SEMINARIOS DE MECANICA CUANTICA
PARA ALUMNOS DE ASTRONOMIA

f "‘-% UNIVERSIDAD
¢ NACIONAL
“NoW?/ DE LA PLATA




SEMINARIOS DE MECANICA CUANTICA
PARA ALUMNOS DE ASTRONOMIA

Eduardo Bauer

Facultad de Ciencias Astrondmicas y Geofisicas

§” M UNIVERSIDAD
g NACIONAL
Cher/ DE LA PLATA

e

EDITORIAL DE LA UNLP



A la memoria de mis padres



Agradecimientos

En primer lugar, deseo expresar mi agradecimiento a los miembros de la Facultad
de Ciencias Astronémicas y Geofisicas, junto aquellos de la Universidad Nacional de La
Plata, del Instituto de Fisica La Plata y del CONICET, que trabajan para que estas
instituciones sean tierra fértil donde pude desarrollar la labor materializada en este libro.
Finalmente, deseo destacar mi agradecimiento a Fausto Bredice y Lydia Cidale, por su

ayuda y observaciones en el tema del ancho de las lineas espectrales.



Indice general

Introduccion

1.

Interaccion de la radiacion con la materia

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.

1.9.

La radiacién electromagnética desde el punto de vista cldsico . . . . .
El Hamiltoniano de interaccion . . . . . . . . .. ... .. .. ....
Absorcién y emision inducidadelaluz . . ... ... . ... ... ..
Cuantificacién del campo electromagnético . . . . . . . . . . . .. ..
Discusion de la emision espontédnea . . . . . . . ... ... ... ...
Transicion dipolar eléctrica. . . . . . . . . .. ... ... ... .. ..
Potencia irradiada . . . . . . . . ... ...
Sobre el ancho de linea del espectro atémico . . . . . . . . . ... ..

1.8.1.  Perfil de linea para el ensanchamiento por colisiéon . . . . . . .

1.8.2. Breve discusion del ensanchamiento de las lineas espectrales

Conclusiones . . . . . . . .

Materia proto-neutrénica con un campo magnético intenso

2.1.
2.2.
2.3.
2.4.
2.5.

3.1.
3.2

Algunos elementos de Termodindmica . . . . . . . ... .. .. ...

Una particula cargada en un campo magnético: niveles de Landau

Comparacion de lo discutido con el 4tomo de hidrégeno . . . . . . . .
Ecuacién de estado con un campo magnético intenso . . . . . . . ..

Discusién y conclusiones . . . . . . . ...

. Oscilaciones de neutrinos
Algunos elementos de la fenomenologia de neutrinos . . . . . . . . ..

Un sistema con dos sabores de neutrinos . . . . . . . . .. ... ...

40
42
48
53
54
66



3.3.  Un sistema con tres sabores de neutrinos . . . . . . . . .. ... .. .. 77

3.3.1. Consideraciones generales sobre la matriz de transformacién . . . 77

3.3.2.  Probabilidades de transicién y de permanencia . . . . . . . . .. 80

3.3.3. Resultados numéricos . . . . . .. ..o 85

3.4, Discusion . . . .. 91
3.5. Resumenyconclusiones . . . . . . . .. .. ... L. 96

. El decaimiento del neutron 102
4.1. Laecuacionde Dirac . . . . . . . ..o 103
4.2. La Regla de Oro de Fermi relativista . . . . . . . ... ... ... ... 107
4.3. El decaimiento del neutrén . . . . .. ..o 110
44. Conclusiones. . . . . . . . . 118

. El algoritmo de Shor en la computacién cuantica 120
5.1. Encriptacién empleando el algoritmo RSA . . . . . . . ... ... ... 121
5.1.1. Nomenclatura y elementos matematicos . . . . . . . ... ... 122

5.1.2.  Un mensaje como un nimero entero . . . . . . . . . . .. ... 124

5.1.3. Resumen del algoritmo RSA . . . . . . . . ... ... ... .. 126

5.1.4. Generaciondeclaves . . . . . .. ... ... ... ... 127

5.15. Cifradoydescifrado . . . . . . . . ... ... ... .. ..... 127

5.2. Elalgoritmo de Shor . . . . . . . ... .. ... 128
5.2.1. Factorizacionde N =p.q . . . . . . . . ... ... ... 129

5.2.2.  Implementacién del algoritmo de Shor . . . . . . . . ... ... 131

53. Discusion . . . . .. 138
54. Epilogo . . ... 139

. Valor numérico de algunas constantes de interés 142
. Calculo de la densidad de niimero 145
B.1. Ausencia de niveles de Landau . . . . . . . .. ..o 146
B.2. Presencia de niveles de Landau . . . . . . .. ... 147
B.3. Limitepara B=0.. . . . . . . . . . .. . 148

B.4. Unidades . . . . . . . ., 149



C. Unidades MKSA y CGS

C.1. Introducci6n altema . . . . . . . .

C.2. Las ecuaciones de Maxwell . . . . .

D. Notacion relativista

E. Constantes para el mesén—w y otros

F. Calculo del elemento de matriz débil (|M.-,,,|?)

F.0.1. Traza lepténica. . . . . . .
F.0.2. Traza hadrénica . . . . ..

F.0.3. Evaluacién de (|M.-p,nl?)
Comentario final
Bibliografia

El autor

151
151
152

154

157

158
159
160
160

163

165

167






Introduccion

El objetivo de este trabajo es el de presentar cinco seminarios de Mecanica Cuantica,
con el fin de que en las instancias finales del curso correspondiente, los alumnos reunidos
por grupos, elijan, preparen y exponen uno de ellos. Puede especularse con que el fin de
tal labor, sea el coronar el final del curso con una aplicacién de algiin impacto, que resulte
del empleo directo del contenido del curso. Pero no es asi. Para entender acabadamente
el contenido de cada uno de los siguientes seminarios, se requieren conocimientos que van
mas alla del contenido de Mecanica Cuantica que vimos hasta ahora. El objetivo didactico
de los seminarios es el de enfrentar al alumno de Astronomia con un problema nuevo,
cuyo esquema formal tiene algunos elementos conocidos, pero otros no lo son. Es que
cualquier trabajo de investigacién supone el abordaje de conocimientos y metodologias
que aln no hemos estudiado. Claro, se puede preguntar qué grado de comprension
puede alcanzarse en el tiempo acotado del que dispone un alumno. Eso depende de
muchos factores. Pero la meta no es lograr una comprension completa de los diferentes
seminarios, sino sélo alcanzar alglin grado de comprensién, atn parcial, de los mismos.
Es el valor formativo de enfrentar un tema nuevo, con un formalismo no visto, lo que
nos interesa.

La licenciatura en Astronomia es una carrera en que un porcentaje alto de sus gradu-
ados se dedican a la investigacién cientifica. Cualquier investigacion cientifica supone un
desafio similar al de estos seminarios. Es conveniente advertir al alumno, sin embargo,
que si estos seminarios le resultan de muy dificil comprension, no debe desalentarse: con
todo, estos seminarios se encuadran dentro de un area del conocimiento especifica. Es el
area de la Mecanica Cuantica y sus aplicaciones. La Astronomia es mucho mas amplia
y comprende disciplinas muy diferentes. Cada persona encuentra su area de interés. En
resumen entonces, el objetivo de estos seminarios es el de enfrentar al alumno con un

desafio y ver cuan lejos llega en su comprension.

Facultad de Cs. Astrondmicas y Geofisicas | UNLP



EDUARDO BAUER

Dicho esto, vale la pena resumir el contenido de cada uno de los cinco seminarios.
El orden de los mismos no es arbitrario: el primer seminario es el que se aleja menos
del esquema formal del curso y en los siguientes se va incrementando el nimero de
elementos nuevos. Esta afirmacién puede inducir a elegir siempre el primer seminario.
Pero no debe ser asi. En términos ideales, se deberia emplear el mismo esfuerzo para
cualquiera de los mismos. En la exposicién de los mas dificiles, quiza se expongan dudas
mas que certezas. Pero los errores y dudas son muy utiles: nos enfrentan a nuestro
desconocimiento y da lugar al debate del que surge el conocimiento. Resumamos ahora

cada uno de los mismos.

Primer seminario: Interaccién de la radiacién con la materia. Empleando los conocimien-

tos adquiridos en la teoria de perturbaciones dependiente del tiempo, se discuten las posi-
bles transiciones atémicas debido al efecto de la radiacion electromagnética. Se analizara
la cuantificaciéon del campo electromagnético con el fin de comprender el decaimiento
espontaneo de un electrén en un nivel excitado de un atomo.

Segundo seminario: Materia proto-neutrénica con un campo magnético intenso. Se
discutird la construccién de una ecuacién de estado para materia formada por protones
y neutrones, con densidades en un rango de hasta tres densidades de saturacién nuclear
y un campo magnético intenso. No se analizara la interaccion fuerte entre las particulas.
Se discutira la funcién de distribucién de las particulas teniendo en cuenta el principio de
Pauli. Debido a la presencia del campo magnético, se estudiardn los niveles de Landau
para los protones.

Tercer seminario: Oscilaciones de neutrinos. Las oscilaciones de neutrinos son de
enorme importancia astrofisica. En el curso de trabajos practicos se estudia el problema
en forma simplificada, considerando dos estados cuanticos de los neutrinos. En este
capitulo se discute el caso realista de tres tipos de neutrinos.

Cuarto seminario: La desintegracién del neutrén. Empleando nuevamente la teoria
de perturbaciones dependiente del tiempo e introduciendo en forma fenomenolégica la
interaccion débil, se mostrara un calculo simple, pero realista, el valor de la vida media
de un neutrén en el espacio libre.

Quinto seminario: El algoritmo de Shor en la computacién cuantica. En el dltimo tema
del curso, se introducen conceptos de teoria de la informacién cuantica y computacién

cuantica. En este seminario se discute el algoritmo de Shor; que es quiza la aplicacién

Facultad de Cs. Astrondmicas y Geofisicas | UNLP
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EDUARDO BAUER

mejor estudiada de computacién cuantica. Por medio de este algoritmo, se puede des-
componer un nimero grande en factores primos empleando una potencial computadora

cuantica.

La bibliografia se cita en los mismos seminarios. Buscamos adoptar para cada semi-
nario, el enfoque de un libro o publicacién cientifica particular. Aquel libro o publicacién

de referencia, es sefialado como tal.

Facultad de Cs. Astrondmicas y Geofisicas | UNLP
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Capitulo 1

Interaccion de la radiacion con la

materia

Introduccién

El titulo de este seminario es algo general. Abordaremos en realidad un tema mas
especifico: la interaccién de la radiacién electromagnética con un dtomo. Debemos notar
que en el curso de Mecanica Cuantica, siempre hemos tomado a la interacciones sobre el
atomo como una interaccién clasica. Esto es, el campo magnético responsable del efecto
Zeeman o el campo eléctrico que causa el efecto Stark, son campos clasicos. Por otra
parte, en el curso de Fisica Moderna, se estudiaron situaciones experimentales como las
observadas en el efecto fotoeléctrico, donde se afirma que existe una particula, el fotén,
que lleva una cantidad definida de energia dada por hv y cantidad de movimiento hk,
con chk = hv. El fotén es la particula asociada al campo electromagnético. Debemos
intuir que detras de los conceptos de fotén y radiacién electromagnética, subyace la fisica
cuantica. Algunas de estas ideas las desarrollaremos en este capitulo.

El fotén es, sin lugar a dudas, una particula muy singular. Es un bosén que no tiene
masa en reposo’, como mencionamos acarrea energia y cantidad de movimiento, y tiene
spin 1. El hecho de que el fotén tiene spin 1, resulta del andlisis de su polarizacion.

De esta manera, comenzamos a discutir a la radiacién electromagnética empleando la

LAfirmar en este punto que “se mueve a la velocidad de la luz”, seria redundante; pues el fotén es

la luz.

Facultad de Cs. Astrondmicas y Geofisicas | UNLP
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EDUARDO BAUER

fraseologia que empleamos para el electrén, el protéon y el neutrén; esto es, términos
cuanticos.

Vemos entonces que tenemos un objetivo, que es estudiar la interaccién de la ra-
diaciéon electromagnética con un atomo. Y una disyuntiva, que consiste en describir o
no a la radiacién electromagnética en términos de la fisica cuantica. j Como debemos
proceder frente a este problema? Cémo procedemos siempre frente a cualquier problema
fisico: modelar al mismo en los términos mas simples que podamos e ir sofisticando el
esquema en la medida en que no podamos reproducir la fenomenologia. Comenzare-
mos entonces tratando a la radiacién electromagnética en términos clasicos y luego, lo
haremos en términos cuanticos.

Este capitulo supone el conocimiento previo de la teoria de perturbaciones depen-
diente del tiempo (ver por ejemplo [1]), seguimos el enfoque dado en el libro de G.
Baym [2]; excepto para las secciones finales, donde analizamos el ensanchamiento de las

lineas espectrales, en que empleamos los libros de A. P. Thorne [3] y D. Mihalas [4].

1.1. La radiacién electromagnética desde el punto de

vista clasico

Béasicamente, debemos describir a una onda electromagnética. Para ello, en esta
seccién trabajaremos con el gauge transversal, para el cual el potencial escalar de la

radiacién W (r,t), es cero y el potencial vector A(r,t), tiene divergencia nula,
V-A=0. (1.1)

De este modo, los campos eléctrico y magnético, vienen dados en funcién del poten-

cial vector como,

E(r.t) = _i(W’ (1.2)
B(r,t) = VXA(r,t). (1.3)

La direccion y la magnitud del flujo de energia por unidad de tiempo y de area, viene

dado por el vector de Poynting, P,

p_C

= E(r,t)xB(r,t). (1.4)

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 13



EDUARDO BAUER

La ecuacién que rige la evolucién temporal de la radiacién electromagnética para este

gauge lejos de la fuente que la genera, viene dada por,

(W — (1: g;) A(r,t) =0. (1.5)

Una soluciéon no trivial de esta ecuacién, es una onda plana, que viene dada por,
A(r,t) = adeilk r=et) | qrpr gmilker—wt) (1.6)
donde « es una constante, empleamos w = ck y por la ec. (1.1), debe cumplirse,
Ak=0, (1.7)

donde X es el vector de polarizacién. Cualquier onda A(r,t), se puede escribir como
una superposicién lineal de ondas planas de la forma (1.6), como,

61'(]{: . wat) efi(k s T— wt)

— Y
A(r,t)—kz’:)\ A }\T+Ak>‘)\ T . (1.8)
Naturalmente, esta es una expresidon genérica, pues la suma sobre k, es una suma
continua. Por otra parte, A se suma sobre dos estados de polarizacién ortogonales entre
si y con k. Trabajamos en una caja de volumen V, tal que la onda sea periddica en los
bordes de la caja. Las cantidades A4y, son factores de peso. Estos factores representan
a la amplitud de la onda electromagnética y estan vinculados con la energia de la onda.
Finalmente, la energia de la onda, promediada en un ciclo, viene dada por,

E= |Agx | (1.9)
kA

w2

27 c?

1.2. EIl Hamiltoniano de interaccion

En esta seccién, construiremos un Hamiltoniano que representa a la interaccién entre
la radiacion y la materia. Para ello, emplearemos las hipétesis de la seccién anterior,
donde modelamos a la radiacién electromagnética por medio de un potencial vector
A(r,t); que como sefialamos, es ain un modelo clasico para la radiaciéon. EI modo
de introducir un potencial vector en la ecuaciéon de Schrodinger, en por medio de la
sustitucion,

p—>p—§A(’l“,t), (1.10)

Facultad de Cs. Astrondmicas y Geofisicas | UNLP
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donde p, es la cantidad de movimiento. Podemos escribir el Hamiltoniano como,

1 e 2
H=— {p - CA(r,t)} LV (1), (1.11)
donde V (7, t) representa a otras interacciones, mas alla de la radiacién electromagnética.
Por ejemplo, en el caso del dtomo de hidrégeno, en V' (r,t) colocamos a la interaccién
coulombiana (que es central e independiente del tiempo). Es conveniente escribir al

Hamiltoniano, como la suma de dos términos,

H = Ho + Hint, (1.12)
donde,
p?
Ho = o +V(r), (1.13)
e
Hing = 5 [p-A(r,t)+ A(r,t) - p|. (1.14)

Esta separacion resulta del desarrollo del término entre corchetes elevado al cuadrado

en la ec. (1.11), donde hemos despreciado el término,

1 2
Py i A2(’l",t>,

2m c?

ya que es del orden de ~ 1/c%. Vale la pena notar que el conmutador [p, A(r, t)], resulta,
p-A(r,t)— A(r,t) - p=—ihV - A, (1.15)

de esta manera, por la ec. (1.1), tenemos que solo en el gauge transversal el conmutador
en cuestién es cero.

Debe resultar obvio que nuestro interés se focaliza en el Hamiltoniano de interac-
ciéon. También, que emplearemos la Teoria de Perturbaciones dependiente del tiempo
(ver Caps. 13 y 14, en [1]). De esta manera, tomaremos los niveles cudnticos que resul-
tan de Hy y estudiaremos las transiciones que inducen H;,;. Antes de seguir adelante,
generalizamos el Hamiltoniano de la ec. (1.14), para un sistema de muchas particulas.
Supondremos que todas las particulas tienen la misma masa y carga (claro, subyace la
idea de la nube de electrones de un dtomo). Suponiendo que tenemos N particulas,
resulta,

e N

Hint = “ome 2 [p; - A(ri,t) + A(ri, 1) - p,] . (1.16)

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 15
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Podemos reescribir este operador de un modo mas conveniente, definiendo primero

al operador j(r), como,
1 ) .
j(r) = 5 > {plé(r—’ri)ﬂL(S(r—m)Z . (1.17)

Al ver su definicién, podemos pensar que el operador j(r) representa a la corriente
de particulas en el sistema. Esto es parcialmente cierto, pues la definicién rigurosa de la
corriente de particulas debe tener en cuenta a la ec. (1.10). Dadas las propiedades de la

funcion delta de Dirac, resulta evidente que,

Hins = —g /drj(r) CA(r, 1) (1.18)

Esta es la interaccién que emplearemos para estudiar la interaccién de la radiacién

con la materia.

1.3. Absorcion y emision inducida de la luz

Partiendo del Hamiltoniano de la ec. (1.18), reemplazamos la expresién de A(r,t),

dada en la ec. (1.8); que corresponde a una superposiciéon de ondas planas. Obtenemos,

e e—iwt e iwt
Hipt = —— A | AN — + ALy J AN —— |, 1.19
1= k:ZA [ kAT A A \/V] (1.19)
9

donde definimos,

jkz/drj('r) e”““:5 > [pZeZk'ri-i- e’k'rip’}. (1.20)

Desarrollaremos ahora una expresion para el calculo de la probabilidad de absorcién
de la luz por un dtomo. Suponemos que el haz de luz incidente, dado por la ec. (1.8),
resulta de la superposicion incoherente de diferentes ondas planas. Este requisito de
incoherencia lo colocamos para descartar efectos de interferencia de la luz. Modelamos
el proceso pensando que tenemos un electrén en un dtomo, éste absorbe energia de la
radiacién incidente y debido a ello, pasa a un estado de mayor energia. Llamamos al

estado inicial |1) y al final |2); cuyas energias son & y &, respectivamente. Pedimos,

Facultad de Cs. Astrondmicas y Geofisicas | UNLP
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ademas, que & < &,. Para calcular la probabilidad de transiciéon por unidad de tiempo,
empleamos la Regla de Oro de Fermi, en su expresiéon dada por la ec. (14.28) en [1]:

ubs 2 e? _
L ex = - 6(& — & — hw) Va |ApaAl? 10217 g, - AL (1.21)

Frente a esta expresion, la pregunta inmediata debe referirse al motivo por el que de
los dos términos de la ec. (1.19), se eligié el primero. La respuesta esta contenida en la
misma expresion (1.21): debemos detenernos en la delta de Dirac, en este caso, vemos
que,

E =& + hw. (1.22)

Sabemos que w > 0 y partimos de la hipétesis de que & < &. De esta mane-
ra, la condicién (1.22), se cumple. Por otra parte, si tomabamos el segundo término,
tendriamos,

Ey + hw = &, (1.23)

de imposible cumplimiento para w > 0y & < &.
Sumamos ahora sobre k y sobre A, para obtener la probabilidad total de transicion

por unidad de tiempo en pasar del estado |1), al estado |2),

abs 1 2m e? )

F1b—>2 =31 Z e 5(52 — & — hw) ) ‘Ak)\‘z ‘(2’.7,]@ ) )“1”2- (1-24)
V h c
k, A
En el siguiente paso, convertimos la suma sobre k, en una integral segln,

k;Qdk;dQ w?dwd)
= —_— 1.25
Z / / (2mc)3 7 (125)

que nos lleva a,
abs 2re? w3

M = s s | 99 3 1Akal* 217 - A (1.26)

Debemos notar que integramos sobre w empleando la delta de Dirac, con lo cual
tenemos wy; = (& — &1)/h.

Suponiedo que la radiacién incidente subtiende un angulo sélido AS2 y posee polar-
izaciéon A, promediando el vector de Poynting en un ciclo, la cantidad total de energia

por unidad de tiempo transportada por el haz incidente es,

4
W21 W1 2

— E = AQ A 1.27
2me (2me)* [Aral ( )
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Notemos que empleamos la notacion A(Q, para el dngulo sélido de la radiacion inci-
dente, que toma un valor finito. De este modo, podemos introducir la intensidad?, que

denotaremos como [ (wsy), segln la expresién,

I(ws) = AQ(:"?) | Aga |, (1.28)

que nos permite reescribir la ec. (1.26), como,

2.2
[pabs  _ 4ree
1—-2 7 39 92 2
h*c2ws,

Iwn) (2[5 - AL (1.29)

Discutimos ahora la probabilidad de transicion por unidad de tiempo, cuando la
particula inicialmente se encuentra en un estado excitado y decae a un estado de menor
energia. Este proceso se denomina “emisién inducida”. Llamamos |2) y |1), a los estados
inicial y final, respectivamente. Notemos que tenemos que & > &;. Esto es, hemos
invertido el estado inicial con el final respecto del caso de la absorcién: ahora la particula
“cae” a un estado de menor energia. El primer punto que debemos inspeccionar es cual
o cuéles son los términos de la interacciéon (1.19), que contribuyen al decaimiento. Por
inspeccién, vemos que al implementar la interaccién en la Regla de Oro de Fermi, la

conservacion de la energia (léase, la delta de Dirac), nos lleva a las siguientes relaciones,

& = S+ Thw del primer término de la interaccion, (1.30)

E = & — hw del segundo término de la interaccién. (1.31)

Ya que & > & y que w > 0, solo puede cumplirse la relacién (1.31), proveniente del
segundo término de la interaccién. Empleando nuevamente la Regla de Oro de Fermi,

tenemos para la emisién inducida,

1 21 "
rgm = — 3 = (& — 5z+ﬁw) |Ak)\|2|<1|.7k A [2)[%, (1.32)

Vo h

Donde hemos omitido varios pasos algebraicos, pues son idénticos a los de la absorcion.

De esta manera, la expresién final para la emisién inducida, resulta,

pgm it = T ) 1L - N2 (1.33)
2—1 - hQCzw%I 21 Jk .

2Las dimensiones de intensidad son: energia por unidad de area y por unidad de dngulo.
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El valor para ws, es el mismo que el de la absorcion.

Por otra parte, de las propiedades (5.2) en [1], tenemos,

li_g - Al = (i - A7[2), (1.34)

por lo cual, de la comparacién de las ecs. (1.29) y (1.33), concluimos que,

FclLij = F;ﬁimd (1.35)

Tanto en el caso de la absorcién, como en la emisién inducida, el campo electro-
magnético cede o recibe una cantidad de energia dada por hws;. Interpretamos que esta
es la energia del fotén intercambiado. Consideremos ahora todos los fotones de la onda
electromagnética, donde cada fotdn tiene una energia hw. Debemos recordar el vinculo

entre w y k, dado por w = ck. A partir de estos elementos, podemos escribir,

E=Y hw Ngx, (1.36)
k, A

donde Ny, es el niimero de fotones en el modo k, A. Ya habiamos calculado esta energia
7 . 2 -/ .
en términos de |Agy |°, en la ec. (1.9). De la comparacién entre ambas ecuaciones

resulta,
2mhc?

|Aga |? = Nia- (1.37)

Empleando esta relacién, junto a las ecs. (1.32) y (1.34), podemos escribir,
abs 47T262 . 2 em. ind
M= ), 5 0& =& —hw) |2l g - AP Nea =I5 (1.38)
A Y

De esta manera, podemos expresar la probabilidades de transicién por unidad de
tiempo en funcién del nimero de fotones. Debemos notar, a partir de la ec. (1.37), que
si conocemos el niimero de fotones, conocemos Ay, a menos de una fase. Sefialamos
al comienzo, que partimos de radiacion electromagnética incoherente. Eso equivale a
afirmar que no conocemos la relacién de fases. En otras palabras, la incoherencia del
haz inicial es equivalente a afirmar que del mismo solo conocemos el nimero de fotones.
Debemos notar que al introducir a los fotones, pasamos a un tratamiento semi—cuantico
de la radiacién, pues el fotdén supone la cuantizacién de la radiacion electromagnética.
De hecho, la fase relativa de la componentes de la radiacién y en niimero de fotones,

son cantidades complementarias (como la posicién y la cantidad de movimiento).
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Antes de terminar esta seccién, vale la pena hacer un comentario adicional sobre el
decaimiento inducido. Como ya discutimos, el decaimiento tiene lugar ya que incide un
foton que induce el decaimiento. Frente a esto, todos sabemos que dado un electrén en un
estado excitado, éste terminard en el estado fundamental después de algiin tiempo. Aln
si sobre el mismo no incide ninguna radiacién. Este decaimiento se denomina espontdneo
y lo discutiremos mas adelante. Pero en esta seccién, lo que realmente nos interesa es
el decaimiento inducido. En particular, el hecho de que es inducido por un fotén y como
consecuencia del decaimiento se emite un segundo fotén. Este segundo fotén esta en fase
con el primer fotén. De esta manera, si colocamos muchos sistemas cuanticos idénticos
e inducimos un decaimiento en uno, que genera dos fotones en fase, que induce el
decaimiento en otros dos sistemas, que produciran otros dos fotones en fase, al repetir
muchas veces este proceso, tendremos muchos fotones, todos en fase. Este es el principio

de funcionamiento del laser3.

1.4. Cuantificacion del campo electromagnético

Como en la seccidén anterior, comenzaremos analizando la absorcién. Mostramos que
podemos describir a la radiacién electromagnética incoherente por medio de un estado
cuantico de fotones; donde afirmamos tener Ny, fotones en el modo kA. Recordando
que el fotén es un bozdn, podemos tener dos o mas fotones con los mismos nimeros
cuanticos. De esta manera, podemos construir un estado cuantico normalizado para la

radiacion electromagnética como,

|Nk1)\17Nk1)\17 aNk:)n >a (139)

donde tenemos Ny, 5. fotones en el modo k;A;. Los estados asi definidos son ortonor-
males; esto es, son ortogonales a menos que tengan el mismo nimero de fotones en cada
modo k;\;. Para tratar de fijar ideas, si estudiamos la absorcién y el estado (1.39), es

el de partida, el estado final cuando la absorcién ocurre en el modo kA, es,

|Nk1A17Nk1A17 7Nk)\ - 17 >, (140)

3La palabra “laser”, es una sigla en inglés: Light Amplified by Stimulated Emission of Radiation (Luz

amplificada por emisién estimulada de radiacién).
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donde observamos que tenemos un fotén menos en el modo k.

Ya mostramos la descripcién cuantica de la materia y vimos que pasamos de un estado
|1), a un estado |2). Ahora agregamos la cuantificacién del campo electromagnético
y pedimos que el operador de transicién haga también que pasemos del estado dado
por la ec. (1.39) a la (1.40). Es conveniente unificar la notacién, juntando la parte

correspondiente a la materia, con la de la radiacién,

|1>®| ’Nk)\’ > — |1; Nkl)\l’NklAl’ ’Nk}\’ >7 (141)

|2>®| ’Nk)\_l’ > — |2; Nkl)\l’Nklkl’ 7Nk>\_1’ > (142)

Debemos construir ahora un operador que nos lleve del estado (1.41) al estado (1.42);

y ademas, dado el Principio de Correspondencia, debemos pedir que al emplear ese

operador en la Regla de Oro de Fermi para calcular la probabilidad de transicién por

unidad de tiempo, obtengamos el resultado anterior (ec. 1.29, o por simplicidad 1.21).

Llamamos a este operador ﬂim. Para construir este operador, comencemos analizando la

energia. Recordando que se absorbe un fotén en el estado kA, la energia del estado (1.41)
es,

Energfa inicial = & + Y hck! Nysys, (1.43)

KN

mientras que la energia correspondiente al estado (1.42) resulta,

Energia final = & + > hek’ Ny — hek. (1.44)
K, N

Empleemos ahora la Regla de Oro de Fermi. Existe aqui un punto sutil, que puede
pasar desapercibido. Cuando usamos la Regla de Oro de Fermi en la seccién anterior,
en la delta de Dirac, aparece la diferencia de energia de los estados de particula y la
energia del campo externo. Ahora no tenemos campo externo, pues el estado cuantico
lo contiene, por lo cual deja de ser “externo”. Ahora, tenemos un sistema cerrado, donde
la radiacion electromagnética es parte de nuestro espacio de Hilber, como lo vemos en
las ecs. (1.41) y (1.42). Por lo tanto, en la delta de Dirac, tendremos la diferencia de

energia entre el estado inicial y final. Escribamos entonces la Regla de Oro de Fermi,

2m ~
- 5(52—51—hck)|<2; NklAl’ ...,Nk)\—l, -~-’Hint|1; Nk1>\17 -~-7Nk)\7 >‘2

(1.45)

b _
D0k =
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Debemos exigir ahora que el resultado sea el mismo que para el caso anterior. Para

ello, debemos pedir que el elemento de matriz valga,

2
. e )
125 Nigyags -+ Nea = Lo Hinel 15 Nigy agoo Ngas ) = Ve |Apal? 1217 _g - A =
e? 2mhc? ,
= V2 o Nia 1217 _g - AP (1.46)

Analizando esta expresién, vemos que el operador Hins, debe tener una parte que
actlie sobre la materia, de la forma j g - A, y otra parte que disminuya el namero de
fotones; junto a ciertas constantes. Proponemos,

Hin=——— S (Apnd g N +ALy dg N7, (1.47)

NV iy
donde debemos notar que por medio del simbolo (“), le dimos a flk,)\/, el caracter de
operador. Este operador actiia sobre el subespacio de fotones. Su accién debe ser la de
reducir en uno el nimero de fotones en el modo k’\’. La presencia del segundo término
en la ec. (1.47), hace que H,,; sea hermitico (ver la propiedad 3, de la Sec. 5.1.2 en [1]).

El andlisis que sigue, es quiza el punto mas importante de este seminario. Vayamos
un paso a la vez. Ya dijimos que la accién de Ak’Xv debe ser la de reducir en uno el

nimero de fotones en el modo kA, esto es,

Ak)\|1; Nk1)\17""Nk)\7"'> ~ |1; Nkl)\17"'7Nk)\ — 1,...>, (1.48)

donde de esta expresion, podemos decir que el operador Ay aniquila un fotén en el
modo k. Esta terminologia puede sonar un poco belicista, pero veremos enseguida que
se enmarca en la terminologia de lo que se da en llamar “segunda cuantificaciéon”, donde
se introducen operadores de creacién y aniquilacién. Sigamos con nuestro razonamiento.
En la interaccion ﬂmt, ya ningln otro término actla sobre el subespacio de fotones.
Luego, en el bra, para que el elemento de matriz de la interaccién sea no nulo, debemos

tener:

|j§ Nkl)\l""’NkA - l,...>7
donde el estado de particula 7, puede ser cualquiera; pero el de fotones debe ser exacta-
mente el indicado, con el mismo ndmero de fotones en todos los estados y con un fotéon

menos en el estado kKA. Escribamos el elemento de matriz de la interaccién para nuestro

problema de interés,

<2; Nkl)\l,...,Nk)\—1,...|Hmt|1; Nkl)\;L?"'ka)\?"‘)' (149)
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Reemplazamos ahora la expresion para H,;, de la ec. (1.47), teniendo en cuenta la

propiedad dada por la ec. (1.48), con lo que tenemos,

N e .
<2; Nklkl""’NkA_ 1,---|Hint|1§ Nk1>\1""’Nk})\"“> = _C\/V <2’ jik . )\‘1>

X <Nk1A1’ ’Nk)\ —1, |Ak)\|Nk1A1”Nk>\’ > (150)

De la comparacién de esta ecuacién con la ec. (1.46), obtenemos,

A 2mhe?
<Nk1/\1>‘"7Nk:/\_17”'|Ak:/\|Nk:1)\17"'7Nk:)\7'” \/7,/N , (1_5]_)

donde esta identificacién es valida a menos de una fase, que tomaremos como igual

a uno. Prestemos especial atencién al punto que sigue. Ahora, tomamos el complejo

conjugado de este elementos de matriz,

<Nk1>\17 "‘7Nk:)\ -1, "'|Ak)\|Nk1)\1’ ""Nk)\’ >* =

_ AT _
= (Mg aq o Niexs A Ve Ap o Ngx — L) =
2mhc?
= 4/ v/ N - (1.52)

Resumimos ahora los resultados de las ecs. (1.51) y (1.52), para mostrar la accién

de los operadores Ak)\ y AkX sobre estados cuanticos de fotones como,

. 2rhe?

Ak)\‘NklAl”NkA’> - w Nk)\ |Nk1>\1""’Nk})\_1"“>’ (153)
. 2rhe?

T _

Ak:)\‘Nkl)\l”NkA’> = " NkA+1 |Nk1>\1""’N’€)\+1"">' (154)

Debe ser obvio para el lector que para obtener la ec. (1.54), hicimos el reemplazo
Npx —1— Npy, en laec. (1.52). De este modo, vemos que la accién del operador Ak)‘,
es la de disminuir en una unidad el nimero de fotones, mientras que la accién de Ak:X
es la de incrementar en uno el niimero de fotones. Dada esta propiedad, decimos que
Ay, es el operador de aniquilacién o destruccién de fotones, mientras que AkX es el
operador de creacién (de fotones). El uso de los operadores de creacién y aniquilacién
se enmarca en el modelo de la llamada segunda cuantificacién, como ya lo habiamos
nombrado.

Las relaciones dadas por la ecs. (1.53) y (1.54), son particularmente importantes y

este hecho lo discutiremos con mas cuidado en la préxima seccion. Debemos detenernos
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un poco en cémo se obtuvieron. Pensemos en la fisica del proceso que estamos analizan-
do. Si bien este esquema es aplicable en muchas situaciones fisicas, focalicemos nuestra
atencion en los niveles electrénicos de un dtomo de hidrégeno, donde la radiaciéon elec-
tromagnética o bien hace que el electrén salte a un estado de mayor energia, o bien la
misma radiacién provoca el decaimiento a un estado de menor energia (asumiendo que
el electrén inicialmente se encontraba en un estado excitado).

La teoria clasica de la radiacién electromagnética predice en forma correcta la ab-
sorcién de radiacion, que produce un salto del electrén a un estado de mayor energia.
Pero falla en no ser capaz de predecir el decaimiento espontaneo del electréon. Cuando
un electrén se encuentra en un estado excitado, después de algin tiempo decae a un
estado de menor energia. Si este estado de menor energia no es el estado fundamental,
seguird decayendo hasta alcanzar el estado fundamental, que es estable. Empleando la
teoria clasica de la radiacién electromagnética, este decaimiento espontaneo no deberia
ocurrir. Debemos detenernos un minuto para analizar el significado de este hecho. El
que la teoria clasica de la radiacion electromagnética falle en predecir el decaimiento
espontaneo no significa que la misma esté mal. Indica mas bien que ocurre algo a nivel
cuantico que va mas alld del modelo clasico. Es por ello que en esta seccién desarrolla-
mos la cuantificaciéon del campo electromagnético. Notemos que para poder elaborar el
modelo cuantico, debimos ajustarlo pidiendo que reproduzca la absorcién, calculada con
la teoria clasica de la radiacion electromagnética.

Hagamos una pequefa sintesis del razonamiento empleado: planteamos la cuan-
tificacion del campo electromagnético y ajustamos el modelo cuantico, pidiendo que
reproduzca el resultado anterior para la absorcién de la luz. Esto lo hicimos asi, pues
confiamos en el resultado de la absorcién. Calcularemos ahora la emisién en términos
puramente cuanticos. Recordemos qué es la emisidon y cudles son nuestros datos. Tene-
mos al electrén de un 4tomo en un estado excitado cuya energia es &, y éste decae a un
estado cuya energia es &£. Para determinar la energia del estado inicial y final, debemos

incluir la del campo electromagnético,

Energia inicial = &+ Y hek’ Nprys, (1.55)
kN

Energia final = & + ) hek’ Npsys + hek. (1.56)
7N

Enseguida emplearemos la Regla de Oro de Fermi. Para evitar dudas, en dicha regla la

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 24



EDUARDO BAUER

delta de energia resulta,
d (Energia final — Energia inicial) = (£, + hck — &) . (1.57)

Recordemos que la delta de Dirac es par §(z) = §(—=x). Ahora si, empleamos la Regla

de Oro de Fermi para la emisién,

emi 27 A~
oL kA = 5 5(82—51—h0k)‘<1; Nk?1)\17 oy Npa+1, ...|Hmt|2; Nk1>\17 ooy N >‘2
(1.58)
Trabajamos ahora sobre el elemento de matriz,
. e . .
<1; Nk:l)\l,...,Nk)\—i-1,...‘Hint|2; Nkl)\l""’NkA""> = —W <1’ Jk - A ’2>

o _
X <Nk1)\1""’Nk)\ +1, "'|Ak:A‘Nk1)\1""’Nk)\’ > =

2The? . \»
:_g,/ ZVC (1] Jg - A'12) /N + 1. (1.59)

donde usamos la ec. (1.54), para saber la accién de fl}cx Tomando el médulo al cuadrado

de esta expresion y reemplazandola en la ec. (1.58), tenemos finalmente,

ems 47T202 . * 2
2LkA = 6(& — & —hw) [(1] Gg - AT2)]7 (Nga +1). (1.60)

Debemos notar que en lugar de tener Ny, como en la ec. (1.38), tenemos Ny +1. Este

punto lo discutiremos con mayor detenimiento en la préxima seccién.

1.5. Discusiéon de la emision espontanea

Cuando mostramos '#% y ['® ind en |a Sec. 1.3; no habfamos cuantificado el campo
electromagnético. Al hacerlo, nos encontramos con un factor Ny, en la absorcién; y un
factor Ny +1, en la emision. El factor Ny, es el nimero de fotones en el estado kA,
en el haz de luz que incide sobre el dtomo. Esto nos dice que si Ny =0, no se produce
la absorcién. De acuerdo, esto suena demasiado obvio, ya que si no incide la luz, nada
se puede absorber. Pero en nuestra defensa, si colocamos Nj.y =0, y no obtenemos cero
para la absorcién, es porque algo estaba mal. Al menos es una prueba trivial.

Sin embargo, si colocamos Ny =0, para la emisién, no obtenemos un cero, ya que

en este caso el factor multiplicativo es Ny + 1, y ese nimero uno que aparece en la
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suma hace que I"“™  sea no nulo para este caso. Naturalmente, ese nlimero uno es lo que
da cuenta de la emisién espontanea. Esto es, en ausencia de radiacién electromagnética
(Ng =0), se produce la emision.

Este es un punto conceptualmente muy importante. Debemos pensar cual es el es-
pacio de Hilbert de nuestro problema fisico. Solo cuando tengamos el espacio de Hilbert
completo, podemos estar seguros de nuestro resultado. Al tomar a la radiacién electro-
magnética como un campo clasico, estamos diciendo que nuestro espacio de Hilbert es el
de los estados del atomo. En ese caso, empleando teoria de perturbaciones dependiente
del tiempo, una perturbacién externa puede inducir una transicién entre de un estado a
otro. Pero si no existe ninguna perturbacion, el sistema debe permanecer en su estado.

Al cuantificar el campo electromagnético, aumentamos nuestro espacio de Hilbert al

de los estados cuanticos de los fotones. Ahora bien, tenemos el estado inicial,

125 Nigoags - Niehs o), (1.61)

y nos preguntamos: jpor qué este estado no es estable y en algiin momento decae al

estado,
‘1; NklAl’ ""Nk:)\ + 1, >?

La respuesta es porque dado el estado (1.61), existe una interaccién dada por la ec. (1.47),
que induce la transicién. La existencia de esa interaccién indica que el estado (1.61), no
es estable. La interaccion esta en el atomo y no pondremos mucho énfasis en estudiarla
en este trabajo. Sin embargo, ain en presencia de la interaccién, ésta no seria capaz
de inducir ninguna transicion si nos quedamos con el espacio de Hilbert de los estados
electrénicos del dtomo. Es gracias a la ampliacién del espacio de Hilbert en los estados
del campo electromagnético, que la interacciéon puede actuar y dar lugar a la emisién
espontanea.

Pensemos con un poco mas de detalles todo esto. La interaccién acopla los estados
atomicos con la radiacion electromagnética. En el caso del decaimiento espontaneo, ini-
cialmente no tenemos ninguna radiacién electromagnética. Si nuestra interaccién actla
entre un estado atémico y la radiacién, pero no hay radiacién, entonces: jpor qué actia?
Clasicamente, esto no tendria sentido. Cuanticamente pensamos en lo que se denom-
ina una “fluctuacién del vacio”. La interaccién actia, pues en el estado final si habra

radiacion. La emision espontanea, como vemos, es un fendmeno puramente cuantico.
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Analicemos otro punto, que tampoco es del todo obvio. La interaccién dada por la
ec. (1.47), es interna en el espacio de Hilbert atomo-radiacién electromagnética. Pense-
mos ahora en un dtomo aislado, al que no le llega ninguna radiacién. Si esta en su estado
fundamental, seguira indefinidamente en su estado fundamental, que es auténticamente
estable. Pero si estd en un estado excitado, decaerad después de algin tiempo. La inter-
accién responsable del decaimiento es interna al 4&tomo. El experimento nos dice que los
estados excitados no son estables (como si lo es el estado fundamental). Si construimos
una ecuaciéon que tome en cuenta la cuantificacién de la radiacién electromagnética,
encontrariamos estados excitados del &tomo que son “meta—estables”, esto es, existen
solo por un cierto periodo de tiempo y luego decaen. Sabemos que existen estos estados
por la frecuencia de la radiacién electromagnética emitida. Alguien puede cuestionar el
hablar de estados, cuando no son estables. Bueno, casi todo en fisica no lo es. En el
Cap. 4, estudiamos el decaimiento del neutrén, ya que el neutrén no es una particula
estable y decae. Nadie cuestiona la existencia del neutrén. Tampoco la de los estados
excitados de los atomos, a pesar de su inestabilidad.

En resumen, el decaimiento espontaneo nos ensena que debemos reveer nuestro
modelo de los estados excitados. No se trata de un estado estable, al que llega el electrén
y solo por medio de un agente externo logramos remover. En realidad, cualquier estado

excitado es inestable y luego de algtin tiempo decaera.

1.6. Transicién dipolar eléctrica

El objetivo de esta seccién es definir qué entendemos por una transicion dipolar
eléctrica. Al final, nombraremos también las transiciones dipolar magnética y cuadrupolar
eléctrica. No buscamos hacer ningin calculo con esto, sino sélo definir qué son esas
transiciones. Introduciremos algunos conceptos sobre la radiaciéon emitida por un atomo,
cuyo nucleo suponemos fijo en el espacio. En general, la radiacion electromagnética
emitida por un d&tomo es mucho mayor que el radio atémico. Solo como un ejemplo algo
burdo, la longitud de onda de la luz es del orden de los ~ 5000A, mientras que para
el radio atémico tenemos un valor de ~ 1A. Cuando mostramos las expresiones para el

calculo de las probabilidades de transicién por unidad de tiempo (I'¢%%, y T'$™: ), notamos
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que en sus expresiones aparece un elemento de matriz,

(Ugg - A712),

en el caso de la emisién y otro similar para la absorcién. Ya que estamos analizando
la radiacién (o emisién), del dtomo, nos concentramos en el elemento de matriz que
mostramos. Podemos sacar fuera de elemento de matriz la polarizacién A*, y concen-

trarnos en el elemento de matriz,

(Uggl2) = [ dre ™ T 1)), (1.62)

donde repetimos la igualdad dada por la ec. (1.20). Al ver esta expresién, debemos fijar
un origen de coordenadas a partir del cual medimos 7, y la eleccién natural es fijar 7 = 0,
en el centro del nicleo. Luego, hacemos un desarrollo en serie de potencias de e~k T

alrededor de » = 0, con lo que tenemos,
(5 [2) = /dr[l—ik-r+ L)) =
- (1|j0|2)—i/drk-r<1|j(r)|2) b (1.63)

Nuestro interés, se concentra en la cantidad (1]7,|2), que resulta de integrar sobre r,
recordando la definicién de j(7) (ver ec. 1.17) y las propiedades de la delta de Dirac. Al

hacer esta integral, tenemos que,

donde P, es la cantidad de movimiento total del sistema. Podemos escribir entonces,

P 1
= = _ R 1.64
Jo m ih [ 7H0]7 ( )
donde,
N
=1

es el operador momento dipolar y H, es el Hamiltoniano del 4tomo, sin radiacién. Sobre
el operador momento dipolar, para ser tal debe estar multiplicado por la carga, que es
una constante. Notemos que medimos la distancia desde el punto donde se encuentra el
nucleo atémico que concentra la carga positiva. Todos los electrones poseen la misma

carga y la suma sobre los 7;, nos da el centro de carga de los electrones (de carga
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negativa y del mismo valor que el nicleo, ya que el atomo es eléctricamente neutro).
De ahi la denominacién de operador momento dipolar. Usando ahora la definiciéon de

conmutador, tenemos,

1 _
(R, - HoR)2) = P 1|Rp), (1.66)

donde (& — &1)/h = w, es la frecuencia de la radiacién. Reescribimos el elemento de

matriz de la siguiente manera,
(17g |2) = —iwdo, (1.67)
donde,

es la parte no—diagonal del elemento de matriz del momento dipolar eléctrico; que resulta
del orden més bajo en el desarrollo de exponencial en la ec. (1.62). Ahora, podemos

escribir F;’jfl;kk, dado por la ec. (1.60), como,

2.2
emi dmectw

kA = (& = & - hw) diz NP (N + 1) (1.69)

Puede ocurrir que el elemento de matriz dipolar eléctrico sea cero. En ese caso,
decimos que se trata de una transicion prohibida. Frente a esto, debemos incorporar el
siguiente término en el desarrollo dado por la ec. (1.63). Luego de un poco de algebra,
este término se puede reescribir como la suma de dos contribuciones: una proporcional
al momento angular orbital y la otra proporcional el momento cuadrupolar eléctrico. El
momento angular orbital es proporcional al momento dipolar magnético (ver ec. (10.7),

en [1]); por lo que a esta transicion se la denomina dipolar magnética.

1.7. Potencia irradiada

Con el fin de un uso posterior, mostramos brevemente una expresion para la potencia
irradiada por la emisién espontanea. Partimos de la ec. (1.60), nos quedamos solo con

la contribucién proveniente de la emisién espontanea,

emi. esp. 47T202 . * 2
I kn = Wé(é’g — & —hw) (1 - A*[2)]7 (1.70)
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Esta expresion representa a la probabilidad de transiciéon por unidad de tiempo, de que
un electrén decaiga del estado 2 al 1, en forma espontdnea. De esta descripcion, debe
ser obvio que su unidad de medida es 1/tiempo. Si la multiplicamos por la energia del
fotén emitido 7w, tenemos una potencia (energia/tiempo). De este modo, la potencia
de la luz emitida con polarizaciéon A, radiada en un angulo sélido dS2, en la direccién k,

debido a la transicién espontanea de 2 a 1, es,

dp)\ — Z Bw Femi. esp. _

2~>1;k>\
keda
dw w? 471'262
- dQ/ 5(E — & — hw) |(1gg - A|2))% (171
s 0 0(E = £ ) (- AR (L71)

donde empleamos la ec. (1.25). Ahora integramos empleando la delta de Dirac, con lo

que tenemos,
dQ  27e3

Para evitar dudas, demos un detalle del calculo,

|<1| k- N2) (1.72)

0(&— & —hw) = (R[(& —&)/h—w]) =
1

= 7 0(wa1 — w), (1.73)
con wo; = (& — &1)/h. Para la potencia por unidad de angulo sélido, la expresién mas
comun es la que emplea la aproximacién dipolar eléctrica. De este modo, a partir de la
ec. (1.67), podemos escribir,

4

20 = 9ro yd12 A*|2. (1.74)

Debemos notar que esta expresion se refiere al decaimiento espontaneo de un electrén

de un atomo, entre dos niveles de energia discretos del mismo.

1.8. Sobre el ancho de linea del espectro atémico

En la Sec. 14.3, en [1], mostramos lo que se da en llamar el “ancho natural” de
las lineas del espectro. Cuando calculamos el espectro de un atomo, obtenemos un
conjunto de valores &, &, ... , que son los autovalores del operador Hamiltoniano y

por lo tanto, su valor es exacto. Sin embargo, sabemos que si tenemos a un electrén
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en un estado excitado, éste decae después de alglin tiempo. Acabamos de estudiar este

proceso, denominado emisién espontanea. En esa misma seccion, discutimos brevemente

la relacion,
AE At 2 h,
donde ademas,
1
'~ —.
At

De esta manera, dado I" (I'“™ ©*P-| claro); tenemos una incertidumbre en la energia dada
por AE, que es un cierto ancho para la linea espectral. En los hechos, este ancho es
muy pequeiio. Es intrinseco del sistema cuantico y por lo tanto, no se puede modificar.
Es por ello que se denomina ancho natural. Otro modo de entender al ancho natural, es
por medio de un andlisis de Fourier: una frecuencia pura supone una funcién senoidal (o
cosenoidal) de longitud infinita. Cualquier onda de longitud finita, es la suma de infinitas
frecuencias y esa incertidumbre en la frecuencia es el ancho natural de la linea. En lo
que sigue, discutiremos otras fuentes que determinan el ensanchamiento de las lineas
espectrales.

Pensemos en los espectros que medimos de la luz proveniente de estrellas de cualquier
tipo. Un espectro es una grafica de la intensidad de la luz en funcién de su frecuencia
o de su longitud de onda. En general, se observan picos en donde debemos tener los
autoestados de energia. Estos picos a veces son muy estrechos, otras veces son anchos.
Si el espectro es en funcién de la frecuencia, el ancho del pico es el ancho de la linea, a
menos de la constante de Planck. Este comportamiento no se puede explicar por medio
del ancho natural de la linea. Luego, existen otros fendmenos fisicos que ensanchan las
lineas espectrales. En esta seccion trabajaremos solo con espectros de emision. Valen
consideraciones similares para los espectros de absorcién, que no discutiremos. El ensan-
chamiento de las lineas no es el objetivo central de este capitulo, pero dada la discusion
sobre el ancho natural directamente vinculado al decaimiento espontaneo, es pertinente
hacer mencion al mismo. Dada una estrella, enumeremos las fuentes principales del

ensanchamiento de las lineas al ser observadas en la Tierra*:

1. El ancho natural de la linea, ya discutido.

4Si bien nos estamos refiriendo a una estrella, las mismas consideraciones valen ante la formacién de
plasma. El plasma puede generarse por medio de un pulso laser de alta energia, lo cual permite estudiar

este problema en un laboratorio.
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2. El ensanchamiento Doppler o ensanchamiento térmico.
3. El ensanchamiento por colision.
4. El ensanchamiento instrumental.

Esta separacion es algo arbitraria y muchos autores la reducen a las tres primeras.
Daremos ahora una breve discusién sobre cada punto y luego mostraremos un fragmento
del esquema microscépico del ensanchamiento por colisién. Antes, debemos notar, que
seguimos un enfoque microscépico cuantico. El problema del ensanchamiento de las
lineas espectrales es muy complejo y nuestro enfoque microscépico es en cierta forma
poco practico para la mayoria de las aplicaciones. Los ensanchamientos son a veces de
tipo lorentzianos y otras veces de tipo gaussianos. Para construirlos, se recurre a modelos
semi—fenomenoldgicos, que no discutiremos. Como habiamos advertido, en esta seccién
solo se dan algunos elementos generales de un tema vinculado al de la interaccién de la
radiacién con la materia.

Si las lineas se ensanchan, si tenemos un AE apreciable, entonces la probabilidad
de transiciéon también cambia, pues eventualmente podemos dar un salto entre dos
estados cuanticos con menor energia. Cuando calculamos la probabilidad de transicién
por unidad de tiempo, colocamos una delta de Dirac para la energia, donde las energias
estan exactamente definidas. Si incluimos un AE, debemos reemplazar a la delta de
Dirac por una distribucién, con un cierto peso. No exploramos esa linea de estudio. Sin
embargo, el ensanchamiento de linea observado, puede tener dos origenes diferentes:
puede ser intrinseco (como el ensanchamiento natural), o puede haberse originado con
posterioridad a la emisién, que designaremos como ensanchamiento observacional. Solo
el primero modifica la probabilidad de transicién por unidad de tiempo. Ahora si, vayamos
a la discusion, punto por punto.

En primer lugar, el ancho natural de la linea ya fue discutido y es importante enfatizar
que este ensanchamiento es en general muy pequeio. Es un ensanchamiento real de las
lineas, esto es, se trata de un ensanchamiento intrinseco.

La segunda fuente, es el ensanchamiento Doppler o ensanchamiento térmico. Este
es claramente un ensanchamiento observacional. En una estrella, los dtomos junto al
resto de las particulas presentes, se mueven debido a la agitacién térmica. La velocidad

media de las particulas crece con la temperatura y se mueven en todas direcciones;
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algunas se acercan al observador en la Tierra que estd registrando su espectro, otras
se alejan, etc. Ya que la velocidad de los 4tomos emisores es muy grande, la radiacion
emitida muestra el efecto Doppler, reduciendo o aumentando su frecuencia, de acuerdo
con el movimiento relativo. Luego, al registrar el espectro, que resulta de la radiacién
emitida por un nimero muy grande de 4tomos, el corrimiento Doppler en ambos sentidos,
produce un ensanchamiento de las lineas. Tomando cada dtomo en forma individual, no
se observaria ninglin efecto si medimos el espectro en un sistema de referencia solidario
con el atomo.

En tercer lugar, el ensanchamiento por colisiéon, a veces designado como ensan-
chamiento por presion, resulta del efecto del choque de particulas sobre un dtomo mien-
tras emite radiacién. Recordemos el primer parrafo de la Sec. 1.6, donde mostramos
que la longitud de onda de la radiacion emitida puede ser varios 6rdenes de magnitud
mayores a los del 4tomo. Ademas, la radiaciéon emitida es un paquete de ondas, cuya
longitud es del orden del metro. Luego, el choque con otras particulas durante el proceso
de radiacién, va a alterar al sistema emisor. Una colisidn, es la interaccién del electrén
que decae, con alguna particula externa al atomo. El electrén, que es un leptén, puede
interactuar con otras particulas por medio de la interaccién electromagnética, débil y
gravitatoria. El efecto de la gravedad es despreciable, mientras que la interaccién débil
puede tener algln efecto, pero no lo consideraremos. En una colision el electrén puede
dispersarse con otro electrén intercambiando un fotdn virtual, puede experimentar la
presencia de un campo magnético o el de un campo eléctrico. El campo eléctrico pro-
duce un desdoblamiento de las lineas espectrales por efecto Stark, que merece un parrafo
aparte.

El efecto Stark es el desdoblamiento de las lineas espectrales debido a un campo eléc-
trico (ver por ejemplo la Sec. 12.3.2, en [1]). Debemos notar que el estado de agregacién
de la materia estelar es basicamente el de plasma. En nuestra experiencia cotidiana, te-
nemos conocimiento de los estados sélido, liquido y gaseoso. Pero debemos imaginar al
plasma: un estado fluido, con materia ionizada, pero neutro dentro de ciertas regiones
o dominios. Luego, un atomo en una estrella estd rodeado de iones. Cuando alguno de
estos iones choca con un atomo durante el proceso de emisién, sus niveles de energia
se desdoblan. Nuevamente, recordemos que el espectro que se mide en la Tierra resulta

de un ndmero muy grande de desintegraciones atémicas. Como el desdoblamiento es
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proporcional al campo eléctrico y este depende del ion particular y de las condiciones del
choque, el desdoblamiento discreto en lo formal, serd observado como un ensanchamien-
to continuo de las lineas espectrales y se trata de un ensanchamiento intrinseco. Sobre
este tercer punto, mostraremos algunos detalles de calculo después de este resumen.

Finalmente, el cuarto punto se refiere al ancho que introduce el instrumento de medi-
da. Sobra decir que se trata de un ensanchamiento observacional. Este ensanchamiento
depende del instrumento que se emplee para medir el espectro. Cuando uno dibuja so-
bre un papel el esquema de un espectrémetro, supone una fuente de luz perfectamente
colimada. La realidad es algo mas complicada. La luz debe ser colimada para su anélisis
y al hacerlo perdemos intensidad. Una buena colimacién, implica una intensidad muy
baja. Si la intensidad es alta, entonces la colimacién es baja. Esto introduce un error
sistematico, que se traduce en un ensanchamiento de las lineas. No ahondaremos en este
punto, que nombramos por completitud. Un andlisis mas completo sobre las diferentes
fuentes de ensanchamiento de linea, se puede encontrar en el libro de Thorne [3]; en
particular, en ese libro se expone detalladamente la fenomenologia del tema.

Nuestro interés en el ensanchamiento de las lineas espectrales se refiere a los ensan-
chamientos intrinsecos (natural y colisional), pues modifican la probabilidad de transicién.
Un andlisis completo de estos puntos, excede el objetivo de este capitulo. Sin embargo,
en la siguiente subseccién, daremos algunos elementos del perfil de linea para el caso del

ensanchamiento colisional.

1.8.1.  Perfil de linea para el ensanchamiento por colision

Es pertinente comenzar poniendo en claro cudl es nuestro problema fisico y cudles son
nuestras hipotesis. Dados los espectros de emision, observamos que no tenemos lineas,
sino ciertos picos con un determinado ancho. Para entender este ancho, analizamos
diferentes explicaciones fisicas. Una de ellas son las colisiones. Luego, debemos construir
un modelo para dar cuenta de las colisiones. Cualquier modelo, por definicién, es una
simplificacion de la realidad.

Desde el punto de vista clasico, una forma de entender el ensanchamiento por coli-
siones, es el siguiente: dada una emisiéon en ausencia de colisiones, el dtomo emite un

paquete de ondas. Mientras que una onda senoidal o cosenoidal infinita, tiene una fre-
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cuencia pura, un paquete de ondas es la suma de muchas frecuencias; esto resulta de
la representacién de Fourier del paquete de ondas. Ahora bien, si en algin punto de la
emisién, el dtomo sufre una colisién, la emisién sufrird una alteracién o discontinuidad.
Las alteraciones o discontinuidades requieren de una suma de frecuencias mucho mayor
que aquella sin alteraciones. Este es un hecho conocido del andlisis de Fourier. Al tener
que considerar muchas mas frecuencias, la dispersién en frecuencia Aw, o equivalen-
temente AE; es mayor y por lo tanto, se observa un ensanchamiento en el espectro.
Este modelo se denomina la “aproximacién de impacto”. En lo que sigue, daremos solo
algunos elementos de un modelo diferente. Este modelo es cuantico y se vincula mejor
con el enfoque desarrollado en este capitulo.

Mostraremos ahora una introduccién al modelo cudntico. En lo que sigue, adoptare-
mos el enfoque dado por el libro de Mihalas [4]. Trabajaremos desde el comienzo con la
aproximacion dipolar dada en la Sec. 1.6. Recordemos la ec. (1.74),

dPy  wie’
dQ  2ncd

donde cambiamos los indices 2 y 1, por 7 y f, para designar a los estados inicial y final,

dgi- NP, (1.75)

respectivamente.
Supongamos ahora que el estado final f, estd degenerado. En ese caso, en la

ec. (1.75), debemos sumar sobre los estados finales. Dado que estamos estudiando el de-
caimiento espontaneo de un atomo, sabemos que tanto el estado inicial, como el final, se
encuentran en el discreto. De modo que para el caso degenerado, tenemos simplemente,
dP»

dQ:zf:

Dado que en el caso discreto, w;s es un nimero completamente determinado, ain no

4 2
w;se

o dyi - X*2 (1.76)

mostramos ninglin elemento que induzca un ensanchamiento de las lineas.
Consideramos ahora la interaccién del atomo con otras particulas de su entorno.
Debemos notar que si tenemos dos bolas de billar, el choque entre ellas se modela por
medio de una interaccion de contacto. Cuando tenemos electrones, los electrones no son
pequeiias esferas similares a las bolas de billar, que chocan entre si. La interaccién entre
dos electrones (uno de nuestro dtomo y el otro del atomo con el cual colisiona), es una

reaccién de dispersién, en la que se intercambia un fotén virtual®, que es el mediador

5Las particulas como los fotones, pueden ser reales o virtuales. Un fotén real se puede medir con un

detector; mientras que el virtual no.
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de la interaccion electromagnética. El modo de modelar este proceso, no es tnico. En lo
que sigue, esquematizamos una forma de hacerlo con fines puramente didacticos.

Vamos a postular un Hamiltoniano total H;, tal que conste de tres contribuciones,
Hi =Ha+He + Vac, (1.77)

donde H 4 es el Hamiltoniano del atomo emisor, H¢ lo es de la particula con la que
colisiona y V4 es un término de interaccion entre el 4tomo y la particula con la que
colisiona. Ahora bien, con el fin de llamar la atencién sobre una obviedad, nos pregun-
tamos: jtodas las colisiones ocurren exactamente de la misma forma? Claramente no
es posible tal situacion. Luego, para cada atomo que es objeto de un choque con otra
particula en el momento de su decaimiento, debemos asignar valores particulares para

Hc 'y Vae. Escribimos la ecuacién de Schrodinger para este problema,

_ o Olon

Mas alla de la posibilidad practica en poder resolver esta ecuacién, en el supuesto de que
logremos hacerlo, tendremos un conjunto de soluciones. Asumamos que |«); y |3);, rep-
resenta al estado inicial y final del 4tomo, respectivamente. En ese caso, en la ec. (1.68),
debemos reemplazar los estados del atomo, por estos estados nuevos, que dan cuenta

del efecto del Hamiltoniano total,
ds. = (0] R |a):. (1.79)

Esta es una propuesta de calculo correcta en lo formal, pero impracticable en los hechos.
Cuando dos atomos colisionan, puede ocurrir que éstos se ionicen, si la colision es lo
suficientemente importante. Cuando pensamos que el efecto es modificar el ancho de
la linea de emisidn, significa que el efecto de los términos He y Vac, es extremada-
mente pequeno, ya que su resultado solo es ensanchar la linea de emisién del atomo.
Pensandolo en términos perturbativos, V4o puede representar el efecto de un campo
eléctrico o magnético. Comenzamos la oracién anterior refiriéndonos al analisis pertur-
bativo, pues como sabemos, el campo magnético no se deriva de un potencial escalar,
pero su efecto se puede parametrizar por medio de tal potencial (ver por ejemplo el efec-
to Zeeman, Sec. 12.3.1, en [1]). De este modo, en términos perturbativos encontramos

un desdoblamiento discreto de las lineas espectrales, que puede ser de origen eléctrico,
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como el efecto Stark; o magnético, como el efecto Zeeman. Cuando se mide el espectro,
el mismo no es el producto de la emision de un solo atomo, sino de la suma de la emisién
de muchos atomos, cada uno con un desdoblamiento de lineas discreto. En la practica,
se va a observar un ensanchamiento de las lineas espectrales, ya que cada atomo experi-
mentara un corrimiento de sus lineas diferente, lo cual, potenciado por el ensanchamiento

natural, hace poco probable diferenciar lineas en términos experimentales.

1.8.2. Breve discusion del ensanchamiento de las lineas espec-

trales

En los hechos, excepto por el ensanchamiento natural de las lineas, el ensanchamien-
to es un efecto observacional. En el caso del efecto Doppler esto ya fue discutido, el
ensanchamiento instrumental lo es por construccién y debemos detenernos en el ensan-
chamiento colisional.

Nuestro sistema cuantico es un atomo, sumergido en un entorno de materia. A ese
nivel, no existe la interaccion de contacto, sino que el atomo se ve sometido a campos
eléctricos y magnéticos. Un solo dtomo, en estas condiciones, sigue siendo un sistema
cudntico, cuyas energias son discretas. Es verdad que existen sistemas cuanticos, como
la red cristalina de un conductor, que muestran bandas de energia, pero ese no es el caso
de un atomo. No debemos perder de vista, que buscamos explicar el ensanchamiento
de una linea centrada experimentalmente en el punto predicho por el modelo cudntico
no—relativista de la ecuacién de Schrodinger, con solo el potencial Coulombiano y sin
considerar atn al spin. Llamemos a este resultado, “linea ideal”. Luego, las interacciones
que sumamos, tanto las intrinsecas del atomo, como las externas, no pueden modificar
dramaticamente al espacio de Hilbert del &tomo, pues en ese caso tal modelo dificilmente
daria cuenta de las lineas observadas.

Afirmamos que el ensanchamiento colisional es un ensanchamiento intrinseco, en
contraste con el observacional. Colisionalmente, las lineas de &tomo individuales, se des-
doblan en lineas discretas. Lo hacen en diferente medida y su efecto global muestra un
ensanchamiento continuo al ser medido en un detector. En realidad, resulta de lineas
discretas que por su niimero y debido a razones instrumentales, se registran como contin-

uas. Esto es simililar a la explicacién de Plank de la radiacion del cuerpo negro. De todos
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modos, la clasificacién como ensanchamiento intrinseco, se debe a que auténticamente,
este desdoblamiento abre la posibilidad de transiciones con energias diferentes a las que
resulten de las lineas ideales.

En el caso colisional, existe una discrepancia entre el modelo clasico (corte abrupto
del paquete de ondas de emisién) y el modelo cuantico. El modelo clasico supone para la
colisién una escala de tiempo corta, dada por el corte abrupto del paquete de ondas. Esto
también, suma un ndmero continuo (y por lo tanto infinito), de frecuencias. El modelo
cuantico, como el efecto Stark, supone una escala de tiempo para la perturbacién externa
mucho mayor que el decaimiento. Ademas, supone un desdoblamiento discreto de los
niveles de energia. Sobre esta discrepancia, elegimos dejarla como un problema abierto
para el lector.

Revisando la bibliografia sobre el tema en los libros de Thorne [3] y Mihalas [4],
vemos que este es un tema extensamente estudiado y de gran relevancia. Sin embargo,
vemos también que domina el analisis semi—fenomenoldgico. El mismo consiste en ajustar
curvas mayormente lorentzianas y gaussianas, segln ciertas consideraciones fisicas. Un
andlisis microscépico cuadntico para el caso colisional, no estd desarrollado mas alla de

ciertas consideraciones generales.

1.9. Conclusiones

En este capitulo, estudiamos la interaccion de la radiaciéon con la materia. Nos limi-
tamos a radiacién que solo puede inducir transiciones entre estados discretos del dtomo.
Analizamos luego el decaimiento espontaneo, que requiere de la cuantificacién del campo
electromagnético. Ademds, discutimos en términos generales el ensanchamiento de las

lineas espectrales. Desarrollamos el tema, segun el siguiente orden:

1. Los niveles de energia de un &tomo aislado, que estudiamos en el curso de Mecanica

Cuantica, empleando la ecuacién de Schrédinger, con un potencial Coulombiano.

2. Las transiciones que induce la radiacién electromagnética en el 4tomo y la cuan-
tificacion de la radiacion electromagnética, que nos permite entender la emision

espontanea del atomo.
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3. La interpretacion de los espectros experimentales, sobre la base la discusién del

ensanchamiento de las lineas espectrales.

Este es el orden en que estudiamos el tema. Sin embargo, vale la pena sefialar que la
cronologia de estudio cientifico del tema es exactamente el orden inverso: primero se
observan los espectros y se llega a un dtomo aislado por un proceso de abstraccién,
pues un atomo aislado no representa una situacion experimental simple. En una estrella
o en una fuerte emisora, tenemos dtomos estrechamente rodeados por radiacién y otros
atomos. Nuestro andlisis, sin embargo, es de tipo tedrico y en ese caso el orden de la
presentacion debe ir de lo mas simple a lo mas complejo; de una situacion ideal a una
real.

A los efectos de este seminario, en el marco del primer curso de Mecanica Cuantica,
el resultado que debemos rescatar es que cuando pasamos de la fisica de un atomo
aislado a uno que interactia con el medio, el paradigma de niveles cuanticos estables
deja de valer. Ahora vemos que los niveles excitados existen, pero no son estables; pues el
electrén luego de emplear cierto tiempo en ellos, decae en forma espontanea. Al continuar
con el estudio del tema, analizando el contenido de los espectros medidos, vemos que
ahora juega un papel el instrumento de medida. En cada paso que damos, se multiplican
los modelos y las aproximaciones. Al punto de que una interpretacién microscépica—
cuantica completa del ensanchamiento de las lineas espectrales, permanece alin como

un problema abierto.
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Capitulo 2

Materia proto-neutronica con un

campo magnético intenso

Introduccion

En el curso de Mecanica Cudntica, nos concentramos en estudiar la fisica de una
particula en términos cudnticos. Solo cuando ya contamos con todo el andamiaje formal
de la asignatura, abordamos el problema del &tomo de hidrégeno, que es un problema de
dos cuerpos. Al igual que en la Mecénica Clasica, el problema de dos cuerpos se puede
resolver en forma exacta. Analogamente, el problema de tres 0 mas cuerpos, no tiene una
solucién exacta. Si bien en este primer curso focalizamos nuestro interés en los problemas
que tienen una solucién exacta, analizamos algunas restricciones que deben cumplir los
sistemas complejos. En particular, en la Sec. 15.1.2, discutimos el Principio de Exclusién
de Pauli. En esta seccién, agrupamos a las particulas en dos grandes grupos: el de los
fermiones, que son aquellas particulas de spin semi—entero y los bosones, con spin entero.
No podemos tener dos fermiones con el mismo conjunto de nimero cuanticos, segtn lo
establece en Principio de Exclusiéon de Pauli.

Pensemos ahora en un objeto estelar, como una estrella de neutrones. Es poco
probable que alguien se sorprenda al afirmar que estd constituida principalmente por
neutrones. También, pero en menor medida, posee otras particulas como protones, elec-
trones, mudnes, etc. Ahora bien, los neutrones son fermiones pues tienen spin—1/2. No

es el objetivo de este seminario discutir las propiedades de una estrella de neutrones,
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pero vale la pena sefalar que la densidad de particulas en el interior de una estrella
de neutrones es superior a la densidad nuclear. Esta densidad crece a medida que nos
acercamos al centro de la estrella. En este punto, es también pertinente comentar que
una estrella de neutrones no es un ntcleo gigante: un nicleo atémico se mantiene liga-
do por la accién de la interaccion fuerte, que es de corto alcance. Como en el niicleo
hay protones, éstos experimentan la repulsion electrostatica que es de alcance infinito.
Luego, en alglin momento al agregar particulas al ntcleo, aumentando asi su radio, éste
se hace inestable pues la fuerza nuclear de corto alcance no logra compensar la repulsion
electrostatica. Por otra parte, una estrella de neutrones se mantiene ligada por la accién
de la gravedad, la cual es irrelevante para un nicleo. Operativamente, podemos definir a
un ntdcleo como un sistema de hadrones ligados por la interaccién fuerte, caracterizacion
esta que no cumple la estrella de neutrones.

Hechas estas aclaraciones, vayamos al aspecto que nos interesa de las estrellas de
neutrones. En astrofisica, se dice que lo que evita el colapso de tal estrella, es “la presion
de degeneracién de los neutrones”. Recordemos que en astrofisica se habla de sistemas
degenerados para indicar que deben ser estudiados cuanticamente; no degenerados cuan-
do admiten un tratamiento cldsico y parcialmente degenerados, para un sistema que se
puede analizar con algunos elementos cuanticos y otros clasicos. La llamada presién de
degeneracion no es otra cosa que el Principio de Exclusién de Pauli, que prohibe que dos
fermiones ocupen el mismo lugar. Es importante destacar que en esta discusion subyace
una hipédtesis fuerte: pensamos a los neutrones como particulas elementales. Pero no lo
son, pues estan formados por quarks. Pero esa es otra discusion.

De este modo, nos preguntamos con qué esquema formal debemos estudiar a un
objeto como una estrella de neutrones. Ya que lo que evita su colapso es el Principio de
Pauli, el tratamiento debe ser cuantico. También sabemos que se trata de un sistema
de muchas particulas, por lo cual debemos recurrir a la Termodindmica y a la Mecanica
Estadistica. Claro, quien lee estas lineas puede objetar que establezcamos primero un
marco formal, sin haber discutido atin qué aspectos de las estrellas de neutrones deseamos
estudiar. Esta implicito que no se trata de su érbita, sino de algln aspecto interno de
la estrella. Cualquiera de los aspectos internos de la estrella se estudian dentro de este
marco general. En lo que sigue, establecemos el aspecto particular de interés en este

seminario.
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Resumamos lo discutido hasta ahora: para estudiar un sistema de muchos fermiones a
nivel cudntico, emplearemos los métodos de la Termodindmica y la Mecanica Estadistica.
Vamos a modelar a una estrella de neutrones como un sistema formado por neutrones
y protones, con una fraccion fija de protones. Ademas, pensaremos que el sistema esta
sumergido en un campo magnético intenso. La motivacion y las limitaciones de este
modelo requieren de un andlisis profundo, que desarrollaremos a lo largo del seminario
en si. El objetivo es calcular la ecuacién de estado del sistema (EOS). La EOS es la
funcién presion en funciéon de la densidad. Estudiaremos ademas, el grado en que el
medio se polariza debido al campo magnético. Dado que solo consideramos neutrones
y protones, el sistema no es eléctricamente neutro. La neutralidad de carga, como en
un atomo, puede lograrse incluyendo electrones. El incluirlos es el siguiente paso légico
en este desarrollo. Dada su pequefa masa, las propiedades que estudiaremos se ven

débilmente afectadas por los electrones, lo cual justifica nuestra aproximacion.

2.1. Algunos elementos de Termodinamica

Estas pocas lineas no pueden reemplazar al curso de Termodindmica, junto con
el de Mecanica Estadistica. En lo que sigue, mostraremos algunos elementos de esas
disciplinas, indispensables para la comprensién del seminario.

Enfrentamos entonces un problema nuevo: el de predecir propiedades de un niimero
muy grande de particulas, en que la mecénica cuantica juega un papel relevante. Notemos
que tenemos una teoria sélida para la fisica de una o dos particulas. Cuando tenemos
muchas particulas, no nos interesa el comportamiento individual de cada particula, sino
el efecto colectivo del conjunto. Es vélido preguntar qué ocurre en la frontera entre estos
dos extremos; entre el de una o dos particulas y el de un nimero muy grande de las
mismas. Bueno, quizd quienes mas sepan del tema son los astrénomos, quienes deben
resolver desde Orbitas donde interactian pocos cuerpos, hasta galaxias con millones de
estrellas. Este ejemplo es de mecanica cldsica; pero cuando cldsicamente el problema es
dificil, lo es aliin mas cudnticamente. Si bien este no es el asunto de este seminario, no
podiamos dejar de nombrarlo.

La idea basica es simple: se construye una funcién, denominada en forma genérica
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como “potencial termodindmico”, que representa a la energia del sistema. Se varian los
parametros de esa funcién con el fin de minimizar a la misma. El minimo del potencial
termodinadmico es el estado fisico. Existen muchos potenciales termodindmicos segtln el
problema fisico que tratemos: para sistemas cerrados, para sistemas abiertos, cuando la
temperatura es constante, cuando la presién es constante, etc. Modelamos a una estrella
de neutrones como un sistema cerrado, con temperatura constante. Luego, el potencial
termodinamico adecuado para el problema, es el potencial de Helmholtz F’, que se define
como,

F=U-TS, (2.1)

donde U es la energia interna, T es la temperatura absoluta y S es la entropia. Debe
ser obvio que F' tiene unidades de energia. Por simplicidad, en esta expresiéon no hemos
agregado aun el efecto del campo magnético. Para encontrar el minimo de esta funcién,

debemos diferenciarla. Al hacerlo y trabajando sobre la energia interna, tenemos,
dF = —SdT — PdV + Y j;dN;, (2.2)

donde P es la presién y V el volumen. Por medio de la suma sobre 4, se incluyé la
posibilidad de que existan diferentes tipos de particulas (neutrones, protones, etc); donde
;i y N; representan al potencial quimico y al nimero total de particulas del tipo i,
respectivamente. La minimizacién del potencial termodindmico nos permite obtener las
funciones presion, entropia y potencial quimico como funciones de la densidad. Por

construcciéon tenemos,

OF OF oF
S=— <> , P=- () y W= () - (23)
oT V,N; oV T,N; ON; VT, Njzi

Discutamos ahora el potencial quimico p;, pues es particularmente relevante en nues-
tro andlisis. Ya que el nimero de particulas IV; es adimensional, el potencial quimico tiene
unidades de energia. El concepto de potencial quimico es simple a partir de la ec. (2.2):
es la cantidad de energia que se pierde o se gana, cuando el nimero de particulas cam-
bia en una unidad. De este modo, puede ser una cantidad positiva, negativa o nula.
El potencial quimico ;, se vincula con la densidad parcial de particulas del tipo 7, que
designaremos como p;. Debemos sefnalar que p; es la densidad de nimero; esto es, el
numero de particulas por unidad de volumen. Usamos esta densidad por conveniencia,

pero debemos recordar que conocemos las especies de particulas con las que trabajamos
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(neutrones, protones, electrones, etc.), por lo cual a partir de la densidad de nimero se
obtiene en forma inmediata la densidad de materia.

Para ver cémo se obtiene la p; a partir de p;, definimos primero el nidmero de
ocupacion, n(e). El nimero de ocupacion se define como el nimero de particulas que
poseen una energia dada. Su expresion depende en primer lugar de si los efectos cuanticos
son o no importantes, y en el caso de que lo sean, de si tratamos con bosones o con
fermiones®. Damos ahora las expresiones para los niimeros de ocupacién correspondientes

a las tres situaciones descritas:

1 S

ni(e) = ST estadisctica de Maxwell-Boltzmann. (2.4)
1

ni(e) = SRR 1’ estadisctica de Bose—Einstein. (2.5)
1

ni(e) = estadisctica de Fermi—Dirac, (2.6)

ele—wi)/keT 4 1’

donde k, es la constante de Boltzmann. Debemos recordar que la estadistica de Maxwell—
Boltzmann es clasica, mientras que las otras dos son cuanticas. La de Bose—Einstein para
bosones y la de Fermi—-Dirac para fermiones. Estas expresiones suponen que no existe
degeneracién. Para sistemas degenerados, las debemos multiplicar por una funcién g(e),
que representa al orden de la degeneracion para el caso cuantico y analogamente, el
numero de particulas diferentes con la misma energia, para el caso clasico. Preferimos
mostrar estas expresiones sin la funcién g(e), ya que es la tendencia moderna en la
literatura. En lo que sigue y teniendo en cuenta que los neutrones y los protones son
fermiones, trabajaremos con la estadistica de Fermi—Dirac.

Mostramos ahora dos figuras de la funcién n(e), empleando un valor arbitrario del
potencial quimico, 1 y para una temperatura fija’. En la Fig. 2.1, mostramos n(¢) para
T =5MeV y ;. =50MeV. En la misma figura y con linea de rayas, mostramos n(e)
para T — 0. Este Gltimo caso lo discutimos enseguida, en esta seccién. Vemos que
n(e) ~ 1, cuando £ < p; mientras que n(e) ~ 0, cuando € > u. Para temperaturas

finitas, el cambio entre estas dos regiones ocurre en forma suave; mientras que en el

6Recordemos que subyace el concepto de particula idéntica y que los bosones son las particulas con

spin entero y los fermiones son aquellas particulas con spin semi—entero.
"Notamos que la dependencia funcional del niimero de ocupacién deberia ser escrito como: n(e) —

n(e, u, T'). Simplificamos la notacién usando solo n(e), pues la temperatura la tomamos como un

pardmetro y el potencial quimico resulta en realidad una variable dependiente de la densidad de niimero.
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Figura 2.1: La funcién nimero de ocupacién para una temperatura de 7' = 5MeV. Con
linea de puntos, se indica el limite para T" — 0. Construimos esta figura para un potencial

quimico p =50MeV.

limite para T" — 0, el cambio es abrupto. La energia en que se produce este cambio, se
denomina energia de Fermi, €. Siguiendo con el vocabulario del tema, decimos que “la
temperatura difunde la superficie de Fermi"”, para indicar que el efecto de la temperatura
sobre el nimero de ocupaciéon hace que pase de un cambio abrupto, a uno suave. En
la Fig. 2.2, sumamos el caso de T" = 15MeV. Vemos que la difusién de la superficie de
Fermi es adin mayor, incluso hace que n(e) # 1, cuando € = 0. Lo que extraemos de
estas figuras es que cuando 7" = 0, los niveles cuanticos estan ocupados hasta la energia
de Fermi. Y estan vacios para energias mayores. Para una temperatura finita, vemos que
para cualquier energia la probabilidad de ocupacién formalmente nunca vale 0 6 1. Esto
es evidente solo en el entorno a la energia de Fermi para temperaturas bajas; y lo es
para cualquier energia a temperaturas altas.

Tomamos ahora la ec. (2.6) y la reescribimos de un modo que nos resulte mas con-
veniente a los efectos de nuestro calculo. A partir de este punto, introducimos el campo

magnético. Consideramos un campo magnético constante en la direccién del eje-z, esto
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ffffffff T=0
10— ‘ — 7= 5MeV
—— T=15MeV
’\
N
=
0.5
0.0 ‘ I
: 50 100
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Figura 2.2: La funcién nimero de ocupacién para dos temperaturas: T° = 5MeV y

T = 15MeV. El resto de las condiciones son las mismas que las de la Fig. 2.1.

es, B = B k. Comenzamos con un modelo para la energia de particula independiente.
Pensamos en un neutrén en el campo magnético externo B, sin interaccién con otras

particulas del medio. Su energia viene dada por,

2

Y uNBs.g, 2.7
5~ HwBsag (2.7)

5n(p7 Sz) =

donde m es la masa del neutrén, p la magnitud de su cantidad de movimiento, uyx Yy gn
son el magnetdn nuclear de Bohr y el factor giromagnético del neutrén, respectivamente
(ver Apéndice A); finalmente y por conveniencia, s, = £1, es dos veces la proyeccién
de spin del neutrén. Existe cierta arbitrariedad en la definicién de la energia de particula
independiente, para incluir o no, a la masa en reposo. En este caso, elegimos no colocarla.

Teniendo en cuenta la ec. (2.7), reescribimos el nimero de ocupacién para fermiones

(ec. 2.6), como,
1

en(p,s2)—pn)/kpT +1 :

Ny (p, $2) = = (2.8)

En este punto, es conveniente mostrar la expresion que vincula el nimero de ocupacion
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con la funcién densidad de nimero. Esto lo demostramos en el Apéndice B. En esta
seccién, mostraremos la expresién para el neutrén en presencia de campo magnético,

dada por la ec. (B.17), que repetimos por conveniencia:

Pn(pon, T, B) = (2;)3 > / dp n,(p, s2). (2.9)

Haremos un paréntesis antes de seguir, para analizar con cierto detenimiento la funcién
n;(e), de la ec. (2.6). Energia, potencial quimico y temperatura, son variables reales.

Luego, el exponencial en el denominador de la ec. (2.6), toma valores dentro del rango,
eEmm)/ksT € (0, 00),

por lo tanto,

TLI(&T) € [0, ]_]

Esto es, el nimero de ocupacién de los fermiones nunca puede ser mayor a uno, ya
que representa a fermiones para los que rije el Principio de Pauli. Esta cantidad se
interpreta como la probabilidad de encontrar una particula con energia ¢; luego, puede
tomar cualquier valor dentro de su rango de variacion.

Analicemos el limite para la temperatura tendiendo a cero. Vamos a considerar un

solo tipo de particulas, por lo que eliminamos el subindice 7. Tenemos,

ne) — 1, si T—-0 A e—u<0,
ne) — 0, si T—0 A e—pu>0. (2.10)

En el limite para T' = 0, el valor de la energia que cumple con,
E—pu= 07

que nos permite definir la energia de Fermi, e = . Notamos que en este limite, el
nimero de ocupacidn se puede reemplazar por la funcién escalén 0(x) (0(z) = 1siz > 0

y O(z) =0 si x < 0; notemos que 0(z) + 0(—z) = 1, V x). Podemos escribir entonces,
n(e)lr=o =1 —0(c —er) = 0(er — ¢). (2.11)

En el caso de que la particula solo tenga energia cinética (¢ = h?k*/2m), definimos el

momento de Fermi, como,
h2k?

2m

=cp, (2.12)
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de esta manera, para 7' = 0, el nimero de ocupacién lo podemos escribir como,
n(e)lr=o = 0(kr— [ K |), (2.13)

donde hk, es la cantidad de movimiento de la particula.

La expresién para la energia de particula independiente dada por la ec. (2.7), vale
para particulas con masa en reposo no nula y sin carga eléctrica. En presencia de un
campo magnético, incluimos perturbativamente el efecto del campo magnético B (dltimo
término de esta ecuacién), como el resultado del acoplamiento del momento magnético
andémalo del neutrén con el campo magnético. Si tenemos un protén debemos proceder
de otra manera, ya que el protén tiene carga eléctrica y como toda particula con carga
en movimiento, la misma se acopla con el campo magnético. De este modo, antes de
proceder con el estudio de la ecuacién de estado, estudiaremos la fisica de una particula

cargada en un campo magnético constante.

2.2. Una particula cargada en un campo magnético:

niveles de Landau

Para proseguir con el estudio de la ecuacién de estado para materia proto—neutrénica
en un campo magnético externo intenso B, debemos estudiar primero la fisica de una
particula cargada en dicho campo magnético. Debemos hacer esto, para conocer la
expresion de la energia de particula independiente que emplearemos en la funcién ndmero
de ocupacion. Como hemos discutido extensamente, mientras que en la Mecanica Clasica
escribimos la energia de la particula sin mas, en Mecanica Cuantica, la energia resulta
de resolver la ecuacién de Schrodinger.

Ahora bien, un campo magnético no deriva de un potencial escalar (como el campo
eléctrico, por ejemplo). Esto es, en la ecuacién de Schrodinger no tenemos un potencial
V', que represente al campo magnético. Sin embargo, el campo magnético si deriva de
un potencial vector A (recordemos que, B = V x A). De esta manera, establecimos
nuestro objeto de interés: queremos conocer el valor de la energia para un protén en un
campo magnético constante. Es importante mencionar que en esta seccién emplearemos

las unidades de Gauss (ver Apéndice C). Sin embargo, debemos advertir al lector que a
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lo largo de este trabajo empleamos diferentes sistemas de unidades. En cualquier caso,
las unidades estan claramente indicadas. Empleando el electromagnetismo, proponemos
el siguiente Hamiltoniano para nuestro problema,

A 1 R € A 2 A~ N
= — (p - A) U Vi, (2.14)

2m c

donde V/, es el potencial escalar convencional (si se trata de una particula libre sabemos
que V =0y Vi, es el operador de interaccion entre el momento magnético del protén

y el campo B; que modelamos de la siguiente manera,

‘A/spin = —HUN Gp ‘§ ’ B, (215)
donde 11y gy, son el magnetdén de Bohr y el factor giromagnético para el protén, respec-
tivamente (ver Apéndice A). En base a nuestros conocimientos del curso, la ec. (2.14),
no nos sorprende. Sin embargo, debemos notar que es una matriz de 2 x 2. Inspirados

en la ecuacién de Schrodinger,

N L oY
— ih——
Mo =gy
proponemos ahora la ecuacién,
1 /. e\? =~ A A O
[Qm (p—cA> +V —-ung, S-B Qﬁ—lha. (2.16)

Esta ecuacion es un caso particular de la ecuacién de Pauli. No ahondaremos sobre este
punto. Consideramos ahora un campo magnético B = Bk, con B = constante; esto
es, un campo magnético constante en el sentido del eje—z positivo. El potencial vector

correspondiente se escribe como,
A, =—By, A, =0, A, =0,

reescribimos el Hamiltoniano de la ec. (2.16), como,

2

~ 1 eB \? pfj P
= — Py + — — zZ . B, 2.17
H 2m< * cy> +2m+2m HN Gp 5 ( )

donde s, = +1, es dos veces el nimero cuantico del operador S,. Ya que este Hamilto-

niano es independiente del tiempo, podemos plantear la ecuacién estacionaria como,

Hy = B,
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de esta manera,

2

1 eB pg p?
+ =4 4 2= B = FE. 2.1
[Qm (pa; c y> 2m  2m HN Ip 5 v v ( 8)

Es importante notar que el la Gnica dependencia espacial del Hamiltoniano (ec. 2.17),
es con la coordenada—y. De esta manera, p, y p, son constantes de movimiento. Esto

nos induce a reescribir a la funcién de onda como,
V(w,y,2) = ef P B(y). (2.19)

Antes de reemplazar esta expresion, reescribimos la ec. (2.18), de un modo mas conve-

niente,

2 2 2
Py 1 ( eB > D;
.+ — = |FE - =% + . B . 2.20
me 2m Pa cy v 2m HN Ip & v ( )

Al reemplazar por la ec. (2.19), el exponencial se simplifica. Ademas, empleamos la

transformacién canénica para p, = iV, /i. De este modo, tenemos,

R: d?®(y) 1 eB \? p?
o — — O(y)=|F— = Bl @ 2.21
2m  dy? * 2m <px + c y) ) 2m I Gp 52 (), (221)

luego de un poco de algebra, podemos escribir,

h? d2q>(y) 1 2 2 o
S—— —m — O(y)=ED 2.22
e i+ 3 m @y~ w) Bl) = EB(y) (222)
con,
B eB
o = —,
me
_ =
Yo = GB’
- s
E = FE-— o +un gp 5. B. (2.23)

Recordemos la ecuacién de Schrodinger para el oscilador arménico en una dimension,
dada en la ec. (4.2) en [1]. Para el beneficio del lector, repetimos esa ecuacién a con-

tinuacién, -
h dp(z) 1 2.2
o g2 + Smwta o(x) = E p(z). (2.24)

De la comparacién de las ecs. (2.22) y (2.24), concluimos que la ec. (2.22) es la de

un oscilador arménico simple, cuyo centro de oscilacién estd corrido en 7,. De nuestro
conocimiento del oscilador arménico (ver Cap. 4, en [1]), sabemos que la energia resulta,

~ 1
E = ho (Np + 2) , con N,=0,1,2,.. (2.25)

Facultad de Cs. Astrondmicas y Geofisicas | UNLP

50



EDUARDO BAUER

Recordando ahora la definicién del magnetén nuclear de Born,

eh

N = 2mc’

tenemos, finalmente a partir de las ecs. (2.23) y (2.25),
2

E=puxyB@2N,+1—g,s.)+ me (2.26)

Por conveniencia y para mantener una notacién consistente con la seccién anterior,

cambiamos la notacién para la energia F,

2
es(p, 52, N,) = 2% +uy BN, +1—g,s.)| N,=0,1,.. (2.27)

Esta es la energia de un protén en un campo magnético constante, que emplearemos en
este seminario. Debemos enfatizar que consideramos que la tnica interaccion del protén
es con el campo magnético. Si apagamos el campo magnético y nos restringimos a una
Unica particula, entonces tenemos una particula libre. Pero escribimos esta seccién para
muchas particulas que no interactian entre si. En fisica clasica tal sistema se denomina
un fluido ideal. En el caso cuantico, rige el Principio de Pauli y seguimos teniendo un
potencial quimico y nimeros de ocupacién; por lo cual hablamos de un “gas de Fermi”.

Antes de terminar, mostramos la expresion para la funciéon de onda. En nuestro
célculo, no necesitamos emplear la funcién de onda. Sin embargo, debemos responder a
una pregunta central: jcual es el grado de degeneracién de estos niveles de energia? Para
responder a esta pregunta, debemos escribir la funcién de onda, dada por la ec. (2.19),
donde ®(y) es la solucién de la ecuacién del oscilador arménico (ec. 2.22). Podemos

construir esta solucién a partir de la ec. (4.15) en [1]:

7 e B
Y(x,y,2) =en (Paz+p22) o= 51 (Y=w0)? H, |4/ eh—c (y — o) | - (2.28)

De la comparacién con la ec. (2.27), resulta que la energia estd degenerada en p,,
cuyos valores forman una sucesién continua, por lo cual la degeneracién es infinita. Sin
embargo, la degeneracion pasa a ser finita si el movimiento en el plano—(z, y) se limita a
un drea arbitrariamente grande, pero finita, cuya supeficie designamos como A = L, L,,.

Siguiendo el mismo razonamiento que empleamos en el Apéndice B, Sec. B.1, el nimero
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de valores diferentes de p,, es,

numero de estados de p, — Ap,, (2.29)

L,
2mh
donde los posibles valores de p.., son aquellos en que el centro de la érbita se encuentra
contenida en A. De la condicién 0 < yo < L,, recordando que yo = —cp,/(eB) y

reemplazando los valores extremos en la desigualdad,

eBL
pac|min = _731,
&
pm|max - 07
eBL
Apx = pz|max_pz|mm: c g (230)

por lo cual, la degeneracién g(¢), se obtiene reemplazando Ap, en la ec. (2.29):

eBA

9(e) = 5 (2.31)

Con estos elementos podemos calcular ahora la densidad de nGimero para protones.
Esto lo hacemos en el Apéndice B. En forma mas especifica, la expresién para la densidad
de ndmeros para protones la mostramos en la ec. (B.14).

Resumamos lo discutido en esta seccién. Consideramos una particula cargada (un
protén), en un campo magnético constante, que elegimos en la direccién del eje—z y en
el sentido positivo. Encontramos que la particula muestra una cuantizacion en el plano—
(x,y), pero mantiene su caracter continuo en el eje—z. Este resultado se denomina
cuantizaciéon de Landau y los niveles discretos de energia se denominan (niveles) de
Landau. El estudio de la cuantizacién de Landau no es el objetivo central de este capitulo.
Sin embargo, necesitamos dos resultados: la energia de particula independiente dada en
la ec. (2.27) y la degeneracién de los niveles de energia, que mostramos en la ec. (2.31).
Estos dos elementos son esenciales para el calculo de la ecuacion de estado en materia
proto—neutrénica. El lector interesado en un anélisis mas cuidadoso de la cuantizacién

de Landau, puede consultar el libro de Landau y Lifshitz [5], §111.
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2.3. Comparacion de lo discutido con el atomo de
hidrégeno

Nota: esta secciéon puede ser ignorada por el lector sin culpa; ya que explicamos un
resultado anterior a la luz de lo que aprendimos sobre la cuantizacién de Landau. El
contenido de la seccién no aporta ninguna informacién relevante para el desarrollo de
la ecuacién de estado, sino que muestra que no existe ninguna inconsistencia entre los
resultados anteriores y los nuevos.

En la Sec. 10.1 en [1], mostramos la misma expresiéon que en la ec. (2.14). Eso lo
hicimos para justificar el experimento de Stern y Gerlach, mostrando cémo se acopla el
momento angular con un campo magnético, en este caso no—constante. Luego usamos
el mismo modelo para dar cuenta del efecto Zeeman en el 4tomo de hidrégeno. Por otra
parte, en la Sec. 12.1 del mismo libro, se discutié la interaccién L.S; donde dijimos que
por medio del momento angular ddbamos cuenta del campo magnético intrinseco del
atomo (de hidrégeno). Recordemos que estas correcciones a la energia se hacen sobre
el electréon, que es una particula cargada. Esto es, en esos capitulos estudiamos cémo
se modifican los niveles de energia del atomo de hidrégeno debido a la presencia de un
campo magnético.

En la seccién anterior, demostramos que una particula cargada en un campo mag-
nético constante, muestra una cuantizacién, denominada de Landau. Volviendo atras
y recordando el estudio del efecto Zeeman o la interaccién fina (o interacciéon LS),
debemos preguntarnos si cometimos un error y nos olvidamos de algo importante. La
respuesta a esta pregunta se vincula con el método de trabajo cientifico: la realidad es
extremadamente compleja y para tratar de describirla, recurrimos a modelos que son
simplificaciones de la realidad. Para el estudio del efecto Zeeman y de la interaccién
fina, empleamos Teoria de Perturbaciones, donde el espacio de Hilbert es el del 4tomo
de hidrégeno en ausencia de campo magnético. Por lo tanto, los niveles de Landau no
aparecen, pues nuestro espacio de Hilbert es el de una particula en ausencia de campo
magnético que no contiene estos estados.

Sabemos entonces por qué no tenemos los niveles de Landau para el efecto Zeeman
y la interaccién fina. Pero debemos responder atin si ese modelo esta bien o no. El mejor

modo de responder a esta pregunta, es comparar con el experimento. Al hacerlo, vemos
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que el modelo funciona bien. Dada esta respuesta, nos podriamos preguntar si vali6 la
pena escribir la seccién anterior sobre los niveles de Landau. O para ser mas claros: jen
qué condiciones es importante la cuantizacién de Landau? La respuesta tiene que ver
con la intensidad del campo magnético. Cuando analicemos los resultados numéricos
para la ecuacién de estado, veremos que los efectos magnéticos son relevantes para
campos a partir de B > 10'°G. El campo magnético intrinseco del 4tomo de hidrégeno
es B ~ 10°G y el efecto Zeeman supone un campo magnético menor. A medida que
el campo decrece, el nimero de niveles de Landau que deben ser tenidos en cuenta
crece considerablemente. Para valores del campo magnético B ~ 10°G el niimero de
niveles es muy grande y la separacion entre niveles muy pequefia. En los hechos, se puede
despreciar la cuantificaciéon de Landau en estas condiciones.

En resumen, la importancia de la cuantificacion de Landau depende de la intensidad
del campo magnético y solo es importante para campos magnéticos muy intensos. Esto
lo discutiremos nuevamente cuando analicemos los resultados numéricos de la ecuacién
de estado. En esta pequefia seccién, solo quisimos justificar el motivo por el que no
discutimos la cuantificacién de Landau para el &tomo de hidrégeno. Finalmente, notamos
que resolvimos la ecuacion de Pauli para una particula libre que interactia solo con un

campo magnético. No resolvimos la misma ecuacién para el atomo de hidrégeno.

2.4. Ecuacion de estado con un campo magnético

intenso

Como ya dijimos, el término “ecuacién de estado”, indica la presiéon en funcién de
la densidad; en nuestro caso, la densidad de nimero. Vamos a desarrollar esta seccién
seglin dos niveles de dificultad. En primer lugar, vamos a calcular el potencial quimico a
partir de la densidad de nimero. Luego, calcularemos la presién en si, para lo cual dare-
mos un conjunto de expresiones de la Mecanica Estadistica, que nos permitiran calcular
la ecuacién de estado. En este punto, debemos aclarar que la discusién de los resultados
busca abordar el comportamiento de cada magnitud fisica, seglin la dependencia fun-
cional con cada variable de la que dependa dicha magnitud. Esto en una primera lectura,

puede resultar algo confuso, ya que damos mucha informacién. Sugerimos al lector que
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luego de una lectura general, focalice su atencién en la magnitud fisica que resulte de
su mayor interés.

Para abordar el problema de un sistema formado solo por neutrones y protones, a
temperatura finita y bajo la accién de un campo magnético externo constante; primero
debemos establecer claramente qué sabemos y qué deseamos calcular. Esto es, cudles
son nuestros datos de entrada y qué deseamos calcular con ellos.

Nuestros datos de entrada son:

a. La densidad bariénica total p y la fraccién de protones Y),. Definimos la fraccién

de protones como,

Pp
Y, = —", (2.32)
g Pn + Pp
donde naturalmente p = p,, + pp.
b. La temperatura 7', del sistema.

c. La intensidad del campo magnético B.

En resumen, nuestras variables de entrada son cuatro: p, Y, T'y B. Debe resultar obvio
que podemos dar p junto con Y,, o en forma alternativa p, y p,, ya que contienen la

misma informacidn. Sobre los valores numéricos, analizaremos:

p € [0,0.4] fm~3. Notemos que la densidad de saturacién nuclear es py ~0.16 fm 3,

de este modo, nos manejamos en un rango p/po € [0,2.5]; ya que densidades may-

ores requeririan de un tratamiento relativista.

Consideraremos Y, = 0, 0.15 y 0.30. Lo cual indica materia puramente neutrénica
(Y, =0), y fracciones de protones hasta el valor de 0.3, que es un valor de referencia

aceptado en la literatura.

Consideraremos temperaturas de 7' =5y 15MeV.

Analizaremos B=10'" y 10'8G.

El paso siguiente es explicitar el modelo que vamos a adoptar para estudiar nuestro
sistema. Pensamos que neutrones y protones no interacttan entre si, pero si lo hacen con
un campo magnético externo. Como ya discutimos, dadas las condiciones de densidad y

temperatura que analizaremos, debemos realizar un tratamiento cuantico del problema.
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Emplearemos el modelo no relativista. Si bien no existe interaccion entre las particulas
del sistema, la cudntica nos dice que el Principio de Pauli debe ser tenido en cuenta,
pues tenemos un sistema de fermiones.

Dado este planteo, podemos calcular un conjunto extenso de propiedades del sistema.
La primera magnitud que debemos evaluar es el potencial quimico. Una vez que conoz-
camos el potencial quimico, podremos calcular la ecuacién de estado. Pueden calcularse
otras magnitudes, como la entropia, polarizacién del sistema y otras mas. Calcularemos

solo las magnitudes que hemos nombrado.

B=10""G

100 - neutrones

50

—— I'=5MeV
0 —— I=15MeV _
;‘ L 1 L 1 L 1 L
§ 0.0 0.1 02 , 03 0.4
= p, [fm™]
Q T T T T T

100 - protones

50

0.0 0.1 0.2 0.3 0.4

Figura 2.3: Potencial quimico en funcién de la densidad. En el panel superior (inferi-
or) mostramos el potencial quimico de neutrones (protones). Esto lo hacemos a dos

temperaturas.

Comencemos entonces por el potencial quimico para neutrones y protones. Cada
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tipo de particula (neutrones, protones, electrones, etc.), posee su potencial quimico; que
solo depende del tipo de particula, pero no de su spin, alin en presencia de un campo
magnético. Este udltimo punto es sutil y no debe ser subestimado. Para entender este
punto y por conveniencia, recordemos las expresiones para la densidad de nimero para
neutrones y protones, ecs. (B.9) y (B.14), respectivamente,

1 |
P T.B) = G Z / A s T T (2.33)

eB o0 1
pp(#aT; B) = (271_)2 NZS LOO dkz e(Ep(kmSp,Np)*Hp)/kBT + 1a (234)

donde p,,+p, = p. Las energias de particula independiente para neutrén ¢, (k, s,,) y para
protén e, (k,, s,, N,), fueron dadas en las ecs. (2.7) y (2.27), respectivamente. Notemos
que las energias de particula independiente dependen de la proyecciéon de spin. Como
vimos en la Sec. 2.1, el potencial quimico nos dice hasta qué energia tenemos particulas.
Si el potencial quimico dependiera del spin, tendriamos dos potenciales quimicos para la
misma especie de particula. Luego, el sistema no se encontraria en equilibrio, pues para
las particulas con el potencial quimico mayor, existen niveles de menor energia con otro
spin. De este modo, la situacién de equilibrio es que el potencial quimico no dependa
del spin.

Para calcular el potencial quimico, fijamos p, y p,, y resolvemos las ecs. (2.33) y
(2.34), donde las incégnitas son i, y fi,. Estas son ecuaciones implicitas, que deben
resolverse en forma numérica. El resultado numérico lo mostramos en las Figs. 2.3. El
potencial quimico depende fuertemente de la densidad, débilmente de la temperatura y
su dependencia con el campo magnético es despreciable. La diferencia entre p,, y 1, €s
también despreciable. Esto Gltimo se debe a que la diferencia de masa entre protones y
neutrones es muy pequefia y el acoplamiento con el campo magnético es débil.

En las Figs. 2.3, vemos también que la relacién entre la densidad y el potencial quimi-
co es biunivoca: a cada potencial quimico le corresponde una tnica densidad y viceversa.
Ademas, la dependencia funcional es suave. De este modo, podemos simplificar consi-
derablemente la evaluacién del potencial quimico, asignando valores arbitrarios para el
mismo, reemplazarlos en las ecs. (2.33) y (2.34), ver a qué valores de la densidad se
corresponde y luego hacer una extrapolacion lineal para evaluar cualquier valor interme-
dio. Como dltimo comentario sobre estas figuras, notamos que para una densidad fija, el

potencial quimico disminuye cuando la temperatura disminuye. Esto es una consecuencia
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de la difusién de la superficie de Fermi.
Dado el célculo del potencial quimico, somos ahora capaces de evaluar la polarizacion
del sistema. Para ello, evaluamos las densidades de particulas con spin up y down,

simplemente como,

1
P TB) = o / dkn(k, s, = +1), (2.35)
1
AT B) = G / dken(k, s, = —1), (2.36)
eB 00
AT = oo Z/ dk, n(k., s, = +1,N,), (2.37)
N, YT
dw eB 00
AT B) = oo Z/ dk.n(k., s, = —1,N,). (2.38)
N, YT

donde el superindice up, indica particulas con spin up y dw, aquellas con spin down.
Notar que p, = p» + p& y p, = ppf + pgw. En ausencia de campo magnético y por el

principio de Pauli, tendremos,
PP = p™,  cuando B =0, (2.39)

donde por simplicidad omitimos la dependencia funcional de la densidad. Este resulta-
do es valido tanto para protones, como para neutrones. Sin embargo, la presencia del
campo magnético altera esta igualdad, generando una asimetria (de spin) entre las den-
sidades parciales de spin up y down. Por conveniencia, definimos la asimetria en forma
adimensional, de la siguiente mantera,

pup - pdw

Asimetria = ————,
Ioup + pdw

(2.40)

donde nuevamente la expresién es valida tanto para neutrones, como para protones,
en forma independiente. De esta manera, tenemos dos asimetrias de spin; una para
cada tipo de particula interviniente en nuestro estudio. Esta expresién es vélida para
cualquier valor de campo magnético. En particular y de la ec. (2.39), notamos que en
ausencia de campo magnético la asimetria vale cero. A partir de su definicién, vemos
que la asimetria de spin posee valores acotados entre —1 y +1. El valor —1 indica que
todas las particulas tienen spin down. Andlogamente, para +1 el spin es up y como
mencionamos, el valor cero muestra materia no polarizada. Por inspecciéon del signo

del factor giromagnético para protones y neutrones, vemos que el valor de la energia de
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particula independiente es mas bajo para spin down en el caso de neutrones y spin up para
protones. Por otra parte, el Principio de Pauli, nos dice que la situacién de menor energia
es aquella en que el nimero de particulas con spin up y down es el mismo. La situacién
fisica real es aquella en que la polarizacién es parcial. Debemos indicar que para bajas
densidades y campos magnéticos muy grandes, es posible que el sistema se encuentre

completamente polarizado. Vale la pena mencionar que entre las diferentes magnitudes

Yp=0.3, T=5MeV

1.0 . . .

protones
neutrones

Asimetria

0.0 0.1 0.2 0.3 0.4

Figura 2.4: Asimetria de spin para protones y neutrones en funcién de la densidad total,

para dos valores del campo magnético B. Empleamos una temperatura de 7' = 5MeV.

fisicas que evaluaremos, aquella con mayor dependencia con el campo magnético es la
asimetria de spin. En la Fig. 2.4, mostramos el comportamiento de dicha magnitud para
dos valores del campo magnético. Vemos que la asimetria es positiva para protones
y negativa para neutrones, como ya habiamos advertido. La magnitud de la asimetria
es mayor a bajas densidades. Intuitivamente, esto es facil de entender: el grado de
polarizacién resulta de la competencia entre el campo magnético que busca polarizar el
sistema y el Principio de Pauli que favorece lo contrario. Cuando la densidad es baja, las
particulas estan mas separadas y por lo tanto el Principio de Pauli es menos efectivo.

Luego, predomina la polarizacién.
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Siguiendo con la Fig. 2.4, notamos que la asimetria para protones posee una magnitud
mayor que la de neutrones. Existen dos razones para esto: en primer lugar, el médulo
del factor giromagnético para protones es mayor. En segundo lugar, tenemos Y}, =0.3, lo
cual indica que la densidad parcial de protones es menor que la de neutrones. Finalmente,
notamos que al pasar de B = 107G a B = 10'8G, la asimetria crece en aproximadamente
un orden de magnitud; lo cual muestra la fuerte dependencia de la asimetria con el campo

magnético.

B=10"G, Y =0.3

1-0 T T T
protones
neutrones

0.5F

S
N
IS T=15MeV
£ 00t -
=
~
-0.5}F 1
_1‘0 1 1 1
0.0 0.1 0.2 0.3 0.4

p [fm”]

Figura 2.5: Asimetria de spin para protones y neutrones en funcién de la densidad total,

para diferentes valores de la temperatura. En esta figura elegimos B = 10"®*Gy Y, =0.3.

En segundo lugar, en la Fig. 2.5, mostramos la dependencia de la asimetria con
la temperatura. Elegimos dos temperaturas: 7' = 5 y 15MeV. Vemos que la asimetria
disminuye cuando aumenta la temperatura: un aumento de la temperatura produce un
incremento en el desorden térmico. El estado polarizado, es un estado ordenado, pues
los espines se alinean en la misma direccién. La temperatura, naturalmente, tiende a
desordenar al sistema.

Finalmente en el andlisis de la asimetria, en la Fig. 2.6, mostramos las asimetrias

para neutrones y protones para diferentes valores de la fracciéon de protones. En el
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B=10"G, T=5MeV
protones

neutrones

Asimetria
o

—

/’( Y =03 1
" " 1 " |p "
00 01 02 03 04
3
p[fm7]

Figura 2.6: Asimetria de spin para protones y neutrones en funcién de la densidad total,
para diferentes valores de la fraccidn de protones, Y),. En esta figura elegimos B = 10'8G
y T'= 5MeV.

paneI superior, mostramos el caso Yp = 0, esto es, materia puramente neutrdnica, pues
no hay protones. En los siguientes paneles, mostramos Y, =0.15 y 0.30. Vemos que la
dependencia con la fraccién de protones es débil. En resumen, tenemos que la asimetria es
una magnitud positiva para protones y negativa para neutrones; que depende fuertemente
del campo magnético y de la temperatura. Debe resultar evidente la relacién entre la
asimetria y la magnetizaciéon del sistema. Sin embargo, en este capitulo no avanzaremos
en esa direccién.

Pasamos ahora a la segunda parte de nuestro analisis, para lo cual debemos mostrar
un conjunto de expresiones que nos permitiran calcular la presién. Esta funcion depende
de: la densidad, la fraccion de protones, la temperatura y el campo magnético. Partimos

de la expresion para el potencial de Helmholtz F' dado por la ec. (2.1). Vamos a dividir
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por el volumen V', de modo que trabajaremos con densidades de energia, esto es,

F
F=1

El motivo por el cual dividimos por el volumen es que nuestro sistema (una estrella
de neutrones), es desde el punto de vista de nuestro modelo, un sistema muy grande.
Dentro de la estrella, tenemos distintos valores para la densidad (dependiendo de la
distancia al centro), diferentes temperaturas y valores del campo magnético. Luego, es
conveniente analizar un subsistema, cuyo volumen arbitrario es V', donde estas cantidades
son localmente constantes. Todos nuestros resultados van a ser independientes de V;
por lo cual, podemos pensar a este volumen como un artificio para el calculo. Aln asi,
podemos decir que el volumen debe ser lo suficientemente pequeno para que densidad,
temperatura y campo sean aproximadamente constantes; y lo suficientemente grande
como para que el nimero de particulas admita un tratamiento termodinamico. Siguiendo

con nuestro andlisis, separamos ahora la contribucién para neutrones, de la de protones,

F=F.+F, (2.41)
con,
F, = &-TS,, (2.43)

donde & =U;/V y S; = S;/V, son las densidades de energia interna y de entropia para
1 = n, p, respectivamente. A partir del conocimiento de los potenciales quimicos para
neutrén y protén, podemos evaluar el potencial de Helmholtz por unidad de volumen.
Mostramos ahora las expresiones explicitas para dicho célculo. En primer lugar, para

neutrones, tenemos,

E. = K, —unBg,W,, (2.44)
donde,
11
A, T,B) = — —— /dkk:2 o (1. T. B), 24
Ko (1 ) 2 (2 Z P, s (f1 ) (2.45)
1
Waline T.B) = 5 an/dkpn,Sn(un,T, B), (2.46)
r.B) = - [dk ! 2.47
pn,sn(:una I ) - (271')3/ e(En(kvsn)*Nn)/kBT+1. ( ) )
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Mientras que para protones las expresiones correspondientes son,

& = Kp+ (2L, + pp— unBgyW,) | (2.48)
donde,
1
Colp T.B) = 5 (%) > | ARk pyy (1 T B), - (249)
eB
Wyl T.B) = 555 3 s |k ppn, (1), (250)
Sp, Np
eB
Ly T B) = (55 3 N/ dks py sy n, (T, B),  (251)
sp, Np

1
Py, Sp, Np (MP? T’ B) = (27T>2 /;oo dk‘z e(sp(kz,sp,Np)fup)/kBT + 1 ’

(2.52)

Obviamente, tenemos,

B=10"G, Y =03

03 T T T
— 7= 5MeV
— T=15MeV
02}
£
A
0.11
OO 1 1 1
0.0 0.1 0.2 0.3 0.4
3
p [fm~]

Figura 2.7: Densidad de entropia en funcién de la densidad para dos temperaturas.

pn = pn(ﬂmTa B) = Z pn,Sn(:uTHTa B) (253)
Pp = pp(:up’T’ B) = Z Pp, sp, N, :up’T B). (2.54)
sp, Np

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 63



EDUARDO BAUER

Para la densidad de entropia, tenemos,

1
Sulpn, T,B) = — (2)3 Z/ dk [pn, s, I pn,s, + (1 = pps, ) (1 = pp,s,) 1,
eB 00
SP(M}WT? B) = - (271')2 Z / dkz[ﬂp,sp,Np 1npp73vaP +
Sn, Np —o0
(1 — Pp, SPaNp) In(1 — Py, sp,Np) ] (2-55)

Finalmente, la presion resulta,

Pn(:uTwTa B) = HUnPn — fn; (256)
Py(pn, T, B) = pppp — Fp, (2.57)

donde la presion total (o ecuacién de estado), es la suma de las presiones parciales de

neutrén y protén,
P(pn, T, B) = Poy(ptn, T, B) + P, (un, T, B). (2.58)

Como advertimos, este esquema es complejo y fue expuesto sin una demostracién rigu-
rosa. Referimos al lector interesado a los libros de Callen [6] y Pathria [7], para ver el
desarrollo y demostracion de estas expresiones. Aceptandas las mismas, es simple evalu-
ar la presiéon; una vez conocido el potencial quimico para cada particula. Hagamos una
sintesis del desarrollo. Tenemos un sistema formado por neutrones y protones a temper-
atura finita, con un campo magnético intenso. Sobre el sistema, conocemos la densidad
de ndmero, la fraccién de protones, la temperatura y el campo magnético. Deseamos
calcular la ecuacién de estado. Para ello calculamos en primer lugar los potenciales quimi-
cos para neutrén y protdn, [, y i, respectivamente. Obtenemos i, y 1, a partir de
la densidad de ndmero para neutrén y protén. Si bien no lo demostramos, los valores
de 1, y j1p, asi obtenidos resultan en el minimo del potencial termodindmico. Luego, en
las ecs. (2.41)-(2.58), mostramos que con el conocimiento de los potenciales quimicos,
podemos calcular la ecuacién de estado.

Antes de mostrar los resultados para la presién, daremos los valores para la densidad
de entropia. Esto lo vemos en las Figs. 2.7 y 2.8. La densidad de entropia es una magnitud
de interés desde el punto de vista astrofisico. En la Fig. 2.7, mostramos la densidad de
entropia para dos valores de la temperatura. Vemos que la entropia es menor, cuando

la temperatura es mas baja. Un sistema mas frio, es mas ordenado y por lo tanto
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B=10"°G, T=15MeV
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Figura 2.8: Densidad de entropia en funcién de la densidad para diferentes valores de la

densidad de protones.

su entropia es menor. Luego, en la Fig. 2.8, mostramos la densidad de entropia para
diferentes fracciones de protones. A altas densidades, claramente la materia neutrénica
se muestra como un sistema mas ordenado.

Finalmente, en las Figs. 2.9 y 2.10, mostramos la presion en funcién de la densidad.
Vale la pena senalar que, al igual que para la densidad de entropia, la presién es casi
independiente del valor del campo magnético. Esto se debe a que en la expresién de la
presion los términos que dependen del campo magnético son muy pequenos respecto del
resto de los términos. En sentido estricto, existe una dependencia de estas magnitudes
con el campo magnético; pero tal dependencia es despreciable. Debido a ello, no hemos
incluido ninguna figura mostrando a la presién en funcién del campo magnético.

En la Fig. 2.9, mostramos la presiéon para dos valores de la temperatura. Vemos
una débil dependencia con la temperatura; cuando la temperatura aumenta, la presién
se incrementa. Por otra parte, en la Fig. 2.10, mostramos la presion para diferentes
valores de la fracciéon de protones. Vemos que a medida que la fraccién de protones

disminuye, la presiéon aumenta. Esto es un reflejo del principio de exclusién de Pauli:
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Figura 2.9: Presion en funcién de la densidad para dos temperaturas diferentes.

cuando las particulas son idénticas, el dltimo nivel ocupado es de una energia mayor al
caso en que tengamos particulas de diferente tipo. Seamos mas explicitos por medio de un
ejemplo. Supongamos que tenemos un total de diez particulas. Si son todos neutrones,
irdn ocupando los niveles cudnticos hasta agotar las particulas. Si se trata de cinco
protones y cinco neutrones, esta claro que el dltimo nivel ocupado por los neutrones es
menor que aquel en que tenemos solo neutrones. Por otra parte, los protones comienzan
a ocupar sus niveles cuanticos comenzando por el estado fundamental. Luego, intuimos
que cuando tenemos particulas de diferentes clases, podemos “comprimir” mas a las

particulas; por lo cual su presién es menor.

2.5. Discusion y conclusiones

Durante este capitulo, desarrollamos una ecuaciéon de estado para un sistema de
neutrones y protones no interactuantes entre si, a temperatura finita y con un campo

magnético intenso. Para ello, debimos desarrollar la fisica de una particula cargada en un
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Figura 2.10: Presion en funcién de la densidad para diferentes valores de la densidad de

protones.

campo magnético, que da origen a los llamados niveles de Landau. Introdujimos y desa-
rrollamos el concepto de potencial quimico, que da cuenta de propiedades estadisticas
de particulas, en nuestro caso de fermiones. Mostramos un conjunto de expresiones de la
termodinamica para poder calcular la ecuacién de estado. Encontramos que la ecuacién
de estado tiene una dependencia despreciable con el campo magnético, pero si depende
de la temperatura y de la fraccién de protones. Sin embargo, el campo magnético puede
producir una fuerte polarizacién del medio, haciendo que los espines de los nucleones
se alineen en forma total o parcial. Concluimos entonces, que la ecuacién de estado no
diferencia el estado de polarizacién de las particulas. En lo que sigue, discutiremos una
posible aplicacién de la ecuacién de estado.

Supongamos un problema astrofisico de interés: jcémo se enfria una estrella luego
de su colapso? Sabemos que el mecanismo mas efectivo de enfriamiento es por medio
de la emisién de neutrinos. Luego, si deseamos estudiar el enfriamiento del remanente
estelar de una estrella masiva, debemos conocer el camino libre medio de los neutrinos

en ese medio. De este modo, logramos refinar un poco nuestra pregunta inicial. Debemos
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preguntarnos: jcomo calcular el camino libre medio de neutrinos en un medio estelar? La
respuesta a esta pregunta es simple (como todo, su implementacién es mas compleja),
y consiste en identificar con cudles particulas del medio interactta el neutrino, analizar
las posibles reacciones y calcular su seccién eficaz. La inversa de la seccién eficaz, es el
camino libre medio del neutrino.

Realicemos una sintesis del parrafo anterior: debemos calcular la seccién eficaz entre
dos particulas: el neutrino y una de las particulas del medio estelar (neutrones, protones,
ndcleos, etc). Llegamos a nuestro punto de interés: esa seccién eficaz, jdepende de que
la particula con la que interactta el neutrino, sea libre o esté en un medio rodeada de
otras particulas? La respuesta es que si depende de que se encuentre rodeada de otras
particulas. Para entender este punto, mostremos un ejemplo. Supongamos la reaccién
de dispersion inelastica de un neutrino con un neutrén. Como producto de la reaccidn,
el neutrén cambia su estado cuantico. Si se trata de un neutrén libre, puede acceder a
cualquier estado cuantico como estado final. Pero si estd rodeado de otros neutrones, el
Principio de Pauli nos dice que el neutrén no podra acceder a los estados cuanticos ya
ocupados por otros neutrones. Luego, la seccién eficaz va a ser diferente entre neutrones
libres y neutrones en un medio que contiene otros neutrones. Un cdlculo de este tipo
para materia neutrénica, se puede encontrar en [8].

De acuerdo entonces, la seccion eficaz depende de las propiedades del medio. Y para
saber cudles son las “propiedades del medio”, debemos evaluar la ecuacién de estado, que
es el objeto de estudio de este capitulo. Acabamos de describir sélo una de las posibles
motivaciones para estudiar la ecuacion de estado de un medio estelar. En la literatura,
encontramos trabajos que se concentran en el desarrollo de ecuaciones de estado como
un fin en si mismo. Una vez que tenemos una ecuacién de estado para una estrella de
neutrones, por ejemplo; podemos calcular su radio y masa, que son observables (desde
el punto de vista astronémico, no cuantico). No desarrollaremos este punto.

El modelo que hemos expuesto es simple. Puede serlo alin mas. Podemos tomar
solo neutrones a temperatura cero. Es un ejercicio de interés, no del todo trivial, que
dejamos al lector interesado. Pensemos en cudles son las lineas de trabajo para mejorar
este modelo. En primer lugar, deberiamos incluir al menos a los electrones: cualquier
estrella es eléctricamente neutra, luego el modelo de materia formada solo por protones

y neutrones es poco realista. Al incluir electrones, debemos pedir que el sistema se
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encuentre en equilibrio beta. Otra linea de trabajo, es el incluir interacciones entre las
particulas. Otro punto que debe ser revisado son los efectos relativistas. El nimero de
sofisticaciones al problema es muy grande y cada elemento que se agrega produce una
modificacion perceptible en la ecuacién de estado. Esto es de particular interés, pues nos

dice que se trata de un problema abierto.
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Capitulo 3

Oscilaciones de neutrinos

Introduccién

La importancia de los neutrinos en el ambito astrofisico es enorme. La lista de situa-
ciones en las que los neutrinos juegan un papel importante es muy larga. Solo por
nombrar dos de ellas, digamos que son centrales en la fisica de las supernovas, en el
enfriamiento de objetos compactos, e infinidad de fenémenos mas. Con todo y ello, los
neutrinos son unas de las particulas mas elusivas de la naturaleza. Sobre su elusividad,
vale la pena mencionar su modo de deteccion. Los detectores de neutrinos consisten en
grandes volimenes de agua, construidos debajo de la superficie de la tierra o en algin
tanel debajo de una montaia. De este modo, la roca que rodea al agua evita la llegada
de cualquier otra radiacién que no sean los neutrinos. Dentro del recipiente de agua se
colocan fotomultiplicadores: cuando un neutrino interactia con el agua, se emite ra-
diaciéon que el fotomultiplicador puede medir. La pregunta que debemos hacernos es:
icuan probable es que un neutrino interactie con el agua? Para responder a ello, pode-
mos calcular el camino libre medio de un neutrino en el agua; esto es, la distancia entre
dos interacciones sucesivas del neutrino con el agua. El camino libre medio resulta 10°
veces el radio del Sol. Quien lee estas lineas puede ser escéptico respecto de la posibilidad
real de medicién de los neutrinos. Si bien la interaccién de un neutrino es muy débil,

el nimero de neutrinos que se emiten en cualquier estrella es enorme, lo cual permite
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finalmente obtener mediciones®.

Enseguida haremos una descripciéon mas detallada de los neutrinos en si. Antes de ello,
nos adelantamos a decir que existen diferentes tipos de neutrinos. Los que se forman
en una estrella como el Sol, son de un tipo particular, que en forma algo arbitraria,
denominaremos “neutrinos solares”. Los neutrinos solares se originan en el nicleo del
Sol, llegan a la Tierra y son medidos. Dada la luminosidad del Sol, se espera un cierto
valor para la cantidad de neutrinos solares. Al realizar esta medida, el resultado obtenido
se encuentra entre la mitad y un tercio del valor esperado. Esta discrepancia, se denomina
“problema de los neutrinos solares” y fue resuelto a comienzos del presente siglo. Como
dijimos, existen diferentes tipos de neutrinos. Si bien en el Sol se emiten neutrinos solares,
luego estos mismos neutrinos pueden cambiar su tipo en su viaje a la Tierra. De hecho, no
se trata de un solo cambio, sino de una oscilacién entre los diferentes tipos de neutrinos.
La oscilacion de neutrinos es el objeto de estudio de este seminario y tiene implicancias
fisicas interesantes; como por ejemplo el hecho de que para que se produzca la oscilacién
de neutrinos, al menos algunos de sus tipos deben tener masa en reposo no nula. Esto
altimo choca con el Modelo Estandar. De esta manera, tenemos un ejemplo de cémo un
hecho observacional modifica una teoria que es ampliamente aceptada. Los elementos

generales del tema pueden encontrarse en [9].

3.1. Algunos elementos de la fenomenologia de neu-

trinos

En primer lugar, la notacién aceptada para el neutrino esta dada por la letra gri-
ega v, mientras que el antineutrino se escribe como ; aunque no discutiremos a los
antineutrinos. Desde el punto de vista estadistico, el neutrino es un fermién, ya que
su spin vale 1/2. Desde el punto de vista eléctrico, es neutro, esto es, no tiene carga
eléctrica (debimos imaginar esto a partir de su nombre). Ademas, desde el punto de
vista de las interacciones, el neutrino no es afectado por la interaccién fuerte, solo lo es

por la interaccion débil y por la gravitatoria. La masa del neutrino es extremadamente

8Se estima que el ndmero de neutrinos que incide sobre la Tierra es de 6,5x10'° neutrinos por

segundo, por centimetro cuadrado.
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pequefia. De hecho, durante mucho tiempo se supuso que era una particula sin masa en
reposo, como el fotén. Naturalmente, dado el pequefio valor de su masa, la atraccién
gravitatoria que experimenta es muy baja. De este modo, consideraremos que el neutrino
interactia con otras particulas solo por medio de la interaccién débil. Esta interaccion,
ademas de ser débil comparada con la interaccién nuclear, es también de corto alcance.
En la clasificacion de particulas, el neutrino es un leptén.

En este punto, vale la pena recordar como se introdujo el spin a partir del experimento
de Stern y Gerlach: el resultado experimental no podia ser interpretado por medio de los
observables que se conocian y se debié introducir un observable nuevo, el spin. En forma
analoga, los neutrinos requieren de un nmero cuantico nuevo, denominado 'sabor’. Adn
no sabemos el nimero total de sabores de los neutrinos, pero si podemos afirmar que

existen al menos tres. Estos son,

» neutrino electrénico, v,,
= neutrino muénico, v,

= neutrino taudnico, v;.

Los antes denominados neutrinos solares, son en realidad los neutrinos electrénicos, v..

Si el neutrino se encuentra en un autoestado de sabor, su funcién de onda es |v.), |v,) o
|v;), dependiendo del sabor del neutrino. Ahora bien, los autoestados de energia no son
autoestados de sabor. Naturalmente los autoestados de sabor y de energia, forman dos
bases diferentes del mismo espacio de Hilbert. Luego, debemos tener tres autoestados de
energia. Para estudiar la evoluciéon temporal de cualquier estado fisico, debemos escribir
al estado como una combinacién lineal de autoestados de energia, pues el operador de
evolucién temporal estd asociado con la energia (ver por ejemplo la Sec. 5.3 en [1]).
Cuando tenemos un estado puro, esto es, aquel que tiene un valor definido de la energia,
la parte espacial del estado no cambia con el tiempo. Pero por hipétesis, un autoestado
de sabor, no lo puede ser de energia; por lo tanto, un autoestado de sabor debe ser una
combinacién lineal de autoestados de energia en un instante dado.

Lo que estamos describiendo es un hecho fenomenolégico y es la clave para com-
prender el fenémeno de la oscilacién de neutrinos. Dados los tres estados de sabor, |v.),

|v,) ¥y |vr), en el instante inicial éstos se puede escribir como una combinacién lineal

de autoestados de energia, que escribiremos como |v4), |15) y |v3); donde cada uno de

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 72



EDUARDO BAUER

estos autoestdos tiene una energia E;, diferente. Para estudiar la evolucién temporal de
Ve), |vu) Yy |vr), debemos multiplicar a los autoestados de energia por el coeficiente de
evolucién temporal,

lvi) — e Bt V), coni=1,23.

Insistamos en este punto: cada uno de los autoestados de sabor, |v.), |v,) y |vr); se
puede escribir como una dnica combinacién lineal de autoestados de energia. Supong-
amos que tenemos el autoestado de sabor |v,) en ¢ = 0. Debido a la evolucién temporal,
los coeficientes que multiplican a |v1), |vs) y |v3), alteran el peso relativo de las com-
ponentes, justo después de ¢ = 0, pasamos del autoestado de sabor |v.) a un estado
mezcla de sabor. Si medimos el sabor para t # 0, podremos obtener cualquiera de los
tres sabores de neutrinos, con una cierta probabilidad. Este es el objeto de estudio de

este seminario.

3.2. Un sistema con dos sabores de neutrinos

Como discutimos en la Sec. 3.1, sabemos que existen al menos tres sabores diferentes
de neutrinos. El objetivo de este seminario, es estudiar las oscilaciones entre los tres sabor
de los neutrinos, lo cual es algo complejo. Con el fin de desarrollar una comprensién
conceptual del fenémeno, en esta seccién discutiremos un sistema simplificado, formado
solo por dos sabores de neutrinos. Esto nos permitird comprender el objetivo del célculo,
de modo de acceder al sistema realista de tres sabores con una mayor claridad sobre el
método.

Vamos a considerar dos estados de sabor, |v.) y |v,). Como ya hemos discutido, los
autoestados de sabor no son autoestados del Hamiltoniano del sistema; esto es, no son
autoestados de energia. Llamemos |v1) y |1), a los autoestados de energia. Podemos

vincular ambas bases por medio de una transformacién unitaria U, dada por,

cos send
U = ) (3.1)
—sen 6 cos 0

De este modo, podemos escribir,

ve) | [ cos® send lv1)

V) —sen cos 0 |v2)
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En forma mas explicita,

|ve) = cos O |vy) +sen 8 |vy) (3.3)
lv,) = —sen @ |v1) + cos 0 |us). (3.4)

Mientras que la transformacion inversa es simplemente,

cos § —sen 0
Ul = : (3.5)
sen §  cos 6
Analicemos ahora la evolucién temporal de los estados. Para los estados |v4) y |vs) eso

es trivial y viene dado por,

() = e T (0))
a(t)) = e |uy(0)), (3.6)

donde E; y Fs son los valores de la energia. Pensando en que los neutrinos no estan

interactuando con otras particulas, sus energias vienen dadas por,

E, = \/p}c2+mict
Ey = \/p3c® + m3ct, (3.7)

donde p; y m; © =1 6 2, es la magnitud del impulso y la masa del neutrino i, respecti-
vamente. Haremos ahora algunas aproximaciones para simplificar el problema. En primer

lugar, supondremos que,
P1 = p2 =P,

donde esta aproximacién nos dice que el médulo del impulso es el mismo para todos
los neutrinos. Claro, los neutrinos se mueven en todas las direcciones y por lo tanto el
impulso, como vector, difiere de un neutrino al otro. Por otra parte, estamos suponiendo
que los neutrinos poseen una masa en reposo no nula; pero la evidencia experimental
nos indica que en el caso de ser no nula, es muy pequeiia. No sabemos los posibles
valores para las masas, pero si conocemos una cota superior para las mismas, cuyo valor
es de 1eV. Dado su valor, es también una aproximacién razonable el que los neutrinos
se muevan a una velocidad préxima a la velocidad de la luz. Luego, podemos concluir

que es una buena aproximacién el suponer que p; = ps = p.
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Este mismo razonamiento nos permite hacer una aproximacién sobre las energias
(ecs. 3.7): empleamos la aproximacién que se denomina “ultrarelativista”, que consiste
en pensar que el término del impulso es mucho mayor que el de masa. De este modo,

tenemos,

1 2.4
Bi = \/pie +mict = pet o T

2 pc
1 2.4
Ey, = \/p3¢2+m5c* = pc+ = ma¢

> (3.8)

Dentro de esta aproximacién y por conveniencia, mostramos ahora la expresién para la
diferencia de energias,

Ey — By = E —(m% — m%)c‘l.
2 pc

En este punto, vale la pena detenerse un poco para recordar cudl es el objetivo de

(3.9)

nuestro calculo. Lo que sabemos es que para los neutrinos, sus autoestados de sabor
no son autoestados de energia. De modo que la idea es partir en el instante inicial
de un autoestado de sabor y transcurrido un cierto intervalo de tiempo, ver cudl es
la probabilidad de que se encuentre en otro estado de sabor. Para ello, comenzamos
expresando los autoestados de sabor en funcién de los de energia, ya que de estos tltimos
sabemos calcular su evolucién temporal. Colocando en forma explicita la dependencia

temporal en las ecs. (3.3,3.4), tenemos,

ve(t)) = cos 6 e 7 by (0)) + sen 8 e w2 [1,(0)) (3.10)
lv,(t)) = —send e~ wkt 111(0)) + cos 6 e~ B2 |12(0)). (3.11)

Supongamos que en t = 0, el neutrino se encuentra en el autoestado de sabor electrénico,
|v¢(0)), y queremos calcular la probabilidad de que al tiempo ¢, el neutrino se encuentre

en un estado de sabor mudnico. Esta probabilidad viene dada por,
Pees = [(wulve ()] (3.12)

Aunque debe resultar obvio, tomamos la expresién del estado del neutrino electrénico de
la ec. (3.10); mientras que para el neutrino mudnico empleamos la ec. (3.4): las expre-
siones dadas en las ecs. (3.3, 3.4), representan estados puros de sabor. Naturalmente,
para t = 0 las ecs. (3.10, 3.11) se reducen a las ecs. (3.3, 3.4). Para t # 0, la evolucién

temporal de los estados de neutrino hace que ya no sea un estado puro de sabor. Por
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Figura 3.1: Sistema de dos niveles. La linea azul representa la probabilidad de tener un
neutrino electrénico, mientras que la linea negra corresponde a un neutrino mudnico.

Naturalmente la suma de dambas curvas vale uno para cualquier posicion.

ello, P._,,, # 0. La evaluacién de la ec. (3.12), es simple. Pensamos también que la
velocidad del neutrino es préxima a la velocidad de la luz; por lo cual podemos vincular
el tiempo con la distancia L, que es la distancia entre el punto de emisién del neutrino

hasta el punto en que medimos su estado de sabor. De este modo, tenemos,

L
=
c
Empleando las ecs. (3.10,3.11), obtenemos,
2 _ 2\ AT
P, = sen?(20) sen? <(m24;;2)6> : (3.13)

Para llegar a este resultado, debimos emplear las siguientes propiedades:
1
sen(f) cos() = 5 sen(20),

junto con,
ei:z: _ e—ix
sen(z) = ,
21
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En la ec. (3.13), hicimos la sustitucion E' = pc. Esta es la expresion para la energia del
neutrino en el caso de que este no tenga masa. Debemos pensar a este “E", simplemente
como una notacién, por cuestiones de tradicién. Por otra parte, por conservacion de las

probabilidades, la probabilidad de permanencia en el mismo estado resulta,

2 _ o n2) AT
Pere =1—"P., =1— sen*(20) sen <(m24;;;>c> : (3.14)

Finalmente, es facil comprobar que,
Pp—»e = Pe—wa

Yy que,
Pu—p = Pemse-

En la Fig. 3.1, mostramos la forma en que oscilan estas probabilidades.

3.3. Un sistema con tres sabores de neutrinos

En la secciéon anterior discutimos un sistema formado por dos sabores de neutrinos con
fines puramente didacticos, pues la situacion realista es la de tres sabores de neutrinos.
Se especula con la existencia de otros tipos de neutrinos denominados estériles, pues
no intervienen en las oscilaciones de los mismos; por lo cual no son de interés para
este seminario. De esta manera, dado el presente estado de conocimiento del tema, esta

seccion representa a la situaciéon mas general de la misma.

3.3.1. Consideraciones generales sobre la matriz de transforma-
cion

Para evaluar la probabilidad de transicién entre los diferentes estados de sabor del

neutrino, procedemos de una manera muy similar a la que discutimos para el caso del

sistema de dos sabores. Debemos construir una matriz unitaria que vincule los autoes-

tados de sabor con los de energia, en forma anéloga a la ec. (3.1), solo que ahora la

matriz es de 3 x 3:
Ule Ue U3.e

U — ul,ﬂ UZ:M uB7M . (315)

U/l,T U2 u3,7’

)
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Daremos enseguida la expresion explicita para esta matriz. Antes de ello, debemos

mostrar el modo en que vincula a los autoestados de energia con los de sabor,

3
Vo) = Z Ui o | Vi), (3.16)
i1

cona = e, u 6 7. Enloque sigue, adoptaremos las siguientes convenciones: emplearemos
letras griegas como indice de suma para los estados de sabor y nimeros para los estados
de energia. Emplearemos la letra “U" mayuscula para la matriz unitaria que vincula los
autoestados de energia con los de sabor y “u; " mindscula para los elementos de matriz
de la matriz “U"; mientras que designaremos como uja a los elementos de la matriz
inversa “U~1", que resulta de resolver U1 = UU~! = I. Debemos notar que ya que

se trata de una matriz unitaria, tenemos,
Ut =U", (3.17)

lo cual es inmediato a partir de la expresién (5.39) en [1]. Esta relacién es importante,
pues la matriz adjunta U' se calcula como la matriz conjugada y transpuesta de U.
Luego, si conocemos U, el cdlculo de su matriz inversa es muy simple.

Empleando entonces la matriz inversa, podemos vincular los estados de sabor con

los de energia,

vy = > U o [Va), (3.18)

a=e,L,T

donde el asterisco sobre el elemento de matriz, indica al complejo conjugado de w.
Debemos enfatizar que las matrices de transformacién U y U ™!, no son hermiticas y eso
puede inducir a cierta confusion. Para evitar esto, mostraremos las expresiones dadas

por las ecs. (3.16) y (3.18), en forma matricial:

Ve ul,e u2,e u3,e 151
Vp| = | %p U2u Usp | [V2]- (3.19)
Vr Uy, U us,r V3

De este producto se encuentra, por ejemplo,
|Ur) = up . |v1) + ua s Vo) + us s V), (3.20)

Con expresiones andlogas para |v.) y |v,); resumidas en la ec. (3.16). Empleando U1,
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podemos expresar los autoestados de energia en funcién de los de sabor,

* * *
gl Upe Uy, Upyr Ve
— * * * .
v | = | use us, us, vy | - (3.21)
* * *
V3 U37€ u37u U37T 1/7-

Nuevamente, tomamos un ejemplo del producto,
1) = gy [ve) + wyy V) + uzy |vr), (3.22)

En forma similar para |v2) y |v3) (ver ec. 3.18). Notemos que en este caso la matriz de
transformacién resulta del hacer el transpuesto conjugado de la matriz de la ec. (3.19).

El motivo es simple,

—1
|Vest. de sabor) = UlVest. de energl'a> — U™ |Vest. de sabor) = |Vest. de energfa>7

(3.23)
junto con la ec. (3.17). Por conveniencia, empleamos ahora la primera propiedad en la

lista (5.2) en [1] (i.e (¢1|v2) = (Wa]tb1)*), lo cual nos permite escribir,
0= . (3.24)

i

Empleando esta propiedad, podemos reescribir la ec. (3.19), como,

151 ue,l u,u,l u‘r,l Ve
Vo | = | Ueo Up2 Ura | |vu]- (3.25)
Vs Ue3 Up3 Ur3 Vr

Antes de terminar esta seccion, es conveniente analizar el modo en que se construye un
bra. Esto lo debemos hacer con cierto cuidado, pues estamos acostumbrados a trabajar

con operadores hermiticos, que son autoadjuntos (@T = @) Tenemos ahora,

|Vest. de sabor) = UlVest. de energ|’a> — (Vest. de sabor| = (Vest. de energl'a‘UT- (3.26)

Es conveniente expresar la dltima igualdad en términos matriciales,

* * *
ul,e ul,u ul,T
— . * * *
(Ve Vy V7->—<V1 Vo y3> us, vy, ub |- (3.27)
* * *
u?;,e u3,u uS,‘r
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Una vez mas, demos un ejemplo del producto de matrices,
<VM| = <V1| Ui” + <V2| u;,,u + <V3| u;,,u’ (328)

El resumen de todo esto puede sonar a un juego de palabras. Tratemos de evitarlo.
Para construir un estado (i.e ket) puro de sabor como una suma de estados de energja,
empleamos U. Para construir un bra puro de sabor en funcién de los bra de energia,
empleamos UT (ver ec. 3.27). Alternativamente, para expresar los estados puros de
energia en funcién de los de sabor, se debe permutar el uso de U con UT, respecto de los
estados puros de sabor. Esto es resultado de que la matriz de transformacién es unitaria

y por lo tanto, cumple con U~! = UTy U # UT.

3.3.2. Probabilidades de transicion y de permanencia

Los pasos siguientes son idénticos a los de un sistema de dos sabores. Antes de
escribir a la probabilidad de transicion, debemos dar las expresiones explicitas para las
- _1. - . .
matrices U y U~"; comenzando por la primera. Por conveniencia, esto lo haremos como el
producto de cuatro matrices, conocidas como matrices de Pontecorvo—-Maki—Nakagawa—

Sakata [10]:

U :U23'U13'U12'UM, (329)
donde,
1 0 0 C13 0 Slge_ié
Uss =0 co3 893> Uiz = 0 1 0 ,
0 —s23 23 —s13¢® 0 ci3
C12 S12 0 €ia1/2 0 0
Ua=|—=512 ¢c2 0 y Uu= 0 ez of. (3.30)
0 0 1 0 0 1
En estas matrices y por simplicidad, empleamos s;; = sen 6;; y ¢;; = cos 0;;. Los

angulos 6;; se denominan angulos de mezcla (al igual que en el caso de un sistema de
dos sabores), y los discutiremos enseguida, cuando mostremos valores numéricos para
las probabilidades. Antes de seguir adelante, debemos nombrar dos magnitudes que no
fueron analizadas para el sistema de dos sabores. En primer lugar, la constante § se

coloca para contemplar la posibilidad de que los neutrinos violen la llamada simetria CP.
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No analizaremos qué significa esto, pero si bien por completitud mostramos la expresion
con esta constante, a partir de ahora la tomaremos igual a cero. Las otras dos constantes
son oy y as, que se colocan en caso de que el neutrino sea una particula de Majorana.
Las particulas de Majorana son aquellas en las que particula y antiparticula son iguales.
Tampoco consideraremos esto y haremos, a; = as = 0. Si bien no incluiremos estas
constantes, quisimos colocarlas para enfatizar nuestro adn incipiente conocimiento de los
neutrinos: simplemente no sabemos si violan o no la simetria CP, ni si son o no particulas

de Majorana. Dicho esto y haciendo el producto de las matrices, tenemos,

U = Uy -Upsz-Upg=
1 0 0 C13 0 S13 C12 S12 0
= 0 Ca3 S93 0 1 0 —S12 C12 0] =
0 —S893 Co3 —S13 0 C13 0 0 1
C12€13 512€13 513
= —512C23 — C12523513 C12C23 — 512523513 $23C13 | - (3-31)
512523 — C12€23513 —C12523 — S12€23513 C23C13

Debemos notar que en cada una de las matrices Uyo, U3 y Uss, existe una submatriz de
2 x 2, con la misma dependencia funcional que la matriz empleada en el sistema de dos
sabores, dada en la ec. (3.1). El resto de la matriz es un uno en la diagonal y ceros para
los elementos no diagonales. En las ecs. (3.31), mostramos en forma explicita cada una
de las matrices, pues si bien el producto final es dificil de interpretar, éste resulta del
producto de tres matrices de simple interpretacion. Notemos que en el caso anterior de
dos sabores, solo podemos tener un angulo de mezcla; que podriamos denominar 65, y
por simplicidad denominamos #. Cuando tenemos tres sabores tenemos tres angulos de
mezcla: 612, 013 y Oos.
Ahora debemos construir la matriz inversa de U, que resulta simplemente del transpuesto

conjugado de U. A modo de verificacién, calcularemos U~! en forma explicita. El tomar
la dltima expresién de las ecs. (3.31), y calcular su inversa es posible, pero algo labo-

rioso. Esto se puede calcular en forma mas simple notando que la matriz inversa para
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cualquiera de las matrices Uj;, es casi trivial. Luego, notando que,
Uy Uy - Usg' - Usg - Uy - Uy = 1
12 13 23 23 13 12 — 4,

donde I, es la identidad de 3 x 3. De esta forma, tenemos,

-1 o -1 -1 -1 _
U = U12 'U13 'U23 -
C12 —S12 0 C13 0 —S13 1 0 0
- 512 C12 0 0 1 0 0 Ca3 —S23 | —
0 0 1 S13 0 C13 0 593 Cos
C12€13  —S812C23 — C12523513 512523 — C12€23513
- 512€13 C12C23 — 512523513 —C12523 — 512€23513 | - (3-32)
513 $23C13 C23C13

Comparando ahora esta expresién con la conjugada transpuesta de U, a partir de la
ec. (3.31), vemos que son iguales, con lo cual finalizamos la comprobacién. Claro, tam-
bién pudo calcularse el producto U~' - U 6 U - U™}, y comprobar que se obtiene la
identidad. No elegimos este camino pues el algebra es mas engorrosa que la discutida.

Ya tenemos todos los elementos para calcular la probabilidad de transiciéon. Comen-
zamos con un estado puro de sabor a t = 0, y escribimos su funcién de onda para un

t > 0, arbitrario,

i

Va(t)) = 0 e 75 [11(0)) + uga € 72 |15(0)) + uzq e 75 |15(0)),  (3.33)

donde vale la pena indicar que segiin nuestra notacién |v;(0)) = |v;), esto es, en el
instante inicial tenemos un estado puro «. Queremos calcular la probabilidad de que a
un tiempo t, llegue a un estado de sabor 3, donde 3 puede tomar cualquiera de los tres

sabores. El estado puro de sabor (3 final, lo escribimos por conveniencia como un bra,
(va| = ul g (1] +us 5 (va| + uj 5 (vs]. (3.34)

A riesgo de ser reiterativos, conviene hacer un resumen de lo discutido. En primer lugar,
debemos vincular las bases de estados puros de energia, con la de los estados puros de

sabor, lo cual hacemos por medio de las matrices U y U, segiin estemos actuando sobre
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un ket o sobre un bra, respectivamente. Estas matrices se pueden construir dando tres
cantidades: 615, 613 y 23. Estos dngulos no son parametros libres, sino que se deben
fijar a partir de datos experimentales u observacionales. Dado un estado puro de sabor
en el instante inicial, para conocer su evolucién temporal simplemente lo expresamos
en la base de estados puros de energia, para los que conocemos su evoluciéon temporal.
Finalmente, para conocer la probabilidad de que luego de un cierto intervalo de tiempo
el neutrino se encuentre nuevamente en un estado puro, calculamos el producto interno
entre el estado puro final (ec. 3.34) y el estado de partida al tiempo final (ec. 3.33).

Esto dltimo, lo expresamos como,
2
Pas = |(walva() . (3.35)

En lo que sigue, debemos trabajar sobre esta dltima expresién, para obtener una forma
que nos permita su analisis numérico. En primer lugar, repetimos las aproximaciones

sobre las energias que hicimos en la Sec. 3.2:

2.4
%

1 m
E; =\/pic?2 + mic* Z pc+ — mic , (3.36)
2 pc

con i = 1,2,3. Ademas y en forma arbitraria, supondremos que,

my < mg < ms.

Escribamos ahora el producto interno (14|, (t)), sacando factor comin e~*Fit/%,

Walva(®)) = B (w0l guna + g0 e FETEN Ly gy, o BB,
(3.37)
Abrimos ahora un pequeio paréntesis, para exponer algunos elementos de un tema que
no desarrollaremos en detalle. Empleando la ec. (3.24) (i.e u},; = u;,), reescribimos la

altima expresiéon como,

(walva(t)) = e i Pt (l%,l Ula + Ugotnge #E2TEVE Ly sy, e n (B ) .
(3.38)
Notemos la estructura del producto de los elementos de matriz, ug; u; o, que podemos
escribir como,

Ugi i = W V) (i V|ve). (3.39)

Asi escrito el producto de matrices, notamos que partimos de un estado de sabor «,

un cierto potencial de transiciéon V), nos lleva a un estado de energia i. Esto ocurre en
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el elemento de matriz de la derecha®. El segundo elemento de matriz, comienza en el
mismo estado de energia 7, donde ahora el operador de transicién nos lleva al estado
final 3. En resumen, pasamos de un estado de sabor inicial « al estado de sabor final 3,
pasando por un estado intermedio de energia i. Notemos que el estado final puede ser
cualquier estado de sabor, inclusive el mismo «. Sobre el operador de transicion Y, no
lo discutiremos. Solo podemos afirmar que representa a la interaccién débil, ya que el
neutrino solo siente la interaccién débil y la gravitatoria. Claro, es la débil la responsable
de las transiciones. Fin del paréntesis.

Ahora continuamos con el cdlculo de la probabilidad de transiciéon a partir de la

ec. (3.37). Como en el caso del sistema de dos niveles, reemplazamos el tiempo por,

L
t =
c
ademas, llamamos,
L — )t (3.40)
ki =—(FE: — —-. )
k= "e
Debemos calcular entonces,
2 * * —q * —q 2
Pa—p = [{vslva(t))]” = ‘Um Ula +UygUsae ™ Fuzguzae ™| (3.41)
donde luego de un poco de algebra, obtenemos finalmente:
* * * 2
Pa—)ﬁ = (ULB uLa + u27ﬁ u27a COS K21 —'I_ U37ﬂ u3,o¢ COS K31 ) +
2
+ (Uzﬂ U2« SEN K21 + U:*),,g U3 o SEN K31 ) (342)

Es conveniente reescribir r;, (ec. 3.40) empleando la expresién para la energia dada
por la ec. (3.36), de la siguiente manera,

1 . L, L

9Recordemos que debemos leer a los elementos de matriz de derecha a izquierda.
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donde Am?, = (m;c®)* — (myc®)®. Analicemos las unidades. Tenemos,

[Am?k} — (energia)?,
[hc] = energia x longitud,
[L] = longitud,
[E] = energia.

De este modo vemos que j;, es adimensional. Recordemos que £/ = pc es la energia del
neutrino en el caso de poseer masa nula; donde como en la seccién anterior, empleamos
esta letra por conveniencia. En la préxima seccién discutiremos los resultados numéricos
de la oscilacién de neutrinos. Antes de ello, vale la pena discutir con un poco mas de
cuidado la ec. (3.43): notamos que aqui tenemos la diferencia de masas al cuadrado. Si
suponemos que una masa cualquiera de las tres fuera cero, no se alteraria el analisis que
estamos haciendo. Luego, la oscilacién de neutrinos nos dice que al menos dos de las

tres masas de neutrinos en reposo deben ser no nulas. La tercera puede o no serlo.

3.3.3. Resultados numéricos

En el caso de un sistema de dos sabores, al angulo de mezcla le asignamos un valor
arbitrario, ya que desde el punto de vista empirico, no se puede tener un sistema de dos
sabores. Sin embargo, veremos enseguida que bajo ciertas condiciones, existe un sabor
de neutrinos cuyo peso es manifiestamente menor al de los otros dos. En ese caso, puede
simplificarse el analisis reduciendo en forma aproximada, el sistema de tres niveles a dos.
Esta discusion no es central en el marco conceptual de este seminario.

Analizaremos ahora la situacién realista de un sistema de tres sabores de neutrinos.
El conjunto de pardmetros que necesitamos para evaluar la oscilacién de neutrinos consta
de tres angulos y tres diferencias de masas. Los valores de estas cantidades se tratan de

ajustar para dar cuenta de la fenomenologia del problema. En lo que sigue, mostraremos
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un conjunto posibles de valores para estas cantidades:

912 = 3407
s = 9,21°
ba3 = 40°

Am3, = 0,759 x 1072 GeV?,
Am2, = 23,2 x 1072 GeV?,
Am?Z, = 23,2 x 1072 GeV. (3.44)

Nota para distraidos: se necesitan tres valores para las masas de los neutrinos o en forma
equivalante, tres valores para las diferencias de masas. Si una de las masas es cero, ese
cero es un valor. Por otra parte, al ver estos niimeros, lo primero que debe llamar la
atencion es el uso de las unidades. En la practica, emplearemos los angulos en radianes,
pero lo expresamos en grados pues en general es el modo mas familiar para expresarlos.
Por otra parte, la unidad de GeV? parece poco adecuada dados los modestos valores
para estas diferencias de masas. Notemos que un valor tipico para estas diferencias es
Amfj ~ 107* eV2. Para comprender el uso de estas unidades, reescribamos la ec. (3.43),

como sigue,
1 5 (L
donde los resultados de la probabilidad de transicion los escribimos en funcién de L/E

en unidades de km/GeV. Para ello, solo nos resta dar el valor de hc:
he =197,3 x 1072 GeV km.

Empleando estos elementos, debemos calcular ahora la probabilidad de transicién dada
por la ec. (3.42).

Realizaremos un analisis partiendo de los tres estados de sabor. En primer lugar,
consideraremos que el neutrino se encuentra en un estado de sabor puro electrénico.
En la Fig. (3.2), mostramos la oscilacién de neutrinos para este caso y para un rango
de L/E que nos permite observar el comportamiento de la oscilacién para valores de
esta variable que consideramos pequefios. Naturalmente para L/FE = 0, que equivale al
instante inicial, tenemos P, = 1 (P.—, = P._.r = 0), ya que por hipdtesis partimos

de un estado electrénico. Vemos enseguida la oscilacion de los diferentes sabores, donde
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Electron en t=0
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Figura 3.2: Oscilacién de los tres sabores de neutrinos en funcién de L/E; partiendo de
un neutrino electrénico puro. Graficamos la probabilidad de transiciéon o de permanencia
segun la ec. (3.42). Los valores para los dngulos de mezcla y diferencias de masas al

cuadrado, son los dados por las ecs. (3.44).

en todo punto se cumple,
Pa—m + Pa—w + Pa—m- - ]-7 (346)

para a = ¢, it 6 7. Sobre la discusién de esta figura, vemos que la probabilidad de ocur-
rencia de cada uno de los sabores muestra un comportamiento oscilatorio decreciente
para el electrén (que parte de P._.. = 1); mientras que es ascendente para el muén y
el taudn, con valores iniciales nulos. Para el caso del neutrino electrdonico en el instante
inicial, haremos un anilisis de los rangos de variacién de L/E, un poco mas esmera-
do que para los otros casos. En la Fig. (3.3), mostramos la probabilidad de encontrar
los diferentes sabores de neutrinos hasta un valor maximo de L/E =30.000 km/GeV.
Comenzamos a advertir una estructura oscilante de un rango mayor, donde las oscila-
ciones de la Fig. (3.2), son en realidad una oscilacién secundaria sobre la oscilacién
principal. Este comportamiento se confirma en la Fig. (3.4). Ir hacia valores mayores

de L/FE es innecesario, pues repite el comportamiento de la Gltima figura. Esta dltima
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Figura 3.3: Lo mismo que la Fig. (3.2), pero para otro rango de L/E.

figura muestra un comportamiento interesante, pues es obvio que el neutrino electréni-
co juega un papel dominante. Si nuestro interés estd puesto en el neutrino electrénico,
vemos que podemos sumar los dos sabores restantes y pensarlos como un “neutrino z".
De este modo, reducimos al sistema a solo dos sabores, lo cual redunda en una impor-
tante simplificacion de la parte analitica del problema. No exploramos la reduccién a un
sistema de dos sabores, que podemos hacer o bien bajo los resultados recién descriptos
o cuando uno de los sabores tiene una probabilidad baja. Solo nombramos estos puntos
por completitud.

También por completitud, sigamos analizando ahora la oscilacién de neutrinos cuando
el neutrino inicial es, o bien modnico, o bien taudnico; lo cual mostramos en las Figs. (3.5)
y (3.6), para el caso muédnico y las Figs. (3.7) y (3.8), para el caso taudnico. Al analizar
todas las figuras que implican la oscilacién de los tres sabores de neutrinos, lo primero
que notamos es que el neutrino electrénico juega un papel mas importante que los otros

dos. Discutamos este punto segtin el sabor de neutrino que tenemos en el instante inicial:

» Neutrino electrénico, v., en el instante inicial: La importancia relativa de v, ya fue

discutida cuando mostramos que su peso es similar al de los otros dos neutrinos
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Electron en t=0
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Figura 3.4: Lo mismo que la Fig. (3.2), pero para otro rango de L/E.

sumados.

= Neutrino muénico, v, en el instante inicial: Vemos de la Fig. (3.6), que el peso

de v, es muy similar al de v, mientras que el peso de v, es menor.

» Neutrino taudnico, v, en el instante inicial: Vemos de la Fig. (3.8), que el peso

de v, es muy similar al de v, mientras que el peso de v, es menor.

Es interesante notar que las oscilaciones pequefias dentro de la oscilacion mayor, parecen
no jugar un papel importante para el caso electrénico (ver Fig. 3.4). Sin embargo, si lo
son para los otros dos casos: vemos que v, tiene un peso similar a v, en la Fig. (3.6);
mientras que v, tiene también un peso similar a v, en la Fig. (3.8). Curiosamente, en
este caso las oscilaciones pequefias son relevantes, ya que estan desfasadas entre los
términos dominantes, lo cual garantiza la condicion P, + Py + Poer = 1, Vau
Antes de terminar esta seccién, es importante destacar que los resultados que mostramos

resultan del modelo elegido; especialmente por la eleccién de los dngulos de mezcla y
las diferencias de masas dadas en la ecs. (3.44). Con otro conjunto de parametros, los

resultados serian diferentes. Eventualmente, alguno de los otros dos sabores de neutrinos

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 89



EDUARDO BAUER

seria el dominante; o bien los tres sabores serian igualmente importantes. No debemos
perder de vista que existe evidencia empirica sobre la oscilacién de neutrinos y lo que se

desarrolla en este capitulo es solo un modelo simple, pero completo, sobre el problema.
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3.4. Discusion

El objetivo central de este Seminario no es tanto el llevar adelante una discusién
cientifica sobre el tema de las oscilaciones de los neutrinos, sino mas bien el mostrar una
aplicacién de la Mecanica Cudantica a un problema fisico real. De esta manera, en esta
seccién no haremos una proyeccién sobre la fisica de neutrinos, lo que sabemos y lo que
aln nos resta entender; sino la conexion de lo discutido con nuestros conocimientos del
curso de Mecénica Cuantica.

Remitimos al lector a la discusién dada en la Sec. 5.1.3 de [1]; en particular, sobre
lo desarrollado a partir del quinto postulado de la Mecéanica Cuantica. Para el beneficio

del lector, repetimos el punto que deseamos discutir:

1. Consideramos un observable A, tal que [A, Ho] = 0, donde H, es el Hamiltoniano
del sistema. Consideramos un espacio de Hilbert de dimension tres y que cualquier

otro observable conmuta también con el Hamiltoniano.

Escribimos la base de A, como {|¢;)}. Partimos de un estado inicial mezcla |¢)),

de la forma,

) = ciler) + c2l@2) + c3lps). (3.47)
2. Se mide A, obteniendo como resultado \; y el estado colapsé en,
) = les), (3.48)
donde la probabilidad de obtener este valor fue Ps = |c3|?.

3. Se mide nuevamente fl obteniendo como resultado A3, esta vez con probabilidad

uno.

4. Se mide ahora otro observable B, tal que [fl, lé] = 0 y se obtiene b3, que es el

autovalor de B correspondiente al estado |©s), con probabilidad uno.

5. Se mide ahora un tercer observable C, tal que [fl, é] # 0. El primer paso es expresar

|3) como una combinacién lineal de autovectores de C:
lp3) = Cil@1) + Co|Pa) + E3|¢3). (3.49)

6. Al medir C, se obtiene vy, y la funcién de onda colapsa en |¢;).

Facultad de Cs. Astrondmicas y Geofisicas | UNLP

91



EDUARDO BAUER

7. Si medimos nuevamente A, debemos escribir |¢1) en funcién de los vectores de la

base del operador que voy a usar para medir,

1) = C1lp1) + Colpa) + Csleos), (3.50)

pudiendo ahora obtener nuevamente alguno de los tres posibles valores para este

observable.

Notemos que en [1], este punto fue discutido en el marco de los postulados a tiempo
fijo. Poco después, cuando se introdujo el tiempo, no se extendi6 el concepto para el
caso de evolucién temporal; que es lo que haremos ahora. Antes de ir de lleno al anélisis
del colapso de la funcién de onda, es pertinente diferenciar tres situaciones particulares
para el célculo de la probabilidad de transicién, que comparten puntos en comin y por

ello, pueden inducir a confusién:
1. Sistema cerrado a tiempo fijo.
11. Sistema cerrado que evoluciona con el tiempo.
111. Sistema abierto que evoluciona con el tiempo™°.

En todos los casos, tomamos como hipétesis que tenemos un Hamiltoniano no dependi-
ente del tiempo Ho, que representa al sistema cerrado y es el término dominante para
el sistema abierto. Haremos una hipétesis mas: que en el instante inicial tenemos un
autoestado de alglin operador que nombraremos para cada caso, que no es necesari-
amente H,. Analicemos ahora la probabilidad de transicién entre dos autoestados de

algln operador, segln el orden enumerado arriba:

I. Sean |¢;) y |¢s), los autoestados de algin operador hermitico O, en un instante

fijo. La probabilidad de transicién desde el estado inicial al final es,

Pies = Koslod? = 05, (3.51)

esto es, la probabilidad de transicién es cero y la de permanencia es uno.

10F| caracter de sistema abierto lo da un término en el Hamiltoniano que depende del tiempo, por lo

cual en este caso, solo tiene sentido analizar la evolucién temporal.

Facultad de Cs. Astrondmicas y Geofisicas | UNLP

92



EDUARDO BAUER

11. Como en el caso anterior, consideramos dos autoestados de un operador hermitico
A, que escribimos como |¢;) y |¢f). En este caso, sin embargo, la probabilidad de
transicion depende de si A conmuta o no con H,. Supongamos que [fl, 7:(0] =0,
entonces A y H tienen una base comin (ver Teorema en la Sec. 5.1.2 de [1]).

La funcién de onda inicial evoluciona con el tiempo segun,

lpi(t)) = e77 ;) (3.52)

para evitar dudas, to = 0y |¢;) = |p;(t = to). La probabilidad de transicién es

simplemente,

Pig = Weslen? = o5, (3.53)
esto es, el mismo resultado que en el punto 1, pues la evolucién temporal introdujo
una fase en la funcién de onda, que desaparece al tomar el médulo.

Vamos a considerar ahora otro operador, C, tal que, [é, 7-20] # 0. Denominamos
como |¢;) la base en la que C es diagonal; mientras que mantenemos la notacién
|¢;) para la base en la que Ho es diagonal. Suponemos ademas que nos movemos
en un subespacio de Hilbert de dimensidn tres y buscamos encontrar la probabilidad

de transicion desde un estado inicial |¢;), a un estado final |¢;).

Llegamos ahora al punto clave del problema. Es el concepto que resulta excluyente
para poder entender el tema. Escribimos las funciones de onda |¢;) y |¢f) en la

base de 7:l0:

[9i) = calen) + calee) + csles), (3.54)
07) = dilpr) + da|@2) + dsles). (3.55)
Dadas las bases |¢;) y |¢;), los coeficientes ¢, ¢2 y ¢35 son dnicos para obtener
el estado puro |¢;). Andlogamente, los coeficientes dy, dy y ds son (nicos para

obtener el estado puro |¢¢). Introducimos ahora la evolucién temporal de estos

estados,

6:(8)) = cre T B o) + coem T o) 4 ez B pg), (3.56)
6;(1)) = die” # P p)) + doe o) + dge 5B pg).  (3.57)

Tenemos tres valores para la energia: Fy, Fy y F5. Si al menos dos de estos

valores son no nulos y diferentes entre si, entonces la dependencia temporal no
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puede sacarse como un factor comun, esto es, como una fase comin. Luego, solo
tendremos estados puros para los instantes de tiempo t,, tales que,

—%Eltr —%Eztr

(& =e€

i
= e_ﬁEBtr7

lo cual se cumple naturalmente para ¢, = 0, donde por hipdtesis tenemos estados
puros. Notemos que no estamos pidiendo que estos coeficientes valgan uno, sino
simplemente que para t,, tengan el mismo valor; lo cual permite que se expresen

como una fase comun.

Dado el estado |¢;(t)) (ec. 3.56), queremos calcular la probabilidad de que a
un tiempo ¢, se transforme en el estado puro |¢). No partimos de dos estados
diferentes |¢;) y |¢¢), partimos de un tnico estado |¢;) y calculamos la probabilidad
de que a un tiempo ty, se transforme en el estado puro |¢f), como se expresa en

la ec. (3.55). Esta probabilidad viene dada por,
Pioslty) = {oslo()I® = |dicre™#50 + diepe™ 8520 + diege™#512(3.58)

Analicemos esta expresion para dos situaciones extremas: i. Si ¢ = 0, por la ortonor-
malidad de los estados tenemos que P, ;(t =0) =0,sii # fy Pi_s(t =0) =1

si i+ = f. Esto es obvio y no nos aporta mucha informacién nueva. ii. Si los

coeficientes d;, cumplen,

_ 7iE1t
d1 = ce R
d2 = 626_%E2tr,

o —1E3t
d3 = cze T

donde %, es una constante arbitraria distinta de cero. Entonces, tenemos que para
ese t,, Pis(t = t,) = 1. Esto es, para un tiempo diferente de cero, tenemos
probabilidad uno. Si miramos la Fig. (3.4), notamos que existen puntos en que
esta condicién se cumple cuando i = f, pero en ningln caso encontramos una
probabilidad de uno, cuando 7 # f. Aunque ain no lo dijimos, debe ser obvio para
el lector que el andlisis de la probabilidad de transicién bajo estas condiciones se

corresponde con el problema de la oscilacién de neutrinos.

Analicemos finalmente un sistema abierto, esto es, aquel en que tenemos un po-

tencial que depende del tiempo. Para entender mejor este punto, remitimos al
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lector a la Sec. 13.3.1 de [1]. Ahi vimos que la funcién de onda para el caso de un

sistema abierto, se puede escribir como,

[0(t) =D calt)e ), (3.59)

donde |p,,) son autofunciones de Ho y el efecto de término dependiente del tiempo
se refleja en la dependencia temporal de las funciones ¢, (t). Esto supone que el
Hamiltoniano ’F(o es la contribucion dominante. Por construccion, sabemos que
esta funcién de onda vale para cualquier instante y en particular, para el instante

inicial sabemos que,
(= 0)) = [pi)- (3.60)

La probabilidad de transicion se calcula como,

Pimslty) = Heplo(t))]?. (3.61)

Este andlisis se ve muy similar al discutido en el punto anterior, en relacién con la
ec. (3.57). Desde el punto de vista analitico los esquemas son muy similares, pero
conceptualmente son diferentes. Para el caso presente, tenemos una funcién de
onda que parte de un estado puro y debido a la accién del Hamiltoniano evoluciona
en estados mezcla o cualquier estado puro. En el caso del punto 2, el Hamiltoniano
no depende del tiempo y el cambio de un estado puro a uno mezcla, se debe a que

el operador que representa a los autoestados, no conmuta con el Hamiltoniano.

Para finalizar esta discusion, analizaremos el colapso de la funcién de onda, segtin lo
mostramos arriba (ver puntos 1-8). En la Sec. 5.1.3 de [1], discutimos varios escenarios
de colapso de la funcién de onda, en que los coeficientes de las funciones de onda eran
desconocidos. En el caso de la oscilacion de neutrinos, vemos una aplicaciéon del método,
donde conocemos los coeficientes ya que se trata de un problema fisico real. Demos un

ejemplo. Supongamos que el estado inicial es un estado puro de sabor electrénico:
|I/e> = Ule |V1> + U2 e |V2> + U3.e |V3>, (362)

donde los coeficientes w; ., estan dados por la ec. (3.31). El hacer una medida sobre esta

funcién es inconducente, pues ya sabemos su estados de sabor y mas alld de su enorme
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interés, no es nuestro objetivo el medir los estados de energia. De esta manera, dejamos

que evolucione con el tiempo,

i

We(t)) = ure e WP |1y 4 g e T2 1) + ug e e 7 I ). (3.63)
Ahora bien, por la completitud en el espacio de sabor, podemos escribir,
T = |ve)(ve| + [vu) (vl + [v7) (ve, (3.64)
donde 7 es la identidad. Usando entonces la identidad, tenemos,

Ve(t)) = (Velve(t)) |ve) + <V/L|Ve<t)> |Vu> + (rlve(t)) vr). (3.65)

Debemos notar que el subindice e en la funcién de onda, indica el estado inicial. Sobre esta
funcién de onda, medimos ahora el sabor y podemos obtener e, 11 6 7; con probabilidades
Paelty) = |lvelt )2 Pecsulty) = 1wulue(t)? 6 Perlty) = |(weluie(t) ] re-
spectivamente; que son los coeficientes médulo cuadrado de la funcién de onda. Supong-
amos que obtenemos v,,. Entonces escribimos su evolucién temporal en forma analoga

a la ec. (3.63), luego como la ec. (3.65) y repetimos el razonamiento.

3.5. Resumen y conclusiones

Teniendo en cuenta los elementos que desarrollamos en el curso de Mecanica Cuénti-
ca, quiza el modo mas amigable para comprender el fendmeno de las oscilaciones de neu-
trinos sea mostrando rapidamente la ec. (3.65); que elegimos mostrar al final. Luego, es
pertinente explicar el motivo por el que postergamos ese punto. Los seminarios persiguen
varios objetivos. Por una parte, aplicar los elementos de Mecanica Cuantica a proble-
mas cientificos de interés. Ademas, se busca introducir al alumno en la metodologia de
trabajo y estudio de un trabajo cientifico (para ser claros: de un “paper”). Es por este
altimo motivo que elegimos presentar a la ec. (3.65) al final; ya que este tipo de analisis
esta ausente en un trabajo cientifico y se corresponde mas bien a un texto de Mecanica
Cuantica. La presentacion que hacemos del tema, busca ser similar a la de un trabajo
cientifico, partiendo de la Introduccion, hasta llegar a los resultados numéricos y las

conclusiones.
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Hecha esta aclaracién, vayamos a la fisica del proceso que estudiamos. El fenémeno
de las oscilaciones de neutrinos se interpreta por medio de dos elementos basicos: en
primer lugar, que los autoestados de sabor no son autoestados de energia. En segundo
lugar, que al menos existen dos autoestados de energia con masa en reposo no nula. Solo
podemos entender la oscilacién de neutrinos en términos mecanico cuanticos. Dentro de
este modelo, el vinculo entre los autoestados de sabor y de energia, estd dado por una
matriz unitaria. Para construir esta matriz unitaria empleamos un enfoque empirico: se
construyé en términos de angulos de mezcla y diferencias de masas, con el fin de ajustar
datos experimentales y observacionales. Eventualmente, pueden pensarse en modelos
tedricos para obtener esta matriz, pero eso va mas alld del objetivo de este seminario.

Ademas de obtener expresiones analiticas para describir las oscilaciones de neutrinos,
llevamos adelante un analisis numérico. Para ello, empleamos un solo conjunto de valores
para los angulos de mezcla y para las diferencias de masas. No existe atn la suficiente
cantidad de datos experimentales u observacionales, que justifiquen variar estos parame-
tros. Mas alla esto, el modelo aqui discutido es consistente con los datos que si existen.
Medir un neutrino es extremadamente dificil, ya que la interaccién de los neutrinos con
un detector tiene una probabilidad extremadamente baja. Afortunadamente, los procesos
naturales generan un ndmero muy grande de neutrinos; lo cual permite detectar algunos.
Aln asi, la fisica de neutrinos muestra mas interrogantes que certezas. Esto es, se trata

de un area de investigacién basica interesante.
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Figura 3.5: Oscilacién de los tres sabores de neutrinos en funcién de L/E; partiendo de
un neutrino muénico puro. Graficamos la probabilidad de transicién o de permanencia
segun la ec. (3.42). Los valores para los angulos de mezcla y diferencias de masas al

cuadrado, son los dados por las ecs. (3.44).
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Figura 3.6: Lo mismo que la Fig. (3.5), pero para otro rango de L/FE.
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Tauon en t=0
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Figura 3.7: Oscilacién de los tres sabores de neutrinos en funcién de L/E; partiendo de
un neutrino taudnico puro. Graficamos la probabilidad de transicion o de permanencia
segun la ec. (3.42). Los valores para los angulos de mezcla y diferencias de masas al

cuadrado, son los dados por las ecs. (3.44).
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Figura 3.8: Lo mismo que la Fig. (3.7), pero para otro rango de L/FE.
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Capitulo 4

El decaimiento del neutron

Introduccién

Es un hecho experimental que un neutrén libre decay en un protén, un electrén y un
antineutrino; luego de algunos minutos. Por otra parte, tenemos dos neutrones, junto a
dos protones, formando el nicleo del helio. En este caso, estos neutrones son estables;
esto es, no decaen. De este modo, decimos que el helio es un niicleo estable. Claro,
existen nucleos inestables, que decaen de diferentes maneras. Uno de los canales de
decaimiento es el llamado decaimiento—(3: en el interior del niicleo ocurre la reaccién ya
descripta:

n—p+e +u, (4.1)

donde por n designamos al neutrén, p protén, e~ electrén y v es el antineutrino. Debemos
escribir la carga del electrén, pues la antiparticula del electrén es el postitrén; que se
escribe como e*. Existe aqui un tema de tradicién, pues al resto de las antiparticulas se
las escribe con una barra, como mostramos con el antineutrino en el capitulo anterior.

Si bien en este capitulo no estamos interesados en el anélisis de la estabilidad de los
nicleos, mencionamos el tema para enfatizar que el tiempo de decaimiento del neutrén
dado por la ec. (4.1), depende de si el neutrén es libre o si estd en el medio nuclear,
pudiendo ser estable para algunos nicleos y para otros no. En cualquier caso, el tiempo
de decaimiento mas rapido es aquel en que tenemos un neutrén libre.

Junto a la ec (4.1), podemos también tener la reaccién inversa que solo ocurre en
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un medio nuclear, dada por,

e +p—v.+n, (4.2)

Esta reaccién es particularmente interesante, pues en el colapso de una estrella masiva
en supernova, si el remanente de la explocion es una estrella de neutrones; es esta tltima
reacciéon la responsable de que en el objeto compacto resultante dominen los neutrones.

En la materia estelar, como el de una estrella de neutrones, estas dos reacciones
ocurren todo el tiempo. El sistema se dice en equilibrio quimico cuando la fraccién
relativa de cada particula permanece constante. Para ser claros: el equilibrio quimico
no implica la ausencia de reacciones, sino el equilibrio entre ambos sentidos para cada
reaccion.

Esta discusion nos permite entender la importancia astrofisica de estas reacciones y
la del decaimiento del neutrén en particular. Claro, el resultado en materia estelar es mas
complejo que el correspondiente al de un neutrén libre. Pero para llegar a ese punto,
es conveniente entender primero el decaimiento de un neutrén libre; que es el objeto de
este capitulo.

Antes de ir al calculo del decaimiento, debemos mostrar algunos elementos de mecani-
ca cuantica relativista. Luego mostraremos un modelo simple para describir el decaimien-
to. Veremos que el resultado alin para este modelo simple, estd de acuerdo con el valor

experimental. Este capitulo se basa en la discusién dada por el libro de Griffiths [11].

4.1. La ecuacion de Dirac

En esta seccién discutiremos brevemente la ecuaciéon de Dirac, solo con el objetivo
de dar los elementos necesarios para comprender el decaimiento del neutrén. Pondremos
alglin cuidado en mostrar el transito desde la ecuacién de Schrodinger, a la ecuacién
de Dirac. Pero una vez que tengamos la ecuacién de Dirac, mostraremos sus soluciones
sin demostracion. El alumno interesado puede encontrar el desarrollo de la resolucién
de la ecuacién de Dirac en cualquier libro de mecénica cuéntica relativista, en particular
en [11]. La introduccién de la relatividad en mecanica cuantica conduce a soluciones de
las ecuaciones relativistas con energia negativa. Estas soluciones no solo no son descar-

tadas, sino que implican la existencia de antiparticulas, las cuales pueden ser observadas

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 103



EDUARDO BAUER

experimentalmente. Si bien ya mencionamos al antineutrino, afirmamos ahora que las
ecuaciones de la mecanica cudntica relativista predicen la existencia de antiparticulas.
Es mas, veremos enseguida que toda particula tiene en su funcién de onda un pequeno
componente de antiparticula. Andlogamente, toda antiparticula tiene una componente
de particula.

Vayamos entonces a la ecuacién de Dirac. En primer lugar, recordemos a las trans-

formaciones candnicas:

Mecénica Cldsica — Mecdnica Cuantica

Vir) — V(r),

p — - V,
1
— ih— (4.3)

donde 7, V(r), p y E representan posicién, energia potencial, cantidad de movimiento
y energia, respectivamente.
En mecanica clasica, la energia mecanica total, es la suma de la energia cinética,

mas la energia potencial: )
L V(r)=FE,

2m

si ahora empleamos las transformaciones candnicas y aplicamos esta expresién a una

funcién de onda v¥(r,t), tenemos,

R, L 0Y(r 1)
—5 VP )+ V() ) = ihe (4.4)

que es la ecuacién de Schrodinger. Tomemos ahora la expresién (también clasica) de la

energia relativista, donde dejamos de lado el potencial,

E? — p*c® = m?c, (4.5)
que en notacién relativista se puede escribir como (ver Apéndice D),

P'p, —mic® = 0. (4.6)

Debemos notar que p, representa a cada una de las componentes de cuadrivector

energia—impulso. De esta manera, la relacién candnica para el impulso y la energia,
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se puede escribir como,

p" — ihd,, (4.7)
donde,
0
d, = gyt (4.8)
o en forma mas explicita,
10 0 0 0
== — = — = — = —. 4.
a0 c at7 81 81'7 02 aya a3 82 ( 9)

Reemplazando ahora la ec. (4.8), en la expresion para la energia relativista ec. (4.5),
tenemos,

—th“puw(r,t) — mQCQw(r, t) =0, (4.10)

que se puede reescribir como,

D ey = (M) e (4.11)

Esta ecuacién se conoce como ecuacién de Klein—Gordon y al igual que la ecuacién de
Schrodinger, describe la evolucion de la funcidén de onda de una particula con spin cero.
Solo que en términos relativistas, claro. Notemos que la ecuacién de Klein—Gordon es de
segundo grado en el tiempo. Esto genera algunas dificultades, que no discutieremos.
Vayamos ahora al caso de particulas de spin—1/2. Dirac buscé una ecuacién de primer
orden en el tiempo, que fuera compatible con la expresion relativista de la energia. Para

entender la idea, consideremos el caso en que p = 0. En este caso, la ec. (4.6), resulta,
(p°)? — m2c = (p° — me)(p° + me) = 0, (4.12)
que se pueden escribir como dos ecuaciones de primer orden dadas por,

P’ —me = 0, (4.13)
P’ +me = 0. (4.14)
La solucién de cualquiera de estas ecuaciones verifica la expresion de la energia relativista.

Debemos considerar ahora la situacién en que el impulso es diferente de cero. Para ello,

buscamos reescribir la energia en forma similiar a la ec. (4.12):

o, — m2c® = (ﬁkpk + mc) (VApA —mc) = 0. (4.15)
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El desarrollo a partir de este punto para llegar a la ecuacién de Dirac, no es complejo,
pero es laborioso y no es el objetivo de este seminario. El hecho de que trabajamos con

particulas de spin—1/2, se emplea en este desarrollo. El resultado es,

P'p — m*c = (YFpy + me) (v py — me), (4.16)

donde ~* son matrices de 4 x 4, dadas por,
0 _ i
v = , = . : (4.17)
0

La identidad matricial de 2 x 2 es 7 y o' son las matrices de Pauli, que recordamos por

conveniencia,
ol = , o’ = y o = . (4.18)

Notemos que emplearemos en forma indistinta la notacién (1,2,3) = (z,v, 2).

La solucién que resulte de igualar a cero cualquiera de los dos términos de la derecha
de la ec. (4.16), respeta la expresion de la energia y es de primer orden en el tiempo.
Tomamos en particular,

Y*pa —me = 0. (4.19)

Haciendo la tranformacién canédnica y aplicando este operador a una funcién de onda,

tenemos,

ihy" 0, — mey =0 (4.20)

Esta es la ecuacién de Dirac. Por construccion, la funcién de onda tiene cuatro compo-

nentes,
U1
b = e | (4.21)
(e
(U
Esta cantidad se denomina bi-espinor o espinor de Dirac. No es un cadrivector en el
sentido relativista. El hecho de tener cuatro términos se debe a que estamos trabajan-
do con particulas de spin—1/2: las dos componentes superiores son el espinor de dos

componentes para la parte de particula y las inferiores corresponden a la antiparticula.
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Para finalizar, damos la solucién de la ecuacién de Dirac para una particula libre:

1 0
0 1
1) — 2) —
U ¢ cps ’ U ¢ c(pz—ipy) (4.22)
E+mc? E4+mc?
patipy) c(=p2)
E+mc? E4+mc?
C(pz*ipy)
E+mc? cpz
c(=p2) E+mc2
v =¢ E*(’)”CQ ;v = (| dpetiny) (4.23)
0

1

Con ¢ =/(E+mc?)/c

4.2. La Regla de Oro de Fermi relativista

Es interesante notar que en mecdanica cuantica calculamos mayoritariamente tres
cantidades: estados ligados, decaimientos y reacciones entre particulas'!. Mientras que
los estados ligados se calculan en general empleando la teoria no relativista, ya que las
energias puestas en juego son menores a la masa en reposo de las particulas involucradas;
para las otras dos cantidades se emplean modelos relativistas. Notablemente, a veces los
efectos relativistas no son relevantes. En ese caso, hacia el final del calculo se toma el
limite no relativista. Se emplea el modelo relativista, pues gracias al formalismo desarrol-
lado basicamente por Richard Feynman, el planteo del problema en términos relativistas
es mas simple.

Existe una pregunta que es relevante: jcual es la magnitud fisica que debemos cal-
cular, cuando estudiamos el decaimiento de una particula? En primer lugar, debemos
establecer el canal de decaimiento. Esto es, en qué particulas decae. La respuesta a esto

no es Unica, pues algunas particulas poseen un Unico canal de decaimiento, mientras que

1 Debemos notar que las llamadas reacciones de dispersién de particulas, representan cualquier pro-
ceso en que dos o mas particulas interactian entre si. Las particulas iniciales y finales deben ser las
mismas, aunque sus energias y momentos cambien. Por otra parte, la reaccién (4.2), es una reaccién

de absorcion, en que un electrén y un protén reaccionan dando origen a un neutrino y un neutrén.
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otras poseen dos 0 mas canales. De este modo, nuestro objetivo es conocer la probabi-
lidad relativa de cada canal de decaimiento, junto a la vida media de cada uno de ellos
(en la Sec. 14.2 de Ref. [1], se discute la vida media y el ancho de decaimiento). En este
parrafo, realizamos afirmaciones mecanico cuanticas algo sutiles. Subyace el concepto
de particula idéntica. Si pensamos que la particula que decae es un neutrén, todos los
neutrones del Universo son iguales. Aln asi, decaen con tiempos diferentes. Es por ello
que calcularemos el valor medio del tiempo de decaimiento o vida media. Es mas, si exis-
ten diferentes canales de decaimiento, a cada canal le debemos asignar una probabilidad
relativa. El hecho de que particulas idénticas posean diferentes canales de decaimiento,
con tiempos de decaimiento que difieren entre si, aunque el valor medio arroja siempre
el mismo valor, es un fendmeno puramente cuantico.

Comencemos con las cuentas. Empleamos la letra griega 7 para designar a la vida
media. La magnitud inversa se denomina ancho de decaimiento, se emplea la letra I' y

se vincula con la vida media como,

r=— (4.24)

Para calcular el ancho de decaimiento I', empleamos la Regla de Oro de Fermi relativista.
En la Sec. 13.6 de Ref. [1], se deduce la Regla de Oro de Fermi para el caso no relativista.
En este trabajo no demostraremos dicha regla para el caso relativista. El lector interesado
en tal demostracién, la puede encontrar en la Sec. 6.10 del libro de Ryder [12]. La
estructura de la Regla de Oro es simple: resulta del producto de un elemento de matriz,
|M|?, que tiene en cuenta la dindmica del problema, junto a las limitaciones en el
espacio de fases de los estados finales del decaimiento. Por conveniencia y sin pérdida
de generalidad, pensaremos que la particula que decae se encuentra en reposo.
Designamos por medio de niimeros a las particulas: pensamos que la particula 1 se

encuentra en reposo y decae en las particulas 2, 3,...,n. Debemos calcular la reaccién,
1—2+3+4+..+n. (4.25)
La expresion de la Regla de Oro de Fermi para este decaimiento es (ver Ref. [11]),

r

S 2 d*p;
= Qﬁml H (2754“/\4]2)(2@45(1?1 — P2 — ... — ]%)271—5(]?? — 777302)9(29?)’ (4.26)
j=2

donde m; es la masa de la particula i-ésima y p; su cuadrimomento. La cantidad S

evita el doble conteo de particulas idénticas en el estado final. Por cada conjunto de n
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particulas idénticas, agregamos un factor 1/n!. Ejemplo: supongamos que tenemos cinco

particulas en el estado final, dos de un tipo y tres de otro. En ese caso,

1 1 1
Sziz = .
2131 2x6 12

Leamos con cuidado la expresién (4.26). Como dijimos, la dindmica (esto es la interac-
cién o fuerza responsable del decaimiento), estd contenida en el elemento de matriz al
cuadrado {|M|?); donde ahora agregamos el simbolo { ) que indica que promediamos
sobre el spin inicial y sumamos sobre los spins finales. Todo el resto es espacio de fases y
nos dice que debemos integrar sobre el cuadrimomento de todas las particulas salientes

(que son el producto final de la desintegracién); pero sujetas a ciertas restricciones:

1. Las particulas salientes se encuentran en la capa de masa 2. Analiticamente, pj2

o 2.2 i bUciS 2 2.2
= m,°c®, expresado en la distribucién §(p;* — m°c?).

2. Las energias de las particulas salientes es positiva. Esto indica que estas particulas

no se encuentran ligadas y por ello colocamos la funcién escalén Q(p?).

3. Debe conservarse el cuadrimomento energia—impulso, lo cual estd garantizado por

la distribucién d(p; — p2 — ... — pn).

Volviendo al anélisis de la expresién (4.26), el elemento de matriz al cuadrado (| M|?)
depende de todos los cuadrimomentos (py, p2,... ,pn). Sumamos sobre todos los estados
finales, pesados por el elemento de matriz al cuadrado. Hagamos ahora un poco de
algebra para que podamos manejar mejor esta expresion. Antes de ello, demos dos
detalles. En primer lugar, vemos que aparecen un conjunto de factores 27. Estos factores
podrian simplificarse, pero los mantenemos en la ec. (4.26), pues debemos colocar un

27, por cada:

= un 27 por cada &() (notar que en la conservacién del cuadrivector energia—impulso

tenemos cuatro deltas).

= un 1/(27) por cada diferencial en la integracién. Sefialemos que d'p = dp'dp;

dp = dp,dp,dp. .

12] 2 expresién “en la capa de masa” (en inglés, on the mass shell), es una manera de decir que se

trata de particulas reales.
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En la expresidn (4.26), se pueden evaluar analiticamente la integrales en energia ([ dp°):
I(p* —m?c®) = 3[(p")? — p* — m*¢’], (4.27)

donde omitimos el subindice j de las particulas por simplicidad. Empleamos ahora la
propiedad,

;a Sz +a)+6@—a), a0 (4.28)

Empleando esta ecuacién, obtenemos,

0(p°)o[(p°)? — p* — m*c’] = QVW (0 \/p2+m202>, (4.29)

donde la funcién escalén hace que debemos quedarnos solo con la solucién de energia

§(z? —a?) =

positiva. De esta manera, podemos reescribir la ec. (4.26), como,

H/ (IMP) — L 2n) ' —po— - — ), (4:30)

2, /pj2 + m]zc2

Finalmente escribirnos,

1

pi(IM]?) ———= 6(p1 —p2— ... — D)
my _2/ ! 2\/p;* +mj5c?

(4.31)

En la préxima secciéon, daremos un ejemplo de empleo de esta ecuacion.

4.3. El decaimiento del neutron

Escribimos nuevamente la reaccién del decaimiento del neutrén en un protén, un

electrén y un antineutrino, llamado decaimiento—/:
n—p+e +u. (4.32)

Cuando se escribe una reaccién, es comin evaluar el llamado valor—@), que es la diferencia
entre la suma de las masas de las particulas iniciales (en nuestro caso, solo un neutrén)
y la suma de las masas de las particulas finales. Expresamos las masas en unidades de

energia. Designamos al valor-() como AQ). Si es positivo, quiere decir que disponemos
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de un exceso de energfa y la reaccién es posible!®. Este exceso de energia se transforma

en energia cinética de las particulas salientes. Tenemos entonces,
AQp = myc® — myc® — me-c* — myc?, (4.33)

donde agregamos el subindice 3 para referirnos a la reaccién (4.32). Los valores de
las masas son: m,c* = 939,565MeV, m,c* = 938,272MeV y m.c* = 0,510MeV. No
sabemos si el neutrino tiene o no masa en reposo. Sin embargo, tenemos cierta certeza

sobre el limite superior para la masa del neutrino:
myc® < 107°% MeV, esto es, leV. (4.34)

Notemos que dejando de lado al neutrino, la particula mas liviana que conocemos es el
electrén, con una masa quinientos mil veces mayor que la cota superior de la masa del
neutrino.

Finalmente, el valor-Q) para el decaimiento del neutrén, o decaimiento—(3, es,
AQs = 0,78 MeV. (4.35)

Esto nos dice que el decaimiento—(3 es posible.

Regresemos a la reaccién de la que deseamos calcular su vida media,
n—pt+e +u, (4.36)

donde emplearemos la Regla de Oro de Fermi (ec. 4.31). En primer lugar, debemos
evaluar el elemento de matriz (|M|?). Para ello, es conveniente mostrar un diagrama,
denominado diagrama de Feynman, que se muestra en la Fig. 4.1. Este diagrama se
debe leer de abajo hacia arriba. Las flechas rectas ascendentes indican fermiones (neu-
trén, protdn y electrén), mientras que las flechas rectas descendentes representan anti
fermiones (antineutrino). La curva ondulada es la interaccién que produce el decaimien-
to. En nuestro caso se trata de la interaccién débil. Comenzando desde abajo, vemos
un neutrén que por la accién de la interaccion débil, se transforma en un protén, un

electrén y un antineutrino. Dado un diagrama de Feynman, existen reglas (las llamadas

13Si AQ < 0, la reaccién no puede ocurrir entre particulas en reposo. Pero si las particulas iniciales
poseen la suficiente energia cinética para compensar el valor de AQ, entonces la reaccién si puede tener

lugar.
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n

Figura 4.1: Diagrama de Feynman para el decaimiento del neutrén. Por medio de este
diagrama calculamos el elementos de matriz M. Las flechas representan a fermiones, la
curva ondulada es la interacciéon débil y por medio de puntos se indican los vértices de

la interaccion.

“reglas de Feynman”, claro); que permiten traducir la imagen mostrada en la Fig. 4.1,
en una expresién analitica para M.

Notemos, sin embargo, que en la expresion para el ancho de decaimiento I'g, lo que
tenemos no es M, sino |M|%. En la Fig. 4.2, mostramos en forma grafica el diagrama
que corresponde a |M|?; donde por simplicidad no identificamos a cada una de las
particulas, pues eso es evidente de la comparacién con la Fig. 4.1'*. Leamos ahora el
diagrama de la derecha en la Fig. 4.2: debemos dar el valor de la energia impulso de
las lineas abiertas, en nuestro caso es solo el neutrén. Pensamos al neutrén en reposo,
por lo cual su impulso es cero y su energia es su masa en reposo multiplicada por la
velocidad de la luz al cuadrado. Del mismo modo, en el diagrama, le asignamos valores
especificos a la energia impulso de las lineas internas. Las reglas de Feynman nos dicen
que al calcular la contribucién fisica del diagrama, debemos sumar (integrar) sobre las
lineas internas. Esto lo vemos en la expresiéon de la Regla de Oro de Fermi (ec. 4.31),

que emplearemos enseguida y en donde veremos en forma explicita dicha suma.

14En forma intencional, en la primera figura le dimos a las lineas un cierto dngulo; mientras que en la
segunda figura, las flechas de la izquierda son verticales, representando al mismo diagrama. El angulo
de las lineas no tiene ningln contenido fisico. Se dibujan de una manera u otra por razones estéticas o

de conveniencia del dibujo.
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Figura 4.2: Representacién esquematica de | M |?: el diagrama de la Fig. (4.1), representa
a una amplitud de transicién. En el diagrama de la izquierda, dibujamos nuevamente a
este diagrama. El mismo, multiplicado por su adjunto, genera el diagrama de la derecha.
En el diagrama de la derecha, las lineas abiertas representan al neutrén, mientras que se
debe sumar sobre las lineas internas; que de izquierda a derecha, representan al protén,

electrén y al antineutrino.

Por claridad, mostremos el valor de los cuadrivectores energia impulso de cada una

de las particulas de la reaccién (4.32):
L. p, = (myc,0,0,0),
2. py = (D5l p2),

3' p’p = ( (pp>2 + mgCQ)pp)'

4. p,- = (\/(pe,)2 +m? 2, p,).

Consideramos un neutrén libre. Debido a que elegimos el sistema de referencia donde
se encuentra en reposo, su impulso es cero y su energia es la masa en reposo. Vale la
pena también enumerar algunas propiedades generales para particulas en el marco de la

mecanica cuantica relativista:

1. p,u - (E/Capampy»pz)
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3. Para una particula libre, E = \/p?c? + m2c*

4. Para una particula sin masa en reposo, i, E; = |p;|c ... p? =0

(2

En la ec. (4.34), mostramos que si el antineutrino tiene masa, ésta es muy pequefia.
Por simplicidad, en lo que sigue supondremos que la masa en reposo del antineutrino es
cero.

Vayamos entonces al uso de la Regla de Oro de Fermi para el calculo del ancho de

decaimiento del neutrén, I';. Empleando la ec. (4.31), tenemos,

d3p17 dgpp dgpe*
Fﬁ = / 3 - =
(2m)32p5] (2m)32,/1p,|2 + m2c? (2#)32\/“5’67 2 4+ m?2_c?
M) 5 v
2m) 6D (p,, — Py — Py — Po- 4.37
< ohm. FT) 0P = po = pp = P, (4.37)
donde emplearemos la siguiente expresién para (| M]?):
(M) = 3 (525) (6 +536) (- o)y 1) (4.39)
2 \ M, c? P ’

con ¢y = 1,00 and ¢4 = 1,27; mientras que el valor para la constante de acoplamiento la
damos en el Apéndice E. Esta expresion se evalua en forma aproximada en el Apéndice F.
Desafortunadamente, un calculo riguroso de esta expresién excede el objetivo de este
seminario. En el Apéndice F, se muestra un esquema completo de su calculo, aunque
con algunos puntos algo débiles, con el fin de mostrar en forma orientativa el tipo de
calculo que implica el elemento de matriz. El paso siguiente es desarrollar los productos
escalares de esta expresion (ver la lista de valores explicitos de los cuadrivectores p,,, py,
Pp Y Pem),

Pn " DPo = mnc|ﬁl7|> (439)

mientras que para p, - p.-, tenemos,

(pp + 1) = Po+DPo +2Dp Pem =
= mzc2 + mg_ A+ 2pp * De-
(pn —1p2)* = Ph+D5— 2P0 p5 =
= m2c® + 0 — 2m,c|py). (4.40)

De la conservacion de la energia—impulso, p, — py = p, + p.-, tenemos,

(pp + Pe-)* = (Pn — 15)?, (4.41)
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de modo que,
2

c anﬁf/
e = (2 = - 2 (4.42)

Usando las Egs. (4.39) y (4.42) en la Eq. (4.38), tenemos,

My [ o \* 1 . 2m., |y
M) =2 () (3 ) (=== 2]

Reescribimos la distribucién delta como sigue,

500 = 05 =1y = pe-) = 3B, + Py + ) Slmac = o] = (PP 2 — ),
(4.44)

donde,

u= \/(pp)2 +m2c? = \/(pl7 + Pp.-)? + mic. (4.45)

Evaluamos ahora la integral d”p,, usando 5O (p, +p, + p.—). De este modo tenemos,

1 &*py d*pe- (M%)
F _ = 2 3 2 / v e
g 4 (et +3¢4) D5 | \/’ﬁe—P +m2 2 16(2m)>uhm,
X 8(mue — || — /(P )? +m2_c? — u). (4.46)

Ahora, elegimos al eje-z en la direccion de p,.-. Podemos escribir entonces,
d’py = |py|* d|ps| sin(0)df do
w? = |py? P |? + 20p5 [P | cos(8) + m]%cz. (4.47)
Esto permite reemplazar la integracién sobre 6, por la integracion sobre u,
— =2u— = =2|p;| |p.-| sin(0), (4.48)
donde tenemos,
udu = —|py| |Pe-| sin(8) do. (4.49)
Ya que la integral sobre ¢ es simplemente 27, tenemos,
iz

—

|Pe-|

d*py = —2m d|py| u du. (4.50)

Reemplazamos en la ec. (4.46),

1 d3p.- (IM[*)
I = ~(c +3c / dlps| (=1)d =
B 4 (CV + CA) |p ‘ ( ) u ‘ﬁe—| \/‘ﬁe‘ |2 + m2762 16(277)4 hmn
X d(mpc — |Py| — \/(Pe—)2 +mic? —u). (4.51)
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En el préximo paso, realizamos la integral sobre u, que es simplemente,

u 1 ifu_ <arg<u
I :/ : dud(arg —u) = " (4.52)
v 0 if arg < wu_ orarg>u_,

donde arg = m,c — |p,| — \/(pef)2 +m?_c2. Los valores de uy son los extremos del

segmento donde arg — u = 0. En forma explicita, tenemos,

g = /([Pe-| & [Po])? + m2c? (4.53)

La condicién de que I # 0, de la ec. (4.52), nos da también el rango de integracién

sobre p;; que se obtiene resolviendo,

mmc — |Ds| — \/\ﬁe—|2 +m?c? = uy

mme — [Pl — 152+ mZc = \J(p-| £ [o)2 +m2e2 (4.54)

Afortunadamente el término |p;|? se cancela (para evitar dudas, en la ecuacién sobreviven

sélo los términos lineales |pi;|T). Las soluciones que obtenemos son,

(mp —m2 —m?2_) — mnc\/\ﬁef|2 +m?_c?

My C — \/|ﬁef 24+ m? c? £ [p.-|

(4.55)

Notemos que |p;|* depende de la energia (E.-), la masa (m.-) y del médulo del
momento (|p.-|), del electrén.

Punto menor: Los limites para la integracién sobre |p;;| son: el limite inferior |p;|™
(de u™) y el limite superior |p;|~ (de u™). Por otra parte, tenemos un signo negativo en
I'; de la ec. (4.51), que empleamos como sigue:

‘+

[z I 27 .
- [ d|p,;\---=/ dl,| - -- (4.56)
[Z2hs |Pw |~

p

Resulta ahora conveniente definir una funcién de E.-, como sigue,

2 n _}17
d|pi| |ps] <mi - m}z) - mz* - m!p!)

(17517)* = (1 ~)?

polt

—

P |~

JE = |

2 2 2
= (mn_mp_me*) 9
2my, (|p5)° = (Ips])?
_ 2ma (Ip5]7) 3(|p| ) (4.57)
C
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Reemplazando la ec. (4.43) en la ec. (4.51), junto a la funcién J(E,-), podemos

escrbir,

1 oo P g \* 1
s == (% + 3¢ /d - () E.- 4.58
8 4 (CV + CA) ’p ’ (47T)3hc Mw \/|ﬁ6_ |2 + m27 CQ \7( ) ( )

Recordemos que elegimos al eje z en la direccién de p,-, entonces,

d® pe- = 47 |P.- |*d|p.-| (4.59)
Recordando que E.- = ¢ \/|ﬁef |2 + mg_ c2, tenemos,
dE.- D
" ¢ 1P| , (4.60)
-]\ Jlpe- 2 + m2_¢2
de este modo,
. ., E.-dFE, -
|pe*| d’pe*‘ = T (461)
Finalmente, tenemos,
1 1 g 4 r(mpc?—mpc?)
Ty= = (2 + 382 (‘“) / dE, J(E,). 4.62
s =7 (e +3ci) amyih \ M) e J(Ee-) (4.62)

Los limites de integracién son los de la energia del electréon: el minimo corresponde a la

> — m,c?, donde debemos

masa en reposo, mientras que el maximo estd dado por, m,,c
recordar que el neutrdén se encuentra en reposo.

La evaluacién de la ec. (4.62), debe hacerse en forma numérica. Los valores de las
constantes que necestitamos para ello estan en el Apéndice E, excepto por ¢y y ¢4, cuyos
valores se dieron mas arriba. De la evaluacién de la integral obtenemos, 753 = 905 s, que
constituye un muy buen resultado teniendo en cuenta que el valor experimental resulta,
Tgxp =881,5+15s.

Antes de terminar, vale la pena discutir el modo en que se extrae el valor de la vida
media del decaimiento del neutrén en forma experimental. Para ello, en la Fig. 4.3,
mostramos los valores de dI'3/dE,.-, como una funcién de la energia del electrén, E.-.
Lo que mostramos en la figura resulta de nuestro modelo tedrico. Pero este espectro

puede ser medido y su integracién nos permite obtener el valor experimental de dicha

vida media.
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Figura 4.3: Prediccién tedrica del espectro de electrones para el decaimiento 3 del neu-

trén.

4.14. Conclusiones

En este capitulo llevamos adelante un célculo de la vida media del neutrén libre. El
neutrén no es una particula estable y luego de algunos minutos decae en un protén, un
electrén y un antineutrino. El modo en que calculamos la vida media es por medio de
la Regla de Oro de Fermi. Naturalmente, debemos pedir que se conserve la energia y la
cantidad de movimiento. Junto a esto, el nicleo central del calculo, es el de un elemento
de matriz. En forma simple, este elemento de matriz al cuadrado nos da la probabilidad
de decaimiento. El elemento de matriz parte del estado inicial, que es el neutrén y tiene
como estado final, el de las particulas finales. La interaccién que induce la transicién,
es la interaccién débil. Si bien nuestro calculo es algo esquematico, el valor obtenido es
similar al experimental.

Una vez calculada la vida media del neutrén libre, una duda vélida es por qué un

neutrén libre decae en algunos minutos, mientras que los neutrones en el nicleo de un
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atomo, como el de *He, son estables. Para responder a esta pregunta, debemos revisar
nuestro calculo y ver qué cambia al pasar del estado libre, al ligado de un nicleo. En esta
ultima oracién, tenemos la primera clave de nuestro problema: ahora los neutrones, al
igual que los protones, estan ligados y por lo tanto, su funcién de onda es la de un estado
ligado. Ademds, ya existen protones en el sistema. Cuando el neutrén intenta decaer, el
protén producto del decaimiento debe ocupar un nivel cuantico diferente al de los otros
protones existentes; ya que el Principio de Pauli le impide lo contrario. Dicho de otro
modo, el espacio de fases de protones, inhibe el decaimiento porque dos protones no
pueden tener los mismos niimeros cuanticos. En resumen, la enorme diferencia entre un
neutrén libre y uno ligado, resulta de las funciones de onda de las particulas involucradas,
junto al Principio de Pauli. El neutrén no puede decaer, si la energia disponible solo le
permite al protén ocupar un nivel que ya esta ocupado. Lo cual no ocurre para un neutrén
libre.

Un nivel diferente de sofisticacién, es el de particulas en un medio estelar. En ese
caso, al calcular el elemento de matriz de la transicién, debemos tomar en cuenta el
modo en que el medio modifica las propiedades de las funciones de onda; al igual que
en el caso de un niicleo descrito en el parrafo anterior. Graficamente, denominamos
“materia estelar”, al medio formado por el material de una estrella de cualquier tipo.
Imaginemos a una estrella de neutrones. Una estrella de neutrones no es un nicleo
muy grande. Por definicién, un nicleo es un sistema hadrénico ligado por la interaccién
fuerte. Una estrella de neutrones esta ligada por la interaccién gravitatoria. Dicho esto,
en el Cap. 2, mostramos una introduccién sobre el tema de la materia estelar. Para el
lector interesado, la suma de lo discutido en aquel capitulo y este mismo, permite llevar

adelante calculos de reacciones relevantes en una estrella.
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Capitulo 5

El algoritmo de Shor en la

computacion cuantica

Introduccion

RSA. Es una sigla que la mayoria de las personas probablemente nunca haya leido,
pero para quienes trabajan en la encriptacién de informacién es imposible no conocerla.
La sigla representa las iniciales de tres apellidos (Rivest, Shamir y Adleman), quienes
desarrollaron un sistema criptografico de clave publica, que utiliza la factorizacién de
nimeros enteros. La encriptacién de la informacién se podria decir que nacié con la civi-
lizacién misma. Sin embargo, nos interesamos en la encriptacion electrénica de la misma,
a partir del desarrollo de Internet. El desarrollo y las implicancias de la encriptacién de la
informacién, se nutre de tantas disciplinas que resulta arriesgado nombrarlas por temor
a omitir alguna. Claramente, es un tema matematico. Su implementacién solo es de uso
practico gracias a la informatica. La informatica es posible gracias a los desarrollos en la
fisica de la electricidad y del estado sélido (en particular, la electrénica). Su existencia
tiene profundos efectos sociales, pues permite, por ejemplo, realizar todas las opera-
ciones bancarias que antes se hacia en forma personal, junto a otros cientos de acciones
(compras, reservas de viajes, etc.). Esto modifica los habitos de las personas, dejando
mas tiempo libre, etc.

Naturalmente, existen muchas formas de encriptar la informacién y el mecanismo

designado como RSA es importante, aunque existen otros. Nos interesamos en este modo
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particular de encriptar la informacién, pues es introductorio al algoritmo de Shor, que es
un mecanismo que potencialmente seria capaz de encriptar y desencriptar informacion
empleando una eventual computadora cuantica. Siempre que transmitimos informacién
encriptada, nuestra duda es cuan probable es que alguien no deseado logre desencriptar
la informacién. En este punto, el lector deberia intuir que si este conocimiento fuera
abarcable en un capitulo de un libro para no—especialistas en encriptacién, deberiamos
comenzar a preocuparnos por nuestra informacién. Entonces, sin perder de vista que
nuestro analisis es muy limitado, podemos afirmar que para cierto tipo de encriptacién, la
capacidad de descifrar la misma, depende de la capacidad de nuestro sistema informatico
para separar en factores primos un nimero entero muy grande. Cuando tenemos niimeros
pequeiios, el separarlos en factores primos es trivial. Pero para nimeros grandes el tiempo
de cémputo requerido puede ser muy grande. Una eventual computadora cuantica haria
el trabajo en forma rapida. Solo podemos especular con el impacto social que causaria
el que solo unos pocos cuenten con computadoras cuanticas que serian capaces de
desencriptar cualquier informacién, menos las de otras computadoras cuanticas. Bueno,
por ahora eso pertenece mas bien al terreno de la ciencia ficcién.

En este capitulo daremos algunos elementos de encriptacién de la informacién, con
el fin de motivar el esfuerzo para comprender al algoritmo de Shor. Dicho algoritmo fue
desarrollado para una eventual computadora cuantica. Para comprender el mismo, debe-
mos saber mecanica cudantica y es por ello que lo discutimos en este capitulo; pues de
tener éxito, las aplicaciones de la mecanica cuantica se expanderian sobre campo com-
pletamente nuevo. La referencia principal de este capitulo, es el articulo de Gerjuoy [13];
tomamos también algunos elementos del libro de Rieffel y Polak [14]. Por otra parte,

debemos sefnalar que todos los nimeros en este capitulo estan en base 10.

5.1. Encriptacion empleando el algoritmo RSA

Los elementos matematicos para llevar adelante este capitulo, no son particularmente
dificiles, pero son poco frecuentes para la mayoria de nosotros. Es por ello que debemos
comenzar por dar una lista de definiciones y propiedades matematicas, que sirvan como
una especie de glosario, para luego seguir adelante. Organizamos esta seccién en sub-—

secciones con ese fin.
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5.1.1. Nomenclatura y elementos matematicos

Comencemos con algo de terminologia del tema, aunque no necesariamente em-

plearemos todos los términos:

» encriptar: proceso de proteccion de informacién o datos, mediante modelos matemati-
cos para mezclarlos de tal manera, que solo aquellos que tengan la clave para

descifrarlos puedan acceder a él;
= mensaje: el mensaje que deseamos enviar, no encriptado;
= criptograma: el mensaje encriptado;
= /lave: la informacién o sistema empleado para desencriptar un criptograma;

= aritmética modular: es un conjunto de métodos que permiten la resoluciéon de

problemas sobre nimeros enteros;

= nidmeros coprimos (ndmeros primos entre si o primos relativos): son aquellos
nimeros enteros a y b, cuyo Unico factor en comin 1. Dos nliimeros primos difer-
entes son coprimos, pero también aquellos nimeros no—primos, que no tienen un

comun divisor mas alla del 1. Por ejemplo: 10 (=2.5) y 21 (=3.7);

» registro cuantico: dado un sistema de n—qubits, el registro cuantico es la funcién de
onda mezcla que construimos. Aln con solo un qubit y pensando en que trabajamos
con un sistema de dos niveles (por ejemplo, spin up y spin down), el registro

cudntico es nuestra funcién de onda; puede ser up, down o un estado mezcla'®.

Pasamos ahora a algunas propiedades matematicas.

15Quiza esta sea una de las pocas ventajas que tenemos al ver este problema de encriptacién cuantica,
partiendo de un curso de mecanica cuantica: si buscan el término “registro cuantico”, veran un concepto
algo confuso, producto de tener que explicar algo cudntico asumiendo un conocimiento débil de la

mecanica cudntica.
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Relacion de congruencia: a y b se encuentran en la misma “clase de congruencia”
médulo n, si el resto de a/ny b/n es el mismo. En forma equivalente, si @ — b es un

miultiplo de n. Esta relacién se escribe empleando la llamada notacién de Gauss, como,
a =0b(mod n), (5.1)

y se lee: “a es congruente con b, médulo n". Ejemplos: 73 = 53 (mod 10); 6 22 =1
(mod 7).

Funcién ¢ de Euler: si n es un entero positivo, ¢(n) se define como la cantidad
de enteros positivos menores a n y coprimos con n. Por ejemplo, ¢(7) = 6, ya que 6,
5,4, 3,2y 1 (en total, seis nimeros), son coprimos con 7. Algunas propiedades de la

funcién ¢ de Euler:
1. Si p es primo, entonces, p(p) =p — 1.
2. Sip es primo y k es un niimero natural, entonces, p(p*) = (p — 1)p*~ L.
3. Si m y n son coprimos, entonces, p(mn) = p(m)p(n).

Teorema de Euler: daremos dos enunciados equivalentes.
Primer enunciado:
“Si a y n son enteros coprimos, entonces a¥(™ — 1 es exactamente divisible por n"
Segundo enunciado:
“Si a y n son enteros coprimos, entonces a¥™ = 1 (mod n)."

Ejemplo: a = 5 y n = 3, que son coprimos. Tenemos que ¢(3) = 2; 52 — 1 = 24,
que es divisible por 3.

Exponenciacién modular: calcula el residuo cuando un nimero entero positivo b
(la base) se eleva a la e-ésima potencia (el exponente), b¢, y es dividido por el entero

positivo m, llamado médulo. En notacién matematica, dada la base b, el exponente e,

y el médulo m, la exponenciacién modular ¢ se escribe:
¢ = b° (mod m). (5.2)

Por ejemplo, dado b = 5, ¢ = 3, y m = 13, la solucién, ¢ = 8, es el resto de dividir 53

por 13.
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5.1.2.  Un mensaje como un nimero entero

Transformar un mensaje en un (nico nimero es trivial. Eso implica una cierta en-
criptacién, pero es demasiado simple y muy facil de decodificar. Sin embargo, para
encriptar realmente un mensaje, el primer paso consiste en transformar las letras, los
signos y los espacios, en nimeros. Una alternativa para ello es emplear el cédigo ASCII.
En esta subseccién seremos mas modestos y ofreceremos una forma mas reducida, pero

propia.

Cuadro 5.1: Cédigo numéricos para las letras del alfabeto castellano moderno.

a=10 | j=19 | r=28 | A=37 | J=46 | R=55
b=11 | k=20 | s=29 | B=38 | K=47 | S=56
c=12 | =21 | t=30 | C=39 | L=48 | T=57
d=13 | m=22 | u=31 | D=40 | M=49 | U=58
e=14 | n=23 | v=32 | E=41 | N=50 | V=59
f=15 | i=24 | w=33 | F=42 | N=51 | W=60
g=16 | 0=25 | x=34 | G=43 | 0=52 | X=61
h=17 | p=26 | y=35 | H=44 | P=53 | Y=62
i=18 | q=27 | z=36 | 1=45 | Q=54 | Z=63

Esto lo hacemos en los cuadros 5.1 y 5.2. No empleamos el cédigo ASCII, pues varios
caracteres tienen tres digitos y eso hace mas grande el mensaje, una vez traducido en
un anico namero entero. Del cuadro 5.1, si queremos escribir “Uno”, tenemos: 582325
(58-23-25). Por otra parte, del cuadro 5.2, si queremos escribir el ndmero 23, resulta:
0203. Nos sobran nimeros de dos digitos para agregar mas caracteres, como signos de
puntuacién, etc. En realidad, fabricamos este cédigo con fines puramente didacticos y
seria algo ambicioso ir mas alla. Adn asi, vale la pena asignarle un nombre. Usar “cédigo
Observatorio”, seria excesivo y expuesto a muchas criticas. Emplear el nombre del autor,
seria inmodesto. Lo vamos a designar como “cédigo AMC", donde AMC es la sigla
para Asignatura Mecéanica Cuantica. Algo restringido a nuestra propia asignatura suena
razonable.

Como un ejemplo algo mas elaborado, tomando los cuadros 5.1 y 5.2, escribamos
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Cuadro 5.2: Algunos elementos adicionales para la escritura. En el cuadro los digitos (0,

1,2,3,4,5,6,7, 8y 0), se representan por i. Por ejemplo el cero se escribe 00, el uno

por 01, etc.

i (digito) =0
espacio =99
punto (.) =01
punto y coma (;) = 92
dos puntos (:) =93
@ =94

a/A = 74/75

é/E = 76/77

fl = 78/79

6/0 = 80/81

a/U = 82/83

como un nimero entero el siguiente mensaje:
5025991423301823132591

El lector puede traducir esto en palabras o bien leerlo a pie de pégina'®. Debemos
enfatizar que elegimos los niimeros para asignar dos cifras a cada caracter. En primer

lugar lo descomponemos como,
50-25-99-14-23-30-18-23-13-25-91

y con los cuadros 5.1 y 5.2, lo traducimos a palabras. Es relativamente simple escribir un
programa que traduzca en palabras un mensaje (que consta de un solo niimero entero,
claro). Para ello, se puede dividir por 100 y separar la parte entera de la decimal. La
parte decimal es multiplicada por 100 y luego el programa reemplaza el nimero por la
letra o caracter. Los cuadros 5.1 y 5.2, suman un maximo de 100 caracteres diferentes,
lo cual permite dimensionar un vector “C" (por c6digo), tal que C(n) nos de el cédigo.

Por ejemplo, C(77):E. Una vez que tenemos el primer caracter, con el entero que nos

16E| mensaje dice: “No entiendo.”
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quedé al tomar la parte entera (con dos digitos menos que el original), dividimos por
100 y repetimos el proceso. Si al finalizar, nos queda un caracter de un solo digito,
el programa debe asumir que el digito faltante es el cero. Se pueden seguir diferentes
esquemas para pasar de un texto con letras y caracteres a un (nico nimero entero, pero
no abordaremos ese punto.

En resumen, en esta subseccion mostramos una forma para traducir en un niimero
entero, un mensaje de texto. Pudo reducirse a afirmar que esto se puede hacer empleando
la numeracién del cédigo ASCII. Pero elegimos construir el cédigo AMC y mostrar su
empleo, ya que solo empleando los conocimientos, se los comprende acabadamente.

En las subsecciones siguientes, mostramos cémo encriptar un ndmero entero por
medio del algoritmo RSA. Como ya habiamos mencionado, el traducir un texto en un
inico nlimero entero es ya una cierta encriptacion. Pero para un experto, seria facilmente
desencriptada. El modo mas simple, es que quien busca desencriptar el mensaje logre
hacerse del nimero y un mensaje desencriptado, que usard como “Piedra Rosetta” para
descifrar el mensaje. Pero alin solo con el nimero, se buscan patrones, las letras mas
probables y cdmo se repiten los niimeros en el mensaje, etc., que eventualmente permiten
su desencriptacién. El problema de estos métodos de encriptacion, es que si se logra
descifrar la llave (o clave), a partir de ese momento se descifra el cédigo. Veremos que
el método RSA, posee dos claves, una para quien envia el mensaje y la otra para quien

lo recibe, lo cual dificulta considerablemente su desencriptacion.

5.1.3.  Resumen del algoritmo RSA

Por alglin motivo, cuando para estos temas deben elegirse nombres de dos personas,
siempre se escogen “Alice” y “Bob". Seremos mas breves y emplearemos dos personas
designadas como “A"” y “B". Hagamos una sintesis del método, donde B le envia a A,
un mensaje. El mensaje original es M. En primer lugar, este mensaje es transformado
en un namero entero m, de acuerdo con lo visto en la subseccion anterior. Este nimero
m, debe ser menor a otro nimero n, que discutiremos enseguida; junto a otros dos
nimeros, e y d, que son datos, pero aun no explicitamos. Antes de enviar el mensaje,

éste es codificado en un nimero ¢, mediante la siguiente operacion,

¢ =m*(mod n). (5.3)
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El mensaje original m, fue ahora encriptado y se transmite ¢, de B a A. Cuando A recibe

el mensaje, lo desencripta por medio de,
m = ¢ (mod n). (5.4)

La operacién de encriptacién y desencriptacién no debe ser subestimada. En la ec. (5.3),
sabemos el valor de m, e y n, y debemos resolverla para calcular ¢. Dado el valor de los
exponenciales puestos en juego, el hallar ¢, no es nada sencillo. En forma andloga para la
desencriptacién, para resolver la ec. (5.4), sabemos el valor de ¢, d 'y n, y debemos hallar
el mensaje original m. Mas alld de este problema numérico, nos adelantamos a escribir
que e es una clave publica, mientras que d, es la clave privada que solo el receptor A,

conoce.

5.1.4. Generacion de claves

1. Se eligen dos nimeros primos distintos, p y ¢ (por conveniencia, no deben diferir

en mucho; pueden tomarse ndmeros primos contiguos).

2. Se calcula n = p.q, pediremos que el mensaje m, cumpla con m < n, lo cual

establece una restriccion en la eleccién de p y q.

3. Se calcula la funcién de Euler ¢(n). Como n =p.qy py ¢ son primos, el célculo

de esta funcion es simplemente, p(n) = (p — 1)(¢ — 1).
4. Se elige un entero positivo e, menor que ¢(n) y que sea coprimo con ¢(n).

5. Se determina un d, por medio de la ecuacién, e.d = 1 (mod p(n)).

De esta manera, ya tenemos las claves publicas (n,e) y la clave privada d.

5.1.5. Cifrado y descifrado

En primer lugar B, tiene un mensaje M, que introduce en su sistema informatico.
El algoritmo que tiene tal sistema, transforma el mensaje M, en un nimero entero, m.
Luego, construye las siguientes cantidades segin el esquema de la Sec. 5.1.4: n, ey d.

Antes de ser enviado, el sistema encripta el mensaje m, por medio de,

¢ =m*(mod n).
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Entonces, trasmite ¢, junto a la informacién de n.

El individuo a quien va destinado el mensaje, en nuestro caso A, solo debe conocer
la clave d, pues la clave n que es necesaria para la desencriptacién, es publica y por lo
tanto puede ser transmitida por el sistema en forma abierta, como acabamos de explicar.
Para que A, conozca su clave d, se pueden recurrir a diferentes mecanismos. Noten que
cuando uno necesita una clave para operar con una tarjeta de débito, por ejemplo, hay
que ir a un cajero y realizar la operacion de 'generar una clave’, donde en realidad lo que
uno hace es cambiar la clave, pues la primera es dada a veces en forma fisica, junto con
la tarjeta. Como sea, esta clave no puede ser enviada por el sistema, pues generaria una
falla de seguridad. Alguien puede objetar que d se obtuvo en forma dnica del punto 5, de
la Sec. 5.1.4, mientras que las claves personales se general a eleccién del interesado y se
pueden cambiar. Esa clave que elegimos, es mas bien la llave de entrada a la informacion
donde esta guardada d.

Volvemos a nuestro problema. El receptor del mensaje A, posee su clave d, que coloca
en su sistema para poder leer el mensaje. El sistema posee la informacién de cy n, y

ademds, A le da la informacién de d. Con toda esta informacién, el sistema resuelve,
_d
m = ¢* (mod n),

y luego, transforma m en M, con lo que concluye el proceso.

Debemos advertir al lector que el calculo numérico de las ecs. (5.3) y (5.4), es com-
plejo pues involucra potencias muy grandes. Para ello se recurre al método de la expo-
nenciacion modular, ya nombrado. El lector interesado, puede encontrar una descripcién

del método en el Apéndice A, del articulo de Gerjuoy [13].

5.2. El algoritmo de Shor

El nivel de dificultad que implica comprender acabadamente el algoritmo de Shor es
alto, pero aln asi, es accesible para quien ya haya hecho un curso de Mecéanica Cuan-
tica. Sin embargo, para alcanzar tal nivel de comprensién, se requiere de un nimero
muy grande de propiedades tanto matematicas, como fisicas; lo cual excede el objetivo
de este seminario. El objetivo que perseguimos entonces, no es agotar el tema del al-

goritmo de Shor, sino mostrar como la Mecanica Cuantica es aplicable a un problema
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matematico. Debemos notar que, hasta ahora, empleamos la mecénica cuantica para
explicar un sistema fisico que requiere de una descripcién cuantica. Para el algoritmo
de Shor, emplearemos la respuesta de un sistema cudntico para resolver un problema
numeérico.

Es importante notar que una computadora, cuadntica o no, es un sistema fisico. Co-
mo tal, estd sujeta a fluctuaciones debido a cambios en la temperatura, movimientos,
alteracion de los materiales por el paso del tiempo y las condiciones de presién, humedad
y temperatura, fluctuaciones en la alimentacion (electricidad), etc. El que una computa-
dora (no cuéntica), arroja siempre el mismo resultado ante el mismo proceso, es gracias
a un proceso de realimentacién y verificacién continua disefiado para obtener tal com-
portamiento. En otras palabras, se repite el proceso para comparar con el anterior y se
sigue repitiendo el mismo proceso hasta obtener consistencia con el resultado obtenido.
El obtener lo mismo en una computadora cudntica es extremadamente mas complica-
do. Veremos que el algoritmo de Shor no supone una computadora ideal, sino que esta
disenado para su implementacién en un caso real.

Esta seccidn estd organizada de la siguiente manera: en primer lugar, mostraremos
un modo de factorizar un ndmero, que es particularmente conveniente para el com-
portamiento cuantico. Luego, discutiremos un conjunto de pasos que constituyen el

algoritmo de Shor en si.

5.2.1. Factorizacion de N = p.q

Sea n, un entero positivo, coprimo con N = p.q, donde p y ¢, son dos nimeros
primos diferentes, mucho mayores que 1. Conocemos N y como se trata de un nimero
grande, es extremadamente dificil saber sus factores primos p y ¢. Sobre el nimero n, lo
elegimos nosotros. Cémo lo elegimos nosotros, lo podemos escribirlo como el producto
de nimeros primos, dividimos /N por cada uno de esos niimeros primos para garantizar
una divisién no exacta y por lo tanto, el caracter de coprimo entre n 'y V.

Construimos ahora una funcién f;, con j = 1,2,3, .... Esta funcién, toma como
valores el resto de la divisién n//N. De esta manera, f; queda univocamente definido

por medio de,

n! = f; (mod p.q), (5.5)
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junto a la condicién 0 < f; < N. Por otra parte y a partir del Teorema de Euler, tenemos

que para cualquier n,
n®W) = pP=H=1 — 1 (mod p.q), (5.6)

al comparar con la ec. (5.5), tenemos que,

fcf)(N) = 1, Y n.

Sin embargo, para un dado n, puede existir un entero j, 1 < j < ¢(N) = (p—1)(¢—1),
para el que f; = 1. El menor de todos estos 7, lo llamamos r. Decimos que r es el orden

de n médulo p.q, de este modo,
n" —1=0(mod p.q). (5.7)

Supongamos ahora que conocemos el orden 7 de un entero n < N, coprimo con N, y
ademads, que r es par. Nota: el procedimiento para conocer r es justamente el algoritmo
de Shor, que explicaremos mas adelante. Volvamos al r par. Como es par, entonces r/2
sigue siendo entero. El caracter de par de r no implica ninguna restricciéon sobre N, pues

dijimos que p y ¢, son numeros grandes. Claramente,
n"—1=(n"*-1)(n"?*+1),

de esta manera,

(n"/? = 1)(n"”*> +1) = 0 (mod p.q). (5.8)

Ahora bien, por definiciéon r es el menor entero que cumple con la condicién de que
n” — 1, sea exactamente divisible por p.q. Luego, teniendo en cuenta que la definicién

r/2

de p y q es arbitraria, podemos decir que p divide exactamente a n"/* — 1y ¢ divide

exactamente a n'/2 + 1). Finalmente, p y q se pueden determinar calculando el mayor

/2 4 1. Esto es, si conocemos 7, sabemos

comiin divisor de N conn'/?> —1 y de N conn
cdmo factorizar N. El encontrar este mayor comin divisor con una computadora clasica
es considerado como un problema simple, en comparacién con la factorizacién de un
ndmero muy grande [13]. Nos referimos a que tal operacién no justifica el uso de una
potencial computadora cuantica.

Antes de seguir, debemos mencionar una propiedad importante de la funcién f;. La

misma, dadounnyun N (n < N, yny N coprimos entre si), es periddica en r. Dicho

de otro modo, f; es periédica y su periodo resulta ser el r que necesitamos.
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La sintesis de esta subseccién, es que la dificultad mayor para factorizar un niimero
N muy grande es encontrar un r que cumpla ciertas propiedades. En primer lugar, N es
el producto de exactamente dos niimeros primos py ¢ (.. N = p.q). Sobre el n, debe
cumplir con que n < N (lo cual es trivial); pero ademas n y N deben ser coprimos

entre si y el r que resulta, debe ser par. El n se elige por prueba y error. Si resulta una

r/2 r/2

eleccién afortunada, entonces n'/* — 1y n'/* 4 1, son exactamente divisibles por p y ¢,
respectivamente. Notemos que p y ¢, son nuestras incognitas, luego el afirmar cudl es

divisible por cual, es arbitrario.

5.2.2. Implementacion del algoritmo de Shor

Nuestro objetivo final es lograr factorizar un nimero muy grande N, en el marco del
algoritmo de Shor. Esto lo hacemos empleando la factorizacién descrita en la Sec. 5.2.1.
Para ello, necesitamos conocer el valor de r. Es este niimero r, el que se puede evaluar
en forma mas eficiente empleando una potencial computadora cuantica y es el objetivo
de esta seccion. Como cualquier procedimiento de célculo, explicaremos el procedimiento
enumerando los pasos a seguir. No debemos perder de vista que este es un problema
interdisciplinario, donde mateméticas, teoria de la informacién y mecanica cuantica,
juegan un papel importante. Cada disciplina tiene su vocabulario propio y es justo tratar
de seguir el de la teoria de la informacién, pues es su objeto de estudio por excelencia.
Expresado nuestro deseo, en varios puntos emplearemos la terminologia de la mecanica
cuantica, ya que el capitulo va dirigido a los estudiantes de esa asignatura.

Como mostramos en el Cap. 15, en [1]; la idea bésica de la computacién cuéntica es
construir una funcién de onda, con un nimero establecido de qubits. Luego, por medio
de operadores unitarios, que en el lenguaje de la teoria de la informacién se denominan
“puertas cuanticas”, modificamos a la funcién de onda para que sirva a nuestro proble-
ma. Finalmente, medimos la funcién de onda y de la informacién que extraemos de su
colapso, tenemos la respuesta buscada. Ese es el esquema que desarrollaremos ahora.
Como ya lo habiamos advertido, daremos una descripcion esquematica, donde omitimos
las demostraciones intermedias. El lector puede encontrar un esquema completo en los
articulos originales de Shor [15, 16], el articulo de Gerjuoy [13], el libro de Rieffel y

Polak [14] y en las referencias ahfi citadas. El esquema, es entonces:

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 131



EDUARDO BAUER

1. Determinaciéon del nidmero minimo de qubits necesarios. Debemos construir el
estado cuantico adecuado para resolver nuestro problema. El punto de partida es
decir el nimero minimo de qubits que necesitamos. Para ello, debemos saber hasta
qué valor de la potencia j debemos llegar para analizar el periodo de f; (y por
lo tanto, conocer r). Del andlisis numérico [13], resulta que el nimero de qubits

necesario, que designamos como vy, es del orden de,
y = (Log,N?) + 1.
Como ejemplo, si N ~ 10%°, entonces y ~ 200.

2. Preparacién de la funcion de onda inicial. Tenemos entonces y—qubits y empleare-
mos el subindice Y, para designar nuestro sistema fisico de y—qubits!’. En la
Sec. 15.3.2 en [1], vimos que un estado puro formado por un qubit, se escribe
como,

|7), coni=0061;
para un estado mezcla, tenemos,
W) =al0) + B[1),  cona’+ =1,
mientras que un estado puro formado por varios qubits es de la forma,
10,1,1,...,1,0,...).

Esta dltima notacién es la mas simple, si damos toda la informacién fisica para
nuestro estado. Si tenemos ¥y qubits, el nimero de estados diferentes es de 2Y.
Podemos simplificar la notacién al precio de tener que establecer una tabla de

equivalencias, llamando,
|0) =10,0,0,...,0,0,...),

luego,
1) =11,0,0,...,0,0,...), etc.

I7Es conveniente indicar que en el articulo de Gerjuoy [13], se afirma erréneamente que Y es el
registro cudntico, lo cual induce a una confusién en la interpretacién. Sin embargo, el desarrollo es

correcto, si simplemente ignoramos la presencia de ese Y en las expresiones.
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De esta manera, una base de nuestro espacio de Hilbert, se puede escribir como,
17), conj=0,..,2Y -1,

donde el indice j llega hasta 2¥ — 1, ya que elejimos partir de 7 = 0, en lugar de

1. En este caso, el estado mezcla mas general, se escribe de la forma,

1 29 -1
IR S Y
SR 2 O

Dada toda esta informacién, ahora si mostramos el estado cudntico relevante a
nuestro problema.

Debemos tener en mente que una potencial computadora cuantica es un sistema
fisico, sobre el que debemos actuar fisicamente para obtener un resultado. El
estado inicial solo puede ser el estado fundamental del sistema, esto es, aquel
estado con menor energia. Es el Gnico estado que podemos preparar sin mayor
dificultad. Sobre este estado actuaremos con puertas cuanticas, hasta alcanzar
el estado final que mediremos para obtener el resultado final. Haremos esto por
pasos, colocando un superindice PO, P1, P2, ... , para cada paso. En los estados
y por conveniencia, agregamos un subindice Y, para recordar que nuestro sistema

fisico es aquel formado por y—qubits. Asi, partimos del estado,

[¥)" =0}y,

donde dejando de lado los indices, [0) = |0, 0,0, ...,0). Actuando sobre este estado
por medio de un conjunto de puertas cuanticas, pasamos al siguiente estado,

2Y—1

WP = 2 by, (59)
=0

Esto es, en el primer paso construimos un estado donde cada |j), tiene el mismo

peso.

3. Elegirunn; y para cada j en el sistemaY’, entrelazar un estado | f;) perteneciente a
un nuevo sistema Z . Este es quiza el punto mas relevante y dificil del algoritmo de
Shor. El primer punto, elegir el valor de n, es relativamente simple. Conocemos N y
sabemos que es producto de dos niimeros primos muy grandes. El buscarunn < N,

comprimo con N, se puede hacer multiplicando nimeros primos relativamente
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pequefios, lo cual hace extremadamente poco probable que no resulte comprimo
con N. Luego, entrelazamos nuestro sistema fisico de y—qubits, con otro sistema
nuevo de qubits, que llamaremos Z, tal que las configuraciones de este nuevo
sistema estén formadas de la siguiente forma: dado un |j), del estado |/)?, en la
ec. (5.9), habiendo elegido ya el n, construimos una configuracién | f;). Recordemos
la ec. (5.5):
n! = f; (mod N).
De esta manera, tenemos un nuevo estado, dado por,

2v—1

O =5 O vl (5.10)

§=0

Debemos notar que el nimero de qubits de Z, es menor que el de Y, ya
que la funcién f; es periédica, con periodo 7. Esta afirmacién es valida en tanto
y > r, esto es que el sistema Y, posee mas qubits que la periodicidad de f;.
El lector debe intuir que la implementacién del estado [1/)¥?,, a partir del estado
|4}, es extraordinariamente complejo: debemos poner en contacto dos sistemas
cuanticos, Y y Z, entrelazados cuanticamente de modo de obtener los productos
|70y |fj)z, pero al mismo tiempo permitir que el sistema Z, se pueda medir en
forma independiente del sistema Y. Una idea conceptualmente similar se discuti
con la teletransportacién cuéntica en la Sec. 15.3.4, en [1]; donde un sistema de

tres particulas entrelazadas, se divide en dos y se mide uno de los dos subsistemas.

En este trabajo, aceptaremos la ec. (5.10), sin demostracién. Encontramos en
la literatura una discusién conceptual pobre de la ec. (5.10). Estos trabajos fueron
hechos en el marco de la teoria de la informacién y la dificultad de esta ecuacién
estriba en el entrelazamiento cuantico, uno de los puntos mas complejos de la
mecanica cuantica. Es mas, en general se nombra al entrelazamiento cuantico en
forma genérica, pero no se discute en forma directa. La clave de la ec. (5.10), es
lograr el entrelazamiento entre el sistema Y y el sistema Z, con el fin de transmitir
cuanticamente la informacién sobre la periodicidad de f;, que es nuestro buscado

r; del sistema Z, al sistema Y. Expondremos esto, en los puntos siguientes.

Como ya afirmamos, no discutiremos la metodologia para obtener el estado
11)¥% (ec. 5.10). Otro punto de enorme relevancia y también puramente cuén-

tico, es que este estado se construye a partir del estado |¢)&!, sumando qubits,
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empleando puertas cuanticas y con el conocimiento de n y N, pero hasta medirlo,
no conocemos las configuraciones |f;), ya que estaria implicito el valor de .
Desde el punto de vista cudntico, esta no es ninguna sorpresa; pero el tema es
complejo y la escritura de la ec. (5.10), puede inducir a un error. Sabemos que por
la accién descrita, obtenemos dicho estado, pero hasta medir no podemos afirmar

nada sobre las configuraciones del mismo.

4. Medida del sistema Z. Como en el caso de la teletransportacién cuantica, medimos
ahora el estado de las particulas del sistema Z. Por construccién, sabemos que
existen r—configuraciones |f;). Al medir, produciremos el colapso de esa parte del
estado entrelazado completo y obtendremos algiin |fj). Recordemos que f; es
una funcién periédica y por lo tanto, existen varias configuraciones |j) del sistema
Y, que fueron multiplicadas por la misma configuracién |fx). Para ser claros, si
escribimos |k)y | fx)z, entonces |k) es uno de ellos. Llamemos @, al nimero de
configuraciones |j), que estaban multiplicadas por | fi). Entonces, luego del colapso

de la parte del estado que representa al sistema Z, tenemos el siguiente estado,

Q-1
WP =Q7 2 N [k + br)y. (5.11)

b=0

Al medir el estado del sistema Z, conocemos un valor de f;, que llamamos
arbitrariamente fi. Pero no podemos saber el valor de k, pues varios f;, tiene
el mismo valor debido a su periodicidad. Sabemos que debe existir un (), que
representa al nimero de configuraciones |j)y, que comparten el mismo valor de
fx. Sobre esa base, escribimos el estado |¢/)3. Como no conocemos el valor de k,
nada nos impide afirmar que es el menor de los enteros de la suma y representar

a la suma sobre configuraciones tal y como esta escrita.

5. Realizar la transformada de Fourier cuantica sobre el estado del sistema. Este
paso, requiere de la operaciéon de una puerta cudntica sobre Gltimo estado del
sistema [¢)&3, ec. (5.11). Llamamos al operador (o puerta cudntica), que realiza

tal operacién Urp, y su accion viene dada por,

. , 2=
Urr iy = 5y 22 €™ )y (5.12)
c=0
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Para evitar confusiones, en el exponencial las letras j y ¢, son indices que
indican configuraciones cuanticas, mientras que ¢ = y/—1. Realizando ahora la

transformada de Fourier sobre el estado |1/)¥3, tenemos,

29 -1 Q—l )
)Pt = Urp [Y)7° = (24Q) ™12 3 S e2milhHbne/2 1oy (5.13)
c=0 b=0

En esta expresién, los coeficientes que multiplican a |c), representan a un serie

geométrica que se puede sumar, con lo cual tenemos finalmente,

29 -1
YD1 = (VQ) V2 Y gmike/2 grire(@-1)/2! M‘ by (5.14)

= sen(mre/2Y)

6. Medida del estado 1))V, Al medir este estado, obtendremos algiin |c), con una

probabilidad de,
_, sen?*(mrc @ /2Y)

sen?(mre/2v)

Una de las mayores dificultades para abordar un tema interdisciplinario, como

P. = (2°Q) (5.15)

lo es un algoritmo cuantico, es que quien escribe muy probablemente esté o bien
corrido hacia la informatica o bien corrido hacia la mecanica cudntica. La totalidad
de los trabajos en que se basa este capitulo, son de caracter informatico. Nuestro
capitulo, sin embargo, apunta al otro enfoque. Desde el punto de vista mecanico
cuantico, sabemos que la probabilidad P. en la ec. (5.15), no resulta de una tnica
medida. La probabilidad de obtener una cierta configuracién, se obtiene luego de
un nimero muy grande de medidas. De hecho, la cantidad P, es exacta en el limite
para un nimero de medidas que tiende a infinito. Este punto, muy obvio para un
curso de mecanica cuantica elemental, parece ignorarse en las publicaciones sobre

el tema.

Existe otro punto, mucho mas sutil y complejo, que se pudo discutir en el
punto 3, pero preferimos postergar hasta ahora. En el punto 3, construimos un
estado entrelazado cuyas configuraciones son de la forma |j)y | f;)z. Esto implica
una cierta relacién numérica entre las configuraciones |j)y y |f;)z. El punto que
muchos lectores pueden haber olvidado, es que el ndmero “5" 6 “f;", en cada ket,
no tiene ningun contenido fisico. En realidad es un indice que debe ser asociado

con una tabla para traducirlo en estados con spin up o down, por ejemplo. En la

construccion de tal tabla, la asignacién de nimeros para asignar estados fisicos
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reales es arbitraria. Al construir las configuraciones |j)y |f;)z, los estados fisicos
de spin up y down, no pueden leer la tabla para adaptarse a ello. Luego, jcdmo
construir tal tabla?. Simplemente es imposible. El lector debe notar, que se afirma
“medir” dos veces, una sobre el sistema Z y luego, sobre el Y'; pero no se dice qué

se midid. Solo se hace referencia al colapso del estado.

En términos directos, ya dijimos qué no es; y ahora debemos decir que si
es. Fisicamente, lo que tenemos son dos sistemas cuanticos, que se entrelazan y
sobre los mismos se acttia con una serie de operadores. Como resultado de esas
acciones, se logra construir un estado cuantico mezcla, cuyos coeficientes de peso,
tiene una dependencia con la periodicidad 7, que deseamos calcular. Dado P. en
la ec. (5.15), ciertas consideraciones, junto a métodos numéricos, nos permiten
extraer el valor de r. La discusion sobre la extraccién de r a partir de P., no la
abordaremos en este trabajo. Extraido el valor de r, concluye el proceso cuéntico

o algoritmo de Shor.

7. Consideraciones finales sobre el método. Nuevamente, nuestro enfoque es mecani-
co cudntica. En las primeras clases de un curso de tal asignatura, debe nombrarse
que la mecanica cuantica requiere de la fisica clasica para su construccién: la medi-
da es fundamental en mecanica cuantica y un instrumento de medida es un objeto
clasico. Notemos que podemos entrelazar dos sistemas cuanticos, pero la accién
de poner en contacto un sistema cudntico con uno clésico (el instrumento de me-
dida), produce el colapso del estado. Vamos ahora a una computadora cuantica.
Para interactuar con el sistema cuantico de tal computadora, debemos emplear una
computadora clasica para que prepare el sistema, realice las medidas, las registre,
etc. En el algoritmo de Shor, el sistema cuantico no obtiene los factores primos de
N, sino que extrae el valor de r. Luego, la computadora clasica hace el resto. No
tenemos la certeza de que el r que obtenemos resuelva nuestro problema. Existe
cierta probabilidad de error en la elecciéon del n y en el método numérico para
extraer r de P.. Si luego de todo ese proceso, fracasamos en la separacion en
factores primos de NN, deberemos elegir otro n y comenzar todo de nuevo. Esto
es inherente a cualquier computadora, ya que a fin de cuentas cualquiera de estos
instrumentos son sistemas fisicos sujetos a fluctuaciones, que deben ser tenidas en

cuenta.
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5.3. Discusion

Debemos tener en mente que una computadora, clasica o cuantica, es un sistema
fisico del que obtenemos resultados a partir de la respuesta de tal sistema. Podemos
escribir en un papel un operador o puerta cuantica, que tenga tal o cual accién sobre un
estado cuantico. Pero luego, alguien debe ser capaz de encontrar algln proceso fisico que
permita implementar tal accién. La situacion es similar para una computadora clasica.
Casi todo el mundo las usa, pocos saben programarlas, otros las saben reparar, pero
muy pocos comprenden y saben manejar el lenguaje de maquina, esto es, los procesos
fisicos que rigen su funcionamiento. Aunque son muy pocos quienes comprenden el
funcionamiento y fabricacién de los procesadores de una computadora, su funcionamiento
es producto del trabajo de las personas. Por otra parte, a diferencia de las computadoras
clasicas o cuanticas, sabemos muy poco sobre cémo funciona el cerebro. Pero ese es
otro tema.

En este capitulo, intuimos el punto de partida de la solucién del problema de facto-
rizar un niamero NN, producto de dos nimeros primos: el estado de partida es el estado
fundamental de un sistema cuéntico, formado por varios qubits. Luego aceptamos sin de-
mostracion, la existencia de puertas cuanticas que actiian sobre ese estado. Estas puertas
cuanticas, son operadores unitarios que actian sobre nuestro estado de partida. En este
proceso, entrelazamos nuestro sistema con otro sistema cudntico, realizamos medidas
sobre nuestro estado, causando primero un colapso parcial del estado y finalmente, su
colapso. No dijimos qué medimos, pues en realidad existen diferentes implementaciones
del sistema de qubits. Si se tratara de un sistema de spin up y down, mediremos la
proyecciéon del spin. Al cabo de todo ese proceso y luego del anélisis numérico de una
probabilidad, se puede obtener un niimero que indica la periodicidad de una funcién y
con él y una computadora clasica, lograr la factorizacién de N.

Es verdad que en toda esta discusiéon sobreabundan puntos que debimos aceptar
sin demostracién. Sin embargo, debemos notar que abordamos el problema de la fisica
del proceso de computacién cuantica desde un punto de vista microscépico. Si con una
computadora clésica calculamos Logi0(15), al igual que estudiamos cémo de un proceso
fisico podemos extraer la periodicidad r de una funcién, tendremos otro proceso fisico

para conocer dicho logaritmo. Pero eso es algo que en general no estudiamos. Esto
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nos muestra que la computacién cuantica se encuentra en la etapa mas primitiva de su
desarrollo; pues alin no podemos dar por sentada la fisica basica de la computadora,
como si ocurre con una computadora clasica.

El encontrarnos atin en las primeras etapas de un desarrollo, se ve también reflejado
en la literatura del tema. No ahondaremos sobre el siguiente punto, pero existen difer-
entes sistemas cuanticos, ademas del spin, para construir los qubits de una computadora
cuantica. La condicién es tener un sistema cudntico de dos niveles de energia. También
existen diferentes algoritmos, ademas del de Shor. El enfoque es claramente informéatico
y los conceptos cuanticos son a veces presentados de una manera forzada. Todo esto
no debe ser interpretado como una critica, sino que es inevitable cuando alin se estan
explorando diferentes alternativas de fabricacién, ejecucién y programacion; sin que una

logre dominar sobre las otras.

5.4. Epilogo

Luego de toda esta discusion, debemos indagar sobre la medida en que todas estas
expresiones se traducen en una computadora cuantica real. Debemos aclarar que la
inversion en esfuerzo humano y econémico para el desarrollo de la computacién cuantica
es significativa. Esto es muy bueno, pues una eventual computadora cuantica podria
revolucionar varias disciplinas cientificas. La contracara, es que muchas veces los logros
son magnificados. En los medios, en forma periédica uno lee una noticia con el repetido
“ahora si" llegd la computaciéon cuantica. Una y otra vez, cada tanto tiempo. Incluida
la afirmacién de haber construido y vendido una computadora cuantica comercial. Con
este parrafo sugerimos al lector que reciba esas noticias con un prudente escepticismo.

En el afio 2001, se publicé en la prestigiosa revista Nature [17], un articulo sobre la
implementacién del algoritmo de Shor, con un sistema de siete qubits, donde fue posible
factorizar el nimero 15. Once afios después, se logré la factorizacién del nimero 21,
publicado en [18]. Mas recientemente, en el afio 2019, se intentd sin éxito la factorizacién
del nimero 35. Se argumenté que el fracaso se debi6 al control de errores [19], un punto
que no hemos discutido. Al momento de terminar este trabajo, no encontramos resultados

mas modernos. Es una triste obviedad que si luego de mas de veinte afos de labor, solo

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 139



EDUARDO BAUER

se pudieron factorizar los nimeros 15 y 21, el ritmo de progreso en el area es mucho mas
lento del esperado. Ahora en primera persona y para expresar mi punto de vista, voy a
expresar una analogia para mostrar cémo veo el progreso en el tema. Imaginemos la época
en que las personas se movian en carros, carretas, etc., movidas por caballos. Esto es,
cuando los méviles (carretas, etc) eran movidos por traccién a sangre. Frente a esto, se
propone un mévil autopropulsado por un motor que es parte del mévil mismo; llamémoslo
“automévil”. Haciendo un paralelismo con las computadoras cuanticas, digamos que el
primer automévil logré avanzar 15 milimetros. Once afos después, otro automovil logrd
avanzar 21 milimetros. Casi veinte afos después del primero, fallé el intento por avanzar
35 milimetros. Notemos que se pretende factorizar niimeros del orden de 10%° y con el
numero 35 no se tuvo éxito. Mi punto es que después de mas de 20 afios del auspicioso
inicio, los resultados son demasiados modestos como para afirmar que una computadora
cuantica que supere a las clasicas, sea una realidad.

A comienzos de nuestro siglo, nos preguntamos cuando la computacién cuantica
comenzaria a inundar los laboratorios del planeta. Hoy, la pregunta es mas bien si al-
guna vez la computacién cuantica inundard los laboratorios del planeta. Existen ciertas
variables en la computacién cudntica que ignoramos. En primer lugar, una computadora
cudantica supone un conjunto de particulas cuanticamente entrelazadas. Dicho de otro
modo, un cierto nimero de qubits. No sabemos cual es el nimero maximo de particu-
las cuanticamente entrelazadas. La factibilidad de una potencial computadora cuantica
estd vinculada a la respuesta a esta pregunta. Esta pregunta debe tener una respuesta,
pero no la conocemos aun. Es de esperar que los esfuerzos tedricos y experimentales, la
respondan. La siguiente duda se refiere a la pérdida de correlacién entre las particulas o
decoherencia. Es un fenémeno cuantico que limita el tiempo de uso del sistema con el
fin de ser empleado en un célculo. Son tiempos breves, pero los célculos lo son atiin mas.
Entendemos que ese tiempo se hace mas corto, cuanto mas grande es el sistema. Esta es
otra pregunta sin responder que esta vinculada con la primera. Un tercer punto se refiere
al control de errores. Todo esto nos muestra, como ya afirmamos, que la computacién
cudntica es por ahora una perspectiva muy interesante. Notemos que las computadoras
cuanticas existentes justifican su existencia en la perspectiva de logros mayores; pues el
costo y las dificultades de funcionamiento aln no las hace rentables, dada su capacidad

de calculo.
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Algln lector puede especular con que mi postura es de decepcion frente a la com-
putacién cuantica. No es asi. De serlo, no hubiera escrito este capitulo. En este capitulo
se buscé despertar interés en el tema y especialmente, vincular esta nueva rama del
conocimiento con lo que aprendimos de mecanica cuantica. Mi opinién, es que la reali-
zacién de la computacién cuantica requerird de mucho tiempo y esfuerzo, mucho mas
de lo que se pensaba hace unos afios atrds. Pero el esfuerzo lo vale. La historia del
conocimiento, es la historia de este tipo de desafios. Son extremadamente dificiles. Y
es por su dificultad, que nos resultan interesantes y nos atraen. Puede ocurrir que el
tamafio del entrelazamiento cudntico y la decoherencia, pongan un limite fisico a las
computadoras cudnticas y las hagan indtiles (frente a las clasicas). En ese caso, habre-
mos aprendido mucho, pero nos quedamos sin las computadoras cuanticas. Pero también

puede ocurrir que funcionen. En ese caso, habra valido la pena el esfuerzo.
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Apéndice A

Valor numérico de algunas

constantes de interés

En este apéndice, daremos un resumen de algunos valores numéricos de constantes
que empleamos a lo largo de este trabajo.

Constantes generales:

le] = 1,602176634 x 10~ Coul,
c = 299.792.458 m/s,
h = 6,582119569 x 1072 MeV s,
hc = 197,3 MeV fm
kg = 1,380649 x 10~?* Joules/Kelvin (A.1)

Masas:

me = 0,510998946 MeV/c*,
m, = 9382720813 MeV/c’,
m, = 939,5654133 MeV/c”. (A2)

Momentos magnéticos de Bohr:

5,7883818012 x 10~ '° MeV/G,

He
Ly = Heme/m, = 3,15245 x 1078 MeV/G,
fn = feMe/m, = 3,14811 x 107'® MeV/G, (A.3)
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donde G es la unidad de campo magnético denominada Gauss.

Factores giromagnéticos:

Je = _170007
g9 = 2,793,
g, = —1,913. (A.4)
Convirtiendo unidades:
Kg MeV
G=10" >~ 560951 x 10% ——— A5
Coul s ’ Coul s ¢?’ (A-5)
Aqui empleamos,
1 Kg = 5,60951 x 10* MeV/c2.
Podemos escribir,
MeV
Coul = 5,60951 x 10 —— A.6
de este modo, podemos expresar la carga del electréon como,
MeV
= 8,98742 x 10° . A7
ef = 898742 x 10° = (A7)
Analicemos con algln cuidado el magnterén de Bohr para el electrén,
B le|h B (8,98742 x 10°) (6,582119569 x 10722) MeV MeV s c¢? (A8)
‘" 2m. 2 x 0,510998946 G s ¢ MeV '
Tenemos finalmente,
fte = 5,7883818012 x 10~ MeV/G. (A.9)
Mientras que para |e|, tenemos,
MeV?
le|hc? = 5,91571 x 10715 % (A.10)
Finalmente, para e, tenemos,
eBhc?* = 2uem.c*B = 591571 x 107* B MeV>. (A.11)

En esta expresion, debemos emplear B en Gauss, con lo cual el valor final nos queda en

MeV2. Por ejemplo, si B = 10'°G, entonces,

eBhc? = 5,91571 MeV?, para B = 10" G.
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Vale la pena repetir este anélisis para el magnetén nuclear. Haremos el andlisis para

el protén. Notemos que ji.m. = p1,m,. Tenemos entonces,

h
fy = ‘2‘3' = eBhc® = 2u,m,c*B = 5,91571 x 107" B MeV>. (A.12)
mp
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Apéndice B
Calculo de la densidad de nimero

En este apéndice mostraremos cémo calcular la densidad de nimero p(u,T); esto
es, el nimero de particulas por unidad de volumen; a partir del nimero de ocupacién
n(e), dado por la ec. (2.6). Excepto al final, cuando analicemos las unidades, en este
apéndice emplearemos unidades naturales, para las que ¢ = h = 1. En primer lugar
y por simplicidad, supondremos que el sistema no estd degenerado. Calcularemos esta
densidad a partir de la definicién de n(e), como el nimero de particulas con energia «.
Sin perder generalidad, agregaremos el indice 7, a la energia; suponiendo entonces que

las energias toman valores discretos. La densidad de nimero es entonces,
1
Pl T) = 37 D nle), (B.1)
J

donde V, es el volumen y sumamos sobre todas las particulas contenidas dentro del
volumen V. De esta manera, contamos el nimero de particulas dentro de un volumen
“representativo”, dividimos por el volumen total y tenemos la densidad de ndmero.
Esto es formalmente inobjetable, pero el calcular algo a partir de esta expresiéon no
resulta evidente. Para contar con una expresiéon operativamente atil, debemos construir
un modelo que nos permita seguir adelante. En primer lugar, debemos definir el espacio de
Hilbert donde nos movemos. Para ello, debemos diferenciar dos situaciones: i. Ausencia
de niveles de Landau y ii. Presencia de niveles de Landau. Analizamos cada uno de estos
casos separadamente. Antes de ello, algunas hipétesis son comunes a las dos situaciones:
supondremos que tenemos materia infinita. Fisicamente esto nos dice que podemos
despreciar los efectos de borde. Conceptualmente, si nos movemos dentro de materia

proto—neutrénica lejos de la superficie, esperamos que el sistema sea invariante frente
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a cualquier traslacién espacial. También supondremos que vale el modelo de particula

independiente (ver Sec. 15.1 en [1]).

B.1. Ausencia de niveles de Landau

Tomamos un sistema de coordenadas cartesianas para el espacio. En coordenadas
cartesianas consideramos un cubo de lados L y volumen V = L2. Teniendo en cuenta
las hipotesis del parrafo anterior, tomamos ondas planas normalizadas en un volumen V/,
seglin cada direccion de los ejes cartesianos. En particular, para el eje-%, consideramos
una funcién de onda de la forma e**=®, limitada a la longitud L. Lo que hacemos ahora
es pedirle a la funcién de onda que cumpla condiciones periddicas cada longitud L, en

cada direccién espacial. En particular, para el eje-2, tenemos,
eika _ eikm(:v+L)’ (B2)
lo cual implica que,
el = cos(k, L) + isin(k,L) = 1. (B.3)

Este requisito cuantifica los posibles valores de k., segln,

271Ny,
==

ko ng = 0,21, 42, ... (B.4)

Con expresiones analogas para los ejes—), 2. Pensando que L puede tomar un valor grande
(aunque finito), pasamos de variables discretas a continuas, por medio del reemplazo,
oo L 00
Y - 7/ dk, . (B.5)
Na——00 271' —00
Tomando en cuenta ahora los otros dos ejes coordenados, tenemos,

) ﬁ(;)g/dk. (B.6)

Nz, Ny ,Nz

Vale la pena recordar la expresion para la energia de particula independiente para el
neutrén,
(hk)?

nk7n: . Bnn7 B.7
ealk, sn) =m+ = — pnBsag (B.7)

que nos permite reescribir la dependencia funcional del nimero de ocupacién como,

n(e;) — n(k, sn). (B.8)
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Finalmente, reemplazando la ec. (B.6) en la ec. (B.1), y recordando que V = L3,

tenemos,

1
p(u, T, B) = 2 ; / dkn(k,sy) (B.9)

Agregamos la suma discreta sobre spin, pues de la ec. (B.1), sabemos que debemos
sumar sobre todos los estados de energia. Por el empleo de la energia de particula
independiente con un campo magnético, agregamos la dependencia con B. Debemos
notar que esta cantidad tiene unidades de Volumen~! (densidad de niimero), ya que los
productos k,x, ky,y y k.z son adimensionales, por lo que [k;] = 1/longitud y por lo tanto
[dk] = 1/Volumen. Notemos que si los niveles de energia estan degenerados, debemos
incluir un factor de degeneracién. La expresion dada por la ec. (B.9), vale para particulas
sin carga, como el neutrdén, pero también para cualquier particula en ausencia de campo

magnético.

B.2. Presencia de niveles de Landau

En la Sec. 2.2, mostramos los estados cuanticos de una particula cargada en un
campo magnético constante. Tomamos al campo magnético en la direccién del eje-2. La
cuantificacién de Landau ocurre en el plano—zy; mientras que la particula se comporta
como una particula libre en el eje-Z. Para fijar la notacién, es conveniente comenzar
recordando la expresién para la energia de particula independiente para el protén,

(hk.)?

ep(kzy Spy Np) =m + Sy

+ unB(2N, + 1 — 5,0,). (B.10)
A partir de esta expresion, redefinimos el nimero de ocupacién como,
n(e;) — n(kz, sn, Np). (B.11)

Para calcular el nimero de ocupacién, la ec. (B.1) sigue siendo vélida. El problema es
el de encontrar la expresion adecuada a nuestro espacio de Hilbert. En primer lugar,
notamos que en el eje-Z, vale las mismas consideraciones que en la seccién anterior, por

lo cual,
oo L 00
3 _>7/ dk, . (B.12)
27'(' —00

Ny=—00
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Para evitar dudas: en este eje tenemos un continuo, que discretizamos pidiendo la peri-
odicidad de la funcién de onda en una longitud arbitraria L, lo suficientemente grande
para pasar de una suma discreta nuevamente al continuo.

La suma sobre los niveles de Landau es una suma discreta y queda como tal. Sin
embargo, debemos notar que esto ocurre en el plano—xy y existe una indeterminacién en
el dngulo sobre este plano en que se encuentra el estado. Esto es, existe una degeneracion

inherente a los niveles de Landau. Esta degeneracion vale,

iy . eBA
degeneracion de los niveles de Landau — 5
™

donde ¢ es el mddulo de la carga del electrén, B es la magnitud del campo magnético y
A es el area en el plano—zy. La demostracién de esta expresion fue dada en la Sec. 2.2
(ver ec. 2.31); ademds, una discusién interesante se puede encontrar en [5]. De este

modo, la suma sobre los niveles de energia se escribe como,

eBA L oo
— dk B.1
gj:ﬁ — ; = (B.13)

notando ahora que V = AL, tenemos finalmente,

eB

p(u, T, B) = (2m)?

> dknlke s, N (B.14)

Np, sp

En principio, la suma sobre IV, va hasta infinito. Operativamente se suma hasta que los
términos de la suma se hacen irrelevantes (ver Apéndice B en [20]). Ademds, en esta

expresion final, agregamos la suma sobre spin.

B.3. Limite para B = 0.

Las expresiones dadas por las ecs. (B.9) y (B.14), son vélidas en presencia de un
campo magnético localmente constante para particulas sin carga y con carga eléctrica,
respectivamente. El limite para B = 0 es trivial para el caso de la ec. (B.9), ya que
simplemente se hace B = 0 en la expresion para la energia de particula independiente
(ec. B.7). Este limite para el caso de una particula cargada, es notablemente complejo.

No haremos una demostracién rigurosa pues excede el objetivo de este seminario. Solo

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 148



EDUARDO BAUER

daremos algunas prescripciones y la bibliografia para quien tenga un interés particular
en el tema. Nuestro objetivo es, partiendo de la ec. (B.14), obtener su limite cuando el
campo magnético tiende a cero. Empleamos la siguiente prescripcién dada en [22]:

[ dk, [ dk,
2 - 2m(eB)

Np

(B.15)

Reemplazando esta expresion en la ec. (B.14), obtenemos inmediatamente la ec. (B.9);
excepto por las energias de particula independiente, que debemos reemplazar por las
correspondientes a la ausencia de campo magnético.

Probablemente esta sea la justificacién mas débil de todo este escrito. Una forma
alternativa para justificar este limite es llevar adelante una verificacion numérica: tomar
valores para la intensidad del campo magnético cada vez mas pequeiios, compararlos
con la expresién para B = 0 (que es simplemente la ec. B.9), y ver su convergencia.
Esto no es numéricamente simple, pues el nimero de niveles de Landau que debemos
sumar crece cuando la intensidad del campo magnético decrece.

Para encontrar una fundamentacién sélida, debe revisarse el Apéndice B en [21], junto
al trabajo de Kaminker y Yakovlev [23]. Debemos advertir al lector, que este trabajo esta
escrito en ruso, con letras cirilicas. Sin embargo, los traductores en red, lo traducen al

castellano con la suficiente exactitud para poder entender el articulo.

B.4. Unidades

El tema de las unidades no debe ser subestimado, pues no solo es indispensable a
la hora de hacer cualquier calculo numérico, sino que nos enseiia a entender mejor el
problema. Las unidades en la ec. (B.9), son simples. Como ya lo nombramos, el producto
k - r es adimensional. Luego, si medimos la distancia en Fermis (fm), entonces k, tiene
unidades de fm~! y la densidad de nimero tiene unidades de fm=3. Sin embargo, es

comun emplear el impulso p, en lugar del nimero de onda k, donde,
p = Ik,
Reescribimos ahora la ec. (B.9),

p(p, T, B) = (%)13713 Z / dpn(p, sn). (B.16)

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 149



EDUARDO BAUER

Analicemos las unidades de p:

energia tiempo energia
[p] = [hk] = =

longitud ~ velocidad’

Avancemos un poco sobre esta idea, sabemos que,

p? (pc)?

[%] B [2m02

| = energia,
luego,

[p%c?] = energia®.
Si medimos la energia en MeV, las unidades de p, resultan,

[p] = MeV/c.

Es comin el uso de las llamadas “unidades naturales”, para las que ¢ = h = 1. En

unidades naturales debemos escribir la ec. (B.16), como,

pT.B) = s 3 [ dpnip.s), (B.17)

Operativamente, es comun trabajar con una cierta mezcla de unidades, donde tomamos
a p, en unidades de MeV, el 1/c de las unidades del impulso lo sacamos afuera de la

integral y tenemos,

1
p(p, T, B) = (277 (ho)? ; / dpn(p, sn), (B.18)
donde,

he 22 197,3 MeV fm,

con lo cual la densidad de niimero nos queda nuevamente como fm~3.
Las unidades de las energias de particula independiente nos quedan en MeV, pensando
a la masa y al impulso en unidades de MeV, también. Vayamos ahora a la ec. (?7).

Reescribimos esta expresién en funcion de Pz,
9 he)3 2z TPz Spy {Vp), :
P /L,j, ( )2 ( C) NE 1Y Pz, S

donde ademas dividimos por (%ic)®. De la ec. (A.11), sabemos que eB tiene unidades de
MeV?, las de p, son MeV y las de hc, son MeV fm, con lo que la ec. (B.19), queda con

unidades de fm~3, como era de esperarse.
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Apéndice C
Unidades MKSA y CGS

En el primer curso de fisica, uno de los primeros temas es el de los sistemas de
unidades MKS (metros-kilogramos-segundos), luego extendido al MKSA para agregar el
Ampere; junto al CGS (centimetro-gramo-segundo). Vale la pena sefialar que el sistema
MKSA es también llamado SI (sistema internacional); mientras que el sistema CGS
también es conocido como sistema de Gauss.

Si nos limitamos a la mecanica, el paso de un sistema a otro es trivial. Sin embargo,
cuando incluimos al electromagnetismo, tal cambio deja de ser trivial y es conveniente
mostrar en el presente Apéndice ciertas prescripciones para pasar de un sistema al otro,

con el fin de evitar confusiones.

C.1. Introduccion al tema

La divergencia entre los sistemas MKSA y CGS para el caso del electromagnetismo,
parte de la definicién de carga eléctrica. En el sistema CGS, definimos la carga segin la

formula,

F=1%2;
r
La unidad de carga se designa con el nombre de “unidad electrostatica de carga” (statC):
decimos que cuando dos cargas iguales, separadas por 1cm experimentan una fuerza de
1dina, entonces el valor de la carga es de 1statC.
Por otra parte, en el sistema MKSA se define en primer lugar la unidad de corriente, el

Ampere, y dada la corriente se define la unidad de carga; que naturalmente es el Coulomb.
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En este caso, la expresion para la fuerza electroestatica entre dos cargas resulta,

1
F— q1 g2

= .
Areg 12

También en el sistema MKSA, vale la relacién,

1
\/50/10'

En el sistema CGS no existen las constantes £q y 119, pero en muchas expresiones aparece

C =

la velocidad de la luz ¢, como veremos enseguida.

C.2. Las ecuaciones de Maxwell

Naturalmente, el electromagnetismo esta contenido en las ecuaciones de Maxwell y

mostraremos ahora las expresiones para las mismas en los dos sistemas de unidades.

Cuadro C.1: Las ecuaciones de Maxwell, junto a la fuerza de Lorentz, para los sistemas

de unidades MKSA y CGS

Unidades MKSA Unidades CGS
Ley de Gauss (E) V-E=_p(r) V - E =4np(r)
Ley de Gauss (M) V-B=0 V.-B=0
Ley Ampere V X B — (50/;0)% =puod | VX B — %% =g
Ley de Faraday V x E+2B g Vx E+12B _g
Fuerza de Lorentz F=q¢E+v x B) F=qE+ivxB)

En el cuadro C.1, mostramos las ecuaciones de Maxwell, junto a la fuerza de Lorentz,
para los sistemas de unidades MKSA y CGS. Las unidades MKSA son las mas difundi-

das, pues son mas adecuadas para el uso ingenieril y eso hace que el instrumental de

Facultad de Cs. Astrondmicas y Geofisicas | UNLP 152



EDUARDO BAUER

laboratorio adopte esas unidades. Sin embargo, las unidades CGS o de Gauss, son mas
practicas para los desarrollos teéricos. Esto se debe a que en unidades de Gauss, los
campos eléctrico y magnético (E y B, respectivamente), tienen las mismas unidades.
Es maés, los campos E, B, P, M, D y H, donde agregamos la polarizacién, magne-
tizacién, induccion eléctria e induccién magnética, poseen todos las mismas unidades.
Ademas, el potencial escalar eléctrico @ y el potencial vector magnético A, poseen las
mismas unidades entre si (pero diferentes a las de E, etc.). De esta manera, analizando
las dimensiones de una ecuacion, es facil ver dénde debemos multiplicar o dividir por la

velocidad de la luz, ¢. Esto es facilmente comprobable de la lectura del cuadro C.1.

Cuadro C.2: Unidades MKSA y CGS para el electromagnetismo. En esta tabla, el valor

2,9979... se refiere a los decimales correspondientes a la velocidad de la luz, c.

Magnitud Unidades MKSA  Unidades CGS Conversién

Carga ¢ C statC 1 C = 2,9979...x10? statC
Potencial ® Volt statvolt 1V =(1/2,9979...)x10~2 statvolt
Campo E Volt/m statvolt/cm 1 V/m = (1/2,9979...)x10~* statvolt/cm
Campo B Tesla Gauss 1T=10*G

En el cuadro C.2, mostramos el valor numérico para convertir unidades electromag-

néticas de un sistema a otro.
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Apéndice D
Notacion relativista

En este apéndice mostraremos algunos elementos de la notacién relativista, junto a
ciertas propiedades Utiles de las matrices v (definidas en las ecs. 4.17). Como sabemos,
en términos relativistas se trabaja con cuadrivectores, que en el caso de la posicién en el
espacio—tiempo, incluyen las tres componentes espaciales y el tiempo multiplicado por
la velocidad de la luz (con lo cual las cuatro componentes tienen las mismas unidades).

Designamos a este cuadrivector como x*, con = 0,1,2y 3:

2% = et, o=z, 22 =y, 3 =2z (D.1)

Debemos notar que el indice y, se escribe como un superindice. Cuando es asi, se habla
de cuadrivectores contravariantes. Cuando se trata de un subindice, se designan como

cuadrivectores covariantes. La relacion entre ambas cantidades viene dada por,
. v
‘T,U« - g/.ulm ) (D2)

donde g, se denomina tensor métrico y viene dado por,

1 0 0 O
0O —1 0 0
Juv = (D3)
O 0 -1 0
0 0 0 -1

Notar que en la ec. (D.2), empleamos la llamada “convencién de Einstein”, que consiste

en sumar sobre los indices repetidos de 0 a 3. Usando esta convencién, tenemos,

g = 4. (D.4)
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Técnicamente, g, es la inversa de ¢g"”; pero un simple calculo muestra que son iguales.

Naturalmente,

= g™, (D.5)

En esta misma linea, para las matrices v (recordemos que estan definidas en las ecs. 4.17);

tenemos,

Yo = 7

Damos ahora algunas definiciones,

= Y,
o 0
¥ = ,
0 o
14 Z 4 v
o = S ("M =) (D.7)

2

Enseguida mostraremos algunas propiedades de las matrices . Antes de ello, daremos
otra definicién: para cualquier cuadrivector a*, definimos la matriz de 4 x 4, ¢ (debe

leerse “a slash”), como,
t = a,". (D.8)

Veamos ahora algunas propiedades de las matrices ~:

YA A = 29",
Y =4,
YA = =29,
WY = 497,
@b+ bd¢ = 2a-b,
Yl = =24,
Nuthyt = da-d. (D.9)
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Sobre valores de las trazas,

Tr(I) = 4,
Tr(y*y") = 4¢",

Tr(gh) = 4da-b,

Tr(v°) = 0. (D.10)

Finalmente, mostramos algunos valores de anticomutadores. Recordemos la definicién

de un anticonmutador: {A, B} = AB + BA. Puede demostrarse que,

"y = 29,
{7’} = 0. (D.11)
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Apéndice E
Constantes para el mes6n—w y otros

En este apéndice mostramos el valor numérico de algunas constantes fisicas y discu-
timos brevemente sus unidades. Comenzamos con los siguientes valores,

9, = 0,653

M, c* = 80400MeV

Notemos que,

go \*1 s
(M 02> 5 =6,61093 Mev—"s

Vale la pena indicar que la ec. (4.62), se puede reescribir como,

U= (i) 7 Lo A TS 1)
Sobre las unidades, por inspeccién de la ec. (4.57), notamos que,
[T (E.-)cb] =MeV4,
y de la ec. (E.1),
[dE,.-] =MeV,

41
()1 1]
wC

De este modo,
I's] = Hz = 1/s.

Obviamente que para la vida media, tenemos 75 = 1/T'g, por lo cual [15] =s.
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Apéndice F

Calculo del elemento de matriz débil

(M eyl

Calcularemos en forma aproximada el elemento de matriz (| M., ,,|?). Esto ya debe
llamar la atencién, pues esperariamos calcular el elemento (M, -,;,|*), que resulta
ser igual; aunque el primero posee un planteo mas simple. Comenzamos definiendo la

densidad Lagrangiana (ver por ejemplo el libro de Ryder, Ref. [12]),

L= —} ( Je )2 <&eﬁyu (1 - 75) ¢V> (&p%ﬁ (CV - CA'VS) %) : (Fl)

Aqui tenemos nuestra primera dificultad, pues las cantidades v,,, ¥, ¥~ y ¥, no son
funciones de onda, sino operadores de campo. El comprender acabadamente su signifi-
cado requiere del estudio de la Teoria Cuantica de Campos, que excede este seminario.
Sin embargo, podemos ignorar esta expresion sin mayor culpa e ir al elemento de matriz,

donde empleamos espinores,

1 e \2[_ _
Mepin = =5 (125) (52 1= w0 ) (w0 (v = e (F2)

Los spinores para el protén, neutrén y electron estan dados en las ecs. (4.22), donde
debemos reemplazar la masa por la correspondiente a cada particula. Como estamos
considerando al neutrino como una particula sin masa en reposo, la expresion para su
spinor es diferente. No daremos su expresion, pues como mostraremos enseguida, no se
necesitan las expresiones explicitas de los spinores para calcular al elemento de matriz.

Es conveniente expresar al cuadrado del elemento de matriz como la contraccién de un
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tensor lepténico [#*, con un tensoar hadrénico H :

2 1 G 4 o
|Me*p,1/n| :674 (ch2) [ H;wm (F3)

con,

[He = (uw“ (1 —15) ue—> (ue—va (1 =) uu>a (F-4)

Hyo = <un (cv +cavs) ’Yu%) (Up% (cv — cavs) Un) : (F.5)

Para hacer las sumas sobre spin empleamos el llamdo “truco de Casimir” [11], que nos
permite efectuar las sumas sobre spin evaluado trazas. Introduciremos dos trazas, L*“
y H,a de los tensores leptonico y hadrénico, respectivamente. Mostraremos enseguida

sus expresiones. Tenemos entonces,

(Meponl?) = = (-22)" pregg (F6)
e~ p,un - 674 ch2 poes .

Recordemos que sumamos sobre los estados finales y promediamos sobre el estado inicial.

Analicemos cada traza por separado.

F.0.1. Traza leptonica

El tensor leptoénico:

e = (@ (1= 75) w) (@7 (1= 75) w). (F.7)
Usando las propiedades de las matrices gamma, el adjunto se puede escribir como,
@y (1 =75)w)" = uf (" (1=s)) @l =wA" (1= y5)ue,  (F8)
tenemos,
e = a" (1 —75) Ue-Ue-v" (1 — 75) Uy (F.9)

Empleando ahora el truco de Casimir,

S e = (F.10)

spins

donde,

Lr = tr(y" (L =) p, v* (L =) p,) = 2tr(v"p, v"p, + 7P, 7" p (F-11)

Despreciamos la masa del neutrino. Luego de un poco de algebra, tenemos,

LM = 8(plpl + phpl — 9" (D - Pe-) — 1€ Perypin). (F.12)
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F.0.2. Traza hadrodnica

Seguimos pasos similares al caso anterior,
Hyo = (Tyyu(cv — cavs) Un)T (TpYa (v — Ccays) Un) (F.13)
el adjunto resulta,
(T (ev — cars) ua)' = Ty (3 (v — cav5))T Y uw, (F.14)

realizando las sustitucion,

70 (% (cv — CA%))T 70 = (cv +cavs) Vs (F.15)
tenemos,
Hyo =T (cv + cavs) Vuln T Ya (v — €a7s5) Up - (F.16)
La suma sobre spin, resulta entonces,
Hya = tr((ev +cas) %(Pp + myp)Ya (cv — cas) (}’jn +my)). (F.17)

Para evaluar la traza, elejimos el sistema de referencia donde el neutrén esta en reposo.
Por conveniencia, separamos esta suma en tres contribuciones, proporcionales a C%, C?

and cycy4, respectivamente. Desarrollando cada contribucién, tenemos,

H,l‘t/a = 2 C%/ (ppupna + ppocpnu - gua (pp : pn) + mnmp g;m) )
Hﬁa = 2 Ci (ppupnoz + PpaPrp — Gua (pp : pn) — MypMyp gua) ;
Myl = —4icvcacuanpybh, (F.18)

donde por simplicidad omitimos el indice de spin en cada w. De esta manera, tenemos

finalmente,

Heo =My + Hio +H 2 (F.19)

F.0.3. Evaluacién de (M., ,.|?)

Para evaluar finalmente el elementos de matriz, debemos realizar la contraccién de

la contribucién lepténica y hadranica. Para ello, usamos la propiedad,

€£my‘fx\mu =2 (5§\5§5 - 5575@7
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obtenemos entonces,

<|M@7PaVn’2> - ; (]\5:102)4 [(C%/ + CZX)((Z?;D : pe*)<pn : pV) + (pp : pu)(pn : pe*))
— (et — &) mamy, (py - pe-)

+ 2CVCA((pP ' pe‘)<pn . pI/) - (pp ' pl/)<pn : pe‘))]' (F20)

Vemos la convinacién de tres productos diferentes. Del andlisis numérico resulta que se

puede reemplazar,

(pp ) pu)(pn : pe*) - (pp ’ pe*)(pn : pV)7

mp MMy (pu ' pe*) - (pp ' pe*)(pn ' pl/)' (F21)

Naturalmente, hacemos esta aproximacion pues conduce a un buen resultado, ya que

analiticamente es incorrecta. De este modo, tenemos finalmente,

(MP) = 5 (5225) (6 +3) (o -1o) oy 9o (F.22)

Esta es la expresion que empleamos para el calculo de la vida media del neutrén.
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Comentario final

Esperaria no equivocarme al afirmar que todo tema de cualquier disciplina cientifica,
es un tema abierto. En fisica, uno de los primeros modelos completos es el de las Leyes
de Newton. Estas leyes representan una sintesis del conocimiento de la mecanica clasica
en verdad maravillosa. Quiza constituyan el tema mas estudiado en fisica. Sobre ellas,
surgieron restricciones en su aplicacion debido a la Mecanica Cudntica y la Teoria de la
Relatividad. Pero aiin dentro del rango de aplicabilidad de las mismas, existen problemas,
como el problema de tres cuerpos, sobre los que atin se trabaja. En astrofisica, la ve-
locidad de rotacién de ciertas galaxias es un problema abierto, donde algunos proponen
la existencia de materia oscura; mientras que otros dudan de la validez de la Ley de
Gravitacién Universal para distancias grandes.

Si aceptamos que todos los temas de estudio dejan lugar para nuevas investigaciones,
debemos ser claros en que el grado de avance en cada tema es diferente. Estos cinco
seminarios no constituyen trabajos originales, sino que dan cuenta de trabajos ya pub-
licados (donde hemos dado la bibliografia correspondiente). Aln asi, buscamos temas
que dejan abiertos mas interrogantes de los que resuelven. Claro, no es nuestro objetivo
el esperar que el lector aborde estos problemas. Nuestro objetivo es modesto y es que
el alumno como dltimo tema para finalizar el curso de Mecanica Cuantica, estudie una
aplicacién de los contenidos del curso, en un tema que va un poco mas alla del curso en
si. No tanto por el contenido del tema, sino mas bien por el valor formativo en abordar
una metodologia de andlisis nueva, partiendo de los contenidos del curso. Junto a esto,
el saber que por la misma linea de trabajo se llega a un problema abierto, puede ser un
incentivo interesante.

En resumen, el desafio no es comprender algo acabadamente, sino realizar el esfuerzo
por abordar un problema nuevo, con mas interrogantes que certezas y por la satisfaccion

de saber un poco mas, por modesto que sea.
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