente el vector normal N y su modulo,
asociados a tal parametrizacion.

Viendo que en el ejemplo es

3—2x+ 3y

S:zzfzf(l‘ay) , (z,y) €R

R={(z,y)/0<x<2 AN 0<y<3}

af 2 af 3 - /2 3
x4 7 oy 4 N_<4’ 4’1>

area(S ff\/ —— —|—1 dAgy = //dydx_g\f_g

7.2.1. Ejercicios

1. Identifiquen las siguientes superficies y hallen el vector normal N
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=y

a)

S:F=uv)=acosuitasenuj+vk , (u,v)€R
R={(u,v)/0 <u<2m ; veR}
S

7lu,v) = a cosu senv i + a senu senv | + a cosv k
v) € R=[0,2n] x [0, 7]

b)

=l
I

(u,
2. Calculen el area de:

a) S : superficie esférica de radio a.

b) S:x*+y*=4 limitada por z = y, en el primer octante.
¢) S:x+2y+2z=>5limitadaporz=9y> y x=2—y>.
d) S:y+2z=2cona?+y><1.

e) S:z= 22+ y? limitada por 2 =2y 2z = 6.

f) S:z=2?+y? limitada por 2 =2y 2z = 6.

g) S:z=2—212%—y? limitada por z = 22 + 32

h) S:y=3xconaz?+y?<z<4

i) S+ yP+22=a® 2>0y 22+ <ay.

7.3. Integral de superficie

Sea S una superficie acotada y suave y ¢ una funcién a valores reales, definida
y acotada sobre los puntos de S.

Sea P una particién de S en porciones S;, de drea AS;, con i = 1..n.

Sea |P| = max {6;/i = 1..n} donde §; = max {d(P,Q)/P,Q € S;}
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n

Sean Py € S; (cualquiera) y J, =Y _ ¢(P/)AS;

Si |71>i|m0 J, = I € R, independientemente de las particiones y de los puntos
—

P considerados, decimos que ¢ es integrable sobre S y que la integral de

superficie de ¢ sobre S es igual a I . Siendo asi, escribimos:

ffsgb(x,y,z) ds =1

Aplicaciones de la integral de superficie de una funcién escalar ¢
continua sobre S :

1) Si S es acotada y suave, ffs 1dS = Area(S)
2) Si ¢ (continua y positiva) representa la densidad superficial de masa en
la superficie S, entonces

Masa(S) = ffs o(z,y,z) dS

3) Si la funcion ¢ (continua y positiva) representa la densidad superficial de
masa en la superficie S, entonces las coordenadas del centro de masa (z, ¥, 2)
de S se calculan de la siguiente manera:

ffs x ¢(z,y,z) dS

v ffsqﬁ(x,y, z) dS
Mot as

ffs o(z,y,z) dS
__ ffsz o(z,y,z) dS

ffs o(z,y,2) dS
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El centro de masa de una superficie es el punto en el que se puede con-
siderar que toda la masa de la superficie estd concentrada. Si ¢(z,y,z) =
k ¥(x,y,z) €S, el centro de masa se llama centroide y sus coordenadas son:

Jswds o Jloy ds__ [z d5
Joas 7 [as 7 [fds

Calculo de la integral de superficie

T =

Sea S : 7 = (u,v) con (u,v) € R, acotada y suave y ¢ una funciéon a
valores reales, continua sobre S. Consideremos en R una particiéon con rectas
paralelas a los ejes, que determinan un nimero finito de rectangulos R; con
areas AR;. Supongamos que n de esos rectangulos estan contenidos en R.
Esa particién de R se corresponde con una divisién de S en n porciones 5;
con areas AS;.

A

[

or or
7X7

ou Ov

Sabemos que AS;  |N;| AR; = AR;

%

Cada punto P € S; es extremo de un vector 7(u}, v;) con (uf,v}) € R;
entonces:

n

T = o(P))AS; =) o(F(uj, v]))
i=1

=1

or or
7><7

AR,
ou "~ Ov B

i

Siendo ¢(r(u,v)) |g; X gz

que ¢ y las derivadas parciales de 7 son continuas),

una funcién continua de las variables u y v (ya
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87" or

|7131|210Jn—ff¢ 7(u, v) —X%d/l
Es decir:
ffgbxy, )dS = fqu 7(u, v) 87’ « I aa
37)

Si la superficie S es la grafica de una funcién, o sea, por ejemplo,
Stz=f(zy) ; (x,y) €R

Seguin hemos visto, N = <—, -, 1> (o su opuesto) y por lo tanto,
Y

- G

Resulta entonces en este caso que:

[[[ e z1as =[] ote. (o) J(af) +<g§>2+1 i

Actividad: Planteen ustedes el célculo de la integral de superficie en los
casos: Sty = f(z,2) con (v,2) € R y S:x=f(y,z) con (y,2) € R.

Ejemplos:
= Calcular ff /22 + y? dS siendo S : 2? + y* = 4 limitado por z = 0
S
y z=4.
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x

=T

S
oz, y,2) = V2 +y2 — o(r(u,v)) = Vicos*u + 4senu = 2

_’(u,v):2cosu;+286nu5’+vl§ con 0<u<2r , 0<v<4

7 ik
= or  or - -
N(U,U):afzxaf:}: —2 senu 2 cosu 0 | =2 cosut+2 senuj+ 0k
0 0 1

2 4
—9 ff\/x2+y2d5':/ /2.2dvdu:4,4,27rz327r
S 0 0

» Calcular ffz dS siendo S :z = /x?+ y? limitada por z = 1y
s
z =2
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S:z=a2+y?, (r,y) €ER con R={(z,y)/1 <z*>+y* <4}

)
Y

N:<_ \/x2+y2’_\/x2+y2’1> v |N]= Ve

oz, y,2) =2 — ox,y, Va?+y?) = Va2 + 12

ffszdS:fL\/m.\/ﬁdA:

para calcular la integral doble conviene en este caso hacer un cambio
de variables usando coordenadas polares

2
14
= —V27

o 42 3
:/ /r 27’drd6:\/§27rr—
o J1 3 3

1

La superficie S sobre la que se integra puede ser union finita de superficies
suaves. Si S = S; U Sy donde S; N Sy es un conjunto de area nula y ¢ es

integrable sobre S} y sobre Sy, entonces ffgb s = f ¢ dS +f ¢ dS
S S1 Sa
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7.3.1. Ejercicios

1. Integrar:
a) ¢(z,y,z) =x+y+2 sobre S:a?+y*=1 con1<2<2.
b) ¢(x,y,2) =2z sobre S:y*+22=4 conl <z <4, 6 z>0.
x,, 2?2 sobre S:a?+y?+ 22 =a® con z > 0.
) d(x,y,2) = y
d) ¢(z,y,2) =yz sobre S:z?+y*>+22=4 con z > a2+ 2
e) ¢(x,y,z) =z sobre S:y=2%> con0<xr<2,0<2<3.

2. Calculen el centroide de S : 2% 4 y? + 22 = a2, limitada por los planos
coordenados, en el primer octante.

7.4. Flujo de un campo vectorial a través de
una superficie

Sea S : 7 =r(u,v) con (u,v) € R, una superficie. Se dice que S es suave si
or or

en los puntos de R existen y son continuas las derivadas parciales — y s
v

y son no nulos y no colineales, determinando, en el correspondiente punto de

S, el vector normal N N = @ X @ o N @ x cuyo modulo in-
ou Ov ov  Ou

terviene en el calculo de la integral se superficie de un campo escalar sobre S.

De ahora en mas, 7 designara al vector normal unitario en un punto de S.

262



7.4. FLUJO DE UN CAMPO VECTORIAL A TRAVES DE UNA
SUPERFICIE

Definiremos que S es orientable si se distinguen en ella dos caras, identifica-
das,cada una de ellas, con una de las dos elecciones posibles de 7:

>_ Ou v >_ Ov__Ou
ou Ov ov  Ou

Consideremos por ejemplo S : 2% + y? = 4. Ubicados en un punto P de
S, tiene sentido hablar de normal hacia el exterior y de normal hacia el
interior. Elegido 77 hacia el exterior, podriamos desplazarlo continuamente a
lo largo de cualquier trayectoria sobre S y regresar a P apuntando siempre
hacia afuera.

La superficie del ejemplo, al igual que todas las que tratamos en este curso,
es orientable, pero existen superficies que no lo son.

Un ejemplo de superficie no orientable es la que se conoce como cinta de
Moébius, que tiene una sola cara:

o
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Cuando, dada una superficie orientable S, se ha elegido una de las dos posi-
bilidades para 72, se dice que se ha orientado a S.

Si 51 y Sy son orientables y S = S; U Sy como en la figura siguiente, S
queda orientada cuando se eligen en Sy y Sy vectores ny y 15 que inducen (de
acuerdo a la regla de la mano derecha) orientaciones contrarias en la curva
interseccion.

ny.

Integral de Flujo

Sean S una superficie acotada y orientable, 77 el vector normal unitario
elegido en S y F un campo vectorial con componentes continuas sobre

S.

Llamamos integral de flujo (o, simplemente, flujo) del campo vectorial
F a través de la superficie S, en la direccion de 7, a la integral de
superficie del campo escalar F - 77 sobre S :

@:ffﬁ.ﬁds
S

Las integrales de flujo tienen aplicacion en diversas areas de la fisica y de la
ingenieria. Por ejemplo:

= Si el campo vectorial modela el campo de velocidades de un fluido 1%
por una caneria o tuberia, la integral de flujo

Q= ffSV-ﬁdS

calcula el volumen de fluido que circula por unidad de tiempo a través
de la superficie S. @ es el caudal volumétrico.

264



7.4. FLUJO DE UN CAMPO VECTORIAL A TRAVES DE UNA
SUPERFICIE

Si el fluido tiene densidad p(x,y, z) la integral de flujo

m:ffp(x,y,z)v-ﬁds
s

calcula el caudal mdsico m, cantidad de masa de fluido que atraviesa
la superficie S en la direccién normal 77 por unidad de tiempo.

Si el campo vectorial modela un campo eléctrico E , la integral de flujo

@E:ffﬁ-ﬁds
S

mide el nimero de lineas de fuerza que atraviesan la superficie. Es una
forma de describir la intensidad del campo eléctrico producida por una
carga.

A .+ L

area

T oo 'MmMmMMmMMMrTrT . mmTMT!T!T!T’T!r

smaniee sssss LRI = o _ i scssssssmssnne e

e B L T —

coailiee s ness e CaPrIEs s ba eadnE

. $ 00 W e

NIL o'  mMmMmMmMmMmmmThmhThThDhTTT™mTooroTr

Campo

eléctrico
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7.4.1. Calculo de la integral de flujo

or  or
TRAR TR I unit
Si S =r(u,v), (u,v) € Ry 1= %4—% es el normal unitario
or  or
ou Ov
elegido en S,
- ~ or or
P = F-ndS= i T U dA =
f]; n dS f]};( n) (r(u,v)) Ouxﬁv
8FX8F
- ou - ov |of _or
_ F L Ou Qv |9 TN A
f\fR (r(u,v)) %x@ ou " D
ou  Ov

fLﬁ-ﬁdS:fLﬁ(r(u,v))~(gxgj> dA

Cuando la superficie es grafica de una funcion, por ejemplo:

S:z= f(z,y) con (z,y) € R , usamos como siempre la representacién
trivial: S : 7 = F(l’,y) = <$,y,f(:l€,y)> ) (a:,y) € R, con la que hemos
- < of af

visto que N = { ———, ———,1) o su opuesto. De modo que,

oz’ Oy

[[#aas = ] Foa e (=55 -50) asay

(si el normal elegido en S es el que tiene tercera componente positiva)

Observacion: En el calculo del flujo, al ser S una superficie orientable, es
posible considerar los normales unitarios, 7 o —n. Si cambiamos la direccion
de la normal a —7, la integral de flujo se convierte en:

ffsﬁ-(—ﬁ)dsz—ffsﬁ.ﬁds

Es decir, la integral de flujo cambia de signo. Esto se debe a que el producto
punto F' - 712 depende de la orientaciéon de la normal. En resumen, cuando se
elige el normal opuesto, cambia el signo de la integral de flujo.
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Ejemplos

= Calcular el flujo del campo vectorial F=xi+ yj+z k a través de
S : 2% +y* = 4 limitada por z = 0y 2z = 4, con i exterior.

s

S:F:F(u,v):2cosu;+2senuj+vg con 0<u<2r , 0<v<
4

i ik
or or - - =
a—; X a—z =| —2senu 2cosu 0 |=2cosui+2senuj+0Ek
0 0 1
or or
(vean que Al a—r apunta hacia el “exterior” de S)
v
F(#(u,v)) =2 cosui+2 senuj+vk
~ or or
F(r(u,v)) - (82 X 82) =4 cos*u + 4 sen’u = 4

ffﬁ-ﬁdssz 4 dA = 4 drea(R,,) = 32
S uUv

= Calcular el flujo del campo vectorial F=xi+ yj+z k a través de
S :z=4—2?—y? limitada por z = 0 con 7 exterior.
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Stz=flr,y)=4-2>-y?, (z,9) € R R={(v,y)/7" +y* < 4}

N = (2z,2y,1)
ﬁ(x7y7f(xay)) = <$,y,4 - 1'2 - 92>

—

F(z,y, f(z,y)) - N =4+ 2"+

[[ 7= [[ (152 ) aa

y el calculo de la integral doble se puede completar con un cambio de
variables usando coordenadas polares:

fL(4+x2+y2) dA:feref(T?g)UWAre:

:/02”/02 (4+72)r dr db = 247

Notacion:

= Una notacién alternativa f f (Pcosa + Qcosf + Rcosy) dS suele utili-
S
zarse para denotar la integral de flujo ff F-it dS donde F = (P,Q,R).
s

» Cuando la superficie es cerrada, por ejemplo una esfera, o unién de su-
perficies que encierran un sélido, la integral de superficie suele anotarse
de la siguiente forma: ﬁ% F-ndsS.
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7.4.2. Flujo de un campo vectorial radial a través de
una esfera

Este caso es de importancia en la fisica. Supongamos que se tiene un campo
vectorial radial, llamémoslo en este caso E, definido sobre una superficie
esférica S de radio a centrada en el origen de coordenadas. En este caso, al
ser radial, sobre la esfera el campo tiene la misma direccién al vector normal
77 en todos los puntos de S.

Siendo que el campo es radial (paralelo al normal en todo punto sobre 5)
resulta:

E-ii = |E|-|if| - cos(0) = | E|
Ademas, por ser el campo radial, el médulo del campo sobre la esfera sélo
depende de la distancia al origen (r), en este caso a.

Llamando: |E | = E, donde E es la magnitud del campo, en este caso cons-
tante que sélo depende de a, radio de la esfera.

Entonces:

—

E-i=E(@i-fd)=E

Finalmente resulta que el flujo es:

Dy = f f E-iidS= f f EdS = E.Area(S) = E4na®
S S

Esta ultima igualdad también suele anotarse de la forma siguiente, en la que
se expresa la magnitud del campo en funciéon del flujo a través de la esfera
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de radio a:
Op

4mra?

Este resultado es de mucha utilidad en Fisica, en especial en Electromagne-
tismo, para determinar la magnitud del campo eléctrico conociendo el valor
del flujo.

Ejercicio:

Aplicar lo anterior para calcular el flujo del campo E= (x,y, z) hacia afuera

de la superficie esférica S : 2% + y* + 22 = a*.

7.4.3. Ejercicios

1. Calculen la integral de flujo f f F it dS en los siguientes casos:
S

a) F=(zz,yz,22) ; S22 +y* =9 limitado por z =0y z =4 y ii
exterior.

b) F = (x,y,z) ; S es el tridngulo de vértices (1,0,0) , (0,1,0) y
(0,0,1), usando la representacién r = r(u,v) = (u + v, u — v, 1 — 2u)
del plano y 77 con tercera componente positiva.

¢) F = (z,y,2) ; S es el tridngulo de vértices (1,0,0) , (0,1,0) y
(0,0, 1), usando una representacién explicita para el plano, 7 con
tercera componente negativa.

d) F={y,—z,1);S:z=a%+y? limitada por z = 4 , it con tercera
componente negativa.

e) F = (y,—x,z) ; S : z = a2+ y? limitada por z = 3 , 7 con
tercera componente negativa.

f) F= 0,1,y) ; S: 2= Va2 +y%, con 22 +y> < 4, 7i con tercera
componente negativa.

9) ﬁ:(y,zy,l);S:3x+6y+32:6,con0§y§1,nggl,

—

7. con primera componente positiva.

h) F=(y,0,2) ; S : frontera del s¢lido

V= {(%%Z)/WSzS m}
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2. Siendo S : 2% + y% + 2% = a? con 7 exterior, calculen

ff (:cz cosa + yz cosfp + x* cos'y) as
S

3. Suponiendo que F(z,y, z) = zi — (2z +y)j + zk es la densidad de flujo
de un fluido

i) calculen la masa de ese fluido que atraviesa el hemisferio S : z =
Vva? — x? — y? en la direccién del vector normal con tercera componente
positiva, por unidad de tiempo

ii) calculen la masa de ese fluido que atraviesa la frontera del sélido

V= {(x7y7z>/0 <z< \/m}
con direccion hacia el exterior, por unidad de tiempo.

4. Sea F(z,y,2) = —zi4aj + yk ysea S:z+y+z =1, limitado por los
planos coordenados, en el primer octante y 77 con tercera componente
positiva. Verifiquen que:

a) Si C es la curva frontera de S con la orientacién inducida por 7

de acuerdo a la regla de la mano derecha, resulta:
o F-dif = [[ rotF - i dS

b) Si V es el sélido limitado por Sy por los planos coordenados en
el primer octante y S es la frontera de V, con 7 exterior resulta:

[Js F -7 dS = [[f, divF dV

7.5. Teorema de Stokes o del rotor

George Gabriel Stokes (1819-1903) fue un matemdtico y fisico irlandés que
realizo importantes contribuciones a la fisica teorica y a la teoria de series.

El teorema de Stokes es la versiéon en el espacio tridimensional del teorema
de Green, que relaciona la integral de superficie del rotacional de un campo
vectorial con la circulacion alrededor de la frontera de esa superficie.
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Teorema de Stokes o del rotor

Sea S una superficie orientable en la que se ha elegido el vector normal
7y cuya frontera es la curva cerrada C' orientada con la orientacion
inducida por 7 de acuerdo a la regla de la mano derecha. Si F es un
campo vectorial cuyas componentes tienen derivadas parciales conti-
nuas en un dominio abierto D que contiene a C' y a .S, entonces:

fﬁ-df:ffmtﬁ-ﬁds
C S

Importante:

(1) Interpretacién fisica de la circulacién en un campo de velocida-
des de un fluido

Cuando el campo vectorial F' representa un campo de velocidades ¢ de un
fluido, la circulaciéon sobre una curva cerrada C se define como:

Circulacién — 7( F.dr
C

Desde el punto de vista fisico, la circulacién mide la tendencia del fluido a
rotar o girar alrededor de la curva cerrada C. Esta cantidad tiene una relacion
directa con la vorticidad del flujo y la naturaleza rotacional del campo de
velocidades.

El significado fisico es el siguiente:

1. Circulacién positiva: Una circulacion positiva indica que las veloci-
dades del fluido estan alineadas con el sentido del recorrido de la curva
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C. Es decir, el fluido tiene una rotacién coherente con el sentido del
contorno.

2. Circulacién negativa: Una circulacion negativa significa que el fluido
rota en sentido opuesto al de la curva cerrada C, lo que implica una
rotacién contraria.

3. Circulacién nula: Si la circulacién es cero, el fluido no tiene rotacion
neta alrededor de la curva cerrada C. Esto puede ocurrir si el flujo
es irrotacional (ﬁ x F = 0) o si las contribuciones rotacionales en
diferentes partes de la curva se cancelan mutuamente.

Es decir que, a través del teorema de Stokes, la circulacién esta directa-
mente relacionada con la vorticidad del fluido, V x F'. Este establece que la
circulacién sobre una curva cerrada C es igual al flujo del rotor (vorticidad)
a través de una superficie S que tiene por borde a la curva cerrada C:

fﬁ-dfsz(vXﬁ)-ﬁds
¢ S

donde: 77 es el vector normal unitario a la superficie S, dS es un elemento
infinitesimal de area en S.

(2) Una consecuencia inmediata del teorema de Stokes es que, para S y S
dos superficies orientables, con frontera comun C, ambas con orien-
tacion concordante con la de C') y Fun campo vectorial cuyas componentes
tienen derivadas parciales continuas en un dominio abierto D que contiene a
CyalS]ya S, entonces:

ff rotﬁ~ﬁdS:ff rotF -7 dS
51 52

(3) El flujo de un campo rotor, no depende de la superficie que
atraviesa, sino de su frontera. Nos permite ademas concluir que para
evaluar una circulacién aplicando la igualdad de Stokes, es suficiente con
elegir la superficie mas simple, que obviamente es un plano, si se trata de
una curva plana.

7.5.1. Aplicaciones del teorema de Stokes

1. Evaluar fcﬁ - dr mediante una integral de flujo.
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y=z
ria vista desde 2T, calcular % (z —y)dz + (v — z)dy + (z + z)dz
c

aplicando el teorema de Stokes.

con orientaciéon antihora-

» Ejemplo: Siendo C' : {

.........

Observemos primeramente que en este caso, las componentes del
campo vectorial F = (z —y,x — z,x + z) tienen derivadas par-
ciales continuas en D = R?. Para aplicar el teorema de Stokes es
necesario definir una superficie orientable S que tenga a la curva
C como frontera y elegir en S el vector normal de forma tal que
sea concordante con la orientacién de C'. Existen multiples eleccio-
nes posibles para S. Elegiremos la mas sencilla: porcién de plano
y = z limitada por 2% + % = 2y

Sea entonces S : z = f(x,y) =y con (x,y) € R,
R={(z,9)/* +y* < 2y}
N = (0,—1,1) (concordante con la orientacion dada para C')

S asi definida es orientable, tiene a la curva cerrada C' como fron-
tera, S y C estan orientadas de manera concordante de acuerdo a
la regla de la mano derecha, S y C' estan incluidas en el conjunto
en el que las componentes del campo vectorial F tienen derivadas
parciales continuas. Por el teorema de Stokes, la circulacién de ese
campo vectorial Fes igual a f fs rotF - i dS.

Calculamos a continuacién esa integral de flujo:
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i j k
rotf=| 2 90 = (1,0,2)
ox dy 0z

Zz—y x—2 x+2

rotF(z,y,y) = (1,0,2)

rotF(z,y,y) - N = (1,0,2) - (0,—1,1) = 2

ffth it dS = ffsz—Mrea(R) 2m

.'.?{ﬁ-dfz%r
C

2. Evaluar f fs rotF - dS mediante una circulacién.

= Ejemplo: Siendo F = (v’ 2y, xz), S : 2z = /2—22 —y? con
z > 1 y 7 con tercera componente no negativa,
calcular f fs rotF - n dS aplicando el teorema de Stokes.

S es una superficie orientable cuya frontera es la curva cerrada

z=1
ramos con la orientacién inducida por 7).

Tty = : . .
C: { 4 (circunferencia en el plano z = 1 que conside-

Las componentes de F = (y* zy,zz) tienen derivadas parciales
continuas en D = R3. C'y S estdn incluidas en ese conjunto.
Por el teorema de Stokes, se tiene entonces que la integral de flujo
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del rotor de F a través de S y en la direccion de 7 es igual a
$c F - dr. Calcularemos entonces esa integral de linea:

C:7=r7(t) = (cos t,sent,1) te[0,2n]

<

F(r(t)) = <sen2t, cos t sen t, cos t>

7'(t) = (—sen t,cos t,0)

E(7(t)) - 7'(t) = —sen’®t + cos’tsent

5 2w 2m
% F-dr = / (—sen®t+cos’tsent)dt = / (—sent-+2cos’t sent)dt = 0
c 0 0

.'.ffrotﬁ-ﬁdSzO
s

Aplicacién del teorema de Stokes al caso de una superficie con dos
curvas cerradas como frontera

Ejemplo: Sea S : z = y/x? + y? limitada por z =1y z =2, con 7 exterior
y F= <_Z7 _x7y>

La frontera de S esta formada en este caso por

Cl : y 02 .
z=1 z=2
Consideremos esas curvas orientadas como se muestra en la figura siguiente
(vistas desde zT, C con orientacién antihoraria y Cy horaria ) e imaginemos

un corte en la superficie, a lo largo de una curva auxiliar 7.
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Podemos pensar ahora que la curva frontera de la superficie es la curva ce-
rrada C': Cy Uy U Cy U (—7)

Entonces, por el teorema de Stokes:

ffmtﬁ-ﬁdszfﬁ-dfzf ﬁ-dF+/ﬁ-dF+?{ ﬁ-df+/ Fdi
S c C1 v Ca -y
.-.ffmtﬁ-ﬁdszf F.di+¢ F.dF
S C1 Co

Calculen ustedes las dos integrales de linea para obtener asi el valor del flujo
del rotor de F' a través de S.

Caso de una superficie cerrada

Consideremos ahora el caso de una superficie S cerrada con normal exterior.
Podemos pensar a .S como la uniéon de dos superficies como se ve en la figura:
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Las curvas C y Cy coinciden con C' pero una tiene orientaciéon contraria a
la otra (C; y Cy estéan orientadas de manera concordante con los vectores
normales de S; y Sy respectivamente)

Importante Si F es un campo vectorial con componentes con derivadas
parciales continuas en un subconjunto D de R® y S estd incluida en ese
conjunto, entonces: “El flujo de un campo rotor a través de una superficie
cerrada es nulo”.

Pues:

ff?“otﬁ-ﬁdsz F.dr
Sl Cl
ff mtﬁ-ﬁds:f 7. dr
Sa Ca
ff rotF-ii dS = ff rotF-il dS+ff rotF-ii dS :jf ﬁ.df_j{ Fodif =0
° 1 S2 C C

Interpretacion del rotor en un punto
Supongamos que V(w, y,z) es el campo de velocidades de un fluido. Sea B

un punto en la corriente. Consideremos un circulo S, con centro en Py y radio
ry sea C, la circunferencia frontera de ese circulo.
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Aplicando la igualdad de Stokes se tiene: 7{ V.di = f f rotV -it dS Para
c, .

algin punto P* € S, es f f rotV - ii dS = (rotV - i) (P*)area(S,) (;por
Sr

o V- dF

area(Sy)

El primer miembro de la igualdad anterior representa un promedio entre la

circulacién del campo a lo largo de C, y el area de la superficie limitada por

C.. Esos promedios varian con r. El limite de esos promedios cuando r tiende

a cero se llama densidad de circulacion en Py. Si v — 0 entonces P* — Py y
V.dr - -

resulta: lim e, V- dr = (rotV : ﬁ) (Ry) = ‘rotV(Po)‘ 72| cost

r=0 area(S,) =

qué?) y entonces = (rot‘? . ﬁ) (P")

—

rotV(R)

rotV

7> A

La densidad de circulacién seré entonces maxima cuando el angulo 6 sea nulo
y el valor maximo serd ’rotV(Po)‘ .

Por esta razén. al vector rotV se lo denomina vector de vorticidad. Es decir
que el rotor de un campo vectorial en un punto P representa la tendencia de
las particulas cercanas al punto P a rotar en torno al eje que apunta en la
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direccién del rotV (P). El vector rot(V), apunta en la direccién en la cual el
fluido gira més rapido, siendo el valor |rot(V)| una medida de la rapidez de
esta rotacion. Para el caso en que rot(\?) = 0, el fluido se dice irrotacional,
es decir que las particulas se desplazaran pero sin rotar.

7.5.2. Ejercicios

1. En los siguientes incisos evaltien j{ F-dF aplicando el teorema de Stokes

siempre que sea posible. (Elijan en cada caso la orientacién de la curva
e indiquenla en un grafico.)

z=4— 3% —q?

a)F:< xe® —y, \/mz> ; C’:{

z=0
R
b) F = (2% y* — x,2%seny) ; C’:{Z Tty
Z =
2 .2
c)F:<2x2,4y2,68Z2> : C’:{Z Tty
2=8—y
2, 2 _
d) F = {cosz,seny,z) ; C: {x Ty
2=x—y

¢) F = (x%+2xy32, 3x%% — y,2%y3) : C : frontera del tridngulo
de vértices (0,1,0) , (0,0,4) y (2,0,0)
f) F=(—y,z,z) ; C:frontera del cuadrado de vértices (0,2, 2)
(2.2,2), (2,2,0) y (0,2,0)

2. En los siguientes incisos, evalien f fs rotF - it dS aplicando el teorema
de Stokes siempre que sea posible.

a) F = (zm,29%,2%) ; S:z=4—2*—y? limitada por 2 =0 ;
7 con tercera componente positiva.

b) F = (20 —y,yz%y%2) : S:z= A—2a2—y? limitada por
z=0; 7; con tercera componente positiva

c) F = <zm2,ze‘”y — :E,a:y2> ;S :z=1-2?—y? limitada por
z=0
77 con tercera componente positiva
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d)ﬁ:<xy,4xez2—x,zy+l>  Siy=22+22cony<2
7 hacia la izquierda.

¢) F = (zyz, 4223 — z,8cosxzz?) ;S : superficie frontera del
cubo V' = [0,1] x [0,1] x [0, 1] sin la cara que se encuentra en el
plano z =0 ; 1 hacia el exterior del cubo.

) F=(ma+y%22—y®) ; S:z= a2+ limitada por
22 +y*+22=2 : @ con tercera componente negativa.

3. Sea f un campo escalar con derivadas parciales de segundo orden con-
tinuas en R®. Muestren que jé ( f v f) -dr'= 0 para toda C cerrada.
c

4. Analizar en cada caso si es posible aplicar el Teorema de Stokes para
z =

calcular la circulacién de F' a lo largo de C': { Hallar el

valor de esa circulacién.

(i) F = T T T
(x2+y2_|_22)3/2 ($2+y2+22)3/2 ($2+y2+22)3/2

N -y x
F =
(i) <x2 Y2 22 4 2’ z>

5. Sea la superficie S definida por la parte del cono

Z:ma

comprendida entre los planos z = 1 y z = 2, orientada con la normal
hacia afuera del volumen delimitado. Sea ademas el campo vectorial
dado por F = (—y, z, 2?)

(i) Verificar que es posible aplicar el Teorema de Stokes en el dominio
considerado.

(ii) Usar el teorema de Stokes para calcular la circulacién de F sobre
la frontera de la superficie S, interseccién del cono con los planos z = 1
y z = 2, en el sentido positivo (antihorario cuando se observa desde
arriba).

(iii) Calcular ademads el flujo del campo rotor con normal dado por la
regla de la mano derecha, para comprobar el resultado obtenido en el
punto (ii) mediante el teorema de Stokes.

Observacién: en cada caso, hallar el dominio del campo, su rotor, y
el conjunto en el cual tiene sus componentes con derivadas parciales
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continuas.

7.6. Teorema de Gauss o de la divergencia

Johann Carl Friedrich Gauss (1777 — 1855). Matemdtico, astrénomo y fisico
alemdn que contribuyo significativamente en muchos campos, incluida la teo-
ria de numeros, el andlisis matemdtico, la geometria diferencial, la geodesia,
el magnetismo y la optica. Fue de los primeros en extender el concepto de
divisibilidad a otros conjuntos. Riemann trabajo junto a Gauss y fue éste su
director de tesis de doctorado.

El teorema de la divergencia es un resultado importante en la fisica y en in-
genieria, particularmente en electrostdtica y en mecdnica de fluidos. Vincula
la integral de la divergencia dentro de un volumen con la integral superficial
que encierra al volumen considerado. Intuitivamente enuncia que la suma de
todas las fuentes de un campo en una region es igual al flujo de salida neto.

Teorema de Gauss o de la divergencia

Sea S una superficie orientable y cerrada en la que se ha elegido 7
exterior y sea V' el solido limitado por S. Si F es un campo vectorial
cuyas componentes tienen derivadas parciales continuas en D C R3, y
Sy V estan incluidos en ese conjunto, entonces

Observaciones:

(i) Recordar que si el campo vectorial F = (P,Q, R) definido en R?, la
divergencia es un campo escalar que se calcula como sigue:
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o= = = 0P 0Q  OR
div(F) =V F_8x+8y+8z'

Donde:

o _ (0 9 9
V= ( 927 By 82) es el operador nabla

V-F representa el producto escalar entre v y el campo vectorial F.

(ii) En el enlace se puede ver una demostracién del teorema Demostracion,
que tiene cinco partes.

(iii) Interpretacién del Teorema de Gauss para el Flujo hacia afuera de un
cubo diferencial

Sea un campo vectorial F = (P,Q, R),donde P(x,y, 2), Q(x,y, 2),y R(z,y, 2)
son las componentes del campo.

Consideremos un cubo diferencial con lados de longitud Az, Ay, v Az, cen-
trado en el punto (z,y,z). El fluyjo neto hacia afuera del cubo se calcula
sumando los flujos a través de sus seis caras.

s k
N3

Calculemos el Flujo a través de las caras perpendiculares al eje x:

Para la cara derecha, situada en x + %, el flujo es:
A
P (:c + ;,y,z> - (AyAz).
Para la cara izquierda, situada en x — %, el flujo es:

P (:C — A;,y, z) - (AyAz).
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El flujo neto en la direcciéon z es la diferencia entre los dos:

A A
Flujo neto en x = [P (:B + g,y, z) - P (93 — ;,y,zﬂ - (AyAz).

Aproximando la diferencia por la derivada, resulta:

P
Flujo neto en x =~ ?} ArAyAz.
x

Ahora, de modo similar, calculamos el Flujo en las direcciones y y z, para
las caras perpendiculares a y y z:

0
Flujo neto en y ~ 8Q - AxAyAz,
Y

O - ArAyAz.
0z

Flujo neto en z =

Luego, el Flujo total hacia afuera del cubo es la suma de los flujos en z, y, y

oP  9Q | OR

Flujo total = (8:1: + Dy + 82) - ArAyAz.

La expresion entre paréntesis es la divergencia del campo F"

~ 0P 0Q OR
F=—+4+ =4+ —.
v 8x+8y+8z

Por lo tanto:
Flujo total = (V - F) - AzAyAz.

Cuando se toma el limite Az, Ay, Az — 0, el flujo total a través de la super-
ficie del cubo se relaciona directamente con la divergencia del campo en su
interior.

Resumiendo: para un volumen arbitrario V' con frontera 9V, el teorema de

Gauss establece:
ff ﬁ.ﬁdsszf(v.ﬁ)dv,
v 1%

donde 77 es el vector normal unitario a la superficie cerrada 0V y dS es el
elemento diferencial de area.
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7.6.1. Aplicaciones del teorema de Gauss

1. Calcular el flujo de un campo vectorial a través de una super-
ficie cerrada mediante una integral triple.

» Ejemplo Calcular 5655 F -7 dS siendo F = (x,y,z) y S la frontera
del sélido V' limitado por z = 22 + y* y 2 = 4, con 7 exterior.

Como S es una superficie cerrada y orientable y F' es un campo
vectorial con componentes continuas en D = R3, se puede aplicar
el teorema de Gauss para afirmar que

ﬁgﬁ-ﬁdsszfvdiv(ﬁ)dv

Calculamos a continuacién la integral triple :

—

div(F)=1+1+1=3
V={(z.y.2) €R/(z,y) € RAz* +y* < 2 < 4}

R= {(x,y)/0§x2+y2 §4}

fffvd“’(ﬁ) dv:ff£3dV:AQWAQ/Terdzdrd0:...:247r

Atencion: Si la propuesta hubiera sido: Calcular f fsﬁ -1 dS
siendo I = (v,9,2) y S : 2z =2+ y? limitada por z = 4, con 7l
hacia el exterior del paraboloide, el teorema de Gauss no podria
aplicarse pues la superficie no es, en este caso, cerrada. La integral
de flujo debe calcularse en este caso de manera directa. realicen
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ese calculo y comprueben que el resultado es 8. Deduzcan luego
el valor del flujo a través de S : z = 4 limitada por z = 22 + 3>

2. Calcular el volumen de un sélido mediante una integral de
flujo
Si divF =1 y las componentes de F tiene derivadas parciales continuas
Ty 2
3’3’3
Gauss se puede afirmar que, si S es cerrada y orientable , 7 es exterior
a Sy V es el solido limitado por S,

ﬁﬁ-ﬁdsszfvdiv(ﬁ)dvzfffvmvzvozumen(m

O sea que el volumen del sélido V' li£nitado por S puede hallarse resol-
viendo la integral de superficie: fﬁgs F-nds.

(como sucede, por ejemplo, con F = < >), por el teorema de

Interpretacion de la divergencia

Recurrimos una vez més al campo de velocidades de un fluido, V(z,y, 2).
Consideremos, centrada en un punto I, una pequena superficie esférica S,
de radio 7, que limita a la esfera soélida V.

Para algin punto P* € V, es fff divVdV = divV (P*).vol(V,) (ypor qué?)
Vi

$, V-iids

= divV (P*
A divV (P*)

y entonces
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El primer miembro de la igualdad anterior representa un promedio entre el
flujo del campo a través de S, en la direcciéon normal exterior y el volumen
del sélido limitado por S, y el limite de esos promedios cuando r tiende a
cero es la divergencia de V en (B) :

f, V-ids
dZ/UV(PQ) = }‘I_I}(l) W

Nota:

= La divergencia de un campo vectorial mide la razoén neta de cambio de
la masa del fluido que fluye desde un punto por unidad de volumen. En
otras palabras la divergencia mide la tendencia de un fluido a divergir
desde un punto.

= Si el campo tiene fuentes o sumideros, la divergencia de dicho campo
sera diferente de cero.

= Si la div(F(P)) = 0, el flujo neto en P es nulo. En este caso el cam-
po vectorial se llama solenoidal, y el flujo se dice incompresible. La
cantidad de lineas de flujo entrantes, es igual a las salientes.

= Si div(F(P)) > 0 la cantidad de flujo que sale en P es mayor a la que
entra (existen fuentes). Se dice que en P hay una fuente o un manantial.

= Si div(F(P)) < 0 la cantidad de flujo que sale en P es menor a la que
entra. En P hay un sumidero.

7.6.2. Ejercicios

1. En los siguientes incisos, calculen el flujo hacia el exterior de F a través
de la superficie frontera del sélido V' aplicando el teorema de Gauss
siempre que sea posible.

o) F={(y—2),(z=y)(y—a) ; V=[-11]x[-1,1] x [-1,1]

F=(22422% ; V=1[0,1x10,1] x [0,1]

) {
) (
¢) F= (224222 : V limitado por 22+ 32 =4;2=0y z = 1.
) (22,22,32) 5 V={(z,y,2)/2* +y* + 2*> < 4}

) F={

x,y,z) ; Viimitadopor z = Va2 + 4?2 vy z= 4 — 22 — >
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. Demuestren que el flujo hacia el exterior de un campo vectorial cons-
tante, a través de cualquier superficie cerrada y orientable S, es igual
a cero.

. Usen el teorema de Gauss para mostrar que ﬁ@ (V X F) - dS = 0 para
toda S cerrada, si el campo tiene componentes con derivadas parciales
segundas continuas en un dominio que contiene a S.

.Sea V = {(z,y,2)/4<2*+y*+22<9} y sea F = (x,y,2) con
normal exterior. Verificar en este caso la igualdad del teorema de Gauss.

. Entre todos los sélidos rectangulares definidos por las desigualdades:
0<xr<a ; 0<y<b ; 0L z< 1, encuentren aquel para
el cual, el flujo a través de su frontera y hacia el exterior del campo
vectorial F' = (—a? — 4xy, —6yz, 122) sea méximo. (Nota: recordar que
los posibles puntos criticos de una funcién de varias variables son los
que hacen cero las derivadas parciales de esa funcién).

. Aplicar el teorema de Gauss a un campo gradiente, es decir a un campo
V f(z,y, z) y obtener resultados para el caso en que f es armonica, esto
es que el laplaciano es cero (f es arménica): Af = V2f = % + 227{ +

2f _
.2 =0

. Comprobar el teorema de Gauss para un cubo [—1,1] x [-1, 1] x [-1, 1]
y el campo: (i) F = (x,y,z) (ii) F = (2,3,4)

. Obtengan el volumen de una esfera de radio a por medio de una integral
de flujo.

. (i) Calculen el volumen del sélido limitado por z = 22 +¢* ; z = 4
y z = 9. (ii) Evalden el flujo del campo vectorial F = (2z,2y, —2z) a
través de la frontera del solido de la parte con direccién normal exterior.
(iii) Calculen también el flujo de dicho campo sé6lo a través de la porcién
del paraboloide (usar de ser posible los datos hallados en los incisos
anteriores).

Aplicaciones del Calculo Vectorial a la
fisica

7.7.1. Ley de Gauss

El Teorema de la divergencia, que relaciona la divergencia de un campo vec-
torial con el valor de la integral de superficie del flujo definido por este campo,
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es un resultado importante en fisica, sobre todo en electrostatica y en dina-
mica de fluidos. Ademas, el teorema de Gauss puede utilizarse en diferentes
problemas de fisica gobernados por leyes inversamente proporcionales al cua-
drado de la distancia, como la gravitacion o la intensidad de la radiacion, en
estos casos se establece unaley relacionada al teorema que recibe el nombre

de Ley de Gauss y que constituye también la primera de las ecuaciones
de Maxwell.

James Clerk Mazwell (1831 — 1879). Fisico escocés conocido principalmente
por haber desarrollado la teoria electromagnética cldsica, sintetizando todas
las anteriores observaciones, experimentos y leyes sobre electricidad, magne-
tismo y aun sobre optica, en una teoria consistente. Las ecuaciones de Max-
well demostraron que la electricidad, el magnetismo y la luz, son manifesta-
ciones del mismo fenomeno: el campo electromagnético. Desde ese momento,
todas las otras leyes y ecuaciones clasicas de estas disciplinas se convirtieron
en casos simplificados de las ecuaciones de Maxwell. Su trabajo sobre electro-
magnetismo ha sido llamado la “sequnda gran unificacion en fisica”, después
de la primera llevada a cabo por Newton. Fue una de las mentes matemdticas
mds preclaras de su tiempo, y muchos fisicos lo consideran el cientifico del
siglo XIX que mds influencia tuvo sobre la fisica del siglo XX.

En fisica y en andlisis matematico, la Ley de Gauss relaciona el flujo eléctrico
a través de una superficie cerrada y la carga el éctrica encerrada en esta
superficie. De esta misma forma, también relaciona la Divergencia del campo
eléctrico con la densidad de carga.

Estos temas se estudiaran basicamente en Fisica II.

La ley de Gauss tiene la siguiente interpretacion fisica. El potencial debido
a una carga puntual @) en (0,0,0) estd dado por:

O(r,9,2) = 2 = 12

ey v

y el campo eléctrico correspondiente es:

E=-Vo=2(%)

3
siendo r = i + yj‘%— zl;, es decir que

o Q x = y = z
E - 47r((x2+y2+z2)3/22 + (332+y2+22)3/2"7 + (x2+y2+22)3/2 k)'

-

Para una distribucion continua de carga descripta por medio de una densidad
de carga p, el campo E esta relacionado con la densidad p mediante:

divE =V - E = p.
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Asi por el teorema de Gauss,

ﬁgﬁ-dsszfvpdvzcg

el flujo hacia afuera de una superficie es igual a la carga total dentro.

La ley de Gauss puede ser utilizada para demostrar que no existe campo
eléctrico dentro de una jaula de Faraday sin cargas eléctricas en su interior.
La ley de Gauss es la equivalente electrostatica a la ley de Ampére, que es
una ley de magnetismo. Ambas ecuaciones fueron posteriormente integradas
en las ecuaciones de Maxwell. Esta ley puede interpretarse, en electrostatica,
entendiendo el flujo como una medida del nimero de lineas de campo que
atraviesan la superficie en cuestion. Para una carga puntual este niimero es
constante si la carga estd contenida por la superficie y es nulo si esta fuera
(ya que hay el mismo ntmero de lineas que entran como que salen). Ade-
mas, al ser la densidad de lineas proporcionales a la magnitud de la carga,
resulta que este flujo es proporcional a la carga, si estda encerrada, o nulo, si
no lo esta. Cuando tenemos una distribucién de cargas, por el principio de
superposicion, sélo tendremos que considerar las cargas interiores, resultando
la ley de Gauss. Sin embargo, aunque esta ley se deduce de la ley de Cou-
lomb, es mas general que ella, ya que se trata de una ley universal, valida en
situaciones no electrostaticas en las que la ley de Coulomb no es aplicable.

7.7.2. Flujo para una superficie esférica con una carga
puntual en su interior
Considérese una superficie esférica de radio r con una carga puntual ¢ en su

centro. El campo eléctrico & es paralelo al vector superficie ds , vy el campo
es constante en todos los puntos de la superficie esférica. En consecuencia:

Op = [[LE-dS = [|,E.cos0dS = [s Ecos(0)dS = E [[,dS = E4xr?

7.7.3. Forma integral de la Ley de Gauss

Su forma integral utilizada en el caso de una distribucién extensa de carga
puede escribirse de la manera siguiente:

O = EdS =L I pdv =&

donde ® es el flujo eléctrico, E es el campo eléctrico, dS es un elemento
diferencial del area A sobre la cual se realiza la integral, () es la carga total
encerrada dentro del area A, p es la densidad de carga en un punto de V.
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7.7.4. Forma diferencial de la Ley de Gauss

Tomando la ley de Gauss en forma integral.

foB-aS = L [[f,pav

Aplicando al primer término el teorema Gauss queda

BV -Eyav =217 [, pdV

Como ambos lados de la igualdad poseen diferenciales volumétricas, y esta
expresion debe ser cierta para cualquier volumen, solo puede ser que:

La ley de Gauss es realmente ttil para resolver problemas complejos de ma-
nera relativamente sencilla.

7.7.5. Ley de Gauss para el campo magnético

Al igual que para el campo eléctrico, existe una ley de Gauss para el campo
magnético, que se expresa en sus formas integral y diferencial:

HBF) -dS =0
V- -B=0

Esta ley expresa la inexistencia de cargas magnéticas o, como se conocen
habitualmente, monopolos magnéticos. Las distribuciones de fuentes magné-
ticas son siempre neutras en el sentido de que posee un polo norte y un polo
sur, por lo que su flujo a través de cualquier superficie cerrada es nulo. En el
hipotético caso de que se descubriera experimentalmente la existencia de mo-
nopolos, esta ley deberia ser modificada para acomodar las correspondientes
densidades de carga, resultando una ley en todo andloga a la ley de Gauss
para el campo eléctrico. La Ley de Gauss para el campo magnético seria:

—

donde p,, densidad de corriente .J,,, la cual obliga a modificar la ley de
Faraday.

7.7.6. Ley de Coulomb

El teorema de Gauss aplicado al campo eléctrico creado por una carga pun-
tual es equivalente a la ley de Coulomb de la interaccién electrostética.

E=2,

4dmeqr?
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La ley de Coulomb también se puede deducir a través de Ley de Gauss.
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Capitulo 8

Anexo

8.1. Lista de integrales

n+1
» [atdr =T

+C (n+-1)

s [Lde=Inlz|+C

n [edr=e"+C
-faf”dx:ﬁ%—C (@>0,a#1)
» [sin(x)
» [cos(x)

dx = —cos(z) + C
dx
» [tan(x)dr = —1In|cos(z)| + C
d
d
dx

=sin(z) + C
» [cot(z)dr =In|sin(z)| + C

» [sec(z)dr = In|sec(z) + tan(z)| + C
s [csc(x)dr = —1In|csc(x) + cot(z)| + C
" [ = do = arcsin(z) + C

= [ = dz = arccos(z) + C

= [ s do = arctan(z) 4+ C

= [ 1 dz = arccot(z) + C

= | = dv = arcosh(z) + C' (x> 1)
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. [ ﬁ dr = arsinh(x) + C

. x\/% dx = arcsch(z) + C  (x #0)

8.2. Identidades trigonométricas

tgh = d 0#5+mk para ke€Z

cos @’

cot =Y gk para kEZ

sen 6’

secl) = -1 0+35+7k, para keZ

cos B’

cscl =5 O#7k, para keZ
cosf = sen (g + 9)
senf = —sen(—0)

sen?f 4+ cos?f =1

1

secl = 7sen(%+9)

sen(0) = sen( + 2m) cos(f) = cos(0 + 2m) tg(6) = tg(6 + )

sen(—0) = sen(0 + ) cos(—0) = —cos(f + )
tg(—0) = —tg(0) cot(—0) = — cot(x)

sen(a + ) = sena cos B + senf3 cos a

tg(a £ ) = tEgry e

sen(m £ 0) = Fsen(0)

cos(m £ 0) = — cos(6)

tg(m £0) = tg(0)

cse(m £+ 0) = Fese(h)

Formulas del angulo doble

sen(20) = 2senf cos 0

cos(20) = cos? 0 — sen?0 = 2cos? — 1 =1 — 2sen?d
tg(20) = %

Formulas de reducciéon de potencias
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8.3. SENO Y COSENO HIPERBOLICO

1—cos 260

20 _
sen“f = 5

14+cos 260

20 _
cos“ 0 = 5

Teorema del coseno

Dado un triangulo ABC, de lados a, b, ¢ y siendo v el dngulo opuesto al lado
¢, entonces:

A =a’>+ b —2abcosy

Teorema del seno

En todo triangulo se da la siguiente relacion entre la longitud de sus lados a,
b y ¢y el seno de sus respectivos angulos opuestos A, B y C:

a b c

sen(A)  sen(B)  sen(C)

8.3. Seno y Coseno Hiperbdlico

8.3.1. Definiciones
El seno hiperbdlico, sinh(zx), y el coseno hiperbélico, cosh(x), se definen como:

x —x

sinh(z) = ‘ _26
cosh(x) = e+2€

8.3.2. Propiedades

» Relacién fundamental:

cosh?(z) — sinh?(z) = 1

» Paridad:
cosh(—z) = cosh(z)

sinh(—xz) = —sinh(x)
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CAPITULO 8. ANEXO

» Derivadas: p
o sinh(x) = cosh(x)

da; cosh(z) = sinh(z)

= Integrales indefinidas:

/sinh(x) dx = cosh(z) + C
/COSh(ZL‘) dx = sinh(z) + C

8.3.3. Integrales Definidas

= Integral definida del seno hiperbdlico:

/ab sinh(z) dz = cosh(b) — cosh(a)

» Integral definida del coseno hiperbdlico:

/a ’ cosh(x) dz = sinh(b) — sinh(a)

8.4. Resumen de algunos resultados

» Area de una superficie esférica de radio r : A = 4mr?

i3

Volumen de una esfera de radior: V = 3

Area superficial de un cilindro: A = 2772 + 27rh

Volumen de un cilindro de base circular de radio r y altura h: V = mr?h

Diferencial de volumen en coordenadas esféricas:

dV = 4dxridr

Pues para una esfera de radio variable se tiene que

///DdV:/abr2(/027r/07rsen(<p)dgod6)dr:/abr247rd7,
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8.4. RESUMEN DE ALGUNOS RESULTADOS

s Diferencial de volumen en coordenadas cilindricas:
dV = 2whrdr

Pues para un cilindro circular de altura h y radio variable se tiene que:

///DdVZ/abT(/O%/OhdZdQ)dTZ/ab%hrdr

Resultados del Teorema de Gauss

Sean: S una superficie que encierra a V' Sélido, 7 normal exterior a S, F
campo con componentes con derivadas parciales continuas en un abierto que

contiene a S.
f f F.ijds = f f f div(F)dV
S 1%

Segun sea el campo el resultado del teorema de Gauss es el siguiente:

Si F = @ entonces ﬁ% ands = fffv div(@)dV =0

Si el campo es un campo rotor rot(G) entonces ffs rot(G)ijdS = fffv div(rot(G))dV =
0

Si F es con div(F) = 1 entonces #@ FijdS = fffv dV =Vol(V)

Si el campo es un campo gradiente 6f y si f es armonica, ffS ﬁf.ﬁds =
[If, div(V f)av = [[f, AfdV =0

“La divergencia de un campo puede considerarse como la medida de las fuen-
tes escalares del mismo”.

Resultados del Teorema de Stokes

Sean: C' curva cerrada con borde superficie S, F' campo con componentes
con derivadas continuas en un abierto que contiene a S.

f f rot(F ndS 7{ FdF

Valen las siguientes igualdades:

» Si el campo es @ (constante), ffs rot(a)nidsS =0
» Si S es cerrada, ffs rot(F ndS =0
= Si el campo es V¥, ffs rot(Vf)ﬁdS =0
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Capitulo 9

Respuestas de ejercicios

Ejercicios de la seccion 1.4.1
31 ... 10 155
5 V3
= Ejercicio 3 : 1) g(z) = 322 + 22— 10 ii) Si, ¢'(x) = f(z) = 3z +2
» Fjercicio 4 :1) ¢g(—2)=0, g(0)=4, g(1)=7, g(2) =9
20+4s51 —2<x<0
i) g(z) = S22 +2x+4si0<zx <1 iii) Si, ¢'(z) = f(z) =
22 +8x+1sil<xz<2
251t —2<x<0
2r+2s10<x<1
—dr+8s1l1l<ax <2

» Ejercicio 2 : i) y

Wl o

Ejercicios de la seccion 1.6.2

» Ejercicio 2:i) Vii) V, V| F

= Ejercicio 3:a) & b)e—1 ¢)1 d) 2 e) —12 f) =1 g)i h)-3 i)2
jus 1 1
3 2
i)3 k)tgt| =+3—1 1)arctge :g m) arc sen x :g n)
81 : - E
Z O) 4
2 38 In4
» Ejercicio 4: 1) - ii)ﬁ 111)% iv)



CAPITULO 9. RESPUESTAS DE EJERCICIOS

» Ejercicio 5: i) Si, pues f(z) es continua en [—1, 2] por ser polinémica.
a=1o0 a=-1

24 si—2<x<1

» Ejercicio 6: i) g(x) Z{ 9 :
— Pt si 1<z<3

» Ejercicio 7: 1) F'(z) =

» Ejercicio 8:1) y=—-3x+5 ii) y=—-2x+1

» Ejercicio 9: Derivando en ambos miembros (luego de verificar las hip6te-
sis del TFC) y despejando f(z), se obtiene: f(z) = e2* (14 2z) (14 e~ )"

= Ejercicio 10: f es derivable y por lo tanto es continua, por lo que puede
aplicarse el TFC para afirmar que A'(z) = f(z) y entonces:
i) Verdadero (h'(z) = f(x) y h"(x) = f'(x) ) ii) Verdadero (porque son
derivables tal como se vio en el {tem i)) iii) Verdadero (h/(1) = f(1) =0
)
iv) Verdadero ( A’ es estrictamente decreciente y continua y h'(1) =0
entonces h’ es positiva a la izquierda del 1 y negativa a la derecha del 1
entonces h es estrictamente creciente a la izquierda del 1 y estrictamente
decreciente a la derecha del 1, asi que tiene en x = 1 un maximo local )
v)Falso (por lo dicho en iv) ) vi) Falso (h"(x) = f'(x) < 0, entonces la
grafica de h es concava hacia abajo) vii) Verdadero ( A'(1) = f(1) = 0)

Ejercicios de la seccion 1.7.4

1 44 3 9 1
= Ejercicio 1: i) o ii) G iii) 5S’/Z iv) 3 v) 9 vi) 3
2

m
» FEjercicio 3: m > 0 y el area es >

37
= Ejercicio 4: vy
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Ejercicios de la secci6on 1.7.5

256
» Ejercicio 1: i) ST 53,62 ii) 8w

8 2
» Ejercicio 2: a) 7 b) " c) g d) g

31 35 1 ) 1
» Ejercicio 3: i) / — dx i) / T 3% dy + /1 Ty 3 dy —/ ™ dy
1 0 s 0

3

3 1\?2 3
iii)/ s <1+3) dx—/ 7 dx
1 T 1

Ejercicios de la secciéon 1.7.6
112
= Ejercicio 2: 3

1
= Ejercicio 3: 20 <6 — > ~ATm
e

Ejercicios de la secciéon 1.9.1

N

= Actividad: i) arcsenz+C i) arctgz+C  viii) 222 —gxg +223+C

-

Ejercicios de la seccion 1.10.1

6

t 2 1\2
» Ejercicio 1: iii) g6$+c ix) —cos Va2 +4+C xv) 3(1—)2+

T

C' xvii) ;arctg (g) +C

2]
» Ejercicio 2: i) Con la sustitucién v = Inz , resulta: / L -
In2 ! l’
udu =
9 (In2 ] 22 2
L - iii) Con la sustituciéon u = z%+1 , resulta: / L =
2, 2 0o 2241
5
511 1 Inb
— —du= 1 = —
/1 3 g M=yl =3
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CAPITULO 9. RESPUESTAS DE EJERCICIOS

Ejercicios de la seccién 1.11.1

1
» Ejercicio 1: iv) Considerando u = Inz y dv = dz , resulta du = —dz
x

1
y v=u= entonces:/lnxdm lenx—/—md$:xlnx—z+0
x
3 1
» Ejercicio 2: a) 6In6 — 5~ 5,75 b) \é_W—Q%O,le

5
« Ejercicio 3:/ rln?z dr = (5025 — 10In5 + 8) ~ 15,26
1

Ejercicios de la secci6on 1.12.1

» Ejercicio 1: / 7 (z+senz)’ dr = % + 5% ~ 57,14
0
» Ejercicio 4: 127
» Ejercicio 5: ii) Con la sustitucién = = coshu, con u > 0, resulta:

4
/ Va2 —1dx =
1
In(4+ \/ﬁ) 2 In(4+ \/ﬁ) 9
:/ \/cosh“u — 1 senhudu:/ senh”u du =
0

0

In(4+/15) u_ pmu 2 1
:/ <626> du:”_:2\/15—§ln(4+1n15)%6,71
0

Ejercicios de la seccién 1.13.1

Lo " 1 x
» Ejercicio 1: ii) In|z| — 5 arc tg(

1
2)+21n(x2+4)+0
iii) z —In|z|+2In|z - 1|+ C

Ejercicios de la seccién 2.1.1

= Ejercicio 1:
a) La integral es impropia pues el dominio de integracién no es acotado.
Es divergente (no se le puede asignar un valor).

b) La integral es impropia pues el dominio de integracién no es acotado.
0

d
Es convergente. / R

—00 ($ — 1)2
c¢) La integral es impropia pues el dominio de integracién no es acotado.
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Es convergente. / e “dr=1.

d) La integral es impropia pues el dominio de integracién no es acotado.
oo
Es convergente. / ze™™ dz = 0.

—0o0
f) La integral es impropia pues el dominio de integracién no es acotado.
Es divergente (no se le puede asignar un valor).

g) La integral es impropia pues el dominio de integracién no es acotado.

too 1 m
Es convergente. / dr = — —arctg?2.
2 1+ a2 2
h) La integral es impropia pues el dominio de integracién no es acotado.

Es divergente (no se le puede asignar un valor).
1 .
————— , que es continua en
V1—a22’
1

[0,1), tiene en x=1 una discontinuidad asintética: lim ——— =

z—=1— /1 — 12

i) La integral es impropia pues f(z) =

1 1 s
400 . La integral es convergente. / ———dx = —
g L vT=2 T e
2
k) La integral es impropia pues f(z) = (2361)2 , que es continua en
T4 — 3
[0,1) U (1, 3], tiene en x=1 una discontinuidad asintotica:
2x n i 2x n
im ——5 =+ im —5 =+
1= (22 — 1)3 Yo (22 —1)3
. 3 2x
La integral es convergente. / ——dr =9
0 (z2—1)3

Ejercicios de la seccion 2.2.2

» Ejercicio 3:
i) li_>m a, = 0 . La sucesion es convergente. Converge a 0.
n—oo

ii) lim a, = oo . La sucesién es divergente.
n—oo

N[ =

iii) lim a, = — . La sucesion es convergente. Converge a
n o

N[

iv) lim a, = - . La sucesién es convergente. Converge a

n—oo

N | O | —

vi) li_}m a, no existe. La sucesion es divergente.
n—oo
vii) lim a, = 0. La sucesién es convergente. Converge a 0.
n—oo
ix) La sucesion {r"} converge a 0si |r| <0, diverge si |r| >0,
converge a 1 sir =1y diverge si r = —1.
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CAPITULO 9. RESPUESTAS DE EJERCICIOS

Ejercicios de la seccién 2.5.1

o0

n
» Ejercicio 1: i) Z <—> es una serie geométrica de razon r = —% ,
n=1 2
3 _ 3 .
’—5‘ =5 >1 por lo tanto es divergente.
00 23n
.o . 2 . 7 o § § 8
ii) 231 T ©s una serie geométrica de razén r = § | 3‘ > 1 por
n=
lo tanto es divergente.
o0 1 n
i) (—4) es una serie geométrica de razén r = —1 | ‘—i’ =
n=1
i < 1 por lo tanto la serie es convergente. El primer término es —i.
1
—1 1
La suma de la serie es S = —4—— = ——
1— (_Z) 5

iv) S, =1— y/n+ 1. La serie es divergente.

9 S5 G s

. La serie es con-

= n=1 \1 n +
vergente. Susumaes S = 1 vi)i ! —i( Lo )
s =T O R = AR S
1
La serie es convergente. Su suma es S = £
16 1
viii) Converge. La suma es S = 5 ix) Converge. La suma es S = —5
x) Diverge.
» Fjercicio 4: S =7
Ejercicios de la seccion 2.9
= Ejercicio 1:
2n? — 3
a) i)Por criterio de la divergencia, ya que lim aonEs 2#0,

n—00 nZ+1
la serie es divergente. En ii) y iii) el criterio de la divergencia no permite
decidir el comportamiento.
b) ii) Convergente. iii) Divergente.

» Ejercicio 3: i) Convergente (puede aplicarse el criterio de comparacién
o)
1
con »  —
n=1 3

o0
ii) Divergente. (puede aplicarse el criterio de comparacién con Z

e
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[e.9]
1
iii) Convergente (puede aplicarse el criterio de comparacién con » =
n=1
)

» Ejercicio 4:
i) Divergente (puede aplicarse el criterio de comparacién en el limite

> 1
con;ﬁ)

ii) Convergente (puede aplicarse el criterio de comparacion en el limite
o0
1
con ) — )
n=1 n
iii) Divergente (puede aplicarse el criterio de comparacion en el limite
o
1
—=)
n=1 \/ﬁ

= Ejercicio 5: ambas convergentes.

con

» Ejercicio 6: i) Convergente. ii) Con el criterio del cociente no se puede
determinar el comportamiento (ver ej. 4iii) )

» Ejercicio 7: i)No se puede aplicar el criterio de Leibniz. La serie es
divergente (puede probarse con el criterio de la divergencia).
ii) y iii) ambas convergentes (puede aplicarse el criterio de Leibniz).

» Ejercicio 9: i) Convergente ii) Divergente iii) Divergente iv)Convergente
v)Convergente vi)Divergente vii) Divergente viii)Convergente ix) Di-
vergente x) Divergente xi) Divergente xii) Convergente xiii) Divergente
xiv) Convergente xv) Convergente xvi) Convergente xvii) Divergente

» Ejercicio 10: i) Divergente ii) Divergente iii) Absolutamente convergente
iv) Condicionalmente convergente v) Absolutamente convergente vi)
Divergente.

Ejercicios de la secciéon 3.2.1

» Ejercicio 1: i) arctgx + arctgy = C' (teniendo en cuenta que
tgA+tgB . tgC' —x
tg(A+B)= ———— bt Y=
g(A+B) 1—-tgAtgB se obtiene: ¥ 1+xth')
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CAPITULO 9. RESPUESTAS DE EJERCICIOS

1 _12 12 1
if) In o] + 5 In(l +4?) = C i) ( 2 ) _(y+2 ) Hn‘lirz _
iv) y:e% Vi) —e_y(y—|-1) :$_1n<1+6x)+cv

» Ejercicio 2: y = (z 4+ 1)*(z + 2)?

Ejercicios de la secciéon 3.3.1
» Ejercicio 1: 1) 3z%y +y*=C ii) xy®> +3yz? —y?* =C

» Fjercicio 2: y +senxy =1

Ejercicios de la secciéon 3.4.5

» Ejercicio 1: 1) y(z) = (22 +C)e ™ ii) y(z) = (—cosz +C)x
1

1 1

» Ejercicio 2: y(z) =
cos

» Ejercicio 3: y(z) = —z — 1 4 2¢*

Ejercicios de la seccion 3.5.2

» Ejercicio 2: i) El teorema se aplica cualquiera sea (zo,y0) € R? y
garantiza existencia y unicidad de la solucién al PVI dado. ii) i) El
teorema se aplica cualquiera sea (xg,%9) tal que yo < z2 y garantiza
existencia y unicidad de la solucién al PVI dado. iii) i) El teorema se
aplica cualquiera sea (zg,y9) tal que yy # o garantizando existencia
y unicidad de la solucién al PVI dado.

» Ejercicio 3: i) Estd garantizada la existencia y unicidad de la solucién

/! _ ex af(x7y> o ex
por ser Y = f(z,y) = m y Ty = _W
continuas en D = {(x,y) € R*/y >0} , con (0,1) € D . La solucién

SN

y(x) = \/1+an

ii) Estd garantizada la existencia y unicidad de la solucién por ser
1 Of (x, 1+1 .
y = flz,y) = Y UG = =Y continuas en D =
sen oy sen
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{(z,y) eR*/0<z <mAy>0} ,con (5,e) €D . Lasolucion es:

Jm 1
y(z) = e 1+ cosz _ ,cosecx + cotgx

Ejercicios de la seccion 3.6

= Modelo de crecimiento de una célula: la expresiéon para m(t) es

In2
m(t) = meeXt. El valor de K es K = §—5

= Modelo de crecimiento restringido de una poblacion:
N(t) = B — (B — Ny)e Kt
= Modelo de enfriamiento de Newton: T'(t) = (Ty — T,)eXt +T,.
Con T,=20, T(0) =T, =100 y T(20) =60 se obtiene
T(t) = 80e~ 55t + 20 vy la temperatura llegard a los 30 grados en 60
minutos.

Ejercicios de la secciéon 3.7.1

x
= Ejercicio 1: La ecuacién diferencial asociada a F; es y = 5 y la
zy
Y . . , 2xy
ecuacion diferencial asociada a Fp esy' = ———.
e =y
y? — % 2xy .
Como ) = —1, las familias F; y J3 son ortogonales.
2y x? —y?

3
» Ejercicio 2: i) §y2 +22=C ii) 22 +¢y*=C iii) y*=2z+C
iv) y=Cz?

Ejercicios de la seccion 4.1.1

» Actividad: ii) Si f(z,y) = K V(z,y) € R = [a,b]x[c,d], P = {R1, Ry, ...,

es una particion de Ry P € R; resulta:

> f(P)AR; = ZKAR K AR; = K.area(R)

=1 =1

entonces f f(z,y)dA = hm Zf (PY)AR; = K.area(R)
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CAPITULO 9. RESPUESTAS DE EJERCICIOS

i) Vol = f(1,1) + f(2,1) + f(1,2) + f(2,2) ~ 34

Ejercicios de la seccién 4.1.3
32 . . 8y 8
» Ejercicio 1: i) 16 ii)? iii)1 vi) / / " dxdy = 6e® + e
1 JO

» Ejercicio 2:

» Ejercicio 3: i)

\

ii)
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w'—.ﬁ

=
© ey

s vy = |  1x vy

» Ejercicio 5:

21
d) 7 '
1 o LjeslntdA:Z

1
9 /lx J'J'(y_sz) d=_2
\71 . 3

-1

Ejercicios de la seccion 4.2.1

28—z 64
« Bjercicio 1: i) A = / / dydz = 2
—2 Jz2 3
3712 64
» Bjercicio 2: Tp,pp, = 3 = 3= 58
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CAPITULO 9. RESPUESTAS DE EJERCICIOS

4
» Ejercicio 3: 3

2 rV4—z? 8
» Ejercicio 4: b) V = / / (3 —y) dydx = —3 + 37~ 6,76
0

0
2 2y 16
= V4 —y? dedy = —
/0/0 v =g
2 22—z 2 r2—z 4
:/ / (B—x—y)—1] dydx:/ / (2—z—y) dydx = =
0 Jo , o Jo 3

1 -z
h) V= / / (3 —y — 2z) dydz (Nota: proyectando el sélido en el
0 Jo

plano zy el célculo del volumen puede plantearse con dos integrales:

V:/OS/OS_I(3—x—y)dydx—/02/02_z (B3 =z —y)— 1] dydx)

» Ejercicio 5: (z,y) = (éé,O)

Ejercicios de la seccién 4.3.1

) [ @ rnraa - -G~ 2

= ii) Area(R) =1
5

0o ~ 0,59

= iii) Area(R) =1

Ejercicios de la seccién 4.4.1

. i) R= {(r,@)/

» vi) R= {(7’,9)/0§9§ Z/\O§r§4sen9}u{(r,9)/z S@S;T/\OgrgélcosH}
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» vil) R= {(r,@)/g <9< 5ér/\2§7“§4sen9}

Ejercicios de la secciéon 4.5.1

» Ejercicio 1: ii)ffR flz,y)dA = (2 — Ve)2r

= Ejercicio 2:

i) 41
. %40050
, Area(R):j J'rdrdﬁzﬁ—2
I, 0
% %
0

&

1 o5 05 15
54
: L

A,rea(R)='f '[ rdrd49=2—%

% 1+cos 6

» Ejercicio 3: Volumen = 18 (1 - ﬁ) T

<



CAPITULO 9. RESPUESTAS DE EJERCICIOS

_8
sen 6

37
= Ejercicio 4: Masa:/4 / r3drdf = ...
= N
4

sen 6

2q

» Ejercicio 5: fprom = 3

Ejercicios de la seccion 5.1.2

= Ejercicio 1:
2 1 4 14
i)///x2y2,zdzdydx:§ , V={(2,4,2)/2<2<4N0<y<1A1<z<2]
1 Jo J2

1 prz prr—y 1
11)/// xdzdydx:§ , V=A(z,4,2)/0<z2<z—yAN0<y<zA0<z<
o Jo Jo

2 r2—x pd—2x—2y
» Ejercicio 3: 1) Vol = / / /2 dzdydr = 2
0 Jo

—z—y
2

R T 2
i) VOl:/O/—l/O dedydr =

1 11—z 2—2z 2
iii) Vol = / / / dydzdx = -
o Jo 0 3

312




1 V122 V1—22 92
iv) Vol = / / / dzdyde = =
0 Jo 0 3
Vi—z2 p3—z A— x2
iv) Vol = / / / dzdydx = / / — x)dydr =
Va—z? 4— x2

2m
/ / —rcos@)rdrdd = 12w
o Jo

Ejercicios de la seccion 5.3.1

» Ejercicio 2:
) V={(02/0<0<2mA0<r<2Ar <z <4}

2w 2 pd
Vol(V) = / / / r dzdrdd = 87
0 0 Jr2

2
ii) V:{(r,&,y)/OSGSQW/\OSTS \/§A%§y§ 3—r2}

2 \/5 m
Vol(V) = / / /2 r dydrdf = (\/_ - 2) 27

ii) V = {(r92/0<9<27r/\0<7’<a/\ Va?—r2<z< \/CLQ—TQ}

27 Va2—r2 4
Vol(V / / / T dzdrdf = §7W3
T p4cosd V16—7r2
» Ejercicio 3: Masa = fff z dV = / / / z r dzdrdf =
v o Jo 0
107

Ejercicios de la seccion 5.4.1

» Ejercicio 1: i) V:{(p, ,go)/()<9<27r/\4 <p< 3/\0<p<2}

2r %
VOZ(V):/ /73/ p2seng0dpdg0d6’:§(\/_—1)7r
o Jz Jo

1
i) V= {(p,Qﬁp)/O 9§27r/\0§90§z/\0§p§ }
Cos
27
Vol(V / // p?sen @ dpdapd@——
iii) V:{(P79790)/0§9§27T/\Z§%0Sg/\OSP§2005<P}
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2r % r2cosgp 9 1
Vol(V) = / /ﬂ / p~sen ¢ dpdpdd = 37
o Jz Jo

3

» Ejercicio 2: 1) fprom = 1

7 7 5
» Ejercicio 3:i)) Vol = :;,;T iv) Vol = % vi) Vol = g vii) Vol = %

Ejercicios de la seccion 6.3.2
L 88
» Ejercicio 1: i) 3 ii) v3(e™ — 1) iii) 3v/2senh?2

» Ejercicio 2: i) S(t) = va? +b*t con 0<t<2rm

s S s
———— .a sen ,b :
Va2 +b? Vva? + b? \/a2~|—b2>

C:7=r%(s) = (a cos

s € 0,27 Va? + b?]

C:F_r;(s)_<<\j§+1> cos [m (\ji—i—lﬂ ,(\jﬁH) sen lln (ji

Ejercicios de la seccion 6.6.1

= Ejercicio 1: .
i) div(F)=2x+2y+2z ; rot(F)=

—

ii) div(F) = e cos+ye¥ cosz+1 ; rot(F) = (0, 0,e"seny — e¥ sen x)
» Ejercicio 3: i) Campo vectorial ii) Campo escalar iii) Campo vectorial

iv) Campo escalar v) Campo vectorial

Ejercicios de la seccion 6.7.1

8010 b) 3
3 2

» Ejercicio 1: a)
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1
» Ejercicio 2: b) — (17% - 1)

» Ejercicio 3: a) 3

Ejercicios de la secciéon 6.8.3

» Ejercicio 1: a) 31 ¢) 0 d) 10 e) —2
7 34

» Ejercicio 2: b) — ¢) —

jercicio 2: a) 0 b) 10 c) -

» Ejercicio 3: 3272

Ejercicios de la secciéon 6.9.3

» Ejercicio 1: a) # b) —127 d)Para C : 22 +y*> = 1 , no se puede
aplicar el teorema pues las componentes de F' no estan definidas en
(0,0) y ese punto pertenece a la regién limitada por C' (no se satisfacen
las hipétesis del teorema); la integral debe calcularse en forma directa
(observar que las componentes del campo son continuas en R? — (0, 0))
y el resultado es: 0. Para C : (z — 2)? + 3*> = 1, puede aplicarse el
teorema (verificar que se cumplen las hipétesis) y el resultado es: 0. g)

32

3

N 3
» Ejercicio 2: a) 87 d) )

-Ejerciciof):]{ﬁl-d??:() ?{F’;-dfz 27
c c

Ejercicios de la seccién 6.10.1

» Ejercicio 1: a) f(z,y) = 2%y — y es una funcién potencial de F en R2,
luego, el campo vectorial es conservativo en R?. El valor de la integral
se puede obtener aplicando el teorema fundamental para integrales de
linea: f(3,1) — f(1,0) = 8.

b) f(z,y) = €*¥ — y? es una funcién potencial de F en R, luego, el
campo vectorial es conservativo en R2. El valor de la integral se puede
obtener aplicando el teorema fundamental para integrales de linea:

£(0,4) — f(1,0) = —16.
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¢) flx,y,z) = ya® + x22 es una funcién potencial de F' en R3, luego, el
campo vectorial es conservativo en R3. El valor de la integral se puede
obtener aplicando el teorema fundamental para integrales de linea:
f(4,-1,0) — f(2,1,3) = —38.

= Ejercicio 2: 0

22 2 2
» Ejercicio 4: a) f(x,y,2) = 5 + % + 5 ¢ una funcién potencial de

F en R3, luego, el campo vectorial es conservativo en R3. El valor de
la integral se puede obtener aplicando el teorema fundamental para
integrales de linea: f(1,0,47) — f(1,0,0) = 872

= Ejercicio 5:
a) No es conservativo en R3.
b) No es conservativo en R3.
c¢) Es conservativo en R3.
d) Es conservativo en R* — {(0,0,0)}.
e) No es conservativo en R? — {(0,0)}.

Ejercicios de la seccion 7.2.1

» Ejercicio 1:
a) S es una superficie cilindrica circular de radio a, (S : % + y* = a?)

- or or - - -
N=_—Xx—=acosui+asenuj+0k
ou Ov ' ‘ .
b) S es una superficie esférica de radio a, (S : 22 + y* + 2% = a?)
- or or - - -
N = 9 X 30— —a?cosusen®v i —a’senusen®v j —a®senvcosv k
u v

» Ejercicio 2:
a) dma? ¢) 4 d) 2 ) 32v2 1 g %(5%_1) h) =)
a*(m — 2)

Ejercicios de la secciéon 7.3.1
Ejercicio 1: a) 37 c¢) gmf‘ e) E (17% — 1)
) ' 3 4
a a a
= Ejercicio 2: Centroide : ,,z(,,)
jercicio entroide : (Z,Y,2) 55
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Ejercicios de la secciéon 7.4.3

1
» Ejercicio 1: b) c) —5 d) —4m e) —187

2
« Ejercicio 3: i) —a® i) ga?’

o[ 5 o1

Ejercicios de la seccion 7.5.2

» Ejercicio 1: a) 4m o —4m , (segln sea la orientacién de elegida en la
curva) ¢) 0 d)0 e)0

» Ejercicio 2: a) 0 b) 47w

Ejercicios de la seccion 7.6.2

» Ejercicio 1: a) —16 b) 3 c¢)4nr d) 327
» Ejercicio 2: a) 0 b) 4w

3
» Ejercicio 5: El flujo es maximo e igual a 5 sia=3y b= 7
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