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¡Bienvenidos!
Matemática B es una materia del segundo semestre del primer año de todas
las carreras de la Facultad de Ingeniería de la UNLP. En esta asignatura se
estudiarán los conceptos y métodos más importantes del Cálculo Integral y
Vectorial para funciones reales de una y varias variables, junto con aplica-
ciones a problemas geométricos y físicos, además de una introducción a las
ecuaciones diferenciales ordinarias de primer orden y a las series numéricas.

La matemática ocupa un lugar central en la formación de un ingeniero, no
sólo como herramienta de cálculo, sino como un lenguaje capaz de describir
y modelar fenómenos del mundo real. Los modelos matemáticos permiten
representar situaciones reales, comprender sus dinámicas, anticipar compor-
tamientos futuros y, en consecuencia, tomar decisiones fundamentadas para
proyectar, optimizar o controlar sistemas y procesos. Desde el cálculo de
áreas, volúmenes, longitudes y centros de gravedad, hasta el análisis del mo-
vimiento de un fluido, las fuerzas y la distribución de masas, los conceptos y
herramientas abordados en esta materia serán clave para modelar y resolver
problemas de la ingeniería.

En Matemática A, los problemas de la recta tangente y de la velocidad sir-
vieron para introducir el concepto de derivada, idea central del Cálculo Dife-
rencial. En Matemática B, los problemas del área y del desplazamiento per-
mitirán introducir el concepto de integral definida y establecer su conexión
profunda con la derivada, a través del Teorema Fundamental del Cálculo.
En Matemática C se abordará otra importante rama de la matemática —el
Álgebra Lineal— y se continuará el estudio de Ecuaciones Diferenciales y
Series Numéricas iniciado en esta asignatura.

Las clases de Matemática B son teórico-prácticas y promueven un estudio
activo, donde el estudiante es protagonista al interactuar, resolver problemas
y debatir con sus pares, guiado por los docentes. Así, se adquieren no solo
técnicas matemáticas, sino también habilidades para razonar, argumentar y
enfrentar problemas complejos.

Aspiramos a que el tránsito por Matemática B sea significativo, fortaleciendo
el pensamiento crítico y la capacidad de abstracción. Esperamos que este libro
potencie ese recorrido, ofreciendo una base sólida para futuras asignaturas y
para la práctica de la ingeniería, donde la matemática se revela como una
aliada imprescindible para pensar, diseñar, modelar, construir e innovar en
contextos complejos y cambiantes.
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Capítulo 1

Integral en una variable

El concepto de integral definida tuvo su origen en un problema geométrico:
el cálculo del área de una región plana cuya frontera no está formada en su
totalidad por segmentos rectilíneos. Es éste uno de los grandes problemas de
la historia de la matemática pues, más allá de su importancia dentro de la
propia disciplina, está relacionado con incontables aplicaciones.

Las figuras planas con bordes rectos se denominan en geometría polígonos
(triángulos, rectángulos, trapecios, rombos, entre otras). Están compuestas
por una secuencia finita de segmentos rectos consecutivos que encierran una
región en el plano, y los puntos de unión entre los segmentos se llaman
vértices.

Sabemos que si una figura plana tiene bordes rectos, es posible calcular su
área, particionando por ejemplo en triángulos, y sumar sus áreas, como se
muestra en la figura siguiente.
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CAPÍTULO 1. INTEGRAL EN UNA VARIABLE

En esta primera parte del curso estudiaremos como resolver, desde la ma-
temática, el problema de calcular el área de una figura plana cualquiera
sea.

Actividad

En cada una de las tres situaciones de la siguiente actividad nos referimos a
un móvil que se desplaza sobre una recta. Observarán en cada caso la relación
entre, el área de la región limitada por la gráfica de la función velocidad y el
eje de las abscisas en un intervalo de tiempo dado, y el desplazamiento del
móvil en ese intervalo. Entenderemos por desplazamiento a la distancia que
existe entre la posición inicial y la final de un cuerpo en movimiento.

Situación 1: Un automóvil se desplaza en línea recta y su velocidad es
constante e igual a 80 km/h.

• Calculen el desplazamiento entre t = 0 y t = 4 (t representa el
tiempo y se supone expresado en horas).

• Grafiquen la velocidad en el intervalo [0, 4], colocando la variable
independiente t en el eje de abscisas y v(t) en el eje de ordenadas.

• Comparen el desplazamiento entre t = 0 y t = 4 con el área
debajo de la gráfica de la función velocidad en el intervalo [0, 4].

Situación 2: Un automóvil se desplaza en línea recta y su velocidad en
el tiempo t es v(t) = 20t (km/h) .

• Calculen el desplazamiento en [0, 1], en [1, 2], en [2, 3] y en [3, 4].

• Calculen el desplazamiento en [0, 4].

• Grafiquen la velocidad y comparen, en cada intervalo, el despla-
zamiento con el área debajo de la gráfica de v(t).

Situación 3: Un automóvil se desplaza en línea recta y su velocidad en
el tiempo t es v(t) = t2 (km/h) .

• ¿Cuántos kilómetros se desplaza el automóvil entre t = 0 y
t = 4? .
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1.1. ÁREA DEBAJO DE UNA GRÁFICA

• Grafiquen la velocidad. Señalen en el gráfico la región cuya área
coincide (omitiendo unidades) con el desplazamiento en [0, 4]. ¿Có-
mo calcularían el área señalada?

1.1. Área debajo de una gráfica
Para una función lineal o lineal a trozos, el cálculo del área de la región
limitada por la gráfica de la función y el eje x en un intervalo dado es fácil:
basta con sumar áreas de rectángulos y triángulos. Pero, ¿cómo calculamos
el área debajo de la gráfica de v(t) = t2 en el intervalo [0, 4] ? Podemos
aproximar el valor del área con la suma de las áreas de un número finito de
rectángulos como en los siguientes ejemplos:

Ejemplo 1: Dividamos el intervalo [0, 4] en subintervalos de longitud
1. Sumemos las áreas de los rectángulos que tienen base en cada uno
de esos subintervalos y altura igual al valor de la función en el punto
medio del subintervalo.

Área ≈ v(1
2) · 1 + v(3

2) · 1 + v(5
2) · 1 + v(7

2) · 1 = .........

Ejemplo 2: Dividamos el intervalo [0, 4] en subintervalos de longitud
1
2 . Sumemos las áreas de los rectángulos que tienen base en cada uno
de esos subintervalos y altura igual al valor de la función en el punto
medio del subintervalo.

Área ≈ v(1
4) · 1

2 + v(3
4) · 1

2 + v(5
4) · 1

2 + v(7
4) · 1

2+
v(9

4) · 1
2 + v(11

4 ) · 1
2 + v(13

4 ) · 1
2 + v(15

4 ) · 1
2
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CAPÍTULO 1. INTEGRAL EN UNA VARIABLE

Ejemplo 3: Si dividimos el intervalo [0, 4] en subintervalos de longitud
1
16 y repetimos el procedimiento... ¿cuántos términos debemos sumar?

Para escribir la suma, en este caso, sería conveniente contar con una
notación abreviada, y lo haremos usando la notación llamada sigma.

Notación sigma

La letra griega
∑

(sigma) es el símbolo que se utiliza para indicar de
manera abreviada una suma de varios términos:

n∑
i=1

ai = a1 + a2 + a3 + ... + an

donde i es un índice que puede tomar valores naturales o enteros, en
este caso toma los valores naturales desde 1 hasta n, y ai es el término
general de la sumatoria.

Propiedades de la notación sigma Las propiedades de la notación sig-
ma, tienen validez por ser propiedades de la operación suma en el conjunto
de los números reales. Algunas propiedades son:

La conmutatividad y la asociatividad de la adición, hacen que el resul-
tado de una serie (finita) de adiciones, no dependa del orden en el cual
los términos son considerados.

t∑
i=s

ai +
t∑

i=s

bi =
t∑

i=s

[ai + bi]

t∑
i=s

ai −
t∑

i=s

bi =
t∑

i=s

[ai − bi]

t∑
i=s

ai =
t+p∑

i=s+p

ai−p

n∑
i=1

ai +
t∑

i=n+1
ai =

t∑
i=1

ai

n∑
i=m

C = C · (n−m + 1) donde C representa una constante

n∑
i=m

Cai = C
n∑

i=m

ai donde C representa una constante
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1.1. ÁREA DEBAJO DE UNA GRÁFICA

n∑
i=1

i = n(n + 1)
2 (suma de los primeros n números naturales)

n∑
i=1

i2 = n(n + 1)(2n + 1)
6 (suma de los cuadrados de los primeros n

números naturales)

Volviendo a la actividad y con esta notación la suma del ejemplo 1 se puede
expresar de la siguiente manera:

4∑
i=1

(2i− 1
2

)2

La expresión
(2i− 1

2

)2
es el término general de la sumatoria. Si se reemplaza

en el término general el índice i sucesivamente por 1, 2, 3 y 4 intercalando el
signo + , se obtiene: (1

2

)2
+
(3

2

)2
+
(5

2

)2
+
(7

2

)2

La suma del ejemplo 2 se puede expresar de la siguiente manera:
8∑

i=1

1
2

(2i− 1
4

)2

¿Puedes dar una expresión que dependa de n para esta suma? Expresen us-
tedes la suma del ejemplo 3 usando la notación sigma, e intenten encontrar
su suma en función de n.

Volviendo al problema que nos ocupa y al procedimiento seguido en los ejem-
plos, debemos decir que, para establecer la altura de los rectángulos, en vez
de elegir el punto medio de cada uno de los subintervalos, podríamos haber
elegido el extremo derecho, el extremo izquierdo o un punto cualquiera inte-
rior. También, los subintervalos con los que dividimos al intervalo [0, 4] en
cada ejemplo podrían haber tenido longitudes diferentes.

Considerando cada vez más rectángulos, con bases (todas) cada vez más
pequeñas, esperamos tener una mejor aproximación para el área de la región.
Cierto es que el procedimiento es tedioso.

Para ayudarte con este procedimiento puedes usar la aplicación de
GeoGebra y observar los valores que se obtienen de las sumas a medi-
da que se aumenta la cantidad de rectángulos. ¿Estas sumas, convergen
a un valor?
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CAPÍTULO 1. INTEGRAL EN UNA VARIABLE

Hemos visto cómo podemos hallar de manera aproximada el área debajo de
la gráfica de una función pero... ¿cuál es el valor exacto?

1.2. Integral definida

Suma de Riemann

Se llama Suma de Riemann para una función f acotada en el intervalo
cerrado [a, b] a lo siguiente:

n∑
i=1

f(x∗
i )∆xi

donde P : a = x0 < x1 < ... < xi−1 < xi < ... < xn = b es una partición
del intervalo [a, b] , ∆xi = xi − xi−1 es la longitud del subintervalo
[xi−1, xi] y |P| = máx {∆xi} es la norma de la partición|P| x∗

i ∈
[xi−1, xi].

Definición de integral definida

Si para una cierta función f , existe el límite de la Suma de Riemann
cuando n (cantidad de intervalos) tiende a infinito y la norma de la
partición |P| tiende a cero y es independiente de los valores de x∗

i ∈
[xi−1, xi], se dice que la función es integrable y se anota:

∫ b

a
f(x)dx = ĺım

|P|→0

n∑
i=1

f(x∗
i )∆xi

Advertir que, la integrabilidad, de una función es una propiedad local, es
decir que depende del intervalo en el cuál se lo esté analizando. Además en
general, para cualquier función dada, no es sencillo analizar su integrabilidad
en un intervalo a partir de la definición, ya que habría que contar con una
forma general de la suma de Riemann para luego a ello calcularle el límite, y
en caso de existir, se obtendría el valor de la integral definida. Pero hay un
resultado importante que arroja el siguiente teorema que soluciona algunos
de los inconvenientes antes mencionados.
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1.2. INTEGRAL DEFINIDA

Volvamos al problema del móvil, y del cálculo del desplazamiento.

Cálculo de la suma de Riemann (superior) de la función f(x) = x2

en el intervalo [0, 4]:

Para ello tomaremos los valores del extremo superior para cada subintervalo
y luego calcularemos el límite cuando el número de subintervalos tiende a
infinito.

Paso 1: Definición de la suma de Riemann superior

Consideremos que dividimos el intervalo [0, 4] en n subintervalos de igual
longitud. La longitud de cada subintervalo será:

∆x = 4− 0
n

= 4
n

Los puntos de división son:

xi = 0 + i ·∆x = 4i

n
para i = 0, 1, 2, . . . , n

La suma de Riemann usando el valor en el extremo superior de cada subin-
tervalo se define como:

Sn =
n∑

i=1
f(xi) ·∆x

Donde f(xi) =
(

4i
n

)2
.

Paso 2: Expresión de la suma de Riemann

Sustituyendo f(xi) =
(

4i
n

)2
y ∆x = 4

n
:

Sn =
n∑

i=1

(4i

n

)2
· 4

n

Esto se simplifica a:

Sn = 64
n3

n∑
i=1

i2

Paso 3: Usar la fórmula para la suma de los primeros n cuadrados
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CAPÍTULO 1. INTEGRAL EN UNA VARIABLE

La suma de los primeros n cuadrados es:

n∑
i=1

i2 = n(n + 1)(2n + 1)
6

Sustituyendo esto en Sn:

Sn = 64
n3 ·

n(n + 1)(2n + 1)
6

Simplificamos:

Sn = 64(n + 1)(2n + 1)
6n2

Paso 4: Calcular el límite cuando n tiende a infinito

El límite de Sn cuando n tiende a infinito es el valor de la integral definida
de f(x) = x2 en el intervalo [0, 4]:

ĺım
n→∞

Sn = ĺım
n→∞

64(n + 1)(2n + 1)
6n2

Expandiendo y simplificando:

ĺım
n→∞

Sn = ĺım
n→∞

64 · (2n2 + 3n + 1)
6n2 = 128

6 = 64
3

Por lo tanto, el valor de la suma de Riemann en el límite, que es el valor de
la integral definida, es:

∫ 4

0
x2 dx = 64

3 ≈ 21,33

Observación: En este caso, hemos logrado encontrar una expresión general
para la Suma de Riemann en función de n, lo que nos ha permitido calcu-
lar su límite cuando n tiende a infinito. Dado que este límite existe, hemos
obtenido el valor exacto de la integral definida de la función f(x) = x2 en el
intervalo [0, 4]. Sin embargo, no siempre es posible encontrar una expresión
en función de n para la Suma de Riemann de otras funciones. Más adelan-
te, exploraremos otro procedimiento que, bajo ciertas condiciones, permite
calcular una integral definida sin recurrir al límite de las Sumas de Riemann.
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1.2. INTEGRAL DEFINIDA

Teorema

Si una función f : [a, b] → R es continua en [a, b] o es continua
a trozos en [a, b] (o sea, es continua en [a, b] salvo en finitos puntos
c1, c2, . . . , cn en los que existen los límites laterales) entonces la función
f es integrable en [a, b] y su integral vale el número que resulta del
límite de la suma de Riemann.

Este Teorema es fundamental, ya que nos asegura que toda función continua
o continua a trozos, es integrable. Esto quiere decir que el límite de la suma de
Reimann existe, y ese valor es el que se asigna a la integral definida, aunque
aún no tengamos alguna otra estrategia para calcularlo. La demostración no
la presentaremos aquí en este curso, pues requiere del conocimiento de una
matemática más avanzada.

Ejemplo de funciones integrables, en cualquier intervalo cerrado de la recta
real, son las funciones polinómicas: a0 + a1x + a2x

2 + ... + anxn, funciones
escalonadas, función exponencial:ex, seno: sen(x) y coseno: cos(x). ¿Y la
composición de estas funciones, resultan ser funciones integrables? Si, pues la
composición de funciones continuas, es una función continua, así por ejemplo:
cos(x2 + 1), ex2 , (sen(x))4, son integrables.

Sin embargo, el teorema no asegura, por ejemplo que funciones como f(x) =
1/x sea integrable en el intervalo [0, 1] ya que esta función no es continua
en x = 0 donde presenta una asíntota vertical. Pero, si es integrable, en el
intervalo [1, 2] o en el intervalo [−3,−2], por ejemplo.

1.2.1. Propiedades de la integral definida

1. Se define
∫ a

a
f(x)dx = 0

2. Si a < b se define,
∫ a

b
f(x)dx = −

∫ b

a
f(x)dx

3. Linealidad de la integral: Si f y g son funciones integrables en el
intervalo [a, b] y K es una constante real, entonces

∫ b

a
(f(x) + g(x))dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx

∫ b

a
Kf(x)dx = K

∫ b

a
f(x)dx
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CAPÍTULO 1. INTEGRAL EN UNA VARIABLE

4. Aditividad en el intervalo de integración: Si f es una función
integrable en el intervalo [a, b] y a < c < b entonces∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx

5. Integral de una función constante: Si f(x) = C ∀x ∈ [a, b] con C
constante entonces∫ b

a
f(x)dx =

∫ b

a
Cdx = C(b− a)

6. Monotonía: Si f y g son funciones integrables en el intervalo [a, b] y
f(x) ≤ g(x) ∀x ∈ [a, b] entonces∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

7. Acotamiento: Si f es una función integrable en el intervalo [a, b] y
m ≤ f(x) ≤M ∀x ∈ [a, b], entonces

m(b− a) ≤
∫ b

a
f(x)dx ≤M(b− a)

Las demostraciones de las propiedades anteriores se desarrollan a partir de
la definición de la integral mediante las sumas de Riemann y a partir de las
propiedades de la sumatoria. Algunas resultan bastante obvias cuando las
funciones involucradas son continuas en el intervalo de integración como se
aprecia en los siguientes gráficos:
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1.2. INTEGRAL DEFINIDA

Funciones pares, impares y periódicas

Los conceptos de paridad y de periodicidad de una función son importantes
en carreras de ingeniería, ya que su conocimiento permite realizar cálculos
de modos más sencillos e inferir características cualitativas de una función
(como por ejemplo, de su derivada o integral, en caso de existir). Asimismo,
las funciones periódicas son herramientas de modelización de fenómenos físi-
cos que presentan un comportamiento ondulatorio, como vibraciones, ondas
mecánicas, ondas acústicas, ondas gravitacionales, que son de estudio común
en diversas especialidades de la ingeniería.

Definiciones

f es par si para todo x en su dominio se cumple que f(x) =
f(−x).
f es impar si para todo x en su dominio se cumple que f(x) =
−f(−x).
f es periódica con período T > 0 si satisface que f(x) =
f(x+T ) para todo x en su dominio. En tal caso también cumple
f(x + 2T ) = f(x + T + T ) = f(x + T ) = f(x), y en general
f(x + nT ) = f(x) para n = 0; 1; 2; .... Basta entonces conocer los
valores de f(x) en cualquier intervalo de longitud T para deter-
minar su valor f(x) en cualquier x del dominio. Al valor 1/T se
lo denomina frecuencia.

Los ejemplos más comunes de funciones pares son las funciones polinómicas
con potencias pares. Ejemplo de funciones impares son las funciones poli-
nómicas con potencias impares. Ejemplos de funciones periódicas son las
funciones trigonométricas, que en combinaciones adecuadas se emplean en el
análisis armónico. Sin embargo existen otras, como por ejemplo, la función
mantisa. También una función puede se par y periódica como es el cos(x), o
impar y periódica como es el sen(x) y la tag(x).

La gráfica de las funciones pares presentan una simétrica respecto del eje de
las ordenadas. La gráfica de una función impar, presenta simetría respecto
al origen de coordenadas.

Algunas propiedades que cumplen las funciones pares, impares y periódicas,
son:

1. Si f es impar, entonces
∫ a

−a f(x)dx = 0

2. Si f es par, entonces
∫ a

−a f(x)dx = 2
∫ a

0 f(x)dx
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3. Si f(x) es periódica, entonces
∫ a+T

a f(x)dx =
∫ b+T

b f(x)dx, para a y b en
el dominio de f .

Intenta probar y comprender algunas de estas propiedades mediante una
gráfica y las definiciones.

Además, se verifican las siguientes propiedades, que no las estaremos demos-
trando:

Toda función continua se puede descomponer en la suma de, una fun-
ción par y de una impar.

La única función que es tanto par e impar es la función nula.

La suma de una función par y una impar no es ni par ni impar, a menos
de que una de las funciones sea la nula.

La suma de dos funciones pares es una función par y la suma de dos
funciones impares es una función impar.

El producto de dos funciones pares es una función par, de dos funciones
impares es una función par, de una función par y una función impar es
una función impar.

Si una función es par y existe su derivada, ésta es impar y si una función
es impar, su derivada de existir, es par.

La suma y producto de funciones periódicas de un mismo período es
también periódica con el mismo período.

Si una función es periódica y existe su derivada, ésta es también perió-
dica.

Podes visualizar algunas funciones pares e impares, y sus propiedades
usando la aplicación de GeoGebra.

1.2.2. Ejercicios
Usando los conceptos de paridad, dar los valores de las integrales siguientes:∫ a

−a x cos(x)dx = ....
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1.3. TEOREMA DEL VALOR MEDIO PARA INTEGRALES

∫ 1
−1(x− sen(x)dx = ....∫ 2
−2(x/exp(x2))dx = ....

Calcular, usando propiedades y conociendo que
∫ 1

0 f(x)dx = 4 :∫ 1
0 3f(x)dx∫ 1
0 (f(x)− 2)dx∫ 1
−1 f(x)dx en el caso que f sea par.

Calcular, usando propiedades y sabiendo que
∫ 2

−1 f(x)dx = 2 y
∫ 2

−1 g(x)dx =
−1: ∫ 2

−1(3f(x) + g(x))dx∫ 2
−1(f(x)− 2g(x) + 4)dx

En cada caso dar cotas para la integral dada:∫ π/2
0 3cos(x)dx∫ 2
−1 x2dx∫ 4
1

1√
x
dx

1.3. Teorema del valor medio para integrales

Teorema del valor medio para integrales

Si f es una función continua en el intervalo [a, b] existe un número c
en ese intervalo tal que∫ b

a
f(x)dx = f(c)(b− a)

Demostración: Siendo f continua en el intervalo [a, b] , existen xm y xM en
ese intervalo tales que, ∀x ∈ [a, b] es

f(xm) ≤ f(x) ≤ f(xM)

Entonces, por propiedad de la integral definida,

f(xm)(b− a) ≤
∫ b

a
f(x)dx ≤ f(xM)(b− a)
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y dividiendo por b-a resulta:

f(xm) ≤
∫ b

a f(x)dx

b− a
≤ f(xM)

La continuidad de f permite ahora afirmar que, para algún c entre xm y xM

(y por lo tanto en [a, b] ) es
∫ b

a f(x)dx

b− a
= f(c) y por lo tanto:

∫ b

a
f(x)dx = f(c)(b− a)

Interpretación geométrica del Teorema del Valor Medio

El caso particular de una función f no negativa en [a, b] nos permite dar una
interpretación geométrica del teorema:

Observar que desde el punto de vista geométrico, significa que siempre pue-
de hallarse un rectángulo de base b − a con área igual a la región bajo la
gráfica de la función ( suponiendo f con valores positivos), cuya altura queda
determinada por el valor de f(c) para c cierto punto del intervalo.

Valor promedio de f en un intervalo

Si f es una función integrable en [a, b] se llama valor promedio de f en
ese intervalo a:

fP =
∫ b

a f(x)dx

b− a

Además, el teorema anterior se podría enunciar: Si f es una función continua
en [a, b] entonces existe c ∈ [a, b] tal que el valor promedio de f en ese intervalo
es igual a f(c).
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1.4. Función integral

Función integral

Si f es una función integrable en el intervalo [a, b], podemos definir una
nueva función g asignando a cada x ∈ [a, b] la integral de f desde a
hasta x.
O sea: g(x) =

∫ x

a
f(t)dt , si x ∈ [a, b]

Así definida la función g se llama función integral de f en [a, b] .

Si f es una función acotada e integrable en el intervalo [a, b], entonces g(x)
es una función continua. Se entiende intuitivamente que esto es cierto inter-
pretando a g(x) en términos de áreas de regiones. Formalmente lo podemos
justificar recurriendo a la propiedad de acotamiento:
Supongamos que A ≤ f(x) ≤ B ∀x ∈ [a, b].
Si a ≤ x0 < x0 + h ≤ b entonces g(x0 + h)− g(x0) =

∫ x0+h

x0
f(t)dt

por lo tanto A . h ≤ [g(x0 + h) − g(x0)] ≤ B . h y como ĺım
h→0+

A.h = 0 y
ĺım

h→0+
B.h = 0 resulta ĺım

h→0+
[g(x0 + h)− g(x0)] = 0 , o sea,

ĺım
h→0+

g(x0 + h) = g(x0) para todo x0 ∈ [a, b)

De la misma manera se demuestra que ĺım
h→0−

g(x0 + h) = g(x0) ∀x0 ∈ (a, b].
Entonces g(x) es continua.

Ejemplos: Calculemos la función integral para los siguientes casos sencillos
y en los que mediante consideraciones geométricas podremos obtener el valor
de la integral definida:

1) f(x) = 4 en el intervalo [0, 1]

g(x) =
∫ x

0
4dt

Interpretando que la integral entre 0 y x bajo g(x) en este caso se puede
calcular como el área de un rectángulo de base x y altura 4, obtenemos que:

g(x) = 4x

en el intervalo [0, 1].
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2) f(x) = x en el intervalo [0, 1]

g(x) =
∫ x

0
tdt

Interpretando que la integral planteada es el área de un triángulo de base x
y altura x, obtenemos que:

g(x) = x2

2
para x en [0, 1].

3) f(x) = 2x + 1 en el intervalo [0, 4] Calculen en este caso

g(x) =
∫ x

0
(2t + 1)dt

Hallar la expresión de g(x) interpretando que la integral calcula en este caso
el área de una trapecio. ¿Qué obtienen?

Pregunta: ¿Encuentran alguna relación entre las funciones f(x) y g(x) ha-
lladas?

Estudiaremos luego la derivada de g(x) (y ello nos conducirá nada menos
que a resolver el problema del cálculo de la integral definida) pero antes les
proponemos algunos ejercicios en relación a las definiciones y propiedades
presentadas hasta el momento.

1.4.1. Ejercicios
1. Graficar en un mismo sistema de coordenadas las funciones f(x) = x

y g(x) =
√

x en el intervalo [0, 1] . i) ¿Cuál de las dos funciones es
mayor o igual que la otra en todos los x del intervalo [0, 1]? ii) ¿Cuál es
el signo de

∫ 1

0
g(x)dx −

∫ 1

0
f(x)dx? iii) ¿Qué representa esa diferencia?

2. Estudiar la función f(x) = x3

3 −
x2

2 − 2x + 4 en el intervalo [−2, 3] .

i)¿Cuáles son los valores mínimo y máximo absolutos de f en ese in-
tervalo? ii) ¿Qué cotas puede dar para

∫ 3

−2
f(x)dx?

3. Sea f(x) = 3x + 2 , x ∈ [2, 5] y sea g la función integral de f en ese
intervalo. i) Interpreten geométricamente g(x) y hallen su expresión
analítica.
ii) ¿Es derivable la función g? Hallen g′(x) y compárenla con f(x) .
iii) Representar f y g en el mismo sistema de coordenadas.
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4. Siendo g la función integral de la función f que muestra el siguiente
gráfico , i)Evalúen g(−2) , g(0) , g(1) y g(2) .ii) Hallen la expresión
analítica de la función g. iii) ¿Es derivable g? ¿Cuál es su derivada?

Podes visualizar en esta aplicación un ejemplo de función integral con
GeoGebra.

1.5. Concepto de primitiva o antiderivada

Concepto de primitiva o antiderivada

Si para todo x de un intervalo de números reales I es F ′(x) = f(x),
decimos que F es una primitiva de f en ese intervalo.

Por ejemplo, F (x) = sen(x) es una primitiva de f(x) = cos(x) en cualquier
intervalo I de números reales. Notar, también que F (x) = sen(x) + 1 es
una primitiva, y es más, F (x) = sen(x) + C es primitiva con C constante
cualquiera. Con lo cual la primitiva de una función no es única, son
infinitas, y dos cualesquiera de ellas, difieren en una constante.
Es decir que si F (x) y G(x) son primitivas de f(x), F (x) − G(x) = C (C
constante), Además, notar que para una función integrable f(x), la función
integral g(x) es una primitiva de ella.
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Actividad

Calculemos algunas primitivas. Completar la Tabla.

f(x) F (x) + C

0

k (constante)

xn si n , −1

1
x

si x , 0

ex

sen(x)

cos(x)

ax

sec2(x)

1
1+x2
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1.6. Teorema Fundamental del Cálculo Inte-
gral

Teorema Fundamental del Cálculo Integral. Parte I

Si f es una función continua en el intervalo [a, b] entonces la función
integral g(x) =

∫ x

a
f(t)dt es derivable en (a, b) , continua en [a, b] y

g′(x) = d

dx

(∫ x

a
f(t) dt

)
= f(x) ∀x ∈ (a, b)

.

Demostración:

Sea f continua en [a, b] y x ∈ (a, b)

i) si h es positivo y próximo a cero, es:

g(x + h)− g(x) =
∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt =

∫ x+h

x
f(t)dt

Como f es continua en [x, x + h] , por el teorema del valor medio para in-
tegrales resulta que la última integral es igual a f(c)h para algún número c
entre x y x+h y por lo tanto:

g(x + h)− g(x)
h

= f(c) para algún c entre x y x+h

Entonces
ĺım

h→0+

g(x + h)− g(x)
h

= ĺım
h→0+

f(c) = f(x)

pues, cuando h tiende a cero por derecha, c tiende a x y, ya que f es continua,
f(c) tiende a f(x).

ii) si h es negativo y próximo a cero, con igual razonamiento es, para algún
número c entre x+h y x :

g(x)− g(x + h) =
∫ x

x+h
f(t)dt = f(c)(−h)

por lo tanto:

g(x + h)− g(x)
h

= f(c) para algún c entre x+h y x
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y entonces

ĺım
h→0−

g(x + h)− g(x)
h

= ĺım
h→0−

f(c) = f(x)

Por i) y ii) ,
g′(x) = f(x) .

Observación:

Hay que tener cuidado con las funciones integrales de la forma g(x) =∫ x

a
f(t)dt donde f es acotada pero no es continua en todos los puntos

del intervalo [a, b]. El Teorema Fundamental no se aplica en esos casos.

El Teorema Fundamental del Cálculo Integral puede adaptarse a casos
más generales, usando la regla de la cadena para derivadas: Si f es
una función continua en el intervalo [a, b] entonces la función integral
g(x) =

∫ h(x)

a
f(t)dt es derivable en (a, b) , continua en [a, b] y g′(x) =

f(h(x)).h′(x) ∀x ∈ (a, b) (Suponer h(x) derivable en el intervalo).

Ejemplo: El Teorema Fundamental del Cálculo podemos usarlo cuando tra-
bajamos con la derivada de una función definida por una integral. Este teo-
rema nos permite calcular la derivada de funciones que están definidas como
integrales, si se cumplem las hipótesis.

Supongamos que tenemos una función definida como:

g(x) =
∫ x

0
cos(t) dt

Usamos el teorema para encontrar la derivada:

g′(x) = cos(x)

Otro ejemplo, es
F (x) =

∫ x

2
et2

dt

Usamos el teorema para obtener su derivada:

F ′(x) = ex2
.
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Teorema Fundamental del Cálculo Integral. Parte II. Regla
de Barrow

Si f es una función continua en el intervalo [a, b] y F es una primitiva
de f en el intervalo. Entonces

∫ b

a
f(x)dx = F (b)− F (a).

Demostración: Sea g(x) la función integral de f(x) y F (x) una primitiva. Es
decir que, g(x) =

∫ x

a
f(t)dt . Resulta entonces que la función g(x) − F (x)

es continua en [a, b] , derivable en (a, b) y es tal que (g − F )′ (x) = g′(x) −
F ′(x) = f(x)− f(x) = 0 ∀x ∈ (a, b) .
Entonces g(x)− F (x) es por lo tanto una función constante en [a, b] :

g(x)− F (x) = C ∀x ∈ [a, b]

En particular:
g(a)− F (a) = C (de donde se deduce C = −F (a) ya que g(a) = 0)
g(b)− F (b) = C , entonces:

∫ b

a
f(t)dt = F (b)− F (a)

Notación

Escribimos ∫ b

a
f(x)dx = F (x)

∣∣∣∣∣∣
b

a

para expresar la diferencia F (b) − F (a). Donde F(x) es una primitiva
de f(x) en un intervalo I con [a, b] ⊂ I.

Es decir que la integral definida
∫ b

a f(x)dx puede determinarse conociendo
sólo los valores que toma una primitiva en los puntos a y b.

Importante:

Hemos demostrado un resultado que muestra que la derivación y la integra-
ción son procesos inversos, conectando el Cálculo Diferencial con el Cálculo
Integral. El Cálculo Diferencial surgió del problema de la recta tangente,
mientras que el Cálculo Integral lo hizo de un problema (en apariencia no re-
lacionado) del cálculo del área. Isaac Barrow (1630-1677), profesor de Isaac
Newton en Cambridge, descubrió que en realidad estos dos problemas estaban
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íntimamente relacionados. Luego, fueron Newton y Leibniz quienes explota-
ron esta relación y la usaron para desarrollar el cálculo como un método
matemático sistemático.

1.6.1. Ejemplos
∫ 4

0
x2dx = x3

3

∣∣∣∣∣∣
4

0

= 43

3 − 0 = 64
3 (¡vean que hemos calculado en este

renglón el valor exacto del área debajo de la gráfica de f(x) = x2 en el
intervalo [0, 4]!)
∫ 1

−3
x3dx = x4

4

∣∣∣∣∣∣
1

−3

= 14

4 −
(−3)4

4 = 1
4 −

81
4 = −80

4 = −20

∫ 2π

0
sen(x)dx = −cos(x)

∣∣∣∣∣∣
2π

0

= −cos(2π)− [−cos(0)] = −1 + 1 = 0

Calculemos la función integral para

f(x) =
{

1, si − 1 ≤ x < 0
sen(x) + 1, si 0 ≤ x ≤ π/2

Observar que la función f(x) es continua, entonces podemos definir la
función integral en ese intervalo, y la misma cumplirá que su derivada
es la función dada, por el Teorema Fundamental.

La función integral es:

g(x) =
∫ x

−1
f(t)dt
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En este caso la función g(x) será a trozos, ya que f(x) lo es.

Si −1 ≤ x < 0,
g(x) =

∫ x

−1
1dt = x + 1

Si 0 ≤ x ≤ π/2,

g(x) =
∫ 0

−1
1dt +

∫ x

0
(sen(t) + 1)dt = 1− cos(x) + x + 1 = 2− cos(x) + x

Resultando ser la función integral:

g(x) =
{

x + 1, si − 1 ≤ x < 0
2− cos(x) + x, si 0 ≤ x ≤ π/2

Notar que en este caso, por ser la función f(x) positiva, la función g(x)
calcula el área encerrada por: arriba del eje x, por debajo de la función
f(x) y entre x = −1 y x, para x ≤ π/2.

Por ejemplo, g(π/2) ( g(π/2) = 2 − cos(π/2) + π/2 = 2 + π/2 ) es el
área total debajo de f(x).

Además, por el Teorema Fundamental del Cálculo, podemos afirmar
que la función integral hallada g(x), es derivable y continua en el in-
tervalo (verificarlo), y que g′(x) = f(x).

Observación

Observar que para una función continua f(x) en un intervalo y por el Teorema
Fundamental del Cálculo Integral, si g(x) es su función integral, es decir que
g′(x) = f(x), es posible conocer el comportamiento de g(x) a partir del
comportamiento de f(x). Es decir, que se cumple lo siguiente:
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f(x) g(x)
positiva crece
negativa decrece

cero en un punto P en P existe posible punto crítico

1.6.2. Ejercicios
1. ¿Son verdaderas o falsas las siguientes afirmaciones? Tachar la igual-

dad cuando responden que es falsa y recuerden siempre justificar sus
respuestas.
i) Si f es continua en [a, b] y α ∈ R ,

∫ b

a
αf(x)dx = α

∫ b

a
f(x)dx.

ii) Si f y g son continuas en [a, b] ,∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx

∫ b

a
[f(x)− g(x)] dx =

∫ b

a
f(x)dx−

∫ b

a
g(x)dx

∫ b

a
f(x)g(x)dx =

∫ b

a
f(x)dx

∫ b

a
g(x)dx

2. En los siguientes incisos verificar que los integrandos son funciones con-
tinuas o seccionalmente continuas en los intervalos de integración, cal-
cular las integrales e interpretar geométricamente los resultados.

a)
∫ 1

0 (x2 + 2x + 2)dx

b)
∫ 1

0 exdx

c)
∫ e

1
1
x

dx

d)
∫ 2

−1 |x| dx

e)
∫ 4

−2(3x− 5)dx

f)
∫ 1

0 (1− 2x− 3x2)dx

g)
∫ 2

1 x−2dx

h)
∫−e

−e2
3
x
dx

i)
∫ 4

1 (
√

x− 2√
x
)dx

j)
∫ π

2
0 (cosθ + 2senθ)dθ
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k)
∫ π

3
π
4

sec2t dt

l)
∫ 1

−1
1

1+x2 dx

m)
∫ 1

2
− 1

2

1√
1−x2 dx

n)
∫ 4

1
t6−t2

t4 dt

o)
∫ 3

−1 f(x) dx donde

f(x) =
x + 1 si − 1 ≤ x ≤ 1

3− x si 1 < x ≤ 3

p)
∫ π

2
0 f(x) dx donde

f(x) =
sen(2x) si 0 ≤ x < π

4
cos(2x) si π

4 ≤ x ≤ π
2

q) Siendo p , −1 y suponiendo que 0 < [a, b]
∫ b

a xpdx

3. Calculen el valor promedio de la función f en el intervalo dado:
i)f(x) = senx en [0, π] ii) f(x) =

√
x en [4, 9]

iii) f(x) = 1
x

en[1, 4] iv) f(x) =
1 si − 2 ≤ x < 0
−1 si 0 < x ≤ 2

4. En los siguientes incisos, analicen si es posible aplicar el teorema del
valor medio para integrales y, cuando sea posible, encuentren todos los
números c cuya existencia garantiza dicho teorema.

i)f(x) = x2 + 1 en [−1, 2]

ii)f(x) = |x3| en [−1, 4]

iii) f(x) =
−x2 − 1 si − 2 ≤ x ≤ 0

1 si 0 < x ≤ 6

5. En los siguientes incisos, hallen la expresión analítica de la función
integral de f en el intervalo dado. En cada caso realizar un esbozo de
las gráficas de f y de su función integral.

i) f(x) =
x3 si − 2 ≤ x ≤ 1

1 si 1 < x ≤ 3
en [−2, 3]
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ii) f(x) =

√

x si 0 ≤ x ≤ 1
−x + 2 si 1 < x ≤ 2

en [0, 2]

iii) f(x) =
x si 0 ≤ x ≤ 1

sen(π
2 x) si 1 < x ≤ 2

en [0, 2]

En cada caso, y a partir de las gráficas de f(x) y de F (x), en un mismo
sistema de coordenadas, observar: i) ¿Qué sucede en las gráficas de f
y de F en los puntos en los que F ′(x) = 0? ii)¿En qué intervalos es F
creciente? ¿En qué intervalos es F decreciente? ¿Qué pueden decir de
f en esos intervalos? iii)¿Qué pasa con la gráfica de F en los puntos
donde f ′(x) = 0?

6. Calcular las derivadas de las siguientes funciones:

i) F (x) =
∫ x

2

t2
√

t2 + 1
dt ii) G(x) =

∫ x2

2

t2
√

t2 + 1
dt

iii) H(x) = 2 + x2 +
∫ x

0
et2

dt

iv) T (x) = 2x−
∫ x

−1
cos(πt2) dt en x = −1

7. En los siguientes incisos, hallar la ecuación de la recta tangente a la
gráfica de f en el punto que tiene la abscisa indicada.
i) f(x) = 2−

∫ x+1

2

9
1 + t

dt en x = 1.

ii) f(x) = 3 +
∫ x2

1
sec(t− 1)dt en x = −1.

8. Hallar una función continua f tal que:
∫ x

0
f(t) dt = xe2x−

∫ x

0
e−tf(t) dt.

9. Analizar la validez de las siguientes afirmaciones siendo h(x) =
∫ x

0
f(t) dt,

f ′(x) < 0 ∀x ∈ R y f(1) = 0.
i) h es dos veces derivable como función de x.
ii) h y dh

dx
son funciones continuas.

iii)La gráfica de h tiene recta tangente horizontal en x = 1.
iv)h tiene un máximo local en x = 1.
v)h tiene un mínimo local en x = 1.
vi)La gráfica de h tiene un punto de inflexión en x = 1.
vi)La gráfica de dh

dx
corta al eje x en x = 1.
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Volvamos al problema del cálculo de la integral definida. Si conociéramos tal
valor numérico: ¿Cuáles magnitudes escalares podremos calcular mediante su
uso? Veamos a continuación que según sea la función a integrar, la integral
calcula diversos valores físicos y geométricos.

1.7. Aplicaciones geométricas de la integral
definida

1.7.1. Áreas de figuras planas

Tal como habíamos mencionado, mediante la integración es posible calcular
el valor del área de figuras planas. Veamos algunas situaciones.

1. Si f es una función continua y positiva en [a, b] (como se observa en
el gráfico). El área encerrada debajo de la gráfica de f en el intervalo
[a, b] y por encima del eje x, entre las rectas de ecuación x = a y x = b,
se calcula por:

Área(R) =
∫ b

a
f(x)dx

Esa región del plano puede describirse analíticamente de la siguiente
manera:

R =
{
(x, y) ∈ R2 / a ≤ x ≤ b , 0 ≤ y ≤ f(x)

}

2. Consideremos ahora una función f continua y que toma valores nega-
tivos en [a, b] (no hay regiones arriba del eje x). El área de la región
ubicada entre la gráfica de f y el eje x, en el intervalo [a, b] . se calcula
por:
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Area(R) =
∫ b

a
(−f(x))dx

En estos casos el valor numérico de la integral definida está en unidades de
área (ejemplo, metros cuadrados, kilómetros cuadrados, ect. ).

Actividad: Describir analíticamente las siguientes regiones y analizar cómo
plantear una integral que calcule el área de cada una de ellas:

En general: Si f(x) y g(x) son funciones continuas en [a, b] y g(x) ≤ f(x) en
ese intervalo, queda definida una región plana que puede describirse analítica-
mente de la siguiente manera: R =

{
(x, y) ∈ R2 / a ≤ x ≤ b , g(x) ≤ y ≤ f(x)

}
y cuya área se calcula con:

∫ b

a
[f(x)− g(x)] dx .

Ejemplo: Calcular el área de la región R limitada por las curvas y = x2 y
x + y = 2.
Graficamos ambas curvas y visualizamos la región:
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Los puntos de intersección los hallamos resolviendo el sistema de ecuacionesy = x2

x + y = 2

dichos puntos son: (−2, 4) y (1, 1). Podemos describir en forma analítica la
región limitada por las curvas de la siguiente manera:

R =
{
(x, y) ∈ R2 / − 2 ≤ x ≤ 1 , x2 ≤ y ≤ 2− x

}
Entonces:

área(R) =
∫ 1

−2

(
2− x− x2

)
dx =

(
2x− x2

2 −
x3

3

) ∣∣∣∣∣∣
1

−2

= 7
6−

(
−20

6

)
= 27

6 .

Considerar ahora la siguiente situación:
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Vean que en el intervalo [a, b] es g(x) ≤ f(x) y que en el intervalo [b, c] es
f(x) ≤ g(x). La región limitada por las gráficas de f y g se describe analíti-
camente de la siguiente manera:

R =
{
(x, y) ∈ R2/a ≤ x ≤ b, g(x) ≤ y ≤ f(x)

}
∪
{
(x, y) ∈ R2/b ≤ x ≤ c, f(x) ≤ y ≤ g(x)

}

Entonces:

área(R) =
∫ b

a
[f(x)− g(x)] dx +

∫ c

b
[g(x)− f(x)] dx

En ocasiones resulta conveniente considerar que la región está limitada por
las gráficas de funciones de la variable y.

Aquí es R =
{
(x, y) ∈ R2/a ≤ y ≤ b, g(y) ≤ x ≤ f(y)

}
y entonces:

Área(R) =
∫ b

a
[f(y)− g(y)] dy

1.7.2. Volumen de un sólido de revolución

Imaginar que la gráfica de la función f(x) =
√

x con x ∈ [0, 1] rota alrede-
dor del eje x... Cada punto (x,

√
x) de la curva describe una circunferencia

centrada en (x, 0) y de radio
√

x, generándose una superficie que, decimos,
es una superficie de revolución.
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Dicha superficie está limitando a un sólido V que, decimos, es un sólido
de revolución. Podemos interpretar que dicho sólido es el generado al rotar
alrededor del eje x la región limitada por y =

√
x ; y = 0 ; x = 0 y x = 1.

Para calcular el volumen del sólido de revolución V vamos a reproducir -
adaptándolo a este nuevo problema- el procedimiento que utilizamos para
calcular el área debajo de la gráfica de una función continua y no negativa en
un intervalo cerrado (¿lo recuerdas?) En ese caso, aproximamos el área de la
región sumando las áreas de rectángulos. Ahora aproximaremos el volumen
del sólido considerando sólidos cilíndricos como el que muestra la siguiente
imagen:
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Sea P : x0 = 0 < x1 < ... < xi−1 < xi < ...xn = 1 una partición del intervalo
[0, 1] ; sea ∆xi = xi − xi−1 y sea x∗

i ∈ [xi−1, xi] (cualquiera).
Siendo así,

π [f(x∗
i )]

2 ∆xi

es el volumen de un cilindro de radio f(x∗
i ) y altura ∆xi, como el que muestra

la imagen anterior.
Entonces

n∑
i=1

π [f(x∗
i )]

2 ∆xi ≈ vol(V )

y
vol(V ) = ĺım

|P|→0

n∑
i=1

π [f(x∗
i )]

2 ∆xi =
∫ 1

0
π [f(x)]2 dx

Como habíamos mencionado que f(x) =
√

x,

vol(V ) =
∫ 1

0
π
[√

x
]2

dx = π
∫ 1

0
x dx = π

x2

2

∣∣∣∣∣
1

0
= 1

2π

Si f es una función continua y no negativa en un intervalo cerrado [a, b]
y R = {(x, y) ∈ R2/a ≤ x ≤ b ; 0 ≤ y ≤ f(x)}, el volumen del sólido de
revolución que genera R al rotar alrededor del eje x puede calcularse con
la siguiente integral definida:

V olumen =
∫ b

a
π [f(x)]2 dx
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Actividad: Les proponemos ahora que piensen en los sólidos generados y en
cómo calcular el volumen en las siguientes situaciones:

1. Una región R que puede describirse en la forma
R = {(x, y) ∈ R2/c ≤ y ≤ d ; 0 ≤ x ≤ g(y)},
rota alrededor del eje y.

2. Una región R que puede describirse en la forma
R = {(x, y) ∈ R2/a ≤ x ≤ b ; 0 ≤ f(x) ≤ y ≤ g(x)},
rota alrededor del eje x.

3. Una región R que puede describirse en la forma
R = {(x, y) ∈ R2/c ≤ y ≤ d ; 0 ≤ f(y) ≤ x ≤ g(y)},
rota alrededor del eje y.

4. Una región R que puede describirse en la forma
R = {(x, y) ∈ R2/a ≤ x ≤ b ; y0 ≤ f(x) ≤ y ≤ g(x)},
rota alrededor de la recta horizontal y = y0.

5. Una región R que puede describirse en la forma
R = {(x, y) ∈ R2/c ≤ y ≤ d ; x0 ≤ f(y) ≤ x ≤ g(y)},
rota alrededor de la recta vertical x = x0.

Ejemplo: Sea R la región limitada por y =
√

4x e y = x.

Cuando R rota alrededor del eje x genera un sólido (de revolución) que tiene
una cavidad. El siguiente gráfico muestra un corte de dicho sólido (plano xy):
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El volumen del sólido puede obtenerse en este caso como la diferencia entre los
volúmenes de V1 (sólido generado por R1 =

{
(x, y) ∈ R2/0 ≤ x ≤ 4 ; 0 ≤ y ≤

√
4x
}
,

rotando alrededor del eje x ) y V2 (sólido generado por
R2 = {(x, y) ∈ R2/0 ≤ x ≤ 4 ; 0 ≤ y ≤ x}, rotando alrededor del eje x) o
sea, de la siguiente manera:

vol =
∫ 4

0
π
[√

4x
]2

dx−
∫ 4

0
π [x]2 dx

(Tarea: completar el cálculo de las integrales y verificar que el resultado es
32
3 π)

Si la misma regiónR rota alrededor del eje y, el corte en el plano xy del sólido
generado se ve de la siguiente manera:
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El volumen puede calcularse como la diferencia entre los volúmenes de dos
sólidos , a saber: el sólido V1 generado por
R1 =

{
(x, y) ∈ R2/0 ≤ y ≤ 4 ; 0 ≤ x ≤ y

}
rotando alrededor del eje y y V2

generado por R2 =
{

(x, y) ∈ R2/0 ≤ y ≤ 4 ; 0 ≤ x ≤ y2

4

}
rotando también

alrededor del eje y. Entonces, en este caso es:

vol =
∫ 4

0
π [y]2 dy −

∫ 4

0
π

[
y2

4

]2

dy

(Completar el cálculo de las integrales y verificar que el resultado es 128
15 π)

Puedes utilizar esta aplicación de GeoGebra para visualizar y calcular
el volumen de un sólido de revolución.

1.7.3. Longitud de un arco de curva
Sea f una función continua en el intervalo [a, b] y con derivada también
continua en ese intervalo y sea C : y = f(x) ; x ∈ [a, b].

Con la intención de calcular la longitud de C, consideremos
P : a = x0 < ... < xi−1 < xi < ... < xn = b (partición del intervalo [a, b]).
Esa partición determina puntos Pi = (xi, f(xi)),con i = 0...n, en el arco de
curva C y lo divide en n sub-arcos

⌢
Pi−1Pi.
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Si aproximamos la longitud de cada uno de esos sub-arcos con la longitud
del segmento Pi−1Pi, tendremos:

n∑
i=1

d(Pi−1, Pi) =
n∑

i=1

√
(xi − xi−1)2 + [f(xi)− f(xi−1)]2 ≈ Long(C)

Siendo (para cada i = 1...n) f continua en [xi−1, xi] y derivable en (xi−1, xi),
en virtud del teorema del valor medio de Lagrange podemos afirmar que
existe x∗

i ∈ (xi−1, xi) tal que f(xi)− f(xi−1) = f ′(x∗
i )(xi − xi−1). Entonces

Long(C) ≈
n∑

i=1

√
(xi − xi−1)2 + [f ′(x∗

i )(xi − xi−1)]2 =
n∑

i=1

√
1 + [f ′(x∗

i )]
2∆xi

Long(C) = ĺım
|P|→0

n∑
i=1

√
1 + [f ′(x∗

i )]
2∆xi

Longitud(C) =
∫ b

a

√
1 + [f ′(x)]2dx

Ejemplo: Calcular la longitud del arco de curva y =
√

x3 de extremos
A = (0, 0) y B = (4, 8).
Siendo y = f(x) =

√
x3, es f ′(x) = 3

2
√

x (función que es continua en
[0, +∞)) y la longitud del arco de curva se calcula entonces de la siguiente
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manera:∫ 4

0

√
1 + 9

4 x dx =
∫ 4

0

√
1
4 (4 + 9x) dx = 1

2

∫ 4

0

√
4 + 9x dx =

= 1
2 .

2
3(4 + 9x) 3

2 .
1
9

∣∣∣∣∣∣
4

0

= 1
27(
√

403 − 8)

1.7.4. Ejercicios. Áreas de figuras planas
1. En los siguientes incisos, hallen el área de la región limitada por las

curvas dadas.
i) y = x3 ; y = x2 ii) y = x2; y = −x4 + 2 iii) y = 2x ; y = x4

iv) y = x ; y = x2 − 2 v) 4x + y2 = 0 ; y = 2x + 4
vi) x + 1 = 2(y − 2)2 ; x + 6y = 7

2. Grafiquen la región limitada por: xy = 2 ; 2x = y ; x = 2y.
i)Para describir la región y calcular luego su área, les parece que ofrece
alguna ventaja en este caso el considerar las curvas que conforman la
frontera de la región como gráficas de funciones de x o de y?
ii) Describan analíticamente la región y calculen su área.

3. ¿Para qué valores de m la recta y = mx y la curva y = x3 definen una
región? ¿Cuál es la expresión en función de m del área de dicha región?

4. Calculen el área de la región del plano limitada por la gráfica de la
función f(x) = 3x3 − 3x2 − 6x y el eje x.

1.7.5. Ejercicios. Volumen de sólidos de revolución
1. Calculen el volumen del sólido que genera la región del plano limitada

por la gráfica de f(x) = 4− x2 y el eje x en el intervalo [0, 2]al rotar:
i) alrededor del eje x ii) alrededor del eje y

2. En los siguientes incisos, calculen el volumen del sólido que genera la
región R al rotar como se indica .
a) R limitada por y = x2 e y = 1 rota alrededor del eje x.
b) R limitada por y = x2 e y = x rota alrededor del eje x.
c) R limitada por y = x2, x = 1 e y = 0 rota alrededor del eje x.
d) R limitada por y = x2, x = 1 e y = 0 rota alrededor del eje y.
e) R limitada por y = 4

x
, x = 1, x = 4 e y = 0 rota alrededor del eje x.

f) R limitada por x =
√

4− y, x = 0 e y = 0 rota alrededor de la recta
x = 2.
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3. Siendo R limitada por y = 1
x3 , x = 1, x = 3 e y = 0, planteen las

integrales con las que se calcula:
i) el área de R.
ii) el volumen del sólido que genera R al rotar alrededor del eje y.
iii) el volumen del sólido que genera R al rotar alrededor de la recta
y = −1.
iv) el volumen del sólido que genera R al rotar alrededor de la recta
x = 4.

4. Calculen mediante integrales :
a) el volumen de una esfera de radio a.
b) el volumen de un cono circular recto, siendo r el radio de la base y
h la altura.

1.7.6. Ejercicios. Longitud de arco de curva plana
1. Calcular la longitud del segmento de recta 2x−4y+6 = 0 con extremos

(−3, 0) y (1, 2) mediante una integral definida. Comprobar el resulta-
do usando la fórmula de distancia entre dos puntos. ¿En qué variable
integraron? Repetir el cálculo integrando en la otra variable.

2. Calcular la longitud del arco de curva C : y = 2 x
3
2 ; 1

3 ≤ x ≤ 7.

3. Un cable suspendido entre dos torres eléctricas que distan entre sí 40
metros adopta la forma de una catenaria de ecuación

y = 20 cosh( x

20) ; −20 ≤ x ≤ 20

¿Cuánto mide el cable?

1.8. Aplicaciones físicas de la integral defini-
da

1.8.1. Desplazamiento de un móvil en línea recta
Supongamos que v(t) mide el valor de la velocidad de un móvil que se des-
plaza en línea recta, siendo t el tiempo, variable independiente. La función
velocidad en un intervalo de tiempo puede ser positiva (significa que el móvil
se mueve hacia adelante sobre la recta) o negativa (significa que el móvil se
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mueve en dirección hacia la izquierda según los valores de crecimiento del
eje).

Entonces la integral definida calcula el desplazamiento realizado por el móvil
desde el tiempo a hasta b.

Desplazamiento =
∫ b

a
v(t)dt

Y la distancia total recorrida en el intervalo de tiempo se calcula por:

Distancia total recorrida =
∫ b

a
|v(t)| dt

El resultado numérico es en la unidad de medida de longitud.

Ejemplo Sea v(t) la velocidad de un móvil en el intervalo de 0 a 10 seg. y
supongamos que v(t) = 5− t , dada en m/seg.

En este caso, el Desplazamiento=
∫ 10

0 (5− t)dt = 0 metros.

Y la distancia total recorrida en el intervalo de tiempo es:

Distancia total recorrida=
∫ 10

0 |5− t| dt =
∫ 5

0 (5 − t)dt +
∫ 10

5 (t − 5)dt = 25
metros.
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1.8.2. Masa de una barra con densidad variable conti-
nua

Consideremos una barra o alambre lo suficientemente delgado como para ser
tratado como un objeto unidimensional. Lo colocamos sobre el eje x, con el
extremo izquierdo de la barra en x = a y el extremo derecho de la barra en
x = b. Podemos calcular la masa de la barra orientada a lo largo del eje x
integrando su función densidad. Si la barra tiene una densidad constante d
(homogénea), dada en términos de masa por unidad de longitud, entonces la
masa de la barra es solo el producto de la densidad y la longitud de la barra:

Masa = (b− a)d

Sin embargo, si la densidad de la varilla no es homogénea, el problema se
vuelve un poco más complicado. Cuando la densidad de la barra varía de un
punto a otro, denotemos con

d(x)
a la densidad de la barra en cualquier punto x.
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Con la intención de calcular la masa, consideremos una partición del intervalo
y una suma de Riemman asociada a la partición
P : a = x0 < ... < xi−1 < xi < ... < xn = b (partición del intervalo [a, b]).
Esa partición determina puntos Pi = (xi, d(xi)),con i = 0...n, en la barra y
la divide en segmentos.
Si aproximamos la masa de la barra en cada segmento con la longitud del
segmento Pi−1Pi, tendremos: que la masa mi del segmento de la barra de
xi−1 a xi se aproxima por la longitud de tal segmento por el valor de la
densidad en un punto del intervalo. Con lo cual al tomar el límite de la suma
de Riemman y suponiendo que la integral existe, resulta:

Masa =
∫ b

a
d(x)dx

1.8.3. Trabajo
El concepto de trabajo es importante para el ingeniero cuando necesita de-
terminar la energía necesaria para realizar diferentes tareas físicas. Es útil
conocer la cantidad de trabajo realizado cuando una grúa eleva una viga de
acero, cuando se comprime un muelle, cuando se realiza un lanzamiento, o
cuando un vehículo transporta una carga. En el lenguaje cotidiano, el tér-
mino trabajo se utiliza para indicar la cantidad total de esfuerzo requerido
para realizar una tarea. En física tiene un significado técnico que está en re-
lación con la idea de fuerza. Intuitivamente se puede pensar una fuerza como
el hecho de empujar un objeto o tirar de él. Decimos que se hizo un trabajo
cuando una fuerza mueve un objeto.

Existen muchos tipos de fuerzas: centrífuga, gravitacional, etc. Una fuerza
cambia el estado de reposo o de movimiento de un cuerpo. Para las fuerzas
gravitacionales en la tierra se suelen utilizar unidades de medida correspon-
dientes al peso de un objeto. Cuando la fuerza es constante todo parece
sencillo pero cuando se aplica una fuerza variable a un objeto se necesita
el cálculo para determinar el trabajo realizado ya que la fuerza varía según
el objeto cambia de posición. (Referencia: Resnick, R., Halliday, D. (1970).
Física: parte 1.)

En física el modo general de definir el trabajo W (magnitud escalar) realizado
por una fuerza F⃗ para mover un objeto en la dirección de un desplazamiento
d⃗ es el producto escalar de la fuerza por el desplazamiento:

W = F⃗ .d⃗
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En términos de la definición del producto escalar y llamando a F =
∣∣∣F⃗ ∣∣∣,

d =
∣∣∣d⃗∣∣∣ y a θ al ángulo formado entre los vectores, resulta:

W =
∣∣∣F⃗ ∣∣∣ . ∣∣∣d⃗∣∣∣ .cos(θ)

A partir de esta definición general, vemos ahora el caso particular cuando el
desplazamiento es en línea recta y la fuerza actúa en la misma dirección del
movimiento, y como calcular el trabajo.

Trabajo realizado por una fuerza en la dirección del desplazamiento
en línea recta La figura siguiente interpreta este caso particular, es decir
el caso en que el ángulo θ es cero, por lo tanto el cos(θ) = 1.

Si la fuerza F⃗ aplicada al objeto es constante y tiene la misma
dirección y sentido que el desplazamiento que suponemos además es en
línea recta, entonces, en este caso el trabajo es:

W = F.d

donde F es la magnitud de la fuerza y d es el desplazamiento ocurrido.

Si la fuerza F⃗ tiene la misma dirección y sentido que el despla-
zamiento pero es variable, en este caso, supongamos que un objeto
se mueve a lo largo de una línea recta desde x = a hasta x = b debido

48



1.8. APLICACIONES FÍSICAS DE LA INTEGRAL DEFINIDA

a una fuerza que varía continuamente y su magnitud es F (x), entonces
para calcular el trabajo, se procede del siguiente modo.

Consideramos una partición que divide al intervalo [a, b] en subinterva-
los tal como se ha realizado con anterioridad, y consideramos la suma
de Riemman para tal partición, obtenemos que, en cada subintervalo el
trabajo realizado se aproxima a F (x∗

i )∆xi, tomando límite, el trabajo
total realizado por el objeto al moverse desde a hasta b por la fuerza
está dada por:

W = ĺım
|P|→0

n∑
i=1

F (x∗
i )∆xi

.

Entonces si un objeto se mueve a lo largo de una recta debido a la acción
de una fuerza que varía continuamente cuya magnitud es F (x) y actúa
sobre el objeto en la misma dirección y sentido que el desplazamiento,
entonces el trabajo realizado por la fuerza conforme el objeto se mueve
desde x = a hasta x = b es posible calcularlo por (en el caso que F sea
integrable):

W =
∫ b

a
F (x)dx

Ejemplo: Ley de Hooke Un ejemplo de lo anterior es el cálculo del tra-
bajo requerido para alargamiento o compresión de un resorte que realiza una
fuerza variable. Supongamos que estiramos el resorte de modo que su ex-
tremo se mueve hasta una posición x , el resorte ejerce una fuerza sobre el
agente que lo estira cuya valor es aproximadamente

F (x) = −k.x

siendo k una constante de proporcionalidad, que depende del material, del
calibre (grosor), del alambre, de la temperatura, etc. Notar que la fuerza no
depende de la longitud natural del resorte, sino solo de su desplazamiento.
El sentido de la fuerza es siempre opuesto al desplazamiento del extremo con
respecto al origen. Es decir, cuando se estira el resorte x > 0 y F es negativo,
cuando se comprime x < 0 y F es positivo. La fuerza F siempre está dirigida
hacia el origen. Esta se conoce como Ley de Hooke que indica que para un
cierto rango llamado rango de elasticidad o límite elástico, la fuerza necesaria
para deformar un resorte es proporcional a la distancia que se ha deformado.
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Para estirar un resorte debemos aplicar sobre él una fuerza igual a F pero
de sentido contrario. La fuerza aplicada es por consiguiente F = k.x y el
trabajo WR efectuado por la fuerza aplicada al estirar el resorte de manera
que su extremo se mueva de 0 a xf es muy sencillo de calcular (área de un
triángulo):

WR =
∫ xf

0
k.xdx = (1/2).k.(xf )2

Esto último resultado es útil por ejemplo para estimar la constante k.

En física e ingeniería muchas magnitudes escalares pueden ser calculadas a
partir de la integral definida de una función adecuada (según sea el caso). A
las mencionadas anteriormente, existen muchas otras aplicaciones, como son
el cálculo de momentos, centros de masa y fuerza ejercida por la presión de
un líquido.

Además mencionar que las unidades del valor numérico de la integral definida
para el caso en que se calcule una magnitud física o geométrica dependerá de
las unidades de los ejes x e y. Si por ejemplo el eje horizontal está en segundos,
y el eje vertical está en metros sobre segundos al cuadrado, la integral estará
en unidades de metros sobre segundo. Este caso se presenta por ejemplo en
cinemática cuando integramos la función aceleración a(t).

1.8.4. Ejercicios. Aplicaciones físicas de la integral de-
finida

1. Un móvil se mueve en línea recta con velocidad v(t) = t2 − 2t, metros
por segundo, donde t es el tiempo en segundos. ¿Cuál es la distancia
total que recorre el móvil entre t = 0 y t = 3 segundos? ¿Cuál es el
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desplazamiento del móvil entre t = 0 y t = 3 segundos? Graficar en
cada caso.

2. La densidad lineal de una barra de 4 metros varia en cada punto de
la misma directamente proporcional a la distancia de ese punto a un
punto exterior colocado a 2 metros del extremo derecho de la barra,
donde la densidad es de 5kg/m. Calcular la masa total de la barra.
Esquematizar la situación.

3. Una partícula se mueve a lo largo de una línea recta por acción de una
fuerza f(x) (kilos) cuando la partícula está a x metros del origen. Si
la fuerza es f(x) = x2 + 4, calcular el trabajo realizado conforma la
partícula se mueve de x = 2 a x = 4 metros.

4. Un resorte tiene una longitud natural de 14 cm. Si una fuerza de 500
dinas se requiere para estirar el resorte 2 cm. (dina: fuerza que, aplicada
a la masa de un gramo, le comunica una aceleración de 1 centímetro en
un segundo al cuadrado). Calcular el trabajo que se realiza para estirar
el resorte de su longitud natural hasta una longitud de 18 cm.

1.9. Integral indefinida

Como hemos visto, el problema del cálculo de la integral definida de una
función continua en un intervalo cerrado queda resuelto una vez hallada una
primitiva de la función. Para diversas funciones hemos llevado adelante con
éxito la búsqueda de primitivas, pero sabemos que esa tarea no siempre es
sencilla. A diferencia de lo que sucede con el cálculo de derivadas, no hay re-
glas que conduzcan, a través de su aplicación sistemática, a la determinación
de las primitivas de cualquier función. En las siguientes páginas conocere-
mos algunas técnicas que nos permitirán, en algunos casos, hallar primitivas.
Antes de eso, definiremos lo que se entiende por integral indefinida y adop-
taremos una notación muy conveniente para referirnos a todas las primitivas
de una función.
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Propiedad

Si F(x) es una primitiva de f(x), entonces toda otra primitiva de f tiene
la forma F (x) + C , siendo C una constante arbitraria. F (x) + C se
llama primitiva general de f(x).
El símbolo

∫
f(x) dx se lee: integral indefinida de la función f y repre-

senta la primitiva general de f(x). Es decir que si F(x) es una primitiva
de f(x): ∫

f(x) dx = F (x) + C

Ejemplos: ∫
x2 dx = x3

3 + C

∫ 1√
x

dx = 2
√

x + C

∫ 1
x

dx = ln |x|+ C

Nota: Aunque no lo indicamos, es importante tener en cuenta que las igual-
dades anteriores son válidas en determinados intervalos de números reales.
La primera es válida en cualquier intervalo I incluido en R, la segunda, en
cualquier I ⊂ (0,∞) y la última en I ⊂ (0,∞) o I ⊂ (−∞, 0).

1.9.1. Ejercicios
Conociendo las derivadas de algunas funciones y las reglas de derivación,
podrán ustedes hallar las siguientes integrales indefinidas:

i)
∫ 1

x2 dx

ii)
∫ 1√

1− x2
dx

iii)
∫ 1

1 + x2 dx

iv)
∫
(x3 +

√
3)) dx

v)
∫ 1

2x
dx

vi)
∫
(cos(3x) + 3senx) dx
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vii)
∫ x4 − 2x3 + 1

x2 dx

viii)
∫ x3 − 3x2 + 1√

x
dx

ix)
∫

y2(y2 − 3) dy

x)
∫
(t2 + 1)2 dt

1.10. Técnicas de integración: Método de sus-
titución

Dada la siguiente integral:
∫
(x4 + 3x)30(4x3 + 3) dx Para resolverla conviene

observar que si llamamos g(x) a (x4 + 3x) entonces g′(x) = 4x3 + 3 y la
integral resulta ser :

∫
[g(x)]30 g′(x)dx. Observamos así que el integrando no

es otra cosa que la derivada de [g(x)]31

31 y que por lo tanto:

∫
(x4+3x)30(4x3+3) dx =

∫
[g(x)]30 g′(x)dx = [g(x)]31

31 +C = [(x4 + 3x)]31

31 +C

Método de Sustitución

En general, siendo F una primitiva de f,∫
f(g(x))g′(x) dx = F (g(x)) + C

ya que, en virtud de la regla de la cadena es : [F (g(x))]′ = f(g(x)).g′(x).
Lo anterior justifica que en una integral de la forma

∫
f(g(x))g′(x) dx

reemplacemos a g(x) por u y escribamos:∫
f(g(x))g′(x) dx =

∫
f(u)du = F (u) + C = F (g(x)) + C

Ejemplos:∫
(2x + 3)cos(x2 + 3x)dx

siendo u = x2 + 3x , du = (2x + 3)dx
y la integral se resuelve de la siguiente manera:∫

(2x+3)cos(x2+3x)dx =
∫

cos(u)du = sen(u)+C = sen(x2+3x)+C
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∫
(5x3 + 3x− 8)(5x2 + 1)dx

siendo u = 5x3 + 3x− 8 , du = 3(5x2 + 1)dx .
Resulta entonces: (5x2 + 1)dx = 1

3du

y la integral se resuelve de la siguiente manera:
∫

(5x3+3x−8)(5x2+1)dx =
∫

u
1
3 du = 1

3
u2

2 +C = 1
6(5x3+3x−8)2+C

Observación: Cambio de variable en integrales definidas Para una
integral definida ∫ b

a
f(x)dx

el cambio de variable x = g(u) introduce el factor g′(u) en el integrando y
modifica los límites de integración para la variable u, resultando a = g(c)
y b = g(d), ∫ b

a
f(x)dx =

∫ d

c
f(g(u))g′(u)du

Para calcular
∫ 5

−1
x(x2 + 1)3 dx podemos aplicar el método de sustitución de

la siguiente manera:

siendo u = x2 + 1 , du = 2xdx , asi que xdx = 1
2du . Resulta entonces:

∫ 5

−1
x(x2 + 1)3 dx =

∫ 26

2
u3 1

2du = 1
2

∫ 26

2
u3du = 1

2 .
u4

4

∣∣∣∣∣
26

2
= 264

8 −
24

8 = 57120

Como habrán observado, los límites de integración de la integral expresada
en la variable u no son los mismos que en la variable x .

x = −1 =⇒ u = (−1)2 + 1 = 2

x = 5 =⇒ u = 52 + 1 = 26

1.10.1. Ejercicios
1. Integrar aplicando el método de sustitución.

i)
∫ arctg x

1 + x2 dx ii)
∫ ln x

x
dx iii)

∫
tg5x sec2x dx iv)

∫
tgx dx
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v)
∫

ctgx dx

vi)
∫

3x4(2x5 + 9)3 dx

vii)
∫

cos(3x + 2) dx

viii)
∫

x
√

x2 + 4 dx ix)
∫ xsen

√
x2 + 4√

x2 + 4
dx x)

∫ (
1 + 1

t

)−2 ( 1
t2

)
dt

xi)
∫

x ex2
dx xii)

∫ ex

1 + ex
dx xiii)

∫
(senx + cosx)2 dx

xiv)
∫ 6cost

(2 + sent)3 dt xv)
∫ √

x− 1
x5 dx xvi)

∫ t

t2 + 4 dt

xvii)
∫ 1

x2 + 4 dx xviii)
∫ 1√

4− x2
dx

2. Calcular las siguientes integrales definidas realizando un cambio de va-
riable.

i)
∫ 2

1

ln x

x
dx ii)

∫ π

−π
cos

(
x

2

)
dx iii)

∫ 2

0

x

x2 + 1 dx iv)
∫ 1

0

√
ex + 1 exdx

1.11. Métodos de integración: Integración por
partes

Recordar que si u(x) y v(x) son funciones derivables entonces

[u(x)v(x)]′ = u′(x)v(x) + u(x)v′(x)

Integrando ambos miembros de esa igualdad resulta:

u(x)v(x) =
∫

u(x)v′(x)dx +
∫

v(x)u′(x)dx

y de allí se obtiene lo siguiente:
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Regla de integración por partes∫
u(x)v′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx

que usualmente se escribe:∫
u dv = u v −

∫
v du

Como se observa, la fórmula traslada el problema de integrar u(x)v′(x) al de
integrar v(x)u′(x) (y será de utilidad cuando pueda aplicarse y esa segunda
integral sea más sencilla que la primera, o al menos no tan complicada).

Observación: Para el caso en que la integral sea definida, y se encuentre
la primitiva por el método de integración por partes, se aplica luego la regla
de Barrow del siguiente modo:∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx

Ejemplos:∫
x ex dx

Sea u = x ; dv = ex dx
entonces: du = dx ; v = ex

y, resulta:
∫

x ex dx = x ex −
∫

ex dx = x ex − ex + C

(¡Noten que si se hacía u = ex ; dv = x dx (que era otra posibi-

lidad) quedaba: du = exdx ; v = x2

2 y la integral a resolver era más
complicada que la original!)∫

x lnx dx

En este caso, considerando que d(lnx)
dx

= 1
x

conviene hacer:

u = lnx ; dv = x dx

entonces: du = 1
x

dx ; v = x2

2
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y, resulta:
∫

x lx dx = x2

2 lnx−
∫ x2

2
1
x

dx = x2

2 lnx−
∫ x

2 dx = x2

2 lnx− x2

4 + C

∫
x2 ex dx

Sea u = x2 ; dv = ex dx
entonces: du = 2xdx ; v = ex

y, resulta:
∫

x2 ex dx = x2 ex −
∫

2x ex dx = x2 ex − 2
∫

x ex dx = (∗)

Noten que la integral que ha quedado para resolver se resuelve apli-
cando otra vez la integración por partes (de hecho, es la integral que
resolvimos en el ejemplo 1)

(∗) = x2 ex − 2 [x ex − ex] + C = x2 ex − 2x ex + 2ex + C∫
ex cosx dx

Sea u = ex ; dv = cosx dx
entonces: du = exdx ; v = senx

y resulta:
∫

ex cosx dx = exsenx−
∫

ex senxdx

La integral a resolver es de la misma dificultad que la original. Apli-
quemos nuevamente el método de integración por partes a esa integral:

u = ex dv = senx dx

du = exdx v = −cosx∫
ex senxdx = −excosx−

∫
ex(−cosx)dx

Por lo tanto:∫
ex cosx dx = exsenx−

[
−excosx−

∫
ex(−cosx)dx

]
∫

ex cosx dx = ex(senx + cosx)−
∫

excosxdx

2
∫

ex cosx dx = ex(senx + cosx) + C

o sea: ∫
ex cosx dx = 1

2 ex(senx + cosx) + C
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1.11.1. Ejercicios
1. Integren aplicando el método de integración por partes.

i)
∫

x2cosx dx

ii)
∫

x senx dx

iii)
∫

x sec2x dx

iv)
∫

lnx dx

v)
∫

arctgx dx

vi)
∫

arcsenx dx

vii)
∫

(lnx)2 dx

viii)
∫

exsenx dx

2. Calcular el área de la región limitada por:
a) y = lnx ; y = 0 ; x = 6.

b) y = arcsenx ; y = 0 ; x =
√

3
2 .

3. Calcular volumen del sólido de revolución que genera la región limitada
por: y = lnx ; y = 0 ; x = 5 , rotando alrededor del eje x.

1.12. Métodos de integración: uso de identi-
dades trigonométricas∫

sen2x dx y
∫

cos2x dx

Teniendo en cuenta que cos2x = cos2x− sen2x

y que sen2x + cos2x = 1

se obtiene:
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sen2x = 1− cos2x

2

cos2x = 1 + cos2x

2

De modo que:∫
sen2x dx =

∫ 1− cos2x

2 dx = 1
2

∫
(1−cos2x)dx = 1

2

(
x− sen2x

2

)
+C

∫
cos2x dx =

∫ 1 + cos2x

2 dx = .........................

∫
tg2x dx y

∫
ctg2x dx

Usamos para estas integrales las siguientes identidades:

tg2x = sec2x− 1
ctg2x = cosec2x− 1

∫
tg2x dx =

∫ (
sec2x− 1

)
dx = tgx− x + C∫

ctg2x dx =
∫ (

cosec2x− 1
)

dx = ...................

∫
sen4x dx

Tratándose de la función seno elevada a una potencia par, usamos la
identidad que nos permitió integrar sen2x:

∫
sen4x dx =

∫ [
sen2x

]2
dx =

∫ [1− cos2x

2

]2
dx =

= 1
4

∫ (
1− 2cos2x + cos22x

)
dx =

= 1
4

[∫
1 dx −

∫
2cos2x dx +

∫ (1 + cos4x

2

)
dx
]

=
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= 1
4

[∫
1 dx −

∫
2cos2x dx + 1

2

∫
(1 + cos4x) dx

]
=

1
4

[
x− sen2x + 1

2

(
x + sen4x

4

)]
=

= 3
8x− sen2x

4 + sen4x

32 + C

∫
sen3x dx

Tratándose de la integral de una potencia impar de sen(x) usaremos la
relación pitagórica (sen2 + cos2 = 1) de la siguiente manera:∫

sen3x dx =
∫

sen2x senx dx =
∫ (

1− cos2x
)

senx dx =

=
∫

senx dx−
∫

cos2x senx dx = .....................................

(una sustitución en la segunda integral del último renglón permitirá
completar el cálculo)∫ 1

0

√
1− x2 dx

El procedimiento que seguiremos en este caso se conoce como "susti-
tución trigonométrica". Teniendo presente que 1− sen2u = cos2u rem-
plazamos x por "sen u "

Siendo x = senu resulta: dx = cosu du y además:
x = 0 =⇒ u = 0

x = 1 =⇒ u = π

2
√

1− x2 =
√

cos2u =
∣∣∣cosu

∣∣∣ = cosu (pues, u ∈ [0, π
2 ]→ cosu > 0 )

y resulta entonces que :∫ 1

0

√
1− x2 dx =

∫ π
2

0
cosu cosu du =

∫ π
2

0
cos2u du =

= 1
2

∫ π
2

0
(1 + cos2u) du = 1

2

[
u + sen2u

2

]π
2

0
= π

4

¿Qué interpretación geométrica puede hacer del resultado anterior?
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1.12.1. Ejercicios
1. Calcular el volumen del sólido que genera la región del plano limitada

por las curvas: y = x+senx ; y = 0 y x = π , cuando rota alrededor
del eje x.

2. Integrar:

i)
∫

sec2x dx ii)
∫

tg2x dx iii)
∫

tg3x dx iv)
∫

cosec2x dx

3. Sabiendo que

sen(A+B) = senAcosB+cosAsenB ; sen(A−B) = senAcosB−cosAsenB

cos(A+B) = cosAcosB−senAsenB ; cos(A−B) = cosAcosB+senAsenB

mostrar la validez de las siguientes igualdades y usarlas para integrar
en los incisos que están a continuación.

senA cosB = 1
2 [sen(A−B) + sen(A + B)]

senA senB = 1
2 [cos(A−B)− cos(A + B)]

cosA cosB = 1
2 [cos(A−B) + cos(A + B)]

i)
∫

sen2x cos3x dx ii)
∫

sen8x sen3x dx iii)
∫

cos4x cos5x dx

4. Calcular el área de la región del plano limitada por la elipse x2

16 + y2

9 = 1

5. Integrar: i)
∫ √

1 + x2 dx , mediante la sustitución x = senh(u).

ii)
∫ 4

1

√
x2 − 1 dx , mediante la sustitución x = cosh(u).

Recordar estas identidades hiperbólicas:

sinh(x) = ex − e−x

2 cosh(x) = ex + e−x

2
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tanh(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x

y sus derivadas:

d

dx
sinh(x) = cosh(x) d

dx
cosh(x) = sinh(x)

d

dx
tanh(x) = sech2(x)

1.13. Métodos de integración: fracciones sim-
ples

El método de las fracciones simples o fracciones parciales puede aplicarse
para integrar funciones racionales, P (x)

Q(x) donde P(x) y Q(x) son funciones
polinomiales y el grado de P es menor que el grado de Q.

Ejemplos:∫ x + 5
x2 + x− 2 dx

Observar que x + 5
x2 + x− 2 es un cociente de polinomios y que el grado

del numerador es menor que el grado del denominador. El denominador
se factoriza como el producto de dos factores lineales diferentes: x− 1
y x + 2, y siendo así, podremos determinar dos constantes A y B tales
que :

x + 5
x2 + x− 2 = x + 5

(x− 1)(x + 2) = A

x− 1 + B

x + 2

Para ello, efectuamos la suma de las dos últimas fracciones:

A

x− 1 + B

x + 2 = A(x + 2) + B(x− 1)
(x− 1)(x + 2) = Ax + 2A + Bx−B

(x− 1)(x + 2) =

= (A + B)x + 2A−B

(x− 1)(x + 2)
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Para que sea

x + 5
(x− 1)(x + 2) = (A + B)x + 2A−B

(x− 1)(x + 2)

debe cumplirse que:  A + B = 1
2A−B = 5

Resolviendo ese sistema de ecuaciones se tiene: A = 2 y B = −1 de
modo que :

x + 5
x2 + x− 2 = 2

x− 1 −
1

x + 2
y resulta :
∫ x + 5

x2 + x− 2 dx =
∫ 2

x− 1 dx−
∫ 1

x + 2 dx = 2ln
∣∣∣x−1

∣∣∣−ln
∣∣∣x+2

∣∣∣+C

∫ −2x2 + 4x + 2
x3 + x2 − x− 1 dx

i) Observar que el integrando es una función racional y que el grado
del denominador es mayor que el grado del numerador.
ii) Factorizamos el denominador: x3 + x2 − x − 1 = (x − 1)(x + 1)2.
Como en esa factorización el factor lineal x − 1 aparece sólo una vez
y el factor lineal x + 1 está elevado al cuadrado, podremos determinar
constantes A, B y C tales que:

−2x2 + 4x + 2
x3 + x2 − x− 1 = A

x− 1 + B

(x + 1)2 + C

x + 1

iii) Para determinar esas constantes efectuamos la suma en el segundo
miembro y planteamos un sistema de ecuaciones:

−2x2 + 4x + 2
x3 + x2 − x− 1 = A(x + 1)2 + B(x− 1) + C(x + 1)(x− 1)

(x− 1)(x + 1)2 =

= (A + C)x2 + (2A + B)x + (A−B − C)
(x− 1)(x + 1)2
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Para que la igualdad se cumpla, debe ser:
A + C = −2

2A + B = 4
A−B − C = 2

Resolviendo ese sistema de ecuaciones se tiene: A = 1; B = 2 y
C = −3 de modo que :

∫ −2x2 + 4x + 2
x3 + x2 − x− 1 dx =

∫ [
1

x− 1 + 2
(x + 1)2 −

3
x + 1

]
dx =

=
∫ 1

x− 1 dx +
∫ 2

(x + 1)2 dx−
∫ 3

(x + 1) dx =

= ln
∣∣∣x− 1

∣∣∣− 2
x + 1 − 3 ln

∣∣∣x + 1
∣∣∣+ C

∫ 2x2 + x− 5
x3 + 3x2 + x + 3 dx

i) Observamos que el integrando es una función racional y que el grado
del denominador es mayor que el grado del numerador.
ii) Factorizamos el denominador: (x+3)(x2 +1) Como en esa factoriza-
ción aparece el factor lineal x+3 y el factor cuadrático x2 +1 podremos
determinar constantes A, B y C tales que:

2x2 + x− 5
x3 + 3x2 + x + 3 = A

x + 3 + Bx + C

x2 + 1

iii) Efectuando la suma en el segundo miembro y resolviendo un siste-
ma de ecuaciones como hicimos en los ejemplos anteriores obtenemos:
A = 1 , B = 1 ; C = −2 de modo que:

∫ 2x2 + x− 5
x3 + 3x2 + x + 3 dx =

∫ [ 1
x + 3 + x− 2

x2 + 1

]
dx =

=
∫ 1

x + 3 dx +
∫ x

x2 + 1 dx−
∫ 2

x2 + 1 dx =

= ln
∣∣∣x + 3

∣∣∣+ 1
2 ln

∣∣∣x2 + 1
∣∣∣− 2arctgx + C

.
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∫ x3 + x2 + 3x + 3
x4 + 2x2 + 1 dx

x3 + x2 + 3x + 3
x4 + 2x2 + 1 = x3 + x2 + 3x + 3

(x2 + 1)2 = Ax + B

(x2 + 1)2 + Cx + D

x2 + 1 =

= Ax + B + (Cx + D)(x2 + 1)
(x2 + 1)2 = Cx3 + Dx2 + (A + C)x + B + D

(x2 + 1)2

entonces: 
C = 1
D = 1
A + C = 3
B + D = 3

por lo que A = 2 y B = 2 , de modo que:∫ x3 + x2 + 3x + 3
x4 + 2x2 + 1 dx =

∫ [
2x + 2

(x2 + 1)2 + x + 1
x2 + 1

]
dx =

=
∫ 2x

(x2 + 1)2 dx +
∫ 2

(x2 + 1)2 dx +
∫ x

x2 + 1 dx +
∫ 1

x2 + 1 dx

Resolvemos a continuación la segunda de esas integrales y dejamos las
otras a manera de ejercicio:

haciendo x = tgu , resulta: dx = sec2u du y además:
1 + x2 = 1 + tg2u = sec2u, de modo que:∫ 2

(x2 + 1)2 dx = 2
∫ 1

sec4u
sec2du = 2

∫
cos2u du =

∫
[1 + cos2u] du =

= u + sen2u

2 + C = u + senu cosu + C = u + tgu cos2u + C =

= u + tgu
1

sec2u
+ C = u + tgu

1
1 + tg2u

+ C = arctgx + x

1 + x2 + C

¿Cómo procedemos cuando grado(P ) ≥ grado(Q)? En ese caso, para integrar

el cociente de polinomios P (x)
Q(x) procederemos primero a dividir: P (x) =

Q(x).C(x) + R(x) donde grado(R) < grado(Q) entonces:
P (x)
Q(x) = C(x) + R(x)

Q(x) ∴
∫ P (x)

Q(x)dx =
∫

C(x)dx +
∫ R(x)

Q(x)dx
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1.13.1. Ejercicios
1. Integrar:

i)
∫ dx

x2 − 4 ii)
∫ 2x2 − x + 4

x3 + 4x
dx iii)

∫ x2 + 1
x2 − x

dx

2. Explicar cómo se aplica el método de descomposición en fracciones
simples en las siguientes integrales:

i)
∫ x3 − x + 1

x2(x− 1)3 dx ii)
∫ −x3 + 2x2 + 1

x(x2 + 1)2 dx iii)
∫ x3 + 1

x2(x− 1)2(x2 + 1)2 dx

Observación importante: La primitiva de muchas funciones elementales no
es ninguna función elemental (funciones elementales son todas las funciones
que ustedes conocen y las que se pueden obtener a partir de ellas por medio
de suma, resta, multiplicación, división o composición).

Por ejemplo, no existe una función elemental F (x) que sea primitiva de
f(x) = ex2 .

¡No estamos diciendo que f(x) = ex2 no tiene primitivas! Ya que,

F (x) =
∫ x

0
et2

dt

es una primitiva de
f(x) = ex2

¿por qué?

Lo que estamos afirmamos es que ninguna primitiva de f(x) = ex2 es una
función elemental. Otras funciones cuyas primitivas no son funciones elemen-
tales son, por ejemplo: ex

x
,

senx

x
, sen(x2) ,

1
lnx

,
√

x3 + 1 , ¿Pueden
mostrar una primitiva de cada una de estas funciones?

66



Capítulo 2

Integral impropia. Sucesiones y
series numéricas

2.1. Integral Impropia

Definición de Integral Impropia

Son integrales en las que el dominio de integración no es acotado, y/o
en las que el integrando no es una función acotada en el dominio de
integración. Son de la forma:∫ +∞

a
f(x)dx donde a es un número real fijo y f(x) es una función

continua en [a, +∞)∫ a

−∞
f(x)dx donde a es un número real fijo y f(x) es una función

continua en (−∞, a].∫ +∞

−∞
f(x)dx siendo f una función continua en R.∫ b

a
f(x)dx donde f(x) es una función continua en (a, b] y

ĺım
x→a+

f(x) = ±∞∫ b

a
f(x)dx donde f(x) es una función continua en [a, b) y

ĺım
x→b−

f(x) = ±∞∫ b

a
f(x)dx siendo f una función continua en [a, c) y en (c, b],

con ĺım
x→c−

f(x) = ±∞ y ĺım
x→c+

f(x) = ±∞
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NUMÉRICAS
Así por ejemplo, son integrales impropias:

∫ ∞

0
xe3−xdx (El integrando es una función continua en el dominio de inte-

gración pero este, es no acotado)∫ 2

1

1
(x− 1)2 dx (La función a integrar tiene una discontinuidad infinita en

x = 1, dado que ĺım
x→1+

1
(x− 1)2 = +∞. El valor x = 1 punto que se encuentra

en el extremo izquierdo del intervalo acotado de integración. )

En el caso que se le pueda asignar un valor finito a una integral
impropia, diremos que converge. Caso contrario diverge.

¿Cómo estudiaremos la convergencia de una integral impropia?

Caso
∫ +∞

a
f(x)dx donde a es un número real fijo y f(x) es una función

continua en [a, +∞). (Intervalo no acotado)
Se evalúa la integral definida I(b) =

∫ b

a
f(x)dx . Si existe y es finito el

ĺım
b→+∞

I(b) = I

en ese caso se dice que la integral impropia es convergente y se le asigna
el valor

∫ +∞

a
f(x)dx = I

De manera análoga se analiza la convergencia o divergencia de la inte-
gral impropia de la forma

∫ a

−∞
f(x)dx donde a es un número real fijo

y f(x) es una función continua en (−∞, a].

Caso
∫ +∞

−∞
f(x)dx siendo f una función continua en R (Intervalo no

acotado).

Analizaremos, para algún número real a , las integrales impropias
∫ a

−∞
f(x)dx

y
∫ +∞

a
f(x)dx . Si ambas integrales son convergentes y convergen a nú-

meros I1 e I2 diremos que
∫ +∞

−∞
f(x)dx es convergente , que converge

a I1 + I2 y que podemos asignarle ese valor.
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Si
∫ a

−∞
f(x)dx es divergente o

∫ +∞

a
f(x)dx es divergente entonces di-

remos que
∫ +∞

−∞
f(x)dx es divergente. O sea:

∫ +∞

−∞
f(x)dx = I1 + I2 ←→

∫ a

−∞
f(x)dx = I1 ∧

∫ +∞

a
f(x)dx = I2

Caso:
∫ b

a
f(x)dx donde f(x) es una función continua en (a, b] y

ĺım
x→a+

f(x) = ±∞ (Existencia de una asíntota vertical en x = a.)

Se evalúa la integral definida I(c) =
∫ b

c
f(x)dx para c un valor tal

que a < c < b.

Si existe y es finito el
ĺım

c→a+
I(c) = I

en ese caso se dice que la integral impropia es convergente y se le asigna
el valor

∫ b

a
f(x)dx = I

De manera análoga se estudia la convergencia o divergencia de la in-
tegral impropia de la forma

∫ b

a
f(x)dx donde f(x) es una función

continua en [a, b) y ĺım
x→b−

f(x) = ±∞ . Existencia de una asíntota ver-
tical en x = b.

Caso:
∫ b

a
f(x)dx siendo f una función continua en [a, c) y en (c, b],

con
ĺım

x→c−
f(x) = ±∞ y ĺım

x→c+
f(x) = ±∞ (Existencia de una asíntota verti-

cal en x = c, a < c < b.)

Analizaremos las integrales impropias
∫ c

a
f(x)dx y

∫ b

c
f(x)dx . Si

ambas integrales son convergentes y convergen a números I1 e I2 di-
remos que

∫ b

a
f(x)dx es convergente , que converge a I1 + I2 y que

podemos asignarle ese valor.

Si
∫ c

a
f(x)dx es divergente o

∫ b

c
f(x)dx es divergente entonces diremos

que
∫ b

a
f(x)dx es divergente.
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Para este capítulo puedes utilizar varias de las aplicaciones creadas en
GeoGebra.

Actividad:
Supongan que en una empresa se estima que, al cabo de x semanas de ini-
ciada una operación, se estará recaudando a razón de f(x) = xe3−x millones
de pesos por semana. Siendo así, calculen la recaudación total de las tres pri-
meras semanas y piensen cómo expresarían la recaudación total si el tiempo
fuese ilimitado (y cómo la calcularían).

Ejemplos

∫ ∞

0
xe3−xdx

Observamos que el integrando f(x) = xe3−x es una función continua
en R y positiva.

Por lo tanto, siendo b ∈ R, b > 0, podemos calcular
∫ b

0
xe3−xdx apli-

cando la regla de Barrow:

F (b) =
∫ b

0
xe3−xdx = [−e3−x − xe3−x]

∣∣∣∣∣
b

0
= −e3−b − b e3−b + e3

Tal integral, en este caso, calcula el área encerrada entre el eje x, la
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función f para x entre 0 y b.

Como ĺım
b→+∞

∫ b

0
xe3−xdx = ĺım

b→+∞
(−e3−b − b e3−b + e3) = e3

decimos que la integral impropia
∫ ∞

0
xe3−xdx es convergente, que con-

verge a e3, y que podemos asignar a esa integral impropia el valor e3,
o sea: ∫ ∞

0
xe3−xdx = e3

(Podríamos estar mencionando en este caso que el área infinita, existe,
y es e3.∫ ∞

1

1√
x

dx

f(x) = 1√
x

es continua en [1,∞]. Calculemos
∫ b

1

1√
x

dx

∫ b

1

1√
x

dx = 2
√

x

∣∣∣∣∣
b

1
= 2
√

b− 2

Como ĺım
b→+∞

∫ b

1

1√
x

dx = ĺım
b→+∞

(2b− 2) = +∞

concluimos que la integral impropia
∫ ∞

1

1√
x

dx es divergente y no po-
demos asignarle un valor.∫ 2

1

1
(x− 1)2 dx
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f(x) = 1
(x− 1)2 es una función continua en (1, 2]

ĺım
x→1+

1
(x− 1)2 = +∞

Siendo c ∈ R tal que 1 < c < 2, podemos calcular
∫ 2

c

1
(x− 1)2 dx

∫ 2

c

1
(x− 1)2 dx = − 1

x− 1

∣∣∣∣∣
2

c

= −1 + 1
c− 1

Como ĺım
c→1+

∫ 2

c

1
(x− 1)2 dx = ĺım

c→1+
(−1 + 1

c− 1) = +∞ concluimos

que
∫ 2

1

1
(x− 1)2 dx es una integral impropia divergente. No podemos

asignar un valor a esa integral.∫ 1

0

1√
x

dx es una integral impropia pues ĺım
x→0+

1√
x

= +∞

f(x) = 1√
x

es una función continua en el intervalo (0, 1] de modo que,

para c ∈ R tal que 0 < c < 1 podemos calcular
∫ 1

c

1√
x

dx

∫ 1

c

1√
x

dx = 2
√

x

∣∣∣∣∣
1

c

= 2− 2
√

c

Como ĺım
c→0+

∫ 1

c

1√
x

dx = ĺım
c→0+

(2− 2
√

c) = 2

concluimos que
∫ 1

0

1√
x

dx es una integral impropia convergente , que
converge a 2 y podemos asignarle ese valor, o sea:∫ 1

0

1√
x

dx = 2

2.1.1. Ejercicios
1. En los siguientes incisos, expliquen por qué la integral es impropia, ana-

licen si se le puede asignar un valor y, cuando corresponda, indiquen
cuál es ese valor.
a)
∫ +∞

1

1
x

dx b)
∫ 0

−∞

1
(x− 1)2 dx c)

∫ +∞

0
e−xdx d)

∫ +∞

−∞
xe−x2

dx
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e)
∫ 1

−∞
xexdx f)

∫ +∞

−∞
exdx g)

∫ +∞

2

1
1 + x2 dx h)

∫ +∞

0

1
3√1 + x

dx

i)
∫ 1

0

dx√
1− x2

j)
∫ 2

0

2x

(x2 − 4)2 dx k)
∫ 3

0

2x

(x2 − 1) 2
3
dx l)

∫ 2

0

1
(x− 1)2 dx

2. Expliquen por qué
∫ +∞

0
cosx dx es una integral impropia divergente.

3. Muestren que: a)
∫ +∞

1

2
4x2 − 1dx = ln(3)

2 b)
∫ +∞

−∞

1
x2 + 1dx = π

c)
∫ +∞

1

x

(x2 + 1)2 dx = 1
4 d)

∫ +∞

−∞

dx

x2 + 2x + 2 = π

e) si a > 0,
∫ +∞

0
e−axdx = 1

a
f)
∫ 5

1

x√
5− x

dx = 44
3

g)
∫ 5

1

x√
25− x2

dx =
√

24 h)
∫ 2

1

dx

x2
√

4− x2
=
√

3
4

2.2. Sucesiones numéricas
La palabra sucesión tiene en Matemática un significado que concuerda con
el del lenguaje corriente: se trata de un conjunto de objetos dispuestos en un
orden determinado, de manera que hay uno que ocupa el primer lugar, uno
que ocupa el segundo lugar,etc.
Hay sucesiones finitas (que empiezan y terminan) y sucesiones infinitas.
Si a cada n ∈ N está asociado un número real an entonces se dice que el
conjunto ordenado

a1 , a2 , a3, . . ., an, . . .

define una sucesión numérica infinita. Decimos que a1 es el primer término
de esa sucesión, a2 es el segundo térrmino, etc.

an es el término enésimo de esa sucesión y, para cada n, an+1 es el término
siguiente al término an. Para definir una sucesión numérica debe quedar es-
tablecido, de alguna manera, qué número es el que está en cada lugar de la
lista. Frecuentemente se define una sucesión dando alguna regla o fórmula
para el término enésimo, por ejemplo:

an = 1
2n + 1 , n ∈ N
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define la sucesión:

1,
1
8 ,

1
27 ,

1
64 , . . .

A veces hay dos o más fórmulas , por ejemplo:

a2n−1 = 0 ; a2n = 1, n ∈ N

define la sucesión:
0, 1, 0, 1, 0, 1, . . .

A veces una sucesión se define dando cuáles son los primeros términos y a
continuación una fórmula de recurrencia que indica cómo se obtienen los
siguientes términos a partir de los anteriores.

Las sucesiones aparecen en infinidad de situaciones y en la realidad también.
Son útiles para modelar, describir, y predecir en el tiempo ciertos fenómenos
económicos (préstamos, cuotas, intereses bancarios), biológicos (crecimiento
de bacterias, poblaciones), procesos de producción, entre otros.

Ejemplo de sucesiones:

Sucesión de Fibonacci La sucesión a1 = a2 = 1 ; an = an−1 +
an−2 para n ≥ 3

define la que se conoce como sucesión de Fibonacci que aparece vinculada a
una gran variedad de cuestiones y cuyos primeros términos son:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Esta secuencia fue descrita por primera vez en el siglo XIII por el matemático
italiano Leonardo de Pisa, también conocido como Fibonacci (Fibonacci fue
un célebre matemático italiano, conocido también como Leonardo de Pisa,
que vivió entre 1.170 y 1.250 y a quien se atribuye la introducción en Europa
del sistema de numeración indo-arábigo.). Sin embargo, la secuencia ya había
sido estudiada por matemáticos indios en siglos anteriores.

La sucesión de Fibonacci exhibe muchas propiedades matemáticas interesan-
tes y se encuentra en varias áreas de la naturaleza y las ciencias. Por ejemplo,
se puede observar en el crecimiento de las conchas de los caracoles, en la dis-
posición de las hojas en ciertas plantas, en la formación de pétalos de flores
e incluso en la estructura de galaxias espirales.

Además, la relación entre los números de Fibonacci también es notable. A
medida que los números de la sucesión aumentan, su cociente se aproxima
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al número áureo o la proporción áurea, denotada por la letra griega (phi),
que tiene un valor φ = 1+

√
5

2 y es aproximadamente 1,61803. Esta proporción
áurea se considera estéticamente agradable y se ha utilizado en el diseño de
obras de arte, arquitectura y música.

La sucesión de Fibonacci es una de las secuencias más conocidas y estudia-
das en matemáticas. Tiene una amplia gama de aplicaciones y es un ejemplo
interesante de cómo los patrones matemáticos pueden encontrarse en la na-
turaleza y en el mundo que nos rodea.

Sucesión aritmética

Sea a1 = a ; an = an−1 + d para n ≥ 2

define una sucesión en la que el primer término es a y luego, a partir de
n = 2, cada término se obtiene sumando un número fijo d al término anterior:
a, a + d, a + 2d, a + 3d, ...
La misma sucesión queda definida diciendo:

an = a + (n− 1)d para n ≥ 1

Sucesión geométrica

Sea a1 = a ; an = an−1 r para n ≥ 2 define una sucesión en
la que el primer término es a y luego, a partir de n = 2, cada término
se obtiene multiplicando el término anterior por un número fijo r , 0 :
a, a r, a r2, a r3 ...
La misma sucesión queda definida diciendo:

an = a rn−1 para n ≥ 1.

Notación general de una sucesión

{an} , {an}n , {an}∞
n=1 son notaciones que se utilizan para indicar la

sucesión cuyo término enésimo es an.
Por ejemplo: {(−1)n} , {n3}n ,

{ 1
n

}∞

n=1
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2.2.1. Convergencia de una sucesión

Definición de convergencia de sucesiones

Decimos que {an} es una sucesión convergente y que converge a L
cuando existe el límite ĺım

n→+∞
an = L . Esto significa que los términos

de la sucesión se acercan tanto como se quiera a L considerando valores
de n suficientemente grandes.
Cuando esto no sucede decimos que la sucesión {an} es divergente.

Ejemplos:

ĺım
n→+∞

1
n

= 0 por lo que la sucesión
{ 1

n

}
es convergente (converge a 0).

ĺım
n→+∞

n3 = +∞ de modo que la sucesión {n3} es divergente.
ĺım

n→+∞
(−1)n no existe de modo que la sucesión {(−1)n} es divergente.

Las figuras siguientes ilustran varias maneras en las que una sucesión puede
ser convergente:

Observamos que si {an} converge a L entonces, para ϵ > 0 cualquiera, to-
dos los términos an excepto eventualmente un número finito de ellos (que
corresponden a n < Ne) están en el intervalo (L− ϵ, L + ϵ).
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Sucesiones monótonas

Una sucesión {an} es creciente si an ≤ an+1 para todo n.

Una sucesión {an} es decreciente si an ≥ an+1 para todo n.

Las sucesiones crecientes o sucesiones decrecientes se llaman monótonas

Ejemplo de sucesión monótona:

Sea por ejemplo la sucesión
{

ln(n)
n

}
. Veamos que es una sucesión decrecien-

te a partir de n = 3, o sea,

ln(n + 1)
n + 1 ≤ ln(n)

n
si n ≥ 3.

Para probarlo podemos estudiar la función f(x) = ln(x)
x

.

f es continua en (0, +∞) y es derivable.

f ′(x) = 1− lnx

x2 < 0 si x > e

de modo que f(x) = lnx

x
es decreciente (estrictamente) cuando x > e

y por lo tanto ,
{

ln(n)
n

}
es decreciente si n ≥ 3.

La convergencia o divergencia de una sucesión monótona se puede determi-
nar con un criterio sencillo:

Teorema de Monotonía: Toda sucesión monótona y acotada, es convergente.

Que una sucesión {an} esté acotada, significa que existe un número real
M > 0 tal que

|an| ≤M, ∀n ∈ N.

Esto significa que todos los términos de la sucesión están dentro del intervalo
[−M, M ]

Vamos a definir ahora una sucesión que se denomina factorial.
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Factorial

Se define el factorial como una sucesión numérica que le asigna a cada
número natural n el producto de todos los naturales desde 1 hasta n.
Esto se anota del siguiente modo utilizando el símbolo !. Es decir:

n! = 1 · 2 · 3 · · · n

para todo natural n ≥ 1. Y se define

0! = 1

El factorial, también se puede definir recursivamente como n! = n(n − 1)!
para n ≥ 1 y 0! = 1.

Así, se construye la sucesión, n! = 0!, 1!, 2!, 3!, ... donde,

1! = 1

2! = 1 · 2 = 2
3! = 1 · 2 · 3 = 6

4! = 1 · 2 · 3 · 4 = 24
5! = 1 · 2 · 3 · 4 · 5 = 120

y así se sigue.

La sucesión n! es claramente creciente, y por ejemplo la sucesión
{ 1

n!

}
es

decreciente. Ya que para todo n es 1
(n + 1)! = 1

(n + 1)n! ≤
1
n!

2.2.2. Ejercicios
1. Escriban los cuatro primeros términos de las sucesiones que se definen

a continuación: i) an = 3n , n ≥ 1 ii) bn = (−1)nn2 , n ≥ 1
iii) c1 = 1 y cn = cn−1 + 3 , n ≥ 2

2. Escriban una fórmula para el término general de las siguientes sucesio-
nes: i) 1, 2, 4, 8, 16, ... ii) 1, 8, 27, 64, 125, ... iii) 2, 5, 8, 11, 14, ...
iv) 3,−9, 27,−81, 243, ...

3. Analice si las siguientes sucesiones son convergentes o divergentes:

i)
{

10√
n + 1

}
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ii)
{

n√
n + 1

}

iii)
{3n− 2

6n + 1

}

iv)
{

3− 2−n

6 + 4−n

}

v)
{

ln(n)
n

}

vi){cos(nπ)} vii){sen(nπ)}

viii){n3e−n}

ix) {rn} (consideren los casos:|r| > 1 , |r| < 1 y |r| = 1 )

4. Los matemáticos griegos, en tiempos remotos, dieron respuesta al pro-
blema del cálculo del área del círculo considerando una sucesión de
polígonos inscriptos cuyas áreas, al aumentar suficientemente el núme-
ro de lados, representan prácticamente el área buscada. Consideremos
la sucesión de {Pn}∞

n=1 ,. . donde Pn es un polígono regular con n lados
(n mayor o igual a 3), inscripto en un círculo de radio 1.

Es posible probar que el área de un polígono regular de n lados, cono-
ciendo su radio r es:

Area(n) =
nr2 sin(2π

n
)

2

De este modo se genera la sucesión de los valores del área de un polígono
regular de n lados, para n mayor a 3. Tomar límite a este último valor
para n acercándose al infinito, y r = 1, para obtener finalmente que
dicha sucesión

Area(n) =
n sin(2π

n
)

2
converge al número π, área de un círculo de radio 1.
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2.3. Series numéricas

Serie numérica

Dada la sucesión numérica {an}, el símbolo
∞∑

n=1
an denota lo que lla-

mamos serie numérica. Informalmente podríamos decir entonces que
una serie numérica es una suma de infinitos sumandos: a1 + a2 + a3 +
... + an + ...
pero es necesario precisar en qué sentido podemos hablar de suma en
este contexto.

Sucesión de Sumas Parciales

Dada {an} podemos sumar un número finito de términos sucesivos y
formar una nueva sucesión denominada Sumas Parciales {Sn}

Sn = a1 + a2 + a3 + ... + an ; n ≥ 1

Es la sucesión {Sn} lo que se llama serie numérica y se representa
∞∑

n=1
an.

Definición de convergencia de una serie

La serie
∞∑

n=1
an es convergente y converge a S o tiene suma igual a S

cuando la sucesión de Sumas Parciales {Sn} converge a S.
Es decir que, existe el límite ĺım

n→∞
Sn = S, y en este caso se anota:

∞∑
n=1

an = S

Por el contrario, si {Sn} no converge decimos que la serie
∞∑

n=1
an es

divergente y que no tiene suma.

Ejemplos:

La serie
∞∑

n=1

3
10n

es convergente y su suma es 1
3.

En efecto: Sn = 3
10 + 3

102 + 3
103 + ... + 3

10n
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por lo tanto 1
10Sn = 3

102 + 3
103 + 3

104 + ... + 3
10n+1

Entonces Sn −
1
10Sn = 3

10 −
3

10n+1 de donde

Sn =

3
10

(
1− 1

10n

)
1− 1

10

→ ĺım
n→∞

Sn = 1
3

∞∑
n=1

c con c , 0 y
∞∑

n=1
(−1)n son series divergentes.

En efecto:

En el primer caso, Sn = nc así que ĺım
n→∞

Sn = +∞ (si c > 0) o
ĺım

n→∞
Sn = −∞ (si c < 0 ).

En el caso de
∞∑

n=1
(−1)n resulta Sn =

−1 si n es impar

0 si n es par
por lo

que ĺım
n→∞

Sn no existe.

Propiedad de la suma / resta de series:

Sean
∞∑

n=1
an y

∞∑
n=1

bn dos series convergentes y α y β dos constantes. Enton-

ces, la serie
∞∑

n=1
(αan + βbn) es convergente y su suma es igual a αA + βB

donde A es la suma de la serie de términos an y B es la suma de la serie de
términos bn.

Demostración:
Por las propiedades de las sumas finitas podemos escribir:

n∑
k=1

(αak + βbk) = α
n∑

k=1
ak + β

n∑
k=1

bk

ĺım
n→∞

n∑
k=1

ak = A y ĺım
n→∞

n∑
k=1

bk = B y entonces, por propiedades de los límites:

ĺım
n→∞

n∑
k=1

(αak + βbk) = ĺım
n→∞

(
α

n∑
k=1

ak + β
n∑

k=1
bk

)
= αA + βB
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Como corolario de la propiedad anterior resulta:

Si
∞∑

n=1
an converge y

∞∑
n=1

bn diverge, entonces
∞∑

n=1
(an + bn) diverge.

Atención

Siendo
∞∑

n=1
an y

∞∑
n=1

bn ambas divergentes,
∞∑

n=1
(an + bn) podría ser

convergente o divergente, como se ve en los siguientes ejemplos:

si an = 1 y bn = −1 ∀n ,
∞∑

n=1
an y

∞∑
n=1

bn son ambas divergentes y
∞∑

n=1
(an + bn) es convergente.

si an = 1 y bn = 1 ∀n ,
∞∑

n=1
an y

∞∑
n=1

bn son ambas divergentes y
∞∑

n=1
(an + bn) es divergente.

En resumen:

∑
an y ∑

bn
∑(an ± bn)

Ambas convergen Converge∑
an converge, ∑ bn diverge Diverge∑
an diverge, ∑ bn converge Diverge

Ambas divergen Indeterminado

2.4. Serie geométrica
La serie geométrica resulta de sumar los términos de una sucesión geométrica.
Los términos de una sucesión de este tipo son de la forma:

a; ar; ar2; ar3; ...

Notar que el cociente de cada término con su inmediato anterior es siempre
constante e igual a r.
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Serie geométrica de razón r

Si r es un número real fijo,
∞∑

n=0
arn = a + ar + ar2 + ar3 + ...

es una serie geométrica de razón r y primer término a.

Las series geométricas son las series infinitas más simples y pueden ser utili-
zadas como una introducción básica a la Serie de Taylor y Serie de Fourier,
que se estudiarán en Matemática C.

Como veremos a continuación, la convergencia o divergencia de una serie de
este tipo depende de r.

En este caso la sucesión de sumas parciales es:

S1 = a

S2 = a + ar

S3 = a + ar + ar2

en general
Sn = a + ar + ar2 + ar3 + ... + arn−1

Si r = 1 entonces Sn = an por lo que ĺım
n→∞

Sn = +∞ y la serie diverge.
Suponiendo r , 1, podemos escribir:

rSn = ar + ar2 + ar3 + ar4 + ... + arn

Sn − rSn = a(1− rn)

Sn = a (1− rn)
1− r

Entonces, |r| < 1 → ĺım
n→∞

Sn = a

1− r

|r| > 1 o r = −1 → ĺım
n→∞

Sn no es un número real.

Si |r| ≥ 1 entonces
∞∑

n=0
rn diverge.
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Suma de una serie geométrica

Si |r| < 1 la serie geométrica converge :
∞∑

n=0
arn = a + ar + ar2 + ...

y su suma es
S = a

1− r

De manera coloquial, se puede decir que la suma de una serie geométrica
con razón menor a uno, es el cociente entre entre el primer término a y uno
menos la razón.

Ejemplo

La serie
∞∑

n=0

2n

3n+1 = 1/3+2/9+4/27+.... es geométrica con razón r = 2
3

y primer término a = 1
3 , entonces es convergente ya que el módulo de

r es menor a 1 y su suma es 1/3
1− 2/3 .

Consideremos un número periódico por ejemplo, 2,99999 . . ., con parte
entera 2 y parte periódica 9. Se puede escribir:

2,99999 . . . = 2 +
∞∑

n=1

9
10n

La serie ∑∞
n=1

9
10n es geométrica con el primer término a = 9/10 y la

razón r = 1/10. La suma de una serie geométrica infinita con |r| < 1
está dada por:

S = a

1− r

Aplicando esto a nuestro ejemplo, tenemos:

2,99999 . . . = 2 + 9/10
1− 1/10 = 2 + 9/10

9/10

Por lo tanto:
2,99999 . . . = 2 + 1 = 3
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2.5. Serie telescópica
Dada una sucesión {bn}, la serie de términos an = bn − bn+1 es una serie
telescópica.

En este caso es Sn =
n∑

k=1
ak =

n∑
k=1

(bk − bk+1) = b1 − bn+1

de modo que {Sn} converge si y sólo si {bn} converge y, siendo así,

∞∑
n=1

an =
∞∑

n=1
(bn − bn+1) = b1 − L donde L = ĺım

n→∞
bn

Ejemplo:

El comportamiento de la serie
∞∑

n=1

1
4n2 − 1 puede estudiarse observando que

an = 1
4n2 − 1 = 1

4n− 2 −
1

4n + 2 (verifíquenlo),

o sea que an = bn − bn+1 siendo bn = 1
4n− 2

Por lo tanto, Sn = a1 + a2 + ... + an = b1 − bn+1 = 1
2 −

1
4n + 2

y resulta: ĺım
n→∞

Sn = 1
2

Luego, la serie
∞∑

n=1

1
4n2 − 1 converge a 1

2.

2.5.1. Ejercicios
1. En los siguientes incisos, estudien el comportamiento de la serie y hallen

su suma cuando sea posible.
i)

∞∑
n=1

(
−3

2

)n

ii)
∞∑

n=1

23n

3n
iii)

∞∑
n=1

(
−1

4

)n

iv)
∞∑

n=1

(√
n−
√

n + 1
)

v)
∞∑

n=1

1
n(n + 1) vi)

∞∑
n=1

1
(n + 4)(n + 5) vii)

∞∑
n=1

ln
(

n + 2
n + 3

)
viii)

∞∑
n=1

2n+3

7n
ix)

∞∑
n=1

2n − 3n

6n
x)

∞∑
n=1

[(6
5

)n

−
(2

5

)n]
2. Muestren que 2, 999... = 3

3. Se deja caer una pelota desde una altura inicial de 15m sobre una losa
de concreto. La pelota alcanza una altura igual a los dos tercios de la
altura anterior en cada rebote. Hallen la expresión de la altura en su
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enésimo rebote. Calculen cuál sería la suma de los metros recorridos
suponiendo que la pelota rebotara indefinidamente.

4. Hallen la suma de la serie 4− 6 + π + 1 + 1
2 + 1

4 + 1
8 + ...

1
2n

+ ...

2.6. Criterios de convergencia
No siempre es posible establecer la convergencia o divergencia de una serie
de manera directa, como lo hicimos con las series geométricas y las teles-
cópicas, considerando las sumas parciales y analizando si tienden, o no, a
un límite finito cuando n tiende a infinito. En general, con escasa frecuencia
podremos estudiar el comportamiento de una serie de esta manera. De allí la
importancia de contar con criterios de convergencia que permitan eludir la
expresión de las sumas parciales y la evaluación de su límite. Estudiaremos
a continuación algunos de estos criterios.

Importante: Estos criterios sólo dan condiciones suficientes que bajo cier-
tas condiciones aseguran la convergencia y/o divergencia de una serie.

2.6.1. Criterio de divergencia

Condición necesaria para la convergencia

Si
∞∑

n=1
an converge entonces ĺım

n→∞
an = 0.

Demostración:
Sea Sn = a1 + a2 + ... + an

ĺım
n→∞

Sn = S ∈ R pues
∞∑

n=1
an es por hipótesis convergente.

También es entonces ĺım
n→∞

Sn−1 = S y por lo tanto:
ĺım

n→∞
an = ĺım

n→∞
(Sn − Sn−1) = S − S = 0.

Importante: el contrarecíproco del enunciado anterior, es útil y se enuncia
del siguiente modo.

Criterio de la divergencia: Si ĺım
n→∞

an , 0 entonces
∞∑

n=1
an diverge.
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Ejemplo: Dada la serie
∞∑

n=1

n− 2
n + 5 , observamos que

ĺım
n→∞

n− 2
n + 5 = ĺım

n→∞
�n(1− 2

n
)

�n(1 + 5
n
) = 1

por lo tanto, en virtud de la condición necesaria para la convergencia, con-
cluímos que la serie dada es divergente (si fuera convergente el límite anterior
debería ser igual a 0).

Atención: ĺım
n→∞

an = 0 es una condición necesaria pero no suficiente para la

convergencia de
∞∑

n=1
an . Prueba de ello es por ejemplo la serie

∞∑
n=1

1
n

que,

como veremos, diverge, siendo ĺım
n→∞

1
n

= 0.

2.6.2. Criterio de la integral

Sea f una función continua, decreciente y positiva para x ∈ [1, +∞) y sea
an = f(n) . Entonces:

∞∑
n=1

an converge si y sólo si
∫ +∞

1
f(x)dx converge.

Demostración: Como puede apreciarse en los siguientes gráficos, si f satisface
las hipótesis del enunciado, debe ser:

n∑
k=2

f(k) ≤
∫ n

1
f(x)dx ≤

n−1∑
k=1

f(k)
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Las sucesiones Sn =
n∑

k=1
ak =

n∑
k=1

f(k) e In =
∫ n

1
f(x)dx son crecientes y

se tiene entonces:

Si la integral impropia
∫ +∞

1
f(x)dx converge a un número A, entonces, para

todo n, Sn− a1 =
n∑

k=2
f(k) ≤

∫ n

1
f(x)dx ≤ A de modo que {Sn} es acotada

y por lo tanto convergente.

Recíprocamente, si {Sn} converge a un número S, entonces, para todo n,

resulta
∫ n

1
f(x)dx ≤

n−1∑
k=1

f(k) = Sn−1 ≤ S y esto conduce a concluir que∫ +∞

1
f(x)dx es convergente.

2.6.3. Serie-p o p-serie

Aplicaremos el criterio de la integral al comportamiento de las p-series.
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p-Serie

Las p-series (o series p) son las series de la forma
∞∑

n=1

1
np

con p > 0.
Para el caso de p = 1 se denomina serie armónica:

∞∑
n=1

1
n

= 1 + 1/2 + 1/3 + ...

Siendo p > 0, f(x) = 1
xp

es continua, positiva y decreciente en [1, +∞) .

Además, an = 1
np

= f(n).

∫ b

1

1
xp

dx =



x1−p

1− p

∣∣∣∣∣
b

1
= b1−p − 1

1− p
si p , 1

ln |x|
∣∣∣∣∣
b

1
= ln b si p = 1

ĺım
b→+∞

∫ b

1

1
xp

dx =


1

p− 1 si p > 1

+∞ si p ≤ 1

∫ +∞

1

1
xp

dx :
converge si p > 1

diverge si p ≤ 1

Entonces, por el criterio de la integral,

∞∑
n=1

1
np

:
converge si p > 1

diverge si p ≤ 1

Ejemplo: Las series
∞∑

n=1

1
n

,
∞∑

n=1

1
n1/3 ,

∞∑
n=1

1
n1/2 son divergentes, mientras que

∞∑
n=1

1
n2 y

∞∑
n=1

1
n3 son convergentes.
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2.6.4. Criterio de comparación

Si
∞∑

n=1
an y

∞∑
n=1

bn son tales que 0 ≤ an ≤ bn para todo n y la serie
∞∑

n=1
bn

es convergente, entonces también es convergente la serie
∞∑

n=1
an.

Demostración:
Sea Sn = a1 + a2 + ... + an y sea S la suma de la serie de términos {bn}
Para todo n es:

0 ≤ Sn =
n∑

k=1
ak ≤

n+1∑
k=1

ak ≤
n+1∑
k=1

bk ≤ S

De modo que {Sn} es una sucesión creciente y acotada y por lo tanto, con-
vergente.

Si
∞∑

n=1
an y

∞∑
n=1

bn son tales que 0 ≤ an ≤ bn para todo n y la serie
∞∑

n=1
an

es divergente, entonces es divergente la serie
∞∑

n=1
bn.

Ejemplos:

Dada
∞∑

n=1

cos( 1
n
)

n2 + 1 , observamos que para todo n es

0 <
1
n

< 1 <
π

2 , por lo que 0 < cos( 1
n

) < 1 y se verifica enton-

ces: 0 ≤
cos( 1

n
)

n2 + 1 ≤
1

n2 + 1 ≤ 1
n2 . Sabemos que la serie

∞∑
n=1

1
n2 es

convergente (es una p-serie con p > 1). Entonces, por el criterio de

comparación, concluímos que la serie
∞∑

n=1

cos( 1
n
)

n2 + 1 es convergente.

Dada
∞∑

n=1

1
n +
√

2n
, observamos que para todo n es 2n >

√
2n

y por lo tanto 0 <
1

n + 2n
<

1
n +
√

2n
. Como sabemos, la serie

∞∑
n=1

1
n

diverge, por lo que también diverge, por propiedad de las series,
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la serie de términos an = 1
n + 2n

= 1
3n

= 1
3 .

1
n

. Entonces por el

criterio de comparación, concluímos que la serie
∞∑

n=1

1
n +
√

2n
debe

ser divergente.

Nota: Si se suprime un número finito de términos del comienzo de una
serie, la convergencia o divergencia no cambia. Por lo tanto el criterio de
comparación es válido si la desigualdad 0 ≤ an ≤ bn se verifica para todo
n ≥ N0 siendo N0 algún número natural (una observación similar corresponde
también hacer en los otros criterios).

2.6.5. Criterio del cociente

Sea {an} tal que an > 0 para todo n y ĺım
n→∞

an+1

an

= L.

Entonces: i) Si L < 1 la serie
∞∑

n=1
an converge.

ii) Si L > 1 la serie
∞∑

n=1
an diverge.

iii) Si L = 1 el criterio no decide.

(Omitimos las demostración en este criterio y en los que siguen).

Ejemplo:

Veamos si es posible determinar el comportamiento de la serie
∞∑

n=1

n2

3n
apli-

cando el criterio del cociente:
an = n2

3n
> 0 para todo n y an+1

an

= (n + 1)2

3n+1 : n2

3n
= (n + 1)2

3n2

ĺım
n→∞

an+1

an

= ĺım
n→∞

(n + 1)2

3n2 = ĺım
n→∞

��n
2(1 + 2

n
+ 1

n2 )

3��n2
= 1

3 < 1.

Entonces, por el criterio del cociente, concluimos que la serie
∞∑

n=1

n2

3n
conver-

ge.
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2.6.6. Criterio de comparación en el límite

Sean las series
∞∑

n=1
an y

∞∑
n=1

bn, con an > 0 y bn > 0 para todo n y sea el

límite: ĺım
n→∞

an

bn

= L. Si L es un número real finito y positivo (0 < L <∞),
entonces ambas series convergen o ambas divergen.

El criterio de comparación al límite permite determinar la convergencia o di-
vergencia de una serie comparándola con otra serie de referencia (por ejemplo
p-series), siempre que la relación entre sus términos individuales, a medida
que n tiende a infinito, sea un número positivo y finito. Si ∑ bn es una se-
rie conocida cuya convergencia o divergencia es clara, entonces la serie ∑ an

tendrá el mismo comportamiento (convergencia o divergencia) que ∑ bn.

Ejemplo

Consideremos la serie ∑∞
n=1

1
n2+1 de términos positivos. Queremos determi-

nar si esta serie converge o diverge. Para ello, la compararemos con la serie∑∞
n=1

1
n2 , que es una serie convergente por ser serie p con p = 2 > 1.

Primero, calculamos el límite de la relación entre los términos:

ĺım
n→∞

1
n2+1

1
n2

= ĺım
n→∞

n2

n2 + 1 = ĺım
n→∞

1
1 + 1

n2
= 1

Como el límite es L = 1, que es un número positivo y finito, el criterio de
comparación al límite nos indica que ambas series, ∑∞

n=1
1

n2+1 y ∑ 1
n2 , tendrán

el mismo comportamiento.

Dado que ∑∞
n=1

1
n2 es una serie convergente, concluimos que la serie ∑∞

n=1
1

n2+1
también converge.

Ejemplo: Para estudiar el comportamiento de la serie
∞∑

n=1

2n + 3
5n2 + 1

observemos que 0 < an = 2n + 3
5n2 + 1 = 1

n

(
2 + 3

n

5 + 1
n2

)
Es decir que, para "n grande.el comportamiento del término general de an es
como 1

n
. Esto implica comparar con la serie cuyo término general es bn = 1

n
,

bn > 0 para todo n ≥ 1, serie armónica divergente.

Calculamos el límite:
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ĺım
n→∞

an

bn

= ĺım
n→∞

(
2 + 3

n

5 + 1
n2

)
= 2

5 > 0
∞∑

n=1

1
n

es divergente. Entonces, por el criterio de comparación en el límite,
∞∑

n=1

2n + 3
5n2 + 1 es divergente.

2.6.7. Criterio de la raíz (optativo)

Sea {an} tal que an ≥ 0 para todo n y ĺım
n→∞

n
√

an = L.

Entonces: i) Si L < 1 la serie
∞∑

n=1
an converge.

ii) Si L > 1 la serie
∞∑

n=1
an diverge.

iii) Si L = 1 el criterio no decide.

Ejemplo: Sea an =
[

1
ln(n)

]n

.

an =
[

1
ln(n)

]n

≥ 0 ∀n ≥ 2

ĺım
n→∞

n
√

an = ĺım
n→∞

1
ln(n) = 0 < 1.

Entonces, por el criterio de la raíz, la serie
∞∑

n=2

[
1

ln(n)

]n

converge.

2.7. Convergencia absoluta
Algunas series pueden ser con términos positivos y negativos, por ejemplo:

i) an = (−1)⌊
n+1

3 ⌋ · n sus primeros términos son:

1, 2,−3, 4, 5,−6, 7, 8,−9, . . .

ii) an = sin
(

πn
3

)
· n2 Sus primeros términos son:

0,

√
3

2 · 4,−1 · 9, 0,

√
3

2 · 16,−1 · 25, . . .
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iii) an = n2 − 5n Ejemplo de sus primeros términos:

0,−4,−6,−6,−4, 0, 6, 12, 18, . . .

La pregunta ahora es: ¿Cómo estudiaremos la convergencia de series que son
de términos positivos y negativos? ya que los criterios desarrollados se aplican
a series de términos positivos.

Las técnicas desarrolladas para determinar la convergencia de series de térmi-
nos positivos, vamos a aplicarlas para series de términos positivos y negativos,
utilizando la serie que resulta de tomar el valor absoluto del término general
de la serie, es decir, analizando la serie

∞∑
n=1
|an| . Tal aplicación es posible por

el teorema siguiente. Como veremos a continuación, la convergencia absoluta
de una serie implica su convergencia.

Teorema

Si la serie
∞∑

n=1
|an| converge entonces la serie

∞∑
n=1

an también converge.

Además, se dice en este caso que la serie es absolutamente convergente.

Demostración:
Sea bn = an + |an|

Para todo n es bn ≥ 0 y bn ≤ 2 |an| . Como
∞∑

n=1
|an| se supone convergente,

por propiedad de las series es convergente la serie de términos 2 |an| y, por
el criterio de comparación, también converge la serie de términos bn. Luego,
siendo an = bn − |an|, otra vez por propiedad de las series, se concluye que
la serie de términos an es convergente.

Ejemplo de esto es la serie
∞∑

n=1

sen(n)
n2 , cuyos términos son positivos y nega-

tivos. Esta serie es convergente ya que la serie de los módulos, es una serie p
con p = 2, que es convergente. Por lo tanto la serie también lo es.
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2.8. Series alternadas
Serie alternada

Una serie alternada es una serie infinita de la forma
∞∑

n=1
(−1)nan con

an > 0 para todo n.

Veamos como analizar la convergencia de estas series. Por un lado, si la serie
en módulo converge, la serie alternada también converge y en este caso se
dice que la serie es absolutamente convergente.

Pero en el caso que la serie de los módulos diverge, no se sabe si la serie
alternada converge o no. En este caso, podemos analizar la convergencia por
el siguiente criterio.

Criterio de Leibniz

Sea {an}, tal que an > 0 para todo n, si {an} decreciente y ĺım
n→∞

an = 0,

entonces la serie alternada
∞∑

n=1
(−1)n+1an converge.

Ejemplo: serie armónica alternada
Analizar la convergencia de la serie denominada serie armónica alternada
∞∑

n=1
(−1)n+1 1

n
= 1− 1/2 + 1/3− ...

i) 1
n

> 0 ∀n ∈ N .

ii)
{ 1

n

}
es decreciente pues 1

n + 1 <
1
n
∀n ∈ N .

iii) ĺım
n→∞

1
n

= 0

Entonces, por el criterio de Leibniz la serie
∞∑

n=1
(−1)n−1 1

n
converge. Recordar

que la serie en módulo es divergente, es una serie p con p = 1.

En Matemática C, mediante otras herramientas matemáticas encontrarán el
valor al cuál converge la serie armónica alternada. El ejemplo anterior pone
en evidencia que una serie

∞∑
n=1

an puede ser convergente y la serie
∞∑

n=1
|an| ser

divergente. Ejemplo de esto es la serie armónica y la serie armónica alternada.
Cuando esto sucede se denomina de la siguiente manera.
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Convergencia condicional

Una serie se denomina condicionalmente convergente cuando la serie
∞∑

n=1
an es convergente y la serie

∞∑
n=1
|an| es divergente.

Ejemplo: Para determinar el comportamiento de
∞∑

n=1

(−2)n

n! estudiemos pri-

mero la serie
∞∑

n=1

∣∣∣∣∣(−2)n

n!

∣∣∣∣∣.∣∣∣∣∣(−2)n

n!

∣∣∣∣∣ = 2n

n! > 0 ∀n∣∣∣∣∣(−2)n+1

(n + 1)!

∣∣∣∣∣ :
∣∣∣∣∣(−2)n

n!

∣∣∣∣∣ = 2n+1

(n + 1)! : 2n

n! = 2
n + 1

ĺım
n→∞

∣∣∣∣∣(−2)n+1

(n + 1)!

∣∣∣∣∣ :
∣∣∣∣∣(−2)n

n!

∣∣∣∣∣ = ĺım
n→∞

2
n + 1 = 0 < 1 . Entonces, por el criterio

del cociente, la serie
∞∑

n=1

∣∣∣∣∣(−2)n

n!

∣∣∣∣∣ es convergente y por lo tanto también con-

verge la serie
∞∑

n=1

(−2)n

n! . La serie
∞∑

n=1

(−2)n

n! es absolutamente convergente.

2.8.1. Aproximación de la suma de una serie conver-
gente por una suma parcial

Si se sabe que una serie
∞∑

k=1
ak es convergente, se puede tomar una suma

parcial Sn =
n∑

k=1
ak como aproximación a la suma S de la serie. Damos a

continuación una estimación de la diferencia o error |S − Sn|.

La propiedad siguiente es muy útil para saber si una suma parcial Sn de una
serie alternante convergente, es aceptable o no para aproximar a su suma S.
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Propiedad

Si una serie
∞∑

n=1
(−1)n+1an satisface las condiciones del criterio de Leib-

niz y S es su suma, entonces el error que se comete al aproximar S con
la suma parcial Sn es, en valor absoluto, menor o igual que an+1 .
O sea, |S − Sn| ≤ an+1.

Este propiedad permite por un lado, conocer el error cometido al aproximar
la suma S de una serie convergente (que en la mayoría de las veces es des-
conocida) por una Suma parcial. También es útil para estimar la cantidad
mínima de términos a sumar para obtener determinado error para estimar la
suma S.

2.9. Ejercicios
1. a) Vean si es posible determinar el comportamiento de las siguientes

series aplicando la condición necesaria de convergencia.
i)

∞∑
n=1

2n2 − n + 3
n2 + 1 ii)

∞∑
n=1

1
4n

iii)
∞∑

n=1

(10
n
− 1

2n

)
b)Analicen si son convergentes o divergentes las series de los incisos
ii) y iii).

2. Estudien el comportamiento de la serie
∞∑

n=2

ln(n)
n

aplicando el criterio

de la integral.

3. Estudien el comportamiento de las siguientes series aplicando el criterio
de comparación.
i)

∞∑
n=1

1
2 + 3n

ii)
∞∑

n=1

1
2 +
√

n
iii)

∞∑
n=1

1
2n−1 + 1

4. Estudien el comportamiento de las siguientes series aplicando el criterio
de comparación en el límite.
i)

∞∑
n=1

1
2n + 3 ii)

∞∑
n=1

1
3n2 − 4n + 5 iii)

∞∑
n=1

√
n

n + 1

5. Estudien el comportamiento de las siguientes series aplicando el criterio

de la raíz. i)
∞∑

n=1

(
50√

n

)n

ii)
∞∑

n=1

e2n

nn

6. Vean si es posible determinar el comportamiento de las siguientes series
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aplicando el criterio del cociente. i)
∞∑

n=1

2n

n! ii)
∞∑

n=1

√
n

n + 1

7. Vean si es posible determinar el comportamiento de las siguientes series
aplicando el criterio de Leibniz.

i)
∞∑

n=1
(−1)n 3n

4n− 1 ii)
∞∑

n=1
(−1)n−1 n

2n−1 iii)
∞∑

n=1
(−1)n ln(n)

n

8. Muestren que
∞∑

n=1

(−1)n

n! es convergente y aproximen su suma con error

menor que 1
1000.

9. Analicen si las siguientes series son convergentes o divergentes.

i)
∞∑

n=1

n22n+1

3n
ii)

∞∑
n=1

nn

n! iii)
∞∑

n=1

1√
3n− 2

iv)
∞∑

n=1

sen
(

1
n

)
√

n2 + 1

v)
∞∑

n=1

1
n2 + n + 1 vi)

∞∑
n=1

n + 2
n2 − n− 1 vii)

∞∑
n=1

n

n2 + 1

viii)
∞∑

n=1

1
n2 + 1 ix)

∞∑
n=1

n!
2n! + 1 x)

∞∑
n=1

10
n

xi)
∞∑

n=1

n2 + 3
4n− 5n2

xii)
∞∑

n=1

n2 − 10
4n5 + n3 xiii)

∞∑
n=1

√
n√

n3 + 1
xiv)

∞∑
n=1

4
√

n− 1
n2 + 2

√
n

xv)
∞∑

n=1

1
n2 − n− 1 xvi)

∞∑
n=1

(4n3 + 5)cos( 1
n
)

n2 3n
xvii)

∞∑
n=1

nn

3n

10. Analicen si las siguientes series son absolutamente convergentes, con-
dicionalmente convergentes o divergentes.
i)

∞∑
n=1

(−1)n n

ln(2n) ii)
∞∑

n=1
(−1)n+1 3n + 2

4n− 3 iii)
∞∑

n=1

(−1)n

n2 + n

iv)
∞∑

n=1

(−1)n

ln(n + 1) v)
∞∑

n=1

cos(n)
3n

vi)
∞∑

n=1

(−n)n

3n
.

11. Representación de un número con cifras decimales periódicas como su-
ma de una serie geométrica. (i) Representa el número periódico 3,99999...
como la suma de una serie geométrica infinita. (ii) Explica de manera
general cómo cualquier número con cifras decimales periódicas puede
ser expresado como la suma de una serie geométrica infinita. Desarrolla
el método para calcular su suma en términos generales.
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Capítulo 3

Ecuaciones diferenciales

Un modelo matemático es la traducción al lenguaje matemático de algo que
sucede en la realidad; es una descripción (por medio de una función, una
ecuación, un sistema de ecuaciones, etc) de un fenómeno del mundo real y
que tiene por finalidad comprenderlo y hacer predicciones acerca del com-
portamiento futuro del mismo. Las ecuaciones diferenciales (cuyo estudio
comenzarán ustedes en este capítulo) se presentan como modelo matemáti-
co de infinidad de fenómenos en las diferentes ramas del conocimiento, en
especial de la ingeniería.

Para obtener un modelo matemático que describa un fenómeno, quizá baste
contar con modelos de baja resolución; por ejemplo, en los cursos básicos de
física el lector habrá advertido que al modelar el movimiento de un cuerpo
que cae cerca de la superficie de la Tierra, se hace caso omiso de la resistencia
del aire. Pero si el lector es un científico cuyo objeto es predecir con exac-
titud la trayectoria de vuelo de un proyectil de largo alcance, deberá tener
en cuenta la resistencia del aire y demás factores, como la curvatura de la
Tierra. Dado que las hipótesis acerca de un sistema implican con frecuencia
la razón o tasa de cambio de una o más de las variables, el modelo matemáti-
co de las hipótesis es una o más ecuaciones donde intervienen derivadas. En
otras palabras, un modelo matemático puede ser una ecuación o sistema de
ecuaciones diferenciales. Una vez formulado un modelo matemático (sea una
ecuación diferencial o un sistema de ellas), llegamos al problema de resolver-
lo, que no es fácil en modo alguno. Una vez resuelto, comprobamos que el
modelo sea razonable si su solución es consistente con los datos experimen-
tales o los hechos conocidos acerca del comportamiento del sistema. Si las
predicciones que se basan en la solución son deficientes, podemos aumentar
el nivel de resolución del modelo o elaborar hipótesis alternativas sobre los
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mecanismos del cambio del sistema; entonces, se repiten los pasos del pro-
ceso de modelado. Al aumentar la resolución, aumentamos la complejidad
del modelo matemático y la probabilidad de que debamos conformarnos con
una solución aproximada. A veces, una misma ecuación diferencial puede ser
modelo matemático de distintos fenómenos.

Las ecuaciones diferenciales se clasifican de distinto modo, por ejemplo en
ordinarias o parciales.

Una ecuación diferencial ordinaria es una igualdad que involucra una variable
independiente, una función de esa variable y derivadas de esa función respecto
de la variable independiente.

Cuando la ecuación involucra a derivadas parciales de una función de varias
variables, la ecuación diferencial es de tipo parcial.

Además, las ecuaciones ordinarias, se pueden clasificar según el orden, o si
son lineales o no lineales.

El orden de una ecuación diferencial ordinaria se define como el grado de la
derivada más alta presente en la ecuación. En otras palabras, es el número de
veces que se deriva la función incógnita respecto a la variable independiente.

Por ejemplo:
dy
dx

+ y = 0 es una ecuación diferencial de primer orden porque la deri-
vada más alta es dy

dx
, que es la primera derivada de y.

d2y
dx2 −3 dy

dx
+2y = 0 es una ecuación diferencial de segundo orden porque

la derivada más alta es d2y
dx2 , que es la segunda derivada de y.

d3y
dx3 + 4 d2y

dx2 − y = 0 es una ecuación diferencial de tercer orden porque
la derivada más alta es d3y

dx3 , que es la tercera derivada de y.

El orden de la ecuación es importante porque influye en los métodos utilizados
para resolver la ecuación y en la naturaleza de las soluciones posibles.

Además, se define el grado de una ecuación diferencial al mayor exponente
al que aparece elevada la derivada de mayor orden.

Más ejemplos:

y′′ +(y′)2 +x = cosx es una ecuación diferencial ordinaria de segundo
orden y grado 1.

(y′′′)2 + y′y = x5 es una ecuación diferencial ordinaria de orden 3 y
grado 2.
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∂2y

∂t2 = 4∂2y

∂x2 es una ecuación diferencial parcial (ver que aquí la incóg-
nita es una función de dos variables: t y x )

Las ecuaciones y′ = 2x e y′ = x + y son ecuaciones diferenciales
ordinarias de primer orden y grado 1.

En este curso estudiaremos las ecuaciones diferenciales ordinarias de primer
orden. Luego en Matemática C, continuarás estudiante este tema, abordando
las ecuaciones diferenciales de segundo orden y los sistemas de ecuaciones
diferenciales.

3.1. Ecuaciones diferenciales ordinarias de pri-
mer orden

Ecuación diferencial ordinaria de primer orden

Una ecuación diferencial ordinaria de primer orden es una ecuación que
involucra a: x variable independiente, y(x) es la función dependiente
de x y de su derivada y′(x) = dy

dx
.

Esta ecuación puede ser escrita, en ciertos casos, de una o varias de las
siguientes formas:

1. Forma explícita:
dy

dx
= f(x, y)

2. Forma implícita:
F (x, y(x), y′(x)) = 0

3. Forma diferencial:

P (x, y)dx + Q(x, y)dy = 0

4. Forma lineal:
y′(x) + p(x)y = q(x)

5. Forma separable:
g(y)dy = h(x)dx
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En problemas donde la variable independiente modela el tiempo suele utili-
zarse a t como variable independiente y a x(t) variable dependiente.

Ejemplos

y′(x)y(x)− x = 0 forma implícita.

y′ − 2y = x forma lineal
dy
dx

= x + y forma explícita
dy
dx

= cos(y).x forma explícita

(y − x)dx + xdy = 0 forma diferencial
dy
dx

+ 2xy = x2 forma lineal
dy
y

= xdx forma separable

El objetivo de una ecuación diferencial es lograr encontrar una función y(x)
que verifique la igualdad. Para ellos estudiaremos diversos métodos. Cada
método dependerá de su aplicabilidad según sea la forma en que pueda ser
escrita la ecuación diferencial ordinaria de primer orden.

Solución de una ecuación diferencial ordinaria

Una solución en un intervalo I es una función y = ϕ(x) derivable
en I tal que, al reemplazar en la ecuación diferencial y(x) por ϕ(x) e
y′(x) por ϕ′(x) la igualdad se cumple. El intervalo puede ser abierto
I = (a, b), cerrado I = [a, b] o I = (∞, b).

Soluciones explícitas o implícitas. Veremos que según sean los métodos
de resolución de una ecuación diferencial de primer orden, se puede obtener la
solución en forma explícita, es decir, y = f(x), o en forma implícita G(x, y) =
0.

Ejemplo: Verificaremos a continuación que la función y = 2ex − x − 1 es
una solución de y′ = x + y.

Siendo y = 2ex − x− 1 resulta y′ = 2ex − 1 x + y = 2ex − 1
y por lo tanto y′ = x + y .

En general para resolver la ecuación

y′ = 2x
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podemos integrar y obtener como solución no una, sino toda una familia de
funciones de la variable x

y = x2 + C

de un parámetro C. Esa familia de funciones es lo que llamamos solución
general de la ecuación.

Para cada valor determinado de C se obtiene una solución particular de la
ecuación. Por ejemplo:

y = x2 − 5
es una solución particular.

Lo mismo podemos decir para una ecuación diferencial ordinaria de primer
orden cualquiera: la solución general es una familia de funciones, de una
variable, dependiente de un parámetro tal que, para cada elección de ese
parámetro se obtiene una solución particular.

La solución general de una ecuación diferencial se presenta a veces definida
de un modo implícito.

Así por ejemplo:
yx − x3

3 −
y3

3 = C define de manera implícita la solución general de la
ecuación y − x2 + (x− y2)y′ = 0. Verifiquemos que eso es cierto:

yx− x3

3 −
y3

3 = C

y′x + y − x2 − y2y′ = 0
y − x2 +

(
x− y2

)
y′ = 0

En ocasiones, una solución de una ecuación diferencial dada no se obtiene a
partir de la solución general. Esas soluciones se llaman singulares.
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Ejemplo 1: Por ejemplo, como pueden ustedes verificar, y =
(

x− C

2

)3

es solución general de la ecuación diferencial y′ = 3
2

3√y2. También pueden
verificar que y = 0 es solución de esa ecuación (solución trivial), pero vean

que, cualquiera sea la elección de C, la función y = (x− C)3

8 es diferente de

la función y = 0, o sea, y = 0 es una solución singular de y′ = 3
2

3√y2 (es
solución pero no se obtiene a partir de la solución general).

Ejemplo 2: Por ejemplo, la familia de funciones: y = sen(x+C) es solución
general de la ecuación diferencial (y′)2 + y2 = 1. Una solución particular es,
por ejemplo, y = sen(x), o y = sen(x + 1). Notar además, que las funcio-
nes y = 1 e y = −1 son soluciones singulares (estas verifican la ecuación
diferencial, pero no se pueden encontrar a partir de la familia de soluciones).

Familia de funciones asociada a una ecuación diferencial

Dada una familia de funciones dependiente de un parámetro y = φ(x, C) o
ϕ(x, y, C) = 0, llamamos ecuación diferencial asociada a aquella que tenga a
dicha familia como solución general.

Veremos en los siguientes ejemplos cómo hallamos la ecuación diferencial
asociada a una familia dada.

Ejemplos:

Para hallar la ecuación diferencial asociada a y = Cx2 el primer

paso es derivar: y′ = 2Cx . A continuación, a partir de
y = Cx2

y′ = 2Cx

tendremos que deducir una tercera ecuación en la que no aparezca C.
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En este caso, por ejemplo:

y′ = 2Cx→ y′x = 2Cx2 → y′ = 2y

x

es la ecuación diferencial asociada a la familia de parábolas con vértice
en (0, 0).

Dada la familia de circunferencias x2 + y2 = C para hallar la ecua-
ción diferencial asociada bastará con derivar de manera implícita: 2x +
2yy′ = 0 o sea:

x + yy′ = 0

es la ecuación diferencial asociada a tal familia.

Campo de direcciones Dada y′ = f(x, y), si en diferentes puntos (x, y)
de un sistema de coordenadas cartesianas trazamos pequeños segmentos con
pendiente igual a f(x, y) obtenemos lo que se llama campo direccional o
campo de pendientes de esa ecuación diferencial. Los segmentos del campo
direccional de y′ = f(x, y) son tangentes a las curvas correspondientes a las
soluciones de esa ecuación diferencial y su observación puede ayudarnos a
reconocer dichas curvas.

La siguiente imagen fue obtenida usando los comandos CampoDirecciones y
ResuelveEDO en GeoGebra y muestra el campo direccional de y′ = x+y y la
curva de ecuación y = 2ex− x− 1 (una solución de esa ecuación diferencial).

3.1.1. Ejercicios
1. En los siguientes incisos, verificar que la función dada es solución de la

ecuación diferencial que la acompaña.
i) y = senx

x
; xy′ + y = cosx
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ii) y = Ce−2x + 1
3ex ; y′ + 2y = ex

iii) y = 2 + C
√

1 + x2 ; (1 + x2) y′ − xy = −2x

iv) y = ex
∫ x

0
et2

dt + Cex ; y′ − y = ex+x2

v) y = x
√

1− x2 ; yy′ = x− 2x3

vi) y = x
∫ ex

x
dx ; xy′ − y = xex

2. Obtener la ecuación diferencial asociada a:
i) y = Cx ii) y = Csenx iii) y = sen (x + C) iv) x2 + 2y2 = C
v)xy = C vi)x2 − y2 = C vii) y2 = Cx3 viii)y = Ce−x

Métodos de resolución de ecuaciones diferenciales ordinarias

Métodos analíticos

A continuación estudiaremos algunos métodos que permiten encontrar la
solución analítica de cierto tipo de ecuaciones diferenciales ordinarias de
primer orden. Las soluciones analíticas implican encontrar una expresión ma-
temática exacta para la función desconocida que satisface la ecuación dife-
rencial. Estas soluciones proporcionan una comprensión profunda del com-
portamiento de la función en todo el dominio de la variable independiente.
Sin embargo, encontrar soluciones analíticas es posible sólo para un conjunto
limitado de ecuaciones diferenciales. Los métodos que estudiaremos aquí son:

Método de variables separables

Diferencial exacta

Ecuaciones lineales de primer orden

Métodos numéricos

En los casos que no sea posible encontrar una solución analítica, es posible
obtener soluciones numéricas. Las soluciones numéricas implican aproxi-
mar la solución de una ecuación diferencial utilizando métodos numéricos y
computacionales. Estos métodos dividen el dominio de la variable indepen-
diente en pequeños intervalos y calculan la solución en puntos discretos dentro
de cada intervalo. Estos métodos son estudiados en materias más avanzadas,
requieren de cálculos computacionales y del uso de algoritmos.

En resumen, las soluciones analíticas proporcionan expresiones matemáticas
exactas para la función desconocida, mientras que las soluciones numéricas
aproximan la solución utilizando métodos computacionales. Ambos enfoques
son importantes y se utilizan en diferentes situaciones dependiendo de la
complejidad de la ecuación diferencial y los objetivos del análisis.
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3.2. Ecuación diferencial de variables separa-
bles

Variables separables

Una ecuación diferencial ordinaria de primer orden de variables sepa-
rables es aquella que se pueda expresar en la forma

p(x)dx = q(y)dy.

Siendo así, ∫
p(x)dx =

∫
q(y)dy + C

define implícitamente la solución general de la ecuación diferencial de
la forma

P (x) = Q(y) + C

siendo P (x) y Q(y) primitivas de las funciones p(x) y q(y).

Notar que la constante de integración sólo basta con colocarla de un miembro
de la igualdad.

En efecto: derivando respecto de x la última igualdad resulta
p(x) = q(y)y′

de modo que p(x)+q(y)dy

dx
= 0 y entonces p(x)dx = q(y)dy (o sea, la igualdad

expresada en la ecuación diferencial se cumple).

Ejemplos:

La ecuación 2xdx = −ydy tiene la forma p(x)dx = q(y)dy.
La solución general queda definida implícitamente por∫

2x dx =
∫
−y dy + C o sea: x2 + y2

2 = C.

3extgy + y′ (2− ex) sec2y = 0 puede expresarse en la forma
3extg(y) dx = − (2− ex) sec2y dy, suponiendo (2− ex) tgy , 0 ,
se pueden separar las variables dividiendo por esa expresión ambos
miembros de la igualdad:

3ex

2− ex
dx = −sec2y

tg(y) dy

A continuación se integra para obtener
3ln

∣∣∣2− ex
∣∣∣ = ln

∣∣∣tg(y)
∣∣∣+ C1
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La expresión del renglón anterior define implícitamente la solución ge-
neral de la ecuación diferencial. Podemos aplicar las propiedades de los
exponentes y logaritmos para simplificar esa expresión:

ln
∣∣∣ tg(y)
(2− ex)3

∣∣∣ = −C1

∣∣∣ tg(y)
(2− ex)3

∣∣∣ = e−C1

tgy

(2− ex)3 = ±e−C1

lo que podemos escribir en la forma: tg(y)
(2− ex)3 = C con C , 0

Observamos además que tg(y) = 0 también define soluciones de la ecua-
ción diferencial, de manera que podemos decir que la solución general
está dada por: tg(y) = C(2− ex)3 con C ∈ R.

3.2.1. Ejercicios
1. Hallen la solución general:

i) (1 + y2)dx + (1 + x2)dy = 0 ii) (1 + y2)dx + xydy = 0
iii) (xy2 + y2)y′ + (x2 − yx2) = 0 iv) ylnydx + xdy = 0
v) (xy2 + x)dx + (yx2 + y)dy = 0 vi) (1 + ex)yy′ = ey

2. Hallen y = φ(x), que sea solución particular de la ecuación diferencial
y(4x + 6)dx− (x2 + 3x + 2)dy = 0 con φ(0) = 4,

3.3. Ecuación diferencial exacta
Ecuación diferencial exacta

La ecuación diferencial P (x, y)dx + Q(x, y)dy = 0 es una ecuación
diferencial exacta en D ⊂ R2 si existe una función f(x, y) tal que
∀(x, y) ∈ D ,
P (x, y) = ∂f

∂x
(x, y)

Q(x, y) = ∂f

∂y
(x, y)

Siendo así, f(x, y) = C define implícitamente a la solución general.

108
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En efecto: al derivar respecto de x en f(x, y) = C se tiene

∂f

∂x
+ ∂f

∂y
y′ = 0

∂f

∂x
+ ∂f

∂y

dy

dx
= 0

∂f

∂x
dx + ∂f

∂y
dy = 0

y, siendo P (x, y) = ∂f

∂x
(x, y) y Q(x, y) = ∂f

∂y
(x, y), resulta

P (x, y)dx + Q(x, y)dy = 0

Ejemplo: dada 2xdx + 2ydy = 0 es fácil reconocer una función f(x, y)
tal que 2x = ∂f

∂x
(x, y) y 2y = ∂f

∂y
(x, y). Una función que cumple esas

condiciones es por ejemplo f(x, y) = x2+y2. Entonces, la ecuación diferencial
2xdx + 2ydy = 0 es exacta y x2 + y2 = C define en forma implícita la
solución general de esa ecuación.

No todas las ecuaciones de la forma P (x, y)dx + Q(x, y)dy = 0 son exactas
y no siempre es fácil reconocer a simple vista si una ecuación es exacta o no.
Conviene tener en cuenta que, si P (x, y)dx + Q(x, y)dy = 0 es exacta en
D, o sea, si existe f(x, y) tal que P (x, y) = ∂f

∂x
(x, y) y Q(x, y) = ∂f

∂y
(x, y)

∀(x, y) ∈ D ⊂ R2 , suponiendo que las derivadas parciales de P y Q sean
continuas, debe ser:
∂P

∂y
= ∂2f

∂y∂x
= ∂2f

∂x∂y
= ∂Q

∂x
. Si es además D = (a, b) × (c, d). vale también

la afirmación recíproca de la anterior. Resumiendo:

Criterio de exactitud: Supongamos que P (x, y) y Q(x, y) tienen deriva-
das parciales de primer orden continuas en el rectángulo D = (a, b)× (c, d).
La ecuación diferencial P (x, y)dx+Q(x, y)dy = 0 es exacta en D si y sólo
si ∂P

∂y
= ∂Q

∂x
en cada punto de D.

Ejemplos:

Dada (y − x2)dx + (x− y2)dy = 0 , observamos que

P (x, y) = y − x2
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Q(x, y) = x− y2

P y Q son funciones polinomiales, tienen derivadas parciales continuas
en D = R2 y se cumple, en cada punto de ese conjunto, que

∂P

∂y
= ∂Q

∂x
= 1

La ecuación (y − x2)dx + (x − y2)dy = 0 es una ecuación diferencial
exacta en D = R2, o sea :
Existe una función f(x, y) tal que, para todo (x, y) ∈ R2, se cumplen
las siguientes dos igualdades:

∂f

∂x
(x, y) = P (x, y) = y − x2

∂f

∂y
(x, y) = Q(x, y) = x− y2

Veremos a continuación cómo hallamos esa función f :

∂f

∂x
(x, y) = P (x, y) = y−x2 → f(x, y) =

∫
(y−x2)dx = yx− x3

3 +g(y)

(g(y), por el momento desconocida, es la constante de integración res-
pecto de x)
∂f

∂y
(x, y) = Q(x, y) = x− y2 → x + g′ (y) = x− y2 → g′(y) = −y2 →

→ g(y) =
∫
−y2dy = −y3

3 + C

De modo que
f (x, y) = yx− x3

3 −
y3

3
es una función tal que

∂f

∂x
(x, y) = P (x, y) = y − x2

∂f

∂y
(x, y) = Q(x, y) = x− y2

y por lo tanto la ecuación que define implícitamente a la solución
general es:

yx− x3

3 −
y3

3 = C

(verificarlo).
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¿Es exacta la ecuación diferencial (2xy − ex)dx + dy = 0 ?
Observamos que

P (x, y) = 2xy − ex

Q(x, y) = 1
P (x, y) y Q(x, y) son funciones que tienen derivadas parciales continuas
en D = R2.

∂P

∂y
= 2x y ∂Q

∂x
= 0

∂P

∂y
,

∂Q

∂x

Concluimos entonces que (2xy − ex)dx + dy = 0 no es exacta.

3.3.1. Ejercicios
1. Comprueben que las siguientes ecuaciones son exactas y obtengan su

solución general.
i) 6xydx+(3x2+2y)dy = 0 ii) (y3+6xy)dx+(3xy2+3x2−2y)dy = 0

2. Hallen la solución particular de ycos(xy)dx + [1 + xcos (xy)] dy = 0
cuya gráfica pasa por (0, 1).

3.4. Ecuación diferencial lineal de primer or-
den

Las ecuaciones diferenciales ordinarias se clasifican además en lineales o no
lineales.

En general una ecuación diferencial lineal ordinaria de orden n puede expre-
sarse en la forma

y(n) + an−1(x)y(n−1) + . . . + a1(x)y′ + a0(x)y = f(x) (3.1)

donde ai(x), i = 0, . . . , n − 1 y f(x), son funciones definidas en un cier-
to intervalo I ⊂ R. Además, si f(x)=0 la ecuación diferencial se denomina
homogénea y si no, se la denomina no homogénea.

Las ecuaciones diferenciales lineales surgen en numerosos problemas corrien-
tes. Por ejemplo, la ecuación de segundo orden lineal homogénea, y′′+ k

m
y = 0,

modela el movimiento de una masa unida a un resorte.
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Pero la importancia de las ecuaciones diferenciales lineales proviene además
del hecho que resultan más fáciles de resolver y comprender que las ecuacio-
nes diferenciales no lineales. A diferencia de estas últimas, en las lineales es
válido, como veremos, el principio de superposición, el cual permite obtener
soluciones de problemas complejos mediante la superposición de soluciones
de problemas más sencillos.

Ecuación diferencial lineal de primer orden

Una ecuación diferencial lineal de primer orden es de la forma:

y′ + p(x) y = q(x)

con p(x) y q(x) funciones de una variable real definidas en un cierto
intervalo I ⊂ R. Si q(x) = 0, la ecuación diferencial resulta ser:

y′ + p(x) y = 0

y se la denomina ecuación diferencial de primer orden lineal homogénea.

Ejemplos:

y′ + 2xy = ex

y′ = senx

x2y′ + xy = ex (aquí, suponiendo x , 0, se divide por x2 para llevar la
ecuación a la forma general: y′ + 1

x
y = ex

x2

3.4.1. Propiedades fundamentales de ecuaciones dife-
renciales lineales homogéneas

Las ecuaciones diferenciales lineales poseen propiedades especiales, que per-
miten establecer las propiedades fundamentales de sus soluciones aun sin
conocerlas explícitamente.

Solución trivial, como puede verse fácilmente y(x) = 0 es solución de la
ecuación homogénea.
Además, si y1(x) e y2(x) son soluciones de la ecuación homogénea, la com-
binación lineal

y(x) = c1y1(x) + c2y2(x)

es también solución de la homogénea, para cualquier valor de las constan-
tes c1 y c2. Es decir, si y(x) es solución, cy(x) también lo es, y si y1(x) e y2(x)
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son soluciones, y1(x) + y2(x) también lo es.

La propiedad anterior se conoce como propiedad de superposición: Si
y1(x) e y2(x) son dos soluciones de una ecuación diferencial lineal homogé-
nea, cualquier combinación lineal de ellas es también una solución.

3.4.2. Solución de la ecuación lineal homogénea de pri-
mer orden

Dada la ecuación
y′ + p(x)y = 0 (3.2)

es fácil observar que se puede resolver por separación de variables escribiendo
que

y′ = dy/dx

resulta que
dy/dx + p(x)y = 0

entonces dy/y = −p(x)dx.

Integrando ambos miembros, la solución general de la ecuación diferencial
lineal de primer orden homogénea es:

y(x) = Ce−
∫

p(x)dx

como es fácil verificar, donde C es una constante y
∫

p(x)dx una primitiva
de p(x) en el intervalo I donde es continua.

Actividad 1: Hallar la solución general de

y′ + ay = 0

(es decir que p(x) es constante a). Este tipo de ecuación diferencial, en la que
no aparece x explícitamente, se denomina autónoma. Graficar algunas de las
familias de soluciones según sea a positivo o negativo.

Actividad 2: Probar que la solución general de

y′ + xy = 0

es y(x) = ce−x2/2, y que la única solución que satisface y(0) = 1 es y(x) =
e−x2/2.
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3.4.3. Solución de la ecuación diferencial lineal no ho-
mogénea de primer orden

Consideremos ahora el caso general

y′ + p(x) y = q(x)

Actividad: En el caso que p(x) y q(x) sean constantes a y b, la ecuación
diferencial queda de la forma

y′ + a y = b

Analizar si es posible resolverla mediante alguna de las técnicas ya estudiadas.
¿Qué obtuviste?

Veamos entonces el caso más general donde p(x) y q(x) son funciones conti-
nuas en un intervalo abierto I.

La solución general de esta ecuación está dada por la suma de la solución
general yh(x) de la ecuación homogénea más una solución particular yp(x)
de la ecuación no homogénea:

y(x) = yh(x) + yp(x)

donde
yh(x) = Ce−

∫
p(x)dx

es la solución general de la ecuación homogénea.

Demostración:

Dado que y′
h + p(x)yh = 0 y y′

p + p(x)yp = q(x), vemos yh(x) + yp(x) es
también solución de la ecuación no homogénea. Entonces esto muestra que la
diferencia y(x)− yp(x) es una solución yh(t) de la ecuación homogénea
para y(x) en general solución de la ecuación no homogénea. Por lo tanto
y(x)− yp(x) = yh(x) y entonces y(x) = yh(x) + yp(x).

Importante: Para resolver la ecuación general de la no homogénea debemos
pues resolver la ecuación homogénea y luego encontrar alguna solución par-
ticular yp(x) de la no homogénea mediante algún método.

Método para hallar una solución particular de la ecuación diferen-
cial lineal no homogénea La ecuación es

y′ + p(x)y = q(x)
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Vimos previamente que la solución general de la ecuación homogénea es:

yh(x) = Ce−
∫

p(x)dx

Para hallar una solución particular, utilizaremos un método denominado va-
riación de parámetros.

Consiste en proponer una solución de la forma

yp(x) = v(x)e−
∫

p(x)dx

con v(x) una función a determinar.

Notar que consiste en "variar el parámetro"C en la solución de la homogénea
y que este resultado sea una solución particular de la no homogénea.

Reemplazando en la ecuación diferencial no homogénea se obtiene

v′e−
∫

p(x)dx = q(x)

Por lo tanto,
v′ = q(x)

e−
∫

p(x)dx

entonces
v(x) =

∫
e
∫

p(x)dxq(x)dx

Una solución particular es entonces

yp(x) = e−
∫

p(x)dx
∫

e
∫

p(x)dxq(x)dx

y la solución general es

y(x) = Ce−
∫

p(x)dx + e−
∫

p(x)dx(
∫

q(x)e
∫

p(x)dxdx)

Resumen:

1) Proponer que la solución general es de la forma y(x) = yh(x) + yp(x).

2) Hallar la solución general de la homogénea yh(x) (es de variables separa-
bles).

3) Hallar yp(x) haciendo variar la constante C en la solución homogénea
proponiendo que sea una solución particular de la no homogénea.

4) Volver a 1) y armar la solución general.
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Ejemplo

Resolvemos la ecuación:

y′ − 2
x + 1 y = (x + 1)3

Reconocemos en la ecuación la forma y′ + p(x) y = q(x), con p(x) = − 2
x + 1

y q(x) = (x + 1)3.

1) Proponemos que y(x) = yh(x) + yp(x).

2) Hallamos la solución general de la ecuación homogénea yh:

y′ − 2
x + 1 y = 0

Es esta una ecuación diferencial de variables separables:

dy

y
= 2

x + 1dx

Integrando resulta:
ln
∣∣∣y∣∣∣ = 2ln

∣∣∣x + 1
∣∣∣+ K

Operando y aplicando exponencial a ambos miembros, se obtiene:

yh(x) = C(x + 1)2

3) Buscamos por el método de variación de parámetros, una solución parti-
cular yp de la ecuación no homogénea, proponiendo que:

yp(x) = v(x).(x + 1)2

Reemplazando en la ecuación diferencial no homogénea, resulta que:

v′(x) = (x + 1)

Obtenemos:
v(x) = (x + 1)2

2
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(Notar que aquí, para v(x) dado que estamos buscando una solución parti-
cular, podemos considerar para la constante de interacción cualquier valor
deseado, por ejemplo en este caso, cero).

Reemplazamos ahora esa función v en lo anterior

yp(x) = (x + 1)4

2

4) Resultando la solución general de la ecuación:

y(x) = yh(x) + yp(x) = C(x + 1)2 + 1
2(x + 1)4

Algunas de las gráficas de la familia de soluciones se observa en la siguiente
figura.

Si además, nos interesara, por ejemplo, hallar la solución particular que sa-
tisface y(0) = 3, despejamos el valor de C haciendo:

3 = C(0 + 1)2 + 1
2(0 + 1)4 =⇒ 3 = 1

2 + C =⇒ C = 5
2

y la solución particular buscada es: y(x) = 5
2(x + 1)2 + 1

2(x + 1)4.

3.4.4. Otro método para resolver la ecuación diferen-
cial lineal de primer orden

Otra forma de resolver la ecuación diferencial lineal de primer orden, es su-
poner que la solución general es el producto de dos funciones:

y(x) = u(x).v(x)
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En este caso se debe cumplir que:

(u.v)′ + p(x) u.v = q(x)

u′v + u.v′ + p(x) u.v = q(x)
Agrupando:

(u′ + p(x) u).v + u.v′ = q(x)
y si suponemos además que u(x) es una solución de la ecuación homo-
génea, es decir que el primer sumando es cero:

u′ + p(x) u = 0

Resulta que v deber ser tal que

u.v′ = q(x)

y despejando v′(x) = q(x)/u(x), luego

v(x) =
∫ q(x)

u(x)dx + C

Resumen:

1) Proponer que la solución general es el producto de dos funciones: y(x) =
u(x).v(x).

2) Encontrar u suponiendo que es una solución de la ecuación homogénea.

3) Hallar v resolviendo: v(x) =
∫ q(x)

u(x)dx + C.

4) Volver al paso 1) y armar la solución general.

Ejemplo: Resolver usando este método:

y′ − 2
x + 1 y = (x + 1)3

Veamos que se obtiene el mismo resultado que por el otro método.

1) Proponer que y = u.v

2) Hallar u. Para ello resolvemos:

u′ − 2
x + 1 u = 0
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Es esa una ecuación diferencial de variables separables:

du

u
= 2

x + 1dx

Integrando resulta: (consideramos la constante cero de integración, ya que
estamos buscando sólo una solución.

ln
∣∣∣u∣∣∣ = 2ln

∣∣∣x + 1
∣∣∣

Aplicando propiedades del logaritmo:

ln
∣∣∣u∣∣∣ = ln

∣∣∣x + 1
∣∣∣2

Aplicando exponencial a ambos miembros, resulta:

u = (x + 1)2

3) Buscar v que sea solución de

v′(x)(x + 1)2 = (x + 1)3 =⇒ v′(x) = (x + 1)

de donde
v(x) =

∫
(x + 1)dx = (x + 1)2

2 + C

4) Resulta así que la solución general de la ecuación es:

y(x) = u.v = (x + 1)2.

[
(x + 1)2

2 + C

]

Distribuyendo:
y(x) = C(x + 1)2 + 1

2(x + 1)4

Observación: Notar que es la misma solución encontrada por el otro mé-
todo. Existe otro método para hallar la solución general de la ecuación no
homogénea de primer orden, que aquí no desarrollaremos, que se conoce como
"factor integrante".

Actividad 1: Hallar la solución general de dy/dx + ay = b con a y b
constantes. Luego hallar la solución para el caso: dy/dx+y = 2 con y(0) = 1.

Actividad 2: Hallar la familia de curvas tales que la pendiente en cada uno
de sus puntos A = (x, y), coincide con la resta entre, la abscisa del punto A
y su ordenada.
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Luego de resolver puedes visualizar la familia de soluciones en Geo-
Gebra.

3.4.5. Ejercicios
1. Hallar la solución general de las siguientes ecuaciones diferenciales:

i) y′ + 2xy = 2xe−x2 ii) xy′ = y + x2senx iii) y′ + 2y = x2 + 2x

2. Hallen la solución particular de y′−ytgx = secx que satisface y(0) = 0.

3. Hallen la ecuación de la curva que pasa por el punto (0, 1) y es tal que
en cada punto (x, y) su pendiente es igual a x + y.

4. Un cuerpo de masa m se arroja desde cierta altura. Sobre el cuerpo,
además de la fuerza de gravedad (F1), actúa la fuerza de resistencia del
aire (F2) y ésta última es proporcional a la velocidad (v(t)).
F1 = m g y F2 = k v(t) (donde k es un factor de proporcionali-
dad) De acuerdo a la segunda ley de Newton, F1 + F2 = m.a(t) donde
a(t) = dv

dt
.

Entonces: m g + k v = m
dv

dt
= mv′

dividiendo por m : g + k

m
v = v′

o sea: v′ − k

m
v = g

Observen que se trata de una ecuación diferencial lineal. Hallen la solu-
ción general. Determinen luego la constante suponiendo que v(0) = v0.

3.5. Problema de valor inicial
Problema de valor inicial (PVI)

Se llama problema de valor inicial al problema de hallar, para una
ecuación diferencial dada, la o las soluciones (si existen) que satisfacen
lo que se denomina una condición inicial o sea, una condición de la
forma y(x0) = y0.
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Considerando que resolver una ecuación diferencial es, por lo general, una ta-
rea dificultosa (tengan presente que hemos visto cómo resolver sólo algunas
pocas ecuaciones sencillas, con un formato determinado) comprenderán que
resulta de mucho interés, dado un problema de valor inicial, poder decidir,
antes de abordar la búsqueda de la solución, si dicha solución existe y si es
única. El teorema que enunciamos a continuación se refiere a ello:

3.5.1. Teorema de existencia y unicidad de solución de
un problema de valor inicial

Teorema de existencia y unicidad de solución de un problema
de valor inicial

Dado el problema de valor inicial (PVI)y′ = f(x, y)
y(x0) = y0

(Existencia) Si f(x, y) es continua en algún rectángulo R = [a, b] ×
[c, d] ⊂ R2 que tiene en su interior al punto (x0, y0) entonces el PVI
tiene al menos una solución y(x) definida en algún intervalo I que
contiene a x0.
(Unicidad) Si además ∂f

∂y
es continua en ese rectángulo R, existe y

es única una solución y(x) definida en algún intervalo I centrado en x0
que satisface el PVI.

El teorema anterior garantiza, bajo las hipótesis mencionadas, que, en algún
intervalo I al que pertenece x0, existe una y sólo una solución del PVI, o,
dicho de otra manera, que, alrededor de x0 está definida una única función
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cuya gráfica pasa por (x0, y0) y tiene, en cada punto (x, y) pendiente igual a
f(x, y).

Importante: El teorema anterior da condiciones suficientes (pero no necesa-
rias) para la existencia y para la unicidad de la solución de un PVI. Esto
implica que si las hipótesis no se cumplen, no es posible garantizar la exis-
tencia y unicidad de la solución al problema.

Ejemplos:

El teorema anterior puede aplicarse al PVI:
y′ = xy + e−xy2

y(x0) = y0

cualquiera sea (x0, y0) ∈ R2, y garantiza la existencia y unicidad de
la solución en algún intervalo que contiene a x0, dado que f(x, y) =
xy + e−xy2 y ∂f

∂y
(x, y) = x + e−x 2y son funciones continuas en todo

R2.

¿Cuál es el conjunto de puntos (x0, y0) para los que se podría garantizar
aplicando el teorema anterior la existencia y unicidad de solución del

PVI:

y′ = 3
2

3√y2

y(x0) = y0

? f(x, y) = 3
2

3√y2 y ∂f

∂y
(x, y) = 1

3
√

y
son fun-

ciones continuas en {(x, y) /y > 0} y en {(x, y) /y < 0} de manera que
para todo (x0, y0) con y0 , 0 el teorema se aplica y garantiza existencia
y unicidad de solución.
Para puntos (x0, 0) con x0 ∈ R, el teorema puede aplicarse para garan-
tizar la existencia de solución (vean que f(x, y) = 3

2
3√y2 es continua en

R2), pero no asegura la unicidad, ya que ∂f

∂y
(x, y) = 1

3
√

y
no es continua

en los puntos (x0, 0).

El teorema anterior puede aplicarse al PVI:
y2 + x2y′ = 0

y(x0) = y0
, para cual-

quier punto (x0, y0) ∈ R2 con x0 , 0 y garantiza la existencia y unicidad
de la solución en algún intervalo que contiene a x0, dado que
f(x, y) = −y2

x2 y ∂f

∂y
(x, y) = −2y

x2 son funciones continuas en {(x, y) /x < 0}
y en {(x, y) /x > 0}.
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El teorema no se puede aplicar en
y2 + x2y′ = 0

y(0) = y0
, cualquiera sea y0

ya que f(x, y) = −y2

x2 no es continua en los puntos (0, y0)

3.5.2. Ejercicios
1. ¿Se aplica el teorema de existencia y unicidad de solución en los si-

guientes casos? ¿Existe la solución? ¿Es única? i)
y2 + x2y′ = 0

y(0) = 0

ii)
y2 + x2y′ = 0

y(0) = 1

2. En los siguientes incisos señalar para qué puntos (x0, y0) es posible
aplicar el teorema para garantizar la existencia y la unicidad de la
solución.

i)
y′ = y2 + x2

y(x0) = y0
ii)
y′ =

√
x2 − y − x

y(x0) = y0
iii)

y′ = y − 1
x− y

y(x0) = y0

3. En los siguientes incisos, ver primero si pueden garantizar la existencia
y unicidad de solución y, a continuación, resuelvan.

i)
(1 + ex) y y′ = ex

y(0) = 1
ii)


y′senx = ylny

y
(

π

2

)
= e

iii)
y′ = y tgx + x

y(0) = 2
iv) Hallar una curva que pase por (0,−2) y sea tal que la pendiente de
la recta tangente a la curva en cada punto (x, y) sea igual a la ordenada
del punto aumentada en 3 unidades.

3.6. Modelado de problemas
Veamos a continuación algunos fenómenos que son modelados con ecuaciones
diferenciales ordinarias.

Modelo de crecimiento de una célula
Supongamos que una célula que tiene una masa inicial m0 está crecien-
do en un medio ideal. Siendo así, la masa de esa célula puede consi-
derarse como una función del tiempo ( m = m(t)) que aumenta a una
velocidad proporcional al estado en cada instante (por lo menos durante
algún intervalo de tiempo):

m′(t) = K m(t)
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Lo antes dicho se traduce en un PVI:m′(t) = K m(t)
m(0) = m0

Resuelvan para tener la expresión de m(t). ¿Qué tipo de solución se
encuentra en estos casos? Graficar. Suponiendo que la masa inicial se
duplica cuando t = 35, determinen el valor de K.

Modelo de crecimiento restringido de una población
Cierto es que las poblaciones y los organismos no crecen indefinida-
mente. Hay limitaciones para el crecimiento. Supongamos que existe
un límite superior fijo (B) para el tamaño de una población, de modo
que la velocidad de crecimiento del número de individuos existentes
tiende a cero cuando el número de individuos tiende a ese límite supe-
rior. Tiene sentido entonces suponer que, el número de individuos es
una función del tiempo N(t), que crece a una velocidad proporcional
a la diferencia entre B y el estado de la población en cada t. Siendo
N0 el número inicial de individuos presentes, lo dicho anteriormente se
traduce en: N ′(t) = K [B −N(t)]

N(0) = N0

Resolver para obtener la expresión de N(t). Graficar lo obtenido.

Modelo de enfriamiento de Newton
Consideremos una sustancia cuya temperatura es más alta que la del
ambiente que la rodea. La experiencia dice que la temperatura descen-
derá hasta igualar la del medio externo. Pensemos por ejemplo en un
recipiente con un líquido a temperatura ambiente que se coloca en la
heladera. La ley de enfriamiento de Newton establece que, bajo deter-
minadas condiciones, la velocidad de enfriamiento es proporcional a la
diferencia entre la temperatura de la sustancia y a la del medio (más
frío) que la rodea. Siendo t el tiempo; T0 la temperatura de la sustancia
en el instante inicial (t = 0) ; T (t) la temperatura de la sustancia en el
tiempo t, Ta la temperatura del ambiente, lo dicho antes se modela de
la siguiente manera mediante un PVI:T ′(t) = K [T (t)− Ta]

T (0) = T0

Resuelve para obtener la expresión de T (t). Graficar. Como ejemplo,
supongan que la temperatura ambiente es 20° y que en 20 minutos
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la temperatura de un cuerpo baja de 100° a 60°. Hallen la expresión
de T (t) en este caso y respondan: ¿en cuánto tiempo la temperatura
llegará a los 30°?

Modelo de desintegración radioactiva
El radiocarbono se desintegra proporcionalmente a su cantidad existen-
te en cada instante. Conocer su decaimiento se utiliza principalmente
en la datación por radiocarbono, una técnica empleada para determi-
nar la edad de materiales orgánicos antiguos. La base científica detrás
de esta técnica es el conocimiento de que el carbono-14 (14C) es un
isótopo radiactivo que se desintegra con el tiempo a una tasa conocida
(con una semivida de aproximadamente 5600 años, es decir, el tiempo
requerido para que una cantidad de este elemento se reduzca a la mi-
tad). Esto permite calcular el tiempo transcurrido desde la muerte de
un organismo hasta el presente midiendo la cantidad de 14C restante en
una muestra. El PVI correspondiente para obtener la expresión de C(t)
en el tiempo t, conociendo una cantidad inicial C0 de radiocarbono que
se desintegra a una velocidad proporcional a la cantidad existente en
cada instante, resulta ser:C ′(t) = −kC(t)

C(0) = C0

donde k es la constante de desintegración proporcional.

Resolver, tal ecuación diferencial con condición inicial, y como ejemplo,
suponiendo que se ha encontrado un hueso fosilizado que contiene la
milésima parte de la cantidad de radio carbono inicial, determinen la
edad del fósil.

Modelo de decaimiento exponencial
Las ecuaciones diferenciales de decaimiento exponencial son utilizadas
para modelar fenómenos en los que una cantidad disminuye con el tiem-
po de acuerdo con una tasa proporcional a su valor actual.

Este tipo de modelo es comúnmente aplicado en diversos campos, como
la física, la biología, la economía y la química, entre otros. Ejemplos
son algunos de los mencionados anteriormente. La forma general de una
ecuación diferencial de decaimiento exponencial es:

dy

dt
= −ky

Donde y es la cantidad que está disminuyendo con el tiempo, t es el
tiempo, dy/dt es la tasa de cambio de y con respecto al tiempo y k es la
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constante de proporcionalidad que determina la rapidez de decaimiento.
Si suponemos que y0 es el valor inicial de y en t = 0, la solución de esta
ecuación diferencial (variables separables) es de la forma:

y(t) = y0 e−kt

Este modelo se utiliza para describir diversas situaciones en las que una
cantidad disminuye de forma continua, como la desintegración radiac-
tiva, la degradación de fármacos en el organismo, el enfriamiento de un
objeto caliente, el decaimiento de una población de bacterias o el creci-
miento y decaimiento de una inversión financiera, entre otros ejemplos.
En resumen, las ecuaciones diferenciales de decaimiento exponencial
son herramientas matemáticas utilizadas para modelar y predecir la
disminución de una cantidad en función del tiempo, asumiendo que
la tasa de cambio es proporcional a su valor actual. Estas ecuaciones
tienen aplicaciones en diversos campos y su solución general muestra
cómo la cantidad disminuye exponencialmente con el tiempo.

Modelo de un circuito en serie
Un circuito en serie es aquel en el que los componentes eléctricos están
conectados uno tras otro, de modo que la corriente fluye a través de ca-
da componente en el mismo camino. Para describir matemáticamente
el comportamiento de un circuito en serie, se puede utilizar una ecua-
ción diferencial. La ecuación diferencial que modela un circuito en serie
depende de los componentes específicos presentes en el circuito. Sin em-
bargo, en general, se puede utilizar la ley de Kirchhoff para escribirla.
Esta establece que la suma algebraica de todas las caídas de tensión es
igual a la tensión total suministrada, es decir, la suma algebraica de
las diferencias de potencial eléctrico en un circuito cerrado es igual a
cero. Supongamos que tenemos un circuito en serie con una fuente de
energía E(t) y una resistencia R conectada en serie (constante), y t el
tiempo.
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La ecuación diferencial que describe la corriente I(t) en el circuito es:

L
dI

dt
+ R.I(t) = E(t)

Donde L es una constante que mide la inductancia del circuito, dI/dt
es la derivada de la corriente con respecto al tiempo y E(t) es la función
que describe la fuente de energía electromotriz en función del tiempo.
Esta ecuación diferencial describe cómo cambia la corriente en el cir-
cuito en serie a medida que varía la fuente de voltaje y la resistencia.
Observar que la ecuación es del tipo lineal de primer orden. Resolver
esta ecuación permite obtener E(t en función del tiempo y comprender
cómo se comporta el circuito. En resumen, un circuito en serie se puede
modelar utilizando una ecuación diferencial que relaciona la fuente de
energía electromotriz, y los componentes presentes en el circuito. La
ecuación diferencial permite analizar el comportamiento dinámico de
tal fuente en el circuito a medida que cambian las variables involucra-
das.

3.6.1. Ejercicios
Expresar mediante ecuaciones diferenciales, las siguientes situaciones. Luego
resolver.

1. Una partícula se mueve a lo largo de una recta, de manera que su
velocidad en el instante t es 2sent.

2. Cien gramos de azúcar de caña que están en agua, se convierten en
dextrosa a una velocidad que es proporcional a la cantidad que aún no
se ha convertido. Hállese la ecuación diferencial que exprese la velocidad
de conversión después de t minutos (Indicación: puede suponer q(t) el
número de gramos convertidos en t minutos).

3. La población P de una ciudad aumenta a una velocidad proporcional
a la población y a la diferencia entre 200.000 y la población.

4. Supongamos que inicialmente (en t = 0) tenemos 100 gramos de una
sustancia radiactiva con una constante de desintegración de λ = 0,1 h−1.
Encontrar la cantidad de sustancia que queda después de 5 horas.

5. Para cierta sustancia, la velocidad de cambio de la presión de vapor P
respecto de la temperatura T, es proporcional a la presión de vapor e
inversamente proporcional al cuadrado de la temperatura.
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6. Aplique la ley de enfriamiento de Newton al siguiente caso: la tempera-
tura del aire es de 20ºC y el cuerpo se enfría en 20 minutos desde 100ºC
hasta 60ºC, ¿dentro de cuánto tiempo su temperatura descenderá hasta
30ºC?

7. Dar la solución general de la ecuación diferencial para un circuito en
serie, suponiendo que E(t) es constante E (una batería por ejemplo) y
que I(0) = 0 (corriente inicial es cero). Graficar la solución obtenida
para valores de t positivos e interpretar que sucede con el comporta-
miento del circuito en el tiempo.

3.7. Familias de curvas ortogonales

Dos curvas C1 y C2 se dicen ortogonales en un punto común P0 = (x0, y0)
cuando las respectivas rectas tangentes son perpendiculares entre sí.

Si es C1 : y = φ1(x) y C2 : y = φ2(x) , siendo φ1 y φ2 derivables en x0, con
φ′

1(x0) , 0 y φ′
2(x0) , 0, entonces C1 y C2 son ortogonales en P0 si y sólo si

φ′
1(x0)φ′

2(x0) = −1 , o sea:

φ′
2(x0) = − 1

φ′
1(x0)
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Familia de curvas ortogonales

Dos familias de curvas F1 y F2 son mutuamente ortogonales si cada
curva de una de las familias es ortogonal con cada curva de la otra
familia en todo punto común.

Si y′ = f1(x, y) es la ecuación diferencial asociada a F1 e y′ = f2(x, y)
es la ecuación diferencial asociada a F2 entonces, en los puntos en los
que f1(x, y) , 0 y f2(x, y) , 0, debe ser

f1(x, y) = − 1
f2(x, y)

Este estilo de situaciones es un problema común en electrostática, termo-
dinámica e hidrodinámica, que involucra encontrar una familia de curvas,
cada una de las cuales sea ortogonal a las de una familia de curvas conocida.
Ejemplos:

Sea F1 : y = Cx2 , con C , 0 (familia de parábolas)
Para hallar la familia de curvas F2 ortogonal a F1:
1°) Hallamos la ecuación diferencial asociada a F1:

y = Cx2

y′ = 2Cx

de allí, y′x = 2y → y′ = 2y

x
(x , 0)

2°) Resolvemos la ecuación diferencial y′ = − x

2y

dy

dx
= − x

2y

xdx + 2ydy = 0
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x2

2 + y2 = C

F2 : x2

2 + y2 = C con C > 0 es una familia de elipses. F1 y F2 son
mutuamente ortogonales.

Las familias F1 : x2 − y2 = C y F2 : xy = C son mutuamente or-
togonales. Podemos mostrarlo obteniendo las ecuaciones diferenciales
asociadas a cada una de ellas:
La ecuación diferencial asociada a F1 es:

2x− 2yy′ = 0

o sea

y′ = x

y
= f1(x, y)

La ecuación diferencial asociada a F2 es:

y + xy′ = 0

o sea

y′ = −y

x
= f2(x, y)

Vemos que se verifica , si x , 0 y y , 0 , f1(x, y) = − 1
f2(x, y)
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3.7.1. Ejercicios
1. Muestren que las familias F1 : x2 +y2−2ax = 0 y F2 : x2 +y2−2by = 0

(a y b constantes reales) son mutuamente ortogonales.

2. En los siguientes incisos hallen la familia ortogonal a la familia de curvas
dada: i) y2 = Cx3 ii) y = Cx iii) y = Ce−x iv) x2+3y2 = C (C > 0).
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Capítulo 4

Integral doble

Actividad Si f(x, y) es una función continua, definida sobre un rectángulo
R = [a, b] × [c, d] ⊂ R2 y es tal que f(x, y) ≥ 0 ∀(x, y) ∈ R, su gráfica es
una superficie S de ecuación z = f(x, y) y queda definido, entre el plano xy
y esa superficie un sólido V que se describe analíticamente de la siguiente
manera:

V =
{
(x, y, z) ∈ R3/(x, y) ∈ R ∧ 0 ≤ z ≤ f(x, y)

}
¿Cómo procederían para calcular el volumen de ese sólido?

4.1. Definición de integral doble
Sea f(x, y) una función definida y acotada en una región R
R ⊂ [a, b]× [c, d] ⊂ R2 como la que muestra la figura siguiente
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Si se consideran n + 1 puntos de división en [a, b] y m + 1 puntos en [c, d]
y se trazan rectas paralelas a los ejes coordenados pasando por esos pun-
tos, el rectángulo [a, b] × [c, d] queda dividido en n ×m subrectángulos Ri.
Supongamos que, entre ellos, R1, R2, ..., Rk, son los que están incluidos en R.

El conjunto P = {R1, R2, ..., Rk} es una partición de R y, siendo δi la longitud
de la diagonal de Ri, la norma de esa partición es

∣∣∣P∣∣∣ = máx {δi, i = 1..k}.

Sea Jk =
k∑

i=1
f(P ∗

i )∆Ri, donde P ∗
i es un punto cualquiera de Ri y ∆Ri es el

área de Ri.

Si ĺım
|P|→0

k∑
i=1

f(P ∗
i )∆Ri existe, y arroja siempre el mismo resultado indepen-

dientemente de las particiones y de los P ∗
i elegidos, decimos que f es inte-

grable en R y es:
"

R

f(x, y)dA = ĺım
|P|→0

k∑
i=1

f(P ∗
i )∆Ri
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Importante:
Si f(x, y) es continua en la región R cerrada y acotada, entonces es
integrable sobre R.
También son integrables sobre R las funciones que son acotadas y
continuas en R salvo en un número finito de subconjuntos de área
nula (como curvas y puntos).
Si f(x, y) es continua en R y f(x, y) ≥ 0, siendo

V =
{
(x, y, z) ∈ R3/(x, y) ∈ R ∧ 0 ≤ z ≤ f(x, y)

}
"

R

f(x, y)dA = ĺım
|P|→0

k∑
i=1

f(P ∗
i )∆Ri = volumen del sólido V

4.1.1. Ejercicios

Interpreten geométricamente
"

R

f(x, y)dA suponiendo:
i) f(x, y) ≤ 0 ∀(x, y) ∈ R ii) f(x, y) toma valores positivos y valores
negativos en R iii) f(x, y) = 1 ∀(x, y) ∈ R .

Siendo R = [a, b] × [c, d] y f(x, y) = K ∀(x, y) ∈ R , muestren que"
R

f(x, y)dA = área (R).K

Dividiendo a R = [0, 2] × [0, 2] en cuatro cuadrados de igual área y
eligiendo en cada uno de ellos el vértice superior derecho, aproximen
el volumen del sólido que está por arriba del cuadrado R y por debajo
del paraboloide z = 16− x2 − 2y2 .

Dividiendo a R = [0, 2] × [1, 2] en cuatro rectángulos de igual área y
eligiendo el punto medio en cada uno de ellos obtengan una aproxima-
ción del valor de

"
R

(x− 3y2)dA ¿Representa esa integral el volumen
de un sólido?

4.1.2. Propiedades de la integral doble
1. Aditividad en la región de integración: Si f(x, y) es integrable

sobre
R = R1 ∪R2 siendo R1 ∩R2 un conjunto de área nula entonces"

R

f(x, y)dA =
"

R1

f(x, y)dA +
"

R2

f(x, y)dA
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2. Linealidad: Si f(x, y) y g(x, y) son integrables sobre R y α y β son
números reales entonces

"
R

[αf(x, y) + βg(x, y)]dA = α

"
R

f(x, y)dA + β

"
R

g(x, y)dA

3. Monotonía: Si f(x, y) y g(x, y) son integrables sobre R y
f(x, y) ≤ g(x, y) ∀(x, y) ∈ R entonces"

R

f(x, y)dA ≤
"

R

g(x, y)dA

4. Acotamiento: Si ∀(x, y) ∈ R es
∣∣∣f(x, y)

∣∣∣ ≤M entonces

∣∣∣"
R

f(x, y)dA
∣∣∣ ≤M.área(R)

Teorema del valor medio

Si f(x, y) es continua en R ⊂ R2 entonces existe P ∗ ∈ R tal que"
R

f(x, y)dA = f(P ∗) área(R).

Valor promedio

Siendo f(x, y) integrable sobre R, se llama valor promedio de f en R
a fR :

fP =
∫ ∫

R f(x, y)dA

área(R)
Así que el teorema anterior puede ser enunciado de la siguiente manera:
Si f(x, y) es continua en R ⊂ R2 entonces el valor promedio de fP en
R coincide con el valor de f en algún P ∗ ∈ R .

En caso de que sea f(x, y) ≥ 0 en todo R, el teorema puede interpretarse
geométricamente de la siguiente manera: el volumen del sólido
V = {(x, y, z) ∈ R3/(x, y) ∈ R ∧ 0 ≤ z ≤ f(x, y)} coincide con el de un cilin-
dro sólido con base en R y altura f(P ∗).
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Cálculo de la integral doble

Supongamos que f(x, y) es continua en R = [a, b]× [c, d].
Entonces, para cada x0 ∈ [a, b], f es continua en el segmento
S(x0) = {(x0, y)/c ≤ y ≤ d}.

Existe por lo tanto

A(x0) =
∫ d

c
f(x0, y)dy

¿Cómo se puede interpretar esa integral? Suponiendo f(x, y) ≥ 0 en R ,
esa integral puede interpretarse como el área de la sección plana obtenida al
intersecar el sólido V = {(x, y, z) ∈ R3/(x, y) ∈ R ∧ 0 ≤ z ≤ f(x, y)} con el
plano x = x0.
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Lo que interpretamos para x0 ocurre para todo x en [a, b], quedando definida
la función

A(x) =
∫ d

c
f(x, y)dy

Al variar x las secciones producidas barren todo el sólido, lo que nos lleva a
concluir que

∫ b

a
A(x)dx representa el volumen del sólido, o sea:

vol(V ) =
∫ b

a

∫ d

c
f(x, y) dy dx

Análogamente, A(y) =
∫ b

a
f(x, y)dx es el área de una sección del sólido

perpendicular al eje y y por lo tanto

vol(V ) =
∫ d

c

∫ b

a
f(x, y) dx dy

La interpretación geométrica anterior nos permite comprender el siguiente
resultado que se conoce como Teorema de Fubini:
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Teorema de Fubini

Para toda función f(x, y) continua en un rectángulo R = [a, b]× [c, d],"
R

f(x, y) dA =
∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy

Ejemplo: Calcular
∫ ∫

R
(1− 6x2y) dA siendo R = [0, 2]× [−1, 1],

"
R

(1− 6x2y) dA =
∫ 2

0

∫ 1

−1
(1− 6x2y)dydx =

∫ 2

0
[y − 3x2y2]

∣∣∣∣∣
1

−1
dx =

∫ 2

0
[1− 3x2 − (−1− 3x2)]dx =

∫ 2

0
2dx = 4

o "
R

(1− 6x2y) dA =
∫ 1

−1

∫ 2

0
(1− 6x2y)dxdy =

∫ 1

−1

(
x− 2x3y

) ∣∣∣∣∣
2

0
dy =

∫ 1

−1
(2− 16y) dy =

(
2y − 8y2

) ∣∣∣∣∣
1

−1
= 4

Supongamos que f(x, y) es continua en una región tipo I
Esto es, en una región que se describe en la forma

R = {(x, y) /a ≤ x ≤ b ∧ f1(x) ≤ y ≤ f2(x)}

.
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El teorema de Fubini se extiende a esta situación resultando:"
R

f(x, y) dA =
∫ b

a

∫ f2(x)

f1(x)
f(x, y) dy dx

Ejemplo: Integrar f(x, y) = 2xy en la región R limitada por las curvas
y = x2 y x + y = 2.

Podemos apreciar en el gráfico que la región R es una región tipo I : toda
recta vertical que pase por un punto interior corta a la frontera en dos puntos
exactamente : uno en la curva y = x2 y el otro en la recta y = 2x.
Para describir analíticamente la región R buscamos primero las abscisas de
los puntos de intersección de las curvas:

y = x2

x + y = 2
=⇒ x2 + x− 2 = 0 =⇒ x = −2 o x = 1

de manera que R = {(x, y) /− 2 ≤ x ≤ 1 ∧ x2 ≤ y ≤ 2− x} y entonces:"
R

2xy dA =
∫ 1

−2

∫ 2−x

x2
2xy dy dx =

∫ 1

−2
xy2

∣∣∣∣∣
y=2−x

y=x2
dx =

=
∫ 1

−2
[x(2−x)2−x5]dx =

∫ 1

−2
(4x−4x2+x3−x5)dx =

(
2x2 − 4

3x3 + x4

4 −
x6

6

) ∣∣∣∣∣
1

−2
=

=
(

2− 4
3 + 1

4 −
1
6

)
−
(

8 + 32
3 + 4− 32

3

)
= −45

4
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Supongamos que f(x, y) es continua en una región tipo II
Esto es, en una región que se describe en la forma

R = {(x, y) /c ≤ y ≤ d ∧ g1(y) ≤ x ≤ g2(y)}

.

El teorema de Fubini se extiende a esta situación resultando:"
R

f(x, y) dA =
∫ d

c

∫ g2(y)

g1(y)
f(x, y) dx dy

Ejemplo: Integrar f(x, y) = 2xy en la región R limitada por las curvas
x = y2 y 2− x = y2.

Podemos apreciar en el gráfico que la región R es una región tipo II : toda
recta horizontal que pase por un punto interior corta a la frontera en dos
puntos exactamente: uno sobre la curva x = y2 y otro sobre la curva
x = 2− y2.
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Para describir analíticamente la región R buscamos las ordenadas de los
puntos de intersección de las curvas:

x = y2

2− x = y2 =⇒ y2 = 2− y2 =⇒ y = −1 o y = 1

de manera que R = {(x, y) /− 1 ≤ y ≤ 1 ∧ y2 ≤ x ≤ 2− y2}

y entonces:"
R

2xy dA =
∫ 1

−1

∫ 2−y2

y2
2xy dx dy =

∫ 1

−1
x2y

∣∣∣∣∣
x=2−y2

x=y2
dy = ...

(completen)

Algunas regiones son tanto de tipo I como de tipo II

Ejemplo: Sea R la región limitada por y = x2 y y = 2x

Vean que R puede describirse en la forma
R =

{
(x, y) /0 ≤ x ≤ 2 ∧ x2 ≤ y ≤ 2x

}
(Tipo I)

y también en la forma

R =
{

(x, y) /0 ≤ y ≤ 4 ∧ y

2 ≤ x ≤ √y
}

(Tipo II)

De manera que la integral de una función f(x, y) sobre esta región R puede
calcularse integrando primero respecto de y después respecto de x o vice-
versa: "

R

f(x, y) dA =
∫ 2

0

∫ 2x

x2
f(x, y) dy dx =

∫ 4

0

∫ √
y

y
2

f(x, y)dxdy
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Hay regiones que no son de tipo I ni de tipo II ¿qué podemos hacer para poder
integrar en ese caso? Lo que se hace es tratar de subdividir la región en un
número finito de subregiones que sean de tipo I o II y aplicar la propiedad
de aditividad en la región de integración.

Ejemplo: Siendo R la región limitada por y = x + 1; y = −x − 1; y = 1
y y = 2x − 1 , plantear el cálculo de

"
R

f(x, y)dA integrando i) primero
respecto de y y luego respecto de x ii) primero respecto de x y luego respecto
de y.

R no es de tipo I ni de tipo II.
Puede describirse como unión de dos regiones tipo I: R = R1 ∪R2 siendo:

R1 = {(x, y) /− 1 ≤ x ≤ 0 ∧ −x− 1 ≤ y ≤ x + 1}

R2 = {(x, y) /0 ≤ x ≤ 1 ∧ 2x− 1 ≤ y ≤ 1}

De acuerdo a esa descripción:

"
R

f(x, y)dA =
∫ 0

−1

∫ x+1

−x−1
f(x, y)dydx +

∫ 1

0

∫ 1

2x−1
f(x, y)dydx

En este caso R también puede describirse como unión de dos regiones tipo
II: R = R1 ∪R2 siendo:

R1 =
{

(x, y) /− 1 ≤ y ≤ 0 ∧ −y − 1 ≤ x ≤ y + 1
2

}

R2 =
{

(x, y) /0 ≤ y ≤ 1 ∧ y − 1 ≤ x ≤ y + 1
2

}
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De acuerdo a esa descripción:

"
R

f(x, y)dA =
∫ 0

−1

∫ y+1
2

−y−1
f(x, y)dxdy +

∫ 1

0

∫ y+1
2

y−1
f(x, y)dxdy

4.1.3. Ejercicios
1. En los siguientes incisos, grafiquen la región de integración y calculen

luego la integral:
i)
∫ 3

0

∫ 2

0
(4−y2)dydx ii)

∫ 4

0

∫ 2

0
x
√

ydxdy iii)
∫ 0

−1

∫ 1

−1
(x+y +1)dxdy

iv)
∫ 8

1

∫ lny

0
ex+ydxdy v)

∫ π

0

∫ senx

0
y dydx vi)

∫ 2

1

∫ y2

y
dxdy

2. Dibujen un sólido cuyo volumen se calcula con las siguientes integrales:

i)
∫ 1

0

∫ 1

0
(4− x− 2y)dxdy ii)

∫ 1

0

∫ 1

0
(2− x2 − y2)dxdy

3. En los siguientes incisos, planteen el cálculo de la integral invirtiendo
el orden de integración:
i)
∫ 1

0

∫ 4−2x

2
f(x, y)dydx ii)

∫ 1

0

∫ √
y

y
f(x, y)dxdy iii)

∫ 2

0

∫ 0

y−2
f(x, y)dxdy

4. Calculen las siguientes integrales (de ser necesario, inviertan el orden
de integración para realizar el cálculo)

i)
∫ 1

0

∫ 1

x
sen

(
y2
)

dydx ii)
∫ π

0

∫ π

x

seny

y
dydx iii)

∫ 3

0

∫ 1
√

x
3

ey3
dydx

5. Integrar:

a) f(x, y) = x

y
en la región R limitada por y = x ; y = 2x ; x = 1 y

x = 2.

b) f(x, y) = x2 + y2 en el triángulo de vértices (0, 0); (1, 0) y (0, 1).

c) f(u, v) = v−
√

u en la región R limitada por u + v = 1 y los ejes
coordenados en el primer cuadrante.

d) f(s, t) = eslnt en la región R limitada por s = lnt ; t = 2 y s = 0
en el primer cuadrante.

e) f(x, y) = y − 2x2 en la región R =
{
(x, y)/

∣∣∣x∣∣∣+ ∣∣∣y∣∣∣ ≤ 1
}
.

f ) f(x, y) = xy en la región R limitada por y = x ; y = 2x y
x + y = 2 .
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Para la visualización y cálculo de integrales múltiples puedes ayudarte
de las aplicaciones creadas en GeoGebra.

4.2. Aplicaciones de la integral doble
Área de una región plana"

R

dA = área(R)

Volumen de un sólido
Hemos visto ya que, para f continua y no negativa en todos los puntos
de una región R, si V = {(x, y, z) ∈ R3/(x, y) ∈ R ∧ 0 ≤ z ≤ f(x, y)},"

R

f(x, y)dA = V olumen(V )

Para un sólido V que no está apoyado en el plano xy sino que se
encuentra limitado por dos superficies, gráficas de funciones continuas
f y g definidas en la misma región R, con f(x, y) ≤ g(x, y), es decir,
para
V = {(x, y, z) ∈ R3/(x, y) ∈ R ∧ f(x, y) ≤ z ≤ g(x, y)}, es:

V olumen(V ) =
"

R

[g(x, y)− f(x, y)]dA
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Masa y centro de masa de una placa delgada

La masa M de una placa bidimensional R que tiene una densidad su-
perficial de masa variable descrita por una función ρ(x, y) está dada
por:

M =
"

R

ρ(x, y)dA

y las coordenadas del centro de masa pueden calcularse de la siguiente
manera:

x̄ =
!

R
x ρ(x, y)dA

M
; ȳ =

!
R

y ρ(x, y)dA

M

Centroide de una placa delgada o centro geométrico Si la den-
sidad de una placa delgada es homogénea en todos los puntos (x, y) de
la placa e igual a ρ(x, y) = K, el centro de masa, en este caso se llama
centroide y coincide con el centro geométrico.

x̄ =
!

R
x dA

Area(R) ; ȳ =
!

R
y dA

Area(R)

4.2.1. Ejercicios
1. En los siguientes incisos, calculen empleando integrales dobles el área

de la región limitada por las curvas dadas.
i) y = x2 ; y = 8−x2 ii) y = x2 ; x = y2 iii) y = x2 ; y = x+2
iv) x = y2 ; x = 8− y2 v) y = −x2 + 3 ; y = −1
vi) y = x ; y = x + 2 ; x = 3 ; x = 0 .
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2. Calculen el valor promedio de:
i) f(x, y) = x2 + y2 en la región limitada por y = x2 − 4 ; y = 3x.
ii) T (x, y) = 50+2x+2y en la región limitada por y = x2 ; y = 8−x2

3. Calculen el volumen del sólido V =
{
(x, y, z)/(x, y) ∈ R ∧ 0 ≤ z ≤ x2 + y2

}
siendo R el triángulo limitado por las rectas y = x ; y = 0 y x+y = 2.

4. Calculen el volumen del sólido limitado por:

a) y = x2 ; y = 2− x2 ; z = y con con z ≥ 0.

b) x2 +y2 = 4 ; z +y = 3 ; x = 0 ; y = 0 ; z = 0 en el primer octante.

c) z2 + y2 = 4 ; x = 2y ; x = 0 ; z = 0 en el primer octante.

d) x + 2y + z = 2 ; x = 2y ; x = 0 ; z = 0.

e) y = x2 ; z + y = 4 con z ≥ 0.

f ) z = x2 + y2 + 4 ; x = 0 ; y = 0 ; z = 0 ; x + y = 1.

g) x + y + z = 3 ; x = 0 ; y = 0 ; z ≥ 1 en el primer octante.

h) x + y + z = 3 ; x = 0 ; y = 0 ; z = 0 ; z = 1 en el primer octante.

5. Hallen el centro de masa de una lámina delgada cuya forma coincide
con la región R limitada por x = y2 y x = 1 siendo ρ(x, y) = y2 +x+1
la función densidad de masa.

4.3. Cambio de variables en la integral doble

Antes de entrar en el tema del cambio de variables nos referiremos al producto
vectorial o producto cruz de vectores:
El producto cruz de a⃗ = ⟨a1, a2, a3⟩ por b⃗ = ⟨b1, b2, b3⟩ se denota a⃗× b⃗.
a⃗ × b⃗ es un vector perpendicular a a⃗ y a b⃗ y cuyo módulo es el área del
paralelogramo determinado por a⃗ y b⃗.

a⃗× b⃗ =

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣ = (a2b3 − a3b2)⃗i− (a1b3 − a3b1)⃗j + (a1b2 − a2b1)k⃗
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Hemos visto que en la integral definida
∫ b

a
f(x)dx, el cambio de variable

x = g(u) nos permite establecer que, siendo a = g(c) y b = g(d),

∫ b

a
f(x)dx =

∫ d

c
f(g(u))g′(u)du

Noten que el cambio de variable introduce el factor ”g′(u)” en el integrando
y modifica los límites de integración. Lo propio ocurre, como veremos a con-
tinuación, cuando se realiza un cambio de variables en la integral doble.

Veremos a continuación cómo se modifica una integral doble con un cambio
de variables.

Un cambio de variables viene dado por una transformación T de una región
S del plano uv en una región R del plano xy de la forma

T (u, v) = (x, y) = (X(u, v), Y (u, v))

por la que cada punto (x, y) de R es imagen de un único punto (u, v) de S y
donde X e Y tienen derivadas parciales continuas en cada punto de S. Siendo
T uno a uno, existe la función inversa

T −1(x, y) = (u, v) = (U(x, y), V (x, y))
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Escribimos habitualmente: T :
x = X(u, v)

y = Y (u, v)
T −1 :

u = U(x, y)
v = V (x, y)

En esta situación, supongamos que S es un rectángulo de vértices (u, v);
(u+∆u, v); (u+∆u, v+∆v) ; (u, v+∆v). Las imágenes de esos vértices en el
plano xy son los puntos M,Q,P y N y, siendo ∆u y ∆v pequeños, la imagen
de S es aproximadamente un paralelogramo R determinado por los vectores
M⃗N y M⃗Q cuya área es el módulo del producto cruz de esos vectores.

De acuerdo a lo dicho, es ∆R = área(R) ≈
∣∣∣M⃗N × M⃗Q

∣∣∣ siendo :

M⃗N = ⟨X(u + ∆u, v)−X(u, v) , Y (u + ∆u, v)− Y (u, v)⟩
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M⃗Q = ⟨X(u, v + ∆v)−X(u, v) , Y (u, v + ∆v)− Y (u, v)⟩

Si ∆u y ∆v son cercanos a cero,

X(u+∆u, v)−X(u, v) ≈ Xu(u, v)∆u Y (u+∆u, v)−Y (u, v) ≈ Yu(u, v)∆u

X(u, v+∆v)−X(u, v) ≈ Xv(u, v)∆v Y (u, v+∆v)−Y (u, v) ≈ Yv(u, v)∆v

En consecuencia,

M⃗N ≈ ⟨Xu(u, v)∆u, Yu(u, v)∆u⟩ M⃗Q ≈ ⟨Xv(u, v)∆v, Yv(u, v)∆v⟩

o sea
M⃗N ≈

〈
∂x

∂u
∆u,

∂y

∂u
∆u

〉
M⃗Q ≈

〈
∂x

∂v
∆v,

∂y

∂v
∆v

〉
Por lo tanto:

∣∣∣∣∣∣∣∣∣∣∣

i⃗ j⃗ k⃗
∂x

∂u
∆u

∂y

∂u
∆u 0

∂x

∂v
∆v

∂y

∂v
∆v 0

∣∣∣∣∣∣∣∣∣∣∣
=
〈

0, 0,

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
∆u∆v

〉

Entonces,

∆R ≈
∣∣∣M⃗N × M⃗Q

∣∣∣ ≈ ∣∣∣ (∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

) ∣∣∣∆u∆v

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
=

∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣∣
se llama jacobiano de x e y respecto de u y v (el nombre refiere al matemá-
tico alemán Carl Gustav Jacobi que vivió entre 1804 y 1851) . Usaremos la

notación ∂(x, y)
∂(u, v) o, a veces , J, para referirnos al jacobiano.

Con esa notación podemos escribir:

∆R ≈
∣∣∣∂(x, y)
∂(u, v)

∣∣∣∆u∆v =
∣∣∣∂(x, y)
∂(u, v)

∣∣∣∆S
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Ahora podemos enunciar:

Cambio de variables en la integral doble

Sean R y S regiones de los planos xy y uv relacionadas porx = X(u, v)
y = Y (u, v)

de tal manera que cada punto de R es imagen de

un único punto de S, y sea f una función continua en R. Si X y Y
tienen derivadas parciales continuas
en S y ∂(x, y)

∂(u, v) es distinto de cero en S entonces

"
R

f(x, y)dxdy =
"

S

f(X(u, v), Y (u, v))
∣∣∣∂(x, y)
∂(u, v)

∣∣∣dudv

Nota: En las condiciones anteriores es posible demostrar que JT = 1
JT −1

, es
decir que el Jacobiano de una transformación y el de su inversa son inversos:

∂(x, y)
∂(u, v) = 1

∂(u, v)
∂(x, y)

Observación: Cuando se realiza un cambio de variables en una integral do-
ble, estamos mapeando una región en el plano desde un sistema de coordena-
das (x, y) a otro sistema de coordenadas (u, v) mediante una transformación.
El jacobiano J(u, v) es el determinante de la matriz jacobiana, que descri-
be cómo cambian las derivadas parciales de las coordenadas originales con
respecto a las nuevas variables. Matemáticamente, el jacobiano está dado
por:

J(u, v) =
∣∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣∣
Este valor mide cómo las áreas pequeñas (infinitesimales) en el nuevo sistema
de coordenadas (u, v) se transforman en áreas en el sistema original (x, y). Es
decir, si tomas un pequeño rectángulo en el sistema (u, v), su imagen bajo la
transformación puede ser un paralelogramo en el sistema (x, y), y el jacobiano
es el factor de escalado del área entre estos dos elementos diferenciales.
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Además, si estamos calculando áreas:

Si J(u, v) > 1, el área en el sistema original es mayor que en el nuevo
sistema: la transformación “expande” las áreas.

Si J(u, v) < 1, el área en el sistema original es menor que en el nuevo
sistema: la transformación “contrae” las áreas.

Si J(u, v) = 1, las áreas se conservan: no hay cambio en la proporción
del área.

Si J(u, v) < 0, hay una inversión en la orientación (por ejemplo, la
transformación puede cambiar la dirección de los ejes o hacer un reflejo).

En resumen, el jacobiano actúa como un factor de escala que ajusta la integral
para tener en cuenta la deformación (expansión o contracción) de las áreas
bajo la transformación entre los sistemas de coordenadas.

Ejemplo: Dada
"

R

(
x− 2y

x + y

)20

dA , donde R es la región limitada por

las rectas x − 2y = 0 ; x − 2y = 4 ; x + y = 1 ; x + y = 4 , evalúen las
dificultades que presenta su cálculo.

Vean que en
"

R

(
x− 2y

x + y

)20

dA , haciendo
u = x + y

v = x− 2y
, la expresión

del integrando se simplifica:
(

x− 2y

x + y

)20

→
(

v

u

)20

Además, con ese cambio de variables se tiene:
x + y = 1 → u = 1
x + y = 4 → u = 4
x− 2y = 0 → v = 0
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x− 2y = 4 → v = 4

Luego:
"

R

(
x− 2y

x + y

)20

dA vean que,

siendo
u = x + y

v = x− 2y
resulta


x = 2u + v

3
y = u− v

3

y el jacobiano de x,y respecto de u y v es

∂(x, y)
∂(u, v) =

∣∣∣∣∣∣∣∣∣∣

2
3

1
3

1
3 −1

3

∣∣∣∣∣∣∣∣∣∣
= 2

3

(
−1

3

)
− 1

3 .
1
3 = −1

3

Notar que, el jacobiano de u,v respecto de x y y es

∂(u, v)
∂(x, y) =

∣∣∣∣∣∣∣
1 1

1 −2

∣∣∣∣∣∣∣ = 1(−2)− 1 = −3

inverso al jacobiano de x,y respecto de u y v.

Por lo tanto,"
R

(
x− 2y

x + y

)20

dxdy =
∫ 4

1

∫ 4

0

(
v

u

)20
∣∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣∣dvdu =
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∫ 4

1

∫ 4

0

(
v

u

)20
∣∣∣∣∣− 1

3

∣∣∣∣∣dvdu = 1
3

u−19

−19

∣∣∣∣∣
4

1

v21

21

∣∣∣∣∣
4

0
= ...

4.3.1. Ejercicios
Calculen usando un cambio de variables adecuado:
i)
∫ ∫

R
(x−y)9(x+y)8dA siendo R = {(x, y)/x ≥ y − 1, y ≥ x, x + y ≥ 1, x + y ≤ 2}.

ii) El área de la región R limitada por y = 4x + 2 ; y = 4x + 5 ; y = 3− 2x ;
y = 1− 2x.
iii) El área de la región R limitada por y = ex ; y = ex + 1 ; y = 3 − ex ;
y = 5− ex.
iv) El área de la región del primer cuadrante limitada por las curvas xy = 1,
xy = 4, y = x e y = 2x.
v) Sea T el triángulo cuyos vértices son (0, 0), (1, 0) y (0, 1). Calcule la inte-
gral

∫ ∫
R

e(y−x)/(y+x)dA utilizando la transformación u = y − x, v = y + x.

4.4. Coordenadas polares
Actividad: Grafiquen el sólido V limitado por los paraboloides
z = x2 + y2 y z = 8−x2− y2. Descríbanlo analíticamente.¿Cómo se calcula
su volumen?

Sistema de coordenadas polares en el plano
Se define, a partir de un punto O llamado polo, una semirrecta horizontal
llamada eje polar y una unidad de medida u.
Cualquier punto P del plano puede individualizarse en este sistema por medio
de su distancia al polo ( r ) y la medida del ángulo entre el eje polar y el
segmento ŌP que se ve en la figura siguiente (θ).

Cada par (r, θ) con r > 0 y 0 ≤ θ < 2π corresponde a un único punto
P , (0, 0). Los pares (0, θ) con 0 ≤ θ < 2π cualquiera, corresponden al
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(0, 0).

Aunque lo habitual es usar el ángulo que se encuentra entre 0 y 2π, noten
que el punto representado por las coordenadas polares (r, θ) se representa
también por (r, θ + 2kπ) donde k es un entero cualquiera.

En un sistema de coordenadas cartesianas ubiquemos un sistema polar ha-
ciendo coincidir el eje polar con el semieje positivo de las x.

Coordenadas polares

Entonces:
x = rcosθ

y = rsenθ

r =
√

x2 + y2

tg θ = y

x
si x , 0

(θ = π

2 si x = 0 e y > 0 y θ = 3π

2 si x = 0 e y < 0)

Dadas las coordenadas polares de un punto, podemos usar las igualdades
anteriores para obtener sus coordenadas cartesianas y viceversa.

Ejemplos:

Si (4,
π

3 ) son las coordenadas polares de P, sus coordenadas cartesianas
se calculan de la siguiente manera:

x = 4 cos
π

3 = 2

y = 4 sen
π

3 = 2
√

3

Si (2,−2
√

3) son las coordenadas cartesianas del punto P, sus coorde-
nadas polares se calculan de la siguiente manera:

r =
√

22 + (−2
√

3)2 = 4
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tg θ = −2
√

3
2 = −

√
3

siendo P un punto del cuarto cuadrante, es θ = 5π

3 .

También podemos obtener la ecuación en coordenadas polares a partir de la
ecuación en cartesianas y viceversa.

Ejemplos:

x2 + y2 = 4 → r2 = 4→ r = 2

x2 + (y− 2)2 = 4 → x2 + y2− 4y = 0→ r2− 4rsenθ = 0→ r = 4senθ

y = 1 → rsenθ = 1

y =
√

3 x→ tgθ =
√

3→ θ = π

3 ∨ θ = 4π

3

θ = π

4 → tgθ = 1→ y = x , x ≥ 0 (semirrecta)

r = 4cosθ → r2 = 4rcosθ → x2 + y2 = 4x→ (x− 2)2 + y2 = 4

rcosθ = 2 → x = 2

La curva cuya ecuación en coordenadas polares es r = 3(1 + cosθ)
es una cardioide. En la siguiente figura se ve una tabla con valores
aproximados de r para algunos valores de θ y se ve la curva graficada.
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r2 = 9cos2θ → r4 = 9r2(cos2θ − sen2θ)→ (x2 + y2)2 = 9(x2 − y2)
Esta curva es una lemniscata o lemniscata de Bernoulli. Pueden verla
graficada en la siguiente figura.

Para algunas regiones del plano, la descripción en coordenadas polares es
mucho más sencilla que en coordenadas cartesianas. Piensen por ejemplo en
la región limitada por las circunferencias x2 + y2 = 4 y x2 + y2 = 16.

Las ecuaciones de las curvas que limitan a la región en coordenadas polares
son r = 2 y r = 4.

157



CAPÍTULO 4. INTEGRAL DOBLE

Los puntos que pertenecen a la región tienen coordenada polar r entre 2 y 4
y no hay ninguna restricción para el ángulo θ. Podemos escribir:

R = {(r, θ)/0 ≤ θ ≤ 2π ∧ 2 ≤ r ≤ 4}

4.4.1. Ejercicios
Grafiquen en el plano xy las regiones que se definen a continuación y descrí-
banlas luego en coordenadas polares.

i) R limitada por x2 + y2 = 4 ; y = x e y = −x con y ≥ 0.

ii) R limitada por x2 + y2 = 4 ; y = 4 ; y =
√

3 x ; y = −
√

3 x ; con
y ≥ 0.

iii) R limitada por x2 + y2 = 4 e y = 1 con y ≥ 1.

iv) R limitada por x2 + y2 − 4y = 0 .

v) R limitada por x2 + y2 − 4x = 0 .

vi) R limitada por x2 + y2 − 4x = 0 y x2 + y2 − 4y = 0 .

vii) R = {(x, y)/x2 + y2 ≥ 4 ∧ x2 + (y − 2)2 ≤ 4} .
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COORDENADAS POLARES

4.5. Cambio de variables en la integral doble
usando coordenadas polares

Dada
"

R

f(x, y)dA, donde f es una función continua en la región del plano
cerrada y acotada R, plantearemos su cálculo con el cambio de variables
definido por x = rcosθ

y = rsenθ

El jacobiano de x e y con respecto a r y θ es:

J =

∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂y

∂r

∂x

∂θ

∂y

∂θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
cos θ senθ

−rsenθ rcosθ

∣∣∣∣∣∣∣ = r

Cambio de variables cartesianas a polares

Suponiendo que la región R en las coordenadas polares r y θ, se describe

R = {(r, θ)/θ1 ≤ θ ≤ θ2 ∧ g(θ) ≤ r ≤ h(θ)}

resulta: "
R

f(x, y)dA =
∫ θ2

θ1

∫ h(θ)

g(θ)
f(rcosθ, rsenθ)rdrdθ

Ejemplos:

Plantear el cálculo de
"

R

[8−2(x2+y2)]dA con R = {(x, y)/x2 + y2 ≤ 4},
usando coordenadas polares.

R es un círculo de radio 2 que podemos describir en coordenadas pola-
res diciendo: R = {(r, θ)/0 ≤ θ < 2π ∧ 0 ≤ r ≤ 2}.

Además, siendo
x = rcosθ

y = rsenθ
, el integrando se transforma de la si-

guiente manera:
8− 2(x2 + y2) → 8− 2r2
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Entonces: "
R

[8− 2(x2 + y2)]dA =
∫ 2π

0

∫ 2

0
[8− 2r2]rdrdθ)

Plantear el cálculo del volumen del sólido V limitado por z = x2 + y2

y z = 2y usando coordenadas polares.

Eliminando z entre las dos ecuaciones de las superficies que limitan al
sólido se obtiene la ecuación de un cilindro proyectante x2 + y2 = 2y
Observamos así que el sólido se proyecta en la región R limitada por
x2 + (y − 1)2 = 1 y V se describe de la siguiente manera:

V =
{
(x, y, z)/(x, y) ∈ R ∧ x2 + y2 ≤ z ≤ 2y

}
por lo que

vol(V ) =
∫ ∫

R
[2y − (x2 + y2)]dA

Con el cambio de variables
x = rcosθ

y = rsenθ
,

x2 + (y − 1)2 = 1 → r = 2senθ
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COORDENADAS POLARES

Así que la región R se describe de la siguiente manera en términos de
r y θ:

R = {(r, θ)/0 ≤ θ ≤ π ∧ 0 ≤ r ≤ 2senθ}

Además,
2y − (x2 + y2) → 2rsenθ − r2

Entonces,

vol(V ) =
"

R

[2y − (x2 + y2)]dA =
∫ π

0

∫ 2senθ

0
(2rsenθ − r2)rdrdθ

Plantear el cálculo del área de la región del plano interior al cardioide
r = 1 + cosθ y exterior a la circunferencia r = 1 usando coordenadas
polares.

área(R) =
"

R

dA
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En la región R , el ángulo θ toma valores comprendidos entre 0 y π

2
y entre 3π

2 y 2π. Por su parte, r toma valores que van desde 1 hasta
1 + cosθ.

R =
{

(r, θ)/[0 ≤ θ ≤ π

2 ∨
3π

2 ≤ θ ≤ 2π] ∧ 1 ≤ r ≤ 1 + cosθ
}

Así, área(R) =
"

R

dA =
∫ π

2

0

∫ 1+cosθ

1
rdrdθ +

∫ 2π

3π
2

∫ 1+cosθ

1
rdrdθ

R podría describirse también de la siguiente manera:

R =
{

(r, θ)/− π

2 ≤ θ ≤ π

2 ∧ 1 ≤ r ≤ 1 + cosθ
}

de modo que: área(R) =
"

R

dA =
∫ π

2

− π
2

∫ 1+cosθ

1
rdrdθ

4.5.1. Ejercicios

1. Integren: i)
"

R

ex2+y2
dA siendo R la región limitada por x2 + y2 = 1

y x2 + y2 = 9 ii)
"

R

ln(x2 + y2)√
x2 + y2 dA siendo R la región limitada por

x2 + y2 = 1 y x2 + y2 = e.

2. Calculen el área de las siguientes regiones:
i) R limitada por θ = π

4 ; θ = π

2 y r = 4cosθ.
ii) R exterior a r = 4 e interior a r = 8senθ.
iii) R interior a r = 1 y exterior a la cardioide r = 1 + cosθ.
iv) R limitada por la lemniscata r2 = 9cos2θ.
v) R limitada por rsenθ = 4 ; θ = π

4 ; θ = 3π

4 .

3. Calculen el volumen de los sólidos que se describen a continuación:
i) V limitado por x2 + y2 = 4 ; z = 0 y z = 4− y.
ii) Esfera sólida de radio a.
iii) V limitado por z =

√
4− x2 − y2 y z =

√
x2 + y2.

4. Calculen la masa de la placa metálica limitada por x2 + (y− 2)2 = 4 ;
y = x ; y = −x e y = 8 siendo f(x, y) = x2 + y2 la función
densidad de masa.

5. Calculen el valor promedio de f(x, y) =
√

a2 − x2 − y2 en el círculo
definido por x2 + y2 ≤ a2.
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Capítulo 5

Integral triple

5.1. Definición de integral triple

Sea V un sólido acotado cuya frontera sea unión finita de superficies suaves
unidas a lo largo de curvas suaves o suaves a trozos, y sea f(x, y, z) una
función (escalar) a valores reales, definida y acotada sobre el sólido V.

Supongamos que V está incluido en el paralelepípedo [a, b] × [c, d] × [e, f ].
Trazando, por un número finito de puntos de [a, b], de [c, d] y de [e, f ], planos
paralelos a los planos coordenados, el paralelepípedo [a, b] × [c, d] × [e, f ]
queda dividido en un número finito de paralelepípedos Vi con volumen ∆Vi.
Supongamos que V1, V2, ..., Vk son los que están incluidos en V .
P = {V1, V2, ..., Vk} es una partición de V y su norma es la mayor de todas
las longitudes de las diagonales de los Vi.
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Sea P ∗
i ∈ Vi (cualquiera) y sea

Jk =
k∑

i=1
f(P ∗

i )∆Vi

La integral triple de f(x, y, z) sobre V que se denota
$

V

f(x, y, z)dV , es

el límite de Jk para
∣∣∣P∣∣∣→ 0 , si ese límite existe y es un número real que no

depende de las particiones ni de los P ∗
i considerados.

Si f(x, y, z) es continua sobre V o es acotada y tiene a lo sumo discontinui-
dades en un número finito de subconjuntos de V de volumen nulo, entonces
f es integrable sobre V.

Propiedades de la integral triple

1. Aditividad en el sólido de integración: Si f es integrable sobre
V = V1 ∪ V2 donde V1 y V2 tienen en común a lo sumo puntos de una
superficie , entonces$

V

f(x, y, z)dV =
$

V1

f(x, y, z)dV +
$

V2

f(x, y, z)dV
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2. Linealidad: Si f y g son integrables sobre V y α, β ∈ R, entonces$
V

(αf + βg)dV = α

$
V

fdV + β

$
V

gdV

3. Monotonía: Si f y g son integrables sobre V y ∀(x, y, z) ∈ V es
f(x, y, z) ≤ g(x, y, z) , entonces$

V

f dV ≤
$

V

g dV

4. Propiedad de acotamiento: Si
∣∣∣f(x, y, z)

∣∣∣ ≤M ∀(x, y, z) ∈ V ,
∣∣∣∣∣
$

V

f dV

∣∣∣∣∣ ≤Mvol(V )

Teorema del valor medio

Si f(x, y, z) es continua en V ⊂ R3 entonces existe P ∗ ∈ V tal que$
V

f(x, y, z)dV = f(P ∗) vol(V ).

Siendo f(x, y, z) integrable sobre V , se llama valor promedio de f en
V a fP

fP =
#

V
f(x, y, z)dV

vol(V )
Así el teorema anterior puede ser enunciado de la siguiente manera:
Si f(x, y, z) es continua en V ⊂ R3 entonces el valor promedio de f en
V coincide con el valor de f en algún P ∗ ∈ V .

Aplicaciones de la integral triple$
V

dV = V olumen(V ),

Si f(x, y, z) es la función densidad volumétrica de masa, continua y
f(x, y, z) ≥ 0 en todos los puntos de V, entonces$

V

f(x, y, z)dV = Masa(V )
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Centro de masa de un sólido V (x, y, z) Si f(x, y, z) es la función
densidad volumétrica de masa, y f es continua y f(x, y, z) ≥ 0 en todos
los puntos de V, entonces

x =

$
V

xf(x, y, z)dV

masa(V )

y =

$
V

yf(x, y, z)dV

masa(V )

z =

$
V

zf(x, y, z)dV

masa(V )
El centro de masa de un sólido se puede suponer como el punto donde
esta concentrada toda la masa y donde confluyen las fuerzas externas
que actúan sobre él. Es sumamente útil conocer el centro de masa,
porque facilita resolver problemas de mecánica en los que se necesi-
ta describir o conocer el movimiento de objetos sometidos a diversas
fuerzas.

5.1.1. Cálculo de la integral triple
Si el sólido V es proyectable sobre el plano xy , o sea, si existe una región Rxy

del plano xy y dos funciones continuas g(x, y) y h(x, y) tales que

V = {(x, y, z)/(x, y) ∈ Rxy ∧ g(x, y) ≤ z ≤ h(x, y)}

siendo f(x, y, z) continua en V,

$
V

f(x, y, z)dV =
"

Rxy

[
∫ h(x,y)

g(x,y)
f(x, y, z)dz]dAxy

(la integral doble se calculará a su vez integrando respecto de x y respecto y
de acuerdo a la descripción que se haga de Rxy o bien también realizando un
cambio de variables)

Describan ustedes en qué condiciones un sólido es proyectable sobre el plano
xz y cuándo es proyectable sobre el plano yz y cómo se calcula la integral
triple en estos casos.
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5.1.2. Ejercicios
1. Calculen las siguientes integrales. Describan el sólido sobre el que se

integra y hagan un esquema gráfico del mismo.
i)
∫ 2

1

∫ 1

0

∫ 4

2
x2y2zdzdydx ii)

∫ 1

0

∫ x

0

∫ x−y

0
xdzdydx

2. i) Comprueben que
∫ 1

0

∫ 1−z

0

∫ 2

0
dxdydz =

∫ 2

0

∫ 1

0

∫ 1−z

0
dydzdx

ii) Interpreten geométricamente el resultado de la integral.

3. En los siguientes incisos, describan el sólido limitado por las superficies
dadas y calculen su volumen mediante una integral triple.
i) x + y + 2z = 2 ; 2x + 2y + z = 4 (en el primer octante) .
ii) z = 0 ; z = y2 ; x = 0 ; x = 1 ; y = 1 ; y = −1.
iii) x + z = 1 ; y + 2z = 2 (en el primer octante) .
iv) x2 + z2 = 1 ; x2 + y2 = 1 (en el primer octante) .
v) x2 + y2 = 4 ; z = 0 ; x + z = 3 .

4. Calculen el valor promedio de f(x, y, z) = xyz en el cubo limitado por
los planos coordenados y por x = 2 , y = 2 y z = 2.

5. Calculen la masa del sólido limitado por x + y + z = 2 y los planos
coordenados , siendo ρ(x, y, z) = 2x la función densidad de masa.

6. Hallar el volumen de un prismoide como se muestra en la figura y
probar que es igual a V = h

6 (A1 + 4Am + A2), donde A1 y A2 son las
bases de la figura, h es la altura (distancia entre las dos caras paralelas)
y Am el área de la sección con plano a mitad de altura (h/2) entre las
dos caras paralelas. Probar primero, por ejemplo con

Nota: En geometría, un prismatoide es un poliedro cuyos vértices se
encuentran en dos planos paralelos. Sus caras laterales pueden ser tra-
pezoides o triángulos. Si ambos planos tienen el mismo número de vér-
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tices, y las caras laterales son paralelogramos o trapezoides, se conocen
como prismoides. Los prismoides se utilizan mucho en topografía en tra-
bajos de ingeniería para calcular los volúmenes de tierra para desmontes
o terraplenes. Considerar, por ejemplo el caso con valores simples, de
un prismoide con las siguientes características:

La base inferior es un cuadrado con vértices en (0, 0, 0), (2, 0, 0),
(2, 1, 0) y (0, 1, 0).

La base superior es un cuadrado con vértices en (0, 0, 1), (1, 0, 1),
(1, 1, 1) y (0, 1, 1).

La altura del prismoide es 1 unidad.

5.2. Cambio de variables en la integral triple
Sean V y V ∗ subconjuntos del espacio xyz y uvt respectivamente, que están
relacionados por 

x = X(u, v, t)
y = Y (u, v, t)
z = Z(u, v, t)

de tal manera que cada punto de V es imagen de único punto de V ∗.

Supongamos que f(x, y, z) es continua en V , que X, Y y Z tienen derivadas
parciales continuas en V ∗ y que, en V ∗, el jacobiano de x,y y z respecto de
u, v y t es diferente de cero, o sea:

∂(x, y, z)
∂(u, v, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

∂x

∂t

∂y

∂t

∂z

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ∂x

∂u

∣∣∣∣∣∣∣∣∣∣

∂y

∂v

∂z

∂v

∂y

∂t

∂z

∂t

∣∣∣∣∣∣∣∣∣∣
−∂y

∂u

∣∣∣∣∣∣∣∣∣∣

∂x

∂v

∂z

∂v

∂x

∂t

∂z

∂t

∣∣∣∣∣∣∣∣∣∣
+∂z

∂u

∣∣∣∣∣∣∣∣∣∣

∂x

∂v

∂y

∂v

∂x

∂t

∂y

∂t

∣∣∣∣∣∣∣∣∣∣
, 0

entonces$
V

f(x, y, z)dVxyz =
$

V ∗
f(X(u, v, t), Y (u, v, t), Z(u, v, t))

∣∣∣∂(x, y, z)
∂(u, v, t)

∣∣∣dVuvt
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5.3. Coordenadas cilíndricas
Se asigna a cada punto P = (x, y, z) la terna (r, θ, z) donde (r, θ) son las
coordenadas polares de la proyección en el plano xy del punto P y z es la
coordenada original.
(r, θ, z) son las coordenadas cilíndricas del punto P y esas coordenadas veri-
fican:

r ≥ 0 ; 0 ≤ θ < 2π ; z ∈ R

Coordenadas cilíndricas

La relación entre ambas ternas está dada por:


x = r cos θ

y = r sen θ

z = zr =
√

x2 + y2

tg θ = y

x
si x , 0

(θ = π

2 si x = 0 e y > 0 y θ = 3π

2 si x = 0 e y < 0)

(Se podría también ubicar el sistema polar en el plano xz y mantener la coor-
denada y original o ubicar el sistema polar en yz y mantener la coordenada
x original).

Actividad

Obtengan las coordenadas cartesianas del punto P cuyas coordenadas
cilíndricas (r, θ, z) son (1,

π

6 ,−3).

Obtengan las coordenadas cilíndricas del punto P cuyas coordenadas
cartesianas son (1,−1, 2).
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Grafiquen las superficies cuyas ecuaciones en coordenadas cilíndricas
son: i) r = 2 ii) θ = 0 iii) θ = 3π

2 iv) r = 2senθ

Escriban las ecuaciones en coordenadas cilíndricas de las siguientes su-
perficies: i) x2 + y2 = 1 ii) Semiplano y = x ; con x ≥ 0
iii) z =

√
x2 + y2 iv) z = x2 + y2 v) z =

√
4− x2 − y2 .

La descripción en coordenadas cilíndricas de algunos sólidos es mucho más
sencilla que en coordenadas cartesianas. Piensen por ejemplo en el sólido
limitado por las superficies x2 + y2 = 1 ; x2 + y2 = 9 ; z = 0 y z = 5.

Las ecuaciones en coordenadas cilíndricas de las superficies que limitan al
sólido son: r = 1 ; r = 3 ; z = 0 y z = 5.

Los puntos que pertenecen al sólido tienen coordenada cilíndrica θ cualquiera
(entre 0 y 2π), coordenada cilíndrica r entre 1 y 3 y z entre 0 y 5.

V = {(r, θ, z)/0 ≤ θ < 2π ∧ 1 ≤ r ≤ 3 ∧ 0 ≤ z ≤ 5}

Actividad Grafiquen y describan en coordenadas cilíndricas el sólido V
limitado en el primer octante por x2 +y2 = 9 ; x2 +y2 = 16 ; y = x; y =

√
3 x

; z = 1 y z = 4.

Cambio de variables en la integral triple usando coordenadas cilín-
dricas

Para el cambio de variables definido por
x = rcosθ

y = rsenθ

z = z
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resulta

∂(x, y, z)
∂(r, θ, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂y

∂r

∂z

∂r

∂x

∂θ

∂y

∂θ

∂z

∂θ

∂x

∂z

∂y

∂z

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

cosθ senθ 0

−rsenθ rcosθ 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= r

Entonces, entendiendo que V ∗ es la descripción del sólido en coordenadas
cilíndricas, el diferencial de volumen resulta:

dV = dx.dy.dz = dz.r.dx.dy

y la integral triple:$
V

f(x, y, z)dxdydz =
$

V ∗
f(rcosθ, rsenθ, z)r dzdrdθ

Ejemplos:

Siendo V el sólido limitado por x2 + (y − 1)2 = 1 ; z = x2 + y2 y
z = 0, plantear el cálculo de

$
V

f(x, y, z)dV usando coordenadas
cilíndricas.

Escribamos las ecuaciones de las superficies que limitan al sólido en
coordenadas cilíndricas:

z = 0 → z = 0

x2 + (y − 1)2 = 1 → x2 + y2 = 2y → r = 2senθ

z = x2 + y2 → z = r2
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V =
{
(r, θ, z)/0 ≤ θ ≤ π ∧ 0 ≤ r ≤ 2senθ ∧ 0 ≤ z ≤ r2

}
Entonces:$

V

f(x, y, z)dV =
∫ π

0

∫ 2senθ

0

∫ r2

0
f(rcosθ, rsenθ, z)rdzdrdθ

Plantear el cálculo de
∫ ∫ ∫

V (x2 +y2)dV siendo V el sólido limitado por
x2 + y2 = 4 ; z = 0 y z =

√
x2 + y2.

Escribamos las ecuaciones de las superficies que limitan al sólido en
coordenadas cilíndricas:

z = 0 → z = 0

x2 + y2 = 4 → r = 2
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z =
√

x2 + y2 → z = r

V = {(r, θ, z)/0 ≤ θ < 2π ∧ 0 ≤ r ≤ 2 ∧ 0 ≤ z ≤ r}

Además, el integrando (x2 + y2) se transforma en r2. Entonces:

$
V

(x2 + y2)dV =
∫ 2π

0

∫ 2

0

∫ r

0
r3dzdrdθ

5.3.1. Ejercicios

1. Calculen usando coordenadas cilíndricas
$

V

xyzdV siendo V el sóli-

do limitado por x2 +y2 +z2 = 16 y los planos coordenados en el primer
octante.

2. Calculen el volumen de los siguientes sólidos usando coordenadas cilín-
dricas:
i) V limitado por z = x2 + y2 y z = 4.
ii) V limitado por 2y = x2 +z2 y x2 +y2 +z2 = 3 (en este caso conviene
ubicar el sistema polar en el plano xz).
iii) V limitado por x2 + y2 + z2 = a2.
iv) V limitado por z = x2 + y2 y z =

√
x2 + y2.

3. Calculen la masa del sólido limitado por x2 +y2 +z2 = 16 en el interior
de x2 + y2 = 4x y en el primer octante, suponiendo que δ(x, y, z) = z
es la función densidad de masa.
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5.4. Coordenadas esféricas
Coordenadas esféricas

A cada punto P con coordenadas cartesianas (x, y, z) se le asigna la
terna (ρ, θ, φ) donde: ρ es la distancia desde P hasta el origen de coor-
denadas (0, 0, 0)); θ es el ángulo medido desde x+ hasta el segmento

¯OP ′ siendo P ′ = (x, y, 0) la proyección de P en el plano xy, como
muestra la figura; φ es el ángulo medido desde z+ hasta ŌP .

(ρ, θ, φ) son las coordenadas esféricas del punto P y verifican:

ρ ≥ 0 ; 0 ≤ θ < 2π ; 0 ≤ φ ≤ π

La relación entre las coordenadas cartesianas de P = (x, y, z) y sus
coordenadas esféricas (ρ, θ, φ) está dada por:


x = ρ cosθ senφ

y = ρ senθ senφ

z = ρ cosφ


ρ =
√

x2 + y2 + z2

tgθ = y

x
(si x , 0)

tgφ =
√

x2 + y2

z
(si z , 0)

x = 0 → θ = π

2 o θ = 3π

2 .

z = 0 → φ = π

2

El siguiente gráfico muestra la relación entre las coordenadas cartesianas,
cilíndricas y esféricas. Las ecuaciones que convierten de un sistema a otro se
derivan de relaciones en el triángulo rectángulo.
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Notar que existe una vinculación entre las coordenadas cilíndricas y esféricas
del siguiente modo: Siendo quex = rcosθ

y = rsenθ

Entonces observando el triángulo O P´ P: se tiene que

r = ρ sen(φ)

De este modo es más sencillo recordar la relación entre las coordenadas car-
tesianas y esféricas (pasando antes por la relación entre las coordenadas ci-
líndricas y el radio r) del siguiente modo:


x = r cosθ = (ρ senφ)cosθ

y = r senθ = (ρ senφ)senθ

z = ρ cosφ

Actividad

Hallen las coordenadas cartesianas del punto P cuyas coordenadas es-
féricas son (2

√
2,

π

2 ,
π

3 )

Hallen las coordenadas esféricas del punto P cuyas coordenadas carte-
sianas son (1, 1, 1)

Grafiquen las superficies cuyas ecuaciones en coordenadas esféricas son:
i) ρ = 4 ii) θ = π

4 iii) φ = π

4
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Escriban la ecuación en coordenadas esféricas de las siguientes superfi-
cies:
i) x2 + y2 + (z− 1)2 = 1 ii) z = 4 iii) z =

√
x2 + y2 iv)y =

√
3 x

v) x2 + y2 + z2 = 4 vi) z = x2 + y2

La descripción analítica de algunos sólidos es en coordenadas esféricas más
sencilla que en coordenadas cartesianas. Veamos por ejemplo el sólido limi-
tado por x2 + y2 + z2 = 1 ; x2 + y2 + z2 = 9 y z =

√
x2 + y2.

Las ecuaciones en coordenadas esféricas de las superficies que limitan al sólido
son:

x2 + y2 + z2 = 1 → ρ = 1

x2 + y2 + z2 = 9 → ρ = 3

z =
√

x2 + y2 → 1 =
√

x2 + y2

z
→ 1 = tgφ → φ = π

4

Los puntos que pertenecen al sólido tienen coordenada θ que toma cualquier
valor entre 0 y 2π ; coordenada φ que toma valores entre 0 y π

4 y coordenada
ρ tomando valores entre 1 y 3.

V =
{

(ρ, θ, φ)/0 ≤ θ < 2π ∧ 0 ≤ φ ≤ π

4 ∧ 1 ≤ ρ ≤ 3
}

Actividad describan en coordenadas esféricas los siguientes sólidos:

V limitado por z =
√

x2 + y2 , z = 4.

V limitado por z =
√

4− x2 − y2 y los planos coordenados en el
primer octante.

176



5.4. COORDENADAS ESFÉRICAS

V limitado por z =
√

x2 + y2 ; z =
√

3(x2 + y2) y z = 4.

V limitado por y = x ; y =
√

3 x ; x2+y2+z2 = 4 y x2+y2+z2 = 16
con x ≥ 0 y y ≥ 0.

V limitado por x2 + y2 + z2 = 4 ; z =
√

x2 + y2 y z = 4.

Cambio de variables en la integral triple usando coordenadas esfé-
ricas.

Para el cambio de variables definido por


x = ρ cosθ senφ

y = ρ senθ senφ

z = ρ cosφ

resulta

∂(x, y, z)
∂(ρ, θ, φ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ρ

∂y

∂ρ

∂z

∂ρ
∂x

∂θ

∂y

∂θ

∂z

∂θ
∂x

∂φ

∂y

∂φ

∂z

∂φ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −ρ2senφ (verifiquen)

Entonces, entendiendo que V ∗ es el sólido V descripto en coordenadas esfé-
ricas resulta, para f continua sobre V :$

V

f(x, y, z)dxdydz =

=
$

V ∗
f(ρ cosθ senφ, ρ senθ senφ, ρ cosφ)ρ2senφdρdφdθ

Ejemplo: Plantear usando coordenadas esféricas el cálculo del volumen del
sólido limitado por x2 + y2 + z2 = 1 y

√
3 z =

√
x2 + y2.

Las superficies que limitan al sólido son :
una superficie esférica: x2 + y2 + z2 = 1 → ρ = 1
y un semicono :

√
3 z =

√
x2 + y2 → tgφ =

√
3 → φ = π

3 .

V =
{

(ρ, θ, φ)/0 ≤ θ ≤ 2π ∧ 0 ≤ φ ≤ π

3 ∧ 0 ≤ ρ ≤ 1
}
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Entonces:

vol(V ) =
$

V

dV =
∫ 2π

0

∫ π
3

0

∫ 1

0
ρ2senφdρdφdθ

Observación

En este capítulo hemos encontrado distintas formas de describir un mismo só-
lido V en 3D, utilizando para ello el sistema de coordenadas más conveniente
según sea la geometría de V . Emplear un sistema (u otro) de coordenadas
tendrá ventajas y desventajas que se debe analizar al tratar de obtener la
solución buscada a un problema. Notar que la solución no dependerá del
sistema de coordenadas escogido, y en principio cualquier sistema (bien apli-
cado) sirve para resolverlo. Una buena elección del sistema, puede lograr que
los cálculos para resolver el problema sean mucho más sencillos que con otro.

En general las coordenadas cartesianas sirven muy bien para describir sóli-
dos cuyas superficies por borde incluyen planos. En el caso que las superficies
que son borde del sólido, poseen una simetría cilíndrica (cilindros circulares
rectos, paraboloides, conos) es útil en estos casos describir V usando coor-
denadas cilíndricas. Por último, cuando el sólido posea una simetría esférica
(esferas) es conveniente utilizar coordenadas esféricas.

En física, es muy común utilizar coordenadas cilíndricas o esféricas para
modelar sistemas tridimensionales con simetrías específicas. Las coordena-
das cilíndricas, modelan sistemas que exhiben una simetría cilíndrica, como
cilindros, tubos o estructuras alargadas, flujos en tuberías o conductos cilín-
dricos, distribución de carga eléctrica o corriente en estructuras como cables
o conductores, ondas sonoras o vibraciones en tubos o cilindros, procesos ter-
modinámicos en sistemas con pistones y cilindros, las coordenadas cilíndricas
son útiles para describir la expansión y compresión de gases, entre otros. Las
coordenadas esféricas, modelan sistemas con simetría esférica o radial, como
planetas, átomos o partículas que irradian desde un punto, campos gravi-
tatorios y eléctricos en torno a objetos con simetría esférica, ondas que se
propagan desde una fuente puntual, como ondas de sonido o ondas electro-
magnéticas en el espacio, entre otros.

5.4.1. Ejercicios
1. Calculen usando coordenadas esféricas el volumen de los siguientes só-

lidos:
i) V limitado por x2 + y2 + z2 = 4 ; z =

√
x2 + y2 y

√
3z =

√
x2 + y2.

ii) V limitado por z =
√

x2 + y2 y z = 1.
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iii) V limitado por arriba por el semicono φ = π

4 y por debajo, por la
esfera ρ = 2cosφ
iv) V limitado por z =

√
x2 + y2, x2 + y2 + z2 = 16 y z = 0.

2. En los siguientes incisos calculen el valor promedio de f en el sólido
dado.
i) f(ρ, θ, φ) = ρ en el sólido definido por ρ ≤ 1

ii) f(ρ, θ, φ) = ρcosφ en el sólido definido por ρ ≤ 1 y 0 ≤ φ ≤ π

2
3. En los siguientes incisos el volumen del sólido V haciendo un cambio

de variables adecuado.

i) V limitado por z = x2 + y2 ; x2 + y2 − y = 0 y z = 0.

ii) V limitado por z =
√

16− x2 − y2 y x2 + y2 = 6z .

iii) V limitado por 4 = x2 + y2 ; x2 + y2 = 2z y z = 0.

iv) V limitado por x2 + y2 + (z − 1)2 = 1 ; x2 + y2 = 6z y z = 1.

v) V limitado por arriba por z = 9 − x2 − y2 por debajo por z = 0 y
con x2 + y2 ≥ 1

vi) V limitado por z =
√

x2 + y2 ; z = 1 y z = 2.

vii) V limitado por arriba por x2 + y2 + z2 = 4 y por debajo por z = 1.
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Capítulo 6

Integral de línea

6.1. Introducción al Cálculo Vectorial
Para avanzar con el estudio de los temas necesitaremos algunos conceptos
referidos a magnitudes escalares, vectoriales y sus operaciones, además de
los ya estudiados en Matemática A (concepto de vector, sus componentes y
operaciones de suma y producto por escalar).

Magnitud escalar: es aquella que queda totalmente determinada dan-
do un sólo número real y una unidad de medida. Fenómenos/situaciones
que se modelan por una magnitud escalar, son: tiempo, medidas de
longitud, medidas de superficie, masa, densidad, volumen, potencia,
temperatura, trabajo, presión, energía.

Magnitud vectorial: es aquella que queda determinada completa-
mente mediante un número real, una unidad de medida, una dirección
y un sentido. Ejemplo: fuerza, velocidad, momento/momentun, torque
(producto vectorial de dos fuerzas), gradiente y aceleración.

Para representar las magnitudes vectoriales se toman segmentos orientados,
es decir, segmentos de recta cada uno de ellos determinado entre dos puntos
extremos dados en un cierto orden. Estos segmentos orientados se denomi-
nan comúnmente vectores. Se componen de un segmento, un punto inicial
(origen) y de un puntos final o extremo. La recta que contiene al vector de-
termina la dirección del mismo y la orientación sobre la recta, definida por
el origen y el extremo del vector, determina su sentido.

A los vectores de módulo unidad se los denomina versores. A los versores
se los indica comúnmente con una letra en negrita sobre la que se coloca una
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v derecha o invertida, según el autor.

Sea (O; x, y, z) un sistema de coordenadas ortogonales. Sobre cada uno de
los ejes, y con su sentido coincidente con el sentido positivo de aquellos, se
colocan los versores i, j, k. Sus componentes son i⃗ = (1, 0, 0), j⃗ = (0, 1, 0) y
k⃗ = (0, 0, 1) y se denominan versores fundamentales.

Todo vector (a1, a2, a3) puede ser entonces escrito en la forma (a1, a2, a3) =
a1⃗i + a2j⃗ + a3k⃗. Esta descomposición canónica de un vector como suma de
tres vectores en la dirección de los ejes coordenados es muy importante y
útil.

6.1.1. Producto escalar
El producto escalar (también llamado producto punto) es una operación entre
dos vectores

u⃗, v⃗

(denominada a veces como producto punto) que da como resultado un número
(un escalar), y está definido como

u⃗ · v⃗ = |u⃗||v⃗| cos θ

donde θ es el ángulo que forman los dos vectores.

Considerando las componentes de los dos vectores el producto escalar se
calcula por:

u⃗ · v⃗ = u1v1 + u2v2 + · · ·+ unvn

Usando ese resultado es posible establecer el siguiente criterio para determi-
nar si dos vectores son perpendiculares (ortogonales):

Propiedades :

Dos vectores u⃗, v⃗ son perpendiculares si y sólo si u⃗ · v⃗ = 0.
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0⃗ · u⃗ = 0

u⃗ · u⃗ = |u⃗|2

el vector u⃗
|u⃗| es unitario, su módulo es 1.

u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗

i⃗ · i⃗ = j⃗ · j⃗ = k⃗ · k⃗ = 1

i⃗ · j⃗ = i⃗ · k⃗ = j⃗ · k⃗ = 0

La proyección ortogonal de un vector b⃗ sobre un vector a⃗ es un vector
en la dirección de a⃗ cuya magnitud es (componente de b⃗ en la dirección
de a⃗) |⃗b| cos θ donde cos θ es el ángulo entre los dos vectores. Notar que si
π/2 < cos θ < π esa magnitud es negativa.

6.1.2. Producto vectorial
El producto vectorial (o también llamado producto cruz) es una operación
entre dos vectores de dimensión 3, y el resultado es un vector ortogonal al
plano formado por los dos vectores y tiene la dirección según el giro de la
mano derecha.
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En coordenadas cartesianas el vector resultado del producto vectorial es po-
sible calcularlo mediante una operación que se denomina determinante

u⃗× v⃗ =

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣

donde i⃗, j⃗, k⃗ son los Vectores unitarios en la dirección de los tres ejes x, y, z.

Propiedades

u⃗ × v⃗ corresponde a un vector perpendicular a u⃗ y v⃗ cuyo módulo es
|u⃗× v⃗| = |u||v| sin θ donde θ es el ángulo entre los vectores.

|u⃗× v⃗| es igual al área del paralelogramo determinado por u⃗ y v⃗.

Los vectores u⃗ y v⃗ son paralelos (colineales) si y sólo si u⃗× v⃗ = 0⃗.

u⃗× u⃗ = 0⃗

u⃗× v⃗ = −v⃗ × u⃗

i⃗× j⃗ = k⃗
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Producto mixto

El producto mixto es una expresión entre 3 vectores

u⃗, v⃗, w⃗

y se define por
[u⃗, v⃗, w⃗]

y está definido como
[u⃗, v⃗, w⃗] = u⃗ · (v⃗ × w⃗)

Para tres vectores no coplanares, el valor absoluto del producto mixto da por
resultado el volumen del paralelepípedo que se forma con esos vectores.

6.2. Curvas en el plano y en el espacio
Nuestro próximo paso será el estudio de la integral de línea. El dominio de
integración pasará a ser una curva del plano o del espacio y el integrando
un campo escalar (función a valores reales) o la componente de un campo
vectorial en una dirección dada, definidos sobre la curva. Para poder abordar
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la definición, el cálculo y las propiedades de este nuevo tipo de integrales nos
ocuparemos previamente de las curvas y su representación vectorial paramé-
trica, y de los campos vectoriales.

6.3. Parametrización de curvas
Toda curva plana puede darse por un par de ecuaciones paramétricas:x = X(t)

y = Y (t)
t ∈ I

donde I es un intervalo de números reales llamado intervalo paramétrico y
X(t) e Y (t) son funciones a valores reales.

Ejemplo:

Para a > 0 ,
x = a cos t

y = a sen t
t ∈ [0, 2π] son las ecuaciones paramétricas

de la circunferencia que tiene radio a y centro en el origen de coordenadas:
x2 +y2 = a2 . Observemos que las ecuaciones paramétricas definen la curva y
le imprimen una orientación: en este caso, al considerar valores crecientes de
t, recorremos la curva en el sentido indicado por la flecha en el siguiente dibujo
(sentido antihorario), iniciando ese recorrido en el punto de coordenadas (a, 0)
y finalizando en el mismo punto.

Para el estudio de los temas de este capítulo puedes ayudarte de las
aplicaciones creadas en GeoGebra.
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Actividad:

Las ecuaciones paramétricas
x = a sen t

y = a cos t
t ∈ [0, 2π] corresponden

a la misma circunferencia x2 + y2 = a2 . ¿Cuál es la orientación que
esta parametrización imprime a dicha circunferencia?

Las ecuaciones paramétricas
x = a cos (2t)

y = a sen (2t)
t ∈ [0, 2π] también

definen la circunferencia x2 + y2 = a2 . Al tomar t todos los valores
desde 0 hasta 2π , ¿cuántas veces se recorre la curva?

Las ecuaciones paramétricas
x = 3 cos t

y = 4 sen t
t ∈ [0, 2π] corresponden

a una elipse: despejando cos t y sen t y considerando que
sen2 t+cos2 t = 1, se obtiene: x2

9 + y2

16 = 1 . Grafiquen esa elipse e in-
diquen en el gráfico la orientación definida por la parametrización dada.

Para las siguientes curvas, hallen la ecuación en x e y , grafiquen e
indiquen en el gráfico la orientación, el punto inicial y el punto final.

C1 :
x = 2 cos(−t)

y = 3 sen(−t)
t ∈ [0, 2π] C2 :

x = 2 + 4cos t

y = 3 + 3sen t
t ∈ [0, 2π]

C3 :
x = 1 + 2sent

y = 2 + 2cost
t ∈ [0, 2π] C4 :

x = 2 + 4cos t

y = 3 + 3sen t
t ∈ [0, π

2 ]

Escriban ecuaciones paramétricas para:
i) la circunferencia con centro en (2, 3) y radio

√
2 recorrida en sentido

antihorario, con punto inicial (2 +
√

2, 3)

ii) la porción de elipse x2

4 + y2

9 = 1 , ubicada en el primer cuadrante,
desde (2, 0) hasta (0, 3).
iii) (x − 3)2 + 4(y − 2)2 = 4 recorrida en sentido horario, con punto
inicial (3, 3)
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Verifiquen que las ecuaciones paramétricas
x = 1 + 2t

y = 2 + 3t
t ∈ [0, 1] co-

rresponden al segmento de recta desde (1, 2) hasta (3, 5).

Vean si las siguientes ecuaciones paramétricas corresponden al mismo
segmento de recta. Grafiquen e indiquen la orientación en cada caso.x = t

y = 1
2 + 3

2t
t ∈ [1, 3]

x = 3 + 2t

y = 5 + 3t
t ∈ [−1, 0]

Escriban ecuaciones paramétricas para:
i) el segmento de recta desde (0, 0) hasta (4,−3)
ii) el segmento de recta desde (5, 2) hasta (1,−1)

Dada y = 1− x2, haciendo x = t se tiene la parametrización trivial:x = t

y = 1− t2 t ∈ R

Grafiquen e indiquen la orientación de la parábola definida por esta
parametrización.
Consideren luego las siguientes ecuaciones paramétricas, vean si corres-
ponden a la misma curva, grafiquen e indiquen la orientación.x =

√
t

y = 1− t
t ≥ 0

x = −t

y = 1− t2 t ∈ R

x = t

y = 1− t2 t ∈ [1, 2]

x = 3− t

y = 1− (3− t)2 t ∈ [1, 2]

Escriban ecuaciones paramétricas para las siguientes curvas:
i) la porción de parábola y = 2x2 − 1 desde (1, 1) hasta (3, 17).
ii) la porción de parábola y = 2x2 − 1 desde (3, 17) hasta (1, 1).

C :
x2 + y2 = 1

y + z = 2
C es una curva de R3 (es la intersección de una
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superficie cilíndrica con un plano).


x = cost

y = sent

z = 2− sent

t ∈ [0, 2π] es una descripción paramétrica de C.

Grafiquen la curva C e indiquen su orientación de acuerdo a la para-
metrización dada.

Sea C :
x2 + 4y2 + z2 = 16

z = 2y

Identifiquen las superficies cuya intersección define a la curva C en este
caso.
Reemplazando z por 2y en la primera ecuación resulta: x2 + 8y2 = 16,

de manera que el sistema
x2 + 8y2 = 16

z = 2y
es equivalente al primero

(define la misma curva C) y de allí se obtiene la siguiente parametri-
zación:

C :


x = 4 cost

y =
√

2 sent

z = 2
√

2 sent

t ∈ [0, 2π]

Escriban ecuaciones paramétricas para las siguientes curvas. Indiquen
en un gráfico la orientación considerada en la curva:

i) C :
x2 + y2 + z2 = 4

z = 1
ii) C :

z = x2 + y2

z = 4
iii) C :

z = x2 + y2

z = 2y

iv) C :
x2 + y2 = 1

y + z = 2
v) C :

x2 + y2 = 1
z = x2 vi) C :

x2 + y2 = 1
x + y + z = 1

vii) C :
5x2 + y2 + z2 = 125

y = 2z
viii) C :

x2 + y2 + z2 = 25
y = 3

Representación vectorial paramétrica de curvas

Una función vectorial r⃗ es una función cuyo dominio es un conjunto de nú-
meros reales y cuya imagen es un conjunto de vectores.
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Para cada t en el dominio de r⃗ es:
r⃗(t) = X(t)⃗i + Y (t)⃗j (si la imagen de r⃗ es un conjunto de vectores del plano)
o r⃗(t) = X(t)⃗i + Y (t)⃗j + Z(t)k⃗ (si la imagen de r⃗ es un conjunto de vectores
del espacio)

X(t), Y (t) y Z(t) son las componentes de r⃗ (son funciones reales a valo-
res reales).

Para simplificar la notación, escribiremos a veces:

r⃗(t) = ⟨X(t), Y (t)⟩ o r⃗(t) = ⟨X(t), Y (t), Z(t)⟩

Una curva (del plano o del espacio) puede describirse con una función vecto-
rial:

o, si C es una curva del espacio:

C : r⃗ = r⃗(t) = ⟨X(t), Y (t), Z(t)⟩ t ∈ I

El extremo de cada vector r⃗(t) corresponde a un punto de la curva.

Ejemplos:

Parametrización de un segmento desde el punto A al punto
B.

Sean A y B dos puntos del plano o del espacio. El segmento que los
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une se puede parametrizar de la siguiente manera:

C : r⃗ = r⃗(t) = A + (B − A)t , t ∈ [0, 1]

Por ejemplo, si A = (1,−1, 2) y B = (1, 0, 3), entonces el segmento de
A a B se parametriza por:

C : r⃗ = r⃗(t) = (1,−1, 2) + ((1, 0, 3)− (1,−1, 2))t , t ∈ [0, 1]

C : r⃗ = r⃗(t) = (1,−1, 2) + (0, 1, 1)t , t ∈ [0, 1]

Resultando:

C : r⃗ = r⃗(t) = (1,−1 + t, 2 + t) , t ∈ [0, 1]

Hemos visto que C :
x2 + y2 = 1

y + z = 2
puede describirse por medio de

las ecuaciones paramétricas


x = cost

y = sent

z = 2− sent

t ∈ [0, 2π]

C : r⃗ = r⃗(t) = ⟨cos t, sen t , 2− sen t⟩ ; t ∈ [0, 2π] es una descripción
vectorial paramétrica de C.

Siendo a y b números reales diferentes de cero, la ecuación vectorial

C : r⃗ = r⃗(t) = ⟨a cos t , a sen t , b t⟩ , t ∈ R

corresponde a una hélice circular (resorte). X(t) = a cos t e Y (t) =
a sen t, de modo que la curva se halla sobre un cilindro circular de
radio a (C es una hélice circular de radio a). Además, para todo t, es:
X(t + 2π) = X(t) ; Y (t + 2π) = Y (t) ; Z(t + 2π) = Z(t) + b 2π o sea
que, a ∆t = 2π, corresponde ∆X = ∆Y = 0 y ∆Z = 2π b (C es una
hélice circular de paso |b| 2π )
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Vector tangente

Si C : r⃗ = r⃗(t) = ⟨X(t), Y (t), Z(t)⟩ con t ∈ I, y X(t), Y (t) y Z(t) son
derivables en t0 ∈ I, entonces existe r⃗ ′(t0) = ⟨X ′(t0), Y ′(t0), Z ′(t0)⟩ que, si
es diferente del vector nulo, define la dirección tangente a la curva C en el
extremo de r⃗(t0).

r⃗ ′(t0) = ĺım
∆t→0

r⃗(t0 + ∆t)− r⃗(t0)
∆t

r⃗ ′(t0) apunta en el sentido en el que se recorre la curva para valores crecientes
del parámetro.

Si r⃗ ′(t0) existe y r⃗ ′(t0) , 0⃗, se define como vector tangente a la curva
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C : r⃗ = r⃗(t) en el punto correspondiente a t0, al vector unitario

T⃗ (t0) = r⃗ ′(t0)
|r⃗ ′(t0)|

Ejemplo:

Para C : r⃗ = r⃗(t) = ⟨4 cos t, 4 sen t, 3 t⟩ , t ∈ R (hélice circular de radio 4
y paso 6π),

r⃗ ′(t0) = ⟨−4 sen t0, 4 cos t0, 3⟩

T⃗ (t0) = r⃗ ′(t0)
|r⃗ ′(t0)|

=
〈−4 sen t0

5 ,
4 cos t0

5 ,
3
5

〉

En particular, por ejemplo, r⃗ ′
(

π

4

)
=
〈
−2
√

2, 2
√

2, 3
〉

tiene la dirección

tangente a la curva en el punto correspondiente a t0 = π

4 que es el punto

P0 = (2
√

2, 2
√

2, 3π

4 ) y para ese punto es T⃗ =
(

π

4

)
=
〈
−2
√

2
5 ,

2
√

2
5 ,

3
5

〉
.

6.3.1. Longitud de un arco de curva
Sea C : r⃗ = r⃗(t) , con t ∈ [a, b]

Nos proponemos calcular la longitud de C.
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Supondremos que C es suave entendiendo por ello que r⃗ ′(t) es continua y
que r⃗ ′(t) , 0⃗. Geométricamente esto significa que el vector tangente existe
en cada punto y que varía con continuidad sobre la curva.
Dividamos el intervalo [a, b] en n subintervalos de longitud b− a

n
mediante

n + 1 puntos a = t0 < t1 < ... < tn = b.
Uniendo con líneas rectas los sucesivos pares de puntos Pi = (X(ti), Y (ti), Z(ti))
y Pi+1 = (X(ti+1), Y (ti+1), Z(ti+1)) obtenemos una aproximación poligonal
de C. La longitud de dicha poligonal es:

Sn =
n−1∑
i=1

√
[X(ti+1)−X(ti)]2 + [Y (ti+1)− Y (ti)]2 + [Z(ti+1)− Z(ti)]2

Por el teorema del Valor Medio de Lagrange, aplicado a las funciones X(t),
Y (t) y Z(t) en [ti, ti+1], existen ci, di, ei ∈ (ti, ti+1) tales que

X(ti+1)−X(ti) = X ′(ci)(ti+1 − ti)

Y (ti+1)− Y (ti) = Y ′(di)(ti+1 − ti)
Z(ti+1)− Z(ti) = Z ′(ei)(ti+1 − ti)

Entonces

Sn =
n−1∑
i=1

√
[X ′(ci)]2 + [Y ′(di)]2 + [Z ′(ei)]2 (ti+1 − ti)

y, considerando que la poligonal se aproxima a la curva cuando n tiende a
infinito, se tiene:

longitud de C = LB
A = ĺım

n→∞
Sn

por lo que concluímos, teniendo presente que X , Y y Z son funciones con-
tinuas en [a, b], que la longitud de C es:

LB
A =

∫ b

a

√
[X ′(t)]2 + [Y ′(t)]2 + [Z ′(t)]2 dt

Es decir,

LB
A =

∫ b

a
|r⃗′(t)| dt

Ejemplo:
Si a , 0 y b , 0, C : r⃗ = r⃗(t) = a cos t i⃗ + a sen t j⃗ + b t k⃗ con t ∈ [0, 2π]
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es una espira de hélice circular de radio a y paso |b| 2π. Su punto inicial es
A = (a, 0, 0) y su punto final es B = (a, 0, b 2π).

r⃗ ′(t) = ⟨−a sen t, a cos t, b⟩

|r⃗ ′(t)| =
√

a2 + b2

Entonces, la longitud de C es:

LB
A =

∫ 2π

0

√
a2 + b2 dt =

√
a2 + b2 2π

Función longitud de arco

Sea C : r⃗ = r⃗(t) , con t ∈ [a, b], curva suave, con punto inicial A y punto
final B. Para cada t ∈ [a, b],

s = S(t) =
∫ t

a
|r⃗ ′(u)| du

es la longitud del arco de curva entre A = (X(a), Y (a), Z(a)) y P = (X(t), Y (t), Z(t)).
S, así definida, se llama función longitud de arco y s es el parámetro longitud
de arco.

¿Qué podemos afirmar acerca de la función S?

S(a) = 0 y S(b) = LB
A
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S ′(t) = |r⃗ ′(t)| > 0 ∀t ∈ (a, b)

S es estrictamente creciente , Im(S) = [0, LB
A]

Entonces:

1. S : [a, b]→ [0, LB
A] ; s = S(t) admite función inversa.

2. h : [0, LB
A]→ [a, b] ; t = h(s) es la función inversa de S.

3. Componiendo S con h resulta: (h ◦ S)(t) = h[S(t)] = t

∴ h′[S(t)]S ′(t) = 1 → h′[S(t)] = h′(s) = 1
S ′(t) = 1

|r⃗ ′(t)| .

4. C : r⃗ = r⃗(h(s)) = r⃗ ∗(s) con s ∈ [0, LB
A] es la descripción de la curva

C en términos del parámetro longitud de arco. Nos referiremos a esta
descripción como representación natural o parametrización natural .

Ejemplo:

Dada C : r⃗ = r⃗(t) = a cos t i⃗ + a sen t j⃗ con t ∈ [0, 2π], obtendremos su
representación natural.

r⃗ ′(t) = −a sen t i⃗ + a cos t j⃗

|r⃗ ′(t)| = a

s = S(t) =
∫ t

0
a du = at ; S(2π) =

∫ 2π

0
a du = 2πa

t = s

a
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C : r⃗ = r⃗
(

s

a

)
= a cos

(
s

a

)
i⃗ + a sen

(
s

a

)
j⃗ con s ∈ [0, 2πa]

6.3.2. Ejercicios

1. Calculen la longitud de las siguientes curvas:
C1 : r⃗ = r⃗(t) = t3

3 i⃗ + t2j⃗ + 2tk⃗ con t ∈ [0, 4].
C2 : r⃗ = r⃗(t) = etcost i⃗ + etsent⃗j + etk⃗ desde A = (1, 0, 1) hasta
B = (−eπ, 0, eπ).
C3 : r⃗ = r⃗(t) = 3cosh(2t) i⃗ + 3senh(2t)⃗j + 6tk⃗ con t ∈ [0, 1].

2. Obtengan la función longitud de arco y la representación natural de la
curva:
i) una espira de hélice circular de radio a y paso |b| 2π.
ii) C : r⃗ = r⃗(t) = etcost i⃗ + etsent⃗j , t ∈ [0, 1].

6.4. Campos vectoriales

En física y matemática tenemos variados ejemplos que nos muestran la ne-
cesidad del empleo de vectores, para describir ciertos comportamientos y/o
resultados. Acabamos de ver, que la dirección de una curva, queda en cada
punto definida por el vector tangente. La variación del mismo, nos permite
estudiar su forma. Recordemos también que - bajo ciertas condiciones - po-
demos conocer en que dirección se produce la mayor rapidez de cambio de
una función de dos ó tres variables en un punto dado. Tal dirección es la del
gradiente en ese punto particular y el módulo del mismo, mide la magnitud
de ese cambio. En cada punto en que el gradiente esté definido, tenemos la
posibilidad de conocer el comportamiento de tal función. Sabemos también
que sobre todo cuerpo de masa m actúa una fuerza: la fuerza de gravedad,
que se representa por medio de un vector de dirección vertical hacia abajo.
También la velocidad de una partícula móvil, requiere de un vector para su
descripción. Podríamos mencionar la velocidad de una partícula de un fluido
en movimiento - líquido o gas - . Esta recurrencia al empleo de vectores -
variables en cada punto - permite definir una función que a cada punto (del
plano o del espacio) le hace corresponder un único vector. Estas funciones se
definen como:
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Campo vectorial

Un campo vectorial en es una función a valores vectoriales que asigna
a cada punto P ∈ D un único vector F⃗ (P).
Un campo vectorial en R2 es una función definida sobre un dominio
D ⊂ R2:

F⃗ : D −→ R2

F⃗ (x, y) = P (x, y)⃗i + Q(x, y)⃗j

Las componentes del campo vectorial F⃗ son P y Q, funciones a valores
reales definidas sobre D. Un campo vectorial en R3 es una función
definida sobre un dominio D ⊂ R3:

F⃗ : D −→ R3

F⃗ (x, y, z) = P (x, y, z)⃗i + Q(x, y, z)⃗j + R(x, y, z)k⃗

Las componentes del campo vectorial F⃗ son P , Q y R, funciones a
valores reales definidas sobre D.

Para simplificar la notación, a menudo escribiremos:

F⃗ = ⟨P, Q⟩ o F⃗ = ⟨P, Q, R⟩

Salvo indicación explícita, entenderemos que el dominio de un campo vecto-
rial F⃗ es el mayor dominio posible, esto es, el conjunto de todos los puntos
de R3 (o R2) en el que están definidas las componentes de F⃗ .

Representación gráfica de campos vectoriales

La visualización que podemos hacer de un campo vectorial F⃗ consiste en
dibujar, aplicados en unos cuantos puntos (x, y), el correspondiente vector
F⃗ (x, y). Cuantos más vectores dibujemos mejor interpretación tendremos del
campo vectorial.

En la siguiente imagen están representados algunos vectores del campo vec-
torial F⃗ (x, y) = ⟨x, y⟩
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Podemos utilizar la graficadora de campos vectoriales del Libro de Geogebra
https://www.geogebra.org/m/GwRc5mQP para tener una represen-
tación. Por ejemplo en la imagen siguiente usando GeoGebra se observan
algunos vectores del campo vectorial

F⃗ =
〈

−y√
x2 + y2 ,

x√
x2 + y2

〉

Su dominio es R2 − {(x, y)/x = y = 0}. Notar además, que el campo es uni-
tario. Todos los vectores del campo son siempre de longitud 1.

Ejemplos:

1) Sea el campo vectorial F⃗ =
〈

1
x

,
2

y − 1

〉
. La primera componente del está

definida en (x, y) ∈ R2 si y sólo si x , 0. La segunda componente, está
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definida en (x, y) ∈ R2 si y sólo si y , 1.

Dom(F⃗ ) =
{
(x, y) ∈ R2/x , 0 ∧ y , 1

}
Su gráfica es:

2) Sea el campo vectorial F⃗ =
〈

x

x2 + y2 ,
y

x2 + y2 ,
z

x2 + y2

〉
. Las componentes

están definidas en (x, y, z) ∈ R3 si y sólo si x2 + y2 , 0.

Dom(F⃗ ) = R3 − {(x, y, z)/x = y = 0}

Algunos campos particulares

Campo vectorial constante o uniforme Son campos vectoriales cuyas
componentes son constantes en todo punto de su dominio, su módulo es
contante.
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Ejemplo de ello es el campo: F⃗ = ⟨1, 2⟩. Sus componentes están definidas en
todo (x, y) ∈ R2 y son continuas. Su dominio es Dom(F⃗ ) = R2

Campo vectorial paralelo Son campos vectoriales cuyos vectores tienen
todos la misma dirección. Ejemplo de ello es el campo vectorial F⃗ = ⟨y, 0⟩.
Los vectores del campo tiene la dirección del versor i⃗. Sus componentes están
definidas en todo (x, y) ∈ R2 y son continuas. Su dominio es Dom(F⃗ ) = R2.

Campo vectorial radial Cuando las componentes del campo vectorial
son tales que todos los vectores apuntan directamente hacia o directamente
lejos del origen, se llaman campos radiales. En estos casos se dice que existe
una simetría esférica del campo, y la magnitud del campo depende
sólo de su distancia al origen. Es decir que si llamamos

r⃗ = (x, y, z)
y

r =
√

x2 + y2 + z2

entonces el campo puede ser expresado como
F⃗ = F⃗ (r⃗)
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y su módulo es ∣∣∣F⃗ ∣∣∣ = F

donde F = f(r) es la magnitud del campo.

En un campo radial, el vector ubicado en el punto (x, y) es perpendicular
al círculo centrado en el origen que contiene el punto (x, y), y todos los
demás vectores en este círculo tienen la misma magnitud. Análogamente
para campos en tres dimensiones. Estos campos son muy utilizados en física
para modelar campos eléctricos y gravitatorios.

Ejemplo de esto es:

El campo vectorial F⃗ = ⟨−x,−y⟩ es radial. Las componentes están
definidas para todos (x, y) ∈ R2 y su dominio es Dom(F⃗ ) = R2.

El módulo de este campo es: |F⃗ | =
√

x2 + y2 = r. El campo puede
escribirse como F⃗ = −r⃗.

El campo vectorial F⃗ =
〈

x

x2 + y2 ,
y

x2 + y2

〉
es radial. Las compo-

nentes del campo vectorial están definidas en (x, y) ∈ R2 si y sólo si
x2 + y2 , 0 . Dom(F⃗ ) = R2 − {(0, 0)}. El módulo de este campo es:
|F⃗ | = 1√

x2 + y2 = 1
r

y el campo puede escribirse como F⃗ = 1
r2 r⃗.

Observar que estos campos vectoriales sobre los puntos de un círculo
toman un mismo valor que sólo depende del radio.
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Sea el campo vectorial F⃗ =
〈

x

x2 + y2 + z2 ,
y

x2 + y2 + z2 ,
z

x2 + y2 + z2

〉
.

Las componentes están definidas en (x, y, z) ∈ R3 si y sólo si x2 + y2 +
z2 , 0.

Dom(F⃗ ) = R3 − {(x, y, z)/x = y = z = 0}

Es un campo radial, se puede escribir como F⃗ = 1
r2 r⃗.

Observaciones

Los campos vectoriales son importantes herramientas matemáticas para
modelar en ingeniería diversos fenómenos. Se utilizan en física, para
representar por ejemplo la velocidad y la dirección de un fluido en el
espacio, o la intensidad y la dirección de fuerzas como la gravitatoria o
la fuerza electromagnética. Ejemplos de campos vectoriales son:

• Campo de velocidades de un fluido.

• Campos eléctricos. Modelan el espacio o una región del espacio
que se modifica por la presencia de cargas eléctricas.

• Campos magnéticos. Modelan el campo de fuerza creado como
consecuencia del movimiento de las corrientes eléctricas y de los
materiales magnéticos.

• Campos electromagnéticos.

• Campos gravitatorios.

Los campos vectoriales, que describen ciertos fenómenos físicos pueden
depender, además de la posición, también del tiempo. Por ejemplo un
campo de velocidades de un fluido en movimiento describe la velocidad
de una partícula, en función de las coordenadas del punto por donde
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pasa, pero si además esa velocidad se modifica de acuerdo con el ins-
tante en que eso ocurre, el vector resulta dependiente de t (tiempo).
Los campos vectoriales independientes del tiempo son llamados cam-
pos vectoriales estacionarios. En este curso sólo trabajaremos con
el caso de campos estacionarios.

Las líneas que en cada punto son tangentes al vector campo que pasa
por el mismo punto, son llamadas líneas de campo y también en cier-
tos casos particulares, líneas de flujo o líneas de corriente. Cabe
aclarar que el nombre de líneas de corriente es más adecuado para las
trayectorias descriptas por las partículas de un fluido en movimiento,
donde hay dependencia del tiempo (campo no estacionario). En la figu-
ra siguiente se observan las líneas de corriente y campo de velocidad del
aire alrededor de un ala (material brindado por la Cátedra de Fluidos-
Ing. Aeroespacial).

Para campos estacionarios, es común decir líneas de campo a esas tra-
yectorias, pero en tal caso las líneas coinciden. Es decir que si el campo
vectorial es F⃗ (x, y) = P (x, y)⃗i + Q(x, y)⃗j, una linea de corriente es una
curva r⃗(t) = x(t)⃗i+y(t)⃗j tal que verifica r⃗ ′(t) = F⃗ (r⃗(t)). Resolver este
tipo de problemas requiere del conocimiento de sistemas de ecuaciones
diferenciales.
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Ejemplo: en la figura que sigue se observa el campo de direcciones tan-
gente en cada punto a la familia de soluciones de la ecuación diferencial
y′(x) = x + y. Como ejercicio puedes resolver la ecuación diferencial
para hallar la familia de curvas que se encuentra graficada.

6.5. Campos conservativos. Función potencial
Recordemos:

Si f es una función definida en D ⊂ R2, que admite derivadas parciales
en P0 ∈ D, el gradiente de f en P0 es:

∇⃗f(P0) = ∂f

∂x
(P0)⃗i + ∂f

∂y
(P0)⃗j

Si f es una función definida en D ⊂ R3, que admite derivadas parciales
en P0 ∈ D, el gradiente de f en P0 es:

∇⃗f(P0) = ∂f

∂x
(P0)⃗i + ∂f

∂y
(P0)⃗j + ∂f

∂z
(P0)k⃗
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Si las derivadas parciales de f son continuas, la derivada direccional de
f en P0 y en la dirección de un vector unitario u⃗, es

Du⃗f(P0) = ∇⃗f(P0) · u⃗

El campo ∇⃗f es normal a las curvas/superficies de nivel de f y, en cada
punto P0 ∈ D, ∇⃗f(P0) indica la dirección de máximo crecimiento de
f .

Definición de campo conservativo

Un campo vectorial F⃗ es un campo conservativo en D (D ⊂ R2 o
D ⊂ R3) si es un campo gradiente en D, o sea, si existe un campo
escalar f tal que ∇⃗f(P ) = F⃗ (P ) , ∀P ∈ D. Si esto sucede, decimos
que f es una función potencial de F⃗ en D.

Ejemplos:

Mostraremos que el campo vectorial F⃗ = ⟨2xy, x2 + y2, 2z⟩ es con-
servativo en R3 hallando una función potencial de F⃗ , o sea, hallando
f(x, y, z) tal que, ∀(x, y, z) ∈ R3: (i) ∂f

∂x
= 2xy (ii) ∂f

∂y
=

x2 + y2 (iii) ∂f

∂z
= 2z

Por (i), debe ser: f(x, y, z) =
∫

2xy ; dx = x2y + g(y, z) (noten que
se ha integrado con respecto a x y la constante de integración puede
depender de y y de z).
Siendo f(x, y, z) = x2y + g(y, z) , resulta: ∂f

∂y
= x2 + ∂g

∂y

Por (ii), concluimos que: x2 + ∂g

∂y
= x2 + y2

Por lo tanto: ∂g

∂y
= y2 y de allí g(y, z) = y3

3 + h(z).

Entonces, f(x, y, z) = x2y + y3

3 + h(z) y resta hallar h(z).

Contando con la expresión anterior de f , se tiene que: ∂f

∂z
= h′(z).

Entonces, por (iii), debe ser: h′(z) = 2z y de allí: h(z) = z2 + C.

Entonces, f(x, y, z) = x2y + y3

3 +z2 +C es (cualquiera sea C ∈ R), una
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función potencial de F⃗ en R3 y el campo vectorial F⃗ es conservativo
en R3.

Para determinar si F⃗ (x, y) = ⟨xy, y2⟩ es un campo conservativo en R2

veremos si existe f(x, y) tal que, ∀(x, y) ∈ R2,

i) ∂f

∂x
= xy

ii) ∂f

∂y
= y2

Para que se cumpla i) debe ser:

f(x, y) =
∫

xy dx = x2

2 y + g(y)

Siendo f(x, y) = x2

2 y + g(y) resulta ∂f

∂y
= x2

2 + g′(y)

Por ii) concluimos que x2

2 + g′(y) = y2 , luego g′(y) = y2 − x2

2 lo que
es absurdo pues g depende únicamente de la variable y. Entonces, la
conclusión es que no existe una función potencial de F⃗ (x, y) = ⟨xy, y2⟩
en R2 o sea que que dicho campo vectorial no es conservativo en R2

6.5.1. Ejercicios
1. Indiquen el dominio de los siguientes campos vectoriales, determinen

si son conservativos en ese dominio y hagan una representación gráfica
de los mismos.
i) F⃗ (x, y) = y i⃗ ii) F⃗ (x, y) = sec x j⃗ iii) F⃗ (x, y, z) = −z k⃗

iv) F⃗ (x, y) = x√
x2 + y2 i⃗ + y√

x2 + y2 j⃗

2. Muestren que los siguientes campos vectoriales son conservativos en R3.
i) F⃗ (x, y, z) = (2x− 3y)⃗i− 3x⃗j + 2 k⃗

ii) F⃗ (x, y, z) = yz cos(xyz) i⃗ + xz cos(xyz) j⃗ + xy cos(xyz) k⃗

3. Supongamos el planeta Tierra, de masa M , ubicado en el origen de
coordenadas y un objeto de masa m ubicado en el punto P de coor-
denadas (x, y, z). Si F⃗ (x, y, z) es la fuerza de atracción que ejerce la
Tierra sobre el objeto entonces

∣∣∣F⃗ (x, y, z)
∣∣∣ = G

M m

|r⃗|2
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donde G es la constante gravitacional y r⃗ = ⟨x, y, z⟩.

Además, F⃗ (x, y, z) apunta hacia el origen, en la dirección del vector

− r⃗

|r⃗|
, o sea: F⃗ (x, y, z) = G

M m

|r⃗|2

(
− r⃗

|r⃗|

)
= −G M m

r⃗

|r⃗|3

Siendo c = G M m , se tiene la siguiente expresión para el campo
vectorial F⃗ :

F⃗ (x, y, z) = −c
⟨x, y, z⟩√

(x2 + y2 + z2)3

Notar que este es un campo radial, y comprueben que F⃗ es un campo
gradiente hallando su función potencial.

6.6. La divergencia y el rotor
Sabemos que la variación de una función se estudia por medio de las deri-
vadas (parciales y/o totales). El campo vectorial, es formalmente una fun-
ción. ¿Cómo puede entonces estudiarse el cambio punto a punto de su direc-
ción y magnitud? Supongamos que las componentes de un campo vectorial
F⃗ (x, y, z) = P (x, y, z) i⃗ + Q(x, y, z) j⃗ + R(x, y, z) k⃗ admiten derivadas par-
ciales con respecto a cada una de las variables. Estas derivadas son:

∂P

∂x

∂P

∂y

∂P

∂z

∂Q

∂x

∂Q

∂y

∂Q

∂z

∂R

∂x

∂R

∂y

∂R

∂z

Una combinación entre ellas permite estudiar el cambio de dirección y el
cambio de módulo. Las derivadas que se encuentran en la diagonal van a
contribuir al cálculo de la definición de la magnitud escalar divergencia, y
las restantes derivadas contribuyen a la definición de la magnitud vectorial
rotor.
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Rotor y divergencia de un campo vectorial

Dado F⃗ (x, y, z) = P (x, y, z) i⃗ + Q(x, y, z) j⃗ + R(x, y, z) k⃗,
en los puntos de coordenadas (x, y, z) en los que existan las derivadas
parciales de las componentes de F⃗ , se definen la divergencia de F⃗ y el
rotor de F⃗ de la siguiente manera:

divF⃗ (x, y, z) = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

rotF⃗ (x, y, z) =
(

∂R

∂y
− ∂Q

∂z

)
i⃗ +

(
∂P

∂z
− ∂R

∂x

)
j⃗ +

(
∂Q

∂x
− ∂P

∂y

)
k⃗

Observación importante: Para un campo vectorial en el plano

F⃗ (x, y) = P (x, y) i⃗ + Q(x, y) j⃗

es posible calcular el rotor extendiéndolo con componente 0 en k⃗. Resultando
ser el campo rotor:

rotF⃗ =

∣∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂

∂x

∂

∂y

∂

∂z
P (x, y) Q(x, y) 0

∣∣∣∣∣∣∣∣∣ =
〈

0 , 0 ,
∂Q

∂x
− ∂P

∂y

〉
=

= (∂Q

∂x
− ∂P

∂y
)k⃗

Notar que para un campo vectorial en el plano, su rotor es un campo vectorial
con componente sólo en la dirección ortogonal a ese plano.

Notar que la divergencia de un campo vectorial es un campo escalar
y que el rotor de un campo es un campo vectorial.

Ejemplo:

1) Para el campo vectorial F⃗ (x, y, z) = x2 i⃗− 2xy j⃗ + yz2 k⃗ es

P = x2 ; Q = −2xy ; R = yz2

Luego,
divF⃗ (x, y, z) = 2x− 2x + 2yz = 2yz

rotF⃗ (x, y, z) =
(
z2 − 0

)
i⃗ + 0 j⃗ + (−2y − 0) k⃗ = z2 i⃗− 2y k⃗
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2) Para el campo vectorial F⃗ (x, y, z) = y2 i⃗ + xz j⃗ + yz k⃗ es

P = y2 ; Q = xz ; R = yz

entonces

rotF⃗ =

∣∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂

∂x

∂

∂y

∂

∂z
y2 xz yz

∣∣∣∣∣∣∣∣∣ = ⟨z − x, 0, z − 2y⟩

Operador nabla
El vector simbólico

∇⃗ = ∂

∂x
i⃗ + ∂

∂y
j⃗ + ∂

∂z
k⃗

se llama operador nabla. Su uso permite expresar de manera sintética el
gradiente y el Laplaciano de un campo escalar f , la divergencia y el rotor
de un campo vectorial F⃗ :

∇⃗f = grad (f) =
〈

∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
f

∇⃗2f = Laplaciano(f) = ∆f = (∇⃗ · ∇⃗)f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2

∇⃗ · F⃗ = div F⃗ = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
=
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
· ⟨P, Q, R⟩

∇⃗ × F⃗ = rot F⃗ =
(

∂R

∂y
− ∂Q

∂z

)
i⃗ +

(
∂P

∂z
− ∂R

∂x

)
j⃗ +

(
∂Q

∂x
− ∂P

∂y

)
k⃗ =

=

∣∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣∣
¿Qué interpretación podemos darle a la divergencia?

Consideremos un tubo a través del cual fluye agua. Podemos imaginar dentro
del tubo una superficie cerrada (indicada por las líneas de punto). El agua
pasa a través de esta superficie. El agua entra por un lado y sale por el otro.
El líquido puede circular en cualquier forma irregular; la cantidad que entra
debe ser igual a la que sale. Se probará más adelante que esto equivale a decir
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que el agua es incompresible, que circula de tal manera que si representamos
su velocidad por el campo V⃗ la divergencia de V⃗ debe ser idénticamente nula.
Este es el origen de la denominación divergencia: el agua no puede divergir
de un punto, pues dejaría un vacío, tampoco puede converger a un punto,
pues es incompresible.

El movimiento del aire es diferente. Supongamos un tubo de aire comprimido
con cierre en un extremo. Un cierre similar acaba de ser removido del otro
extremo y el aire sale hacia fuera. Consideremos la superficie cerrada, seña-
lada con línea de puntos. Como el aire se expande, es más el aire que sale por
un lado de la superficie que el que entra por el otro. En consecuencia, hay
una divergencia de aire. Hay divergencia distinta de cero en todos los puntos
en que el aire se expande. Si la velocidad del aire está representada por el
campo vectorial V⃗ , la divergencia del vector V⃗ , es distinta de cero.

Podemos completar esta presentación, enfatizando que la divergencia de un
campo vectorial es una función escalar. Hay divergencia de un punto o hacia
un punto (positiva o negativa), pero no hay asociada a este concepto idea
alguna de dirección.

¿Qué interpretación podemos darle al rotor?

Imagine un gran tanque circular, conteniendo agua, la cual ha sido movida
con una pala. Los vectores representan la velocidad V⃗ .

Al lado del tanque se muestra una pequeña rueda con paletas. Si esta rueda
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montada sobre un mecanismo libre de fricción, se sumerge en el centro del
tanque, girará en sentido contrario a las agujas del reloj. En cualquier punto
que se coloque la ruedita girará, pues aunque no esté en el centro, el agua corre
mas rápidamente por un lado de la ruedita que por el otro. El movimiento
de la rueda está indicando que el campo de velocidades tiene un rotor no
nulo. El nombre rotor está vinculado con el movimiento en líneas curvas.
Sin embargo un movimiento rectilíneo de un fluido puede tener también un
rotor no nulo. Supongamos que el agua fluye en un canal, en tal forma que
su velocidad sea mayor, cerca de la superficie que en el fondo. Toda partícula
se mueve sobre una recta.

Recurriendo a la ruedita “exploradora” podemos observar que girará en sen-
tido de las agujas del reloj, pues la corriente es mas rápida en las capas
superiores. Esto significa que el rotor no es nulo. También puede darse mo-
vimiento curvilíneo con rotor nulo. Se puede concebir que la curvatura y la
variación de velocidad estén relacionadas de tal manera que la ruedita quede
sin girar. Es posible entonces, la existencia de movimientos de fluidos curvos,
cuyos campos de velocidades sean de rotor nulo.

El rotor de un campo vectorial es un vector. Si imaginamos el rotor como
un torbellino, es evidente que este gira alrededor de un eje que puede ser
vertical, horizontal, o con cualquier inclinación. La dirección de tal eje es por
definición la dirección del vector que representa al rotor. Supongamos el canal
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de la figura donde en la parte recta el agua circula con velocidad uniforme. Es
evidente que allí la rueda exploradora no girará. Es posible también que en
la parte curva el agua circule con rotor nulo. ¿Cómo es esto? Bueno, para ello
es necesario que el agua circule con mayor velocidad en la margen interna
del canal en la proporción justa. Por causa de la curvatura de las líneas
de corriente, más de la mitad de las paletas de la ruedita exploradora son
dirigidas en el sentido de las agujas del reloj. La velocidad, sin embargo, es
mayor según supusimos en la orilla interior y aunque sean empujadas menos,
en el sentido opuesto, reciben un impulso mayor. se mueve más rápidamente,
su eje está en la dirección del rotor. Las componentes del rotor se encuentran
colocando el eje de la ruedita paralelo a cada uno de los ejes coordenados. El
sentido del rotor está determinado por el sentido de rotación de la ruedita.
Se determina de acuerdo con la regla de la mano derecha - o tornillo derecho
-.

El concepto de rotor y divergencia se continuarán trabajando más adelante,
cuando estudiemos el Teorema de Stokes y el Teorema de Gauss.

6.6.1. Ejercicios
1. Calculen la divergencia y el rotor de los siguientes campos vectoriales:

i) F⃗ (x, y, z) = x2 i⃗ + y2 j⃗ + z2 k⃗

ii) F⃗ (x, y, z) = excos y i⃗ + eycos x j⃗ + z k⃗

2. Grafiquen los siguientes campos vectoriales y calculen la divergencia y
el rotor de los mismos.
i) F⃗ (x, y) = i⃗ + 2 j⃗

ii) F⃗ (x, y) = (y + 10)⃗i
iii) F⃗ (x, y) = x√

x2 + y2 i⃗ + y√
x2 + y2 j⃗

3. Sea f un campo escalar y F⃗ un campo vectorial. Indiquen si los si-
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guientes son campos escalares o vectoriales:
i) grad(f) ii) div(grad(f)) iii) rot(grad(f)) iv) div(rot(grad(f)) v)
rot(rot(F⃗ ))

4. a) Suponiendo que existen las derivadas parciales del campo escalar f

y de las componentes de los campos vectoriales F⃗ y G⃗ , muestren que:
i)div(F⃗ + G⃗) = divF⃗ + divG⃗ y div(F⃗ − G⃗) = divF⃗ − divG⃗

ii)rot(F⃗ + G⃗) = rotF⃗ + rotG⃗ y rot(F⃗ − G⃗) = rotF⃗ − rotG⃗

iii)div(fF⃗ ) = fdivF⃗ + grad(f) · F⃗
iv)rot(fF⃗ ) = frotF⃗ + grad(f)× F⃗

b) Suponiendo que existen y son continuas las derivadas parciales de
segundo orden del campo escalar f y de las componentes de F⃗ , muestren
que:

i) div(rotF⃗ ) = 0

ii) rot(∇⃗f) = 0⃗

Observación: las dos últimas propiedades serán de una valiosa utili-
dad. En particular la última, nos asegura que un campo gradiente, tiene
rotor nulo. Inversamente, más adelante probaremos que bajo ciertas hi-
pótesis, si un campo vectorial tiene rotor nulo, es un campo gradiente.
El reconocer que un campo es un campo conservativo es fundamental.
Ya que, permitirá simplificar el análisis/cálculo de problemas físicos y
matemáticos, aplicar principios de conservación de energía, y revelar
información sobre la simetría y las propiedades del sistema, lo que faci-
litará la comprensión y resolución de problemas en diversas disciplinas
científicas.

6.7. Integral de línea de una función escalar
El concepto de integral de línea es una generalización natural de la integral
definida. El proceso que conduce a su formulación se genera de la misma
forma. Una función de dos o tres variables, definida en una curva, reemplaza
a la función de una variable definida en un intervalo.

Sea C un arco de curva suave que, con valores crecientes del parámetro, se
recorre desde A hasta B y w = f(P ) una función a valores reales, definida y
acotada sobre C.
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Consideremos una partición P que, por medio de un número finito de puntos
A = P0, P1, ..., Pi−1, Pi, ..., Pn = B, divide a C en n subarcos

⌢
Pi−1Pi con

longitudes ∆Si, para i = 1, ..., n.
Sea |P| = máx {∆Si/i = 1, ..., n} la norma de esa partición y sea P ∗

i un
punto (cualquiera) perteneciente al subarco

⌢
Pi−1Pi.

Sea Jn =
n∑

i=1
f(P ∗

i )∆Si . La integral de línea de f a lo largo de la curva C

es el límite de Jn cuando |P| tiende a cero, siempre que ese límite exista y no
dependa de las particiones consideradas ni de los puntos P ∗

i elegidos, o sea:
∫

C
f(P )ds = ĺım

|P|→0

n∑
i=1

f(P ∗
i )∆Si

Cálculo de la integral de línea

Supongamos f continua sobre el arco de curva suave C.

a) En función del parámetro longitud de arco:
Supongamos que C está representada en función del parámetro longitud de
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arco, esto es:

C : r⃗ = r⃗(s) = ⟨x(s), y(s), z(s)⟩ , con s ∈ [0, LB
A]

Tomar n + 1 puntos de división en la curva C equivale a tomar una partición
en [0, LB

A]:

s0 = 0 < s1 < s2 < ... < si−1 < si < ... < sn = LB
A

que divide a ese intervalo en n subintervalos [si−1, si] de longitud ∆Si.
P ∗

i es el extremo de r⃗(s∗
i ) para algún s∗

i ∈ [si−1, si].

Entonces Jn =
n∑

i=1
f(P ∗

i )∆Si =
n∑

i=1
f(r⃗ (s∗

i ))∆Si =
n∑

i=1
(f ◦ r⃗) (s∗

i ) ∆Si

g = f ◦ r⃗ es continua en [0, LB
A] (¿por qué?) y se tiene entonces :

ĺım
|P|→0

Jn =
∫ LB

A

0
(f ◦ r⃗) (s) ds

luego,
∫

C
f(x, y, z)ds =

∫ LB
A

0
(f ◦ r⃗) (s) ds =

∫ LB
A

0
f (r⃗ (s)) ds =

∫ LB
A

0
f(x(s), y(s), z(s))ds

b) En función de un parámetro t:
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Consideremos ahora la curva suave

C : r⃗ = r⃗(t) = ⟨x(t), y(t), z(t)⟩ , con t ∈ [a, b]

Como hemos visto, C : r⃗ = r⃗(h(s)) = r⃗ ∗(s) con s ∈ [0, LB
A] donde s es el

parámetro longitud de arco y h es la función inversa de la función longitud
de arco. Entonces,

∫
C

f(x, y, z)ds =
∫ LB

A

0
f (r⃗ (h (s))) ds

y haciendo, en la última integral, el cambio de variable t = h(s) resulta:

∫
C

f(x, y, z)ds =
∫ b

a
f (r⃗ (t)) |r⃗ ′ (t)| dt

Propiedades de la integral de línea

Si k es constante: ∫
C

kf ds = k
∫

C
f ds

Si f y g son integrables sobre C entonces:
∫

C
(f + g) ds =

∫
C

f ds +
∫

C
g ds

La integral de línea de un campo escalar es independiente de la para-
metrización y de la orientación de la curva. Puede anotarse que:

∫
C

f ds =
∫

−C
f ds

siendo −C la misma curva C recorrida en el sentido contrario.

Si la curva C a lo largo de la cual se calcula la integral de línea de una
función f es unión de un número finito de curvas suaves como se ve por
ejemplo en la figura siguiente:
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En ese caso, si f es integrable en cada cada una de las curvas suaves:∫
C

f ds =
∫

C1
f ds +

∫
C2

f ds +
∫

C3
f ds

Si la trayectoria de integración es una curva cerrada, se suele indicar:∮
C

f ds

Interpretaciones de la integral de línea

Si la función f es 1, la integral de línea calcula la longitud de C, es
decir: ∫

C
1 ds = Longitud(C)

.

Supongamos que C representa un alambre y f(x, y, z) es la función
densidad lineal de masa entonces la masa del alambre se calcula con la
integral de línea de f a lo largo de C:∫

C
f ds = Masa del alambre C

.

Supongamos que C es una curva del plano y que f(x, y) es una función
continua, con f(x, y) ≥ 0 sobre C. Siendo así, el área de la superficie
cilíndrica que se levanta verticalmente sobre la curva C y que tiene en
cada punto (x, y, 0) ∈ C altura igual a f(x, y), se calcula con la integral
de línea de f a lo largo de C.
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∫
C

f ds = Área de la superficie S

Ejemplo: Calcularemos
∫

C
xy3ds, siendo C el segmento de recta y = 2x de

extremos A = (−1,−2) y B = (1, 2).

C : r⃗ = r⃗(t) = ⟨t, 2t⟩ con t ∈ [−1, 1]

r⃗ ′(t) = ⟨1, 2⟩

|r⃗ ′(t)| =
√

1 + 4 =
√

5

f(r⃗(t)) = t(2t)3 = 8t4

∫
C

xy3ds =
∫ 1

−1
8t4√5 dt = 8

√
5 t5

5

∣∣∣∣∣
1

−1
= 16√

5
.

Nota: En el ejemplo hemos parametrizado el segmento C haciendo

C :
x = t

y = 2t
con t ∈ [−1, 1] pero, a los fines de calcular la integral de línea

de un campo escalar f a lo largo de C, podríamos haber usado cualquier otra
parametrización de ese segmento, incluso aquellas que lo orienten de manera
diferente.
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6.7.1. Ejercicios

1. Calculen
∫

C

(
x2 + y2

)
ds siendo:

a) C : y = 3x , desde A = (0, 0) hasta B = (2, 6).

b) C : x2 + y2 = 1 , desde A = (0, 1) hasta B = (1, 0) en sentido
antihorario.

c) C : x2 + y2 = 1 , desde A = (0, 1) hasta B = (1, 0) en sentido
horario.

d) C : trayectoria que coincide con el eje x desde el punto (0, 0) hasta
el (1, 0) y es paralela al eje y desde el punto (1, 0) hasta el (1, 1).

e) C : trayectoria que coincide con el eje y desde el punto (0, 0)
hasta el (0, 1) y es paralela al eje x desde el punto (0, 1) hasta el
(1, 1).

2. Calculen:

a)
∫

C
xeyds siendo C el segmento de recta desde (−1, 2) hasta (1, 1).

b)
∫

C
x ds siendo C : y = x2 desde el origen de coordenadas hasta

el punto (2, 4).

c)
∫

C
(2x + 9z) ds siendo C :


x = t

y = t2

z = t3
con 0 ≤ t ≤ 1

d)
∫

C

(
x2 + y2 + z2

)
ds siendo C :


x = 4cost

y = 4sent

z = 3t

con 0 ≤ t ≤ 2π

3. Calculen mediante una integral de línea:

a) el área de la superficie que se eleva verticalmente desde el segmento
de recta de extremos (−2, 0, 0) y (2, 0, 0) hasta z = 4− x2 − y2.

b) el área de la superficie que se eleva verticalmente desde el arco de
elipse x2 + 4y2 = 4 ubicado en el primer cuadrante hasta z = x y

2 .
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6.8. Integral de línea de un campo vectorial
Sea C un arco de curva suave que, con valores crecientes del parámetro,
se recorre desde A hasta B y F⃗ un campo vectorial definido sobre C, con
componentes continuas. Llamaremos integral de línea del campo vectorial F⃗
a lo largo de C a la integral de la componente tangencial del campo F⃗ a lo
largo de C, o sea, a la integral del campo escalar F⃗ · T⃗ a lo largo de C :∫

C
F⃗ · T⃗ ds

6.8.1. Trabajo y Circulación
Interpretación de

∫
C F⃗ · T⃗ ds :

Si F⃗ es un campo de fuerzas, dividido el arco C en n subarcos
⌢

Pi−1Pi de lon-
gitud ∆Si y siendo P ∗

i un punto arbitrario en cada subarco,
(
F⃗ · T⃗

)
(P ∗

i ) .∆Si

es una aproximación del trabajo que realiza F⃗ a lo largo del subarco
⌢

Pi−1Pi.
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n∑
i=1

(
F⃗ · T⃗

)
(P ∗

i ) ∆Si es una aproximación del trabajo W que realiza F⃗ a lo

largo de la trayectoria C desde A hasta B, siendo esa aproximación tanto
mejor cuanto más pequeñas sea todas las longitudes ∆Si.

El trabajo W que realiza F⃗ a lo largo de la trayectoria C desde A
hasta B es:

W = ĺım
|P|→0

n∑
i=1

(
F⃗ · T⃗

)
(P ∗

i ) ∆Si

Entonces se define, el trabajo del siguiente modo.

Trabajo realizado por un campo de fuerzas F⃗ para mover una partícula
sobre la curva C desde A hasta B se calcula mediante:

W =
∫

C
F⃗ · T⃗ ds

Circulación: Si la curva C es cerrada (punto inicial igual al punto final,
A = B) la integral la escribimos del siguiente modo

Circulación =
∮

C
F⃗ · T⃗ ds

y la llamaremos Circulación de F⃗ a lo largo de C en la dirección del
tangente

6.8.2. Cálculo de la integral de línea de un campo vec-
torial en la dirección tangente a una curva

Vamos a describir el cálculo de la integral:
∫

C F⃗ · T⃗ ds
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Si C : r⃗ = r⃗(t) con t ∈ [a, b] entonces

∫
C

F⃗ · T⃗ ds =
∫ b

a

(
F⃗ · T⃗

)
(r⃗(t)) |r⃗ ′(t)| dt =

∫ b

a
F⃗ (r⃗(t)) · T⃗ (r⃗(t)) |r⃗ ′(t)| dt =

=
∫ b

a
F⃗ (r⃗(t)) · r⃗ ′(t)

|r⃗ ′(t)| |r⃗
′(t)| dt =

∫ b

a
F⃗ (r⃗(t)) · r⃗ ′(t)dt

Entonces:

W =
∫

C
F⃗ · T⃗ ds =

∫ b

a
F⃗ (r⃗(t)) · r⃗ ′(t)dt

Ejemplo: Sea F⃗ (x, y, z) = 2xy i⃗ + y2z j⃗ + xz k⃗ un campo de fuerzas y
C : t i⃗ + t2 j⃗ + (1− 2t) k⃗ con t ∈ [0, 1]
Calcularemos el trabajo realizado por F⃗ al desplazar una partícula desde
A↔ r⃗(0) hasta B ↔ r⃗(1) a lo largo de C

F⃗ (r⃗(t)) =
〈
2t3, t4 − 2t5, t− 2t2

〉

r⃗ ′(t) = ⟨1, 2t,−2⟩

F⃗ (r⃗(t)) · r⃗ ′(t) = 2t3 + 2t5 − 4t6 − 2t + 4t2

W =
∫ 1

0

(
2t3 + 2t5 − 4t6 − 2t + 4t2

)
dt = ... = 25

42

Notaciones varias: para la integral de línea de F⃗ = ⟨P, Q, R⟩ a lo largo de
C son:

Forma diferencial:

∫
C

F⃗ · dr⃗

Otra forma normalmente utilizada para escribir una integral de línea de un
campo vectorial es la siguiente. Consideremos que F⃗ es un campo vectorial
en R2 de la forma F⃗ (x, y) = (P, Q) y C es una curva parametrizada por
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r⃗(t) = (x(t), y(t)) , a ≤ t ≤ b entonces:∫
C

F⃗ · dr⃗ =
∫

C
F⃗ · dr⃗

dt
dt (6.1)

=
∫ b

a
(P, Q) ·

(
dx

dt
,
dy

dt

)
dt (6.2)

=
∫ b

a

(
P

dx

dt
+ Q

dy

dt

)
dt (6.3)

=
∫

C
P dx + Q dy (6.4)

Esta notación puede extenderse a campos vectoriales en R3:∫
C

Pdx + Qdy + Rdz

Otra notación es utilizando los cosenos directores del vector tangente a la
curva: ∫

C
(P cosα + Q cosβ + R cosγ) ds

donde:

P , Q y R son funciones de las coordenadas x, y y z.

cos α, cos β y cos γ son los cosenos directores del vector tangente a la
curva C.

ds es el elemento diferencial de longitud a lo largo de la curva C.

Los cosenos directores son las componentes del vector unitario en la dirección
de un vector dado. Específicamente, si tenemos un vector v con componentes
vx, vy y vz, los cosenos directores cos α, cos β y cos γ se definen como los cose-
nos de los ángulos que el vector v forma con los ejes x, y y z respectivamente.
Estos se calculan como:

cos α = vx

∥v∥
, cos β = vy

∥v∥
, cos γ = vz

∥v∥

donde ∥v∥ es la magnitud del vector v, dada por:

∥v∥ =
√

v2
x + v2

y + v2
z

En el contexto de una curva C, si consideramos un vector tangente unita-
rio T a la curva en un punto, los cosenos directores cos α, cos β y cos γ de
este vector tangente son las proyecciones del vector tangente en los ejes x,
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y y z, respectivamente. Estos cosenos directores son utilizados para expre-
sar la integral de línea en términos de las componentes del campo vectorial
proyectadas en la dirección del vector tangente a la curva. Esta notación
permite interpretar la integral de línea como la suma de las componentes del
campo vectorial proyectadas en la dirección del vector tangente a la curva,
multiplicadas por el elemento diferencial de longitud.

Cualquiera sea la notación a utilizar, el cálculo se efectúa como se ha expli-
cado y ejemplificado anteriormente.

Observación importante: Si llamamos −C al arco de curva que coincide
con C pero tiene orientación contraria, los vectores tangentes a C y a −C
son opuestos por lo que el signo de F⃗ · T⃗ cambia, resultando entonces:∫

C
F⃗ · T⃗ ds = −

∫
−C

F⃗ · T⃗ ds

6.8.3. Ejercicios
1. Calculen el trabajo realizado por F⃗ a lo largo de C:

a) F⃗ = ⟨2x, 2y⟩ y C es el segmento de recta desde A = (3, 1) hasta
B = (5, 4).

b) F⃗ = ⟨2x,−2y⟩ y C es el segmento de recta desde A = (4, 2) hasta
B = (0, 4).

c) F⃗ = ⟨y, x⟩ y C es la frontera del cuadrado de vértices (0, 0), (1, 0),
(1, 1) y (0, 1) recorridos en ese orden.

d) F⃗ = ⟨z, y, 0⟩ y C es el segmento de recta desde A = (1, 0, 2) hasta
B = (2, 4, 2).
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e) F⃗ = ⟨z, 0, 3x2⟩ y C es el cuarto de elipse r⃗ = r⃗(t) = ⟨2cost, 3sent, 1⟩
desde A = (2, 0, 1) hasta B = (0, 3, 1).

f ) F⃗ = ⟨x,−z, 2y⟩ y C es la trayectoria cerrada formada por los
segmentos C1 desde (0, 0, 0) hasta (1, 1, 0); C2 desde (1, 1, 0) hasta
(1, 1, 1) y C3 desde (1, 1, 1) hasta (0, 0, 0).

2. Calculen
∫

C
y2dx + x2dy + xyzdz a lo largo de:

a) el eje x, desde (−1, 0, 0) hasta (1, 0, 0)

b) la parábola
y = x2

z = 1
desde (0, 0, 1) hasta (1, 1, 1)

c) la parábola cúbica
z = x3

y = 2
desde (0, 2, 0) hasta (1, 2, 1)

3. Calculen
∫

C
(x cosα + y cosβ + z cosγ) ds a lo largo de

C : r⃗ = r⃗(t) = 3cost i⃗ + 3sent j⃗ + 4t k⃗ con t ∈ [0, 2π]

6.9. Teorema de Green

George Green (1793-1841) fue un matemático británico que llevó a cabo di-
versos trabajos sobre dinámica de los fluidos, sobre las fuerzas de atracción
y, en particular, sobre la aplicación del análisis matemático al estudio del
electromagnetismo.
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Teorema de Green

Sea C una curva del plano, cerrada, simple, suave a trozos y con orien-
tación antihoraria y sea F⃗ (x, y) = P (x, y)⃗i + Q(x, y)⃗j. Si las compo-
nentes de F⃗ tienen derivadas parciales continuas en un dominio abierto
D que contiene a C y a la región R limitada por C, entonces:

∮
C

P (x, y)dx + Q(x, y)dy =
"

R

(
∂Q

∂x
− ∂P

∂y

)
dA .

Nota: Una curva C es cerrada si el punto inicial y el final coinciden y es
simple si no se corta a sí misma.

Demostración: Presentamos aquí una demostración para regiones del tipo I
y II a la vez. En este caso se demuestra que:

∮
C

Pdx =
"

R

(
−∂P

∂y

)
dA

y

∮
C

Qdy =
"

R

(
∂Q

∂x

)
dA

con lo cual queda demostrado el teorema de Green. Para probar la primera
igualdad suponemos R de tipo I de la forma:
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R = {(x, y) ∈ R2 : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
donde g1(x) y g2(x) son funciones continuas en [a, b]. Calculando la integral
doble de la primera igualdad tenemos:"

R

∂P

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂P

∂y
(x, y)dydx =

=
∫ b

a
[P (x, g2(x))− P (x, g1(x))]dx

Ahora calculemos la integral de línea para la primera igualdad. El borde de
R puede ser escrito como la unión de las curvas C1 y C2. Para C1 utilicemos
las siguientes ecuaciones paramétricas x = x y y = g1(x) con a ≤ x ≤ b Para
C2 utilicemos las siguientes ecuaciones paramétricas x = x y y = g2(x) con
a ≤ x ≤ b entonces

Por lo que: ∮
C

Pdx =
∫

C1
P (x, y)dx−

∫
C2

P (x, y)dx

=
∫ b

a
P (x, g1(x))dx−

∫ b

a
P (x, g2(x))dx

=
∫ b

a
[P (x, g1(x))dx− P (x, g2(x))]dx

= −
∫ b

a
[P (x, g2(x))dx− P (x, g1(x))]dx

= −
"

R

∂P

∂y
dA

De manera análoga se puede demostrar la segunda igualdad, describiendo R
del tipo II.
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Notación vectorial del Teorema de Green
Siendo F⃗ (x, y) = P (x, y)⃗i + Q(x, y)⃗j,

rotF⃗ = ∇⃗ × F⃗ =
〈

0 , 0 ,
∂Q

∂x
− ∂P

∂y

〉
=
(

∂Q

∂x
− ∂P

∂y

)
k⃗

La igualdad del teorema de Green puede escribirse por lo tanto de la si-
guiente manera: ∮

C
F⃗ · dr⃗ =

"
R

rotF⃗ · k⃗ dA

6.9.1. Aplicaciones del Teorema de Green
1. Evaluar la circulación de un campo

∮
C F⃗ · dr⃗ mediante una

integral doble

Ejemplo 1: Siendo R la región del plano limitada por y = x2,
y = 0 y x = 2, evaluar aplicando el teorema de Green la circulación
del campo vectorial F⃗ = ⟨(x3 + y3), 3xy2⟩, a lo largo de la curva
frontera de R, con orientación antihoraria.
Graficamos para comprender la región R y su frontera:

Debemos verificar que se satisfacen las hipótesis del teorema:

C es la curva frontera de R y es una curva cerrada, simple, suave a
trozos y con orientación antihoraria (consiste en el segmento des-
de (0, 0) hasta (2, 0), seguido por el segmento desde (2, 0) hasta
(2, 4) seguido por la porción de parábola de ecuación y = x2 que
va desde (2, 4) hasta (2, 0)).

P = x3+y3, Q = 3xy2 son las componentes del campo vectorial F⃗ .
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P y Q son funciones polinomiales, tienen por lo tanto derivadas
parciales continuas en D = R2. C y R están incluidas en ese
conjunto D.
Por el teorema de Green, podemos entonces afirmar que:

∮
C

(
x3 + y3

)
dx + 3xy2dy =

"
R

(
∂Q

∂x
− ∂P

∂y

)
dA

de modo que el valor de la circulación puede obtenerse resolviendo
la integral doble:"

R

(
∂Q

∂x
− ∂P

∂y

)
dA =

"
R

(
3y2 − 3y2

)
dA =

"
R

0 dA = 0

Comentario: El cálculo directo de la circulación (sin la aplica-
ción del teorema) implicaría en este caso resolver tres integrales
de línea (¿cuáles?).

Ejemplo 2: Siendo C la circunferencia de radio 1 centrada en el
origen y con orientación antihoraria, calcular aplicando el teorema
de Green

∮
C

(3y − ex)dx + (7x− sec y)dy .

La circunferencia C es cerrada, simple , suave y se supone con
orientación antihoraria. F⃗ = {3y − ex , 7x− sec y⟩. Sus compo-
nentes tienen derivadas parciales continuas en los puntos (x, y) ∈
R2 tales que y , (2k + 1)π

2 para k ∈ Z. En particular, las compo-
nentes de F⃗ tienen derivadas parciales continuas en

D =
{

(x, y) ∈ R2/− π

2 < y <
π

2

}
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C y la región R limitada por C están incluidas en ese conjunto D.
Entonces, por el teorema de Green:∮

C
(3y − ex)dx + (7x− sec y)dy =

"
R

(7− 3)dA =

= 4
"

R

dA = 4 área(R) = 4π

.

Pregunta: ¿cuál es el valor de la circulación si se orienta a la
circunferencia en sentido horario?

2. Cálculo del área de una región del plano mediante una integral
de línea

Si consideremos un campo vectorial F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩ cuyas
componentes tienen derivadas parciales continuas en D = R2 y tales
que ∂Q

∂x
− ∂P

∂y
= 1. Entonces, si C es cerrada, simple, suave a trozos

y con orientación antihoraria y R es la región limitada por C, por el
teorema de Green, en este caso, es:∮

C
F⃗ · dr⃗ =

"
R

1 dA = área de R .

Por ejemplo es posible utilizar el campo vectorial F⃗ (x, y) = ⟨0, x⟩ re-
sultando: ∮

C
xdy =

"
R

1 dA = área de R .

También es posible utilizar el campo vectorial F⃗ (x, y) =
〈
−y

2 ,
x

2

〉
Resulta entonces que, el área de la región R puede calcularse con la
integral de línea de F⃗ a lo largo de C.

Ejemplo: el área de la región R del plano limitada por la elipse x2

a2 +
y2

b2 = 1 se puede calcular mediante la integral de línea utilizando por

ejemplo el campo vectorial F⃗ =
〈
−y

2 ,
x

2

〉
a lo largo de C : r⃗ = r⃗(t) =

⟨a cost, b sent⟩ , con t ∈ [0, 2π].
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F⃗ (r⃗(t)) =
〈
−b sent

2 ,
a cost

2

〉
r⃗ ′(t) = ⟨−a sent, b cost⟩

F⃗ (r⃗(t)) · r⃗ ′(t) = a b

2∮
C

F⃗ · dr⃗ =
∫ 2π

0

a b

2 dt = a b π = área de R.

Nota: Si la región a la que se le quiere calcular el área mediante una integral
de línea usando este resultado, tiene por borde una curva suave a trozos, en
ese caso se deberá calcular la suma de las integrales de línea de cada trozo,
recorridas en sentido antihorario.

6.9.2. Generalización del teorema de Green
Consideremos ahora una región anular R como la que muestra la figura si-
guiente. Noten que R está limitada por dos curvas cerradas C1 y C2.
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Orientemos a C1 con orientación antihoraria y a C2 con orientación horaria y
consideremos dos curvas auxiliares γ1 y γ2. Así R puede verse como la unión
de dos regiones R1 y R2 cada una de las cuales tiene una curva cerrada como
frontera.

La curva frontera de R1 es la curva cerrada C1
1 ∪ γ2 ∪ C1

2 ∪ γ1

La curva frontera de R2 es la curva cerrada C2
2 ∪ (−γ2) ∪ C2

1 ∪ (−γ1)

Si F⃗ es un campo vectorial cuyas componentes tienen derivadas parciales
continuas en un conjunto D ⊂ R2 que contenga a C1, a C2 y a R, entonces ,
por el teorema de Green podemos afirmar que:

∫
C1

1

F⃗ · dr⃗ +
∫

γ2
F⃗ · dr⃗ +

∫
C1

2

F⃗ · dr⃗ +
∫

γ1
F⃗ · dr⃗ =

"
R1

rotF⃗ · k⃗ dA

∫
C2

2

F⃗ · dr⃗ +
∫

−γ2
F⃗ · dr⃗ +

∫
C2

1

F⃗ · dr⃗ +
∫

−γ1
F⃗ · dr⃗ =

"
R2

rotF⃗ · k⃗ dA

y sumando miembro a miembro:∮
C1

F⃗ · dr⃗ +
∮

C2
F⃗ · dr⃗ =

"
R

rotF⃗ · k⃗ dA

Caso particular: Si, en las condiciones anteriores, se tiene además que
∀(x, y) ∈ D es rotF⃗ (x, y) = 0⃗ , entonces∮

C1
F⃗ · dr⃗ +

∮
C2

F⃗ · dr⃗ = 0
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o sea ∮
C1

F⃗ · dr⃗ = −
∮

C2
F⃗ · dr⃗ =

∮
−C2

F⃗ · dr⃗

(las integrales de línea arrojan el mismo resultado si ambas curvas están
orientadas de la misma manera)

6.9.3. Ejercicios
1. Evalúen las siguientes integrales aplicando el teorema de Green siempre

que sea posible:

a)
∮

C
(x2 − y)dx + y2dy siendo C : x2 + y2 = 1 con orientación anti-

horaria.

b)
∮

C
(y2 +x)dx+(3x+2xy)dy siendo C : x2 +y2 = 4 con orientación

horaria.

c)
∮

C
(y2−2x)dx+y2dy siendo C la frontera del cuadrado de vértices

(0, 0), (0, 1), (1, 1) y (1, 0) con orientación antihoraria.

d)
∮

C

x

x2 + y2 dx+ y

x2 + y2 dy siendo: i) C1 : x2+y2 = 1 con orientación

antihoraria. ii)C2 : (x− 2)2 + y2 = 1 con orientación antihoraria.

e)
∮

C

−y

x2 + y2 dx + x

x2 + y2 dy siendo: i) C1 : x2 + y2 = 1 con orienta-

ción antihoraria. ii) C2 : x2 + (y − 2)2 = 1 con orientación antiho-
raria.

f )
∮

C
(y2 + 3x2y)dx + (xy + x3)dy siendo C la frontera de la región

limitada por y = x2 e y = 2x, con orientación antihoraria.

g)
∮

C
(yexy + y)dx + (2x + xexy)dy siendo C la frontera de la región

limitada por y = x2 e y = 4, con orientación antihoraria.

h)
∮

C
(ysec2x−2)dx + (tgx−4y2)dy siendo C la frontera de la región

limitada por x = 1− y2 y x = 0, con orientación antihoraria.

2. Calculen el área de las siguientes regiones mediante una integral de
línea:

a) R limitada por la elipse 4x2 + y2 = 16.

b) R limitada por y = x2 e y = 4.
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c) R limitada por y = x2 e y = 2x.

d) R limitada por la curva C : r⃗ = r⃗(t) = ⟨cos3t, sen3t⟩ t ∈ [0, 2π]

3. Muestren que la circulación de F⃗ = ⟨xy2, x2y + 2x⟩ a lo largo de la
frontera de un cuadrado, depende del área del cuadrado y no de su
ubicación en el plano.

4. Sea F⃗ = ⟨P (x, y), Q(x, y)⟩, P y Q con derivadas parciales continuas en
D = R2 − {(0, 0)} y rotF⃗ (x, y) = 0⃗ ∀(x, y) ∈ D ¿Qué pueden afirmar
acerca de

∮
C

F⃗ · dr⃗ para las curvas que aparecen en la siguiente figura?
Nombren y orienten las curvas. Justifiquen sus afirmaciones.

5. Calculen la circulación de F1 =
〈

x

x2 + y2 ,
y

x2 + y2

〉
y la circulación de

F2 =
〈
−y

x2 + y2 ,
x

x2 + y2

〉
a lo largo de la curva C de la figura siguien-

te. Sugerencia: recuerden que en un ejercicio previo han calculado la
circulación de esos campos a lo largo de la circunferencia x2 + y2 = 1.
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6.10. Independencia del camino

El resultado de
∫

C
F⃗ . dr⃗ depende, en general, del campo vectorial F⃗ y de

la curva C, pero no siempre es así. Para algunos campos vectoriales F⃗ el
resultado de

∫
C

F⃗ . dr⃗ es el mismo para todas las curvas de cierto conjunto D

que tengan el mismo punto inicial A y el mismo punto final B. Cuando esto
sucede decimos: la integral de línea de F⃗ es independiente del camino en D.
Más precisamente:

Definición. Independencia del camino

La integral de línea de F⃗ es independiente del camino en D (D ⊂ R2

o D ⊂ R3 ) si, para todo par de puntos A, B ∈ D y para todo par de
trayectorias C1 y C2 con punto inicial A y punto final B incluidas en
D, es ∫

C1
F⃗ . dr⃗ =

∫
C2

F⃗ . dr⃗

La importancia de conocer que una integral es independiente del camino se
relaciona con varios conceptos fundamentales en matemáticas y física, espe-
cialmente en el contexto de cálculo y teoría electromagnética. El saber que
una integral sea independiente del camino es fundamental, ya que simplifica
cálculos, esto implica que, para calcular la integral definida, no es necesario
conocer el camino exacto a lo largo del cual se integra la función, si no que
solo importan los valores iniciales y finales del intervalo.
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Dominios conexos y simplemente conexos

Un conjunto D es conexo si para todo par de puntos de D pueden
conectarse por medio de una trayectoria incluida en D.
Un conjunto D es simplemente conexo si es conexo y además, para
toda curva cerrada C ⊂ D, la región R limitada por C también está
incluida en D.

Observación: Un subconjunto D de R2 es simplemente conexo si toda C
cerrada es frontera de una región plana R incluida en D. Básicamente es
una región sin agujeros, sin huecos, ni siquiera un hueco formado por un
único punto. Un subconjunto D de R3 es simplemente conexo si toda C
cerrada es frontera de una superficie S incluida en D. Por ejemplo: D = R3

es simplemente conexo, D = R3 − {(0, 0, 0)} es simplemente conexo, pero
D = R3 − {(x, y, z)/x = y = 0} no es simplemente conexo.

Vemos ahora un resultado importante que nos permite conocer si una integral
de linea es independiente del camino.

Teorema fundamental para integrales de línea

Sea F⃗ un campo vectorial con componentes continuas en D (D ⊂ R2

o D ⊂ R3) y C una curva suave a trozos contenida en D desde A a B.
Si F⃗ es conservativo en D (es decir que existe una función potencial f

tal que F⃗ = ∇⃗f ) entonces la integral de línea de F⃗ es independiente
del camino en D y∫

C
F⃗ . dr⃗ =

∫
C
∇⃗f. dr⃗ = f(B)− f(A)

Demostración:
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Si F⃗ = ∇⃗f y C : r⃗ = r⃗(t) = ⟨x(t), y(t), z(t)⟩ con t ∈ [a, b] entonces∫
C

F⃗ . dr⃗ =
∫

C
∇⃗f. dr⃗ =

∫ b

a
∇⃗f (r(t)) · r⃗ ′(t) dt =

∫ b

a
g′(t) dt = g(b)− g(a)

donde g(t) = f (x(t), y(t), z(t)) = f(r⃗(t)) es continua en [a, b]
Entonces ∫

C
F⃗ . dr⃗ = f(B)− f(A).

Observación:

El resultado anterior es sumamente importante, pues da una condición sufi-
ciente para la independencia del camino, ya que el cálculo se reduce –prescin-
diendo de la curva– a evaluar la función potencial en el extremo B y restarle
el valor que toma en A, resultando ser una diferencia de potencial.

Una interpretación física:

Si el campo es un campo de fuerzas conservativo entonces el trabajo reali-
zado para desplazar una partícula entre dos puntos es independiente de la
trayectoria, sólo depende del valor del potencial en el punto inicial y en el
punto final. Notar además que, si los puntos A y B se encuentran sobre las
misma curva equipontencial en estos casos, no se realizará trabajo, ya que
no hay cambio de potencial. Ejemplo de ello es el trabajo realizado por el
campo potencial gravitatorio, donde la función potencial mide la altitud sobre
el nivel del mar. Cuando se mueva una partícula sobre una curva de altura
constante, no hay cambio de potencial gravitatorio, y en ese caso no hay
trabajo.

Ejemplo: El campo vectorial F⃗ = ⟨2x, 3y2⟩ tiene componentes continuas en
D = R2 por ser polinómicas, y es conservativo en ese conjunto, ya que su
rotor es el vector cero, siendo f(x, y) = x2 + y3 una función potencial de F⃗
en D = R2. Entonces, por ejemplo, ∀C con punto inicial (0, 0) y punto final
(1, 1), por el teorema fundamental para integrales de línea podemos afirmar
que ∫

C
F⃗ . dr⃗ = f(1, 1)− f(0, 0) = 2− 0 = 2.

Veamos ahora algunos otros resultados válidas que colaboran con el conoci-
miento de independencia del camino.

Observación 1:

Si la integral de línea de un campo vectorial F⃗ es independiente del camino
en cierto conjunto D entonces la integral de línea de F⃗ a lo largo de cualquier
curva cerrada incluida en D es igual a cero.
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Demostración:

En efecto, sea C ⊂ D una curva cerrada y A y B dos puntos de C, C = C1∪C2
donde C1 ⊂ D con punto inicial A y punto final B y C2 ⊂ D con punto inicial
B y punto final A:

entonces,∮
C

F⃗ . dr⃗ =
∫

C1
F⃗ . dr⃗ +

∫
C2

F⃗ . dr⃗ =
∫

C1
F⃗ . dr⃗ −

∫
−C2

F⃗ . dr⃗ = 0

ya que
∫

C1
F⃗ . dr⃗ =

∫
−C2

F⃗ . dr⃗ pues C1 y −C2 son dos curvas de D con punto
inicial A y punto final B.

Observación 2:

Si la integral de línea de F⃗ es igual a cero a lo largo de toda curva cerrada
C ⊂ D entonces, la integral de línea de F⃗ es independiente del camino en D.

Demostración:

En efecto, para todo par de puntos A, B ∈ D y para todo par de trayectorias
C1 y C2 con punto inicial A y punto final B incluidas en D, C1 ∪ (−C2) es
una curva cerrada incluida en D por lo que∫

C1
F⃗ . dr⃗ +

∫
−C2

F⃗ . dr⃗ = 0

y entonces ∫
C1

F⃗ . dr⃗ =
∫

C2
F⃗ . dr⃗

Observación 3:
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Sea F⃗ un campo conservativo con componente con derivadas parciales con-
tinuas en D entonces rotF⃗ = 0⃗ en D.

Demostración:

Para realizar esta demostración se calcula el rotor del campo vectorial, que
al ser un campo gradiente, es calcular rot(∇⃗f) y comprobar que su valor
es = 0⃗. Este resultado fue realizado en el ejercicio de la sección de campos
vectoriales.

Observación 4:

Sea F⃗ con componentes con derivadas parciales continuas en D ⊂ R2, D

simplemente conexo. Si rotF⃗ = 0⃗ en D entonces
∮

C
F⃗ · dr⃗ = 0 para toda C

cerrada en D.

Demostración:

Para justificar la validez del enunciado anterior, consideremos C cerrada,
simple y suave a trozos incluida en D. Como D se supone simplemente conexo,
la región R limitada por C está incluida en D y como las componentes de
F⃗ tienen derivadas parciales continuas en D se puede aplicar el teorema de
Green para concluir que:

∮
C

F⃗ · dr⃗ =
"

R

rotF⃗ · k⃗ dA =
"

R

0 dA = 0.

El siguiente teorema reúne alguno de los resultados tratados a lo largo de esta
sección y es válido para campos vectoriales de R2 y de R3 en un conjunto
simplemente conexo.
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Teorema. Equivalencias: campo conservativo e independencia
del camino

Si F⃗ es un campo vectorial con componentes con derivadas parciales
continuas en un dominio simplemente conexo D (D ⊂ R2 o D ⊂ R3 )
entonces las siguientes afirmaciones son equivalentes:

1. F⃗ es conservativo en D.
2. La integral de línea de F⃗ es independiente del camino en D y

además si C tiene punto inicial A y punto final B, existe f función
potencial de F⃗ , tal que

∫
C

F⃗ . dr⃗ = f(B)− f(A).

3.
∮

C
F⃗ · dr⃗ = 0 para toda C cerrada en D. (Circulación nula alre-

dedor de toda curva cerrada en D).
4. rotF⃗ = 0⃗ en D. En este caso el campo F⃗ en D se denomina

irrotacional.

Comentarios:
i) Decir que las 4 afirmaciones son equivalentes significa que, verificándose las
hipótesis requeridas, si una de las afirmaciones es verdadera entonces todas
las demás también lo son.

ii) Si una de las afirmaciones no se cumple, entonces ninguna se cumple.

iii) Observar que las proposiciones 1), 2) y 3) son equivalentes en un con-
junto conexo.

iv) Para probar el teorema se debe demostrar que 1) =⇒ 2), 2) =⇒ 3),
3) =⇒ 4) y 4) =⇒ 1). Notar que algunas de estas implicaciones, y otras, las
hemos enunciado y probado en las observaciones mencionadas antes.

v) Este teorema nos ofrece una herramienta para afirmar si un campo es
conservativo, sólo calculando su campo rotor. Por otro lado, nos brinda una
forma más simple para calcular una integral de trabajo, mediante su función
potencial evaluada en el punto final de la curva menos en el punto inicial, o
bien considerar realizar la integral de linea por un camino conveniente. Por
otro lado, el cálculo de una circulación, bajo las hipótesis del teorema, es
cero.

6.10.1. Ejercicios
1. En los siguientes incisos, muestren que el campo vectorial es conserva-

tivo en R2 o en R3 (según corresponda) y utilicen esa información para
calcular la integral de línea a lo largo de la curva propuesta.
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a) F⃗ = ⟨2xy, x2 − 1⟩ y C desde (1, 0) hasta (3, 1).

b) F⃗ = ⟨yexy, xexy − 2y⟩ y C desde (1, 0) hasta (0, 4).

c) F⃗ = ⟨z2 + 2xy, x2, 2xz⟩ y C desde (2, 1, 3) hasta (4,−1, 0).

d) F⃗ = ⟨2x cos z − x2, z − 2y, y − x2 sen z⟩ y C desde (3,−2, 0) has-
ta (1, 0, π).

2. Calculen el trabajo realizado por el campo de fuerzas F⃗ = ⟨−y,−x⟩ al
desplazar una partícula a lo largo de la parábola y = x2 desde (1, 1)
hasta (−1, 1) y desde ese punto hasta el (1, 1) a lo largo de la recta
y = 1.

3. Grafiquen el campo vectorial F⃗ = ⟨0, x⟩. Hallen tres trayectorias dife-
rentes C1 , C2 y C3 que vayan desde (2,0) hasta (−2,0) tales que:∫

C1
F⃗ · dr⃗ = 0 ,

∫
C2

F⃗ · dr⃗ > 0 y
∫

C3
F⃗ · dr⃗ < 0

¿Es F⃗ un campo conservativo en R2 ?

4. Evalúen las siguientes integrales aplicando, siempre que sea posible,
algún resultado teórico.

a)
∫

C
xdx+ydy+zdz donde C : r = r(t) = ⟨cost, sent, 2t⟩ t ∈ [0, 2π]

b)
∫

C

(
x2 + 1

)
dx + (y3 − 3y + 2)dy donde C : y =

√
16− x2 desde

(−4, 0) hasta (4, 0)

c)
∫

C
∇⃗f · dr⃗ siendo f(x, y, z) = x2 + y2 + z2 y C el segmento de

recta desde (1, 1, 1) hasta (2, 1, 2).

d)
∫

C
∇⃗f · dr⃗ siendo f(x, y) = x2 + y2 y C la elipse 4x2 + y2 = 4.

5. ¿Cuáles de los siguientes son campos vectoriales son conservativos en
el conjunto D indicado?

a) F⃗ = ⟨3xz, x2, xcosy⟩ ; D = R3

b) F⃗ = ⟨y,−x, 0⟩ ; D = R3

c) F⃗ = ⟨x, 0, z⟩ ; D = R3

d) F⃗ = ⟨x, y, z⟩√
x2 + y2 + z2 ; D = R3 − {(0, 0, 0)}
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e) F⃗ = ⟨−y, x⟩√
x2 + y2 ; D = R2 − {(0, 0)}

243



CAPÍTULO 6. INTEGRAL DE LÍNEA

244



Capítulo 7

Superficies e integrales de
superficie

7.1. Superficies
Para poder abordar la definición, el cálculo y las propiedades de las integrales
de superficie necesitaremos describir las superficies mediante una ecuación
vectorial paramétrica, como lo hemos hecho antes con las curvas al estudiar
las integrales de línea.

Una descripción vectorial paramétrica de una superficie S consiste en una
ecuación de la forma r⃗ = r⃗(u, v) con (u, v) ∈ R , donde u y v son los
parámetros, R (dominio paramétrico) es una región del plano uv y, para
cada (u, v) ∈ R, r⃗(u, v) = 0⃗P , siendo P un punto de S.

Las componentes del vector r⃗(u, v) son tres funciones de las variables
u y v , a valores reales: r⃗(u, v) = X(u, v)⃗i + Y (u, v)⃗j + Z(u, v)k⃗
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
x = X(u, v)
y = Y (u, v)
z = Z(u, v)

; (u, v) ∈ R

es un sistema de ecuaciones paramétricas de S.

Ejemplos:

Consideremos la superficie S definida por la ecuación x2 + y2 = a2.
S es una superficie cilíndrica. Tomando como referencia las coordenadas
cilíndricas, un punto P ∈ S queda individualizado por el ángulo de giro
(θ) y la cota (z), ya que r es constante e igual a a para todos los puntos
de S.
Podemos entonces describir la superficie S mediante el siguiente sistema
de ecuaciones paramétricas:

x = a cosu

y = a senu

z = v

; 0 ≤ u ≤ 2π ; v ∈ R

S : r⃗ = r⃗(u, v) = a cosu i⃗ + a senu j⃗ + v k⃗; 0 ≤ u ≤ 2π ; v ∈ R

Si S es la superficie esférica definida por la ecuación x2 + y2 + z2 = a2,
considerando ahora las coordenadas esféricas como referencia, un punto
de S queda identificado por las coordenadas θ y φ (ρ es constante e
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igual a a en todos los puntos de S) . Se tiene entonces la siguiente
descripción paramétrica de S:

x = a cosu senv

y = a senu senv

z = a cosv

; 0 ≤ u ≤ 2π ; 0 ≤ v ≤ π

S : r⃗ = r⃗(u, v) = a cosu senv i⃗+a senu senv j⃗+a cosv k⃗ ; 0 ≤ u ≤ 2π ; 0 ≤ v ≤ π

En este caso el dominio paramétrico, R = {(u, v)/0 ≤ u ≤ 2π ∧ 0 ≤ v ≤ π},
es una región cerrada y acotada del plano uv y S es una superficie aco-
tada.

Sea S el paraboloide definido por la ecuación z = x2 + y2. La superficie
S es la gráfica de la función f(x, y) = x2 + y2. Haciendo u = x y v = y

se tiene la parametrización trivial para S :


x = u

y = v

z = f(u, v) = u2 + v2

(trivial pues los parámetros u y v representan aquí a las mismas varia-
bles x e y).

S : r⃗ = r⃗(u, v) = u i⃗ + v j⃗ + (u2 + v2) k⃗; (u, v) ∈ R2

.

Sea S una superficie helicoidal, su borde es una hélice. Esta superficie no
es posible representarla en coordenadas cartesianas, pero si en forma
paramétrica. El helicoide tiene forma de tornillo de Arquímedes. Se
puede describir mediante las siguientes ecuaciones paramétricas:
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
x = u cos(v)
y = u sen(v)
z = v

Para la visualización y cálculo de integrales de superficie puedes ayu-
darte de las aplicaciones creadas en GeoGebra.

Actividad
Parametrizar las siguientes superficies:

S : x2 + y2 = 4 limitada por z = 0 y z = 4

S : x2 + y2 = 25 limitada por z = 0 e y + z = 6

S : x2 + y2 = 4 limitada por y + z = 4 e y − z = 4

S : x2 + y2 = 1 limitada por z = 0 y x + y + z = 4

S : z2 + y2 = 1 limitada por x = −1 y x = 1

S : z =
√

x2 + y2

S : z =
√

x2 + y2 limitada por z = 0 y z = 4

S : z = x2 + y2 limitada por z = 2y

S : Ax + By + Cz + D = 0

S : z =
√

x2 + y2 con x2 + y2 ≤ 4

S : x2 + y2 + z2 = 16 con z ≤
√

x2 + y2

Dirección normal a una superficie
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Consideremos S : r⃗ = r⃗(u, v) ; (u, v) ∈ R y un punto P0 de S que proviene de
(u0, v0) ∈ R mediante r⃗ . Supondremos que ∂r⃗

∂u
y ∂r⃗

∂v
existen y son continuas

en (u0, v0) y que ∂r⃗

∂u
(u0, v0) y ∂r⃗

∂v
(u0, v0) son no nulos y no colineales (cuando

estas condiciones se cumplen en todos los puntos de R diremos que S es una
superficie suave).

∂r⃗

∂u
(u0, v0) define la dirección tangente a Cu : r⃗ = r⃗(u, v0) en P0

(Cu se llama u-curva y es la imagen de un segmento horizontal que pasa por
(u0, v0) y está contenido en R).

∂r⃗

∂v
(u0, v0) define la dirección tangente a Cv : r⃗ = r⃗(u0, v) en P0

(Cv se llama v-curva y es la imagen de un segmento vertical que pasa por
(u0, v0) y está contenido en R).
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∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
(u0,v0)

es ortogonal a ∂r⃗

∂u
(u0, v0) y a ∂r⃗

∂v
(u0, v0) (es ortogonal a Cu y

a Cv en P0) y se puede mostrar que lo mismo es cierto para cualquier curva
contenida en S pasando por P0.

Denotaremos con la letra N⃗ al vector ∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
(u0,v0)

o a su opuesto ∂r⃗

∂v
×

∂r⃗

∂u

∣∣∣∣∣
(u0,v0)

y nos referiremos a N⃗ como el vector normal a S en P0.

El plano determinado por ∂r⃗

∂u
(u0, v0) y ∂r⃗

∂v
(u0, v0) es el plano tangente a S

en P0 (N⃗ es normal a ese plano).

7.2. Área de una superficie
Sea S una superficie suave y acotada:

S : r⃗ = r⃗(u, v) ; (u, v) ∈ R

Definamos una partición en R por medio de rectas de la forma u = cte y
v = cte. Estas rectas producirán en S un conjunto de u − curvas y de
v− curvas generando una subdivisión de la superficie en porciones Si. ¿Qué
relación hay entre las áreas de dichas porciones Si y las áreas de los rectán-
gulos Ri en los que se ha dividido R?
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Supongamos que Ri se transforma en Si siendo Pi ↔ r⃗(ui, vi)

Sean ∆Si = área de Si y ∆Ri = área de Ri = ∆u∆v

∆Si ≊ ∆S∗
i = área de un paralelogramo (porción del plano tangente a S en Pi)

de lados: T⃗1 = ∂r⃗

∂u
(ui, vi)∆u y T⃗2 = ∂r⃗

∂v
(ui, vi)∆v

∆Si ≊ ∆S∗
i =

∣∣∣T⃗1 × T⃗2

∣∣∣ =
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
(ui,vi)

∆u∆v =
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
(ui,vi)

∆Ri

O sea:
∆Si ≊

∣∣∣N⃗ ∣∣∣
Pi

∆Ri
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Resulta entonces que:

Área de S ≊
n∑

i=1

∣∣∣N⃗ ∣∣∣
Pi

∆Ri

y de allí:

Área de S =
"

Ruv

∣∣∣N⃗uv

∣∣∣ dudv

Ejemplo: Calcular el área de S : x2 +y2 = 4 limitada por z = 0 y z +y = 4.

S : r⃗ = r⃗(u, v) = 2 cosu i⃗ + 2 senu j⃗ + v k⃗; 0 ≤ u ≤ 2π ; 0 ≤ v ≤ 4− 2senu

.
∂r⃗

∂u
= −2 senu i⃗ + 2 cosu j⃗ + 0 k⃗

∂r⃗

∂v
= 0 i⃗ + 0 j⃗ + 1 k⃗

N⃗ = ∂r⃗

∂u
× ∂r⃗

∂v
=

∣∣∣∣∣∣∣∣∣∣∣∣

i⃗ j⃗ k⃗

−2 senu 2 cosu 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 2 cosu⃗i + 2 senu⃗j + 0k⃗

∣∣∣N⃗ ∣∣∣ = 2
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Entonces, área (S) =
"

Ruv

2 dAuv =
∫ 2π

0

∫ 4−2senu

0
2 dv du = 16π.

Si la superficie S es la gráfica de una función, o sea, por ejemplo,

S : z = f(x, y) ; (x, y) ∈ R

podemos escribir una parametrización trivial para S:


x = u

y = v

z = f(u, v)

S : r⃗ = r⃗(u, v) = u i⃗ + v j⃗ + f(u, v) k⃗; (u, v) ∈ R

.
∂r⃗

∂u
= 1⃗i + 0 j⃗ + ∂f

∂u
k⃗

∂r⃗

∂v
= 0 i⃗ + 1 j⃗ + ∂f

∂v
k⃗

N⃗(u, v) = ∂r⃗

∂u
× ∂r⃗

∂v
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i⃗ j⃗ k⃗

1 0 ∂f

∂u

0 1 ∂f

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −∂f

∂u
i⃗− ∂f

∂v
j⃗ + 1k⃗

∣∣∣N⃗ ∣∣∣ =

√√√√(∂f

∂u

)2

+
(

∂f

∂v

)2

+ 1
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Ya que en lo anterior es u = x y v = y, podemos decir que:

Si S : z = f(x, y) ; (x, y) ∈ R y f tiene derivadas parciales continuas,

N⃗ = ±
〈
−∂f

∂x
,−∂f

∂y
, 1
〉

y

Área(S) =
"

Rxy

√√√√(∂f

∂x

)2

+
(

∂f

∂y

)2

+ 1 dxdy

Ejemplo: Calcular el área de S : z = x2 + y2 limitada por z = 1

En este caso es S : z = f(x, y) = x2 + y2 con (x, y) ∈ R donde

R =
{
(x, y)/x2 + y2 ≤ 1

}
∂f

∂x
= 2x ,

∂f

∂y
= 2y , N⃗ = ±⟨−2x,−2y, 1⟩

área(S) =
"

R

√
(2x)2 + (2y)2 + 1 dAxy =

=
"

R

√
4 (x2 + y2) + 1 dAxy =

∫ 2π

0

∫ 1

0

√
4r2 + 1 r dr dθ =

= 2π
∫ 5

1

√
u

du

8 = π

6
(
5
√

5− 1
)

.
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Ejemplo: Calcular el área de S : 2x − 3y + 4z − 3 = 0 limitada por x = 0,
x = 2 , y = 0 e y = 3.

Observación: El vector u⃗ = 2 i⃗− 3 j⃗ + 4k⃗ es normal al plano dado, pero no
es necesariamente el vector requerido para el cálculo del área. Para calcular
el área de una superficie debemos comenzar por dar una representación vec-
torial paramétrica o una representación explícita (como gráfica de función)
de la misma y calcular consecuentemente el vector normal N⃗ y su módulo,
asociados a tal parametrización.

Viendo que en el ejemplo es

S : z = 3− 2x + 3y

4 = f(x, y) , (x, y) ∈ R

R = {(x, y)/0 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 3}

∂f

∂x
= −2

4 ,
∂f

∂y
= 3

4 , N⃗ =
〈2

4 ,−3
4 , 1

〉

área(S) =
"

R

√(2
4

)2
+
(
−3

4

)2
+ 1 dAxy =

∫ 2

0

∫ 3

0

√
29
4 dy dx = 3

√
29

2

7.2.1. Ejercicios
1. Identifiquen las siguientes superficies y hallen el vector normal N⃗
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a) S : r⃗ = r⃗(u, v) = a cosu i⃗ + a senu j⃗ + v k⃗ , (u, v) ∈ R
R = {(u, v)/0 ≤ u ≤ 2π ; v ∈ R}.

b) S : r⃗ = r⃗(u, v) = a cosu senv i⃗ + a senu senv j⃗ + a cosv k⃗
(u, v) ∈ R = [0, 2π]× [0, π]

2. Calculen el área de:

a) S : superficie esférica de radio a.

b) S : x2 + y2 = 4 limitada por z = y, en el primer octante.

c) S : x + 2y + 2z = 5 limitada por x = y2 y x = 2− y2 .

d) S : y + 2z = 2 con x2 + y2 ≤ 1.

e) S : z =
√

x2 + y2 limitada por z = 2 y z = 6.

f ) S : z = x2 + y2 limitada por z = 2 y z = 6.

g) S : z = 2− x2 − y2 limitada por z =
√

x2 + y2.

h) S : y = 3x con x2 + y2 ≤ z ≤ 4.

i) S : x2 + y2 + z2 = a2 z ≥ 0 y x2 + y2 ≤ ay.

7.3. Integral de superficie
Sea S una superficie acotada y suave y ϕ una función a valores reales, definida
y acotada sobre los puntos de S.

Sea P una partición de S en porciones Si, de área ∆Si, con i = 1..n.

Sea |P| = máx {δi/i = 1..n} donde δi = máx {d(P, Q)/P, Q ∈ Si}
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Sean P ∗
i ∈ Si (cualquiera) y Jn =

n∑
i=1

ϕ(P ∗
i )∆Si

Si ĺım
|P|→0

Jn = I ∈ R , independientemente de las particiones y de los puntos
P ∗

i considerados, decimos que ϕ es integrable sobre S y que la integral de
superficie de ϕ sobre S es igual a I . Siendo así, escribimos:"

S

ϕ(x, y, z) dS = I

Aplicaciones de la integral de superficie de una función escalar ϕ
continua sobre S :

1) Si S es acotada y suave,
!

S
1 dS = Área(S)

2) Si ϕ (continua y positiva) representa la densidad superficial de masa en
la superficie S, entonces

Masa(S) =
"

S

ϕ(x, y, z) dS

3) Si la función ϕ (continua y positiva) representa la densidad superficial de
masa en la superficie S, entonces las coordenadas del centro de masa (x̄, ȳ, z̄)
de S se calculan de la siguiente manera:

x̄ =
!

S
x ϕ(x, y, z) dS!

S
ϕ(x, y, z) dS

ȳ =
!

S
y ϕ(x, y, z) dS!

S
ϕ(x, y, z) dS

z̄ =
!

S
z ϕ(x, y, z) dS!

S
ϕ(x, y, z) dS
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El centro de masa de una superficie es el punto en el que se puede con-
siderar que toda la masa de la superficie está concentrada. Si ϕ(x, y, z) =
k ∀(x, y, z) ∈ S, el centro de masa se llama centroide y sus coordenadas son:

x̄ =
!

S
x dS!

S
dS

ȳ =
!

S
y dS!

S
dS

z̄ =
!

S
z dS!

S
dS

Cálculo de la integral de superficie

Sea S : r⃗ = r⃗(u, v) con (u, v) ∈ R, acotada y suave y ϕ una función a
valores reales, continua sobre S. Consideremos en R una partición con rectas
paralelas a los ejes, que determinan un número finito de rectángulos Ri con
áreas ∆Ri. Supongamos que n de esos rectángulos están contenidos en R.
Esa partición de R se corresponde con una división de S en n porciones Si

con áreas ∆Si.

Sabemos que ∆Si ≊ |Ni|∆Ri =
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
i

∆Ri

Cada punto P ∗
i ∈ Si es extremo de un vector r⃗(u∗

i , v∗
i ) con (u∗

i , v∗
i ) ∈ Ri

entonces:

Jn =
n∑

i=1
ϕ(P ∗

i )∆Si ≊
n∑

i=1
ϕ(r⃗(u∗

i , v∗
i ))

∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
i

∆Ri

Siendo ϕ(r⃗(u, v))
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣ una función continua de las variables u y v (ya

que ϕ y las derivadas parciales de r⃗ son continuas),
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ĺım
|P|→0

Jn =
"

R

ϕ(r⃗(u, v))
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣ dA

Es decir:

"
S

ϕ(x, y, z)dS =
"

R

ϕ(r⃗(u, v))
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣ dA

Si la superficie S es la gráfica de una función, o sea, por ejemplo,

S : z = f(x, y) ; (x, y) ∈ R

Según hemos visto, N⃗ =
〈
−∂f

∂x
,−∂f

∂y
, 1
〉

(o su opuesto) y por lo tanto,

∣∣∣N⃗ ∣∣∣ =

√√√√(∂f

∂x

)2

+
(

∂f

∂y

)2

+ 1

Resulta entonces en este caso que:

"
S

ϕ(x, y, z)dS =
"

R

ϕ(x, y, f(x, y))

√√√√(∂f

∂x

)2

+
(

∂f

∂y

)2

+ 1 dA

Actividad: Planteen ustedes el cálculo de la integral de superficie en los
casos: S : y = f(x, z) con (x, z) ∈ R y S : x = f(y, z) con (y, z) ∈ R.

Ejemplos:

Calcular
"

S

√
x2 + y2 dS siendo S : x2 + y2 = 4 limitado por z = 0

y z = 4.
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S : r⃗ = r⃗(u, v) = 2cosu i⃗ + 2senu j⃗ + vk⃗ con 0 ≤ u ≤ 2π , 0 ≤ v ≤ 4
ϕ(x, y, z) =

√
x2 + y2 → ϕ(r⃗(u, v)) =

√
4cos2u + 4sen2u = 2

N⃗(u, v) = ∂r⃗

∂u
× ∂r⃗

∂v
=

∣∣∣∣∣∣∣∣∣∣∣∣

i⃗ j⃗ k⃗

−2 senu 2 cosu 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 2 cosu⃗i+2 senu⃗j +0k⃗

∣∣∣N⃗ ∣∣∣ = 2 ∴

"
S

√
x2 + y2 dS =

∫ 2π

0

∫ 4

0
2 . 2 dv du = 4,4,2π = 32π

Calcular
"

S

z dS siendo S : z =
√

x2 + y2 limitada por z = 1 y
z = 2.
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S : z =
√

x2 + y2 , (x, y) ∈ R con R = {(x, y)/1 ≤ x2 + y2 ≤ 4}

N⃗ =
〈
− x√

x2 + y2 ,− y√
x2 + y2 , 1

〉
y

∣∣∣N⃗ ∣∣∣ =
√

2

ϕ(x, y, z) = z → ϕ(x, y,
√

x2 + y2) =
√

x2 + y2

∴

"
S

z dS =
"

R

√
x2 + y2.

√
2 dA =

para calcular la integral doble conviene en este caso hacer un cambio
de variables usando coordenadas polares

=
∫ 2π

0

∫ 2

1
r
√

2 r drdθ =
√

2 2π
r3

3

∣∣∣∣∣
2

1
= 14

3
√

2 π

La superficie S sobre la que se integra puede ser unión finita de superficies
suaves. Si S = S1 ∪ S2 donde S1 ∩ S2 es un conjunto de área nula y ϕ es
integrable sobre S1 y sobre S2, entonces

"
S

ϕ dS =
"

S1

ϕ dS +
"

S2

ϕ dS
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7.3.1. Ejercicios
1. Integrar:

a) ϕ(x, y, z) = x + y + z sobre S : x2 + y2 = 1 con 1 ≤ z ≤ 2 .

b) ϕ(x, y, z) = z sobre S : y2 + z2 = 4 con 1 ≤ x ≤ 4 , z ≥ 0.

c) ϕ(x, y, z) = z2 sobre S : x2 + y2 + z2 = a2 con z ≥ 0.

d) ϕ(x, y, z) = yz sobre S : x2 + y2 + z2 = 4 con z ≥
√

x2 + y2.

e) ϕ(x, y, z) = x sobre S : y = x2 con 0 ≤ x ≤ 2 , 0 ≤ z ≤ 3.

2. Calculen el centroide de S : x2 + y2 + z2 = a2, limitada por los planos
coordenados, en el primer octante.

7.4. Flujo de un campo vectorial a través de
una superficie

Sea S : r⃗ = r⃗(u, v) con (u, v) ∈ R, una superficie. Se dice que S es suave si
en los puntos de R existen y son continuas las derivadas parciales ∂r⃗

∂u
y ∂r⃗

∂v
,

y son no nulos y no colineales, determinando, en el correspondiente punto de

S, el vector normal N⃗ ,
(

N⃗ = ∂r⃗

∂u
× ∂r⃗

∂v
o N⃗ = ∂r⃗

∂v
× ∂r⃗

∂u

)
cuyo módulo in-

terviene en el cálculo de la integral se superficie de un campo escalar sobre S.

De ahora en más, n⃗ designará al vector normal unitario en un punto de S.
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SUPERFICIE

Definiremos que S es orientable si se distinguen en ella dos caras, identifica-
das,cada una de ellas, con una de las dos elecciones posibles de n⃗:

n⃗ =
∂r⃗

∂u
× ∂r⃗

∂v∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
o n⃗ =

∂r⃗

∂v
× ∂r⃗

∂u∣∣∣∣∣∂r⃗

∂v
× ∂r⃗

∂u

∣∣∣∣∣
Consideremos por ejemplo S : x2 + y2 = 4. Ubicados en un punto P de
S, tiene sentido hablar de normal hacia el exterior y de normal hacia el
interior. Elegido n⃗ hacia el exterior, podríamos desplazarlo continuamente a
lo largo de cualquier trayectoria sobre S y regresar a P apuntando siempre
hacia afuera.

La superficie del ejemplo, al igual que todas las que tratamos en este curso,
es orientable, pero existen superficies que no lo son.

Un ejemplo de superficie no orientable es la que se conoce como cinta de
Moëbius, que tiene una sola cara:
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Cuando, dada una superficie orientable S, se ha elegido una de las dos posi-
bilidades para n⃗, se dice que se ha orientado a S.

Si S1 y S2 son orientables y S = S1 ∪ S2 como en la figura siguiente, S
queda orientada cuando se eligen en S1 y S2 vectores n⃗1 y n⃗2 que inducen (de
acuerdo a la regla de la mano derecha) orientaciones contrarias en la curva
intersección.

Integral de Flujo

Sean S una superficie acotada y orientable, n⃗ el vector normal unitario
elegido en S y F⃗ un campo vectorial con componentes continuas sobre
S.
Llamamos integral de flujo (o, simplemente, flujo) del campo vectorial
F⃗ a través de la superficie S, en la dirección de n⃗, a la integral de
superficie del campo escalar F⃗ · n⃗ sobre S :

Φ =
"

S

F⃗ · n⃗ dS

Las integrales de flujo tienen aplicación en diversas áreas de la física y de la
ingeniería. Por ejemplo:

Si el campo vectorial modela el campo de velocidades de un fluido V⃗
por una cañería o tubería, la integral de flujo

Q =
"

S

V⃗ · n⃗ dS

calcula el volumen de fluido que circula por unidad de tiempo a través
de la superficie S. Q es el caudal volumétrico.
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Si el fluido tiene densidad ρ(x, y, z) la integral de flujo

m =
"

S

ρ(x, y, z)V⃗ · n⃗ dS

calcula el caudal másico m, cantidad de masa de fluido que atraviesa
la superficie S en la dirección normal n⃗ por unidad de tiempo.

Si el campo vectorial modela un campo eléctrico E⃗, la integral de flujo

ΦE =
"

S

E⃗ · n⃗ dS

mide el número de líneas de fuerza que atraviesan la superficie. Es una
forma de describir la intensidad del campo eléctrico producida por una
carga.
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7.4.1. Cálculo de la integral de flujo

Si S : r⃗ = r⃗(u, v) , (u, v) ∈ R y n⃗ =
∂r⃗

∂u
× ∂r⃗

∂v∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
es el normal unitario

elegido en S,

Φ =
"

S

F⃗ · n⃗ dS =
"

R

(
F⃗ · n⃗

)
(r(u, v))

∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣ dA =

=
"

R

F⃗ (r(u, v)) ·
∂r⃗

∂u
× ∂r⃗

∂v∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣
∣∣∣∣∣∂r⃗

∂u
× ∂r⃗

∂v

∣∣∣∣∣ dA =

"
S

F⃗ · n⃗ dS =
"

R

F⃗ (r(u, v)) ·
(

∂r⃗

∂u
× ∂r⃗

∂v

)
dA

Cuando la superficie es gráfica de una función, por ejemplo:
S : z = f(x, y) con (x, y) ∈ R , usamos como siempre la representación
trivial: S : r⃗ = r⃗(x, y) = ⟨x, y, f(x, y)⟩ , (x, y) ∈ R , con la que hemos

visto que N⃗ =
〈
−∂f

∂x
,−∂f

∂y
, 1
〉

o su opuesto. De modo que,

"
S

F⃗ · n⃗ dS =
"

R

F⃗ (x, y, f(x, y)) ·
〈
−∂f

∂x
,−∂f

∂y
, 1
〉

dxdy

(si el normal elegido en S es el que tiene tercera componente positiva)

Observación: En el cálculo del flujo, al ser S una superficie orientable, es
posible considerar los normales unitarios, n⃗ o −n⃗. Si cambiamos la dirección
de la normal a −n⃗, la integral de flujo se convierte en:"

S

F⃗ · (−n⃗) dS = −
"

S

F⃗ · n⃗ dS

Es decir, la integral de flujo cambia de signo. Esto se debe a que el producto
punto F⃗ · n⃗ depende de la orientación de la normal. En resumen, cuando se
elige el normal opuesto, cambia el signo de la integral de flujo.
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Ejemplos

Calcular el flujo del campo vectorial F⃗ = x i⃗ + y j⃗ + z k⃗ a través de
S : x2 + y2 = 4 limitada por z = 0 y z = 4, con n⃗ exterior.

S : r⃗ = r⃗(u, v) = 2 cos u i⃗ + 2 sen u j⃗ + v k⃗ con 0 ≤ u ≤ 2π , 0 ≤ v ≤
4

∂r⃗

∂u
× ∂r⃗

∂v
=

∣∣∣∣∣∣∣∣∣∣∣∣

i⃗ j⃗ k⃗

−2 senu 2 cosu 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 2 cos u i⃗ + 2 sen u j⃗ + 0 k⃗

(vean que ∂r⃗

∂u
× ∂r⃗

∂v
apunta hacia el ˝exterior˝ de S)

F⃗ (r⃗(u, v)) = 2 cos u i⃗ + 2 sen u j⃗ + v k⃗

F⃗ (r⃗(u, v)) ·
(

∂r⃗

∂u
× ∂r⃗

∂v

)
= 4 cos2u + 4 sen2u = 4

"
S

F⃗ · n⃗ dS =
"

Ruv

4 dA = 4 área(Ruv) = 32π

Calcular el flujo del campo vectorial F⃗ = x i⃗ + y j⃗ + z k⃗ a través de
S : z = 4− x2 − y2 limitada por z = 0 con n⃗ exterior.
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S : z = f(x, y) = 4− x2 − y2 , (x, y) ∈ R R = {(x, y)/x2 + y2 ≤ 4}

N⃗ = ⟨2x, 2y, 1⟩

F⃗ (x, y, f(x, y)) =
〈
x, y, 4− x2 − y2

〉
F⃗ (x, y, f(x, y)) · N⃗ = 4 + x2 + y2"
S

F⃗ · n⃗ dS =
"

R

(
4 + x2 + y2

)
dA

y el cálculo de la integral doble se puede completar con un cambio de
variables usando coordenadas polares:

"
R

(
4 + x2 + y2

)
dA =

"
Rrθ

f(r, θ) |J | dArθ =

=
∫ 2π

0

∫ 2

0

(
4 + r2

)
r dr dθ = 24π

Notación:

Una notación alternativa
"

S

(Pcosα + Qcosβ + Rcosγ) dS suele utili-

zarse para denotar la integral de flujo
"

S

F⃗ ·n⃗ dS donde F⃗ = ⟨P, Q, R⟩.

Cuando la superficie es cerrada, por ejemplo una esfera, o unión de su-
perficies que encierran un sólido, la integral de superficie suele anotarse
de la siguiente forma:

�
S

F⃗ · n⃗ dS.
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7.4.2. Flujo de un campo vectorial radial a través de
una esfera

Este caso es de importancia en la física. Supongamos que se tiene un campo
vectorial radial, llamémoslo en este caso E⃗, definido sobre una superficie
esférica S de radio a centrada en el origen de coordenadas. En este caso, al
ser radial, sobre la esfera el campo tiene la misma dirección al vector normal
n⃗ en todos los puntos de S.

El flujo del campo fuera de S es:

ΦE =
	

S

E⃗ · n⃗ dS

Siendo que el campo es radial (paralelo al normal en todo punto sobre S)
resulta:

E⃗ · n⃗ =
∣∣∣E⃗∣∣∣ · |η⃗| · cos(θ) =

∣∣∣E⃗∣∣∣
Además, por ser el campo radial, el módulo del campo sobre la esfera sólo
depende de la distancia al origen (r), en este caso a.

Llamando: |E⃗| = E, donde E es la magnitud del campo, en este caso cons-
tante que sólo depende de a, radio de la esfera.

Entonces:
E⃗ · n⃗ = E (n⃗ · n⃗) = E

Finalmente resulta que el flujo es:

ΦE =
"

S

E⃗ · n⃗ dS =
"

S

EdS = E.Area(S) = E4πa2

Esta última igualdad también suele anotarse de la forma siguiente, en la que
se expresa la magnitud del campo en función del flujo a través de la esfera
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de radio a:
E = ΦE

4πa2

Este resultado es de mucha utilidad en Física, en especial en Electromagne-
tismo, para determinar la magnitud del campo eléctrico conociendo el valor
del flujo.

Ejercicio:

Aplicar lo anterior para calcular el flujo del campo E⃗ = ⟨x, y, z⟩ hacia afuera
de la superficie esférica S : x2 + y2 + z2 = a2.

7.4.3. Ejercicios

1. Calculen la integral de flujo
"

S

F⃗ · n⃗ dS en los siguientes casos:

a) F⃗ = ⟨xz, yz, x2⟩ ; S : x2 + y2 = 9 limitado por z = 0 y z = 4 y n⃗
exterior.

b) F⃗ = ⟨x, y, z⟩ ; S es el triángulo de vértices (1, 0, 0) , (0, 1, 0) y
(0, 0, 1), usando la representación r = r(u, v) = ⟨u + v, u− v, 1− 2u⟩
del plano y n⃗ con tercera componente positiva.

c) F⃗ = ⟨x, y, z⟩ ; S es el triángulo de vértices (1, 0, 0) , (0, 1, 0) y
(0, 0, 1), usando una representación explícita para el plano, n⃗ con
tercera componente negativa.

d) F⃗ = ⟨y,−x, 1⟩ ; S : z = x2 + y2 limitada por z = 4 , n⃗ con tercera
componente negativa.

e) F⃗ = ⟨y,−x, z⟩ ; S : z =
√

x2 + y2 limitada por z = 3 , n⃗ con
tercera componente negativa.

f ) F⃗ = ⟨0, 1, y⟩ ; S : z =
√

x2 + y2 , con x2 + y2 ≤ 4 , n⃗ con tercera
componente negativa.

g) F⃗ = ⟨y, zy, 1⟩ ; S : 3x + 6y + 3z = 6 , con 0 ≤ y ≤ 1 , 0 ≤ z ≤ 1 ,
n⃗ con primera componente positiva.

h) F⃗ = ⟨y, 0, 2⟩ ; S : frontera del sólido

V =
{

(x, y, z)/
√

x2 + y2 ≤ z ≤
√

8− x2 − y2
}

270



7.5. TEOREMA DE STOKES O DEL ROTOR

2. Siendo S : x2 + y2 + z2 = a2 con n⃗ exterior, calculen

"
S

(
xz cosα + yz cosβ + x2 cosγ

)
dS

.

3. Suponiendo que F⃗ (x, y, z) = x⃗i− (2x + y)⃗j + zk⃗ es la densidad de flujo
de un fluido

i) calculen la masa de ese fluido que atraviesa el hemisferio S : z =√
a2 − x2 − y2 en la dirección del vector normal con tercera componente

positiva, por unidad de tiempo

ii) calculen la masa de ese fluido que atraviesa la frontera del sólido

V =
{
(x, y, z)/0 ≤ z ≤

√
a2 − x2 − y2

}
con dirección hacia el exterior, por unidad de tiempo.

4. Sea F⃗ (x, y, z) = −z⃗i + x⃗j + yk⃗ y sea S : x + y + z = 1, limitado por los
planos coordenados, en el primer octante y n⃗ con tercera componente
positiva. Verifiquen que:

a) Si C es la curva frontera de S con la orientación inducida por n⃗
de acuerdo a la regla de la mano derecha, resulta:∮

C F⃗ · dr⃗ =
!

S
rotF⃗ · n⃗ dS

b) Si V es el sólido limitado por S y por los planos coordenados en
el primer octante y S̃ es la frontera de V, con n⃗ exterior resulta:!

S̃
F⃗ · n⃗ dS =

#
V

divF⃗ dV

7.5. Teorema de Stokes o del rotor

George Gabriel Stokes (1819-1903) fue un matemático y físico irlandés que
realizó importantes contribuciones a la física teórica y a la teoría de series.

El teorema de Stokes es la versión en el espacio tridimensional del teorema
de Green, que relaciona la integral de superficie del rotacional de un campo
vectorial con la circulación alrededor de la frontera de esa superficie.

271



CAPÍTULO 7. SUPERFICIES E INTEGRALES DE SUPERFICIE

Teorema de Stokes o del rotor

Sea S una superficie orientable en la que se ha elegido el vector normal
n⃗ y cuya frontera es la curva cerrada C orientada con la orientación
inducida por n⃗ de acuerdo a la regla de la mano derecha. Si F⃗ es un
campo vectorial cuyas componentes tienen derivadas parciales conti-
nuas en un dominio abierto D que contiene a C y a S, entonces:∮

C
F⃗ · dr⃗ =

"
S

rotF⃗ · n⃗ dS

Importante:

(1) Interpretación física de la circulación en un campo de velocida-
des de un fluido

Cuando el campo vectorial F⃗ representa un campo de velocidades v⃗ de un
fluido, la circulación sobre una curva cerrada C se define como:

Circulación =
∮

C
F⃗ · dr⃗.

Desde el punto de vista físico, la circulación mide la tendencia del fluido a
rotar o girar alrededor de la curva cerrada C. Esta cantidad tiene una relación
directa con la vorticidad del flujo y la naturaleza rotacional del campo de
velocidades.

El significado físico es el siguiente:

1. Circulación positiva: Una circulación positiva indica que las veloci-
dades del fluido están alineadas con el sentido del recorrido de la curva
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C. Es decir, el fluido tiene una rotación coherente con el sentido del
contorno.

2. Circulación negativa: Una circulación negativa significa que el fluido
rota en sentido opuesto al de la curva cerrada C, lo que implica una
rotación contraria.

3. Circulación nula: Si la circulación es cero, el fluido no tiene rotación
neta alrededor de la curva cerrada C. Esto puede ocurrir si el flujo
es irrotacional (∇⃗ × F⃗ = 0⃗) o si las contribuciones rotacionales en
diferentes partes de la curva se cancelan mutuamente.

Es decir que, a través del teorema de Stokes, la circulación está directa-
mente relacionada con la vorticidad del fluido, ∇× F⃗ . Este establece que la
circulación sobre una curva cerrada C es igual al flujo del rotor (vorticidad)
a través de una superficie S que tiene por borde a la curva cerrada C:

∮
C

F⃗ · dr⃗ =
"

S
(∇× F⃗ ) · n⃗ dS

donde: n⃗ es el vector normal unitario a la superficie S, dS es un elemento
infinitesimal de área en S.

(2) Una consecuencia inmediata del teorema de Stokes es que, para S1 y S2
dos superficies orientables, con frontera común C, ambas con orien-
tación concordante con la de C, y F⃗ un campo vectorial cuyas componentes
tienen derivadas parciales continuas en un dominio abierto D que contiene a
C y a S1 y a S2, entonces:"

S1

rotF⃗ · n⃗ dS =
"

S2

rotF⃗ · n⃗ dS

(3) El flujo de un campo rotor, no depende de la superficie que
atraviesa, sino de su frontera. Nos permite además concluir que para
evaluar una circulación aplicando la igualdad de Stokes, es suficiente con
elegir la superficie más simple, que obviamente es un plano, si se trata de
una curva plana.

7.5.1. Aplicaciones del teorema de Stokes
1. Evaluar

∮
C F⃗ · dr⃗ mediante una integral de flujo.
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Ejemplo: Siendo C :
x2 + y2 = 2y

y = z
con orientación antihora-

ria vista desde z+, calcular
∮

C
(z − y)dx + (x − z)dy + (x + z)dz

aplicando el teorema de Stokes.

Observemos primeramente que en este caso, las componentes del
campo vectorial F⃗ = ⟨z − y, x− z, x + z⟩ tienen derivadas par-
ciales continuas en D = R3. Para aplicar el teorema de Stokes es
necesario definir una superficie orientable S que tenga a la curva
C como frontera y elegir en S el vector normal de forma tal que
sea concordante con la orientación de C. Existen múltiples eleccio-
nes posibles para S. Elegiremos la más sencilla: porción de plano
y = z limitada por x2 + y2 = 2y

Sea entonces S : z = f(x, y) = y con (x, y) ∈ R ,

R =
{
(x, y)/x2 + y2 ≤ 2y

}

N⃗ = ⟨0,−1, 1⟩ (concordante con la orientación dada para C)

S así definida es orientable, tiene a la curva cerrada C como fron-
tera, S y C están orientadas de manera concordante de acuerdo a
la regla de la mano derecha, S y C están incluidas en el conjunto
en el que las componentes del campo vectorial F⃗ tienen derivadas
parciales continuas. Por el teorema de Stokes, la circulación de ese
campo vectorial F⃗ es igual a

!
S

rotF⃗ · n⃗ dS.
Calculamos a continuación esa integral de flujo:
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rotF⃗ =

∣∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂

∂x

∂

∂y

∂

∂z
z − y x− z x + z

∣∣∣∣∣∣∣∣∣ = ⟨1, 0, 2⟩

rotF⃗ (x, y, y) = ⟨1, 0, 2⟩

rotF⃗ (x, y, y) · N⃗ = ⟨1, 0, 2⟩ · ⟨0,−1, 1⟩ = 2"
S

rotF⃗ · n⃗ dS =
"

R

2 dA = 2 área(R) = 2π

.
∴
∮

C
F⃗ · dr⃗ = 2π

.

2. Evaluar
!

S
rotF⃗ · n⃗ dS mediante una circulación.

Ejemplo: Siendo F⃗ = ⟨y2, xy, xz⟩, S : z =
√

2− x2 − y2 con
z ≥ 1 y n⃗ con tercera componente no negativa,
calcular

!
S

rotF⃗ · n⃗ dS aplicando el teorema de Stokes.

S es una superficie orientable cuya frontera es la curva cerrada

C :
x2 + y2 = 1

z = 1
(circunferencia en el plano z = 1 que conside-

ramos con la orientación inducida por n⃗).

Las componentes de F⃗ = ⟨y2, xy, xz⟩ tienen derivadas parciales
continuas en D = R3. C y S están incluidas en ese conjunto.
Por el teorema de Stokes, se tiene entonces que la integral de flujo
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del rotor de F⃗ a través de S y en la dirección de n⃗ es igual a∮
C F⃗ · dr⃗. Calcularemos entonces esa integral de línea:

C : r⃗ = r⃗(t) = ⟨cos t, sen t, 1⟩ t ∈ [0, 2π]

F⃗ (r⃗(t)) =
〈
sen2t, cos t sen t, cos t

〉

r⃗ ′(t) = ⟨−sen t, cos t, 0⟩

F⃗ (r⃗(t)) · r⃗ ′(t) = −sen3t + cos2tsent∮
C

F⃗ ·dr⃗ =
∫ 2π

0
(−sen3t+cos2tsent)dt =

∫ 2π

0
(−sent+2cos2t sent)dt = 0

∴

"
S

rotF⃗ · n⃗ dS = 0

Aplicación del teorema de Stokes al caso de una superficie con dos
curvas cerradas como frontera

Ejemplo: Sea S : z =
√

x2 + y2 limitada por z = 1 y z = 2 , con n⃗ exterior
y F⃗ = ⟨−z,−x, y⟩.

La frontera de S está formada en este caso por

C1 :
x2 + y2 = 1

z = 1
y C2 :

x2 + y2 = 2
z = 2

Consideremos esas curvas orientadas como se muestra en la figura siguiente
(vistas desde z+, C1 con orientación antihoraria y C2 horaria ) e imaginemos
un corte en la superficie, a lo largo de una curva auxiliar γ.
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Podemos pensar ahora que la curva frontera de la superficie es la curva ce-
rrada C : C1 ∪ γ ∪ C2 ∪ (−γ)

Entonces, por el teorema de Stokes:"
S

rotF⃗ · n⃗ dS =
∮

C
F⃗ · dr⃗ =

∮
C1

F⃗ · dr⃗ +
∫

γ
F⃗ · dr⃗ +

∮
C2

F⃗ · dr⃗ +
∫

−γ
F⃗ · dr⃗

∴

"
S

rotF⃗ · n⃗ dS =
∮

C1
F⃗ · dr⃗ +

∮
C2

F⃗ · dr⃗

Calculen ustedes las dos integrales de línea para obtener así el valor del flujo
del rotor de F⃗ a través de S.

Caso de una superficie cerrada

Consideremos ahora el caso de una superficie S cerrada con normal exterior.
Podemos pensar a S como la unión de dos superficies como se ve en la figura:
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Las curvas C1 y C2 coinciden con C pero una tiene orientación contraria a
la otra (C1 y C2 están orientadas de manera concordante con los vectores
normales de S1 y S2 respectivamente)

Importante Si F⃗ es un campo vectorial con componentes con derivadas
parciales continuas en un subconjunto D de R3 y S está incluida en ese
conjunto, entonces: ˝El flujo de un campo rotor a través de una superficie
cerrada es nulo˝.

Pues: "
S1

rotF⃗ · n⃗ dS =
∮

C1
F⃗ · dr⃗

"
S2

rotF⃗ · n⃗ dS =
∮

C2
F⃗ · dr⃗

∴

"
S

rotF⃗ ·n⃗ dS =
"

S1

rotF⃗ ·n⃗ dS+
"

S2

rotF⃗ ·n⃗ dS =
∮

C
F⃗ ·dr⃗−

∮
C

F⃗ ·dr⃗ = 0

Interpretación del rotor en un punto

Supongamos que V⃗ (x, y, z) es el campo de velocidades de un fluido. Sea P0
un punto en la corriente. Consideremos un círculo Sr con centro en P0 y radio
r y sea Cr la circunferencia frontera de ese círculo.
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Aplicando la igualdad de Stokes se tiene:
∮

Cr

V⃗ · dr⃗ =
"

Sr

rotV⃗ · n⃗ dS Para

algún punto P ∗ ∈ Sr es
"

Sr

rotV⃗ · n⃗ dS =
(
rotV⃗ · n⃗

)
(P ∗)área(Sr) (¿por

qué?) y entonces
∮

Cr
V⃗ · dr⃗

área(Sr)
=
(
rotV⃗ · n⃗

)
(P ∗)

El primer miembro de la igualdad anterior representa un promedio entre la
circulación del campo a lo largo de Cr y el área de la superficie limitada por
Cr. Esos promedios varían con r. El límite de esos promedios cuando r tiende
a cero se llama densidad de circulación en P0. Si r → 0 entonces P ∗ → P0 y

resulta: ĺım
r→0

∮
Cr

V⃗ · dr⃗

área(Sr) = =
(
rotV⃗ · n⃗

)
(P0) =

∣∣∣rotV⃗ (P0)
∣∣∣ |n⃗| cosθ

La densidad de circulación será entonces máxima cuando el ángulo θ sea nulo
y el valor máximo será

∣∣∣rotV⃗ (P0)
∣∣∣ .

Por esta razón. al vector rotV⃗ se lo denomina vector de vorticidad. Es decir
que el rotor de un campo vectorial en un punto P representa la tendencia de
las partículas cercanas al punto P a rotar en torno al eje que apunta en la
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dirección del rotV⃗ (P ). El vector rot(V⃗ ), apunta en la dirección en la cual el
fluido gira más rápido, siendo el valor |rot(V⃗ )| una medida de la rapidez de
esta rotación. Para el caso en que rot(V⃗ ) = 0⃗, el fluido se dice irrotacional,
es decir que las partículas se desplazarán pero sin rotar.

7.5.2. Ejercicios

1. En los siguientes incisos evalúen
∮

C
F⃗ ·dr⃗ aplicando el teorema de Stokes

siempre que sea posible. (Elijan en cada caso la orientación de la curva
e indíquenla en un gráfico.)

a) F⃗ =
〈
x2ex − y,

√
y2 + 1, z3

〉
; C :

z = 4− x2 − y2

z = 0

b) F⃗ = ⟨x2, y4 − x, z2seny⟩ ; C :
z = x2 + y2

z = 4

c) F⃗ =
〈
2x2, 4y2, e8z2

〉
; C :

z = x2 + y2

z = 8− y

d) F⃗ = ⟨cosx, seny, z⟩ ; C :
x2 + y2 = 1

z = x− y

e) F⃗ = ⟨x2 + 2xy3z, 3x2y2z − y, x2y3⟩ ; C : frontera del triángulo
de vértices (0, 1, 0) , (0, 0, 4) y (2, 0, 0)

f ) F⃗ = ⟨−y, z, x⟩ ; C : frontera del cuadrado de vértices (0, 2, 2)
, (2, 2, 2), (2, 2, 0) y (0, 2, 0)

2. En los siguientes incisos, evalúen
!

S
rotF⃗ · n⃗ dS aplicando el teorema

de Stokes siempre que sea posible.

a) F⃗ = ⟨zx, 2y2, z3⟩ ; S : z = 4− x2 − y2 limitada por z = 0 ;
n⃗ con tercera componente positiva.

b) F⃗ = ⟨2x− y, yz2, y2z⟩ ; S : z =
√

4− x2 − y2 limitada por
z = 0 ; n⃗; con tercera componente positiva.

c) F⃗ =
〈
zx2, zexy2 − x, xy2

〉
; S : z = 1 − x2 − y2 limitada por

z = 0 ;
n⃗ con tercera componente positiva.
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d) F⃗ =
〈
xy, 4xez2 − x, zy + 1

〉
; S : y = x2 + z2 con y ≤ 2 ;

n⃗ hacia la izquierda.

e) F⃗ = ⟨xyz, 4x2y3 − z, 8cosxz2⟩ ; S : superficie frontera del
cubo V = [0, 1] × [0, 1] × [0, 1] sin la cara que se encuentra en el
plano z = 0 ; n⃗ hacia el exterior del cubo.

f ) F⃗ = ⟨zx, x2 + y2, z2 − y2⟩ ; S : z =
√

x2 + y2 limitada por
x2 + y2 + z2 = 2 ; n⃗ con tercera componente negativa.

3. Sea f un campo escalar con derivadas parciales de segundo orden con-
tinuas en R3. Muestren que

∮
C

(
f ∇⃗f

)
· dr⃗ = 0 para toda C cerrada.

4. Analizar en cada caso si es posible aplicar el Teorema de Stokes para

calcular la circulación de F⃗ a lo largo de C :
x2 + y2 = 1

z = 0
Hallar el

valor de esa circulación.

(i) F⃗ =
〈

−x

(x2 + y2 + z2)3/2 ,
−y

(x2 + y2 + z2)3/2 ,
−z

(x2 + y2 + z2)3/2

〉

(ii) F⃗ =
〈
−y

x2 + y2 ,
x

x2 + y2 , z

〉
5. Sea la superficie S definida por la parte del cono

z =
√

x2 + y2,

comprendida entre los planos z = 1 y z = 2, orientada con la normal
hacia afuera del volumen delimitado. Sea además el campo vectorial
dado por F⃗ = ⟨−y, x, z2⟩

(i) Verificar que es posible aplicar el Teorema de Stokes en el dominio
considerado.

(ii) Usar el teorema de Stokes para calcular la circulación de F⃗ sobre
la frontera de la superficie S, intersección del cono con los planos z = 1
y z = 2, en el sentido positivo (antihorario cuando se observa desde
arriba).

(iii) Calcular además el flujo del campo rotor con normal dado por la
regla de la mano derecha, para comprobar el resultado obtenido en el
punto (ii) mediante el teorema de Stokes.

Observación: en cada caso, hallar el dominio del campo, su rotor, y
el conjunto en el cual tiene sus componentes con derivadas parciales
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continuas.

7.6. Teorema de Gauss o de la divergencia
Johann Carl Friedrich Gauss (1777 – 1855). Matemático, astrónomo y físico
alemán que contribuyó significativamente en muchos campos, incluida la teo-
ría de números, el análisis matemático, la geometría diferencial, la geodesia,
el magnetismo y la óptica. Fue de los primeros en extender el concepto de
divisibilidad a otros conjuntos. Riemann trabajo junto a Gauss y fue éste su
director de tesis de doctorado.

El teorema de la divergencia es un resultado importante en la física y en in-
geniería, particularmente en electrostática y en mecánica de fluidos. Vincula
la integral de la divergencia dentro de un volumen con la integral superficial
que encierra al volumen considerado. Intuitivamente enuncia que la suma de
todas las fuentes de un campo en una región es igual al flujo de salida neto.

Teorema de Gauss o de la divergencia

Sea S una superficie orientable y cerrada en la que se ha elegido n⃗
exterior y sea V el sólido limitado por S. Si F⃗ es un campo vectorial
cuyas componentes tienen derivadas parciales continuas en D ⊂ R3, y
S y V están incluidos en ese conjunto, entonces	

S

F⃗ · n⃗ dS =
$

V

div(F⃗ ) dV

Observaciones:

(i) Recordar que si el campo vectorial F⃗ = ⟨P, Q, R⟩ definido en R3, la
divergencia es un campo escalar que se calcula como sigue:
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div(F⃗ ) = ∇⃗ · F⃗ = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
.

Donde:

∇⃗ =
(

∂
∂x

, ∂
∂y

, ∂
∂z

)
es el operador nabla

∇⃗ · F⃗ representa el producto escalar entre ∇⃗ y el campo vectorial F⃗ .

(ii) En el enlace se puede ver una demostración del teorema Demostración,
que tiene cinco partes.

(iii) Interpretación del Teorema de Gauss para el Flujo hacia afuera de un
cubo diferencial

Sea un campo vectorial F⃗ = ⟨P, Q, R⟩, donde P (x, y, z), Q(x, y, z), y R(x, y, z)
son las componentes del campo.

Consideremos un cubo diferencial con lados de longitud ∆x, ∆y, y ∆z, cen-
trado en el punto (x, y, z). El flujo neto hacia afuera del cubo se calcula
sumando los flujos a través de sus seis caras.

Calculemos el Flujo a través de las caras perpendiculares al eje x:

Para la cara derecha, situada en x + ∆x
2 , el flujo es:

P

(
x + ∆x

2 , y, z

)
· (∆y∆z).

Para la cara izquierda, situada en x− ∆x
2 , el flujo es:

P

(
x− ∆x

2 , y, z

)
· (∆y∆z).
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El flujo neto en la dirección x es la diferencia entre los dos:

Flujo neto en x =
[
P

(
x + ∆x

2 , y, z

)
− P

(
x− ∆x

2 , y, z

)]
· (∆y∆z).

Aproximando la diferencia por la derivada, resulta:

Flujo neto en x ≈ ∂P

∂x
·∆x∆y∆z.

Ahora, de modo similar, calculamos el Flujo en las direcciones y y z, para
las caras perpendiculares a y y z:

Flujo neto en y ≈ ∂Q

∂y
·∆x∆y∆z,

Flujo neto en z ≈ ∂R

∂z
·∆x∆y∆z.

Luego, el Flujo total hacia afuera del cubo es la suma de los flujos en x, y, y
z:

Flujo total =
(

∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

)
·∆x∆y∆z.

La expresión entre paréntesis es la divergencia del campo F⃗ :

∇ · F⃗ = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
.

Por lo tanto:
Flujo total = (∇ · F⃗ ) ·∆x∆y∆z.

Cuando se toma el límite ∆x, ∆y, ∆z → 0, el flujo total a través de la super-
ficie del cubo se relaciona directamente con la divergencia del campo en su
interior.

Resumiendo: para un volumen arbitrario V con frontera ∂V , el teorema de
Gauss establece: "

∂V

F⃗ · n⃗ dS =
$

V

(∇ · F⃗ ) dV,

donde n⃗ es el vector normal unitario a la superficie cerrada ∂V y dS es el
elemento diferencial de área.
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7.6.1. Aplicaciones del teorema de Gauss
1. Calcular el flujo de un campo vectorial a través de una super-

ficie cerrada mediante una integral triple.

Ejemplo Calcular
�

S
F⃗ · n⃗ dS siendo F⃗ = ⟨x, y, z⟩ y S la frontera

del sólido V limitado por z = x2 + y2 y z = 4, con n⃗ exterior.

Como S es una superficie cerrada y orientable y F⃗ es un campo
vectorial con componentes continuas en D = R3, se puede aplicar
el teorema de Gauss para afirmar que	

S

F⃗ · n⃗ dS =
$

V

div(F⃗ ) dV

Calculamos a continuación la integral triple :

div(F⃗ ) = 1 + 1 + 1 = 3

V =
{
(x, y, z) ∈ R3/(x, y) ∈ R ∧ x2 + y2 ≤ z ≤ 4

}
R =

{
(x, y)/0 ≤ x2 + y2 ≤ 4

}
$

V

div(F⃗ ) dV =
$

V

3 dV =
∫ 2π

0

∫ 2

0

∫ 4

r2
3rdzdrdθ = ... = 24π

Atención: Si la propuesta hubiera sido: Calcular
!

S
F⃗ · n⃗ dS

siendo F⃗ = ⟨x, y, z⟩ y S : z = x2 + y2 limitada por z = 4, con n⃗
hacia el exterior del paraboloide, el teorema de Gauss no podría
aplicarse pues la superficie no es, en este caso, cerrada. La integral
de flujo debe calcularse en este caso de manera directa. realicen
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ese cálculo y comprueben que el resultado es 8π. Deduzcan luego
el valor del flujo a través de S̃ : z = 4 limitada por z = x2 + y2

2. Calcular el volumen de un sólido mediante una integral de
flujo

Si divF⃗ = 1 y las componentes de F⃗ tiene derivadas parciales continuas
(como sucede, por ejemplo, con F⃗ =

〈
x

3 ,
y

3 ,
z

3

〉
), por el teorema de

Gauss se puede afirmar que, si S es cerrada y orientable , n⃗ es exterior
a S y V es el sólido limitado por S ,	

S

F⃗ · n⃗ dS =
$

V

div(F⃗ ) dV =
$

V

1 dV = volumen(V )

O sea que el volumen del sólido V limitado por S puede hallarse resol-
viendo la integral de superficie:

�
S

F⃗ · n⃗ dS.

Interpretación de la divergencia

Recurrimos una vez más al campo de velocidades de un fluido, V⃗ (x, y, z).
Consideremos, centrada en un punto P0, una pequeña superficie esférica Sr

de radio r, que limita a la esfera sólida Vr.

Según la igualdad del teorema de Gauss, con n⃗ exterior, se tiene:	
Sr

V⃗ · n⃗ dS =
$

Vr

div(V⃗ ) dV

Para algún punto P ∗ ∈ Vr es
$

Vr

divV⃗ dV = divV⃗ (P ∗).vol(Vr) (¿por qué?)

y entonces
�

Sr
V⃗ · n⃗ dS

vol(Vr)
= divV⃗ (P ∗)

286



7.6. TEOREMA DE GAUSS O DE LA DIVERGENCIA

El primer miembro de la igualdad anterior representa un promedio entre el
flujo del campo a través de Sr en la dirección normal exterior y el volumen
del sólido limitado por Sr y el límite de esos promedios cuando r tiende a
cero es la divergencia de V⃗ en (P0) :

divV⃗ (P0) = ĺım
r→0

�
Sr

V⃗ · n⃗ dS

vol(Vr)

Nota:

La divergencia de un campo vectorial mide la razón neta de cambio de
la masa del fluido que fluye desde un punto por unidad de volumen. En
otras palabras la divergencia mide la tendencia de un fluido a divergir
desde un punto.

Si el campo tiene fuentes o sumideros, la divergencia de dicho campo
será diferente de cero.

Si la div(F⃗ (P )) = 0, el flujo neto en P es nulo. En este caso el cam-
po vectorial se llama solenoidal, y el flujo se dice incompresible. La
cantidad de lineas de flujo entrantes, es igual a las salientes.

Si div(F⃗ (P )) > 0 la cantidad de flujo que sale en P es mayor a la que
entra (existen fuentes). Se dice que en P hay una fuente o un manantial.

Si div(F⃗ (P )) < 0 la cantidad de flujo que sale en P es menor a la que
entra. En P hay un sumidero.

7.6.2. Ejercicios
1. En los siguientes incisos, calculen el flujo hacia el exterior de F⃗ a través

de la superficie frontera del sólido V aplicando el teorema de Gauss
siempre que sea posible.

a) F⃗ = ⟨(y − x), (z − y), (y − x)⟩ ; V = [−1, 1]× [−1, 1]× [−1, 1]

b) F⃗ = ⟨x2, y2, z2⟩ ; V = [0, 1]× [0, 1]× [0, 1]

c) F⃗ = ⟨x2, y2, z2⟩ ; V limitado por x2 + y2 = 4 ; z = 0 y z = 1.

d) F⃗ = ⟨x2, xz, 3z⟩ ; V = {(x, y, z)/x2 + y2 + z2 ≤ 4}

e) F⃗ = ⟨x, y, z⟩ ; V limitado por z =
√

x2 + y2 y z =
√

4− x2 − y2.
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2. Demuestren que el flujo hacia el exterior de un campo vectorial cons-
tante, a través de cualquier superficie cerrada y orientable S, es igual
a cero.

3. Usen el teorema de Gauss para mostrar que
�

S

(
∇⃗ × F⃗

)
·n⃗ dS = 0 para

toda S cerrada, si el campo tiene componentes con derivadas parciales
segundas continuas en un dominio que contiene a S.

4. Sea V = {(x, y, z)/4 ≤ x2 + y2 + z2 ≤ 9 } y sea F⃗ = (x, y, z) con
normal exterior. Verificar en este caso la igualdad del teorema de Gauss.

5. Entre todos los sólidos rectangulares definidos por las desigualdades:
0 ≤ x ≤ a ; 0 ≤ y ≤ b ; 0 ≤ z ≤ 1 , encuentren aquel para
el cual, el flujo a través de su frontera y hacia el exterior del campo
vectorial F⃗ = ⟨−x2 − 4xy,−6yz, 12z⟩ sea máximo. (Nota: recordar que
los posibles puntos críticos de una función de varias variables son los
que hacen cero las derivadas parciales de esa función).

6. Aplicar el teorema de Gauss a un campo gradiente, es decir a un campo
∇⃗f(x, y, z) y obtener resultados para el caso en que f es armónica, esto
es que el laplaciano es cero (f es armónica): ∆f = ∇2f = ∂2f

∂x2 + ∂2f
∂y2 +

∂2f
∂z2 = 0

7. Comprobar el teorema de Gauss para un cubo [−1, 1]× [−1, 1]× [−1, 1]
y el campo: (i) F⃗ = ⟨x, y, z⟩ (ii) F⃗ = ⟨2, 3, 4⟩

8. Obtengan el volumen de una esfera de radio a por medio de una integral
de flujo.

9. (i) Calculen el volumen del sólido limitado por z = x2 + y2 ; z = 4
y z = 9. (ii) Evalúen el flujo del campo vectorial F⃗ = ⟨2x, 2y,−2z⟩ a
través de la frontera del sólido de la parte con dirección normal exterior.
(iii) Calculen también el flujo de dicho campo sólo a través de la porción
del paraboloide (usar de ser posible los datos hallados en los incisos
anteriores).

7.7. Aplicaciones del Cálculo Vectorial a la
física

7.7.1. Ley de Gauss
El Teorema de la divergencia, que relaciona la divergencia de un campo vec-
torial con el valor de la integral de superficie del flujo definido por este campo,
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es un resultado importante en física, sobre todo en electrostática y en diná-
mica de fluidos. Además, el teorema de Gauss puede utilizarse en diferentes
problemas de física gobernados por leyes inversamente proporcionales al cua-
drado de la distancia, como la gravitación o la intensidad de la radiación, en
estos casos se establece unaley relacionada al teorema que recibe el nombre
de Ley de Gauss y que constituye también la primera de las ecuaciones
de Maxwell.

James Clerk Maxwell (1831 – 1879). Físico escocés conocido principalmente
por haber desarrollado la teoría electromagnética clásica, sintetizando todas
las anteriores observaciones, experimentos y leyes sobre electricidad, magne-
tismo y aun sobre óptica, en una teoría consistente. Las ecuaciones de Max-
well demostraron que la electricidad, el magnetismo y la luz, son manifesta-
ciones del mismo fenómeno: el campo electromagnético. Desde ese momento,
todas las otras leyes y ecuaciones clásicas de estas disciplinas se convirtieron
en casos simplificados de las ecuaciones de Maxwell. Su trabajo sobre electro-
magnetismo ha sido llamado la “segunda gran unificación en física”, después
de la primera llevada a cabo por Newton. Fue una de las mentes matemáticas
más preclaras de su tiempo, y muchos físicos lo consideran el científico del
siglo XIX que más influencia tuvo sobre la física del siglo XX.

En física y en análisis matemático, la Ley de Gauss relaciona el flujo eléctrico
a través de una superficie cerrada y la carga el éctrica encerrada en esta
superficie. De esta misma forma, también relaciona la Divergencia del campo
eléctrico con la densidad de carga.

Estos temas se estudiarán básicamente en Física II.

La ley de Gauss tiene la siguiente interpretación física. El potencial debido
a una carga puntual Q en (0, 0, 0) está dado por:

Φ(x, y, z) = Q
4πr

= Q

4π
2
√

x2+y2+z2

y el campo eléctrico correspondiente es:

E⃗ = −∇Φ = Q
4π

( r
r3 )

siendo r = x⃗i + yj⃗ + zk⃗, es decir que

E⃗ = Q
4π

( x
(x2+y2+z2)3/2 i⃗ + y

(x2+y2+z2)3/2 j⃗ + z
(x2+y2+z2)3/2 k⃗).

Para una distribución continua de carga descripta por medio de una densidad
de carga ρ, el campo E⃗ está relacionado con la densidad ρ mediante:

divE⃗ = ∇ · E⃗ = ρ.
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Así por el teorema de Gauss,	
S

E⃗ · dS =
$

V

ρdV = Q

el flujo hacia afuera de una superficie es igual a la carga total dentro.

La ley de Gauss puede ser utilizada para demostrar que no existe campo
eléctrico dentro de una jaula de Faraday sin cargas eléctricas en su interior.
La ley de Gauss es la equivalente electrostática a la ley de Ampére, que es
una ley de magnetismo. Ambas ecuaciones fueron posteriormente integradas
en las ecuaciones de Maxwell. Esta ley puede interpretarse, en electrostática,
entendiendo el flujo como una medida del número de líneas de campo que
atraviesan la superficie en cuestión. Para una carga puntual este número es
constante si la carga está contenida por la superficie y es nulo si esta fuera
(ya que hay el mismo número de líneas que entran como que salen). Ade-
más, al ser la densidad de líneas proporcionales a la magnitud de la carga,
resulta que este flujo es proporcional a la carga, si está encerrada, o nulo, si
no lo está. Cuando tenemos una distribución de cargas, por el principio de
superposición, sólo tendremos que considerar las cargas interiores, resultando
la ley de Gauss. Sin embargo, aunque esta ley se deduce de la ley de Cou-
lomb, es más general que ella, ya que se trata de una ley universal, válida en
situaciones no electrostáticas en las que la ley de Coulomb no es aplicable.

7.7.2. Flujo para una superficie esférica con una carga
puntual en su interior

Considérese una superficie esférica de radio r con una carga puntual q en su
centro. El campo eléctrico E⃗ es paralelo al vector superficie d⃗S , y el campo
es constante en todos los puntos de la superficie esférica. En consecuencia:

ΦE =
!

S
E · dS =

!
S

E. cos θdS =
∫

S E cos(0)dS = E
!

S
dS = E4πr2

7.7.3. Forma integral de la Ley de Gauss
Su forma integral utilizada en el caso de una distribución extensa de carga
puede escribirse de la manera siguiente:

Φ =
�

S
E⃗ · dS⃗ = 1

ϵo

#
V

ρ dV = QA

ϵo

donde Φ es el flujo eléctrico, E es el campo eléctrico, dS es un elemento
diferencial del área A sobre la cual se realiza la integral, Q es la carga total
encerrada dentro del área A, ρ es la densidad de carga en un punto de V.
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7.7.4. Forma diferencial de la Ley de Gauss
Tomando la ley de Gauss en forma integral.∮

S E⃗ · dS⃗ = 1
ϵo

#
V

ρ dV

Aplicando al primer término el teorema Gauss queda�
S
(∇⃗ · E⃗)dV = 1

ϵo

∫ ∫ ∫
V ρ dV

Como ambos lados de la igualdad poseen diferenciales volumétricas, y esta
expresión debe ser cierta para cualquier volumen, solo puede ser que:

∇⃗ · E⃗ = ρ
ϵo

La ley de Gauss es realmente útil para resolver problemas complejos de ma-
nera relativamente sencilla.

7.7.5. Ley de Gauss para el campo magnético
Al igual que para el campo eléctrico, existe una ley de Gauss para el campo
magnético, que se expresa en sus formas integral y diferencial:�

B⃗(r⃗) · dS⃗ = 0

∇ · B⃗ = 0

Esta ley expresa la inexistencia de cargas magnéticas o, como se conocen
habitualmente, monopolos magnéticos. Las distribuciones de fuentes magné-
ticas son siempre neutras en el sentido de que posee un polo norte y un polo
sur, por lo que su flujo a través de cualquier superficie cerrada es nulo. En el
hipotético caso de que se descubriera experimentalmente la existencia de mo-
nopolos, esta ley debería ser modificada para acomodar las correspondientes
densidades de carga, resultando una ley en todo análoga a la ley de Gauss
para el campo eléctrico. La Ley de Gauss para el campo magnético sería:

∇ · B⃗ = ρm

donde ρm densidad de corriente Jm, la cual obliga a modificar la ley de
Faraday.

7.7.6. Ley de Coulomb
El teorema de Gauss aplicado al campo eléctrico creado por una carga pun-
tual es equivalente a la ley de Coulomb de la interacción electrostática.

E = Q
4πϵ0r2
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La ley de Coulomb también se puede deducir a través de Ley de Gauss.
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Capítulo 8

Anexo

8.1. Lista de integrales
∫

xn dx = xn+1

n+1 + C (n , −1)∫ 1
x

dx = ln |x|+ C∫
ex dx = ex + C∫
ax dx = ax

ln(a) + C (a > 0, a , 1)∫
sin(x) dx = − cos(x) + C∫
cos(x) dx = sin(x) + C∫
tan(x) dx = − ln | cos(x)|+ C∫
cot(x) dx = ln | sin(x)|+ C∫
sec(x) dx = ln | sec(x) + tan(x)|+ C∫
csc(x) dx = − ln | csc(x) + cot(x)|+ C∫ 1√

1−x2 dx = arcsin(x) + C∫ −1√
1−x2 dx = arc cos(x) + C∫ 1

1+x2 dx = arctan(x) + C∫ −1
1+x2 dx = arccot(x) + C∫ 1√

x2−1 dx = arcosh(x) + C (x > 1)
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∫ 1√
1+x2 dx = arsinh(x) + C∫ 1

x
√

x2−1 dx = arcsch(x) + C (x , 0)

8.2. Identidades trigonométricas
tg θ = senθ

cos θ
, θ , π

2 + πk para k ∈ Z

cot θ = cos θ
sen θ

, θ , πk para k ∈ Z

secθ = 1
cos θ

, θ , π
2 + πk, para k ∈ Z

csc θ = 1
sen θ

, θ , πk, para k ∈ Z

cos θ = sen
(

π
2 + θ

)
sen θ = − sen(−θ)

sen2θ + cos2 θ = 1

sec θ = 1
sen(π

2 +θ)
sen(θ) = sen(θ + 2π) cos(θ) = cos(θ + 2π) tg(θ) = tg(θ + π)

sen(−θ) = sen(θ + π) cos(−θ) = − cos(θ + π)

tg(−θ) = − tg(θ) cot(−θ) = − cot(x)

sen(α + β) = senα cos β + senβ cos α

tg(α± β) = tg(α)±tg(β)
1∓tg(α) tg(β)

sen(π ± θ) = ∓sen(θ)

cos(π ± θ) = − cos(θ)

tg(π ± θ) = ± tg(θ)

csc(π ± θ) = ∓ csc(θ)

Fórmulas del ángulo doble

sen(2θ) = 2senθ cos θ

cos(2θ) = cos2 θ − sen2θ = 2 cos2 θ − 1 = 1− 2sen2θ

tg(2θ) = 2 tg θ
1−tg2 θ

Fórmulas de reducción de potencias
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8.3. SENO Y COSENO HIPERBÓLICO

sen2θ = 1−cos 2θ
2

cos2 θ = 1+cos 2θ
2

Teorema del coseno

Dado un triángulo ABC, de lados a, b, c y siendo γ el ángulo opuesto al lado
c, entonces:

c2 = a2 + b2 − 2ab cos γ

Teorema del seno

En todo triángulo se da la siguiente relación entre la longitud de sus lados a,
b y c y el seno de sus respectivos ángulos opuestos A, B y C:

a

sen(A) = b

sen(B) = c

sen(C)

8.3. Seno y Coseno Hiperbólico

8.3.1. Definiciones
El seno hiperbólico, sinh(x), y el coseno hiperbólico, cosh(x), se definen como:

sinh(x) = ex − e−x

2

cosh(x) = ex + e−x

2

8.3.2. Propiedades
Relación fundamental:

cosh2(x)− sinh2(x) = 1

Paridad:
cosh(−x) = cosh(x)

sinh(−x) = − sinh(x)
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Derivadas:
d

dx
sinh(x) = cosh(x)

d

dx
cosh(x) = sinh(x)

Integrales indefinidas:∫
sinh(x) dx = cosh(x) + C

∫
cosh(x) dx = sinh(x) + C

8.3.3. Integrales Definidas
Integral definida del seno hiperbólico:

∫ b

a
sinh(x) dx = cosh(b)− cosh(a)

Integral definida del coseno hiperbólico:
∫ b

a
cosh(x) dx = sinh(b)− sinh(a)

8.4. Resumen de algunos resultados
Área de una superficie esférica de radio r : A = 4πr2

Volumen de una esfera de radio r : V = 4
3πr3

Área superficial de un cilindro: A = 2πr2 + 2πrh

Volumen de un cilindro de base circular de radio r y altura h: V = πr2h

Diferencial de volumen en coordenadas esféricas:

dV = 4πr2dr

Pues para una esfera de radio variable se tiene que
∫ ∫ ∫

D
dV =

∫ b

a
r2(
∫ 2π

0

∫ π

0
sen(φ)dφdθ)dr =

∫ b

a
r24πdr
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8.4. RESUMEN DE ALGUNOS RESULTADOS

Diferencial de volumen en coordenadas cilíndricas:

dV = 2πhrdr

Pues para un cilindro circular de altura h y radio variable se tiene que:∫ ∫ ∫
D

dV =
∫ b

a
r(
∫ 2π

0

∫ h

0
dzdθ)dr =

∫ b

a
2πhrdr

Resultados del Teorema de Gauss

Sean: S una superficie que encierra a V Sólido, η⃗ normal exterior a S, F⃗
campo con componentes con derivadas parciales continuas en un abierto que
contiene a S. "

S

F⃗ .η⃗dS =
$

V

div(F⃗ )dV

Según sea el campo el resultado del teorema de Gauss es el siguiente:

Si F⃗ = a⃗ entonces
�

S
a⃗η⃗dS =

#
V

div(⃗a)dV = 0

Si el campo es un campo rotor rot(G⃗) entonces
!

S
rot(G⃗)η⃗dS =

#
V

div(rot(G⃗))dV =
0

Si F⃗ es con div(F⃗ ) = 1 entonces
�

S
F⃗ η⃗dS =

#
V

dV = V ol(V )

Si el campo es un campo gradiente ∇⃗f y si f es armónica,
!

S
∇⃗f.η⃗dS =#

V
div(∇⃗f)dV =

#
V

∆fdV = 0

“La divergencia de un campo puede considerarse como la medida de las fuen-
tes escalares del mismo”.

Resultados del Teorema de Stokes

Sean: C curva cerrada con borde superficie S, F⃗ campo con componentes
con derivadas continuas en un abierto que contiene a S."

S

rot(F⃗ ).η⃗dS =
∮

C
F⃗ dr⃗

Valen las siguientes igualdades:

Si el campo es a⃗ (constante),
!

S
rot(⃗a)η⃗dS = 0

Si S es cerrada,
!

S
rot(F⃗ )η⃗dS = 0

Si el campo es ∇⃗f ,
!

S
rot(∇⃗f)η⃗dS = 0
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Capítulo 9

Respuestas de ejercicios

Ejercicios de la sección 1.4.1

Ejercicio 2 : i) 2
3 y 31

6 ii) 10
3 y 155

6
Ejercicio 3 : i) g(x) = 3

2x2 + 2x− 10 ii) Sí, g′(x) = f(x) = 3x + 2

Ejercicio 4 : i) g(−2) = 0 , g(0) = 4 , g(1) = 7 , g(2) = 9

ii) g(x) =


2x + 4 si − 2 ≤ x ≤ 0
x2 + 2x + 4 si 0 < x ≤ 1
−2x2 + 8x + 1 si 1 < x ≤ 2

iii) Sí, g′(x) = f(x) =


2 si − 2 ≤ x ≤ 0
2x + 2 si 0 < x ≤ 1
−4x + 8 si 1 < x ≤ 2

Ejercicios de la sección 1.6.2
Ejercicio 2: i) V ii) V , V , F

Ejercicio 3: a) 10
3 b) e − 1 c) 1 d) 5

2 e) −12 f) −1 g)1
2 h)−3 i)2

3

j)3 k) tg t

∣∣∣∣∣
π
3

π
4

=
√

3− 1 l) arc tg x

∣∣∣∣∣
1

−1
= π

2 m) arc sen x

∣∣∣∣∣
1
2

− 1
2

= π

3 n)

81
4 o) 4

Ejercicio 4: i) 2
π

ii)38
15 iii) ln 4

3 iv) 0
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Ejercicio 5: i) Sí, pues f(x) es continua en [−1, 2] por ser polinómica.
α = 1 o α = −1

Ejercicio 6: i) g(x) =


x4

4 − 4 si − 2 ≤ x ≤ 1
−19

4 + x si 1 < x ≤ 3

ii) g(x) =


2
3x

3
2 si 0 ≤ x ≤ 1

−1
2x2 + 2x− 5

6 si 1 < x ≤ 2

iii) g(x) =


x2

2 si 0 ≤ x ≤ 1
1
2 −

2
π

cos
(

π
2 x
)

si 1 < x ≤ 2

Ejercicio 7: i) F ′(x) = x2
√

x2 + 1
ii) G′(x) = x4

√
x4 + 1

2x

Ejercicio 8: i) y = −3x + 5 ii) y = −2x + 1

Ejercicio 9: Derivando en ambos miembros (luego de verificar las hipóte-
sis del TFC) y despejando f(x), se obtiene: f(x) = e2x (1 + 2x) (1 + e−x)−1

Ejercicio 10: f es derivable y por lo tanto es continua, por lo que puede
aplicarse el TFC para afirmar que h′(x) = f(x) y entonces:
i) Verdadero (h′(x) = f(x) y h′′(x) = f ′(x) ) ii) Verdadero (porque son
derivables tal como se vio en el ítem i)) iii) Verdadero (h′(1) = f(1) = 0
)
iv) Verdadero ( h′ es estrictamente decreciente y continua y h′(1) = 0
entonces h′ es positiva a la izquierda del 1 y negativa a la derecha del 1
entonces h es estrictamente creciente a la izquierda del 1 y estrictamente
decreciente a la derecha del 1, así que tiene en x = 1 un máximo local )
v)Falso (por lo dicho en iv) ) vi) Falso (h′′(x) = f ′(x) < 0 , entonces la
gráfica de h es cóncava hacia abajo) vii) Verdadero ( h′(1) = f(1) = 0)

Ejercicios de la sección 1.7.4

Ejercicio 1: i) 1
12 ii) 44

15 iii) 3
5

3√4 iv) 9
2 v) 9 vi) 1

3

Ejercicio 3: m > 0 y el área es m2

2

Ejercicio 4: 37
4
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Ejercicios de la sección 1.7.5

Ejercicio 1: i) 256
15 π ≈ 53, 62 ii) 8π

Ejercicio 2: a) 8
5π b) 2

15π c) π

5 d) π

2

Ejercicio 3: i)
∫ 3

1

1
x3 dx ii)

∫ 1
27

0
π 32 dy +

∫ 1

1
27

πy− 2
3 dy −

∫ 1

0
π dy

iii)
∫ 3

1
π
(

1 + 1
x3

)2
dx−

∫ 3

1
π dx

Ejercicios de la sección 1.7.6

Ejercicio 2: 112
3

Ejercicio 3: 20
(

e− 1
e

)
≈ 47 m

Ejercicios de la sección 1.9.1

Actividad: ii) arc sen x+C iii) arc tg x+C viii) 2
7x

7
2− 6

5x
5
2 +2x

1
2 +C

Ejercicios de la sección 1.10.1

Ejercicio 1: iii) tg6 x

6 +C ix) − cos
√

x2 + 4+C xv) 2
3

(
1− 1

x

) 3
2

+

C xvii) 1
2 arc tg

(
x

2

)
+ C

Ejercicio 2: i) Con la sustitución u = ln x , resulta:
∫ 2

1

ln x

x
dx =∫ ln 2

0
u du =

= u2

2

∣∣∣∣∣
ln 2

0
= ln2 2

2 iii) Con la sustitución u = x2+1 , resulta:
∫ 2

0

x

x2 + 1 dx =
∫ 5

1

1
2

1
u

du = 1
2 ln |u|

∣∣∣∣∣
5

1
= ln 5

2
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Ejercicios de la sección 1.11.1

Ejercicio 1: iv) Considerando u = ln x y dv = dx , resulta du = 1
x

dx

y v = x entonces:
∫

ln x dx = x ln x−
∫ 1

x
x dx = x ln x− x + C

Ejercicio 2: a) 6 ln 6− 5 ≈ 5, 75 b)
√

3
6 π − 1

2 ≈ 0, 41

Ejercicio 3:
∫ 5

1
π ln2 x dx = π

(
5 ln2 5− 10 ln 5 + 8

)
≈ 15, 26

Ejercicios de la sección 1.12.1

Ejercicio 1:
∫ π

0
π (x + sen x)2 dx = π4

3 + 5π2

2 ≈ 57, 14

Ejercicio 4: 12π

Ejercicio 5: ii) Con la sustitución x = cosh u, con u ≥ 0, resulta:∫ 4

1

√
x2 − 1 dx =

=
∫ ln(4+

√
15)

0

√
cosh2 u− 1 senh u du =

∫ ln(4+
√

15)

0
senh2 u du =

=
∫ ln(4+

√
15)

0

(
eu − e−u

2

)2

du = ... = 2
√

15− 1
2 ln(4 + ln 15) ≈ 6, 71

Ejercicios de la sección 1.13.1

Ejercicio 1: ii) ln |x| − 1
2 arc tg

(
x

2

)
+ 1

2 ln (x2 + 4) + C

iii) x− ln |x|+ 2 ln |x− 1|+ C

Ejercicios de la sección 2.1.1
Ejercicio 1:
a) La integral es impropia pues el dominio de integración no es acotado.
Es divergente (no se le puede asignar un valor).
b) La integral es impropia pues el dominio de integración no es acotado.
Es convergente.

∫ 0

−∞

dx

(x− 1)2 = 1.

c) La integral es impropia pues el dominio de integración no es acotado.
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Es convergente.
∫ ∞

0
e−x dx = 1.

d) La integral es impropia pues el dominio de integración no es acotado.
Es convergente.

∫ ∞

−∞
xe−x2

dx = 0.
f) La integral es impropia pues el dominio de integración no es acotado.
Es divergente (no se le puede asignar un valor).

g) La integral es impropia pues el dominio de integración no es acotado.
Es convergente.

∫ +∞

2

1
1 + x2 dx = π

2 − arc tg 2.
h) La integral es impropia pues el dominio de integración no es acotado.
Es divergente (no se le puede asignar un valor).
i) La integral es impropia pues f(x) = 1√

1− x2
, que es continua en

[0, 1), tiene en x=1 una discontinuidad asintótica: ĺım
x→1−

1√
1− x2

=

+∞ . La integral es convergente.
∫ 1

0

1√
1− x2

dx = π

2
k) La integral es impropia pues f(x) = 2x

(x2 − 1) 2
3

, que es continua en

[0, 1) ∪ (1, 3], tiene en x=1 una discontinuidad asintótica:
ĺım

x→1−

2x

(x2 − 1) 2
3

= +∞ y ĺım
x→1+

2x

(x2 − 1) 2
3

= +∞ .

La integral es convergente.
∫ 3

0

2x

(x2 − 1) 2
3
dx = 9

Ejercicios de la sección 2.2.2
Ejercicio 3:
i) ĺım

n→∞
an = 0 . La sucesión es convergente. Converge a 0.

ii) ĺım
n→∞

an =∞ . La sucesión es divergente.

iii) ĺım
n→∞

an = 1
2 . La sucesión es convergente. Converge a 1

2 .

iv) ĺım
n→∞

an = 1
2 . La sucesión es convergente. Converge a 1

2 .

vi) ĺım
n→∞

an no existe. La sucesión es divergente.
vii) ĺım

n→∞
an = 0 . La sucesión es convergente. Converge a 0.

ix) La sucesión {rn}n converge a 0 si |r| < 0 , diverge si |r| > 0 ,
converge a 1 si r = 1 y diverge si r = −1.
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Ejercicios de la sección 2.5.1

Ejercicio 1: i)
∞∑

n=1

(
−3

2

)n

es una serie geométrica de razón r = −3
2 ,∣∣∣−3

2

∣∣∣ = 3
2 > 1 por lo tanto es divergente.

ii)
∞∑

n=1

23n

3n
es una serie geométrica de razón r = 8

3 ,
∣∣∣83 ∣∣∣ = 8

3 > 1 por

lo tanto es divergente.
iii)

∞∑
n=1

(
−1

4

)n

es una serie geométrica de razón r = −1
4 ,

∣∣∣−1
4

∣∣∣ =
1
4 < 1 por lo tanto la serie es convergente. El primer término es −1

4 .

La suma de la serie es S =
−1

4
1− (−1

4) = −1
5

iv) Sn = 1−
√

n + 1 . La serie es divergente.

v)
∞∑

n=1

1
n(n + 1) =

∞∑
n=1

( 1
n
− 1

n + 1

)
; Sn = 1− 1

n + 1 . La serie es con-

vergente. Su suma es S = 1. vi)
∞∑

n=1

1
(n + 4)(n + 5) =

∞∑
n=1

( 1
n + 4 −

1
n + 5

)
.

La serie es convergente. Su suma es S = 1
5.

viii) Converge. La suma es S = 16
5 ix) Converge. La suma es S = −1

2.
x) Diverge.

Ejercicio 4: S = π

Ejercicios de la sección 2.9
Ejercicio 1:
a) i)Por criterio de la divergencia, ya que ĺım

n→∞

2n2 − n + 3
n2 + 1 = 2 , 0,

la serie es divergente. En ii) y iii) el criterio de la divergencia no permite
decidir el comportamiento.
b) ii) Convergente. iii) Divergente.

Ejercicio 3: i) Convergente (puede aplicarse el criterio de comparación

con
∞∑

n=1

1
3n

)

ii) Divergente. (puede aplicarse el criterio de comparación con
∞∑

n=1

1
2
√

n
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)

iii) Convergente (puede aplicarse el criterio de comparación con
∞∑

n=1

1
2n−1

)

Ejercicio 4:
i) Divergente (puede aplicarse el criterio de comparación en el límite

con
∞∑

n=1

1
n

)

ii) Convergente (puede aplicarse el criterio de comparación en el límite

con
∞∑

n=1

1
n2 )

iii) Divergente (puede aplicarse el criterio de comparación en el límite

con
∞∑

n=1

1√
n

)

Ejercicio 5: ambas convergentes.

Ejercicio 6: i) Convergente. ii) Con el criterio del cociente no se puede
determinar el comportamiento (ver ej. 4iii) )

Ejercicio 7: i)No se puede aplicar el criterio de Leibniz. La serie es
divergente (puede probarse con el criterio de la divergencia).
ii) y iii) ambas convergentes (puede aplicarse el criterio de Leibniz).

Ejercicio 9: i) Convergente ii) Divergente iii) Divergente iv)Convergente
v)Convergente vi)Divergente vii) Divergente viii)Convergente ix) Di-
vergente x) Divergente xi) Divergente xii) Convergente xiii) Divergente
xiv) Convergente xv) Convergente xvi) Convergente xvii) Divergente

Ejercicio 10: i) Divergente ii) Divergente iii) Absolutamente convergente
iv) Condicionalmente convergente v) Absolutamente convergente vi)
Divergente.

Ejercicios de la sección 3.2.1
Ejercicio 1: i) arc tg x + arc tg y = C (teniendo en cuenta que
tg(A + B) = tg A + tg B

1− tg A tg B
se obtiene: y = tg C − x

1 + x tg C
)
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ii) ln |x|+ 1
2 ln(1 + y2) = C iii) (x− 1)2

2 − (y + 1)2

2 + ln
∣∣∣∣∣1 + x

1− y

∣∣∣∣∣ = C

iv) y = e
C
x vi) −e−y(y + 1) = x− ln(1 + ex) + C

Ejercicio 2: y = (x + 1)2(x + 2)2

Ejercicios de la sección 3.3.1
Ejercicio 1: i) 3x2y + y2 = C ii) xy3 + 3yx2 − y2 = C

Ejercicio 2: y + sen xy = 1

Ejercicios de la sección 3.4.5
Ejercicio 1: i) y(x) = (x2 + C) e−x2 ii) y(x) = (− cos x + C) x

iii) y(x) = 1
2x2 + 1

2x− 1
4 + Ce−2x

Ejercicio 2: y(x) = x

cos x

Ejercicio 3: y(x) = −x− 1 + 2ex

Ejercicios de la sección 3.5.2
Ejercicio 2: i) El teorema se aplica cualquiera sea (x0, y0) ∈ R2 y
garantiza existencia y unicidad de la solución al PVI dado. ii) i) El
teorema se aplica cualquiera sea (x0, y0) tal que y0 < x2

0 y garantiza
existencia y unicidad de la solución al PVI dado. iii) i) El teorema se
aplica cualquiera sea (x0, y0) tal que y0 , x0 garantizando existencia
y unicidad de la solución al PVI dado.

Ejercicio 3: i) Está garantizada la existencia y unicidad de la solución

por ser y′ = f(x, y) = ex

(1 + ex)y y ∂f(x, y)
∂y

= − ex

(1 + ex)y2

continuas en D = {(x, y) ∈ R2/y > 0} , con (0, 1) ∈ D . La solución
es:

y(x) =
√

1 + ln (1 + ex)2

4
ii) Está garantizada la existencia y unicidad de la solución por ser

y′ = f(x, y) = y ln y

sen x
y ∂f(x, y)

∂y
= 1 + ln y

sen x
continuas en D =
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{(x, y) ∈ R2/0 < x < π ∧ y > 0} , con (π
2 , e) ∈ D . La solución es:

y(x) = e

√
1− cos x

1 + cos x = e

1
cosec x + cotg x

Ejercicios de la sección 3.6
Modelo de crecimiento de una célula: la expresión para m(t) es
m(t) = m0e

Kt. El valor de K es K = ln 2
35 .

Modelo de crecimiento restringido de una población:
N(t) = B − (B −N0)e−Kt

Modelo de enfriamiento de Newton: T (t) = (T0 − Ta)eKt + Ta.
Con Ta = 20 , T (0) = T0 = 100 y T (20) = 60 se obtiene
T (t) = 80e− ln 2

20 t + 20 y la temperatura llegará a los 30 grados en 60
minutos.

Ejercicios de la sección 3.7.1

Ejercicio 1: La ecuación diferencial asociada a F1 es y′ = y2 − x2

2xy
y la

ecuación diferencial asociada a F2 es y′ = 2xy

x2 − y2 .

Como y2 − x2

2xy
.

2xy

x2 − y2 = −1 , las familias F1 y F2 son ortogonales.

Ejercicio 2: i) 3
2y2 + x2 = C ii) x2 + y2 = C iii) y2 = 2x + C

iv) y = Cx3

Ejercicios de la sección 4.1.1
Actividad: ii) Si f(x, y) = K ∀(x, y) ∈ R = [a, b]×[c, d], P = {R1, R2, ..., Rn}
es una partición de R y P ∗

i ∈ Ri resulta:
n∑

i=1
f(P ∗

i )∆Ri =
n∑

i=1
K∆Ri = K

n∑
i=1

∆Ri = K.área(R)

entonces
"

R

f(x, y)dA = ĺım
|P|→0

n∑
i=1

f(P ∗
i )∆Ri = K.área(R)
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iii) V ol ≈ f(1, 1) + f(2, 1) + f(1, 2) + f(2, 2) ≈ 34

Ejercicios de la sección 4.1.3

Ejercicio 1: i) 16 ii)32
3 iii)1 vi)

∫ 8

1

∫ ln y

0
ex+y dxdy = 6e8 + e

Ejercicio 2:

Ejercicio 3: i)

∫ 1

0

∫ 4−2x

2
f(x, y)dydx =

∫ 4

2

∫ 4−y
2

0
f(x, y)dxdy

ii)
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Ejercicio 5:

Ejercicios de la sección 4.2.1

Ejercicio 1: i) A =
∫ 2

−2

∫ 8−x2

x2
dydx = 64

3

Ejercicio 2: Tprm = 3712
3 ÷ 64

3 = 58
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Ejercicio 3: 4
3

Ejercicio 4: b) V =
∫ 2

0

∫ √
4−x2

0
(3− y) dydx = −8

3 + 3π ≈ 6, 76

c) V =
∫ 2

0

∫ 2y

0

√
4− y2 dxdy = 16

3

g) V =
∫ 2

0

∫ 2−x

0
[(3−x− y)− 1] dydx =

∫ 2

0

∫ 2−x

0
(2−x− y) dydx = 4

3
h) V =

∫ 1

0

∫ 3−z

0
(3 − y − z) dydz (Nota: proyectando el sólido en el

plano xy el cálculo del volumen puede plantearse con dos integrales:
V =

∫ 3

0

∫ 3−x

0
(3− x− y) dydx−

∫ 2

0

∫ 2−x

0
[(3− x− y)− 1] dydx)

Ejercicio 5: (x̄, ȳ) =
(

41
63 , 0

)

Ejercicios de la sección 4.3.1

i)
"

R

(x− y)9(x + y)8dA = −511
180 ≈ −2, 84

ii) Área(R) = 1

iii) Área(R) = ln 55

3343 ≈ 0, 59

Ejercicios de la sección 4.4.1

ii) R =
{

(r, θ)/π

3 ≤ θ ≤ 2π

3 ∧ 2 ≤ r ≤ 4
sen θ

}

iii) R =
{

(r, θ)/π

6 ≤ θ ≤ 5π

6 ∧
1

sen θ
≤ r ≤ 2

}
iv) R = {(r, θ)/0 ≤ θ ≤ π ∧ 0 ≤ r ≤ 4 sen θ}

v) R =
{

(r, θ)/0 ≤ θ ≤ π

2 ∧ 0 ≤ r ≤ 4 cos θ
}
∪
{

(r, θ)/3π

2 ≤ θ ≤ 2π ∧ 0 ≤ r ≤ 4 cos θ
}

ó : R =
{

(r, θ)/− π

2 ≤ θ ≤ π

2 ∧ 0 ≤ r ≤ 4 cos θ
}

vi) R =
{

(r, θ)/0 ≤ θ ≤ π

4 ∧ 0 ≤ r ≤ 4 sen θ
}
∪
{

(r, θ)/π

4 ≤ θ ≤ π

2 ∧ 0 ≤ r ≤ 4 cos θ
}
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vii) R =
{

(r, θ)/π

6 ≤ θ ≤ 5π

6 ∧ 2 ≤ r ≤ 4 sen θ
}

Ejercicios de la sección 4.5.1

Ejercicio 1: ii)
"

R

f(x, y)dA = (2−
√

e)2π

Ejercicio 2:

Ejercicio 3: V olumen = 16
3

(
1−

√
2

2

)
π
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Ejercicio 4: Masa =
∫ 3π

4

π
4

∫ 8
sen θ

4 sen θ
r3drdθ = ...

Ejercicio 5: fprom = 2
3a

Ejercicios de la sección 5.1.2
Ejercicio 1:
i)
∫ 2

1

∫ 1

0

∫ 4

2
x2y2z dzdydx = 14

3 , V = {(x, y, z)/2 ≤ z ≤ 4 ∧ 0 ≤ y ≤ 1 ∧ 1 ≤ x ≤ 2}

ii)
∫ 1

0

∫ x

0

∫ x−y

0
x dzdydx = 1

8 , V = {(x, y, z)/0 ≤ z ≤ x− y ∧ 0 ≤ y ≤ x ∧ 0 ≤ x ≤ 1}

Ejercicio 3: i) V ol =
∫ 2

0

∫ 2−x

0

∫ 4−2x−2y

2−x−y
2

dzdydx = 2

ii) V ol =
∫ 1

0

∫ 1

−1

∫ y2

0
dzdydx = 2

3

iii) V ol =
∫ 1

0

∫ 1−x

0

∫ 2−2z

0
dydzdx = 2

3
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iv) V ol =
∫ 1

0

∫ √
1−x2

0

∫ √
1−x2

0
dzdydx = 2

3

iv) V ol =
∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ 3−x

0
dzdydx =

∫ 2

−2

∫ √
4−x2

−
√

4−x2
(3− x)dydx =∫ 2π

0

∫ 2

0
(3− r cos θ)rdrdθ = 12π

Ejercicios de la sección 5.3.1
Ejercicio 2:
i) V =

{
(r, θ, z)/0 ≤ θ ≤ 2π ∧ 0 ≤ r ≤ 2 ∧ r2 ≤ z ≤ 4

}
V ol(V ) =

∫ 2π

0

∫ 2

0

∫ 4

r2
r dzdrdθ = 8π

ii) V =
{

(r, θ, y)/0 ≤ θ ≤ 2π ∧ 0 ≤ r ≤
√

2 ∧ r2

2 ≤ y ≤
√

3− r2

}

V ol(V ) =
∫ 2π

0

∫ √
2

0

∫ √
3−r2

r2
2

r dydrdθ =
(√

3− 5
6

)
2π

iii) V =
{
(r, θ, z)/0 ≤ θ ≤ 2π ∧ 0 ≤ r ≤ a ∧ −

√
a2 − r2 ≤ z ≤

√
a2 − r2

}
V ol(V ) =

∫ 2π

0

∫ a

0

∫ √
a2−r2

−
√

a2−r2
r dzdrdθ = 4

3πa3

Ejercicio 3: Masa =
$

V

z dV =
∫ π

2

0

∫ 4 cos θ

0

∫ √
16−r2

0
z r dzdrdθ =

10π

Ejercicios de la sección 5.4.1

Ejercicio 1: i) V =
{

(ρ, θ, φ)/0 ≤ θ ≤ 2π ∧ π

4 ≤ φ ≤ π

3 ∧ 0 ≤ ρ ≤ 2
}

V ol(V ) =
∫ 2π

0

∫ π
3

π
4

∫ 2

0
ρ2 sen φ dρdφdθ = 8

3
(√

2− 1
)

π

ii) V =
{

(ρ, θ, φ)/0 ≤ θ ≤ 2π ∧ 0 ≤ φ ≤ π

4 ∧ 0 ≤ ρ ≤ 1
cos φ

}

V ol(V ) =
∫ 2π

0

∫ π
4

0

∫ 1
cos φ

0
ρ2 sen φ dρdφdθ = 1

3π

iii) V =
{

(ρ, θ, φ)/0 ≤ θ ≤ 2π ∧ π

4 ≤ φ ≤ π

2 ∧ 0 ≤ ρ ≤ 2 cos φ
}
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V ol(V ) =
∫ 2π

0

∫ π
2

π
4

∫ 2 cos φ

0
ρ2 sen φ dρdφdθ = 1

3π

Ejercicio 2: i) fprom = 3
4

Ejercicio 3:i) V ol = 3π

32 iv) V ol = 7π

3 vi) V ol = 7π

3 vii) V ol = 5π

3

Ejercicios de la sección 6.3.2

Ejercicio 1: i) 88
3 ii)

√
3(eπ − 1) iii) 3

√
2 senh 2

Ejercicio 2: i) S(t) =
√

a2 + b2 t con 0 ≤ t ≤ 2π

C : r⃗ = r⃗∗(s) =
〈

a cos s√
a2 + b2

, a sen s√
a2 + b2

, b
s√

a2 + b2

〉
;

s ∈ [0, 2π
√

a2 + b2]

ii) S(t) =
√

2(et − 1) con 0 ≤ t ≤ 1

C : r⃗ = r⃗∗(s) =
〈(

s√
2

+ 1
)

cos
[
ln
(

s√
2

+ 1
)]

,

(
s√
2

+ 1
)

sen
[
ln
(

s√
2

+ 1
)]〉

;

s ∈ [0,
√

2(e− 1)]

Ejercicios de la sección 6.6.1
Ejercicio 1:
i) div(F⃗ ) = 2x + 2y + 2z ; rot(F⃗ ) = 0⃗
ii) div(F⃗ ) = ex cos +yey cos x+1 ; rot(F⃗ ) = ⟨0 , 0 , ex sen y − ey sen x⟩

Ejercicio 3: i) Campo vectorial ii) Campo escalar iii) Campo vectorial

iv) Campo escalar v) Campo vectorial

Ejercicios de la sección 6.7.1

Ejercicio 1: a) 80
√

10
3 b) 3π

2
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Ejercicio 2: b) 1
12
(
17 3

2 − 1
)

Ejercicio 3: a) 32
3

Ejercicios de la sección 6.8.3
Ejercicio 1: a) 31 c) 0 d) 10 e) −2

Ejercicio 2: a) 0 b) 7
10 c) 34

7
Ejercicio 3: 32π2

Ejercicios de la sección 6.9.3
Ejercicio 1: a) π b) −12π d)Para C : x2 + y2 = 1 , no se puede
aplicar el teorema pues las componentes de F no están definidas en
(0, 0) y ese punto pertenece a la región limitada por C (no se satisfacen
las hipótesis del teorema); la integral debe calcularse en forma directa
(observar que las componentes del campo son continuas en R2− (0, 0))
y el resultado es: 0. Para C : (x − 2)2 + y2 = 1, puede aplicarse el
teorema (verificar que se cumplen las hipótesis) y el resultado es: 0. g)
32
3

Ejercicio 2: a) 8π d) 3π

8

Ejercicio 5:
∮

C
F⃗1 · dr⃗ = 0

∮
C

F⃗2 · dr⃗ = 2π

Ejercicios de la sección 6.10.1
Ejercicio 1: a) f(x, y) = x2y − y es una función potencial de F⃗ en R2,
luego, el campo vectorial es conservativo en R2. El valor de la integral
se puede obtener aplicando el teorema fundamental para integrales de
línea: f(3, 1)− f(1, 0) = 8.
b) f(x, y) = ex y − y2 es una función potencial de F⃗ en R2, luego, el
campo vectorial es conservativo en R2. El valor de la integral se puede
obtener aplicando el teorema fundamental para integrales de línea:
f(0, 4)− f(1, 0) = −16.
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c) f(x, y, z) = yx2 + xz2 es una función potencial de F⃗ en R3, luego, el
campo vectorial es conservativo en R3. El valor de la integral se puede
obtener aplicando el teorema fundamental para integrales de línea:
f(4,−1, 0)− f(2, 1, 3) = −38.

Ejercicio 2: 0

Ejercicio 4: a) f(x, y, z) = x2

2 + y2

2 + z2

2 es una función potencial de
F⃗ en R3, luego, el campo vectorial es conservativo en R3. El valor de
la integral se puede obtener aplicando el teorema fundamental para
integrales de línea: f(1, 0, 4π)− f(1, 0, 0) = 8π2

Ejercicio 5:
a) No es conservativo en R3.
b) No es conservativo en R3.
c) Es conservativo en R3.
d) Es conservativo en R3 − {(0, 0, 0)}.
e) No es conservativo en R2 − {(0, 0)}.

Ejercicios de la sección 7.2.1
Ejercicio 1:
a) S es una superficie cilíndrica circular de radio a, (S : x2 + y2 = a2)
N⃗ = ∂r⃗

∂u
× ∂r⃗

∂v
= a cos u i⃗ + a sen u j⃗ + 0 k⃗

b) S es una superficie esférica de radio a, (S : x2 + y2 + z2 = a2)
N⃗ = ∂r⃗

∂u
× ∂r⃗

∂v
= −a2 cos u sen2 v i⃗− a2 sen u sen2 v j⃗ − a2 sen v cos v k⃗

Ejercicio 2:

a) 4πa2 c) 4 d)
√

5π

2 e) 32
√

2 π g) π

6
(
5 3

2 − 1
)

h) 32
3 i)

a2(π − 2)

Ejercicios de la sección 7.3.1

Ejercicio 1: a) 3π c) 2
3πa4 e) 1

4
(
17 3

2 − 1
)

Ejercicio 2: Centroide : (x̄, ȳ, z̄) =
(

a

2 ,
a

2 ,
a

2

)
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Ejercicios de la sección 7.4.3

Ejercicio 1: b) 1
2 c) −1

2 d) −4π e) −18π

Ejercicio 3: i) 2π

3 a3 ii) 2π

3 a3

Ejercicios de la sección 7.5.2
Ejercicio 1: a) 4π o −4π , (según sea la orientación de elegida en la
curva) c) 0 d) 0 e) 0

Ejercicio 2: a) 0 b) 4π

Ejercicios de la sección 7.6.2
Ejercicio 1: a) −16 b) 3 c) 4π d) 32π

Ejercicio 2: a) 0 b) 4π

Ejercicio 5: El flujo es máximo e igual a 27
2 si a = 3 y b = 3

2.
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