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Sobre la Mecanica

La Mecénica es la ciencia del movimiento, es decir el
conjunto de reglas que nos permiten predecir como cam-
biaran con el tiempo las mediciones realizadas sobre un

sistema fisico.

Su origen se remonta a los antiguos griegos, principal-
mente en la figura de Aristoteles y sus ideas de causa-
lidad y de ley natural. En su forma moderna, se funda en
el célebre trabajo de Isaac Newton Philosophige naturalis
principia mathematica publicado en 1687. En él, Newton

propuso una descripcion matematica unificada, englo-

bando las observaciones terrestres que Galielo Galilei
habia resumido en su principio de inercia, junto a las Galileo Galilei

tres leyes empiricas que habia formulado Johannes Kepler para describir el movimiento de los
cuerpos celestes. En este sentido, se traté de la primera unificacién de la fisica, y seria seguida
por otras en los siglos subsiguientes. Puede decirse que el trabajo de Newton se encuentra en la
base de la revolucion cientifica, cuyas consecuencias resultaron en una completa reorganizacién
social y una mejora sustancial en la calidad de vida de la humanidad. La Mecénica se desarroll
enormemente durante los siglos XVIII y XIX, siendo de particular interés para los fines de este
curso las contribuciones de Joseph-Louis Lagrange y William Rowan Hamilton, quienes dieron

forma a lo que hoy conocemos como Mecanica Analitica.
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En la segunda mitad del siglo XIX, los trabajos de Ludwig Boltzmann demostraron que las leyes de
la Mecanica podian combinarse con las ideas de probabilidad, para aplicarlas al comportamiento
de un gran numero de particulas. Esta construccion predecia correctamente muchas propiedades
de los sistemas macroscoépicos, motivando la unificacion de Mecanica y Termodinamica que
hoy conocemos como Mecanica Estadistica. Casi en paralelo, otra unificacion tenia lugar en
la fisica: la de la Optica, la Electricidad y el Magnetismo, dando lugar a lo que llamamos hoy
Electromagnetismo. A principios del siglo XX una de las consecuencias del Electromagnetismo,
en particular el caracter absoluto de la velocidad de la luz, parecia contradecir los principios de la
Mecanica. Esta oposicién fue resuelta por Albert Einstein, quien modificé la Mecanica unificandola
con el Electromagnetismo en la forma de la Mecanica Relativista. Diez afios mas tarde, Einstein

incluiria también a la Gravitacion, al formular su célebre teoria de la Relatividad General.

Hasta ese momento historico, la Mecanica Analitica habia resistido la unificacion con otras areas
de la fisica sin mayores modificaciones, y parecia explicar la totalidad de los fendmenos. Sin
embargo, su némesis llegaria al confrontarla con la Quimica: una descripcidn mecanica de la
estructura atémica, y en particular de la interaccion de los d&tomos con la luz, parecia requerir de la
hipotesis extra de cuantizacién. Segun este principio, la energia se intercambiaria entre sistemas
fisicos en forma de paquetes o cuantos de valor fijo. Esta idea resistioé su incorporacion en las
leyes generales de la Mecanica, siendo en cambio compatible con una descripcion ondulatoria
del movimiento. En consecuencia, para el estudio de sistemas a la escala atdbmica la Mecanica
fue reemplazada por una nueva teoria, basada en principios muy diferentes, que hoy llamamos

Mecanica Cuantica.

La Mecanica Cuantica incluye a la Mecanica Analitica cuando los cuerpos que describimos son
lo suficientemente grandes. Este limite clasico hace que el estudio de la Mecanica siga siendo
fundamental para la comprensién de una enorme variedad de fenémenos fisicos. Mas aun, sabemos
hoy que varias de las leyes de la Mecanica Analitica contenian desde su formulacién algunos
rastros de su origen cuantico, por lo que su analisis permitia predecir la necesidad de una ulterior

modificacion.

Sobre estas Notas

Este libro esta basado en los cursos dictados en el Departamento de Fisica de la Universidad
Nacional de La Plata durante los afios 2020 y 2021, para estudiantes de la Licenciatura en Fisica.
Durante esos afios, la pandemia de COVID19 impuso el formato de clases virtuales a través de
videoconferencia. Para las mismas, resulté de enorme utilidad la combinacion del software de
videoconferencias Jitsi con la pizarra virtual HedgeDoc. Al final de cada clase, lo escrito en la
pizarra quedaba disponible en formato MarkDown, y se publicaba en Internet para consulta de los

estudiantes. Dichas notas constituyeron la semilla de este texto



La primera parte se concentra en el formalismo basico. Esto incluye la formulacién newtoniana
de la Mecanica, que es la que se estudia en los cursos basicos de fisica. En ella, las nociones
de fuerzay particula cumplen un rol central. Suele estar descripta en términos de un conjunto de
vectores cuyas componentes se escriben en un sistema cartesiano de coordenadas, configurando
lo que llamamos mecanica vectorial. La reescritura de las ecuaciones involucradas en coordenadas
curvilineas generales conduce a la formulacién lagrangiana, en la que toda la informacion de
la dinamica del sistema esta contenida en una sola funcion o lagrangiano, que depende de las

coordenadas generalizadas y velocidades generalizadas de sus particulas.

La segunda parte se dedica a las aplicaciones. El formalismo basico se utiliza en la descripcion del
movimiento de dos sistemas mecanicos de gran interés: el sistema de dos cuerpos con interaccion
central, y el cuerpo rigido. Respecto del primero, se discuten sus propiedades generales y sus
consecuencias para el estudio del movimiento planetario y del fenémeno de la dispersion. En
cuanto al segundo, se describe la dinamica de un cuerpo rigido libre y el movimiento del trompo.
Recorriendo este camino, se adquiere practica en la descripcion del movimiento en términos del

formalismo lagrangiano, aprovechando sus principales virtudes.

En la tercera parte se estudian las consecuencias conceptuales de la formulacién lagrangiana. En
particular, se formaliza la reduccion mediante truncaciones y vinculos del nimero de variables
que describen el movimiento, y luego se aprende a relajar los vinculos permitiendo pequefias
oscilaciones. Se formula el principio de accién estacionaria, en el cual las ecuaciones que describen
el movimiento se deducen minimizando una cierta cantidad. Se explora la relacion entre simetrias
y cargas conservadas demostrando el teorema de Ncether, que es uno de los resultados mas

profundos e importantes de la fisica tedrica.

La cuarta parte desarrolla la formulaciéon hamiltoniana. Se exploran las consecuencias que el
principio general de reversibilidad tiene en la forma de las ecuaciones de movimiento de un sistema
mecanico. Se define una manera de combinar magnitudes observables conocida como paréntesis
de Poisson, que permite reformular la Mecanica Analitica poniendo en evidencia su similitud con
la Mecanica Cuantica. Se exploran también las transformaciones canonicas y la ecuacién de
Hamilton-Jacobi, que es una huella en la mecanica de las particulas del caracter ondulatorio
de la funcién de onda. Finalmente, se discute la incorporacién de vinculos en la formulacién

hamiltoniana.

Disfruté mucho del dictado de este curso, que se refiere a una de las areas mas elegantes de la

Fisica Tedrica. Espero humildemente haber podido retratar en estas notas algo de su belleza.
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1.1

1.2

Objetivos

En esta clase haremos un breve repaso de las leyes
de la mecanica en la forma en las que las aprendimos
en los cursos basicos de Fisica, algo que en adelante
referiremos como formulaciéon newtoniana. Dado que tra-
bajaremos exclusivamente en coordenadas cartesianas
y haremos uso intensivo de vectores, denotaremos este

conjunto de conocimientos como mecanica vectorial.

Ademas de recordar algunos elementos basicos que ne-
cesitaremos para el resto del curso, nos interesa aqui
puntualizar una variedad de aspectos novedosos que
seran importantes en las clases subsiguientes. Nos con-
centraremos por ahora en la descripcién de sistemas
mecanicos formados por particulas, lo que nos permitira

mas adelante explorar sus generalizaciones.

Mecanica vectorial

Sin Isaac Newton

La mecanica vectorial se basa en la intuiciéon de que las reglas que determinan evolucién temporal

de los sistemas fisicos pueden comprenderse completamente en términos de las que rigen la

evolucién de cada una de sus partes y las interacciones entre ellas.

Intentemos darle una forma mas concreta a esta idea.
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Comencemos con un sistema fisico cualquiera, del cual siempre se puede dar una descripcion
macroscopica en términos de un conjunto de cuerpos (objetos que se resisten a la deformacién, si
bien no es necesario por ahora asumir que sean completamente rigidos) y un conjunto de fluidos

(objetos que se deforman facilmente, aunque tal vez oponiendo alguna resistencia).

Si ahora refinamos nuestra descripcién, observando el mismo sistema a través de una lupa o
un microscopio, veremos que cada una de sus partes esta a su vez formada por un conjunto de

cuerpos y un conjunto de fluidos.

Aumentando iterativamente la resolucion de nuestra lupa, podemos continuar mejorando nuestra
descripcion. La idea central de la mecanica vectorial es que este proceso de refinamiento conduce
en algun punto a una descripcién del sistema hecha completamente en términos de objetos muy

simples, que llamamos particulas.

Una particula es un objeto que, a la escala a la que observamos nuestro sistema, esta completa-
mente descripto solamente por su posicién, por lo que no es necesario hacer consideraciones
sobre su orientacion ni sobre su estado de deformacién. En este sentido, es el sistema mecanico
mas simple posible, que no requiere ser caracterizado como cuerpo o fluido. Nétese que no
estamos asumiendo que las particulas no tengan partes, sino solamente que a la escala a la que
llegamos a ver con nuestro microscopio estas partes no son visibles y no juegan ningun rol en la

descripcion del movimiento del sistema.

Leyes de Newton

Supongamos entonces que el universo entero, es decir el conjunto de todo lo que observamos,
esta formado por .4 particulas, que indexaremos con un indice n € {1,2,...,.4}. Su movimiento

estara regido por las leyes de Newton, que se enuncian como sigue:

1. Existencia de un sistema inercial

A los fines de cualquier experimento, un sistema inercial se define tomando una particula
lo suficientemente alejada de todos los demas objetos del universo, y poniendo en ella el
origen de un sistema de coordenadas cartesiano, cuyos ejes son perpendiculares entre si, y

estan inmoviles respecto de las estrellas lejanas.

Un sistema inercial asume también la existencia de un reloj, que es un conjunto de particulas

que realizan movimientos periodicos, retornando repetidamente a la misma configuracion.

Cualquier otro sistema de coordenadas cartesianas que se mueva con movimiento rectilineo
y uniforme respecto del arriba definido, y cuyos ejes no estén girando respecto de él, también
es un sistema inercial. Mas aun, cualquier otro sistema inercial estara en movimiento rectilineo
y uniforme respecto del que ya definimos, y sus ejes no estaran girando. Aqui, un movimiento

uniforme es uno en el cual se recorre la misma distancia en cada periodo del reloj.
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Un detalle muy importante es que esta ley no es un caso especial de la segunda ley: no
hemos hablado aqui de lo que pasa “en ausencia de fuerzas” porque aun no hemos definido

lo que es una fuerza.

2. Ley de fuerza
En un sistema inercial la posicién de la particula n-ésima del universo se describe con un

vector 7, € R3, y llamamos tiempo al numero ¢ € R de periodos que ha recorrido el reloj.

Naturalmente 7, sera una funcion de ¢, y podemos denotar a su derivada temporal o velocidad
como 7#, = d7/dt. Ademas, para cada una de las particulas del universo existe otro vector
momento lineal p, que es una funcion de la velocidad 7,. Este vector satisface la ley de

fuerza

“ dﬁn
F =
"odr
donde F, es la fuerza que actuia sobre la particula n-ésima, y es una funcién de las posiciones
y velocidades de todas las particulas del universo, y eventualmente también del tiempo. Esta

funcién debe cumplir una serie de condiciones de consistencia:

= Primero que nada, si una de las particulas de nuestro sistema esta lo bastante lejos de
todas las demas, su posicion 7, es por definicion el origen de otro sistema inercial. Pero
dijimos en la primera ley que los sistemas inerciales estan en movimiento rectilineo y
uniforme entre si. Esto implica que la velocidad de dicha particula 7, debe ser necesa-
riamente constante. Como el momento lineal j, es una funciéon de la velocidad, este
también debe ser constante dp, /dr = 0. Con esto, concluimos que para una particula
muy alejada de todas las otras, se debe cumplir que F, = 0. En otras palabras, la fuerza

se anula cuando las particulas se alejan lo suficiente.

= Supongamos ahora que tenemos dos sistemas inerciales en reposo uno respecto del
otro, relacionados por una rotacién de angulo 6 alrededor de un eje que apunta en la
direccién 7i. Si la velocidad de una particula es 7, en el primer sistema, en el otro estara
dada por un vector rotado un angulo 6 alrededor de 7i. La misma observacion debe
ser valida para el momento lineal p,,, que en el sistema rotado habra girado un angulo
0 alrededor de si. Esto debe cumplirse para cualquier par de sistemas inerciales en
reposo relativo. Es facil convencerse de que esto solo es posible si la relacion entre
ambos es la proporcionalidad p, = m,7,. Aqui m, es una funcién de #, que tiene que ser

invariante frente a rotaciones, es decir que tiene que ser una funcion de 72,

= La forma precisa de m, como funcion de /> depende de como se transforme el tiempo
entre los diferentes sistemas inerciales. Si los relojes se sincronizan de modo tal que
la velocidad de la luz c sea la misma en todos los sistemas, sabemos que se debe
cumplir m, = my;* /\/1 — % /c donde m; " es la masa en reposo. En el limite de pequeiias
velocidades 72 < c? tenemos que m, ~ m, ". Buena parte de lo que vamos a discutir a

continuacion y en el resto del curso se sostiene para una funcién m,, arbitraria.
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3. Ley de accidn y reaccion

Para enunciar esta ley tenemos que hacer la hipotesis de que las fuerzas satisfacen una
suerte de principio de superposicién. En efecto, vamos a suponer que la fuerza sobre
cualquier particula se puede descomponer de la siguiente manera

— b/l/ =

Fn = Z Fmﬁn

m=1

donde la suma recorre todas las particulas del universo, y el simbolo Epn representa la
fuerza que la particula m-ésima ejerce sobre la particula n-ésima. La ley de accién y reaccién

dice que para cualquier par de particulas, estas fuerzas cumplen

=

o
Fopsn=—Fim

Nétese que en particular esto implica Epon=—Fpn, por lo que la autofuerza debe anularse

Frn=0 y la suma de mas arriba corre solamente sobre m # n.

Si de entre las .4 particulas que componen el universo seleccionamos un subconjunto de N de
ellas, tendremos un sistema de N particulas. La configuracion dicho sistema estara dada por los N
vectores 7, € R3 que representan la posicion de cada una de las particulas en algun sistema inercial
en un dado instante de tiempo. Definimos entonces un espacio de configuracion del sistema de N

particulas como € = R3".

La posicion cambiara a medida que transcurre el tiempo describiendo una curva en el espacio de
configuracion € que se denomina la trayectoria del sistema. Tanto la forma de tal curva cuanto la
velocidad con la que se la recorre a medida que transcurre el tiempo, se obtienen resolviendo un
conjunto de ecuaciones de movimiento dadas por la ley de fuerza. Nétese de que hay una ecuacion
vectorial para cada particula, resultando en un total de 3N ecuaciones. En estas ecuaciones, las

fuerzas sobre cada particula F, deben satisfacer la ley de accién y reaccion.

Las ecuaciones de movimiento son ecuaciones diferenciales de segundo orden en el tiempo, por lo
que cada una de ellas resultara en dos constantes de integracion. Dado que tenemos un conjunto
de 3N ecuaciones, deberemos determinar un total de 6N constantes. Para esto, sera necesario
especificar las condiciones iniciales, es decir los valores iniciales para los vectores posiciéon 7, y
velocidad 7, de cada una de las particulas. Estos valores iniciales determinan completamente la
evolucion ulterior, es decir que definen el estado del sistema. Podemos hablar entonces de un

espacio de estados dado por & = ROV,

Los sistemas fisicos difieren entre si en el nimero de particulas, y en la forma explicita de la fuerza
F, como funcion de la posicién y la velocidad de todas las particulas del universo, y de la masa m,

como funcion de 2.
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Nota:
Escribe Isaac Asimov: sobre ¢ Quién fue el cientifico mas grande de la historia?:

«Si la pregunta fuese ¢Quién fue el sequndo cientifico mas grande? seria imposible
de contestar. Hay por lo menos una docena de hombres que, en mi opinién, podrian
aspirar a esa segunda plaza. Entre ellos figurarian, por ejemplo, Albert Einstein, Ernest
Rutherford, Niels Bohr, Louis Pasteur, Charles Darwin, Galileo Galilei, Clerk Maxwell,

Arquimedes y otros.

Incluso es muy probable que ni siquiera exista eso que hemos llamado el segundo
cientifico mas grande. Las credenciales de tantos y tantos son tan buenas y la dificultad
de distinguir niveles de mérito es tan grande, que al final quiza tendriamos que declarar

un empate entre diez o doce.

Pero como la pregunta es «¢ Quién es el mas grande?», no hay problema alguno. En mi
opinién, la mayoria de los historiadores de la ciencia no dudarian en afirmar que Isaac
Newton fue el talento cientifico mas grande que jamas haya visto el mundo. Tenia sus
faltas, viva el cielo: era un mal conferenciante, tenia algo de cobarde moral y de llorén
autocompasivo y de vez en cuando era victima de serias depresiones. Pero como

cientifico no tenia igual.

Fundé las matematicas superiores después de elaborar el calculo. Fundo la 6ptica
moderna mediante sus experimentos de descomponer la luz blanca en los colores del
espectro. Fundé la fisica moderna al establecer las leyes del movimiento y deducir sus
consecuencias. Fundé la astronomia moderna estableciendo la ley de la gravitacion

universal.

Cualquiera de estas cuatro hazafnas habria bastado por si sola para distinguirle como
cientifico de importancia capital. Las cuatro juntas le colocan en primer lugar de modo

incuestionable.»

Las tres leyes arriba enumeradas, cuyas consecuencias exploramos en los cursos basicos de
fisica, nos permitieron construir a partir de ellas una enorme variedad de resultados. En particular,
no solo pudimos describir la dinamica de una particula y de un sistema de particulas, sino también
la de los cuerpos rigidos, de los cuerpos elasticos, y de los fluidos. De particular interés para

nosotros son los teoremas de conservacion, que se resumen en |lo que sigue.

Teoremas de conservacion

Dado un sistema fisico formado por N particulas, podemos separar todas las particulas del universo
entre aquéllas que son internas al sistema n € {1,2,...,N} y aquéllas que son externas al mismo

ne{N+1,N+2...,.4}. Una consecuencia de la descomposicién de la fuerza que hicimos al
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explicar la ley de accion y reaccidon mas arriba es que se puede escribir

- N - 4 -
F, = Z m—n T Z Fnsn
m=1 m=N+1

Al segundo término lo llamamos fuerza externa sobre la particula n-ésima y lo denotamos F, lo

que nos deja con la expresion
- N = —
Fn = Z F;n—>n+FneXt
m=1

donde ahora la suma corre solamente sobre las particulas internas al sistema. Esta descomposicion

resulta muy util para obtener los siguientes resultados

= Conservacion del momento lineal
Si usamos la descomposicién de la fuerza entre la contribucion externa y la interna podemos
reescribir la ley de fuerza en la forma

dpn
dt

N — —
ZFmHn‘FF:Xt:

m=1
Ahora podemos sumar a ambos lados sobre todas las particulas de nuestro sistema, para

obtener
N

N N . N . dﬁn
Y Y Bt Y A=Y
n=1m=1 n=1 dr

n=1

Si definimos la fuerza externa total Ft = YN_ Fet sobre el sistema y el momento lineal total

del mismo p = Zﬁ’zlﬁn, la igualdad de mas arriba se puede reescribir como
N N =
r I‘;’vext _ dl
Y Y FntF=
== dt
n n
En la suma en el primer término cada par de particulas m y n entra dos veces, una vez como
Eopsn y otra como F,_... Esto nos permite reescribir la suma limitando los indices con la
restriccion m > n, para obtener

N N . . .
Y X (Fuont Foom) +F =

n=1m=n+1

dp
dt
(ndtese el cambio de indices en el segundo término dentro de la suma, para que ahora cada
par entre una sola vez). Pero entonces la ley de accion y reaccion implica inmediatamente
que el primer término se anula, dejandonos con
F’-ext _ @
dt
De aqui deducimos que si la fuerza externa total sobre un sistema de particulas se anula,

entonces el momento lineal total se conserva.

m Conservacion del momento angular

Volviendo a la expresion para la segunda ley de Newton en términos de fuerzas externas e
internas

dpn

dt

N
r rext
Z Fusn+ F;; =
m=1
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Podemos tomar a cada lado de la igualdad el producto vectorial con la posicién 7, de la

particula n-ésima, para obtener

=

dpn
dt

N
Y P X Fn+ P X B =Fy X
m=1

Integrando por partes el segundo término, y usando que el momento lineal es proporcional a
la velocidad y por lo tanto 7, x p, = 0, obtenemos la expresién

d(Py X Pp)

N
— = — ext
Y RxFuon T x E = -

m=1
Ahora podemos definir el momento angular de cada particula respecto del origen de coorde-
nadas segun U, =7, x Dn Y €l torque externo sobre cada particula respecto del origen como
7ot = 7, x Ft_Con esto obtenemos

ot Al
P X Fop oy + 75 =

Zl n m—n dt

En esta expresién podemos sumar sobre todas las particulas del sistema, resultando en

Z 27 o Z—f

donde el torque total externo se definio como 7°¢ = YN 7t y el momento angular total
como 7 = Zﬁl\’:l 7,. De nuevo en el primer término cada par de particulas entra dos veces, lo
que nos permite reescribirlo como

di

Z Z (7n><ﬁm%n+?m><ﬁnﬁm)+%e)(t:dt

n=1m=n+1
Usando la ley de accion y reaccion podemos reordenar el paréntesis

i

Z Z _rm XFmﬁn""%EXt dr

n=1m=n+1
Ahora bien, si hacemos la hipotesis adicional de que las fuerzas internas son centrales, es
decir que la fuerza entre cada par de particulas apunta en la direccién que une las particulas,
entonces (7, —Fy) X Fpon=0enel primer término, y llegamos a la expresion

%ext —_ diz
dt
Con lo que podemos enunciar que si el torque total externo se anula y las fuerzas internas

son centrales, el momento angular total se conserva.

= Conservacion de la energia

Volvamos a nuestra férmula inicial para la ley de fuerza, sin separar por ahora entre contribu-
ciones externas e internas

- dp,
F =
" dt

Multiplicando esta expresidon escalarmente por la velocidad tenemos

. _dby
n n dl n
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Recordemos que p, = m,#, donde m, es alguna funcién de r‘,2,. Para el caso de una particula
no relativista m, es simplemente una constante, para el caso relativista tenemos que m,, =
my®/\/1—i2/c2. Cualquiera sea la forma de esta funcion, sabemos que tiene una primitiva
2K, que cumple que d(2K,)/di> = m, (donde hemos introducido un factor 2 por conveniencia).
Esta funcion corresponde a la energia cinética K, = m, 72 /2 para el caso no-relativista, y a

la expresion K, = m;c?\/1 — 72 /c? para el caso relativista. Usando esta primitiva podemos

escribir
S dKk,
Fy = —=

dt

Si ahora integramos entre un instante inicial ¢; y uno final ¢, obtenemos
W, = AK,

En el lado izquierdo hemos definido el frabajo realizado sobre la particula n-ésima como

W, = fﬁ,,-?,l dt, y la variacién de su energia cinética segun AK,, = Kn\tf — K,Z|,l_.

Noétese que si la fuerza no depende del tiempo ni de las velocidades, entonces el trabajo
es una integral de linea W, = fﬁn -d7,. Esta integral soélo puede depender de la forma de
la fuerza como funcién de la posicion y de la trayectoria que recorre la particula n-ésima
entre su posicion inicial y su posicion final. Esta ultima observacion nos permite hacer una
clasificacion de las fuerzas. Llamamos conservativas a aquéllas fuerzas para las cuales el
trabajo realizado en un movimiento cualquiera no depende de la trayectoria sino solamente
de los puntos inicial y final. En ese caso escribimos W, = —AV,, para una cierta funcion
energia potencial V,, que es funcién solo de la posicién 7,. Las fuerzas que no cumplen esta
propiedad se consideran no conservativas, y denotamos el trabajo de las mismas como W,.

Entonces tenemos que
Wre — AV, = AK,

Ahora podemos sumar sobre n, obteniendo
Wne—AV = AK

con las definiciones obvias para el trabajo total de las fuerzas no conservativas W"c =

YN, wre, la energia potencial total V = YV_|

n=1

V, ¥y la energia cinética total K = YV K,.Esto

n=1

se puede reescribir como
W' = AE
donde la energia mecanica total se defini6 como E =K +V.

Entonces podemos decir que en ausencia de fuerzas no-conservativas internas o externas,

la energia mecanica total se conserva.

Estos teoremas de conservacion se pueden reinterpretar en términos de principios de simetria, un

resultado importante que reformularemos y reobtendremos mas adelante en el curso. Por ahora,

baste sefalar que:
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= El momento lineal se conserva cuando la fuerza total externa vale cero. Cuando esto sucede,
el movimiento del sistema esta completamente determinado por sus fuerzas internas, que
dependen de las posiciones y velocidades de las particulas del sistema, y no guardan ninguna
relacion con las posiciones y velocidades del resto de las particulas del universo. Esto implica
que podemos poner el sistema en cualquier lugar del espacio, y su movimiento ulterior no
se vera afectado. En otras palabras, hay invarianza traslacional. Por lo tanto, la invarianza

frente a traslaciones esta intimamente ligada a la conservacion del impulso.

= El momento angular se conserva cuando el torque total externo vale cero y las fuerzas
internas son centrales. Que el torque total externo se anule implica que la fuerza total externa
también es central, en el sentido de que apunta hacia o desde el origen de coordenadas. Pero
entonces podemos rotar rigidamente el sistema alrededor del origen y su movimiento ulterior
no se vera afectado. Es decir que hay invarianza rotacional. Esto implica que la invarianza

frente a rotaciones esté intimamente relacionada con la conservaciéon del momento angular.

m La energia se conserva cuando todas las fuerzas, tanto internas como externas, son con-
servativas. Esto requiere en particular que las fuerzas sean independientes del tiempo, ya
que solamente de ese modo se puede definir el trabajo como una integral de linea que,
en caso de no depender de la trayectoria, implicaria una fuerza conservativa. Por lo tanto
podemos decir que tenemos invarianza frente a traslaciones temporales. Concluimos que la
conservacion de la energia esta intimamente relacionada a la invarianza frente a traslaciones

temporales.

1.3 Resumen

En esta clase, repasamos las ideas que se adquieren en los cursos basicos de fisica, en los que
la mecanica se escribe en términos de las coordenadas cartesianas de un conjunto de particulas

utilizando vectores.

Luego de revisitar las tres leyes de Newton analizando cuidadosamente su significado, introdujimos
los conceptos de espacio de configuracién, trayectoria, ecuaciones de movimiento, condiciones
iniciales y espacio de estados. Finalmente, recorrimos los teoremas de conservacion, y sefialamos

su relacion con diferentes tipos de invarianzas en la descripcion de un sistema fisico.

En las clases que siguen, vamos a explorar las consecuencias de estas leyes para estudiar varios
sistemas mecanicos de interés. Para poder hacerlo con comodidad, nuestro primer paso sera

formularlas en una forma que no requiera del uso de sistemas cartesianos y vectores.
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Objetivos

En la clase anterior repasamos la formulacion newtonia-
na de la mecanica en su forma de mecanica vectorial, en
la cual la posicion de cada una de las particulas consti-
tuyentes de un dado sistema mecanico esta escrita en

coordenadas cartesianas.

En esta clase, vamos a reescribir la segunda ley de New-
ton en coordenadas curvilineas arbitrarias, lo que nos
permitira mas adelante describir una variedad de siste-
mas mecanicos de interés. En este proceso, descubri-
remos que para una clase de fuerzas bastante general,
las ecuaciones de movimiento pueden escribirse de una
forma Unica que no depende del sistema de coordenadas
utilizado, en términos de derivadas de una sola funcién

de las coordenadas curvilineas y de sus derivadas.

Coordenadas generalizadas

.",/”f

Joseph-Louis Lagrange

Como vimos en la clase previa, la configuracion de un sistema de N particulas esta dada por

N vectores 7, que determinan un punto en el espacio de configuracion ¥ = R*" del sistema.

Quisiéramos ser capaces de describir este espacio reemplazando las {#,} conn € {1,...,N} por

un conjunto cualquiera de 3N coordenadas generalizadas {q;} con i € {1,...,3N}, relacionadas

con las primeras por un cambio de variables 7, = 7, (¢i,?).
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Para obtener la trayectoria del sistema, debemos resolver un conjunto de ecuaciones diferenciales
dado por la segunda ley de Newton para un sistema de particulas, que en términos de las
coordenadas 7, se escribe
F = 4
dt

Una manera directa de obtener la forma de estas ecuaciones en términos de las coordenadas
generalizadas ¢; seria reemplazando directamente el cambio de variables en las ecuaciones. Pero
esto nos obligaria a reescribir las derivadas temporales segundas de las variables 7, en términos
de las nuevas coordenadas ¢; y sus derivadas primeras y segundas, usando la regla de la cadena
dos veces. Dependiendo del nimero de particulas involucrado y de la complejidad del cambio de
variables, esto puede volverse arbitrariamente complicado. En lo que sigue discutimos una técnica
completamente general que nos evita calcular tales derivadas temporales segundas, requiriendo

sélo las derivadas primeras.

Ecuaciones de Lagrange

Recordemos que el impulso se escribe como p, = m,#, donde m, es una funcién de if,%. Habiamos
llamado 2K, a la primitiva de m,, y vimos que correspondia a la energia cinética para el caso
no-relativista. También habiamos definido su suma sobre todas las particulas del sistema como
K= ):nN:1 K,,. En este punto nos interesa observar que usando tal término cinético siempre podemos

escribir el momento lineal de cada particula en la forma

dK

pn_?f“n

Reemplazando en la segunda ley de Newton, tenemos entonces que

F_d (oK
" dr \ oF,

Si ahora escribimos ¥, = 7,(¢i,¢) como funcion de un conjunto arbitrario de coordenadas genera-

lizadas {q,»},-e{l any, esta forma de la ley de Newton nos permite considerar a K directamente

como una funcién de las coordenadas generalizadas g;, las velocidades generalizadas ¢;, y el
tiempo. Podemos explotar esto si multiplicamos escalarmente por d7,/dq; y sumamos sobre n,

para obtener

7. 9T _d (OK\ I7y
" 8qi o dt 87,1 8qi
G;

En esta formula y en el resto de este texto, el simbolo de sumatoria sera sobrentendido cada vez
que un indice se repita dos veces, en lo que se conoce como convencion de Einstein. En este
caso la suma que estamos omitiendo corre sobre el indice de particula n, mientras que el indice
de coordenada i aparece una sola vez a cada lado de la igualdad, y por eso no esta sumado. En
el miembro izquierdo de esta ecuacion hemos definido la fuerza generalizada G; asociada a la

coordenada generalizada ¢;. Reemplazando en ella el cambio de variables, la magnitud G; queda



2.2 Coordenadas generalizadas 29

escrita como una funcién de las coordenadas generalizadas, las velocidades generalizadas, y el

tiempo. En el miembro derecho podemos integrar por partes, obteniendo

G- L (9K 90\ 9K d (07
" dt\o9r, dq;) 9%, dt \dq;

Notese que debido a la forma del cambio de variables 7, = 7,(g;,t) tenemos que las velocidades

satisfacen
L OF Ty
'n = 871,'% o
lo que en particular implica la relacion entre las derivadas
or, dF,
9gi B dqi

Mas aun, a partir de la misma férmula también podemos probar que
W Ph P d (3F
9q;  9g;0q;" " Iqzor ~ di \Ig;

Usando estas dos ultimas féormulas en el miembro derecho de nuestra segunda ley de Newton en

coordenadas generalizadas, podemos reescribirla como
d (9K 9%\ 0K o7,
a5 %) 5
O en otras palabras, usando la regla de la cadena

d (JK JdK
“=a <<967i> - 94;

En esta forma de la segunda ley de Newton tenemos una ecuacién para cada coordenada

generalizada g¢;, en lo que se conoce como ecuaciones de Lagrange.

El punto importante del resultado que hemos obtenido es el siguiente: para escribir las ecuaciones
de Lagrange necesitamos la forma de la fuerza generalizada G; y del término cinético K como
funcién de las coordenadas generalizadas g; y las velocidades generalizadas ¢;, y eventualmente
del tiempo. Esto sélo involucra calcular derivadas temporales primeras del cambio de variables,

con lo que nos hemos ahorrado bastante trabajo.

Podemos usar este resultado para escribir |la ley de fuerza en un sistema de coordenadas general,
no necesariamente cartesiano. Por ejemplo, podriamos describir la posicion de cada particula en
coordenadas esféricas, o cilindricas. Podriamos incluso usar sistemas de coordenadas en donde
cada una de las variables no se refiera a una sola particula sino a alguna combinacién de ellas.
Podemos también usar sistemas no necesariamente inerciales, donde el cambio de coordenadas

depende del tiempo.

Ejemplo: particula en coordenadas polares en el plano

Supongamos que dadas las coordenadas cartesianas para una particula en el plano
7= (x,y), queremos describir su movimiento en coordenadas polares {q;} = {r,6}. El

cambio de variables tiene la forma

x=rcosf y=rsin0
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Tomando una derivada temporal obtenemos para la velocidad
x=7cos® —rBsinf y=isin®+r@cos B

Si quisiéramos insertar esto directamente en la ley de fuerza, tendriamos que tomar
una derivada mas para obtener la aceleracion. Se puede ver que cada una de las
derivadas segundas resultantes tiene al menos cinco términos, lo que complica bastante

la obtencidn de las ecuaciones de movimiento.
Sin embargo, con lo calculado hasta ahora nos alcanza para escribir el término cinético
K. Este toma la forma
K=Ltm? = Ln(? 1207
2 2
Donde usamos que cos? 6 +sin” @ = 1 y por otro lado los productos cruzados contenien-
do sin 6 cos 6 se cancelaron.

También podemos escribir la fuerza generalizada G; = {G,,Gg}, para la que tenemos

la formula
- JF
G, =F- 2" = F.(cos0,sin0) = F,
oar N———
= 87 - .
Gy=F- =F-(—rsin0,rcos0) =xF, —yF, =1,

3|
D

—_— ——

re

En la primera ecuaciéon vemos que la fuerza generalizada en la direccion de r viene dada
por el producto escalar entre el vector fuerza y un versor que apunta en la direccion
radial. Es decir que corresponde a la componente radial de la fuerza. En la segunda
vemos que para la fuerza generalizada en la direccion de 6 nos queda el producto
vectorial entre el radio y la fuerza, es decir el torque. Esto es una realizacion concreta
de la idea intuitiva de que el torque es para los angulos lo que la fuerza es para el

vector posicion.

Reemplazando estos resultados en las ecuaciones de Lagrange

G, 4 (9K _oK G 4 (9K _ 2K
"Tdt\dr ) or *Tar\ag) a6
obtenemos explicitamente

F, = mi— mré? = mi + mdcen = M — Feen

d. .. d dt

Vemos que con este tratamiento aparecen automaticamente todos los conceptos
relacionados con el movimiento angular, tales como el torque 7, el momento de iner-
cia .# = mr?, la velocidad angular , la aceleracion centripeta ac., = —r62, la fuerza

centrifuga F.., = mr6?, y el momento angular ¢ = mr>0.
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Ejercicio:

Pruebe que para un conjunto de N particulas no relativistas, la energia cinética es
una funcién cuadratica de las velocidades generalizadas. En otras palabras, podemos
escribir

1 ..
K= EKij(Qi)‘Zin

Donde los coeficientes K;;(g;) son funciones de las coordenadas generalizadas y las

masas de las particulas involucradas.

Esta estructura para la energia cinética serd muy frecuente en los problemas estudiados

en lo que sigue.

Por analogia a la expresién que obtuvimos en coordenadas cartesianas p, = dK/d7, podemos

definir los momentos generalizados como

_JK
i
Dado que la energia cinética es una funcién de las coordenadas y velocidades generalizadas, los
impulsos generalizados también lo seran. Las ecuaciones de Lagrange quedan entonces escritas
como

oK dp,'
Gi+=-—=—
i+ aqi dt
Esta formula se puede expresar en palabras como /a fuerza generalizada mas la pseudofuerza

generalizada es igual a la derivada del impulso generalizado respecto del tiempo

Ejemplo: particula en coordenadas polares en el plano

Volviendo al ejemplo de arriba de una particula en el plano en coordenadas polares,
podemos usar la forma del término cinético K para obtener los impulsos generalizados
oK oK )
p,zﬁzmr pgzﬁzmre
Es decir que el impulso generalizado en la direccién r no es mas que el impulso radial.
Por otro lado, el impulso generalizado en la direccion 0 resulta ser el momento angular.
En efecto, tenemos que ¢ = |F x p| = rpsinrp =mrv sinrp. Usando el hecho de que
vsin7p es la componente tangencial de la velocidad, que sabemos vale r8, podemos
reescribir £ = mr?0. Esto realiza de manera concreta la idea intuitiva de que “el momento

angular es para los angulos lo que el vector impulso es al vector posicion.”

Ahora bien ¢ cual es el orden de las ecuaciones de Lagrange? Observando que tanto la fuerza
generalizada G; como el término cinético K son funciones de las coordenadas generalizadas g,
las velocidades generalizadas ¢;, y el tiempo, podemos usar la regla de la cadena para escribir

d (0K\ JK K - 9K .- ’K  JIK
94i) " dqi 94:04; VT 94idg; VT 9gidn 3

T ar
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donde vemos que genéricamente las ecuaciones seran de segundo orden. Dado que tenemos
una ecuacién para cada una de las coordenadas generalizadas g;, esto resulta en 3N ecuaciones
diferenciales de segundo orden. Las 6N constantes de integracion se fijaran entonces en términos
de las condiciones iniciales para ¢; y ¢;, y determinaran completamente la evolucion temporal. De

este modo, los valores iniciales de ¢, y ¢; reparametrizan nuestro espacio de estados & = RV.
Ejercicio:
Usando que 2K, es por definicién la primitiva de m, como funcién de 72, y aplicando
la formula que relaciona 7, con ¢; que obtuvimos antes, pruebe que el coeficiente de

¢; en la ultima expresion no puede anularse. Esto demuestra que las ecuaciones que

hemos obtenido no pueden ser de orden menor al segundo.

Fuerzas conservativas y monogénicas

Supongamos ahora el caso particular en que la fuerza se deriva de un potencial

- vV
F=-
" o7,

Donde el potencial depende de la posicion y eventualmente del tiempo V (7,,7). El caso indepen-
diente del tiempo lo conocemos de los cursos previos con el nombre de fuerza conservativa. El
caso dependiente del tiempo es un tipo particular de fuerza no conservativa que se conoce como

fuerza monogénica.

La expresion para la fuerza generalizada se puede reescribir para este tipo de fuerzas, segun

L 9f IV IR, _ oV

G =F ‘!t —-___ .~ "=__""
! " Bq,» B?n aqi 8qi
Es decir que la fuerza generalizada viene dada por menos la derivada del potencial respecto de la

coordenada generalizada correspondiente. Reemplazando esto en las ecuaciones de Lagrange,

escribimos
9V _d (9K\ 9K
dgi  dt \ 9¢ dqi

lo que se puede reordenar como
d (9K _aK-V)
dr \ dg; dq; -
Ahora bien, podemos escribir esta ecuacion de una manera mas simétrica si observamos que,
dado que V no depende de ¢;, en el primer término podemos reemplazar K por K —V obteniendo
d (d(K-V)) B Jd(K—-V) _o
dt 8q, 8qi -

En términos de una nueva funcién L = K —V, tenemos que las ecuaciones de Lagrange quedan

escritas como

d(oLy oL .
dt 8ql 8qi B
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Donde L es lo que se conoce como el lagrangiano del sistema, y es una funcion de las coordenadas

y velocidades generalizadas, y eventualmente del tiempo L = L(¢;,q,1).

La ventaja de esta formulacion lagrangiana es que podemos recuperar el conjunto completo de
ecuaciones de movimiento de un sistema mecanico tomando derivadas de una sola funcion de sus
coordenadas generalizadas, sus velocidades generalizadas, y el tiempo. Esta funcién se puede
obtener en términos de las energias cinética y potencial del sistema, lo que implica que para
cambiar de coordenadas a partir de la formulacién vectorial, sélo tenemos que calcular derivadas

primeras respecto del tiempo.

El precio a pagar por esta simplificacién fue el de restringirnos a fuerzas que se puedan derivar
de un potencial. Podemos pensar que esta es una limitaciéon demasiado fuerte, después de todo
quedan excluidas fuerzas tales como el roce, que fue un protagonista importante de los cursos
basicos de fisica. Sin embargo, por un lado y como veremos en la seccion siguiente, existe aun
una categoria mayor de fuerzas que pueden ser incluidas dentro de la formulacién lagrangiana.
Por otro, probaremos mas adelante bajo consideraciones muy generales que a nivel microscépico

so6lo pueden existir fuerzas de este tipo.

Fuerzas dependientes de las velocidades

En nuestra deduccién de las ecuaciones de Lagrange, usamos el hecho de que el potencial V
no depende de las velocidades, por lo que no contribuye al término que contiene la derivada
respecto #,. Sin embargo, una inspeccién mas atenta de ese calculo nos permite la siguiente
generalizacién. Supongamos que existe algun tipo de fuerza que se puede obtener a partir de una

funcion V (7,,7,,t)segun la formula

o d [ dV PA%
“—mQﬁ‘m

Podemos llamar a V (7,,7,,1) un potencial dependiente de las velocidades. En el caso particular en

el que V no depende de ¥, recuperamos el potencial de una fuerza monogénica, y si ademas no
depende del tiempo estamos en presencia de una fuerza conservativa. Sin embargo, en el caso
general aun podemos escribir

= Jdfy _ d (8V) dar, dV I7,

Gi=F, 2n L (20). o 27,
dq;i dt \9¥,) dqi 97y dg

Integrando por partes en el primer término, y usando las formulas que dedujimos mas arriba
97,/ 0q; = 00/ dGi Y O74/dq; = d(9F,/dq;)/dt, obtenemos

d (dV 9%\ 9V 9F, 9V IF, d [V IV

Gi = - - - = 5. - 5

dt 8?,1 (9(],’ 8%' aqi

9%, dqi OFy dqi dt
Con lo que podemos reconstruir las ecuaciones de Lagrange

EAN
dt \d¢i) dqi

donde de nuevo hemos definido nuestro lagrangiano como L=K —V.
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Cuando hay fuerzas dependientes de las velocidades, la definicion que dimos mas arriba para el

momento generalizado debe ser reemplazada por

o oL
pl_aqz'

donde entran también las contribuciones provenientes del potencial.

Si bien la generalizaciéon aqui definida puede parecer un tanto exdética a primera vista, en los
hechos resulta muy util ya que permite incluir en la formulacién lagrangiana una de las fuerzas

mas importantes de la naturaleza, como se ve en el siguiente ejemplo.

Ejemplo: fuerza de Lorentz

Supongamos como ejemplo sencillo que tenemos una sola particula, y que la funcién
V es lineal en las velocidades. De manera completamente general podemos entonces

escribir

1. -
Ve<CI>?~A>
C

en términos de una funcién escalar &(#,1) y una funcion vectorial A(7, 1), donde introduji-
mos las constantes e y c porque seran convenientes mas adelante. Si ahora obtenemos

la fuerza usando la férmula anterior

d (v av
fa=a <8r'a> o,

donde los indices a, b recorren las direcciones cartesianas {x,y,z}. Esto nos da

e dA, _e<ac1> 1. aA,,>

=7 T,
dr, ¢ 0dr,

T dt

Usando la regla de la cadena en el primer término nos queda

po_ e (M, AN (9 1 34
a7 ¢ 8rbrh ot € dary Crbaru

lo que se puede reacomodar segun
o 0% 10Ad e (A oAy,
a=¢ dr, ¢ Ot c\dr, dry b

Si aqui identificamos & con el potencial escalar y A con el potencial vector, mientras c

sera la velocidad de la luz y e la carga eléctrica de nuestra particula, la expresiéon que

hemos obtenido no es otra cosa que la fuerza de Lorentz

F=e (E +7x E)
Es decir que la fuerza de Lorentz se puede obtener a partir de un potencial de veloci-
dades, por lo que es un caso particular de las fuerzas dependientes de la velocidad

que hemos estudiado en esta seccion.
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Ejercicio

Podemos escribir el lagrangiano de una particula relativista cargada en la forma

} 1. -
L:K—V:—mrepcz\/1—72/c2—e<CI>—?-A)
c

Se puede comprobar lo poderoso que es el método de Lagrange calculando las ecua-
ciones de movimiento de una particula cargada en coordenadas polares en el plano,
usando la ley de fuerza vectorial de los cursos basicos de fisica y comparando con el

calculo a partir de este lagrangiano.

Nota:

Joseph-Luois Lagrange fue un matematico vy fisico italiano nacido en Torino bajo
el nombre de Giuseppe Luigi Lagrangia. Considerado por sus contemporaneos «el
matematico mas grande de Europay, tenia un caracter extremadamente timido y
retraido, y habia estudiado derecho en la universidad por considerar el topico de las
matematicas como demasiado aburrido. Sin embargo, se interes6 en la mecanica al
leer un articulo del astrbnomo, matematico y gedlogo inglés Edmond Halley, quién

fuera también inspirador de Newton.

Lagrange reformulé la mecanica utilizando el analisis matematico, entre otra enorme
cantidad de contribuciones a las matematicas y la fisica. Fue también el responsable

de la adopcion por la Revolucion Francesa del sistema métrico decimal.

2.2.4 Teoremas de conservacion

Al final de la Clase [T} reinterpretamos los teoremas de conservacion como una consecuencia de
las invarianzas del sistema. La formulacién lagrangiana nos permite formalizar y generalizar esa

intuicién, como se describe en esta seccion.

Segun la definicién que dimos mas arriba, el momento generalizado asociado a la coordenada
generalizada ¢; se obtiene de la expresion p; = dL/dq;. Esto nos permite escribir las ecuaciones

de Lagrange en la forma

dpi oL

dr — 9q;

Se puede ver inmediatamente que cada vez que el lagrangiano no dependa de una coordenada ¢;
el correspondiente momento generalizado p; se conserva. Una tal coordenada que no aparece
explicitamente en el lagrangiano se denomina coordenada ciclica. Es importante puntualizar que

la velocidad generalizada asociada ¢; si aparece en el lagrangiano.

Ejercicio: conservacion del momento lineal

Demuestre el teorema de conservacion del momento lineal de la mecanica vectorial

que vimos la Clase 1| utilizando los resultados de esta seccion.
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Para hacerlo, primero escriba el lagrangiano de un sistema de particulas en términos
de las coordenadas del centro de masas y las de cada particula en el sistema centro
de masas. Luego pruebe que si la coordenada centro de masas es ciclica, para lo
que basta que no aparezca en el potencial, entonces el impulso total del sistema se
conserva. Convénzase de que si tal coordenada es ciclica, esto implica que la fuerza

externa total se anula.

Ejercicio: conservacion del momento angular

Use los resultados de esta seccién para probar el teorema de conservacion del momento

angular de la mecanica vectorial que vimos la Clase [1]

Limitese al caso sencillo de una sola particula en el plano, escribiendo el lagrangiano
en términos de coordenadas polares, y probando que si la coordenada angular es
ciclica entonces el momento angular se conserva. Pruebe que si el angulo es ciclico,

entonces el torque externo total vale cero.

El hecho de que el lagrangiano sea independiente de la coordenada ciclica ¢; implica en particular
que nada cambiara si modificamos su valor sumandole una constante arbitraria g; — ¢; + €. Es decir
que el problema tiene una invarianza frente a cambios en ¢;. Una vez mas vemos que la existencia
de una invarianza esta relacionada con la aparicion de una cantidad conservada. Mas adelante
generalizaremos este resultado al caso de las invarianzas que no se manifiestan directamente en

una coordenada ciclica.

Vimos en los dos ejemplos previos que cuando hay una coordenada ciclica el momento generali-
zado correspondiente se conserva, algo que pone en un marco general las leyes de conservacion
del momento lineal y del momento angular de la mecanica vectorial. Una pregunta pertinente seria
entonces como se extiende al contexto del formalismo lagrangiano la ley de conservacioén de la
energia. Para ver esto, escribamos las ecuaciones de lagrange en coordenadas generalizadas,

segun

afoy o,
dt \d¢;) dqi

podemos multiplicar esta ecuacion por la velocidad generalizada ¢; y sumar sobre el indice i para

obtener

RN AN AR AN A AN
Ut dq; qlaqiidl qlaq'i %9% %3% B

donde en la segunda igualdad hemos hecho una integracién por partes. Sumando y restando
dL/dt dentro del segundo paréntesis reconocemos la derivada total respecto del tiempo dL/d:.

Nos queda

d (LY (dL oLy
dt q’aqi dt ot )
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Esto nos permite reescribir
dE JdL

dr o
donde hemos definido la energia como una funcion de las coordenadas y velocidades generalizadas

segun la formula

E :Cﬁ% —L=gipi—L
LII
De aqui deducimos que cuando el lagrangiano es independiente del tiempo, la energia se conserva.
Nétese que esto permite extender la definicidon de la energia a los sistemas monogénicos y a los
que tienen un potencial dependiente de la velocidad. Nuevamente, un teorema de conservacion
aparece ligado a una invarianza, en este caso la que corresponde a traslaciones temporales

t—1+E.

Ejemplo: sistema conservativo no relativista
Para un conjunto de N particulas no relativistas interactuando por medio de un potencial

conservativo, tendremos que

1 ..
L=K-V = EKij(qi)qiqj —Vi(qi)

De aqui podemos obtener inmediatamente
pi =Kij(4i) g,
con lo cual la energia toma la forma

.. 1 ..
E =K;j(qi)qiqj —L= EKij(LIi)CIinJFV(Qi) =K+V

Es decir que en este caso particular funciona la idea de “cambiar el signo al término

potencial” para obtener la energia a partir del lagrangiano y viceversa.

Sin embargo, se puede probar que esto no es verdad en casos mas generales, por

ejemplo particulas relativistas o con potenciales dependientes de las velocidades.

Ejemplo: particula relativista

Para una particula relativista interactuando con un campo electromagnético, tenemos

; 1. -
LKerepCZ\/l?Q/cze<<D?~A>
C

de donde se lee el momento lineal en la forma

B= M + 8
\/1—72/c2
Lo que implica
E=_TeeC  Led £ K4V
1-72/c?

Nétese que en este caso, para pasar del lagrangiano a la energia no funciona la férmula

sencilla de “cambiar el signo al término potencial’.
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Resumen

En esta clase encontramos una manera de reescribir la segunda ley de Newton en coordenadas
generalizadas, que no requiere calcular derivadas segundas, y que se aplica a sistemas de
particulas relativistas y no relativistas, con fuerzas de tipo lo bastante general como para incluir

las gravitacionales y las electromagnéticas.

Por lo tanto en adelante, al menos para este tipo bastante general de sistemas, podemos reemplazar

la segunda ley de Newton

= d ~ 5
F, = Pn donde p, =m,7,
dt

para la cual necesitamos saber la masa y las fuerzas que actian sobre cada una de las N particulas

como funcién de las posiciones y velocidades de todas las demas, por las ecuaciones de Lagrange

AN
dt 8q, 8q,-_

donde ahora es necesario conocer el lagrangiano como funcion de cada una de las 3N coordenadas

y las 3N velocidades generalizadas.

Si bien aun necesitamos resolver 3N ecuaciones de segundo orden en el tiempo, fuimos capaces
de reparametrizar nuestro espacio de configuracion € = RN en términos de 3N coordenadas
curvilineas arbitrarias {g;} con i {1,...,3N}. Como veremos en los capitulos que siguen, una
eleccidon adecuada de tales coordenadas nos permite identificar las coordenadas ciclicas y obtener
los correspondientes teoremas de conservacion. Las ecuaciones resultantes son de segundo
orden en el tiempo, por lo que necesitamos especificar 6NV condiciones iniciales para las {g;,¢;}

conic {1,...,3N}, que parametrizan nuestro espacio de estados & = RV,
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3.1

3.2

Objetivos

En esta clase comenzaremos a aplicar la formulaciéon
lagrangiana que obtuvimos en la Clase [2| a ejemplos

concretos de interés fisico.

En particular, nos dedicaremos al problema de dos cuer-
pos que interactuan a través de una fuerza central. Por el
momento, nos concentraremos en obtener resultados sin
especificar la forma explicita de la fuerza central como

funcion de la distancia entre los dos cuerpos.

Estaremos interesados en obtener la evoluciéon temporal
de la posicién de cada uno de los cuerpos. Veremos
que el problema se reduce al de una particula ficticia
que se mueve en una dimension bajo la influencia de un

potencial efectivo.

El problema de dos cuerpos

Edmond Halley

Supongamos que tenemos dos particulas no relativistas de masa m; y m,, cuyas posiciones se

describen en un sistema inercial a través de los vectores posicion 7 y 7. El espacio de configuracion

de este sistema es € = R°.
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Para obtener una descripcion lagrangiana de este problema, que nos permitira luego utilizar

coordenadas arbitrarias, podemos comenzar escribiendo su energia cinética como

Supongamos ademas que las dos particulas interactian a través de un potencial que no depende

de las velocidades ni del tiempo
V=V(#,h)

El lagrangiano correspondiente puede entonces escribirse en la forma

1 . 1 .
L:K—V:gml?]erEm]?%—V(?l,?z)

Al tomar la derivadas del potencial, obtendremos las fuerzas entre ambas particulas, segun

. - av
Fl=Fl o+ F=——
1 1—2 1 arl
. -, av
P =F + ext = ——
2 2—1 2 8r2

Si las particulas estan alejadas lo suficiente de cualquier otro cuerpo en el universo, entonces no

hay fuerzas externas. Por lo tanto tendremos que

)
1-2 = 7(971
-, av
Bog=——
2—1 872

Estas fuerzas deben satisfacer la ley de accién y reaccion Fi_,, = —F>_,;, lo que en particular

implica para el potencial

v _
of,  dh

Definiendo dos nuevas variables, la coordenada relativa ¥ y la posicion del centro de masas 7.,

segun las férmulas

F=F—"
S mi7y +mots
Fem =

my +my

podemos reemplazar este cambio de variables en la expresiéon de mas arriba para las derivadas

del potencial y usar la regla de la cadena. Con esto tenemos

3V n 8V - 3V noy 8V
oF  my+my 0  OF  my+my OFem

Procedemos a cancelar las derivadas respecto de 7y a reordenar los términos restantes, para
obtener

av

OFem

=0
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Esto implica que el potencial es funcién solamente de la coordenada relativa 7 = 7, — ;.

Ademas, estamos interesados en el problema en el que la fuerza es central, es decir que cumple
la condicion

(72—71) Xﬁng =0

lo que se puede expresar en términos de la coordenada relativa 7

A%
FX— =0

or
Esta ecuacion implica que dV /d7 debe ser proporcional al versor 7, lo que solo se puede cumplir si
escribimos 90V /d¥ = V' (r)7 donde V' (r) es una funcién arbitraria de r = |#|. Esto se puede integrar,

para obtener finalmente
V=V(h-"7
Con lo cual el lagrangiano del problema vendra dado por la expresion
| R ) S o
L= om7i+5mr; —V([F —Fl)
2 2
Ejercicio:
Calcule las ecuaciones de Lagrange para este potencial ;cuantas ecuaciones diferen-

ciales hay? ; cuantas variables? ; estan acopladas?

Si invertimos la definicion de 7 y 7., para obtener 7, y 7,

L myf
rN=rem+—
my +my
S o m¥
D =7rem —
mi1 +my

Las velocidades se obtienen inmediatamente y se pueden reemplazar en la energia cinética, para

obtener el lagrangiano en las nuevas coordenadas

KX 2 KX 2
L 1 2 myr n 1 - mir V(7))
=—my |7 T — —m\rem————— | — 7
2 em my +ny 2 em my +nmy
Expandiendo los cuadrados vemos que los términos proporcionales a ~.- ¥ se cancelan, obteniendo

1 = I
L= Mot rgm + E” 2 —V(r)

Donde m,: = m; +my es la masa total, y la combinacién yu = m;m,/(m; +m;) se conoce como la

masa reducida del sistema.

Ejercicio:
Escriba las ecuaciones de Lagrange para las coordenadas relativa 7 y centro de masas

Fem ¢CUANtas son? ;estan acopladas?

Con este cambio de variables, hemos reparametrizado nuestro espacio de configuracion ¢ = R®

en términos de las coordenadas {¥.m,7}.
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Problema equivalente de una particula

La primera observacion importante es que las tres componentes del vector posicion del centro de
masas 7., son coordenadas ciclicas, es decir que no aparecen en el lagrangiano. Esto implica

que su correspondiente momento generalizado

. JL B
Pem = —5— = Miotlem
0Fem

se conserva. Esto es algo que ya sabiamos: en ausencia de fuerzas externas el momento lineal
del centro de masas se conserva, pero ahora escrito en un nuevo lenguaje. Las ecuaciones de

movimiento para 7., son entonces
mtotycm = ﬁcm
y se pueden resolver facilmente como

- ﬁcm -0
Pem = —(t — 10) + T
Mot

donde F‘C)m es el valor de 7., al tiempo ¢t = 1.

En cuanto a las ecuaciones de Lagrange para ¥, estas toman la forma
d (JL oL PO
dt \ o7 or H (r)
donde 7 es el versor radial. En estas ecuaciones no entra ni la variable ciclica 7., ni su derivada

temporal 7., por lo que es evidente que se podrian haber obtenido del lagrangiano truncado
Llpart = i.ur - V(r)

En otras palabras, hemos transformado el problema de dos cuerpos en el problema equivalente
de una sola particula ficticia de masa u situada a una distancia 7 del origen, con un potencial que

depende sélo de r = |7].

Un punto importante de esta truncacion es que el espacio de configuracion resultante ¢ = R3
tiene dimension menor que el original, y lo mismo sucede para el espacio de estados & = RS. Otra
cuestion a mencionar es que es consistente, en el sentido de que las ecuaciones de movimiento
para 7 que se obtienen a partir del lagrangiano truncado coinciden con las que se obtendrian

usando lagrangiano original.

La dependencia sencilla del potencial nos hace sospechar que el problema sera particularmente

simple si lo escribimos en coordenadas esféricas. Para esto, definimos
X =rcos0sing@ y=rsinfOsin¢@ Z=rcos¢

y derivamos respecto del tiempo usando la regla de la cadena, para obtener las velocidades en la

forma

% = icos @sing — r@sin Osin¢ + ¢ cos O cos ¢
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y = Fsin@sin¢ -+ rd cos O sin ¢ + r sin O cos ¢
Z=7Fcos¢ —r([) sin¢

Si reemplazamos estas expresiones en el lagrangiano, obtenemos después de un poco de trabajo

%,u (P +r* (§* +67sin? ¢)) — V(1)

Llpart =
donde, al igual que en el ejemplo de las coordenadas polares en el plano que vimos la Clase 2]
los productos mixtos se cancelaron. A partir de este lagrangiano, podemos obtener facilmente las

ecuaciones de Lagrange, aplicando la formula general de la clase previa

i (aLlpart> - aLlPE‘rt — urfﬂr(¢2+ 92 sin2¢) +V,(I") =0

dt ar ar

% (&Lalgart> - aLalgart = % (r?§sin ) =0

i (55 ) - = w20 singcone <0
Ejercicio:

Escriba el lagrangiano en coordenadas esféricas para el problema de Hooke, es decir

dos particulas unidas por un resorte. Obtenga las ecuaciones de movimiento.

Este problema provee una descripcion clasica para el movimiento de una molécula
diatémica. Sin embargo, su importancia fenomenoldgica es limitada, ya que a la escala

molecular los efectos cuanticos comienzan a ser relevantes.

Ejercicio:
Repita lo anterior para el problema de Kepler, es decir dos particulas interactuando a
través del potencial newtoniano.

Este problema describe el movimiento de los planetas en el sistema solar, y es el que
motivé a Newton a desarrollar sus tres leyes de la mecanica y la ley de la gravitacion

universal.

Fijando primero la atencidn en la ultima ecuacién, vemos que tiene una solucion trivial dada por
¢ = m/2. En esta solucioén, la particula se mueve en el plano (x,y). Las dos ecuaciones restantes

pueden escribirse como
wi—uré? +v'(r) =0
< (ur6) =0

Estas ecuaciones pueden obtenerse a partir del lagrangiano
Log = %u (FP+r76%) =V (r)

Se trata de nuevo de un lagrangiano truncado, ya que hemos omitido la variable ¢, reduciendo

una dimension adicional en el espacio de configuracion ¢ = R?.
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Ejemplo: el movimiento tiene lugar en un plano

La resolucion anterior puede hacerse por un camino mas corto. Notemos que, dado
que la fuerza es central, es decir que apunta hacia el origen de coordenadas en la
variable ¥, entonces no habra torque actuando sobre la particula ficticia. Esto resulta

en que el momento angular asociado ¢ = m7 x 7 es constante.

Lo anterior implica que podemos elegir un sistema de coordenadas tal que el eje z
apunte en la direccion del momento angular. Ahora bien, por definicién el vector 7
es siempre perpendicular a 7, por lo que se mantendra en el plano (x,y). Con esto,
podemos simplificar el cambio de variables, usando coordenadas polares en este plano

en lugar de coordenadas esféricas en el espacio. Es decir, escribimos
x=rcos0 y=rsinf z=0

Este problema corresponde al de una particula que se mueve en un plano que dimos

como ejemplo la Clase [2] lo que simplifica la obtencidn del lagrangiano
1 .
Log = 5H (P +r76%) =V (r)

que coincide con el resultado de mas arriba para el lagrangiano truncado.

Lo primero que notamos en estas ecuaciones es que, dado que la coordenada 6 es ciclica, el
momento generalizado asociado pg = dL,4/d6 se conserva. Llamamos ¢ a esta constante, y

tenemos
(=ur’é

Con esto hemos encontrado una primera integral del problema. Esto quiere decir que hemos
logrado reducir en uno el orden en derivadas de las ecuaciones involucradas. Despejando entonces
6 de esta expresion, segun
L
N
obtenemos la ecuacion que debemos resolver para obtener la evolucién del angulo 6 como funcién

del tiempo. Podemos insertar estos resultados en la ecuacion restante para r, o que resulta en

[2
P———=+V'(r)=0
Wi= s TV
que es la ecuacion que deberiamos resolver para obtener la evolucion del radio » como funcion

del tiempo.

Ejercicio:
La tercera ecuacion de Lagrange para L, tiene otra solucion trivial, dada por ¢ = 0.

Obtenga la ecuacién para r en este caso ¢ Qué sucede con la ecuacién para 67 ;Qué

representa este movimiento?
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Figura 3.2.1: /lustracion de la segunda ley de Kepler. El area dA formada por el radio r y el diferencial de

arco dl se recorre a velocidad uniforme.

Solucién angular

Volviendo a la ecuacion que obtuvimos mas arriba para el movimiento angular

A
=
vemos que se puede integrar para obtener una solucién completa para el angulo 6 como funcién
del tiempo ¢, segun
¢ rtdt
9 - 90 + - 7
H Jyy 1
Por supuesto que para poder hacer explicitamente esta integral, necesitamos conocer la forma de
r como funcién de . Como veremos en la seccion siguiente, dependiendo de la forma del potencial

V(r) esta expresion puede o no obtenerse analiticamente.

Podemos reescribir la evolucién angular como una relacion entre diferenciales

do = det
ur
por lo tanto el diferencial de arco dI = rd6 descripto por la particula ficticia en su movimiento
durante un tiempo infinitesimal dr vendra dado por la expresion

dl = % dt
Si desde cada uno de los extremos de este diferencial de arco trazamos una linea hasta el origen,
obtenemos un triangulo infinitesimal, que fue barrido por el radio vector 7 durante su evolucion
durante el tiempo dt, como se puede ver en la figura El area de este triangulo sera dA =rdi /2,
es decir que

dA = %dr
Podemos integrar esto entre dos valores de ¢ para obtener

14
A—Ap= o (t—1)
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Con lo que hemos demostrado la segunda ley de Kepler: el radio vector ¥ barre areas iguales en

tiempos iguales.

Solucion radial

La ecuacién que tenemos que resolver para el radio es la que habiamos obtenido mas arriba, la
cual se puede reordenar como

2 d 2
7 & __ 4 v
ui=-v'(r)+ = o (V(r) + )

o en otras palabras

it = —Vi4(r)

donde vemos que hemos transformado el problema en un problema unidimensional equivalente,
que contiene una particula que se mueve en una dimensién bajo la influencia de un potencial

efectivo de la forma

52
Vie=V+ 5>
2ur
En esta expresion, el primer término es el potencial del problema, mientras que el segundo se
conoce como barrera centrifuga, ya que crece sin limite cuando nos acercamos al origen. Se puede
ver facilmente que la ecuacién de movimiento de arriba puede obtenerse a partir del lagrangiano

efectivo
Lyg = E‘ur — Vg

Es evidente que hemos reducido aun mas el espacio de configuracién, realizando una nueva

truncacion que nos deja con un problema unidimensional cuyo espacio de configuracion es ¥ = R.

Este problema unidimensional equivalente tiene una energia conservada, lo que se puede probar

multiplicando la ecuacién de movimiento por 7 e integrando. Esta energia toma la forma
E= E,LLr +Via(r)

Naturalmente tenemos que E > Vi4, por lo que el movimiento tendra lugar en la regién de valores
de r donde se cumple esta desigualdad. A medida que el radio se acerca a algun borde de dicha
region, el valor del potencial efectivo V14 es cada vez mas parecido al de la energia E, por lo que el
término w2 /2 es cada vez mas pequefio. Cuando el radio alcanza el borde tenemos que E = Vi,
por lo que ui?/2 = 0y el movimiento radial se detiene. Dado que la fuerza radial efectiva —Vi, es
no nula, esta situacion dura solo un instante y luego el radio comienza a cambiar nuevamente,
pero ahora se mueve en la direccion opuesta alejandose del borde. Por esta razén, cualquier
punto donde se cumpla V4 = E se denomina punto de retorno del potencial, el movimiento radial

tendra lugar rebotando entre los puntos de retorno.
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Eal-oo.._. \ Acotada

Circular

Potencial centrifugo

Ecl.. ... Potencial real

—— Potencial efectivo

e e e

I Icirc r2

Figura 3.2.2: Potencial efectivo para el problema de Hooke. Cuando la energia del sistema es E. el sistema
recorre orbitas circulares con radio r,.. Cuando la energia es E, > E. las 6rbitas son acotadas.

No hay 6rbitas no acotadas en este sistema. En ningtin caso la particula pasa por el origen.

Ejercicio:
Usando algun software de dibujo como por ejemplo Mathematica 0 GeoGebra, obtenga

graficas del potencial efectivo para el caso del potencial de Lennard-Jones que esta

dado por

vior=s(()"- (=)')

Este potencial describe la interaccion entre moléculas neutras como una competencia

entre un término repulsivo de corto alcance y uno atractivo de alcance mayor.

De aqui se pueden sacar varias conclusiones cualitativas muy utiles sobre el movimiento, solamente

analizando la forma del potencial efectivo

m Si el potencial efectivo crece hacia radios grandes, volviéndose mayor que la energia,
entonces habra un punto de retorno y el movimiento sera acotado. La particula ficticia se
mantendra cerca del origen. Si en cambio el potencial esta acotado a radios grandes, v si
la energia es mayor que la cota del potencial, entonces no habra un punto de retorno y la

6rbita serd no acotada. La particula ficticia podra alejarse arbitrariamente del origen.

Las mismas consideraciones se aplican cuando nos movemos hacia radios pequenos:
dependiendo de la forma del potencial efectivo y de la energia total, el sistema unidimensional
puede tener o no puntos de retorno. Si no hay puntos de retorno, el movimiento llega a r = 0.
Si en cambio si los hay, el movimiento radial se detiene en el punto de retorno y cambia de

direccion.
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E, No acotada

E. Acotada

Circular

E. Potencial centrifugo
Potencial real

—— Potencial efectivo

Iy Teirc rz

Figura 3.2.3: Potencial efectivo para el problema de Kepler. Cuando la energia del sistema es E. el sistema
recorre Orbitas circulares con radio r,.. Cuando la energia es 0 > E, > E las orbitas son
acotadas. Para energias E, > 0 las 6rbitas son no acotadasz. En ningun caso la particula pasa

por el origen.

m Si el potencial efectivo tiene un minimo en r = r,, cualquier movimiento debe tener una
energia mayor o igual que el valor minimo del potencial V (r.). En particular, si la energia
es igual al valor minimo del potencial E =V (), entonces el sistema unidimensional solo
puede quedarse quieto en el punto minimo r = r¢;,¢, ya que no le alcanzaria la energia para

ir hacia radios mayores 0 menores.

En términos del problema inicial, esto no implica no haya movimiento, ya que 6 es diferente
de cero. Lo que esta sucediendo es que el radio se mantiene constante en r., por lo que la

particula ficticia realiza una 6rbita circular alrededor del origen de coordenadas.

Ejercicio:
Obtenga graficas del potencial efectivo para el caso del problema de Kepler y del

problema de Hooke, usando algun software de dibujo como por ejemplo Mathematica

0 GeoGebra, y analice las correspondientes 6rbitas.

La energia del problema unidimensional equivalente que hemos encontrado mas arriba se puede

escribir en términos del potenical real en la forma

gty 2 +V(r)
M T Y

de donde se puede despejar la velocidad radial segun

e e




3.3

3.3 Resumen 51

Usando esta expresion y escribiendo 7 = dr/dt podemos despejar
dr

3 (55 -v00)

Esto permite reducir el problema a cuadraturas de acuerdo a

dt =

r dr
=ty +/
ro 2 gz
\/# (E o _V(r))

Junto con la ecuacioén que escribimos mas arriba para 6, esto constituye una solucion completa

del problema de dos cuerpos con fuerza central.

La primera observacion es que hemos obtenido una expresion integral la cual, dependiendo de
la forma el potencial, puede no ser posible de integrar explicitamente en términos de funciones
elementales. Sin embargo, esta se considera una solucién del problema, ya que utilizando métodos
numeéricos se puede calcular la posicion como funcién del tiempo con precision arbitraria. Como
segundo punto, incluso si pudiéramos resolver explicitamente la integral, obtendriamos ¢+ como
funcion de r en lugar de lo opuesto. Esto nos lleva a la necesidad de utilizar una funcién inversa

para obtener r como funcién de .

Ejercicio:

Use un software de manipulacién algebraica como Mathematica 0 Maple, 0 una tabla
de integrales para investigar las soluciones radiales del potencial tipo ley de potencias
V = —kr~"*! ;Para cuéles valores de n hay una solucion explicita en términos de

funciones elementales o especiales?

Resumen

Analizando el problema de dos cuerpos con fuerza central, vimos que se puede transformar en un
problema de una sola particula ficticia que se mueve a en un potencial central. Aplicando entonces
la formulacién lagrangiana en coordenadas esféricas, fuimos capaces de probar que el movimiento

resultante tendra lugar en un plano.

Usando la conservacién del momento angular, pudimos resolver el movimiento angular, y reescribir
el movimiento radial como el de un problema unidimensional equivalente con un potencial efectivo.
Pudimos reducir este ultimo problema a cuadraturas, escribiendo la dependencia temporal del

radio en términos de una sola integral.

Ademas, demostramos que se cumple la segunda ley de Kepler, que dice que el radio vector que
une un planeta al sol barre areas iguales en tiempos iguales. Lo interesante es que esta propiedad
se cumple incluso cuando la interaccidn central no responde a la ley de cuadrado inverso que

caracteriza a la interaccion gravitatoria.
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4.1 Objetivos

En esta clase nos concentraremos en las 6rbitas del

problema de dos cuerpos con fuerza central.

En nuestro analisis, solo estaremos interesados en des-
cribir cdmo cambia el radio como funcién del angulo a
medida que se produce el movimiento, sin ocuparnos de

la dependencia temporal de ninguna de ambas variables.

Construiremos las ecuaciones diferenciales que satisfa-
cen las orbitas para un potencial general, y estudiaremos

las propiedades universales de sus soluciones.

Ademas, aplicando la técnica de perturbaciones, anali-

Joseph Louis Francois Bertrand

zaremos qué condiciones debe cumplir el potencial para

que el sistema recorra 6rbitas cerradas.

4.2 Orbitas del problema de dos cuerpos

Recordemos las primeras integrales que habiamos obtenido en la Clase [3|para las velocidades

angular y radial del problema de dos cuerpos
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._ |2 E—ﬁ—V()
7= m ur r

Con una integral adicional, estas ecuaciones resultaban en una reduccion a cuadraturas del

problema, lo que es equivalente a una solucion completa.

Sin embargo, cuando el movimiento en el tiempo no resulta relevante, podemos dejar de lado estas
ecuaciones y concentrarnos en escribir una ecuaciéon que describa exclusivamente las orbitas del

sistema, es decir el comportamiento de » como funcién de 6.

Para eliminar la variable ¢ de nuestras ecuaciones de movimiento, dividimos la velocidad radial en

la velocidad angular, obteniendo la expresion

o ntadl 5 7 _
-6 '\¢ ( 2z V)

Esto permite obtener inmediatamente una solucién para la 6rbita de acuerdo a la integral

T dr

Jr 2
0 rz\/ng <E— 2fzr2 —V(r))

Nuevamente, esto se puede considerar una solucidon completa de la 6rbita del problema, si bien

dependiendo de la forma del potencial la integral podria no tener una forma explicita en términos

de funciones elementales.

Ejercicio:

Use un software de manipulacion algebraica como Mathematica 0 Maple, 0 una tabla
de integrales para investigar las soluciones para las 6rbitas del potencial tipo /ey de
potencias V = —kr~*! ; Para cudles valores de n hay una solucién explicita en términos

de funciones elementales o especiales?

Podemos analizar algunas propiedades de la 6rbita incluso sin obtener una forma explicita para la

integral. En efecto, reordenando la ecuacion de arriba podemos reescribirla en la forma

1 [dr\? 2u 2
— =) == |E——= -V
r4 <d9) 2 ( 2/,Lr2 (r))
Esta ecuacion tiene dos simetrias inmediatamente identificables:

= Sir(6) es una solucién, también lo es r(6 + €) con € un numero real arbitrario. Esto no es
sino la invarianza rotacional, que nos dice que podemos rotar el sistema de coordenadas

alrededor del origen en el plano del movimiento sin que tenga ninguna consecuencia fisica.

= Si r(6) es una solucion, también lo es r(—0). Esto sucede porque la derivada aparece
al cuadrado, y significa que podemos cambiar el signo del eje z de nuestro sistema de

coordenadas sin que haya efectos fisicos.
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Taps

I'aps

m—— S0lUCION NuMérica
/ Primera reflexion
/ Segunda reflexion

Tercera reflexion

Figura 4.2.1: Las 6rbitas se reflejan el los apsides: podemos usar esta propiedad para construir la orbita
completa a partir del arco entre dos apsides. Esto es muy util al obtener soluciones numeéricas,

ya que reduce el numero de puntos a computar.

Una combinacion de ambas transformaciones implica que si r(0) es solucion, también lo es
su forma reflejada r(26,,s—0) con 6,,s una constante cualquiera. Podemos preguntarnos qué
valor deberia tomar esta constante para que la érbita se refleje sobre si misma, es decir para que
r(0) =r(26,,s—0). Derivando esta condicién y evaluando en 6 = 6,,s obtenemos 1/ (6,55) = —1/(aps),
lo que implica que 7/ (6,,s) = 0. Es decir que 6,5 debe ser el dpside de la drbita, definido como
el punto donde la distancia al origen es maxima o minima. La conclusion es que /as 6rbitas se

reflejan en sus apsides.

La propiedad de reflexién en el apside resulta muy util cuando resolvemos las ecuaciones numé-
ricamente, ya que nos permite encontrar la solucion para los valores de 6 que estén entre dos

apsides cualesquiera, y luego construir el resto aplicando reflexiones.

La ecuacion de mas arriba puede resultar mas simple de resolver si en lugar de escribirla en

términos de la variable r la escribimos en términos de una nueva variable u =1/r

du\* 2u 2,
-~ = E—- 2 —
(3) =% (3 )

Es posible también escribir una ecuaciéon de segundo orden para la 6rbita, que a veces simplifica

la solucion de algunos problemas. Para esto, usamos la ecuacion para 6 para escribir

d__t d
dt  ur?de

y lo reemplazamos en la ecuacion para r, obteniendo

2 d (1 dr 2 ,
wrraa (2in) s V0 =0
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Escribiendo esto en términos de u y reordenando, nos queda

d’u u
ﬁ‘i‘ld‘i’ Z—Z&,V:O

Esta ecuacion de segundo orden resulta particularmente util para estudiar qué sucede cuando

deformamos ligeramente una 6rbita circular, como haremos en la siguiente seccion.

Nota:

Como hemos visto, las orbitas y el movimiento en el tiempo para el problema de dos
cuerpos con fuerza central se pueden reducir a cuadraturas, lo que es el equivalente a

resolverlos exactamente.

El problema de tres cuerpos en cambio es extremadamente dificil de resolver, tanto que
se conocen muy pocas soluciones exactas para casos muy particulares, algunas de las
cuales fueron obtenidas hace menos de diez afios. En el caso general el movimiento es
fuertemente cadtico, lo que significa que cualquier perturbacién se amplifica modificando

completamente la 6rbita resultante.

En la novela El problema de tres cuerpos el escritor Liu Cixin imagina una civilizacién
que ha evolucionado en el sistema solar de nuestra estrella mas cercana Proxima
Centauri, que es un sistema triple. Esta especie enfrenta climas extremos cada vez
que su planeta se acerca mucho o se aleja demasiado de alguna de las estrellas del
sistema, y no conoce una manera de predecir lo que sucedera. Su Unica certeza es
que, en algun momento de su 6rbita futura, su planeta sera finalmente engullido por
alguno de los tres soles. De este modo, el Unico plan posible para la supervivencia es

emigrar.

4.2.1 Teorema de Bertrand

Una orbita sencilla que se encuentra como solucion para varios potenciales es la érbita circular,
que en términos de la variable u esta definida como u(6) = u.,.. Podemos encontrar el valor de
ugire Usando la ecuacion de segundo orden de mas arriba, donde al reemplazar la solucion se
encuentra

U
Ucirc = _ﬁ &uvl

Ucirc

Nos gustaria escribir la ecuacién que satisface una pequefa perturbacién de esta 6rbita circular,
definida segun u(6) = uc.. +€8u(0), donde € es un numero pequefio y du(0) es una funcion a
determinar. Reemplazando en la ecuacién de segundo orden para la 6rbita y desarrollando a
primer orden en g, tenemos

d?8u
do?

+(1+ %%Vlucim) Su=0
el

o?
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Figura 4.2.2: Teorema de Bertrand.: las pequefias perturbaciones de una 6rbita circular (izquierda) resultan
en una orbita perturbada que se cierra sobre si misma sélo cuando el radio realiza un nimero

entero de oscilaciones mientras el angulo da un numero entero de vueltas (derecha).

Con la definicién de a> que hemos hecho en la formula, esto puede reescribirse en la forma mas
compacta

d*Su
do?

+a*éu=0

que podemos reconocer inmediatamente como la ecuacidn de un oscilador arménico, cuya solucion

conocemos
Su(6) = Sugcos(a (0 — 6y))

siendo Sug y 6y constantes de integracién. Esta perturbacion oscila a medida que 6 crece reco-
rriendo la orbita. Por lo tanto la érbita perturbada sera cerrada si cuando se dieron n vueltas en
torno al origen, es decir cuando 6 avanzo un angulo 27zn, la perturbacion du realizé un nimero m
de oscilaciones completas. Para esto necesitamos que a2rn = 2wm. Esto implica que la orbita
sera cerrada s6lo si o es un numero racional a = m/n. Si recordamos la expresion para o vemos

que esto impone una condicién sobre la forma del potencial.

Si ahora queremos resolver el problema a orden cuadratico en la perturbacion, escribimos u =
Ucirc +85u+825(2)u y volvemos a reemplazar en la ecuacion completa, desarrollandola ahora a

segundo orden en €. Nos queda

d25(2)” 2 H o3 2
W +o 5(2)14 = —ﬁau‘qucirc ou
—_————
2B

Insertando explicitamente la solucién para §u que habiamos obtenido del desarrollo a primer orden,
tenemos

d*Sou 5 2

TN + 0" yu = B duj (14 cos(20(0 — 6p)))
donde en el segundo término expresamos el cuadrado del coseno segun la formula 2cos?(---) =

1+cos(2---). Esta ecuacion corresponde a un oscilador armoénico forzado, que segun sabemos se
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resuelve con

B

1
Opyu = ?5143 (1 — gcos(2a(6 - 90)))

Repitiendo el analisis anterior, vemos nuevamente que esta correccion resulta en érbitas cerradas

si a es un numero racional.

Para ir a tercer orden, escribimos u = ugj,c +€6u+ 825(2)u+ 835(3)u y volvemos a reemplazar en la

ecuacion, obteniendo esta vez

d25 3\U
de(z) + a25<3)u = 4ﬁ 61/[ 6(2)” - %aljvhcirc 6143
——

4y
Insertando las formas explicitas de du 'y §,yu en el lado derecho, y usando algunas identidades

trigonométricas, llegamos a la expresién

d*83yu 1082 282

W(Z) + a26<3)l/t = 5148 <<3a2 +3'}’> cos((x(@ — 9())) -+ ( — W) COS(3a(0 — 9()))>
Esto es nuevamente un oscilador forzado, esta vez con dos fuerzas externas. Una de tales fuerzas
oscila con la frecuencia natural del oscilador arménico a. Por lo tanto, esta fuerza daré lugar al
fendmeno de resonancia, haciendo que §3)u crezca sin limites a medida que crece 6, es decir a

medida que la particula ficticia realiza sus revoluciones en torno al origen.

Hemos encontrado una inestabilidad: tenemos una solucién para el movimiento del sistema (la
orbita circular) cuyas pequefas perturbaciones crecen arbitrariamente, con lo que dejan de ser
pequefas y destruyen la solucién. Para evitar esto necesitamos que la fuerza resonante esté

ausente, lo que sucede solamente cuando se cumple la condicién
1082 +9a*y=0

En este caso, solo queda una fuerza externa que no es resonante, y la solucién para el oscilador

forzado es

Su} 2p?
O(3)u = O(3yupcos(0(6 — b)) — ﬁ (}/ 3052> cos(30(6 — 6p))

donde §3)uo es una nueva constante de integracion. Esta solucion de nuevo da origen a una orbita

cerrada cuando o es un numero racional.

Este proceso perturbativo se puede continuar a un orden arbitrario en el parametro infinitesimal
€, lo que nos permite construir una 6rbita arbitrariamente deformada. Sin embargo, la expansion

hasta orden tres es suficiente para nuestros fines, como veremos a continuacion.

Ejemplo: ley de potencias

Podemos testear estos calculos en el caso de un potencial con la forma de una ley de

potencias

V=—kr !
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Primero tenemos que encontrar u;,., mediante la formula

U

1:‘672

k(n—1)u®3

circ
luego calculamos «, B y 7, obteniendo
a-=3—n

B= 3(n—2)(n—3ug

_ 1
Y=

Reemplazando en la condicion de ausencia de resonancia, esto implica que

(n=2)(n—3)(n—4)ugy,

(n—32(n—2)(n+1)=0

Con lo cual vemos que o bien n = —1 y obtenemos la ley de Hooke, o bienn =2y
obtenemos la ley de Newton. No podemos poner n = 3 porque en ese caso « valdria

cero y la perturbacién de primer orden creceria linealmente.

La condicion 1082 +9a’y = 0 se puede escribir completamente en términos del potencial y sus

derivadas, como
5u(93V)? +3(9.V —udlVv)ajv =0

donde hemos reemplazado las expresiones explicitas para a?, B y v, y hemos eliminado i /¢? en
términos de u.,. usando la formula que determina la 6rbita circular. Finalmente reemplazamos
ucre €n todas partes por u, ya que eligiendo el valor de ¢> podemos hacer que la expresion sea
valida en cualquier posicion. Con esto hemos obtenido una ecuacion diferencial para la fuerza

generalizada G, = —d,V, que se puede escribir como.
5u(92G,)* =3 (G, +ud,G,)d>G, =0

Si pudiéramos resolver esta ecuacion, obtendriamos aquéllos potenciales para los cuales una
pequeia perturbacion de la érbita circular resulta en una solucion estable que da lugar a una érbita

cerrada.

Ejercicio:

Utilizando un software de manipulacion algebraica como Mathematica 0 Maple, rees-
criba la ecuacion diferencial en términos de una nueva variable independiente { = logu
y una nueva variable dependiente U = log(—G,,). Proponga un desarrollo en serie de

la solucion, con la forma

U:Zamcm
m

y reemplacelo en la ecuacion para demostrar que todos los coeficientes a,, deben

anularse con la excepcion de ag y ay, el cual puede valer —3, 0 6 1. Yendo hacia atras
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con el cambio de variables, demuestre que el caso a; = —3 corresponde a la ley de
Hooke V = kr?, mientras que el caso a; = 0 corresponde a la ley de Kepler V = —k/r. El

caso a; = 1 debe descartarse ya que conduce a a = 0 (ver el ejemplo de mas arriba).

Con esto probamos que estas dos leyes de potencias constituyen la solucién general al problema, es
decir que son los Unicos potenciales que dan lugar a drbitas circulares que cuando son perturbadas

siguen siendo cerradas. Este resultado se conoce como teorema de Bertrand.

Resumen

Aprendimos que la 6rbita del problema de dos cuerpos con fuerza central se puede escribir como

una cuadratura, sin necesidad de resolver el movimiento como funcion del tiempo.

También fuimos capaces de escribir una ecuacién diferencial de segundo orden para la 6rbita, y la
usamos para estudiar el comportamiento de las perturbaciones alrededor de la érbita circular. Este
tipo de calculos se conocen como teoria clasica de perturbaciones y resulta muy util en cuestiones

relacionadas con la mecanica celeste.

A partir de este analisis probamos el teorema de Bertrand, que dice que los unicos potenciales
cuyas perturbaciones alrededor de la 6rbita circular resultan en trayectorias cerradas corresponden

al potencial de Kepler y al potencial de Hooke.




cuerpos III}',%epler

5.1 Objetivos

En esta clase nos proponemos estudiar el caso especial
del problema de dos cuerpos que interactian mediante

una fuerza central de caracter gravitatorio.

Este problema esta en la base de la mecanica celeste, ya
que constituye una primera aproximacién al movimiento
de los planetas en torno al sol, y al de los satélites en torno
a cada planeta. Esto significa que entre los resultados
de nuestro analisis debemos encontrar las dos leyes de

Kepler que aun no hemos demostrado.

Fue la solucion de este problema particular lo que llevo

a Newton a formular las leyes del movimiento en su céle-

Johannes Kepler

bre Philosophiee naturalis principia mathematica, dando

origen a la Mecanica.

5.2 El problema de Kepler

El problema de Kepler corresponde al de dos cuerpos interactuando con una fuerza central, cuando

el potencial toma la forma de la interaccion newtoniana

V(r) = —';‘
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En esta expresion, la constante de interaccién k esta determinada como k = Gy donde G
es la constante de Newton de la gravitacion universal, mientras que 7, y 7y, son las masas
gravitacionales de los cuerpos en cuestion. Notese que en este punto no estamos asumiendo que

estas masas coinciden con las masas inerciales m; y m; que entran en la ley de fuerzas.

Orbitas del problema de Kepler

Vamos a comenzar estudiando la forma de las érbitas. Lo primero que podemos hacer para tener
una comprension intuitiva es escribir el potencial efectivo, el cual se lee

k2
Vig = —~
1d ;"—’—2[,1;’2

De acuerdo a esta férmula, vemos que se cumplen los siguientes limites

Iim Vld = Iim Vld =0
r—0 r—oo

Mas aun, si calculamos su derivada radial

v k 72
1d — r2 ‘ur3

vemos que es positiva V/, > 0 para radios lo bastante grandes, y negativa para valores lo bastante

pequefios. Mas aun, existe un solo punto critico donde V;, = 0, en el radio r.. = Kz/uk donde el

potencial toma el valor Vig = —uk?/2/2.

Estas consideraciones implican que el potencial efectivo es muy grande cerca del origen, luego
tiene un minimo en el cual toma un valor negativo, y luego crece acercandose a cero por debajo
cuando r va a infinito. Esto nos permite dibujar un perfil a mano alzada del potencial efectivo, que

se puede ver en la figura[3.2.3] Es facil notar que

m Tendremos 6rbitas circulares en el minimo de potencial con radio r., para las cuales la

energia toma el valor minimo E = —puk?/2¢%.

= Cuando la energia es negativa E < 0, habra orbitas acotadas entre dos puntos de retorno:
uno cerca del origen donde crece la barrera centrifuga, y otro al alejarnos lo bastante del

mismo.

= Cuando la energia es positiva o nula E > 0, tendremos 6rbitas no acotadas que nunca pasan

por el origen.

Para profundizar el analisis, recordemos que en la Clase 4| encontramos una ecuacién de segundo

orden para la érbita de un problema de dos cuerpos con fuerza central

En el caso particular del problema de Kepler, el potencial toma la forma V = —ku y por lo tanto su

derivada sera d,V = —k. Con esto, la ecuacion para la érbita nos queda escrita como
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Esto se puede simplificar mediante el cambio de variables { = u — uk/¢?, con lo que obtenemos
d*
- — 0
d6? +6
Esta es la ecuacion para un oscilador armonico, cuya solucién podemos escribir inmediatamente en
la forma § = {ycos (0 — 6). Volviendo hacia atras en nuestros cambios de variables para recuperar

la forma de la solucién en términos de la variable original r, obtenemos

1 uk
o= ﬁ(1+ecos(9—ﬂo))

Donde el parametro e = {o¢>/uk se denomina la excentricidad de la 6rbita. Esta ecuacion da
la dependencia del radio con el angulo, y por lo tanto determina completamente las érbitas del

problema de Kepler.

Para dar una interpretacion fisica a la excentricidad, busquemos primero la posicion de los apsides
0., de la orbita, es decir los puntos donde se cumple que dr/d® = 0. Tomando una derivada de la

ecuacion anterior y evaluando en 6,,; se cumple que

r

d (1 k.
de( >:—‘lzzesm(63ps—60):0

Las soluciones de esta ecuacion son 6,,s = 6y Y 6,ps = 6y + 7. Reemplazando en la solucion para

la orbita obtenemos los radios correspondientes a estos dos apsides, que valen

1 uk
%:ﬁ(lie)

Nétese que, dado que debe cumplirse ri_ > 0, tenemos que el apside con el signo — solo existe

aps
cuando ¢ < 1. Dado que en los apsides también se cumple que 7 = 0, podemos reemplazar en la
férmula de la energia, para obtener

2k uk? uk? uk?

_ 2 2 Br _ 2 (2
2urr  r 242 (ILe) 2 (I%e) 202 ( 1)

E- ] 24
= —UF
SH

Este resultado demuestra que el parametro de excentricidad es una medida de la energia. En

particular

m |La excentricidad vale cero cuando la energia toma el minimo valor posible (es decir, de

acuerdo al analisis de potencial efectivo, cuando la drbita es circular).

m La excentricidad es menor que 1 cuando la energia es negativa, es decir para las orbitas
acotadas. Estas 6rbitas tienen dos apsides 2, correspondientes a los dos puntos de retorno

aps’

del potencial efectivo.

m |La excentricidad es mayor que 1 cuando la energia es positiva, es decir para las 6rbitas

abiertas. Estas orbitas tienen un solo apside r}

aps’

que corresponde al unico punto de retorno

del potencial.

= El caso e = 1 corresponde a una 6rbita abierta con energia nula, que también tiene un solo

apside

aps*
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Hipérbola

Parabola

Figura 5.2.1: Secciones coénicas. La interseccién de un plano cono un cono genera las curvas que realizan

las orbitas del problema de Kepler.

Nos gustaria tener una vision mas geométrica de la forma de estas 6rbitas. Para esto, vamos a
analizar las secciones conicas, es decir las curvas que se obtienen al cortar un cono con un plano.
En el espacio tridimensional R con coordenadas x,y,z, un cono cuya generatriz forma un angulo

de 7 /4 respecto del eje z cumple la formula

Por otro lado, un plano que contiene al eje y, formando un angulo arctan(e) respecto del eje x al

que intersecta en x,, se describe con la ecuacién
z=e(x—xp)

Reemplazando la segunda ecuacién en la primera y operando obtenemos
4y = (x—x0)*

Escribiendo esta formula en coordenadas polares en las que se cumple > = x> +y*> mientras que

x=rcos(6 — ), nos queda

1 1
LT 6—6
p xoe( +ecos( b))

Comparando con la solucion para la érbita de mas arriba, podemos identificar la excentricidad

como la tangente del angulo formado entre el plano y el eje x. Es decir que
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= Cuando ¢ = 0 el plano es horizontal y la 6rbita resultante es la interseccion de un plano

horizontal con un cono, o sea un circulo.

= Cuando la excentricidad es menor que 1, el plano esta inclinado en un angulo menor que
m/4, lo que implica que intersectara el cono en una curva cerrada denominada elipse. Los

extremos de la elipse corresponden a los dos apsides r=-

aps*

Esto nos recuerda a la primera ley de Kepler: los planetas se mueven en orbitas elipticas,
con el sol en uno de sus focos. Solo que el foco de nuestra elipse esta en el origen de
la coordenada relativa, que en términos de las variables originales 7, y 7, corresponde la
posicién 7., del centro de masas. Solamente cuando recordamos que la masa del sol m; es
mucho mayor que la de cualquier planeta m;, podemos aproximar 7 ~ r.,, y se cumple la

primera ley.

» El caso ¢ = 1 corresponde a un angulo de n/4, es decir una interseccion donde el plano es

paralelo a la generatriz, la curva resultante es una parabola.

= Para ¢ > 1 tenemos que el plano esta a mas inclinado respecto del eje horizontal que la

generatriz, y por lo tanto la interseccién es una hipérbola.

En el caso de la érbita eliptica, podemos identificar su semieje mayor a como la media distancia
entre los dos apsides

Taps traps _ 1 £ (1 L ek
2 2uk\1—e¢ " 1+e) ukl—e2 2E

Por otro lado, el semieje menor b es la media distancia vertical entre los dos puntos que cumplen
que y = rsin(6 — 6,p5) €s estacionario, o sea

dy dr
i Esm(@ Baps) +7c0os(0 — Byp5) =0

donde podemos usar la solucién para la orbita para escribir la derivada en el primer término,

resultando en

—rz%e51n (6 — Baps) +7cos(0 — B,p5) =0

Usando que en ese punto y = b Yy x = Xmedio, dONde xmedic €S la posicion en el eje x del centro de la

elipse, tenemos

k
lzz eb + Xmedio = 0
Para determinar x.qio Usamos el hecho geométrico de que
. '_1(r,_r+)_ﬁ [ N A
medio =5 Vaps “Taes) T ok \1—e 1+e) pk(1—e2)

Esto nos permite resolver b> = ¢*/u?k*(1 —¢*) o bien

uk\/ﬁ \/»‘[
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Xmedio

Figura 5.2.2: Orbitas del problema de Kepler: la érbita hiperbélica (arriba a la izquierda) toma asintéticamente
la forma de dos rectas, que se consignan en linea punteada, al igual que la 6rbita parabdlica
(derecha) tiene un sélo apside. La 6rbita eliptica (abajo) tiene dos apsides, se muestran también

sus semiejes mayor a y menor b, y el punto xmedio-

Ahora que tenemos a y b podemos usar la formula geométrica para el area de una elipse A = wab
lo que resulta en A = ma®/? /02 / k. Pero si recordamos la segunda ley de Kepler podemos escribir
también la expresion A =T dA/dt = T¢/2u donde T es el tiempo que toma una revolucién completa.

Eliminando A entre ambas férmulas, nos queda

T = 2717\/5613/2

Esto tiene la forma de la tercera ley de Kepler: el cuadrado del periodo de un planeta es proporcional

al cubo del semigje mayor de la orbita.

El unico problema con este resultado es que la constante de proporcionalidad depende del

planeta, y eso no es lo que descubrié Kepler. En efecto, reemplazando explicitamente k = G,y
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y uw=mimy/(m; +my), tenemos que

T =2na’? mm
Gy (my +I’}’Lz)

Sin embargo, dado que la masa del sol m; es mucho mayor que la masa de cualquier planeta m;,

podemos despreciar m; en esta expresion para obtener

T =2na>?

Gy
En esta expresion, todavia tenemos la masa inercial m;, y la masa gravitacional 7, del planeta,
por lo que no reproduce correctamente los resultados de Kepler. La observacion crucial que hizo
Newton es que si ambas masas coinciden entonces la constante de proporcionalidad entre el
cuadrado del periodo y el cubo de la distancia media al sol no depende del planeta, y se cumple la

tercera ley de Kepler.

Es interesante sefalar que esta coincidencia que observé Newton entre masa inercial y masa
gravitacional fue denominada principio de equivalencia por Einstein, quien la puso en la base de

su Teoria de la Relatividad General.

Nota:

Isaac Newton se planteé explicar el movimiento de los planetas codificado en las leyes
de Kepler, usando las mismas reglas que rigen el movimiento en la Tierra, que habian
sido parcialmente elucidadas por Galileo. A ellos se referia con su célebre frase parado

en los hombros de gigantes.

Para hacerlo, tuvo que inventar casi completamente el calculo diferencial. Su libro
Philosophige naturalis principia mathematica no fue publicado por la Royal Society de
Londres, lo que llevo a Newton a pelearse fuertemente con Hooke, entonces director
de la Sociedad. Ademas Leibniz, quien habia visitado de Hooke en Londres, publicé
poco después su version del calculo diferencial. Esto llevé a Newton a sospechar que
Hooke le habia mostrado a Leibniz sus manuscritos, o que lo enojé tanto que se negd

a publicar sus descubrimientos de ninguna manera.

En ese momento recibié la visita de Edmund Halley, quien estaba intrigado por una
serie de apariciones historicas de cometas cada 76 afios. Halley creia que se trataba
del mismo cometa, y postulé que los cometas se movian en torno al Sol de modo similar
como lo hacen los planetas. Estaba convencido de que podria aplicar los calculos de
Newton a su problema. Para poder hacerlo, tuvo que convencer a Newton de publicar
los Principia y, como la Royal Society se negaba a invertir dinero en ellos, tuvo que

pagar la edicidon de su propio bolsillo.

De este modo, la humanidad esta en deuda con Edmund Halley no sélo por identificar
su célebre cometa (que volvié a mostrarse 76 afios después de su ultima aparicion,

como Halley habia predicho), sino también por haber hecho posible que no se perdiera
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el descubrimiento cientifico mas importante de todos los tiempos, que sentara la semilla

de la Revolucion Industrial.

Movimiento en el tiempo

En esta seccién vamos a investigar como se recorren las 6rbitas del problema de Kepler a medida
que transcurre el tiempo. Es decir, queremos obtener explicitamente la evolucion de las variables

6 y r como funcion de . Si recordamos la ecuacion para § = ¢/ur*> podemos escribir

0,2
t=to+ u—rde
6 *

Usando la solucidn explicita para la 6rbita, tenemos que

0 53
t=t0—|—/ zde
0 pk>(1+ecos(6—6))

La integracion explicita depende del valor de la excentricidad e.

= En el caso parabdlico e = 1 se pueden usar identidades trigonométricas para escribir

t=t — ] d6
°+4uk2/eosec< 2 >
0—6,

Definiendo una nueva variable de integracion { = tan( > ) esto se escribe

L ey
t—t0+2“k2./0 (1482 d¢

lo que se integra facilmente para dar

t—t—f—ﬂ tan 9% 4—ltan3 96
— 0T k2 2 3 2

Esto es un polinomio cubico en la tangente, que ahora se puede invertir para obtener 6(r).

m Enelcasoe# 1 laintegral es mas complicada, pero también se puede obtener explicitamente.

Haciendo el mismo cambio de variables, obtenemos

t=1

206 ¢ 1+¢2
+ukz/o (1+e+(lfe)§2)2dg

lo que se integra a

203 in(6— 2 Ve—T1 tan(&h
t=1o+ ¢ ( esin(6—6o) = ez_larctanh<e an )>>

pk*(e> —1) \ 1+ ecos(6—6y e+1

Ejercicio:

Utilice tablas de integrales o un software de manipulacion algebraica como Mathetmatica
para obtener el movimiento angular como funcién del tiempo para los dos casos ante-

riores.
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En cuanto al movimiento radial en funcion del tiempo, recordemos de las Clase [3|que la integral

necesaria toma la forma

r dr
t:t()-l-/
0 2 2 k
\/IJ (Ei 2ur? +;)

En términos de los parametros orbitales dados por el semieje mayor a = —k/2E y la excentricidad

e> = 20E /uk* + 1, esta integral se escribe

1+ [Ua /’ rdr
=1 —_— _—
k Jry \/e2 —(a—r)?
Cambiando variables a una nueva variable { conocida como anomalia excéntrica, segun la formula

r=a(l —ecos{), tenemos que la integral se puede calcular de manera explicita, resultando en

t:to+\/'u7a3(g—esin§)

Esto no se puede invertir para obtener r(r), pero de todas maneras ofrece una descripcién completa

del movimiento radial como funcién del tiempo.

Vector de Laplace-Runge-Lenz

El problema de Kepler tiene una caracteristica esencial que lo diferencia de los demas problemas
de dos cuerpos con fuerza central. Para describirla, vamos a volver brevemente a la mecanica

vectorial, escribiendo

Donde F,(r) es la componente radial de la fuerza. Tomando el producto vectorial con el momento

angular, se puede escribir

Bx?=F(Fxi=F(r) 2 ex @x?)
r

— — —

Usando la identidad A x (B x C) = B(A-C) — C(A - B) y reordenando
Loz o (FLT
p><£—F,(r)r/,L(r2 r)

Nétese que en esta expresion tenemos a ambos lados derivadas totales respecto del tiempo. Esto

se puede hacer explicito

d = , d (7
—(p F. — =) =
dt (p><€>+ (r)r“dt<r> 0
Para el caso particular del problema de Kepler F,(r) = —k/r* con lo cual los dos términos se suman

en una sola derivada total, de la forma

%(ﬁxi—kw) -0
)

%
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Por lo tanto, vemos que se conserva el vector V = j x - ku 7, conocido como vector de Laplace-
Runge-Lenz. En esta prueba hemos usado la forma explicita del potencial newtoniano, por lo que

esta conservacién es una propiedad exclusiva del problema de Kepler.

Para entender un poco mas lo que significa el vector V, probemos primero que es perpendicular al

momento angular

Vl=(pxl)-f—kui-{=0
lo que implica que V yace en el plano de la érbita. Por otro lado, tomando su producto escalar con

7 nos queda

V-F=(Bx0)-7—kur=0—kur
donde en la segunda igualdad usamos (A x B)-C = (Bx C)-A = (C x A) - B. Llamando 6y el angulo
entre V y el eje x, esto se puede reordenar en la forma

| -

Uk V] _
= <1+ukcos(6 9\/))

Lo que coincide con la solucién para la érbita si identificamos la excentricidad e = |V|/uk y el
angulo 6y = 6,,. Esta ultima identificacion nos dice que V apunta en la direccion del apside, es
decir a lo largo del eje mayor. Por lo tanto, la conservacion de V implica en particular que el eje

mayor de la drbita no rota a medida que transcurre el movimiento.

Nota:

En el siglo XIX, el astronomo Urbain Le Verrier observd que el eje mayor de la érbita
del planeta Urano giraba a medida que transcurria el tiempo, lo que implica que no se
conserva el vector de Laplace-Runge-Lenz. Atribuy6 esta anomalia a la existencia de
un planeta transuranico cuya posicion calculé. El planeta Neptuno fue posteriormente

descubierto a menos de 1° de donde lo habia predicho Le Verrier.

Siguiendo el mismo sistema, Le Verrier propuso la existencia de un planeta ain mas
cercano al sol que Mercurio, para explicar una anomalia similar observada en el
movimiento de éste. Sin embargo, debido a las dificultades asociadas a observar en

direccioén al Sol, el hipotético planeta Vulcano nunca fue descubierto.

En el siglo XX Albert Einstein explicd las anomalias de la 6rbita de Mercurio por
medio de la teoria de la relatividad general, en la cual el potencial newtoniano no es
exactamente —k/r sino que contiene términos adicionales denominados correcciones
postnewtonianas. Debido a estas correcciones, el vector de Laplace-Runge-Lenz no
se conserva cerca del Sol, donde son mas importantes. Esto dio fin a la busqueda del

planeta Vulcano.
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Resumen

En esta clase resolvimos el problema de Kepler, es decir el movimiento de un sistema de dos
cuerpos con fuerza central gravitacional. Encontramos la forma de sus 6rbitas, probamos que son

de secciones conicas, y encontramos también su evolucién temporal.

En ese camino, demostramos las dos leyes de Kepler que aun nos faltaban. En la demostracion
de la segunda ley de Kepler, nos encontramos con que la masa gravitacional y la masa inercial de
los cuerpos debe coincidir, un ingrediente fundamental que motivé a Einstein en su teoria de la

Relatividad General.

Finalmente, descubrimos que el caso particular del problema de Kepler se distingue por tener un
vector conservado que apunta en la direccién del eje mayor de la 6rbita, el vector de Laplace-
Runge-Lenz. Nétese que no hemos identificado ninguna invarianza que dé origen a esta cantidad

conservada, volveremos a esta cuestion mas adelante.







6.1

6.2

Objetivos

El problema de la dispersién en Mecanica corresponde a
lo que en los cursos basicos de fisica llamabamos choque

elastico.

Durante un choque elastico, dos particulas que inicial-
mente se dirigian la una contra la otra viajando en direc-
ciones opuestas a lo largo de la misma recta, colisionan
y son dispersadas, alejandose a lo largo de una nue-
va recta que forma un cierto angulo con la direccion de

incidencia.

Un punto a recordar es que en los problemas de cho-

que elastico que resolvimos en el pasado, tal angulo de

Ernest Rutherford

dispersion siempre se incluia como uno de los datos ex-
ternos necesarios para resolver el problema. En esta

clase vamos a aprender a calcularlo.

El problema de la dispersién

En esta seccion aprenderemos los conceptos basicos que se utilizan en el analisis de la dispersion.
Con el fin de mantener algun grado de intuicion, los introduciremos en el caso particular de una

colision de esferas rigidas, para generalizarlos luego a una interaccion general.

e
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Figura 6.2.1: Problema de dispersién de esferas rigidas. De izquierda a derecha: los dos cuerpos se acercan

uno al otro siguiendo rectas paralelas separadas por una distancia s, colisionan cuando la
distancia entre sus centros es raps, y Se dispersan siguiendo nuevamente rectas paralelas, que

forman un angulo ® con la direccién de incidencia.

Primero estudiaremos cémo se obtiene el angulo de dispersién a partir del potencial, luego

introduciremos la idea de seccion eficaz como una medida de la dispersion, y finalmente veremos

cémo se aplica este conocimiento en los experimentos para obtener informacién sobre el potencial.

Angulo de dispersion

Comencemos analizando un problema sencillo de choque, para identificar algunos elementos

esenciales que luego podremos generalizar. El experimento consta de tres etapas

1. Inicialmente tenemos dos particulas que viajan en sentidos contrarios siguiendo dos rectas

paralelas que estan separadas por una cierta distancia transversal. Llamamos direccion de
incidencia a la direccion de estas rectas, y parametro de impacto a la distancia s que las

separa.

. Estas particulas se van acercando hasta que en algun momento “entran en contacto” y

se produce la colision. La idea intuitiva de “contacto” se puede representar mediante un

potencial de esfera rigida, que toma la siguiente forma

. N 0 |71 —72| >,
V([\i—7al) = oo
oo |71 — 72| < Faps

donde 7| y 7, denotan la posicién de cada una de las particulas, ambas rodeadas por una
esfera rigida de radio r,ps/2. Naturalmente estas particulas se acercaran la una a la otra, y

“chocaran” cuando |7 — 72| = raps.

. Luego del evento, las particulas se alejan de nuevo moviéndose en sentidos opuestos a lo

largo de rectas paralelas. Llamamos direccién de dispersion a la direccion de estas nuevas

rectas, y angulo de dispersion al &ngulo ® que forman con la direccion de incidencia.
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Dadas las caracteristicas del problema descripto, es evidente que se trata de un problema de
dos cuerpos con interaccion central. Por lo tanto, podemos seguir los pasos de la Clase [3 para
describirlo en el sistema de coordenadas en el centro de masas, en términos de una sola particula

ficticia que se mueve en un potencial dado por V (r) dado por

0 F> Taps
V(r)=

oo 7 < Faps

Esta particula se acerca inicialmente al origen siguiendo una recta en la direccion de incidencia
que pasa a una distancia s del mismo, luego “tiene lugar la colisiéon”, y finalmente la particula se

aleja del origen siguiendo una recta en la direccion de dispersion.

Analicemos este problema aplicando el método del potencial efectivo que estudiamos en la Clase

[3] Para construirlo, necesitamos el valor del momento angular, que vendra dado por

€:|?><ﬁ|:prsin(r’j)):ps:\/2”7ES
——

N
donde usamos el hecho de que el momento angular se conserva para evaluarlo en algun instante
previo a la colisién, cuando el momento lineal de la particula cumplia p> = 2uE. Con esto podemos

escribir para el potencial efectivo

Es?/r? r>r.
Vesr (1) = / o

oo 7 < Taps

Ahora bien, el movimiento tendra lugar en la region Vs < E. La primera linea del potencial efectivo
nos dice que esta region esta determinada por r > s (esto es una propiedad geométrica que es
evidente en el diagrama). Por otro lado, la segunda linea nos dice que debe cumplirse r > r,ps. Por
lo tanto, si s > raps tendremos un punto de retorno en r = s (algo que nuevamente se puede ver en
el diagrama). Por otro lado, si s < r,ps “se produce la colisién”, es decir que el punto de retorno

estad en r = ryps.

Como vimos en la Clase [3] en los puntos de retorno se invierte la velocidad radial. Por supuesto
nada sucede alli con la componente angular de la velocidad. Esto significa que si s < r,ps €ntonces
en r = ryps la trayectoria se quiebra, del modo que se ve en el diagrama. El angulo 6,,s formado
por el vector 7 con la direccién de incidencia cumplira

. )
SinBQ,ps = ———
Taps

Dado que la reflexién invierte la componente radial de la velocidad, un analisis geométrico nos
permite obtener la direccion de dispersién, la cual forma un angulo ® con la de incidencia, dado

por
0=20,ps—T7

Es un ejercicio sencillo probar, usando las dos férmulas anteriores, que se cumple que

= Faps SIN 9
§ = Faps$S 5
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Figura 6.2.2: Problema de dispersion en el centro de masas. A la izquierda vemos el problema de dispersion
de esferas rigidas, ahora contra una particula puntual incidiendo contra una esfera de radio
doble. Se acerca siguiendo una recta separada una distancia s del centro, colisiona cuando la
distancia es raps, y se dispersa siguiendo nuevamente una recta, que forma un angulo © con la
direccién de incidencia. A la derecha vemos un potencial general, la trayectoria se suaviza pero

los conceptos de distancia s y angulo de dispersién ® se mantienen en la regién asintotica.

Con esto, aprendemos que el angulo de dispersién depende del parametro de impacto s y del radio
raps qUe es una caracteristica del potencial. Mas aun, si medimos como varia el angulo ® como
funcién del parametro de impacto s, podemos encontrar el radio r,,s del potencial de interaccion.
Es decir que podemos utilizar un experimento de choque para obtener informacién acerca del

potencial.

En este punto, resulta conveniente notar que los calculos que realizamos hasta aqui se pueden
generalizar sin mayor dificultad para un potencial arbitrario. En otras palabras, en lugar de limitarnos
a estudiar particulas que colisionan como si fueran esferas rigidas, nos permitimos también
considerar aquéllas que son esferas “blandas”, en el sentido de que su maxima proximidad durante

un choque depende de su energia.

En el caso general, para calcular el angulo de dispersion ® en funcién del parametro de impacto s,

utilizaremos la solucion para la 6rbita que obtuvimos en la Clase [4]

0—6 /” du
p— O—
o JE(-F)-w

donde la hemos escrito en términos de la variable u = 1/r, y hemos reemplazado el momento
angular segun lo que obtuvimos mas arriba (> = 2uEs?. Es facil ver que si ponemos el instante

inicial muy en el pasado tenemos que los valores iniciales satisfacen uy =0y 6y = n. Entonces

6:71'_/“#
o JEi-)
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Podemos separar la integral en el apside de la érbita y poner

\du| u |du|
=r—
/ Z) — Uaps , [ L — X)) -
S
Donde el + en el segundo término viene del hecho de que u estd moviéndose en sentido contrario,

por lo que du cambiara de signo. Si ahora ponemos el instante final muy en el futuro, tenemos que

u =0y el angulo corresponde al angulo de dispersion 6 = ®

O— 17— /"aps |du| /0 Idu\ 7®:ﬂ72/”avs du
JEO- B e [0 o Jri-p e

El apside u,ps que entra en el limite superior de integracion, esta definido como el punto donde la

velocidad radial se anula. Es decir que cumple la formula

2 aps
Uaps 52(1_E

Una vez calculada la integral, tendremos una forma explicita para la dependencia en s del angulo

de dispersion ©.

Ejercicio: esferas rigidas

Probar que estas formulas reproducen, en el caso del potencial de esfera rigida, el
resultado para el &ngulo de dispersion que encontramos mas arriba mediante conside-

raciones geométricas.

Ejemplo: dispersion de Rutherford

En el problema de la dispersion de Rutherford, electrones son disparados sobre un ion

negativo, por lo que el potencial en cuestion es un potencial coulombiano repulsivo

donde k = Ze? /47e, con e la carga de electron, Ze la carga del ion, y & es la permeabi-
lidad eléctrica del vacio. Las érbitas se pueden resolver de manera completamente

analoga a la del problema de Kepler, obteniendo

1 k
= "22 (1 —ecos (0 —Baps))

Comparando con los resultados de la Clase [5]notamos que, como podria esperarse,
hemos cambiando el signo de k respecto de la expresion kepleriana. También hemos
cambiado el signo delante de ¢, esto corresponde a elegir 6y = 6., — 7, de modo tal

que en el dpside tenemos r,,s > 0 cuando e > 1.

Tanto en el pasado lejano cuando la particula estaba incidiendo, cuanto en el futuro
lejano cuando se aleja después de haber sido dispersada, se cumple que r — o y por

lo tanto

0=1—ecos(Be — Baps)
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esta ecuacion tiene dos soluciones 6 = 6,, + Arccos(1/e), que corresponden a los
valores del angulo para la particula incidente y para la particula dispersada. Esto implica
que el angulo de dispersién vendra dado por ® = — (65 — 05 ) = m —2Arccos(1/e), lo

que nos permite reescribir

®
-1 inl =
0 +es1n(2)

De modo que la excentricidad esta relacionada con el angulo de dispersion. Usando
nuestros parametros fisicos tenemos que

2E£2 (2ES)2 Q]
2 2
€ 7177”](27 kz = cot (2>

Lo que nos permite resolver

k(@
S—2ECO 2

El 19 de octubre de 2017 el astronomo canadiense Robert Weryk descubrié un objeto

Nota:

que se desplazaba en direccion al Sol siguiendo una 6rbita hiperbdlica. Es decir que
no se trataba de un cuerpo menor del Sistema Solar, sino que provenia del espacio
interestelar. Se lo bautizé 7//Oumuamua donde 1/ indica que se trata del primer
objeto interestelar identificado, y ‘oumuamua es una palabra hawaiana que significa

“explorador”.

Un descubrimiento similar abre la novela “Cita con Rama” del autor inglés Arthur C.
Clarke. En el caso de la novela, el objeto era realmente un explorador, es decir una

nave estelar de una civilizacion extraterrestre.

Con los elementos que estudiamos en esta clase, estamos en condiciones de calcular
el angulo con el que fueron desviados 'Oumuamua o Rama al abandonar el sistema

solar.

6.2.2 Seccion eficaz

En el caso sencillo del potencial de esfera rigida, es evidente que si el pardmetro de impacto es
mayor al radio de las esferas s > r,ps N0 se produce ningun choque. En la seccién anterior fuimos
capaces de probar formalmente este hecho intuitivo hallando los puntos de retorno del potencial

efectivo.

Esto significa que si arrojamos hacia el origen una variedad de particulas con diferentes parametros
de impacto, solo seran dispersadas aquéllas que cumplen s < r,,s. Podriamos verificar esto
disponiendo del otro lado una pantalla plana perpendicular a la direccion de incidencia, sobre la

cual obtendremos una “sombra” circular de radio r,,s. La superficie de tal sombra

2
Oor = ﬁraps
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se denomina seccién eficaz total y es una medida de qué tan eficiente es el potencial de esfera
rigida a la hora de provocar la dispersion de particulas. Podemos reescribir la formula anterior de

manera trivial como una integral en el parametro de impacto

raps [2T
or = / / sdsdd
0 0

donde hemos agregado también una integral en el angulo ® que gira alrededor de la direccién de
incidencia. Ahora bien, en la seccién anterior aprendimos que el parametro de impacto s se puede
expresar como una funcion del angulo de dispersion ©, lo que nos permite cambiar variables de

integracion para obtener

T 27
O'T:/ / S
0 Jo

ds
d®

c(®)

N

dQ

dOdd =
/Q sin®

ds
do®

Donde dQ =sin®d®d®d es la medida de integracién sobre la esfera que rodea el origen. En la
ultima igualdad hemos reescrito la seccion eficaz total como la integral sobre tal esfera de una
seccion eficaz diferencial, que esta definida como

_ s |ds
~ sin® |dO®

c(0)

Esta magnitud es una medida de qué tan eficiente resulta este potencial para dispersar particulas

con la direccion definida por el angulo 6.

Si bien introdujimos los conceptos anteriores motivandolos con el potencial de esfera rigida, lo
cierto es que las ultimas dos férmulas pueden utilizarse como una definicién general de seccion

eficaz diferencial y total respectivamente.

La unica salvedad es que para expresar la seccion eficaz diferencial como una funcién del angulo,
necesitamos que la expresion para s(®) sea univaluada. Este no es el caso si dos 0 mas parametros
de impacto diferentes resultan en el mismo angulo de dispersion. Veremos mas adelante que en
este caso la generalizacion mas util de la definicidon de arriba es

s
do

o(®)= Z siiln®

n

donde la suma corre sobre los diferentes valores s, del parametro de impacto que resultan en el

mismo angulo de dispersion ©.

Ejercicio:

Use la férmula que obtuvimos en la seccion previa, que relaciona el angulo de dispersion
con el parametro de impacto en el caso de la esfera rigida, para calcular la seccién

eficaz diferencial o(®) del este problema.

Use el resultado para recuperar la seccion eficaz total o7 que escribimos mas arriba.
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Ejemplo: dispersion de Rutherford

Usando la férmula que relaciona el angulo de dispersion con el parametro de impacto

para el problema de la dispersion de Rutherford, podemos calcular la derivada

ds k(2
d® 4E 2

Esto nos permite obtener para la seccion eficaz diferencial

k [C) 2
_ ﬁCOt(i)i 2(® _ [k 4(©
°0)="5e &= (7)) \aE) =2

donde fue necesario utilizar algunas identidades trigonométricas.

Si quisiéramos calcular la seccién eficaz total, tendriamos

Lo */G(G)dQ* LS 2/0504 ® sin®@d®dd
" Ja ~ \4E 2

lo que se puede reescribir en términos de la variable { =sin(®/2) como

2F
con lo que vemos que la seccion eficaz total diverge. Para interpretar este resultado,
vayamos hacia atras para escribir la seccion eficaz total en su forma original en términos

de una integral en el pardmetro de impacto

o 2T
or = / / sdsdd
o Jo

donde para recuperar el resultado infinito tuvimos que integrar hasta valores de s
arbitrariamente grandes. Esto significa que todas las particulas son dispersadas sin
importar su parametro de impacto. En otras palabras, la interaccion de Coulomb es

una fuerza de largo alcance.

Nota:

A principios del siglo XX, el descubridor del electron Joseph John Thomson propuso
que el atomo estaba compuesto por un conjunto de electrones, distribuidos dentro de

una nube de carga positiva, en lo que se llamé el modelo del budin de pasas.

Para testear esta idea, en 1911 Ernest Rutherford hizo pasar particulas alfa a través
de una hoja fina de aluminio. Observé angulos de dispersidon muy grandes, que no
eran compatibles con el budin de pasas, sino con que toda la carga positiva estuviera

acumulada en un solo punto. Descubrié asi el nicleo atémico.

6.2.3 Experimentos de dispersion

La razén para definir una seccién eficaz diferencial es que resulta ser una magnitud medible con
relativa facilidad en un experimento de dispersién. Tal experimento consiste en hacer colisionar

dos haces de particulas que viajan en direcciones contrarias, y estudiar el producto de la colision.
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Figura 6.2.3: Experimento de dispersion: dos haces de particulas desplazandose en direcciones contrarias

inciden uno contra el otro (primera figura). Un subhaz del haz mas concentrado (remarcado

con un 6valo en la primera figura) incide contra una particula del haz mas diluido, cada una de

sus particulas componentes lo hace con su propio parametro de impacto (segunda figura). E/

mismo problema visto desde el centro de masas muestra varias particulas incidiendo contra un

centro dispersor (tercera figura).
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Para simplificar el problema, notemos lo siguiente

= La primera hipétesis que tenemos que hacer para describir este experimento es que dentro

de cada uno de los haces las diferentes particulas no interactiian entre si.

= | a segunda hipotesis es que dada una particula cualquiera del haz mas concentrado, esta

interactia con una sola del haz mas diluido.

De esta manera, el problema se descompone en un conjunto de problemas similares, en cada
uno de los cuales un haz de particulas (que es un sub-haz del haz mas denso) incide sobre una
sola particula (que pertenece al haz mas diluido). Tomando ahora una particula cualquiera del
sub-haz incidente, podemos describir su interaccion con la particula que le corresponde del haz
diluido en el sistema centro de masas. En este sistema y como sabemos de las secciones previas,
el problema corresponde al de una particula ficticia interactuando con un potencial central en el

origen.

Es evidente que el sistema centro de masas estara en una posicion distinta para cada una de
las particulas del sub-haz incidente. Sin embargo, se puede verificar que el efecto de trasladar el
sistema centro de masas de cada una de ellas al mismo punto es solamente el de reescalear la
intensidad del sub-haz. Por lo tanto, terminamos reduciendo el problema al de un haz de particulas

ficticias que inciden sobre un potencial central en el origen.

Vamos a definir la intensidad I del haz incidente como el nimero de particulas que atraviesan
por unidad de tiempo la unidad de area perpendicular a la direccién de incidencia. Por lo tanto, si
tomamos un anillo de radio s y ancho ds, y cortamos un pequefio sector angular d®, tendremos el
area dA = sdsd® resultante es atravesada durante un tiempo dt por un nimero de particulas dado

por
dN =1dAdt = Isdsd®dt

Todas estas particulas saldran dispersadas en la direccion ® que corresponde al valor de s y con
el mismo valor de @, por lo que podemos escribir

ds

s ds
dN =1
140

sin® |dO

dOdddt =1 dQdt

Ahora bien, si hubiera mas de un valor del parametro de impacto que resultara en el mismo angulo
de dispersion, el numero total de particulas dispersadas en una dada direccioén sera

dsy

doe

dQdt

Sn
dN =1
zn: sin®
Escrito en términos del diferencial de area dA = r2dQ de una esfera de radio r, tenemos

I i
dN = 0(®)dAd

Es decir que si nos situamos en el sistema centro de masas a una distancia r del origen y contamos

el nimero total de particulas dN que atraviesan un area dA durante un tiempo dt, podemos obtener

con facilidad la seccion eficaz diferencial 6(®) del choque correspondiente.
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Figura 6.2.4: Experimento de dispersion. Las dN particulas que inciden durante un tiempo dt con parametros

de impacto entre s y s+ ds se dispersan con dngulos entre ® y ® 4+ d®.

El problema de dispersion inversa consiste en obtener informacion sobre el potencial a partir de la

seccion eficaz diferencial medida en un experimento de dispersion.

Para ver un primer ejemplo de esto, escribamos la integral para el angulo de dispersiéon que

habiamos encontrado mas arriba en la forma

Caps d
0 1— % _ CZ
donde definimos la nueva variable de integracion { = su y el limite superior de integracion se

obtiene de

G =1-—2

V(s/Caps)
E

Si el potencial se anula en el infinito, para s lo bastante grande el limite superior de integracion
sera {,ps = 1 y en la integral tenemos V /E pequefio, por lo que podremos escribir
1 dC
O=r-2 / ——=0
0 y/1-¢2
es decir que un potencial que va a cero lo bastante rapido en el infinito no dispersa particulas con

parametro de impacto grande.

Por otro lado, si s es pequefio y la energia es lo bastante grande, estamos en la situacion que se

conoce como dispersion profunda. En este caso, si el potencial esta acotado en el origen podemos

escribir
V (0)

donde en la segunda igualdad asumimos que la energia es lo bastante grande E > |V(0)|. La
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e 1 A
V(0) Omax ..
r S
Omax Potencial real
Angulo ©
o Seccién eficaz a(©)

Figura 6.2.5: Dispersién en arcoiris. El potencial V tiene un maximo, lo que implica que particulas con
parametros de impacto s muy grandes o muy pequefios no seran dispersadas. Esto resulta en
que el angulo de dispersién © tiene un maximo ®n.x en algun valor intermedio del parametro
de impacto. La seccion eficaz diferencial o(®) diverge en ®nax y cae a cero para angulos

mayores.

integral se puede separar en dos partes, en la forma

@:,,,Z/J'L,Z/IL
como s es pequefio podemos descartar la primera integral, y en la segunda reemplazar V por
V(0) < E, para obtener nuevamente
I d
@:n—zﬁﬁigzo
Es decir que para un potencial acotado en el origen y que se anula rapidamente en infinito,
tendremos angulo de dispersion nulo a energia grande para los dos valores extremos del parametro

de impacto. Esto quiere decir que ©(s) debe tener un maximo en algun valor intermedio de s.

Supongamos primero que cuando el angulo de dispersion alcanza su maximo es aun menor que 7x.
Dado que en el maximo se cumple que d®/ds = 0, para ese angulo la seccion eficaz sera infinita.
Por otro lado siendo ese angulo el maximo en el cual encontraremos particulas dispersadas, la

seccion eficaz caera a cero para angulos mayores.

Este fendmeno se conoce como dispersion en arcoiris. Razonando en sentido inverso, podemos
afirmar que cuando un experimento presenta dispersion en arcoiris el potencial va a cero a

distancias grandes y esta acotado a distancias pequenas.

También podria suceder que el valor maximo del angulo de dispersion fuera mayor que «. Esto se

explica si para valores intermedios del parametro de impacto el potencial efectivo tiene un maximo.
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Potencial efectivo

Angulo OMod 1t

Seccion eficaz o(6)

o

Figura 6.2.6: Dispersion gloriosa. El potencial efectivo V4 tiene un maximo, lo que implica que para algun
valor del pardmetros de impacto s la energia sera similar al maximo del potencial, con lo que la
particula se movera muy lentamente en la direccion radial alli. Esto resulta en que el angulo de
dispersion ® crecera mucho, superando rt, por lo que debemos corregirlo tomando Oy oqy- La

seccio6n eficaz diferencial (@) diverge en ® =0, 7.

Una particula que incide con una energia similar a la energia del maximo permanece mucho
tiempo dando vueltas cerca del origen, por lo que el angulo de dispersion resultante resulta mayor
que n. Dado que sélo medimos angulos entre 0 y x, el angulo medido seria Opoqr =@ +nr <
con n € Z. El gréfico resultante para ®y.q, como funcién de s presentaria varias reflexiones en

Owmodr = 0Y Omodr = 7.

Para cualquier angulo entre 0 y &, vemos que hay varios valores de s que contribuyen al mismo
angulo de dispersién. Mas aun, en cada uno de los valores de s para los cuales Opoqr =0 0
Omodr = T, S€ cumple que sin® = 0 cuando s # 0, por lo que el cociente en la seccién eficaz

diferencial diverge y el resultado es infinito.

Este fendmeno se conoce como dispersién gloriosa. Invirtiendo el razonamiento, cuando un
experimento presenta dispersion gloriosa, sabemos que el potencial efectivo tiene un maximo en

los valores intermedios del parametro de impacto.
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Resumen

En esta clase estudiamos el problema choque de particulas con las herramientas que aprendimos
para el problema de dos cuerpos. Pudimos calcular el angulo de dispersion, que en los problemas
de choque de los cursos basicos siempre se nos daba como un dato. Vimos que el resultado

depende en detalle de la forma del potencial.

Definimos la seccion eficaz diferencial y la seccion eficaz total en términos del angulo de dispersion,
y vimos que esas magnitudes pueden medirse mediante experimentos de dispersion de haces de

particulas.

Fuimos capaces de discernir diferentes comportamientos de la seccion eficaz diferencial que
corresponden a propiedades especificas del potencial, como la de estar acotado a distancias

pequefias y grandes, y tener un maximo para valores intermedios del parametro de impacto.




7.1

7.2

Objetivos

En esta clase vamos a estudiar las transformaciones de
rotacién espacial. Para esto, tendremos que aprender
a trabajar con transformaciones lineales representadas
en términos de matrices, e identificar cuales de ellas

corresponden a lo que llamamos una rotacion.

Si bien aprenderemos conceptos e ideas que son muy
utiles en varios ambitos de la fisica, nuestro interés in-
mediato esta en su aplicacién a la dinamica del cuerpo

rigido, que desarrollaremos en las clases subsiguientes.

Leonhard Euler

Rotaciones espaciales

Durante esta clase vamos a concentrarnos en la descripcion vectorial del espacio, donde a
cada punto P le corresponde un vector 7 cuyas componentes (x,y,z) en algun sistema cartesiano
representan las coordenadas del punto en ese sistema. Supongamos que aplicamos sobre (x,y,z)
una transformacién que nos da un nuevo conjunto de coordenadas (x',y’,7’). Podemos interpretar

esto de dos maneras

1. La transformacion actua sobre el espacio, tomando el punto P representado por el vector 7
con coordenadas (x,y,z), ¥ transformandolo en otro punto P’ representado por el vector 7

con coordenadas (x',y’,7’). Esto se conoce como el punto de vista activo.



88 Capitulo 7. Cuerpo rigido I: Rotaciones

P,

<
s

Figura 7.2.1: Punto de vista activo y pasivo de una transformacion: en este caso ejemplificado para una
rotacion en el plano. El punto de vista activo (izquierda) interpreta la transformacién como
alterando la realidad fisica, cambiando los vectores. El punto de vista pasivo (derecha) lo

entiende como un cambio en la descripcion de la misma situacion fisica.

2. La transformacioén actua sobre el sistema de coordenadas, tomando el sistema donde el
punto P esta representado por el vector 7 con coordenadas (x,y,z) y transformandolo en otro
sistema donde el mismo punto P esta representado por el mismo vector ¥ que en el nuevo

sistema tiene coordenadas (x',y’,7). Este se denomina punto de vista pasivo.

En lo que sigue vamos a usar preferentemente el punto de vista activo, pero todo lo discutido se

puede reformular en términos del punto de vista pasivo.

Las transformaciones lineales son aquéllas que se pueden representar en términos de una matriz

invertible M, la cual transforma un vector 7 en otro vector 7, segun la férmula
F=M-F
Aqui, para que la expresion de arriba tenga sentido como producto matricial, estamos considerando

al vector ¥ como una matriz columna

X

Si usaramos el punto de vista pasivo, la matriz cambiaria las coordenadas (7) = (x,y,z) del vector 7
en el sistema de coordenadas original, por otras coordenadas (7)' = (x',y,7') las cuales representan
al mismo vector, pero en otro sistema de coordenadas. Nétese que usamos la notacién en
paréntesis (¥) para referirnos a las coordenadas del vector ¥ en un dado sistema. La operacion

seria exactamente la misma que escribimos arriba, sélo que en términos de la nueva notacién

El conjunto de todas las transformaciones lineales que actuan sobre el espacio forma una estructura
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matematica conocida como grupo. Para los fines de este curso, un grupo es un conjunto de

operaciones que cumplen las siguientes tres condiciones

1. Propiedad de clausura: dadas dos transformaciones del conjunto, su aplicacién sucesiva

también resulta en una transformacién del mismo conjunto.

2. Existencia de identidad: hay en el conjunto una transformacion tal que al aplicarla antes o

después de cualquier otra, no tiene ningun efecto.

3. Existencia de inversa: para cualquier transformacion del conjunto existe otra tal que, aplicadas

ambas en sucesion, no producen ningun efecto.

Esta definicion puede parecer un tanto abstracta pero, como veremos inmediatamente, se vuelve
muy simple cuando la aplicamos a los ejemplos concretos. Comencemos con el conjunto de las
transformaciones lineales antes definidas, y probemos que ese conjunto forma un grupo. Para

esto, tendremos que verificar que se cumplen estas tres propiedades

1. Dadas dos transformaciones lineales M; y M;, la aplicacién sucesiva de M, y M; también
es una transformacion lineal. Para ver esto, tomamos un vector cualquiera 7 y primero le

aplicamos M, definiendo 7 segun
P =M ¥

Sobre este resultado 7 aplicamos subsecuentemente M,, definiendo un nuevo vector 7’ en

la forma

=My 7 =My (My-F) = (My- M) F
N—_——
M
donde en la segunda igualdad usamos la asociatividad del producto de matrices para definir
una nueva matriz M. En esta expresion, es evidente que si M, y M| son matrices invertibles,
entonces M también lo es. De este modo tenemos una matriz invertible M que toma un vector

7y lo transforma en un nuevo vector 7/, realizando una transformacion lineal.

Esto prueba la propiedad de clausura: la aplicacion sucesiva de dos transformaciones lineales

resulta en una nueva transformacion lineal.

2. Existe trivialmente una transformacién identidad que deja cualquier vector invariante. Esta
dada por la matriz identidad /, que es una matriz invertible que aplicada a un vector cualquiera

7 actua segun

Es decir que deja el vector invariante. Esto implica que dada otra transformacion cualquiera

representada por una matriz M tenemos que

M-(I-F)=M-F=1-(M-7)
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Donde en la segunda igualdad usamos la propiedad de invarianza de mas arriba, pero con

el nuevo vector ¥ =M - 7.

Esto prueba que la transformacion identidad no tiene ningun efecto aplicada antes o después

de cualquier otra transformacion.

. Dada cualquier transformacion lineal definida por la matriz M y cualquier vector 7, definimos

-/ -
rFr=M-7

Dado que por definicion la matriz M es invertible, podemos usar la matriz inversa M~! para
definir una nueva transformacion lineal. Si la hacemos actuar sobre 7 obtenemos
MV F =M (M) =M M) F=F
N—_——
1

donde en la segunda igualdad utilizamos la asociatividad del producto de matrices, y la

propiedad de matriz inversa.

Con esto probamos que dada cualquier transformacion, existe otra transformacion (definida

por la matriz inversa), tal que la aplicacion sucesiva de ambas no tiene ningun efecto.

Es decir que el conjunto de las transformaciones lineales cumple las propiedades que definen un

grupo. Este grupo se denomina grupo general lineal tridimensional real y en los textos de fisica se

denota como GL(3,R).

Cualquier subconjunto de transformaciones del espacio que cumpla las tres condiciones de arriba

también es un grupo en si mismo y un subgrupo del grupo general lineal tridimensional real.

Nuestra intuicion es que las transformaciones que llamamos rotaciones deben encontrarse dentro

del grupo SL(2,R), es decir deben ser transformaciones lineales que se realizan multiplicando por

una matriz. Para investigar esta cuestion, debemos definir con mas precision a qué llamamos una

rotacion. Utilizaremos las siguientes propiedades que todas las rotaciones cumplen:

= Seleccionamos un gje de rotacion que pasa por el origen, que podemos representar con un

vector unitario 7i que apunta en la direccion del eje.

m Al realizar la rotacion, el extremo de cada uno de los vectores ¥ del espacio se desplaza

siguiendo un circulo que esta en el plano perpendicular a 7i a lo largo de un cierto angulo de

rotacion 6.

Es evidente entonces que cada rotacion deja invariante a su vector 7i, y que por otro lado la longitud

de cualquier vector ¥ no cambia bajo una rotacion cualquiera. Esto nos permitira estudiar en lo

que sigue las condiciones que debe cumplir una matriz para representar una rotacion.
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Figura 7.2.2: Rotacién: una rotacion esta definida por un eje cuya direccion esta dada por un versor i, y
un angulo de rotacioén 6. Un vector cualquiera gira en torno al eje sin cambiar su médulo. Los

versores 1i,ii X F y it x (it x ii) forman un sistema ortogonal.

Nota:

La teoria de grupos fue fundada por el matematico francés Evariste Galois, quien la
escribié apresuradamente durante la noche previa a un duelo que le causé la muerte,
con menos de 21 afios. Galois fue un matematico brillante y un activista politico, que
fue expulsado de la Ecole Normale por sus ideas republicanas. Se cree que la causa

del duelo fue su amor por una mujer.

Transformaciones ortonogonales

Concentrémonos en las transformaciones que dejan invariante el médulo de los vectores. Sabemos
que las rotaciones deben cumplir esta propiedad, por lo que se trata de un buen punto de partida
para la discusion. Comencemos definiendo

-
7

—=R-F

e intentemos elucidar qué propiedad debe cumplir R para que se verifique que || = |7|. Dado que

el médulo de un vector satisface [#> = 7- 7, podemos re-expresar la condicion de invarianza como

= 2

7 =7-7. Para poder escribir esto en términos de matrices, recordemos que los vectores son
matrices columna, con lo que escribiendo el producto escalar en forma matricial tenemos

=t =
Y =7

7

.

Si ahora usamos que 7 = R - 7 podemos reescribir el lado izquierdo de esta igualdad segun

7P =R7-(RF)=F-(R-R)-F
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Con lo cual, para que se cumpla la condicién de invarianza necesitamos que ¥ - (R'-R) -F =7 -7,

es decir que R’ - R no debe tener ningln efecto. Esto implica inmediatamente que
R -R=1

Las matrices que cumplan esta condicion dejaran el médulo de cualquier vector invariante, y
viceversa, cualquier matriz que deje el médulo de un vector invariante debe cumplirla. Dado que las
rotaciones dejan invariante el modulo de cualquier vector, sabemos que deben estar representadas

por matrices de este tipo.

La condicion de arriba puede reescribirse como R’ = R~!, lo que quiere decir que nuestra matriz R
es lo que se conoce como una matriz ortogonal. El conjunto de todas las matrices ortogonales
tridimensionales se denota O(3). Podemos probar que se trata de un grupo, ya que cumple las

tres propiedades antes enunciadas, a saber

1. Dadas dos matrices ortogonales R; € O(3) y R, € O(3), se cumple que la composicion también

es ortogonal R; - R, € O(3). En efecto, si escribimos

(Ry-R1)'-(Ry-R)) =R, (R, R))-Ri =R\ -R =1
N——
1
con lo que hemos probado que R; - R; también es ortogonal, verificando la propiedad de

clausura.
2. Laidentidad es trivialmente una matriz ortogonal I € O(3)
Ir'i=I1-1=1
Es decir que O(3) contiene una transformacion identidad.

3. Dada una matriz ortogonal R € O(3), se cumple que su inversa también lo es R~ € O(3).

Para verlo, escribimos
(Rfl)l_Rfl — (RI)I_RZ :RR[ :I
con lo que probamos que O(3) contiene a la inversa de todas sus transformaciones.

Por lo tanto el conjunto de todas las matrices ortogonales O(3) es un grupo, que se denomina

grupo ortogonal.

Con lo que hemos discutido hasta este punto, hemos demostrado que las rotaciones deben
ser transformaciones ortogonales. La pregunta que podemos hacernos ahora es si todas las

transformaciones ortogonales son rotaciones.

Utilizando la propiedad definitoria de las matrices ortogonales, podemos escribir
Det(R'-R) = Detl =1

Usando que el determinante de un producto de matrices es el producto de los determinantes de

cada factor, y que el determinante de una matriz es igual al de su transpuesta, tenemos que

Det(R' - R) = DetR' DetR = (DetR)?
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Por lo que se debe cumplir que (DetR)? = 1 o en otras palabras
DetR = +1

Por lo tanto, el conjunto de las matrices ortogonales se separa en dos conjuntos disjuntos, aquél que
contiene a las matrices con DetR = 1, que se conocen como transformaciones propias o especiales,
y el que contiene a las matrices que tienen DetR = —1, que se denominan transformaciones
impropias. Se puede probar que el conjunto de las matrices ortogonales propias o especiales

forma un grupo, que se denota como SO(3).

Ejercicio:

Probar que las transformaciones ortogonales propias o especiales forman un grupo,

es decir que verifican que

1. Dadas dos transformaciones ortogonales propias o especiales, su producto tam-

bién lo es
2. Laidentidad es una matriz ortogonal propia o especial.

3. Dada una matriz ortogonal propia o especial, su inversa también lo es.

Ejercicio:

Probar que las transformaciones ortogonales impropias no forman un grupo, porque

no se cumple la primera de las tres propiedades enumeradas en el ejercicio anterior.

Una particularidad de esta division de O(3) en dos subconjuntos, es que no podemos movernos
continuamente de un sector al otro. En efecto, el determinante de una matriz R cualquiera es una
suma de productos de los elementos de matriz, es decir un polinomio que tiene como variables
las entradas de la matriz. Todo polinomio es una funcién continua de sus variables, que cambia
suavemente al modificarlas. Por esta razén, no es posible deformar suavemente los elementos
de matriz de R para provocar el necesario salto discreto que nos llevaria de una matriz propia

DetR =1 a una impropia DetR = —1.

Una consecuencia inmediata de lo anterior es que las rotaciones son transformaciones propias o
especiales. Esto sucede porque, como comentamos mas arriba, cualquier rotacién esta definida
con un eje 7i y un angulo de rotacién 6. En particular, la rotacidon de angulo nulo corresponde a
la transformacion identidad. Dado que el dngulo de rotacion se puede deformar continuamente
llevandolo desde cualquier valor finito hasta cero, cualquier rotacién esta continuamente conectada
con la identidad. Como la identidad es una transformacion propia, esto implica que cualquier

rotacion lo es.

Vamos a estudiar las transformaciones impropias. Un ejemplo de transformacion impropia es la

reflexion a lo largo del eje x, en la cual reemplazamos el vector ¥ = (x,y,z) por un nuevo vector
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=

7 = (x,y,7) = (—x,y,7). Esta transformacion se conoce como transformacién de paridad en x, y

se representa segun

X X
y o[ =By
7 z

—X -1 0 O X
y = 0 1 0 y
Z 0 0 1 z
Py
Es evidente de aqui que se cumple Det P, = —1 por lo que P, es una transformacién impropia, como

habiamos adelantado. Por otro lado, es facil verificar que se trata en efecto de una transformacion

ortogonal, segun

-1 0 0 ~1 0 0
PP=Pl=| 0 10 || 0 10 |=I
0 0 1 0 0 1

Podemos definir paridades en los otros ejes: P, representa la reflexion a lo largo del eje y, y P; la

reflexion a lo largo del eje z. Estaran dadas por las matrices

1 0 0 1 0 0
R=]0 -1 0 =01 0
0 0 1 00 -1

Notese que cualquier producto binario P.- P, 0 P,- P, 0 P; - P, (y sus permutaciones) tendra determi-
nante 1, por lo que sera una transformacion propia. Por otro lado el producto triple P;- P, - P, = —1

tiene determinante —1 y representa la transformacioén impropia.

Una transformacién impropia cualquiera, es decir una que cumpla DetR = —1, se puede escribir en
términos de una transformacién propia R’ con DetR’' = 1 y la transformacién de paridad P, segun

R = P,-R'. Para demostrar esto, aprovechamos el hecho de que P? = I para escribir
DetR = Det(P; - P, - R) = Det(P;)Det(P; - R) = —Det(P; - R)

Dado que DetR = —1 tenemos de la ecuacion de arriba que Det(P, - R) = 1. Por lo tanto si definimos

R’ = P, - R podemos escribir

R=P: R
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donde hemos aprovechado de nuevo el hecho de que P? = I. Es decir que cualquier transformacion
impropia se puede escribir como la paridad en x actuando sobre una transformacion propia.
Este ultimo resultado implica que para estudiar el grupo de matrices ortogonales O(3) podemos

concentrarnos en el grupo de transformaciones propias o especiales SO(3).

Nota:

Las transformaciones de paridad invierten izquierda y derecha. Eso es facil de entender
si contemplamos nuestras manos: la mano derecha es lo que se obtiene a partir de la

mano izquierda si cambiamos el signo del eje que va a lo largo del pulgar.

Una pregunta que podemos hacernos es si la naturaleza es invariante de paridad. En
otras palabras ¢,qué sucede si realizamos dos experimentos idénticos, pero que son
imagenes especulares el uno del otro? ; obtendremos resultados idénticos, que son
también imagenes reflejadas? Hoy sabemos que eso no sucede para las interacciones
nucleares débiles. En otras palabras, la paridad no es una simetria de la naturaleza,
que puede distinguir izquierda y derecha. Se dice que la simetria de paridad esta

explicitamente rota.

En otro contexto, tanto la ecuacion de Schroedinger para los electrones como las ecua-
ciones de Maxwell para los campos electromagnéticos son invariantes de paridad. Esto
implica en particular que toda la quimica, que obedece a las mencionadas ecuaciones,
no distingue izquierda y derecha. Aquéllas moléculas que son diferentes de su imagen
en un espejo deben producirse en ambas versiones (0 enantimeros) en cantidades
iguales. Sin embargo, las reacciones quimicas que originaron los primeros procesos
biolégicos se iniciaron, por azar, en moléculas que tenian alguna lateralidad preferida.
Podrian haberse iniciado con igual probabilidad en moléculas del tipo reflejado, pero
simplemente no fue asi. Eso hace que la biologia, que evolucioné a partir de ese
acontecimiento contingente, distinga izquierda y derecha. Esto corresponde a una

simetria de paridad espontaneamente rota.

El cuerpo humano transforma nuestros alimentos en D-glucosa o dextrosa, uno de los
enantiomeros de la glucosa. El otro enantiomero, imagen en un espejo de la dextrosa, no
tiene ningun valor nutricional. Es decir que al pasar “A través del espejo” Alicia hubiera
encontrado, con gran probabilidad, la inanicién y la muerte. Eso sucedié precisamente

al protagonista del relato “Error técnico”, de Arthur C. Clarke.

7.2.2 Teorema de Euler

Hasta ahora, hemos probado que toda rotacién es un elemento de O(3), pero que no todo elemento
de O(3) es una rotacion, dado que ese conjunto también contiene a las transformaciones impropias,
que no estan continuamente conectadas con la identidad. Ahora bien, si nos limitamos a SO(3),
compuesto por las matrices ortogonales propias o especiales ¢ es correcto decir que todas ellas

son rotaciones?
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De acuerdo a nuestra definicién de mas arriba, ademas de no cambiar el médulo de cualquier
vector, una rotacién deja invariante la direccion del eje alrededor del cual estamos rotando. Es

decir que para cualquier rotacion R debe existir un vector 7 tal que
R-7i=1n

Vamos a probar que tal vector existe para todas las matrices de SO(3). Tenemos que una matriz

ortogonal cualquiera cumple la propiedad
(R-I)-R'=I1-R

Tomando el determinante a ambos lados, y usando que el determinante de un producto es el
producto de los determinantes y que el determinante de una matriz es igual al de su transpuesta,

tenemos que para cualquier matriz especial
Det (R—1I) = Det (I—R')

Usando ahora que Det (I —R') = Det ((I —R)") = Det (I — R) podemos escribir
Det (R—1)=—Det (R—1)

Hemos usado aqui que el determinante de una matriz es (—1)? veces el determinante de su
opuesta, donde d es la dimensiéon de la matriz, por lo que en nuestro caso tenemos d = 3. Esto

implica que
Det (R—1)=0

En otras palabras la matriz R — I es singular, por lo que debe existir un vector 7i que cumpla
(R=1)11=0

con lo que hemos demostrado que para cualquier matriz ortogonal propia existe un vector invariante

R-n=n.

Con esto, hemos demostrado que cualquier transformacién de SO(3) deja invariante el médulo de
todos los vectores, y tiene un vector invariante. En otras palabras, toda matriz de SO(3) es una

rotacion.

La pregunta que podemos hacernos ahora es ¢ se puede escribir la matriz que representa una dada
rotacion en términos del eje de rotacion 7i y del angulo de rotacion 67 Para responderla, necesitamos
un sistema de ejes ortogonales en el que descomponer nuestros vectores. Notando que para
cualquier vector ¥ se cumple que 7i es perpendicular a 7 x 7 y que ambos son perpendiculares a
it x (7i x ¥), podemos construir un sistema de ejes perpendiculares en la direccién de esos tres

vectores. Con esto, podemos dibujar el diagrama de la figura

En el dibujo vemos varios vectores que tienen el mismo médulo, a saber |7, | = || = |ii x F|r =

|71 x (7i x F)|r. Por otro lado, estos vectores son todos perpendiculares a 7i. Esto implica que es
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correcto dibujarlos en el mismo circulo. Si descomponemos entonces el vector transformado # en

nuestros tres ejes, segun

-
7

= i+ B (7t X F) +yii x (it x F)

A
en términos de coeficientes o, B y v, vemos que podemos leer la forma de estos coeficientes

directamente del dibujo, segun

oa=Fin="7 -1 B =sinb Y= —cos0
Con esto, podemos escribir explicitamente
7 = (F-7)ni+sin0 7 x F—cos O 7 x (7 X F)

Ahora usamos la identidad vectorial A x (B x C) = C(A-B) — B(A - C) que nos permite reescribir el
ultimo término en esta férmula para obtener
7 = (#-71)7i+sin@ i x #+cos O (F—7i(ii- 7))

Si llamamos eje z a la direccion del versor 7, tenemos que 7 = k. Escribiendo 7 = xi+y j + zk nos

queda

7 = zk+ (cos@ x+sin0y)i + (—sinOx+cos0y)j =R, -7

lo que puede ser expresado matricialmente como

cosO x+sinfy X
P=| —sinOx+cosfy |=R.-| y
z 4

Esto nos permite leer la matriz que representa la rotacién de angulo 6 alrededor del eje z en la

forma

cos® sinf O
R,=1| —sin® cosf 0
0 0 1
Es facil probar que DetR. = cos? 6 +sin’> @ = 1 y también que R.-R. =1, confirmando que esta

rotacion es una matriz de SO(3).

Ejercicio:
Pruebe que para rotaciones alrededor del eje x y del eje y las matrices son R, y R,

respectivamente, dadas por

1 0 0 cos6@ 0 —sinB
Ri=1 0 cos6® sin6 Ry = 0 1 0
0 —sin® cosO sin@ 0 cosO

Verifigue que en ambos casos las matrices son ortogonales y su determinante vale 1.
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Ejercicio:
Demuestre que la matriz R; definida segun

cos 8 +n2(1 —cosB) nyny(l—cos@)+n;sin@ nyn (1 —cos@)—nysind
Ri=| neny(1—cos®)—n;sinf cosO—l—n;(l—cosO) nynz (1 —cos8) +ny sinf

nynz(1—cos@)+nysin@ nyn (1 —cos@)—nysind cos@ +n2(1—cos0)
representa la rotacion en angulo 0 alrededor del eje 7i dada por
7 = (F-i)ni+sin@7ixF+cosO (F—ii(ii-7)) = Ry - 7
y verifique que DetR; =1y que R;-R; =1.
Sin embargo, la forma general de una rotacion de eje 7i que hemos presentado en el ejercicio

anterior no es la Unica manera de representar una rotaciéon cualquiera. Una forma alternativa que

resulta muy util para nuestros fines es la que se obtiene segun la siguiente construccion:

1. Primero se realiza una rotacion en un angulo ¥ alrededor del eje z. Con esto, los ejes x,y,z
se mueven, yendo a parar a un nuevo conjunto de ejes x’,y’,z, Notese que, como se traté de

una rotacién alrededor del eje z, este quedd inalterado.

2. Luego se rota un angulo ¢ alrededor del eje x’ resultante de la rotacion anterior, obteniendo

un nuevo conjunto de ejes x',y",7”
3. Finalmente se rota un angulo y alrededor del eje 7” resultante de ambas rotaciones.

Esto implica que hemos descompuesto la rotacién R en términos de tres rotaciones elementales

alrededor de z, de ¥/, y de 7. En términos matriciales
R=Ry Ry -R.

Usando la forma explicita de las rotaciones alrededor de cada eje que escribimos mas arriba,

tenemos que

cosy siny O 1 0 0 cos sintd 0
R=1 —siny cosy 0 |.| O cosp sing |.| —sin® cos® O
0 0 1 0 —sing cos@ 0 0 1

Es facil convencerse que mediante este proceso se puede descomponer cualquier rotacion. Los

angulos 9, ¢,y se conocen como los angulos de Euler de la rotacion.

Nota:

Los angulos de Euler resultan muy utiles en navegaciéon maritima y aérea, ya que
permiten describir la posicion de un vehiculo respecto del giréscopo de a bordo cuya

orientacion se mantiene fija.

Como se puede ver en la figura[7.2.4] el angulo ¥ representa la direccién, entendida

como hacia adénde apunta el vehiculo en el mapa, el &ngulo ¢ especifica el cabeceo,
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Figura 7.2.3: Angulos de Euler: una rotacién de angulo © en torno al eje z transforma el sistema de coorde-
nadas x,y,z en el nuevo sistema x',y’,7. A partir de éste, rotamos alrededor del eje x' un angulo
¢ para ir al nuevo sistema x" y"7". Finalmente, una rotacion de angulo v en torno al eje 7’

nos lleva al sistema de coordenadas rotado final x"',y" 7"

es decir si el vehiculo se encuentra subiendo o bajando, y finalmente el angulo y
corresponde a la guifiada, que se refiere a su inclinacion lateral respecto de la linea

del horizonte.

7.2.3 Rotaciones infinitesimales

Dijimos mas arriba que toda rotacion esta continuamente conectada a la identidad, es decir que
podemos acercarla arbitrariamente a la misma tomando el angulo de rotaciéon cada vez mas
pequefo. Imaginemos entonces una rotacién con un angulo muy pequefio alrededor de un eje 7i
cualquiera. La podemos escribir como una matriz que esta infinitesimalmente cerca de la identidad,

en la forma
R=1+¢t;

donde t; es una matriz a determinar, y € es un nimero muy pequefio que nos asegura que la
desviacion de la identidad es infinitesimal. Entonces podemos escribir su determinante en potencias

de los elementos de la matriz €z;, segun
DetR =1+ ¢€Trt; + O(€?)
Ejercicio:

Pruebe la férmula de arriba escribiendo explicitamente la matriz y calculando su deter-

minante, tirando cuadrados de «.
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Figura 7.2.4: Angulos de Euler en aeronautica. El primer éngulo de Euler © especifica la direccién de
navegacioén, el sequndo ¢ nos dice si la aeronave sube o baja, mientras que el tercero y nos

habla de la inclinacion de sus alas.

Por lo tanto la condicién de que la matriz sea especial Det R = 1 implica para que matriz infinitesimal
debe cumplir Trz; = 0. En otras palabras, las matrices especiales cercanas a la identidad difieren

de la ella en una matriz de traza nula.

Por otro lado, sabemos que las rotaciones son matrices ortogonales, es decir que cumplen que

R'-R = I. Para nuestra rotacion cercana a la identidad esto implica
(I+ety) -(I+etz)=1

Escribiendo (I +e1;) =1+ €1t} y expandiendo la dltima expresion tenemos
(I+eth)-(I+etz) =I+e(th+1;) + O(e?) =1

Por lo tanto la condicién R - R = I implica que t +1; = 0, 0 en otras palabras
th=—t;

Es decir que t; es una matriz antisimétrica. Las matrices ortogonales cercanas a la identidad

difieren de ella en una matriz antisimétrica.

Una matriz antisimétrica general se puede escribir como

0 -y v 0 0 O 0 0 1 0 -1 0
i = y 0 —-o |=a|l 0 0 -1 [+8 0O 00 |+Yl 1 0 O
B a O 01 0 -1 0 0 0 0 O

Iy ty t;
En términos de coeficientes arbitrarios «, 3,7 y las matrices ¢, con a € {x,y,z}, que se denominan

generadores del grupo de rotaciones. Por lo tanto tenemos que

R=1I1+ot,+Bt,+7t,
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Esta propiedad se resume diciendo que el grupo de rotaciones es un grupo de Lie, es decir un
grupo que contiene transformaciones infinitesimales arbitrariamente cercanas a la identidad que

se pueden escribir en términos de un conjunto de generadores.

Ejercicio: reglas de conmutacién

Probar, escribiendo explicitamente las matrices y haciendo el calculo, que se cumplen

las reglas de conmutacién
[tety] =tc-ty—t, -t =t;
ty,t] =ty -t.—t.-t, =1,

[[Zatx] - tz by — Iy 'tz = l‘y

Las reglas de conmutacion de este ejercicio se pueden resumir en la expresion

[ta 5 tb] = &upcle

donde ¢, es el simbolo de Levi-Civita completamente antisimétrico, que vale &,,, = 1 y los demas
se obtienen intercambiando los indices y multiplicando por —1 en cada intercambio. La expresion
del conmutador se conoce como el algebra de Lie del grupo de rotaciones. Se puede verificar que

las componentes de cada uno de los generadores cumplen

(ta)bc = —&gpc

Podriamos preguntarnos como se relaciona todo esto con nuestra expresion general para las

rotaciones con un angulo 6 alrededor de un eje 12 que habiamos escrito mas arriba, es decir
7 = (F-71)75i+sin0 7i x F+cos O (F—ii(i1.F))

Si imaginamos una rotacion infinitesimal con un angulo &, podemos desarrollar sin(g) = € y cos(€) =

1+ &(€?*), con lo que si ahora reemplazamos en la ecuacién anterior, obtenemos
P =F+enxr?

o bien, escribiendo esta expresién en componentes,
I’Z =rq— ENpEpgctc =Tg+ Enb(tb)acrc = (5ac + Enb(tb)ac) re

Lo que en términos matriciales se puede resumir como
F=U+enf)i=I+ety) 7

donde 7 = (¢,,1,,7;) €s un vector cuyas componentes son matrices (esto es simplemente una

notacion para no tener que escribir indices). Si ahora definimos € = 7ie obtenemos la féormula
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La primera igualdad toma una forma conocida cuando escribimos df = ¢ y dividimos por d¢

F=®XT

Vamos a aplicar las expresiones obtenidas al calculo de la aceleracion de Coriolis en un sistema
de coordenadas rotante. Para esto, es natural trabajar usando el punto de vista pasivo de las
rotaciones, donde lo que esta cambiando no es el vector que las coordenadas representan, sino el

sistema de coordenadas en el cual lo descomponemos.

Supongamos que las componentes de un vector cualquiera G en un sistema de coordenadas fijo
respecto de las estrellas lejanas se llaman (é)s, mientras que sus componentes en un sistema de
coordenadas que rota solidario con la Tierra son (G)7. El origen de ambos sistemas esta en el
centro de la Tierra, y suponemos que inicialmente los ejes de ambos sistemas estan alineados.

Tenemos entonces que, en el instante inicial
(G)s=(G)r

Al dejar pasar un pequefio intervalo de tiempo dt, el sistema solidario con la Tierra ha rotado un
angulo —d® respecto del sistema alineado con las estrellas lejanas, y ademas el vector G ha
cambiado una cantidad ¢G debido a su movimiento propio, por lo que en lugar de la igualdad de

mas arriba tendremos que
(G+dG)s=(I+d®-7)-(G+dG)r

De donde podemos escribir
(G)s+d(G)s = (G)r +d(G)r +(d®-7)- (G)r +---

donde hemos escrito (dG)r = dfG)T descartando términos de orden cuadratico en las variaciones.

Usando una de las identidades de mas arriba, podemos poner
d(G)s =d(G)r +d® x (G)r

donde el primer término representa el cambio intrinseco en las componentes del vector, mientras
que el segundo se refiere al cambio debido a la rotacion del sistema de coordenadas fijo a la Tierra.

Dividiendo por dt obtenemos

dG)s _dG)r & =
dt  dt X (O)r

Notese que d(G)r/dt # (dG/dt)r debido a la rotacién propia del sistema solidario con la Tierra.

Aplicando este resultado al vector posicion G = 7, tenemos

5= _ D1 6oy

Nétese que d(7)r/dt # (¥)r. Si ahora pensamos que G = ¥ podemos escribir

@) d ()«
@ = T8 = 4 (T ax ).
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donde hemos puesto un subindice S para recordar que la magnitud entre paréntesis corresponde
a las componentes (¥)g del vector velocidad en el sistema en reposo respecto de las estrellas
lejanas. Aplicando nuestra férmula para la derivada temporal

i(dﬁ)r +Qx (d(diﬁ+fzx(7)T)T

(@s O <?>T)

T

y reordenando obtenemos

)= TV 56
(@)s ==y +20@x =4

PAr e dPr |z (~ 4)T)

Aqui el primer término es la aceleracién en el sistema solidario con la Tierra, el segundo término

nos da la aceleracion de Coriolis, mientras que el tercero corresponde a la aceleracion centripeta.

Resumen

En esta clase introdujimos la idea de grupo, comenzando con el grupo SL(3,R) de transforma-
ciones generales lineales en el espacio. Identificamos su subgrupo ortogonal O(3) dado por las
transformaciones que preservan el médulo de los vectores. Vimos que en términos de matrices,
corresponden a aquéllas cuya transpuesta es a la vez su inversa. Identificamos el subgrupo de
matrices especiales SO(3) que tienen determinante unidad, y demostramos que corresponden a

las rotaciones.

Aprendimos también a descomponer una rotacién en términos de rotaciones sucesivas alrededor

de diferentes ejes, con lo que pudimos definir los angulos de Euler.

Finalmente, estudiamos las caracteristicas de las rotaciones infinitesimales, y las utilizamos para

describir la aceleracion de Coriolis.
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Objetivos

En esta clase definiremos la nociéon de cuerpo rigido,
como un sistema de particulas cuyas distancias relativas
estan fijas. Dejaremos para mas adelante la discusion
sobre cuales son las fuerzas que aseguran tal rigidez, y

sobre qué sucede cuando estas fuerzas se relajan.

Comenzaremos con la cinematica del cuerpo rigido, iden-
tificando los elementos necesarios para poder mas ade-

lante describir su evolucion temporal.

Luego analizaremos la manera en la que la inercia se
manifiesta en estos sistemas, construyendo otro de los
ingredientes indispensables para escribir sus ecuaciones

de movimiento.

Cinematica del cuerpo rigido

Christiaan Huygens

Supongamos que tenemos un sistema de N particulas, El conjunto formado por las tres componen-

tes de cada uno de los vectores posicion 7, constituye naturalmente un sistema de 3N coordenadas

generalizadas. A continuacién vamos a construir otro sistema de coordenadas generalizadas para

describir su movimiento, que nos resultara util para definir un cuerpo rigido.
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Figura 8.2.1: Coordenadas para la descripcién de un cuerpo rigido. Usamos la posicién de una de las
particulas, la orientacién del triangulo formado por tres particulas respecto de una orientacion

de referencia, y la distancia de cualquier otra particula a los vértices del triangulo.

Tomamos tres particulas cualesquiera no colineales n = 1,2, 3. Estas particulas forman por supuesto
un triangulo. La posicién de las tres particulas estard completamente determinada por la forma, la

posicion y la orientacion de este triangulo, ver figura [8.21]

= |La forma del triangulo esta dada por las longitudes de cada uno de sus lados [, I, y I3.

Podemos escribir

11=|?1—72| lzZ‘?2—73| l3=|73—71|

m La posicion del triangulo queda determinada por la posicién de uno de sus vértices, digamos

por ejemplo 7.

» La orientacion del tridangulo se fija en términos de la rotacion necesaria para llevar al triangulo
a su posicion actual comenzando desde una orientacidn de referencia prefijada (por ejemplo,
la orientacion de referencia podria ser el triangulo apoyado en el primer cuadrante del plano
xy con su lado mas largo alineado en la direccidn de las x). Esta rotacion esta definida por

tres angulos, que podemos identificar con sus angulos de Euler (¢, ¢, y).

La posicién de cualquier otra particula n > 3 del sistema estara dada por la distancias /1,2, 1.3

que la separan de los tres vértices del triangulo.
lnl - |?1_?n| ln2: |?2_?n| ln3 = |?3_7n|

Con esto, nuestro conjunto de coordenadas generalizadas {g;} con i€ {1,2,...,3N} esta dado

por {g:} = {#1, &, 0, v, L, b,13,1,1,L2,1,3} paran € {4,--- ,N}. Son tres componentes de la posicién
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de un vértice, los tres angulos de Euler que fijan la rotacion, y 3+ 3(N — 3) = 3N — 6 distancias.
Comprobamos que es un total de 3N coordenadas, que parametrizan el espacio de configuracion
¢ =RV,

Un cuerpo rigido es un sistema de particulas tal que la distancia entre cualquier par de particulas es
constante. Por lo tanto, las 3N — 6 distancias mencionadas mas arriba no cambiaran con el tiempo, y
podemos dejarlas fijas en nuestra descripcion del sistema. Esta truncacion puede involucrar alguna
sutileza, ya que las coordenadas generalizadas que omitimos también tienen sus ecuaciones de
movimiento, y deberiamos asegurarnos que tales ecuaciones se estan cumpliendo, es decir que

se trate de una truncacién consistente. Postpondremos esa discusion para mas adelante.

Como conclusién, un cuerpo rigido tiene seis grados de libertad, dados por la posicion de una
de sus particulas 7| € R? y los tres angulos de Euler 6, ¢, w que definen la rotacion R € SO(3) que
lleva de un sistema de coordenadas inercial externo a un sistema de coordenadas unido al cuerpo.

Es decir que su espacio de configuracion esta dado por ¢ = R® x SO(3).

Una particula cualquiera estara en una posiciéon dada por

P =T1 4+ (Pa—71) =F1 +71n
——

I'ln

donde 7, es el vector distancia entre la particula n-ésima y la particula que usamos para describir
la posicidn del cuerpo rigido. Ahora bien, estas variables cambiaran al transcurrir un instante de

tiempo dr, de modo que

dr, = dv, +dry,
Dado que por definicion las distancias entre cualquier par de particulas de un cuerpo rigido no
cambian, entonces |F;,| no puede cambiar, por lo que d7;, debe corresponder a una rotacion.
Usando lo que aprendimos en la clase anterior podemos entonces escribir

dv, =df +dO i x Fi,

donde 7i es un eje de rotacion que pasa por 7. Con esto podemos escribir la velocidad de la

particula n-ésima como
7}" = ?1 + @ x Fin

donde hemos definido la velocidad angular en torno a 7, como @ = /id6/dt. En esta expresion,
el primer término representa la traslacion de una de las particulas del cuerpo rigido respecto de
origen del sistema de coordenadas, y el segundo término tiene en cuenta la rotacion del cuerpo

en torno a esa particula.
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Momento de inercia

Supongamos que queremos escribir el momento angular del cuerpo rigido. Para esto tenemos

que escribir
{=m,7, X7,y

donde n es el indice que corre entre todas las particulas del cuerpo, y estamos sumando sobre él.
Por el momento, pondremos el origen de nuestro sistema de coordenadas en la particula 1, de
modo que 7; = 0. Si se trata o no de un sistema de coordenadas inercial no es importante para lo
que discutiremos, por lo que pospondremos esa discusion. Podemos entonces usar la expresion

para la velocidad de mas arriba con 7 =0y obtener

U=y Ty X (@ X T) = My (D12 — T (B - 7))
Donde en la segunda igualdad usamos la férmula para un producto vectorial triple A x (B x 5) =
B(A-C)—C(A-B). En componentes esta ecuacion se puede escribir como

la=my(@ary — 15 O 1)

Donde los indices a,b corren sobre las direcciones cartesianas {x,y,z}, y en el segundo término
hay una suma sobre b. Para poder sacar factor comun @, insertamos una &, en el primer término,

y tenemos

2 2
éu = mn(Sabwb r, — rZCOb}'};) = m,,(ﬁab r, — r’;rZ) wp = jab y
N————
jab
Hemos definido aqui las nuevas magnitudes .#,;,, que forman una matriz .# llamada matriz momento

de inercia. Esto nos permite escribir la relacion en la forma matricial
(=7-®
o bien explicitamente en componentes
Uy = T+ Iy + I, 0,
by = IO+ Iy 0y + Iy 0,
b, = I, 0+ Ip0,+ 0,

Nétese que la matriz .# es una matriz simétrica, de acuerdo a su definicion. Ahora bien ;qué es

exactamente esta matriz?

Ejercicio:

Calcule las componentes de la matriz anterior para una molécula de metano, repre-
sentada como un tetraedro con un atomo de hidrégeno en cada vértice y un atomo de
carbono en el centro. Elija un sistema de ejes que con su origen el centro del tetraedro
y tal que el eje z pase por uno de los vértices ;Qué sucede si cambia el sistema de

coordenadas?
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Nota:

La pelicula “2001: una odisea espacial” del director Stanley Kubrick esta basada en
la novela homénima de Arthur C. Clarke. Una de las escenas iconicas de la pelicula
muestra al astronauta David Bowman trotando alrededor del un pasillo circular que
rodea completamente la nave Discovery. El pasillo gira sobre su eje de modo tal que la

fuerza centrifuga provee de un sustituto para la gravedad.

Luego de que la computadora de la nave Hal-9000, con su célebre ojo unico de color
rojo, se volviera loca y asesinara a su compafiero Frank Poole, Bowman desaparece en
un portal dimensional que orbita Jupiter. En la novela de Clarke, la narracidon sucede en
orbita de Saturno, pero Kubrick temia no poder retratar satisfactoriamente los anillos,

por eso la traslado al otro gigante gaseoso.

En la secuela de la novela “2010: odisea dos”, la nave rusa Leonov llega a Saturno
para rescatar los restos de la Discovery, pero la encuentra girando descontroladamente
alrededor de su centro de masas. El mecanismo que movia el pasillo se atasco, y todo

el momento angular del mismo se transfirié a la nave entera.

Con esto, el autor retrata uno de los problemas de construir mecanismos con piezas
en rotacion relativa en el espacio: si por alguna razén el mecanismo falla, el objeto

entero comienza a girar.

Tensor momento de inercia

Aprendimos en los cursos basicos de fisica que existen magnitudes fisicas conocidas como
vectores, un ejemplo de las cuales es el momento angular {. Estos vectores estan definidos
con una terna de nimeros ¢ = (4, 2y,¢;) que nos dan sus componentes en un dado sistema de
coordenadas. Ademas, satisfacen una propiedad fundamental que es su regla de transformacion

frente a rotaciones

lo que se puede escribir en componentes como
ea = Rabgb

Cualquier terna de niumeros que se transforma de esa manera frente a las rotaciones se llama vector
contravariante. Existen también los vectores covariantes que transforman con la matriz transpuesta,

un ejemplo de ellos es el gradiente V = (Jx, 0y, d;) que cumple la regla de transformacion
9, = Rpa0y
Ejercicio:

Probar la regla de transformacién anterior haciendo actuar el gradiente sobre una

funcién arbitraria y utilizando la regla de la cadena.
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Uno podria preguntarse entonces ¢ cémo se transforman la matriz de 3 x 3 que llamamos mas
arriba momento de inercia? Para investigar esta cuestion, aplicamos una rotacién al momento

angular, obteniendo

=R {=R-.7-(R-R)-®=(R-.% -R')-R-®
—_——

7 @

Con las definiciones de la ultima igualdad, podemos escribir la relacién entre los vectores rotados,

en términos de una matriz momento de inercia rotada, segun
0=7"a&

Donde hemos entendido que el momento de inercia transforma de acuerdo a la regla
I'=R- I R

lo que en componentes se escribe como
I b = Rac-ZcaRpa = RacRpaIea

Esta regla de transformacién es parecida a la de un vector, salvo que hay dos matrices de rotacién
actuando una sobre cada indice de nuestra matriz. Esto define un nuevo tipo de magnitud, cuyas
componentes en un sistema de coordenadas estan dadas por una matriz, que llamamos tensor de

dos indices contravariante. El momento de inercia es entonces un ejemplo de tal tipo de tensores.

Existen tensores de mas indices contravariantes, definidos en un sistema de coordenadas por

arreglos de numeros 7., que se transforman frente a rotaciones segun la regla
!
abc... — RadeeRcf e <?def.“

Un ejemplo es el tensor de Levi-Civita dado en algun sistema de coordenadas por el simbolo
£.c = £1 con g, = 1 y cambiando de signo por cada permutacion de indices. Este tensor tiene
la propiedad de ser invariante, es decir que sus componentes en cualquier otro sistema de

coordenadas son las mismas
8:;bc = RadeeRcfgdef = Det(R) Eabe = Eabe

donde en la segunda igualdad hemos usado la definicion del determinante de una matriz, y el

hecho de que las rotaciones tienen determinante unidad.

Ejercicio:
Probar la invarianza del tensor de Levi-Civita, y verificar que si bien es invariante frente

a rotaciones, no lo es frente a paridad.
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Ahora bien, tomemos el producto de las componentes de dos vectores contravariantes cualesquiera
Ay B, y construyamos una matriz producto tensorial cuyas componentes son el producto de las

componentes de los vectores
(A® B)a» = AuBp

Si ahora aplicamos una rotacion, tenemos que los elementos de esta matriz se transformaran

segun
Al B}, = RucAcRpaBa = RacRpaAcBa

Es decir que el producto tensorial de dos vectores contravariantes forma un tensor de dos indices

contravariante. Ese objeto es util para reescribir la formula para el momento de inercia en la forma
I =my (ral =7, @F,)

donde I en el primer término es la matriz identidad, cuyas componentes son I,;, = 6.

Ahora bien, para entender qué relacion tiene este tensor momento de inercia con los objetos de
los que hablamos en los cursos elementales de fisica, escribamos la energia cinética de nuestro
cuerpo rigido en la forma

K= —my? = -m,?, (& x7,) = %mn(?’n X F,)-@

7
donde asumimos que el cuerpo rigido sélo esté rotando, y en la ultima igualdad hicimos una
permutacion ciclica reordenando los factores en el producto mixto, para identificar el momento
angular. Si escribimos lo de arriba como un producto de matrices (recordando que los vectores

son matrices columna) entonces tenemos

K=-0-0==(50) - 0==-&" -0

N —
\S}

Escribiendo la velocidad angular como @ = w1, donde 7 es la direccién del eje de rotacion, nos

queda la expresion

Donde hemos definido el momento de inercia alrededor de un eje /i segun .#; = i - .7 -7i. Escribiendo

esta expresiéon en componentes tenemos
T — 7 _ 26 _ _ 2 (7. V)Z
i = NaZabMp = NagMp \7,Oab — Ynalnb ) Mp = Mp \I, (rn n

donde en la ultima igualdad usamos 8,,n.n, =718 = 1Y ryang =7y, - 1.

Si ahora identificamos 7, -7i como la proyeccion del vector posicién en la direccién del eje de

rotacion, tenemos un triangulo de lados |7, 7, - 71, y r;- donde esta ultima variable representa la
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Figura 8.3.1: Esquema del teorema de Huygens-Steiner. El momento de inercia en torno a un eje que pasa
por el centro de masas se relaciona con el que corresponde a un eje paralelo cualquiera a

través de la distancia perpendicular r | .

distancia perpendicular de la particula n-ésima al eje de rotacion. Usando entonces el teorema de

Pitagoras podemos escribir
i =my, (r,% — (P~ ﬁ)z) = m,,(r,i‘)2

Que no es ofra cosa que la definicion de momento de inercia alrededor del eje /i que se aprende

en los cursos basicos de fisica.

La expresion para el tensor momento de inercia en términos de producto tensorial facilita la prueba

del teorema de Huygens-Steiner. En efecto, si tenemos
I =my (r,%lfrn@)r,,)

Usando que 7, = %, + 7, donde ¥ es la posicion del centro de masas y 7, la posicién de la particula

n-ésima en el sistema centro de masas, entonces podemos poner
- 2 - -
I =my ((rcm +?;z) I— (rcm +?:1) ® (rcm +?;z))

Como se puede ver usando su definicion, el simbolo ® funciona de manera distributiva con respecto
a la suma, al igual que una multiplicacion normal (después de todo no es sino una multiplicacion

componente a componente). Por lo tanto, si expandimos los productos obtenemos
I = (Pl =T T) + M(r2 I —Fem @ Fem) + -

donde M = Zﬁ)’:l m, €s la masa total, y los términos omitidos se anulan usando que en el sistema

centro de masas se verifica que m, 7, = 0. Con esto nos queda

I = I+ M(rE ] —Fen @ Fem)
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Aqui .#’ es el tensor momento de inercia en un sistema de coordenadas con el origen en el centro
de masas. Si usamos esta expresion en el momento de inercia alrededor de un eje 7i segun lo

habiamos definido mas arriba .%; =i’ - . - i, obtenemos
Iy = I, +Mr?

con r2 =12, — (rem - 11)*. Es decir que hemos demostrado el teorema de Huygens-Steiner.

Ejes principales

En los cursos basicos de fisica aprendimos que los cuerpos rigidos tienen ejes especiales, elegidos
de acuerdo a alguna intuicion geométrica, que llamamos ejes principales. Recordemos que, entre
otras propiedades, estos ejes cumplen que alrededor de ellos el momento angular toma una forma

muy sencilla

0}

~
Il
S

Donde .#; es el momento de inercia a lo largo de un eje principal que apunta en la direccion de 7.
Para entender qué son tales ejes principales, empecemos escribiendo la ecuacién de autovalores

en la forma
S W= _gw

donde en el lado izquierdo tenemos una matriz .# multiplicada por un vector w, mientras que en
el lado derecho tenemos un numero ¢ multiplicado por el mismo vector. La solucion de esta
ecuacion viene dada por un vector w que se llama autovector de la matriz .#, y por un escalar _#
que se llama autovalor de la matriz .#. Por supuesto puede haber varias soluciones {_#,,w,}, por

lo que es mas preciso escribir
- "_‘;a = /a"_‘;a

Notese que aqui en el miembro derecho no estamos sumando sobre a. Podemos reordenar esta

expresion para escribirla en la forma
(I — Fud) - Wa=0

donde I es la matriz identidad. Esta es una ecuacion lineal homogénea para las tres componentes

de cada solucién w,, que soélo tendra una solucion no trivial si el determinante se anula
Det(.# — #,0) =0

Este determinante contiene una suma de términos, cada uno de los cuales es un producto de
tres componentes diferentes de la matriz .# — _¢#,1. Por lo tanto, sera un polinomio cubico en la
variable _¢#,. La ecuacion cubica resultante tendra a lo sumo tres soluciones distintas, es decir que

el indice a tomara tres valores diferentes.
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AWy

4

Figura 8.3.2: /lustracion de los ejes principales de un cuerpo rigido. En los cursos basicos de fisica se los
identifica de modo intuitivo. Aqui aprendemos que se trata de los tres autovectores del tensor

de inercia.

Vamos a probar ahora que las soluciones _Z, de esta ecuacion son numeros reales. Para esto,
multiplicamos escalarmente por el vector conjugado w} en la ecuacion de autovalores, con lo que

la féormula se escribe
(W) - I Wa = _Fa(Wy) - Wa

En esta expresion, ahora cambiamos a por b y conjugamos el resultado, para obtener
(wa)t I "’_‘;Z = /b* (V_‘;a)t ‘VVZ

y ahora transponemos
(W) T = F ()W

donde hemos usado que la transpuesta del producto es el producto de las transpuestas en orden
inverso. Usando el hecho de que .# es una matriz real y simétrica .# " = .7, esta expresion nos

gueda escrita en la forma
(W3)" - I - g = Iy ()" -

Restando esta ultima igualdad de la ecuacién con la que comenzamos nuestro calculo mas arriba,

tenemos
0=(Ja= 7)) (W) Wa

Si elegimos el caso a = b nos queda ( 7, — 7;)(w;)" - w, = 0. Notese que en esta férmula el

miembro derecho es positivo (%)) . Wy = W) Wax + Wi Way + Wi Waz = [Wax|* + [Way|* + [waz|* > 0. Por
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lo tanto, si el vector solucion w, es no nulo, esta ecuacion implica que #Z, = _#.. En otras palabras

Haesreal

Con este resultado, podemos volver a la primera ecuacion, para verificar que si w, es solucién con
autovalor _#,, entonces w, también lo es. Esto implica que la parte real y la parte imaginaria de w,

son soluciones reales del problema de autovalores, con autovalor ¢Z,,.

Si en la dltima ecuacion elegimos en cambio a # b entonces obtenemos (_7, — _#;,) (Wp)" - W, =0,

de lo que deducimos que

= Si los autovalores son diferentes 7, # _#, implica (w;)" - w, = wj, - w, = 0 por lo tanto los

autovectores son ortogonales w, L wy,

= Silos autovalores son iguales 7, = 7, y los vectores w, y w; son diferentes, siempre se

pueden elegir w, y w;, perpendiculares.

Con esto, hemos demostrado que la ecuacion de autovalores tiene como solucion tres vectores
reales y mutuamente perpendiculares. Estos vectores se pueden multiplicar por una constante
cualquiera, y seguiran siendo solucion. Por lo tanto, podemos normalizarlos para obtener la férmula

general

"_‘;a "’_‘;b = 6(117

Es util demostrar que estos vectores nos permiten escribir el momento de inercia segun la des-

composicion
I = Ja(Wa @ Wa)

Para probar que esta formula es correcta, usamos su expresion en componentes .y = _Z,(Wa)c(Wa)a

y la insertamos en la ecuacion de autovalores .# -, = _#,w),, obteniendo

]cd("_‘;b)d = /{l(wa)c(wa)d(wb)d = /a("_‘;a)c V_‘;a 'V_‘;b = /a("_‘;a)c 5ab = /b("_‘;b)c

donde en la penultima igualdad utilizamos la ortogonalidad de los vectores w,. Esto demuestra que,
en efecto, la descomposicion que hemos escrito para .# cumple la ecuacion de autovalores con
soluciones _7,. Notese que esto implica que el momento de inercia alrededor del eje determinado

por w, es _Z,, segun nuestra definicion
Ty =Wy I o = Wy (I ) =W ( Ja Wa) = JaWy Toa = Ja

donde en la penultima igualdad usamos la ecuacion de autovalores, y en la ultima el hecho de que

los vectores w, estan normalizados.

Ahora vamos a probar la relacion de estos autovalores y autovectores con los ejes principales y
sus momentos de inercia. Para eso, escribimos el momento angular como = .7 - @, y suponemos

que la velocidad angular apunta en la direccién de alguno de los autovectores @ = w, . En ese
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caso podemos escribir
(=7 &=9 -(W0) =7 - W0

y usando en esta expresion la ecuacion de autovalores, tenemos

Es decir que los ejes determinados por w,,w,,w, son los ejes principales del cuerpo rigido, en el
sentido que le dimos a esa expresion mas arriba. Los autovalores 7., ¢#,, #. se llaman momentos

de inercia principales.

Si elegimos nuestro sistema de coordenadas de manera que sus ejes apunten en las direcciones
de nuestros tres vectores w, mutuamente ortogonales, podemos escribir @ = W, + @,Wwy + 0, W,.

Replicando en cada término el calculo anterior, obtenemos

(= 7.0+ Fy0,w,+ Z a0,

Descomponiendo al momento angular segun sus componentes en este sistema de ejes ¢ =

Lewy + £y wy + L;w,, tenemos que

be= _Jx0y by= _Jyo, b= 7.0,

Por otro lado, para la energia cinética de rotacion podemos escribir

1 ! ! !
—;t.ﬂ-_’zf 2 X 2 2 = 62 62 éz
& ) 2(/xwx+/ywy+/zwz> 2/xx+2fyy+2/z”

K=

N =

Como vemos, las expresiones en términos de los momentos principales de inercia son mucho mas
simples y no incluyen matrices, por lo que seran Utiles para escribir las ecuaciones de movimiento

de un cuerpo rigido.

La expresion para el tensor momento de inercia también se simplifica, ya que podemos usar que

en este sistema de coordenadas w, = (1,0,0), wy, = (0,1,0) y w, = (0,0, 1), para obtener

1 00 0 0 O 0 0 O
Wy @ Wy = 0 0 0 Wy®wy: 01 0 Wz®wz: 0 0 O
0 0O 0 0 O 0 0 1
con lo cual
A0 0
I = _J(Wa@Wgq) = 0 7% 0
0 0 7

Hemos demostrado que en el sistema de ejes principales, la matriz momento de inercia es diagonal.
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Resumen

En esta clase encontramos una descripcion para la cinematica del cuerpo rigido, donde los grados
de libertad estan dados por la posicidn del cuerpo, es decir la posicion de alguna de sus particulas,
y su orientacion, dada por una rotacién respecto de alguna orientacion de referencia. Con esto,
fuimos capaces de descomponer cualquier el movimiento del cuerpo en términos de una traslacion

y una rotacion.

Escribiendo el momento angular en funcion de la velocidad angular asociada a la rotacién, pudimos
encontrar una expresion para el momento de inercia que nos permitié identificarlo como un tensor
de dos indices contravariante. Esto nos permitié definir los ejes principales a través de una ecuacion

de autovalores.







9.1

9.2

9.21

Objetivos

En esta clase escribiremos las ecuaciones que determi-
nan el movimiento del cuerpo rigido. Lo haremos primero
segun el formalismo newtoniano, para lo cual emplea-
remos el torque para escribir la derivada temporal del
momento angular. Luego utilizaremos el formalismo la-
grangiano, lo que nos permitird hacer uso de coordena-

das generalizadas.

Nos concentraremos en dos situaciones de interés: el
caso del cuerpo rigido libre sobre el que no actiia ninguna
fuerza externa, y el caso del trompo, es decir un cuerpo
rigido que tiene un punto que se mantiene quieto mientras

se mueve bajo la influencia de la gravedad.

Dinamica del cuerpo rigido

Ecuaciones de Euler

Vladimir Dzhanibekov

Con los elementos que estudiamos en las clases anteriores, estamos en condiciones de escribir

las ecuaciones de movimiento del cuerpo rigido. Como aprendimos en los cursos basicos de fisica,
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estas ecuaciones tienen la forma
ar .
dt
Donde 7 es el torque total que actta sobre el sistema. En un sistema de coordenadas inercial S,
las componentes de esta ecuacioén se leen
) _z)
a| V8
s

Vamos a asumir que este sistema inercial se puede colocar en el centro de masas del cuerpo, lo que
es posible solo si la suma de fuerzas sobre el mismo se anula. Esto resulta en una simplificaciéon

de los célculos que siguen, que pueden luego generalizarse al caso de un cuerpo acelerado.

Pasando ahora a un sistema de coordenadas no inercial B cuyos ejes estan fijos respecto del
cuerpo, debemos adicionar a la derivada temporal la contribuciéon que discutimos unas clases
atras, originada en la rotacion del sistema de coordenadas. En otras palabras, las componentes

del momento angular cumplen

dl I -
E +(a)><L)B—(r)B
B
Si recordamos que 7= .7 - & entonces
(d(f ¥0)

) @x (@)= (B

Escribiendo esto explicitamente en componentes, tenemos

dwy
Fab oy T Eabc® Fed®q = Ty

donde como siempre estamos considerando que hay una suma sobre cualquier indice que se repita
dos veces. Si agregamos una nueva convencion notacional, definiendo que no habra una suma
cuando alguno de los indices del par aparece entre paréntesis, podemos escribir %, = _#)0u
en el sistema de ejes principales del cuerpo. En esta expresion no hay suma sobre el indice b.
Con esto la ecuacién de movimiento nos queda

dw,
S @ g + Eabe Wy I () Oc = Ta

hemos hecho explicitamente algunas de las sumas para eliminar las deltas de Kronecker. Sepa-

rando ahora cada componente

dw,

/XW +( = Fy) oy, =1,
do,

/y dt) +(jz_ jx) Wy 0; = Ty
do,

St (S S oo, =1,
Estas ecuaciones se conocen como ecuaciones de Euler y determinan completamente el movi-

miento de un cuerpo rigido sometido a un torque, en el sistema de coordenadas que esta fijo al

cuerpo.
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Dependiendo de la forma en la que el torque dependa de los angulos, las ecuaciones de Euler
pueden resultar arbitrariamente complicadas de resolver. En la seccién que siguen estudiaremos

el caso libre, en el cual se puede encontrar una solucién explicita.

Cuerpo rigido libre

Sobre un cuerpo rigido libre el torque externo total se anula T = 0. Por lo tanto, las ecuaciones de

Euler quedan escritas de una manera particularmente sencilla
dw,
fXW + (= Fy) oy, =0
Ay dt~ (= Fx) ox, =0
fZW+(/x_ Hy) 00, =0

Como no hay una dependencia en los dngulos, estas ecuaciones son ahora ecuaciones diferen-

ciales de primer orden para las componentes de la velocidad angular. Se trata de ecuaciones

no-lineales, debido a los términos cuadraticos que aparecen en ellas.

Para resolverlas, estudiemos primero sus puntos fijos. Es decir, preguntémonos qué tiene que
suceder para que todas las derivadas se anulen y una velocidad angular constante resuelva las

ecuaciones. Es facil ver que esto demanda
(.= 2y) oy, =0
(jz - /x) W0, = 0
(Jx—Fy) @0y =0

De aqui podemos ver inmediatamente que

= Si los tres momentos principales de inercia son iguales 7, = 7, = _#;, entonces cualquier
valor constante de w,, ®, y w, satisface estas ecuaciones. Es decir que la solucion para
la velocidad angular es cualquier vector constante @ = (wf,w&w?). El cuerpo rigido libre

completamente simétrico gira en torno a cualquier eje con velocidad angular constante.

= Sidos de los tres momentos principales de inercia son iguales, digamos ¢, = _¢,, entonces
la ecuacién que contiene la resta no pone restricciones en las componentes de la velocidad

angular, en este caso tenemos que w, y m, son arbitrarias.

Si elegimos w, = w, = 0, entonces w, = a)zo es una constante arbitraria y la solucién de
las ecuaciones es @ = (0,07(029). El cuerpo rigido libre con un eje de simetria esta girando

alrededor del mismo.

Si en cambio o bien w, o bien w, son constantes no nulas, las dos ecuaciones restantes
implican que ®, = 0. La solucion en ese caso es @ = (®?, wS,O). El cuerpo rigido libre con un

eje de simetria esta girando alrededor de un eje arbitrario perpendicular al mismo.
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= Silos tres momentos de inercia principales son diferentes, entonces las ecuaciones implican
que dos de las tres componentes de la velocidad angular deben anularse, digamos w, = w, = 0.
La solucion es entonces @ = (w?,0,0). Es decir que el cuerpo rigido libre sin simetrias esta

girando alrededor de alguno de sus ejes principales.

Vamos a concentrarnos en el ultimo caso. Una pregunta natural es qué pasa si perturbamos ese

movimiento ligeramente, es decir si hacemos
o, = 0" +edw, w0, =edw, 0. =€ed0,

con £ una magnitud muy pequefa. Insertando esto en las ecuaciones de Euler nos queda

dom,
T +e*( J— 7)) 80,80, =0

ddéw,
e 7, 0% e (gm0 (0 +e5 )50, =0

déw,
8%7 +e( i~ 2y (0 +eda)dw, =0

Expandiendo estas ecuaciones y descartanto los érdenes cuadraticos en &, nos queda

dom,
—— =0
% dt

A (e py0lse.~0

dsw,
S (S ) alSe, =0

Es evidente que una solucién de la primera ecuacion es §w, = Sw,? constante. Para resolver las
dos ecuaciones que faltan, podemos tomar una derivada temporal adicional en la segunda

d*s o, 0dSw,
yv*(fz*/x)wx 7 =0

y reemplazar en ella la derivada primera de é », obtenida de la tercera

480, Jim s o

dr - @
con esto obtenemos
2 _ _
dswy+(jx /Z)(/X f})(w;))ZSwy:O

dr? vz

a?

Donde hemos supuesto que el factor sobre la llave es positivo. Es decir que la ecuacion para s,
vendra dada por

d*Sw,
dt?

+a*8w, =0

Una vez mas, como ya vimos en clases previas cuando perturbamos el movimiento del problema
de dos cuerpos para obtener el teorema de Bertrand, llegamos a la ecuacion de un oscilador

armonico. Esta tiene la solucion inmediata

S, = 8w, cos(a(t—1))
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donde 60);? y fp son constantes de integracion. Con este resultado, la solucién para é w, se obtiene

a partir de la ecuacion que escribimos mas arriba para su derivada primera, en la forma

= Iy

Sw. = -2 50 sin(a(t —tg)) = S0 sin(a (t —t0))

o 7,

Esto claramente implica que la direccién de la velocidad angular perturbada rotara describiendo
una elipse alrededor del eje original de rotacion x. Es decir que si la perturbacion comienza siendo

pequefa, se conserva pequefa al transcurrir el tiempo. En otras palabras, el sistema es estable.

Pero ¢ qué pasa si el factor sobre la llave en la ecuacion de mas arriba es negativo? En ese caso

escribimos a? = —|a|? con lo que la solucién para §w, es ahora
_ + +lajt — —lojt
0wy =60 e +owy e
con 5(9yi constantes de integracion. Para 6 w, tendremos
— + ,t+|alt — ,—lot
Sw, = 8o et { s e

conlas 5(x)zi proporcionales a las constantes Swyi. Es decir que ahora la perturbacion que comienza
pequefia crecera exponencialmente. Esto quiere decir que el eje de rotacion del cuerpo rigido se

desestabiliza, cambiando de direccion.

Ahora bien ¢ de qué depende el signo de la magnitud sobre la llave? Claramente su origen esta en

la combinacion

(Jx= I (Fa= I

Notese que esta combinacion sera positiva tanto cuando _¢#, sea el mayor de los momentos de
inercia principales, como cuando sea el menor, y sera negativa en cambio cuando ¢, sea el
momento de inercia intermedio. En otras palabras, la rotaciéon de un cuerpo rigido es estable
cuando gira alrededor de sus ejes principales con momento de inercia mayor y menor, pero es

inestable cuando lo hace en torno al eje que tiene el momento de inercia intermedio.

Este efecto se conoce como feorema de la raqueta porque se hace evidente al arrojar al aire una
raqueta de tenis, y también con el nombre de efecto Dzhanibekov, por el cosmonauta ruso que lo

filmoé en ausencia de gravedad en la estacidn espacial soviética Salyut-7 en los afios 80’.

Ejercicio:
Perturbe el movimiento para el caso del cuerpo rigido libre simétrico del que hablamos
mas arriba ¢, = ¢, = 7.,y describa sus propiedades de estabilidad.

Haga lo mismo para el caso del cuerpo rigido libre con un eje de simetria 7, = ¢, # 7.,

para los dos tipos de movimiento que encontramos en ese caso.

Nota:

La estabilidad de la rotacion de un cuerpo rigido en torno a sus ejes principales con
momentos de inercia mayor y menor se puede utilizar para estabilizar naves espaciales

de una manera que consume muy poco combustible.
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Por ejemplo, las sondas Pioneer 10 y Pioneer 11, lanzadas por la NASA en 1972 y
1973 respectivamente, fueron estabilizadas por rotacién. Cada una de ellas estaba
construida con su antena de comunicaciones dispuesta a lo largo de uno de sus ejes
principales estables. Poco después del lanzamiento, se apunto la antena hacia la Tierra
y se le imprimié a la nave una velocidad angular a lo largo de tal eje estable. De este
modo se logré que la antena permaneciera apuntando hacia la base durante largos

periodos, sin tener que disparar los cohetes de control.

Estas sondas fueron extremadamente durables, permaneciendo funcionales durante
30 afos. Junto con las Voyager 1y Voyager 2, son los primeros objetos hechos por el
hombre que abandonaron el Sistema Solar. Debido a que no era necesario disparar
sus cohetes de control para mantener la comunicacion. se pudo recolectar una gran
cantidad de datos sobre su trayectoria libre. A fines de la década de 1990, se descubrid
en esos datos algo muy extrafio: habia algin efecto desconocido que las estaba

frenando, haciendo que se alejaran del Sol cada vez mas lentamente.

Se generd una enorme actividad de investigacion cientifica intentando explicar la
anomalia de las Pioneer. Se propusieron todo tipo de hipotesis, desde una simple
falla en la telemetria o un medio interestelar desconocido, hasta modificaciones de
la ley de gravitacion universal a largas distancias o la presencia de una quinta fuerza

fundamental.

Finalmente, la explicacion resulté tan simple como sorprendente: las naves recibian
una minuscula cantidad de calor, y generaban una cantidad mucho mayor en su
funcionamiento. Este calor se emitia al espacio en forma de radiacion infrarroja la cual,
debido a la forma de la sonda, no tenia la misma intensidad en todas las direcciones.
Esta emision anisotrépica provocaba una fuerza neta en direccion al Sol, frenando de

este modo su carrera.

9.2.3 Trompo

Usando lo que aprendimos en las clases anteriores, tenemos todos los elementos para escribir la
expresion del lagrangiano de un cuerpo rigido. Comencemos por elegir un sistema de coordenadas
en el cual la particula en 7| esta en reposo 7, = 0. En este sistema, la energia cinética toma la

forma

Este sistema debe ser un sistema inercial, de modo tal de poder escribir el Lagrangiano segun

1
L:i(f)’-f-(b—v(ﬁ,(p,y/)
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Para darle un uso efectivo a esta expresion, vamos a escribir su energia cinética de acuerdo a su

descomposicién en los ejes principales

1 1 1
K= 5/X@3+§/yw3+§/zwz2

Debemos encontrar una forma explicita a las componentes de @ en términos de algin conjunto de

coordenadas generalizadas, por ejemplo los angulos de Euler.

Como se ve en el dibujo, podemos escribir la velocidad angular como una superposicion de una
rotacién alrededor de cada uno de los ejes respecto de los cuales definimos los angulos de Euler,

segun
D= By + D+ Dy = YK + 7 + ¢k

Ahora bien, podemos elegir nuestro sistema de coordenadas de modo tal que uno de los ejes
principales del cuerpo apunte en la direccién 7, mientras que los otros dos apuntaran en las

direcciones x” e y”. Las componentes de la velocidad angular en este sistema de ejes seran
o, =0-1"=170 o,=0-] =¢sind 0. =® k' =+ ¢ cosd
Esto nos permite escribir inmediatamente para la energia cinética
1 2, 1 2292 1 I 2
K= E/xﬁ + ijysm Do+ Ejz(l//+(pcos19)

Un trompo es un cuerpo rigido que es simétrico de modo tal _#, = _#3, es decir que dos de sus
ejes principales son iguales. Mas aun, el potencial al que esta sometido es puramente gravitatorio,

con lo que tenemos que
V =mgh =mglcos®

Donde i =Icos ¥ es la altura del centro de masas, el cual para un trompo homogéneo se encuentra

sobre el eje a una distancia / del punto fijo del mismo.
Con lo anterior, el lagrangiano toma la forma
1 32 | @i q 2 1 ; . 2
L= E/X (9% +sin” 0 ¢ )+§/z(l//+(pcos19) — mgl cos

La primera observacion que se puede hacer aqui es que tanto ¢ como y son coordenadas ciclicas,

con lo que los momentos generalizados asociados se conservan

Po = g(Lp = Z.(y+¢cosd)cos+ /xsinzﬁ(p = pycos® + /xsin219q') = constante
oL
Py = WI/ = _7.(¥+ ¢ cos¥¥) = constante

Esto nos permite despejar las velocidades generalizadas, en la forma

. Do —PpycosD

0 Py P —Ppycost
jxsinzﬁ

= os ¥
v B2 Frsin? &
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Nutacion U

\‘*,«i: _» Rotacién ¢y

Figura 9.2.1: Movimientos del trompo. La rotacién se produce a en torno al eje de simetria, la precesion tiene
lugar alrededor del eje vertical, mientras que la nutacion tiene en cuenta el balanceo del eje de

rotacion.

El movimiento en la direccion v se llama rotacién ya que corresponde a la rotacion del trompo
alrededor de su eje principal. EI movimiento en la direccién ¢ indica que el mencionado eje
principal esta girando alrededor del eje z, y se denomina precesion. Estas ecuaciones indican
que si conocemos el movimiento de ¥ podemos obtener inmediatamente el de ¢ y v mediante
una integral temporal. Para esta ultima coordenada, la ecuacion a resolver sera la ecuacion de

Lagrange
IO+ F(F+pcost)sind ¢ — _Z,¢* sin® cos  —mgl sindd =0

Esta ecuacion se simplifica si reemplazamos en ella los valores de y y ¢ que se obtienen de los

momentos generalizados

.. — b — 9\ 2
S0+ pysind (%) - 7 (%) sin®¥ cos ¥ —mgl sin® = 0
X X

Esta ecuacién se puede reescribir segun

. d 1 Do — PycCos T 2
O =—— l 0
S d19<2jx< sin o +mgt cos

Vid

Donde vemos inmediatamente que se puede derivar del Lagrangiano truncado
Lig= ijﬁ —Viq

Es decir que, de modo similar a lo que encontramos en el caso del problema de dos cuerpos,
terminamos con un sistema unidimensional equivalente, ahora para la coordenada . Dado que ¢

toma valores a lo largo de un meridiano, el espacio de configuracion es un semicirculo ¢ = S, /Z;.
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Potencial efectivo

E.l L Nutacién

Ec o e PR

e

Figura 9.2.2: Potencial efectivo para el trompo: el potencial efectivo como funcién de ¥ diverge en los valores
extremos ¥ =0y ¥ = &, lo que implica que el movimiento de nutacién es siempre acotado.

Existe un valor minimo de la energia en el que no hay nutacién y se produce precesion regular.

Le energia correspondiente toma la forma

E

1 .
ijﬁzqtvld(ﬂ)

De aqui se puede despejar la velocidad angular segun

19:\/:% (£~ Via(9))

Lo que se puede integrar, obteniendo la solucién completa del problema

L dd
t—to+A0 s /% (E —Via(9))

Reemplazando en las formulas de mas arriba para las velocidades ¢ y y e integrando, tenemos

una solucion completa del problema.

Sin embargo, de modo similar a lo que pasaba en el problema de dos cuerpos, podemos tener una
descripcion cualitativa de las caracteristicas principales del movimiento sin necesidad de hacer las

mencionadas integrales, simplemente analizando el potencial efectivo V.

Primero notemos que, debido al sin®¥ en el denominador, el potencial efectivo V14 diverge para
¥ =0y para ¢ = 7. Es decir que sea cual fuere la energia E, siempre tendremos dos puntos de
retorno 0 < %, < ¥ < ¥ < &. Esto implica que el eje principal del trompo realizara un movimiento
de nutacién o cabeceo en el angulo ¥ entre estos dos valores 9, < ¢ < 1%, a medida que precesa
alrededor del eje z. Dada la férmula de mas arriba para la velocidad de precesion ¢ podemos ver
que en ambos extremos de la oscilaciéon esta velocidad tomara los valores

Do — Py cos . :p(p—pwcosﬁl

0= A sin? o)) 4 s sin? ™
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Vemos que

= Estos valores de la velocidad de precesion ¢ tendran el mismo signo si py/py > cost, 0
Si pe/py < cos V. Este caso el eje del trompo se estard moviendo alrededor del eje z en
la misma direccidon en ambos extremos de la oscilacion. Estamos en presencia de una

precesion cuasiperiodica.

= Por otro lado, los valores de ¢ tendran signos diferentes si cos % < py/py < costh,, con lo
que el eje del trompo se estara moviendo en direcciones opuestas en cada extremo de la

oscilacion. Esto se denomina precesion alternada.

= Existe un caso limite entre ambos comportamientos cuando py/py = cos ¥, lo que implica
que la velocidad de precesion en el extremo superior de la nutacion se anula. Este caso se
realiza cuando “soltamos” el trompo en un angulo fijo, de modo que su velocidad angular

inicial tenga ¢ = 0. En ese caso tendremos
Po = szO cos Uy Py = /zlil()

De donde py/py = cos . Ademas dado que Y = 0 es evidente que estamos en uno de los

puntos de retorno, con lo que naturalmente podemos identificar ¥ = 9%,.

= Cuando la energia E toma el valor del minimo del potencial efectivo, entonces no hay
movimiento de nutacién © = 0 y estamos en presencia de una precesion regular. EI minimo

mencionado ocurre cuando

1 (pp—pycos® Dy — Py cost .
Vlld_/x<sim9 py+ R ra— costt | —mglsind =0

lo que se puede reescribir en términos de las velocidades que despejamos mas arriba como
¢ (pu,+ ¢ cos 19) = _Z.mgl, de donde se puede despejar la velocidad ¢ del movimiento de

precesion regular.

Ejercicio:

Usando un software que permita dibujar curvas como Mathematica 0 GeoGebra, estudie

la forma del potencial como funcion de cos 6 para valores fijos de py, p, y el parametro

Homl.

¢, Qué sucede con el potencial cuando el trompo gira muy rapidamente? ; Qué implica

esto para el movimiento resultante?

¢ Que sucede cuando el roce frena el movimiento de rotacion y el trompo gira demasiado

lentamente? ;Qué implica esto para el protagonista de la pelicula “Inception”?



9.3

9.3 Resumen 129

Figura 9.2.3: Movimiento de precesion. Dependiendo de los valores de los momentos py y py podemos
tener precesion cuasiperiédica (izquierda) precesion extrema (centro) y precesion alternada
(derecha).

Resumen

En esta clase obtuvimos las ecuaciones que rigen el movimiento de un cuerpo rigido, y encontramos

sus soluciones para dos casos particulares: el cuerpo rigido libre y el trompo.

En el caso de cuerpo rigido libre asimétrico, aprendimos que la rotacién sera estable alrededor
de los ejes principales con momento de inercia mayor y menor, e inestable alrededor del eje con

momento de inercia intermedio.

En el caso de un trompo, fuimos capaces de aislar y describir las tres componentes de su movi-

miento, a saber la rotacién, la precesion, y la nutacion.
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10.1

10.2

es de Legendre -

Objetivos

En las clases previas, definimos los momentos genera-
lizados como las derivadas del lagrangiano respecto de
las velocidades generalizadas. Estos son naturalmente

funciones de las coordenadas y las velocidades.

En varios casos, invertimos estas funciones para escri-
bir algunas de las velocidades generalizadas en funcion
de las coordenadas y los impulsos. Al reemplazar en
las ecuaciones de movimiento, esto frecuentemente sim-
plificd su solucion. Utilizamos tal método al describir el

movimiento del sistema de dos cuerpos y del trompo.

En la presente clase, estudiaremos la forma de generali-

zar esta construccion.

Transformacién de Legendre

Adrien-Marie Legendre

Comenzamos la discusion presentando en esta seccidn una técnica matematica general, que apli-

caremos en las secciones subsiguientes a la descripcidon del movimiento de un sistema mecanico.

Supongamos una cualquiera curva en el plano. Como se puede ver en la figura[10.2.1] la informa-

cion sobre forma de la curva esta completamente contenida en su haz de tangentes. En efecto,
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fx)

b(p)

Figura 10.2.1: /lustracién de una funcion f(x) y su haz de rectas tangentes. Conociendo la ordenada al
origen b(p) que corresponde a la recta tangente con pendiente p es posible reconstruir

completamente la funcién.

si conocemos la ordenada al origen de cada recta tangente como una funcion de su pendiente,
podemos trazar cada recta del haz y vislumbrar en el grafico resultante una curva envolvente, que

determina completamente el perfil de nuestra curva original.

Para encontrar este mapeo de manera explicita, supongamos que la curva esta definida en el

plano {x,z} por la férmula
7= f(x)

Una tangente cualquiera estara entonces descripta por una recta, que satisface la ecuacion
z=px—>b

Donde p es la pendiente y —b es la ordenada al origen. Si asumimos que se trata de la recta
particular que toca la curva en el punto donde la variable independiente toma el valor x, sabemos

que debe satisfacer en dicho punto las siguientes condiciones de tangencia
px—b= f(x)

p=f(x)
Asumiendo las condiciones de regularidad necesarias sobre la derivada f’(x), podemos invertir

localmente la segunda ecuacién de manera de obtener el valor de x como una funcién de la

pendiente, en la forma
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Donde hemos supuesto que f'(x) es invertible en el punto x, y llamamos v(p) a su funcién inversa
en el valor p de la pendiente. Por otro lado, es evidente de la primera ecuacién que la ordenada
al origen se puede despejar como una funcion de x, en la forma b(x) = px— f(x). Sin pérdida de
generalidad podemos insertar la inversa x = v(p) para escribirla como una funcién de la pendiente

p segun

b(p) = pv(p)—f(v(p))

Esta férmula describe completamente el haz de tangentes, ya que provee una ordenada al origen

para cada valor de la pendiente. Se denomina la transformada de Legendre de la funcion f(x).

Dada cualquier funcién f(x) de una variable x, su transformada de Legendre b(p) es una funcion
de la pendiente p, que se calcula usando la férmula de arriba, donde v(p) es la funcién inversa
local de f’(x). Como veremos en lo que sigue, la transformacion de Legendre se puede generalizar
al caso de varias variables, donde podemos transformar respecto de todas las variables o solo de

algunas de ellas.

Ejemplo: derivada de la transformada de Legendre

Cuando calculamos la derivada de la transformaciéon de Legendre respecto de su

variable, obtenemos

B'(p) =v(p)+pV () = (P)V(P) = 1" (p)
donde usamos que v(p) = f~!(p) para cancelar los dos Ultimos términos.

Esto implica que la derivada de la transformada de Legendre de una funcion cualquiera

esta dada por la funcion inversa de la derivada de la misma.

Ejemplo: transformada de Legendre inversa

Supongamos ahora que dibujamos la curva en el plano (p, k) dada por la funcién b(p)

en la forma
h=b(p)

Una recta cualquiera en este plano se puede describir con
h=xp—g

donde x es ahora la pendiente y —g es la ordenada al origen. Queremos encontrar g(x)
que es la tranformada de Legendre de b(p). En el valor de la variable independiente
p donde la curva entra en contacto con la recta, se deben cumplir las condiciones de

tangencia
xp—g=>b(p)

x=0b(p)
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Asumiendo condiciones suficientes de regularidad sobre b'(p), podemos invertir local-

mente la segunda ecuacién para obtener p en la forma
p=b"1(x)=w)

donde hemos definido la funcién w(x) como la inversa de &’(p). Esto nos permite escribir

la transformada de Legendre de b(p) como

8(x) = xw(x) —b(w(x))
Usando la identidad que escribimos mas arriba para la derivada 4'(p) vemos que se
cumple que w(x) = f’(x) con lo cual

g(x) = f'(x)x—b= f(x)

Donde hemos utilizado en la segunda igualdad las condiciones de tangencia en el punto
x que escribimos al principio de la discusién. Es decir que una segunda transformada

de Legendre nos devuelve la funcion original f(x).

La transformacion de Legendre se puede generalizar al caso en el que la funcion depende de
varias variables. Por ejemplo, supongamos que tenemos una funcién de dos variables que describe

una superficie en el espacio {x,y,z} definida como

Z:f(x7Y)

Esta funcion puede reemplazarse por su haz de planos tangentes, el cual contiene la misma

informacion. Tales planos estan descriptos por la ecuacion

Z=pxx+pyy—>b
donde p,, p, denotan las inclinaciones del plano en las direcciones de cada uno de los ejes, y —b
es la ordenada al origen. En el punto (x,y) donde un dado plano entra en contacto con la superficie,
se cumplen las condiciones de tangencia

fx,y) =pxx+pyy—>b

Af(x,y) = px o f(x,y) = py
Supongamos que las derivadas parciales cumplen las condiciones de regularidad necesarias tales
que podemos invertir las dos ultimas ecuaciones, para obtener las coordenadas del punto de
contacto en la forma

X = Vx(pmpy) y= Vy(pxapy)
Esto nos permite entonces reemplazar en la primera ecuacion, y despejar de alli para obtener la
ordenada al origen b en términos de la formula

b(l?xapy) = Px Vx(anPy) + py V}'(Px»py) - f(Vx(vapy)ny(nypy))

Hemos obtenido la transformada de Legendre en dos variables de la funcién f(x,y). La generaliza-

cion para mas variables es completamente directa.
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Ejercicio:
Pruebe que las derivadas de la transformada de Legendre de arriba se pueden calcular

en la forma

Ip.b =vi(px, Py) Ip,b=vy(px, py)
donde al igual que en el caso previo hemos cancelado términos usando la definicién
de vi(px, py) Y vy(px, Py)-

Una vez mas reobtenemos las funciones que nos permitieron invertir las derivadas de

la funcién original.

Ejercicio:
Calcule la transformada de Legendre de un polinomio cuadratico que depende de dos

variables {x,y}, identifique las funciones v(px, py) y vy(px, py), y verifique la propiedad

que cumplen las derivadas segun el ejercicio anterior.

En el caso de una funcién que depende de varias variables, podemos también definir una trans-
formada de Legendre parcial. Esto significa que tomaremos algunas de las coordenadas como
parametros. Por ejemplo, para el caso de una funcion de dos variables, podemos considerar que
la ecuacion

z=f(x,y)
define un conjunto de curvas en el plano (x,z) parametrizadas por el parametro y. Para cada valor
del parametro y, la curva correspondiente puede ser reemplazada por su haz de tangentes. Por
supuesto, la pendiente y ordenada al origen de cada recta del mencionado haz dependeran del
valor del parametro. Podemos entonces escribir

y=px(y)x—b(y)

Siguiendo pasos analogos a los de mas arriba, encontramos su transformada de Legendre,

escribiendo en el punto de tangencia x(y)

F(x(),y) = px(v) x(y) = b(y)

I f(x(y),y) = b(y)
Invirtiendo la segunda ecuacion

x(y) = va(px,y)
donde ahora la funcién inversa tendra también una dependencia en el parametro y. Reemplazando
en la primera ecuacion obtenemos

b(px;y) = pxvx(px,y) = f(ve(Px,¥),¥)

Lo que define la transformada parcial de Legendre de la funcién f(x,y) respecto de la variable x.

Esto se puede generalizar sin dificultad para un niumero arbitrario de variables.
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Ejemplo: derivadas de la transformada parcial

La transformada parcial de Legendre tiene la propiedad de que sus derivadas satisfacen

Op.b = vi(px,y)
ayb = Dx ayvx - axfayvx — 8},]? — _ayf

En la igualdad en la segunda linea usamos la condicién de tangencia p, = d..f para
eliminar los dos primeros términos. Este resultado es particularmente interesante,
porque la derivada de la izquierda corresponde a la derivada parcial de una funcion
que depende de p, e y, mientras que la derecha actua sobre una funcién de x e y. Es
decir que mientras una se toma manteniendo p, constante, la otra se calcula con x

constante.

Esta observacion resultara de enorme utilidad en lo que sigue.

Nota

Durante mas de dos siglos, hasta 2005, la imagen de Adrien-Marie Legendre fue
confundida con la de un politico francés llamado Louis Legendre, que apareci6 sin el
nombre y junto con algunos matematicos contemporaneos tales como Lagrange en un

libro de la época.
El unico retrato conocido de Adrien-Marie Legendre es la acuarela en la que se basa

la imagen con la que abrimos este capitulo, que se descubrié en 2008 en un libro de

caricaturas de los miembros del Institut de France.

Hamiltoniano

Veamos ahora cémo podemos aplicar la idea de transformada de Legendre a la descripcion del

movimiento.

Supongamos que tenemos un sistema mecanico de N particulas, descripto en términos de coor-
denadas generalizadas {¢;} donde i € {1,...,3N}. Su lagrangiano sera una funcion de las coor-
denadas y las velocidades generalizadas L(4;,q;,t), que nos permite escribir las ecuaciones de

Lagrange en la forma

afoy o,
dt \dqi) dqi

Ahora bien, si recordamos la definicién de los momentos generalizados

_ 9L
pl_&qz'

vemos los mismos son naturalmente funciones de las coordenadas y velocidades generalizadas.

Si asumimos que podemos despejar las velocidades generalizadas {¢;}, tenemos que

¢i =vi(pj,q;,t) donde i,je€ {1,...,3N},
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Esto nos permite definir la transformada de Legendre del lagrangiano con respecto a las velocidades

generalizadas {4;} en la forma

H(pi,qi,t) = pivi(pj,q;,t) —L(vi(pj,qj.1),qi,1)

donde en el primer término estamos sumando sobre el indice /. La funcion H(p;,q;,t) se denomina
hamiltoniano del problema, y es naturalmente una funcién de las coordenadas {g;} y de los impulsos
{p:}. Como veremos, toda la informacion dinamica del problema, que estaba contenida en el
lagrangiano, ahora se puede reobtener a partir del hamiltoniano. En el contexto hamiltoniano, el

conjunto de todos los pares de coordenadas e impulsos {(p;,q;)} se denomina variables canédnicas.

En la transformacion de Legendre que acabamos de realizar, las coordenadas generalizadas {g¢;}
cumplen el rol de parametros. De acuerdo a lo que aprendimos en la seccién anterior, esto implica

que se cumple la siguiente propiedad importante

8H &vj 8L &Vj 8L 8L

dq 94" 3490 dai dai
dado que los dos primeros términos se cancelan. En estas expresiones, las derivadas parciales
del lado derecho se calculan manteniendo las velocidades {¢;} constantes, ya que son derivadas
de L(4;,qi,t) que es una funcion de las coordenadas y velocidades generalizadas {¢;,q;}. Por otra
parte, las derivadas del lado izquierdo se toman manteniendo los impulsos {p;} constantes, ya

que actuan sobre H(p;,q;,t) que es una funcion de las variables canonicas {(p;,q;)}.

Las identidades de arriba nos permiten reescribir las ecuaciones de Lagrange para las coordenadas
{qi} en la forma

d (JL JdL . JdL . OH
i (57) 5 =g a0

En la ultima expresion de la derecha, las velocidades {¢;} han desaparecido completamente, ya
que el hamiltoniano no depende de ellas. Esto nos permite reinterpretarla como una ecuacion
diferencial directamente para los impulsos {p;}. Sin embargo, en esta ecuacion la funciéon H(p;, g;,t)
depende de las coordenadas {g;}, por lo que necesitamos también alguna manera de obtener la

dependencia temporal de estas ultimas. Para eso utilizamos la relacién

) ( ) JH

4i =vi(pj,qj:t) = 5

1 I J J apl
Hemos obtenido entonces un conjunto completo de ecuaciones para describir el movimiento
del sistema en términos del hamiltoniano H(p;,q;,t) en lugar del lagrangiano L(qg;,q;,t). Estas

ecuaciones se leen

. __9H . _9H
Pi aq o Ipi

y se conocen como ecuaciones de Hamilton.

Es decir que hemos remplazado un conjunto de 3N ecuaciones diferenciales de segundo orden

para las 3N variables {¢;} dadas por las ecuaciones de Lagrange, por un conjunto de 6N ecuaciones
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de primer orden para las 3N coordenadas y los 3N impulsos {(g;, p;)} dadas por las ecuaciones
de Hamilton. Por cada una de las ecuaciones necesitaremos una condicion inicial, por lo que
nuestro espacio de estados sigue siendo & = R3VN. En este sentido, es correcto decir que asi como
las ecuaciones de Lagrange describen el movimiento del sistema en el espacio de configuracion
¢ =RV, trazando una curva dada por las funciones {¢;(t)} a medida que transcurre el tiempo,

las ecuaciones de Hamilton lo describen en el espacio de estados & en términos de la curva dada

por {(qi(t), pi(t))}.

Ejemplo: relacion con la energia

La férmula del Hamiltoniano que hemos escrito mas arriba resulta muy similar a la que

escribimos en el capitulo[2 para la energia mecanica.
. JL .
E(qi qi) = 25, —L(4i,9:)

Sin embargo, en la formula anterior la energia es una funcion de las coordenadas y
velocidades generalizadas. Para obtener su relacion con el hamiltoniano, tenemos que
usar la funciones v;(p;,q;,t) que nos dan las velocidades generalizadas como funcion

de los impulsos, para escribir

H(pivqiat) :E(vi(pjvqjvt)aqiat)

Es decir que el hamiltoniano es en efecto la energia, pero escrita como funcién de los

impulsos generalizados.

Por supuesto la construccién funciona en sentido contrario, usando el hecho de que una segunda
transformacion de Legendre nos devuelve la funcion original. En efecto, dado un Hamiltoniano
H(pi,qi,t) para un sistema mecanico, podemos definir la velocidad generalizada usando las

ecuaciones de Hamilton segun

,_oH
Gi= 5

de donde podemos invertir para obtener
pi =wi(4i,qi,t)

Con esto podemos recuperar el lagrangiano
L(4i»qi,t) = wi(dj,q;,1)qi —H(w(4j,q,1),qi:1)

del cual pueden entonces obtenerse las ecuaciones de Lagrange.
Ejercicio:

Demuestre que usando las ecuaciones de Hamilton y la construccion anterior para el

lagrangiano, se recuperan las ecuaciones de Lagrange.
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Ejemplo: particula en una dimensién

Dado el lagrangiano para una particula de masa m que se mueve en una dimension

bajo la accién de un potencial

1
L= mez —V(x)

Obtenemos el momento generalizado segun la definicion

oL .
== =mx
P= %%
esto se puede invertir para obtener la velocidad como funcién de los impulsos, en la

forma

=1 =v(p)

Con esta férmula, podemos computar la transformada de Legendre del lagrangiano
para obtener el hamiltoniano, segun

p2

H(p,x,t) = pv(p) — L(v(p),x,t) = - +V(x)

El cual resulta ser la energia mecanica escrita en términos del impulso, como demos-

tramos mas arriba para el caso general.

Las ecuaciones de Hamilton de este hamiltoniano se obtienen tomando las derivadas

correspondientes, que resultan en

J0H p ) o0H A%

X‘ = == — e —
dp m p ox ox
Resolviendo la primera ecuacion para obtener p y reemplazando en la segunda, se

recupera la segunda ley de Newton

v
ox

mx = —

con lo que vemos que la descripcién es completamente equivalente.

En el estudio de un sistema mecanico cualquiera, en ocasiones puede resultar ventajosa su
descripcion en términos de ecuaciones de Lagrange, y en otras situaciones puede ser conveniente
el uso de ecuaciones de Hamilton. Nos ocuparemos de describir las ventajas y desventajas de
ambos enfoques en las clases por venir. Existe incluso un enfoque mixto, donde algunas de las
coordenadas satisfacen ecuaciones de Lagrange, mientras que otras cumplen ecuaciones de

Hamilton, como describiremos en la siguiente seccion.

Ruthiano

Vimos mas arriba que en el caso de una funcién de varias variables, podiamos definir una

transformada de Legendre parcial respecto de un subconjunto de las mismas. Resulta natural
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entonces preguntarse si, asi como al transformar el lagrangiano respecto de todas las velocidades
generalizadas obtenemos una descripcién equivalente del movimiento, podriamos hacer lo mismo

en términos de una transformada parcial.

Supongamos que tenemos un sistema mecanico de N particulas, descripto en términos de coor-
denadas generalizadas {¢;} donde i € {1,...,3N}. Podemos separar las coordenadas en dos
subconjuntos, el primero {g;} con k € {1,...,D} y el segundo {¢;} conl € {D+1,...,3N}. Es-
cribimos entonces los momentos generalizados del segundo subconjunto de acuerdo con su

definicion
oL
pr=—=— dondele{D+1,...,3N}
dq

Asumiendo que podemos despejar las velocidades generalizadas del subconjunto {¢;}, tenemos

que
q; = vl(qk,pl,qi,t) donde k € {1,...,[)}, le {D+ 1,...,3N}

Con lo que podemos escribir la transformada parcial de Legendre del lagrangiano con respecto a

un subconjunto particular de sus variables dado por las velocidades generalizadas {¢;} segun

R(q'kaplaqiat) = Vl(qk,pl7qiat)pl _L(qlwVl(qk7pl7qiat>7qiat)

donde estamos sumando sobre el indice /. La transformada R(qy, pi,q;) se denomina ruthiano del
problema. En ella hemos reemplazado la dependencia del lagrangiano en el subconjunto {¢;} de

las velocidades generalizadas, por la dependencia del ruthiano en los correspondientes impulsos

{pi1}-

Repitiendo pasos analogos a los de la seccion anterior, demostramos que las variables candnicas

{(q1,p1)} conl e {D+1,...,3N} satisfacen ecuaciones de Hamilton

JdR ) JdR

)= —=— = dondel e {D+1,...,3N
pl aql CII apl onae e{ +’ ? }

En cuanto a las coordenadas restantes {¢;} con k € {1,...,3N}, estas satisfacen las ecuaciones

de lagrange

d (dL oL d [ JR JR
dt(aqk>3qk(dt (8qk>3qk> =0 donde ke {l,...,D}

donde utilizamos el hecho de que en la transformada de Legendre que define el ruthiano, las
velocidades generalizadas {¢;} y la totalidad de las coordenadas generalizadas {¢;} cumplen el

rol de parametros, y que por lo tanto se cumple que

JdR dL dR dL

dqr  Igx g Ik
En estas férmulas, las derivadas parciales del lado derecho se calculan manteniendo las veloci-
dades {¢;} constantes, mientras que las derivadas del lado izquierdo se toman manteniendo los

impulsos {p;} constantes.
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Es decir que en términos del ruthiano, un subconjunto de las coordenadas generalizadas {¢,} con
ke {l1,...,D} cumplen ecuaciones de Lagrange, mientras las coordenadas restantes se acomodan
en pares candnicos con los correspondientes impulsos {(q;,p;)} conl € {D+1,...,3N} y satisfacen

ecuaciones de Hamilton.

Truncaciones

En el caso particular en el que las coordenadas {g;} conl € {D+1,...,3N} son ciclicas, el co-
rrespondiente ruthiano resulta de utilidad para describir el movimiento del sistema en un espacio
de configuracion reducido. En efecto, la primera ecuacion de Hamilton para R(¢y, p;,qx,t) toma la
forma

. JR

P = qu =
con lo que los impulsos {p;} se conservan. Por supuesto, esto ya era explicito en las ecuaciones de
lagrange de L(g;,4;). La ventaja del nuevo formalismo es que nos permite reemplazar los valores
constantes de los {p, } directamente en el ruthiano, algo que no podriamos hacer en el lagrangiano

original.

Las ecuaciones de movimiento para las coordenadas restantes {q;} con k € {1,...,D} seran las
ecuaciones de Lagrange que se obtienen a partir de R(qx, pi,qx,t). Esto implica que podemos

definir un lagrangiano truncado en la forma

Ltrunc(qkaqkat) = *R(QkanaPl;I)

Este lagrangiano describe un sistema en dimension D < 3N, con lo que hemos en efecto reducido

la dimensionalidad del espacio de configuracién .

Notese que la truncacion se puede llevar a cabo incluso cuando las coordenadas {g;} no son
ciclicas, siempre que exista una soluciéon donde tanto ellas como los {p;} sean constantes. Otra
observacion es que podemos sumar a L, una funcién arbitraria de los {p,;} constantes, lo que

no afectara las ecuaciones de Lagrange.

Ejemplo: problema equivalente de una particula en el problema de dos cuerpos

En el caso del problema de dos cuerpos, comenzamos con un sistema de dos particulas
con con un espacio de configuracion de seis dimensiones ¢ = R®, cuyo lagrangiano

se puede escribir, en coordenadas esféricas, en la forma

= 5 - 1 = 1 . : . .
L(Tem, 7)) = Emtotrgm + i'u (Vz +r? (¢2+92s1n2¢)) —V(r)

Lo que nos permite identificar el momento lineal del centro de masas como

Pcm = MiotFem
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Esto se puede resolver para la velocidad del centro de masas
ﬁcm (—; )

=V(Pcm

Fem =
Mot

Con esto, el ruthiano se lee
R(?a ﬁcmj) = ﬁcm ' V(ﬁcm) - L(‘j(ﬁcm)»?a7)

Explicitamente

Pom L 0 20 a2
—=u (P41 (4> +6%sin°9)) +V(r)

R(7 Pem,T) =
( s Pems ) e 2

Dado que p., se conserva, podemos reemplazar su valor constante en el ruthiano y

definir el lagrangiano truncado

Pam _ 1 (202062 1 62 6in?
=Su (i +r° (9> +6%sin*¢)) —V(r)

Llpart(;}v?) = _R(Zﬁcm?) + m )
tot

donde sumamos j2,,/2m: para eliminar una constante aditiva que no afecta las ecua-
ciones de movimiento para 7. Este problema tiene un espacio de configuracién descripto
por 7, es decir que ¥ = R>. Notese que si hubiéramos reemplazado 7., directamente

en L hubiéramos obtenido un término adicional constante.

Ejemplo: problema equivalente en el plano para el problema de dos cuerpos

Si ahora estudiamos el sistema de una particula que acabamos de obtener vemos que

el momento generalizado asociado a ¢ toma la forma
Py = HUr 2‘75
lo que nos permite despejar

i Pe
¢*W:V¢(l’¢vr>

Con esto podemos encontrar el ruthiano correspondiente como

R(fvgap(Pvrv(P) :p¢v¢(p¢7r) _Llpart(f767V¢(r7p¢)ara¢)

es decir
Py 1
. _ Lo 282 -2
R(#,0,pg,r.9) = 2ur 2/.1(1’ +r“0sin ¢)+V(r)

las correspondientes ecuaciones de Hamilton para py, ¢ se pueden escribir

Po = Ur*6? sin¢ cos ¢
j— Po
0=
donde es evidente que existe una solucion con ¢ = /2y py, = 0 constantes. Reempla-

zando estos valores en el rutiano obtenemos el lagrangiano truncado
. . 1 .
Log(i0,7) = =R(7,0,0,r,1/2) = S (7 +7°6%) =V (1)

El espacio de configuracion para este problema es ¥ = R?, con lo que de nuevo hemos

reducido la dimensién del problema.
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Ejemplo: problema unidimensional equivalente en el problema de dos cuerpos

Dado el lagrangiano efectivo L,q podemos obtener el momento generalizado asociado

a la coordenada 6 segun
5
po =ur-o
De aqui obtuvimos una expresion para la velocidad angular en la forma

6= W =v(0,pe,r)

Con esto el ruthiano se lee

R(ﬁl’e;”) :pgv(é,pg,r)fLZd(i',v(G',pe,r),r)

es decir
R(#,pe,r) = —lur'z + i +V(r)
2 2ur?
La ecuacion de Hamilton para pg implica que toma un valor constante pg = ¢, con lo
que podemos reemplazarlo en el ruthiano para construir el lagrangiano truncado

2

1 1
le(if,r):—R(i’,E,r):2/.1,;"2—< +V(r)):2.uf2_vld

2ur?

V1d

Que corresponde a un sistema de una particula en una dimension, descripto en términos
de un espacio unidimensional ¥ = R. Notese que este lagrangiano no coincide con el

que se obtendria de reemplazar 6 directamente en Lyg.
Ejemplo: sistema unidimensional equivalente para el trompo
Para el caso del trompo, escribimos el lagrangiano en la forma
. . . 1 a2 .2 .2 l . . 2
L(Y,9,y,0) = E/X (19 +sin” 9 ¢ ) + Eﬁ(vﬂr(pcosﬂ) —mgl cos®
Los momentos generalizados asociados a las variables ¢ y y se pueden escribir segun
Po= Z:(W+@cos®)cosd+ 7 sin® ® ¢

Py = F:(W+cosd)

se conservan. Los usamos para obtener las velocidades generalizadas, segun

. Pp—Pycost
=22 VP T =y (9, po,
® s o o(8, g, Py)
g DY P PYCOSY s — (9. po. pu)
S Jesin? 0 vimre v

El correspondiente ruthiano tomara entonces la forma

R(&P(pa[’l;/) = I’(pV<p(197P(p7Pl/f) erwvw(ﬁaP@»Pw) *L(67V¢(19ap¢,Pw)a Vw(ﬁ»[)q)vl’v/)a 19)
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0 en otras palabras

. 1 . 1 Po — Dy COs V¥ 2
R(Y = 20~ ¢ ¥ I cos ¥
(9, P¢:Py) 2fx (2/)( < sind +mgl cos

Dado que los impulsos py, py s€ conservan, segun se deduce de las correspondientes

ecuaciones de Hamilton, podemos reemplazar sus valores constantes para definir el

lagrangiano truncado unidimensional segin L4 = —R, obteniendo

1 (p(p — pycos

2
1
lcos® | = = _F,92—V
2 7, sin® >+mg o8 ) 2 1

Lia(8,9) % pa e <

Vid
Con esto, redujimos el espacio de configuracion para quedarnos con € =S, /Z,. Es
importante mencionar que este lagrangiano no corresponde al que se obtendria de

reemplazar ¢ y y directamente en L.

En consecuencia, en todos los casos que hemos explorado previamente, cada vez que pudimos
escribir un lagrangiano truncado que redujera el nimero de grados de libertad, estabamos en
realidad obteniendo un ruthiano respecto de los impulsos conservados. Es importante sefalar
que el reemplazar los valores constantes de los impulsos en el correspondiente lagrangiano no
lleva al resultado correcto. Esto sucede porque las ecuaciones de Lagrange se obtienen tomando
derivadas parciales en las que son las velocidades y no los impulsos las que se mantienen

constantes.

Resumen

En esta clase aprendimos que dado un lagrangiano cualquiera, podemos construir un hamiltoniano
como su transformada de Legendre respecto de las velocidades generalizadas. Tal funcion también
permite describir el movimiento, en términos de ecuaciones de Hamilton para las correspondientes

coordenadas e impulsos generalizados.

En nuestra construccion, asumimos que siempre era posible despejar las velocidades generalizadas
en términos de las variables candnicas. Posponemos para la ultima clase la discusién de qué

sucede cuando tal condicion no se cumple.

Vimos también que la transformada de Legendre puede realizarse respecto de un subconjunto par-
ticular de las velocidades generalizadas, para obtener un ruthiano. Las ecuaciones de movimiento
se obtienen entonces como ecuaciones de Hamilton para el subconjunto correspondiente de coor-
denadas e impulsos generalizados, y ecuaciones de lagrange para las coordenadas generalizadas

restantes.

Cuando existen soluciones con impulsos constantes, lo que sucede por ejemplo cuando las
coordenadas correspondientes son ciclicas, podemos reemplazar directamente tales valores
constantes en el ruthiano y obtener un lagrangiano truncado que describe el movimiento del resto

de las coordenadas generalizadas.
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Objetivos

Comenzamos este curso con un sistema de N particulas
cuyas posiciones estaban determinadas por vectores
7,. Como consecuencia, nuestro sistema fisico tenia 3N
grados de libertad, cada uno de los cuales tomaba valores
en la recta real. Es decir que su espacio de configuracién
estaba dado por ¥ = R3". Al describir el movimiento en
coordenadas generalizadas, simplemente cambiamos de

coordenadas en el mismo espacio ¢ = RV,

Sin embargo, cuando estudiamos mas adelante el cuerpo
rigido, lo definimos como un sistema de particulas cuyas
distancias relativas estan fijas. Para esto, usamos como
coordenadas generalizadas la posicién de una de tales

particulas 7, € R3, la orientacion del cuerpo respecto de

Jean-Baptiste le Rond d’Alembert

un sistema de ejes de referencia {9, 6, y} € SO(3), y las distancias entre las diferentes particulas

que lo componen {I1,,13,1,1,l2,1,3}. Acto seguido, impusimos la condicién de que el valor de

tales distancias permaneciera fijo. Es decir que redujimos el espacio de configuracion del sistema

a ¢ =R3 xS0(3), que es una variedad no trivial dentro del espacio original RV,

Ahora bien 4 es correcto hacer esta reduccion? ;Como sabemos que al dejar fijas las distancias

se cumplen (siquiera de forma aproximada) las ecuaciones de movimiento que obtendriamos del

lagrangiano tomando las derivadas correspondientes?

A continuacion vamos a estudiar las condiciones bajo las cuales tales vinculos tienen sentido fisico.

Motivaremos la intuicion fisica en base a ejemplos, y luego la generalizaremos.
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Origen fisico de los vinculos

Un vinculo aparece cuando hay una funcién de las coordenadas y las velocidades generalizadas
que se debe mantener constante durante el movimiento. Por ejemplo, la longitud de la soga de un
péndulo o el angulo de un plano inclinado. En lo que sigue, veremos cual es el origen microscoépico

de tales restricciones, y cdmo se incorporan en el formalismo lagrangiano.

Vinculos holonémicos y coordenadas adaptadas

Para entender qué es un vinculo, es conveniente ilustrarlo con una serie de ejemplos, que luego
extenderemos al caso general. Comenzaremos en una dimension, y luego analizaremos ejemplos

bidimensionales en coordenadas cartesianas y polares.

Ejemplo: particula en una dimension
Comencemos con un ejemplo sencillo: sea un sistema de una particula en una dimen-

sion, sometida a una fuerza conservativa. El lagrangiano toma la forma

1
L= mez —V(x)

La energia de este sistema vendra dada por
E= S +V(x)

De aqui se puede despejar la velocidad, segun

2(E-V(x))

X =

donde vemos que sera real en las regiones en las cuales V(x) < E. Esto es la forma
matematica de la intuicién sencilla de que el sistema se movera en la region en la que

su energia cinética sea mayor o igual a cero.

Ahora bien, supongamos que el potencial tiene la forma de pared infinita, es decir

En este caso es evidente que el sistema se movera libremente pero confinado a la
region x < x, alo largo de toda su evolucién temporal. Esto es lo que se conoce como

un vinculo (o ligadura) unilateral.

Sin embargo, un potencial de este tipo puede parecer muy poco realista. Para acercarlo
un poco mas a algo realizable, supongamos que tenemos un potencial V(x) que tiene

una asintota vertical, es decir
—
V(x) X‘)Xﬁ;oo

Ahora el potencial no es algo tan rudo como una pared infinita, pero de nuevo el

sistema se movera en la regién x < x.. Si el potencial es pequefio cuando x < x; y
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x* X Xmin X©

Figura 11.2.1: Vinculos en una dimensién. Un potencial con una pared no permite que la particula pase
de x4, y lo mismo es cierto para un potencial con una asintota (arriba). En un caso realista,
la energia esta acotada lo que implica que la particula no puede pasar de x. (abajo a la
izquierda). Si el potencial tiene un minimo la particula se movera en la regién x_ < x < x4, y Si

el minimo es muy marcado estara confinada a x ~ x;y,.

su crecimiento es muy rapido cuando nos acercamos a x ~ x, podemos decir que el
sistema se movera libremente confinado a la region x < x, realizando entonces un

vinculo unilateral.

En una situacién real no es necesario que haya realmente una asintota. En efecto,
dado que cualquier sistema tiene una energia maxima finita E,,., su movimiento estara
limitado a la region del espacio donde se satisface V(x) < E < Ennax. Si suponemos que
el potencial crece con x (si decrece, simplemente podemos cambiar x por —x en la

discusion que sigue) entonces habra un punto x, donde se cumple que

V(xy) = Emax

Por lo que es correcto decir que la evolucion temporal del sistema cumplira x < x. . Si
el crecimiento es muy rapido al acercarnos a x; y el potencial es pequefio lejos de ese

punto, entonces esto realiza un vinculo unilateral en un sistema real.

Ahora bien, si se cumple que a la izquierda de x,. el potencial tiene un minimo, digamos
en en x = xmin, Y al continuar hacia la izquierda en la direccion x < xn,;, el potencial
también crece muy rapidamente, entonces existira también un segundo punto x_ tal

que

V(x_) = Emax
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lo que por su parte implica el vinculo unilateral x > x_ Por lo tanto es correcto decir que

el sistema se movera alrededor de x.,;, entre dos extremos x_ <x < x,.

Si el potencial crece muy rapidamente cuando x se aleja de x,;, en ambas direcciones,
esto que implica que la energia alcanzara el valor E,,, en valores de x que son muy
cercanos a xn, tanto a su derecha como a su izquierda. En otras palabras, tendremos

que x; =~ x_, por lo que podemos decir que el sistema esta confinado al punto
X = Xmin

Esto es lo que se conoce como un vinculo (o ligadura) bilateral.

Ejemplo: particula en una dimensién, forma alternativa

Si el potencial es diferenciable en el minimo, hay una manera alternativa de entender
el ejemplo anterior. Podemos escribir un desarrollo en serie de Taylor alrededor del
minimo segun

V(x) &=V (Xmin) + %V”(xmin)(x—xmin)z + ﬁ(x—xmin)z'

Por lo tanto, vemos que cerca del minimo el sistema se comporta como un oscilador
armonico con constante restauradora k = V” (xy;n ). La solucion para el movimiento de

dicho oscilador arménico es la que conocemos de los cursos basicos
X = Xmin +ACOS

siendo A es la amplitud de la oscilacion. Podemos obtener entonces la energia del

sistema usando la formula del oscilador armoénico E = kA2/2, es decir
1 " 2
E = EV (xmin)A S Emax

Donde hemos escrito explicitamente la cota maxima para la energia. Invirtiendo la
expresion anterior podemos obtener una cota para la amplitud de oscilacién, con la

forma

Cualquier sistema real tiene una cantidad maxima de energia E,,.x que es finita. Por lo
tanto, la amplitud de su movimiento sera mas pequena cuanto mayor sea la constante
restauradora V" (xnin ). Para una constante V" (x;,) lo bastante grande, es una buena
aproximacion afirmar que la amplitud es nula, es decir que el sistema no oscila y esta
fijo en su punto de equilibrio x = x.,;,. Esta es otra manera de comprender como aparece

un vinculo bilateral.
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Ejemplo: particula en dos dimensiones, con potencial unidimensional

Un razonamiento completamente analogo funciona cuando el sistema es bidimensional,

pero el potencial depende de una sola de las coordenadas.
L=1m (F+y*) —V(x)
2
La energia de este sistema vendra dada por

E= %m (P +y*) +V(x)

En cualquier situacion real, el sistema tiene una energia maxima finita .., €s decir
que esta confinado a moverse en la region del espacio R?> donde se satisface V (x) <
E < E.x. Si el potencial es creciente en ambas direcciones x — +e0, esto implica la

existencia de los vinculos unilaterales
X_ <x<xg

A medida que el potencial se haga mas empinado, creciendo mas rapidamente cuando
nos alejamos hacia la izquierda o hacia la derecha del minimo, el sistema estara cada
vez mas limitado en su movimiento en la direccién x, obteniéndose en el limite el vinculo

bilateral
X = Xmin
En otras palabras, el sistema reduce su dimension, estando ahora confinado a moverse

solamente en y.

Veamos ahora si podemos encontrar un lagrangiano efectivo para describir el movi-
miento en la variable y. Para esto escribimos las ecuaciones de movimiento, en la

forma
mi = —oxV (x)

my =0

La condicion x = xn,;, resuelve la primera, mientras que la segunda se puede obtener

del lagrangiano efectivo

Legr = Fmy

Este lagrangiano es, a menos de una constante que no contribuye a las ecuaciones de
movimiento, el que se hubiera obtenido de truncar el lagrangiano inicial reemplazando

directamente en él la condicion de vinculo x = xnin.

Este resultado puede parecer trivial, ya que la dimensién extra no juega ningun rol en la discusion
y estamos en realidad tratando con un problema unidimensional. Veremos a continuacion un caso

mas general genuinamente bidimensional.
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Figura 11.2.2: Vinculos en dos dimensiones. Vemos las curvas de nivel de un potencial que depende de
una sola coordenada cartesiana (izquierda), y de uno que depende de ambas coordenadas
cartesianas, pero mas fuertemente de una que de la otra (derecha). Si el pozo de potencial es

lo bastante marcado, el movimiento se producira entre las lineas continuas.

Ejemplo: particula dos dimensiones, caso mas general

La construccion del ejemplo anterior se puede generalizar al caso en el que el potencial
depende de las dos variables, pero mucho mas fuertemente de una (digamos x) que

de la otra. Comenzamos con el lagrangiano
1
L= M (x2 +)'72) —V(x,y)

Asumiendo que el potencial crece en ambas direcciones de la variable x, la condicion

de energia acotada V (x,y) < E < En.x puede ser resuelta de la siguiente forma

x-(y) <x <x4(y)

donde ahora x (y) son funciones de la variable y que corresponden a las curvas de nivel
V(x+(y),y) = Emax- La condicion de que el potencial dependa mucho mas fuertemente
de x que de y se traduce en que las funciones x.(y) son muy suaves, cambiando

perceptiblemente en una distancia Ay que es mucho mayor que Ax(y) = x4 (y) —x_(y).

De nuevo, los vinculos a izquierda y derecha se iran acercando a medida que el poten-
cial se hace mas empinado en la direccion x, resultando finalmente en el confinamiento

del sistema, que sélo podra moverse en una dimension, a lo largo del vinculo bilateral
X = Xmin

Escribiendo las ecuaciones de movimiento que se obtienen de nuestro lagrangiano
mi = —ad,V(x,y)

mi = —3,V(x,)
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Figura 11.2.3: Vinculos en dos dimensiones. Vemos las curvas de nivel de un potencial que depende del
radio polar (izquierda), y de uno que depende también del angulo, pero mas débilmente que
del radio (derecha). Si el pozo de potencial es lo bastante marcado, el movimiento se producira

entre las lineas continuas.

Podemos reemplazar en ellas el vinculo, para obtener
0= _axv(xminay)

my = _ayv(xmina)’)
Vemos que la primera es la condicion de minimo en la direccion x y se satisface
automaticamente, mientras que la segunda se puede obtener a partir del lagrangiano

1
Leff = Emyz - V(xmimy)

Nuevamente, este lagrangiano coincide con lo que se obtiene de reemplazar directa-

mente en el lagrangiano original la condicion de vinculo.

Nétese que en los calculos anteriores hemos supuesto que las dos curvas x.(y) se
juntan en una recta x = x,;, cuando el potencial se hace mas empinado. Este no tiene
por qué ser el caso, podriamos tener una condicidon de vinculo que también esta dada
por una curva x = xmin (). Para entenderlo mejor podemos cambiar coordenadas, como

haremos en el ejemplo que sigue.

Ejemplo: particula en dos dimensiones en coordenadas polares

Supongamos una particula en el plano descripta en coordenadas polares, con un

potencial que depende solo del radio
1, .
L= M (r2 + r292) —V(r)

Si el potencial tiene un minimo en r = r,in, €l hecho de que siempre habra una cantidad

finita de energia E < E,.x hace que el sistema se mueva en una regidn acotada por
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el vinculo unilateral r_ < r < r,.. Cuando el potencial sea muy empinado, el sistema
debera satisfacer el vinculo bilateral r = r,,;,. Esta restriccion establece una curva en el

plano, a diferencia de las rectas de los ejemplos anteriores.

Escribiendo las ecuaciones de movimiento

1 ,
mi = —0o, (V(r) — 2mr262>
d 2 A
o (mr 9) =0
podemos evaluarlas en un valor constante del radio r = r,, para verificar si son consis-

tentes con una condicion de vinculo

0=—-0, <V(r) — ;mr292)

I'=Tsol

< (m2,6) =0

La primera ecuacion es una condicién de minimo que determina r,, pero modificada
con un término rotacional que contiene 62. Para ver los efectos de este término,
desarrollamos el miembro derecho alrededor del minimo de V(r), que habiamos llamado

rmin, Obteniendo
0= (m62 - V//(rmin))(rsol - rmin) "'erming2

En esta ecuacion es importante notar que, dado que la energia esta acotada, también lo
estara su componente rotacional, proporcional a 62. Esto significa que para un potencial
lo bastante empinado, el término que contiene la derivada segunda V" (rmi,) domina la

ecuacion
0= _V//(rmin)(rsol - rmin)

Lo que se resuelve con rs, = rmin. En otras palabras, el sistema esta confinado en el

minimo del potencial, y el término rotacional no altera este hecho.

La segunda ecuacion de movimiento se puede obtener del lagrangiano para una

particula que se mueve en un circulo

| .

2 2
Lo = Emrmine
Nuevamente, este lagrangiano se obtiene de reemplazar directamente la condicion

r = rmin €N €l lagrangiano original.

Como en el ejemplo anterior, podria existir una dependencia explicita del potencial
en la variable adicional, en este caso 0, siempre que sea mucho mas suave que la
dependencia en la variable vinculada, en este caso r. Si asi fuera, siguiendo pasos

completamente analogos, obtendriamos un lagrangiano efectivo
min

1 .
Less = Emrz 62 — V(rmin, 9)

Que describe un problema unidimensional.
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Ejercicio:
Estudie el caso de un cuerpo que desciende por un plano inclinado. El lagrangiano

sera
1
L= >m (¥ +y*) —mgy—V(ycos@ —xsin0)

Ademas del término gravitacional, el potencial tiene un término adicional que es el que
provee la condicidn de vinculo, creciendo muy rapidamente en la direccién transversal
al plano ¢ Cual es la fuerza que se deriva de este potencial? 4 Se trata de un vinculo

unilateral o bilateral?

Escriba un lagrangiano efectivo para describir el sistema unidimensional.

Ejercicio:

Estudie el caso de un péndulo plano. El lagrangiano se puede escribir en la forma
1
L= 3m (x2+y'2) —mgy—V (x> +y?)

En este sistema, la longitud de la cuerda se mantiene invariante, lo que significa que
ademas del término gravitacional el potencial tiene un término con un crecimiento muy
marcado en la direccion en la que se estira la cuerda como se llama la fuerza que se

obtiene a partir de tal potencial?

Reemplace la condicion de vinculo en el lagrangiano, para obtener un lagrangiano

efectivo capaz de describir el sistema truncado.

La leccion de los ejemplos anteriores es que, cuando el potencial presenta un minimo muy marcado
a lo largo de alguna coordenada, podemos reemplazar directamente en el lagrangiano el valor
de la misma en el minimo. El lagrangiano efectivo resultante nos proporcionara ecuaciones de
movimiento para las coordenadas que restan, que son las mismas que las que hubiéramos obtenido

del lagrangiano original.

Esta idea se puede extender a un caso general. Escribamos el lagrangiano para un sistema de
N particulas en términos de las 3N coordenadas cartesianas 7, que parametrizan el espacio de

configuracion R3V. Este toma la forma

L=K(#) - V(%)

n

La energia del sistema esta acotada, y por lo tanto se cumple que V(7,) < E < Enax. Al igual que
en los ejemplos, esto establece una region dentro de R3M en la cual se puede mover el sistema,

es decir un vinculo unilateral.

Supongamos ahora que, dentro de la regién determinada por el vinculo unilateral, el potencial crece
muy rapidamente al alejarnos de alguna hipersuperficie de dimension D, sobre la cual tiene ademas

una variacién suave. Entonces podemos limitarnos a describir el movimiento exclusivamente a
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lo largo de esa hipersuperficie, dado que practicamente no habra movimiento en las direcciones
transversales. Como cualquier hipersuperficie D-dimensional embebida en RV, tal hipersuperficie

de vinculo estara descripta por un conjunto de restricciones de la forma
fi(#,) = ¢; constante, conl € {D+1,...,3N}

Este tipo de restricciones se conocen como vinculos holonémicos. Notemos que, en presencia de
estos vinculos holonémicos, el espacio de configuracion original R3 se redujo a una hipersuperficie
¢ c RN de dimension D < 3N. La misma puede tener una forma y topologia arbitrarias, por lo que

se suele hablar de una variedad de configuracion %

Ahora bien, sabemos que podemos describir el sistema en términos de un conjunto cualquie-
ra de coordenadas generalizadas {¢;} con i € {1,...,3N}, las cuales podemos elegir a nuestra

conveniencia. En términos de ellas, el lagrangiano se escribe
L=K(qi,qi) —V(qi)

Una eleccion particularmente util de las coordenadas generalizadas es la que se conoce como

coordenadas adaptadas. Se define segun la condicion
qx = qx(7,) arbitrario para k € {1,...,D}

q =fi(7,) paral € {D+1,...,3N}

Se dice que estas coordenadas resuelven los vinculos. En efecto, al movernos a lo largo de las
coordenadas ¢; dejando las demas fijas el potencial varia suavemente, mientras que a lo largo
de ¢; existe un minimo marcado en los valores ¢; = ¢; y la dependencia del potencial al alejarnos
es mucho mas fuerte. Esto implica que podemos dejar fijos los valores de tales coordenadas en
el minimo de potencial g, = ¢;. De manera analoga a los ejemplos de mas arriba, el lagrangiano

efectivo definido segun

Lest = K(qr, 1= 0,qx,q1 = c1) = V(qr, q1= c1)

dara una descripcion del movimiento consistente con las ecuaciones del lagrangiano original.

Nota:

Este procedimiento es exactamente el que seguimos, sin hacerlo explicito, cuando

hablamos del cuerpo rigido.

En efecto, las coordenadas a lo largo de las cuales el potencial presenta minimos
marcados (y que por lo tanto podemos eliminar de nuestra descripcion fijandolas a un
valor constante) son las distancias entre las particulas {¢;} = {/1,12,13, 111, 121,13, }. EStO
constituye una realizacion fisica de la idea de rigidez. Por otro lado, aquéllas a lo largo
de las cuales el potencial presenta una dependencia suave resultan ser los grados de

libertad del cuerpo rigido {¢;} = {%,9,6, v}.

El espacio de configuracion resultante de fijar las distancias esta dado por la variedad
¢ =R3 xS0(3) c R*"N y tiene dimensién D = 6.
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Los vinculos holonémicos descriptos hasta aqui se conocen como vinculos escleréonomos, ya que
las restricciones f;(7,) no dependen del tiempo. Sin embargo y como clarificaran los siguientes
ejemplos, el tratamiento se puede extender de manera mas o menos inmediata al caso donde

existe dependencia temporal.

Ejemplo: particula en una dimensién, con fuerza monogénica

Sea una particula en una dimension sometida a una fuerza monogénica, es decir una
fuerza que se deriva de un potencial dependiente del tiempo. El lagrangiano se escribe

1
L= mez _V(x7t)

La ecuaciéon de movimiento correspondiente sera
mi = —0d,V(x,1)

Nos preguntamos si, al igual que sucedia cuando la fuerza era conservativa, existira
una solucién a las ecuaciones de movimiento donde la particula esté confinada al punto

X = xmin donde el potencial tiene su minimo. En ese caso deberia cumplirse

0=— oV (x,1)]

X=Xmin

Dado que el potencial depende del tiempo, al resolver esta condicién de minimo
obtenemos una funcién x,;, (7). Esto implica que en principio i, (t) # 0, por lo que la
condicion de que la particula esté confinada al minimo de potencial no satisface la

ecuacion de movimiento.

Sin embargo, aun nos falta imponer la condicion de que el minimo sea muy marcado
en todo instante durante el movimiento. Para hacer esto, usamos la regla de la funcion
implicita, escribiendo las derivadas temporales como
Xmin(f) = — (m = Kmin () = ﬁ ()
X ’ X=Xmin(?) X
Donde vemos que cuando la derivada segunda en el denominador es lo bastante
grande, como sucede para un potencial muy empinado, se cumple que ¥mi,(¢) = 0. Es

decir que x = xmin(f) resuelve las ecuaciones de movimiento en este limite.

Esto demuestra que en el caso de una fuerza monogénica, si el potencial tiene un
minimo muy marcado durante toda la duracién del movimiento, entonces el sistema

esta confinado al minimo del potencial.

Ejercicio: particula en dos dimensiones, con potencial unidimensional monogénico

Extienda el ejemplo anterior al caso de una particula en dos dimensiones, que se
mueve bajo la influencia de una fuerza monogénica con potencial unidimensional. El

lagrangiano sera

1
L= M (Xz —|—y'2) —V(x,1)
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Usando un razonamiento analogo al del ejemplo previo, demuestre que el movimiento
se confina al minimo del potencial x = x,;, (). Pruebe que en ese caso se puede

reemplazar el lagrangiano por la forma efectiva

Lest = 5my

la cual se obtiene al reemplazar el vinculo directamente en el lagrangiano original.

Ejercicio: particula en dos dimensiones, caso mas general monogénico

Generalice el resultado del ejercicio anterior al caso con lagrangiano
1
L= Em (x2 —|—)'/2) —V(x,y,t)

Asumiendo que durante toda la duracién del movimiento la dependencia del potencial
en la variable y es mucho mas suave que la dependencia en x, y que el potencial tiene
un minimo marcado en esta Ultima direccion en x = x,; (¢), pruebe que las ecuaciones
de movimiento se pueden obtener de la forma efectiva
Les = Emy - V(xmin (I)J’J)
El ejemplo y los ejercicios anteriores deberian dejar en claro que el razonamiento que hicimos mas

arriba para el caso de fuerzas conservativas se puede generalizar inmediatamente para fuerzas

monogénicas. Comenzamos con un lagrangiano
=2 -
L= K(rn) - V(rnvt)

Si durante toda la duracion del movimiento el potencial varia suavemente sobre una hipersuperficie
de dimension D, mientras que crece muy rapidamente al alejarnos de ella, el movimiento se confina
a tal hipersuperficie. Podemos repetir el razonamiento que hicimos antes, teniendo en cuenta que

en este caso las condiciones de vinculo holondmico
fi(7y,t) = ¢; constante, conl € {D+1,...,3N}

seran dependientes del tiempo. Este tipo de vinculos holonémicos con dependencia temporal se

denominan vinculos reénomos.

Nuevamente podemos elegir coordenadas adaptadas, con la unica diferencia de que el cambio de
variables sera ahora dependiente del tiempo. La condicién de minimo ¢g; = ¢; se puede reemplazar

entonces en el lagrangiano resultante, obteniendo un lagrangiano efectivo

Lest = K(Gi,q1=0,q1,q1= c1) =V (qi,q1 = c1,1)

que resultara en las mismas ecuaciones de movimiento.
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Vinculos no holonémicos

Ademas de los vinculos holonémicos que discutimos en la seccién anterior, existe un tipo diferente
de vinculos que no se pueden expresar como un conjunto de restricciones (tal vez dependientes
del tiempo) en las coordenadas 7, de las particulas que forman el sistema. Para entender de qué

estamos hablando, veamos primero un ejemplo de este tipo de vinculos.

Ejemplo: efecto Hall

El efecto Hall es un estado de la materia que aparece cuando ponemos particulas

cargadas en un campo magnético intenso.

Para tener una imagen sencilla de este problema, supongamos que tenemos una
particula que se mueve en tres dimensiones bajo la influencia de un campo magnético

uniforme en la direccion z. El potencial vector que genera dicho campo estara dado por
A= cBxJ

De modo tal que (% x A)/c = Bk. El lagrangiano para una particula de carga e tendra la

forma que discutimos en la seccién[2.2.3] es decir

1
L= m(& 4 +2) —e(®(x,5,2) ~ Bxy)

donde @ es el potencial eléctrico. Las ecuaciones de movimiento resultantes se leen
mi = e (Ex — By) my = e (Ey — Bx) mi=ekE;

Donde E, = —d,® es el campo eléctrico. Ahora bien, si suponemos que el campo
magnético es muy intenso, de modo tal que durante todo el movimiento se cumple que

X/y < eB/my j/x < eB/m, estas ecuaciones se pueden reemplazar por
0=ce(E;—By) 0=ce (E.+Bx%) mzi=eE,

Dado que las dos primeras ecuaciones no contienen derivadas segundas, se pueden
considerar como vinculos que incluyen a las velocidades. Este es el primer ejemplo de
un vinculo no holonémico. En este caso particular, los vinculos implican que la carga
se puede mover solamente donde hay un campo eléctrico no nulo, lo que normalmente

sucede en los bordes de una muestra material.

Podriamos intentar resolver los vinculos y reemplazarlos en el lagrangiano, como hici-
mos mas arriba para el caso de los vinculos holondmicos. Eso nos daria el lagrangiano

efectivo

21, omS s,
Less = S + 557 (E; +Ey) —e(D(x,y,2) —Eyx)

Sin embargo, los nuevos términos con las componentes del campo eléctrico actuan
como un término extra en el potencial, resultando en que la ecuacion de movimiento
para z no corresponde a la que se obtiene del lagrangiano original. Por lo tanto, el
método de evaluar el lagrangiano en los vinculos no funciona en el caso de vinculos

no holonédmicos.
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Ejemplo: rodadura en una dimensién

Supongamos que tenemos una rueda de radio R en que se mueve en una dimension.
El estado de la rueda esta caracterizado por su posicién en la recta x y por el angulo ¢
que ha rotado respecto de la direccién vertical en la direccion contraria a las agujas del
reloj. Estas variables satisfacen el vinculo de rodadura sin deslizamiento, que es una

restriccion diferencial de la forma
dx=—Rd¢

Dividiendo por dt esto se puede reescribir en términos de las velocidades
X+Ro=0

lo que claramente constituye un vinculo no-holonémico.

En este caso particular unidimensional, el vinculo no holonémico se puede integrar,

obteniendo la expresién
x—x0+R(0—¢o)=0

que tiene todo el aspecto de un vinculo holonémico, mas alla de que incluye constantes
de integracion. Sin embargo, esto no se puede extender al caso de una rueda que gira

sobre una superficie bidimensional, como veremos en el ejemplo que sigue.

Ejemplo: rodadura en dos dimensiones

En el caso de una rueda de radio R que describe una curva sobre un plano, el vinculo
no holonémico no se puede integrar. En efecto, la distancia recorrida por la rueda debe

satisfacer la restriccion diferencial
dl=—Rd¢
lo que se puede reescribir como
Vdx?+dy? = —Rd¢
En términos de las velocidades esto toma la forma
Vi + 2 +R =0
Este vinculo no se puede integrar para obtener una relacién entre las coordenadas,

por lo que es inherentemente no holonémico.

Generalizando los ejemplos, cuando el sistema esta sometido a vinculos no holonédmicos habra
restricciones sobre su su movimiento que involucran a las velocidades. Estas se pueden escribir

en la forma

fi(7,,7,,1) = constante, con [ € {D+1,...,3N}
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En algunos casos particulares, estas condiciones de vinculo se pueden integrar y los vinculos se
transforman en vinculos de tipo holonémico como los estudiados anteriormente. Pero en el caso
general, al ser dependientes de las velocidades, estos vinculos no definen una hipersuperficie
de dimension D en el espacio de configuracion original R*V. Por lo tanto, no se pueden resolver
usando coordenadas adaptadas, es decir que no pueden incorporarse en el Lagrangiano de

manera sencilla.

Multiplicadores de Lagrange

Hemos visto que los vinculos holondmicos, tanto los escleronomos como los rebnomos, se pueden
tratar utilizando coordenadas adaptadas, para las cuales los vinculos se reducen a fijar el valor
de algunas de ellas. En este caso, las ecuaciones de movimiento se pueden obtener a partir
de un lagrangiano efectivo que se obtiene de aplicar el vinculo directamente en el lagrangiano
del sistema. Sin embargo, vimos también que existen vinculos mas generales conocidos como
no holonémicos, para los cuales el método de las coordenadas adaptadas no funciona. En esta
seccidon reexaminaremos el problema de los vinculos desde una 6ptica mas amplia, con el objeto

de obtener un tratamiento mas general.

Ejemplo: péndulo esférico

La segunda ley de Newton para un péndulo en tres dimensiones se escribe
mi =T, my =T, mZ=T,—mg

donde hemos llamado T = (T, T,,T;) ala tensién de la soga de la que cuelga el péndulo.
No conocemos la forma explicita de 7' como funcién de las coordenadas, solo sabemos

que toma los valores que deba tomar para que se cumpla la restriccion
VX2+yr+2=1

donde hemos supuesto que la cuerda es inextensible y tiene longitud /. Esto implica en
particular que se trata de una fuerza que apunta en la direccién de la cuerda, por lo

que podemos escribir
T=AF=2V(/2+y +2—1)

donde A es una cantidad desconocida, y en la segunda igualdad notamos que el versor
¥ se puede obtener como el gradiente de la condicién de vinculo. Con esto tenemos

que las ecuaciones a resolver son
m¥ = Ao (Vx2+y2+72—1) my = A0y(\/ x> +y?+2>—1)
mi=A0,(\/x2+y2+72—1) —mg 0= Vx>+y>+22-1

Se trata de cuatro ecuaciones para determinar cuatro funciones desconocidas del

tiempo, a saber las coordenadas {x,y,z} y la nueva magnitud A. Es interesante remarcar



162 Capitulo 11. Vinculos

que estas ecuaciones se pueden obtener del lagrangiano

1
L= om(+3°+2) —mge+ (Va2 +32 +22 - 1)

Donde las ecuaciones de Lagrange para {x,y,z} resultan en las ecuaciones de mo-
vimiento, mientras que la ecuacién de Lagrange para A nos devuelve el vinculo. En
este lagrangiano, los dos primeros términos corresponderian al problema en ausencia
de vinculos, mientras que el término adicional, proporcional a la nueva variable 4, se

puede asociar a un potencial Vz: para la tension T.

¢ Cuales fueron los pasos cruciales que nos permitieron llegar al lagrangiano? El
primero fue identificar la direccidn de la tensidn, lo que redujo el nimero de magnitudes
independientes a determinar con nuestras ecuaciones. Y el segundo fue notar que
dicha direccién coincide con la del gradiente de la condicién de vinculo, lo que nos

permitié darle una forma concreta a nuestro lagrangiano.

Por supuesto que en este caso el vinculo es holonédmico y esclerénomo, por lo que
podriamos haber usado el método de las coordenadas adaptadas, pasando a coor-
denadas esféricas {r,0,¢} y luego fijjando r = I directamente en el lagrangiano del
problema. Esto se puede hacer incluso sin conocer la forma explicita de V-, ya que al
evaluarlo en el vinculo sabemos que tomara su valor minimo, y por lo tanto lo podemos

reemplazar por una constante.

Ejercicio: péndulo forzado

Repita el analisis anterior para el caso de un péndulo colgado de un soporte movil que
estd a una altura z,, (). En este caso la restriccion de que la soga es inextensible se

ve modificada segun

VAP (= zaop(0)2 =

Convénzase de que también en este caso la tension es proporcional al gradiente de la

condiciéon de vinculo

—

T = l%(\/x2+y2 + (Z_Zsop(l‘))2 _l)

Demuestre que al reemplazar esta condicién en la segunda ley de Newton se obtie-
nen tantas ecuaciones como magnitudes desconocidas, que se pueden derivar del

lagrangiano

1
L= Em(x2+y2+z'2) —mgz—i—l(\/xz—&—yz+(Z—z50p(t))2—l)

Nétese que seguimos en presencia de un vinculo holonémico, en este caso reébnomo,
para el cual podriamos haber llevado adelante la técnica de las coordenadas adaptadas
de las secciones previas, incluso sin conocer explicitamente la forma del potencial que

da origen a la tension.
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Ejemplo: planos inclinados y poleas

Supongamos que tenemos un bloque de masa mp que desliza sin friccidn a lo largo de
un plano inclinado. El bloque esta atado a una cuerda que pasa por una polea sin masa
en la parte superior del plano y de la cual cuelga una pesa de masa mp. Poniendo el
origen de coordenadas en la polea y el eje y en la direccidn vertical, tenemos que la

segunda ley de Newton para el bloque y la pesa toma la forma
mpiXg = Ny — T, mpyp = Ny + T, —mpg mpyp =T —mpg

Donde T' = (—T,T;) es la tensién de la soga y N = (N,,N,) es la normal del plano. La
condicion de que el bloque se mueva sobre el plano que forma un angulo 6 con la

horizontal se puede escribir como tan 6 = yg /x5. Esto toma la forma de un vinculo
xpsin@® —ygcosO =0

Por otro lado, la condicién de soga inextensible se transforma en el vinculo

X t+yp—yp=1

Para la fuerza normal, tenemos que
N= An(sin @, —cos 6) = A,Nﬁg()cg sin@ — ygcos )

donde Ay es una nueva magnitud desconocida, que debe ser negativa para que la
fuerza tenga el sentido correcto. En la segunda igualdad hemos notado que, una vez

mas, la fuerza tiene la direccion del gradiente de la condicion de vinculo.

En cuanto a la tension, podemos escribir

T = Ar(cos 6,sinf) = )»T%g(\/m—w—l)

donde en la segunda igualdad usamos que cos @ = xp/\ /x5 +y% y sin6 = yg/\/x3 + 3,
y la nueva magnitud Ay debe ser negativa para que el sentido de la fuerza sea el

correcto. Notese que también se cumple

T =—Ar = Aroy,(\/xg+yg—yp —1)

Una vez mas, las fuerzas que entran en la segunda ley de Newton con el objeto de

garantizar los vinculos resultan ser proporcionales a los gradientes de los mismos.

Con todo lo anterior, podemos escribir el conjunto de ecuaciones en la forma

mpip = A0y, (xpsinO — ygcos 0) + Ardy, (\/ x5 +y5 —yp —1)
(\/*5+Y5—yp—1) —mspg

mpyp = lNayB (XB sin @ — ypcos 9) + ATayB

ijfP = /lr&yp(\/x%—ky%—yp—l) —mpg
xpsin@ —ygcos =0 \/m—szl
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donde hay cinco ecuaciones para las cinco magnitudes desconocidas dadas por las
coordenadas del bloque {xz,yz}, de la polea yp y las nuevas magnitudes {Ar,Az}.

Estas ecuaciones se pueden obtener del lagrangiano

=5 Pyp+2mB(xB+yB) mpgyp —mpgyp+

+Ar(\/x5+y5 —yp—1)+ Ay(xgsin@ — ygcos0)

Nétese que esto corresponde al lagrangiano que tendriamos en ausencia de vinculo,
mas los términos proporcionales a los vinculos, en los que introdujimos una nueva
variable por cada vinculo. Las ecuaciones de Lagrange para {xz,yg} dan las ecuaciones
de movimiento del bloque, aquéllas para yp dan las de la polea, mientras que las que

corresponden a Ay y Ay devuelven los vinculos.

Ejemplo: rodadura en una dimension

Para intentar generalizar lo anterior al caso de vinculos no holondmicos, comencemos
con el ejemplo de una rueda que corre a lo largo de un eje. Podemos escribir sus

ecuaciones de movimiento en la forma
mi = F, —V'(x)
1)=1

donde F; es la fuerza de roce estatico entre la rueda y la superficie, t es torque que
actua sobre la rueda, siendo I su momento de inercia, y hemos supuesto que hay una
fuerza externa cuyo potencial es V(x) que actlia sobre el centro de la rueda. El vinculo

de rodadura establece que
X+R=0

0 en su forma integrada
x=x0+R(9—o) =0

No sabemos nada de F,, mas alla de que debe tomar los valores necesarios para ga-

rantizar el vinculo. Siguiendo los razonamientos anteriores, proponemos el lagrangiano

L— %mx2+ %Iqﬁz — V(@) +A(x—x0+R (9 — )

Donde agregamos al lagrangiano libre un término proporcional a la condicion de vinculo,
con una nueva variable 1. La ecuacion de Lagrange de esta Gltima nos devuelve el

vinculo, mientras que las ecuaciones para x y ¢ implican que
Fo=Ad(x—x0+R (¢ —¢p)) = A

T=20dy (x—x0+R (¢ — ) = AR = KR
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Este lagrangiano provee las ecuaciones de movimiento correctas. Sin embargo, esta
escrito en términos de la forma integrada del vinculo, lo que no nos permite generalizar
para vinculos no integrables. Para resolver este problema, podemos redefinir 1 = —4

en el lagrangiano,

L — %mx2+ %Igbz —V(x) = A(x—x0 +R(¢ — ¢v))

lo que no altera la forma de F,, pero ahora la ecuacion de lagrange de A devuelve el

vinculo en su forma no integrada.

d (JL .
— (= )=—-(+R¢)=0
G (25) = —tera)
Es facil ver que las mismas ecuaciones de movimiento se obtienen del lagrangiano en

el que incluimos el vinculo multiplicando por una funcién desconocida A, al igual que

haciamos para el caso holonémico

L= %mx2 + %I(ﬁz —V(x)+A(¥+R9)

que difiere del anterior en una derivada total. En efecto, calculando las ecuaciones de

Lagrange de este lagrangiano obtenemos las expresiones

E = d (Aa(x+R¢)) =

AL
d( 9 N .

Es decir que la fuerza de vinculo se obtiene a partir de un potencial dependiente de las
velocidades, que es proporcional a la condicidon de vinculo. Tenemos entonces tres
ecuaciones (las dos ecuaciones de movimiento y el vinculo) para tres variables (las

coordenadas {x,¢} y la fuerza F).

De los ejemplos anteriores debemos aprender las siguientes propiedades generales

= Cada vez que hay vinculos, aparecen nuevas fuerzas cuya funcién es garantizar que los
vinculos se cumplan. En los problemas de los cursos basicos estas fuerzas corresponden a
tensiones, normales, fuerzas de roce estatico, etc. Hay una de estas fuerzas de vinculo por

cada uno de los vinculos.

= Estas fuerzas se obtienen de un potencial que es proporcional a cada vinculo, con un factor de
proporcionalidad que es una magnitud desconocida. En el caso de vinculos no holonémicos,

éste funciona como un potencial dependiente de las velocidades.
= Con el mencionado potencial se puede construir un lagrangiano. Las ecuaciones de Lagrange
para los factores de proporcionalidad resultan en los vinculos.

A la luz de los ejemplos anteriores, analicemos el caso general. Supongamos que tenemos un

conjunto de N particulas con posiciones 7,, que satisfacen los vinculos

fi(7,,7,,t) = constante, con [ € {D+1,...,3N}
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La segunda ley de Newton para este sistema se escribe como

dp,
dt

— ﬁn +ﬁr;/inc

donde hemos separado explicitamente la fuerza de vinculo. De acuerdo a lo que vimos en los
ejemplos anteriores, esta fuerza se puede escribir en la forma
vinc __ &fl d 8fl
" ==~ (=
8rn dt 8rn
Donde hemos insertado nuevas magnitudes desconocidas 4;, una por cada uno de los vinculos,

que se denominan multiplicadores de Lagrange.

Si suponemos que el resto de la fuerza F se obtiene a partir de un potencial V (74,70,t), €ntonces

podemos escribir un lagrangiano en la forma
L=K () =V (Fa,Fust) + A0 fi(Fr, Fst)

Las ecuaciones de Lagrange que se obtienen de este lagrangiano para las variables 7, nos
devuelven la segunda ley de Newton para cada una de las particulas del problema. Por otro lado,

aquéllas que se obtienen a partir de los multiplicadores de Lagrange resultan en los vinculos.

El conteo de variables también funciona: cada vinculo suprime un grado de libertad de los 3N
que tiene originalmente el sistema, y cada multiplicador de Lagrange lo restituye. Tenemos
3N ecuaciones de movimiento y 3N — D vinculos, para 3N coordenadas cartesianas y 3N — D

multiplicadores de Lagrange.

Por supuesto que podriamos escribir el lagrangiano de arriba en coordenadas adaptadas para
eliminar los vinculos holonémicos, quedandonos solamente con multiplicadores para los no holoné-
micos. Esto pone de manifiesto que el lagrangiano esta definido sobre un espacio de configuracion

% que ya no es RN sino una variedad arbitraria.

Ejercicio:

Escriba el lagrangiano para una particula cargada sometida a un campo magnético en
la direccion x y un campo eléctrico en la direccion z, suponiendo que la particula esta

unida al origen por medio de una varilla rigida.

Resuelva primero el problema utilizando multiplicadores de Lagrange. Escriba las

ecuaciones de movimiento e identifique la fuerza que realiza la varilla.

Luego resuelva el problema utilizando el método de coordenadas adaptadas, es decir
usando coordenadas esféricas y fijando el valor del radio a la longitud de la varilla.

Obtenga las ecuaciones de movimiento.

¢, Cual es la relacion entre las ecuaciones de movimiento que se obtienen en cada

caso?
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Podriamos preguntarnos qué caracteristica particular tienen las fuerzas de vinculo que nos permite
escribirlas en la forma de arriba. Podriamos recorrer nuevamente a los ejemplos, y notariamos
gue en todos los casos tales fuerzas no realizan trabajo para un desplazamiento muy rapido. Para
ahorrar tiempo, vamos a probarlo para el caso general, usando la definicion de fuerza de vinculo

que dimos mas arriba y que se aplica a todos los ejemplos que analizamos. Para esto escribimos
dW = E)"™ - dF,
vemos que

(00 d (AN
dW—(’l’azﬁd; (l’a?n» Ty

Integrando por partes en el segundo término, tenemos

dw = A (af’ -dF +aﬁ-d?’n> _4 ()L aﬁ.d?,,)

i, " ok, dr \"' 9%,
Si el desplazamiento es instantaneo podemos descartar el ultimo término, resultando en
d d :
dw =4 (f’ -d?n+4 -an) =Adfi =0
ar,, arn

donde en la ultima igualdad hemos usado el hecho de que los vinculos se satisfacen durante el

desplazamiento, por lo que df; =0.

Esto se conoce como principio de D’Alembert de los trabajos virtuales y dice que las fuerzas de

vinculo no realizan trabajo en un desplazamiento instantaneo.

Resumen

En esta clase estudiamos el origen fisico de los vinculos, y la forma de incorporarlos al tratamiento

lagrangiano.

Vimos que cuando hay vinculos holonémicos rebnomos o esclerénomos, podemos elegir coorde-
nadas adaptadas, que resuelven los vinculos simplemente fijando el valor de algunas de ellas.
Vimos también que cuando hay vinculos no holondémicos, el método de las coordenadas adaptadas

no funciona.

Aprendimos la técnica de los multiplicadores de Lagrange, que permite escribir un lagrangiano
para un sistema vinculado, sean los vinculos holonémicos o no. Esta construccion tiene la ventaja

de permitirnos identificar las fuerzas de vinculo.

Junto con el analisis de las truncaciones que hicimos la clase previa, los presentes resultados
demuestran que los sistemas mecanicos pueden moverse sobre una variedad de configuraciéon ¢
cualquiera recorrida por las coordenadas generalizadas {¢;}. Con esto, trascendemos nuestra
hipétesis inicial de un sistema de N particulas que tenia ¥ = R3", construyendo asi la primera

generalizacion de los sistemas mecanicos que veremos en este curso.







12.1

12.2

Objetivos

Aprendimos la clase pasada que cuando existe en el
potencial un pozo profundo y marcado, entonces se pue-
de simplificar la descripcidn del sistema mediante una
condicién de vinculo. El sistema se mueve en las direccio-
nes en las que el potencial varia suavemente, confinado
dentro de la hipersuperficie determinada por el fondo del

poZzo.

En esta clase vamos a explorar qué pasa cuando la
condicién de vinculo se relaja un poco, es decir cuando
permitimos que el sistema realice pequefas oscilaciones

que lo alejan ligeramente del fondo del pozo de potencial.

Una vez mas, analizaremos primero algunos casos muy
simples, para ganar algo de intuicion que nos permita

tratar el caso general.

Oscilaciones en sistemas autonomos

ey 3 gt
gl

Frédéric Chopin

Un sistema auténomo es uno donde el lagrangiano no depende explicitamente del tiempo. En

particular esto implica que todas las fuerzas que actuan sobre las particulas que lo componen son

conservativas, y que todos los vinculos que se impongan sobre el sistema son esclerénomos.
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Esta caracterizacion involucra una clase muy general de sistemas fisicos. En esta seccion, vamos
a estudiar cémo se describen sus pequefias oscilaciones. Comenzaremos con ejemplos en una y

dos dimensiones, y luego estudiaremos el caso general.

Ejemplo: particula no relativista con fuerza conservativa en una dimensién

Supongamos que tenemos una particula que se mueve en una dimension bajo la
influencia de una fuerza conservativa a velocidades no relativistas. Su lagrangiano

tendra la forma

La ecuacién de movimiento resultantes sera, por supuesto
mi = —V'(x)

Puede resultar mas o menos complejo resolver esta ecuacion para un potencial cual-
quiera V(x). Sin embargo, si el potencial tiene un punto estacionario en x,;,, €s decir

que V'(xmin) = 0, entonces una solucién trivial es la constante x = xyn.

Vimos en la clase anterior que cuando el potencial crece muy rapidamente al alejarnos
del minimo en ambas direcciones, entonces la solucién x = x,,j, €s una buena apro-
ximacién de cualquier solucion, y el sistema esta vinculado. Nos preguntamos ahora
qué pasa si el minimo del potencial no es tan marcado, lo que permitiria a la particula

alejarse ligeramente de x = xn-

Queremos seguir el movimiento expandiendo en potencias del desplazamiento del
sistema respecto de xmin, por lo que escribimos x = xi, + €8x con € lo suficientemente

pequefio. En ese caso, el Lagrangiano toma la forma
1
L= 5 m (imin +£68%)% =V (Xmin + £6x)
Expandiendo en potencias de ¢ tenemos
2 2

L~ =V (Xmin) — £V’ (Xmin) 6x + €7 <1m 8i% — lV"(xmin)sz) +0(e)?

El término V (xmin) €s una constante que no afectara las ecuaciones de movimiento, ya
que las mismas se obtienen de tomar derivadas respecto de dx y 6x. Por otro lado, el
término lineal € V' (xmin)6x se anula porque x,;i, €s un punto estacionario del potencial.

Nos queda entonces la expresion
2 (1 2 Lo, 3
L=~¢ §m5x —Ek&c +0(¢g)

Donde k = V' (xmin). Al orden mas bajo en € este es el lagrangiano de un oscilador

armoénico, como puede verse obteniendo sus ecuaciones de movimiento

mox+kéx=0
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Nétese que hubiéramos obtenido la misma ecuacion si en lugar de expandir en poten-

cias de ¢ en el lagrangiano, lo haciamos en la ecuaciéon de movimiento para x.

Esta ecuacion es lineal y tiene coeficientes reales, o que nos permite recurrir a la técnica
de complexificacion para obtener una solucién, como se describe a continuacion. Para
comenzar, duplicamos la ecuacion, inventando una segunda variable 6% que también

la satisface, con lo que tenemos
méxi+kéx=0 méxX+kéxi=0

Ahora definimos la variable compleja 6§ = d6x+idx. Es facil ver que, multiplicando por
i la segunda ecuacion y sumandola a la primera, se obtiene una ecuacién para 6 con

la forma
m8E+k8L =0

Si ahora escribimos una solucion tentativa o Ansatz de la forma 6 =ce ' concy ®

constantes, podemos insertarlo en la ecuacién para obtener
2 _
(m—wk)c=0

Esto se satisface siempre que @ = ++/k/m, para cualquier valor de ¢, lo que nos permite
elegir convencionalmente ¢ = 1/y/m. Hemos obtenido entonces dos soluciones, una
para cada eleccion del signo de @. Como se trata de una ecuacion lineal, podemos
escribir la solucién general como una combinacion lineal de ambas, en la forma
1 + Jiot — —iot
8 =—= (A% +A )
vm
con A* constantes arbitrarias. De aqui obtenemos §x tomando la parte real

1 . .
:ﬁg{(A—&-etwt_’_A e za)t)

Notese que w? viene dado por k/m = V" (xmin) /m. Por lo tanto, si el punto estacionario

ox

xmin del potencial es un minimo, w sera real y las exponenciales en la expresion anterior

seran sumas de senos y cosenos, por lo que al tomar la parte real obtenemos
Ox=Acos(wt+ @)

Donde A y ¢ se pueden escribir facilmente en términos de A* y m.

Si en cambio x.,;, €s un maximo del potencial, todos los calculos que hicimos para
obtener la solucién se mantienen sin cambios, soélo que al final obtendremos un valor

de w que sera imaginario. En ese caso la solucion general queda escrita como

_ L (a0l 4 ol
5xf\/n79§(A e +A"e )

Aqui vemos que uno de los términos tiende a cero exponencialmente, mientras que el

otro diverge. Esto quiere decir que cualquier perturbacién ox alrededor del maximo xmin
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saca al sistema del punto estacionario y lo hace caer por el potencial. Por supuesto
cuando esto sucede, la solucién que obtuvimos sdlo es valida durante un pequeno

intervalo de tiempo, ya que en su deduccién asumimos que §x era pequefio.

En el andlisis de este problema sencillo, aislamos los pasos cruciales que nos permitiran genera-
lizar en lo que sigue. Primero linealizamos, es decir escribir las ecuaciones a primero orden en
una perturbacion alrededor de la solucién de equilibrio. Luego complexificamos, es decir trans-
formamos nuestra variable dependiente en una cantidad compleja. Finalmente propusimos una
solucién tentativa o Ansatz conteniendo exponenciales complejas, lo que simplificé el calculo de

las derivadas. Repetiremos estos pasos en un caso bidimensional en el ejemplo siguiente.

Ejemplo: particula no relativista con fuerza conservativa en dos dimensiones

Estudiemos ahora el caso de una particula que se mueve en dos dimensiones sometida
a la accion de una fuerza conservativa a velocidades no relativistas. En coordenadas

cartesianas, este problema toma la forma
1
L= M (x2 —|—y'2) —V(x,y)

De nuevo, supongamos que (xsl,Ysol) €S un punto estacionario del potencial, que

cumple que sus derivadas se anulan alli

av av
g(xsolvysol) = Ty(xso|7ysol) =0

Escribiendo una pequefia perturbacién alrededor del punto estacionario como x =
Xsol + €0x, ¥y = yso + €8y ¥ desarrollando a segundo orden en el parametro pequefio &,

nos queda
A% av
L=Vx—x5°|8< X+ —— 5y)+

Y=DYsol ax X=Xso| ay X=Xso|

Y=Ysol Y=DVsol
12 2 5oy %V » 9V , 9%V 3
+§£ <m(5x +03%) - ox? 1 T 2y? i y-2 dxdy ;r:;sowsxsy +0(e)

=Vsol Y=Ysol V="Ysol

En la primera linea, el primer término es una constante que no depende de x ni de dy,
ni de sus derivadas, y que por lo tanto no afectara las ecuaciones de movimiento. En
cuanto a los siguientes dos términos, se anulan por la condicién de punto estacionario.

Eso nos deja, al orden mas bajo en &, con el lagrangiano cuadrético
2 1 6.2 6.2 1 S 2 1 S 2 SxS
L=¢ §m< X"+ oy )_Ekxx X _Ekyy y" —kxy 0x0y
donde hemos definido las magnitudes
%V %V %V
ky = W(xsohysol) ky = Tyz(xsolyysol) kxy = m(xsohysol)

De este lagrangiano se obtienen las ecuaciones de movimiento

M85+ kyy 8x + ki 5y =0 m 8§+ kyy 8y +kyy 6x =0
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Nétese que estas ecuaciones tienen la forma de dos osciladores armoénicos acoplados.
Podemos recurrir nuevamente a la técnica de complexificacion, para lo cual tenemos
que inventar dos nuevas variables dependientes 6% y 67, para crear las funciones

complejas 6§ = 6x+idxy 6& = dy+idy. Las ecuaciones se escriben entonces
m&E + ke 8C +ky SE =0 m&E +kyy §E +ky SE =0

Escribimos un Ansatz de la forma 8§ = c,e'®' y & = c,e'®’. Reemplazando en las

ecuaciones obtenemos
(kxx — me) Cx+keycy =0 (kyy — ma)z) ¢y +keycx=0

El caso mas sencillo es cuando k,, = 0. Entonces, las ecuaciones se desacoplan, en
el sentido de que la ecuacion para c, no contiene c, y viceversa. En ese caso, de la
primera ecuaciéon podemos despejar la frecuencia obteniendo que 8¢ es un oscilador
armonico con frecuencia w; = i\/lm, y haciendo lo mismo en la segunda vemos que
o6& es otro oscilador con frecuencia w, = i\/lm Ademas, se ve en las ecuaciones
que podemos poner ¢, = ¢, = 1/y/m. La solucion para k,, = 0 se escribe entonces en
la forma

1 1

R (Ajeiw‘l —&—A;e*"w”) Sy R (A;em’z’ +A;e7i“’2’)
m m

v Vi

Donde hemos construido para cada una de las direcciones espaciales una combinacion

ox

lineal de las dos soluciones obtenidas, y hemos tomado la parte real. Aqui vemos
que ambas perturbaciones oscilaran cuando el potencial tenga un minimo en el punto
estacionario, ya que en ese caso tanto k., como k,, seran positivas. Por otro lado, si
el potencial tuviera un maximo, ambas perturbaciones serian inestables, creciendo
exponencialmente. En el caso de que el punto estacionario sea un punto de ensilladura,
entonces una de las dos perturbaciones oscilard mientras que la otra sera inestable y

crecera exponencialmente.

Volviendo ahora al caso general en el que k., # 0, debemos resolver el sistema acoplado
(kxxfma)z) Cx+kycy =0 (kyy,me) Cy+kyey =0

Multiplicando la primera ecuacion por (k,, —m®?) y la segunda por k,, y restando,

obtenemos
(ky —m@?) (ke —~me?) —K3) e, =0

Para que se anule el prefactor tiene que cumplirse que
m? (©7)% — m(kux + kyy ) 07 + kckyy — ki = 0

Esta es una ecuacién cuadratica para ®?, que resulta en las dos soluciones ®?,

1
oty =5 (kxx gyt e — ki) + 4k§y)

)
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Por lo tanto, hay dos frecuencias posibles para este sistema dependiendo de la eleccién
de signo en esta solucion. Vemos en la formula que ambas soluciones satisfacen o7, €
R. Estas se denominan las frecuencias normales del sistema. Se puede comprobar

que si ponemos k,, = 0 recuperamos las frecuencias que obtuvimos mas arriba.

Todavia nos falta resolver para ¢, y c,. Primero notemos que las ecuaciones determinan
esas magnitudes a menos de una constante multiplicativa. En efecto, si tomamos
cualquier solucion ¢,,c, y multiplicamos ambas magnitudes por el mismo numero,
obtenemos otra solucién. Esto nos permite elegir m(c2 +c§) =1 o en otras palabras
ce = (1/y/m)cosa, ¢, = (1/y/m)sina para algun angulo o. Con esto, las ecuaciones

toman la forma
2 _ : 2 o
(key —m®?) cos ot = —kyysint (kyy —m®?) sin @ = —kyy cos

Reemplazando cualquiera de nuestras soluciones para »? y dividiendo ambas ecua-

ciones se obtiene

2
5 ke —moy ,
tan’ o = ———~
kyy —moy ,

donde se ve que hay dos soluciones a;, correspondientes a las frecuencias wf‘z.
Luego al tomar la raiz cuadrada, cada una de esas frecuencias aparecera con ambos
signos. Con esto, nuestra solucion general para el problema se puede escribir como

1 : : : :
Sx=—=R (cosa (AT + AT e ') +cos (A7 €' + Ay e )

vm
1 . . . .
Sy = ﬁiﬁ(sin o (Af e + AT e ') +sinon (A7 ' + A5 e 1))
donde A7, son constantes arbitrarias que parametrizan una combinacion lineal de las
cuatro soluciones linealmente independientes, y hemos tomado la parte real. Nétese
que ahora la estabilidad o inestabilidad del sistema estara determinada por los valores

reales o imaginarios de ambas frecuencias @ 5.

Ahora bien, las soluciones que hemos obtenido sugieren el cambio de variables

ox = (cos @ Suy +cos oy Suy)

1
vm
1 . .
oy = T (sinay Suy +sinoyp Suy)
m

Podriamos haber comenzado nuestros calculos haciendo este cambio de variables

directamente en el el lagrangiano, que tomaria entonces la forma
1 1
L=¢2 (2 (611% + 6u§) +5 (0f 8ui + @3 6u§))

donde hemos utilizado la relacion entre ;> y tan ;> que escribimos mas arriba. Esto
significa que du; y duy, son dos osciladores armonicos desacoplados, que oscilan

con las dos frecuencias que hemos obtenido. Se denominan los modos normales del
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sistema, y corresponden a rotar 6x y 6y hacia las direcciones de cambio maximo y de

cambio minimo del potencial.

Todo el calculo de esta seccion se puede simplificar si lo escribimos en términos de

matrices. Para eso, ponemos

5x = (8x,8y)
k — kxx kX y
kx}’ kyy

siendo k la matriz hessiana del potencial, es decir la matriz cuyos elementos son las

derivadas segundas de V, evaluada en la solucién. Con esto, el lagrangiano se escribe
L=¢’ <;mgx2 — % gxt -k-gx)
y las ecuaciones de movimiento
m5.jc+ k-8x=0
Lo que se complexifica de manera inmediata
m8C +k-8C=0
usando el Ansatz 52,’ =Ce " tenemos
(k,meI) =0

Esto es una ecuacion de autovalores donde m®? seria un autovalor de la matriz k.
Notese que esta ecuacion determina ¢ a menos de una constante multiplicativa, por lo
que podemos elegir mé’ - ¢ =1 de donde & = (1/y/m)(cos &, sin o) para algin angulo a.

Para que esta ecuacién tenga una solucién no trivial, se tiene que cumplir que
Det (k—mw*1) =0

lo que no es mas que la ecuacion cuadratica en w”> que obtuvimos mas arriba, de
donde despejamos las dos soluciones ;. Esto implica que habra en principio dos

soluciones diferentes para ¢ que podemos llamar ¢ ». Estas soluciones cumplen
k- =mw?id, k- =mw3 ¢,

Multiplicando cada ecuacion por el vector correspondiente ¢; o ¢,, obtenemos
5%72 k- 31,2 = (Dlzfz

de donde vemos que el signo de wfz, y consecuentemente la estabilidad del sistema,
dependeran del signo de ¢ , - k-1 ». Si miramos con atencion el desarrollo de Taylor del

potencial que escribimos mas arriba, podemos comprobar que esta ultima expresion
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corresponde al cambio en el potencial cuando nos alejamos del punto estacionario una
distancia ¢ ». Si este cambio es positivo, es decir si estamos en un minimo de potencial,
entonces ambas frecuencias son reales. Por otro lado si el cambio es negativo, es
decir si estamos en un maximo del potencial, ambas seran imaginarias y aparecera
una inestabilidad. Puede darse también que estemos en un punto silla, y que el cambio
sea positivo para el vector ¢; y negativo para ¢,, implicando que habra estabilidad en

una direccion e inestabilidad en la otra.

Si ahora multiplicamos la primera ecuacion de mas arriba por ¢, y la segunda por ¢; y

las restamos tenemos la relacion

Donde hemos usado que k' = k. Esto implica que si o, # @, entonces ¢; es perpendicular

ad;.
La soluciéon general puede entonces escribirse

—

Sx=R( (ATeiwl[ +A]_e_iw‘t) ¢+ (A;ei“’zt +A2_e_i“’2’) &)
con lo que los modos normales nos quedan escritos segun
gx = 8u1 ¢, +0ur &>
Una vez més, podemos reemplazar en el Lagrangiano
(L2 25 2 lrg2 26 2
L:E‘ §(6M17w15ul)+§(51427(026u2)
Donde hemos obtenido dos osciladores armonicos independientes, cada uno oscilando

con una de las frecuencias normales o, > en las direcciones normales ¢y, c,.

Ahora vamos a generalizar lo que vimos en los ejemplos precedentes en dos direcciones: por
un lado, vamos a agregar un numero arbitrario de coordenadas, y por otro vamos a permitir un

lagrangiano mas general, con la forma
. 1 .
L(di-q1) = 5Kij(qx) 4iq; =V (q:)

donde la matriz K;;(¢gx) es en principio una funcién sélo de las coordenadas. Este lagrangiano
corresponde a un sistema de particulas no relativistas con fuerzas conservativas, sometido a

vinculos holondmicos que ya han sido resueltos mediante coordenadas adaptadas.

Las ecuaciones de movimiento se escriben como

d (JL JdL d IVigr) 109K

— | =)= = 2 (K:; 5. _ a0, =0

7 ( ) qi) P 7 (Kiilax)d)) Jai 2 9g; Y

Estas ecuaciones tienen una solucion estatica ¢; = ¢i°' si el potencial tiene un punto estacionario,
es decir si dV /dq;| 0.

qr=q®' —
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Ahora perturbamos el sistema sacandolo del punto estacionario con una pequefia variacion de las

coordenadas g, = ¢i° + €8¢, En la energia cinética esto nos permite escribir

1 1
K(8di, g + €8qi) = €2 5 Kij (g5 +€8qr) 84:8¢; = € = Kij(qi) 84i8¢,;+ O(¢)’
2 2 2

mjj

Donde la matriz de masas se definié como m;; = K;;(g;°'). Por otro lado en el potencial

av(qsol) 1 a2v(qsol)

sol N — sol k . 2 k S 3

V(gi® +€8qi) =V(qz )“78%- Sqi+e"5 3094, 8qibq;+ 0 (¢)
N———

kij
El término lineal se anula debido a la condicién de punto estacionario, y el término constante no
contribuye a las ecuaciones de movimiento por lo que lo podemos omitir. La matriz de restauracion

es kij = 82V/8q,~8qj|qk=qiol. Con esto el lagrangiano al menor orden en ¢ se lee

1 o 1
L=¢ <2ml~j 84idq; — 2kij54i54j>
De donde se obtienen inmediatamente las ecuaciones de movimiento
mijSin —|—kl~j5qj =0

Complexificando las variables §; = 8¢, +i5G; podemos proponer el Ansatz §; = c;e'®" e inser-

tarlo en la ecuacién. Nos queda
(kij — @’mij) c; =0
o bien, en notacion matricial
(k — a)zm) -¢=0
Esto es una ecuacion de autovalores, la cual tiene una solucion no trivial siempre que el determi-
nante se anule
Det (k— @?m) =0

Si tenemos D coordenadas generalizadas {¢;}, entonces la matriz entre paréntesis tiene D x D
componentes. Esto implica que el determinante sera un polinomio de grado D en los elementos
de la matriz, y por lo tanto es un polinomio de ese grado en la variable »?. Las raices de este
polinomio nos daran los posibles valores de w?, que serian en principio D valores diferentes wf con
i € {1...D}. Para cada uno de estos valores, deberiamos obtener el autovector correspondiente

resolviendo la ecuacion
(k—@?m)-¢;=0

En principio hay D vectores diferentes ¢; con i € {1...D}. Nétese que cada uno de ellos tiene D
componentes ¢;; con j € {1...D}. Se puede probar que estos vectores son reales, y lo asumiremos

en lo que sigue. Si multiplicamos por E} la ecuacion para ¢; tenemos

k=] & m- G
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Si en cambio multiplicamos por ¢ la ecuacion para ¢; nos queda
>t - 2 -t -
Ci-k-¢j=wjic-m-c;
Transponiendo la segunda ecuacion y restandola de la primera
2 2 =t =
(0 —f) (& -m-¢;)=0

Con lo que tenemos que cuando i # j se cumple que ¢! -m-¢; = 0. Esta ecuacién no nos dice
nada del caso i = j, pero dado que los vectores ¢; estan determinados a menos de una constante
multiplicativa, en ese caso podemos definir ¢ - m - ¢; = 1. Podemos resumir estos resultados en la

ecuacion

‘#t‘

Cz m'cj:5,'j

Esto a su vez implica, usando una de las expresiones que escribimos mas arriba, que
=t =2 a2 S
Ci'k-Cj = O 0jj

Poniendo i = j podemos despejar

2_ Girkec
Ei -m- Z",'
Con lo que vemos que el signo de w? esta dado por el signo de ¢ -k-¢;yded;-m-¢.Laprimera
expresion representa la variacion del potencial cuando nos apartamos del punto estacionario una
cantidad 6q; = c;;. Por lo tanto sera positivo si el punto estacionario es un minimo, y negativo
en caso contrario. En este ultimo caso decimos que tenemos una inestabilidad taquidnica. La
segunda expresion representa la energia cinética de una perturbacion con velocidad 64; = c;j, ¥

por lo tanto debe ser positiva para cualquier sistema estable.
La solucion general del problema puede entonces escribirse como
8gj =R((Af " +A7 ) i)
con lo que podemos definir los modos normales segun dq; = c;;éu;, 0 bien en términos matriciales
gq = (?,' 5ui
Reemplazando en el lagrangiano
2 1 ;'t 3 l ot S 2 1 — - . 1 i N
L=¢ §5q m-8q— §5q k-0gq | =¢€ 551@ C;-m-Cj Ouj— Eﬁui C;-k-¢;Ouj

En el primer término podemos usar la relaciéon de ortogonalidad que habiamos obtenido antes
¢ -m-¢;j = &;; mientras que en el segundo término usamos la ecuacién de autovalores ¢ -k-¢; = wJZ 0ij.

Esto nos deja con
|
L= 82; 3 (6u,2 - a)l-25uiz)

Donde por claridad escribimos explicitamente la suma en i. El sistema ha sido descompuesto
entonces en un conjunto de D osciladores armoénicos desacoplados, oscilando con las frecuencias

normales. Estas frecuencias se conocen como el espectro del sistema.
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Nota:

Para tener una interpretacion del resultado que hemos obtenido, imaginemos un sistema

mecanico cualquiera que esta en reposo en alguna de sus posiciones de equilibrio.

Si le aplicamos un estimulo que le entrega una cierta cantidad de energia, sus modos
normales comenzaran a oscilar, cada uno en su frecuencia caracteristica y con una

cierta amplitud que dependera del estimulo y de las particularidades del sistema.

Para dar una forma concreta a esta discusion, consideremos el sistema compuesto
por cuerdas, parches, lengietas, cajas de resonancia y una cierta cantidad de aire

contenido dentro de las mismas. Es decir, un instrumento musical cualquiera.

Se trata de un numero gigantesco de particulas, si quisiéramos tener en cuenta cada
uno de los atomos que constituyen el instrumento. Y sin embargo, el analisis que
acabamos de realizar se aplica, y por lo tanto sabemos que sus pequefas oscilaciones

deben comportarse como predijimos.

Esto nos permite interpretar que los modos normales corresponden a las diferentes
maneras en las que el instrumento puede vibrar, las frecuencias de su espectro de-
terminan los tonos en los que puede sonar, y la amplitud de cada modo establece el

timbre caracteristico que distingue una guitarra de un piano o de un tambor.
En algun sentido, nuestro resultado implica que fodas las cosas estan llenas de musica.

Sin embargo, no cualquier sistema mecanico “suena bien”. Esto se debe a nuestra
propensioén psicoldgica a considerar agradables ciertas combinaciones arménicas
de frecuencias, tales que los cocientes entre frecuencias sucesivas correspondan a
numeros enteros pequenos. El arte del luthier consiste entonces en construir sistemas

mecanicos que tengan el espectro correcto, de modo de satisfacer tal condicion.
Nota:

Una pregunta interesante es cuanta informacion se puede obtener de un dado sistema
mecanico a partir de su espectro. En palabras del matematico Mark Kac “; Se puede

escuchar la forma de un tambor?”.

Esta pregunta, planteada en 1966, fue respondida recién en 1994 cuando Carolyn
Gordon, David Webb, and Scott Wolpert encontraron tambores isoespectrales que

suenan igual a pesar de tener formas diferentes.

12.3 Generalizacion

En esta seccion delinearemos la construccion de las pequefas oscilaciones de un sistema con un
lagrangiano general. Esto incluye los sistemas no auténomos en los que el lagrangiano depende
del tiempo, que se obtienen al considerar fuerzas monogénicas o potenciales dependientes de
las velocidades, o bien sistemas vinculos reénomos. Esto también incluye sistemas en los que la

energia cinética no es cuadratica en las velocidades.
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Ejemplo: caso unidimensional general

Para un sistema unidimensional general que depende de la coordenada generalizada

g, el lagrangiano se escribe

L=L(4,qt)

Vamos a suponer que conocemos una solucion ¢ = ¢(¢), que cumple las ecuaciones

de movimiento de este problema

afor] N\ a
dt aq 4={Ysol aq

Ahora bien, como queremos expandir alrededor de esta solucién, escribimos ¢ =

=0
4=4sol

gsol + €0q y reemplazamos en L para obtener

L=1L] +e& < oL + oL 0 ) +
= ={so i o 4q
e aq 4=Ysol aq 4={sol
51 (82L . L, oL , 3
+e' - | = 0§"+ = 0q +2 — 0q8q | +0(¢g)
2 aqz 4={Ysol aqz 4=Ysol aqaq 4=Ysol

En esta expresion, el primer término no depende de las variables dq y 4 respecto
de las cuales vamos a derivar para obtener las ecuaciones de movimiento, por lo que
no influira en ellas y puede ser omitido. Los términos lineales tampoco influiran en las
ecuaciones de movimiento para dq, porque contribuyen a la ecuacion de Lagrange
para 6¢q con la ecuacion para g evaluada en g = ¢s,), que sabemos que se anula. Esto

nos deja con el lagrangiano al orden mas bajo

1 (%L d°L d°L
q 4=4sol q 4={sol 494 4=Ysol
Este lagrangiano resulta en las ecuaciones de movimiento

d [ J°L d [ J’L d°L
— = Y — == — == 6g=0
dr ( e, q) ’ (dt (aqaq) aqz) o

sol 4=4sol

N———
m(t) k(t)

En otras palabras, terminamos con una ecuacion diferencial lineal de segundo orden
escrita en la forma general de Sturm-Liouville

% <m(t)d;tq> +k(t)6g=0

Esta ecuacion se estudia en los cursos de ecuaciones diferenciales. Aqui solo diremos
que tiene en general dos soluciones linealmente independientes f=(t), y que cualquier

otra solucion se puede escribir como una combinacion lineal de la forma
Sq(t) =ATfH(t)+Af (1)

Notese que aqui + es solo una notacién para distinguir dos soluciones, y no se re-
fiere al signo de ninguna frecuencia, ya que las f*(¢) no son en general funciones

trigonométricas ni exponenciales.
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Aplicando el resultado al caso particular en el que ni m ni k dependen del tiempo, vemos

que la ecuacion recupera la forma de un oscilador armonico
méG+kdg=0

La diferencia con el caso de una particula que se mueve en una dimensién bajo
los efectos de una fuerza conservativa, es que ahora m y k se obtienen a partir del
lagrangiano segun las formulas de arriba. Por supuesto, la solucion estard como antes
dada por la expresion

8q(t) = ﬁiﬁ (ATe " +A e

Y sera oscilatoria siempre que m y k sean positivos. Noétese que ahora hay dos po-
sibles fuentes de inestabilidad, que podrian hacer que @ = \/W fuera imaginario:
podriamos tener k negativo, lo que implicaria un maximo de potencial, o podriamos
tener m negativo, que implicaria que la inestabilidad proviene de la energia cinética. La
primera inestabilidad se llama taquidnica o por taquiones y la segunda se denomina

por fantasmas.

Ahora vamos a generalizar lo que hemos encontrado en el ejemplo al caso de un lagrangiano
sin restricciones que depende de varias coordenadas y velocidades generalizadas, con la forma

L(gi,q:,t). Si tenemos una solucion g, = ¢i°' que cumple las ecuaciones de movimiento

afa] o
dt aq q:q?ol aq

Escribiendo g = q;‘f°' + €dq; y expandiendo el lagrangiano a orden cuadratico en ¢ alrededor de la

sol

solucion, tenemos al orden mas bajo

1 9L
L:822<8‘8 : 56]j56]i>
qi ‘1] qk:qiol

Donde hemos omitido los términos constantes y lineales porque no contribuyen a las ecuaciones

%L

12T
qk:q,i"' 94i9q,

8

=g

de movimiento. Estas ecuaciones toman la forma

oir) + (i (3g02) ~3us)
qkzquI J dt aqqu, 361,361/

mij([) kij(t)

d ( %L
dGidq;

8qj = 0
sol

D=4y,

o en otras palabras

d dégq;

& (ms0 5 ) + 1030, =0

Esto es un conjunto de ecuaciones diferenciales lineales de segundo orden acopladas, en la forma
de Sturm-Liouville. En general no es facil desacoplar esos sistemas para encontrar una solucion,

por lo que se estudian con técnicas numéricas.
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En el caso particular en que ni k;; ni m;; dependan del tiempo, recuperamos la ecuacion con la que

trabajamos en la seccion anterior
mij56'jj+kij5qj =0

Un detalle a tener en cuenta es que ahora la matriz m no tiene por qué ser definida positiva. Por lo
tanto, en la expresion

2 5lt~k~a

! th -m- 8,'
pueden ahora aparecer, ademas de las inestabilidades taquidnicas originadas en el signo nega-
tivo del numerador, otras inestabilidades por fantasmas originadas en un signo negativo en el

denominador.

Resumen

En esta clase hemos aprendido a relajar los vinculos, resolviendo el problema de las pequefias
oscilaciones de un sistema fisico en torno a una posicion de equilibrio. Hemos identificado a los
sistemas estables e inestables, y clasificamos esas inestabilidades como taquiones o fantasmas.
También identificamos el espectro y los modos normales de un sistema, como la solucién a un

problema de autovalores y autovectores.

Dos generalizaciones que no hemos explorado por razones de espacio, pero que se pueden

obtener con los elementos aprendidos aqui, son las siguientes

1. Desarrollo en torno a un punto que no es una solucion:

Por ejemplo, podriamos querer obtener las pequefias oscilaciones alrededor de un minimo
de potencial cuando el potencial depende del tiempo. En este caso, el minimo ¢; = q;“"(t) no
es estatico y por lo tanto tampoco es una solucion. Esto implica que los términos lineales no
desaparecen del lagrangiano para las perturbaciones, resultando en inhomogeneidades en
las ecuaciones de movimiento. Es decir que tenemos un sistema de osciladores forzados. Es
facil probar que el fendémeno de resonancia se producira cuando cualquiera de las frecuencias

normales del sistema coincida con alguna frecuencia de la fuerza forzadora.

2. Desarrollo en 6rdenes mayores de la perturbacion:

Podriamos también querer perturbar mas alla del orden lineal, escribiendo ¢; = ¢° + €8¢g; +
825(2)q,~, desarrollando las ecuaciones de movimiento a orden cuadratico en €. Esto es
exactamente lo que hicimos cuando estudiamos el teorema de Bertrand en la clase sobre el
problema de dos cuerpos. Es facil ver que se obtienen también osciladores forzados, y que

en este caso el fendmeno de resonancia podria generar inestabilidades no lineales.
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13.2

Objetivos

En esta clase estudiaremos un principio general que nos
permitird obtener las ecuaciones de Lagrange a partir de

una sola magnitud fisica denominada accion.

Tal principio nos guiara para generalizar la Mecénica
mas alla de los sistemas de particulas relativistas y no
relativistas con o sin vinculos que venimos estudiando
hasta ahora. Veremos que hay una amplia variedad de
sistemas fisicos cuya estructura granular o de particulas
no resulta distinguible, y que sin embargo se pueden
considerar sistemas mecanicos ya que obedecen las

leyes generales de la Mecanica Analitica.

Por otro lado, seremos en esta clase capaces de vislum-

William Rowan Hamilton

brar los limites de la Mecanica Analitica. Veremos que debe estar necesariamente inscripta dentro

de una teoria mayor que la contenga, imaginando asi la necesidad de una Mecanica Cuantica.

Funcionales y calculo variacional

En esta seccidon vamos a introducir el concepto matematico de funcional, que es una generalizacion

de la idea de funcion. Ademas, vamos a estudiar los fundamentos del calculo variacional que

es el area de las matematicas que amplia el concepto de derivada a estos nuevos objetos. Nos
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motivaremos principalmente en el ejemplo sencillo de la longitud de arco de una curva que une

dos puntos en el plano euclidiano.

Comencemos con la definicion: a los fines de este curso, una funcional F es cualquier aplicacion
que tome una funcién f y nos devuelva un numero. Las funcionales son objetos diferentes de
las funciones que conocemos de los cursos de Analisis. En efecto, una funcién f nos devuelve
un ndmero f(x) para cada valor de la variable x, mientras que una funcional F nos devuelve un
numero F[f] para cada funcion f. Notese que para las funcionales usamos la notacién de corchete

F[f], que se distingue de la notacién de paréntesis f(x) comunmente usada para las funciones.

Ejemplos: algunas funcionales sencillas

Una funcional que usamos todo el tiempo sin llamarla de ese modo es la evaluacion

E,, en un punto xy, definida como

Ex[f] = f(x0)

Para cada funcion f esta funcional nos devuelve un numero f(xq), que es el valor de

la funcioén evaluada en xg.

Una funcional un poco mas compleja se puede definir a partir de una funcion auxiliar

g(x,y) y un punto xo de acuerdo a

F[f] = g(x0, f(x0))

Nuevamente obtenemos un nimero para cada funcion f, que es el valor de la funcién
auxiliar g sobre la curva descripta en el plano por y = f(x), en el punto x,. Si tenemos
varios puntos x,, otra funcional que podemos construir con la misma funcion auxiliar

esta dada por

Flf]= Zg(xmf(xn))

que corresponde a sumar la funcional previa sobre varios puntos del eje x.

Podemos tener funcionales que dependan de varias funciones, o de su valor en varios
puntos. Por ejemplo, dada una funcion auxiliar g(x,, f;,h;) donde hay D variables f; y

otras D variables h; ademas de las variables x,,, podemos definir

F[fl] = Zf(xnafi(xn)vfi(xn+l))

Otra funcional que usamos continuamente desde los cursos basicos sin identificarla

como tal es la integral definida

Flf)= | Fx)dx

Con ayuda de una funcién auxiliar g(x,y), esta funcional se puede generalizar a

Flf = [ st )
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Para otro ejemplo similar de funcional, podemos hacer uso de una funcion auxiliar

g(x,y,z) para escribir

)= | £, (), f () dx

Se hace evidente a partir de estos ejemplos que podemos definir funcionales arbitraria-

mente complicadas.

Ejemplo: la distancia entre dos puntos en el plano

Consideremos una curva arbitraria en el plano que una los puntos (xo,y0) Y (x1,¥1),
como la que se puede ver en la figura[13.2.1] Estamos interesados en medir la longitud

de esa curva.

En el triangulo que se ve en el dibujo, podemos relacionar la longitud de la hipotenusa

con la de sus catetos, usando el teorema de Pitagoras, segun la formula
AR? = AP+ AY?

En el limite en el que Ax y Ay son muy pequefios, podemos usar la forma infinitesimal
dh* = dx* + dy* = dI?

donde en la segunda igualdad aprovechamos el hecho de que la longitud de la hipo-
tenusa es indistinguible de la longitud del fragmento de arco de la curva en el limite
infinitesimal. Si describimos la curva como una funcién y = f(x), entonces de la férmula

anterior deducimos que
di* = (1+ f%)dx*

Esto que nos permite escribir la longitud total simplemente integrando la longitud

infinitesimal de arco a lo largo de toda la curva,

Ly = /X:I \/ 14 f?(x)dx

donde integramos entre el valor inicial xy y el valor final x; de la variable independiente.

La féormula de arriba nos devuelve un nimero L[f] para cada funcién f, es decir que es
una funcional en el sentido que hemos definido. Su dominio son todas las funciones
derivables en el intervalo (xo,x1) tal que la expresion /1 + £’ tenga una integral finita.
Dependiendo de la aplicacion, podemos querer restringir el mencionado dominio. Por
ejemplo, para comparar longitudes de diferentes curvas que unen los mismos puntos,
como haremos en el ejemplo siguiente, nos interesan funciones que cumplan f(xo) = yo

y f(x1) =y1.
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""" - )

R fmin(X) i

Xzi Xoi X1

Figura 13.2.1: Longitud de arco de una curva. La formula para el teorema de Pitagoras aplicada al triangulo
de la figura en su limite infinitesimal nos permite escribir una forma integral para la longitud de
arco de una curva. La recta es la distancia mas corta entre dos puntos, para lo que se deben

comparar curvas que unan los puntos (xy,yo) y (x1,y1)-

En este curso vamos a estar interesados exclusivamente en funcionales de la forma general

¥l = [ 801, i) 0 d

Donde la funcién auxiliar g(f/, f;,x) estara evaluada en las funciones f; y sus derivadas f/, ademas

de la variable x.

Un punto importante a considerar es cual sera el domino de estas funcionales, es decir sobre qué
tipo de funciones actuaran. Es evidente a partir de su definicién que las funcionales del tipo arriba
mencionado solo pueden tomar valores en funciones f; que tengan una derivada f/ y para las
cuales la magnitud g(f7, f;,x) tenga una integral finita entre los puntos x; y x,. Esto restringe el
conjunto de todas las funciones posibles a un subconjunto. En lo que sigue, vamos a limitar aun
mas las funciones sobre las que actuaran nuestras funcionales fijando sus valores en los puntos
inicial y final: nos vamos a limitar a funciones que cumplan que f;(xo) =%y f(x1) =y}

1

Supongamos ahora que estamos interesados en buscar, dentro de tal dominio, las funciones
que maximizan o minimizan el valor de una funcional del tipo arriba definido. Es evidente que
las técnicas que conocemos para encontrar los maximos o minimos de una funcién no son
inmediatamente aplicables aqui. En efecto, no podemos tomar la derivada respecto de la variable
porque la variable misma es una funcidon. Debemos entonces encontrar una generalizacion de la

idea de derivada que se aplique a las funcionales del tipo propuesto.

Ejemplo: distancia mas corta entre dos puntos en el plano

Conocemos la propiedad de la geometria euclidiana que dice que /a distancia mas

corta entre dos puntos es una recta. Sin embargo ¢ podemos probar esta afirmacion?

Supongamos que y = fmin(x) s la curva de menor longitud que une (xp,yo) con (xi,y1).
Entonces cualquier curva perturbada, es decir cualquiera que podamos describir como

¥y = fmin(x) + €8 f(x) con & pequefio, tendra necesariamente una longitud mayor

L[ fmin + €6 f] > L[ fmin]
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Notese que, si bien L[f] es una funcional de la funcion f, una vez que elegimos las
funciones fy 6 f la expresion L[ fmin + €0 f] s una funcion de la variable € en el sentido
usual: devuelve un numero para cada valor de €. Esta observacion nos permite usar lo
que sabemos de los cursos de calculo, expandiendo dicha funcién en potencias de € a

primer orden. Obtenemos

L[ fmin] + € OL > L[ fmin]

donde hemos definido el coeficiente L segun
d
oL = %L[fmin + €6f]
e=0
En la expansion de arriba, si el término lineal en € no es nulo, entonces no estamos
evaluando la funcional en su minimo. En efecto, si una perturbacién parametrizada por
€ hace que el término lineal sea positivo, entonces la perturbacion dada por —e¢ lo hara
negativo, resultando en una longitud menor para la curva perturbada. En conclusion,
la Unica manera de que f, corresponda realmente a la longitud minima es que el

término lineal se anule. Para encontrarlo explicitamente escribimos

L[ fmin +€6f] = /:1 \/1 + (fL,(x) + €8 f(x))%dx

Expandiendo el integrando en potencias de ¢ y reordenando, obtenemos

L[ fmin + €8] = /mdx+8/ i) x) dx+ O(g)*

1+f4%.n

Esto nos permite tomar la derivada respecto de € para identificar 61 en la forma

SL = / ~Inin®) 5 ) e
0 1+fﬁnz.n)

En esta expresion podemos integrar por partes para obtener

SL = r/nin(x) 5f(x) _/x1 r/nin(x)
I+ frin () o\ AR ()

Of(x)dx

X0
Ahora bien, queremos comparar longitudes de diferentes curvas que unen los mismos
puntos (xo,y0) Y (x1,y1). Para esto necesitamos que las curvas parametrizadas por
Y = fumin(%) ¥ ¥ = fmin(x) + €0 f(x) empiecen y terminen en (xo,y0) ¥ (x1,y1), lo que
necesariamente implica la condicién o f(xo) = 6 f(x;) = 0. Con esto, el primer término

se anula y la expresion se reduce a

X1
0L = —/
X0

Es decir que hemos identificado el término lineal SL que escribimos mas arriba. Como

/

fr/nin(x) 5f(x)dx
I+ £ ()

ya discutimos, si la curva y = f,in(x) es realmente la de menor longitud, tiene que
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cumplirse que tal término lineal se anule. Dado que es una integral que tiene que
anularse para cualquier funcién 6 f(x), es necesario que el factor en el integrando se

anule. En otras palabras

/

oL /

It min =0
of  \\J1+12,
Donde hemos definido la derivada variacional §L/6 f de la funcional L[f], que es una
funcién de la variable x. De aqui se puede deducir
fr/nin

VI fo

y por lo tanto f/

min

= constante

=constante. Esto implica necesariamente que la curva y = fi,i,(x) es
una recta, con lo que hemos probado la afirmacién de que /a distancia mas corta entre

dos puntos en el plano es la recta.

Claro que en realidad con este calculo sélo hemos demostrado que la longitud es
estacionaria. Es decir, nuestros razonamientos también funcionan si se tratara de un
maximo. Para determinar que lo que hemos encontrado es realmente de un minimo, se

deja como ejercicio demostrar que la contribucion cuadratica en € es siempre positiva.

En el ejemplo anterior fuimos capaces de encontrar, para la funcional longitud de arco, una
derivada funcional que se comporta de un modo analogo a la derivada de una funcién, anulandose

al evaluarla en el punto estacionario de la funcional.

Asi como no todas las funciones son derivables, lo mismo sucede para las funcionales y no cualquier
funcional posee una derivada funcional. Sin embargo, para la clase particular de funcionales que

definimos mas arriba, el problema tiene una solucién sencilla que exploraremos a continuacion.

Veamos como cambia una funcional de esa clase cuando nos movemos de una funcion f; a una
funcion ligeramente perturbada f; + €6 f;. Notese que tanto la funcion inicial como la perturbada
deben estar en el dominio de la funcional, esto significa que deben tomar los valores y? e y} en los
puntos xg Yy x; respectivamente. Por lo tanto se debe cumplir la restriccion para las variaciones

S fi(xo) = df;(x1) = 0. Reemplazando la funcién perturbada en la funcional, tenemos

Flfi+e6 /)] = /xl g (F(0)+€8£(x). f(x)+£8fi(x),x) dx

X0
Dado que ¢ es por definicidn un parametro pequefio y que las perturbaciones 6 f; son acotadas y

suaves, podemos expandir esta expresion a orden lineal en € para obtener

Fm+fam:3[”gﬂ@xﬁuxndx+

X /9 ;
+8'/xo (a]‘f;(ﬁ(x)»ﬁ(x),x) 8fi(x)+ Tz(ﬂ<x)7ﬁ(x),x) 6fj(x)> dx

En la segunda linea de esta expresién, podemos identificar el coeficiente del término lineal en ¢

como la integral

v = [ (S50 A00 8550 +

98

T (0.0 310 )
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Integrando por partes en el primer término para eliminar las derivadas de § f; obtenemos
_ X1 % / . _ i % / ; .
or— | <afj(ﬁ(x),ﬁ(x),x) 4 <afj(fi(x),f,(x),x) 57, (0)ds 1+

X1

ag / X)X X
n (afjmm ), X8 )) .

La segunda linea se anula dada la restriccién que impusimos para que las funciones perturbadas

se mantengan en el dominio de nuestra funcional d f;(x;) = 6 fi(x,) = 0. Es decir que la contribu-
cion lineal a la variacion de nuestra funcional vendra dada por la primera linea. Para que esta
contribucion se anule cualquiera sea la variacién 6 f;, es condicion necesaria que el integrando se

anule, es decir

0F Jdg d (dg .
= ) = = (L =0
Donde hemos identificado la derivada variacional de nuestra funcional. Nétese la similitud de esta
expresion con las ecuaciones de Lagrange, algo que explotaremos un poco mas adelante en esta

clase.

Ejemplo: distancia mas corta entre dos puntos en el espacio tridimensional

Probaremos ahora que la distancia mas corta entre dos puntos en el espacio tridimen-

sional también es una recta.

Dada una curva cualquiera que une los puntos 7y = (xo,¥0,20) ¥ 71 = (x1,¥1,21) en el
espacio, la podemos parametrizar como 7 = (x(7),y(7),z(7)). Vamos a limitarnos a
curvas suaves y que no se vayan a infinito en ningun punto, con lo que x, y, z son
funciones continuas y finitas con derivada finita del parametro 7. Ademas, deben cumplir
que x(10) = x0, ¥(%0) = yo, 2(t%0) =20 Y x(71) = x1, ¥(11) = y1, z(71) = z1. Por otro lado,

usando el teorema de Pitagoras en tres dimensiones, tenemos que
dl = +/x"? +y/2 +Z'2 drt

Entonces podemos escribir la longitud de una curva cualquiera como

Ly = [ 32 (0) +y2(0) +22(e) e

donde vemos que se obtiene una funcional del tipo especial para el cual pudimos definir
una derivada variacional mas arriba, y que estamos evaluandola en un conjunto de
funciones con las limitaciones de nuestro caso. Aqui la variable x de nuestra férmula
general corresponde al parametro 7, y las funciones f; son tres y estan dadas por x, y,
z, mientras que la funcién auxiliar esta dada por g(x',y’,7') = /X2 +y2 + 72

Con esto, tenemos que la contribucién lineal a la variacion de nuestra funcional se

anulara cuando se anulen las derivadas variacionales

_d (e e (& \_
Sx dt \ox ox  \\Jx21y2+72)
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g’ enty

glient

== TTayectoria real, accién estacionaria

Trayectorias perturbadas

Figura 13.2.2: Principio de accién estacionaria. La trayectoria real del sistema entre un punto q? en el instante
to y un punto q} en el instante t, corresponde de entre todas las trayectorias posibles a aquélla

que hace que la accion sea estacionaria.

sL_d o\ 2 (v \_,
8y dt\dy) dy \\?4y2+7%)

SL_d(ag\ (2 \_,
6z dt\d7Z) dz \ /W2ty iz2)
Esto implica que las cantidades entre paréntesis deben ser constantes, y por lo tanto

las magnitudes x’,y, 7’ también lo son. Esto necesariamente resulta en que la curva en

cuestion es una recta que une los puntos inicial y final.

Nuevamente, esto solo prueba que para la recta la distancia es estacionaria, pero no
demuestra que se trate realmente de un minimo, podria ser un maximo o un punto silla.
Para terminar la demostracion se deja como ejercicio escribir la contribucion cuadratica

y probar que es positiva.

Ejercicio:

Encontrar la funcidén 6 que hace estacionaria la funcional que mide la longitud de un

arco de una curva dibujada sobre una esfera, que se define como

L[6] = /:l 1 +sin2 ¢ 02(9)do

con las condiciones 0(¢y) = 6y y 8(¢;) = 6;. Identifique entre las soluciones cuales son
los maximos y cuales los minimos de la funcional a qué curvas corresponden sobre

la esfera?
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Principio de Hamilton de accién estacionaria

Hasta ahora hemos escrito las ecuaciones de Lagrange a partir de un lagrangiano L(q;,q;,?)

siguiendo la regla que obtuvimos en las primeras clases

afoy o,
dt \dq;) dqi

Una pregunta natural que podriamos hacernos es ¢ cual es el origen de esta regla? ;Existe acaso
algun principio mas fundamental que desemboque en esa combinacién particular de derivadas del

lagrangiano y no en otra?

Para tratar de responder esta cuestion, comenzamos definiendo la accion S[g;] de un sistema
mecanico que se mueve entre la posicion q? en el instante ¢ y la posicion q} en el instante ¢,

segun la integral

|

S[‘]i} = L(qi(t)vqi(t)vt)dt

fo
Esta integral sera un ndmero real, que sera diferente para diferentes curvas ¢;(t) que unan

los mismos puntos ¢? y ¢!. Si identificamos el tiempo con nuestra variable x, las coordenadas
generalizadas ¢;(¢) con las funciones f;(x), y el lagrangiano L(4;,qi,t) con nuestra funcién auxiliar
g(f!, fi,x), la accion es una funcional de la forma general que estudiamos mas arriba. Su derivada
variacional toma entonces la forma
0S d (JL dL
sa i (50) 3
De donde vemos que las ecuaciones de Lagrange no son sino la condicion de que la derivada

variacional se anule. En otras palabras, los sistemas fisicos siguen las trayectorias que hacen que

Su accion sea estacionaria.

En una primera impresién, el principio de accion estacionaria puede parecer un poco anti-intuitivo.
En efecto, para seleccionar de entre todas las trayectorias aquélla que hace que la accién sea
estacionaria, el sistema deberia de algun modo tener acceso a la informacién sobre el valor de la

accién en todas las trayectorias posibles, incluso aquéllas que no recorrid.

Para explorar un poco mas esta paradoja, analicemos otra instancia de la fisica en la cual aparece

un principio similar.

Ejemplo: el principio de Fermat del tiempo minimo

En optica geométrica existe una ley que reza que un rayo de luz selecciona el camino

que minimiza el tiempo que le toma llegar desde su origen hasta su destino.

La velocidad la luz en un medio material esta dada por v = c¢/n(¥) donde n(¥) es el indicie
de refraccién, que puede en principio variar de punto a punto. Tenemos entonces que
el tiempo T que le toma a un rayo de luz llegar desde un punto 7y a un punto 7, estara

dado por

L de
- [
o Vv
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Si parametrizamos la trayectoria del rayo como 7(s) en términos de un parametro real
s, entonces el tiempo pasa a ser una funcional de 7(s) con la forma
- il —
T[] = / —n(7(s)) |7 (s)| ds
S0 c
Vemos entonces que, al pedir que el tiempo sea minimo, las ecuaciones resultantes

no seran otra cosa que la condicién de que se anule la derivada funcional de T[7].

Ejemplo: ley de Snell

Una de las consecuencias del principio del tiempo minimo, para la forma particular de
la funcién n(7) que describe una interface entre dos medios, es lo que en los cursos
basicos se estudia como ley de Snell. Para demostrarla, escribamos

”(XO’,Z):”O paraZ>0

n(x,y,z) =
n(x,y,z) =n paraz <0

En este caso la funcional tiempo que definimos arriba se puede escribir

- ny [Fint ny [
T[F(s)] = —/ |?’(s)| ds+ 7/ |r'(s)‘ ds
C Jso C JIsint
Donde s;.. es el valor del parametro s para el cual el rayo cruza desde la region superior
z>0alainferior z < 0. Comparando con la férmula del ejemplo anterior para la longitud

de una curva en el espacio tridimensional, vemos que
- no ni
T[r(s)} = ? L(S(),Sint) + ? L(Sint,sl)

Siendo L(s,5) la longitud de la curva como funcion de los valores extremos s y § del
parametro. Ambos términos seran minimos cuando la curva que va de 7(s) a 7(§) sea

una recta. Esto nos da
. nop ., nr. oo
T(Fint) = — [Po — Fint| + — |1 — Fint|
C C

Donde al reemplazar los tramos z > 0 y z < 0 con rectas, hemos reducido la funcional
tiempo a una funcién del punto intermedio 7;,;. Eligiendo el sistema de coordenadas tal

que el plano yz corresponde al que determinan los tres puntos 7,7 y ¥, tenemos

no ni
T(Yint) = <V (Y0 = Yint)? +Z% + o (V1 = Yint)? +Z%

Esto sera un minimo cuando se anule su derivada

dT — Jin — Jin
_ om0 =) o mDi—ye)

dyint C\/(YO—yint)2+Z(2) c\/(ylfyint)erz%

Usando un poco de trigopnometria esto se puede reescribir como

daT
dyint

1
= *(I’losineo —ny Sil’lel) =0

de donde inmediatamente se deduce la ley de Snell.
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=~
S)

s RAyO real, tiempo minimo

Rayos con interferencia

Figura 13.3.1: Principio de Fermat y ley de Snell. De entre todos los rayos de luz que pueden unir el punto
Fo con el punto }vecr, la minima interferencia tiene lugar a lo largo del que cumple la ley de

Snell, que es el que toma tiempo minimo segun el principio de Fermat.

Nuevamente tenemos la situacion un tanto extrafia de que un sistema fisico (en este caso el rayo
de luz) parece conocer el valor que tomaria el tiempo en trayectorias que no ha recorrido, de

manera de seleccionar como su trayectoria real aquélla donde su valor es minimo.

Sin embargo, en el caso de la luz sabemos que la 6ptica geométrica, que nos permite hablar
de rayos de luz que cumplen el principio de Fermat, es sélo una aproximacion. En realidad, la
luz es una onda que se propaga en el campo electromagnético que llena todos los puntos del
espacio, siendo el rayo de luz una aproximacion a la linea de minima interferencia, que sélo es

véalida cuando la longitud de onda es muy pequefia comparada con los obstaculos del entorno.

Por lo anterior, podemos decir que la luz ha realmente explorado todas las trayectorias posibles
para determinar cudl es la del tiempo minimo: se mueve como una onda que llena el espacio y que
interfiere destructivamente en todos lados menos a lo largo de dicha trayectoria. Para entender de

qué modo se realiza dicha exploracién, debemos realizar la aproximacién iconal.

Ejemplo: aproximacion iconal

Imaginemos que queremos resolver la ecuacion de onda en una region del espacio
donde la velocidad de la luz v es constante. Podemos escribir naturalmente una solucion

con forma de onda plana
CI)(?,Z‘) — e—i(wt—](?))

donde @ es el potencial eléctrico, y I(7) es una funcion conocida como iconal, que en
el caso de la onda plana se escribe en términos del vector de onda como (7)) =k - 7.

Noétese que en este caso se cumple que Vi=% y para la segunda derivada tenemos
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V2] =0 porque ¥ es constante.

Ahora bien, sila velocidad de la luz no es constante porque el medio cambia suavemente
sus propiedades de punto a punto, entonces la relacién v|k| = @ implica que el vector
de onda k = VI también cambiara suavemente V -k < k2. En otras palabras, tendremos
un iconal cuyo laplaciano no sera nulo sino muy pequefio V21 < (VI)2. Esto implica

que podemos escribir
V® = —i®VI
V20 = (—iV3 — (VI)?) = —(VI)*®

Reemplazando estas derivadas en la ecuacién de onda, obtenemos
PP —V*V2D = (—? +V (V)P =0

Una solucion de lo cual es
7 dl

I(F) = a)/ — =T
v

donde la integral se calcula a lo largo de una curva cualquiera que une el punto inicial
y el punto final 7. La solucion general de la ecuacioén incluye una superposicion sobre
todas las soluciones que corresponden a las diferentes curvas. Sin embargo, todas
estas curvas interferiran destructivamente entre si, con mas interferencia cuanto mayor
sea su diferencia de camino éptico, que en nuestra solucion esta dada por la diferencia

entre sus correspondientes iconales. Para ver esto, escribamos

P = o i(@=N(r) 4 p=il0i=h(r)

Donde cada término esta calculado segun la férmula de arriba usando curvas distintas,
y los puntos suspensivos recorren todas las posibles curvas. Es facil ver que para
cualquier par de términos tenemos I, — I} = Al siendo Al la diferencia de camino 6ptico

entre las curvas. Entonces podemos escribir
q) — e*l’(wlflmin(}’))(l + eiAI] + .. )

Donde I,,,;, es la solucion para la cual el iconal es minimo, y la suma recorre los diferentes
Al entre cualquier otra curva y la que corresponde a I,;,. Todos estos términos tienen
una fase no nula y por lo tanto contribuyen a la suma con un nimero de médulo menor
que uno y que cambia de signo a medida que recorremos diferentes curvas. Esto

resulta en una cancelacién que solo deja el prefactor que contiene I,,i,.

Es decir que la solucién que tendra menos interferencia sera aquélla cuyo iconal sea
mas pequeno, de donde inmediatamente se deduce el principio de Fermat del tiempo

minimo.
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Volviendo a la mecanica, la consecuencia de la discusion es inmediata: el principio de accion
estacionaria nos sugiere que tiene que existir algun tipo de onda asociada a cualquier sistema
mecanico. Esta onda se propaga en un medio que llena todo el espacio, de modo tal que su
interferencia es minima a lo largo de las trayectorias que minimizan la accién. Es facil imaginar

que se trata de la funcion de onda de Schrodinger.

Es decir que, con conocimientos que ya estaban disponibles durante el siglo XIX, era posible inferir
la existencia de una onda asociada a las particulas materiales. La Mecanica Clasica nos advierte

que debe existir una Mecanica Cuantica.

Nota

La pelicula Arrival (2016) esta basada en el maravilloso cuento del autor estadounidense
Ted Chiang titulado La historia de tu vida. En él, una raza extraterrestre llega a la Tierra,

y una lingtista y un fisico intentan entablar comunicacién con los visitantes.

Los primeros intentos resultan infructuosos, en parte debido al curioso sistema de
escritura de los extraterrestres, donde la frase parece tomar sentido solo después de
terminada, y de la cual nada dice una lectura parcial. Mas aun, al intentar intercambiar
conceptos basicos de fisica, no parece haber entendimiento alguno. La situacién
parece estancada, hasta que el fisico menciona el principio de Fermat, el cual despierta

inmediatamente el interés de los visitantes.

Poco a poco, los investigadores se dan cuenta de que los extraterrestres no perciben
el tiempo como un devenir, sino como una imagen completa y simultanea de toda la

historia de vida de cada individuo.

Al aprender el lenguaje de los extraterrestres, la protagonista comienza a pensar como
ellos, en una realizacion de la tesis linglistica conocida como hipétesis de Whorf-Sapir.
Segun esta idea, el aprender un idioma nos nutre de una visién del mundo que estaba
imbuida en el mismo. Asi, la linglista del cuento experimenta en tiempo presente la

interaccién con una hija que aun no ha nacido.

De ese relato proviene esta hermosa cita, que resume en pocas lineas el sentimiento

de impotencia que genera un hijo que aprende a caminar:

«Cuando aprendas a caminar tendré una demostracion cotidiana de la asimetria de
nuestra relacion. Correras incesantemente de un lado para otro, y cada vez que choques
contra el marco de una puerta o te hagas un arafiazo en la rodilla, sentiré el dolor como
si fuera mio. Serd como si me creciera un miembro errante, una extensién de mi misma
cuyos nervios sensores transmiten el dolor perfectamente, pero cuyos nervios motores
no obedecen en absoluto mis 6rdenes. Es tan injusto: voy a dar a luz un muieco vudu
de mi misma que esta dotado de vida. No vi esto en el contrato cuando me apunté.

¢ Era esto parte del trato?»
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Nota:

Entre sus invaluables contribuciones a la Mecanica, William Rowan Hamilton se ocupé
de la descripcion de las rotaciones en términos de cuaterniones, que hoy es de gran

utilidad en la manipulacién de graficos tridimensionales en los juegos de computadora.

Cuenta la historia que la solucién al problema de multiplicacion de cuaterniones se le
ocurrié a Hamilton mientras paseaba con su esposa por la campifia irlandesa y, para

no olvidarla, la tallé con su navaja en el puente de Brougham.

Una primera consecuencia del principio de minima accion es que las ecuaciones de movimiento no
cambian si sumamos al lagrangiano la derivada total respecto del tiempo de una funcién arbitraria
de las coordenadas y el tiempo. Es decir si escribimos

- . d
L(gi»qist) = L(Gi,qit) + EF(%'J)

con F(g;,t) una funcion cualquiera. Se puede probar directamente que las ecuaciones de Lagrange
resultantes para L son iguales a las que teniamos para L. Sin embargo, es mucho mas sencillo

hacerlo utilizando la accién

Stal = [ Lanarn) = [ () + @) = Sla)] + Flanly

Donde vemos que al evaluar la accion en ¢; + £8¢g; tendremos que
Slgi +€6qi] = S[qi+€8qi] + F(f]nf)\;(l,

ya que los términos con F estan evaluados en los extremos de la trayectoria donde 6¢; = 0. Esto
implica que las derivadas funcionales, que se obtienen del término lineal en ¢, seran iguales. Luego

las ecuaciones de Lagrange que se derivan de §[g;] coincidiran con las que se obtienen de S|g;].

Accion para las ecuaciones de Hamilton

Como vimos en las clases precedentes, el movimiento de un sistema mecanico puede también

ser descripto en términos de ecuaciones de Hamilton, segun

. OH . O0H
Pi= oq: ql*ap[_

Donde H(p;,q;,t) es el hamiltoniano del sistema, a partir del cual podemos obtener un lagrangiano
como la transformada de Legendre del respecto de los impulsos. Para esto, invertimos la primera

ecuacion para obtener p; = w;(¢;,q;,t) y escribimos
L(qjvq]at) :q.iwi(Qjanat)_H(Wi(q.jathat)vqht)

Por supuesto, al usar este lagrangiano en el principio de accion estacionaria obtendremos las
ecuaciones de Lagrange correspondientes. Sin embargo, es natural preguntarnos si podriamos

obtener directamente las ecuaciones de Hamilton a partir de una condicidn de accion estacionaria
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para algun lagrangiano adecuado. Para probar esto, modificamos la formula anterior definiendo

un nuevo lagrangiano de primer orden, segun

Lier(Pjqjyqj:t) = qipi — H(pi, qi 1)

En esta nueva expresion, los impulsos no son funciones de las coordenadas y velocidades sino

que son magnitudes independientes. Podemos usar este lagrangiano en una accion, segun

"
Ster[Pisqil :/z dtLie(pj,qj,q;,1)
J 10

Para obtener las derivadas funcionales de esta accién, tenemos que perturbar no solo las coorde-
nadas ¢; + € d¢; sino también los impulsos p; + € d p;, de modo de poder escribir
d . O0H ;|
Ster[pi +€8pi,qi +€8qi] = Sier[pis il +8/ dt ( (4i—=—)6pi— | pi+5— ) 6qi | + 8qil;!
fo api aCIi 0
Si asumimos que 6¢;(ty) = 84:(t1) = 0, obtenemos la condicion de accion estacionaria en la forma

de las ecuaciones de Hamilton.

Generalizacion de los sistemas mecanicos

Hasta este punto, hemos construido sistemas mecanicos a partir de un conjunto de particulas que
interactian mediante fuerzas bastante generales, y eventualmente imponiendo vinculos sobre
el Lagrangiano resultante. Sin embargo, es licito hacerse la pregunta de si esos son todos los

sistemas mecanicos que pueden existir.

En esta clase hemos aprendido que las ecuaciones de Lagrange que obedecen la totalidad de
los sistemas que conocemos, pueden obtenerse a partir de un principio de accién estacionaria.
En estos sistemas, la accidn esta dada por una funcional de las trayectorias de un tipo bastante

especial.

Llegamos entonces a la siguiente cuestion ;qué pasa si definimos la accion en términos de
funcionales mas generales? ;obtendremos tal vez sistemas mecanicos que no correspondan a

sistemas newtonianos de particulas componentes?

En los ejemplos que siguen veremos algunas posibilidades, junto con sus dificultades y virtudes.

Ejemplo: sistemas en derivadas mayores.

El principio de accion estacionaria permite definir sistemas mecanicos cuyas ecuacio-
nes de movimiento contienen derivadas temporales de orden mayor al segundo. Por
ejemplo, podemos estudiar un sistema cuya accion se lee
1
Slgi] = A dt L(Gi, i, qi»t)
Si tuviéramos que escribir las ecuaciones de movimiento para un lagrangiano depen-

diente de §; no sabriamos cémo hacerlo. Sin embargo, con el principio de accién
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estacionaria el problema se vuelve sencillo: hay que obtener el cambio de la accion a

primer orden bajo la variacioén g;(t) + €d4;(t) y pedir que sea nulo. Para esto hacemos

aL

! . dL JdL
Slai+ e8] =slal+e [ ar ( 580+ 550+ 500,
) i

g aqi
De aqui podemos identificar el coeficiente §S del término lineal en &, el cual después

de algunas integraciones por partes queda escrito en la forma

f d* [ JL d [ JL oL
5= [ a (dﬂ <aq,»>‘dz<aq~i)+aq,»)5‘ﬁ

Donde hemos usado que 6¢;(r1) = 8¢;(r2) = 0 y hemos impuesto la condicién adicional

8q;(t1) = 8¢;(r2) = 0. Las ecuaciones de movimiento resultantes son entonces

IOAN AN
dr? \ 9¢ dt \ dq; dgi

Esto se puede generalizar sin dificultad para sistemas de orden arbitrario.

Sin embargo, un punto interesante es que todos los sistemas de orden superior tienen
una inestabilidad conocida como fantasma de Ostrogradsky que los vuelve poco
utiles para representar situaciones fisicas realistas. No vamos a exponer aqui una

demostracion general, sino solo un ejemplo: sea el sistema

noo1, 1
s= [ di|zg*— ot
/m <2q 50'q

Su ecuacion de movimiento sera, de acuerdo a lo que vimos mas arriba

d451 4
— —a"g=0
dt* 1

Complexificando esta ecuacion y proponiendo la solucién de prueba ¢(t) = ¢/, obtene-
mos w* = a* o en otras palabras = +a y ® = +ia. Es decir que, independientemente
de que o sea real o imaginario, tendremos soluciones exponenciales crecientes, que
corresponden a una inestabilidad. Esto sucede incluso si cambiamos el signo delante

de a* en el lagrangiano.

Se puede probar, realizando una expansién del lagrangiano en torno a una solucién
cualquiera en el estilo de las que investigamos en el capitulo[T2] que esta inestabilidad

aparece de modo completamente general de este tipo de sistemas.

Ejemplo: sistemas no locales en el tiempo.

Otro tipo de sistemas cuyas ecuaciones de movimiento podemos obtener a partir del
principio de minima accién, son sistemas no locales en el tiempo. Supongamos una

accion del tipo

S[Qi] :/ dtdt/L(qi(t>7qi(tl)’Qi(t)’%'(t/)vtatl)

Aqui el lagrangiano depende del estado del sistema en dos tiempos diferentes. De

nuevo, no podriamos escribir sus ecuaciones de Lagrange sin contrar con algun
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principio adicional que nos ayude a determinar su forma. Con el principio de accion
estacionaria en cambio, esto es relativamente sencillo, resultando en las ecuaciones

de movimiento

o () 4 (s =

Donde en L = L(¢;(t"),4i(t),qi(t'"),qi(t),t',t) se han intercambiado ¢ y ¢'.

Sin embargo, estos sistemas tienen problemas de causalidad. Esto se puede ver con

un ejemplo sencillo definido en términos de una funcién K(z,') segln

5 — //dtdt’ (;qz - %K(t,t’)q(t) q(t/)>

La ecuacion de movimiento que se obtiene de aqui es, usando la férmula de mas arriba

() = % / dt' (K(t,1) (') + K (1) (1))

Aqui vemos que la aceleracion de ¢ en el tiempo ¢ depende no sdlo de la historia
pasada del sistema, es decir de ' < ¢, sino también de su historia futura +' > . Esto no
se puede evitar eligiendo de ningiin modo la funcién K(z,#'). Este es un problema que

aparece de manera general en estos sistemas.

Vemos que el principio de accién estacionaria nos permite definir sistemas mecanicos mucho mas
generales que los que veniamos discutiendo, pero que esta libertad trae en general aparejados

diversos problemas que pueden ser dificiles de controlar.

Vamos a ver a continuacion varios ejemplos en los que la generalizacion si funciona, y nos abre la
puerta a un universo de teorias fisicas que se pueden expresar como sistemas mecanicos: las

teorias clasicas de campos.

Ejemplo: ecuaciéon de onda

Supongamos que queremos analizar un sistema que obedece a la ecuacion de ondas

en una dimension

A" —i=0

donde c es la velocidad de la onda. Podria tratarse por ejemplo de las ondas en una
cuerda estirada entre dos soportes, o de las ondas de sonido en un medio material.
Con esta ecuacion podemos conocer el estado del sistema u(x,¢) a partir de su estado
inicial u(x,0). Podriamos entonces imaginarnos que se trata de un sistema mecanico

con coordenadas

ux,1) = qx(t)

Es decir que el indice de coordenada es ahora un indice continuo. Esta interpretacion

hace natural que nos preguntemos ¢ podremos escribir una accion para la ecuacion de
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ondas? Deberiamos tener algo con la forma
"
S[gx] =S[u]= [ dtL
Jiy
Dado que la accidn no puede tener dependencia en x, deberia haber una integral en

esta variable, algo asi como

t
S[u]:/ldt/dx.f
fo R

L
Donde hemos escrito al lagrangiano en forma de la integral espacial de una densidad
lagrangiana . . Para intentar darle una forma concreta a esta magnitud, hagamos el
siguiente analisis:
= Las ecuaciones se obtienen tomando derivadas del lagrangiano respecto de las
coordenadas y velocidades generalizadas. Es decir que si la ecuacién es lineal,

la accidn no puede tener potencias superiores a la cuadratica.

= Todos los términos de la accion deben tener las mismas unidades, es decir que si

incluimos un término con % debe estar combiando con c2u2.

= La ecuacion no tiene un términos sin derivadas, por lo que no debemos incluir en

la accion términos que dependan solo de u.

= Si pusiéramos términos cruzados «'u 0 u1u 0 u'n aparecerian terminos de primer

orden en derivadas o con derivadas segundas.

Con todo esto, podemos proponer la siguiente forma para la accién

1 o
S[u] = 5/ dtdx (lefczulz)
|
—————

7
Para comprobar que de su variacion se obtiene la ecuacién de onda, la evaluamos en
u+ edu y desarrollamos en potencias de €, obteniendo
1 2
Slu+edu) =S[u]+¢ [ didx (i6u—cu' Su')
fo
con lo que podemos aislar el término lineal en la forma
1 2
08 = drdx (L't&l—c u'5u’)
fo

Integrando por partes en ambos términos, obtenemos
t
6S = / drdx (Gu” —ii) 5u+/dx(u5u)|;(’) +c? /dt(u/&t)\ﬁ(‘)
) «

y usando el hecho de que las variaciones deben anularse en el instante inicial y final,

es decir que du(x,7) = du(x,#;) = 0 para cualquier valor de x, tenemos

t
ss= [ drdx (Fu” —ii) 6u+c2/dt(u’6u) n=0

fo
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Pero dado que éu es una funcién arbitraria, esto implica que para que 6S se anule

deben anularse los factores dentro de cada integrando. En otras palabras
u’ —i=0
(W 8u)[3 =0

Con lo que hemos tenido éxito en obtener la ecuacién de onda a partir de nuestra
accion, pero ademas obtuvimos una condiciéon de contorno en los extremos de la
cuerda en la cual se propaga la onda. Esta condicidon se puede resolver pidiendo que

se cumpla
u (x0) =u'(x1) =0

lo que corresponde a imponer condiciones de contorno de Neumann. Otra opcion es

pedir que las variaciones du cumplan la restricciéon
Ou(xo) = du(x;) =0
lo que se resuelve en términos de dos constantes uy y u; en la forma

u(xo) = uop u(xy) =wu
con lo que vemos que no es otra cosa que imponer condiciones de contorno de Dirichlet.

En otras palabras, la condicién de accién estacionara para la accion que hemos
propuesto mas arriba no solo resulta en la ecuacién de onda, sino también sus posibles
condiciones de contorno. Nétese que hubiérmos podido incluir términos de borde en
nuestra accion original, que solo dependieran de los valores de u en xy y x1, y en tal

caso hubiéramos obtenido condiciones de contorno diferentes.

Ejercicio: ecuacion de onda en tres dimensiones

Pruebe que la ecuacién de onda en tres dimensiones se puede obtener de la accién

/ d xdt cz(ﬁu)z)

La integral espacial esta calculada dentro de una region del espacio Q ¢ cuales seran
las condiciones de contorno resultantes de esta accion en el borde dQ de dicha region

espacial?

Ejemplo: accidn para las ecuaciones de Maxwell

El tipo de accidn que escribimos para la ecuacion de onda se puede formular también
para sistemas continuos mas generales. Por ejemplo, para el electromagnetismo

podemos proponer una accioén de la forma

U DA T
= /dxdt CB2 /dxdt <V‘I’+catA) 7E(V XA)Z
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Donde estamos integrando en una region tridimensional del espacio que hemos llamado
Q. Para encontrar el punto estacionario de esta funcional escribimos A+ edA yd+e69P,

con lo cual
55 = /d3xdt (E-6F ~cB. 55)
= /d3xdt <E <65¢+ ia,a;x‘) —B-(Vx 524‘))

Integrando por partes todas las derivadas, y usando el hecho de que 84 se anula en

los instantes inicial y final, tenemos
o o 1en = o S /o .
8Sz/d3xdt (V~E6<I>+6A~(C8,E—V><B)>+/a drdS- (E 5+ 67 x B)
Q

donde la notacién dQ significa el borde de la region Q. De aqui se deducen la ecuaciones

de Maxwell

(e

junto con las condiciones de contorno
E-18®|30=0 (B x 1) 84|50 =0

donde 7 es un vector unitario perpendicular al borde 9Q. Estas se pueden traducir en

condiciones de conductor perfecto
D[y = Po Alpe = Ao
o de dieléctrico perfecto
E-ii|yq =0 (Bxit)|aq =0

En otras palabras, el principio de accion estacionaria nos permite considerar al electro-

magnetismo como un sistema mecanico con coordenadas {g.} = {®(x),A,(x)}.

Ejercicio: densidades de carga y corriente

Pruebe que si quisiéramos incluir una densidad de carga p y una densidad de corriente

j en las ecuaciones de Maxwell, la accién correcta vendria dada por
1 " = = 1 - =
5=3 /d3xdt (Ez—ch—i—(I)p - A-j>
. C

Ejemplo: ecuacion de Schrédinger libre
Otro ejemplo de un sistema continuo es el aquél cuyas ecuaciones de movimiento se

obtienen a partir de la condicion de punto estacionario de la accién

. 52 . .
S= /d3xdt (vw-vqf* - ma,ww*)
) 2m
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donde ¥ es una coordenada generalizada compleja. La accion debe derivarse respecto
de la parte real y la parte imaginaria de ¥, o equivalentemente respecto de ¥ y de W*.
Esto resulta en
oo = =
S = /d3xdz <2m (V‘P VW + Vo V‘P*) i (5O + W 5\?*))
Integrando por partes y reordenando
. ﬁ2 hZ
8S = /d3xdt ((—Vz‘l‘— ﬁiatlp> SW* 4 (—VZ‘P* +ﬁi8t‘l‘*) 5\}') +
2m 2m
+ / drds- (swﬁ\pww*%\y)
Joo
De donde sale la ecuacion de Schrédinger para una particula libre
ﬁ2
— — VW = g, ¥
m
(y su conjugada compleja) junto con las condiciones de contorno

SPVY* ity =0

(y su conjugada compleja). Esta condicién se puede escribir como la que corresponde

a una pared infinita de potencial
P50 =0

En otras palabras la ecuacién de Schrédinger, que describe la funcion de onda cuantica
de una particula, es en si misma un sistema mecanico clasico. Esta observacion, que
puede en principio parecer un poco paradojica, da origen a la Teoria Cuantica de
Campos, que se aplica extensivamente en fisica de particulas y en el area de materia

condensada, para describir sistemas cuanticos locales.

Ejercicio: ecuacion de Schrédinger con un potencial

Pruebe que la ecuacion de Schrédinger en presencia de un potencial V (¥) se obtiene a
partir de la accion
[
S= /d3xdt (2m V. V¥* — hid, ¥ P* —i—V(?)‘P‘I‘*)
Si estamos describiendo una particula cargada tenemos que V (¥) = e®(7) siendo e la
carga de la particula y ®(7) el potencial eléctrico s qué sucede si sumamos esta accion

a la que escribimos mas arriba para las ecuaciones de Maxwell?

Todos los ejemplos anteriores corresponden a sistemas continuos, es decir aquéllos donde las
coordenadas son campos que toman un valor en cada punto del espacio. En el caso general, si

tenemos un conjunto arbitrario de campos g, (7,t), la accion se escribira

-

S[qn] :/d3xdt$(qn(?’t)7alqn(?7t)avqn(?at)v?at)
Q
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en términos de una densidad lagrangiana z(qn,a,qnﬁq,,,f,z), integrada en la region espacial Q
en la que esté definido el sistema. Las ecuaciones de Lagrange resultantes del principio de accién

estacionaria para este sistema toman la forma

a0z N 2 ( 0z ar
ot 8(aIQn) dx, a(dﬂn) a‘]ni

y deben ser suplementadas con las condiciones de contorno

i 97 s
aa(aaqn) QH

donde 71 es un vector normal al borde de la regién Q.

Ejercicio: condiciones de borde arbitrarias

Pruebe que sumando a la accién un término evaluado en el borde
88 = [ _drdS, (Hip(an(F.0).7.0) aa(F.t) + Sl a(Fo1) Fo1)

con g (qn,7,1) Y Zu(qn,7,t) funciones de los campos, las coordenadas y el tiempo, las

condiciones de contorno se modifican. Escriba la forma resultante de las mismas.

13.4 Resumen

Hemos investigado el principio de accién estacionaria, que permite encontrar las ecuaciones de
Lagrange como las que corresponden al punto estacionario de una funcional accién, que esta

definida como la integral temporal del lagrangiano.

Vimos que este principio hace evidente que la mecanica de Newton debe necesariamente estar
contenida dentro de una teoria de ondas, como el limite de optica geométrica en el que las

trayectorias de las particulas corresponden a los rayos.

Usamos el principio de accidn estacionaria para proponer generalizaciones de la mecanica mas alla
de la mecanica de particulas. Vimos que varias de esas generalizaciones conducen a situaciones
fisicamente irreales. Sin embargo, vimos encontramos también una de ellas, la generalizacién
a sistemas continuos, que nos permite englobar dentro de los sistemas mecanicos una enorme

variedad de teorias fisicas.




14.1

14.2

Objetivos

En esta clase definiremos la idea de simetria de un sis-

tema mecanico y estudiaremos sus consecuencias.

En particular, estaremos interesados en formalizar la
relacion entre simetrias y cantidades conservadas que
mencionamos en varias ocasiones en las clases previas.
Para esto, formularemos y aplicaremos el teorema de
Noether, que nos permitirda comprender las leyes de con-
servacion de la naturaleza desde una éptica mucho mas

general.

Los resultados que presentaremos aqui se encuentran
entre los mas importantes de la fisica tedrica, trascendien-
do ampliamente el area de la Mecanica y aplicandose en

contextos mucho mas generales.

Simetrias

Motivemos la idea intuitiva de simetria con una situacion hipotética sencilla. Un jugador de futbol
patea una pelota en direccién al arco. Si la pelota es esférica, esperamos que el resultado sea el
mismo independientemente de si la hacemos girar o no unos pocos grados antes del puntapié. Si

el resultado fuera diferente luego de tal rotacion, diriamos que la pelota esta ovalada, es decir que

ha perdido su caracter simétrico.

Emmy Noether
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El ejemplo pone de manifiesto que la idea de simetria esta asociada a la insensibilidad de un
sistema fisico frene a alguna transformacién: el sistema evoluciona exactamente del mismo modo,

independientemente de si aplicamos o no la transformacion antes del inicio del movimiento.

Esto se puede formalizar como sigue: una simetria de un sistema mecanico es un cambio de
coordenadas g;(t) — §i(t) = si(q;(t),t) que conmuta con la evolucion temporal. Esta definicion

puede entenderse en el siguiente esquema

cambio de variables

qi(t) ———— Gi(t) = si(q;(1),1)

evolucién temporal l l

qi(t+08t) ——— —  Gi(t+61) =si(q(t + 6t),1 + O1)

O sea que si hacemos el cambio de variables en el instante ¢, y luego dejamos evolucionar el
sistema, obtenemos después de un cierto tiempo 67 el mismo valor para las nuevas variables
que hubiéramos obtenido de transformar las variables originales directamente en ese instante.
Podriamos decir que el sistema no reacciona al cambio de variables, resultando en la misma

configuracién tanto si lo hemos realizado antes de la evolucién, como si lo hacemos después.

En términos de las ecuaciones de movimiento, la definicion implica que las coordenadas transforma-
das g; deben evolucionar con las mismas ecuaciones que las coordenadas originales g;. Sabemos
de la clase previa que esto sucede cuando el lagrangiano para las g; difiere del lagrangiano para

las g; en una derivada total

L. . d
L(CIhQiJ) :L(Qi7qiat) +EF(QI7I)

Siendo F(g;,t) alguna funcién que dependera del cual sea el cambio de variables en cuestion. En

términos de la accion, se debe cumplir que
S(Gi] = Slail + F(qi(1),0) [

Las simetrias pueden ser discretas, es decir definidas a través de un cambio de variables del tipo
qi — Gi = si(qi1)

donde s;(g;,t) es una funcién determinada. Las simetrias también pueden ser continuas, si el

cambio de variables tiene la forma
qi — Gi = si(qi,1; €)

donde ahora la funcion s;(g;,t; €) depende de un parametro real €. Si para un valor dado del

parametro, que sin pérdida de generalidad podemos elegir como ¢ = 0, la transformacién es la
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identidad s;(g;,7; 0) = ¢; entonces decimos que la transformacion dada por s;(g;,t; €) €s conexa con

la identidad. Esto nos permite desarrollar en potencias del parametro ¢
qi = §i = qi+€8i(gi,1) + O (€)°

En esta expresion, las funciones g;(g;,¢) que determinan el primer orden del desarrollo se llaman

los generadores de la simetria.

Teorema de Noether

En el caso de las simetrias continuas. el hecho de que la accién es invariante a menos de una

derivada total tiene consecuencias muy importantes y Utiles. En efecto, si escribimos
1
Slgil = Slai+€gi] = t L(gi+€8i(gi:1), gi +€8i(qist), 1)
0

En esta expresion podemos expandir el lagrangiano a primer orden en el parametro infinitesimal €,
para obtener
g 1 dL JdL
S”’. — L '.7 ‘,t 8/ - O 4’1‘ - o ',t
1= [ tlawgnve [ (Gatan+ Goutan)

El primer término no es otra cosa que S[g;]. En cuanto al segundo, podemos integrarlo por partes

para eliminar la derivada temporal que acttuia sobre los generadores. Esto resulta en la expresiéon

e 1 d (JdL oL o % '
S[Qi] —S[Qz]+8/tl <_dl‘ (aﬁh) +a¢]z) gl(QHI)_'_S (aqigl(%J))

Observemos aqui que la expresion en paréntesis bajo el signo integral se anula cuando se

5]

1A

satisfacen las ecuaciones de movimiento. Por lo tanto, evaluada en las soluciones la expresion
toma la forma

[5)

Sl = Siail + ¢ (j;;gxqi,r))

I
Comparando con la expresion que habiamos escrito mas arriba para la accion transformada,
podemos identificar los términos de borde que antes habiamos habiamos expresado en términos

de nuestra funcion F(g;,7). Tenemos que

JdL
€ ((g%gi(Qiat)>

lo que se puede reordenar como
(8((3;gi(qz',f)F(qz‘,f)> = (Egc;gi(qz‘,f)F(%‘,f))

Es decir que la magnitud entre paréntesis se conserva durante la evolucion temporal. Esta magnitud

15}

= F(qiat) Z

I

3 5]

se llama carga conservada asociada a la simetria g;(q;,t), y se denota como

JdL
C= ETf;,-gi(qi’t) —F(gi,1)
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La construccion que hemos realizado se denomina teorema de Noether y esta entre los resultados
mas trascendentes del curso de Mecanica Analitica. Lo que dice este teorema es que cada vez
que haya una simetria continua en un sistema fisico, existira una magnitud que se conserva a lo

largo de toda su evolucién temporal.

Vamos ahora a enumerar algunos ejemplos de aplicacion del teorema de Noether, que nos llevaran

a revisitar resultados de los cursos basicos de fisica bajo esta nueva éptica.

Dado un sistema fisico definido a partir de su lagrangiano, la receta general consiste en identificar
sus simetrias continuas y escribir su forma infinitesimal. De este modo podemos aislar sus genera-
dores g;(gi,7) y observar qué forma toma el término de borde F(g;,7). Con estos dos elementos,

estamos en condiciones de escribir la cantidad conservada C usando la formula de mas arriba.

Ejemplo: invarianza traslacional

Supongamos una particula no relativista descripta por las coordenadas cartesianas x,
gue se mueve de acuerdo a un lagrangiano de la forma

1
L:Emﬁ—V&d

Vamos a suponer que el lagrangiano es invariante bajo una transformacion de traslacion
Xq —> Xy = X4+ ETiy
donde 7t es un vector unitario que nos indica la direccion de la traslacion, y € es un

parametro que toma valores reales arbitrarios.

Esta invarianza es inmediatamente cierta para el término cinético, ya que la velocidad no
cambia al sumar a x, una constante %, = x,, y para el potencial implica que V (x, + €71,) =
V(x,). Para entender el significado de esta condicién, escribamos

v S
Vixg+emg) —V(xg) = efzag =—€en-F=0
a

En otras palabras, que el potencial sea invariante frente a traslaciones en la direccién
7 implica que la fuerza en esa direccion se anula.
Si ahora reemplazamos el cambio de coordenadas directamente en la accion, vemos
que se cumple

Slxa) = S[%d]
Por lo tanto tenemos el caso particular de una simetria para la cual el término de borde
se anula F(x,,t) =0.
Para obtener explicitamente el generador, escribimos la forma infinitesimal de la trans-

formacion segun

fu:xcz‘i’gga(xbat) con gu(xb7t) = Tia
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Con esto se puede escribir inmediatamente la carga conservada de acuerdo a la

formula que obtuvimos mas arriba, en la forma

v oo

oL
C=¢€——gu(xp,t) —F(xp,t) = €ligmx, = EN- P
0%,

de donde vemos que hemos recuperado la ley de conservacion del momento lineal:
cuando la fuerza en una direccidon cartesiana se anula, el momento lineal en esa

direccion se conserva.

Notese que la reformulacion que hemos obtenido tiene un significado mucho mas abar-
cativo: relaciona la conservacion del impulso lineal en una dada direccion del espacio
con la invarianza de traslaciones en esa misma direccion. Se deduce inmediatamente
que cada vez que exista invarianza de traslaciones, independientemente del sistema
fisico particular que estamos analizando, existira un analogo al impulso lineal para ese

sistema, que se conservara a medida que transcurre el movimiento.

Ejemplo: coordenadas ciclicas

El resultado anterior se puede generalizar de un modo muy sencillo para dar cuenta de
la conservacion del momento generalizado asociado a una coordenada generalizada
que es ciclica. En efecto, una traslacion en una coordenada generalizada ¢; se puede

escribir como
q9i —~qdi=qit+€

Considerar € como una variable infinitesimal nos permite identificar el generador, de

acuerdo a

gi = qi + €8i(qi,1) con  gi(gi,t) =1

Ahora bien, dado que la coordenada es ciclica, entonces el lagrangiano es invariante
bajo esta transformacion. Esto resulta en que la acciéon también es invariante, por lo que
la funcién F(q;,t) sera nula. Con esto, la carga conservada asociada a esta invarianza

sera
oL
C= 8a7q.igi(51iat) =€p;

En otras palabras: cuando una coordenada generalizada es ciclica, el momento gene-

ralizado correspondiente se conserva.

Conociamos este resultado de las clases anteriores. El punto importante es que aqui
lo hemos reobtenido no mediante examen de las ecuaciones de Lagrange, sino a partir
del teorema de Noether. Es decir, ahora sabemos que la presencia de una coordenada
ciclica implica una simetria frente a traslaciones en esa coordenada, lo que resulta en

una carga conservada.
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Ejemplo: invarianza rotacional

Segun vimos oportunamente, una rotacién en angulo 0 alrededor del eje determinado

por un versor i se escribe usando la férmula
P 7= (F-i1)ii+sin@7i x F4cos O (F— (F-7)#)
Lo cual, aplicado a una particula descripta en coordenadas cartesianas por el vector 7,

implica para su velocidad
F= (F-)ii+sin 0 x F+cos O (F— (7-11) i)
Escribiendo el lagrangiano de dicha particula en la forma

1 .
L= Em?2 V(7

el término de energia cinética queda inmediatamente invariante mi2/2 = m? /2. Por
otro lado, si se cumple que el potencial también queda invariante V (7) = V (¥) podemos
decir que las rotaciones en torno al eje 7i son una simetria del sistema. En particular

esto resulta en que tenemos

—.

S[7] = S[7]
por lo que nuevamente se trata de una simetria con un término de borde nulo F(X,t) = 0.

Para encontrar el generador, desarrollamos la férmula que escribimos mas arriba en

potencias del angulo 6 = 0+ €, obteniendo a primer orden
Xq = Xq+ € EqpelpXe = Xq + €84(X)

En términos del generador g,(x) = €,.npx.. Con esto, podemos escribir la cantidad

conservada, dada por

JL ) _
Ci=¢€ Ox 8a (x) = EMXyEapcNpXe = ENp EgpeXcPa = ETL-L
Xa —_——

(¥xp)p=Ly
Vemos que corresponde a la componente del momento angular a lo largo del eje de

rotacion.

Para entender lo que esto significa, reescribamos la condicion de invarianza del poten-

cial para una rotacion infinitesimal

= v .
V(f) _V(F> = gnbgubcch =en-1=0
xa
N——

T
donde 7 es el torque respecto del origen. Es decir que un potencial invariante frente a

rotaciones alrededor de 7i implica que el torque en esa direccidn se anula.

Esto nos dice que hemos reobtenido la ley de conservacién del momento angular. De
nuevo, el significado es ahora mucho mas profundo: la conservacion del momento
angular se relaciona con la invarianza de rotaciones, y habra un momento angular
conservado en cualquier sistema que tenga tal invarianza, independientemente de la

forma particular de su lagrangiano.
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Ejemplo: invarianza frente a traslaciones temporales

La transformacion de traslacion temporal se define como

t—f=t+e¢

donde ¢ puede tomar cualquier valor real. Nétese que no se trata de una transformacion
de las coordenadas generalizadas del sistema, sino de la variable independiente ¢, que

en la accion cumple el rol de la variable de integracion.

Por lo tanto, no estamos en las condiciones supuestas mas arriba para la aplicacion
del teorema de Noether. En efecto, habiamos definido una simetria como un cambio
en las coordenadas generalizadas que puede eventualmente depender del tiempo,

pero no habiamos incluido la posibilidad de un cambio en el tiempo.

Para resolver esto, podemos promover ¢t a una coordenada generalizada si hacemos
un cambio de variables ¢(t) en términos de un nuevo parametro T que caracteriza
la evolucion temporal y que cumplira el rol de variable de integracion. La accion se

reescribe como

Stand] = [ ae L (Jai(0).a01.000)) = [ de L0021 (0.1(9)

L(gi(7).qi()'(7),1(7))
Con lo que obtenemos un nuevo lagrangiano L, donde ahora r entra en pie de igualdad
con las coordenadas generalizadas ¢;. Es facil demostrar que a partir de las ecuaciones
de Lagrange de este lagrangiano

doL ok d oL oL _

dt dq; dg; dt ot ot
se recuperan las ecuaciones originales en términos de ¢.
Con L podemos construir la carga conservada asociada a la traslaciéon temporal apli-
cando el procedimiento de Noether. Primero identificamos el generador dada la regla

de transformacion
f=t+e¢

de donde se ve que g(g;,t) = 1. Por otro lado el lagrangiano L sera invariante siempre
que el lagrangiano original L sea independiente del tiempo, con lo que obtenemos una

vez mas F(g;,t) = 0. Con esto tenemos para la carga conservada la expresion

oL LY 1L,
C—saﬂ—e<L—|—t 8t’> _s(L—t, quq’)

La ultima expresion se puede reescribir como

dL \ N
C:g<L_aqui> —£(L_pt%) =—¢E

Con lo que la carga conservada es la energia mecanica del sistema, segun la definicion

general que habiamos dado en la seccion[2.2.4]
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De nuevo, un teorema de conservacion que habiamos encontrado simplemente explo-
rando las ecuaciones de movimiento, ahora aparece claramente ligado a una simetria

del sistema mecanico.

Nota:

Segun la visién moderna de la naturaleza, si conocemos las coordenadas generalizadas
de un sistema fisico y las simetrias que las transforman, estaremos en condiciones
de construir un lagrangiano que describa completamente la dinamica, bajo el Unico

requerimiento de que sea invariante frente a las simetrias.

En este sentido, la descripcion mas precisa que tenemos hoy en dia de la estructura
del universo dice que debe ser invariante localmente frente a rotaciones, traslaciones
y tranformaciones de Lorentz. Estas simetrias constituyen el grupo conocido como
SO(3,1) o grupo de Poincaré.

Por otro lado, los experimentos con aceleradores nos permiten elucidar que la fisica a

escala nuclear es invariante frente al grupo SU(3) x SU(2) x U(1).

Combinando esa informacion se construye el lagrangiano para el Modelo Standard de
las Interacciones Fundamentales que permite hacer predicciones muy precisas sobre

la fisica fundamental.

14.3 Resumen

En esta clase formulamos la idea de simetria de un sistema mecanico y demostramos el teorema
de Noether, que dice que cada vez que existe una simetria continua hay una magnitud o carga

que se conserva a lo largo de todo el movimiento.

Este teorema es probablemente el resultado mas trascendente que se aprende durante la Licenci-
tatura. Se generaliza a sistemas continuos dando lugar a la idea de corrientes conservadas. Es un
teorema que sigue valiendo a nivel cuantico, y que yace en la base de la formulacion de todas
las teorias fisicas modernas. Se debe a la matematica alemana Emmy Noether, de quien Albert

Einstein dijo

«La sefiorita Noether fue el genio matematico creativo mas importante que haya existido

desde que comenzo la educacién superior para las mujeres.»

A pesar de esto, por alguna razén Emmy Noether es injustamente olvidada con demasiada

frecuencia en los recuentos del aporte de las mujeres al conocimiento cientifico.
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Objetivos

Comenzamos este curso analizando un sistema de N
particulas en coordenadas generalizadas. Vimos que
cuando las interacciones se restringen a fuerzas que se
pueden derivar de un potencial, eventualmente depen-
diente del tiempo y de las velocidades, el movimiento del

sistema se describe con las ecuaciones de Lagrange.

Vimos mas adelante que las coordenadas generalizadas
nos dejan introducir facilmente vinculos entre las parti-
culas, permitiéndonos entonces describir sistemas mas

generales, tales como los cuerpos rigidos.

Al estudiar las ecuaciones de Lagrange, encontramos

Joseph Liouville

que se pueden obtener a partir del principio de accion

estacionaria. Pudimos usar este principio para generalizar los sistemas a los que podemos aplicar
las leyes de la mecanica. Sin embargo, algunas de estas generalizaciones dieron lugar a sistemas
fisicamente poco realistas (sistemas en derivadas mayores, sistemas no locales), mientras que

otras funcionaron correctamente para describir sistemas reales (sistemas continuos).

Estamos entonces en el punto en el que resulta natural preguntarnos ¢ cual es la caracteristica
definitoria de un sistema mecanico, que nos permitira formular modelos completamente generales
capaces de describir cualquier sistema fisico? En esta clase nos concentraremos en responderla,
analizando primero los sistemas mas sencillos posibles, que son aquéllos cuya evolucién es

discreta, y luego avanzando hacia sistemas mas realistas con evolucion continua.
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Sistemas con configuraciones discretas

Para preguntarnos acerca de las caracteristicas generales de las leyes de evoluciéon, comenzare-
mos en esta seccién analizando los sistemas mas simples posibles, es decir aquéllos que tienen

un conjunto contable de configuraciones discretas.

Leyes de evoluciéon

Un sistema fisico cualquiera tiene un conjunto de configuraciones posibles que podemos observar.
Supongamos que ponemos una etiqueta {a,b,c,...} a cada una de ellas, podemos definir su

espacio de configuraciéon € como el conjunto de todas las etiquetas posibles

Queremos hablar de la evolucion temporal, porque después de todo de eso se trata la Mecanica. Es
decir, queremos ver codmo cambia el sistema de una configuracion a otra a medida que transcurre

el tiempo.

Sin pretender plantearnos una pregunta filoséficamente tan complicada como ¢ qué es el tiempo?,
lo minimo que necesitamos es saber como medirlo. Para esto requerimos un reloj, que es un
sistema fisico cuyas configuraciones estan ordenadas de alguna manera. Por ejemplo, en un reloj
digital las diferentes configuraciones son los valores numeéricos que se ven en la pantalla, y su

orden esta dado por el orden natural de esos numeros.

15:01 15:02 15:03 ...

En un reloj analdgico, el orden estara dado por las sucesivas posiciones de las agujas. Lo importante
para esta discusién es que cualquier sistema cuyas configuraciones estén ordenadas puede cumplir

el rol de un reloj.

Estudiar entonces la evolucion temporal de nuestro sistema, es establecer la correlacién entre las

configuraciones del sistema y las configuraciones del reloj. Podemos resumirla en un cuadro



15.2 Sistemas con configuraciones discretas 217

Configuracion del reloj Configuracioén del sistema
15:01 c
15:02 a

Este cuadro puede leerse como “cuando el reloj marca 15:01 el sistema esta en la configuracion c,

cuando el reloj marca 15:02 el sistema esté en la configuracion a, ...".

Sin embargo, es facil notar que este cuadro contiene informaciéon redundante: la columna de la
izquierda contiene las configuraciones del reloj ordenadas de acuerdo a su orden natural. Es decir
que no necesitamos escribirla, basta con saber cual es el orden de las configuraciones del sistema
para poder recuperar la correlaciéon. Es decir que podemos representar la evoluciéon temporal de la

siguiente manera

At At At

Donde cada globo representa la configuracion del sistema cuando el reloj esta en cada una de sus
configuraciones ordenadas, y la flecha resume la evolucion de una configuracion a la siguiente. El
simbolo At nos dice que durante esa evolucion el reloj “hizo un tic” avanzando a su configuracion

vecina.

Esta evolucién temporal, que para cada configuracion del reloj nos da la configuracion del sistema,

se denomina trayectoria y se puede expresar formalmente como una funcion
Configuracion del sistema = f(Configuracion del reloj)

Con estas definiciones, estamos en condiciones de ponernos a discutir los elementos basicos de

un sistema mecanico.

Podemos comenzar preguntandonos ¢ cual es el sistema mecanico mas sencillo que podemos
imaginar? La respuesta evidente es un sistema que soélo puede estar en una configuracién. Un
buen ejemplo de eso es un clavo en una pared. Si etiquetamos las configuraciones posibles del

clavo con un nombre para cada una, tendremos solamente la configuracion “clavo” definida como:

m clavo = El clavo esta clavado en la pared
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Supongamos que queremos estudiar la correlacion entre las configuraciones de este sistema y las
del reloj ; Cémo sera la evolucion resultante? Es decir ¢ qué trayectorias se pueden presentar?

bueno, eso tiene una respuesta muy sencilla:

Cetan et et >—=—(2)

Es facil determinar qué encontraremos en el lugar de “?” en la siguiente observacién, nada menos
que la configuracion clavo. Por lo tanto, en este sistema sdélo hay una regla de evolucion posible,

que podemos resumir con el grafico

At

Cada vez que el reloj hace un tic, el sistema pasa de la configuracién clavo a la configuracion
clavo. No parece ser un sistema muy divertido, si bien podemos identificar en él los elementos

fundamentales para generalizar la discusion.

Intentemos definir ahora un sistema un poco mas variado, que tenga al menos dos configura-
ciones posibles. Por ejemplo una moneda sobre una mesa, para la cual podemos definir las

configuraciones

1. cara = La moneda tiene la cara hacia arriba

2. ceca = La moneda tiene la cara hacia abajo

Una regla evolucion posible para este sistema es la mas aburrida: que a medida que recorremos

las configuraciones del reloj, la moneda se quede como esta. En ese caso, las trayectorias seran

At At

Caara e Ceara o Caara (1)
Cerea ety et ()
Entonces la regla de evolucion sera: sila moneda muestra la cara, en el siguiente instante mostrara

la cara, si no la muestra, en el siguiente instante tampoco lo hara. Esto se puede simbolizar segin

Regla 1:

Lo que de hecho sigue siendo una regla de evoluciéon extremadamente sencilla.
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Sin embargo, con este sistema que tiene dos configuraciones, podemos imaginar reglas de

evolucion mas complicadas. Por ejemplo, la que viene dada por el siguiente grafico
Regla 2:
At

At

la cual implicaria trayectorias de este tipo

En otras palabras, la regla de evolucién dice que: si la moneda muestra cara, pasa a ocultarla, y si
la oculta, pasa a mostrarla. Sigue siendo una regla simple, pero ya empezamos a ver un poco

mas de estructura.

Reversibilidad y disipacion
Hay otra regla de evolucion posible para el sistema de la moneda sobre la mesa, a saber

Regla 3:

O sea, si la moneda muestra la cara sigue mostrando la cara, si no la muestra pasa a mostrarla.

Esto resulta en las siguientes trayectorias posibles

< <> Coara>—=——()
@

Y hay por supuesto una posibilidad complementaria, a saber

At At

Regla 4:

At
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que resulta en las trayectorias

At At

Coeea " eCeec Ceoear—(3)

@

Sin embargo, estas dos ultimas reglas de evolucion tienen una caracteristica fundamental que las
diferencia de las dos anteriores: si miramos la configuraciéon de la moneda en un dado instante, no

podemos decir en qué configuracion estaba en el instante anterior.

Por ejemplo, supongamos que nos concentramos en el ultimo caso, la regla 4 dice que si la
moneda oculta la cara, queda como esta, pero si la muestra, entonces en el siguiente instante la
ocultara. Pero entonces si observamos la moneda en la configuracion ceca, no podemos afirmar

si en el instante anterior estaba en la configuracién ceca o en la configuracion cara.

En otras palabras, usando estas dos ultimas reglas de evolucién podemos predecir, pero no
podemos retrodecir, no es posible conocer la configuracion anterior del sistema a partir del estado
presente. Es decir que se pierde informacién, aparece una flecha del tiempo que nos dice hacia

donde esta el futuro y hacia dénde esta el pasado.

i
Pasado rempo
Futuro

Este no es el tipo de evolucién temporal que presenta la naturaleza a nivel microscépico. En todos
los sistemas que hemos estudiado la informacion se conserva, no hay una flecha del tiempo, y
es posible tanto predecir el estado futuro a partir del presente, como retrodecir la configuracion

pasada que trajo al sistema hasta el presente.

tiempo

[Pasado] ——

En otras palabras, de las posibles reglas de evolucion que hemos propuesto para la moneda, sélo
las reglas 1 y 2 podrian corresponder a un sistema mecanico microscoépico. Las reglas 3 y 4 son
los ejemplos mas sencillos del fendomeno de disipacion, en donde la informacién se pierde en la

evolucion temporal. Este fendmeno sélo se observa en la naturaleza a nivel macroscoépico.

Una cosa interesante para notar de las cuatro reglas arriba estudiadas, es que podrian formularse
en términos matematicos como sigue. Definamos la variable ¢ = £1 con ¢ = 1 cuando la moneda
esta en la configuracion cara 'y ¢ = —1 cuando la moneda esta en la configuracion ceca. En esta

notacion ¢ denota el estado del reloj, y denotaremos el estado siguiente como ¢ + Ar. En ese caso
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las reglas de evolucion toman la forma:
Regla 1: g(t+At) = q(t)

Regla 2: g(t+At) = —¢(¢)
Regla 3: g(t+At) = ¢(t)?
Regla 4: g(t+At) = —q(t)?

En cada caso, el valor de la variable en ¢ 4+ Ar es una funcién del valor de la variable en t.

q(t+4r) = f(q(1))

En los casos 3 y 4 donde la evolucion era disipativa, la funcién no es invertible. Estas ultimas
observaciones implican que, si bien no es necesario, lo que hemos discutido en esta seccién y lo

gue veremos en las que siguen puede codificarse en formulas ademas de en diagramas.

Ejercicio:
Describa el sistema fisico consistente en un dado cubico. Identifique las configuraciones

posibles y enumere las posibles reglas de evolucion ¢ puede contar cuantas reglas

diferentes hay?

De entre todas las posibles reglas de evolucién, imagine dos que sean retrodecibles,
es decir que permitan recorrer hacia atras la evolucién del dado para determinar el
estado inicial. Dibuje los correspondientes diagramas para las trayectorias posibles y
para la regla de evolucién. Encuentre también dos que sean disipativos, o sea que no

permitan recuperar el estado inicial, y dibuje también los mencionados diagramas.

15.2.3 Configuraciones y estados

En este punto, uno podria preguntarse ¢ no hay acaso mayor riqueza en el sistema que estamos
describiendo? No parece evidente que todas las reglas de evolucién posibles se agoten en
las cuatro que acabamos de enumerar, cuando con casi ningun esfuerzo podemos imaginar

trayectorias més elaboradas.

Por ejemplo, uno podria imaginar la siguiente trayectoria

GGy (e

At At At

At

G (m>  Ead—(3)
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donde la regla seria: dos caras y luego dos cecas. También podriamos tener una trayectoria como

VY

donde la regla es: dos caras y luego una ceca. O bien la que se obtiene a partir de la anterior

la que sigue

intercambiando las configuraciones

At At At
Coecay——rCeeca (oot Coeeay  Coeea )
At At At At
Ceara Ceara

Es decir: una cara y luego dos cecas. Hay varias otras reglas similares que podemos inventar.

¢, Qué pasa con estas trayectorias? ;Existen acaso reglas de evolucion capaces de originarlas?

La cosa se aclara cuando intentamos escribir la regla de evolucién mas claramente. Tomemos por
ejemplo la primera, la regla de evolucion “dos caras y luego dos cecas” puede escribirse como: si
la moneda muestra la cara, y en el instante anterior no lo hacia, entonces en el instante siguiente
seguira mostrando la cara; en cambio si la moneda muestra la cara y en el instante anterior también
lo hacia, entonces en el instante siguiente no lo hara; y lo mismo pasa con la ceca. Es decir que
lo que va a pasar en el siguiente instante depende de lo que pasoé en el instante previo y en el

anterior.

Esta observacién nos lleva a concluir que para poder escribir un grafico que describa esta regla de
evolucién, tenemos que definir los estados del sistema de manera de contener toda la informacion

relevante

1. cara de cara = la moneda muestra cara y en el instante anterior también lo hacia
2. cara de ceca = la moneda muestra cara y en el instante anterior no lo hacia
3. ceca de cara = la moneda no muestra cara y en el instante anterior si lo hacia

4. ceca de ceca = la no moneda muestra cara y en el instante anterior tampoco lo hacia

En ese caso la regla de evolucion se puede representar en el siguiente grafico
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cara de cara
At

ceca de cara

At

ceca de ceca

At

cara de ceca

Con esta regla de evolucion generamos la trayectoria de dos en dos antes mencionada.

Regla 5:

At

Si quisieramos escribirla en términos de una ecuacion, tendriamos que definir una variable para el
estado, que contenga la configuracién presente y la anterior n(¢) = (q(t — At),¢(¢)), donde t— At
representa la configuracion del reloj que precede a la denotada por ¢. Con lo que la ecuacion

quedaria

Regla 5: n(t+Ar) = f(n(t)) siendo f(q1,92) = (92,—q1)

Esta funcién es invertible, lo que coincide con la propiedad evidente de la trayectoria que escribimos
mas arriba de poder recuperar cualquier estado pasado a partir del estado presente. Es decir que

esta regla no presenta disipacion.
Ejercicio:
Imagine reglas no disipativas a partir de los estados que hemos definido para escribir la
Regla 5 4 cuantas reglas no disipativas diferentes se pueden escribir? En otras palabras

¢cuantas funciones invertibles diferentes se pueden escribir de un conjunto de cuatro

elementos en si mismo?

Para lograr una descripcion similar de la trayectoria “dos caras y luego una ceca” se requiere en

cambio definir los estados de la siguiente manera

1. cara de cara = la moneda muestra cara y en el instante anterior también lo hacia
2. cara de ceca = la moneda muestra cara y en el instante anterior no lo hacia

3. ceca = la moneda no muestra cara
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Y entonces la regla de evolucion se puede representar en el siguiente grafico

Regla 6:

cara de cara

At

cara de ceca

con la cual generamos la correspondiente trayectoria muy facilmente. La ecuacion correspondiente

a esta regla se puede escribir en la forma

Regla 6: n(t+At) = f(n(¢)) siendo f(q1,92) = (92, ~4q192)

Nuevamente se trata de una funcioén invertible que permite volver hacia el pasado para recuperar

el estado de partida.
Ejercicio:
Encuentre los estados necesarios para definir la regla de evolucién para la trayectoria

“una cara y luego dos cecas” en forma de un diagrama como el anterior.

Escriba también una funcién que permita codificar la mencionada regla correctamente

en una férmula ¢ Es una funcién invertible?

Lo que los dos ejemplos anteriores muestran es que hay una diferencia entre las configuraciones
posibles del sistema, que en el caso de la moneda serian solamente cara y ceca, y sus estados
posibles, que en el Ultimo caso de la regla 6 vendrian dados por cara de ceca, cara de caray ceca,

y en el caso anterior de la regla 5 por cara de cara, cara de ceca, ceca de cara y ceca de ceca.

El estado del sistema se define como la cantidad minima de informacién que necesitamos para
predecir la evolucién temporal. Hicimos esto evidente en las ecuaciones de evolucién, en las
cuales para predecir el siguiente instante fue necesario definir una variable 11 que contuviera ¢(¢) y

q(t—At).

En general, este tipo de sistemas fisicos discretos tienen un conjunto finito de configuraciones
distinguibles que definen su espacio de configuracién ¢ = {a,b,c,d...}. Las trayectorias son una

sucesion de configuraciones del tipo

@ At . @ At . @ At . @
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Las reglas de evolucion se formulan haciendo referencia a sucesiones finitas de configuraciones
que forman lo que se denomina el espacio de estados del sistema & = {aaa,aab,ab,ac,abc,...}.

Tales reglas se pueden representar segun

Estas reglas pueden ser disipativas si se pierde informacion a lo largo de la evolucion, y en ese caso
no representan la evolucion real de ningun sistema fisico microscépico. Sin embargo, sabemos
que las reglas disipativas si aparecen a nivel macroscopico, o que se puede entender con el
siguiente ejemplo. Supongamos un espacio de configuracion € = {aj,a,...,ay,b} y supongamos

la regla de evolucién

At At

At Al - as At
'\ At

Esta regla de evolucion no presenta flecha del tiempo y es perfectamente aceptable a nivel micros-

®)

copico. Supongamos que las configuraciones ay,a;,...ay son indistinguibles a nivel macroscopico,
llamémoslas a todas a. Entonces veriamos para tiempos cortos, la siguiente regla efectiva de

evolucién

: At

Por supuesto, si esperamos un tiempo lo bastante largo, conocido como tiempo de recurrencia
de Poincaré, el sistema finalmente llegara a la flecha larga del diagrama anterior, y volvera a su

estado inicial b, con lo que veriamos que la dinamica no es realmente disipativa.
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A

n,(t) N, (t+At)

Figura 15.2.1: Discretizacién de un sistema con configuraciones continuas. El espacio se cuadricula en
hipercubos de lado Al y la evolucién temporal se caracteriza en términos de un An(t) que

parametriza el salto a un hipercubo vecino.

Sistemas con configuraciones continuas

Ahora imaginemos que queremos aplicar lo que aprendimos en las secciones anteriores a un
sistema cuyas configuraciones son continuas, es decir que son puntos en un espacio de estados

& descripto por d variables reales {nq}.

Podemos primero transformarlo en un sistema discreto, cuadriculando el espacio R? en pequefios
hipercubos de lado Al situados en ng = ny Al, donde ng con a € {1,...,d} son nUmeros enteros.
Con esto, podemos caracterizar la configuracion del sistema diciendo en cual cubo esta en cada
instante, es decir reemplazando 1 por ny. Asi, hemos construido un sistema discreto del tipo

estudiado anteriormente, y la regla de evoluciéon puede entonces escribirse segun

na(t+At) = fo(ng(t))

Si hacemos que At sea lo suficientemente pequefio, es natural imaginar que el sistema solo pudo

moverse a cubos cercanos. En otras palabras, podemos escribir
N (t+At) = ng(t) +Ang (ng(t))

Donde la variable An(ng) en cada sitio vale cero para todas las direcciones o excepto una, para
la cual vale uno, indicando hacia dénde salté el sistema. Esto se puede reescribir como

Alng(t+A1) —Alng(r) Al
Iy = Ang(ng (1))

Ahora si hacemos a la vez que Ar sea muy pequefo y refinamos nuestra rejilla Al, tenemos que

No ~ ng Al Y ug = AngAl /At y obtenemos

Mo (1) = ua(Mp(t))

donde u, es algun vector en RY que es funcion de 1. Es decir que una descripcion de la regla de
evolucién de nuestro sistema viene dada por un sistema autbnomo de ecuaciones diferenciales

ordinarias de primer orden en el tiempo.
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----------- > R EE TR

Figura 15.3.1: Evolucion en el espacio discretizado. Si la evoluciéon es disipativa (izquierda) a un dado
hipercubo del espacio de estados se puede llegar desde dos hipercubos diferentes. Caso

contrario la evolucién no es disipativa (derecha)

Un punto importante a resaltar es que supusimos que la configuracion n, determina el estado
del sistema. Si el estado y la configuracion fueran diferentes, necesitariamos escribir sistemas

ecuaciones de orden mayor.

Sin embargo, si queremos describir sistemas realistas a nivel microscopico, necesitamos que
las ecuaciones resultantes no determinen una flecha del tiempo, es decir que el sistema no sea
disipativo. Para asegurarnos que se cumpla esto, volvamos por un segundo a nuestra rejilla: si el
sistema esta en el cubo caracterizado por los indices ng, €s necesario estar seguros de que no
pudo haber llegado alli desde dos cubos diferentes n), y n2. En otras palabras, el contenido de
los cubos n/, y n2, no puede haber fluido con la evolucion temporal dentro del mismo cubo ny,. El
sistema no puede comprimirse, debe preservar el volumen del espacio de estados jPuede una

ecuacion diferencial hacer esto? Veamos eso en algunos ejemplos

Ejemplo: caso unidimensional

Supongamos que 1 tiene una sola componente n, es decir que el espacio de estados

es unidimensional. En ese caso, la evolucion temporal vendra dada por la ecuacién

n=u(n)

Definamos ahora una pequefia region del espacio de estados, limitada por n y n+48n

¢adonde se mapeara esa region después de un tiempo infinitesimal dt? Tenemos que
n(t+dt) =n(t)+u(n(t))dt

(n+6n)(t+dt) = (n+6n)(t) +u(n+0on)dt

restando tenemos

On (t+dr) = 6n(1) + (u(n+6n) —u(n))dt
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Por lo tanto la longitud dn de un pequeno intervalo en el espacio de estados nece-
sariamente cambia salvo que u(n) sea constante. Es decir que, excepto el sistema
trivial dado por u constante, cuya trayectoria es n = u (t—fo) + 1o, no existen sistemas

mecanicos no disipativos cuyo espacio de estados tenga una sola dimensioén.

Este resultado podria inducir a confusién ¢ qué sucede por ejemplo con una particula
que se mueve en una dimension? s No es acaso un sistema no disipativo bien definido?
Por supuesto que si, pero el punto crucial es que si bien este sistema tiene un espacio

de configuracion € que es unidimensional, su espacio de estados & es bidimensional.

Ejemplo: caso bidimensional

Vamos ahora al caso de un espacio de estados bidimensional. Tendremos que ny, =

(n1,m2) € R? y entonces la evolucion temporal estara dada por

TN = ua(Np)

para un cambio temporal dr tendremos que

No(1+dt) = N (1) +ua(np(t))dt

0 en otras palabras

Ni(t+dt) =i (t) +ur(ng(t))de M2 (t+dt) = Ma(t) +ua(np(t))dt

Esto puede considerarse como un cambio de coordenadas en el espacio de confi-
guracion, que antes describiamos con coordenadas n(¢) y ahora con coordenadas

Ne(t+dt). Entonces el area cambiara con el jacobiano, segun

SA(1-+dr) = Det (‘W) SA(r)

Esto que se puede escribir como

SA(t+dt) = Det <5a,3 4 Jta A

dt |0A(t)~ 1+
anﬁ,> 0= {1+ 5o

Donde en la segunda igualdad usamos al relacion Det(I +M) = 1+ TrM + 0(M)? para

tdt> OA(r)

una matriz infinitesimal M. Es decir que para que el area no cambie, necesitamos que
se anule la divergencia del vector ug

Jug
0N

Sabemos de los cursos de Analisis que esto pasa cuando existe alguna funcién H(ny)

=0

t

tal que el vector u, se escribe como

JH
Ug = 80{/3 W

0 en componentes

oH oH
Uy = ——=—

B Tnz am

ui
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Si tomamos las derivadas de esta expresion, tenemos que

8u1 82H 8u2 82H

o Imom am  Iman
de donde inmediatamente vemos que, en efecto, la divergencia se anula

du;  duy

—+ —
on  Idnm
Esto conduce a las ecuaciones de movimiento

L oH L _9H
m= om n = an
que no son sino ecuaciones de Hamilton del tipo que estudiamos en la clase [10] si

hacemos las identificaciones 1, =qy 1, = p.

En conclusién, un sistema mecanico bidimensional con reglas de evolucién no disipati-
vas, debe necesariamente cumplir las ecuaciones de Hamilton con algun hamiltoniano
H. Por supuesto, podriamos ahora hacer una transformacion de Legendre para eliminar
los impulsos canodnicos en favor de las velocidades generalizadas, y obtendriamos una

descripcion lagrangiana del sistema en términos de ecuaciones de Lagrange.

Nétese que se trata de un resultado de enorme generalidad. Hemos arribado a él sin
hacer ningun tipo de suposicidn previa sobre la dinamica. Es decir, no asumimos que
se trata de un sistema formado por particulas, ni que satisface vinculos de un tipo u
otro, etc. Sélo impusimos la condicidon de que el sistema evolucione en el tiempo de

manera no disipativa, es decir sin perder informacion.

Ejemplo: flujo hamiltoniano bidimensional

En el caso bidimensional, los sistemas no disipativos tienen una ventaja adicional que
permite describir su movimiento con facilidad. Para identificarla, calculamos el producto
escalar del vector de flujo (11,72), que nos dice hacia donde se mueve el sistema en

cada punto del espacio de estados, con el gradiente del hamiltoniano

om o oW o oH oH _
m om n23n2 Comadn IdmIdny

donde en la primera igualdad utilizamos las ecuaciones de Hamilton. Este resultado
implica que el flujo es perpendicular al gradiente del Hamiltoniano, es decir que apunta

a lo largo de sus curvas de nivel.

En otras palabras, la evolucion temporal se produce siguiendo las curvas de nivel del
hamiltoniano. Es decir que para tener una descripcién de sus trayectorias basta con

dibujar dichas curvas de nivel.
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Ejercicio:
Obtenga el hamiltoniano de un péndulo a partir de la transformaciéon de Legendre

de su lagrangiano, y dibuje sus curvas de nivel con algun software de ploteo como

Mathematica, Maple O Geogebra.

Analice cada una de estas curvas como una posible evolucion temporal del sistema

¢ qué significan las curvas cerradas? ¢ qué significan las curvas abiertas?

Ejercicio:

A partir del sistema unidimensional equivalente que encontramos para describir la
nutacién de un trompo en la seccién|9.2.3| encuentre el hamiltoniano correspondiente
a través de la transformacion de Legendre.

Dibuje sus curvas de nivel y analice el movimiento resultante ¢ puede identificar qué

curvas corresponden a una precesion cuasiperiddica y cuales a una precesion alterna-

da?

Podemos probar que el resultado que acabamos de obtener para el caso bidimensional se replica
de manera similar para todos los sistemas mecanicos no disipativos con un espacio de estados de

dimension par. En efecto, si tenemos 2D variables 71, con ecuacion de movimiento

Mo = ua(Np)

podemos escribir la evolucion para un tiempo infinitesimal en la forma

Na(t+dt) = Ng(t) + ua(nﬁ (t))dt
Si tomamos esta expresion como un cambio de variables en el espacio de estados, el cambio en
el volumen se podra escribir como

8na(t—|—dt)) dug < dug
———— 2 1dV(t)=Det| 5+ —| At |dV(t) = [ 1+ —=
ongln) )@V =Dt e G ] AV e

donde hemos repetido los pasos del caso bidimensional. Por lo tanto, que se preserve el volumen

dv(t+dt) = Det(

;At> dv(t)

en el espacio de estados implica que debe anularse la divergencia

0
ol gr=0
IMa |,
Es facil ver que esto siempre se puede satisfacer eligiendo una funcion H tal que
oH
= J _—
Ug of 377ﬁ
donde J,p es una matriz o metrica simpléctica que cumple Jy;—12; = —J2izi-1 = 1Y Jog =0 en

cualquier otro caso. En otras palabras
0 1 0 O

0 0 O
J= 0 0 0 1
0
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O sea que la forma de mas arriba para u, implica

JH oH
o = —
oM 2 M1

Uzi—1 =

Para i€ {l1,...,D}. Por lo tanto las ecuaciones de movimiento se separan en pares seguin

o 0
N ” IMai-1

Mi-1=

Estas también son ecuaciones de Hamilton, ahora para un sistema en dimension par arbitraria, si

hacemos las identificaciones ¢; = M1 Y pi = M-

Una vez mas, hemos llegado a un sistema descripto en términos de ecuaciones de Hamilton a
partir del sélo requerimiento de que su evolucién sea no disipativa en el sentido de que no se
pierda informacion. De nuevo, podriamos a continuacion practicar una transformacion de Legendre

para describir el sistema en términos de ecuaciones de Lagrange.

Un punto importante a atender es que en estos ejemplos de dimensién par el lagrangiano resultante
es indepentiente del tiempo. Sin embargo, hemos usado las ecuaciones de Lagrange para sistemas
con fuerzas monogénicas, cuyo lagrangiano depende del tiempo. En esta instancia tendriamos
que preguntarnos ¢ seran esos sistemas no disipativos? Veremos la respuesta en el ejemplo que

sigue.

Ejemplo: caso tridimensional

En el caso de que el espacio de estados es tridimensional, escribamos

No = ua(Np)

0, en coordenadas

M =u1(Ne) 2 = uz2(Ne) M3 = u3(Na)

Primero hacemos una fransformacién hodografica para eliminar el tiempo en favor de
la coordenada n3;. En otras palabras, estamos cambiando la variable independiente

para escribir las ecuaciones en términos de un nuevo tiempo n;. Obtenemos

1 (Na) = m/zwzw m=1=wn
u3(Na)

m'=

<
(98}
—~
=
B
N

Donde’ significa derivada con respeto a n;. Este sistema es completamente equivalente

al anterior, sélo que hemos cambiado de reloj. Podemos entonces escribir

Mo = va(p)

Con esto, los calculos son iguales a los casos de las secciones anteriores, hasta el

punto en el que escribimos la divergencia del vector, que en este caso sera v

al _
ana,
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En tres dimensiones, que la divergencia de un vector se anule implica que el vector

debe ser el rotor de otro vector h,, como sigue

Vo = 8aﬁy%

0 en componentes

s om Lo ans L o
T om oms T oms am ’

Las ecuaciones de movimiento entonces quedan

dhy  dh
=22 ok =

ohy N oh3 ,
CIdm I3

SIam 9m
Notese que el vector i, esta definido a menos de un gradiente, por lo que siempre
podemos hacer hq = hi, + dyg con una funcidn g(ng ) arbitraria, y las ecuaciones tomaran
la misma forma. Esto se puede usar para obtener un 4}, que cumpla

on, 0 ohy

= =0
an am

Lo que al reemplazar en las ecuaciones implica

,_ 9

on, ,
m= an3

=1
anz 773

m=-

Es decir que, si identificamos 7} con el hamiltoniano H, las variables g=n1y p=m2y
el tiempo 7 = 173, hemos llegado a un sistema de ecuaciones de Hamilton en términos

de un hamiltoniano que depende del tiempo.

En conclusién, un sistema tridimensional no disipativo resulta en un sistema mecanico
bidimensional cuyo hamiltoniano depende del tiempo. Ahora podriamos transformar
Legendre para obtener un lagrangiano, que sera del tipo de los que obtuvimos para las

fuerzas monogénicas.

Ejercicio: sistemas generales en dimensién impar

Es facil generalizar lo anterior a sistemas cuyo espacio de estados tiene dimension
impar arbitraria, seleccionando una de las coordeandas como el nuevo tiempo, y
obteniendo un sistema mecanico no autbnomo con un espacio de configuracién de

dimension mitad. Las ecuaciones de Hamilton seran

JH . _OH
I i oMi—1

i1 =

Conie{l,...,D}. Dado que la dimension es ahora impar, en estas ecuaciones queda
excluida la ultima variable de la lista n,, que cumple el rol del tiempo. Complete el

célculo correspondiente.
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En conclusién, hemos probado que los sistemas no disipativos estan descriptos por ecuaciones
de primer orden que toman la forma de ecuaciones de Hamilton. Las variables que describen
la configuracion del sistema corresponden a las variables canénicas del sistema hamiltoniano
{na«} ={(pi,q:)}. Si la dimensién del espacio de estados es impar, una de las variables queda
fuera de redefinicion anterior y cumple el rol del tiempo. El sistema se puede transformar en un

sistema de ecuaciones de Lagrange a través de una transformacién de Legendre.

Este resultado, que histéricamente fuera probado en la direccidn inversa, se conoce como feorema

de Liouville.

Resumen

Analizando sistemas discretos, hemos definido las nociones de reloj, espacio de configuraciones,
trayectoria, leyes de evolucidn, y espacio de estados. Hemos concluido que la caracteristica defini-
toria de un sistema mecanico general es la de ser no disipativo, es decir la de no perder informacion

en la evolucién temporal. Esto permite no solo la prediccion, sino también la retrodiccion.

Aplicando esta idea a los sistemas cuyo espacio de configuracion es continuo, hemos descubierto
que la evolucién temporal esta descripta por ecuaciones de primer orden con la forma de Hamilton.
Hemos también demostrado que estas ecuaciones se pueden transformar en ecuaciones de

Lagrange donde el lagrangiano depende de las coordenadas, las velocidades y el tiempo.

Esto revierte de una enorme generalidad a las leyes de la Mecanica que venimos aprendiendo a lo
largo del presente curso, extendiendo su rango de validez mas alla de los sistemas de particulas

con vinculos con los que empezamos, para hacerlas aplicables a cualquier sistema no disipativo.







16.1

16.2

Objetivos

Aprendimos en la clase anterior que cualquier sistema
no disipativo, es decir que evoluciona en el tiempo sin
perder informacion, tiene una descripcion en términos de

ecuaciones de Hamilton.

En un punto crucial en la demostracién de este resultado,
las variables que parametrizan el espacio de estados se
identifican como variables candnicas, separandose en
dos subconjuntos diferentes que representan respectiva-

mente las coordenadas y los impulsos.

En esta clase, vamos reparametrizar el espacio de es-
tados utilizando variables arbitrarias no necesariamente
canonicas, es decir que no distinguen entre coordena-
das e impulsos. En el camino, definiremos un concepto

extremadamente util: el de los paréntesis de Poisson.

Paréntesis de Poisson

-

R AT P
|t ’M ’?W a4 ‘z", .
l g o A
b4, p1) tel .

Siméon Denis Poisson

El espacio de estados & de sistema mecanico puede describirse en términos de un conjunto de 2D

variables canoénicas {(p;,¢;)}. Como vimos en las clases previas, sus ecuaciones de movimiento

pueden obtenerse a partir de un hamiltoniano H(p;,q;,?)
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Estas ecuaciones permiten calcular la derivada temporal de una funcién arbitraria F' definida sobre
el espacio de estados. Para hacer esto la escribimos como funcién de las variables canénicas en

la forma F (g, pi,t), y luego usamos la regla de la cadena

dF_8F+aF‘ +8F .

di ot L ag T op
En esta expresion podemos reemplazar las derivadas temporales de las variables candnicas
{(4i,pi)} haciendo uso de las ecuaciones de Hamilton que escribimos mas arriba. Esto da como

resultado

ar_oF orom oraH_or ..
dt 9t  dq;dp; dp;dq; Ot ’

En la segunda igualdad hemos definido la operacién {F,H} entre nuestra funciéon F sobre el

espacio de estados y el hamiltoniano H. Esta se denomina paréntesis de Poisson y su definicién

se puede extender para un par de funciones cualesquiera sobre el espacio de estados F y G segun

JoF 0G OF G
Gy = o  apaa,

Como veremos en lo que sigue, la distincion de las variables candnicas entre coordenadas
y momentos esta codificada en los paréntesis de Poisson. Una descripcidon del movimiento en
términos de paréntesis de Poisson mantiene tal informacion, mientras a la vez permite parametrizar

el espacio de fases con variables arbitrarias no necesariamente candnicas.

Ejemplo: ecuaciones de Hamilton

Por consistencia, tendria que ser posible reobtener las ecuaciones de Hamilton usando
paréntesis de Poisson para calcular las derivadas temporales de las variables canénicas.

Para ver esto, escribimos
q;=1{q;,H} pj=1{r;,H}

y usamos la forma explicita de los paréntesis de Poisson, para deducir

5
L2
_9H 9q; 94; 0H _ oH 9H 9p; 9p; oH _ IH
! dp; dg; dpi dqi  Ip; ! dp; dgi  dpi dqi  dg;

con lo que hemos recuperado las ecuaciones de Hamilton, como esperabamos.

Los paréntesis de Poisson entre las variables candnicas {(p;,¢;)} resultan de especial interés para
la descripcion de la dindmica. Los podemos calcular de manera muy simple usando la definicién

de mas arriba, segun

-  9qi dpi dpj 9p; Ipi
{qi,qj}:ﬁi_%izo {pipjt=5 37— 5=
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Estos resultados se pueden escribir de forma resumida si utilizamos la notacién que introdujimos
en la clase anterior para las variables canénicas {1} = {(¢;,pi)} con a € {1,...,2D}. En ese caso,

las tres formulas previas se resumen en una sola linea, segun

{Nasnp} =Jap

siendo J la métrica simpléctica ya definida. Como vemos, estos paréntesis de Poisson fundamen-
tales contienen la informacioén sobre la manera en que las variables candnicas se separan en

coordenadas e impulsos.

Ejemplo: paréntesis de Poisson en términos de la métrica simpléctica

La matriz J también se puede usar para reescribir la definicion del paréntesis de Poisson
entre dos funciones cualesquiera sobre el espacio de estados F y G. En efecto, es facil
ver que de la combinacion particular de derivadas corresponde a la expresion
JoF G JF G
F,G} = —Jyg— = —{Na;Ng } =—
Aqui en la segunda igualdad hemos reemplazado J,g por los paréntesis de Poisson

fundamentales {nq,ng} entre las variables canonicas {1n¢}-.

Ejemplo: ecuaciones de Hamilton

En términos de los paréntesis de Poisson fundamentales {14, ng } = J,p, las ecuaciones

de Hamilton pueden escribirse como
; JH oH
Na =Jap % = {Tlomnﬁ}%

donde la primera igualdad contiene la expresidn que vimos en la clase previa, y en la

segunda reemplazamos J,g por {Nq, Mg }-

Lo que los ejemplos anteriores evidencian es que, dado un conjunto de variables candnicas
{n«}, podemos reescribir las ecuaciones de Hamilton y el paréntesis de Poisson de dos funciones
cualesquiera sin necesidad de identificar cuales de las variables son coordenadas y cuales impulsos.
Lo Unico que se requiere son paréntesis de Poisson fundamentales {14, 7 }. Como veremos, esta

propiedad se extiende a un conjunto arbitrario de variables.

Nos proponemos describir nuestro espacio de estados & en términos de un nuevo conjunto
de variables {{,}, no necesariamente canodnicas, definidas por medio del cambio de variables
Ca = Ca(ngp,t). Dos funciones cualesquiera del espacio de estados F y G se pueden escribir
entonces como F({q,t) y G({g,t). Si calculamos su paréntesis de Poisson

{rGy= 2020 98 90

podemos usar la regla de la cadena para escribirlo en la forma

_ 9G 38y OF dLg OF 98y 3G 3l (38 9lg 9Ly 9Ly IG OF
O 38 9 90 0 9% 9 9% -( )55 3%

dpi dq;  Ip; dg;
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o en otras palabras
oF G
F.G} = —{8a, (g} =

Es decir que el paréntesis de Poisson de F y G en las nuevas variables {{,} queda escrito en
términos de los paréntesis de Poisson fundamentales { {4, (s} de las mismas. En el caso en que
las coordenadas son canonicas, tenemos que {nq,Np} = Jup Y recuperamos la expresion del

ejemplo de mas arriba.

La regla que hemos encontrado se puede aplicar para obtener las ecuaciones de movimiento en
términos de las nuevas variables {{,}. En efecto, sabemos que la derivada temporal de cualquier
funcién del espacio de estados viene dada por su paréntesis de Poisson con el hamiltoniano,

segun

d8u 8Ca

bu= (G} + 5 = 520G LA 57 4 25 =

- 8up (G L 5+

0 en otras palabras

OH aga
9C

Con lo que hemos logrado escribir las ecuaciones de Hamilton para un conjunto de variables no

Coa = {Ca 8} 57

necesariamente candnicas que describen el espacio de estados.

Lo que los calculos que hemos desarrollado demuestran, es que podemos describir el espacio de
estados en términos de un conjunto de variables arbitrario, siempre que tengamos la informacion de
la derivada temporal parcial de cada variable d{, /9t y de los paréntesis de Poisson fundamentales
{Ca,Cp}- Con estos elementos, podemos calcular el paréntesis de Poisson entre dos funciones

arbitrarias sobre el espacio de estados, y podemos describir el movimiento del sistema.

Ejemplo: oscilador armoénico

Sea el hamiltoniano de un oscilador armoénico unidimensional

2

1,
H=— kg

2m+2

escrito en términos del par de variables canonicas (p,q). Definamos un nuevo par de
variables (p, o) en el espacio de estados, que no necesariamente es canonico, y que

esta dado por

2
p=4 kq

1
o = arctan ( p)
km g

El paréntesis de Poisson fundamental entre estas nuevas variables se puede escribir

como
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Es obvio entonces que no se trata de variables candnicas, ya que si lo fueran deberia-
mos haber obtenido £ 1. Es evidente también que {p,p} ={o,a} =0y {a,p} = —+\/k/m.

En términos de las nuevas coordenadas el hamiltoniano se escribe
H=p

Con esto, estamos en condiciones de escribir las ecuaciones de Hamilton para las

nuevas variables, en la forma

o OH . oH [k
p={p,a}5 =0 a—{a,p}%f— —

m

Estas ecuaciones se pueden resolver muy facilmente, segun
P =po
k
o=op—\/—(t—t)
m
Con lo que hemos resuelto el problema.

Noétese que el calculo de las ecuaciones de movimiento a partir del hamiltoniano no
requirié del conocimiento del cambio de variables, si asumimos conocido el paréntesis
de Poisson {p,a}. En otras palabras, dado el paréntesis de Poisson fundamental, el
hamiltoniano contiene la informacion dinamica del sistema sin necesidad de recurrir a

coordenadas canonicas.

El resultado de arriba se puede invertir para reobtener la solucién en términos de las

coordenadas originales usando la transformacion inversa

p=+/2mpcosa
2p .

=4/ ——sina

q . sin

con lo que recuperamos la solucion para el oscilador armonico

p=+/2mpg cos W/E(t—to)—ao
m
2
q:\/%sin 1/%(I—to)—ao

Algebra de observables

El estado de un sistema mecanico esta completamente determinado por el valor de sus variables
canonicas. Esto significa que cualquier magnitud que se pueda medir sobre el sistema debe ser
una funcion de tales variables. En otras palabras, las diferentes funciones sobre el espacio de

estados representan a los distintos observables fisicos del sistema.

La suma de dos funciones sobre el espacio de estados es una nueva funcion, y lo mismo sucede

con el producto de una funcién por un nimero real. Esto significa que el conjunto de observables
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tiene la estructura de un espacio vectorial. Mas aun, el paréntesis de Poisson toma dos funciones
sobre el espacio de estados, y nos devuelve como resultado una tercera. Esto dota al conjunto de

observables con una estructura de algebra.

La operacion definida por el paréntesis de Poisson cumple con una serie de propiedades, entre

las cuales resultan especialmente importantes las que se enumeran a continuacion:

m Antisimetria: es evidente a partir de su definicién que el paréntesis de Poisson no es una

operacion conmutativa, sino que cumple la propiedad
{F’G} = _{GvF}
La prueba es trivial, a saber

G = Sgam ~ amoa

JF G IF IG (ac IF 3G aF) (6P}

dq; dp; dp;dq;

= Bilinealidad: dadas dos funciones del tiempo «,f, se puede probar muy facilmente que
para cualquier conjunto de tres funciones F,G y H en el espacio de estados, se cumple la

propiedad
{F,aG+BH}=a{F,G}+B{F,H}

La prueba es nuevamente muy simple, escribiendo

IF d(aG+BH) IF d(aG+BH)
dq; Ipi api dq;

{F,aG+BH} =

y usando el hecho de que ni o ni B dependen de las coordenadas {g;} y momentos {p;}

podemos reacomodar las derivadas en la forma

JdF G JoH JF G oH
{(FaGHpHy =3 <a9pi+ﬁ3pi) “om (“Mﬁaq,-)

Lo que nos permite entonces obtener

0F 0G O0F G d0F 0H OF 0H
{F’“G“*H}“(aqiamamaqi) ( >

dq; dpi  dp; Iq;

=o{F,G}+B{F.H}

La misma propiedad se puede demostrar en la primera componente, a saber

{aF+BG,H} = a{F,H}+B{G,H}

m Regla de Leibniz: Si tenemos tres funciones F,G y H en el espacio de fases, se cumple que
{F,GH} = {F,G}H + G{F,H}

Lo que implica que la operacioén {F, - } actia como una derivada en las funciones del espacio

de estados. Para probar esta regla, escribimos la forma explicita de la expresién de arriba

OF 3(GH)  OF 3(GH)
{F.oH) = dqi Ipi  Ip; g
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Expandiendo el producto de derivadas, reescribimos

JdF dG JF dG JdF 0H OF dH

con lo que hemos demostrado la propiedad.

= |dentidad de Jacobi: dadas tres funciones cualesquiera en el espacio de estados F,G y H, el

paréntesis de Poisson verifica
{FAG H}} +{G {H,F}}+{H,{F.G}} =0

Esto significa que no se trata de una operacion asociativa.

Ejercicio:

Pruebe la identidad de Jacobi. Se trata de una demostracién un poco mas larga que
las anteriores, ya que involucra derivadas segundas. Escribiremos aqui los primeros
pasos, comenzando con

JF 0{G,H} JF 9{G,H}
dqi dpi dpi dqg;

{F7{GvH}} =

0 mas explicitamente

IF 0 (9GOH _9GOH\ OF 0 (9GIH _9G oH
dq; Ip; dpi dq;

{F.{G.H}} =
8q/' 8pj 8pj (96]/
y actuando con las derivadas en las expresiones entre paréntesis, obtenemos ocho

8q/'apj 8pj8q/-

términos con derivadas primeras y segundas. En estos términos hay que permutar F,G
y H para obtener los otros dos ordenamientos de la identidad de Jacobi. En la suma
resultante, cada expresién aparece dos veces con diferente signo y por lo tanto se

cancela.

Estas propiedades nos permiten abstraer la estructura del algebra de observables de un sistema
mecanico. En efecto, podemos afirmar que dos observables cualesquiera se componen para dar
un tercer observable, cumpliendo con una ley que es antisimétrica, bilineal, y satisface la identidad

de Jacobi y la regla de Leibniz.

Esta caracterizacion de las propiedades de los observables nos permite generalizar las leyes
de la mecanica, para extenderlas incluso mas alla de los sistemas no disipativos con espacio
de configuracién continuo que vimos en el capitulo anterior. Podemos considerar otros sistemas
cuyos observables no sean funciones sobre un espacio de estados, sino algun otro tipo de objeto

que cumpla con un algebra similar.

Ejemplo: mecanica de matrices

El conmutador de matrices, que toma dos matrices y nos devuelve una tercera de

acuerdo a la regla

[A,B]=A-B—B-A
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Es una aplicacion del espacio de matrices en si mismo que cumple propiedades

analogas a las del paréntesis de Poisson, a saber

= Antisimetria: [A,B] = —[B,A]
= Bilinealidad: [A,a B+ BC] = o [A,B] + B [A,C], donde o y B ahora son nimeros.
= |dentidad de Jacobi: [4,[B,C]] + [B,[C,A]] +[C,[A,B]] =0

= Regla de Leibniz: [A,B-C] =[A,B]-C+B-[A,C]

Esto nos permite definir una mecanica de matrices, en la que los observables son

matrices y existe una matriz hamiltoniana que describe la evolucién temporal.

Ejemplo: mecanica de operadores

Un operador diferencial lineal L. que actta sobre las funciones del espacio de configu-
racién se define segun
. 2°¥Y
L\P qi) = C; g T
(@)= Yeiio 505,
donde la suma corre sobre los diferentes 6érdenes o de derivacion, y los coeficientes

¢i,..i, son funciones de g;

El producto M L de operadores diferenciales lineales M y L es otro operador diferencial
lineal, cuya accion sobre una funcién del espacio de configuracion ¥(g;) se define

como la aplicacion sucesiva (M L)W = M (L'P). Con esto definimos

(2, M) = L6 — ML
Este conmutador cumple propiedades analogas a las enumeradas mas arriba para el
paréntesis de Poisson. Por lo tanto, podemos definir una mecanica de operadores en
la que los observables sean operadores lineales sobre un espacio de configuracion,

uno de los cuales es un operador hamiltoniano que determina la evolucién temporal.

Este ejemplo resulta particularmente interesante, ya que sabemos que en la Mecanica
Cuantica los observables se representan como operadores diferenciales lineales sobre
la funcién de onda del sistema, que es una funcién sobre el espacio de configuracion.

En este sentido, la Mecanica Cuantica es una generalizaciéon de la Mecanica.

Ejemplo: cuantizaciéon candnica

El procedimiento de cuantizacién consiste en encontrar un sistema cuantico a partir de
su limite clasico. Por supuesto este proceso no es univoco, ya que puede existir mas

de un sistema cuantico con el mismo limite clasico.

Se trata de comenzar con un sistema clasico donde los observables son funciones

sobre el espacio de estados F, y transformarlo en un sistema cuantico donde son
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operadores diferenciales lineales F' que actuan sobre las funciones del espacio de

configuracion.

La similitud de los paréntesis de Poisson con los conmutadores de operadores dife-
renciales en el espacio de configuracion nos permite definir la regla de cuantizacion
canonica. Se trata de una aplicaciéon de cuantizaciéon ~ que transforma una funcion del

espacio de estados en un operador sobre funciones del mismo, y cumple que
[F,G] = in{F,G}

Es decir, el operador que corresponde al paréntesis de Poisson de dos observables,
esta dado por el conmutador de los operadores que corresponden a cada uno de los

observables.

La regla propuesta se verifica en el caso particular de las coordenadas y los impulsos,
si definimos sus operadores asociados segun

s _hod .

Pi = ;8761, q4i = dqi
Para ver esto, hacemos actuar al conmutador de operadores sobre una funcién cual-
quiera ¥(g;) del espacio de configuracion

A A PN A h o h d )
4, p:]¥ = q;(p;¥) — pi(q;¥) = ?qfa*q,-‘}'_ ?Tqi(qu) =ih6;; ¥

—

con lo que vemos que se cumple el requerimiento [§;, pi] = if{q;, pi}.

16.3 Resumen

En esta clase, definimos la operaciéon matematica conocida como parentesis de Poisson y estudia-

mos sus propiedades y aplicaciones.

Aplicamos el paréntesis de Poisson para la descripcion del movimiento en términos de un conjunto
de variables cualesquiera no necesariamente candnicas que parametrizan el espacio de estados.
Vimos que la informacién sobre la distincién entre coordenadas e impulsos se almacena en los
paréntesis de Poisson fundamentales los cuales, junto con la derivada temporal parcial de cada

coordenada, permiten escribir las ecuaciones de movimiento del sistema.

Aprendimos que el paréntesis de Poisson es una operacion binaria, que dota al conjunto de los
observables del sistema de una estructura de algebra. Esta idea nos permitié abstraer la nocion
de sistema mecanico para poder generalizarla, incluyendo a los sistemas cuanticos. Vimos que el
paréntesis de Poisson resulta util para encontrar la versién cuantica de un dado sistema clasico a

través de la regla de cuantizacion candnica.
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17.2

Objetivos

En la clase previa estudiamos la posibilidad de repara-
metrizar el espacio de estados mediante un cambio de
variables completamente general. Encontramos la forma
de escribir las ecuaciones de movimiento de las nuevas
variables, que no necesariamente eran candnicas. Esto

requeria el conocimiento de los paréntesis de Poisson

fundamentales entre las variables, y de sus derivadas

temporales parciales.

Sin embargo, entre todos los cambios de variables po-

sibles existe un subconjunto particular compuesto por

aquéllos que transforman variables candnicas en varia-
bles candnicas. Se trata de transformaciones que preser- Henri Poincare
van los paréntesis de Poisson, y que resultan particularmente utiles para estudiar la evolucion

temporal y las simetrias en el contexto de la formulacion hamiltoniana.

En esta clase nos concentraremos en la obtencién, las propiedades, y la aplicacién de tales

cambios de variables.

Transformaciones candnicas

Un cambio de variables en el espacio de estados se denomina una transformacién canonica,
cuando cumple que a partir de un conjunto de variables candnicas, es decir uno en el que se

pueden distinguir coordenadas de impulsos {(p;,q:)}, devuelve otro conjunto de variables que
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también son canénicas {(P,Q;)}.

Aprendimos antes que las variables canodnicas tienen paréntesis de Poisson fundamentales dados

por las expresiones
{9i,pj} =6 {9195} = {pi-pj} =0

Si las nuevas coordenadas también son candnicas, deben cumplir formulas similares
{0i. P} =& {0i,0;} ={P,P;} =0

Dado el cambio de variables en la forma P, = Pi(p;,q;,t) y Qi = Qi(pj.q;,t), la primera condicién

puede escribirse explicitamente como

90i 0F; 001 0P} _ o

dqi dpi  Ipk g’
Este es un conjunto de ecuaciones diferenciales para las funciones Pi(p;,q;,t) ¥ Qi(pj.q;,t), que
podriamos intentar resolver para obtener la transformaciéon canénica mas general. Una manera de
hacerlo es invertir la relacion Q; = Q;(p;,q;,t) para obtener p; = x;(Q},qj,t), con lo que también
podemos escribir P, = P(x;(Qk,qx),q,,t) = &i(Qj,qj,t). Es evidente que, dada la definicién de la

funcién y;, se cumple la identidad

Qi(xj(Ok.qx),q),t) = Qi

que se puede derivar respecto de Q; a ambos lados para obtener

20; Ixr

dpr0Q;
Por otro lado, reemplazando la funcioén &;(Q;,q;) en el paréntesis de Poisson

dQi dP; 9JQidP; 9Qid§; JQid§; JQidS; 0 IQi (aéj ;i an)

Oqr dpx  Oprdqr  9dqi dpx  Ipr dqr  Iqx 9Qi dpr  Ipx

dgr Qs g
lo que se puede reordenar

dQ: dP;  9Q; dP;  J¢; <3Qi 90 aQi3Q1> dQ: d5;  9¢;

90 dP;  dQ; dP; _ Jg; 3 _ dQ; d&;
opr dqxr 90

dpi gy

dqx Opr  Ipk Igk

{0,001} -

dqr dpx  Opk dqx 90
Dado que queremos que las nuevas variables sean canonicas, se debe cumplir también que
{0i,0;} = 0. Imponiendo esa condicion en la Ultima ecuacion, obtenemos

0005
dpr Iqk

ij
Pero mas arriba habiamos expresado la delta de Kronecker §;; en términos de derivadas de

xi(Qj,q;), con lo que podemos establecer la igualdad

~00idE; 90 dxk

Ipr dqx  Ipr 9Q;

0 en otras palabras

9§ _ o

dgr 90,
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Esta ecuacion se resuelve facilmente en términos de una funcién Fi(¢;, Q;,t) en la forma

_9h __9h
5= Sy ¥~ a0,

donde hemos asumido las condiciones de regularidad necesarias para que las derivadas conmuten,
de manera de resolver la ecuacion. Con esto, para cada funcion Fi(g;, Q;,t) podremos definir una
transformacion canédnica, segun las ecuaciones

dF;

oF
Pi(‘Iijjat):Tq Pig;, Q1) = — o~

20,
La forma explicita de la transformacion P, = P(p;,q;,t), Qi = Qi(pj,q;,t) se obtiene invirtiendo
estas ecuaciones. La funcioén Fi(g;, Q;,t) se conoce como funcién generatriz de la transformacion

canonica.

Ejemplo: dualidad de Poincaré

Supongamos que tenemos la funcién generatriz mas simple posible que depende de

las variables ¢; y Q;, dada por
F = qiQ;

Si la usamos para escribir una transformacién canénica segun la formula de mas arriba,

obtenemos

dF R

p'q'7Q‘7t = :Q P‘QHQ‘J = = —qi
9,050 = 5~ =0 (a):00) = =55 = 4
Es decir, una transformacion canoénica que intercambia coordenadas con momentos.

Esto se conoce como dualidad de Poincaré.

El que hemos encontrado mas arriba no es el unico tipo de funcién generatriz que podemos
definir. En efecto, podemos hacer transformaciones de Legendre de F; para obtener otros tipos de
funciones generatrices. Por ejemplo, dado

IR

d0;

podemos invertir la ecuacion para tener

Pi(QjanJ) =

0i =Y(Pj.q;:t)
Y con esto hacer una transformacion de Legendre segun
F2(Pivqi7[) :Pi’yi(Pj’invt) JFFI(’Yk(Pj?‘Ij?[)vq]ﬁt)

Como aprendimos cuando estudiamos transformaciones de Legendre, se cumple que

or,
JP;

P
- = pi(Pi,qis1)

:Qi(Pivqiat) %

Esto quiere decir que para cualquier funcion F»(P;,g;,t) podemos definir una transformacion cané-

nica invirtiendo las férmulas de mas arriba para obtener P = P.(p;,q;,t), Qi = Qi(pj,q;,1)-
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Ejemplo: transformacion identidad

El caso mas simple para las funciones generatrices de tipo F»(P,g;,t) esta dado por
FZ(Ithiat) = C]sz

de la cual se deduce la ley de transformacion

P )2
Qi(Pj,q/'J):aTDi:qz' Pi(Pj,qu):Tqi:Pi

Es decir que se trata de la transformacion identidad.

Ejemplo: cambios de coordenadas

Sabemos que la descripcidn lagrangiana nos permite usar coordenadas generalizadas
arbitrarias. Es natural entonces preguntarse si un cambio arbitrario de las coordenadas

es una transformacién canénica. Para responder esto, escribimos la funcién generatriz
(P, qi,t) =si(q),t)Pi
siendo h;(g;,t) un conjunto arbitrario de tantas funciones como coordenadas. Usando

las derivadas como se explicd mas arriba, tenemos

oF
Qi(Pjvqjvt) = TPZ

oF, Jds;
=silapt) Pi(Pya0) =5 m= 50 k)
l i

Con lo que hemos realizado un cambio arbitrario de coordenadas con una transforma-
cion canonica. Puede probarse también que el cambio en los impulsos es precisamente
el que corresponde en el formalismo lagrangiano, si recordamos la identidad que

probamos en los primeros capitulos ds;/dg; = ds;/dq;.

Por supuesto, tenemos la opcién alternativa de hacer la transformacién de Legendre respecto de
la otra variable. Es decir, usando que

_ oF
pi(q;,0),t) = ErD

e invirtiendo para obtener
qi = Wi(Qj,pj:t)

Con esa funcion escribimos la transformacion de Legendre segun
F5(pi, Qist) = pili(Q), pjst) — Fi (1 (Qj, Pjs 1), Qs 1)

Es evidente entonces a partir de las propiedades de las transformadas de Legendre que se cumple
que

oF;
Ipi

0F; _
90

En otras palabras, para cualquier funcién F;(P;, g;,t) podemos obtener una transformacién canénica

= qi(pi, Qist) P,(pi,Qi,t)

invirtiendo las féormulas de arriba.
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Ejercicio:

Dada la forma mas simple de la funcién F; (P, g;,t)

F3(pi, Qi,t) = piQi

obtener la forma de la transformacioén candnica resultante, demostrando que se trata

nuevamente de la transformacion identidad.

Tambien podemos hacer la transformacion de Legendre de Fi(g;,Q;,t) respecto de todas sus

variables, en la forma
Fy(pi, Pi,t) = pii(Pj, pj,t) — P, %i(Pj, pj,t) — Fi(i(Pj, pj,t), Yi(Pj, pj,t),t)

donde las funciones ¢; = fi;(P;,p;,t) Y Qi = %(Pj,p),t) se obtienen invirtiendo las derivadas de

Fi(gi,Q;,t). Esto resulta en las siguientes relaciones

ap; —%(ptaQnt) oP, =

—0i(pi,0i,t)

cuyas funciones inversas proveen la transformacién canénica en su forma explicita.

Ejercicio:

Dado el ejempilo trivial para una funcioén del tipo anterior
F4(pi,Pi,t) :pl])l

obtener la correspondiente transformacion canénica, demostrando que se reobtiene la

dualidad de Poincaré.

Con esto, estamos en condiciones de establecer las ecuaciones de movimiento para las variables

candnicas transformadas. Estas se obtienen utilizando los paréntesis de Poisson, en la forma

90, 9H 3g .
0 ={0nH)+ 5 = S+ % Pi={PH}+

or,__om o
ot 9dQ; ot

Extrafiamente, estas expresiones no parecen tener la forma de ecuaciones de Hamilton, que es
lo que esperariamos si las variables {(P,,Q;)} fueran realmente canénicas. Para resolver esto,
comencemos suponiendo que la transformacion candnica esta generada por una funcion de tipo
F1, lo que implica

_9F ok
b= 9qi a

Por otro lado, también podriamos describirla en terminos de la transformada de Legendre F;, lo

que nos permite escribir

9k

_ 0B
pi= 9q:

0= 9P
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De este par de ecuaciones y del anterior, extraemos la segunda ecuacion para reescribir las

derivadas temporales en la forma

_J0H 0°F, 0 oF, . 0H 9°F, 0 oF
( «%) "="%0 " %00, " a0, <H+ar>

Ahora bien, si recordamos que Fi(Q;,qi,t) y F2(P;, qi,t) estan relacionadas por una transformacion

= 3n " aian ~ an,

de Legendre, sabemos que debe cumplirse la identidad dF,/dr = dF;/dt, con lo que las derivadas
temporales de las nuevas variables canénicas pueden reescribirse como ecuaciones de Hamilton

9 OR\ 0K . IR\ 9K
Ql_QE(H+8t>_8I’i P’__aQ,'(HJr 8t)__8Qi

En términos del nuevo hamiltoniano

R
K(Pla int) = H(pi(f)iaint>vqi(EvQiat)vt) + W
En otras palabras, la dependencia temporal de una transformacién candnica se refleja en un

cambio en la forma del Hamiltoniano.

Con esto, hemos tenido éxito en construir cambios de variables que preservan el caracter cané-
nico de las mismas. Estas transformaciones mantienen la forma de los paréntesis de Poisson
fundamentales, y estan definidas en términos de funciones generatrices de cuatro tipos posibles.

La evolucion de las nuevas variables se describe en términos de ecuaciones de Hamilton.

Transformaciones candnicas infinitesimales

Supongamos ahora que tenemos una transformacion candnica que es cercana a la identidad,
es decir que la diferencia entre las variables transformadas {(P,Q;)} y las originales {(p;,q:)}
es una magnitud muy pequena. Es natural suponer que su funcion generatriz estara dada por
una pequefa deformacién de aquélla que genera la transformacion identidad. En otras palabras,

podemos escribir
FZ(Pl'aql'»t) = 51i13i+88(13i761iat)

donde ¢ es un parametro infinitesimal, y la nueva funcion g(P;, ¢g;,t) se conoce como el generador
de la transformacion. Bajo la accion de esta transformacion, las variables candénicas se veran

modificadas en la forma

dF, dg el 2) dg
Di ‘ it E€5— 0; oP, q:+8&Pi

La segunda ecuacion se puede reescribir usando la regla de la cadena segun

oF dg dp;
E R T

0=

reemplazando ahora la forma explicita de p; en esta expresion, tenemos

_ dg g\ _ dg 2
Ql_q’—'—e&Ty (51/+8861j(9f)i> —%4‘8871)]_51]-5-@(8)
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Volviendo a la regla de transformacién de mas arriba, vemos que al orden lineal en € se puede

reemplazar por

o an o ag - an o 8g
l_aﬂli_pl_sa%’ Ql_aﬂ_%+£3m

Con lo que hemos escrito la regla de tranformacion de las variables candnicas bajo una transfor-

macioén canonica infinitesimal en términos de derivadas del generador g(P;, g;,1).

Nos preguntamos ahora cédmo cambia una funcion cualquiera sobre el espacio de estados F bajo
una transformacion candnica. Para ver esto, escribimos
dg dg
F(qi,pi;t)=F | Qi—€=—,P+e5—t
(Cb Pi ) (Ql Ipi i+ 9qi
lo que se puede expandir al orden lineal en el parametro infinitesimal € en la forma

OF g, OF dg _

F is Di>t =F iaPiat —€5— + & =F l‘,Pj.t + € ,F
(gi,pist) = F(Qi, Pi,1) 30 o Eap g (Qi,Pit)+€{g,F}

o en otras palabras
F(Q[,B,l) :F<qi7piat)+g{F7g}

Esto implica que el cambio en cualquier funcién bajo una transformacién candnica infinitesimal

estara dado por su paréntesis de Poisson con el correspondiente generador.

Generadores:

En el capitulo[14] escribimos un cambio de coordenadas generalizadas infinitesimal en

la forma

Qi =si(qj,t) = qi+€gi(gj,t)

donde llamamos a las funciones g;(¢;,t) los generadores de la transformacién. En este
punto, quisiéramos saber qué relacion tienen con el generador de la correspondiente
transformacion canoénica infinitesimal. De acuerdo a lo que discutimos mas arriba para
escribir un cambio de coordenadas generalizadas en la forma de una transformacion

canonica, tenemos que la funcién generatriz sera
(P, qi,t) = si(qj,t)P = qiP + € pigi(q;,t)

donde en la segunda igualdad reemplazamos s;(g;,¢) por su forma infinitesimal, y

expandimos a orden lineal en &. Esto nos permite concluir que g(p;,qi,t) = pigi(gi,t).

La forma de la transformacion infinitesimal de las variables candnicas en términos de derivadas
del correspondiente generador es reminiscente de las ecuaciones de Hamilton. Esto nos invita
a pensar si la evolucion temporal sera también una transformacion canénica. Si escribimos el

cambio en las variables canodnicas cuando transcurre un tiempo € a primer orden, tenemos

JoH
dq;

0i) = (&) =) +e 5 PO =ple+e)=pilt) ¢
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Con lo que verificamos que la evolucion temporal tiene la forma de una transformacién canénica

en la cual el rol del generador g(p;,q:,t) lo cumple el hamiltoniano H(p;,g;,t).

Lo anterior se puede interpretar también en el sentido opuesto: cualquier transformaciéon canénica
que tenga una forma infintesimal se puede pensar como la evolucion temporal con un hamiltoniano
dado por el correspondiente generador g. Una implicacion inmediata es que, dado que la evolucién
temporal preserva el volumen en el espacio de estados, lo mismo hace una transformacion
canodnica cualquiera. Para probar esto de manera directa, escribimos el diferencial de volumen en

el espacio de estados en la forma

02g
3(0;,P; Sjk+€ 5.3 —€5.
[T40idP =]] P dgidpi =] 2 nor qéz dqidp;
i i (qx> Pr) i ganz' 5jk_€Wagp,-

Es facil ver que a orden lineal en ¢ el determinante en la uUltima expresion de la derecha es la

unidad, con lo que el volumen en el espacio de estados se conserva.

Version hamiltoniana del teorema de Noether

Las transformaciones candnicas permiten rederivar el teorema de Noether de una manera extre-
madamente simple e iluminadora, y generalizarlo al caso de simetrias que mezclan coordenadas

e impulsos.

Supongamos que tenemos una transformacién candénica cuyo generador C es una magnitud
conservada, es decir que cumple C = 0. Podemos utilizar la regla que obtuvimos antes para

describir cémo cambiara el hamiltoniano del sistema bajo esta transformacion

. dC
H(Pth'at) = H(pi7qiat) +8{H5C} = H(piaqiat) —& (C_ a[> = K(PhQi)t)
En la dltima igualdad reemplazamos C = 0 y utilizamos la definicion que dimos mas arriba para el
hamiltoniano transformado K. Expandiendo a orden lineal en € a ambos lados de esta igualdad,

obtenemos
K(pi,qist) = H(pi,qi,t) + O/(€)?

Concluimos que el hamiltoniano es invariante a orden ¢ frente a la transformacién. Esto a su vez
resulta en las que las ecuaciones de Hamilton no cambian, lo que significa que la transformacion
es una simetria. Con esto hemos probado que cada vez que haya una magnitud conservada, esta

actua como el generador de una transformacion candnica que es una simetria del sistema.

El resultado anterior también se puede leer a la inversa: dada una transformacion candnica con

generador g, debe cumplirse la identidad

0
K(P;,Qi,t) =H(Pi,61i7t)+8£
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Aplicando al hamiltoniano K la regla de transformacion que derivamos mas arriba para cualquier
funcién sobre el espacio de estados, esta formula puede reescribirse como

d
K(pi,qit) +e{K,g} =H(Pi7qz‘,f)+8§

Lo que puede reordenarse en la forma
d
Klpraan) = H (pait) e ( S5+ (7.H) ) + 0P

=H (pi,qist) + €8+ 0(g)?
Pero si el hamiltoniano es invariante K(p;,q;,t) = H(pi,qi,t), entonces la segunda linea implica
inmediatamente que ¢ = 0, es decir que g es una magnitud conservada. Por lo tanto cada vez que
haya una simetria infinitesimal, habra una magnitud conservada que es el generador de dicha

simetria.

Con lo de arriba, hemos entonces recuperado el teorema de Nonther de una manera bastante

sencilla en el formalismo hamiltoniano, usando paréntesis de Poisson.

Es importante sefialar que las transformaciones que hemos incluido en la deduccion pueden
mezclar arbitrariamente impulsos y coordenadas. Esto implica que lo que demostramos es en

realidad una generalizacion de la version lagrangiana del teorema de Noether.

Ejemplo: rotaciones

Supongamos un sistema invariante rotacional, con hamiltoniano

P2
H= %1v
o V()

Este sistema conserva el momento angular
(=7xp

cuyas componentes se escriben £, = €,,.x,p.. Esto implica que se cumple la regla para

los paréntesis de Poisson
{4y, H} =0

Por otro lado, también deducimos de aqui que los ¢, generaran simetrias del sistema.

Para ver cuales son estas simetrias, hacemos
o/

d
x; =Xq+ €5 = Xq + € EqpcXpOuc = Xa + € EqpaXp
9Pa
’ agd
Po=DPa—E€5—=Pa— ggdbcpc5ab = Pa+ €&jcaPc
dx,
lo que en términos vectoriales se escribe como

=)

7 P =P+epxiy

=7+ €7 Xy

donde i; es un vector unitario a lo largo del eje x,;. En otras palabras, acabamos de
demostrar que las componentes del momento angular generan las rotaciones a lo largo

de cada uno de los ejes.
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Ejemplo: vector de Laplace-Runge-Lenz

En el problema de Kepler, existe un vector adicional que se conserva ademas del
momento angular. Este es el vector de Laplace-Runge-Lenz, definido como

=

V=pxl—kut=px (Fxp)—kui=p*¥—(p-7)p—kut

Donde u es la masa reducida y k es la constante de acoplamiento del potencial de

Kepler. En componentes esto se lee

X,
Va= pb(pbxa - paxb) - knu7a

Dado que se conserva, debe ser el generador de alguna simetria. Para ver como actua

esta simetria sobre las variables canonicas, escribimos

IV
_x/a :Xa—f—eﬁ :xa+€(2paxd — PdXa _pbxbsdd)
a

v, k XaX
p; = Pa —ea—d =Ppa—E& (Phpb5ad—19a17d— A (5ad - dza)>
X, r r

Aqui se ve claramente que es una simetria que mezcla coordenadas e impulsos, algo

que nunca hubiéramos podido escribir en el formalismo lagrangiano.

Los paréntesis de Poisson proporcionan una ventaja adicional. Supongamos que conocemos dos

magnitudes conservadas C; y C,. Estas magnitudes cumplen que

8C1 &CZ _
ot or

Entonces usando la identidad de Jacobi, tenemos que

{C1,H}+ =0 {Cy,H} + 0

H{G 1 HY+{{CL G+ {{H, G}, Gy =0

donde podemos reemplazar las expresiones de arriba para deducir

aC aC d d
tenarmy+{Ghel-{5ha - ta.arm s fie.a) = Genat =0

Esto implica que la nueva magnitud C; = {C,,C; } también sera conservada C; = 0. Esta operacion
puede resultar en magnitudes conservadas nuevas, o a veces simplemente nos devuelve funciones

de las magnitudes que ya teniamos C; = f(C;,(,).

El conjunto de todas las magnitudes conservadas {C,} de un sistema fisico es un subconjunto de
su algebra de observables que estudiamos en la clase previa. La propiedad que acabamos de

probar implica que todas estas cantidades satisfacen la siguiente regla

{Cnycm} = fnm(ck)

En otras palabras, el subconjunto de magnitudes conservadas forma en si mismo un algebra,
que es una subalgebra del algebra de observables. Se denomina algebra de cargas o algebra de
simetrias, ya que con las {C,} podremos generar todas las simetrias del sistema. Las funciones
fam(Cx) se denominan las funciones de estructura del algebra de simetrias. En el caso bastante
frecuente en el que tales funciones son lineales {C,,Cnn} = fmnkCk, las constantes fi,x se llaman

constantes de estructura del sistema.
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Ejercicio:
Volviendo a las componentes del momento angular, de las que aprendimos que son los

generadores de las rotaciones alrededor de cada eje, demuestre que se cumple que
{eavgh} = Sahcgc

Con lo que las constantes de estructura estan dadas por el simbolo de Levi-Civita g,,,.

La regla para el paréntesis de Poisson de ¢, es reminiscente de los generadores
matriciales 1; que mencionamos en el capitulo sobre rotaciones. Estos satisfacen el

algebra de conmutadores
[ta, 1] = €apcte

La cuantizacidon canodnica debe respetar la regla escrita mas arriba, por lo que los

operadores de momento angular ¢ deben cumplir
[é\mé\b] = hl{m} = ﬁigabcé\c
Es por esta razén que el spin de un electrén se representa con matrices de Pauli, de
modo de satisfacer esta regla de conmutacion.
Ejercicio:

Usando las propiedades de los paréntesis de Poisson, pruebe que el vector de Laplace-

Runge-Lenz cumple con la siguiente algebra
{Va,Vb} = _2“H8abc£c

donde H es el hamiltoniano del problema de Kepler. Pruebe que se cumple ademas

que
{Eav Vh} = 8abcvc

Lo que implica que V transforma como un vector frente a rotaciones.

17.3 Resumen

Estudiamos en esta clase las transformaciones candnicas, que estan dadas por aquéllos cambios
de variables en el espacio de estados que preservan los paréntesis de Poisson fundamentales.
Aprendimos que hay cuatro tipos de funciones que definen transformaciones candnicas, que se

relacionan entre si mediante transformaciones de Legendre.

Estudiamos también las transformaciones canénicas infinitesimales, y las usamos para demostrar
que la evolucion temporal es de hecho una transformacién candénica. Mas aun, entendimos

que cualquier transformacién candnica puede interpretarse como una evoluciéon temporal con
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un hamiltoniano dado por el generador de la transformacion, y dedujimos que debe entonces

preservar el volumen del espacio de estados.

Finalmente, generalizamos el teorema de Noether al caso hamiltoniano, incluyendo simetrias que
mezclan coordenadas e impulsos. Vimos que cada vez que una transformacién candnica es una
simetria, su generador se conserva y reciprocamente, cada vez que hay una cantidad conservada,

esta genera una simetria.




18.1

18.2

Objetivos

En esta clase, vamos a usar las transformaciones cané-
nicas que estudiamos la clase pasada para reformular
completamente la descripcidon del movimiento de un sis-

tema mecanico en el espacio de estados.

Hasta ahora hemos usado ecuaciones diferenciales or-
dinarias. En el formalismo lagrangiano, usabamos ecua-
ciones diferenciales de segundo orden, que nos decian
como evolucionaba el sistema en el espacio de configura-
cién. En el formalismo hamiltoniano en cambio, utilizamos
ecuaciones de primer orden para estudiar el movimiento
en el espacio de estados. En ambos casos, el numero

de ecuaciones era igual al nimero de variables.

Carl Gustav Jacob Jacobi

En esta clase, vamos a construir una ecuacion diferencial en derivadas parciales para una sola

magnitud, que contiene toda la informacion sobre la evolucidon temporal del sistema, y estudiaremos

sus propiedades y algunas técnicas para su resolucion.

La ecuacion de Hamilton Jacobi

Dado un sistema mecanico descripto por variables canénicas {(p;,q;)}, aprendimos en la clase

anterior que podemos hacer transformaciones candnicas para describirlo con nuevas variables

{(P,0:)}. Concentrémonos en particular en aquéllas cuya funcion generatriz es del tipo Fi(Q;, ¢i,?).
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Para tales transformaciones, sabemos que las reglas de transformacion se escriben

oF

K(Pitht) :H(PhQiJ) + 7;
_9h p= %0
pi= 8q,~ e aQi

Una pregunta posible es si podemos encontrar una transformacién canénica que simplifique la
solucion de las ecuaciones de Hamilton resultantes. Por ejemplo, si fuéramos capaces de construir

una funcion F; particular tal que el nuevo hamiltoniano se anule
K(Plu Qi7t) =0

entonces las nuevas ecuaciones de Hamilton resultarian triviales

IK

=9 =

~50, "

y se podrian resolver muy simplemente como Q; = o; y P, = 3;, en términos de constantes de

i 0 P = 0

integracion o, 3;.

Supongamos que la funcién generatriz que cumple esta propiedad es F; = S(g;, Q;,¢). La condicion

de que se anule el nuevo hamiltoniano puede entonces escribirse como

donde reemplazamos los impulsos utilizando la regla de transformacién que escribimos mas
arriba. Hemos obtenido una ecuacién diferencial en derivadas parciales de primer orden que se
conoce como ecuacion de Hamilton-Jacobi. Esta ecuacion determina la primera funcion principal
de Hamilton S(q;,Q;,t) la cual, como veremos, contiene la solucion completa del movimiento del

sistema.

Ejemplo: particula no-relativista en tres dimensiones

Dada una particula no relativista que se mueve en el espacio tridimensional con

coordenadas x,, tenemos que su hamiltoniano se escribe como

pZ
H(xaapa) = ﬁ + V(xa)

con lo que la ecuacion de Hamilton-Jacobi se puede escribir inmediatamente

1 /9S\? PN
2m<axa> +V(Xa)+5—0

Como vemos, es una ecuacion no lineal, por lo que en principio puede resultar nada

trivial resolverla.

Ejercicio:
Escriba la ecuacion de Hamilton-Jacobi para una particula libre relativista que se mueve

en tres dimensiones.
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La ecuacion de Hamilton-Jacobi para un sistema con D coordenadas {g¢;} tiene D + 1 derivadas,
con lo que su solucion se escribira en términos de D + 1 constantes de integracion o;, a. Notese
que, dado que en la ecuacién sélo aparecen derivadas de S, una de las constantes de integracién
es aditiva. En efecto, si S(g;, @;,) es solucién de la ecuacion, entonces S(g;, o;,7) + o también lo
sera. En cuanto a las demas constantes de integracion, sin pérdida de generalidad las podemos

identificar con los valores constantes de las nuevas coordenadas Q; = «;.

Dada una solucion de la ecuacién, podemos escribir la transformacion candnica en la forma

98 as
pifgfqi(%,ai,t) Pi*afai(%,ai»f)*ﬁi

de donde se puede invertir para obtener una solucion completa del problema

qi = qi(04, B 1) pi = pi(ai, Bi,t)

Es decir que obtuvimos una solucién para el movimiento del sistema, en términos de las constantes
de integracion «;, 3;, a partir de la primera funcion principal de Hamilton S(g;, «;,7) que es solucion

de la ecuaciéon de Hamilton-Jacobi.

Ejemplo: relacion con la mecanica cuantica

Es interesante notar que la ecuacién de Hamilton-Jacobi para una particula no relativista
que se mueve en tres dimensiones se parece mucho a la ecuacion del iconal que
obtuvimos en la seccion[13.3] cuando discutiamos el principio de accién estacionaria.
Podemos hacer mas precisa esta correspondencia escribiendo la ecuacion de onda de

la mecanica cuantica, es decir la ecuacion de Schroedinger

h? 9%y 0¥
_%sz +V(Xa)q"— lh?

en la cual, y sin pérdida alguna de generalidad, podemos insertar una funciéon de onda

de la forma

para obtener

2
d
) +V(xa)+j:0

1 (.. 9% s
ot

I i Sl
2m \  0xZ ax,
Ahora bien, como sucedia en el caso del iconal antes discutido, cuando la longitud
de onda es mucho menor que la escala caracteristica del problema (que aqui viene
dada por la distancia tipica en la que el potencial experimenta cambios apreciables)
podemos descartar el término que contiene el laplaciano. Con esto tenemos

1 /9s\? dS
2]11<axa> +V()Ca)+E:0

que no es otra cosa que la ecuacion de Hamilton-Jacobi para una particula no relativista

que se mueve en tres dimensiones.
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En otras palabras, la ecuacion de Hamilton-Jacobi es la ecuacion del iconal de la
mecanica cuantica, lo que implica que la mecanica clasica es su limite de 6ptica

geométrica.

Ahora bien, en la discusién sobre el principio de accion estacionaria, el analogo del
iconal en el sistema mecanico era su accion ¢ Significa esto que la primera funcion

principal de Hamilton es la accion del problema mecanico?

Para tener una intuicion sobre el significado fisico de la primera funcién principal de Hamilton,
escribamos su derivada temporal en la forma
S= ﬁqi +25
dqi ot
El segundo término de esta expresion se puede obtener de la ecuacion de Hamilton-Jacobi como
menos el hamiltoniano. Esto resulta en la expresion
S= 3:611' —-H ((;9;,%[) = piqi — H(pi,qi,?)

l

La segunda igualdad pone de manifiesto que el valor numérico de esta expresién coincide con
el lagrangiano del sistema. Sin embargo, los impulsos son aqui funciones de las coordenadas
dadas por las derivadas de S, por lo que no se trata de la funcion lagrangiano propiamente dicha.
Integrando esta expresién en el tiempo, entre un instante inicial cualquiera donde las coordenadas
toman valores arbitrarios, hasta un instante final t donde las coordenadas valen ¢;, vemos que la
funcién principal de Hamilton coincide con la accion del problema, considerada como una funcién
del punto final de la trayectoria. El punto inicial no resulta relevante, ya que su contribucion se

puede reabsorber en la constante aditiva o.

Separacion de variables

Una técnica util para encontrar soluciones de la ecuacién de Hamilton-Jacobi es el método conocido
como separacion de variables. Se trata de proponer una forma tentativa o Ansatz para la solucion,
en términos de un conjunto de funciones desconocidas que dependen de variables diferentes.
Si la forma es la correcta, al insertarla en la ecuacion de Hamilton-Jacobi ésta se separa en un
conjunto de ecuaciones distintas para cada funcion desconocida, donde cada ecuacién depende

de un conjunto diferente de variables.

Por ejemplo, supongamos que el hamiltoniano no depende del tiempo. En ese caso la ecuacion
de Hamilton-Jacobi toma la forma
as daS
H|=—.,q — =0
(9%’ ,ql) " ot
Si proponemos una solucion tentativa para la separacion de variables en términos de dos funciones

W(q;) y s(¢) con la siguiente forma aditiva

S(qirt) = W(gqi) +s(1)
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la ecuacion se reescribe como

ow ds
H(aqiﬂi> +E =0

En esta ecuacion, el primer término depende exclusivamente de las coordenadas y no del tiempo,
mientras que el segundo depende del tiempo y no de las coordenadas. La Unica forma que puedan

cancelarse es si ambos son constantes. Entonces podemos escribir

ds
E :—E
ow
H (8%7Qi> =EF

en términos de una constante de separacién E. Vemos aqui que la primera ecuacion sélo involucra
a la funcion s(¢) y depende exclusivamente del tiempo, con lo que se resuelve inmediatamente
segun s(t) = —Et + o, donde «a es una constante de integracion. Por otro lado la segunda ecuacion
se denomina ecuacion de Hamilton-Jacobi independiente del tiempo y depende exclusivamente

de las coordenadas. Determina la funcién W(g;) conocida como funcién asociada de Hamilton.

Dependiendo de la forma funcional del hamiltoniano, puede ser posible continuar con el proceso

de separacion. En efecto, supongamos que el hamiltoniano puede escribirse como

H(pi,q:) = H(pj,q;,h(pk,qx))

donde las variables canonicas {(pi,¢;)} coni € {1,...,D} entran separadas en dos subconjuntos
diferentes {(px,qx)} con ke {1,....D'} y {(pj,q;)} con j € {D'+1,...,D}, el primero de ellos sola-
mente dentro de una funcién 4(py,qx). En tal caso, la ecuacion de Hamilton-Jacobi independiente

del tiempo se escribe

aw Iw
H|=—.qi,h| —, =E
(aqj 9 (aqk ‘“))

Proponemos una solucién tentativa para la separacién de variables con la forma aditiva

W(q:) = Wi(q;) +Wa(qk)

donde cada uno de los términos depende de un subconjunto diferente de las variables. Insertando

esta expresioén en la ecuacion, ésta toma la forma

aw, (8W2 ))
H N '7h N =E
<aq] qj aqk Clk

Si ahora calculamos la derivada respecto de g, obtenemos
oH b _
doh 8qk N
Dado que por hipétesis dH /dh # 0, esta condicién implica que dk/dq, =0, es decir que h debe

tomar un valor constante

oW, )
h| =—=, =
(aqk qk Y
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donde vy es la constante de separacion. Por otro lado, también se debe satisfacer la ecuacion

original, que ahora se lee
H( e a7) =E
dq;
En estas dos ultimas ecuaciones, la primera determina completamente W,(¢;) y depende de las
coordenadas {g;}, mientras que la segunda ecuacién determina W;(g;) en términos de las {g¢;}.

Es decir que hemos separado la ecuacion de Hamilton-Jacobi en dos ecuaciones que dependen

de un nUmero menor de variables.

En los casos en los que el proceso arriba descripto se pueda repetir un nimero suficiente de veces,
podemos resolver analiticamente la ecuacion de Hamilton-Jacobi para obtener la funcién principal
de Hamilton. Si en algin momento el proceso se estanca porque la dependencia del hamiltoniano
mezcla las variables de manera no separable, siempre se puede recurrir a métodos numéricos

para obtener una solucién.

Ejemplo:
Dado el hamiltoniano

2 2
_nn

H=
2m = 2m

+V(q2)
la ecuacion de Hamilton-Jacobi se lee
1 /aS\* 1 [3S)\? s
— = —(=— 1% —=0
2m <8q1) *om (aqz> Vi) + ot
Con lo que podemos separar el tiempo, usando
S(q1,92,1) =W(q1,92) +s()
Esto nos da una ecuacién de Hamilton-Jacobi independiente del tiempo, con la forma
1 (W% 1 [ow)\?
— (= —(=— V(g) =E
2m <9ql) " 2m <3qz) tVie)
mientras que la solucién para la funcién s(r) es, como explicamos s(t) = —Et + a. En

la ecuacion independiente del tiempo podemos identificar un sector que depende

exclusivamente de la coordenada ¢,

L (W' LW
2m \ dq; 2m \ dqn 2)=

h(p2,92)

lo que nos permite utilizar la solucion tentativa para la separacion de variables

W(q1,92) = Wi(q1) + Wa(q2)

Reemplazando en la ecuacién, obtenemos

1L fow > 1 [(om)’ B
m(%)*&(%ﬁ*”@*E
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Esto solo se puede satisfacer si se cumple independientemente que

1 fow)>2 LAY

—(=— =E — (== V(g) =

2m<8q1> +v 2m<8q2 +V(g2) =7y
La ecuacion para W;(q;) se puede resolver inmediatamente como

Wilq1) = —v/2m(E—7Y)q1+n

donde ¥, es una constante de integracién, y hemos hecho una eleccion particular del
signo en la raiz cuadrada. Por otro lado, la ecuacion para W, se puede reescribir en la

forma

Ws iy —V(a)

g2
donde nuevamente hemos hecho una eleccion para el signo de la raiz cuadrada. De

aqué se obtiene la solucion

Wy = —(/dqz 2m(y=V(q2)) + 1

con una nueva constante de integracién y,. Con esto, la solucién general para la funcion

principal de Hamilton toma la forma

S=—v/2m(E - a1~ [ dgs/2m({y=V(a2) + @+ Ex

donde hemos agrupado las constantes de integracion aditivas en una nueva unica

constante a = y1 + 9». La solucion para las variables candnicas se escribe

oS 2
O PR 2m(E — ) p2=5—=—2m(y—V(q))

g
S [ m
Bl = aiE = —(q1 m +t
as m m
=gy = aE—y) -/ N 2=V

Lo que se puede invertir parcialmente en la forma

p1 = mvy p2=—/2m(y—V(q2))

=w(t—1)+ t—1 —/d _am
=y —
q1 1 0) ™40 0 92 V()

donde hemos identificado las constantes de integracion como B = 1y, B> = to — qo0/vo,
vo = —+/2(E—17)/m, siendo go y vy los valores de la coordenada ¢, y su derivada
temporal ¢, en el instante inicial t = ty. Esto por supuesto coincide con la solucion que

hubiéramos obtenido resolviendo simplemente las ecuaciones de Hamilton.

Noétese que elecciones distintas para los signos para las raices cuadradas hubieran
resultado en soluciones que difieren en los signos de sus velocidades iniciales. Es-
ta aparicion de diferentes ramas de soluciones es caracteristica de las ecuaciones

diferenciales no lineales.
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Resumen

En esta clase, encontramos una descripcion del movimiento en términos de una ecuacion diferencial
en derivadas parciales para una funcion sobre el espacio de configuracion. De este modo, la
Mecanica se parece al electromagnetismo o a la mecanica de fluidos, en el sentido de que sus
soluciones se describen como excitaciones propagandose en algun tipo de sustrato que llena todo

el espacio de configuracion %.

Como sucedia con el principio de accion estacionaria, la ecuacién de Hamilton-Jacobi nos permite
hacer contacto con el origen cuantico de las leyes de la Mecénica Analitica, interpretdndolas como

limite de Optica geométrica de la ecuacién de Schrodinger.




o defe, '

g

e
i

19.1 Objetivos

En el capitulo[TT]aprendimos a tratar vinculos en la for-
mulacion lagrangiana, mediante el uso de coordenadas
adaptadas o bien con multiplicadores de Lagrange. El
primer método reduce el numero de coordenadas ge-
neralizadas, mientras que el segundo agrega nuevas

coordenadas para representar las fuerzas de vinculo.

En cualquier caso, aun cuando todos los vinculos del
problema han sido incorporados a su lagrangiano, toda-
via pueden aparecer vinculos adicionales al pasar a la

formulacion hamiltoniana.

En efecto, al realizar la transformacion de Legendre del

Paul Adrien Maurice Dirac

lagrangiano para obtener el hamiltoniano, puede darse
el caso de que no sea posible invertir algunos de los momentos generalizados para obtener
las correspondientes velocidades como funcién de los impulsos. Esto establece vinculos entre

impulsos y coordenadas, que debemos incorporar de algin modo a la formulacion.

19.2 Vinculos hamiltonianos

Supongamos un sistema mecanico en cuya formulacion lagrangiana ya hemos incorporado todos
los vinculos holonémicos en términos de coordenadas adaptadas, y todos los no holonémicos

utilizando multiplicadores de Lagrange. El espacio de configuracion resultante & estara parametri-
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zado por coordenadas generalizadas {g;} coni € {1,...,D} (entre las cuales estan incluidos los
eventuales multiplicadores de Lagrange que hayamos introducido), y la dinamica estara descripta

por un lagrangiano L(g;,qi,t).

El primer paso para obtener la formulacion hamiltoniana del sistema consiste en calcular sus

momentos generalizados segun la férmula

pPi= 94, =Pil4;:4;;

A continuacion deberiamos invertir esta expresion para obtener las velocidades generalizadas

como funcién de los impulsos y las coordenadas canonicas
4i =vi(pi,qi,t)

para con esto escribir el hamiltoniano como la transformada de Legendre del lagrangiano
H(pi,qi,t) = pivi(pj,q;,t) — L(vi(pi, qi 1), qirt)

Sin embargo, podria darse el caso que no fuera posible invertir las ecuaciones que definen los
impulsos candnicos para obtener la totalidad de las velocidades generalizadas {¢;} coni€ 1,...,D.
En el caso general, s6lo podremos invertir para un subconjunto de velocidades, digamos D; de
ellas, y restaran un cierto niumero de velocidades que no se podran despejar en funcién de los

impulsos. Es decir que las ecuaciones
pi —pi(Gi,qi,t) = ¢(pi,qi,t) =0 parale{Dy+1,...,D}

no se podran invertir, dando origen a un conjunto de vinculos entre las variables candnicas
&(pi,qi,t) =0 paralec{D;+1,...,D}

Estos vinculos que aparecen como un obstaculo al intentar formular el formalismo hamiltoniano se

conocen como vinculos primarios.

Ejemplo: efecto Hall

Supongamos que tenemos una particula cargada sometida a un campo magnético
uniforme de valor B en la direccién k. Como hemos demostrado antes, el lagrangiano

que describe esta dinamica se lee
1
L= Em(x2 +3*42%) —e(®(x,y,2) — Bxy)

noétese que dado que la velocidad en x es finita, siempre es posible poner un campo

magnético B tal que my/2e < Bx con lo cual
1
L=5m (% +2%) +eBxy+e®(x,y,2)
En este lagrangiano, el momento generalizado en la direccién y esta dado por

py =eBx
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con lo que tenemos la ecuacién

py—eBx=¢(py,x)=0

Pero aqui no entra la velocidad y por lo que es imposible escribir v,(p,) y tenemos un

vinculo primario.

Ejemplo: lagrangiano lineal en las velocidades

Si tuviéramos un lagrangiano lineal en las velocidades generalizadas
L=q;gi(q),t)

donde g;(¢,,t) son funciones arbitrarias de las coordenadas y el tiempo, entonces

tendriamos

pi = 8i(q;:t)

Por lo tanto en la ecuacién

pi—8i(qj,t) = ¢i(pj,q;,t) =0

no se puede despejar ¢; como funcion de las variables candnicas (g;, p;). Esto implica

que tendremos un vinculo primario por cada coordenada g;.

Si llamamos &.,, al espacio parametrizado por las variables canénicas {(p;,¢;)}, vemos que en
presencia de vinculos hamiltonianos este espacio no es accesible en su totalidad. Esto sucede
porque el movimiento tiene lugar en la hipersuperficie &, C &, determinada por los vinculos.
Como veremos mas adelante, el espacio de estados fisicos del sistema estara contenido dentro

de tal hipersuperficie & C &inc.

Vinculos primarios y hamiltoniano total

Supongamos que escribimos un hamiltoniano tentativo para describir la evolucién temporal de un

sistema con vinculos primarios como los que acabamos de definir, en la forma
H = pig; — L(4i,qi,t)

donde no nos hemos preocupado por invertir explicitamente las velocidades en funcién de los
impulsos, es decir que es por ahora una funcion de {g;,g;, p;} y eventualmente el tiempo. Calculando
la diferencial de esta funcién tendremos que

dL dL

dH = pidq;+dpiqi — quQi_ 9,24
] ]

aqui podemos reemplazar las derivadas del lagraniano, usando la definicién de los momentos

generalizados en el tercer término y las ecuaciones de Lagrange en el Ultimo, para obtener

dH = (pi —pi(¢j,qj.1))dqgi +dpi¢i — pi(4j.qj,t)dg;



268 Capitulo 19. Vinculos hamiltonianos

El primer término se anula dada la definicién de los impulsos canénicos, incluso cuando alguno

de los momentos p;(4;,4;,t) no sea invertible. Esto implica que el hamiltoniano no es una funcién

de las velocidades, incluso cuando hayamos fallado en resolverlas en términos de los impulsos.

Tomando las derivadas del hamiltoniano para reescribir la diferencial del lado izquierdo, tenemos
glp_lidpi + g:d‘]i =dpiqi — pidqi

o bien, reordenando

JH JH
5——4qi|dpi+ | 5 +pi|dgi=0
dpi g

A pesar de que esta ecuacion es sugerente, no podemos deducir de aqui que se cumplen las
ecuaciones de Hamilton. En efecto, dado que las variables candnicas deben satisfacer los vinculos
o1(pi,qi,t) =0conl e {D,+1,...,D}, tenemos que sus diferenciales {(dp;,dg;)} deben cumplir la

restriccion

0
doy = a? dgi+

Esto nos impide poner dp; = 0 o bien dgq; = 0 independientemente en la ecuacion de mas arriba,

P
Ipi

dp;i=0 con l€{D;+1,...,D}

para obtener de alli las ecuaciones de Hamilton. Esta restriccion sélo deja D, coordenadas e
impulsos candnicos cuyas diferenciales son independientes, por lo que solamente podriamos

extraer D; ecuaciones de Hamilton.

Para resolver el problema, multiplicamos la ultima ecuacion por una funcién arbitraria «; de las

variables canodnicas y el tiempo

d d
uddy = w2 dgi+u 22 dp; =0
9gi Ipi
Ahora podemos sumar esta expresion a la diferencial de mas arriba, para escribir

(g;{ q'Herng) dpi+ (32{ +ﬁi+“l§ﬁ;i) dgi=0
Aqui tenemos D, coordenadas e impulsos canénicos para los cuales podemos escribir dp, =0 0
dgi =0independientemente, con k € {1,...,D; }. Por otro lado, tenemos D — D, funciones arbitrarias
u; que podemos ajustar de modo de anular los coeficientes de los diferenciales que restan. Esto

implica que la relacion de mas arriba se puede resolver, con lo que obtenemos las ecuaciones de

movimiento
. oH af . oH af
= api T Ipi b= g g
o1(pi,qit) =0

Donde en la segunda linea hemos agregado los vinculos primarios, que deben resolverse junto con
las ecuaciones. Es importante notar que en este punto todavia tenemos D, funciones desconocidas

u;, por lo que el problema no esta aun bien definido.

Podemos reescribir las ecuaciones en la primera linea usando paréntesis de Poisson, para obtener

gi ={qi, H} +wi{qi, ¢} pi={pi,H} +u{pi, o}
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o(pi,qist) =0
Lo que se puede reacomodar usando la regla de Leibniz y la bilinealidad de los paréntesis de

Poisson, segun
gi = {qi,H +widr} —{qi,ui } i pi = {pi, H+w ¢}y —{pi,ui}

¢I(Pi74iaf) =0
El segundo término en las ecuaciones de la primera linea se anula al usar los vinculos, cumpliendo

una propiedad a veces se denomina nulidad débil. El conjunto de ecuaciones de movimiento puede

entonces escribirse como paréntesis de Poisson con una nueva magnitud, en la forma
qgi = {inHtot} pi= {piaHtot}

o (pirqist) =0

donde hemos definido un hamiltoniano total segun la féormula

Htot(phqiat) = H(Pia%t) +Lt1 ¢I(Pi751iat)

Con estas ecuaciones, podemos calcular la derivada total de cualquier funcién F de las variables
canonicas
F= alpi + al‘]i + 8i = 8i {pi,Hot } + 3l {4i,Hot } + ai = {F»Htot}ai
api dq; Jt  dp; dq; ot ot
En conclusion, la evolucidon temporal puede ahora escribirse en términos de un hamiltoniano total
H,.: que involucra D — D, funciones desconocidas. Como veremos mas adelante, estas funciones

no son completamente arbitrarias, sino que deben satisfacer requisitos de consistencia.

Nétese que en ningun punto en los calculos de arriba hemos impuesto los vinculos dentro de
los paréntesis de Poisson. Esto se debe a que los mismos no involucran el valor de la funcién

¢;(qi, pi-t) sino de sus derivadas.

Vinculos secundarios y hamiltoniano extendido

El procedimiento de la seccion anterior permitié extraer las ecuaciones de movimiento para las
variables candnicas, a partir de un hamiltoniano total que contiene funciones desconocidas. Sin
embargo, esta construccion no garantiza que, dada una condicién inicial que satisface los vinculos,
la evolucién temporal mantenga tal restriccion. Necesitamos asegurar las condiciones para que la
solucioén de las ecuaciones de Hamilton respete los vinculos a medida que transcurre el tiempo.

En otras palabras, tiene que cumplirse que la derivada temporal de los vinculos se anule

(]51 = {¢I>Htot} =0

Usando la forma explicita del hamiltoniano total, esto se puede escribir como una ecuacién de la

forma

{0, H} +we{d, o} =0
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Cuando esta restriccion se aplica a los diferentes valores de / € {D; + 1,...,D}, puede dar origen

a cuatro tipos de situaciones

= Inconsistencias: es decir ecuaciones que no pueden satisfacerse, del estilo 1 = 0. Esto
significa que el lagrangiano original es inconsistente. Por ejemplo, si definimos un sistema
unidimensional cuyo lagrangiano tiene la forma L = ¢, sus ecuaciones de Lagrange resultan en
1 =0y son inconsistentes. Esto significa que no podemos empezar con cualquier lagrangiano,
sino solo con aquéllos que den origen a ecuaciones de Lagrange consistentes. No se trata
en realidad de ninguna restriccion novedosa, ya que la venimos aplicando tacitamente desde

el comienzo del curso.

= Consistencias: es decir ecuaciones que se satisfacen automaticamente, de la forma 0 = 0.
Esto sucede cuando ambos términos de la ecuacion se anulan independientemente {¢;,H} =
0y Vk:{¢, ¢} =0. Es decir que las ecuaciones de Hamilton calculadas con el hamiltoniano

total respetan automaticamente el vinculo ¢;(p;,q;,t) = 0 y lo mantienen a lo largo del tiempo.

= Nuevos vinculos: se trata de relaciones que no involucran a los u;, sino solamente a las
variables candnicas. Aparecen cuando el primer término de la ecuacién no se anula {¢;, H} #
0, pero el segundo si Vk : {¢;, ¢} = 0. Podemos escribirlas en una forma similar a la de los

vinculos primarios
¢ (pi,qi,t) =0 donde ahoral € {D,,...,D;}

Debemos asegurar que estos vinculos secundarios también se satisfagan, y que se manten-
gan a lo largo del movimiento. Esto implica que sus derivadas temporales también deben
anularse, lo que a su vez puede dar origen a nuevos vinculos secundarios, y asi sucesiva-

mente hasta agotar las relaciones de consistencia.

m Restricciones sobre las u;: finalmente, para algunos de los vinculos ¢, obtendremos condi-

ciones que involucran a las variables u;, de la forma

{¢17H}+Mk{¢l7¢k} =0

Aqui el indice k recorre los valores k € {D; +1,...,D}, mientras que el indice I corre sobre
solo algunos valores dentro del conjunto {D, +1,...,D}, aquéllos que tengan {¢;,¢;} # 0
para algun valor de k. Esto establece un conjunto de relaciones lineales entre los u;, que

puede resolverse como

u; = U(qi, pirt) +vaVu (qi, pist)

Donde U(g;, p;) son soluciones particulares de la ecuaciones no-homogéneas, mientras
que V,(gi, pi) son soluciones de las ecuaciones homogéneas, multiplicados por coeficientes

arbitrarios v, que son funciones del tiempo.
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Con esto, el hamiltoniano total puede reescribirse como

Htot(thht) = H(CIhPiat) + Ul(QiniJ)(bl(CIhPi) +VaVal(QiaPiJ)‘Pl(‘]iaPiJ)
H'(gi,pist) 9a(Pisgist)

:H/(qiapivt) +Va¢a(6h7piat)

Donde tanto H'(g;, pi,t) como ¢,(g;, pi,t) son funciones completamente determinadas de las varia-
bles canénicas {(g;,p;)} y el tiempo, pero aun tenemos funciones indeterminadas del tiempo v,.

Estas funciones afectaran la evolucion temporal, dado que las ecuaciones de movimiento se leen

4i = {qiHiot } = {qi, H'} +va{qi, ¢a} pi = {pi,Hiot} = {qi,H'} +va{qi, 0a}

Notese que estas nuevas ecuaciones de movimiento no necesitan ser complementadas por los
vinculos, ya que nuestra construccion asegura que si los mismos se satisfacen en el instante inicial,

lo haran a lo largo de todo el movimiento. En otras palabras, el sistema evoluciona dentro de &i,c.

Sin embargo, la presencia de funciones arbitrarias en las ecuaciones de Hamilton implica que
las condiciones iniciales no determinan completamente la evolucion ulterior. Al transcurrir el
tiempo, distintas elecciones de las funciones v, resultaran en diferentes valores para las variables
canodnicas. Esto implica que el espacio de estados &, que esta definido por el conjunto de todas
las condiciones iniciales posibles, esta contenido dentro de la hipersuperficie de vinculos & C &inc.
Cualquier valor para las variables candnicas que satisfaga los vinculos puede ser considerado
como una condicion inicial para el movimiento, por lo que éstas determinan completamente el
estado del sistema. Sin embargo, el estado del sistema no determina un valor Gnico para las
coordenadas canonicas, ya que el sistema puede haber arribado a ese estado con cualquier

eleccion de las funciones v,,.

Las funciones arbitrarias v, también afectan la evolucion temporal de cualquier funcion de las

coordenadas canonicas
F= {FaHtot} = {FaH,}+Va{Fa (Pa}

Esto significa que si la funcién es un observable fisico, entonces no deberia depender de la eleccion
de las v,. Con esto concluimos que los observables fisicos estan dados por aquéllas funciones de

las variables candnicas que satisfacen las restricciones

{F»%}:O

Una consecuencia interesante de esta definicion se obtiene haciendo uso de la identidad de Jacobi,

para escribir

{{¢aa¢b}’F}+{{¢baF}7¢a}+{{F7 ¢a}7¢b} = {{d)aa(pb}aF} =0

De aqui vemos que el observable también queda invariante si sumamos al hamiltoniano términos
de la forma v, {94, 95}, con v,, nuevas funciones arbitrarias del tiempo. Esto nos permite definir un

hamiltoniano extendido

Hext (pisqist) = H' (pisgist) +va0a(Pisgist) +Vap{ 0a(pi gis 1), 6 (pis qist) }
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a partir del cual podemos definir nuevas ecuaciones de movimiento que tendran el mismo contenido

fisico.

Gi = {qi, Hext } Pi = {pi,Hext}

Estas ecuaciones definen la evoluciéon mas general posible para un sistema hamiltoniano con

vinculos. Los valores de las funciones arbitrarias v, y v, no afectan los observables.

Un punto importante es que las funciones {¢,,¢,} podrian ser combinaciones lineales de los
vinculos primarios. En tal caso, no es necesario agregarlas en el hamiltoniano extendido dado
que ya se encuentran presentes en el hamiltoniano total. Otra opcién es que al calcular {¢,, ¢}
obtengamos una combinacién lineal que incluye algun vinculo secundario. En ese caso la funcién
si contribuye con un término nuevo al hamiltoniano extendido. Una ultima opcion, que sera de
interés mas adelante, es cuando las funciones {¢,, ¢,} no son una combinacion lineal de vinculos
ni primarios ni secundarios. En ese caso, también agregan nuevos términos al hamiltoniano

extendido.

Transformaciones de gauge

Segun las definiciones de la seccién anterior, las funciones arbitrarias en nuestro hamiltoniano
extendido no afectan el estado fisico. Ahora bien cdmo se relacionan los valores de las coor-
denadas canénicas cuando los hacemos evolucionar a partir de la misma condicion inicial con
diferentes elecciones para las funciones arbitrarias? Para ver esto, supongamos que hacemos una

evolucién infinitesimal con un tiempo € para una eleccién posible de dichas funciones, digamos v,

Y Vab
ql-(tJrg) - qi(t) +E€ ({%,H/} +Va{%'a¢a} JFVab{C]i» {¢aa¢b}}>

pi(t+€)=pi(t)+€ ({pi,H/} +Va{pis Pa} + Vabr{Pi,{Pa; ¢b}})

El resultado dependera de la dependencia temporal de las funciones indeterminadas v, y vy,. Si

las cambiaramos por funciones diferentes v, y v, tendriamos

Gi(t+€) = qi(t) + € ({qi, H'} + 92{i, 00} + P {qi, {®a 06} })

p~i<t+8) :pi(t) +€ ({piaH/} +ﬁa{pia¢a} +‘7¢lb{pia {(pm(bh}})

Con lo cual la diferencia entre evolucionar con v, y v, respecto de hacerlo con 7, y 7, se puede

obtener restando ambos casos, como
Gi(t+¢€) = qi(t + &) + & ((¥a —va) {qis 9a} + (Vab — Var) {qis {9a: 96} })

pi(t+€) = pi(t + &)+ & ((Va —va) {Pis Y} + (Vb — Vap) {Pir {@a, o } })
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Esto tiene la forma de una transformacion canénica generada por las funciones ¢, y ¢.;, 10 que se ve
mas claramente si definimos los parametros infinitesimales de transformacién como ¢, = (v, — v,)

Y € = €(Vap — vap), 10 que nos permite reescribir la formula de arriba como

Gi = qi + €4qi, 0a} + € i {00 Op} }

pi=pi+ Ea{Ph (Pu} + gab{ph {‘Pav ¢b}}

Pero sabemos que la evolucién con v, y v, Y la evolucién con v, y v,, corresponden al mismo
estado fisico. Esto quiere decir que las funciones ¢, y {¢,,¢»} generan las transformaciones
canonicas que no cambian el estado fisico, que se denominan las transformaciones de gauge del

sistema.

Ejemplo: paréntesis de Dirac

Las transformaciones de gauge generadas por las funciones ¢, son muy similares a las
simetrias. Si bien no dejan invariantes las ecuaciones de movimiento, si lo hacen con
el estado fisico que resulta de la evolucion temporal. Por otro lado, sus generadores ¢,

son vinculos que, como vimos, se conservan a lo largo del movimiento.

Sin embargo, aparece una diferencia importante y es que el paréntesis de Poisson
de dos de tales cantidades conservadas {¢,,¢,} no necesariamente resulta en una
cantidad conservada. Esto sélo sucede cuando el resultado es una funcion de los
vinculos primarios o secundarios, pero como vimos mas arriba también puede darse el
caso de que sea una funcion enteramente nueva. Por esta razon, los generadores ¢,
de transformaciones de gauge no constituyen una estructura de algebra cuando se los
combina utilizando el paréntesis de Poisson, como si sucede con los generadores de

cualquier simetria.

Podemos sin embargo idear una modificacion del paréntesis de Poisson, conocida

como pareéntesis de Dirac y definida por la formula

{F'G}D = {FvG} + {F’ ¢I_<}[{¢I_<’¢l_}]il {¢I_>G}

donde estamos tomando la inversa de la matriz {¢;, ¢;}. En esta expresion, los indices
k.1 corren sobre los vinculos de segunda clase, que son aquéllos cuyo paréntesis de
Poisson {¢, ¢;} no es una combinacion lineal de los vinculos. Por contraposicién los

vinculos de primera clase son aquéllos donde eso si sucede.

Utilizando el paréntesis de Dirac, tenemos que {¢,, 9, }p si es una combinacion lineal
de los vinculos, con lo que recuperamos una estructura de algebra. Esto resulta
particularmente importante a la hora de cuantizar un sistema mecanico con vinculos

hamiltonianos.
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19.3 Resumen

En esta clase, estudiamos la aparicién de vinculos entre las variables candnicas, como una
obstruccién para la construccion del formalismo hamiltoniano a partir de la transformada de
Legendre del hamiltoniano. Fuimos capaces de encontrar las ecuaciones de evolucion temporal,

en funcién de un hamiltoniano extendido que contiene funciones arbitrarias del tiempo.

Entendimos que los estados fisicos son insensibles a la eleccion de tales funciones arbitrarias, y

que diferentes elecciones se relacionan entre si por tranformaciones de gauge.
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