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Introducción

El objetivo de este trabajo es el de presentar cinco seminarios de Mecánica Cuántica,
con el fin de que en las instancias finales del curso correspondiente, los alumnos reunidos
por grupos, elĳan, preparen y exponen uno de ellos. Puede especularse con que el fin de
tal labor, sea el coronar el final del curso con una aplicación de algún impacto, que resulte
del empleo directo del contenido del curso. Pero no es así. Para entender acabadamente
el contenido de cada uno de los siguientes seminarios, se requieren conocimientos que van
más allá del contenido de Mecánica Cuántica que vimos hasta ahora. El objetivo didáctico
de los seminarios es el de enfrentar al alumno de Astronomía con un problema nuevo,
cuyo esquema formal tiene algunos elementos conocidos, pero otros no lo son. Es que
cualquier trabajo de investigación supone el abordaje de conocimientos y metodologías
que aún no hemos estudiado. Claro, se puede preguntar qué grado de comprensión
puede alcanzarse en el tiempo acotado del que dispone un alumno. Eso depende de
muchos factores. Pero la meta no es lograr una comprensión completa de los diferentes
seminarios, sino sólo alcanzar algún grado de comprensión, aún parcial, de los mismos.
Es el valor formativo de enfrentar un tema nuevo, con un formalismo no visto, lo que
nos interesa.

La licenciatura en Astronomía es una carrera en que un porcentaje alto de sus gradu-
ados se dedican a la investigación científica. Cualquier investigación científica supone un
desafío similar al de estos seminarios. Es conveniente advertir al alumno, sin embargo,
que si estos seminarios le resultan de muy difícil comprensión, no debe desalentarse: con
todo, estos seminarios se encuadran dentro de un área del conocimiento específica. Es el
área de la Mecánica Cuántica y sus aplicaciones. La Astronomía es mucho más amplia
y comprende disciplinas muy diferentes. Cada persona encuentra su área de interés. En
resumen entonces, el objetivo de estos seminarios es el de enfrentar al alumno con un
desafío y ver cuán lejos llega en su comprensión.
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Dicho esto, vale la pena resumir el contenido de cada uno de los cinco seminarios.
El orden de los mismos no es arbitrario: el primer seminario es el que se aleja menos
del esquema formal del curso y en los siguientes se va incrementando el número de
elementos nuevos. Esta afirmación puede inducir a elegir siempre el primer seminario.
Pero no debe ser así. En términos ideales, se debería emplear el mismo esfuerzo para
cualquiera de los mismos. En la exposición de los más difíciles, quizá se expongan dudas
más que certezas. Pero los errores y dudas son muy útiles: nos enfrentan a nuestro
desconocimiento y da lugar al debate del que surge el conocimiento. Resumamos ahora
cada uno de los mismos.

Primer seminario: Interacción de la radiación con la materia. Empleando los conocimien-
tos adquiridos en la teoría de perturbaciones dependiente del tiempo, se discuten las posi-
bles transiciones atómicas debido al efecto de la radiación electromagnética. Se analizará
la cuantificación del campo electromagnético con el fin de comprender el decaimiento
espontáneo de un electrón en un nivel excitado de un átomo.

Segundo seminario: Materia proto-neutrónica con un campo magnético intenso. Se
discutirá la construcción de una ecuación de estado para materia formada por protones
y neutrones, con densidades en un rango de hasta tres densidades de saturación nuclear
y un campo magnético intenso. No se analizará la interacción fuerte entre las partículas.
Se discutirá la función de distribución de las partículas teniendo en cuenta el principio de
Pauli. Debido a la presencia del campo magnético, se estudiarán los niveles de Landau
para los protones.

Tercer seminario: Oscilaciones de neutrinos. Las oscilaciones de neutrinos son de
enorme importancia astrofísica. En el curso de trabajos prácticos se estudia el problema
en forma simplificada, considerando dos estados cuánticos de los neutrinos. En este
capítulo se discute el caso realista de tres tipos de neutrinos.

Cuarto seminario: La desintegración del neutrón. Empleando nuevamente la teoría
de perturbaciones dependiente del tiempo e introduciendo en forma fenomenológica la
interacción débil, se mostrará un cálculo simple, pero realista, el valor de la vida media
de un neutrón en el espacio libre.

Quinto seminario: El algoritmo de Shor en la computación cuántica. En el último tema
del curso, se introducen conceptos de teoría de la información cuántica y computación
cuántica. En este seminario se discute el algoritmo de Shor; que es quizá la aplicación
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mejor estudiada de computación cuántica. Por medio de este algoritmo, se puede des-
componer un número grande en factores primos empleando una potencial computadora
cuántica.

La bibliografía se cita en los mismos seminarios. Buscamos adoptar para cada semi-
nario, el enfoque de un libro o publicación científica particular. Aquel libro o publicación
de referencia, es señalado como tal.

EDUARDO BAUER
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Capítulo 1

Interacción de la radiación con la
materia

Introducción

El título de este seminario es algo general. Abordaremos en realidad un tema más
específico: la interacción de la radiación electromagnética con un átomo. Debemos notar
que en el curso de Mecánica Cuántica, siempre hemos tomado a la interacciones sobre el
átomo como una interacción clásica. Esto es, el campo magnético responsable del efecto
Zeeman o el campo eléctrico que causa el efecto Stark, son campos clásicos. Por otra
parte, en el curso de Física Moderna, se estudiaron situaciones experimentales como las
observadas en el efecto fotoeléctrico, donde se afirma que existe una partícula, el fotón,
que lleva una cantidad definida de energía dada por hν y cantidad de movimiento ~k,
con c~k = hν. El fotón es la partícula asociada al campo electromagnético. Debemos
intuir que detrás de los conceptos de fotón y radiación electromagnética, subyace la física
cuántica. Algunas de estas ideas las desarrollaremos en este capítulo.

El fotón es, sin lugar a dudas, una partícula muy singular. Es un bosón que no tiene
masa en reposo1, como mencionamos acarrea energía y cantidad de movimiento, y tiene
spin 1. El hecho de que el fotón tiene spin 1, resulta del análisis de su polarización.
De esta manera, comenzamos a discutir a la radiación electromagnética empleando la

1Afirmar en este punto que “se mueve a la velocidad de la luz”, sería redundante; pues el fotón es
la luz.
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fraseología que empleamos para el electrón, el protón y el neutrón; esto es, términos
cuánticos.

Vemos entonces que tenemos un objetivo, que es estudiar la interacción de la ra-
diación electromagnética con un átomo. Y una disyuntiva, que consiste en describir o
no a la radiación electromagnética en términos de la física cuántica. ¿Cómo debemos
proceder frente a este problema? Cómo procedemos siempre frente a cualquier problema
físico: modelar al mismo en los términos más simples que podamos e ir sofisticando el
esquema en la medida en que no podamos reproducir la fenomenología. Comenzare-
mos entonces tratando a la radiación electromagnética en términos clásicos y luego, lo
haremos en términos cuánticos.

Este capítulo supone el conocimiento previo de la teoría de perturbaciones depen-
diente del tiempo (ver por ejemplo [1]), seguimos el enfoque dado en el libro de G.
Baym [2]; excepto para las secciones finales, donde analizamos el ensanchamiento de las
líneas espectrales, en que empleamos los libros de A. P. Thorne [3] y D. Mihalas [4].

1.1. La radiación electromagnética desde el punto de
vista clásico

Básicamente, debemos describir a una onda electromagnética. Para ello, en esta
sección trabajaremos con el gauge transversal, para el cual el potencial escalar de la
radiación W (r, t), es cero y el potencial vector A(r, t), tiene divergencia nula,

∇ ·A = 0. (1.1)

De este modo, los campos eléctrico y magnético, vienen dados en función del poten-
cial vector como,

E(r, t) = −1
c

∂A(r, t)
∂t

, (1.2)

B(r, t) = ∇×A(r, t). (1.3)

La dirección y la magnitud del flujo de energía por unidad de tiempo y de área, viene
dado por el vector de Poynting, P ,

P = c

4π E(r, t)×B(r, t). (1.4)
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La ecuación que rige la evolución temporal de la radiación electromagnética para este
gauge lejos de la fuente que la genera, viene dada por,

(
∇2 − 1

c

∂2

∂t2

)
A(r, t) = 0. (1.5)

Una solución no trivial de esta ecuación, es una onda plana, que viene dada por,

A(r, t) = αλ ei(k · r−ωt) + α∗λ∗ e−i(k · r− ωt), (1.6)

donde α es una constante, empleamos ω = ck y por la ec. (1.1), debe cumplirse,

λ · k = 0, (1.7)

donde λ es el vector de polarización. Cualquier onda A(r, t), se puede escribir como
una superposición lineal de ondas planas de la forma (1.6), como,

A(r, t) =
∑

k, λ


Akλ λ

ei(k · r−ωt)√
V

+ A∗kλ λ
∗ e
−i(k · r− ωt)
√
V


 . (1.8)

Naturalmente, esta es una expresión genérica, pues la suma sobre k, es una suma
continua. Por otra parte, λ se suma sobre dos estados de polarización ortogonales entre
sí y con k. Trabajamos en una caja de volumen V , tal que la onda sea periódica en los
bordes de la caja. Las cantidades Akλ, son factores de peso. Estos factores representan
a la amplitud de la onda electromagnética y están vinculados con la energía de la onda.
Finalmente, la energía de la onda, promediada en un ciclo, viene dada por,

E =
∑

k, λ

ω2

2πc2 |Akλ |
2 . (1.9)

1.2. El Hamiltoniano de interacción

En esta sección, construiremos un Hamiltoniano que representa a la interacción entre
la radiación y la materia. Para ello, emplearemos las hipótesis de la sección anterior,
donde modelamos a la radiación electromagnética por medio de un potencial vector
A(r, t); que como señalamos, es aún un modelo clásico para la radiación. El modo
de introducir un potencial vector en la ecuación de Schrödinger, en por medio de la
sustitución,

p→ p− e

c
A(r, t), (1.10)
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donde p, es la cantidad de movimiento. Podemos escribir el Hamiltoniano como,

H = 1
2m

[
p− e

c
A(r, t)

]2
+ V (r, t), (1.11)

donde V (r, t) representa a otras interacciones, más allá de la radiación electromagnética.
Por ejemplo, en el caso del átomo de hidrógeno, en V (r, t) colocamos a la interacción
coulombiana (que es central e independiente del tiempo). Es conveniente escribir al
Hamiltoniano, como la suma de dos términos,

H = H0 +Hint, (1.12)

donde,

H0 = p2

2m + V (r, t), (1.13)

Hint = − e

2mc [p ·A(r, t) +A(r, t) · p] . (1.14)

Esta separación resulta del desarrollo del término entre corchetes elevado al cuadrado
en la ec. (1.11), donde hemos despreciado el término,

1
2m

e2

c2
A2(r, t),

ya que es del orden de ∼ 1/c2. Vale la pena notar que el conmutador [p,A(r, t)], resulta,

p ·A(r, t)−A(r, t) · p = −i~∇ ·A, (1.15)

de esta manera, por la ec. (1.1), tenemos que solo en el gauge transversal el conmutador
en cuestión es cero.

Debe resultar obvio que nuestro interés se focaliza en el Hamiltoniano de interac-
ción. También, que emplearemos la Teoría de Perturbaciones dependiente del tiempo
(ver Caps. 13 y 14, en [1]). De esta manera, tomaremos los niveles cuánticos que resul-
tan de H0 y estudiaremos las transiciones que inducen Hint. Antes de seguir adelante,
generalizamos el Hamiltoniano de la ec. (1.14), para un sistema de muchas partículas.
Supondremos que todas las partículas tienen la misma masa y carga (claro, subyace la
idea de la nube de electrones de un átomo). Suponiendo que tenemos N partículas,
resulta,

Hint = − e

2mc

N∑

i=1
[pi ·A(ri, t) +A(ri, t) · pi] . (1.16)
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Podemos reescribir este operador de un modo más conveniente, definiendo primero
al operador j(r), como,

j(r) ≡ 1
2

N∑

i=1

[
pi
m
δ(r − ri) + δ(r − ri) pi

m

]
. (1.17)

Al ver su definición, podemos pensar que el operador j(r) representa a la corriente
de partículas en el sistema. Esto es parcialmente cierto, pues la definición rigurosa de la
corriente de partículas debe tener en cuenta a la ec. (1.10). Dadas las propiedades de la
función delta de Dirac, resulta evidente que,

Hint = −e
c

∫
dr j(r) ·A(r, t) (1.18)

Esta es la interacción que emplearemos para estudiar la interacción de la radiación
con la materia.

1.3. Absorción y emisión inducida de la luz

Partiendo del Hamiltoniano de la ec. (1.18), reemplazamos la expresión de A(r, t),
dada en la ec. (1.8); que corresponde a una superposición de ondas planas. Obtenemos,

Hint = −e
c

∑

k, λ

[
Akλ j−k · λ

e−iωt√
V

+ A∗kλ jk · λ∗
e iωt

√
V

]
, (1.19)

donde definimos,

jk ≡
∫
dr j(r) eik·r = 1

2

N∑

i=1

[
pi
m
eik·ri + eik·ri

pi
m

]
. (1.20)

Desarrollaremos ahora una expresión para el cálculo de la probabilidad de absorción
de la luz por un átomo. Suponemos que el haz de luz incidente, dado por la ec. (1.8),
resulta de la superposición incoherente de diferentes ondas planas. Este requisito de
incoherencia lo colocamos para descartar efectos de interferencia de la luz. Modelamos
el proceso pensando que tenemos un electrón en un átomo, éste absorbe energía de la
radiación incidente y debido a ello, pasa a un estado de mayor energía. Llamamos al
estado inicial |1〉 y al final |2〉; cuyas energías son E1 y E2, respectivamente. Pedimos,
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además, que E1 < E2. Para calcular la probabilidad de transición por unidad de tiempo,
empleamos la Regla de Oro de Fermi, en su expresión dada por la ec. (14.28) en [1]:

Γabs1→2;kλ = 2π
~

δ(E2 − E1 − ~ω) e2

V c2
|Akλ|2 |〈2|j−k · λ|1〉|2. (1.21)

Frente a esta expresión, la pregunta inmediata debe referirse al motivo por el que de
los dos términos de la ec. (1.19), se eligió el primero. La respuesta está contenida en la
misma expresión (1.21): debemos detenernos en la delta de Dirac, en este caso, vemos
que,

E2 = E1 + ~ω. (1.22)

Sabemos que ω > 0 y partimos de la hipótesis de que E1 < E2. De esta mane-
ra, la condición (1.22), se cumple. Por otra parte, si tomábamos el segundo término,
tendríamos,

E2 + ~ω = E1, (1.23)

de imposible cumplimiento para ω > 0 y E1 < E2.
Sumamos ahora sobre k y sobre λ, para obtener la probabilidad total de transición

por unidad de tiempo en pasar del estado |1〉, al estado |2〉,

Γabs1→2 = 1
V

∑

k, λ

2π
~

δ(E2 − E1 − ~ω) e
2

c2
|Akλ|2 |〈2|j−k · λ|1〉|2. (1.24)

En el siguiente paso, convertimos la suma sobre k, en una integral según,

1
V

∑

k

→
∫ k2dkdΩ

(2π)3 =
∫ ω2dωdΩ

(2πc)3 , (1.25)

que nos lleva a,

Γabs1→2 = 2πe2

~2c2
ω2

21
(2πc)3

∫
dΩ

∑

λ

|Akλ|2 |〈2|j−k · λ|1〉|2. (1.26)

Debemos notar que integramos sobre ω empleando la delta de Dirac, con lo cual
tenemos ω21 = (E2 − E1)/~.

Suponiedo que la radiación incidente subtiende un ángulo sólido ∆Ω y posee polar-
ización λ, promediando el vector de Poynting en un ciclo, la cantidad total de energía
por unidad de tiempo transportada por el haz incidente es,

1
V

∑

k

ω2
21

2πc |Akλ|
2 = ∆Ω ω4

21
(2πc)4 |Akλ|2. (1.27)
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Notemos que empleamos la notación ∆Ω, para el ángulo sólido de la radiación inci-
dente, que toma un valor finito. De este modo, podemos introducir la intensidad2, que
denotaremos como I(ω21), según la expresión,

I(ω21) = ∆Ω ω4
21

(2πc)4 |Akλ|2, (1.28)

que nos permite reescribir la ec. (1.26), como,

Γabs1→2 = 4π2e2

~2c2ω2
21
I(ω21) |〈2|j−k · λ|1〉|2 (1.29)

Discutimos ahora la probabilidad de transición por unidad de tiempo, cuando la
partícula inicialmente se encuentra en un estado excitado y decae a un estado de menor
energía. Este proceso se denomina “emisión inducida”. Llamamos |2〉 y |1〉, a los estados
inicial y final, respectivamente. Notemos que tenemos que E2 > E1. Esto es, hemos
invertido el estado inicial con el final respecto del caso de la absorción: ahora la partícula
“cae” a un estado de menor energía. El primer punto que debemos inspeccionar es cuál
o cuáles son los términos de la interacción (1.19), que contribuyen al decaimiento. Por
inspección, vemos que al implementar la interacción en la Regla de Oro de Fermi, la
conservación de la energía (léase, la delta de Dirac), nos lleva a las siguientes relaciones,

E1 = E2 + ~ω del primer término de la interacción, (1.30)

E1 = E2 − ~ω del segundo término de la interacción. (1.31)

Ya que E2 > E1 y que ω > 0, solo puede cumplirse la relación (1.31), proveniente del
segundo término de la interacción. Empleando nuevamente la Regla de Oro de Fermi,
tenemos para la emisión inducida,

Γem. ind2→1 = 1
V

∑

k, λ

2π
~

δ(E1 − E2 + ~ω) e
2

c2
|Akλ|2 |〈1|jk · λ∗|2〉|2, (1.32)

Donde hemos omitido varios pasos algebráicos, pues son idénticos a los de la absorción.
De esta manera, la expresión final para la emisión inducida, resulta,

Γem. ind2→1 = 4π2e2

~2c2ω2
21
I(ω21) |〈1|jk · λ∗|2〉|2 (1.33)

2Las dimensiones de intensidad son: energía por unidad de área y por unidad de ángulo.
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El valor para ω21, es el mismo que el de la absorción.
Por otra parte, de las propiedades (5.2) en [1], tenemos,

〈2|j−k · λ|1〉 = 〈1|jk · λ∗|2〉, (1.34)

por lo cual, de la comparación de las ecs. (1.29) y (1.33), concluimos que,

Γabs1→2 = Γem. ind2→1 (1.35)

Tanto en el caso de la absorción, como en la emisión inducida, el campo electro-
magnético cede o recibe una cantidad de energía dada por ~ω21. Interpretamos que esta
es la energía del fotón intercambiado. Consideremos ahora todos los fotones de la onda
electromagnética, donde cada fotón tiene una energía ~ω. Debemos recordar el vínculo
entre ω y k, dado por ω = ck. A partir de estos elementos, podemos escribir,

E =
∑

k, λ

~ω Nkλ, (1.36)

donde Nkλ es el número de fotones en el modo k, λ. Ya habíamos calculado esta energía
en términos de ∣∣Akλ

∣∣2, en la ec. (1.9). De la comparación entre ambas ecuaciones
resulta,

|Akλ |2 = 2π~c2
ω

Nkλ. (1.37)

Empleando esta relación, junto a las ecs. (1.32) y (1.34), podemos escribir,

Γabs1→2 =
∑

k, λ

4π2e2

V ω
δ(E2 − E1 − ~ω) |〈2|j−k · λ|1〉|2 Nkλ = Γem. ind2→1 . (1.38)

De esta manera, podemos expresar la probabilidades de transición por unidad de
tiempo en función del número de fotones. Debemos notar, a partir de la ec. (1.37), que
si conocemos el número de fotones, conocemos Akλ, a menos de una fase. Señalamos
al comienzo, que partimos de radiación electromagnética incoherente. Eso equivale a
afirmar que no conocemos la relación de fases. En otras palabras, la incoherencia del
haz inicial es equivalente a afirmar que del mismo solo conocemos el número de fotones.
Debemos notar que al introducir a los fotones, pasamos a un tratamiento semi–cuántico
de la radiación, pues el fotón supone la cuantización de la radiación electromagnética.
De hecho, la fase relativa de la componentes de la radiación y en número de fotones,
son cantidades complementarias (como la posición y la cantidad de movimiento).
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Antes de terminar esta sección, vale la pena hacer un comentario adicional sobre el
decaimiento inducido. Como ya discutimos, el decaimiento tiene lugar ya que incide un
fotón que induce el decaimiento. Frente a esto, todos sabemos que dado un electrón en un
estado excitado, éste terminará en el estado fundamental después de algún tiempo. Aún
si sobre el mismo no incide ninguna radiación. Este decaimiento se denomina espontáneo
y lo discutiremos más adelante. Pero en esta sección, lo que realmente nos interesa es
el decaimiento inducido. En particular, el hecho de que es inducido por un fotón y como
consecuencia del decaimiento se emite un segundo fotón. Este segundo fotón está en fase
con el primer fotón. De esta manera, si colocamos muchos sistemas cuánticos idénticos
e inducimos un decaimiento en uno, que genera dos fotones en fase, que induce el
decaimiento en otros dos sistemas, que producirán otros dos fotones en fase, al repetir
muchas veces este proceso, tendremos muchos fotones, todos en fase. Este es el principio
de funcionamiento del láser3.

1.4. Cuantificación del campo electromagnético

Como en la sección anterior, comenzaremos analizando la absorción. Mostramos que
podemos describir a la radiación electromagnética incoherente por medio de un estado
cuántico de fotones; donde afirmamos tener Nkλ fotones en el modo kλ. Recordando
que el fotón es un bozón, podemos tener dos o más fotones con los mismos números
cuánticos. De esta manera, podemos construir un estado cuántico normalizado para la
radiación electromagnética como,

|Nk1λ1 , Nk1λ1 , ... , Nkλ, ... 〉, (1.39)

donde tenemos Nkiλi fotones en el modo kiλi. Los estados así definidos son ortonor-
males; esto es, son ortogonales a menos que tengan el mismo número de fotones en cada
modo kiλi. Para tratar de fijar ideas, si estudiamos la absorción y el estado (1.39), es
el de partida, el estado final cuando la absorción ocurre en el modo kλ, es,

|Nk1λ1 , Nk1λ1 , ... , Nkλ − 1, ... 〉, (1.40)
3La palabra “láser”, es una sigla en inglés: Light Amplified by Stimulated Emission of Radiation (Luz

amplificada por emisión estimulada de radiación).
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donde observamos que tenemos un fotón menos en el modo kλ.
Ya mostramos la descripción cuántica de la materia y vimos que pasamos de un estado

|1〉, a un estado |2〉. Ahora agregamos la cuantificación del campo electromagnético
y pedimos que el operador de transición haga también que pasemos del estado dado
por la ec. (1.39) a la (1.40). Es conveniente unificar la notación, juntando la parte
correspondiente a la materia, con la de la radiación,

|1〉 ⊗ | ... , Nkλ, ... 〉 → |1; Nk1λ1 , Nk1λ1 , ... , Nkλ, ... 〉, (1.41)

|2〉 ⊗ | ... , Nkλ − 1, ... 〉 → |2; Nk1λ1 , Nk1λ1 , ... , Nkλ − 1, ... 〉. (1.42)

Debemos construir ahora un operador que nos lleve del estado (1.41) al estado (1.42);
y además, dado el Principio de Correspondencia, debemos pedir que al emplear ese
operador en la Regla de Oro de Fermi para calcular la probabilidad de transición por
unidad de tiempo, obtengamos el resultado anterior (ec. 1.29, o por simplicidad 1.21).
Llamamos a este operador Ĥint. Para construir este operador, comencemos analizando la
energía. Recordando que se absorbe un fotón en el estado kλ, la energía del estado (1.41)
es,

Energía inicial = E1 +
∑

k′, λ′
~ck′ Nk′λ′ , (1.43)

mientras que la energía correspondiente al estado (1.42) resulta,

Energía final = E2 +
∑

k′, λ′
~ck′ Nk′λ′ − ~ck. (1.44)

Empleemos ahora la Regla de Oro de Fermi. Existe aquí un punto sutil, que puede
pasar desapercibido. Cuando usamos la Regla de Oro de Fermi en la sección anterior,
en la delta de Dirac, aparece la diferencia de energía de los estados de partícula y la
energía del campo externo. Ahora no tenemos campo externo, pues el estado cuántico
lo contiene, por lo cual deja de ser “externo”. Ahora, tenemos un sistema cerrado, donde
la radiación electromagnética es parte de nuestro espacio de Hilber, como lo vemos en
las ecs. (1.41) y (1.42). Por lo tanto, en la delta de Dirac, tendremos la diferencia de
energía entre el estado inicial y final. Escribamos entonces la Regla de Oro de Fermi,

Γabs1→2;kλ = 2π
~
δ(E2−E1−~ck)|〈2; Nk1λ1 , ..., Nkλ−1, ...|Ĥint|1; Nk1λ1 , ..., Nkλ, ...〉|2.

(1.45)
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Debemos exigir ahora que el resultado sea el mismo que para el caso anterior. Para
ello, debemos pedir que el elemento de matriz valga,

|〈2; Nk1λ1 , ..., Nkλ − 1, ...|Ĥint|1; Nk1λ1 , ..., Nkλ, ...〉|
2 = e2

V c2
|Akλ|2 |〈2|j−k · λ|1〉|2 =

= e2

V c2
2π~c2
ω

Nkλ |〈2|j−k · λ|1〉|2. (1.46)

Analizando esta expresión, vemos que el operador Ĥint, debe tener una parte que
actúe sobre la materia, de la forma j−k · λ, y otra parte que disminuya el número de
fotones; junto a ciertas constantes. Proponemos,

Ĥint = − e

c
√
V

∑

k′, λ′

(
Âk′λ′ j−k′ · λ′ + Â†k′λ′ jk′ · λ′

∗) , (1.47)

donde debemos notar que por medio del símbolo (ˆ), le dimos a Âk′λ′ , el carácter de
operador. Este operador actúa sobre el subespacio de fotones. Su acción debe ser la de
reducir en uno el número de fotones en el modo k′λ′. La presencia del segundo término
en la ec. (1.47), hace que Ĥint sea hermítico (ver la propiedad 3, de la Sec. 5.1.2 en [1]).

El análisis que sigue, es quizá el punto más importante de este seminario. Vayamos
un paso a la vez. Ya dĳimos que la acción de Âk′λ′ , debe ser la de reducir en uno el
número de fotones en el modo kλ, esto es,

Âkλ|1; Nk1λ1 , ..., Nkλ, ...〉 ∼ |1; Nk1λ1 , ..., Nkλ − 1, ...〉, (1.48)

donde de esta expresión, podemos decir que el operador Âkλ aniquila un fotón en el
modo kλ. Esta terminología puede sonar un poco belicista, pero veremos enseguida que
se enmarca en la terminología de lo que se da en llamar “segunda cuantificación”, donde
se introducen operadores de creación y aniquilación. Sigamos con nuestro razonamiento.
En la interacción Ĥint, ya ningún otro término actúa sobre el subespacio de fotones.
Luego, en el bra, para que el elemento de matriz de la interacción sea no nulo, debemos
tener:

|j; Nk1λ1 , ..., Nkλ − 1, ...〉,

donde el estado de partícula j, puede ser cualquiera; pero el de fotones debe ser exacta-
mente el indicado, con el mismo número de fotones en todos los estados y con un fotón
menos en el estado kλ. Escribamos el elemento de matriz de la interacción para nuestro
problema de interés,

〈2; Nk1λ1 , ..., Nkλ − 1, ...|Ĥint|1; Nk1λ1 , ..., Nkλ, ...〉. (1.49)
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Reemplazamos ahora la expresión para Ĥint, de la ec. (1.47), teniendo en cuenta la
propiedad dada por la ec. (1.48), con lo que tenemos,

〈2; Nk1λ1 , ..., Nkλ − 1, ...|Ĥint|1; Nk1λ1 , ..., Nkλ, ...〉 = − e

c
√
V
〈2| j−k · λ|1〉

× 〈Nk1λ1 , ..., Nkλ − 1, ...|Âkλ|Nk1λ1 , ..., Nkλ, ...〉. (1.50)

De la comparación de esta ecuación con la ec. (1.46), obtenemos,

〈Nk1λ1 , ..., Nkλ − 1, ...|Âkλ|Nk1λ1 , ..., Nkλ, ...〉 =
√

2π~c2
ω

√
Nkλ , (1.51)

donde esta identificación es válida a menos de una fase, que tomaremos como igual
a uno. Prestemos especial atención al punto que sigue. Ahora, tomamos el complejo
conjugado de este elementos de matriz,

〈Nk1λ1 , ..., Nkλ − 1, ...|Âkλ|Nk1λ1 , ..., Nkλ, ...〉
∗ =

= 〈Nk1λ1 , ..., Nkλ, ...|Â
†
kλ
|Nk1λ1 , ..., Nkλ − 1, ...〉 =

=
√

2π~c2
ω

√
Nkλ . (1.52)

Resumimos ahora los resultados de las ecs. (1.51) y (1.52), para mostrar la acción
de los operadores Âkλ y Â†

kλ
, sobre estados cuánticos de fotones como,

Âkλ|Nk1λ1 , ..., Nkλ, ...〉 =
√

2π~c2
ω

√
Nkλ |Nk1λ1 , ..., Nkλ − 1, ...〉, (1.53)

Â†
kλ
|Nk1λ1 , ..., Nkλ, ...〉 =

√
2π~c2
ω

√
Nkλ + 1 |Nk1λ1 , ..., Nkλ + 1, ...〉 . (1.54)

Debe ser obvio para el lector que para obtener la ec. (1.54), hicimos el reemplazo
Nkλ− 1→ Nkλ, en la ec. (1.52). De este modo, vemos que la acción del operador Âkλ,
es la de disminuir en una unidad el número de fotones, mientras que la acción de Â†

kλ
,

es la de incrementar en uno el número de fotones. Dada esta propiedad, decimos que
Âkλ, es el operador de aniquilación o destrucción de fotones, mientras que Â†

kλ
, es el

operador de creación (de fotones). El uso de los operadores de creación y aniquilación
se enmarca en el modelo de la llamada segunda cuantificación, como ya lo habíamos
nombrado.

Las relaciones dadas por la ecs. (1.53) y (1.54), son particularmente importantes y
este hecho lo discutiremos con más cuidado en la próxima sección. Debemos detenernos
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un poco en cómo se obtuvieron. Pensemos en la física del proceso que estamos analizan-
do. Si bien este esquema es aplicable en muchas situaciones físicas, focalicemos nuestra
atención en los niveles electrónicos de un átomo de hidrógeno, donde la radiación elec-
tromagnética o bien hace que el electrón salte a un estado de mayor energía, o bien la
misma radiación provoca el decaimiento a un estado de menor energía (asumiendo que
el electrón inicialmente se encontraba en un estado excitado).

La teoría clásica de la radiación electromagnética predice en forma correcta la ab-
sorción de radiación, que produce un salto del electrón a un estado de mayor energía.
Pero falla en no ser capaz de predecir el decaimiento espontáneo del electrón. Cuando
un electrón se encuentra en un estado excitado, después de algún tiempo decae a un
estado de menor energía. Si este estado de menor energía no es el estado fundamental,
seguirá decayendo hasta alcanzar el estado fundamental, que es estable. Empleando la
teoría clásica de la radiación electromagnética, este decaimiento espontáneo no debería
ocurrir. Debemos detenernos un minuto para analizar el significado de este hecho. El
que la teoría clásica de la radiación electromagnética falle en predecir el decaimiento
espontáneo no significa que la misma esté mal. Indica más bien que ocurre algo a nivel
cuántico que va más allá del modelo clásico. Es por ello que en esta sección desarrolla-
mos la cuantificación del campo electromagnético. Notemos que para poder elaborar el
modelo cuántico, debimos ajustarlo pidiendo que reproduzca la absorción, calculada con
la teoría clásica de la radiación electromagnética.

Hagamos una pequeña síntesis del razonamiento empleado: planteamos la cuan-
tificación del campo electromagnético y ajustamos el modelo cuántico, pidiendo que
reproduzca el resultado anterior para la absorción de la luz. Esto lo hicimos así, pues
confiamos en el resultado de la absorción. Calcularemos ahora la emisión en términos
puramente cuánticos. Recordemos qué es la emisión y cuáles son nuestros datos. Tene-
mos al electrón de un átomo en un estado excitado cuya energía es E2 y éste decae a un
estado cuya energía es E1. Para determinar la energía del estado inicial y final, debemos
incluir la del campo electromagnético,

Energía inicial = E2 +
∑

k′, λ′
~ck′ Nk′λ′ , (1.55)

Energía final = E1 +
∑

k′, λ′
~ck′ Nk′λ′ + ~ck. (1.56)

Enseguida emplearemos la Regla de Oro de Fermi. Para evitar dudas, en dicha regla la

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 24



delta de energía resulta,

δ (Energía final− Energía inicial) = δ (E1 + ~ck − E2) . (1.57)

Recordemos que la delta de Dirac es par δ(x) = δ(−x). Ahora sí, empleamos la Regla
de Oro de Fermi para la emisión,

Γemi2→1;kλ = 2π
~
δ(E2−E1−~ck)|〈1; Nk1λ1 , ..., Nkλ+1, ...|Ĥint|2; Nk1λ1 , ..., Nkλ, ...〉|2.

(1.58)
Trabajamos ahora sobre el elemento de matriz,

〈1; Nk1λ1 , ..., Nkλ + 1, ...|Ĥint|2; Nk1λ1 , ..., Nkλ, ...〉 = − e

c
√
V
〈1| jk · λ∗|2〉

× 〈Nk1λ1 , ..., Nkλ + 1, ...|Â†
kλ
|Nk1λ1 , ..., Nkλ, ...〉 =

= −e
c

√
2π~c2
ωV

〈1| jk ·λ
∗|2〉

√
Nkλ + 1, (1.59)

donde usamos la ec. (1.54), para saber la acción de Â†
kλ

. Tomando el módulo al cuadrado
de esta expresión y reemplazándola en la ec. (1.58), tenemos finalmente,

Γemi2→1;kλ = 4π2c2

ωV
δ(E2 − E1 − ~ω) |〈1| jk · λ∗|2〉|2 (Nkλ + 1) . (1.60)

Debemos notar que en lugar de tener Nkλ como en la ec. (1.38), tenemos Nkλ+1. Este
punto lo discutiremos con mayor detenimiento en la próxima sección.

1.5. Discusión de la emisión espontánea

Cuando mostramos Γabs y Γem. ind, en la Sec. 1.3; no habíamos cuantificado el campo
electromagnético. Al hacerlo, nos encontramos con un factor Nkλ, en la absorción; y un
factor Nkλ + 1, en la emisión. El factor Nkλ, es el número de fotones en el estado kλ,
en el haz de luz que incide sobre el átomo. Esto nos dice que si Nkλ = 0, no se produce
la absorción. De acuerdo, esto suena demasiado obvio, ya que si no incide la luz, nada
se puede absorber. Pero en nuestra defensa, si colocamos Nkλ = 0, y no obtenemos cero
para la absorción, es porque algo estaba mal. Al menos es una prueba trivial.

Sin embargo, si colocamos Nkλ = 0, para la emisión, no obtenemos un cero, ya que
en este caso el factor multiplicativo es Nkλ + 1, y ese número uno que aparece en la
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suma hace que Γemi, sea no nulo para este caso. Naturalmente, ese número uno es lo que
da cuenta de la emisión espontánea. Esto es, en ausencia de radiación electromagnética
(Nkλ = 0), se produce la emisión.

Este es un punto conceptualmente muy importante. Debemos pensar cuál es el es-
pacio de Hilbert de nuestro problema físico. Solo cuando tengamos el espacio de Hilbert
completo, podemos estar seguros de nuestro resultado. Al tomar a la radiación electro-
magnética como un campo clásico, estamos diciendo que nuestro espacio de Hilbert es el
de los estados del átomo. En ese caso, empleando teoría de perturbaciones dependiente
del tiempo, una perturbación externa puede inducir una transición entre de un estado a
otro. Pero si no existe ninguna perturbación, el sistema debe permanecer en su estado.

Al cuantificar el campo electromagnético, aumentamos nuestro espacio de Hilbert al
de los estados cuánticos de los fotones. Ahora bien, tenemos el estado inicial,

|2; Nk1λ1 , ..., Nkλ, ...〉, (1.61)

y nos preguntamos: ¿por qué este estado no es estable y en algún momento decae al
estado,

|1; Nk1λ1 , ..., Nkλ + 1, ...〉?

La respuesta es porque dado el estado (1.61), existe una interacción dada por la ec. (1.47),
que induce la transición. La existencia de esa interacción indica que el estado (1.61), no
es estable. La interacción está en el átomo y no pondremos mucho énfasis en estudiarla
en este trabajo. Sin embargo, aún en presencia de la interacción, ésta no sería capaz
de inducir ninguna transición si nos quedamos con el espacio de Hilbert de los estados
electrónicos del átomo. Es gracias a la ampliación del espacio de Hilbert en los estados
del campo electromagnético, que la interacción puede actuar y dar lugar a la emisión
espontánea.

Pensemos con un poco más de detalles todo esto. La interacción acopla los estados
atómicos con la radiación electromagnética. En el caso del decaimiento espontáneo, ini-
cialmente no tenemos ninguna radiación electromagnética. Si nuestra interacción actúa
entre un estado atómico y la radiación, pero no hay radiación, entonces: ¿por qué actúa?
Clásicamente, esto no tendría sentido. Cuánticamente pensamos en lo que se denom-
ina una “fluctuación del vacío”. La interacción actúa, pues en el estado final sí habrá
radiación. La emisión espontánea, como vemos, es un fenómeno puramente cuántico.

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 26



Analicemos otro punto, que tampoco es del todo obvio. La interacción dada por la
ec. (1.47), es interna en el espacio de Hilbert átomo–radiación electromagnética. Pense-
mos ahora en un átomo aislado, al que no le llega ninguna radiación. Si está en su estado
fundamental, seguirá indefinidamente en su estado fundamental, que es auténticamente
estable. Pero si está en un estado excitado, decaerá después de algún tiempo. La inter-
acción responsable del decaimiento es interna al átomo. El experimento nos dice que los
estados excitados no son estables (como sí lo es el estado fundamental). Si construimos
una ecuación que tome en cuenta la cuantificación de la radiación electromagnética,
encontraríamos estados excitados del átomo que son “meta–estables”, esto es, existen
solo por un cierto período de tiempo y luego decaen. Sabemos que existen estos estados
por la frecuencia de la radiación electromagnética emitida. Alguien puede cuestionar el
hablar de estados, cuando no son estables. Bueno, casi todo en física no lo es. En el
Cap. 4, estudiamos el decaimiento del neutrón, ya que el neutrón no es una partícula
estable y decae. Nadie cuestiona la existencia del neutrón. Tampoco la de los estados
excitados de los átomos, a pesar de su inestabilidad.

En resumen, el decaimiento espontáneo nos enseña que debemos reveer nuestro
modelo de los estados excitados. No se trata de un estado estable, al que llega el electrón
y solo por medio de un agente externo logramos remover. En realidad, cualquier estado
excitado es inestable y luego de algún tiempo decaerá.

1.6. Transición dipolar eléctrica

El objetivo de esta sección es definir qué entendemos por una transición dipolar
eléctrica. Al final, nombraremos también las transiciones dipolar magnética y cuadrupolar
eléctrica. No buscamos hacer ningún cálculo con esto, sino sólo definir qué son esas
transiciones. Introduciremos algunos conceptos sobre la radiación emitida por un átomo,
cuyo núcleo suponemos fijo en el espacio. En general, la radiación electromagnética
emitida por un átomo es mucho mayor que el radio atómico. Solo como un ejemplo algo
burdo, la longitud de onda de la luz es del orden de los ∼ 5000Å, mientras que para
el radio atómico tenemos un valor de ∼ 1Å. Cuando mostramos las expresiones para el
cálculo de las probabilidades de transición por unidad de tiempo (Γabs1→2 y Γemi2→1), notamos
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que en sus expresiones aparece un elemento de matriz,

〈1|jk · λ∗|2〉,

en el caso de la emisión y otro similar para la absorción. Ya que estamos analizando
la radiación (o emisión), del átomo, nos concentramos en el elemento de matriz que
mostramos. Podemos sacar fuera de elemento de matriz la polarización λ∗, y concen-
trarnos en el elemento de matriz,

〈1|jk |2〉 =
∫
dr e−ik · r 〈1|j(r)|2〉, (1.62)

donde repetimos la igualdad dada por la ec. (1.20). Al ver esta expresión, debemos fijar
un origen de coordenadas a partir del cual medimos r, y la elección natural es fijar r = 0,
en el centro del núcleo. Luego, hacemos un desarrollo en serie de potencias de e−ik · r,
alrededor de r = 0, con lo que tenemos,

〈1|jk |2〉 =
∫
dr [1− ik · r + ...] 〈1|j(r)|2〉 =

= 〈1|j0 |2〉 − i
∫
dr k · r 〈1|j(r)|2〉 + ... (1.63)

Nuestro interés, se concentra en la cantidad 〈1|j0 |2〉, que resulta de integrar sobre r,
recordando la definición de j(r) (ver ec. 1.17) y las propiedades de la delta de Dirac. Al
hacer esta integral, tenemos que,

N∑

i=1
pi = P ,

donde P , es la cantidad de movimiento total del sistema. Podemos escribir entonces,

j0 = P

m
= 1
i~

[R,H0], (1.64)

donde,

R =
N∑

i=1
ri, (1.65)

es el operador momento dipolar y H0, es el Hamiltoniano del átomo, sin radiación. Sobre
el operador momento dipolar, para ser tal debe estar multiplicado por la carga, que es
una constante. Notemos que medimos la distancia desde el punto donde se encuentra el
núcleo atómico que concentra la carga positiva. Todos los electrones poseen la misma
carga y la suma sobre los ri, nos da el centro de carga de los electrones (de carga
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negativa y del mismo valor que el núcleo, ya que el átomo es eléctricamente neutro).
De ahí la denominación de operador momento dipolar. Usando ahora la definición de
conmutador, tenemos,

1
i~
〈1|(RH0 −H0R)|2〉 = E2 − E1

i~
〈1|R|2〉, (1.66)

donde (E2 − E1)/~ ≡ ω, es la frecuencia de la radiación. Reescribimos el elemento de
matriz de la siguiente manera,

〈1|jk |2〉 ∼= −i ω d12, (1.67)

donde,
d12 ≡ 〈1|R |2〉, (1.68)

es la parte no–diagonal del elemento de matriz del momento dipolar eléctrico; que resulta
del orden más bajo en el desarrollo de exponencial en la ec. (1.62). Ahora, podemos
escribir Γemi2→1;kλ, dado por la ec. (1.60), como,

Γemi2→1;kλ = 4π2c2ω

V
δ(E2 − E1 − ~ω) |d12 · λ∗|2 (Nkλ + 1) . (1.69)

Puede ocurrir que el elemento de matriz dipolar eléctrico sea cero. En ese caso,
decimos que se trata de una transición prohibida. Frente a esto, debemos incorporar el
siguiente término en el desarrollo dado por la ec. (1.63). Luego de un poco de álgebra,
este término se puede reescribir como la suma de dos contribuciones: una proporcional
al momento angular orbital y la otra proporcional el momento cuadrupolar eléctrico. El
momento angular orbital es proporcional al momento dipolar magnético (ver ec. (10.7),
en [1]); por lo que a esta transición se la denomina dipolar magnética.

1.7. Potencia irradiada

Con el fin de un uso posterior, mostramos brevemente una expresión para la potencia
irradiada por la emisión espontánea. Partimos de la ec. (1.60), nos quedamos solo con
la contribución proveniente de la emisión espontánea,

Γemi. esp.2→1;kλ = 4π2c2

ωV
δ(E2 − E1 − ~ω) |〈1|jk · λ∗|2〉|2. (1.70)
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Esta expresión representa a la probabilidad de transición por unidad de tiempo, de que
un electrón decaiga del estado 2 al 1, en forma espontánea. De esta descripción, debe
ser obvio que su unidad de medida es 1/tiempo. Si la multiplicamos por la energía del
fotón emitido ~ω, tenemos una potencia (energía/tiempo). De este modo, la potencia
de la luz emitida con polarización λ, radiada en un ángulo sólido dΩ, en la dirección k,
debido a la transición espontánea de 2 a 1, es,

dPλ =
∑

k∈dΩ
~ω Γemi. esp.

2→1;kλ
=

= dΩ
∫ dω ω2

(2πc)3 ~ω
4π2c2

ω
δ(E2 − E1 − ~ω) |〈1|jk · λ∗|2〉|2, (1.71)

donde empleamos la ec. (1.25). Ahora integramos empleando la delta de Dirac, con lo
que tenemos,

dPλ
dΩ = ω2

21e
2

2πc3 |〈1|jk · λ
∗|2〉|2. (1.72)

Para evitar dudas, demos un detalle del cálculo,

δ(E2 − E1 − ~ω) = δ (~[(E2 − E1)/~− ω]) =

= 1
~
δ(ω21 − ω), (1.73)

con ω21 = (E2 − E1)/~. Para la potencia por unidad de ángulo sólido, la expresión más
común es la que emplea la aproximación dipolar eléctrica. De este modo, a partir de la
ec. (1.67), podemos escribir,

dPλ
dΩ = ω4

21e
2

2πc3 |d12 · λ∗|2. (1.74)

Debemos notar que esta expresión se refiere al decaimiento espontáneo de un electrón
de un átomo, entre dos niveles de energía discretos del mismo.

1.8. Sobre el ancho de línea del espectro atómico

En la Sec. 14.3, en [1], mostramos lo que se da en llamar el “ancho natural” de
las líneas del espectro. Cuando calculamos el espectro de un átomo, obtenemos un
conjunto de valores E1, E1, ... , que son los autovalores del operador Hamiltoniano y
por lo tanto, su valor es exacto. Sin embargo, sabemos que si tenemos a un electrón
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en un estado excitado, éste decae después de algún tiempo. Acabamos de estudiar este
proceso, denominado emisión espontánea. En esa misma sección, discutimos brevemente
la relación,

∆E ∆t & ~,

donde además,
Γ ∼ 1

∆t .

De esta manera, dado Γ (Γem. esp., claro); tenemos una incertidumbre en la energía dada
por ∆E , que es un cierto ancho para la línea espectral. En los hechos, este ancho es
muy pequeño. Es intrínseco del sistema cuántico y por lo tanto, no se puede modificar.
Es por ello que se denomina ancho natural. Otro modo de entender al ancho natural, es
por medio de un análisis de Fourier: una frecuencia pura supone una función senoidal (o
cosenoidal) de longitud infinita. Cualquier onda de longitud finita, es la suma de infinitas
frecuencias y esa incertidumbre en la frecuencia es el ancho natural de la línea. En lo
que sigue, discutiremos otras fuentes que determinan el ensanchamiento de las líneas
espectrales.

Pensemos en los espectros que medimos de la luz proveniente de estrellas de cualquier
tipo. Un espectro es una gráfica de la intensidad de la luz en función de su frecuencia
o de su longitud de onda. En general, se observan picos en donde debemos tener los
autoestados de energía. Estos picos a veces son muy estrechos, otras veces son anchos.
Si el espectro es en función de la frecuencia, el ancho del pico es el ancho de la línea, a
menos de la constante de Planck. Este comportamiento no se puede explicar por medio
del ancho natural de la línea. Luego, existen otros fenómenos físicos que ensanchan las
líneas espectrales. En esta sección trabajaremos solo con espectros de emisión. Valen
consideraciones similares para los espectros de absorción, que no discutiremos. El ensan-
chamiento de las líneas no es el objetivo central de este capítulo, pero dada la discusión
sobre el ancho natural directamente vinculado al decaimiento espontáneo, es pertinente
hacer mención al mismo. Dada una estrella, enumeremos las fuentes principales del
ensanchamiento de las líneas al ser observadas en la Tierra4:

1. El ancho natural de la línea, ya discutido.
4Si bien nos estamos refiriendo a una estrella, las mismas consideraciones valen ante la formación de

plasma. El plasma puede generarse por medio de un pulso láser de alta energía, lo cual permite estudiar
este problema en un laboratorio.
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2. El ensanchamiento Doppler o ensanchamiento térmico.

3. El ensanchamiento por colisión.

4. El ensanchamiento instrumental.

Esta separación es algo arbitraria y muchos autores la reducen a las tres primeras.
Daremos ahora una breve discusión sobre cada punto y luego mostraremos un fragmento
del esquema microscópico del ensanchamiento por colisión. Antes, debemos notar, que
seguimos un enfoque microscópico cuántico. El problema del ensanchamiento de las
líneas espectrales es muy complejo y nuestro enfoque microscópico es en cierta forma
poco práctico para la mayoría de las aplicaciones. Los ensanchamientos son a veces de
tipo lorentzianos y otras veces de tipo gaussianos. Para construirlos, se recurre a modelos
semi–fenomenológicos, que no discutiremos. Como habíamos advertido, en esta sección
solo se dan algunos elementos generales de un tema vinculado al de la interacción de la
radiación con la materia.

Si las líneas se ensanchan, si tenemos un ∆E apreciable, entonces la probabilidad
de transición también cambia, pues eventualmente podemos dar un salto entre dos
estados cuánticos con menor energía. Cuando calculamos la probabilidad de transición
por unidad de tiempo, colocamos una delta de Dirac para la energía, donde las energías
están exactamente definidas. Si incluimos un ∆E , debemos reemplazar a la delta de
Dirac por una distribución, con un cierto peso. No exploramos esa línea de estudio. Sin
embargo, el ensanchamiento de línea observado, puede tener dos orígenes diferentes:
puede ser intrínseco (como el ensanchamiento natural), o puede haberse originado con
posterioridad a la emisión, que designaremos como ensanchamiento observacional. Solo
el primero modifica la probabilidad de transición por unidad de tiempo. Ahora sí, vayamos
a la discusión, punto por punto.

En primer lugar, el ancho natural de la línea ya fue discutido y es importante enfatizar
que este ensanchamiento es en general muy pequeño. Es un ensanchamiento real de las
líneas, esto es, se trata de un ensanchamiento intrínseco.

La segunda fuente, es el ensanchamiento Doppler o ensanchamiento térmico. Este
es claramente un ensanchamiento observacional. En una estrella, los átomos junto al
resto de las partículas presentes, se mueven debido a la agitación térmica. La velocidad
media de las partículas crece con la temperatura y se mueven en todas direcciones;
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algunas se acercan al observador en la Tierra que está registrando su espectro, otras
se alejan, etc. Ya que la velocidad de los átomos emisores es muy grande, la radiación
emitida muestra el efecto Doppler, reduciendo o aumentando su frecuencia, de acuerdo
con el movimiento relativo. Luego, al registrar el espectro, que resulta de la radiación
emitida por un número muy grande de átomos, el corrimiento Doppler en ambos sentidos,
produce un ensanchamiento de las líneas. Tomando cada átomo en forma individual, no
se observaría ningún efecto si medimos el espectro en un sistema de referencia solidario
con el átomo.

En tercer lugar, el ensanchamiento por colisión, a veces designado como ensan-
chamiento por presión, resulta del efecto del choque de partículas sobre un átomo mien-
tras emite radiación. Recordemos el primer párrafo de la Sec. 1.6, donde mostramos
que la longitud de onda de la radiación emitida puede ser varios órdenes de magnitud
mayores a los del átomo. Además, la radiación emitida es un paquete de ondas, cuya
longitud es del orden del metro. Luego, el choque con otras partículas durante el proceso
de radiación, va a alterar al sistema emisor. Una colisión, es la interacción del electrón
que decae, con alguna partícula externa al átomo. El electrón, que es un leptón, puede
interactuar con otras partículas por medio de la interacción electromagnética, débil y
gravitatoria. El efecto de la gravedad es despreciable, mientras que la interacción débil
puede tener algún efecto, pero no lo consideraremos. En una colisión el electrón puede
dispersarse con otro electrón intercambiando un fotón virtual, puede experimentar la
presencia de un campo magnético o el de un campo eléctrico. El campo eléctrico pro-
duce un desdoblamiento de las líneas espectrales por efecto Stark, que merece un párrafo
aparte.

El efecto Stark es el desdoblamiento de las líneas espectrales debido a un campo eléc-
trico (ver por ejemplo la Sec. 12.3.2, en [1]). Debemos notar que el estado de agregación
de la materia estelar es básicamente el de plasma. En nuestra experiencia cotidiana, te-
nemos conocimiento de los estados sólido, líquido y gaseoso. Pero debemos imaginar al
plasma: un estado fluido, con materia ionizada, pero neutro dentro de ciertas regiones
o dominios. Luego, un átomo en una estrella está rodeado de iones. Cuando alguno de
estos iones choca con un átomo durante el proceso de emisión, sus niveles de energía
se desdoblan. Nuevamente, recordemos que el espectro que se mide en la Tierra resulta
de un número muy grande de desintegraciones atómicas. Como el desdoblamiento es
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proporcional al campo eléctrico y este depende del ion particular y de las condiciones del
choque, el desdoblamiento discreto en lo formal, será observado como un ensanchamien-
to continuo de las líneas espectrales y se trata de un ensanchamiento intrínseco. Sobre
este tercer punto, mostraremos algunos detalles de cálculo después de este resumen.

Finalmente, el cuarto punto se refiere al ancho que introduce el instrumento de medi-
da. Sobra decir que se trata de un ensanchamiento observacional. Este ensanchamiento
depende del instrumento que se emplee para medir el espectro. Cuando uno dibuja so-
bre un papel el esquema de un espectrómetro, supone una fuente de luz perfectamente
colimada. La realidad es algo más complicada. La luz debe ser colimada para su análisis
y al hacerlo perdemos intensidad. Una buena colimación, implica una intensidad muy
baja. Si la intensidad es alta, entonces la colimación es baja. Esto introduce un error
sistemático, que se traduce en un ensanchamiento de las líneas. No ahondaremos en este
punto, que nombramos por completitud. Un análisis más completo sobre las diferentes
fuentes de ensanchamiento de línea, se puede encontrar en el libro de Thorne [3]; en
particular, en ese libro se expone detalladamente la fenomenología del tema.

Nuestro interés en el ensanchamiento de las líneas espectrales se refiere a los ensan-
chamientos intrínsecos (natural y colisional), pues modifican la probabilidad de transición.
Un análisis completo de estos puntos, excede el objetivo de este capítulo. Sin embargo,
en la siguiente subsección, daremos algunos elementos del perfil de línea para el caso del
ensanchamiento colisional.

1.8.1. Perfil de línea para el ensanchamiento por colisión

Es pertinente comenzar poniendo en claro cuál es nuestro problema físico y cuáles son
nuestras hipótesis. Dados los espectros de emisión, observamos que no tenemos líneas,
sino ciertos picos con un determinado ancho. Para entender este ancho, analizamos
diferentes explicaciones físicas. Una de ellas son las colisiones. Luego, debemos construir
un modelo para dar cuenta de las colisiones. Cualquier modelo, por definición, es una
simplificación de la realidad.

Desde el punto de vista clásico, una forma de entender el ensanchamiento por coli-
siones, es el siguiente: dada una emisión en ausencia de colisiones, el átomo emite un
paquete de ondas. Mientras que una onda senoidal o cosenoidal infinita, tiene una fre-

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 34



cuencia pura, un paquete de ondas es la suma de muchas frecuencias; esto resulta de
la representación de Fourier del paquete de ondas. Ahora bien, si en algún punto de la
emisión, el átomo sufre una colisión, la emisión sufrirá una alteración o discontinuidad.
Las alteraciones o discontinuidades requieren de una suma de frecuencias mucho mayor
que aquella sin alteraciones. Este es un hecho conocido del análisis de Fourier. Al tener
que considerar muchas más frecuencias, la dispersión en frecuencia ∆ω, o equivalen-
temente ∆E ; es mayor y por lo tanto, se observa un ensanchamiento en el espectro.
Este modelo se denomina la “aproximación de impacto”. En lo que sigue, daremos solo
algunos elementos de un modelo diferente. Este modelo es cuántico y se vincula mejor
con el enfoque desarrollado en este capítulo.

Mostraremos ahora una introducción al modelo cuántico. En lo que sigue, adoptare-
mos el enfoque dado por el libro de Mihalas [4]. Trabajaremos desde el comienzo con la
aproximación dipolar dada en la Sec. 1.6. Recordemos la ec. (1.74),

dPλ
dΩ =

ω4
ife

2

2πc3 |dfi · λ
∗|2, (1.75)

donde cambiamos los índices 2 y 1, por i y f , para designar a los estados inicial y final,
respectivamente.

Supongamos ahora que el estado final f , está degenerado. En ese caso, en la
ec. (1.75), debemos sumar sobre los estados finales. Dado que estamos estudiando el de-
caimiento espontáneo de un átomo, sabemos que tanto el estado inicial, como el final, se
encuentran en el discreto. De modo que para el caso degenerado, tenemos simplemente,

dPλ
dΩ =

∑

f

ω4
ife

2

2πc3 |dfi · λ
∗|2. (1.76)

Dado que en el caso discreto, ωif es un número completamente determinado, aún no
mostramos ningún elemento que induzca un ensanchamiento de las líneas.

Consideramos ahora la interacción del átomo con otras partículas de su entorno.
Debemos notar que si tenemos dos bolas de billar, el choque entre ellas se modela por
medio de una interacción de contacto. Cuando tenemos electrones, los electrones no son
pequeñas esferas similares a las bolas de billar, que chocan entre sí. La interacción entre
dos electrones (uno de nuestro átomo y el otro del átomo con el cual colisiona), es una
reacción de dispersión, en la que se intercambia un fotón virtual5, que es el mediador

5Las partículas como los fotones, pueden ser reales o virtuales. Un fotón real se puede medir con un
detector; mientras que el virtual no.
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de la interacción electromagnética. El modo de modelar este proceso, no es único. En lo
que sigue, esquematizamos una forma de hacerlo con fines puramente didácticos.

Vamos a postular un Hamiltoniano total Ht, tal que conste de tres contribuciones,

Ht = HA +HC + VAC , (1.77)

donde HA es el Hamiltoniano del átomo emisor, HC lo es de la partícula con la que
colisiona y VAC es un término de interacción entre el átomo y la partícula con la que
colisiona. Ahora bien, con el fin de llamar la atención sobre una obviedad, nos pregun-
tamos: ¿todas las colisiones ocurren exactamente de la misma forma? Claramente no
es posible tal situación. Luego, para cada átomo que es objeto de un choque con otra
partícula en el momento de su decaimiento, debemos asignar valores particulares para
HC y VAC . Escribimos la ecuación de Schrödinger para este problema,

Ht|ψ〉t = i~
∂|ψ〉t
∂t

. (1.78)

Más allá de la posibilidad práctica en poder resolver esta ecuación, en el supuesto de que
logremos hacerlo, tendremos un conjunto de soluciones. Asumamos que |α〉t y |β〉t, rep-
resenta al estado inicial y final del átomo, respectivamente. En ese caso, en la ec. (1.68),
debemos reemplazar los estados del átomo, por estos estados nuevos, que dan cuenta
del efecto del Hamiltoniano total,

dβα ≡ t〈β| R |α〉t. (1.79)

Esta es una propuesta de cálculo correcta en lo formal, pero impracticable en los hechos.
Cuando dos átomos colisionan, puede ocurrir que éstos se ionicen, si la colisión es lo
suficientemente importante. Cuando pensamos que el efecto es modificar el ancho de
la línea de emisión, significa que el efecto de los términos HC y VAC , es extremada-
mente pequeño, ya que su resultado solo es ensanchar la línea de emisión del átomo.
Pensándolo en términos perturbativos, VAC puede representar el efecto de un campo
eléctrico o magnético. Comenzamos la oración anterior refiriéndonos al análisis pertur-
bativo, pues como sabemos, el campo magnético no se deriva de un potencial escalar,
pero su efecto se puede parametrizar por medio de tal potencial (ver por ejemplo el efec-
to Zeeman, Sec. 12.3.1, en [1]). De este modo, en términos perturbativos encontramos
un desdoblamiento discreto de las líneas espectrales, que puede ser de origen eléctrico,
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como el efecto Stark; o magnético, como el efecto Zeeman. Cuando se mide el espectro,
el mismo no es el producto de la emisión de un solo átomo, sino de la suma de la emisión
de muchos átomos, cada uno con un desdoblamiento de líneas discreto. En la práctica,
se va a observar un ensanchamiento de las líneas espectrales, ya que cada átomo experi-
mentará un corrimiento de sus líneas diferente, lo cual, potenciado por el ensanchamiento
natural, hace poco probable diferenciar líneas en términos experimentales.

1.8.2. Breve discusión del ensanchamiento de las líneas espec-
trales

En los hechos, excepto por el ensanchamiento natural de las líneas, el ensanchamien-
to es un efecto observacional. En el caso del efecto Doppler esto ya fue discutido, el
ensanchamiento instrumental lo es por construcción y debemos detenernos en el ensan-
chamiento colisional.

Nuestro sistema cuántico es un átomo, sumergido en un entorno de materia. A ese
nivel, no existe la interacción de contacto, sino que el átomo se ve sometido a campos
eléctricos y magnéticos. Un solo átomo, en estas condiciones, sigue siendo un sistema
cuántico, cuyas energías son discretas. Es verdad que existen sistemas cuánticos, como
la red cristalina de un conductor, que muestran bandas de energía, pero ese no es el caso
de un átomo. No debemos perder de vista, que buscamos explicar el ensanchamiento
de una línea centrada experimentalmente en el punto predicho por el modelo cuántico
no–relativista de la ecuación de Schrödinger, con solo el potencial Coulombiano y sin
considerar aún al spin. Llamemos a este resultado, “línea ideal”. Luego, las interacciones
que sumamos, tanto las intrínsecas del átomo, como las externas, no pueden modificar
dramáticamente al espacio de Hilbert del átomo, pues en ese caso tal modelo difícilmente
daría cuenta de las líneas observadas.

Afirmamos que el ensanchamiento colisional es un ensanchamiento intrínseco, en
contraste con el observacional. Colisionalmente, las líneas de átomo individuales, se des-
doblan en líneas discretas. Lo hacen en diferente medida y su efecto global muestra un
ensanchamiento continuo al ser medido en un detector. En realidad, resulta de líneas
discretas que por su número y debido a razones instrumentales, se registran como contin-
uas. Esto es simililar a la explicación de Plank de la radiación del cuerpo negro. De todos
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modos, la clasificación como ensanchamiento intrínseco, se debe a que auténticamente,
este desdoblamiento abre la posibilidad de transiciones con energías diferentes a las que
resulten de las líneas ideales.

En el caso colisional, existe una discrepancia entre el modelo clásico (corte abrupto
del paquete de ondas de emisión) y el modelo cuántico. El modelo clásico supone para la
colisión una escala de tiempo corta, dada por el corte abrupto del paquete de ondas. Esto
también, suma un número continuo (y por lo tanto infinito), de frecuencias. El modelo
cuántico, como el efecto Stark, supone una escala de tiempo para la perturbación externa
mucho mayor que el decaimiento. Además, supone un desdoblamiento discreto de los
niveles de energía. Sobre esta discrepancia, elegimos dejarla como un problema abierto
para el lector.

Revisando la bibliografía sobre el tema en los libros de Thorne [3] y Mihalas [4],
vemos que este es un tema extensamente estudiado y de gran relevancia. Sin embargo,
vemos también que domina el análisis semi–fenomenológico. El mismo consiste en ajustar
curvas mayormente lorentzianas y gaussianas, según ciertas consideraciones físicas. Un
análisis microscópico cuántico para el caso colisional, no está desarrollado más allá de
ciertas consideraciones generales.

1.9. Conclusiones

En este capítulo, estudiamos la interacción de la radiación con la materia. Nos limi-
tamos a radiación que solo puede inducir transiciones entre estados discretos del átomo.
Analizamos luego el decaimiento espontáneo, que requiere de la cuantificación del campo
electromagnético. Además, discutimos en términos generales el ensanchamiento de las
líneas espectrales. Desarrollamos el tema, según el siguiente orden:

1. Los niveles de energía de un átomo aislado, que estudiamos en el curso de Mecánica
Cuántica, empleando la ecuación de Schrödinger, con un potencial Coulombiano.

2. Las transiciones que induce la radiación electromagnética en el átomo y la cuan-
tificación de la radiación electromagnética, que nos permite entender la emisión
espontánea del átomo.
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3. La interpretación de los espectros experimentales, sobre la base la discusión del
ensanchamiento de las líneas espectrales.

Este es el orden en que estudiamos el tema. Sin embargo, vale la pena señalar que la
cronología de estudio científico del tema es exactamente el orden inverso: primero se
observan los espectros y se llega a un átomo aislado por un proceso de abstracción,
pues un átomo aislado no representa una situación experimental simple. En una estrella
o en una fuerte emisora, tenemos átomos estrechamente rodeados por radiación y otros
átomos. Nuestro análisis, sin embargo, es de tipo teórico y en ese caso el orden de la
presentación debe ir de lo más simple a lo más complejo; de una situación ideal a una
real.

A los efectos de este seminario, en el marco del primer curso de Mecánica Cuántica,
el resultado que debemos rescatar es que cuando pasamos de la física de un átomo
aislado a uno que interactúa con el medio, el paradigma de niveles cuánticos estables
deja de valer. Ahora vemos que los niveles excitados existen, pero no son estables; pues el
electrón luego de emplear cierto tiempo en ellos, decae en forma espontánea. Al continuar
con el estudio del tema, analizando el contenido de los espectros medidos, vemos que
ahora juega un papel el instrumento de medida. En cada paso que damos, se multiplican
los modelos y las aproximaciones. Al punto de que una interpretación microscópica–
cuántica completa del ensanchamiento de las líneas espectrales, permanece aún como
un problema abierto.
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Capítulo 2

Materia proto-neutrónica con un
campo magnético intenso

Introducción

En el curso de Mecánica Cuántica, nos concentramos en estudiar la física de una
partícula en términos cuánticos. Solo cuando ya contamos con todo el andamiaje formal
de la asignatura, abordamos el problema del átomo de hidrógeno, que es un problema de
dos cuerpos. Al igual que en la Mecánica Clásica, el problema de dos cuerpos se puede
resolver en forma exacta. Análogamente, el problema de tres o más cuerpos, no tiene una
solución exacta. Si bien en este primer curso focalizamos nuestro interés en los problemas
que tienen una solución exacta, analizamos algunas restricciones que deben cumplir los
sistemas complejos. En particular, en la Sec. 15.1.2, discutimos el Principio de Exclusión
de Pauli. En esta sección, agrupamos a las partículas en dos grandes grupos: el de los
fermiones, que son aquellas partículas de spin semi–entero y los bosones, con spin entero.
No podemos tener dos fermiones con el mismo conjunto de número cuánticos, según lo
establece en Principio de Exclusión de Pauli.

Pensemos ahora en un objeto estelar, como una estrella de neutrones. Es poco
probable que alguien se sorprenda al afirmar que está constituida principalmente por
neutrones. También, pero en menor medida, posee otras partículas como protones, elec-
trones, muónes, etc. Ahora bien, los neutrones son fermiones pues tienen spin–1/2. No
es el objetivo de este seminario discutir las propiedades de una estrella de neutrones,
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pero vale la pena señalar que la densidad de partículas en el interior de una estrella
de neutrones es superior a la densidad nuclear. Esta densidad crece a medida que nos
acercamos al centro de la estrella. En este punto, es también pertinente comentar que
una estrella de neutrones no es un núcleo gigante: un núcleo atómico se mantiene liga-
do por la acción de la interacción fuerte, que es de corto alcance. Como en el núcleo
hay protones, éstos experimentan la repulsión electrostática que es de alcance infinito.
Luego, en algún momento al agregar partículas al núcleo, aumentando así su radio, éste
se hace inestable pues la fuerza nuclear de corto alcance no logra compensar la repulsión
electrostática. Por otra parte, una estrella de neutrones se mantiene ligada por la acción
de la gravedad, la cual es irrelevante para un núcleo. Operativamente, podemos definir a
un núcleo como un sistema de hadrones ligados por la interacción fuerte, caracterización
esta que no cumple la estrella de neutrones.

Hechas estas aclaraciones, vayamos al aspecto que nos interesa de las estrellas de
neutrones. En astrofísica, se dice que lo que evita el colapso de tal estrella, es “la presión
de degeneración de los neutrones”. Recordemos que en astrofísica se habla de sistemas
degenerados para indicar que deben ser estudiados cuánticamente; no degenerados cuan-
do admiten un tratamiento clásico y parcialmente degenerados, para un sistema que se
puede analizar con algunos elementos cuánticos y otros clásicos. La llamada presión de
degeneración no es otra cosa que el Principio de Exclusión de Pauli, que prohíbe que dos
fermiones ocupen el mismo lugar. Es importante destacar que en esta discusión subyace
una hipótesis fuerte: pensamos a los neutrones como partículas elementales. Pero no lo
son, pues están formados por quarks. Pero esa es otra discusión.

De este modo, nos preguntamos con qué esquema formal debemos estudiar a un
objeto como una estrella de neutrones. Ya que lo que evita su colapso es el Principio de
Pauli, el tratamiento debe ser cuántico. También sabemos que se trata de un sistema
de muchas partículas, por lo cual debemos recurrir a la Termodinámica y a la Mecánica
Estadística. Claro, quien lee estas líneas puede objetar que establezcamos primero un
marco formal, sin haber discutido aún qué aspectos de las estrellas de neutrones deseamos
estudiar. Está implícito que no se trata de su órbita, sino de algún aspecto interno de
la estrella. Cualquiera de los aspectos internos de la estrella se estudian dentro de este
marco general. En lo que sigue, establecemos el aspecto particular de interés en este
seminario.
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Resumamos lo discutido hasta ahora: para estudiar un sistema de muchos fermiones a
nivel cuántico, emplearemos los métodos de la Termodinámica y la Mecánica Estadística.
Vamos a modelar a una estrella de neutrones como un sistema formado por neutrones
y protones, con una fracción fija de protones. Además, pensaremos que el sistema está
sumergido en un campo magnético intenso. La motivación y las limitaciones de este
modelo requieren de un análisis profundo, que desarrollaremos a lo largo del seminario
en sí. El objetivo es calcular la ecuación de estado del sistema (EOS). La EOS es la
función presión en función de la densidad. Estudiaremos además, el grado en que el
medio se polariza debido al campo magnético. Dado que solo consideramos neutrones
y protones, el sistema no es eléctricamente neutro. La neutralidad de carga, como en
un átomo, puede lograrse incluyendo electrones. El incluirlos es el siguiente paso lógico
en este desarrollo. Dada su pequeña masa, las propiedades que estudiaremos se ven
débilmente afectadas por los electrones, lo cual justifica nuestra aproximación.

2.1. Algunos elementos de Termodinámica

Estas pocas líneas no pueden reemplazar al curso de Termodinámica, junto con
el de Mecánica Estadística. En lo que sigue, mostraremos algunos elementos de esas
disciplinas, indispensables para la comprensión del seminario.

Enfrentamos entonces un problema nuevo: el de predecir propiedades de un número
muy grande de partículas, en que la mecánica cuántica juega un papel relevante. Notemos
que tenemos una teoría sólida para la física de una o dos partículas. Cuando tenemos
muchas partículas, no nos interesa el comportamiento individual de cada partícula, sino
el efecto colectivo del conjunto. Es válido preguntar qué ocurre en la frontera entre estos
dos extremos; entre el de una o dos partículas y el de un número muy grande de las
mismas. Bueno, quizá quienes más sepan del tema son los astrónomos, quienes deben
resolver desde órbitas donde interactúan pocos cuerpos, hasta galaxias con millones de
estrellas. Este ejemplo es de mecánica clásica; pero cuando clásicamente el problema es
difícil, lo es aún más cuánticamente. Si bien este no es el asunto de este seminario, no
podíamos dejar de nombrarlo.

La idea básica es simple: se construye una función, denominada en forma genérica
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como “potencial termodinámico”, que representa a la energía del sistema. Se varían los
parámetros de esa función con el fin de minimizar a la misma. El mínimo del potencial
termodinámico es el estado físico. Existen muchos potenciales termodinámicos según el
problema físico que tratemos: para sistemas cerrados, para sistemas abiertos, cuando la
temperatura es constante, cuando la presión es constante, etc. Modelamos a una estrella
de neutrones como un sistema cerrado, con temperatura constante. Luego, el potencial
termodinámico adecuado para el problema, es el potencial de Helmholtz F , que se define
como,

F ≡ U − TS, (2.1)

donde U es la energía interna, T es la temperatura absoluta y S es la entropía. Debe
ser obvio que F tiene unidades de energía. Por simplicidad, en esta expresión no hemos
agregado aún el efecto del campo magnético. Para encontrar el mínimo de esta función,
debemos diferenciarla. Al hacerlo y trabajando sobre la energía interna, tenemos,

dF = −SdT − PdV +
∑

i

µidNi, (2.2)

donde P es la presión y V el volumen. Por medio de la suma sobre i, se incluyó la
posibilidad de que existan diferentes tipos de partículas (neutrones, protones, etc); donde
µi y Ni representan al potencial químico y al número total de partículas del tipo i,
respectivamente. La minimización del potencial termodinámico nos permite obtener las
funciones presión, entropía y potencial químico como funciones de la densidad. Por
construcción tenemos,

S = −
(
∂F

∂T

)

V,Ni

, P = −
(
∂F

∂V

)

T,Ni

y µi =
(
∂F

∂Ni

)

V,T,Nj 6=i

. (2.3)

Discutamos ahora el potencial químico µi, pues es particularmente relevante en nues-
tro análisis. Ya que el número de partículas Ni es adimensional, el potencial químico tiene
unidades de energía. El concepto de potencial químico es simple a partir de la ec. (2.2):
es la cantidad de energía que se pierde o se gana, cuando el número de partículas cam-
bia en una unidad. De este modo, puede ser una cantidad positiva, negativa o nula.
El potencial químico µi, se vincula con la densidad parcial de partículas del tipo i, que
designaremos como ρi. Debemos señalar que ρi es la densidad de número; esto es, el
número de partículas por unidad de volumen. Usamos esta densidad por conveniencia,
pero debemos recordar que conocemos las especies de partículas con las que trabajamos
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(neutrones, protones, electrones, etc.), por lo cual a partir de la densidad de número se
obtiene en forma inmediata la densidad de materia.

Para ver cómo se obtiene la ρi a partir de µi, definimos primero el número de
ocupación, n(ε). El número de ocupación se define como el número de partículas que
poseen una energía dada. Su expresión depende en primer lugar de si los efectos cuánticos
son o no importantes, y en el caso de que lo sean, de si tratamos con bosones o con
fermiones6. Damos ahora las expresiones para los números de ocupación correspondientes
a las tres situaciones descritas:

ni(ε) = 1
e(ε−µi)/kBT + 0 , estadísctica de Maxwell–Boltzmann. (2.4)

ni(ε) = 1
e(ε−µi)/kBT − 1 , estadísctica de Bose–Einstein. (2.5)

ni(ε) = 1
e(ε−µi)/kBT + 1 , estadísctica de Fermi–Dirac, (2.6)

donde k, es la constante de Boltzmann. Debemos recordar que la estadística de Maxwell–
Boltzmann es clásica, mientras que las otras dos son cuánticas. La de Bose–Einstein para
bosones y la de Fermi–Dirac para fermiones. Estas expresiones suponen que no existe
degeneración. Para sistemas degenerados, las debemos multiplicar por una función g(ε),
que representa al orden de la degeneración para el caso cuántico y análogamente, el
número de partículas diferentes con la misma energía, para el caso clásico. Preferimos
mostrar estas expresiones sin la función g(ε), ya que es la tendencia moderna en la
literatura. En lo que sigue y teniendo en cuenta que los neutrones y los protones son
fermiones, trabajaremos con la estadística de Fermi–Dirac.

Mostramos ahora dos figuras de la función n(ε), empleando un valor arbitrario del
potencial químico, µ y para una temperatura fija7. En la Fig. 2.1, mostramos n(ε) para
T =5MeV y µ =50MeV. En la misma figura y con línea de rayas, mostramos n(ε)
para T → 0. Este último caso lo discutimos enseguida, en esta sección. Vemos que
n(ε) ≈ 1, cuando ε < µ; mientras que n(ε) ≈ 0, cuando ε > µ. Para temperaturas
finitas, el cambio entre estas dos regiones ocurre en forma suave; mientras que en el

6Recordemos que subyace el concepto de partícula idéntica y que los bosones son las partículas con
spin entero y los fermiones son aquellas partículas con spin semi–entero.

7Notamos que la dependencia funcional del número de ocupación debería ser escrito como: n(ε)→
n(ε, µ, T ). Simplificamos la notación usando solo n(ε), pues la temperatura la tomamos como un
parámetro y el potencial químico resulta en realidad una variable dependiente de la densidad de número.
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Figura 2.1: La función número de ocupación para una temperatura de T = 5MeV. Con
línea de puntos, se indica el límite para T → 0. Construimos esta figura para un potencial
químico µ =50MeV.

límite para T → 0, el cambio es abrupto. La energía en que se produce este cambio, se
denomina energía de Fermi, εF . Siguiendo con el vocabulario del tema, decimos que “la
temperatura difunde la superficie de Fermi”, para indicar que el efecto de la temperatura
sobre el número de ocupación hace que pase de un cambio abrupto, a uno suave. En
la Fig. 2.2, sumamos el caso de T = 15MeV. Vemos que la difusión de la superficie de
Fermi es aún mayor, incluso hace que n(ε) 6= 1, cuando ε = 0. Lo que extraemos de
estas figuras es que cuando T = 0, los niveles cuánticos están ocupados hasta la energía
de Fermi. Y están vacíos para energías mayores. Para una temperatura finita, vemos que
para cualquier energía la probabilidad de ocupación formalmente nunca vale 0 ó 1. Esto
es evidente solo en el entorno a la energía de Fermi para temperaturas bajas; y lo es
para cualquier energía a temperaturas altas.

Tomamos ahora la ec. (2.6) y la reescribimos de un modo que nos resulte más con-
veniente a los efectos de nuestro cálculo. A partir de este punto, introducimos el campo
magnético. Consideramos un campo magnético constante en la dirección del eje–z, esto
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Figura 2.2: La función número de ocupación para dos temperaturas: T = 5MeV y
T = 15MeV. El resto de las condiciones son las mismas que las de la Fig. 2.1.

es, B = B k̂. Comenzamos con un modelo para la energía de partícula independiente.
Pensamos en un neutrón en el campo magnético externo B, sin interacción con otras
partículas del medio. Su energía viene dada por,

εn(p, sz) = p2

2m − µNBszgn (2.7)

donde m es la masa del neutrón, p la magnitud de su cantidad de movimiento, µN y gn
son el magnetón nuclear de Bohr y el factor giromagnético del neutrón, respectivamente
(ver Apéndice A); finalmente y por conveniencia, sz = ±1, es dos veces la proyección
de spin del neutrón. Existe cierta arbitrariedad en la definición de la energía de partícula
independiente, para incluir o no, a la masa en reposo. En este caso, elegimos no colocarla.

Teniendo en cuenta la ec. (2.7), reescribimos el número de ocupación para fermiones
(ec. 2.6), como,

nn(p, sz) = 1
e(εn(p, sz)−µn)/kBT + 1 . (2.8)

En este punto, es conveniente mostrar la expresión que vincula el número de ocupación
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con la función densidad de número. Esto lo demostramos en el Apéndice B. En esta
sección, mostraremos la expresión para el neutrón en presencia de campo magnético,
dada por la ec. (B.17), que repetimos por conveniencia:

ρn(µn, T, B) = 1
(2π)3

∑
sz

∫
dp nn(p, sz). (2.9)

Haremos un paréntesis antes de seguir, para analizar con cierto detenimiento la función
ni(ε), de la ec. (2.6). Energía, potencial químico y temperatura, son variables reales.
Luego, el exponencial en el denominador de la ec. (2.6), toma valores dentro del rango,

e(ε−µi)/kBT ∈ (0,∞),

por lo tanto,
ni(ε) ∈ [0, 1].

Esto es, el número de ocupación de los fermiones nunca puede ser mayor a uno, ya
que representa a fermiones para los que rĳe el Principio de Pauli. Esta cantidad se
interpreta como la probabilidad de encontrar una partícula con energía ε; luego, puede
tomar cualquier valor dentro de su rango de variación.

Analicemos el límite para la temperatura tendiendo a cero. Vamos a considerar un
solo tipo de partículas, por lo que eliminamos el subíndice i. Tenemos,

n(ε) → 1, si T → 0 ∧ ε− µ < 0,

n(ε) → 0, si T → 0 ∧ ε− µ > 0. (2.10)

En el límite para T = 0, el valor de la energía que cumple con,

ε− µ = 0,

que nos permite definir la energía de Fermi, εF ≡ µ. Notamos que en este límite, el
número de ocupación se puede reemplazar por la función escalón θ(x) (θ(x) = 1 si x > 0
y θ(x) = 0 si x < 0; notemos que θ(x) + θ(−x) = 1, ∀ x). Podemos escribir entonces,

n(ε)|T=0 = 1− θ(ε− εF ) = θ(εF − ε). (2.11)

En el caso de que la partícula solo tenga energía cinética (ε = ~2k2/2m), definimos el
momento de Fermi, como,

~2k2
F

2m ≡ εF , (2.12)
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de esta manera, para T = 0, el número de ocupación lo podemos escribir como,

n(ε)|T=0 = θ(kF− | k |), (2.13)

donde ~k, es la cantidad de movimiento de la partícula.
La expresión para la energía de partícula independiente dada por la ec. (2.7), vale

para partículas con masa en reposo no nula y sin carga eléctrica. En presencia de un
campo magnético, incluimos perturbativamente el efecto del campo magnético B (último
término de esta ecuación), como el resultado del acoplamiento del momento magnético
anómalo del neutrón con el campo magnético. Si tenemos un protón debemos proceder
de otra manera, ya que el protón tiene carga eléctrica y como toda partícula con carga
en movimiento, la misma se acopla con el campo magnético. De este modo, antes de
proceder con el estudio de la ecuación de estado, estudiaremos la física de una partícula
cargada en un campo magnético constante.

2.2. Una partícula cargada en un campo magnético:
niveles de Landau

Para proseguir con el estudio de la ecuación de estado para materia proto–neutrónica
en un campo magnético externo intenso B, debemos estudiar primero la física de una
partícula cargada en dicho campo magnético. Debemos hacer esto, para conocer la
expresión de la energía de partícula independiente que emplearemos en la función número
de ocupación. Como hemos discutido extensamente, mientras que en la Mecánica Clásica
escribimos la energía de la partícula sin más, en Mecánica Cuántica, la energía resulta
de resolver la ecuación de Schrödinger.

Ahora bien, un campo magnético no deriva de un potencial escalar (como el campo
eléctrico, por ejemplo). Esto es, en la ecuación de Schrödinger no tenemos un potencial
V , que represente al campo magnético. Sin embargo, el campo magnético sí deriva de
un potencial vector A (recordemos que, B = ∇ ×A). De esta manera, establecimos
nuestro objeto de interés: queremos conocer el valor de la energía para un protón en un
campo magnético constante. Es importante mencionar que en esta sección emplearemos
las unidades de Gauss (ver Apéndice C). Sin embargo, debemos advertir al lector que a
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lo largo de este trabajo empleamos diferentes sistemas de unidades. En cualquier caso,
las unidades están claramente indicadas. Empleando el electromagnetismo, proponemos
el siguiente Hamiltoniano para nuestro problema,

Ĥ = 1
2m

(
p̂− e

c
Â
)2

+ V̂ + V̂spin, (2.14)

donde V̂ , es el potencial escalar convencional (si se trata de una partícula libre sabemos
que V̂ = 0 y V̂spin es el operador de interacción entre el momento magnético del protón
y el campo B; que modelamos de la siguiente manera,

V̂spin = −µN gp Ŝ · B̂, (2.15)

donde µN y gp, son el magnetón de Bohr y el factor giromagnético para el protón, respec-
tivamente (ver Apéndice A). En base a nuestros conocimientos del curso, la ec. (2.14),
no nos sorprende. Sin embargo, debemos notar que es una matriz de 2 × 2. Inspirados
en la ecuación de Schrödinger,

Ĥψ = i~
∂ψ

∂t
,

proponemos ahora la ecuación,
[

1
2m

(
p̂− e

c
Â
)2

+ V̂ − µN gp Ŝ · B̂
]
ψ = i~

∂ψ

∂t
. (2.16)

Esta ecuación es un caso particular de la ecuación de Pauli. No ahondaremos sobre este
punto. Consideramos ahora un campo magnético B = B k̂, con B = constante; esto
es, un campo magnético constante en el sentido del eje–z positivo. El potencial vector
correspondiente se escribe como,

Âx = −B y, Ây = 0, Âz = 0,

reescribimos el Hamiltoniano de la ec. (2.16), como,

Ĥ = 1
2m

(
px + eB

c
y
)2

+
p2
y

2m + p2
z

2m − µN gp sz B, (2.17)

donde sz = ±1, es dos veces el número cuántico del operador Ŝz. Ya que este Hamilto-
niano es independiente del tiempo, podemos plantear la ecuación estacionaria como,

Ĥψ = Eψ,
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de esta manera,
[

1
2m

(
px + eB

c
y
)2

+
p2
y

2m + p2
z

2m − µN gp sz B

]
ψ = Eψ. (2.18)

Es importante notar que el la única dependencia espacial del Hamiltoniano (ec. 2.17),
es con la coordenada–y. De esta manera, px y py son constantes de movimiento. Esto
nos induce a reescribir a la función de onda como,

ψ(x, y, z) = e
i
~ (pxx+pzz) Φ(y). (2.19)

Antes de reemplazar esta expresión, reescribimos la ec. (2.18), de un modo más conve-
niente,

p2
y

2m ψ + 1
2m

(
px + eB

c
y
)2

ψ =
(
E − p2

z

2m + µN gp sz B

)
ψ. (2.20)

Al reemplazar por la ec. (2.19), el exponencial se simplifica. Además, empleamos la
transformación canónica para py = ~∇y/i. De este modo, tenemos,

− ~
2

2m
d2Φ(y)
dy2 + 1

2m

(
px + eB

c
y
)2

Φ(y) =
(
E − p2

z

2m + µN gp sz B

)
Φ(y), (2.21)

luego de un poco de álgebra, podemos escribir,

− ~
2

2m
d2Φ(y)
dy2 + 1

2 mω̃2(y − y0)2 Φ(y) = Ẽ Φ(y), (2.22)

con,

ω̃ = eB

mc
,

y0 = − cpx
eB

,

Ẽ = E − p2
z

2m + µN gp sz B. (2.23)

Recordemos la ecuación de Schrödinger para el oscilador armónico en una dimensión,
dada en la ec. (4.2) en [1]. Para el beneficio del lector, repetimos esa ecuación a con-
tinuación,

− ~
2

2m
d2ϕ(x)
dx2 + 1

2mω2 x2 ϕ(x) = E ϕ(x). (2.24)

De la comparación de las ecs. (2.22) y (2.24), concluimos que la ec. (2.22) es la de
un oscilador armónico simple, cuyo centro de oscilación está corrido en y0. De nuestro
conocimiento del oscilador armónico (ver Cap. 4, en [1]), sabemos que la energía resulta,

Ẽ = ~ω̃
(
Np + 1

2

)
, con Np = 0, 1, 2, ... (2.25)
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Recordando ahora la definición del magnetón nuclear de Born,

µN = e~
2mc,

tenemos, finalmente a partir de las ecs. (2.23) y (2.25),

E = µN B (2Np + 1− gpsz) + p2
z

2m, (2.26)

Por conveniencia y para mantener una notación consistente con la sección anterior,
cambiamos la notación para la energía E,

εp(p, sz, Np) = p2
z

2m + µN B (2Np + 1− gpsz) Np = 0, 1, ... (2.27)

Esta es la energía de un protón en un campo magnético constante, que emplearemos en
este seminario. Debemos enfatizar que consideramos que la única interacción del protón
es con el campo magnético. Si apagamos el campo magnético y nos restringimos a una
única partícula, entonces tenemos una partícula libre. Pero escribimos esta sección para
muchas partículas que no interactúan entre sí. En física clásica tal sistema se denomina
un fluido ideal. En el caso cuántico, rige el Principio de Pauli y seguimos teniendo un
potencial químico y números de ocupación; por lo cual hablamos de un “gas de Fermi”.

Antes de terminar, mostramos la expresión para la función de onda. En nuestro
cálculo, no necesitamos emplear la función de onda. Sin embargo, debemos responder a
una pregunta central: ¿cuál es el grado de degeneración de estos niveles de energía? Para
responder a esta pregunta, debemos escribir la función de onda, dada por la ec. (2.19),
donde Φ(y) es la solución de la ecuación del oscilador armónico (ec. 2.22). Podemos
construir esta solución a partir de la ec. (4.15) en [1]:

ψ(x, y, z) = e
i
~ (pxx+pzz) e−

eB
2~c (y−y0)2 Hn



√
eB

~c
(y − y0)


 . (2.28)

De la comparación con la ec. (2.27), resulta que la energía está degenerada en px,
cuyos valores forman una sucesión continua, por lo cual la degeneración es infinita. Sin
embargo, la degeneración pasa a ser finita si el movimiento en el plano–(x, y) se limita a
un área arbitrariamente grande, pero finita, cuya supeficie designamos como A = Lx Ly.
Siguiendo el mismo razonamiento que empleamos en el Apéndice B, Sec. B.1, el número
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de valores diferentes de px, es,

número de estados de px → Lx
2π~ ∆px, (2.29)

donde los posibles valores de px, son aquellos en que el centro de la órbita se encuentra
contenida en A. De la condición 0 < y0 < Ly, recordando que y0 = −cpx/(eB) y
reemplazando los valores extremos en la desigualdad,

px|min = − eBLy
c

,

px|max = 0,

∆px = px|max − px|min = eBLy
c

. (2.30)

por lo cual, la degeneración g(ε), se obtiene reemplazando ∆px en la ec. (2.29):

g(ε) = eBA
2π~c (2.31)

Con estos elementos podemos calcular ahora la densidad de número para protones.
Esto lo hacemos en el Apéndice B. En forma más específica, la expresión para la densidad
de números para protones la mostramos en la ec. (B.14).

Resumamos lo discutido en esta sección. Consideramos una partícula cargada (un
protón), en un campo magnético constante, que elegimos en la dirección del eje–z y en
el sentido positivo. Encontramos que la partícula muestra una cuantización en el plano–
(x, y), pero mantiene su carácter continuo en el eje–z. Este resultado se denomina
cuantización de Landau y los niveles discretos de energía se denominan (niveles) de
Landau. El estudio de la cuantización de Landau no es el objetivo central de este capítulo.
Sin embargo, necesitamos dos resultados: la energía de partícula independiente dada en
la ec. (2.27) y la degeneración de los niveles de energía, que mostramos en la ec. (2.31).
Estos dos elementos son esenciales para el cálculo de la ecuación de estado en materia
proto–neutrónica. El lector interesado en un análisis más cuidadoso de la cuantización
de Landau, puede consultar el libro de Landau y Lifshitz [5], §111.
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2.3. Comparación de lo discutido con el átomo de
hidrógeno

Nota: esta sección puede ser ignorada por el lector sin culpa; ya que explicamos un
resultado anterior a la luz de lo que aprendimos sobre la cuantización de Landau. El
contenido de la sección no aporta ninguna información relevante para el desarrollo de
la ecuación de estado, sino que muestra que no existe ninguna inconsistencia entre los
resultados anteriores y los nuevos.

En la Sec. 10.1 en [1], mostramos la misma expresión que en la ec. (2.14). Eso lo
hicimos para justificar el experimento de Stern y Gerlach, mostrando cómo se acopla el
momento angular con un campo magnético, en este caso no–constante. Luego usamos
el mismo modelo para dar cuenta del efecto Zeeman en el átomo de hidrógeno. Por otra
parte, en la Sec. 12.1 del mismo libro, se discutió la interacción LS; donde dĳimos que
por medio del momento angular dábamos cuenta del campo magnético intrínseco del
átomo (de hidrógeno). Recordemos que estas correcciones a la energía se hacen sobre
el electrón, que es una partícula cargada. Esto es, en esos capítulos estudiamos cómo
se modifican los niveles de energía del átomo de hidrógeno debido a la presencia de un
campo magnético.

En la sección anterior, demostramos que una partícula cargada en un campo mag-
nético constante, muestra una cuantización, denominada de Landau. Volviendo atrás
y recordando el estudio del efecto Zeeman o la interacción fina (o interacción LS),
debemos preguntarnos si cometimos un error y nos olvidamos de algo importante. La
respuesta a esta pregunta se vincula con el método de trabajo científico: la realidad es
extremadamente compleja y para tratar de describirla, recurrimos a modelos que son
simplificaciones de la realidad. Para el estudio del efecto Zeeman y de la interacción
fina, empleamos Teoría de Perturbaciones, donde el espacio de Hilbert es el del átomo
de hidrógeno en ausencia de campo magnético. Por lo tanto, los niveles de Landau no
aparecen, pues nuestro espacio de Hilbert es el de una partícula en ausencia de campo
magnético que no contiene estos estados.

Sabemos entonces por qué no tenemos los niveles de Landau para el efecto Zeeman
y la interacción fina. Pero debemos responder aún si ese modelo está bien o no. El mejor
modo de responder a esta pregunta, es comparar con el experimento. Al hacerlo, vemos
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que el modelo funciona bien. Dada esta respuesta, nos podríamos preguntar si valió la
pena escribir la sección anterior sobre los niveles de Landau. O para ser más claros: ¿en
qué condiciones es importante la cuantización de Landau? La respuesta tiene que ver
con la intensidad del campo magnético. Cuando analicemos los resultados numéricos
para la ecuación de estado, veremos que los efectos magnéticos son relevantes para
campos a partir de B & 1015G. El campo magnético intrínseco del átomo de hidrógeno
es B ∼ 105G y el efecto Zeeman supone un campo magnético menor. A medida que
el campo decrece, el número de niveles de Landau que deben ser tenidos en cuenta
crece considerablemente. Para valores del campo magnético B ∼ 105G el número de
niveles es muy grande y la separación entre niveles muy pequeña. En los hechos, se puede
despreciar la cuantificación de Landau en estas condiciones.

En resumen, la importancia de la cuantificación de Landau depende de la intensidad
del campo magnético y solo es importante para campos magnéticos muy intensos. Esto
lo discutiremos nuevamente cuando analicemos los resultados numéricos de la ecuación
de estado. En esta pequeña sección, solo quisimos justificar el motivo por el que no
discutimos la cuantificación de Landau para el átomo de hidrógeno. Finalmente, notamos
que resolvimos la ecuación de Pauli para una partícula libre que interactúa solo con un
campo magnético. No resolvimos la misma ecuación para el átomo de hidrógeno.

2.4. Ecuación de estado con un campo magnético
intenso

Como ya dĳimos, el término “ecuación de estado”, indica la presión en función de
la densidad; en nuestro caso, la densidad de número. Vamos a desarrollar esta sección
según dos niveles de dificultad. En primer lugar, vamos a calcular el potencial químico a
partir de la densidad de número. Luego, calcularemos la presión en sí, para lo cual dare-
mos un conjunto de expresiones de la Mecánica Estadística, que nos permitirán calcular
la ecuación de estado. En este punto, debemos aclarar que la discusión de los resultados
busca abordar el comportamiento de cada magnitud física, según la dependencia fun-
cional con cada variable de la que dependa dicha magnitud. Esto en una primera lectura,
puede resultar algo confuso, ya que damos mucha información. Sugerimos al lector que
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luego de una lectura general, focalice su atención en la magnitud física que resulte de
su mayor interés.

Para abordar el problema de un sistema formado solo por neutrones y protones, a
temperatura finita y bajo la acción de un campo magnético externo constante; primero
debemos establecer claramente qué sabemos y qué deseamos calcular. Esto es, cuáles
son nuestros datos de entrada y qué deseamos calcular con ellos.

Nuestros datos de entrada son:

a. La densidad bariónica total ρ y la fracción de protones Yp. Definimos la fracción
de protones como,

Yp ≡ ρp
ρn + ρp

, (2.32)

donde naturalmente ρ = ρn + ρp.

b. La temperatura T , del sistema.

c. La intensidad del campo magnético B.

En resumen, nuestras variables de entrada son cuatro: ρ, Yp, T y B. Debe resultar obvio
que podemos dar ρ junto con Yp, o en forma alternativa ρn y ρp, ya que contienen la
misma información. Sobre los valores numéricos, analizaremos:

ρ ∈ [0,0.4] fm−3. Notemos que la densidad de saturación nuclear es ρ0 ≈ 0.16 fm−3,
de este modo, nos manejamos en un rango ρ/ρ0 ∈ [0,2.5]; ya que densidades may-
ores requerirían de un tratamiento relativista.

Consideraremos Yp = 0, 0.15 y 0.30. Lo cual indica materia puramente neutrónica
(Yp =0), y fracciones de protones hasta el valor de 0.3, que es un valor de referencia
aceptado en la literatura.

Consideraremos temperaturas de T =5 y 15MeV.

Analizaremos B=1017 y 1018G.

El paso siguiente es explicitar el modelo que vamos a adoptar para estudiar nuestro
sistema. Pensamos que neutrones y protones no interactúan entre sí, pero sí lo hacen con
un campo magnético externo. Como ya discutimos, dadas las condiciones de densidad y
temperatura que analizaremos, debemos realizar un tratamiento cuántico del problema.
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Emplearemos el modelo no relativista. Si bien no existe interacción entre las partículas
del sistema, la cuántica nos dice que el Principio de Pauli debe ser tenido en cuenta,
pues tenemos un sistema de fermiones.

Dado este planteo, podemos calcular un conjunto extenso de propiedades del sistema.
La primera magnitud que debemos evaluar es el potencial químico. Una vez que conoz-
camos el potencial químico, podremos calcular la ecuación de estado. Pueden calcularse
otras magnitudes, como la entropía, polarización del sistema y otras más. Calcularemos
solo las magnitudes que hemos nombrado.
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Figura 2.3: Potencial químico en función de la densidad. En el panel superior (inferi-
or) mostramos el potencial químico de neutrones (protones). Esto lo hacemos a dos
temperaturas.

Comencemos entonces por el potencial químico para neutrones y protones. Cada
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tipo de partícula (neutrones, protones, electrones, etc.), posee su potencial químico; que
solo depende del tipo de partícula, pero no de su spin, aún en presencia de un campo
magnético. Este último punto es sutil y no debe ser subestimado. Para entender este
punto y por conveniencia, recordemos las expresiones para la densidad de número para
neutrones y protones, ecs. (B.9) y (B.14), respectivamente,

ρn(µ, T,B) = 1
(2π)3

∑
sn

∫
dk

1
e(εn(k, sn)−µn)/kBT + 1 , (2.33)

ρp(µ, T,B) = eB

(2π)2

∑

Np, sp

∫ ∞
−∞

dkz
1

e(εp(kz , sp,Np)−µp)/kBT + 1 , (2.34)

donde ρn+ρp = ρ. Las energías de partícula independiente para neutrón εn(k, sn) y para
protón εp(kz, sp, Np), fueron dadas en las ecs. (2.7) y (2.27), respectivamente. Notemos
que las energías de partícula independiente dependen de la proyección de spin. Como
vimos en la Sec. 2.1, el potencial químico nos dice hasta qué energía tenemos partículas.
Si el potencial químico dependiera del spin, tendríamos dos potenciales químicos para la
misma especie de partícula. Luego, el sistema no se encontraría en equilibrio, pues para
las partículas con el potencial químico mayor, existen niveles de menor energía con otro
spin. De este modo, la situación de equilibrio es que el potencial químico no dependa
del spin.

Para calcular el potencial químico, fijamos ρn y ρp, y resolvemos las ecs. (2.33) y
(2.34), donde las incógnitas son µn y µp. Estas son ecuaciones implícitas, que deben
resolverse en forma numérica. El resultado numérico lo mostramos en las Figs. 2.3. El
potencial químico depende fuertemente de la densidad, débilmente de la temperatura y
su dependencia con el campo magnético es despreciable. La diferencia entre µn y µp, es
también despreciable. Esto último se debe a que la diferencia de masa entre protones y
neutrones es muy pequeña y el acoplamiento con el campo magnético es débil.

En las Figs. 2.3, vemos también que la relación entre la densidad y el potencial quími-
co es biunívoca: a cada potencial químico le corresponde una única densidad y viceversa.
Además, la dependencia funcional es suave. De este modo, podemos simplificar consi-
derablemente la evaluación del potencial químico, asignando valores arbitrarios para el
mismo, reemplazarlos en las ecs. (2.33) y (2.34), ver a qué valores de la densidad se
corresponde y luego hacer una extrapolación lineal para evaluar cualquier valor interme-
dio. Como último comentario sobre estas figuras, notamos que para una densidad fija, el
potencial químico disminuye cuando la temperatura disminuye. Esto es una consecuencia
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de la difusión de la superficie de Fermi.
Dado el cálculo del potencial químico, somos ahora capaces de evaluar la polarización

del sistema. Para ello, evaluamos las densidades de partículas con spin up y down,
simplemente como,

ρupn (µ, T,B) = 1
(2π)3

∫
dk n(k, sn = +1), (2.35)

ρdwn (µ, T,B) = 1
(2π)3

∫
dk n(k, sn = −1), (2.36)

ρupp (µ, T,B) = eB

(2π)2

∑

Np

∫ ∞
−∞

dkz n(kz, sp = +1, Np), (2.37)

ρdwp (µ, T,B) = eB

(2π)2

∑

Np

∫ ∞
−∞

dkz n(kz, sp = −1, Np). (2.38)

donde el superíndice up, indica partículas con spin up y dw, aquellas con spin down.
Notar que ρn = ρupn + ρdwn y ρp = ρupp + ρdwp . En ausencia de campo magnético y por el
principio de Pauli, tendremos,

ρup = ρdw, cuando B = 0, (2.39)

donde por simplicidad omitimos la dependencia funcional de la densidad. Este resulta-
do es válido tanto para protones, como para neutrones. Sin embargo, la presencia del
campo magnético altera esta igualdad, generando una asimetría (de spin) entre las den-
sidades parciales de spin up y down. Por conveniencia, definimos la asimetría en forma
adimensional, de la siguiente mantera,

Asimetría = ρup − ρdw
ρup + ρdw

, (2.40)

donde nuevamente la expresión es válida tanto para neutrones, como para protones,
en forma independiente. De esta manera, tenemos dos asimetrías de spin; una para
cada tipo de partícula interviniente en nuestro estudio. Esta expresión es válida para
cualquier valor de campo magnético. En particular y de la ec. (2.39), notamos que en
ausencia de campo magnético la asimetría vale cero. A partir de su definición, vemos
que la asimetría de spin posee valores acotados entre −1 y +1. El valor −1 indica que
todas las partículas tienen spin down. Análogamente, para +1 el spin es up y como
mencionamos, el valor cero muestra materia no polarizada. Por inspección del signo
del factor giromagnético para protones y neutrones, vemos que el valor de la energía de
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partícula independiente es más bajo para spin down en el caso de neutrones y spin up para
protones. Por otra parte, el Principio de Pauli, nos dice que la situación de menor energía
es aquella en que el número de partículas con spin up y down es el mismo. La situación
física real es aquella en que la polarización es parcial. Debemos indicar que para bajas
densidades y campos magnéticos muy grandes, es posible que el sistema se encuentre
completamente polarizado. Vale la pena mencionar que entre las diferentes magnitudes
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Figura 2.4: Asimetría de spin para protones y neutrones en función de la densidad total, 
para dos valores del campo magnético B. Empleamos una temperatura de T = 5MeV.

físicas que evaluaremos, aquella con mayor dependencia con el campo magnético es la
asimetría de spin. En la Fig. 2.4, mostramos el comportamiento de dicha magnitud para
dos valores del campo magnético. Vemos que la asimetría es positiva para protones
y negativa para neutrones, como ya habíamos advertido. La magnitud de la asimetría
es mayor a bajas densidades. Intuitivamente, esto es fácil de entender: el grado de
polarización resulta de la competencia entre el campo magnético que busca polarizar el
sistema y el Principio de Pauli que favorece lo contrario. Cuando la densidad es baja, las
partículas están más separadas y por lo tanto el Principio de Pauli es menos efectivo.
Luego, predomina la polarización.
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Siguiendo con la Fig. 2.4, notamos que la asimetría para protones posee una magnitud
mayor que la de neutrones. Existen dos razones para esto: en primer lugar, el módulo
del factor giromagnético para protones es mayor. En segundo lugar, tenemos Yp =0.3, lo
cual indica que la densidad parcial de protones es menor que la de neutrones. Finalmente,
notamos que al pasar de B = 1017G aB = 1018G, la asimetría crece en aproximadamente
un orden de magnitud; lo cual muestra la fuerte dependencia de la asimetría con el campo
magnético.
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Figura 2.5: Asimetría de spin para protones y neutrones en función de la densidad total,
para diferentes valores de la temperatura. En esta figura elegimos B = 1018G y Yp =0.3.

En segundo lugar, en la Fig. 2.5, mostramos la dependencia de la asimetría con
la temperatura. Elegimos dos temperaturas: T = 5 y 15MeV. Vemos que la asimetría
disminuye cuando aumenta la temperatura: un aumento de la temperatura produce un
incremento en el desorden térmico. El estado polarizado, es un estado ordenado, pues
los espines se alinean en la misma dirección. La temperatura, naturalmente, tiende a
desordenar al sistema.

Finalmente en el análisis de la asimetría, en la Fig. 2.6, mostramos las asimetrías
para neutrones y protones para diferentes valores de la fracción de protones. En el
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Figura 2.6: Asimetría de spin para protones y neutrones en función de la densidad total,
para diferentes valores de la fracción de protones, Yp. En esta figura elegimos B = 1018G
y T = 5MeV.

panel superior, mostramos el caso Yp = 0, esto es, materia puramente neutrónica, pues
no hay protones. En los siguientes paneles, mostramos Yp =0.15 y 0.30. Vemos que la
dependencia con la fracción de protones es débil. En resumen, tenemos que la asimetría es
una magnitud positiva para protones y negativa para neutrones; que depende fuertemente
del campo magnético y de la temperatura. Debe resultar evidente la relación entre la
asimetría y la magnetización del sistema. Sin embargo, en este capítulo no avanzaremos
en esa dirección.

Pasamos ahora a la segunda parte de nuestro análisis, para lo cual debemos mostrar
un conjunto de expresiones que nos permitirán calcular la presión. Esta función depende
de: la densidad, la fracción de protones, la temperatura y el campo magnético. Partimos
de la expresión para el potencial de Helmholtz F dado por la ec. (2.1). Vamos a dividir
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por el volumen V , de modo que trabajaremos con densidades de energía, esto es,

F ≡ F

V
.

El motivo por el cual dividimos por el volumen es que nuestro sistema (una estrella
de neutrones), es desde el punto de vista de nuestro modelo, un sistema muy grande.
Dentro de la estrella, tenemos distintos valores para la densidad (dependiendo de la
distancia al centro), diferentes temperaturas y valores del campo magnético. Luego, es
conveniente analizar un subsistema, cuyo volumen arbitrario es V , donde estas cantidades
son localmente constantes. Todos nuestros resultados van a ser independientes de V ;
por lo cual, podemos pensar a este volumen como un artificio para el cálculo. Aún así,
podemos decir que el volumen debe ser lo suficientemente pequeño para que densidad,
temperatura y campo sean aproximadamente constantes; y lo suficientemente grande
como para que el número de partículas admita un tratamiento termodinámico. Siguiendo
con nuestro análisis, separamos ahora la contribución para neutrones, de la de protones,

F = Fn + Fp, (2.41)

con,

Fn = En − T Sn, (2.42)

Fp = Ep − T Sp, (2.43)

donde Ei ≡ Ui/V y Si ≡ Si/V , son las densidades de energía interna y de entropía para
i = n, p, respectivamente. A partir del conocimiento de los potenciales químicos para
neutrón y protón, podemos evaluar el potencial de Helmholtz por unidad de volumen.
Mostramos ahora las expresiones explícitas para dicho cálculo. En primer lugar, para
neutrones, tenemos,

En = Kn − µNBgnWn, (2.44)

donde,

Kn(µn, T, B) = 1
2mn

1
(2π)3

∑
sn

∫
dk k2 ρn, sn(µn, T, B), (2.45)

Wn(µn, T, B) = 1
(2π)3

∑
sn

sn

∫
dk ρn, sn(µn, T, B), (2.46)

ρn, sn(µn, T, B) = 1
(2π)3

∫
dk

1
e(εn(k, sn)−µn)/kBT + 1 . (2.47)
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Mientras que para protones las expresiones correspondientes son,

Ep = Kp + (2Lp + ρp − µNBgpWp) , (2.48)

donde,

Kp(µp, T, B) = 1
2mp

eB

(2π)2

∑

sp, Np

∫ ∞
−∞

dkz k
2
z ρp, sp, Np(µ, T,B), (2.49)

Wp(µp, T, B) = eB

(2π)2

∑

sp, Np

sn

∫ ∞
−∞

dkz ρp, sp, Np(µ, T,B), (2.50)

Lp(µp, T, B) = eB

(2π)2

∑

sp, Np

Np

∫ ∞
−∞

dkz ρp, sp, Np(µ, T,B), (2.51)

ρp, sp, Np(µp, T, B) = eB

(2π)2

∫ ∞
−∞

dkz
1

e(εp(kz , sp, Np)−µp)/kBT + 1 . (2.52)

Obviamente, tenemos,
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Figura 2.7: Densidad de entropía en función de la densidad para dos temperaturas.

ρn = ρn(µn, T, B) =
∑
sn

ρn, sn(µn, T, B). (2.53)

ρp = ρp(µp, T, B) =
∑

sp, Np

ρp, sp, Np(µp, T, B). (2.54)
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Para la densidad de entropía, tenemos,

Sn(µn, T, B) = − 1
(2π)3

∑
sn

∫
dk [ρn, sn ln ρn, sn + (1− ρn, sn) ln(1− ρn, sn) ] ,

Sp(µp, T, B) = − eB

(2π)2

∑

sn, Np

∫ ∞
−∞

dkz[ρp, sp, Np ln ρp, sp, Np +

(1− ρp, sp, Np) ln(1− ρp, sp, Np) ]. (2.55)

Finalmente, la presión resulta,

Pn(µn, T, B) = µnρn −Fn, (2.56)

Pp(µn, T, B) = µpρp −Fp, (2.57)

donde la presión total (o ecuación de estado), es la suma de las presiones parciales de
neutrón y protón,

P (µn, T, B) = Pn(µn, T, B) + Pn(µn, T, B). (2.58)

Como advertimos, este esquema es complejo y fue expuesto sin una demostración rigu-
rosa. Referimos al lector interesado a los libros de Callen [6] y Pathria [7], para ver el
desarrollo y demostración de estas expresiones. Aceptandas las mismas, es simple evalu-
ar la presión; una vez conocido el potencial químico para cada partícula. Hagamos una
síntesis del desarrollo. Tenemos un sistema formado por neutrones y protones a temper-
atura finita, con un campo magnético intenso. Sobre el sistema, conocemos la densidad
de número, la fracción de protones, la temperatura y el campo magnético. Deseamos
calcular la ecuación de estado. Para ello calculamos en primer lugar los potenciales quími-
cos para neutrón y protón, µn y µp, respectivamente. Obtenemos µn y µp, a partir de
la densidad de número para neutrón y protón. Si bien no lo demostramos, los valores
de µn y µp, así obtenidos resultan en el mínimo del potencial termodinámico. Luego, en
las ecs. (2.41)-(2.58), mostramos que con el conocimiento de los potenciales químicos,
podemos calcular la ecuación de estado.

Antes de mostrar los resultados para la presión, daremos los valores para la densidad
de entropía. Esto lo vemos en las Figs. 2.7 y 2.8. La densidad de entropía es una magnitud
de interés desde el punto de vista astrofísico. En la Fig. 2.7, mostramos la densidad de
entropía para dos valores de la temperatura. Vemos que la entropía es menor, cuando
la temperatura es más baja. Un sistema más frío, es más ordenado y por lo tanto
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Figura 2.8: Densidad de entropía en función de la densidad para diferentes valores de la
densidad de protones.

su entropía es menor. Luego, en la Fig. 2.8, mostramos la densidad de entropía para
diferentes fracciones de protones. A altas densidades, claramente la materia neutrónica
se muestra como un sistema más ordenado.

Finalmente, en las Figs. 2.9 y 2.10, mostramos la presión en función de la densidad.
Vale la pena señalar que, al igual que para la densidad de entropía, la presión es casi
independiente del valor del campo magnético. Esto se debe a que en la expresión de la
presión los términos que dependen del campo magnético son muy pequeños respecto del
resto de los términos. En sentido estricto, existe una dependencia de estas magnitudes
con el campo magnético; pero tal dependencia es despreciable. Debido a ello, no hemos
incluido ninguna figura mostrando a la presión en función del campo magnético.

En la Fig. 2.9, mostramos la presión para dos valores de la temperatura. Vemos
una débil dependencia con la temperatura; cuando la temperatura aumenta, la presión
se incrementa. Por otra parte, en la Fig. 2.10, mostramos la presión para diferentes
valores de la fracción de protones. Vemos que a medida que la fracción de protones
disminuye, la presión aumenta. Esto es un reflejo del principio de exclusión de Pauli:
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Figura 2.9: Presión en función de la densidad para dos temperaturas diferentes.

cuando las partículas son idénticas, el último nivel ocupado es de una energía mayor al
caso en que tengamos partículas de diferente tipo. Seamos más explícitos por medio de un
ejemplo. Supongamos que tenemos un total de diez partículas. Si son todos neutrones,
irán ocupando los niveles cuánticos hasta agotar las partículas. Si se trata de cinco
protones y cinco neutrones, está claro que el último nivel ocupado por los neutrones es
menor que aquel en que tenemos solo neutrones. Por otra parte, los protones comienzan
a ocupar sus niveles cuánticos comenzando por el estado fundamental. Luego, intuimos
que cuando tenemos partículas de diferentes clases, podemos “comprimir” más a las
partículas; por lo cual su presión es menor.

2.5. Discusión y conclusiones

Durante este capítulo, desarrollamos una ecuación de estado para un sistema de
neutrones y protones no interactuantes entre sí, a temperatura finita y con un campo
magnético intenso. Para ello, debimos desarrollar la física de una partícula cargada en un
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Figura 2.10: Presión en función de la densidad para diferentes valores de la densidad de
protones.

campo magnético, que da origen a los llamados niveles de Landau. Introdujimos y desa-
rrollamos el concepto de potencial químico, que da cuenta de propiedades estadísticas
de partículas, en nuestro caso de fermiones. Mostramos un conjunto de expresiones de la
termodinámica para poder calcular la ecuación de estado. Encontramos que la ecuación
de estado tiene una dependencia despreciable con el campo magnético, pero sí depende
de la temperatura y de la fracción de protones. Sin embargo, el campo magnético puede
producir una fuerte polarización del medio, haciendo que los espines de los nucleones
se alineen en forma total o parcial. Concluimos entonces, que la ecuación de estado no
diferencia el estado de polarización de las partículas. En lo que sigue, discutiremos una
posible aplicación de la ecuación de estado.

Supongamos un problema astrofísico de interés: ¿cómo se enfría una estrella luego
de su colapso? Sabemos que el mecanismo más efectivo de enfriamiento es por medio
de la emisión de neutrinos. Luego, si deseamos estudiar el enfriamiento del remanente
estelar de una estrella masiva, debemos conocer el camino libre medio de los neutrinos
en ese medio. De este modo, logramos refinar un poco nuestra pregunta inicial. Debemos
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preguntarnos: ¿cómo calcular el camino libre medio de neutrinos en un medio estelar? La
respuesta a esta pregunta es simple (como todo, su implementación es más compleja),
y consiste en identificar con cuáles partículas del medio interactúa el neutrino, analizar
las posibles reacciones y calcular su sección eficaz. La inversa de la sección eficaz, es el
camino libre medio del neutrino.

Realicemos una síntesis del párrafo anterior: debemos calcular la sección eficaz entre
dos partículas: el neutrino y una de las partículas del medio estelar (neutrones, protones,
núcleos, etc). Llegamos a nuestro punto de interés: esa sección eficaz, ¿depende de que
la partícula con la que interactúa el neutrino, sea libre o esté en un medio rodeada de
otras partículas? La respuesta es que sí depende de que se encuentre rodeada de otras
partículas. Para entender este punto, mostremos un ejemplo. Supongamos la reacción
de dispersión inelástica de un neutrino con un neutrón. Como producto de la reacción,
el neutrón cambia su estado cuántico. Si se trata de un neutrón libre, puede acceder a
cualquier estado cuántico como estado final. Pero si está rodeado de otros neutrones, el
Principio de Pauli nos dice que el neutrón no podrá acceder a los estados cuánticos ya
ocupados por otros neutrones. Luego, la sección eficaz va a ser diferente entre neutrones
libres y neutrones en un medio que contiene otros neutrones. Un cálculo de este tipo
para materia neutrónica, se puede encontrar en [8].

De acuerdo entonces, la sección eficaz depende de las propiedades del medio. Y para
saber cuáles son las “propiedades del medio”, debemos evaluar la ecuación de estado, que
es el objeto de estudio de este capítulo. Acabamos de describir sólo una de las posibles
motivaciones para estudiar la ecuación de estado de un medio estelar. En la literatura,
encontramos trabajos que se concentran en el desarrollo de ecuaciones de estado como
un fin en sí mismo. Una vez que tenemos una ecuación de estado para una estrella de
neutrones, por ejemplo; podemos calcular su radio y masa, que son observables (desde
el punto de vista astronómico, no cuántico). No desarrollaremos este punto.

El modelo que hemos expuesto es simple. Puede serlo aún más. Podemos tomar
solo neutrones a temperatura cero. Es un ejercicio de interés, no del todo trivial, que
dejamos al lector interesado. Pensemos en cuáles son las líneas de trabajo para mejorar
este modelo. En primer lugar, deberíamos incluir al menos a los electrones: cualquier
estrella es eléctricamente neutra, luego el modelo de materia formada solo por protones
y neutrones es poco realista. Al incluir electrones, debemos pedir que el sistema se
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encuentre en equilibrio beta. Otra línea de trabajo, es el incluir interacciones entre las
partículas. Otro punto que debe ser revisado son los efectos relativistas. El número de
sofisticaciones al problema es muy grande y cada elemento que se agrega produce una
modificación perceptible en la ecuación de estado. Esto es de particular interés, pues nos
dice que se trata de un problema abierto.
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Capítulo 3

Oscilaciones de neutrinos

Introducción

La importancia de los neutrinos en el ámbito astrofísico es enorme. La lista de situa-
ciones en las que los neutrinos juegan un papel importante es muy larga. Solo por 
nombrar dos de ellas, digamos que son centrales en la física de las supernovas, en el 
enfriamiento de objetos compactos, e infinidad de fenómenos más. Con todo y ello, los 
neutrinos son unas de las partículas más elusivas de la naturaleza. Sobre su elusividad, 
vale la pena mencionar su modo de detección. Los detectores de neutrinos consisten en 
grandes volúmenes de agua, construidos debajo de la superficie de la tierra o en algún 
túnel debajo de una montaña. De este modo, la roca que rodea al agua evita la llegada 
de cualquier otra radiación que no sean los neutrinos. Dentro del recipiente de agua se 
colocan fotomultiplicadores: cuando un neutrino interactúa con el agua, se emite ra-
diación que el fotomultiplicador puede medir. La pregunta que debemos hacernos es: 
¿cuán probable es que un neutrino interactúe con el agua? Para responder a ello, pode-
mos calcular el camino libre medio de un neutrino en el agua; esto es, la distancia entre 
dos interacciones sucesivas del neutrino con el agua. El camino libre medio resulta 109 

veces el radio del Sol. Quien lee estas líneas puede ser escéptico respecto de la posibilidad 
real de medición de los neutrinos. Si bien la interacción de un neutrino es muy débil, 
el número de neutrinos que se emiten en cualquier estrella es enorme, lo cual permite
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finalmente obtener mediciones8.
Enseguida haremos una descripción más detallada de los neutrinos en sí. Antes de ello,

nos adelantamos a decir que existen diferentes tipos de neutrinos. Los que se forman
en una estrella como el Sol, son de un tipo particular, que en forma algo arbitraria,
denominaremos “neutrinos solares”. Los neutrinos solares se originan en el núcleo del
Sol, llegan a la Tierra y son medidos. Dada la luminosidad del Sol, se espera un cierto
valor para la cantidad de neutrinos solares. Al realizar esta medida, el resultado obtenido
se encuentra entre la mitad y un tercio del valor esperado. Esta discrepancia, se denomina
“problema de los neutrinos solares” y fue resuelto a comienzos del presente siglo. Como
dĳimos, existen diferentes tipos de neutrinos. Si bien en el Sol se emiten neutrinos solares,
luego estos mismos neutrinos pueden cambiar su tipo en su viaje a la Tierra. De hecho, no
se trata de un solo cambio, sino de una oscilación entre los diferentes tipos de neutrinos.
La oscilación de neutrinos es el objeto de estudio de este seminario y tiene implicancias
físicas interesantes; como por ejemplo el hecho de que para que se produzca la oscilación
de neutrinos, al menos algunos de sus tipos deben tener masa en reposo no nula. Esto
último choca con el Modelo Estándar. De esta manera, tenemos un ejemplo de cómo un
hecho observacional modifica una teoría que es ampliamente aceptada. Los elementos
generales del tema pueden encontrarse en [9].

3.1. Algunos elementos de la fenomenología de neu-
trinos

En primer lugar, la notación aceptada para el neutrino está dada por la letra gri-
ega ν, mientras que el antineutrino se escribe como ν̄; aunque no discutiremos a los
antineutrinos. Desde el punto de vista estadístico, el neutrino es un fermión, ya que
su spin vale 1/2. Desde el punto de vista eléctrico, es neutro, esto es, no tiene carga
eléctrica (debimos imaginar esto a partir de su nombre). Además, desde el punto de
vista de las interacciones, el neutrino no es afectado por la interacción fuerte, solo lo es
por la interacción débil y por la gravitatoria. La masa del neutrino es extremadamente

8Se estima que el número de neutrinos que incide sobre la Tierra es de 6,5×1010 neutrinos por
segundo, por centímetro cuadrado.

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 71



pequeña. De hecho, durante mucho tiempo se supuso que era una partícula sin masa en
reposo, como el fotón. Naturalmente, dado el pequeño valor de su masa, la atracción
gravitatoria que experimenta es muy baja. De este modo, consideraremos que el neutrino
interactúa con otras partículas solo por medio de la interacción débil. Esta interacción,
además de ser débil comparada con la interacción nuclear, es también de corto alcance.
En la clasificación de partículas, el neutrino es un leptón.

En este punto, vale la pena recordar cómo se introdujo el spin a partir del experimento
de Stern y Gerlach: el resultado experimental no podía ser interpretado por medio de los
observables que se conocían y se debió introducir un observable nuevo, el spin. En forma
análoga, los neutrinos requieren de un número cuántico nuevo, denominado ’sabor’. Aún
no sabemos el número total de sabores de los neutrinos, pero sí podemos afirmar que
existen al menos tres. Estos son,

neutrino electrónico, νe,

neutrino muónico, νµ,

neutrino tauónico, ντ .

Los antes denominados neutrinos solares, son en realidad los neutrinos electrónicos, νe. 
Si el neutrino se encuentra en un autoestado de sabor, su función de onda es |νe〉, |νµ〉 o 
|ντ 〉, dependiendo del sabor del neutrino. Ahora bien, los autoestados de energía no son 
autoestados de sabor. Naturalmente los autoestados de sabor y de energía, forman dos 
bases diferentes del mismo espacio de Hilbert. Luego, debemos tener tres autoestados de 
energía. Para estudiar la evolución temporal de cualquier estado físico, debemos escribir 
al estado como una combinación lineal de autoestados de energía, pues el operador de 
evolución temporal está asociado con la energía (ver por ejemplo la Sec. 5.3 en [1]). 
Cuando tenemos un estado puro, esto es, aquel que tiene un valor definido de la energía, 
la parte espacial del estado no cambia con el tiempo. Pero por hipótesis, un autoestado 
de sabor, no lo puede ser de energía; por lo tanto, un autoestado de sabor debe ser una 
combinación lineal de autoestados de energía en un instante dado.

Lo que estamos describiendo es un hecho fenomenológico y es la clave para com-
prender el fenómeno de la oscilación de neutrinos. Dados los tres estados de sabor, |νe〉,
|νµ〉 y |ντ 〉, en el instante inicial éstos se puede escribir como una combinación lineal
de autoestados de energía, que escribiremos como |ν1〉, |ν2〉 y |ν3〉; donde cada uno de
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estos autoestdos tiene una energía Ei, diferente. Para estudiar la evolución temporal de
|νe〉, |νµ〉 y |ντ 〉, debemos multiplicar a los autoestados de energía por el coeficiente de
evolución temporal,

|νi〉 → e−
i
~Eit |νi〉, con i = 1, 2, 3.

Insistamos en este punto: cada uno de los autoestados de sabor, |νe〉, |νµ〉 y |ντ 〉; se
puede escribir como una única combinación lineal de autoestados de energía. Supong-
amos que tenemos el autoestado de sabor |νe〉 en t = 0. Debido a la evolución temporal,
los coeficientes que multiplican a |ν1〉, |ν2〉 y |ν3〉, alteran el peso relativo de las com-
ponentes, justo después de t = 0, pasamos del autoestado de sabor |νe〉 a un estado
mezcla de sabor. Si medimos el sabor para t 6= 0, podremos obtener cualquiera de los
tres sabores de neutrinos, con una cierta probabilidad. Este es el objeto de estudio de
este seminario.

3.2. Un sistema con dos sabores de neutrinos

Como discutimos en la Sec. 3.1, sabemos que existen al menos tres sabores diferentes
de neutrinos. El objetivo de este seminario, es estudiar las oscilaciones entre los tres sabor
de los neutrinos, lo cual es algo complejo. Con el fin de desarrollar una comprensión
conceptual del fenómeno, en esta sección discutiremos un sistema simplificado, formado
solo por dos sabores de neutrinos. Esto nos permitirá comprender el objetivo del cálculo,
de modo de acceder al sistema realista de tres sabores con una mayor claridad sobre el
método.

Vamos a considerar dos estados de sabor, |νe〉 y |νµ〉. Como ya hemos discutido, los
autoestados de sabor no son autoestados del Hamiltoniano del sistema; esto es, no son
autoestados de energía. Llamemos |ν1〉 y |ν2〉, a los autoestados de energía. Podemos
vincular ambas bases por medio de una transformación unitaria U , dada por,

U =




cos θ sen θ
−sen θ cos θ


 . (3.1)

De este modo, podemos escribir,


|νe〉
|νµ〉


 =




cos θ sen θ
−sen θ cos θ






|ν1〉
|ν2〉


 . (3.2)
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En forma más explícita,

|νe〉 = cos θ |ν1〉+ sen θ |ν2〉 (3.3)

|νµ〉 = −sen θ |ν1〉+ cos θ |ν2〉. (3.4)

Mientras que la transformación inversa es simplemente,

U−1 =




cos θ −sen θ
sen θ cos θ


 . (3.5)

Analicemos ahora la evolución temporal de los estados. Para los estados |ν1〉 y |ν2〉 eso
es trivial y viene dado por,

|ν1(t)〉 = e−
i
~E1t|ν1(0)〉

|ν2(t)〉 = e−
i
~E2t|ν2(0)〉, (3.6)

donde E1 y E2 son los valores de la energía. Pensando en que los neutrinos no están
interactuando con otras partículas, sus energías vienen dadas por,

E1 =
√
p2

1c
2 +m2

1c
4

E2 =
√
p2

2c
2 +m2

2c
4, (3.7)

donde pi y mi i = 1 ó 2, es la magnitud del impulso y la masa del neutrino i, respecti-
vamente. Haremos ahora algunas aproximaciones para simplificar el problema. En primer
lugar, supondremos que,

p1 ∼= p2 = p,

donde esta aproximación nos dice que el módulo del impulso es el mismo para todos
los neutrinos. Claro, los neutrinos se mueven en todas las direcciones y por lo tanto el
impulso, como vector, difiere de un neutrino al otro. Por otra parte, estamos suponiendo
que los neutrinos poseen una masa en reposo no nula; pero la evidencia experimental
nos indica que en el caso de ser no nula, es muy pequeña. No sabemos los posibles
valores para las masas, pero sí conocemos una cota superior para las mismas, cuyo valor
es de 1eV. Dado su valor, es también una aproximación razonable el que los neutrinos
se muevan a una velocidad próxima a la velocidad de la luz. Luego, podemos concluir
que es una buena aproximación el suponer que p1 ∼= p2 = p.

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 74



Este mismo razonamiento nos permite hacer una aproximación sobre las energías
(ecs. 3.7): empleamos la aproximación que se denomina “ultrarelativista”, que consiste
en pensar que el término del impulso es mucho mayor que el de masa. De este modo,
tenemos,

E1 =
√
p2

1c
2 +m2

1c
4 ∼= pc+ 1

2
m2

1c
4

pc

E2 =
√
p2

2c
2 +m2

2c
4 ∼= pc+ 1

2
m2

2c
4

pc
. (3.8)

Dentro de esta aproximación y por conveniencia, mostramos ahora la expresión para la
diferencia de energías,

E2 − E1 = 1
2

(m2
2 −m2

1)c4
pc

. (3.9)

En este punto, vale la pena detenerse un poco para recordar cuál es el objetivo de
nuestro cálculo. Lo que sabemos es que para los neutrinos, sus autoestados de sabor
no son autoestados de energía. De modo que la idea es partir en el instante inicial
de un autoestado de sabor y transcurrido un cierto intervalo de tiempo, ver cuál es
la probabilidad de que se encuentre en otro estado de sabor. Para ello, comenzamos
expresando los autoestados de sabor en función de los de energía, ya que de estos últimos
sabemos calcular su evolución temporal. Colocando en forma explícita la dependencia
temporal en las ecs. (3.3,3.4), tenemos,

|νe(t)〉 = cos θ e− i
~E1t |ν1(0)〉+ sen θ e− i

~E2t |ν2(0)〉 (3.10)

|νµ(t)〉 = −sen θ e− i
~E1t |ν1(0)〉+ cos θ e− i

~E2t |ν2(0)〉. (3.11)

Supongamos que en t = 0, el neutrino se encuentra en el autoestado de sabor electrónico,
|νe(0)〉, y queremos calcular la probabilidad de que al tiempo t, el neutrino se encuentre
en un estado de sabor muónico. Esta probabilidad viene dada por,

Pe→µ = |〈νµ|νe(t)〉|2 . (3.12)

Aunque debe resultar obvio, tomamos la expresión del estado del neutrino electrónico de
la ec. (3.10); mientras que para el neutrino muónico empleamos la ec. (3.4): las expre-
siones dadas en las ecs. (3.3, 3.4), representan estados puros de sabor. Naturalmente,
para t = 0 las ecs. (3.10, 3.11) se reducen a las ecs. (3.3, 3.4). Para t 6= 0, la evolución
temporal de los estados de neutrino hace que ya no sea un estado puro de sabor. Por
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Figura 3.1: Sistema de dos niveles. La línea azul representa la probabilidad de tener un
neutrino electrónico, mientras que la línea negra corresponde a un neutríno muónico.
Naturalmente la suma de ámbas curvas vale uno para cualquier posición.

ello, Pe→µ 6= 0. La evaluación de la ec. (3.12), es simple. Pensamos también que la
velocidad del neutrino es próxima a la velocidad de la luz; por lo cual podemos vincular
el tiempo con la distancia L, que es la distancia entre el punto de emisión del neutrino
hasta el punto en que medimos su estado de sabor. De este modo, tenemos,

t ∼= L

c
.

Empleando las ecs. (3.10,3.11), obtenemos,

Pe→µ = sen2 (2θ) sen2
(

(m2
2 −m2

1)c4L
4E~c

)
. (3.13)

Para llegar a este resultado, debimos emplear las siguientes propiedades:

sen(θ) cos(θ) = 1
2 sen(2θ),

junto con,
sen(x) = eix − e−ix

2i .
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En la ec. (3.13), hicimos la sustitución E = pc. Esta es la expresión para la energía del
neutrino en el caso de que este no tenga masa. Debemos pensar a este “E”, simplemente
como una notación, por cuestiones de tradición. Por otra parte, por conservación de las
probabilidades, la probabilidad de permanencia en el mismo estado resulta,

Pe→e = 1− Pe→µ = 1− sen2 (2θ) sen2
(

(m2
2 −m2

1)c4L
4E~c

)
. (3.14)

Finalmente, es fácil comprobar que,

Pµ→e = Pe→µ,

y que,
Pµ→µ = Pe→e.

En la Fig. 3.1, mostramos la forma en que oscilan estas probabilidades.

3.3. Un sistema con tres sabores de neutrinos

En la sección anterior discutimos un sistema formado por dos sabores de neutrinos con
fines puramente didácticos, pues la situación realista es la de tres sabores de neutrinos.
Se especula con la existencia de otros tipos de neutrinos denominados estériles, pues
no intervienen en las oscilaciones de los mismos; por lo cual no son de interés para
este seminario. De esta manera, dado el presente estado de conocimiento del tema, esta
sección representa a la situación más general de la misma.

3.3.1. Consideraciones generales sobre la matriz de transforma-
ción

Para evaluar la probabilidad de transición entre los diferentes estados de sabor del
neutrino, procedemos de una manera muy similar a la que discutimos para el caso del
sistema de dos sabores. Debemos construir una matriz unitaria que vincule los autoes-
tados de sabor con los de energía, en forma análoga a la ec. (3.1), solo que ahora la
matriz es de 3× 3:

U =




u1,e u2,e u3,e

u1,µ u2,µ u3,µ

u1,τ u2,τ u3,τ



. (3.15)
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Daremos enseguida la expresión explícita para esta matriz. Antes de ello, debemos
mostrar el modo en que vincula a los autoestados de energía con los de sabor,

|να〉 =
3∑

i=1
ui,α |νi〉, (3.16)

con α = e, µ ó τ . En lo que sigue, adoptaremos las siguientes convenciones: emplearemos
letras griegas como índice de suma para los estados de sabor y números para los estados
de energía. Emplearemos la letra “U” mayúscula para la matriz unitaria que vincula los
autoestados de energía con los de sabor y “ui,α” minúscula para los elementos de matriz
de la matriz “U”; mientras que designaremos como “u∗i,α”, a los elementos de la matriz
inversa “U−1”, que resulta de resolver U−1U = UU−1 = I. Debemos notar que ya que
se trata de una matriz unitaria, tenemos,

U−1 = U †, (3.17)

lo cual es inmediato a partir de la expresión (5.39) en [1]. Esta relación es importante,
pues la matriz adjunta U † se calcula como la matriz conjugada y transpuesta de U .
Luego, si conocemos U , el cálculo de su matriz inversa es muy simple.

Empleando entonces la matriz inversa, podemos vincular los estados de sabor con
los de energía,

|νi〉 =
∑

α=e,µ,τ
u∗i,α |να〉, (3.18)

donde el asterisco sobre el elemento de matriz, indica al complejo conjugado de u.
Debemos enfatizar que las matrices de transformación U y U−1, no son hermíticas y eso
puede inducir a cierta confusión. Para evitar esto, mostraremos las expresiones dadas
por las ecs. (3.16) y (3.18), en forma matricial:




νe

νµ

ντ




=




u1,e u2,e u3,e

u1,µ u2,µ u3,µ

u1,τ u2,τ u3,τ



·




ν1

ν2

ν3



. (3.19)

De este producto se encuentra, por ejemplo,

|ντ 〉 = u1,τ |ν1〉+ u2,τ |ν2〉+ u3,τ |ν3〉, (3.20)

Con expresiones análogas para |νe〉 y |νµ〉; resumidas en la ec. (3.16). Empleando U−1,
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podemos expresar los autoestados de energía en función de los de sabor,



ν1

ν2

ν3




=




u∗1,e u∗1,µ u∗1,τ

u∗2,e u∗2,µ u∗2,τ

u∗3,e u∗3,µ u∗3,τ



·




νe

νµ

ντ



. (3.21)

Nuevamente, tomamos un ejemplo del producto,

|ν1〉 = u∗e,1 |νe〉+ u∗µ,1 |νµ〉+ u∗τ,1 |ντ 〉, (3.22)

En forma similar para |ν2〉 y |ν3〉 (ver ec. 3.18). Notemos que en este caso la matriz de
transformación resulta del hacer el transpuesto conjugado de la matriz de la ec. (3.19).
El motivo es simple,

|νest. de sabor〉 = U |νest. de energía〉 → U−1|νest. de sabor〉 = |νest. de energía〉,
(3.23)

junto con la ec. (3.17). Por conveniencia, empleamos ahora la primera propiedad en la
lista (5.2) en [1] (i.e 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗), lo cual nos permite escribir,

u∗α,i = ui,α. (3.24)

Empleando esta propiedad, podemos reescribir la ec. (3.19), como,



ν1

ν2

ν3




=




ue,1 uµ,1 uτ,1

ue,2 uµ,2 uτ,2

ue,3 uµ,3 uτ,3



·




νe

νµ

ντ



. (3.25)

Antes de terminar esta sección, es conveniente analizar el modo en que se construye un
bra. Esto lo debemos hacer con cierto cuidado, pues estamos acostumbrados a trabajar
con operadores hermíticos, que son autoadjuntos (Ô† = Ô). Tenemos ahora,

|νest. de sabor〉 = U |νest. de energía〉 → 〈νest. de sabor| = 〈νest. de energía|U †. (3.26)

Es conveniente expresar la última igualdad en términos matriciales,

(
νe νµ ντ

)
=
(
ν1 ν2 ν3

)
·




u∗1,e u∗1,µ u∗1,τ

u∗2,e u∗2,µ u∗2,τ

u∗3,e u∗3,µ u∗3,τ



. (3.27)
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Una vez más, demos un ejemplo del producto de matrices,

〈νµ| = 〈ν1|u∗1,µ + 〈ν2| u∗2,µ + 〈ν3|u∗3,µ. (3.28)

El resumen de todo esto puede sonar a un juego de palabras. Tratemos de evitarlo.
Para construir un estado (i.e ket) puro de sabor como una suma de estados de energía,
empleamos U . Para construir un bra puro de sabor en función de los bra de energía,
empleamos U † (ver ec. 3.27). Alternativamente, para expresar los estados puros de
energía en función de los de sabor, se debe permutar el uso de U con U †, respecto de los
estados puros de sabor. Esto es resultado de que la matriz de transformación es unitaria
y por lo tanto, cumple con U−1 = U † y U 6= U †.

3.3.2. Probabilidades de transición y de permanencia

Los pasos siguientes son idénticos a los de un sistema de dos sabores. Antes de
escribir a la probabilidad de transición, debemos dar las expresiones explícitas para las
matrices U y U−1; comenzando por la primera. Por conveniencia, esto lo haremos como el
producto de cuatro matrices, conocidas como matrices de Pontecorvo–Maki–Nakagawa–
Sakata [10]:

U = U23 · U13 · U12 · UM , (3.29)

donde,

U23 =




1 0 0
0 c23 s23

0 −s23 c23



, U13 =




c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13



,

U12 =




c12 s12 0
−s12 c12 0

0 0 1




y UM =




eiα1/2 0 0
0 eiα2/2 0
0 0 1



. (3.30)

En estas matrices y por simplicidad, empleamos sij ≡ sen θij y cij ≡ cos θij. Los
ángulos θij se denominan ángulos de mezcla (al igual que en el caso de un sistema de
dos sabores), y los discutiremos enseguida, cuando mostremos valores numéricos para
las probabilidades. Antes de seguir adelante, debemos nombrar dos magnitudes que no
fueron analizadas para el sistema de dos sabores. En primer lugar, la constante δ se
coloca para contemplar la posibilidad de que los neutrinos violen la llamada simetría CP.
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No analizaremos qué significa esto, pero si bien por completitud mostramos la expresión
con esta constante, a partir de ahora la tomaremos igual a cero. Las otras dos constantes
son α1 y α2, que se colocan en caso de que el neutrino sea una partícula de Majorana.
Las partículas de Majorana son aquellas en las que partícula y antipartícula son iguales.
Tampoco consideraremos esto y haremos, α1 = α2 = 0. Si bien no incluiremos estas
constantes, quisimos colocarlas para enfatizar nuestro aún incipiente conocimiento de los
neutrinos: simplemente no sabemos si violan o no la simetría CP, ni si son o no partículas
de Majorana. Dicho esto y haciendo el producto de las matrices, tenemos,

U = U23 · U13 · U12 =

=




1 0 0
0 c23 s23

0 −s23 c23



·




c13 0 s13

0 1 0
−s13 0 c13



·




c12 s12 0
−s12 c12 0

0 0 1




=

=




c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13



. (3.31)

Debemos notar que en cada una de las matrices U12, U13 y U23, existe una submatriz de
2× 2, con la misma dependencia funcional que la matriz empleada en el sistema de dos
sabores, dada en la ec. (3.1). El resto de la matriz es un uno en la diagonal y ceros para
los elementos no diagonales. En las ecs. (3.31), mostramos en forma explícita cada una
de las matrices, pues si bien el producto final es difícil de interpretar, éste resulta del
producto de tres matrices de simple interpretación. Notemos que en el caso anterior de
dos sabores, solo podemos tener un ángulo de mezcla; que podríamos denominar θ12, y
por simplicidad denominamos θ. Cuando tenemos tres sabores tenemos tres ángulos de
mezcla: θ12, θ13 y θ23.

Ahora debemos construir la matriz inversa de U , que resulta simplemente del transpuesto
conjugado de U . A modo de verificación, calcularemos U−1 en forma explícita. El tomar
la última expresión de las ecs. (3.31), y calcular su inversa es posible, pero algo labo-
rioso. Esto se puede calcular en forma más simple notando que la matriz inversa para
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cualquiera de las matrices Uij, es casi trivial. Luego, notando que,

U−1
12 · U−1

13 · U−1
23 · U23 · U13 · U12 = I,

donde I, es la identidad de 3× 3. De esta forma, tenemos,

U−1 = U−1
12 · U−1

13 · U−1
23 =

=




c12 −s12 0
s12 c12 0
0 0 1



·




c13 0 −s13

0 1 0
s13 0 c13



·




1 0 0
0 c23 −s23

0 s23 c23




=

=




c12c13 −s12c23 − c12s23s13 s12s23 − c12c23s13

s12c13 c12c23 − s12s23s13 −c12s23 − s12c23s13

s13 s23c13 c23c13



. (3.32)

Comparando ahora esta expresión con la conjugada transpuesta de U , a partir de la
ec. (3.31), vemos que son iguales, con lo cual finalizamos la comprobación. Claro, tam-
bién pudo calcularse el producto U−1 · U ó U · U−1, y comprobar que se obtiene la
identidad. No elegimos este camino pues el álgebra es más engorrosa que la discutida.

Ya tenemos todos los elementos para calcular la probabilidad de transición. Comen-
zamos con un estado puro de sabor a t = 0, y escribimos su función de onda para un
t ≥ 0, arbitrario,

|να(t)〉 = u1,α e
− i

~E1t |ν1(0)〉+ u2,α e
− i

~E2t |ν2(0)〉+ u3,α e
− i

~E3t |ν3(0)〉, (3.33)

donde vale la pena indicar que según nuestra notación |νi(0)〉 = |νi〉, esto es, en el
instante inicial tenemos un estado puro α. Queremos calcular la probabilidad de que a
un tiempo t, llegue a un estado de sabor β, donde β puede tomar cualquiera de los tres
sabores. El estado puro de sabor β final, lo escribimos por conveniencia como un bra,

〈νβ| = u∗1,β 〈ν1|+ u∗2,β 〈ν2|+ u∗3,β 〈ν3|. (3.34)

A riesgo de ser reiterativos, conviene hacer un resumen de lo discutido. En primer lugar,
debemos vincular las bases de estados puros de energía, con la de los estados puros de
sabor, lo cual hacemos por medio de las matrices U y U †, según estemos actuando sobre
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un ket o sobre un bra, respectivamente. Estas matrices se pueden construir dando tres
cantidades: θ12, θ13 y θ23. Estos ángulos no son parámetros libres, sino que se deben
fijar a partir de datos experimentales u observacionales. Dado un estado puro de sabor
en el instante inicial, para conocer su evolución temporal simplemente lo expresamos
en la base de estados puros de energía, para los que conocemos su evolución temporal.
Finalmente, para conocer la probabilidad de que luego de un cierto intervalo de tiempo
el neutrino se encuentre nuevamente en un estado puro, calculamos el producto interno
entre el estado puro final (ec. 3.34) y el estado de partida al tiempo final (ec. 3.33).
Esto último, lo expresamos como,

Pα→β = |〈νβ|να(t)〉|2 . (3.35)

En lo que sigue, debemos trabajar sobre esta última expresión, para obtener una forma
que nos permita su análisis numérico. En primer lugar, repetimos las aproximaciones
sobre las energías que hicimos en la Sec. 3.2:

Ei =
√
p2

1c
2 +m2

i c
4 ∼= pc+ 1

2
m2
i c

4

pc
, (3.36)

con i = 1, 2, 3. Además y en forma arbitraria, supondremos que,

m1 ≤ m2 ≤ m3.

Escribamos ahora el producto interno 〈νβ|να(t)〉, sacando factor común e−iE1t/~,

〈νβ|να(t)〉 = e−
i
~E1t

(
u∗1,β u1,α + u∗2,β u2,α e

− i
~ (E2−E1)t + u∗3,β u3,α e

− i
~ (E3−E1)t

)
.

(3.37)
Abrimos ahora un pequeño paréntesis, para exponer algunos elementos de un tema que
no desarrollaremos en detalle. Empleando la ec. (3.24) (i.e u∗α,i = ui,α), reescribimos la
última expresión como,

〈νβ|να(t)〉 = e−
i
~E1t

(
uβ,1 u1,α + uβ,2 u2,α e

− i
~ (E2−E1)t + uβ,3 u3,α e

− i
~ (E3−E1)t

)
.

(3.38)
Notemos la estructura del producto de los elementos de matriz, uβ,i ui,α, que podemos
escribir como,

uβ,i ui,α = 〈νβ|V̂†|νi〉〈νi|V̂|να〉. (3.39)

Así escrito el producto de matrices, notamos que partimos de un estado de sabor α,
un cierto potencial de transición V̂ , nos lleva a un estado de energía i. Esto ocurre en
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el elemento de matriz de la derecha9. El segundo elemento de matriz, comienza en el
mismo estado de energía i, donde ahora el operador de transición nos lleva al estado
final β. En resumen, pasamos de un estado de sabor inicial α al estado de sabor final β,
pasando por un estado intermedio de energía i. Notemos que el estado final puede ser
cualquier estado de sabor, inclusive el mismo α. Sobre el operador de transición V̂ , no
lo discutiremos. Solo podemos afirmar que representa a la interacción débil, ya que el
neutrino solo siente la interacción débil y la gravitatoria. Claro, es la débil la responsable
de las transiciones. Fin del paréntesis.

Ahora continuamos con el cálculo de la probabilidad de transición a partir de la
ec. (3.37). Como en el caso del sistema de dos niveles, reemplazamos el tiempo por,

t ∼= L

c
,

además, llamamos,
κjk ≡ 1

~
(Ej − Ek)L

c
. (3.40)

Debemos calcular entonces,

Pα→β = |〈νβ|να(t)〉|2 =
∣∣∣u∗1,β u1,α + u∗2,β u2,α e

−iκ21 + u∗3,β u3,α e
−iκ31

∣∣∣
2
, (3.41)

donde luego de un poco de álgebra, obtenemos finalmente:

Pα→β =
(
u∗1,β u1,α + u∗2,β u2,α cosκ21 + u∗3,β u3,α cosκ31

)2
+

+
(
u∗2,β u2,α senκ21 + u∗3,β u3,α senκ31

)2
(3.42)

Es conveniente reescribir κjk (ec. 3.40) empleando la expresión para la energía dada
por la ec. (3.36), de la siguiente manera,

κjk = 1
2 ~c∆m

2
jk

L

E
, (3.43)

9Recordemos que debemos leer a los elementos de matriz de derecha a izquierda.
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donde ∆m2
jk ≡ (mjc

2)2 − (mkc
2)2. Analicemos las unidades. Tenemos,

[
∆m2

jk

]
= (energía)2,

[~c] = energía× longitud,

[L] = longitud,

[E] = energía.

De este modo vemos que κjk es adimensional. Recordemos que E = pc es la energía del
neutrino en el caso de poseer masa nula; donde como en la sección anterior, empleamos
esta letra por conveniencia. En la próxima sección discutiremos los resultados numéricos
de la oscilación de neutrinos. Antes de ello, vale la pena discutir con un poco más de
cuidado la ec. (3.43): notamos que aquí tenemos la diferencia de masas al cuadrado. Si
suponemos que una masa cualquiera de las tres fuera cero, no se alteraría el análisis que
estamos haciendo. Luego, la oscilación de neutrinos nos dice que al menos dos de las
tres masas de neutrinos en reposo deben ser no nulas. La tercera puede o no serlo.

3.3.3. Resultados numéricos

En el caso de un sistema de dos sabores, al ángulo de mezcla le asignamos un valor
arbitrario, ya que desde el punto de vista empírico, no se puede tener un sistema de dos
sabores. Sin embargo, veremos enseguida que bajo ciertas condiciones, existe un sabor
de neutrinos cuyo peso es manifiestamente menor al de los otros dos. En ese caso, puede
simplificarse el análisis reduciendo en forma aproximada, el sistema de tres niveles a dos.
Esta discusión no es central en el marco conceptual de este seminario.

Analizaremos ahora la situación realista de un sistema de tres sabores de neutrinos.
El conjunto de parámetros que necesitamos para evaluar la oscilación de neutrinos consta
de tres ángulos y tres diferencias de masas. Los valores de estas cantidades se tratan de
ajustar para dar cuenta de la fenomenología del problema. En lo que sigue, mostraremos
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un conjunto posibles de valores para estas cantidades:

θ12 = 34o,

θ13 = 9, 21o,

θ23 = 40o,

∆m2
21 = 0, 759× 10−22 GeV2,

∆m2
31 = 23, 2× 10−22 GeV2,

∆m2
32 = 23, 2× 10−22 GeV2. (3.44)

Nota para distraídos: se necesitan tres valores para las masas de los neutrinos o en forma
equivalante, tres valores para las diferencias de masas. Si una de las masas es cero, ese
cero es un valor. Por otra parte, al ver estos números, lo primero que debe llamar la
atención es el uso de las unidades. En la práctica, emplearemos los ángulos en radianes,
pero lo expresamos en grados pues en general es el modo más familiar para expresarlos.
Por otra parte, la unidad de GeV2 parece poco adecuada dados los modestos valores
para estas diferencias de masas. Notemos que un valor típico para estas diferencias es
∆m2

ij ∼ 10−4 eV2. Para comprender el uso de estas unidades, reescribamos la ec. (3.43),
como sigue,

κjk = 1
2 ~c∆m

2
jk

(
L

E

)
, (3.45)

donde los resultados de la probabilidad de transición los escribimos en función de L/E
en unidades de km/GeV. Para ello, solo nos resta dar el valor de ~c:

~c = 197, 3× 10−21 GeV km.

Empleando estos elementos, debemos calcular ahora la probabilidad de transición dada
por la ec. (3.42).

Realizaremos un análisis partiendo de los tres estados de sabor. En primer lugar,
consideraremos que el neutrino se encuentra en un estado de sabor puro electrónico.
En la Fig. (3.2), mostramos la oscilación de neutrinos para este caso y para un rango
de L/E que nos permite observar el comportamiento de la oscilación para valores de
esta variable que consideramos pequeños. Naturalmente para L/E = 0, que equivale al
instante inicial, tenemos Pe→e = 1 (Pe→µ = Pe→τ = 0), ya que por hipótesis partimos
de un estado electrónico. Vemos enseguida la oscilación de los diferentes sabores, donde
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Figura 3.2: Oscilación de los tres sabores de neutrinos en función de L/E; partiendo de
un neutrino electrónico puro. Graficamos la probabilidad de transición o de permanencia
según la ec. (3.42). Los valores para los ángulos de mezcla y diferencias de masas al
cuadrado, son los dados por las ecs. (3.44).

en todo punto se cumple,

Pα→e + Pα→µ + Pα→τ = 1, (3.46)

para α = e, µ ó τ . Sobre la discusión de esta figura, vemos que la probabilidad de ocur-
rencia de cada uno de los sabores muestra un comportamiento oscilatorio decreciente
para el electrón (que parte de Pe→e = 1); mientras que es ascendente para el muón y
el tauón, con valores iniciales nulos. Para el caso del neutrino electrónico en el instante
inicial, haremos un análisis de los rangos de variación de L/E, un poco más esmera-
do que para los otros casos. En la Fig. (3.3), mostramos la probabilidad de encontrar
los diferentes sabores de neutrinos hasta un valor máximo de L/E =30.000 km/GeV.
Comenzamos a advertir una estructura oscilante de un rango mayor, donde las oscila-
ciones de la Fig. (3.2), son en realidad una oscilación secundaria sobre la oscilación
principal. Este comportamiento se confirma en la Fig. (3.4). Ir hacia valores mayores
de L/E es innecesario, pues repite el comportamiento de la última figura. Esta última
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Figura 3.3: Lo mismo que la Fig. (3.2), pero para otro rango de L/E.

figura muestra un comportamiento interesante, pues es obvio que el neutrino electróni-
co juega un papel dominante. Si nuestro interés está puesto en el neutrino electrónico,
vemos que podemos sumar los dos sabores restantes y pensarlos como un “neutrino x”.
De este modo, reducimos al sistema a solo dos sabores, lo cual redunda en una impor-
tante simplificación de la parte analítica del problema. No exploramos la reducción a un
sistema de dos sabores, que podemos hacer o bien bajo los resultados recién descriptos
o cuando uno de los sabores tiene una probabilidad baja. Solo nombramos estos puntos
por completitud.

También por completitud, sigamos analizando ahora la oscilación de neutrinos cuando
el neutrino inicial es, o bien moúnico, o bien tauónico; lo cual mostramos en las Figs. (3.5)
y (3.6), para el caso muónico y las Figs. (3.7) y (3.8), para el caso tauónico. Al analizar
todas las figuras que implican la oscilación de los tres sabores de neutrinos, lo primero
que notamos es que el neutrino electrónico juega un papel más importante que los otros
dos. Discutamos este punto según el sabor de neutrino que tenemos en el instante inicial:

Neutrino electrónico, νe, en el instante inicial: La importancia relativa de νe ya fue
discutida cuando mostramos que su peso es similar al de los otros dos neutrinos
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Figura 3.4: Lo mismo que la Fig. (3.2), pero para otro rango de L/E.

sumados.

Neutrino muónico, νµ, en el instante inicial: Vemos de la Fig. (3.6), que el peso
de νe es muy similar al de νµ, mientras que el peso de ντ es menor.

Neutrino tauónico, ντ , en el instante inicial: Vemos de la Fig. (3.8), que el peso
de νe es muy similar al de ντ , mientras que el peso de νµ es menor.

Es interesante notar que las oscilaciones pequeñas dentro de la oscilación mayor, parecen
no jugar un papel importante para el caso electrónico (ver Fig. 3.4). Sin embargo, sí lo
son para los otros dos casos: vemos que νe tiene un peso similar a νµ en la Fig. (3.6);
mientras que νe tiene también un peso similar a ντ en la Fig. (3.8). Curiosamente, en
este caso las oscilaciones pequeñas son relevantes, ya que están desfasadas entre los
términos dominantes, lo cual garantiza la condición Pα→e + Pα→µ + Pα→τ = 1, ∀α.

Antes de terminar esta sección, es importante destacar que los resultados que mostramos
resultan del modelo elegido; especialmente por la elección de los ángulos de mezcla y
las diferencias de masas dadas en la ecs. (3.44). Con otro conjunto de parámetros, los
resultados serían diferentes. Eventualmente, alguno de los otros dos sabores de neutrinos
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sería el dominante; o bien los tres sabores serían igualmente importantes. No debemos
perder de vista que existe evidencia empírica sobre la oscilación de neutrinos y lo que se
desarrolla en este capítulo es solo un modelo simple, pero completo, sobre el problema.
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3.4. Discusión

El objetivo central de este Seminario no es tanto el llevar adelante una discusión
científica sobre el tema de las oscilaciones de los neutrinos, sino más bien el mostrar una
aplicación de la Mecánica Cuántica a un problema físico real. De esta manera, en esta
sección no haremos una proyección sobre la física de neutrinos, lo que sabemos y lo que
aún nos resta entender; sino la conexión de lo discutido con nuestros conocimientos del
curso de Mecánica Cuántica.

Remitimos al lector a la discusión dada en la Sec. 5.1.3 de [1]; en particular, sobre
lo desarrollado a partir del quinto postulado de la Mecánica Cuántica. Para el beneficio
del lector, repetimos el punto que deseamos discutir:

1. Consideramos un observable Â, tal que [Â, Ĥ0] = 0, donde Ĥ0 es el Hamiltoniano
del sistema. Consideramos un espacio de Hilbert de dimensión tres y que cualquier
otro observable conmuta también con el Hamiltoniano.

Escribimos la base de Â, como {|ϕi〉}. Partimos de un estado inicial mezcla |ψ〉,
de la forma,

|ψ〉 = c1|ϕ1〉+ c2|ϕ2〉+ c3|ϕ3〉. (3.47)

2. Se mide Â, obteniendo como resultado λ3 y el estado colapsó en,

|ψ〉 = |ϕ3〉, (3.48)

donde la probabilidad de obtener este valor fue P3 = |c3|2.

3. Se mide nuevamente Â, obteniendo como resultado λ3, esta vez con probabilidad
uno.

4. Se mide ahora otro observable B̂, tal que [Â, B̂] = 0 y se obtiene b3, que es el
autovalor de B̂ correspondiente al estado |ϕ3〉, con probabilidad uno.

5. Se mide ahora un tercer observable Ĉ, tal que [Â, Ĉ] 6= 0. El primer paso es expresar
|ϕ3〉 como una combinación lineal de autovectores de Ĉ:

|ϕ3〉 = c̃1|φ1〉+ c̃2|φ2〉+ c̃3|φ3〉. (3.49)

6. Al medir Ĉ, se obtiene ν1, y la función de onda colapsa en |φ1〉.
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7. Si medimos nuevamente Â, debemos escribir |φ1〉 en función de los vectores de la
base del operador que voy a usar para medir,

|φ1〉 = ˜̃c1|ϕ1〉+ ˜̃c2|ϕ2〉+ ˜̃c3|ϕ3〉, (3.50)

pudiendo ahora obtener nuevamente alguno de los tres posibles valores para este
observable.

Notemos que en [1], este punto fue discutido en el marco de los postulados a tiempo
fijo. Poco después, cuando se introdujo el tiempo, no se extendió el concepto para el
caso de evolución temporal; que es lo que haremos ahora. Antes de ir de lleno al análisis
del colapso de la función de onda, es pertinente diferenciar tres situaciones particulares
para el cálculo de la probabilidad de transición, que comparten puntos en común y por
ello, pueden inducir a confusión:

i. Sistema cerrado a tiempo fijo.

ii. Sistema cerrado que evoluciona con el tiempo.

iii. Sistema abierto que evoluciona con el tiempo10.

En todos los casos, tomamos como hipótesis que tenemos un Hamiltoniano no dependi-
ente del tiempo Ĥ0, que representa al sistema cerrado y es el término dominante para
el sistema abierto. Haremos una hipótesis más: que en el instante inicial tenemos un
autoestado de algún operador que nombraremos para cada caso, que no es necesari-
amente Ĥ0. Analicemos ahora la probabilidad de transición entre dos autoestados de
algún operador, según el orden enumerado arriba:

i. Sean |ϕi〉 y |ϕf〉, los autoestados de algún operador hermítico Ô, en un instante
fijo. La probabilidad de transición desde el estado inicial al final es,

Pi→f = |〈ϕf |ϕi〉|2 = δf,i, (3.51)

esto es, la probabilidad de transición es cero y la de permanencia es uno.
10El carácter de sistema abierto lo da un término en el Hamiltoniano que depende del tiempo, por lo

cual en este caso, solo tiene sentido analizar la evolución temporal.
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ii. Como en el caso anterior, consideramos dos autoestados de un operador hermítico
Â, que escribimos como |ϕi〉 y |ϕf〉. En este caso, sin embargo, la probabilidad de
transición depende de si Â conmuta o no con Ĥ0. Supongamos que [Â, Ĥ0] = 0,
entonces Â y Ĥ0 tienen una base común (ver Teorema en la Sec. 5.1.2 de [1]).
La función de onda inicial evoluciona con el tiempo según,

|ϕi(t)〉 = e−
i
~Eit|ϕi〉, (3.52)

para evitar dudas, t0 = 0 y |ϕi〉 ≡ |ϕi(t = t0〉. La probabilidad de transición es
simplemente,

Pi→f = |〈ϕf |ϕi〉|2 = δf,i, (3.53)

esto es, el mismo resultado que en el punto 1, pues la evolución temporal introdujo
una fase en la función de onda, que desaparece al tomar el módulo.

Vamos a considerar ahora otro operador, Ĉ, tal que, [Ĉ, Ĥ0] 6= 0. Denominamos
como |φj〉 la base en la que Ĉ es diagonal; mientras que mantenemos la notación
|ϕj〉 para la base en la que Ĥ0 es diagonal. Suponemos además que nos movemos
en un subespacio de Hilbert de dimensión tres y buscamos encontrar la probabilidad
de transición desde un estado inicial |φi〉, a un estado final |φf〉.
Llegamos ahora al punto clave del problema. Es el concepto que resulta excluyente
para poder entender el tema. Escribimos las funciones de onda |φi〉 y |φf〉 en la
base de Ĥ0:

|φi〉 = c1|ϕ1〉+ c2|ϕ2〉+ c3|ϕ3〉, (3.54)

|φf〉 = d1|ϕ1〉+ d2|ϕ2〉+ d3|ϕ3〉. (3.55)

Dadas las bases |φj〉 y |ϕj〉, los coeficientes c1, c2 y c3 son únicos para obtener
el estado puro |φi〉. Análogamente, los coeficientes d1, d2 y d3 son únicos para
obtener el estado puro |φf〉. Introducimos ahora la evolución temporal de estos
estados,

|φi(t)〉 = c1e
− i

~E1t|ϕ1〉+ c2e
− i

~E2t|ϕ2〉+ c3e
− i

~E3t|ϕ3〉, (3.56)

|φf (t)〉 = d1e
− i

~E1t|ϕ1〉+ d2e
− i

~E2t|ϕ2〉+ d3e
− i

~E3t|ϕ3〉. (3.57)

Tenemos tres valores para la energía: E1, E2 y E3. Si al menos dos de estos
valores son no nulos y diferentes entre sí, entonces la dependencia temporal no
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puede sacarse como un factor común, esto es, como una fase común. Luego, solo
tendremos estados puros para los instantes de tiempo tr, tales que,

e−
i
~E1tr = e−

i
~E2tr = e−

i
~E3tr ,

lo cual se cumple naturalmente para tr = 0, donde por hipótesis tenemos estados
puros. Notemos que no estamos pidiendo que estos coeficientes valgan uno, sino
simplemente que para tr, tengan el mismo valor; lo cual permite que se expresen
como una fase común.

Dado el estado |φi(t)〉 (ec. 3.56), queremos calcular la probabilidad de que a
un tiempo t, se transforme en el estado puro |φf〉. No partimos de dos estados
diferentes |φi〉 y |φf〉, partimos de un único estado |φi〉 y calculamos la probabilidad
de que a un tiempo tf , se transforme en el estado puro |φf〉, como se expresa en
la ec. (3.55). Esta probabilidad viene dada por,

Pi→f (tf ) = |〈φf |φ(tf )〉|2 = |d∗1c1e−
i
~E1t + d∗2c2e

− i
~E2t + d∗3c3e

− i
~E3t|2. (3.58)

Analicemos esta expresión para dos situaciones extremas: i. Si t = 0, por la ortonor-
malidad de los estados tenemos que Pi→f (t = 0) = 0, si i 6= f y Pi→f (t = 0) = 1
si i = f . Esto es obvio y no nos aporta mucha información nueva. ii. Si los
coeficientes dj, cumplen,

d1 = c1e
− i

~E1tr ,

d2 = c2e
− i

~E2tr ,

d3 = c3e
− i

~E3tr ,

donde tr es una constante arbitraria distinta de cero. Entonces, tenemos que para
ese tr, Pi→f (t = tr) = 1. Esto es, para un tiempo diferente de cero, tenemos
probabilidad uno. Si miramos la Fig. (3.4), notamos que existen puntos en que
esta condición se cumple cuando i = f , pero en ningún caso encontramos una
probabilidad de uno, cuando i 6= f . Aunque aún no lo dĳimos, debe ser obvio para
el lector que el análisis de la probabilidad de transición bajo estas condiciones se
corresponde con el problema de la oscilación de neutrinos.

iii. Analicemos finalmente un sistema abierto, esto es, aquel en que tenemos un po-
tencial que depende del tiempo. Para entender mejor este punto, remitimos al
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lector a la Sec. 13.3.1 de [1]. Ahí vimos que la función de onda para el caso de un
sistema abierto, se puede escribir como,

|ψ(t)〉 =
∑
n

cn(t)e−iEnt/~|ϕn〉, (3.59)

donde |ϕn〉 son autofunciones de Ĥ0 y el efecto de término dependiente del tiempo
se refleja en la dependencia temporal de las funciones cn(t). Esto supone que el
Hamiltoniano Ĥ0 es la contribución dominante. Por construcción, sabemos que
esta función de onda vale para cualquier instante y en particular, para el instante
inicial sabemos que,

|ψ(t = 0)〉 = |ϕi〉. (3.60)

La probabilidad de transición se calcula como,

Pi→f (tf ) = |〈ϕf |ψ(tf )〉|2. (3.61)

Este análisis se ve muy similar al discutido en el punto anterior, en relación con la
ec. (3.57). Desde el punto de vista analítico los esquemas son muy similares, pero
conceptualmente son diferentes. Para el caso presente, tenemos una función de
onda que parte de un estado puro y debido a la acción del Hamiltoniano evoluciona
en estados mezcla o cualquier estado puro. En el caso del punto 2, el Hamiltoniano
no depende del tiempo y el cambio de un estado puro a uno mezcla, se debe a que
el operador que representa a los autoestados, no conmuta con el Hamiltoniano.

Para finalizar esta discusión, analizaremos el colapso de la función de onda, según lo
mostramos arriba (ver puntos 1-8). En la Sec. 5.1.3 de [1], discutimos varios escenarios
de colapso de la función de onda, en que los coeficientes de las funciones de onda eran
desconocidos. En el caso de la oscilación de neutrinos, vemos una aplicación del método,
donde conocemos los coeficientes ya que se trata de un problema físico real. Demos un
ejemplo. Supongamos que el estado inicial es un estado puro de sabor electrónico:

|νe〉 = u1,e |ν1〉+ u2,e |ν2〉+ u3,e |ν3〉, (3.62)

donde los coeficientes ui,e, están dados por la ec. (3.31). El hacer una medida sobre esta
función es inconducente, pues ya sabemos su estados de sabor y más allá de su enorme
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interés, no es nuestro objetivo el medir los estados de energía. De esta manera, dejamos
que evolucione con el tiempo,

|νe(t)〉 = u1,e e
− i

~E1t |ν1〉+ u2,e e
− i

~E2t |ν2〉+ u3,e e
− i

~E3t |ν3〉. (3.63)

Ahora bien, por la completitud en el espacio de sabor, podemos escribir,

I = |νe〉〈νe|+ |νµ〉〈νµ|+ |ντ 〉〈ντ |, (3.64)

donde I es la identidad. Usando entonces la identidad, tenemos,

|νe(t)〉 = 〈νe|νe(t)〉 |νe〉+ 〈νµ|νe(t)〉 |νµ〉+ 〈ντ |νe(t)〉 |ντ 〉. (3.65)

Debemos notar que el subíndice e en la función de onda, indica el estado inicial. Sobre esta
función de onda, medimos ahora el sabor y podemos obtener e, µ ó τ ; con probabilidades
Pe→e(tf ) ≡ |〈νe|νe(tf )〉|2, Pe→µ(tf ) ≡ |〈νµ|νe(tf )〉|2 ó Pe→τ (tf ) ≡ |〈ντ |νe(tf )〉|2, re-
spectivamente; que son los coeficientes módulo cuadrado de la función de onda. Supong-
amos que obtenemos νµ. Entonces escribimos su evolución temporal en forma análoga
a la ec. (3.63), luego como la ec. (3.65) y repetimos el razonamiento.

3.5. Resumen y conclusiones

Teniendo en cuenta los elementos que desarrollamos en el curso de Mecánica Cuánti-
ca, quizá el modo más amigable para comprender el fenómeno de las oscilaciones de neu-
trinos sea mostrando rápidamente la ec. (3.65); que elegimos mostrar al final. Luego, es 
pertinente explicar el motivo por el que postergamos ese punto. Los seminarios persiguen 
varios objetivos. Por una parte, aplicar los elementos de Mecánica Cuántica a proble-
mas científicos de interés. Además, se busca introducir al alumno en la metodología de 
trabajo y estudio de un trabajo científico (para ser claros: de un “paper”). Es por este 
último motivo que elegimos presentar a la ec. (3.65) al final; ya que este tipo de análisis 
está ausente en un trabajo científico y se corresponde más bien a un texto de Mecánica 
Cuántica. La presentación que hacemos del tema, busca ser similar a la de un trabajo 
científico, partiendo de la Introducción, hasta llegar a los resultados numéricos y las 
conclusiones.
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Hecha esta aclaración, vayamos a la física del proceso que estudiamos. El fenómeno
de las oscilaciones de neutrinos se interpreta por medio de dos elementos básicos: en
primer lugar, que los autoestados de sabor no son autoestados de energía. En segundo
lugar, que al menos existen dos autoestados de energía con masa en reposo no nula. Solo
podemos entender la oscilación de neutrinos en términos mecánico cuánticos. Dentro de
este modelo, el vínculo entre los autoestados de sabor y de energía, está dado por una
matriz unitaria. Para construir esta matriz unitaria empleamos un enfoque empírico: se
construyó en términos de ángulos de mezcla y diferencias de masas, con el fin de ajustar
datos experimentales y observacionales. Eventualmente, pueden pensarse en modelos
teóricos para obtener esta matriz, pero eso va más allá del objetivo de este seminario.

Además de obtener expresiones analíticas para describir las oscilaciones de neutrinos,
llevamos adelante un análisis numérico. Para ello, empleamos un solo conjunto de valores
para los ángulos de mezcla y para las diferencias de masas. No existe aún la suficiente
cantidad de datos experimentales u observacionales, que justifiquen variar estos paráme-
tros. Más allá esto, el modelo aquí discutido es consistente con los datos que sí existen.
Medir un neutrino es extremadamente difícil, ya que la interacción de los neutrinos con
un detector tiene una probabilidad extremadamente baja. Afortunadamente, los procesos
naturales generan un número muy grande de neutrinos; lo cual permite detectar algunos.
Aún así, la física de neutrinos muestra más interrogantes que certezas. Esto es, se trata
de un área de investigación básica interesante.
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Figura 3.5: Oscilación de los tres sabores de neutrinos en función de L/E; partiendo de
un neutrino muónico puro. Graficamos la probabilidad de transición o de permanencia
según la ec. (3.42). Los valores para los ángulos de mezcla y diferencias de masas al
cuadrado, son los dados por las ecs. (3.44).
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Figura 3.6: Lo mismo que la Fig. (3.5), pero para otro rango de L/E.
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Figura 3.7: Oscilación de los tres sabores de neutrinos en función de L/E; partiendo de
un neutrino tauónico puro. Graficamos la probabilidad de transición o de permanencia
según la ec. (3.42). Los valores para los ángulos de mezcla y diferencias de masas al
cuadrado, son los dados por las ecs. (3.44).
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Figura 3.8: Lo mismo que la Fig. (3.7), pero para otro rango de L/E.
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Capítulo 4

El decaimiento del neutrón

Introducción

Es un hecho experimental que un neutrón libre decay en un protón, un electrón y un
antineutrino; luego de algunos minutos. Por otra parte, tenemos dos neutrones, junto a
dos protones, formando el núcleo del helio. En este caso, estos neutrones son estables;
esto es, no decaen. De este modo, decimos que el helio es un núcleo estable. Claro,
existen núcleos inestables, que decaen de diferentes maneras. Uno de los canales de
decaimiento es el llamado decaimiento–β: en el interior del núcleo ocurre la reacción ya
descripta:

n→ p+ e− + ν̄, (4.1)

donde por n designamos al neutrón, p protón, e− electrón y ν̄ es el antineutrino. Debemos
escribir la carga del electrón, pues la antipartícula del electrón es el postitrón; que se
escribe como e+. Existe aquí un tema de tradición, pues al resto de las antipartículas se
las escribe con una barra, como mostramos con el antineutrino en el capítulo anterior.

Si bien en este capítulo no estamos interesados en el análisis de la estabilidad de los
núcleos, mencionamos el tema para enfatizar que el tiempo de decaimiento del neutrón
dado por la ec. (4.1), depende de si el neutrón es libre o si está en el medio nuclear,
pudiendo ser estable para algunos núcleos y para otros no. En cualquier caso, el tiempo
de decaimiento más rápido es aquel en que tenemos un neutrón libre.

Junto a la ec (4.1), podemos también tener la reacción inversa que solo ocurre en
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un medio nuclear, dada por,
e− + p→ νe + n, (4.2)

Esta reacción es particularmente interesante, pues en el colapso de una estrella masiva
en supernova, si el remanente de la exploción es una estrella de neutrones; es esta última
reacción la responsable de que en el objeto compacto resultante dominen los neutrones.

En la materia estelar, como el de una estrella de neutrones, estas dos reacciones
ocurren todo el tiempo. El sistema se dice en equilibrio químico cuando la fracción
relativa de cada partícula permanece constante. Para ser claros: el equilibrio químico
no implica la ausencia de reacciones, sino el equilibrio entre ambos sentidos para cada
reacción.

Esta discusión nos permite entender la importancia astrofísica de estas reacciones y
la del decaimiento del neutrón en particular. Claro, el resultado en materia estelar es más
complejo que el correspondiente al de un neutrón libre. Pero para llegar a ese punto,
es conveniente entender primero el decaimiento de un neutrón libre; que es el objeto de
este capítulo.

Antes de ir al cálculo del decaimiento, debemos mostrar algunos elementos de mecáni-
ca cuántica relativista. Luego mostraremos un modelo simple para describir el decaimien-
to. Veremos que el resultado aún para este modelo simple, está de acuerdo con el valor
experimental. Este capítulo se basa en la discusión dada por el libro de Griffiths [11].

4.1. La ecuación de Dirac

En esta sección discutiremos brevemente la ecuación de Dirac, solo con el objetivo
de dar los elementos necesarios para comprender el decaimiento del neutrón. Pondremos
algún cuidado en mostrar el tránsito desde la ecuación de Schrödinger, a la ecuación
de Dirac. Pero una vez que tengamos la ecuación de Dirac, mostraremos sus soluciones
sin demostración. El alumno interesado puede encontrar el desarrollo de la resolución
de la ecuación de Dirac en cualquier libro de mecánica cuántica relativista, en particular
en [11]. La introducción de la relatividad en mecánica cuántica conduce a soluciones de
las ecuaciones relativistas con energía negativa. Estas soluciones no solo no son descar-
tadas, sino que implican la existencia de antipartículas, las cuales pueden ser observadas

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 103



experimentalmente. Si bien ya mencionamos al antineutrino, afirmamos ahora que las
ecuaciones de la mecánica cuántica relativista predicen la existencia de antipartículas.
Es más, veremos enseguida que toda partícula tiene en su función de onda un pequeño
componente de antipartícula. Análogamente, toda antipartícula tiene una componente
de partícula.

Vayamos entonces a la ecuación de Dirac. En primer lugar, recordemos a las trans-
formaciones canónicas:

Mecánica Clásica → Mecánica Cuántica

r → r,

V (r) → V (r),

p → ~
i
∇,

E → i~
∂

∂t
, (4.3)

donde r, V (r), p y E representan posición, energía potencial, cantidad de movimiento
y energía, respectivamente.

En mecánica clásica, la energía mecánica total, es la suma de la energía cinética,
más la energía potencial:

p2

2m + V (r) = E,

si ahora empleamos las transformaciones canónicas y aplicamos esta expresión a una
función de onda ψ(r, t), tenemos,

− ~
2

2m∇
2 ψ(r, t) + V (r)ψ(r, t) = i~

∂ ψ(r, t)
∂t

, (4.4)

que es la ecuación de Schrödinger. Tomemos ahora la expresión (también clásica) de la
energía relativista, donde dejamos de lado el potencial,

E2 − p2c2 = m2c4, (4.5)

que en notación relativista se puede escribir como (ver Apéndice D),

pµpµ −m2c2 = 0. (4.6)

Debemos notar que pµ representa a cada una de las componentes de cuadrivector
energía–impulso. De esta manera, la relación canónica para el impulso y la energía,
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se puede escribir como,
pµ → i~∂µ, (4.7)

donde,
∂µ ≡ ∂

∂xµ
, (4.8)

o en forma más explícita,

∂0 = 1
c

∂

∂t
, ∂1 = ∂

∂x
, ∂2 = ∂

∂y
, ∂3 = ∂

∂z
. (4.9)

Reemplazando ahora la ec. (4.8), en la expresión para la energía relativista ec. (4.5),
tenemos,

−~2pµpµψ(r, t)−m2c2ψ(r, t) = 0, (4.10)

que se puede reescribir como,

− 1
c2
∂2ψ(r, t)
∂t2

+∇2 ψ(r, t) =
(
mc

~

)2
ψ(r, t) (4.11)

Esta ecuación se conoce como ecuación de Klein–Gordon y al igual que la ecuación de
Schrödinger, describe la evolución de la función de onda de una partícula con spin cero.
Solo que en términos relativistas, claro. Notemos que la ecuación de Klein–Gordon es de
segundo grado en el tiempo. Esto genera algunas dificultades, que no discutieremos.

Vayamos ahora al caso de partículas de spin–1/2. Dirac buscó una ecuación de primer
orden en el tiempo, que fuera compatible con la expresión relativista de la energía. Para
entender la idea, consideremos el caso en que p = 0. En este caso, la ec. (4.6), resulta,

(p0)2 −m2c2 = (p0 −mc)(p0 +mc) = 0, (4.12)

que se pueden escribir como dos ecuaciones de primer orden dadas por,

p0 −mc = 0, (4.13)

p0 +mc = 0. (4.14)

La solución de cualquiera de estas ecuaciones verifica la expresión de la energía relativista.
Debemos considerar ahora la situación en que el impulso es diferente de cero. Para ello,
buscamos reescribir la energía en forma similiar a la ec. (4.12):

pµpµ −m2c2 = (βkpk +mc)(γλpλ −mc) = 0. (4.15)
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El desarrollo a partir de este punto para llegar a la ecuación de Dirac, no es complejo,
pero es laborioso y no es el objetivo de este seminario. El hecho de que trabajamos con
partículas de spin–1/2, se emplea en este desarrollo. El resultado es,

pµpµ −m2c2 = (γkpk +mc)(γλpλ −mc), (4.16)

donde γk son matrices de 4× 4, dadas por,

γ0 =



I 0
0 −I


 , γi =




0 σi

−σi 0


 . (4.17)

La identidad matricial de 2× 2 es I y σi son las matrices de Pauli, que recordamos por
conveniencia,

σ1 =




0 1
1 0


 , σ2 =




0 −i
i 0


 y σ3 =




1 0
0 −1


 . (4.18)

Notemos que emplearemos en forma indistinta la notación (1, 2, 3) ­ (x, y, z).
La solución que resulte de igualar a cero cualquiera de los dos términos de la derecha

de la ec. (4.16), respeta la expresión de la energía y es de primer orden en el tiempo.
Tomamos en particular,

γλpλ −mc = 0. (4.19)

Haciendo la tranformación canónica y aplicando este operador a una función de onda,
tenemos,

i~γµ∂µψ −mcψ = 0 (4.20)

Esta es la ecuación de Dirac. Por construcción, la función de onda tiene cuatro compo-
nentes,

ψ =




ψ1

ψ2

ψ3

ψ4



. (4.21)

Esta cantidad se denomina bi-espinor o espinor de Dirac. No es un cadrivector en el
sentido relativista. El hecho de tener cuatro términos se debe a que estamos trabajan-
do con partículas de spin–1/2: las dos componentes superiores son el espinor de dos
componentes para la parte de partícula y las inferiores corresponden a la antipartícula.
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Para finalizar, damos la solución de la ecuación de Dirac para una partícula libre:

u(1) = ζ




1
0
c pz

E+mc2
c(px+ipy)
E+mc2



, u(2) = ζ




0
1

c(px−ipy)
E+mc2
c(−pz)
E+mc2




(4.22)

v(1) = ζ




c(px−ipy)
E+mc2
c(−pz)
E+mc2

0
1



, v(2) = − ζ




c pz
E+mc2

c(px+ipy)
E+mc2 1

0




(4.23)

Con ζ =
√

(E +mc2)/c

4.2. La Regla de Oro de Fermi relativista

Es interesante notar que en mecánica cuántica calculamos mayoritariamente tres
cantidades: estados ligados, decaimientos y reacciones entre partículas11. Mientras que
los estados ligados se calculan en general empleando la teoría no relativista, ya que las
energías puestas en juego son menores a la masa en reposo de las partículas involucradas;
para las otras dos cantidades se emplean modelos relativistas. Notablemente, a veces los
efectos relativistas no son relevantes. En ese caso, hacia el final del cálculo se toma el
límite no relativista. Se emplea el modelo relativista, pues gracias al formalismo desarrol-
lado básicamente por Richard Feynman, el planteo del problema en términos relativistas
es más simple.

Existe una pregunta que es relevante: ¿cuál es la magnitud física que debemos cal-
cular, cuando estudiamos el decaimiento de una partícula? En primer lugar, debemos
establecer el canal de decaimiento. Esto es, en qué partículas decae. La respuesta a esto
no es única, pues algunas partículas poseen un único canal de decaimiento, mientras que

11Debemos notar que las llamadas reacciones de dispersión de partículas, representan cualquier pro-
ceso en que dos o más partículas interactúan entre sí. Las partículas iniciales y finales deben ser las
mismas, aunque sus energías y momentos cambien. Por otra parte, la reacción (4.2), es una reacción
de absorción, en que un electrón y un protón reaccionan dando origen a un neutrino y un neutrón.
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otras poseen dos o más canales. De este modo, nuestro objetivo es conocer la probabi-
lidad relativa de cada canal de decaimiento, junto a la vida media de cada uno de ellos
(en la Sec. 14.2 de Ref. [1], se discute la vida media y el ancho de decaimiento). En este
párrafo, realizamos afirmaciones mecánico cuánticas algo sutiles. Subyace el concepto
de partícula idéntica. Si pensamos que la partícula que decae es un neutrón, todos los
neutrones del Universo son iguales. Aún así, decaen con tiempos diferentes. Es por ello
que calcularemos el valor medio del tiempo de decaimiento o vida media. Es más, si exis-
ten diferentes canales de decaimiento, a cada canal le debemos asignar una probabilidad
relativa. El hecho de que partículas idénticas posean diferentes canales de decaimiento,
con tiempos de decaimiento que difieren entre sí, aunque el valor medio arroja siempre
el mismo valor, es un fenómeno puramente cuántico.

Comencemos con las cuentas. Empleamos la letra griega τ para designar a la vida
media. La magnitud inversa se denomina ancho de decaimiento, se emplea la letra Γ y
se vincula con la vida media como,

Γ = 1
τ
. (4.24)

Para calcular el ancho de decaimiento Γ, empleamos la Regla de Oro de Fermi relativista.
En la Sec. 13.6 de Ref. [1], se deduce la Regla de Oro de Fermi para el caso no relativista.
En este trabajo no demostraremos dicha regla para el caso relativista. El lector interesado
en tal demostración, la puede encontrar en la Sec. 6.10 del libro de Ryder [12]. La
estructura de la Regla de Oro es simple: resulta del producto de un elemento de matriz,
|M|2, que tiene en cuenta la dinámica del problema, junto a las limitaciones en el
espacio de fases de los estados finales del decaimiento. Por conveniencia y sin pérdida
de generalidad, pensaremos que la partícula que decae se encuentra en reposo.

Designamos por medio de números a las partículas: pensamos que la partícula 1 se
encuentra en reposo y decae en las partículas 2, 3,...,n. Debemos calcular la reacción,

1→ 2 + 3 + 4 + ...+ n. (4.25)

La expresión de la Regla de Oro de Fermi para este decaimiento es (ver Ref. [11]),

Γ = S

2~m1

n∏

j=2

∫ d4pj
(2π)4 〈|M|2〉(2π)4δ(p1 − p2 − ...− pn)2πδ(p2

j −m2
jc

2)θ(p0
j), (4.26)

donde mi es la masa de la partícula i-ésima y pi su cuadrimomento. La cantidad S

evita el doble conteo de partículas idénticas en el estado final. Por cada conjunto de n
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partículas idénticas, agregamos un factor 1/n!. Ejemplo: supongamos que tenemos cinco
partículas en el estado final, dos de un tipo y tres de otro. En ese caso,

S = 1
2! 3! = 1

2× 6 = 1
12 .

Leamos con cuidado la expresión (4.26). Como dĳimos, la dinámica (esto es la interac-
ción o fuerza responsable del decaimiento), está contenida en el elemento de matriz al
cuadrado 〈|M|2〉; donde ahora agregamos el símbolo 〈 〉 que indica que promediamos
sobre el spin inicial y sumamos sobre los spins finales. Todo el resto es espacio de fases y
nos dice que debemos integrar sobre el cuadrimomento de todas las partículas salientes
(que son el producto final de la desintegración); pero sujetas a ciertas restricciones:

1. Las partículas salientes se encuentran en la capa de masa 12. Analíticamente, pj2 

= mj
2c2, expresado en la distribución δ(pj2 − mj

2c2).

2. Las energías de las partículas salientes es positiva. Esto indica que estas partículas
no se encuentran ligadas y por ello colocamos la función escalón θ(p0

j).

3. Debe conservarse el cuadrimomento energía–impulso, lo cual está garantizado por
la distribución δ(p1 − p2 − ...− pn).

Volviendo al análisis de la expresión (4.26), el elemento de matriz al cuadrado 〈|M|2〉
depende de todos los cuadrimomentos (p1, p2,... ,pn). Sumamos sobre todos los estados
finales, pesados por el elemento de matriz al cuadrado. Hagamos ahora un poco de
álgebra para que podamos manejar mejor esta expresión. Antes de ello, demos dos
detalles. En primer lugar, vemos que aparecen un conjunto de factores 2π. Estos factores
podrían simplificarse, pero los mantenemos en la ec. (4.26), pues debemos colocar un
2π, por cada:

un 2π por cada δ() (notar que en la conservación del cuadrivector energía–impulso
tenemos cuatro deltas).

un 1/(2π) por cada diferencial en la integración. Señalemos que d4p = dp0dp;
dp = dpxdpydpz.

12La expresión “en la capa de masa” (en inglés, on the mass shell), es una manera de decir que se
trata de partículas reales.
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En la expresión (4.26), se pueden evaluar analíticamente la integrales en energía (∫ dp0):

δ(p2 −m2c2) = δ[(p0)2 − p2 −m2c2], (4.27)

donde omitimos el subíndice j de las partículas por simplicidad. Empleamos ahora la
propiedad,

δ(x2 − a2) = 1
2a [δ(x+ a) + δ(x− a)], a > 0. (4.28)

Empleando esta ecuación, obtenemos,

θ(p0)δ[(p0)2 − p2 −m2c2] = 1
2
√
p2 +m2c2

δ
(
p0 −

√
p2 +m2c2

)
, (4.29)

donde la función escalón hace que debemos quedarnos solo con la solución de energía
positiva. De esta manera, podemos reescribir la ec. (4.26), como,

Γ = S

2~m1

n∏

j=2

∫ dpj
(2π)3 〈|M|2〉

1
2
√
p 2
j +m2

jc
2

(2π)4δ(p1 − p2 − ...− pn), (4.30)

Finalmente escribirnos,

Γ = πS

2~m1

n∏

j=2

∫
dpj〈|M|2〉

1
2
√
p 2
j +m2

jc
2
δ(p1 − p2 − ...− pn) (4.31)

En la próxima sección, daremos un ejemplo de empleo de esta ecuación.

4.3. El decaimiento del neutrón

Escribimos nuevamente la reacción del decaimiento del neutrón en un protón, un
electrón y un antineutrino, llamado decaimiento–β:

n→ p+ e− + ν̄. (4.32)

Cuando se escribe una reacción, es común evaluar el llamado valor–Q, que es la diferencia
entre la suma de las masas de las partículas iniciales (en nuestro caso, solo un neutrón)
y la suma de las masas de las partículas finales. Expresamos las masas en unidades de
energía. Designamos al valor–Q como ∆Q. Si es positivo, quiere decir que disponemos

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 110



de un exceso de energía y la reacción es posible13. Este exceso de energía se transforma
en energía cinética de las partículas salientes. Tenemos entonces,

∆Qβ = mnc
2 −mpc

2 −me−c
2 −mν̄c

2, (4.33)

donde agregamos el subíndice β para referirnos a la reacción (4.32). Los valores de
las masas son: mnc

2 = 939, 565MeV, mpc
2 = 938, 272MeV y mec

2 = 0, 510MeV. No
sabemos si el neutrino tiene o no masa en reposo. Sin embargo, tenemos cierta certeza
sobre el límite superior para la masa del neutrino:

mν̄c
2 < 10−6 MeV, esto es, 1eV. (4.34)

Notemos que dejando de lado al neutrino, la partícula más liviana que conocemos es el
electrón, con una masa quinientos mil veces mayor que la cota superior de la masa del
neutrino.

Finalmente, el valor-Q para el decaimiento del neutrón, o decaimiento–β, es,

∆Qβ
∼= 0, 78 MeV. (4.35)

Esto nos dice que el decaimiento–β es posible.
Regresemos a la reacción de la que deseamos calcular su vida media,

n→ p+ e− + ν̄, (4.36)

donde emplearemos la Regla de Oro de Fermi (ec. 4.31). En primer lugar, debemos
evaluar el elemento de matriz 〈|M|2〉. Para ello, es conveniente mostrar un diagrama,
denominado diagrama de Feynman, que se muestra en la Fig. 4.1. Este diagrama se
debe leer de abajo hacia arriba. Las flechas rectas ascendentes indican fermiones (neu-
trón, protón y electrón), mientras que las flechas rectas descendentes representan anti
fermiones (antineutrino). La curva ondulada es la interacción que produce el decaimien-
to. En nuestro caso se trata de la interacción débil. Comenzando desde abajo, vemos
un neutrón que por la acción de la interacción débil, se transforma en un protón, un
electrón y un antineutrino. Dado un diagrama de Feynman, existen reglas (las llamadas

13Si ∆Q < 0, la reacción no puede ocurrir entre partículas en reposo. Pero si las partículas iniciales
poseen la suficiente energía cinética para compensar el valor de ∆Q, entonces la reacción sí puede tener
lugar.
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Figura 4.1: Diagrama de Feynman para el decaimiento del neutrón. Por medio de este
diagrama calculamos el elementos de matrizM. Las flechas representan a fermiones, la
curva ondulada es la interacción débil y por medio de puntos se indican los vértices de
la interacción.

“reglas de Feynman”, claro); que permiten traducir la imagen mostrada en la Fig. 4.1,
en una expresión analítica paraM.

Notemos, sin embargo, que en la expresión para el ancho de decaimiento Γβ, lo que
tenemos no esM, sino |M|2. En la Fig. 4.2, mostramos en forma gráfica el diagrama
que corresponde a |M|2; donde por simplicidad no identificamos a cada una de las
partículas, pues eso es evidente de la comparación con la Fig. 4.114. Leamos ahora el
diagrama de la derecha en la Fig. 4.2: debemos dar el valor de la energía impulso de
las líneas abiertas, en nuestro caso es solo el neutrón. Pensamos al neutrón en reposo,
por lo cual su impulso es cero y su energía es su masa en reposo multiplicada por la
velocidad de la luz al cuadrado. Del mismo modo, en el diagrama, le asignamos valores
específicos a la energía impulso de las líneas internas. Las reglas de Feynman nos dicen
que al calcular la contribución física del diagrama, debemos sumar (integrar) sobre las
líneas internas. Esto lo vemos en la expresión de la Regla de Oro de Fermi (ec. 4.31),
que emplearemos enseguida y en donde veremos en forma explícita dicha suma.

14En forma intencional, en la primera figura le dimos a las líneas un cierto ángulo; mientras que en la
segunda figura, las flechas de la izquierda son verticales, representando al mismo diagrama. El ángulo
de las líneas no tiene ningún contenido físico. Se dibujan de una manera u otra por razones estéticas o
de conveniencia del dibujo.
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→

�
Figura 4.2: Representación esquemática de |M|2: el diagrama de la Fig. (4.1), representa
a una amplitud de transición. En el diagrama de la izquierda, dibujamos nuevamente a
este diagrama. El mismo, multiplicado por su adjunto, genera el diagrama de la derecha.
En el diagrama de la derecha, las líneas abiertas representan al neutrón, mientras que se
debe sumar sobre las líneas internas; que de izquierda a derecha, representan al protón,
electrón y al antineutrino.

Por claridad, mostremos el valor de los cuadrivectores energía impulso de cada una
de las partículas de la reacción (4.32):

1. pn = (mnc, 0, 0, 0),

2. pν̄ = (|~pν̄ |,pν̄),

3. pp = (
√

(pp)2 +m2
pc

2,pp),

4. pe− = (
√

(pe−)2 +m2
e−c

2,pe−).

Consideramos un neutrón libre. Debido a que elegimos el sistema de referencia donde
se encuentra en reposo, su impulso es cero y su energía es la masa en reposo. Vale la
pena también enumerar algunas propiedades generales para partículas en el marco de la
mecánica cuántica relativista:

1. pµ = (E/c, px, py, pz)

2. p2 = p2
0 − p2 = m2c2
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3. Para una partícula libre, E =
√
p2c2 +m2c4

4. Para una partícula sin masa en reposo, i, Ei = |pi|c ∴ p2
i = 0

En la ec. (4.34), mostramos que si el antineutrino tiene masa, ésta es muy pequeña.
Por simplicidad, en lo que sigue supondremos que la masa en reposo del antineutrino es
cero.

Vayamos entonces al uso de la Regla de Oro de Fermi para el cálculo del ancho de
decaimiento del neutrón, Γβ. Empleando la ec. (4.31), tenemos,

Γβ =
∫ d3pν̄

(2π)32|~pν̄ |
d3pp

(2π)32
√
|~pp|2 +m2

pc
2

d3pe−

(2π)32
√
|~pe−|2 +m2

e−c
2

×〈|M|
2〉

2~mn

(2π)4 δ(4)(pn − pν̄ − pp − pe−), (4.37)

donde emplearemos la siguiente expresión para 〈|M|2〉:

〈|M|2〉 = 1
2

(
gω

Mωc2

)4
(c2V + 3c2A) (pn · pν̄)(pp · pe−), (4.38)

con cV = 1,00 and cA = 1,27; mientras que el valor para la constante de acoplamiento la
damos en el Apéndice E. Esta expresión se evalua en forma aproximada en el Apéndice F.
Desafortunadamente, un cálculo riguroso de esta expresión excede el objetivo de este
seminario. En el Apéndice F, se muestra un esquema completo de su cálculo, aunque
con algunos puntos algo débiles, con el fin de mostrar en forma orientativa el tipo de
cálculo que implica el elemento de matriz. El paso siguiente es desarrollar los productos
escalares de esta expresión (ver la lista de valores explícitos de los cuadrivectores pn, pν̄ ,
pp y pe−),

pn · pν̄ = mnc|~pν̄ |, (4.39)

mientras que para pp · pe− , tenemos,

(pp + pe−)2 = p2
p + p2

e− + 2pp · pe− =

= m2
pc

2 +m2
e−c

2 + 2pp · pe−
(pn − pν̄)2 = p2

n + p2
ν̄ − 2pn · pν̄ =

= m2
nc

2 + 0− 2mnc|~pν̄ |. (4.40)

De la conservación de la energía–impulso, pn − pν̄ = pp + pe− , tenemos,

(pp + pe−)2 = (pn − pν̄)2, (4.41)
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de modo que,
pp · pe− = c2

2

(
m2
n −m2

p −m2
e− −

2mn|~pν̄ |
c

)
(4.42)

Usando las Eqs. (4.39) y (4.42) en la Eq. (4.38), tenemos,

〈|M|2〉 = mn

c

(
gω
Mω

)4 1
4 (c2V + 3c2A) |~pν̄ |

(
m2
n −m2

p −m2
e− −

2mn|~pν̄ |
c

)
. (4.43)

Reescribimos la distribución delta como sigue,

δ(4)(pn − pν̄ − pp − pe−) = δ(3)(pν̄ + pp + pe−) δ(mnc− |~pν̄ | −
√

(pe−)2 +m2
e−c

2 − u),
(4.44)

donde,
u ≡

√
(pp)2 +m2

pc
2 =

√
(pν̄ + pe−)2 +m2

pc
2. (4.45)

Evaluamos ahora la integral d3pp, usando δ(3)(pν̄ + pp + pe−). De este modo tenemos,

Γβ = 1
4 (c2V + 3c2A)

∫ d3pν̄
|~pν̄ |

d3pe−√
|~pe−|2 +m2

e−c
2

〈|M|2〉
16(2π)5 u ~mn

× δ(mnc− |~pν̄ | −
√

(pe−)2 +m2
e−c

2 − u). (4.46)

Ahora, elegimos al eje-z en la dirección de pe− . Podemos escribir entonces,

d3pν̄ = |~pν̄ |2 d|~pν̄ | sin(θ)dθ dφ

u2 = |~pν̄ |2 + |~pe−|2 + 2|~pν̄ ||~pe−| cos(θ) +m2
pc

2. (4.47)

Esto permite reemplazar la integración sobre θ, por la integración sobre u,

∂u2

∂θ
= 2u∂u

∂θ
= −2 |~pν̄ | |~pe−| sin(θ), (4.48)

donde tenemos,
u du = −|~pν̄ | |~pe−| sin(θ) dθ. (4.49)

Ya que la integral sobre φ es simplemente 2π, tenemos,

d3pν̄ = −2π |~pν̄ ||~pe−|
d|~pν̄ | u du. (4.50)

Reemplazamos en la ec. (4.46),

Γβ = 1
4 (c2V + 3c2A)

∫
d|~pν̄ | (−1) du d3pe−

|~pe−|
√
|~pe−|2 +m2

e−c
2

〈|M|2〉
16(2π)4 ~mn

× δ(mnc− |~pν̄ | −
√

(pe−)2 +m2
e−c

2 − u). (4.51)
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En el próximo paso, realizamos la integral sobre u, que es simplemente,

I =
∫ u+

u−
du δ(arg− u) =





1 if u− ≤ arg ≤ u+

0 if arg < u− or arg > u−,
(4.52)

donde arg ≡ mnc − |~pν̄ | −
√

(pe−)2 +m2
e−c

2. Los valores de u± son los extremos del
segmento donde arg− u = 0. En forma explícita, tenemos,

u± =
√

(|~pe−| ± |~pν̄ |)2 +m2
pc

2 (4.53)

La condición de que I 6= 0, de la ec. (4.52), nos da también el rango de integración
sobre pν̄ ; que se obtiene resolviendo,

mmc− |~pν̄ | −
√
|~pe−|2 +m2

e−c
2 = u±

mmc− |~pν̄ | −
√
|~pe−|2 +m2

e−c
2 =

√
(|~pe−| ± |~pν̄ |)2 +m2

pc
2. (4.54)

Afortunadamente el término |~pν̄ |2 se cancela (para evitar dudas, en la ecuación sobreviven
sólo los términos lineales |~pν̄ |∓). Las soluciones que obtenemos son,

|~pν̄ |∓ =
1
2(m

2
n −m2

p −m2
e−)−mnc

√
|~pe−|2 +m2

e−c
2

mnc−
√
|~pe−|2 +m2

e−c
2 ± |~pe−|

. (4.55)

Notemos que |~pν̄ |∓ depende de la energía (Ee−), la masa (me−) y del módulo del
momento (|~pe−|), del electrón.

Punto menor: Los límites para la integración sobre |~pν̄ | son: el límite inferior |~pν̄ |+
(de u−) y el límite superior |~pν̄ |− (de u+). Por otra parte, tenemos un signo negativo en
Γβ de la ec. (4.51), que empleamos como sigue:

−
∫ |~pν̄ |−

|~pν̄ |+
d|~pν̄ | · · · =

∫ |~pν̄ |+

|~pν̄ |−
d|~pν̄ | · · · (4.56)

Resulta ahora conveniente definir una función de Ee− , como sigue,

J (Ee−) =
∫ |~pν̄ |+

|~pν̄ |−
d|~pν̄ | |~pν̄ |

(
m2
n −m2

p −m2
e− −

2mn|~pν̄ |
c

)

= (m2
n −m2

p −m2
e−) (|~pν̄ |+)2 − (|~pν̄ |−)2

2

− 2mn

c

(|~pν̄ |+)3 − (|~pν̄ |−)3

3 . (4.57)
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Reemplazando la ec. (4.43) en la ec. (4.51), junto a la función J (Ee−), podemos
escrbir,

Γβ = 1
4 (c2V + 3c2A)

∫
d|~pe−| |~pe

−|
(4π)3~c

(
gω
Mω

)4 1√
|~pe−|2 +m2

e−c
2
J (Ee−) (4.58)

Recordemos que elegimos al eje z en la dirección de pe− , entonces,

d3 pe− = 4π |~pe−|2d|~pe−| (4.59)

Recordando que Ee− = c
√
|~pe−|2 +m2

e−c
2, tenemos,

dEe−

d|~pe−|
= c

|~pe−|√
|~pe− |2 +m2

e−c
2
, (4.60)

de este modo,
|~pe−| d|~pe−| = Ee−dEe−

c2
. (4.61)

Finalmente, tenemos,

Γβ = 1
4 (c2V + 3c2A) 1

(4π)3~c2
(
gω
Mω

)4 ∫ (mnc2−mpc2)

mec2
dEe− J (Ee−). (4.62)

Los límites de integración son los de la energía del electrón: el mínimo corresponde a la
masa en reposo, mientras que el máximo está dado por, mnc

2 −mpc
2, donde debemos

recordar que el neutrón se encuentra en reposo.
La evaluación de la ec. (4.62), debe hacerse en forma numérica. Los valores de las

constantes que necestitamos para ello están en el Apéndice E, excepto por cV y cA, cuyos
valores se dieron más arriba. De la evaluación de la integral obtenemos, τ̃β = 905 s, que
constituye un muy buen resultado teniendo en cuenta que el valor experimental resulta,
τ expβ = 881,5± 1,5 s.

Antes de terminar, vale la pena discutir el modo en que se extrae el valor de la vida
media del decaimiento del neutrón en forma experimental. Para ello, en la Fig. 4.3,
mostramos los valores de dΓβ/dEe− , como una función de la energía del electrón, Ee− .
Lo que mostramos en la figura resulta de nuestro modelo teórico. Pero este espectro
puede ser medido y su integración nos permite obtener el valor experimental de dicha
vida media.
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Figura 4.3: Predicción teórica del espectro de electrones para el decaimiento β del neu-
trón.

4.4. Conclusiones

En este capítulo llevamos adelante un cálculo de la vida media del neutrón libre. El
neutrón no es una partícula estable y luego de algunos minutos decae en un protón, un
electrón y un antineutrino. El modo en que calculamos la vida media es por medio de
la Regla de Oro de Fermi. Naturalmente, debemos pedir que se conserve la energía y la
cantidad de movimiento. Junto a esto, el núcleo central del cálculo, es el de un elemento
de matriz. En forma simple, este elemento de matriz al cuadrado nos da la probabilidad
de decaimiento. El elemento de matriz parte del estado inicial, que es el neutrón y tiene
como estado final, el de las partículas finales. La interacción que induce la transición,
es la interacción débil. Si bien nuestro cálculo es algo esquemático, el valor obtenido es
similar al experimental.

Una vez calculada la vida media del neutrón libre, una duda válida es por qué un
neutrón libre decae en algunos minutos, mientras que los neutrones en el núcleo de un
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átomo, como el de 4He, son estables. Para responder a esta pregunta, debemos revisar
nuestro cálculo y ver qué cambia al pasar del estado libre, al ligado de un núcleo. En esta
última oración, tenemos la primera clave de nuestro problema: ahora los neutrones, al
igual que los protones, están ligados y por lo tanto, su función de onda es la de un estado
ligado. Además, ya existen protones en el sistema. Cuando el neutrón intenta decaer, el
protón producto del decaimiento debe ocupar un nivel cuántico diferente al de los otros
protones existentes; ya que el Principio de Pauli le impide lo contrario. Dicho de otro
modo, el espacio de fases de protones, inhibe el decaimiento porque dos protones no
pueden tener los mismos números cuánticos. En resumen, la enorme diferencia entre un
neutrón libre y uno ligado, resulta de las funciones de onda de las partículas involucradas,
junto al Principio de Pauli. El neutrón no puede decaer, si la energía disponible solo le
permite al protón ocupar un nivel que ya está ocupado. Lo cual no ocurre para un neutrón
libre.

Un nivel diferente de sofisticación, es el de partículas en un medio estelar. En ese
caso, al calcular el elemento de matriz de la transición, debemos tomar en cuenta el
modo en que el medio modifica las propiedades de las funciones de onda; al igual que
en el caso de un núcleo descrito en el párrafo anterior. Gráficamente, denominamos
“materia estelar”, al medio formado por el material de una estrella de cualquier tipo.
Imaginemos a una estrella de neutrones. Una estrella de neutrones no es un núcleo
muy grande. Por definición, un núcleo es un sistema hadrónico ligado por la interacción
fuerte. Una estrella de neutrones está ligada por la interacción gravitatoria. Dicho esto,
en el Cap. 2, mostramos una introducción sobre el tema de la materia estelar. Para el
lector interesado, la suma de lo discutido en aquel capítulo y este mismo, permite llevar
adelante cálculos de reacciones relevantes en una estrella.
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Capítulo 5

El algoritmo de Shor en la
computación cuántica

Introducción

RSA. Es una sigla que la mayoría de las personas probablemente nunca haya leído,
pero para quienes trabajan en la encriptación de información es imposible no conocerla.
La sigla representa las iniciales de tres apellidos (Rivest, Shamir y Adleman), quienes
desarrollaron un sistema criptográfico de clave pública, que utiliza la factorización de
números enteros. La encriptación de la información se podría decir que nació con la civi-
lización misma. Sin embargo, nos interesamos en la encriptación electrónica de la misma,
a partir del desarrollo de Internet. El desarrollo y las implicancias de la encriptación de la
información, se nutre de tantas disciplinas que resulta arriesgado nombrarlas por temor
a omitir alguna. Claramente, es un tema matemático. Su implementación solo es de uso
práctico gracias a la informática. La informática es posible gracias a los desarrollos en la
física de la electricidad y del estado sólido (en particular, la electrónica). Su existencia
tiene profundos efectos sociales, pues permite, por ejemplo, realizar todas las opera-
ciones bancarias que antes se hacía en forma personal, junto a otros cientos de acciones
(compras, reservas de viajes, etc.). Esto modifica los hábitos de las personas, dejando
más tiempo libre, etc.

Naturalmente, existen muchas formas de encriptar la información y el mecanismo
designado como RSA es importante, aunque existen otros. Nos interesamos en este modo
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particular de encriptar la información, pues es introductorio al algoritmo de Shor, que es
un mecanismo que potencialmente sería capaz de encriptar y desencriptar información
empleando una eventual computadora cuántica. Siempre que transmitimos información
encriptada, nuestra duda es cuán probable es que alguien no deseado logre desencriptar
la información. En este punto, el lector debería intuir que si este conocimiento fuera
abarcable en un capítulo de un libro para no–especialistas en encriptación, deberíamos
comenzar a preocuparnos por nuestra información. Entonces, sin perder de vista que
nuestro análisis es muy limitado, podemos afirmar que para cierto tipo de encriptación, la
capacidad de descifrar la misma, depende de la capacidad de nuestro sistema informático
para separar en factores primos un número entero muy grande. Cuando tenemos números
pequeños, el separarlos en factores primos es trivial. Pero para números grandes el tiempo
de cómputo requerido puede ser muy grande. Una eventual computadora cuántica haría
el trabajo en forma rápida. Solo podemos especular con el impacto social que causaría
el que solo unos pocos cuenten con computadoras cuánticas que serían capaces de
desencriptar cualquier información, menos las de otras computadoras cuánticas. Bueno,
por ahora eso pertenece más bien al terreno de la ciencia ficción.

En este capítulo daremos algunos elementos de encriptación de la información, con
el fin de motivar el esfuerzo para comprender al algoritmo de Shor. Dicho algoritmo fue
desarrollado para una eventual computadora cuántica. Para comprender el mismo, debe-
mos saber mecánica cuántica y es por ello que lo discutimos en este capítulo; pues de
tener éxito, las aplicaciones de la mecánica cuántica se expanderían sobre campo com-
pletamente nuevo. La referencia principal de este capítulo, es el artículo de Gerjuoy [13];
tomamos también algunos elementos del libro de Rieffel y Polak [14]. Por otra parte,
debemos señalar que todos los números en este capítulo están en base 10.

5.1. Encriptación empleando el algoritmo RSA

Los elementos matemáticos para llevar adelante este capítulo, no son particularmente
difíciles, pero son poco frecuentes para la mayoría de nosotros. Es por ello que debemos
comenzar por dar una lista de definiciones y propiedades matemáticas, que sirvan como
una especie de glosario, para luego seguir adelante. Organizamos esta sección en sub–
secciones con ese fin.
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5.1.1. Nomenclatura y elementos matemáticos

Comencemos con algo de terminología del tema, aunque no necesariamente em-
plearemos todos los términos:

encriptar: proceso de protección de información o datos, mediante modelos matemáti-
cos para mezclarlos de tal manera, que solo aquellos que tengan la clave para
descifrarlos puedan acceder a él;

mensaje: el mensaje que deseamos enviar, no encriptado;

criptograma: el mensaje encriptado;

llave: la información o sistema empleado para desencriptar un criptograma;

aritmética modular: es un conjunto de métodos que permiten la resolución de
problemas sobre números enteros;

números coprimos (números primos entre sí o primos relativos): son aquellos
números enteros a y b, cuyo único factor en común 1. Dos números primos difer-
entes son coprimos, pero también aquellos números no–primos, que no tienen un
común divisor más allá del 1. Por ejemplo: 10 (=2.5) y 21 (=3.7);

registro cuántico: dado un sistema de n–qubits, el registro cuántico es la función de
onda mezcla que construimos. Aún con solo un qubit y pensando en que trabajamos
con un sistema de dos niveles (por ejemplo, spin up y spin down), el registro
cuántico es nuestra función de onda; puede ser up, down o un estado mezcla15.

Pasamos ahora a algunas propiedades matemáticas.

15Quizá esta sea una de las pocas ventajas que tenemos al ver este problema de encriptación cuántica,
partiendo de un curso de mecánica cuántica: si buscan el término “registro cuántico”, verán un concepto
algo confuso, producto de tener que explicar algo cuántico asumiendo un conocimiento débil de la
mecánica cuántica.
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Relación de congruencia: a y b se encuentran en la misma “clase de congruencia”
módulo n, si el resto de a/n y b/n es el mismo. En forma equivalente, si a − b es un
múltiplo de n. Esta relación se escribe empleando la llamada notación de Gauss, como,

a = b (mod n), (5.1)

y se lee: “a es congruente con b, módulo n”. Ejemplos: 73 = 53 (mod 10); ó 22 = 1
(mod 7).

Función ϕ de Euler: si n es un entero positivo, ϕ(n) se define como la cantidad
de enteros positivos menores a n y coprimos con n. Por ejemplo, ϕ(7) = 6, ya que 6,
5, 4, 3, 2 y 1 (en total, seis números), son coprimos con 7. Algunas propiedades de la
función ϕ de Euler:

1. Si p es primo, entonces, ϕ(p) = p− 1.

2. Si p es primo y k es un número natural, entonces, ϕ(pk) = (p− 1)pk−1.

3. Si m y n son coprimos, entonces, ϕ(mn) = ϕ(m)ϕ(n).

Teorema de Euler: daremos dos enunciados equivalentes.
Primer enunciado:
“Si a y n son enteros coprimos, entonces aϕ(n) − 1 es exactamente divisible por n”
Segundo enunciado:
“Si a y n son enteros coprimos, entonces aϕ(n) = 1 (mod n).”
Ejemplo: a = 5 y n = 3, que son coprimos. Tenemos que ϕ(3) = 2; 52 − 1 = 24,

que es divisible por 3.
Exponenciación modular: calcula el residuo cuando un número entero positivo b

(la base) se eleva a la e-ésima potencia (el exponente), be, y es dividido por el entero
positivo m, llamado módulo. En notación matemática, dada la base b, el exponente e,
y el módulo m, la exponenciación modular c se escribe:

c = be (mod m). (5.2)

Por ejemplo, dado b = 5, e = 3, y m = 13, la solución, c = 8, es el resto de dividir 53

por 13.
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5.1.2. Un mensaje como un número entero

Transformar un mensaje en un único número es trivial. Eso implica una cierta en-
criptación, pero es demasiado simple y muy fácil de decodificar. Sin embargo, para
encriptar realmente un mensaje, el primer paso consiste en transformar las letras, los
signos y los espacios, en números. Una alternativa para ello es emplear el código ASCII.
En esta subsección seremos más modestos y ofreceremos una forma más reducida, pero
propia.

Cuadro 5.1: Código numéricos para las letras del alfabeto castellano moderno.

a=10 j=19 r=28 A=37 J=46 R=55
b=11 k=20 s=29 B=38 K=47 S=56
c=12 l=21 t=30 C=39 L=48 T=57
d=13 m=22 u=31 D=40 M=49 U=58
e=14 n=23 v=32 E=41 N=50 V=59
f=15 ñ=24 w=33 F=42 Ñ=51 W=60
g=16 o=25 x=34 G=43 O=52 X=61
h=17 p=26 y=35 H=44 P=53 Y=62
i=18 q=27 z=36 I=45 Q=54 Z=63

Esto lo hacemos en los cuadros 5.1 y 5.2. No empleamos el código ASCII, pues varios
caracteres tienen tres dígitos y eso hace más grande el mensaje, una vez traducido en
un único número entero. Del cuadro 5.1, si queremos escribir “Uno”, tenemos: 582325
(58-23-25). Por otra parte, del cuadro 5.2, si queremos escribir el número 23, resulta:
0203. Nos sobran números de dos dígitos para agregar más caracteres, como signos de
puntuación, etc. En realidad, fabricamos este código con fines puramente didácticos y
sería algo ambicioso ir más allá. Aún así, vale la pena asignarle un nombre. Usar “código
Observatorio”, sería excesivo y expuesto a muchas críticas. Emplear el nombre del autor,
sería inmodesto. Lo vamos a designar como “código AMC”, donde AMC es la sigla
para Asignatura Mecánica Cuántica. Algo restringido a nuestra propia asignatura suena
razonable.

Como un ejemplo algo más elaborado, tomando los cuadros 5.1 y 5.2, escribamos
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Cuadro 5.2: Algunos elementos adicionales para la escritura. En el cuadro los dígitos (0,
1, 2, 3, 4, 5, 6, 7, 8 y 0), se representan por i. Por ejemplo el cero se escribe 00, el uno
por 01, etc.

i (dígito) = 0i
espacio = 99
punto (.) = 91

punto y coma (;) = 92
dos puntos (:) = 93

@ = 94
á/Á = 74/75
é/É = 76/77
í/Í = 78/79
ó/Ó = 80/81
ú/Ú = 82/83

como un número entero el siguiente mensaje:

5025991423301823132591

El lector puede traducir esto en palabras o bien leerlo a pie de página16. Debemos
enfatizar que elegimos los números para asignar dos cifras a cada carácter. En primer
lugar lo descomponemos como,

50-25-99-14-23-30-18-23-13-25-91

y con los cuadros 5.1 y 5.2, lo traducimos a palabras. Es relativamente simple escribir un
programa que traduzca en palabras un mensaje (que consta de un solo número entero,
claro). Para ello, se puede dividir por 100 y separar la parte entera de la decimal. La
parte decimal es multiplicada por 100 y luego el programa reemplaza el número por la
letra o carácter. Los cuadros 5.1 y 5.2, suman un máximo de 100 caracteres diferentes,
lo cual permite dimensionar un vector “C” (por código), tal que C(n) nos de el código.
Por ejemplo, C(77)=É. Una vez que tenemos el primer carácter, con el entero que nos

16El mensaje dice: “No entiendo.”

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 125



quedó al tomar la parte entera (con dos dígitos menos que el original), dividimos por
100 y repetimos el proceso. Si al finalizar, nos queda un carácter de un solo dígito,
el programa debe asumir que el dígito faltante es el cero. Se pueden seguir diferentes
esquemas para pasar de un texto con letras y caracteres a un único número entero, pero
no abordaremos ese punto.

En resumen, en esta subsección mostramos una forma para traducir en un número
entero, un mensaje de texto. Pudo reducirse a afirmar que esto se puede hacer empleando
la numeración del código ASCII. Pero elegimos construir el código AMC y mostrar su
empleo, ya que solo empleando los conocimientos, se los comprende acabadamente.

En las subsecciones siguientes, mostramos cómo encriptar un número entero por
medio del algoritmo RSA. Como ya habíamos mencionado, el traducir un texto en un
único número entero es ya una cierta encriptación. Pero para un experto, sería fácilmente
desencriptada. El modo más simple, es que quien busca desencriptar el mensaje logre
hacerse del número y un mensaje desencriptado, que usará como “Piedra Rosetta” para
descifrar el mensaje. Pero aún solo con el número, se buscan patrones, las letras más
probables y cómo se repiten los números en el mensaje, etc., que eventualmente permiten
su desencriptación. El problema de estos métodos de encriptación, es que si se logra
descifrar la llave (o clave), a partir de ese momento se descifra el código. Veremos que
el método RSA, posee dos claves, una para quien envía el mensaje y la otra para quien
lo recibe, lo cual dificulta considerablemente su desencriptación.

5.1.3. Resumen del algoritmo RSA

Por algún motivo, cuando para estos temas deben elegirse nombres de dos personas,
siempre se escogen “Alice” y “Bob”. Seremos más breves y emplearemos dos personas
designadas como “A” y “B”. Hagamos una síntesis del método, donde B le envía a A,
un mensaje. El mensaje original es M. En primer lugar, este mensaje es transformado
en un número entero m, de acuerdo con lo visto en la subsección anterior. Este número
m, debe ser menor a otro número n, que discutiremos enseguida; junto a otros dos
números, e y d, que son datos, pero aún no explicitamos. Antes de enviar el mensaje,
éste es codificado en un número c, mediante la siguiente operación,

c = me (mod n). (5.3)
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El mensaje original m, fue ahora encriptado y se transmite c, de B a A. Cuando A recibe
el mensaje, lo desencripta por medio de,

m = cd (mod n). (5.4)

La operación de encriptación y desencriptación no debe ser subestimada. En la ec. (5.3),
sabemos el valor de m, e y n, y debemos resolverla para calcular c. Dado el valor de los
exponenciales puestos en juego, el hallar c, no es nada sencillo. En forma análoga para la
desencriptación, para resolver la ec. (5.4), sabemos el valor de c, d y n, y debemos hallar
el mensaje original m. Más allá de este problema numérico, nos adelantamos a escribir
que e es una clave pública, mientras que d, es la clave privada que solo el receptor A,
conoce.

5.1.4. Generación de claves

1. Se eligen dos números primos distintos, p y q (por conveniencia, no deben diferir
en mucho; pueden tomarse números primos contiguos).

2. Se calcula n = p.q, pediremos que el mensaje m, cumpla con m < n, lo cual
establece una restricción en la elección de p y q.

3. Se calcula la función de Euler ϕ(n). Como n = p.q y p y q son primos, el cálculo
de esta función es simplemente, ϕ(n) = (p− 1)(q − 1).

4. Se elige un entero positivo e, menor que ϕ(n) y que sea coprimo con ϕ(n).

5. Se determina un d, por medio de la ecuación, e.d = 1 (mod ϕ(n)).

De esta manera, ya tenemos las claves públicas (n, e) y la clave privada d.

5.1.5. Cifrado y descifrado

En primer lugar B, tiene un mensaje M, que introduce en su sistema informático.
El algoritmo que tiene tal sistema, transforma el mensaje M, en un número entero, m.
Luego, construye las siguientes cantidades según el esquema de la Sec. 5.1.4: n, e y d.
Antes de ser enviado, el sistema encripta el mensaje m, por medio de,

c = me (mod n).
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Entonces, trasmite c, junto a la información de n.
El individuo a quien va destinado el mensaje, en nuestro caso A, solo debe conocer

la clave d, pues la clave n que es necesaria para la desencriptación, es pública y por lo
tanto puede ser transmitida por el sistema en forma abierta, como acabamos de explicar.
Para que A, conozca su clave d, se pueden recurrir a diferentes mecanismos. Noten que
cuando uno necesita una clave para operar con una tarjeta de débito, por ejemplo, hay
que ir a un cajero y realizar la operación de ’generar una clave’, donde en realidad lo que
uno hace es cambiar la clave, pues la primera es dada a veces en forma física, junto con
la tarjeta. Como sea, esta clave no puede ser enviada por el sistema, pues generaría una
falla de seguridad. Alguien puede objetar que d se obtuvo en forma única del punto 5, de
la Sec. 5.1.4, mientras que las claves personales se general a elección del interesado y se
pueden cambiar. Esa clave que elegimos, es más bien la llave de entrada a la información
donde está guardada d.

Volvemos a nuestro problema. El receptor del mensaje A, posee su clave d, que coloca
en su sistema para poder leer el mensaje. El sistema posee la información de c y n, y
además, A le da la información de d. Con toda esta información, el sistema resuelve,

m = cd (mod n),

y luego, transforma m en M, con lo que concluye el proceso.
Debemos advertir al lector que el cálculo numérico de las ecs. (5.3) y (5.4), es com-

plejo pues involucra potencias muy grandes. Para ello se recurre al método de la expo-
nenciación modular, ya nombrado. El lector interesado, puede encontrar una descripción
del método en el Apéndice A, del artículo de Gerjuoy [13].

5.2. El algoritmo de Shor

El nivel de dificultad que implica comprender acabadamente el algoritmo de Shor es
alto, pero aún así, es accesible para quien ya haya hecho un curso de Mecánica Cuán-
tica. Sin embargo, para alcanzar tal nivel de comprensión, se requiere de un número
muy grande de propiedades tanto matemáticas, como físicas; lo cual excede el objetivo
de este seminario. El objetivo que perseguimos entonces, no es agotar el tema del al-
goritmo de Shor, sino mostrar cómo la Mecánica Cuántica es aplicable a un problema
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matemático. Debemos notar que, hasta ahora, empleamos la mecánica cuántica para
explicar un sistema físico que requiere de una descripción cuántica. Para el algoritmo
de Shor, emplearemos la respuesta de un sistema cuántico para resolver un problema
numérico.

Es importante notar que una computadora, cuántica o no, es un sistema físico. Co-
mo tal, está sujeta a fluctuaciones debido a cambios en la temperatura, movimientos,
alteración de los materiales por el paso del tiempo y las condiciones de presión, humedad
y temperatura, fluctuaciones en la alimentación (electricidad), etc. El que una computa-
dora (no cuántica), arroja siempre el mismo resultado ante el mismo proceso, es gracias
a un proceso de realimentación y verificación continua diseñado para obtener tal com-
portamiento. En otras palabras, se repite el proceso para comparar con el anterior y se
sigue repitiendo el mismo proceso hasta obtener consistencia con el resultado obtenido.
El obtener lo mismo en una computadora cuántica es extremadamente más complica-
do. Veremos que el algoritmo de Shor no supone una computadora ideal, sino que está
diseñado para su implementación en un caso real.

Esta sección está organizada de la siguiente manera: en primer lugar, mostraremos
un modo de factorizar un número, que es particularmente conveniente para el com-
portamiento cuántico. Luego, discutiremos un conjunto de pasos que constituyen el
algoritmo de Shor en sí.

5.2.1. Factorización de N = p.q

Sea n, un entero positivo, coprimo con N = p.q, donde p y q, son dos números
primos diferentes, mucho mayores que 1. Conocemos N y como se trata de un número
grande, es extremadamente difícil saber sus factores primos p y q. Sobre el número n, lo
elegimos nosotros. Cómo lo elegimos nosotros, lo podemos escribirlo como el producto
de números primos, dividimos N por cada uno de esos números primos para garantizar
una división no exacta y por lo tanto, el carácter de coprimo entre n y N .

Construimos ahora una función fj, con j = 1, 2, 3, .... Esta función, toma como
valores el resto de la división nj/N . De esta manera, fj queda unívocamente definido
por medio de,

nj = fj (mod p.q), (5.5)
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junto a la condición 0 < fj < N . Por otra parte y a partir del Teorema de Euler, tenemos
que para cualquier n,

nφ(N) = n(p−1)(q−1) = 1 (mod p.q), (5.6)

al comparar con la ec. (5.5), tenemos que,

fφ(N) = 1, ∀ n.

Sin embargo, para un dado n, puede existir un entero j, 1 6 j 6 φ(N) = (p−1)(q−1),
para el que fj = 1. El menor de todos estos j, lo llamamos r. Decimos que r es el orden
de n módulo p.q, de este modo,

nr − 1 = 0 (mod p.q). (5.7)

Supongamos ahora que conocemos el orden r de un entero n < N , coprimo con N , y
además, que r es par. Nota: el procedimiento para conocer r es justamente el algoritmo
de Shor, que explicaremos más adelante. Volvamos al r par. Como es par, entonces r/2
sigue siendo entero. El carácter de par de r no implica ninguna restricción sobre N , pues
dĳimos que p y q, son números grandes. Claramente,

nr − 1 = (nr/2 − 1)(nr/2 + 1),

de esta manera,
(nr/2 − 1)(nr/2 + 1) = 0 (mod p.q). (5.8)

Ahora bien, por definición r es el menor entero que cumple con la condición de que
nr − 1, sea exactamente divisible por p.q. Luego, teniendo en cuenta que la definición
de p y q es arbitraria, podemos decir que p divide exactamente a nr/2 − 1 y q divide
exactamente a nr/2 + 1). Finalmente, p y q se pueden determinar calculando el mayor
común divisor de N con nr/2−1 y de N con nr/2 +1. Esto es, si conocemos r, sabemos
cómo factorizar N . El encontrar este mayor común divisor con una computadora clásica
es considerado como un problema simple, en comparación con la factorización de un
número muy grande [13]. Nos referimos a que tal operación no justifica el uso de una
potencial computadora cuántica.

Antes de seguir, debemos mencionar una propiedad importante de la función fj. La
misma, dado un n y un N (n < N , y n y N coprimos entre sí), es periódica en r. Dicho
de otro modo, fj es periódica y su período resulta ser el r que necesitamos.
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La síntesis de esta subsección, es que la dificultad mayor para factorizar un número
N muy grande es encontrar un r que cumpla ciertas propiedades. En primer lugar, N es
el producto de exactamente dos números primos p y q (∴ N = p.q). Sobre el n, debe
cumplir con que n < N (lo cual es trivial); pero además n y N deben ser coprimos
entre sí y el r que resulta, debe ser par. El n se elige por prueba y error. Si resulta una
elección afortunada, entonces nr/2 − 1 y nr/2 + 1, son exactamente divisibles por p y q,
respectivamente. Notemos que p y q, son nuestras incógnitas, luego el afirmar cuál es
divisible por cuál, es arbitrario.

5.2.2. Implementación del algoritmo de Shor

Nuestro objetivo final es lograr factorizar un número muy grande N , en el marco del
algoritmo de Shor. Esto lo hacemos empleando la factorización descrita en la Sec. 5.2.1.
Para ello, necesitamos conocer el valor de r. Es este número r, el que se puede evaluar
en forma más eficiente empleando una potencial computadora cuántica y es el objetivo
de esta sección. Como cualquier procedimiento de cálculo, explicaremos el procedimiento
enumerando los pasos a seguir. No debemos perder de vista que este es un problema
interdisciplinario, donde matemáticas, teoría de la información y mecánica cuántica,
juegan un papel importante. Cada disciplina tiene su vocabulario propio y es justo tratar
de seguir el de la teoría de la información, pues es su objeto de estudio por excelencia.
Expresado nuestro deseo, en varios puntos emplearemos la terminología de la mecánica
cuántica, ya que el capítulo va dirigido a los estudiantes de esa asignatura.

Como mostramos en el Cap. 15, en [1]; la idea básica de la computación cuántica es
construir una función de onda, con un número establecido de qubits. Luego, por medio
de operadores unitarios, que en el lenguaje de la teoría de la información se denominan
“puertas cuánticas”, modificamos a la función de onda para que sirva a nuestro proble-
ma. Finalmente, medimos la función de onda y de la información que extraemos de su
colapso, tenemos la respuesta buscada. Ese es el esquema que desarrollaremos ahora.
Como ya lo habíamos advertido, daremos una descripción esquemática, donde omitimos
las demostraciones intermedias. El lector puede encontrar un esquema completo en los
artículos originales de Shor [15, 16], el artículo de Gerjuoy [13], el libro de Rieffel y
Polak [14] y en las referencias ahí citadas. El esquema, es entonces:
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1. Determinación del número mínimo de qubits necesarios. Debemos construir el
estado cuántico adecuado para resolver nuestro problema. El punto de partida es
decir el número mínimo de qubits que necesitamos. Para ello, debemos saber hasta
qué valor de la potencia j debemos llegar para analizar el período de fj (y por
lo tanto, conocer r). Del análisis numérico [13], resulta que el número de qubits
necesario, que designamos como y, es del orden de,

y ∼= (Log2N
2) + 1.

Como ejemplo, si N ∼ 1030, entonces y ∼ 200.

2. Preparación de la función de onda inicial. Tenemos entonces y–qubits y empleare-
mos el subíndice Y , para designar nuestro sistema físico de y–qubits17. En la
Sec. 15.3.2 en [1], vimos que un estado puro formado por un qubit, se escribe
como,

|i〉, con i = 0 ó 1;

para un estado mezcla, tenemos,

|ψ〉 = α|0〉+ β|1〉, con α2 + β2 = 1,

mientras que un estado puro formado por varios qubits es de la forma,

|0, 1, 1, ..., 1, 0, ...〉.

Esta última notación es la más simple, si damos toda la información física para
nuestro estado. Si tenemos y qubits, el número de estados diferentes es de 2y.
Podemos simplificar la notación al precio de tener que establecer una tabla de
equivalencias, llamando,

|0〉 ≡ |0, 0, 0, ..., 0, 0, ...〉,

luego,
|1〉 ≡ |1, 0, 0, ..., 0, 0, ...〉, etc.

17Es conveniente indicar que en el artículo de Gerjuoy [13], se afirma erróneamente que Y es el
registro cuántico, lo cual induce a una confusión en la interpretación. Sin embargo, el desarrollo es
correcto, si simplemente ignoramos la presencia de ese Y en las expresiones.
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De esta manera, una base de nuestro espacio de Hilbert, se puede escribir como,

|j〉, con j = 0, ... , 2y − 1,

donde el índice j llega hasta 2y − 1, ya que elejimos partir de j = 0, en lugar de
1. En este caso, el estado mezcla más general, se escribe de la forma,

|ψ〉 = 1
∑2y−1
j=0 |cj|2

2y−1∑

j=0
cj |j〉.

Dada toda esta información, ahora sí mostramos el estado cuántico relevante a
nuestro problema.
Debemos tener en mente que una potencial computadora cuántica es un sistema
físico, sobre el que debemos actuar físicamente para obtener un resultado. El
estado inicial solo puede ser el estado fundamental del sistema, esto es, aquel
estado con menor energía. Es el único estado que podemos preparar sin mayor
dificultad. Sobre este estado actuaremos con puertas cuánticas, hasta alcanzar
el estado final que mediremos para obtener el resultado final. Haremos esto por
pasos, colocando un superíndice P0, P1, P2, ... , para cada paso. En los estados
y por conveniencia, agregamos un subíndice Y , para recordar que nuestro sistema
físico es aquel formado por y–qubits. Así, partimos del estado,

|ψ〉P0
Y = |0〉Y ,

donde dejando de lado los índices, |0〉 = |0, 0, 0, ... , 0〉. Actuando sobre este estado
por medio de un conjunto de puertas cuánticas, pasamos al siguiente estado,

|ψ〉P1
Y = 1

2y/2
2y−1∑

j=0
|j〉Y , (5.9)

Esto es, en el primer paso construimos un estado donde cada |j〉, tiene el mismo
peso.

3. Elegir un n; y para cada j en el sistema Y , entrelazar un estado |fj〉 perteneciente a
un nuevo sistema Z. Este es quizá el punto más relevante y difícil del algoritmo de
Shor. El primer punto, elegir el valor de n, es relativamente simple. Conocemos N y
sabemos que es producto de dos números primos muy grandes. El buscar un n < N ,
comprimo con N , se puede hacer multiplicando números primos relativamente
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pequeños, lo cual hace extremadamente poco probable que no resulte comprimo
con N . Luego, entrelazamos nuestro sistema físico de y–qubits, con otro sistema
nuevo de qubits, que llamaremos Z, tal que las configuraciones de este nuevo
sistema estén formadas de la siguiente forma: dado un |j〉, del estado |ψ〉P1

Y , en la
ec. (5.9), habiendo elegido ya el n, construimos una configuración |fj〉. Recordemos
la ec. (5.5):

nj = fj (mod N).

De esta manera, tenemos un nuevo estado, dado por,

|ψ〉P2
Y Z = 1

2y/2
2y−1∑

j=0
|j〉Y |fj〉Z . (5.10)

Debemos notar que el número de qubits de Z, es menor que el de Y , ya
que la función fj es periódica, con período r. Esta afirmación es válida en tanto
y > r, esto es que el sistema Y , posee más qubits que la periodicidad de fj.
El lector debe intuir que la implementación del estado |ψ〉P2

Y Z , a partir del estado
|ψ〉P1

Y , es extraordinariamente complejo: debemos poner en contacto dos sistemas
cuánticos, Y y Z, entrelazados cuánticamente de modo de obtener los productos
|j〉Y |fj〉Z , pero al mismo tiempo permitir que el sistema Z, se pueda medir en
forma independiente del sistema Y . Una idea conceptualmente similar se discutió
con la teletransportación cuántica en la Sec. 15.3.4, en [1]; donde un sistema de
tres partículas entrelazadas, se divide en dos y se mide uno de los dos subsistemas.

En este trabajo, aceptaremos la ec. (5.10), sin demostración. Encontramos en
la literatura una discusión conceptual pobre de la ec. (5.10). Estos trabajos fueron
hechos en el marco de la teoría de la información y la dificultad de esta ecuación
estriba en el entrelazamiento cuántico, uno de los puntos más complejos de la
mecánica cuántica. Es más, en general se nombra al entrelazamiento cuántico en
forma genérica, pero no se discute en forma directa. La clave de la ec. (5.10), es
lograr el entrelazamiento entre el sistema Y y el sistema Z, con el fin de transmitir
cuánticamente la información sobre la periodicidad de fj, que es nuestro buscado
r; del sistema Z, al sistema Y . Expondremos esto, en los puntos siguientes.

Como ya afirmamos, no discutiremos la metodología para obtener el estado
|ψ〉P2

Y Z (ec. 5.10). Otro punto de enorme relevancia y también puramente cuán-
tico, es que este estado se construye a partir del estado |ψ〉P1

Y , sumando qubits,
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empleando puertas cuánticas y con el conocimiento de n y N , pero hasta medirlo,
no conocemos las configuraciones |fj〉Z , ya que estaría implícito el valor de r.
Desde el punto de vista cuántico, esta no es ninguna sorpresa; pero el tema es
complejo y la escritura de la ec. (5.10), puede inducir a un error. Sabemos que por
la acción descrita, obtenemos dicho estado, pero hasta medir no podemos afirmar
nada sobre las configuraciones del mismo.

4. Medida del sistema Z. Como en el caso de la teletransportación cuántica, medimos
ahora el estado de las partículas del sistema Z. Por construcción, sabemos que
existen r–configuraciones |fj〉. Al medir, produciremos el colapso de esa parte del
estado entrelazado completo y obtendremos algún |fk〉. Recordemos que fj es
una función periódica y por lo tanto, existen varias configuraciones |j〉 del sistema
Y , que fueron multiplicadas por la misma configuración |fk〉. Para ser claros, si
escribimos |k〉Y |fk〉Z , entonces |k〉 es uno de ellos. Llamemos Q, al número de
configuraciones |j〉, que estaban multiplicadas por |fk〉. Entonces, luego del colapso
de la parte del estado que representa al sistema Z, tenemos el siguiente estado,

|ψ〉P3
Y = Q−1/2

Q−1∑

b=0
|k + b r〉Y . (5.11)

Al medir el estado del sistema Z, conocemos un valor de fj, que llamamos
arbitrariamente fk. Pero no podemos saber el valor de k, pues varios fj, tiene
el mismo valor debido a su periodicidad. Sabemos que debe existir un Q, que
representa al número de configuraciones |j〉Y , que comparten el mismo valor de
fk. Sobre esa base, escribimos el estado |ψ〉P3

Y . Como no conocemos el valor de k,
nada nos impide afirmar que es el menor de los enteros de la suma y representar
a la suma sobre configuraciones tal y como está escrita.

5. Realizar la transformada de Fourier cuántica sobre el estado del sistema. Este
paso, requiere de la operación de una puerta cuántica sobre último estado del
sistema |ψ〉P3

Y , ec. (5.11). Llamamos al operador (o puerta cuántica), que realiza
tal operación ÛTF , y su acción viene dada por,

ÛTF |j〉Y = 1
2y/2

2y−1∑

c=0
e2πijc/2

y |c〉Y . (5.12)
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Para evitar confusiones, en el exponencial las letras j y c, son índices que
indican configuraciones cuánticas, mientras que i =

√−1. Realizando ahora la
transformada de Fourier sobre el estado |ψ〉P3

Y , tenemos,

|ψ〉P4
Y = ÛTF |ψ〉P3

Y = (2yQ)−1/2
2y−1∑

c=0

Q−1∑

b=0
e2πi(k+br)c/2

y |c〉Y . (5.13)

En esta expresión, los coeficientes que multiplican a |c〉, representan a un serie
geométrica que se puede sumar, con lo cual tenemos finalmente,

|ψ〉P4
Y = (2yQ)−1/2

2y−1∑

c=0
e2πikc/2

y

eπirc(Q−1)/2y sen(πrcQ/2y)
sen(πrc/2y) |c〉Y . (5.14)

6. Medida del estado |ψ〉P4
Y . Al medir este estado, obtendremos algún |c〉, con una

probabilidad de,
Pc = (2yQ)−1 sen2(πrcQ/2y)

sen2(πrc/2y) . (5.15)

Una de las mayores dificultades para abordar un tema interdisciplinario, como
lo es un algoritmo cuántico, es que quien escribe muy probablemente esté o bien
corrido hacia la informática o bien corrido hacia la mecánica cuántica. La totalidad
de los trabajos en que se basa este capítulo, son de carácter informático. Nuestro
capítulo, sin embargo, apunta al otro enfoque. Desde el punto de vista mecánico
cuántico, sabemos que la probabilidad Pc en la ec. (5.15), no resulta de una única
medida. La probabilidad de obtener una cierta configuración, se obtiene luego de
un número muy grande de medidas. De hecho, la cantidad Pc es exacta en el límite
para un número de medidas que tiende a infinito. Este punto, muy obvio para un
curso de mecánica cuántica elemental, parece ignorarse en las publicaciones sobre
el tema.

Existe otro punto, mucho más sutil y complejo, que se pudo discutir en el
punto 3, pero preferimos postergar hasta ahora. En el punto 3, construimos un
estado entrelazado cuyas configuraciones son de la forma |j〉Y |fj〉Z . Esto implica
una cierta relación numérica entre las configuraciones |j〉Y y |fj〉Z . El punto que
muchos lectores pueden haber olvidado, es que el número “j” ó “fj”, en cada ket,
no tiene ningún contenido físico. En realidad es un índice que debe ser asociado
con una tabla para traducirlo en estados con spin up o down, por ejemplo. En la
construcción de tal tabla, la asignación de números para asignar estados físicos
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reales es arbitraria. Al construir las configuraciones |j〉Y |fj〉Z , los estados físicos
de spin up y down, no pueden leer la tabla para adaptarse a ello. Luego, ¿cómo
construir tal tabla?. Simplemente es imposible. El lector debe notar, que se afirma
“medir” dos veces, una sobre el sistema Z y luego, sobre el Y ; pero no se dice qué
se midió. Solo se hace referencia al colapso del estado.

En términos directos, ya dĳimos qué no es; y ahora debemos decir que sí
es. Físicamente, lo que tenemos son dos sistemas cuánticos, que se entrelazan y
sobre los mismos se actúa con una serie de operadores. Como resultado de esas
acciones, se logra construir un estado cuántico mezcla, cuyos coeficientes de peso,
tiene una dependencia con la periodicidad r, que deseamos calcular. Dado Pc en
la ec. (5.15), ciertas consideraciones, junto a métodos numéricos, nos permiten
extraer el valor de r. La discusión sobre la extracción de r a partir de Pc, no la
abordaremos en este trabajo. Extraído el valor de r, concluye el proceso cuántico
o algoritmo de Shor.

7. Consideraciones finales sobre el método. Nuevamente, nuestro enfoque es mecáni-
co cuántica. En las primeras clases de un curso de tal asignatura, debe nombrarse
que la mecánica cuántica requiere de la física clásica para su construcción: la medi-
da es fundamental en mecánica cuántica y un instrumento de medida es un objeto
clásico. Notemos que podemos entrelazar dos sistemas cuánticos, pero la acción
de poner en contacto un sistema cuántico con uno clásico (el instrumento de me-
dida), produce el colapso del estado. Vamos ahora a una computadora cuántica.
Para interactuar con el sistema cuántico de tal computadora, debemos emplear una
computadora clásica para que prepare el sistema, realice las medidas, las registre,
etc. En el algoritmo de Shor, el sistema cuántico no obtiene los factores primos de
N , sino que extrae el valor de r. Luego, la computadora clásica hace el resto. No
tenemos la certeza de que el r que obtenemos resuelva nuestro problema. Existe
cierta probabilidad de error en la elección del n y en el método numérico para
extraer r de Pc. Si luego de todo ese proceso, fracasamos en la separación en
factores primos de N , deberemos elegir otro n y comenzar todo de nuevo. Esto
es inherente a cualquier computadora, ya que a fin de cuentas cualquiera de estos
instrumentos son sistemas físicos sujetos a fluctuaciones, que deben ser tenidas en
cuenta.
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5.3. Discusión

Debemos tener en mente que una computadora, clásica o cuántica, es un sistema
físico del que obtenemos resultados a partir de la respuesta de tal sistema. Podemos
escribir en un papel un operador o puerta cuántica, que tenga tal o cual acción sobre un
estado cuántico. Pero luego, alguien debe ser capaz de encontrar algún proceso físico que
permita implementar tal acción. La situación es similar para una computadora clásica.
Casi todo el mundo las usa, pocos saben programarlas, otros las saben reparar, pero
muy pocos comprenden y saben manejar el lenguaje de máquina, esto es, los procesos
físicos que rigen su funcionamiento. Aunque son muy pocos quienes comprenden el
funcionamiento y fabricación de los procesadores de una computadora, su funcionamiento
es producto del trabajo de las personas. Por otra parte, a diferencia de las computadoras
clásicas o cuánticas, sabemos muy poco sobre cómo funciona el cerebro. Pero ese es
otro tema.

En este capítulo, intuimos el punto de partida de la solución del problema de facto-
rizar un número N , producto de dos números primos: el estado de partida es el estado
fundamental de un sistema cuántico, formado por varios qubits. Luego aceptamos sin de-
mostración, la existencia de puertas cuánticas que actúan sobre ese estado. Estas puertas
cuánticas, son operadores unitarios que actúan sobre nuestro estado de partida. En este
proceso, entrelazamos nuestro sistema con otro sistema cuántico, realizamos medidas
sobre nuestro estado, causando primero un colapso parcial del estado y finalmente, su
colapso. No dĳimos qué medimos, pues en realidad existen diferentes implementaciones
del sistema de qubits. Si se tratara de un sistema de spin up y down, mediremos la
proyección del spin. Al cabo de todo ese proceso y luego del análisis numérico de una
probabilidad, se puede obtener un número que indica la periodicidad de una función y
con él y una computadora clásica, lograr la factorización de N .

Es verdad que en toda esta discusión sobreabundan puntos que debimos aceptar
sin demostración. Sin embargo, debemos notar que abordamos el problema de la física
del proceso de computación cuántica desde un punto de vista microscópico. Si con una
computadora clásica calculamos Log10(15), al igual que estudiamos cómo de un proceso
físico podemos extraer la periodicidad r de una función, tendremos otro proceso físico
para conocer dicho logaritmo. Pero eso es algo que en general no estudiamos. Esto
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nos muestra que la computación cuántica se encuentra en la etapa más primitiva de su
desarrollo; pues aún no podemos dar por sentada la física básica de la computadora,
como sí ocurre con una computadora clásica.

El encontrarnos aún en las primeras etapas de un desarrollo, se ve también reflejado
en la literatura del tema. No ahondaremos sobre el siguiente punto, pero existen difer-
entes sistemas cuánticos, además del spin, para construir los qubits de una computadora
cuántica. La condición es tener un sistema cuántico de dos niveles de energía. También
existen diferentes algoritmos, además del de Shor. El enfoque es claramente informático
y los conceptos cuánticos son a veces presentados de una manera forzada. Todo esto
no debe ser interpretado como una crítica, sino que es inevitable cuando aún se están
explorando diferentes alternativas de fabricación, ejecución y programación; sin que una
logre dominar sobre las otras.

5.4. Epílogo

Luego de toda esta discusión, debemos indagar sobre la medida en que todas estas
expresiones se traducen en una computadora cuántica real. Debemos aclarar que la
inversión en esfuerzo humano y económico para el desarrollo de la computación cuántica
es significativa. Esto es muy bueno, pues una eventual computadora cuántica podría
revolucionar varias disciplinas científicas. La contracara, es que muchas veces los logros
son magnificados. En los medios, en forma periódica uno lee una noticia con el repetido
“ahora sí” llegó la computación cuántica. Una y otra vez, cada tanto tiempo. Incluida
la afirmación de haber construido y vendido una computadora cuántica comercial. Con
este párrafo sugerimos al lector que reciba esas noticias con un prudente escepticismo.

En el año 2001, se publicó en la prestigiosa revista Nature [17], un artículo sobre la
implementación del algoritmo de Shor, con un sistema de siete qubits, donde fue posible
factorizar el número 15. Once años después, se logró la factorización del número 21,
publicado en [18]. Más recientemente, en el año 2019, se intentó sin éxito la factorización
del número 35. Se argumentó que el fracaso se debió al control de errores [19], un punto
que no hemos discutido. Al momento de terminar este trabajo, no encontramos resultados
más modernos. Es una triste obviedad que si luego de más de veinte años de labor, solo
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se pudieron factorizar los números 15 y 21, el ritmo de progreso en el área es mucho más
lento del esperado. Ahora en primera persona y para expresar mi punto de vista, voy a
expresar una analogía para mostrar cómo veo el progreso en el tema. Imaginemos la época
en que las personas se movían en carros, carretas, etc., movidas por caballos. Esto es,
cuando los móviles (carretas, etc) eran movidos por tracción a sangre. Frente a esto, se
propone un móvil autopropulsado por un motor que es parte del móvil mismo; llamémoslo
“automóvil”. Haciendo un paralelismo con las computadoras cuánticas, digamos que el
primer automóvil logró avanzar 15 milímetros. Once años después, otro automóvil logró
avanzar 21 milímetros. Casi veinte años después del primero, falló el intento por avanzar
35 milímetros. Notemos que se pretende factorizar números del orden de 1030 y con el
número 35 no se tuvo éxito. Mi punto es que después de más de 20 años del auspicioso
inicio, los resultados son demasiados modestos como para afirmar que una computadora
cuántica que supere a las clásicas, sea una realidad.

A comienzos de nuestro siglo, nos preguntamos cuándo la computación cuántica
comenzaría a inundar los laboratorios del planeta. Hoy, la pregunta es más bien si al-
guna vez la computación cuántica inundará los laboratorios del planeta. Existen ciertas
variables en la computación cuántica que ignoramos. En primer lugar, una computadora
cuántica supone un conjunto de partículas cuánticamente entrelazadas. Dicho de otro
modo, un cierto número de qubits. No sabemos cuál es el número máximo de partícu-
las cuánticamente entrelazadas. La factibilidad de una potencial computadora cuántica
está vinculada a la respuesta a esta pregunta. Esta pregunta debe tener una respuesta,
pero no la conocemos aún. Es de esperar que los esfuerzos teóricos y experimentales, la
respondan. La siguiente duda se refiere a la pérdida de correlación entre las partículas o
decoherencia. Es un fenómeno cuántico que limita el tiempo de uso del sistema con el
fin de ser empleado en un cálculo. Son tiempos breves, pero los cálculos lo son aún más.
Entendemos que ese tiempo se hace más corto, cuanto más grande es el sistema. Esta es
otra pregunta sin responder que está vinculada con la primera. Un tercer punto se refiere
al control de errores. Todo esto nos muestra, como ya afirmamos, que la computación
cuántica es por ahora una perspectiva muy interesante. Notemos que las computadoras
cuánticas existentes justifican su existencia en la perspectiva de logros mayores; pues el
costo y las dificultades de funcionamiento aún no las hace rentables, dada su capacidad
de cálculo.
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Algún lector puede especular con que mi postura es de decepción frente a la com-
putación cuántica. No es así. De serlo, no hubiera escrito este capítulo. En este capítulo
se buscó despertar interés en el tema y especialmente, vincular esta nueva rama del
conocimiento con lo que aprendimos de mecánica cuántica. Mi opinión, es que la reali-
zación de la computación cuántica requerirá de mucho tiempo y esfuerzo, mucho más
de lo que se pensaba hace unos años atrás. Pero el esfuerzo lo vale. La historia del
conocimiento, es la historia de este tipo de desafíos. Son extremadamente difíciles. Y
es por su dificultad, que nos resultan interesantes y nos atraen. Puede ocurrir que el
tamaño del entrelazamiento cuántico y la decoherencia, pongan un límite físico a las
computadoras cuánticas y las hagan inútiles (frente a las clásicas). En ese caso, habre-
mos aprendido mucho, pero nos quedamos sin las computadoras cuánticas. Pero también
puede ocurrir que funcionen. En ese caso, habrá valido la pena el esfuerzo.
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Apéndice A

Valor numérico de algunas
constantes de interés

En este apéndice, daremos un resumen de algunos valores numéricos de constantes
que empleamos a lo largo de este trabajo.

Constantes generales:

|e| = 1,602176634× 10−19 Coul,

c = 299.792.458 m/s,

~ = 6,582119569× 10−22 MeV s,

~c = 197,3 MeV fm

kB = 1,380649× 10−23 Joules/Kelvin (A.1)

Masas:

me = 0,510998946 MeV/c2,

mp = 938,2720813 MeV/c2,

mn = 939,5654133 MeV/c2. (A.2)

Momentos magnéticos de Bohr:

µe = 5,7883818012× 10−15 MeV/G,

µp = µeme/mp
∼= 3,15245× 10−18 MeV/G,

µn = µeme/mn
∼= 3,14811× 10−18 MeV/G, (A.3)
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donde G es la unidad de campo magnético denominada Gauss.
Factores giromagnéticos:

ge = −1,000,

gp = 2,793,

gn = −1,913. (A.4)

Convirtiendo unidades:

G = 10−4 Kg
Coul s

∼= 5,60951× 1025 MeV
Coul s c2 , (A.5)

Aqui empleamos,
1 Kg ∼= 5,60951× 1029 MeV/c2.

Podemos escribir,
Coul ∼= 5,60951× 1025 MeV

G s c2 , (A.6)

de este modo, podemos expresar la carga del electrón como,

|e| = 8,98742× 106 MeV
G s c2 . (A.7)

Analicemos con algún cuidado el magnterón de Bohr para el electrón,

µe = |e|~2me

= (8,98742× 106) (6,582119569× 10−22)
2× 0,510998946

MeV MeV s c2

G s c2 MeV . (A.8)

Tenemos finalmente,

µe = 5,7883818012× 10−15 MeV/G. (A.9)

Mientras que para |e|, tenemos,

|e|~c2 = 5,91571× 10−15 MeV2

G . (A.10)

Finalmente, para eB, tenemos,

eB~c2 = 2µemec2B = 5,91571× 10−15B MeV2. (A.11)

En esta expresión, debemos emplear B en Gauss, con lo cual el valor final nos queda en
MeV2. Por ejemplo, si B = 1015G, entonces,

eB~c2 = 5,91571 MeV2, para B = 1015 G.
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Vale la pena repetir este análisis para el magnetón nuclear. Haremos el análisis para
el protón. Notemos que µeme = µpmp. Tenemos entonces,

µp = |e|~2mp

⇒ eB~c2 = 2µpmpc2B = 5,91571× 10−15B MeV2. (A.12)
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Apéndice B

Cálculo de la densidad de número

En este apéndice mostraremos cómo calcular la densidad de número ρ(µ, T ); esto
es, el número de partículas por unidad de volumen; a partir del número de ocupación
n(ε), dado por la ec. (2.6). Excepto al final, cuando analicemos las unidades, en este
apéndice emplearemos unidades naturales, para las que c = ~ = 1. En primer lugar
y por simplicidad, supondremos que el sistema no está degenerado. Calcularemos esta
densidad a partir de la definición de n(ε), como el número de partículas con energía ε.
Sin perder generalidad, agregaremos el índice j, a la energía; suponiendo entonces que
las energías toman valores discretos. La densidad de número es entonces,

ρ(µ, T ) ≡ 1
V

∑

j

n(εj), (B.1)

donde V , es el volumen y sumamos sobre todas las partículas contenidas dentro del
volumen V . De esta manera, contamos el número de partículas dentro de un volumen
“representativo”, dividimos por el volumen total y tenemos la densidad de número.
Esto es formalmente inobjetable, pero el calcular algo a partir de esta expresión no
resulta evidente. Para contar con una expresión operativamente útil, debemos construir
un modelo que nos permita seguir adelante. En primer lugar, debemos definir el espacio de
Hilbert donde nos movemos. Para ello, debemos diferenciar dos situaciones: i. Ausencia
de niveles de Landau y ii. Presencia de niveles de Landau. Analizamos cada uno de estos
casos separadamente. Antes de ello, algunas hipótesis son comunes a las dos situaciones:
supondremos que tenemos materia infinita. Físicamente esto nos dice que podemos
despreciar los efectos de borde. Conceptualmente, si nos movemos dentro de materia
proto–neutrónica lejos de la superficie, esperamos que el sistema sea invariante frente
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a cualquier traslación espacial. También supondremos que vale el modelo de partícula
independiente (ver Sec. 15.1 en [1]).

B.1. Ausencia de niveles de Landau

Tomamos un sistema de coordenadas cartesianas para el espacio. En coordenadas
cartesianas consideramos un cubo de lados L y volumen V = L3. Teniendo en cuenta
las hipótesis del párrafo anterior, tomamos ondas planas normalizadas en un volumen V ,
según cada dirección de los ejes cartesianos. En particular, para el eje–x̂, consideramos
una función de onda de la forma eikxx, limitada a la longitud L. Lo que hacemos ahora
es pedirle a la función de onda que cumpla condiciones periódicas cada longitud L, en
cada dirección espacial. En particular, para el eje–x̂, tenemos,

eikxx = eikx(x+L), (B.2)

lo cual implica que,
eikxL = cos(kxL) + i sin(kxL) = 1. (B.3)

Este requisito cuantifica los posibles valores de kx, según,

kx = 2πnx
L

, nx = 0,±1,±2, ... (B.4)

Con expresiones análogas para los ejes–ŷ, ẑ. Pensando que L puede tomar un valor grande
(aunque finito), pasamos de variables discretas a continuas, por medio del reemplazo,

∞∑

nx=−∞
→ L

2π

∫ ∞
−∞

dkx . (B.5)

Tomando en cuenta ahora los otros dos ejes coordenados, tenemos,
∑

nx,ny,nz

→ L3

(2π)3

∫
dk . (B.6)

Vale la pena recordar la expresión para la energía de partícula independiente para el
neutrón,

εn(k, sn) = m+ (~k)2

2m − µNBsngn, (B.7)

que nos permite reescribir la dependencia funcional del número de ocupación como,

n(εj)→ n(k, sn). (B.8)
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Finalmente, reemplazando la ec. (B.6) en la ec. (B.1), y recordando que V = L3,
tenemos,

ρ(µ, T,B) = 1
(2π)3

∑
sn

∫
dk n(k, sn) (B.9)

Agregamos la suma discreta sobre spin, pues de la ec. (B.1), sabemos que debemos
sumar sobre todos los estados de energía. Por el empleo de la energía de partícula
independiente con un campo magnético, agregamos la dependencia con B. Debemos
notar que esta cantidad tiene unidades de Volumen−1 (densidad de número), ya que los
productos kxx, kyy y kzz son adimensionales, por lo que [kj] = 1/longitud y por lo tanto
[dk] = 1/Volumen. Notemos que si los niveles de energía están degenerados, debemos
incluir un factor de degeneración. La expresión dada por la ec. (B.9), vale para partículas
sin carga, como el neutrón, pero también para cualquier partícula en ausencia de campo
magnético.

B.2. Presencia de niveles de Landau

En la Sec. 2.2, mostramos los estados cuánticos de una partícula cargada en un
campo magnético constante. Tomamos al campo magnético en la dirección del eje–ẑ. La
cuantificación de Landau ocurre en el plano–xy; mientras que la partícula se comporta
como una partícula libre en el eje–ẑ. Para fijar la notación, es conveniente comenzar
recordando la expresión para la energía de partícula independiente para el protón,

εp(kz, sp, Np) = m+ (~kz)2

2m + µNB(2Np + 1− spgp). (B.10)

A partir de esta expresión, redefinimos el número de ocupación como,

n(εj)→ n(kz, sn, Np). (B.11)

Para calcular el número de ocupación, la ec. (B.1) sigue siendo válida. El problema es
el de encontrar la expresión adecuada a nuestro espacio de Hilbert. En primer lugar,
notamos que en el eje–ẑ, vale las mismas consideraciones que en la sección anterior, por
lo cual,

∞∑

nz=−∞
→ L

2π

∫ ∞
−∞

dkz . (B.12)

EDUARDO BAUER

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP 147



Para evitar dudas: en este eje tenemos un continuo, que discretizamos pidiendo la peri-
odicidad de la función de onda en una longitud arbitraria L, lo suficientemente grande
para pasar de una suma discreta nuevamente al continuo.

La suma sobre los niveles de Landau es una suma discreta y queda como tal. Sin
embargo, debemos notar que esto ocurre en el plano–xy y existe una indeterminación en
el ángulo sobre este plano en que se encuentra el estado. Esto es, existe una degeneración
inherente a los niveles de Landau. Esta degeneración vale,

degeneración de los niveles de Landau→ eBA

2π ,

donde e es el módulo de la carga del electrón, B es la magnitud del campo magnético y
A es el área en el plano–xy. La demostración de esta expresión fue dada en la Sec. 2.2
(ver ec. 2.31); además, una discusión interesante se puede encontrar en [5]. De este
modo, la suma sobre los niveles de energía se escribe como,

∑

j

→ eBA

2π
∑

Np

L

2π

∫ ∞
−∞

dkz , (B.13)

notando ahora que V = AL, tenemos finalmente,

ρ(µ, T,B) = eB

(2π)2

∑

Np, sp

∫ ∞
−∞

dkz n(kz, sp, Np) (B.14)

En principio, la suma sobre Np va hasta infinito. Operativamente se suma hasta que los
términos de la suma se hacen irrelevantes (ver Apéndice B en [20]). Además, en esta
expresión final, agregamos la suma sobre spin.

B.3. Límite para B = 0.

Las expresiones dadas por las ecs. (B.9) y (B.14), son válidas en presencia de un
campo magnético localmente constante para partículas sin carga y con carga eléctrica,
respectivamente. El límite para B = 0 es trivial para el caso de la ec. (B.9), ya que
simplemente se hace B = 0 en la expresión para la energía de partícula independiente
(ec. B.7). Este límite para el caso de una partícula cargada, es notablemente complejo.
No haremos una demostración rigurosa pues excede el objetivo de este seminario. Solo
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daremos algunas prescripciones y la bibliografía para quien tenga un interés particular
en el tema. Nuestro objetivo es, partiendo de la ec. (B.14), obtener su límite cuando el
campo magnético tiende a cero. Empleamos la siguiente prescripción dada en [22]:

∑

Np

→
∫
dkx

∫
dky

2π(eB) . (B.15)

Reemplazando esta expresión en la ec. (B.14), obtenemos inmediatamente la ec. (B.9);
excepto por las energías de partícula independiente, que debemos reemplazar por las
correspondientes a la ausencia de campo magnético.

Probablemente esta sea la justificación más débil de todo este escrito. Una forma
alternativa para justificar este límite es llevar adelante una verificación numérica: tomar
valores para la intensidad del campo magnético cada vez más pequeños, compararlos
con la expresión para B = 0 (que es simplemente la ec. B.9), y ver su convergencia.
Esto no es numéricamente simple, pues el número de niveles de Landau que debemos
sumar crece cuando la intensidad del campo magnético decrece.

Para encontrar una fundamentación sólida, debe revisarse el Apéndice B en [21], junto
al trabajo de Kaminker y Yakovlev [23]. Debemos advertir al lector, que este trabajo está
escrito en ruso, con letras cirílicas. Sin embargo, los traductores en red, lo traducen al
castellano con la suficiente exactitud para poder entender el artículo.

B.4. Unidades

El tema de las unidades no debe ser subestimado, pues no solo es indispensable a
la hora de hacer cualquier cálculo numérico, sino que nos enseña a entender mejor el
problema. Las unidades en la ec. (B.9), son simples. Como ya lo nombramos, el producto
k · r es adimensional. Luego, si medimos la distancia en Fermis (fm), entonces k, tiene
unidades de fm−1 y la densidad de número tiene unidades de fm−3. Sin embargo, es
común emplear el impulso p, en lugar del número de onda k, donde,

p = ~k,

Reescribimos ahora la ec. (B.9),

ρ(µ, T,B) = 1
(2π)3 ~3

∑
sn

∫
dpn(p, sn). (B.16)
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Analicemos las unidades de p:

[p] = [~k] = energía tiempo
longitud = energía

velocidad ,

Avancemos un poco sobre esta idea, sabemos que,

[ p
2

2m ] = [ (pc)
2

2mc2 ] = energía,

luego,
[p2c2] = energía2.

Si medimos la energía en MeV, las unidades de p, resultan,

[p] = MeV/c.

Es común el uso de las llamadas “unidades naturales”, para las que c = ~ = 1. En
unidades naturales debemos escribir la ec. (B.16), como,

ρ(µ, T,B) = 1
(2π)3

∑
sn

∫
dpn(p, sn), (B.17)

Operativamente, es común trabajar con una cierta mezcla de unidades, donde tomamos
a p, en unidades de MeV, el 1/c de las unidades del impulso lo sacamos afuera de la
integral y tenemos,

ρ(µ, T,B) = 1
(2π)3 (~c)3

∑
sn

∫
dpn(p, sn), (B.18)

donde,
~c ∼= 197,3 MeV fm,

con lo cual la densidad de número nos queda nuevamente como fm−3.
Las unidades de las energías de partícula independiente nos quedan en MeV, pensando

a la masa y al impulso en unidades de MeV, también. Vayamos ahora a la ec. (??).
Reescribimos esta expresión en función de pz,

ρ(µ, T,B) = eB

(2π)2 (~c)3

∑

Np

∫ ∞
−∞

dpz n(pz, sp, Np), (B.19)

donde además dividimos por (~c)3. De la ec. (A.11), sabemos que eB tiene unidades de
MeV2, las de pz son MeV y las de ~c, son MeV fm, con lo que la ec. (B.19), queda con
unidades de fm−3, como era de esperarse.
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Apéndice C

Unidades MKSA y CGS

En el primer curso de física, uno de los primeros temas es el de los sistemas de
unidades MKS (metros-kilogramos-segundos), luego extendido al MKSA para agregar el
Ampere; junto al CGS (centímetro-gramo-segundo). Vale la pena señalar que el sistema
MKSA es también llamado SI (sistema internacional); mientras que el sistema CGS
también es conocido como sistema de Gauss.

Si nos limitamos a la mecánica, el paso de un sistema a otro es trivial. Sin embargo,
cuando incluimos al electromagnetismo, tal cambio deja de ser trivial y es conveniente
mostrar en el presente Apéndice ciertas prescripciones para pasar de un sistema al otro,
con el fin de evitar confusiones.

C.1. Introducción al tema

La divergencia entre los sistemas MKSA y CGS para el caso del electromagnetismo,
parte de la definición de carga eléctrica. En el sistema CGS, definimos la carga según la
fórmula,

F = q1 q2
r2 r̂.

La unidad de carga se designa con el nombre de “unidad electrostática de carga” (statC):
decimos que cuando dos cargas iguales, separadas por 1cm experimentan una fuerza de
1dina, entonces el valor de la carga es de 1statC.

Por otra parte, en el sistema MKSA se define en primer lugar la unidad de corriente, el
Ampere, y dada la corriente se define la unidad de carga; que naturalmente es el Coulomb.
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En este caso, la expresión para la fuerza electroestática entre dos cargas resulta,

F = 1
4πε0

q1 q2
r2 r̂.

También en el sistema MKSA, vale la relación,

c = 1√
ε0µ0

.

En el sistema CGS no existen las constantes ε0 y µ0, pero en muchas expresiones aparece
la velocidad de la luz c, como veremos enseguida.

C.2. Las ecuaciones de Maxwell

Naturalmente, el electromagnetismo está contenido en las ecuaciones de Maxwell y
mostraremos ahora las expresiones para las mismas en los dos sistemas de unidades.

Cuadro C.1: Las ecuaciones de Maxwell, junto a la fuerza de Lorentz, para los sistemas
de unidades MKSA y CGS

Unidades MKSA Unidades CGS
Ley de Gauss (E) ∇ · E = 1

ε0
ρ(r) ∇ · E = 4π ρ(r)

Ley de Gauss (M) ∇ ·B = 0 ∇ ·B = 0

Ley Ampere ∇×B − (ε0µ0)∂E∂t = µ0J ∇×B − 1
c
∂E
∂t

= 4π
c
J

Ley de Faraday ∇× E + ∂B
∂t

= 0 ∇× E + 1
c
∂B
∂t

= 0

Fuerza de Lorentz F = q(E + v ×B) F = q(E + 1
c
v ×B)

En el cuadro C.1, mostramos las ecuaciones de Maxwell, junto a la fuerza de Lorentz,
para los sistemas de unidades MKSA y CGS. Las unidades MKSA son las más difundi-
das, pues son más adecuadas para el uso ingenieril y eso hace que el instrumental de
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laboratorio adopte esas unidades. Sin embargo, las unidades CGS o de Gauss, son más
prácticas para los desarrollos teóricos. Esto se debe a que en unidades de Gauss, los
campos eléctrico y magnético (E y B, respectivamente), tienen las mismas unidades.
Es más, los campos E, B, P , M , D y H , donde agregamos la polarización, magne-
tización, inducción eléctria e inducción magnética, poseen todos las mismas unidades.
Además, el potencial escalar eléctrico Φ y el potencial vector magnético A, poseen las
mismas unidades entre sí (pero diferentes a las de E, etc.). De esta manera, analizando
las dimensiones de una ecuación, es fácil ver dónde debemos multiplicar o dividir por la
velocidad de la luz, c. Esto es fácilmente comprobable de la lectura del cuadro C.1.

Cuadro C.2: Unidades MKSA y CGS para el electromagnetismo. En esta tabla, el valor
2,9979... se refiere a los decimales correspondientes a la velocidad de la luz, c.

Magnitud Unidades MKSA Unidades CGS Conversión
Carga q C statC 1 C = 2,9979...×109 statC

Potencial Φ Volt statvolt 1 V = (1/2,9979...)×10−2 statvolt
Campo E Volt/m statvolt/cm 1 V/m = (1/2,9979...)×10−4 statvolt/cm
Campo B Tesla Gauss 1 T = 104 G

En el cuadro C.2, mostramos el valor numérico para convertir unidades electromag-
néticas de un sistema a otro.
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Apéndice D

Notación relativista

En este apéndice mostraremos algunos elementos de la notación relativista, junto a
ciertas propiedades útiles de las matrices γ (definidas en las ecs. 4.17). Como sabemos,
en términos relativistas se trabaja con cuadrivectores, que en el caso de la posición en el
espacio–tiempo, incluyen las tres componentes espaciales y el tiempo multiplicado por
la velocidad de la luz (con lo cual las cuatro componentes tienen las mismas unidades).
Designamos a este cuadrivector como xµ, con µ = 0, 1, 2 y 3:

x0 = ct, x1 = x, x2 = y, x3 = z. (D.1)

Debemos notar que el índice µ, se escribe como un superíndice. Cuando es así, se habla
de cuadrivectores contravariantes. Cuando se trata de un subíndice, se designan como
cuadrivectores covariantes. La relación entre ambas cantidades viene dada por,

xµ = gµνx
ν , (D.2)

donde gµν se denomina tensor métrico y viene dado por,

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



. (D.3)

Notar que en la ec. (D.2), empleamos la llamada “convención de Einstein”, que consiste
en sumar sobre los índices repetidos de 0 a 3. Usando esta convención, tenemos,

gµνg
µν = 4. (D.4)
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Técnicamente, gµν es la inversa de gµν ; pero un simple cálculo muestra que son iguales.
Naturalmente,

xµ = gµνxν . (D.5)

En esta misma línea, para las matrices γ (recordemos que están definidas en las ecs. 4.17);
tenemos,

γ0 = γ0

γi = −γi, i = 1, 2, 3. (D.6)

Damos ahora algunas definiciones,

γ5 = iγ0γ1γ2γ3,

Σ ≡


σ 0
0 σ


 ,

σµν ≡ i

2 (γµγν − γνγµ). (D.7)

Enseguida mostraremos algunas propiedades de las matrices γ. Antes de ello, daremos
otra definición: para cualquier cuadrivector aµ, definimos la matriz de 4 × 4, /a (debe
leerse “a slash”), como,

/a ≡ aµγ
µ. (D.8)

Veamos ahora algunas propiedades de las matrices γ:

γµγν + γνγµ = 2gµν ,

γµγ
µ = 4,

γµγ
νγµ = −2γν ,

γµγ
νγλγµ = 4gνλ,

/a/b + /b/a = 2a · b,
γµ/aγ

µ = −2/a,

γµ/a/bγ
µ = 4a · b. (D.9)
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Sobre valores de las trazas,

Tr(I) = 4,

T r(γµγν) = 4gµν ,

T r(/a/b) = 4a · b,
Tr(γ5) = 0. (D.10)

Finalmente, mostramos algunos valores de anticomutadores. Recordemos la definición
de un anticonmutador: {A,B} ≡ AB +BA. Puede demostrarse que,

{γµ, γν} = 2gµν ,

{γµ, γ5} = 0. (D.11)
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Apéndice E

Constantes para el mesón–ω y otros

En este apéndice mostramos el valor numérico de algunas constantes físicas y discu-
timos brevemente sus unidades. Comenzamos con los siguientes valores,

gω = 0,653
Mωc

2 = 80400MeV
Notemos que,

(
gω

Mωc2

)4 1
~

= 6,61093 MeV−5 s−1

Vale la pena indicar que la ec. (4.62), se puede reescribir como,

Γβ = 1
(4π)3

(
gω

Mωc2

)4 1
~

∫ (mnc2−mpc2)

mec2
dEe− J (Ee−)c6. (E.1)

Sobre las unidades, por inspección de la ec. (4.57), notamos que,
[J (Ee−)c6] =MeV4,
y de la ec. (E.1),
[dEe− ] =MeV,

[(
gω

Mωc2

)4 1
~

]
= MeV−5 s−1

De este modo,
[Γβ] = Hz = 1/s.
Obviamente que para la vida media, tenemos τβ ≡ 1/Γβ, por lo cual [τβ] = s.
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Apéndice F

Cálculo del elemento de matriz débil
〈|Me−p,νn|2〉

Calcularemos en forma aproximada el elemento de matriz 〈|Me−p,νn|2〉. Esto ya debe
llamar la atención, pues esperaríamos calcular el elemento 〈|Me−pν̄,n|2〉, que resulta
ser igual; aunque el primero posee un planteo más simple. Comenzamos definiendo la
densidad Lagrangiana (ver por ejemplo el libro de Ryder, Ref. [12]),

L = −1
8

(
gω

Mωc2

)2
(
ψ̄e−γ

µ (1− γ5)ψν
)(

ψ̄pγµ (cV − cAγ5)ψn
)
. (F.1)

Aquí tenemos nuestra primera dificultad, pues las cantidades ψn, ψp, ψe− y ψν no son
funciones de onda, sino operadores de campo. El comprender acabadamente su signifi-
cado requiere del estudio de la Teoría Cuántica de Campos, que excede este seminario.
Sin embargo, podemos ignorar esta expresión sin mayor culpa e ir al elemento de matriz,
donde empleamos espinores,

Me−p,νn = −1
8

(
gω

Mωc2

)2
(
ue−γ

µ (1− γ5) uν
)(

upγµ (cV − cAγ5) un
)
. (F.2)

Los spinores para el protón, neutrón y electrón están dados en las ecs. (4.22), donde
debemos reemplazar la masa por la correspondiente a cada partícula. Como estamos
considerando al neutrino como una partícula sin masa en reposo, la expresión para su
spinor es diferente. No daremos su expresión, pues como mostraremos enseguida, no se
necesitan las expresiones explícitas de los spinores para calcular al elemento de matriz.
Es conveniente expresar al cuadrado del elemento de matriz como la contracción de un
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tensor leptónico lµα, con un tensoar hadrónico Hµα:

|Me−p,νn|2 = 1
64

(
gω

Mωc2

)4
lµαHµα , (F.3)

con,
lµα =

(
uνγ

µ (1− γ5)ue−
)(

ue−γ
α (1− γ5)uν

)
, (F.4)

y
Hµα =

(
un (cV + cAγ5) γµup

)(
upγα (cV − cAγ5) un

)
. (F.5)

Para hacer las sumas sobre spin empleamos el llamdo “truco de Casimir” [11], que nos
permite efectuar las sumas sobre spin evaluado trazas. Introduciremos dos trazas, Lµα

y Hµα de los tensores leptónico y hadrónico, respectivamente. Mostraremos enseguida
sus expresiones. Tenemos entonces,

〈|Me−p,νn|2〉 = 1
64

(
gω

Mωc2

)4
LµαHµα. (F.6)

Recordemos que sumamos sobre los estados finales y promediamos sobre el estado inicial.
Analicemos cada traza por separado.

F.0.1. Traza leptónica

El tensor leptónico:

lµα = (ue−γµ (1− γ5)uν)†(ue−γα (1− γ5) uν). (F.7)

Usando las propiedades de las matrices gamma, el adjunto se puede escribir como,

(ue−γµ (1− γ5)uν)† = u†ν (γµ (1− γ5))† u†ν′ = uνγ
µ (1− γ5)ue− , (F.8)

tenemos,

lµα = uνγ
µ (1− γ5) ue−ue−γα (1− γ5)uν . (F.9)

Empleando ahora el truco de Casimir,
∑

spins

lµα = Lµα (F.10)

donde,

Lµα = tr(γµ (1− γ5) /pe−γ
α (1− γ5) /pν) = 2 tr(γµ/pe−γ

α
/pν + γ5γ

µ
/pe−γ

α
/pν).(F.11)

Despreciamos la masa del neutrino. Luego de un poco de álgebra, tenemos,

Lµα = 8(pµe−p
α
ν + pµνp

α
e− − gµα (pν · pe−)− iεµαγλpe−γpνλ). (F.12)
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F.0.2. Traza hadrónica

Seguimos pasos similares al caso anterior,

Hµα = (upγµ (cV − cAγ5)un)† (upγα (cV − cAγ5)un) , (F.13)

el adjunto resulta,

(un′γµ (cV − cAγ5) un)† = unγ
0 (γµ (cV − cAγ5))† γ0un′ , (F.14)

realizando las sustitución,

γ0 (γµ (cV − cAγ5))† γ0 = (cV + cAγ5) γµ , (F.15)

tenemos,
Hµα = un (cV + cAγ5) γµun′un′γα (cV − cAγ5) un . (F.16)

La suma sobre spin, resulta entonces,

Hµα = tr((cV + cAγ5) γµ(/pp +mp)γα (cV − cAγ5) (/pn +mn)). (F.17)

Para evaluar la traza, elejimos el sistema de referencia donde el neutrón está en reposo.
Por conveniencia, separamos esta suma en tres contribuciones, proporcionales a C2

V , C2
A

and cV cA, respectivamente. Desarrollando cada contribución, tenemos,

HV
µα = 2 c2V (ppµpnα + ppαpnµ − gµα(pp · pn) +mnmp gµα) ,

HA
µα = 2 c2A (ppµpnα + ppαpnµ − gµα (pp · pn)−mnmp gµα) ,

HV A
µα = −4 i cV cAεµαγλpγppλn, (F.18)

donde por simplicidad omitimos el índice de spin en cada w. De esta manera, tenemos
finalmente,

Hs
µα = HV

µα +HA
µα +HV A

µα . (F.19)

F.0.3. Evaluación de 〈|Me−p,νn|2〉
Para evaluar finalmente el elementos de matriz, debemos realizar la contracción de

la contribución leptónica y hadránica. Para ello, usamos la propiedad,

εξφγνελργν = −2 (δξλδφρ − δξρδφλ),
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obtenemos entonces,

〈|Me−p,νn|2〉 = 1
2

(
gω

Mωc2

)4
[(c2V + c2A)((pp · pe−)(pn · pν) + (pp · pν)(pn · pe−))

− (c2V − c2A)mnmp (pν · pe−)

+ 2cV cA((pp · pe−)(pn · pν)− (pp · pν)(pn · pe−))]. (F.20)

Vemos la convinación de tres productos diferentes. Del análisis numérico resulta que se
puede reemplazar,

(pp · pν)(pn · pe−) → (pp · pe−)(pn · pν),
mnmp (pν · pe−) → (pp · pe−)(pn · pν). (F.21)

Naturalmente, hacemos esta aproximación pues conduce a un buen resultado, ya que
analíticamente es incorrecta. De este modo, tenemos finalmente,

〈|M|2〉 = 1
2

(
gω

Mωc2

)4
(c2V + 3c2A) (pn · pν̄)(pp · pe−). (F.22)

Esta es la expresión que empleamos para el cálculo de la vida media del neutrón.
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Comentario final

Esperaría no equivocarme al afirmar que todo tema de cualquier disciplina científica,
es un tema abierto. En física, uno de los primeros modelos completos es el de las Leyes
de Newton. Estas leyes representan una síntesis del conocimiento de la mecánica clásica
en verdad maravillosa. Quizá constituyan el tema más estudiado en física. Sobre ellas,
surgieron restricciones en su aplicación debido a la Mecánica Cuántica y la Teoría de la
Relatividad. Pero aún dentro del rango de aplicabilidad de las mismas, existen problemas,
como el problema de tres cuerpos, sobre los que aún se trabaja. En astrofísica, la ve-
locidad de rotación de ciertas galaxias es un problema abierto, donde algunos proponen
la existencia de materia oscura; mientras que otros dudan de la validez de la Ley de
Gravitación Universal para distancias grandes.

Si aceptamos que todos los temas de estudio dejan lugar para nuevas investigaciones,
debemos ser claros en que el grado de avance en cada tema es diferente. Estos cinco
seminarios no constituyen trabajos originales, sino que dan cuenta de trabajos ya pub-
licados (donde hemos dado la bibliografía correspondiente). Aún así, buscamos temas
que dejan abiertos más interrogantes de los que resuelven. Claro, no es nuestro objetivo
el esperar que el lector aborde estos problemas. Nuestro objetivo es modesto y es que
el alumno como último tema para finalizar el curso de Mecánica Cuántica, estudie una
aplicación de los contenidos del curso, en un tema que va un poco más allá del curso en
sí. No tanto por el contenido del tema, sino más bien por el valor formativo en abordar
una metodología de análisis nueva, partiendo de los contenidos del curso. Junto a esto,
el saber que por la misma línea de trabajo se llega a un problema abierto, puede ser un
incentivo interesante.

En resumen, el desafío no es comprender algo acabadamente, sino realizar el esfuerzo
por abordar un problema nuevo, con más interrogantes que certezas y por la satisfacción
de saber un poco más, por modesto que sea.
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