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Prdlogo

La fisica del estado sélido es un campo fascinante que profundiza en las
propiedades, estructura y comportamiento de los solidos. El mundo que nos
rodea esta hecho de materia, y el estudio de sus propiedades a nivel atomico
y molecular nos ha permitido avanzar en la comprension del universo.

La fisica del estado sélido se enfoca en las propiedades fisicas de los sélidos,
incluyendo sus propiedades eléctricas, magnéticas, 6pticas y mecanicas, y
trata de los principios fundamentales que rigen su comportamiento. Este
campo utiliza disciplinas como la mecanica cuantica, la cristalografia y el
electromagnetismo.

Este libro proporciona una introduccién a los conceptos y modelos que
subyacen a la fisica del estado sélido, explorando el mundo de los cristales,
aisladores y metales, discutiendo la fisica de los superconductores y estudian-
do las propiedades magnéticas de los sélidos.

En los primeros capitulos exploraremos algunos de los modelos tradi-
cionales que se han utilizado para describir propiedades de los sélidos. La
importancia de estos modelos subyace, no solo en la comprensién que ofrecen
sobre las caracteristicas de los materiales, sino también sobre la importancia
de construir modelos efectivos en fisica que describan y permitan identificar
los grados de libertad relevantes de un sistema.

Luego presentaremos algunas de las herramientas utilizadas para describir
la estructura cristalina de los sélidos y una introducciéon a segunda cuantifi-
cacion que luego utilizaremos para describir excitaciones magnéticas.

Haremos una recorrido por el estudio de las propiedades magnéticas de
los sélidos dedicandole un lugar especial al fenémeno de superconductividad.
Finalmente presentaremos una introduccion a la técnica de bosonizacion.

Con este libro esperamos inspirar y motivar a los estudiantes de la licen-
ciatura en fisica y carreras afines para que exploren mas a fondo el mundo
de la fisica del estado so6lido. Sin embargo, esperamos que sea de utilidad
tanto para estudiantes, investigadores o simplemente personas apasionadas
por la fisica. Este libro pretende proporcionar herramientas y los conoci-
mientos béasicos para comprender y apreciar las complejidades del mundo
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que nos rodea. Sin embargo, cada uno de los temas introducidos en este libro
puede ser extendido y estudiado en mayor profundidad. Invitamos al lec-
tor a consultar la bibliografia especifica de cada tema. Existen actualmente
una gran variedad de libros que tratan algunos de los temas discutidos aqui
13,4, 2,7, 10, 11, 13, 14, 15, 16, 17, 18, 19].

Embarquémonos en este viaje de descubrimiento y exploracion y adentrémo-

nos en el mundo de la fisica del estado soélido.

Facultad de Cs. Exactas | UNLP |
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Capitulo 1

Modelos en sélidos

Una de las herramientas mas importantes de la fisica de la materia con-
densada es el uso de modelos para describir el comportamiento de los materia-
les. Estos modelos pueden ser desde simples e intuitivos hasta increiblemente
complejos y abstractos, pero la simpleza en los modelos a permitido com-
prender en muchos casos cuales son los grados de libertad relevantes a la
hora de caracterizar el comportamiento de un sistema.

En este capitulo, exploraremos algunos de los modelos méas tradicionales
en la fisica de la materia condensada, como el modelo de Einstein, el mo-
delo de Debye, el modelo de Drude y el modelo de Sommerfeld. También
discutiremos sus puntos fuertes y sus limitaciones.

Esperamos que este capitulo le ayude a comprender mejor la belleza y
complejidad de la fisica de la materia condensada y le inspire a explorar mas
a fondo este fascinante campo.

1.1. ;jPor qué estudiamos el estado sélido de
la materia?

La fisica del estado solido se enfoca en estudiar las fases solidas de la mate-
ria mediante un enfoque microscopico y para ello se sirve de de herramientas
provenientes de la mecanica cuantica, la fisica estadistica y la termodinami-
ca. Debido tanto a la diversidad de sistemas que estudia como a la relevancia
de sus conceptos fundamentales, la fisica del estado sélido se ha converti-
do en una de las areas mas amplias de la fisica, con numerosas aplicaciones
practicas y tecnolégicas. En la actualidad, nuestra capacidad para compren-
der la materia ha alcanzado niveles sin precedentes, permitiéndonos disenar
materiales de funcionalidades especifica e incluso llevar a cabo simulaciones
numeéricas por computadora antes de proceder a su fabricacion. Un ejemplo

Facultad de Cs. Exactas | UNLP
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1.1 ;Por qué estudiamos el estado sélido de la materia?

de esta capacidad descriptiva son los materiales semiconductores, que son la
base de la industria de la microelectronica y de muchos dispositivos que nos
rodean a diario (smartphones, laptops, memorias, etc.).

Una caracteristica distintiva de los sistemas estudiados en la fisica del soli-
do y, en general, en la materia condensada, es la gran cantidad de particulas
que intervienen. En un sélido, suele haber del orden de 10?® particulas (elec-
trones e iones) que estdn en permanente interaccion y movimiento, lo que
resulta en una dinamica extremadamente compleja de describir. A menudo,
incluso teniendo una compresion profunda de los mecanismos microscopi-
cos de interaccién (como la repulsién Coulombiana entre dos electrones), los
fenémenos colectivos que emergen de la interaccion de un ntimero tan elevado
de particulas son totalmente inesperados. Un ejemplo de esto son las transi-
ciones de fase, donde un sistema puede volverse ferromagnético por debajo de
cierta temperatura. Estos fascinantes fenémenos en los sistemas de materia
condensada se conocen como fenomenos emergentes. Es justamente la gran
cantidad de atomos involucrados lo que hace posible realizar una descripciéon
cuantitativa de estos sistemas..

La fisica del estado sélido resulta una disciplina conceptualmente fun-
damental, ya que se sitia en la interseccion de diversas ramas de la fisica,
desde areas muy abstractas como la teoria cudntica de campos, hasta otras
mas aplicadas como la fisica de materiales y la electronica. La universalidad
de sus conceptos nos permite comprender y estblecer conexiones que inicial-
mente pueden no ser evidentes. Por este motivo, los sélidos actiian como
<laboratorios> donde se pueden validar teorias e ideas de diferentes ambi-
tos de la fisica. Por ejemplo, todos estamos familiarizados con el magnetismo
(muchos de nosotros hemos manipulado imanes o tenemos alguno en nuestras
heladeras). Sin embargo, algo menos evidente sobre esos simples imanes es
que la teorfa del magnetismo en sélidos (particularmente, la teoria de campo
medio y el fendmeno de ruptura espontanea de la simetria, también ofrecen
explicaciones para materiales mas complejos y menos frecuentes, como los
superconductores', que estudiaremos en el capitulo 5.

Consideremos, por ejemplo, los portadores de carga en un metal responsa-
bles del transporte eléctrico: los electrones y los huecos®. En su teoria cudntica
relativista para describir particulas de spin 1/2 (como el electrén), el notable
fisico Paul Dirac propuso el concepto de antimateria, actualmente un elemen-
to esencial en el Modelo Estandar. En la fisica del estado sélido, entendemos

'Un superconductor es un material que, por debajo de cierta temperatura, pierde toda
resistencia eléctrica, permitiendo el flujo de electricidad sin pérdida de energia.

2Un hueco se puede imaginar como una <burbuja> en un <océano de electroness, efecti-
vamente comportandose como una particula con carga positiva +e¢

Facultad de Cs. Exactas | UNLP | 8



Materia cuantica - C.A. Lamas, A. lucci (autores)

Modelos en sélidos

Figura 1.1: Izquierda: Imagen generada por computadora de una monocapa
de grafeno, donde los atomos de carbono se disponen en una red de tipo
<panal de abejas. Derecha: Estructura electrénica del grafeno, donde pue-
den verse los llamados conos de Dirac, cerca de los cuales los electrones se
comportan de manera efectiva como si se movieran a velocidades relativistas.

a un hueco como la <antiparticulas del electrén dentro de un sélido.?

La fisica del estado sélido también nos ayuda a entender las propieda-
des de nuevos materiales con caracteristicas innovadoras. Por ejemplo, se
ha logrado avances significativos recientemente en la creacion de materiales
que prometen transformar la industria electronica y la ciencia de materiales.
Probablemente, el mas relevante en las ultimas décadas es el material deno-
minado grafeno, que esta formado por una tinica capa de atomos de carbono
dispuesta en una estructura similar a un <panal de abejas> (ver Figura 1.1).
Curiosamente, todos hemos estado en contacto con este material sin saberlo,
ya que compone el grafito, que a su vez se encuentra en la punta de cualquier
lapiz. Se puede imaginar el grafito como un conjunto de millones de capas de
grafeno apiladas. Aunque el grafito es un material bastante comin y no muy
llamativo, el grafeno si presenta propiedades excepcionales: es mas fuerte
que el acero (comparando una capa de igual espesor), y es uno de los mejores
conductores de la electricidad y el calor hallados hasta el momento. Si bien
su estructura y ciertas propiedades son conocidas desde hace tiempo, no fue
sino recientemente que se lo logré aislar y caracterizar®. Ademads de sus signi-
ficativas aplicaciones tecnoldgicas, a bajas temperaturas el comportamiento

3No obstante, de manera mas precisa, se reconoce hoy en dia que la <verdadera> anti-
particula del electrén es el positrén, identificado en 1932,

4En 2004, André Geim y Konstantin Novoselov, lograron separar una monocapa de grafeno
utilizando el método de exfoliacién que consiste en aplicar repetidamente cinta adhesiva hasta
conseguir una monocapa. Geim y Novoselov ganaron premio Nobel de fisica en 2010 por este
descubrimiento.
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1.2 Aproximacion de Born-Oppenheimer, o como encarar un problema tan
complicado

de los electrones en el grafeno simula el de electrones «sin masas o electrones
relativistas de Dirac, estableciendo conexiones con la fisica de altas energias.

1.2. Aproximacién de Born-Oppenheimer, o
como encarar un problema tan compli-
cado

Supongamos que tuviéramos una capacidad de calculo sin limite y qui-
siéramos describir el comportamiento de una sustancia formada por atomos
que interactian entre si. Esta cuestién es pertinente no sélo para el estado
sélido, sino para la materia en cualquiera de sus estados. El puntapié inicial
en el que un fisico pensaria (tal vez uno no demasiado experimentado) seria
resolver la ecuacion de Schrodinger para todo el sistema, compuesto de elec-
trones y ntcleos (a quienes tratariamos como una tnica particula) y sujetos
a las interacciones Coulombianas entre ellos,

HY = EV, (1.1)
cuyo Hamiltoniano se escribe como una suma de términos
H:T6+Tn+‘/vee+vnn+‘/ena (12>

y donde los términos de energias cinética y potencial son

T, - it 7, -3 2 (1.3
“2m,’ " = 2m,’
N, 2 N, 2
< e < YAVYALE
‘/ee = I Vnn - T D (14>
jgjzl rj — 7yl 13;1 R, — Ry|

NeyNn 6221

Ven = 1.5
PR ) (1.5)

Aqui r; se refiere a las coordenadas de los N, electrones de masa m. y R; a
las V,, coordenadas de los nicleos, de masa m,,. Z; son los correspondientes
nimeros atémicos. La funcién de onda depende de todas las coordenadas, lo
cual anotamos en forma compacta en la forma

U(ry,...,rn, Ry, ..., Ry,) = U({r;}, {R)}). (1.6)

Con la excepcion de efectos de radiacién e interacciones spin-orbita (ambos
podrian incorporarse con facilidad en el Hamiltoniano), todos los fenémenos

Facultad de Cs. Exactas | UNLP |
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Modelos en sélidos

de la materia condensada, y todos los fendmenos que ocurren en nuestra vi-
da cotidiana, estan contenidos en este Hamiltoniano y las correspondientes
ecuaciones de movimiento. La “teoria del todo” en materia condensada esta
entonces bien establecida, y s6lo nos queda resolverla (j!). Sin embargo aqui
es donde los problemas aparecen, el primero de ellos, y no menor, es que
resolver estas ecuaciones es imposible tanto analitica como numéricamente
para sistemas donde el niimero de constituyentes es mayor a una veintena
de particulas, incluso en su version clasica. La complejidad de estos sistemas
crece exponencialmente con el nimero de particulas y rapidamente se alcanza
el limite que es posible tratar computacionalmente®. Analiticamente sélo el
problema de dos cuerpos posee solucion exacta. Por otro lado, las aproxima-
ciones usuales que podrian emplearse para tratar estas ecuaciones, tales como
la teoria de perturbaciones, si bien permiten capturar ciertos fenémenos, co-
mo el comportamiento de los gases , no logran describir la mayor parte de
los fenémenos conocidos de la materia condensada, tales como la supercon-
ductividad, superfluidez, efecto Hall cuantico fraccionario, etc, incluyendo la
existencia misma de los sélidos. Para esto se debe cambiar el enfoque y uti-
lizar razonamientos basados en la simetria y en el andlisis inteligente de las
escalas relevantes de tiempo y longitud. Esta forma de encarar el problema,
es la que en ultima instancia permite comprenderlo. La “teoria del todo” es
de poca utilidad para entender estos fendémenos complejos.

Volviendo al problema del solido, para atacar el conjunto de ecuaciones
(1.1)-(1.5) lo que haremos es analizar las escalas de energia del problema. Los
nicleos son varios miles de veces mas pesados que los electrones. El proton,
en sl mismo, es aproximadamente 2000 veces mas masivo que un electron.
En un sentido dinamico, los electrones pueden considerarse como particulas
que siguen el movimiento nuclear adiabaticamente, lo que significa que son
“arrastrados” junto con los ntcleos sin requerir un tiempo de relajacion fi-
nito. Esto, por supuesto, es una aproximacion, ya que podria haber efectos
no adiabaticos que no permitan que los electrones se muevan de esta mane-
ra “instantanea”, sin embargo, en muchos sistemas la separacion adiabéatica
entre electrones y ntcleos es una excelente aproximacion. Otra consecuencia
de la diferencia de masa entre electrones y ntcleos es que los componentes
nucleares de la funcién de onda estan espacialmente mas localizados que el
componente electronico. En el limite clasico, los niicleos estan completamen-
te localizados y representan particulas puntuales clasicas. Vamos a explotar
esta separacion de escalas mediante un ansatz cuasi separable de la forma,

V({rh {Ri}) = ¢e({rs}, {Ri})on({Ra}) (1.7)

5Y que seré posible tratar por cualquier computadora en un futuro.

Facultad de Cs. Exactas | UNLP | 11
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1.2 Aproximacion de Born-Oppenheimer, o como encarar un problema tan
complicado

Al insertar este ansatz en la ecuacion de Schrodinger, vemos que una posi-
bilidad, consistente con la filosofia de la aproximacién que buscamos imple-
mentar, es que el factor electronico satisfaga una ecuacién de Schrodinger
mas simple, para una configuracion fija de los ntcleos:

Heqbe = 6¢e (18)

donde ahora
He =T, + Vee + Vep. (19)

Esta ecuacion adquiere sentido si pensamos que durante los intervalos de
tiempo caracteristicos en los que transcurre el movimiento electrénico, los
nicleos se quedan fijos y por lo tanto se desprecia su energia cinética. Tam-
poco incluimos V,,, porque es una constante para la ecuacion electronica.
Desde el punto de vista de los electrones, el potencial electron-niicleo ahora
juega el papel de un potencial externo,

Ne
Ven = > U(ry) (1.10)
j=1
donde N ,
= (& Zl
U(r) = 1.11
(7) ; ey (1.11)

es un potencial de particula simple, que depende de una serie de parametros
que son las posiciones de los nicleos R;. La ecuacién (1.8) determina las
energias propias del sistema electréonico, que dependen paramétricamente de
las posiciones de los iones:

Ee = E({R}). (1.12)

En una segunda etapa, volvemos al Hamiltoniano original (1.2) e inserta-
mos la forma separada (1.7), y utilizando (1.8) llegamos a

(Tn + Vion + EE) ¢e<{rj}a {Rl})gbn({Rl}) = E¢e({rj}a {Rl}>¢n({Rl})

(1.13)
. Obsérvese que no hemos realizado hasta aqui ninguna aproximacién, solo
hemos propuesto el ansatz (1.7) con ¢, satisfaciendo (1.8). Claro, el par
de ecuaciones (1.8) y (1.13) resultan tan complicadas de resolver como el
problema original. En especial la segunda: el operador que corresponde a la
energia cinética actta sobre los dos factores, ¢. y ¢, ya que ambos dependen
de las coordenadas de los ntucleos. Sin embargo, la dinamica rapida de los
electrones comparada con la de los nicleos implica que el operador energia

Facultad de Cs. Exactas | UNLP | 12
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Modelos en sélidos

cinética de los nicleos actuando sobre ¢, debe ser muy pequeno, y entonces
suponemos que 7T, inicamente actia sobre ¢,. Luego, obtenemos la ecuacién

(Th + WHR})) on({Ri}) = Edn({R1}) (1.14)

donde W =V,,,, + E, es un potencial efectivo de interaccién entre los nucleos,
que tiene en cuenta la presencia de los electrones. Obtuvimos entonces dos
ecuaciones: la ecuacion (1.8) que representa una ecuacién para los electrones
en presencia de un potencial externo generado por los niicleos en posiciones
fijas, y la ecuacion (1.14) que describe el movimiento de los niicleos, que inter-
actuan mediante un potencial efectivo influido por el movimiento electrénico
a través de E.({R;}). Por supuesto, estas ecuaciones siguen acopladas y si
bien son mas simples que la ecuacién original continuan siendo muy dificiles
de resolver para 10?3 variables. Sin embargo, hay una simplificacién adicional
importante, que da lugar a una teoria del estado solido: los sélidos son estruc-
turas periddicas formadas por una celda unidad que se repite muchas veces.
Esta celda contiene solo unos pocos atomos y entonces el problema final es
apenas mas complicado que el de un molécula pequena, con el tamano de
una sola celda.

Para explicar esta estructura peridédica, supongamos que los nicleos son
tan pesados que podemos despreciar su energia cinética. Entonces, la confi-
guracion de equilibrio de los nucleos serd aquella que minimice el potencial
efectivo WW. Este tipicamente exhibe una fuerte repulsion de corto alcance
cuyo origen se encuentra en la repulsién Coulombiana entre ntcleos, y una
atraccion de largo alcance, y un minimo a una cierta distancia. Se puede
mostrar, aun que aqui lo supondremos , que bajo condiciones muy generales,
el minimo del potencial efectivo ocurre cuando los ntcleos se disponen en
un arreglo regular sobre una red periddica, cuyas caracteristicas geométricas
dependen del detalle de las fuerzas efectivas entre los ntcleos, lo cual, en
ultima instancia esta determinado por la naturaleza del material.

1.3. Modelo de Einstein

El calor especifico de un sélido se define como la cantidad de calor que
hay que suministrar por unidad de masa para elevar su temperatura en una
unidad. El valor del calor especifico depende del valor de la temperatura
inicial, en general aumenta cuando aumentamos la temperatura y tiende a
cero cuando la temperatura tiende a 0 K. A medida que la temperatura se
hace mas grande, el crecimiento del calor especifico se hace cada vez mas
lento hasta que a grandes temperaturas satura a un valor fijo.

Facultad de Cs. Exactas | UNLP | 13
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1.3 Modelo de Einstein

| Material | C/kg |

cobre 2,94
oro 3,05
plata 2,99

aluminio | 2,91
diamante | 0,74

Cuadro 1.1: Calor especifico por atomo para algunos materiales

Lo que es llamativo, es que el valor al que tiende el calor especifico a
temperaturas altas es aproximadamente el mismo para la mayoria de los
solidos. En base a esto, en 1819 los fisicos franceses Pierre Louis Dulong y
Alexis Théresese Petit propusieron lo que hoy se conoce como “ley de Dulong-
Petit”[8], la propuesta estaba basada en la observacién experimental de que
para muchos solidos el calor especifico por mol esta dado por

C = 3kp. (1.15)

La “ley de Dulong-Petit” puede deducirse a partir de la estadistica de
Boltzman®. Aunque esta ley no siempre es del todo correcta, se tiene que
C/kp ~ 3 se cumple aproximadamente bien a temperatura ambiente pa-
ra muchos solidos. A temperaturas mas bajas, los materiales comienzan a
desviarse de esta ley y C cae rapidamente por debajo de cierta temperatura.

Boltzmann construyé un modelo que explicaba bastante bien esta ley en
el que cada atomo del sélido se encuentra unido a los &tomos vecinos y posee
grados de libertad de vibracién[6]. Podemos suponer que cada atomo estd
en un pozo de potencial, que supondremos armonico formado por la inter-
accion con sus vecinos. En un modelo mecanico estadistico clasico como el
de Boltzmann, el calor especifico del atomo es 3kp, de acuerdo con la ley
de Dulong-Petit. El problema que surge del modelo de Boltzmann es que no
logra describir el comportamiento del calor especifico a bajas temperaturas.
Para resolver esto, en 1907 Albert Einstein[9] propuso que, para describir
los grados de libertad de vibraciéon a bajas temperaturas era imprescindible
un tratamiento cuantico. Einstein propuso un modelo simple andlogo al de
Boltzmann, suponiendo que cada atomo estaba sujeto a un potencial armoni-
co generado por la interacciéon con sus vecinos, de manera que cada atomo
representa un oscilador armoénico cuantico. Las suposiciones del modelo de
solido de Einstein son basicamente dos:

» Cada 4tomo en la red es un oscilador arménico cudntico tridimensional

6Esto se deja como ejercicio practico para el lector
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Modelos en sélidos

independiente.

s Todos los atomos oscilan con la misma frecuencia w

En el modelo de Einstein, cada atomo oscila en forma independiente y
a la misma frecuencia. Einstein era consciente de que esta era una aproxi-
macién, sin embargo propuso su teoria como una demostracion clara que la
mecanica cuantica era necesaria para resolver el problema del calor especifico
a temperaturas bajas. El modelo de Einstein representa un claro ejemplo de
la utilidad que tienen los modelos simples en fisica para identificar que carac-
teristicas son relevantes para describir las propiedades fisicas de un sistema.
Este tipo de enfoque es particularmente 1til en fisica y esta relacionado con
el concepto de teoria efectiva. Una teoria efectiva debe incluir los grados de
libertad apropiados para describir las propiedades de un sistema a una escala
de longitud de energia determinada.

Veamos que se obtiene al aplicar las suposiciones de Einstein. En una
dimensién, los autoestados de un oscilador armoénico estan dados por:

€, = hw(n+1/2)
donde w es la frecuencia del oscilador arménico (a partir de ahora la llama-

remos la frecuencia de Einstein).
Podemos entonces construir la funcién de particion de la siguiente manera

00
A Z e*ﬁh{.«)(’ﬂri’l/?)
n=0
—Bhw/2 i e—ﬁﬁwn

= €
n=0
[e'S)

— o Pw/2 Z (e—ﬁ)‘u‘))n‘
n=0

Y usando que Y00 ,a™ = 1/(1 — a) tenemos que

o—Bhw/2
1
2 sinh(—fhw/2)
Calculamos el valor medio de la energia

107 hw
(Ey = —2%:7coth(6hw/2)

) = (i +3) = ho (i + ).

7 -

7 -
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1.3 Modelo de Einstein

donde ng(z) = 1/(e* — 1) es la distribucién de Bose. Derivando la expresién
para la energfa con respecto a la temperatura obtenemos

O(FE) efhw
C=—"2"L=k S —
or ~ helOhw) (eflhw —1)2
En el limite de alta temperatura g — 0 tenemos que

lim C' = Kp.
B—0

La generalizacion al caso en tres dimensiones es inmediata, la energia de
un oscilador armoénico simple en 3D esta dada por

e = o (0 1/2) + (1, +1/2) + (n. +1/2))

Con esto podemos construir la funciéon de particién y obtener

Z3D = (Z>37

donde Z es la funcién de particién en 1D. De esta manera, al calcular el valor
medio de la energia obtenemos

(Esp) = 3(E).
Luego, para el calor especifico en tres dimensiones obtenemos
oBhw
Csp = SkB(Bhw)zm

Es decir, en el limite 7' — oo tenemos que

OgD = SkB

El modelo de Einstein recupera correctamente el limite de alta tempe-
ratura. De la figura 1.2 podemos ver que ademés funciona razonablemente
bien a temperaturas intermedias, pudiendo explicar el calor especifico a tem-
peratura ambiente de materiales como el diamante, donde la teoria clasica
no funcionaba. Sin embargo, aun falla a muy bajas temperaturas ya que el
calor especifico en la teoria de Einstein decrece exponencialmente mientras
la mayoria de los materiales aislantes registran un comportamiento de tipo
T3.

Aunque la teoria de Einstein logra describir razonablemente bien el calor
especifico de la mayoria de los sélidos en un rango de temperaturas alta, para
eso se debe ajustar un pardmetro libre de la teorfa (w). A veces es conve-
niente expresar la frecuencia de Einstein en términos de una temperatura,
denominada “Temperatura de Einstein” Aw = kpTEinstein
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e

-

20/](:3
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ksT/hw

Figura 1.2: Gréafico del calor especifico del diamante publicado en el trabajo
original de Einstein de 1907[9)].

1.4. Teoria del sélido de Debye

Si bien la teoria de Einstein describe exitosamente el calor especifico de
muchos materiales a temperatura ambiente, aun se requieren mejoras en el
modelo si se quieren describir los rangos de baja temperatura. En la figura
1.2 se puede ver que a baja temperatura los datos experimentales estan por
encima de la curva tedrica.

El poder mejorar el modelo para solucionar esta discrepancia resulta-
ba importante ya que se sabia que a bajas temperaturas la mayoria de los
materiales tienen un calor especifico proporcional a 73. Ademés permite com-
prender que caracteristica relevante se debe incluir en la teoria cuantica.

Se debe tener en cuenta también que no todos los materiales se com-
portan de la misma manera, ya que por ejemplo los metales también tienen
un término adicional proporcional a T" y los materiales magnéticos pueden
presentar también otros términos adicionales.

Salvando estos casos, encontramos que los aislantes no magnéticos pre-
sentan generalmente a muy bajas temperaturas solo el comportamiento 7.
En cualquier caso, el modelo de Einstein a bajas temperaturas decrece expo-
nencialmente con 7', por lo que no coincide con ninguna de las medidas del
calor especifico en materiales reales. Peter Debye[l], propuso una forma de
mejorar el tratamiento cuantico de las oscilaciones de los atomos y asi poder
obtener el comportamiento a bajas temperaturas de tipo de tipo 7.

Debye se dio cuenta de que las oscilaciones de los atomos representan
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1.4 Teoria del solido de Debye

basicamente ondas de sonido, por lo que al buscar una teoria cuantica hay
que buscar justamente la forma de cuantificar una onda. Una tarea similar
ya habia sido estudiada algunos anos antes por Planck cuando cuantificé las
ondas de luz.

Al intentar cuantificar las ondas de sonido de forma similar a la luz hay
que tener en cuenta una diferencia entre luz y sonido: para la luz, hay dos
polarizaciones para cada valor de k£ mientras que para el sonido, hay tres
modos para cada k (un modo longitudinal, y dos modos transversales). La
luz tiene solo los modos transversales. Para hacer el desarrollo mas simple,
asumiremos que los modos transversal y longitudinal tienen la misma veloci-
dad, aunque en verdad el longitudinal es tipicamente més grande que el modo
transversal. Siguiendo esta idea, Debye asumié que los modos de oscilacion
eran ondas cuyas frecuencias estaban dadas por

w(k) = vl|kl,

donde la constante v es la velocidad del sonido. Ademas en el calculo debemos
tener en cuenta que para cada k hay tres modos de oscilacion posibles, uno
para cada direcciéon de movimiento. Siguiendo estas suposiciones podemos
escribir una expresion completamente andloga a la expresion de Einstein

() = 3% hatk) (no(Bhatk) + )

(27)°

Como tenemos simetria esférica podemos reducir la integral tridimensio-
nal a una integral en una variable.

/ dk f (k) = /O%dgb/oﬁsin(e)d@/:o K2 f (k) dk :47T/OOO k2 f (k)

Luego, tendremos que

= 3

/ dk (k) <nB(ﬂhw(k)) + ;)

(E) = 3?27:52 /Ooo dk k2w (k) (nB(Bhw(k)) n 1) .

2

Cambiamos la variable de integracion de k a w usando w = vk y obtenemos

(E) = 3?;5; /000 il)c; w?hw (nB(ﬁhw) + ;) :

Podemos agrupar el integrando de forma conveniente
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()= [ () ) (na) + )

llamando g(w) = 1@:?;;‘? tenemos que

(E) = /0 do g(w) (1) (m(Bh) + 3 ) (1.16)
La funcién g(w) en (1.16) se denomina densidad de estados. La canti-
dad de modos de vibracién con frecuencias entre w y w + dw esta dada por
g(w)dw. De esta manera, la interpretacion de la ecuacion (1.16) es simple-
mente que debemos contar cudntos modos hay por frecuencia (este nimero
estd dado por la cantidad g(w)) y luego multiplicarlo por la energia del modo.
Finalmente, se integra en todas las frecuencias.
Al trabajar con la densidad de estados es conveniente también usar la
densidad de particulas

n=N/L

Despejando L? y reemplazando en la expresién para la densidad de esta-

dos tenemos que
127w?
=N|———F+].
9(«) ((2#)311371)

Es frecuente definir lo que se conoce como la frecuencia de Debye como
w3 = 672nv3 y escribir la densidad de estados en terminos de esta cantidad

127mw? 92
=N|——r—] =N—.
o) = (s = Vg

De la ecuacién (1.16) para el valor medio de la energia vemos que el

factor % nos da una contribuciéon independiente de la temperatura que no
nos afectara en el cdlculo del calor especifico. Es decir que podemos calcular

la parte dependiente de la temperatura como
BT) = [ dogle) (a3
0
[e'e) UJ3
E(T) = — dw ———
D) = T [ e

Si cambiamos variables haciendo x = fhw tenemos que

9N x3

O = m ), a
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1.4 Teoria del solido de Debye

La integral es independiente de la temperatura, de hecho el resultado es
simplemente
o0 3 4
x s
dx = —.
/0 e* —1 15

ON 7w 9N(kgT)* 7!
(ET)) = wh(BRY 15 wihd 15
D D

De donde obtenemos para el calor especifico

O(E(T)) 12N='ky 4
or  Swihd

Luego

c(T) =

De esta manera se obtiene la esperada dependencia con 7. De la misma
manera que hicimos para la teoria de Einstein, podemos definir la tempera-
tura de Debye como

hwp = kBT Debye

y reescribir el calor especifico como

O(E(T)) 12N7lkp T3

e N Th 5 T3

ebye

1.4.1. Problemas con la formulacién

Ya se habran dado cuenta que; si bien el modelo propuesto por Debye
reproduce bien el comportamiento a bajas temperaturas, tiene un problema.
En la expresion que encontramos para el calor especifico, | el comportamiento
es proporcional a T° a bajas y altas temperaturas !

Sabemos sin embargo, que el calor especifico debe tender asintéticamente
al valor 3kgN para T suficientemente alta.

Debye intuy6 que el problema con su aproximacion es que contempla un
nimero infinito de modos de vibracién. Esto se ve ya que al calcular la energia
la integral en k se realiza hasta valores de k£ arbitrariamente grandes. Para
remediar esto trabajé bajo la suposicion de que deberia haber solo tantos mo-
dos de vibracién como grados de libertad en el sistema. Para solucionar este
problema, Debye decidié no considerar ondas por encima de cierta frecuencia
MAXIMa Weytof f-

Esta frecuencia de corte, debe ser elegida de forma que la cantidad de
modos de vibracion sea exactamente 3N.

Tenemos, entonces que

Weutof f
3N = / g(w)dw.
0
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Figura 1.3: Gréfico del calor especifico para Ag (Plata). Los puntos son
diferentes medidas experimentales, las lineas continuas representan las pre-
dicciones tedricas de Debye y Einstein

Asi, tenemos que reescribir la ecuacién (1.16) como

) - | T gt (o) () + ). (1.17)

Esta expresion mantiene el comportamiento a bajas temperaturas, pe-
ro la presencia de una frecuencia de corte (cutoff) cambia por completo el
comportamiento a altas temperaturas.

Para T grande tenemos que < 0 y por lo tanto podemos escribir

1 1
np(Phw) = 57 = G

Luego podemos escribir para la energia

By = [ o o) () (53 + 5 )

y para la parte dependiente de la temperatura (que es la que nos interesa
para calcular el calor especifico) tenemos

1 Weutof f 1
~ = dw g(w) = = 3N = 3NKgT.
B Jo )

Es decir, que al calcular el calor especifico C' = 9(F)/IT recuperamos la
ley de Dulong-Petit C' = 3N Kp.

(E)
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1.5 Modos normales para una red unidimensional monoatomica.

Si queremos hacer el calculo para una temperatura arbitraria, tenemos
que calcular la integral (1.17), la cual tiene que ser calculada numéricamente.

Podemos ver una comparacion entre las predicciones hechas por los mo-
delos de Einstein y Debye con datos experimentales en la figura 1.3

1.5. Modos normales para una red unidimen-
sional monoatémica.

Consideremos una cadena de atomos idénticos de masa m y supongamos
que la distancia de equilibrio entre atomos es una cantidad a. Entonces, la
posicion de equilibrio del enesimo atomo es z£? = na.

Si permitimos que los &tomos puedan desviarse de su posicion de equilibrio
y moverse solo en la direccién de x (esto es, en nuestro modelo el movimiento
es puramente en una dimensién) y llamamos z,, a la posicién del enesimo
atomo, la desviacién de la posicion a partitr de su posicion de equilibrio
puede escribirse como

(<
0xy, = Ty, — 23!

Consideremos la energia potencial de un dtomo, digamos el dtomo n.
Podemos escribir los primeros términos de su desarrollo de Taylor como

D i a s OO ) i O )

~ eq
Viwn) = V() + 2 dx? 3! dx3

dx,,
La posicion de equilibrio {? debe corresponder a un extremo de la energia
potencial, por lo que tendremos que

av

—(z57) = 0.
@

Luego, si llamamos K = Z%V( ‘) y K3 = d—v( €7) tenemos que

1
3'K3(S{L' +

Si solo consideramos pequenas desviaciones de la posicion x5 los términos
de mayor grado son mucho mucho mas pequenos que el término cuadratico
y podemos descartarlos. En general cualquier potencial suave, cuando es es-
tudiado lo suficientemente cercano a su minimo, puede aproximarde como
cuadratico. Consideremos ahora una cadena de dtomos cuyo potencial de-

V(z,) ~ V(x?) + K5$ +
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@
1
k m k her k 1T k e k i
Figura 1.4: Esquema de una cadena monoatémica

pende de la distancia entre atomos consecutivos. De esta manera podemos
escribir la energia potencial para la cadena como

K
Vit = 3 V(@ — wj41) = Veg + 3 5(5%‘ —0xj41)°
J J
Podemos calcular la fuerza que actia sobre el atomo n como

_a‘/;ot
F, =
dox,

Y la segunda ley de Newton queda en la forma

= K(0zpy1 — 0xy) + K(0x_1 — d2y)

m 6z, = K(0pi1 + 02n_1 — 202,,) (1.18)

Obtenemos asi, un sistema de ecuaciones acopladas. Llamaremos modo
normal de vibracion a las soluciones de este sistema donde todos los ato-
mos de la cadena oscilen con la misma frecuencia. Para encontrar los modos
normales propondremos una soluciéon de la forma

St — Aeiwt—ika:fﬂ o Aeiwt—ikan
n = —

Donde proponemos una expresion compleja por conveniencia, pero al fi-
nal consideraremos la parte real como la solucién fisica. Reemplazamos esta
propuesta en la ecuacion (1.18) y obtenemos

_mw2Aezwt—zkan _ KAezwt <€—zka(n+1) + e—zka(n—l) . 2e—zkcm)
que podemos escribir como

mw?® = 2K (1 — cos(ka)) = 4K sin?(ka/2) (1.19)

De donde obtenemos w

W= 2\/5 |sin(ka/2)| (1.20)
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1.5 Modos normales para una red unidimensional monoatomica.

10f—o

0.8 1
3 06f !
gl

0.45 1
—| I i

0.2 ]

O.O__ 1 1 1 1 1 1 _—

QIxO

Figura 1.5: Relacién de dispersion para una cadena monoatémica

A la relacién entre energia (recordemos que E = hw) y momento de lo
denomina relacion de dispersion. Vamos a estudiar un poco las propiedades
de la relacién de dispersién que encontramos.

Cuasimomento

Lo primero que debemos observar es que esta relaciéon de dispersion es
periédica, con periodo 27 /a. Esta periodicidad ya estaba implicita en nuestra
propuesta de solucién. Notemos que si hacemos un shift en momentos k —
k 4 27 /a tenemos que

. 2 277‘- . 2
(Sl'n — Aetwt i(k+F)an Aett ikan

Esta periodicidad en el espacio de momentos viene heredada de la pe-
riodicidad de la red real. A la zona del espacio de momento que se repite
periédicamente se la denomina “zona de Brillouin” y representa un concepto
muy importante en materia condensada.

Grandes longitudes de onda

En el limite de grandes longitudes de onda 7 podemos hacer un desarrollo
de la relacién de dispersion alrededor de k = 0 y encontramos que la relacién

“Entenderemos a una onda de sonido como una vibracién que tiene una longitud de onda
larga en comparacién con la interatémica.
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de dispersién es aproximadamente lineal de la forma w(k) ~ vk con v = a\/g .
Entonces vemos que la conjetura de Debye al poner w = vk es muy razonable
para el caso de grandes longitudes de onda (k pequeno), sin embargo para
valores de k cercanos a +7/a la aproximacion de Debye no es correcta.

La otra suposicion fuerte que realizo Debye fue la de introducir una fre-
cuencia de corte (cutoff) en la integral bajo el argumento de que no podia
haber mas modos de vibraciéon que grados de libertad del sistema. Debye
impuso que el sistema debia tener exactamente 3N modos normales para
el caso 3D (IV si consideraramos solo vibraciones en 1D). Si bien la suposi-
cion es razonable ahora podemos intentar calcular la cantidad de modos de
vibracion.

Para realizar este calculo debemos considerar que condiciones de contorno
impondremos en los bordes de la cadena. Por simplicidad, consideraremos
condiciones de contorno periddicas. Esto es, asumiremos que =,y = x,
(donde N es el nimero de dtomos en la cadena).

Al hacer esto debemos tener cuidado de que la onda que propusimos como
solucién cumpla con la condicién de contorno. Por eso debemos tener

ezwt—zka(n+N) — ezwt—zkan
Para que esto se cumpla debemos tener que
6szzz -1
Esto solo es posible si el momento cumple que

2rq  2mq
~ Na L
donde L = Na y g es un nimero entero. Entonces k esta cuantificado y ya
no es mas una cantidad continua. El espacio entre dos valores consecutivos
de k es 3=,

Contemos cuantos modos tenemos. La relacién de dispersion toma todos
sus valores en el intervalo —m < k < 7. Como la relacién relacion de disper-
sion es periddica, la relacion de dispersion evaluada en cualquier valor de k
fuera de ese intervalo puede obtenerse evaluandola en un valor de k dentro del
intervalo a un valor del momento que difiera de k en %. Por esta razon, el

sistema se describe completamente con valores de k£ dentro de dicho intervalo
8

k

Luego, podemos calcular el niimero total de modos normales de vibracion
como

8A este intervalo se lo denomina primer zona de Brillouin. Definiremos este concepto con
méas detalle mas adelante
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27 /a
modos — & _ /7 arN N
Hmodos = 5 /(Na)
Hay precisamente un modo normal por atomo en la cadena, es decir, un
modo normal por grado de libertad. Esto es justamente lo que Debye supuso

para resolver el problema con la integral.

Cuantos de sonido: Fonones

Ahora que tenemos una expresion para las frecuencias de vibracion de
una cadena podemos seguir los pasos de Debye y tratar las vibraciones con
una teorfa cudntica. Para eso, asociaremos a cada modo de vibracién w(k)
con un oscilador cuyo espectro de energia es

E, = hw(k)(n + ;)

La gran diferencia con el tratamiento clasico que hicimos antes es que
nuestros osciladores armonicos pueden tener excitaciones colectivas y no se
reduce simplemente al movimiento de una sola particula.

Ahora tenemos que, dado un valor del cuasimomento k, existen muchos
posibles autoestados (indexados por el nimero n), de los cuales el estado de
minima energia (ground state) corresponde a n = 0 con energia fuv(k)/2. El
siguiente estado con energia mayor al ground state (es decir el primer estado
excitado) corresponderda a n = 1 y la diferencia de energia entre el ground
state y el primer excitado es fw(k). Se pueden crear tantas excitaciones con
energia hw(k) como se desee, y cada una de estas excitaciones es lo que se
conoce como un fonén. En esta descripcion cuantica de las vibraciones, las
excitaciones de energia estan cuantizadas y a cada cuanto de vibracion se
lo denomina fonén. Esta descripcion nos permite describir la creacién de
excitaciones en términos de particulas (fonones) de la misma manera que ya
lo sabemos hacer para los cuantos de luz (fotones).

Como nada nos prohibe crear dos fonones en el mismo estado debemos
tratar estas nuevas particulas como bosones (de la misma manera que lo ha-
cemos para los fotones). Luego a temperatura finita tendremos que el niimero
de fonones esta descripto por la estadistica de Bose.

1

np(fhw) = T

Con esto podemos escribir el valor medio de la energia de los fonones con
cuasimomento k como
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By = heo(h) (i (o) + 3 )

y si queremos calcular la energia total tendremos que sumar sobre los
valores del cuasimomento

EJE]

Biota = > hw(k) (nB(ﬂhw(lg)) + 1>

k=—T 2

a

donde k solo puede tomar los valores permitidos k = 3\%1. Donde ¢ toma
valores enteros. Para fines practicos (por ejemplo, si queremos implementar
la suma en una computadora (Ejercicio)) es conveniente escribir la suma en

términos de un indice entero, por lo que podriamos escribir

N
2mq 1

Eiotal = QE:N hw(igg) (nB(Bhw<Na)) + 2)

Si tenemos una gran cantidad de particulas podemos usar el viejo truco
de aproximar la suma por una integral. Esto se puede pensar de la siguien-
te manera. Si tuviéramos que calcular la integral de una funcion f(k) en
el intervalo [—7/a, w/a] podriamos aproximar esta integral por su suma de
Riemman

w/a
flk) = Akf(k)

En nuestro caso, como el cuasimomento esta cuantizado debemos tomar

Ak = % y podriamos escribir

—7/a

N_

o) (mi(Bho(h) + 3 ) = _Z o) (na3hat 50 +5)

2

w/a
—7/a
Es decir que podemos aproximar la suma por la integral de manera que

aN [T/e 1
Bura = 5 [ (k) (np(Bho(h)) + 5 ) db
™ —7/a 2
Podemos usar esta aproximacion en términos de una integral para contar
el nimero total de modos en el sistema

N w/a
1= dk=N
27

k

—7/a

Facultad de Cs. Exactas | UNLP | 27



Materia cuantica - C.A. Lamas, A. lucci (autores)

1.5 Modos normales para una red unidimensional monoatomica.

Figura 1.6: Estructura molecular del NaCl.

Es decir, de esta manera vemos que la suposicion de Debye de que teniamos
exactamente N modos normales era correcta.

Frecuentemente es 1til reemplazar la integral sobre k£ con una integral
en frecuencias w Al hacer esto sabemos que podemos contar la cantidad de
estados integrando la funcion densidad de estados y esto debe dar el mismo
resultado que obtengamos con la integral en k y por lo tanto tendremos

w/a
/g(w)dw _ i dk

B ? —7/a

Para que esta igualdad sea cierta, al realizar el cambio de variables debe-
mos tener que

~ Na |dk
9(w) = 21 |dw

En la versiéon unidimensional del modelo de Debye esta densidad de esta-
dos era constante mientras que en nuestro caso no. En el modelo de Einstein,
la densidad de estados es una delta en la frecuencia de Einstein ya que no
hay estados con otra frecuencia.

La expresién que obtuvimos para la energia (y por ende la que ob-
tendriamos para el calor especifico) son muy similares a las que Debye utilizd
en sus calculos. La tnica diferencia radica en nuestra expresion para la fre-
cuencia w(k). Aparte de este cambio en la relacién de dispersién, nuestro
calculo del calor especifico es idéntico al de Debye.
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Figura 1.7: Esquema de una cadena diatomica.

1.6. Modos normales de la cadena diatémica.
Ramas acustica y 6ptica

Anteriormente discutimos en detalle un modelo unidimensional de un soli-
do en el todos los atomos eran idénticos entre si. Esto nos dié una buena base
para comprender los grados de libertad de vibracién de un sélido, pero clara-
mente no representa el caso mas general. Basta pensar en materiales iénicos
como el NaCl donde tenemos dos tipos de atomos que no son equivalentes.

En esta seccién generalizaremos el estudio anterior a una cadena con dos
tipos de atomos. Gran parte de lo que hagamos seguird pasos similares a los
que ya realizamos para el caso de una cadena monoatémica, pero veremos
que ahora surgiran nuevas caracteristicas.

Consideremos el sistema esquematizado en la figura 1.7, el cual representa
un arreglo periddico de dos tipos diferentes de atomos con masas my y mso
que se alternan a lo largo de la cadena. Estos “atomos” estan sujetos a un
potencial que modelaremos por medio de resortes. Los resortes que conectan
estos atomos tienen constantes elasticas Ky y K.

Notemos que en la figura se observa que podemos generar toda la cadena
completa si repetimos periédicamente la parte de la cadena que esta recua-
drada. Esta es la unidad minima de informaciéon que debemos tener para
poder reproducir toda la cadena, algo asi como la informacion genética de la
estructura que queremos estudiar. A esta celda minima de red se la denomina
celda unidad o celda unitaria.

A la longitud de la celda unitaria en una dimension se conoce como cons-
tante de red y nosotros la denotaremos usualmente con la letra a. La elec-
cion de la celda unidad no es tnica, sin embargo lo importante para definir
un sistema periddico es elegir una celda unitaria que permita construir el
sistema completo reproduciendo la misma celda unidad una y otra vez.

Para poder construir el sistema periédico completo por medio de trans-
laciones de la celda unidad es util seleccionar un punto de referencia dentro
de cada celda. A partir de este punto de referencia se pueden escribir las
posiciones de los atomos dentro de cada celda.

Para hacer los calculos més simples, estudiaremos el caso especial en el
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que todas las masas son iguales (es decir m; = mgy) pero las constantes
elasticas son diferentes. Esta suposicién simplificard bastante los calculos y
no cambiard las conclusiones. Se deja como ejercicio al lector resolver el caso
mas general con my # mo

Podemos escribir las ecuaciones de movimiento de manera analoga a como
lo hicimos para el caso monoatomico para las desviaciones de las posiciones
respecto de sus posiciones de equilibrio.

mox, = Ky(0y, —0z,)+ Ky (0yp—1 — dzy) (1.21)
m 5yn = K1(55En+1 - 5yn) + KQ((sxn - 5yn) (1'22>

donde llamamos z, e y, a las posiciones cada uno de los d&tomos no
equivalentes dentro de la enesima celda unidad. (es decir tenemos atémos
tipo x y dtomos tipo )

De la misma manera que lo hicimos antes proponemos soluciones de la
forma

o, = Agewt-ikna (1.23)
Sy, = Ayeimikna (1.24)

donde, como antes, nuestra solucion fisica serda tomar la parte real y de
la misma manera que pasaba antes, los valores de k que difieren en 27 /a son
equivalentes y utilizaremos solo valores del cuasimomento en la primer zona
se Brillouin (es decir —7w/a < k < 7/a).

De la misma manera que encontramos antes si imponemos condiciones
de contorno periddicas a nuestro sistema de N celdas unitarias (por lo tanto
la longitud total de la cadena serda, L = Na) entonces el cuasimomento k se
cuantificard valores discretos 27 /(Na).

Aqui hay que tener en cuenta un detalle muy importante, la cuantificacién
del cuasimomento depende del ntimero de celdas N y no del ntimero de ato-
mos (2NN) ya que la estructura periddica que se repite es la celda. Dividiendo
el rango de k en la primera zona de Brillouin por el espacio entre las k veci-
nas, obtenemos exactamente N diferentes valores posibles de k exactamente
como antes.

En otras palabras, solo podemos tener exactamente un valor de k por
celda unitaria, o de otra manera, tendremos tantos valores del cuasimomento
como celdas unitarias tenga nuestro sistema. Esta es una propiedad funda-
mental que estudiaremos en mas detalle al discutir las estructuras periddicas
de los soélidos.
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Figura 1.8: Relacién de dispersion para la cadena diatémica. Tenemos dos
ramas en la primer zona de Brillouin

Esto podria confundirnos un poco ya que seria razonable esperar tener
tantos modos de oscilacion como grados de libertad en el sistema (y el sistema
tiene 2 grados de libertad por celda). Esto es cierto y es la razon por la
que encontraremos que habra dos modos de oscilacién posibles para cada
cuasimomento k. Para ver esto reemplacemos nuestra propuesta de solucién
en las ecuaciones de movimiento y simplificando obtenemos

_mWQAx = KQAy - (Kl + KQ)Ax + KlAyeika
—mwQAy = .[(214m — (Kl + Kg)Ay + Klee_ika

Para encontrar la solucién de este sistema de ecuaciones es conveniente
escribir el sistema en forma matricial

2 [ As (K1 + Ky) —Ky — Kye' Ay
mw = "
Ay —K2 - Kle_l e (K1 + KQ) Ay
Ejercicio: Resolver el sistema de ecuaciones
Resolviendo el sistema de ecuaciones encontramos que

K, + K. 1
Wy = \/1:;2:i:m\/K12—|—K22+2K1K2COS(ka) (1.25)
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Como habiamos adelantado, por cada valor del cuasimomento tenemos
dos modos normales de vibracién. Si tenemos N celdas, tendremos N valores
del cuasimomento y por lo tanto 2N modos normales.

En la figura anterior se muestran las dos ramas de dispersién en la pri-
mer zona de Brillouin (]k| < 7/a). A esta forma de mostrar las dispersiones
se lo suele llamar esquema de zona reducida. Notese que de las dos ramas
de dispersion solo una toma valores pequenos de energia. Para esta rama
tenemos que la relaciéon de dispersion es lineal para k pequeno. A esta ra-
ma se la denomina rama actustica. En general se denomina rama acistica
a cualquier modo de vibracién que tenga una relacién de dispersion lineal
cuando k tiende a cero. A la rama de energia mas alta se la denomina rama
optica. La razon por la que se la llama rama 6ptica es porque esta rama es
la que interviene en el proceso de escatering de luz en el sélido. Por ahora
nos concentraremos en la rama acustica y dejaremos el estudio de la rama
Optica para cuando estudiemos la interaccion de la luz con los solidos.

2.5
2.0}
N .
NS I
g 15} ]
84 [
1.0} 1
\ r
3 [
05t |
00 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
k/a
Figura 1.9: Relacion de dispersion para la cadena diatémica en el esquema

de zona extendida. La rama actstica sobre la primer zona de Brillouin (|k| <

7/a, mientras que la rama 6ptica estd graficada en la segunda zona (7/a <
k| < 2m/a))

Alternativamente al esquema de zona reducida (donde se grafican todas
las ramas en la primer zona de Brillouin) se puede también usar el esquema
de zona extendida que consiste en graficar una rama en la primer zona y la
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Figura 1.10: Esquema del movimiento de los electrones en la teoria de Drude

siguiente en la segunda zona’

1.7. Teoria de Drude de los metales

La principal caracteristica de los metales es que conducen electricidad
por medio de electrones méviles en el material. Discutiremos més adelante
porqué algunos materiales presentan electrones méviles y otros no. Por ahora,
asumiremos que hay movilidad de electrones estudiaremos modelos que nos
ayuden a comprender algunas de sus propiedades.

Drude construyé una teoria simple para los metales aplicando la teoria
cinética de los gases a los metales considerandolos como un gas de electrones.
La teoria cinética trata a las particulas como esferas rigidas que se mueven en
una trayectoria rectilinea hasta que chocan con otra particula. El tiempo que
dura una colision es despreciado, considerando a las colisiones como procesos
instantaneos.

Drude asume que los electrones de valencia estan desacoplados del resto
del atomo y pueden moverse libremente a travez del metal, mientras los iones
positivos permanecen inmoviles en el metal. Esta situacion estd esquemati-
zada en la figura 1.10, donde las esferas verdes representan a los electrones
de valencia y las esferas azules representan a los iones.

Las suposiciones basicas del modelo de Drude son las siguientes:

9Si hubiera mas ramas se graficaria también en la tercera zona de Brillouin y asi. El objetivo
del esquema de zona extendida es que tengamos un solo modo por cada valor de k. Es decir
trabajar con la gréfica de una funcién.
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= Entre colisiones, la interaccion que siente un electréon, tanto con los de-
mas electrones, como con los nicleos es despreciable. La aproximacion
de despreciar la interaccién electron-electréon se conoce como apro-
ximacién de electrén independiente y el hecho de despreciar la
interaccién electrén-ion, se conoce como aproximacién de electron

libre.

= Las colisiones, en el modelo de Drude, se consideran instantdneas y su
efecto consiste en cambiar la velocidad de el electron. Veremos que la
interaccion electron-electréon es una de las menos importantes al estu-
diar el scatering de electrones en un metal.

= Se asume que un electréon efectiia una colisiéon en un tiempo dt con

probabilidad dt /7

= Los electrones realizan choques elasticos, por lo tanto se conserva tanto
el momento como la energia cinética en las colisiones. Como no hay
una direccion preferencial, la particula saldra luego del choque en cual-
quier direccién con igual probabilidad. Por lo tanto, el valor medio del
momento serd (p) =0

» Entre dos choques, los electrones (que asumimos son particulas carga-
das de carga —e) responden al campo eléctrico y magnético.

Notese que 7 representa un tiempo medio entre dos choque sucesivos, de
manera que un valor pequeno entre choques nos da una alta probabilidad
(dt/T) de que el electron choque en un periodo de tiempo dt, mientras que
el limite 7 — oo es el limite donde los electrones nunca chocan.

Consideremos un electrén que a tiempo t tiene momento p. Luego de
transcurrido un tiempo dt supondremos que hay dos opciones excluyentes:
O el electrén chocd (suponemos que este evento ocurre con probabilidad dt/T)
o el electron no choco. Este segundo evento tiene asociada una probabilidad
1 —dt/7 si despreciamos la probabilidad de que el electrén choque dos veces
en un tiempo tan corto.
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Luego tendremos que a tiempo t + dt el valor medio del momento estara
dado por
p(t+dt) =0dt/T + (1 —dt/7)(p(t) + Fdt)

Luego tenemos

dp/dt = F —p/7 + O(dt)

Notese que en el limite 7 — oo recuperamos la segunda ley de Newton.

dp/dt = F

La fuerza F' que actia sobre los electrones es la fuerza de Lorentz.

F=—¢(E+vxB)

En ausencia de campos magnéticos y eléctricos estd fuerza es cero, la
ecuaciéon para p(t) es

dp/dt = —p/T

y la solucién es de la forma

p(t) = poe™"/"

Es decir que en ausencia de fuerzas externas, en este modelo simple para
las colisiones de los electrones con los iones de la red el momento p(t) decrece
exponencialmente con el tiempo. Ademas la solucién estacionaria (es decir
cuando p(t) no depende del tiempo y por lo tanto dp/dt =0 ) es p = 0.
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1
—
Figura 1.11: Esquema del movimiento de los electrones sometidos a un campo
electrico en la teoria de Drude

Electrones en un campo eléctrico

Consideremos ahora el caso en el que el campo eléctrico es distinto de cero
pero el campo magnético es cero. La ecuaciéon de movimiento queda entonces
d;

“@w_ g P
dt T
En un estado estacionario tendremos que dp/dt = 0, luego

p=—ctE

mv = —erTE

Es decir que podemos escribir la siguiente expresion para la velocidad
media de los electrones

v=—"F (1.26)
m

Supongamos ahora que los electrones se mueven a esa velocidad media
por un conductor de seccién A y recordemos que la la corriente se define
convencionalmente en término de la carga positiva.

Si tenemos una densidad de electrones (de carga —e) n moviéndose por
el metal con velocidad v, podemos escribir la densidad de corriente como

J = —env

Reemplazando por la expresion que encontramos para la velocidad de los
electrones tenemos que
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Encontramos entonces que en la teoria de Drude la densidad de corriente
es proporcional al campo eléctrico. Es decir, recuperamos la ley de Ohm.
j=0cF
donde la conductividad esta dada por

e2n7'

g =

- (1.27)

Para el caso simple de un cable uniforme de largo L podemos recuperar
la forma macroscépica de la ley de Ohm a partir de la ecuacion

j=0FE

La intensidad de la corriente I podemos escribirla como jA = I, donde
Jj =17 vy A es el area transversal del cable. Suponiendo un campo eléctrico

constante, la diferencia de potencial en los extremos del cable estara dada
por

V =FL
y podemos escribir
j = oF
r 1v
A pL
L
I (— ) =V
(%
IR =V

% es la resistividad del material y hemos llamado definido la

resistencia del cable como R = %.

donde p =

Electrones en un campo magnético

Consideremos ahora el caso de un conductor sujeto a un campo eléctrico
y un campo magnético. Como antes tenemos que

dt T
Pero ahora usamos la expresién para la fuerza de Lorentz

d
i _p P

F =—¢(E+wvx B)
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Luego
dp P
— =—ce(F+vxB)—-=
dt ( ) T
Y en el estado estacionario tendremos que
N p
0=—e(E+vxB)—*=
-
usando que p = mv y j = —env podemos escribir que p = —2j y
reemplazando en la ecuacién anterior tenemos
1. m .
0 = —e(E——jxB)+—j (1.28)
en etn
1 m
(G xB)+ 5 j (1.29)

En este caso la relacion entre la densidad de corriente y el campo eléctrico
es un poco mas compleja que antes, pero veremos que tiene una estructura
similar. Para simplificar un poco las expresiones supongamos que el campo
eléctrico esta orientado en la direccién z. En ese caso podremos escribir

E = jj

donde p es una matriz de 3 x 3 de la forma

m B 0
~ nre2 ne
P = e  nre? 0 (130)
0 0 mr—ne2
Es decir, podemos definir las componentes diagonales de un tensor de
resistividad
m 1
oo = Puy =Pes =0 a =

donde o es la conductividad que calculamos en el caso donde solo teniamos
campo eléctrico. Fuera de la diagonal tenemos

B B

Pzy = —Pyz = %
Esta componente de la resistividad fuera de la diagonal se conoce como la
resistividad Hall y nos indica que, cuando un campo magnético es aplicado
perpendicular al flujo de corriente, puede medirse un voltaje en la direcciéon

perpendicular tanto al flujo de corriente como al campo magnético.
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Normalmente se define el coeficiente Hall como

Pyz
Ry ==
| B

1

que en el caso de la teoria de Drude es Ry = —+-

1.8. Teoria de Sommerfeld de los metales

Sommerfeld se dio cuenta de que la teoria de los metales de Drude podia
facilmente generalizarse para incorporar la mecanica cuantica por medio de
la estadistica de Fermi para los electrones, que es lo que discutiremos a con-
tinuacion.

Como habran visto en el curso de mecanica estadistica, dado un sistema de
electrones libres con potencial quimico pu, la probabilidad de que un electron
ocupe un estado de energia F esta dada por el factor Fermi

1

ne(BE - 1) = ZEm

Supongamos que los electrones estdn en una caja de tamafio V = L? y, de
la misma manera que hicimos antes, supondremos condiciones de contorno
periédicas. Podemos escribir las funciones de onda plana en la forma e
donde k debe tomar el valor 2% (ny, ns, ng) con n; enteros. Estos estados de

L ) )y 163
onda plana tienen energias.

B h2|ki|2
 2m

e(k)

Podemos calcular el nimero total de electrones de la siguiente manera

N =25 (BB~ ) =255 [ dene(S(E - )

(2m)

En general usaremos este tipo de ecuacién conociendo el nimero de elec-
trones en el metal y asi poder calcular el potencial quimico en funcién de la
temperatura. A temperatura cero el factor de Fermi se transforma en una
funcién escalon y el potencial quimico es el valor de la energia que separa los
estados ocupados de los desocupados. Llamaremos a esta energia la energia
de Fermi Er.

Los estados que estan ocupados a T' = 0 forman lo que se conoce como el
mar de Fermi. A partir de la energia de Fermi podemos definir el kr como

B hzk%
 2m

Ep
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También puede ser 1til definir una temperatura de Fermi Tp = Er/kp y
la velocidad de Fermi vp = hkp/m

Con estas definiciones podemos calcular el nimero de electrones en el
metal

N 1 1 sk Vo4 o
v = 2@y /dk: 0(Ep — e(k)) = 2 o / dk = 2<27T)3(§7rkF)

Muchas veces es conveniente realizar estas integrales en energia en vez de
integrar en cuasimomentos. Para esto despejamos k de la energia

2me
FEN TR

y el diferencial queda en la forma

m
dk = \| —=de
2¢h?
Con esto podemos reescribir la integral para la densidad de electrones

como

]‘\/[ - /000 de g(e)np(B(e — p))

de la misma manera, la energia por unidad de volumen puede escribirse
como

E 1 1o B
V= QW /dk e(k)np(Ble(k)—p)) = 2(27T)3/0 Ark=dk e(k)np(B(e(k)—pw))

o= [ 9l edens(ste - w)
0
donde la densidad de estados esta dada por

m 3/2
o0 = EC e

La cantidad g(e)de representa la cantidad de estados con energia entre
ey €+ de. Ala funcién g(e) se la conoce como la densidad de estados por
unidad de volumen.

Notemos que la expresién para la densidad de electrones puede conside-
rarse como la definicién del potencial quimico en funcién de la densidad de
electrones en el sistema y la temperatura.
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Una vez que con esta ecuacion fijamos el potencial quimico, podemos usar
la integral para la energia. Luego de calculada la energia podemos derivar
con respecto a la temperatura para obtener el calor especifico.

Desafortunadamente, no hay manera de hacer este calculo analiticamente.
Sin embargo, como la temperatura de Fermi de los metales esta muy por
arriba de la temperatura ambiente es razonable pensar que la funciéon de
Fermi solo se apartarad levemente de la funcién escalén. Este fué el calculo
que realizé6 Sommerfeld y se deja como ejercicio practico.'®

10E] lector puede consultar el libro de Ashcroft[3].
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1.9. Particula en una caja

Vamos a usar un modelo simple pero exitoso para el atomo de hidrégeno,
esto es, lo modelaremos como una caja de tamano L para un electréon. Aqui,
para hacer las cosas mas simples estudiaremos el caso unidimensional, pero
ustedes pueden imaginar facilmente la extension a 3D.

La energia de un solo electréon en una caja de tamano L es

h2r?
2m L2

Ahora supongamos que tenemos dos de estos atomos y los acercamos uno
al otro. Si estos atomos comparten un electrén, entonces los atomos ahora
se pueden deslocalizar y moverse a lo largo de los dos atomos, por lo tanto,
ahora el electréon estd en una caja de tamafio 2L y su energia sera

h2r?

2m(2L)?

que es una energia menor a la que tenia antes. Es decir, que el electron
al deslocalizarse se encuentra en un estado de menor energia.

Esta reduccion de energia que ocurre al deslocalizar el electron es en
parte lo que logra formar algunos de los enlaces quimicos. Este nuevo estado
fundamental se conoce como bonding orbital.

Si acercamos dos 4tomos que poseen un solo electréon cada uno (es decir,
son atomos de hidrégeno), entonces cuando se unen para formar un orbital
de menor energia (lo que denominaremos enlace), ambos electrones pueden
ocupar este mismo orbital ya que el electrén puede tener dos estados de espin
diferentes. Sin embargo, esta reduccion de la energia deberd competir contra
la energia debida a la repulsién Coulombiana de los dos ntcleos, y la repulsion
de ambos electrones entre si. Sin embargo no realizaremos este calculo aqui
ya que es complejo.

Pero, jcémo cambiard la situacion si en vez de dos atomos de hidrogeno
comenzamos con dos atomos de helio donde cada atomo tiene dos electrones?

En este caso, cuando los dos 4tomos se unan, no habra suficientes niveles
en el estado fundamental y dos de los cuatro electrones deberan ocupar el
primer orbital excitado. Estos estados excitados tienen la misma energia que
el orbital del estado fundamental original ( ya que el factor 2 del segundo
nivel se compenza con el 2 del 2L) Como estos electrones no obtienen energia
cuando los dos atomos se juntan, estos orbitales se conocen como antibonding
orbitals.
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> o
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Figura 1.12: Esquema del movimiento de los electrones en la aproximacion
de tight-binding.
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Figura 1.13: Esquema del movimiento de los electrones en la aproximacion
de tight-binding

1.10. Orbitales moleculares (Tight binding)

Escribamos un Hamiltoniano para los dos atomos de hidrogeno de los
que hablamos anteriormente. Dado que los niicleos son pesados en compa-
racion con los electrones, no es descabellado suponer que las posiciones de
los ntcleos no cambiaran mucho en comparacién con los electrones. Supon-
dremos entonces que los nucleos se encuentran en reposo y resolveremos la
ecuacion de Schroedinger para los electrones como funcién de la distancia
entre los nucleos. Esta suposicion de los nicleos fijos se conoce como la apro-
ximacion de “Born-Oppenheimer”. Nuestro objetivo es calcular la energia del
sistema como funcién de la distancia entre los nicleos.

El problema mas sencillo que podemos encarar es la de un electrén en
presencia de dos nucleos positivos idénticos.

H=K+Vi+V,

Donde el término de enrgia cinética del electréon esta dado por
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2
b
K=—
2m
y la interaccion Coulombiana entre el electrén con posicion r y el ntcleo

1 con posicion R; estd dada por

62

dmeg|r — R,
Aunque podriamos resolver este problema de un electron exactamente,

intentaremos resolverlo de manera variacional. Es decir, propondremos una
solucion de la forma

Vi

V) = ¢1]1) + ¢2|2)

donde los estados |1) y |2) son lo que se conoce como “orbitales atémicos”
en indican que el electrén se encuentra en el estado fundamental del dtomo
1 o 2 respectivamente.

Con el estado [¢)) estamos proponiendo que el electrén se encuentra en
una combinacién lineal de orbitales atomicos. Al tomar los orbitales como el
estado fundamental de cada atomo tendremos que

(K+WV)|1) = ell) (1.31)
(K +V2)[2) = «f2) (1.32)
Supondremos que los dos orbitales son ortonormales.

(i]7) = 04
Buscamos autoestados del Hamiltoniano H = K + V; + V4

H[p) = Elp)

y es facil mostrar (hacerlo como ejercicio) que esto es equivalente a
> H,;¢; = E¢;
i

donde H; ; = (i|H|j) son los elementos de una matriz de 2x2 de la forma

60+V12 —t
(o0 ) 05

donde Vi = (1|V2|1) = 2[V1|2) y t = —(1[W1[2) = (1|V3]2)
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Figura 1.14: Energias de los orbitales

es el potencial Coulombiano que siente un electrén en el orbital |1) gene-
rado por el nucleo 2.

La interpretacién del Hamiltoniano es que los orbitales |1) y |2) tienen
energias €y que es incrementada por la presencia del otro nucleo. Ademas,
el electron puede “saltar” de un orbital al otro y a este proceso tiene una
energia t asociado al elemento fuera de diagonal.

Si pensamos en la ecuacion de Schrodinger dependiente del tiempo, si la
matriz del Hamiltoniano fuera diagonal una funcién de onda que comenzé en
orbital |1) permaneceria en ese orbital todo el tiempo sin ninguna probabili-
dad de saltar al otro orbital. Sin embargo, con el término fuera de diagonal, la
funcion de onda dependiente del tiempo puede oscilar entre los dos orbitales
con probabilidad t.

Para simplificar suponagamos que ¢ > 0 (el caso ¢ < 0 es analogo y solo
deben ajustarse los signos correspondientes). Diagonalizando el Hamiltoniano
obtenemos

E:l::€0+‘/12:|:t

Al estado de minima energia se lo denomina bonding orbital, mientras que
el estado de energia superior se lo llama anti-bonding orbital.
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Las autofunciones correspondientes tienen la forma

wbonding = \}5((?1 + ¢2) (134)
1
wantifbonding = ﬁ(¢1 - ¢2) (135)

A medida que los nicleos se acercan, el término de hopping t aumenta,
y la energia de los orbitales cambia dandonos un diagrama similar al de la
figura siguiente.

Noten que la energia diverge a medida que los nticleos se juntan (como
debe ser con la energia de Coulomb entre los niicleos). Esto d4 una energia
minima cuando los ntcleos se encuentran a una distancia de equilibrio.

1.11. Modelo de Tight-binding en una red
periddica

Ahora vamos a generalizar lo que hicimos antes considerando una cade-
na de orbitales moleculares para representar los orbitales en un sélido ma-
croscopicoll.

En este caso consideraremos un solo orbital por dtomo. Al orbital co-
rrespondiente al &tomo n lo denotaremos por |n). Para poder trabajar con
un sistema con simetria de traslaciéon impondremos condiciones de contorno
periodicas. También asumiremos que los orbitales son ortogonales unos con
otros.

<n’m> = dn,m

y como antes propondremos una funcion de onda que sea combinacion
lineal de los orbitales de la forma

) = >_ éaln)

y de la misma manera que para el caso de dos a&tomos obtenemos que la
ecuacion de autovalores puede escribirse como

Z Hn,m¢m = E¢n

11En este caso consideraremos un modelo unidimendional por simplicidad, pero la cuenta se
generaliza sin problemas mas dimensiones.
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O @ 9O 9O 9O o o

Figura 1.15: Esquema del movimiento de los electrones en la aproximacion
de tight-binding

Como antes esta ecuacion es en realidad una aproximacién variacional.
Con esta ecuacién no estamos encontrando el estado fundamental exacto sino
el mejor estado posible que se pueda escribir como combinacién lineal de los
orbitales que hemos puesto en el modelo.

Se puede mejorar la aproximacién variacional agrandando el espacio de
Hilbert al considerar més orbitales en el modelo.

Por ejemplo, en lugar de tener solo un orbital en un dado sitio, podriamos
considerar muchos |n, ;) donde o va de 1 a algin nimero [ (/ es la cantidad
de orbitales que estamos considerando). A medida que aumenta [ el enfoque
se vuelve cada vez mas preciso y, finalmente, es esencialmente exacto.

Nosotros usaremos por ahora la aproximacién de tener un solo orbital por
sitio. Escribiremos el Hamiltoniano como

H=K+)V,

J

2 7z i3 yd 3 V4 . .
donde K = 2- es la energfa cinética y V; representa al término de in-
teraccion Coulombiana del electrén con el nicleo situado en el sitio j. Esta
interaccion es de la forma V; = V(r —r;), donde r es la posicién de electron

y 7; es la posicién del j-esimo nucleo. Con esto tenemos que

Hlm) = (K + Vy)|m) + Y Vjlm)
i#m
El primer término corresponde a la energia de un electréon tendria si hu-
biera un solo ntcleo, es decir que podemos escribir

(K + Vi) |m) = €olm)

donde interpretaremos a €, como la energia de un electrén en el ntucleo
m en ausencia de otros nucleos. Podemos escribir entonces

(n|H|m) = eodnm + Y_(n|V;lm)
Jj#FEm
El segundo término del lado derecho esta asociado con la energia corres-
pondiente al proceso de un electron que se encontraba en el orbital del sitio
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m efectie una transicién al orbital se sitio n mediado por la interaccion
Coulombiana con los ntcleos que forman la cadena. Supondremos que esta
transicién o salto solo es posible si los sitios estan lo suficientemente cerca.
El modelo més simple es suponer que solo puede haber saltos entre primeros
vecinos por lo cual escribiremos los elementos de matriz como

Vo n=m
Y (nVilm) =8 —t n=m=+1 (1.36)

Jj#m 0 otro caso

Si llamamos € = ¢y + Vy podemos escribir los elementos de matriz del
Hamiltoniano como

Hn,m == 65n,m - Zf((sn,m+1 + 5n,m71)- (137>

Notemos que esto nos dice que la representacion matricial del Hamiltoniano es
una matriz tri-diagonal. Numéricamente, este tipo de matrices es mas simple
de diagonalizar. Nosotros encontraremos los autovalores analiticamente.

Para encontrar la solucion a la ecuacion de autovalores procederemos de
forma similar a lo que hicimos para el caso de las vibraciones de una cadena.
Primero proponemos una solucién que tenga la invarianza traslacional de la
cadena. Propongamos algo de la forma

1
=N
1

Donde el factor T s solo una normalizacion conveniente. Igual que

e—ikna

para el caso de las vibraciones es obvio que si cambiamos k por k + 27/a
obtenemos la misma solucion y al imponer condiciones de contorno periddicas
obtenemos que los valores permitidos para el cuasimomento estan cuantizados
en unidades de 27 /L (donde L = Na)

Reemplazando nuestra propuesta en la ecuacion de Schrodinger Y, Hy, 1 @m =
E¢, tenemos que

E¢” = Z H”’mqsm = Z (Eén,m - t(én,m—‘rl + 5n,m—1)) (Zsm
1 . . .

E¢n — ﬁ (E e—zkna . t(e—zk(n—l)a + e—zk(n—i-l)a))

E¢, = (6 _ t(eika + e—z’ka))

E¢, = (e —2tcos(ka)) o,

—ikna
VN

(1.38)
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Luego

E =€ — 2t cos(ka)

Esta relacion de dispersion

A diferencia del caso de electrones libres, la dispersion de electrones en una
red tiene una energia maxima y energia minima. Los electrones solo pueden
tener energias dentro de una determinada banda de energia. La diferencia de
energia desde la parte inferior de la banda hasta la parte superior se conoce
como ancho de banda.

El ancho de banda (que en este modelo es 4|t|) depende de la magnitud de
la constante de hopping t , y esta depende de la distancia entre los nicleos.

Cerca del minimo de la banda, podemos hacer un desarrollo de Taylor
(alrededor de k = 0) y obtener

E(k) = cte + ta*k?

Es decir, la relacién de dispersion es aproximadamente parabdlica de for-
ma similar a lo que tenemos para electrones libres.

h2k?
E'L’ re — o
lib m

De esta manera se puede, por analogia con el caso libre, definir una masa
efectiva para los electrones de forma que

h2k?
ta’k? = ——
2me ff
Obtenemos entonces
h2
Meff = 2ta?

En otras palabras, la masa efectiva m.s; se define de tal manera que la
relacion de dispersion alrededor del minimo de la banda es exactamente como
la dispersiéon de particulas libres de masa m.s¢. Sin embargo, es importante
recordar que esta masa efectiva no tiene nada que ver con la masa real del
electron, sino que depende de la probabilidad de salto t.

Ahora imaginamos que nuestro tight-binding estd compuesto de atomos y
cada dtomo aporta un electrén a la banda. Como hay NN posibles estados en la
banda, y los electrones son fermiones, hay dos posibles estados de espin para
un electron en cada k, entonces solo llenaremos la banda hasta la mitad. Los
estados ocupados estan ocupados tanto por espines up como espines down.
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Los puntos donde se encuentran los dos estados ocupados de mayor energia
constituyen la superficie de Fermi'?2.

Si se aplica un pequefio campo eléctrico al sistema, solo nos cuesta una
pequena cantidad de energia desplazar la superficie de Fermi, ocupando unos
pocos estados k que se mueven hacia la derecha y despoblando algunos es-
tados k que se mueven hacia la izquierda. En otras palabras, el estado del
sistema responde cambiando un poco y se induce una corriente. Como tal,

este sistema es un conductor eléctrico.

12Ge suele utilizar el nombre superficie de Fermi en cualquier dimensién aunque claramente
en este caso no es una superficie, sino solo dos puntos. En dos dimensiones tendremos una

curva y en tres tendremos una superficie.
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Capitulo 2

Estructura cristalina de los
sOlidos

En el capitulo anterior estudiamos algunas propiedades de una estructura
periddica en una dimensién como la de la figura 2.1. C onsideremos p or el
momento una cadena en una dimension, donde la posiciéon de cada adtomo
puede escribirse como r,, = na con n un nimero entero. Vimos anteriormente
que dos puntos en el espacio reciproco (espacio k) eran equivalentes si k; =
ks + G,, donde G,, = 2wm/a, con m un ntmero entero. Los puntos G,,
forman lo que se conoce como la red reciproca.

Queremos ahora ir un poco mas alla y estudiar solidos cristalinos en 3D.
Para esto necesitamos establecer un lenguaje que nos ayude a describir es-
tructuras en dos y tres dimensiones de manera inteligente y sobre todo de
manera estandarizada para poder ponernos de acuerdo en lo que estamos
describiendo y poder comparar con medidas experimentales. Para poder lo-
grar esto, dedicaremos buena parte de esta secciéon para presentar una lista de
definiciones que debemos aprender para poder estudiar estructuras de sélidos
realistas.

2.1. Celda unidad y redes de Bravais

Un cristal ideal esta formado por un arreglo periédico infinito de grupos
de atomos. A cada uno de esos grupos que se repiten periédicamente para

O @ 9@ 9O 9O 9o 0

Figura 2.1: Red periddica en una dimension.
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Figura 2.2: A partir de una red de Bravais triangular se obtiene una red
hexagonal con dos sitos por celda.

formar el cristal lo llamaremos celda, y al conjunto de puntos del espacio
donde se colocan las celdas las llamaremos red. Por ejemplo, en la figura 2.2
se muestra esquematicamente como obtener una red hexagonal a partir de
una red triangular con dos sitios por celda. Una definicién importante que
usaremos mucho es justamente la de red de Bravais.

\Deﬁnicién: Red de Bravais \ Llamaremos red de Bravais a un conjunto
infinito de puntos que se obtiene como combinacion lineal de vectores lineal-
mente independientes con coeficientes enteros. A estos vectores los llamare-
mos vectores primitivos

Por ejemplo, cualquier punto de una red de Bravais en 2 dimensiones
puede escribirse como

Thine = N1A71 + NoQg,

con n; € Z y a; vectores linealmente independientes en R2. De la misma
manera, en R? podemos escribir

’rnl,ng,n3 =ni1ay + nqas + nzas

Hasta ahora trabajamos con cadenas de sitios que constituyen redes en
una dimensién donde la definicién se cumple trivialmente ya que escribiamos
que r, = na.

En dos y tres dimensiones la eleccién de los vectores primitivos que ge-
neran la red no es tnica. Ver figura 2.3.

En una red de Bravais, cada punto tiene exactamente el mismo entrono
que el resto de los puntos. Esta propiedad suele ser usada para identificar
cuando un conjunto de puntos constituye una red de Bravais. Debemos tener
cuidado al estudiar arreglos periddicos ya que no todos los arreglos periédicos
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de puntos constituyen una red de Bravais. La red hexagonal por ejemplo, no
lo es, ya que no podemos generar todos los puntos como combinacion lineal
de dos vectores. Equivalentemente, si miramos el entorno de cada sitio de la
red vemos que hay dos subconjuntos de puntos, cada uno de los cuales tiene
un entorno diferente. Podemos pensar a la red hexagonal como dos redes de
Bravais interpenetradas (Ver figura 2.2).

Para poder describir redes més complejas, como la red hexagonal tenemos
que definir el concepto de celda unidad.

’Deﬁnici(’)nz Celda Unidad ‘ Una celda unidad o celda unitaria es una
estructura o motivo que al ser repetido construye la estructura periodica com-
pleta.

Asi como ocurre con los vectores primitivos, la eleccion de la celda unidad
tampoco es unica. Tenemos libertad de elegir diferentes celdas para construir
un mismo cristal, pero dentro de esa variedad de diferentes celdas hay algunas
elecciones que son mas importantes a la hora de describir un soélido.

Definicién: Celda primitiva ‘ Llamaremos celda primitiva a una celda
unidad que contiene la menor cantidad de sitios posible en ella.

Es decir una celda primitiva es la celda unidad de menor tamafio que
podemos tomar y que aun sirva para construir el cristal. Sin embargo, a veces
es util definir una celda unitaria que no es primitiva para que sea mas simple
trabajar con las expresiones matematicas. Esto se conoce como una celda
unidad convencional. Casi siempre estas celdas convencionales se eligen
para tener ejes ortogonales. En la figura 2.3 se muestran algunos ejemplos de
posibles celdas unitarias en dos dimensiones. En esta figura, la celda unitaria
convencional (arriba a la izquierda) se elige para tener ejes ortogonales.

En la figura hay una celda a la cual llamamos celda de Wigner-Seitz[15].
Esta es una celda muy t1til y es ademas una celda primitiva.

Definicién: Celda de Wigner-Seitz | Dado un punto de la red, el con-
junto de todos los puntos en el espacio que estdn mds cerca de ese dado punto
que de cualquier otro punto de la red constituye la celda Wigner-Seitz.
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[ ] o [ ]
Celda convencional
[ ] [ ]
[ J ° [ ]
[ ] [ ]
[ ] [ ] [ ]

[ ]
Celda de Wigner-Seitz

Celda Primitiva
.
° ° .

Figura 2.3: Diferentes elecciones de celdas unitarias para la misma red.

[ J
I
]
)
!

Figura 2.4: Construccién de una celda de Wigner-Seitz.

Hay una forma simple para construir una celda de Wigner-Seitz. Primero
elegimos un punto de la red y dibujamos lineas rectas entre este punto y todos
vecinos cercanos. Después dibujamos bisectrices perpendiculares de todas
estas lineas. La regién que queda encerrada por bisectrices perpendiculares
constituyen la celda de Wigner-Seitz. Una propiedad importante es que toda
celda de Wigner-Seitz constituye una celda unitaria primitiva.|3]

En la figura 2.4 mostramos un ejemplo de la construccion de Wigner-Seitz
para un diseno bidimensional. Una construcciéon similar se puede realizar
en tres dimensiones, en cuyo caso uno debe construir planos de biseccion
perpendiculares a los segmentos que unen cada sitio.

La descripciéon de los objetos dentro de la celda unitaria en términos de
algin punto de referencia en la celda unitaria es conocido como una “base”.
Esta definicion es importante ya que generalmente debemos describir sélidos
cuya estructura no se corresponde con una red de Bravais. Esto generalmente
es consecuencia de la estructura interna de la celda unidad.

En la figura 2.5 mostramos una estructura periédica en dos dimensiones
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compuesta por dos tipos de atomos. A la derecha mostramos una celda uni-
taria primitiva con la posiciéon de los atomos dada con respecto al punto de
referencia de la celda unitaria que se considera la esquina inferior izquierda.

Podemos describir en general la posicion de los sitios de una red con base
de la siguiente manera:

T = Tcelda + Thase

donde 7. = nia; + nsas es la posicién del punto de referencia de la
celda unidad donde se encuentra el atomo que queremos describir v 7y, €s
la posicion del atomo dentro de la celda con respecto al punto de referencia.
Por ejemplo, para el caso de la red hexagonal de la figura 2.6 tendremos
que los puntos de referencia de cada celda (pequenos puntos negros) forman
una red triangular, para la cual podemos tomar los vectores primitivos como

a 35
ar = o1 + a=5"J (2.1)
a, = ai (2.2)

2.2. Redes en tres dimensiones

La descripcién de redes se generaliza trivialmente de dos a tres dimensio-
nes, ahora usando por supuesto tres vectores primitivos. La red mas simple
en tres dimensiones es la red cibica simple que se muestra en la figura 2.7.

En este caso, la celda unidad primitiva se puede tomar convenientemente
como un cubo simple, que incluye 1/8 de cada una de sus ocho esquinas.

Estructuras levemente mas complejas que la red cubica simple son las
redes tetragonal y la red ortorémbicas (ver figura 2.8) donde los ejes perma-
necen perpendiculares, pero los vectores primitivos pueden ser de diferentes

) ® ® @ e
® o6 o ¢ ¢ 0 o el il
oo 0.0 0 0 o : @ ®

Q@ @ @ @

oo 0.0 © 0 o .
® ®© ¢ ¢ o o o E[ﬂ ﬂ.] [3.a a}:
il lasal
@ | : Q@ @ ) ;

Figura 2.5: Red con motivo o base.
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Figura 2.6: La red hexagonal y su celda unitaria.

-0
@6

Figura 2.7: Red cubica.

longitudes. La celda unidad ortorrémbica tiene tres vectores de longitudes
diferentes, mientras que la celda unitaria tetragonal tiene dos vectores de
igual longitud y uno diferente.

Por convencién, para describir una red en 3 dimensiones se usan tres

indices enteros

[u,v,w] =ua; +va+was

Red ctbica centrada en el cuerpo (BCC)

La red ctbica centrada en el cuerpo (bcc) es una red cibica simple donde
hay un sitio adicional en el centro del cubo (a veces esto se conoce como
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a#b#c a=b#c

Figura 2.8: Redes tetragonal y ortorémbica

-

a

Figura 2.9: Red cubica centrada en el cuerpo.

cubic-T). La celda unitaria para esta red se muestra en la figura 2.9.

Otra forma de representar esta celda unitaria sin mostrar una figura tri-
dimensional es utilizar una proyeccién bidimensional de la parte superior de
la celda. Esto se conoce como vista en planta de la celda unitaria. Esta vista
se muestra a la derecha de la figura 2.9.

En la imagen de la celda unitaria BCC, hay ocho sitios de red en las
esquinas de la celda (cada uno de los cuales cuenta como 1/8 dentro de la
celda unidad convencional) y un sitio en el centro de la celda. Por lo tanto,
la celda unidad convencional contiene exactamente dos sitios de red.

Una forma conveniente de describir la red bce, es pensarla como si fuera
una red cubica simple con una base de dos atomos por celda. La red ctbica
simple contiene puntos en [x,y, z] donde las tres coordenadas son multiplos
enteros de la constante de red a.

Para obtener la celda unitaria de la BCC tomamos la celda unitaria
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convencional cubica simple y colocamos un punto adicional en la posicién
[a/2,a/2,a/2]. Por lo tanto, los puntos de la red BCC se pueden describir
como

Tvertice = Q@ [nla na, TL3]

Teentro = Q ([nl,n27n3] + [2a 27 2])
La eleccion que hicimos de la celda unidad hace parecer que los dos sitios
dentro de la celda unidad son dos tipos diferentes de puntos. Sin embargo
esto no es asi. Todos los puntos en esta red pueden considerarse equivalentes
(solo parecen no equivalentes porque hemos elegido un celda unitaria con dos
sitios en ella).
Es facil verificar que si tomamos los vectores primitivos como

a; [a,0,0]

a; = [0,a,0]

a; = [2.29
3 — 27 2a 9 )

cualquier combinacion de la forma
T = N17r1 + NaTo + N3T3

con ny, no y ng enteros, es un vector de la red y cualquier vector de la red
puede ser escrito de esa manera.

También es facil convencerse de que el entorno de cada punto de la red es
el mismo. Si nos concentramos en el punto en el centro de la celda unitaria,
vemos que tiene exactamente 8 vecinos mas cercanos en cada una de las
diagonales. De la misma forma, cualquiera de los puntos en las esquinas de
las celdas tendra también 8 vecinos mas cercanos correspondiente a los puntos
en el centro de las 8 celdas unitarias adyacentes. De hecho esto nos dice que
cada sitio de la red tiene siempre 8 vecinos. Esto es lo que se denomina
numero de coordinacion.

\Deﬁnicién: Nimero de coordinacién \ El nimero de coordinacion de
una red (que frecuentemente denotaremos z) es el nimero vecinos mds cer-
canos que tiene cualquier punto de la red.
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Figura 2.10: Red cubica centrada en las caras

Para la red BCC, el ntimero de coordinacién es z = 8. De la misma
manera que lo hicimos en dos dimensiones, se puede construir una celda
de Wigner-Seitz alrededor de cada punto de la red. La diferenecia principal
es que ahora en vez de tomar las directrices deberemos trazar los planos
perpendiculares a las lineas que unen a un sitio con sus vecinos mas ceranos.
La celda de Wigner-Seitz para la red BCC se muestra en la siguiente figura.
Por supuesto que es més dificil dibujar las celdas en 3D que en 2D de la
misma manera que es mas dificil graficar funciones en tres variables que en
dos.

Red cubica centrada en las caras (FCC)

La red cubica centrada en las caras (Face Centered Cubic (FCC)) es una
red cubica simple donde hay un punto adicional en el centro de cada cara del
cubo (esto a veces se conoce como cubic-F, “F por face”). La celda unitaria
se muestra a la izquierda de la figura 2.10 y a la derecha se muestra una vista
en planta de la celda unitaria.

En la celda unitaria FCC, hay ocho sitios de red en las esquinas de la
celda (cada uno de los cuales los contamos como si tuvieran 1/8 dentro de la
celda) y un punto en el centro de cada una de las las 6 caras (que tomamos
como 1/2 dentro de la celda ya que es compartido por dos celdas).

Por lo tanto, la celda unitaria contiene exactamente cuatro sitios de red.
Las posiciones de estos puntos pueden escribirse como

Tyvertice =— @ [nh na, n3]
11
rcaraXy = a ([n17n27n3] + [iaivob
1 1
Tearaxy = @ ([n1,n2,n3] + [570, 5])
11
Tcaray, — @ ([nla na, n3] + [07 57 5])
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2.2 Redes en tres dimensiones

Como antes, esta forma de escribir la red hace parecer como si fueran
cuatro tipos diferentes de sitios, pero solo es porque hemos elegido una celda
unidad con cuatro sitios.

Como antes podemos verificar que es efectivamente una red de Bravais.
Si escribimos los vectores de red como

a; = [a/2,a/2,0] (2.3
a; = la/2,0,a/2] (2.4)
a3 = [0,a/2,a/2] (2.5)

cualquier combinacién de la forma

T = N1T1 + NaTo + N37T3

con ny, ny y ng enteros, es un vector de la red y cualquier vector de la
red puede ser escrito de esa manera.

Ademas de las redes que vimos hay otros nueve tipos de redes en tres
dimensiones. Estos se conocen como los catorce tipos de redes de Bravais.

2.2.1. Red reciproca y zona de Brillouin

Como vimos en secciones anteriores, algunos sistemas se describen de
manera mas natural en términos del cuasi-momento. A este espacio se lo
denomina habitualmente el espacio reciproco. Recordemos algunos resultados
de nuestro estudio de sistemas en una dimension. Tanto en el caso de las
vibraciones de una cadena como en el modelo de tight binding consideramos
una red simple en una dimension donde los sitios de la red estaban en las
posiciones r, = na, con n un nimero entero. Por otro lado, recordemos que
dos puntos ki y ks en el espacio de cuasi-momentos son equivalentes entre si
cuando se cumple que k; = ky + G,,,, donde G,,, = 2rm/a con m un nimero
entero. Estos puntos G, también forman una red, denominada red reciproca.

La razén por la que estos valores de k son equivalentes es porque conside-
ramos ondas de la forma e*"® con n un nimero entero. Debido a esta forma,
propuesta para la onda, encontramos que si realizamos el cambio k — k+G,,
no se modifica el valor de la funcién de onda ya que

ikna 1Gmna ikna 12T nq ikna

FHGmna — giknag ="M " =¢

ei(

Luego, para las ondas que hemos estudiado hasta aqui, es equivalente
tener cuasi momento k o k + G,,.
Generalizando este concepto podemos realizar la siguiente definicion
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Definicién: Red reciproca ‘ Dado un punto de la red real R, un punto
G serd un punto de la red reciproca, si y solo si

62R~G -1

para todo punto R de la red real.

Construccion de la red reciproca

Para construir la red reciproca, escribamos los puntos de la red real de la
forma
R = ni1a1 + NaQo + N3as

Nos concentramos por un momento en definir el caso tridimensional, pero
el caso en dos dimensiones es analogo. Queremos definir los puntos de la
red reciproca en términos de tres vectores linealmente independientes como
hacemos para la red real. Nos aseguraremos que cualquier vector de la red
reciproca cumpla con la condicion

pidiendo que los vectores que generan la red reciproca cumplan que
a; - bj = 271'(51'7]‘, (26)

donde los vectores a; son los que generan la red real, los vectores b; son
los generadores de la red reciproca y d;; es la delta de Kronecker. Se pue-
den generar vectores b; con estas caracteristicas directamente a partir de los
vectores de la red real en la forma

as X as
b, = 22— 2.7
! Wal . (CLQ X 03) ( )
as X ay
bp = 2r—mM— 2.8
2 Wal . (CLQ X a3) ( )
by = 271792 (2.9)

a - (CLQ X a3)

Dados estos vectores que cumplen con la ecuaciéon (2.6) podemos escribir
un vector arbitrario de la red reciproca como

G = mqv; + mavy + m3vs.
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Si calculamos la cantidad ¢ vemos que

eiR-G _ ei(nlal+n2a2+n3a3)-(m1v1+m2v2+m3v3) 2.10

_ 6i27r(n1m1+n2m2+n3m3) (2.11)

Para que GG sea un punto de la red reciproca, la exponencial anterior debe
ser igual a 1 para cualquier punto R de la red real, es decir, para todos los
valores enteros de nq, ny y n3. Claramente, esto solo puede ser cierto si myq,
me y mg también son enteros. Esto prueba entonces que la red reciproca es
de hecho juna red de Bravais!

indices de Miller

Una forma alternativa de interpretar la red reciproca es en términos de
una familia de planos de la red real. Llamaremos plano cristalino a un plano
que contenga al menos tres puntos de la red que no sean colineales. De hecho
si un plano contiene tres puntos no colineales de la red, entonces contiene
infinitos puntos de la misma. Llamaremos familia de planos cristalinos a un
conjunto de planos igualmente separados para los cuales se cumple que el
conjunto de planos contiene a todos los puntos de la red.

En la figura 2.11 se muestran dos ejemplos de familias de planos en una
red. Noten que los planos son paralelos e igualmente espaciados, y cada punto
de la red estd incluido en exactamente un plano.

Para identificar a las familias de planos cristalinos se hace una correspon-
dencia uno a uno con las direcciones de los vectores de la red reciproca, a las
cuales son normales. Ademas, el espacio entre estos los planos de la red es
d = 27/|Gnin| donde G, es el vector de red reciproca de longitud minima
en esta direccién (normal a los planos).

Tomemos un vector del espacio G reciproco y consideremos el plano de-
finido por

G- -r=2mm

Esto define una familia de planos paralelos que son perpendiculares a G.
Cualquier punto de la red de Bravais debe pertenecer a alguno de estos

planos ya que la definicién de vector de la red reciproca nos dice que para

cualquier punto de la red de Bravais se cumple necesariamente que

€iG'R =1
y por lo tanto debe ser que G - R = 27mq para algin numero entero ¢q. Sin
embargo, puede ocurrir que existan planos de la familia definida por la ecua-

cién G - r = 2wn que no contengan puntos de la red de Bravais. Si tomamos
G || r La distancia entre dos planos adyacentes esta dada por
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Figura 2.11: Planos Cristalinos: Los planos en la figura de la izquierda corres-
ponden a la direccién (1,0,0) mientras que los de la derecha se corresponden
con la direcciéon (1,1,1)

2T
G|
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2.3. Electrones en potenciales periédicos

Ya estudiamos brevemente electrones en un sistema periédico cuando es-
tudiamos el tight-binding. En esta seccion estudiaremos electrones sometidos
a un potencial periédico como el que esta presente en una red de ntcleos pero
usaremos una perspectiva un poco diferente. Consideraremos a los electrones
desde una perspectiva ondulatoria y estudiaremos ondas de electrones libres
que son levemente perturbadas por el arreglo periddico de los atomos en la
red.

Comencemos con electrones libres cuyo Hamiltoniano esta dado por
P’

Hy = —.
0 2m

Los autoestados de energia se corresponden con ondas planas |k) cuyas au-
toenergias estan dadas por

hlk|?
eo(k) = [UEl

om

Ahora, consideremos el caso de un electron sometido a un potencial pe-

riddico sobre la red.
2

p
H=""4vVv
Tt v,

donde el potencial cumple que
V(ir+R)=V(r)
y R es un vector de la red real (red de Bravais). Si suponemos que el poten-

cial es pequeno podemos intentar corregir perturbativamente la energia. Los
elementos de matriz del potencial en la base de ondas planas estan dados por

1 ot 1 .
(KVIk) = -5 [ dre®TV(r) = 53 / y dre' RV (r 4 R),
R celaa

donde la integral del lado derecho de la igualdad se realiza dentro de la celda
unidad y la suma es sobre todas las celdas.

1 e
(K'|V|k) = ﬁ; dre!F=R) Ry (1 R) (2.12)

celda

1 , / A ,
- 73 (Z e'tk=k )'R> (/ drek—Fk WV("“)) . (2.13)
L R celda

Facultad de Cs. Exactas | UNLP | 64



Materia cuantica - C.A. Lamas, A. lucci (autores)

Estructura cristalina de los solidos

donde usamos que el potencial es periédico V(r+ R) = V(r). La suma sobre
celdas que esta dentro del primer paréntesis es distinta de cero solo si

k—k =G.

Es decir que este elemento de matriz es cero salvo que k — k' sea un vector de
la red reciproca. Esto no es mas que la conservacion del momento cristalino.

Entonces, en un proceso de scatering un estado de onda plana solo puede
ir a parar a otra onda plana cuyo vector de onda difiera del incidente en
un vector de la red reciproca. Podriamos usar este elemento de matriz para
calcular la correccién a segundo orden en la energia como

k) = alk) + (VIR + 3 R
k'=k+G €0 €0

Donde la suma se realiza sobre los vectores de la red reciproca no nulos. Lo
anterior es correcto si supondremos que estamos en un caso no degenerado
(es decir, suponemos que €y(k) # €(k')).

Para estudiar que pasa en el caso degenerado busquemos soluciones de la
forma

(2.14)

co(k) = eo(k) (2.15)
K = k+G. (2.16)

Concentrémonos por un momento en el caso 1D. Para una cadena donde
los sitios estan igualmente espaciados con parametro de red a, los vectores
de la red reciproca estan dados por

_27T

G, = —n.
a

Si consideramos electrones libres cuya energia este dada por ey(k) ~ k?,
las tnicas posibles soluciones para la ecuacion €y(k) = €o(k’) corresponden
a k = +k'. Para satisfacer la ecuacion £’ = k + G con G # 0 solo podemos

tener
s

k=—-k=—n.
a
Es decir, tendremos un caso degenerado en los niveles de energia correspon-
dientes a los bordes de la zona de Brillouin. Aunque nosotros lo hicimos
para el caso en una dimension, esta es una situacion mas general que inclu-
ye sistemas en mas dimensiones. Dado un punto k en el borde de la zona
de Brillouin, generalmente existe otro punto k’ también sobre el borde de
la zona que cumple con las dos condiciones (2.15) y (2.16). En dos o mas

dimensiones generalmente ocurre que este punto no es tnico.
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Cuando ocurre esta degeneracién, la correccién (2.14) diverge y debemos
usar una teoria de perturbaciones degenerada. Para calcular la correccién en
esta teoria debemos primero diagonalizar el Hamiltoniano en el subespacio
degenerado y luego tratar el resto de la perturbaciéon. Dicho de otra manera,
tomamos estados con la misma energia que se encuentran conectados por un
elemento de matriz y los mezclamos.

Tomemos entonces dos ondas planas con vectores de onda |k) y |k +
G). Si estos estados tienen la misma energia, entonces debemos diagonalizar
los elementos de matriz del Hamiltoniano correspondiente a estos estados
primero, tendremos entonces que

(k|H|k) = eo(k)
k+GHk+G) = elk+G)
K[Hk+G) = V'(G)
k+GlHk) = V(G).
Donde
VIG) = (k+ GIVIk) = 75 [ dr e V()

En este subespacio podemos escribir un autovector como
|Y) = alk) + bk + G).

Al buscar los autovalores en este subespacio debemos resolver la ecuacion

(V&) e )5 )=2(4) 217

y el polinomio caracteristico queda en la forma
(eo(k) = E) (eo(k + G) — E) — [V(G)]* = 0.

Si k estd en el borde de la zona de Brillouin, ¢y(k+ G) = €y(k) y tenemos
que
(co(k) — E)” = [V(G)?

y por lo tanto
B = k) £ |V(G)|.

Es decir, el estado que antes era doblemente degenerado ahora se convierte
en dos estados de energia diferente. Se ha abierto un gap por la presencia de
el potencial periddico.
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Ahora veamos que pasa si consideramos estados que no estan justo en el
borde de la zona de Billouin, pero estan muy cercanos a ella de manera que
las energias €y(k) v €9(k + G) son casi iguales (cuasi degenerado).

Para simplificar consideremos el caso unidimensional, aunque la mayor
parte de los argumentos pueden aplicarse en mayores dimensiones. Consi-
deremos el borde de la zona k = £nm/a separados por vectores de la red
reciproca G = 27n/a. Ahora consideremos una onda plana cerca del borde,
digamos con vectores de onda k = nw/a + 0. Este vector de onda se conecta
mediante un proceso de scattering generado por el potencial periddico con
el vector de onda k = —nw/a 4+ ¢ mediante el vector de la red reciproca
G = 27n/a. Tendremos entonces para la energia

e(nm/a+0) = Z((nw/a}2+2nwé/a+62)
co(—nm/a+9d) = i((nw/a)Q—Qnm;/a%—(Sz).

La ecuacion de autovalores puede escribirse como
h 2 | 52 ’ h? : 2
— —F) =—2 .
<2m((n7r/a) +0%) > <2m nw&/a) +|V(G)|

De esta ecuacion podemos despejar los autovalores

h2

EL = %((mr/a)2 +6%) & $ (;12n75/a> + V(@)%

Si suponemos que d es pequefio, podemos desarrollar la raiz cuadrada a
segundo orden alrededor de delta = 0 y obtener

B = 2hm((n7r/a)2 + 52) + |V(G)| + F;;; (1 + %) '

Por lo tanto vemos que cerca del borde de la zona de Brillouin, el potencial
periédico abre un gap y ademas la dispersion cerca del borde es cuadratica.

La forma de las bandas que resulta de la interacciéon con un potencial
periddico puede verse en la figura 2.12

La estructura general que encontramos es muy parecida a la que esperaba-
mos del modelo de tight-binding. Como en se ve en la figura hay bandas de
energia donde hay estados permitidos, y hay espacios entre las bandas, donde
no hay autoestados de energia.
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Figura 2.12: Bandas de energia.
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2.3.1. Teorema de Bloch

En el estudio anterior, estudiamos a los electrones sometidos a un po-
tencial peridédico desde la perspectiva de ondas planas que estan débilmente
perturbados por un potencial periédico. Pero en materiales reales, el poten-
cial puede ser muy fuerte y de esta manera la teoria de perturbacién puede
no ser valida.

Si embargo atn en el régimen no perturbativo los resultados anteriores
son validos. Lo primero que debemos tener en cuenta es que el impulso de
la onda plana no es una cantidad conservada, sino que lo que se conserva
es el impulso cristalino. No importa cuan fuerte sea el potencial periddico,
siempre que sea periddico, el momento cristalino es una cantidad conservada.

Este importante resultado fue descubierto por primera vez por Felix Bloch
en 1928, y es lo que se conoce como el teorema de Bloch[5, 15, 3].

\Deﬁnici()n: Teorema de Bloch: ‘ Un electron en un potencial periodico
tiene autoestados de la ecuacion de Schroedinger de la forma:

Vka(T) = eik'ruk,a(ﬂ

donde ugo(r) es periddica en la celda unidad y el momento k puede ser to-
mado en la primer zona de Brillouin.

La funcion periédica ugo(r) se conoce como funciéon de Bloch. El indice
«a contempla el hecho de que al trabajar en el esquema de zona reducida
tendremos mas de un estado correspondiente a cada valor de k.

Como ug (1) es periddica, podemos escribirla como una suma sobre vec-
tores de la red reciproca.

Uka(P) = g racC",
G

de esta manera nos aseguramos que Uk (1) = Ugo(r + R), donde R es un
vector de la red real. Luego, la funcion de onda completa puede escribirse
como
wk,a (’I“) _ Z aG,k,aei(G+k)m-
G

De esta expresion vemos que una forma alternativa de expresar el teorema de
Bloch es decir que podemos escribir cada autoestado como una suma sobre
ondas planas cuyos momentos k difieren en un vector de la red reciproca.
La razén por la cual el teorema de Bloch es valido es que los elementos de
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matriz del potencial son cero a menos que k y k' difieran en un vector de la
red reciproca.

En resumen, el teorema de Bloch nos dice que aunque el potencial que
actia sobre los electrones sea fuerte, jellos todavia se comportan casi como
si fueran libres! Formando estados de onda plana modulados por la funcién
periddica de Bloch y el hecho de que el momento es ahora el momento cris-
talino.
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Capitulo 3

Segunda cuantificaciéon

Queremos considerar ahora el caso de muchas particulas cuanticas. Nor-
malmente este es un problema que sabemos muy bien coémo tratar en mecani-
ca cuantica: si conocemos el espacio de Hilbert H; de una sola particula y
una base completa |«) ortogonal,

(ala’) = 0o, D lad(al =1, (3.1)

sabemos que para N particulas tenemos un espacio de Hilbert que se cons-
truye como el producto directo (tensorial) de los espacios individuales:

N
Hy=H1OH, @ @ Hy = QHi, (3.2)

=1

y que una base completa de tal espacio es simplemente
a1, az, .. on) = ar) @ |ag) - - o), (3-3)

el estado factorizado de N particulas independientes. Aqui utilizamos a no-
tacion |---) para indicar que el estado no posee ninguna simetria frente al
intercambio de particulas.

Debemos resolver entonces una ecuacion de Schrodinger con una funcién
de onda que depende de las N variables r; correspondientes a las N particu-
las,

\If(’l"l, To,... ,’I"N> = (’I"l, To,... ,’I"N|Oél, o, . .. ,OéN). (34)

Aunque este es un programa perfectamente aceptable cuando el ntimero de
particulas es pequeno, es particularmente inadecuado para abordar el caso
de muchos fermiones o bosones cuanticos interactuantes, por varias razones.

La primera razon tiene que ver con la indistinguibilidad de las particu-
las. Incluso si son libres entre ellas, no todos los estados son aceptables para
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las funciones de onda de N particulas indistinguibles, para las que sélo se
permiten las funciones de onda totalmente simétricas (para bosones) o an-
tisimétricas (para fermiones). Esto significa que incluso para particulas que
no interactiian no podemos usar directamente estados producto de la forma
(3.3) y debemos lidiar con sus versiones simetrizadas o antisimetrizadas,

1
|Oél...OZN>S: ZPV|(11...QN), (35)
NN

1 Sy
lag ...an)a = Wzy:(—l) P,a;...an), (3.6)

que se obtienen del estado factorizado (3.3) aplicando los operadores de si-
metrizacion o antisimetrizacién, al igual que las funciones de onda. En cierto
modo, el hecho de que tengamos que tratar con particulas indistinguibles ya
introduce correlaciones en la funciéon de onda incluso cuando las interacciones
no estan presentes. La funcién de onda se vuelve bastante complicada ya que
deben estar correctamente (anti-)simetrizadas y normalizadas, lo que las ha-
ce muy dificiles de manejar. que se escriban en la forma de un determinante
ayuda un poco para los calculos practicos, pero no mucho. En resumen, in-
cluso para los electrones que no interactian, jhabria que tratar con funciones
de onda que contienen 10%! términos, lo cual es realmente desagradable.

El segundo problema esta relacionado con la forma en que representa-
mos a los operadores en la mecanica cudntica estandar. Si consideramos, por
ejemplo, un operador que mide el momento total de un sistema de particulas,
este tiene que escribirse como una suma de operadores que actiian sobre cada
particula individualmente:

N
Pt =) P, (3.7)
i=1

donde P; es el operador que actia sobre la particula i-ésima. Téngase en
cuenta que esto es un abuso de notaciéon ya que Py es un operador de Hy,
que rigurosamente se debe escribir como

P=181®...9P®...®1, (3.8)

donde 1 es la identidad y P se inserta en la posicion i-ésima. El operador y
las funciones de onda dependen asi explicitamente del ntimero de particulas.
Por lo tanto, uno deberia cambiar completamente todo el calculo dependiendo
de si miramos 2 o 20000 particulas, lo que nuevamente es particularmente
molesto. También impide tomar de manera directa el limite termodindmico
N — oo cuando el volumen de los sistemas también tiende a infinito. Dada
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la gran cantidad de particulas, esta claro que tomar este limite es lo deseable
ya que simplificarfa mucho los calculos!.

Una tercera razén, quizds mas profunda y mas fisica, y que definitiva-
mente liquida la posibilidad de utilizar la mecanica cuantica usual, es que
jen muchos sistemas el niimero de particulas no se conserva! Esto puede ocu-
rrir por varias razones, por ejemplo, en sistemas de altas energias, porque
buscamos describir sistemas de particulas que pueden aniquilarse y conver-
tirse en otras, tales como electrones y positrones. O para un ejemplo mas
ligado a los materiales, mencionemos el modelo BCS para un superconduc-
tor, que discutiremos en el capitulo siguiente. Veremos que las cuasiparticulas
fermionicas que son responsables de la superconductividad se forman por una
superposicion de electrones y huecos y no se conservan en nimero.

Por estas razones, debemos buscar una reformulacion de la representacién
estandar de la mecdnica cudntica (también conocida como primera cuanti-
ficacién) para sistemas de varias particulas indistinguibles. Idealmente de-
beriamos hallar un formalismo que se ocupe automaticamente de lo siguiente:

1. Que la simetrizacién o antisimetrizacion se realizara de manera au-
tomatica sin tener que tratar explicitamente con N! términos.

2. Que la forma de describir el sistema no dependa explicitamente del
numero de particulas presentes en él. Esto deberia permitir tomar el
limite termodinamico facilmente y también abordar situaciones mas
generales en las que el nimero de particulas puede cambiar.

Esto lo proporciona el llamado método de “segunda cuantificacién” que

describiremos en este capitulo.

3.1. Espacio de Fock

La idea bésica es convertir el hecho de que las particulas sean indistingui-
bles en una ventaja. De hecho, si este es el caso, significa que no es necesario
conocer el estado cudntico de cada particula individual, sino simplemente
cuantas particulas hay en un estado cuantico dado. Supongamos que uno
tiene una base completa |«) de estados para una sola particula. En general,
esta base es infinita, pero tomemos por conveniencia un espacio de dimensién

!Trabajar en el limite termodinamico es deseable, ademas, porque es alli donde ocurren
verdaderamente las transiciones de fase.

2La terminologfa usual de “primera” y “segunda” cuantificacién es bastante desafortunada.
Da a entender que hay otro objeto que ahora se estd cuantificando, mas especificamente la
funcién de onda, pero esto es incorrecto, como veremos mas adelante.
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]

|a) |a2) |avi) |va)

Figura 3.1: El estado de un sistema con un ntimero arbitrario de particulas
indistinguibles se conoce por completo si se sabe cuantas particulas hay en
un estado cuantico determinado.

finita d y un nimero finito de estados. Siempre podemos tomar d — oo®. Asi,
denotamos todos los estados en esta base como

), |ag), .., |aa), (3.9)

Téngase en cuenta que el tamano de la base no esta relacionado con la can-
tidad de particulas que estan presentes en el sistema. Para los bosones, por
ejemplo, uno podria tener una base completa de los estados de una particula
que contienen solo dos estados y tener 10000 bosones presentes en el sistema
(ya que varios de ellos pueden ir en el mismo estado cuantico). Para los fer-
miones, por supuesto, el niimero total de particulas siempre es menor que el
nimero total de estados disponibles debido al principio de Pauli. Podemos
describir completamente el sistema y reconstruir su funcién de onda si cono-
cemos el nimero de particulas n; en cada estado |«;) de la base completa de
estados de particulas individuales, y por lo tanto, podemos caracterizar com-
pletamente la funcién de onda del sistema mediante el conjunto de niimeros
ni,na,...,ng. Bl nimero total de particulas en el sistema es, por supuesto,
N =nqy+ny+ -+ ng, y puede variar si uno varia uno de los n;.

Definamos entonces un espacio en el que puedan existir un ntimero arbi-
trario de particulas. Si llamamos H y al espacio de Hilbert con N particulas,
como en la ec. (3.2), podemos definir

+o0o
F=Ho®H1®Ha...=PH, (3.10)
j=0

que es la suma directa de todos los espacios de Hilbert con 0, 1, 2, etc. particu-
las. Tal espacio se llama espacio de Fock. En este espacio definamos ahora el
estado

|1, o, ng, ... Ng) (3.11)

como los estados simetrizados o antisimetrizados (3.5) y (3.6). Es. decir, en
lugar de rotular a esos estados mediante el conjunto «; de estados estados

3Por supuesto que siempre existen sistemas donde d es finita. Por ejemplo, un spin %
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de particula independiente en el que esta cada. particula, los rotulamos por
el nimero de particulas que contiene cada uno de ellos. Dos estados de la
forma (3.11) que tienen un nuimero diferente de particulas N pertenecen a
dos espacios de Hilbert diferentes y, por lo tanto, son obviamente ortogonales
en el espacio de Fock. Para sistemas con el mismo ntimero total de particulas,
se puede verificar usando (3.5) y (3.6) que los estados (3.11) para una base
ortogonal y normalizada satisfacen

(na,ma,s .oy malny, n, o ng) = Oy Oy O, (3.12)

Por lo tanto, podemos usar la base (3.11) para caracterizar cada operador y
elemento de matriz en el espacio de Fock. Como se mencioné antes, esta base
es extremadamente conveniente ya que se basa en la cantidad minima de
informacion necesaria para describir un sistema de particulas indistinguibles.
En particular, el nimero de “contadores” n; necesarios no crece con el niimero
total de particulas.

3.2. Operadores de creaciéon y destruccion

Introduciremos a continuaciéon un conjunto de operadores que nos permi-
tird generar todos los elementos de la base (3.11). Para cada estado «; de
la base completa de una sola particula, definimos un operador de creaciéon y
destruccion, que aumentara o disminuira en uno el nimero de particulas en
este estado particular. De este modo, podremos usar estos operadores para
modificar el contador n; dando el nimero de particulas en un estado cuantico
dado, y asi abarcar todo el espacio de Fock. La definicién préctica de estos
operadores es diferente dependiendo de la estadistica de las particulas.

Bosones

Introducimos los operadores de creacion al y destruccion a; por su accion
sobre todos los estados de una base completa en el espacio de Fock, en la
forma

a;~r|n1,...,ni,...,nd) =vn;+ 1ng, ..o ong+ 1,000 ng), (313)
@i|nay .o My ooy Na) = /Milna, oo, ng — 1,000 ng).

Estas definiciones determinan por completo a los operadores por sus elemen-
tos de matriz en la base de niimeros de ocupacién (3.11). Comprobemos que
los operadores aI y a; son efectivamente hermiticos conjugados uno del otro.
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Dado que (3.11) es una base ortogonal, el tnico elemento de matriz distinto
de cero para aZ es

(nl,...,ni+1,...,nd|aﬂn1,...,ni,...,nd) =vn; + 1. (3.14)
Tomando el complejo conjugado de esta expresion se obtiene
(N1, ..oy, oynglagng, oo ong+ 1,000 ng) = vny + 1 (3.15)

que de hecho es exactamente la definicion del operador a; en (3.13) (con el
reemplazo de n; por n; + 1). Otra propiedad importante de los operadores es
que solo abarcan el espacio de Fock. De hecho, aunque parece formalmente
de (3.13) que el operador a; podria operar en un estado que tiene n; = 0
particulas en el estado «; el prefactor en la definicién asegura que el elemento
de matriz correspondiente es cero:

a;lny,...,n;=0,...,ng) =0, (3.16)

y asi, si uno intenta aplicar el operador de destruccién en un estado que
no tiene ninguna particula en el estado cuantico correspondiente, obtiene un
resultado trivial, lo que significa que no se pueden generar estados no fisicos
con numeros de ocupacién negativos.

Si definimos el estado que no contiene particulas en ninguno de los estados
cuanticos (a veces denominado vacio) en la forma

‘O>:‘n1:07n2207"-7nd:0>7 (317)

se verifica que a partir de este vacio |0) y los operadores aj podemos construir
todos los vectores de la base completa del espacio de Fock, ya que

_ (ah)m .. (af)m

[n, ey Ma) = NIV

Por lo tanto, uno puede generar completamente el espacio de Fock desde
el estado tinico |0) mediante los operadores de creacion (y destruccion ya
que son conjugados hermiticos). El vacio verifica la propiedad de que para
cualquier ¢

10). (3.18)

ai]0) =0 (3.19)

Debemos tener cuidado de no mezclar el vacio |0), que es un vector del
espacio de Fock, y uno sobre el que los operadores pueden actuar para dar
otros estados del espacio de Fock, con el cero 0.

Los operadores de creacion y destrucciéon constituyen asi una manera
muy conveniente de describir el espacio de Fock. En lugar de definirlos a
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partir de sus elementos de matriz en una base dada, tal como (3.11), es mas
conveniente definirlos a partir de sus propiedades intrinsecas. Mostremos que
la definicion (3.13) implica que los operadores aj y a; poseen ciertas relaciones
de conmutacién especificas. Y a la inversa, si se obedecen estas relaciones de
conmutacion, entonces los operadores, y el vacio correspondiente definido por
(3.17), serviran para construir un espacio de Fock a partir de (3.18) en el que
tendran los elementos de matriz (3.14) y (3.15).

Calculemos primero la accién de un producto de dos operadores de crea-
cién azT y a;f- en estados distintos (i # j) sobre un estado arbitrario de la

base:

T 1 _ T
aiag|ng, ..., Ny, Mgy, Ng) = ap/ng +1ng, oo mg o ng 10 ng)

=vni+1yn;+1ng, ... on+ 1,000 0+ 1,000 ng).
(3.20)
y es facil comprobar que la acciéon de a}a;r producird exactamente el mismo
resultado. Asi, para cualquier elemento de la base se tiene
[ Tt

ol af] na,. o omiy g ma) =0, (3.21)

lo que significa que
lal,al] = 0. (3.22)
Dado que un operador conmuta consigo mismo, esto también es cierto cuando

t = 7. Tomando el hermitico conjugado del conmutador anterior obtenemos
[CLZ', Clj] =0. (323)

Veamos ahora qué ocurre si calculamos la accién del producto de un
operador de destruccién con uno de creacién, siempre con (i # j):

azaj\nl,...,ni,...,nj,...,nd) :a;r,/nj]nl,...,ni,...,nj—1,...,nd)
= \/nz-—l—l,/nj|n1,...,ni—i—l,...,nj—1,...,nd>
(3.24)
T

y de manera similar la accién de aja; (con ¢ # j ) darfa el mismo resultado.

1
Se tiene asi {af, aj] = 0 cuando ¢ # 5. El caso i = j es especial. Por un lado
tenemos que

alaifng, .. omi, o na) = al il — 1 )
=/(ni — 1)+ 1y/ng|ng, ... .0y, ... ng) (3.25)
:ni]nl,...,nh...,nd%
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y por otra parte

aiag|n1,...,ni,...,nd> =apvn +1|ng,...,ni+1,...,ng)
= Vi + I F1ng, .. ong, ... ng) (3.26)
=(n;+ D|ny,...,n4 ..., na).
Concluimos entonces que
{ai,a” M1y ey My ooy M) = M1y e e oy My ooy Ng). (3.27)
Juntando los dos resultados, encontramos finalmente que el conmutador es
(i, ab] = di,. (3.28)

Se puede entonces resumir las propiedades de los operadores de creaciéon
y destruccién mediante el conjunto de relaciones fundamentales

[ai,aﬂ = 0ij,
[a;f, CLH =0, (3.29)
la;,a;] = 0.

llamado también algebra de los operadores. Junto con la accién de los ope-
radores de destruccion sobre el vacio (3.19), son equivalentes a las definicién
de los elementos de matriz (3.15) y (3.14). Esto implica que si disponemos
de

1. Una base completa |o;) de estados de particulas individuales (y las
funciones de onda correspondientes (r|q;))

2. Operadores de creacion y destruccion, aj- y a;, para cada uno de estos
estados, que obedecen relaciones conmutacién canénicas (3.29).

3. Un vacio |0) que es destruido por los operadores de destruccién a;]|0) =
0,

podemos construir completamente un espacio de Fock para bosones. La idea
es entonces explotar directamente las propiedades anteriores y utilizar las re-
laciones de conmutacién candnicas entre los operadores bosénicos para calcu-
lar las propiedades fisicas, en lugar de las funciones de onda. Esta descripcion
se conoce como segunda cuantificacion.
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Tomemos por ejemplo el siguiente estado de dos particulas:
) = alab|0) = |ny = 1,ny = 1). (3.30)

y reconstruyamos la expresion para la funcién de onda usando. Se obtiene

(1) = (112 lt5) = } (Do (1) P (72) + o (P2) 0 ()], (3.31)

2
que es la funcién correctamente simetrizada que describe dos bosones. Sin
embargo, el interés de la segunda cuantificacién es apegarse a los operadores
y sus relaciones de conmutacion y evitar volver a las funciones de onda, que
en general son bastante intratables. Por ejemplo, los operadores de creacion

conmuntan entre si, y por lo tanto a{ag = agai. Entonces

aja}|0) = aja}|0), (3.32)

y asi la funcién de onda |¢) resulta ser simétrica por permutacion de las
particulas. Los operadores de creacién y destruccion estan asi directamente
disenados para tener en cuenta adecuadamente la simetrizacién de las funcio-
nes de onda y la indistinguibilidad de las particulas. De hecho, las relaciones
de conmutacion permiten obtener directamente la informacion sin pasar por
ningin proceso de simetrizacién. En particular, los promedios se pueden cal-
cular directamente. Ilustrémoslo calculando la normalizacién de la funcion
|1)). Queremos calcular

(¥|1h) = (0]asaralal|0). (3.33)

Aunque este es un ejemplo especifico, veremos que generalmente todos los
observables fisicos se reducen al promedio en el vacio de un determinado pro-
ducto de los operadores de creacién y destruccion, por lo que el método que
describimos se puede aplicar de manera general. Para calcular el promedio,
lo tnico que necesitamos usar es el hecho de que el vacio es destruido por
todos los a;. Por tanto, utilizando las relaciones de conmutacion, deberiamos
llevar los operadores a; a la derecha, de modo de hacerlos actuar sobre el
vacio. para actuar sobre el vacio. Primero escribimos alai =1+ a{al de la
relacion de conmutacion. Tenemos entonces

(W[) = (Olas(1 + alar)ab|0),
(3.34)
= (0]a2a}|0) + (0azala;ab|0).

En el segundo término podemos usar ahora la relacién de conmutacion a, ag =
abay para reescribirlo como (0]asalala;|0) que inmediatamente da cero. Para
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el primero usamos de nuevo las relaciones de conmutacion, y obtenemos

(¥[1) = (0]asal|0) = (0](1 + ajas)|0),

{
(0[1]0), (3.35)
1

Aunque los calculos pueden volverse tediosos cuando crece el nimero de
operadores, la mecanica siempre es la misma, y con un poco de practica se
pueden acelerar.

Fermiones

Pasemos ahora a los operadores de creaciéon y destruccion de fermiones.
De manera similar que para los bosones, definimos

c;r|n1, ey Ny eeong) = (L=ny)(=1)%ng,....n + 1, ... ng),
(3.36)

cilng, ..o yngy oo ng) = ng(=1)%ng, .o ng — 1,00 ng),

donde ¢; = Zé;ll n; y € = 0. El orden de los elementos en la base debe
fijarse una vez, y utilizar siempre la misma convencién, pero, por supuesto,
es arbitraria.

En estas definiciones, algunos términos son bastante transparentes: dado
que para los fermiones el principio de Pauli impide que dos fermiones estén
en el miso estado, los niimeros de ocupacion n; estan restringido a toar los
valores 0 o 1 . Por lo tanto, es importante que el operador de creacién no
pueda crear dos particulas en un estado, lo cual queda asegurado por el factor
1 — n; que garantiza que si cj- actia sobre un estado con n; = 1 entonces la
accion del operador dara cero. De manera similar, el factor n; asegura que el
operador de destruccién no puede destruir una particula en el estado para el
cual n; = 0. La fisica del factor extrano (—1)% no es obvia por el momento, y
uno podria tener la tentacion de definir los operadores sin tal factor de fase.
Veremos su utilidad un poco mas adelante.

Procedemos ahora exactamente como con los bosones: comprobemos pri-
mero que los operadores cj» y ¢; son efectivamente hermiticos conjugados uno
del otro. De hecho, los cédlculos con fermiones son mas simples en cierto sen-
tido, ya que para cada estado «; solo hay dos posibilidades n;, =0 o n; =1
para el estado correspondiente. El tinico elemento de matriz distinto de cero

para el operador c;-r es

(ny,....ni=1,... ngcing, ... =0,... ng) = (=1)%. (3.37)

Facultad de Cs. Exactas | UNLP | 80



Materia cuantica - C.A. Lamas, A. lucci (autores)

Segunda cuantificacion

mientras que para ¢; el inico elemento de matriz distinto de cero es
(ni,...,n; =0,...,n4lcilny,...,n; = 1,...,ng) = (—=1)“. (3.38)

que obviamente es el complejo conjugado del otro.

Para continuar con las relaciones de conmutacién y comprender el papel
de los coeficientes (—1)%, veamos primero la acciéon de cicj. Como esto solo
afecta al estado «a;, podemos simplemente considerar su accién sobre los dos
estados con n; =0y n; = 1:

cicﬂnl,...,ni =0,...,n9) = (=D)%¢|ny,...,n; =1,...,ng)
= (=D*|ny,...,n; =0,...,ng) (3.39)
=1ny,...,n; =0,...,nq)
Por otro lado,
c}ci|n1,...,ni:O,...,nd> = 0. (3.40)

Notese que en este resultado los factores (—1) no juegan ningtin papel, y
podriamos haber definido los operadores sin incluirlos. En forma similar,

cicz|n1,...,n,~:1,...,nd>:0 (3.41)

czci|n1,...,ni:1,...,nd> =ng,...,n;=1,...,ng).

Se observa entonces que [Ci, cﬂ no tiene ninguna expresion simple. En cambio,
el anticonmutador

{ci, cj} = el + e (3.42)
conduce a
{ci,cj} P 7 PR ) Bl U7 ST T P O (3.43)
y por lo tanto
{ci,cz} =1 (3.44)

Por lo tanto, se puede adivinar que en lugar del conmutador, es el anticon-
mutador el que jugard un papel importante. El rol del factor (—1)% sera,
por lo tanto, asegurar que para las otras combinaciones también se obtengan
relaciones simples para el anticonmutador. Iustrémoslo con la accion de cl-c;-

con i # j. Suponiendo que 7 < j, tenemos que
cic;|n1,...,ni,...,nj,...,nd> =(1—n;)(—1)%¢n1,...,nsy...,n; +1,...,ng)

= (1 — nj)(—l)eﬁ'ni(—l)ﬂnl, N 7 ]_, N L + ]_, ce ,nd).
(3.45)
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Por otro lado,
cheiln n; n; ng) = ni(=1)%ct|n n; —1 n; Na)
er Tyeeeglbgy ey Jrc o d/ — 7 ] 1y -5 1l PRI RS I d

= (L= n)(=1)mi(-1)"

niy...,n— 1o g+ 1,000, ng).

(3.46)
El término €; corresponde al factor de fase en un estado con n; —1 en lugar de
n;. Asi, e;. = ¢;—1. En ausencia de dichos términos de fase, las dos expresiones
(3.45) y (3.45) serfan idénticas y tendriamos que [c;, ¢f] = 0. Gracias a los
factores de fase €; ahora tenemos un signo menos entre los dos términos y la

relacion se convierte en
{encd} =0, (3.47)

lo que permitira definir los operadores ¢; sélo en términos de sus anticonmu-
tadores. Es facil comprobar las restantes relaciones, y asi se tiene, de forma
similar que para los bosones,

{Ci, CT} = (5,’73‘,

{cj,c;} =0, (3.48)
{ci,c;} =0.

Por otro lado, de la misma forma que para los bosones, se puede construir
todos los estados del espacio de Fock a partir de un vacio |0) que es destruido
por todos los ¢;(¢;|0) = 0) usando la relaciéon (3.18)

Las funciones de onda y los promedios se pueden calcular también con
las mismas técnicas que antes, veamos como ejemplo la funcién de onda de
dos fermiones en los estados a; y ao:

[¥) = clch|0). (3.49)

y entonces la funciéon de onda resulta

1
(riraly) = NG [ (1) (r2) — i (r2)aa(ry)], (3.50)

que es, por supuesto, la funcién de onda correctamente antisimetrizada para
fermiones. Sin ir a la funcién de onda, se puede ver directamente la antisi-
metrizacion a nivel de estados y operadores: usando la relacién de anticon-
mutacién {cy, ¢} = 0 se encuentra que

clch]0y = —cel|0), (3.51)
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y asf la funcién de onda [¢)) es obviamente antisimétrica por permutacién de
las particulas.

El hecho de que el operador ¢; se ocupe automaticamente de la antisimetri-
zacion hace que sea muy conveniente escribir incluso funciones complicadas.
Por ejemplo, el mar de Fermi, que corresponde al estado de N fermiones de
menor energia posible, se escribe

|F) = U ci0) (3.52)

Los promedios en el vacio se pueden calcular exactamente con la mis-
ma técnica descrita para los bosones. Por ejemplo, si tomamos [¢)) = c§|0),
entonces (usando las relaciones de anticonmutacién),

(0lcic][0)
(0]1 = ¢le;]0) (3.53)
(0]1]0) = 1.

{¥lv)

Generalizando el calculo anterior puede mostrarse el mar de Fermi esta co-
rrectamente normalizado, (F|F) = 1.

3.2.1. Operadores de un cuerpo

Ahora que tenemos definidos a los operadores que permiten construir
todo el espacio de Fock, lo que queda por resolver es expresar los observables
fisicos que queremos calcular en términos de estos operadores. Para hacerlo,
debemos tener en cuenta que los observables deben actuar sobre particulas
indistinguibles, lo que establece algunas restricciones sobre su forma. Antes de
dar sus expresiones en segunda cuantificacion, es conveniente clasificarlos de
acuerdo al niimero de particulas sobre las que actian. Hay observables fisicos
que miden solo los ntiimeros cudnticos de una particula a la vez (tales como
el momento, la densidad, etc.) y otros que necesitan tratar con los ntimeros
cuanticos de dos de las particulas para determinar sus elementos de matriz.
Este es caso, por ejemplo, del operador que mide las interacciones entre las
particulas. El primer tipo se llama operadores de un cuerpo, mientras que
el segundo es de dos cuerpos. En principio, se pueden tener operadores que
involucren méas de dos particulas (tales como colisiones de tres cuerpos y
mas), pero son de poca utilidad préctica en la fisica del estado sélido, por lo
que discutiremos principalmente aqui los de uno y dos cuerpos. Las férmulas
dadas aqui se pueden generalizar facilmente si es necesario.

Facultad de Cs. Exactas | UNLP | 83



Materia cuantica - C.A. Lamas, A. lucci (autores)

3.2 Operadores de creacion y destruccion

Definicion

Comencemos primero con los operadores de un cuerpo. De manera bas-
tante general, llamemos O a un operador que representa alguna propiedad
de una particula a la vez. Por supuesto, si O actiia en el espacio de Hilbert
con N particulas, debe actuar sobre cada particula del sistema. Llamemos
OW al operador que actiia en el espacio de Hilbert de una sola particula; el
operador O correspondiente a las N particulas debe ser

0=0"2L®.. 9ly+1,00®.. . @ly+...+1,®...00 (3.54)

donde OEI) es el operador que acttia sobre la particula i-ésima. El hecho de
que en la suma anterior, todos los coeficientes sean idénticos, es la consecuen-
cia directa del hecho de que las particulas son indistinguibles, y no podemos
distinguir en una medida si un cierto conjunto de ntimeros cuanticos corres-
ponden a una u otra particula del sistema. La forma (3.54) es por lo tanto la
forma mas general posible de un operador de un solo cuerpo para particulas
indistinguibles.

Para expresar (3.54) en segunda cuantficacién, debemos comenzar por
analizar qué sucede si tenemos un sistema con una sola particula (si no hay
ninguna particula, un operador de un cuerpo es trivialmente nulo). En ese
caso O = O y usando la base completa a podemos escribir

0 =3 la){alOW|8)(8], (3.55)

aMB

y luego utilizamos que |a) = ¢f,|0) para obtener

0 =3 (al0W|B)ck]0)(0]cs. (3.56)
a,B

La interpretacion fisica de esta férmula es bastante simple: el operador cg
destruye una particula en un estado [3; como solo tenemos una particula en
el sistema, nos vemos obligados a ir al vacio, luego, desde el vacio, el operador
cl recrea la particula en el estado a. El resultado neto es que todavia tenemos
una particula en el sistema pero ha cambiado su estado cuantico al pasar del
estado [ al estado «. La amplitud de dicha transicién estd dada por los
elementos de matriz del operador O™ entre los estados 3 y a.

Si en lugar de una particula tuviéramos ahora un nimero arbitrario de
particulas en el sistema, tendriamos que hacer exactamente lo mismo para
cada una de ellas, dejando invariantes los nimeros cuanticos de las demaés,
como sugiere (3.54), y hacer la suma. Un operador que logra esto estd dado
por la expresion

0 = Y (al0W|B)ches (3.57)
a,B
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que es idéntica a (3.56) excepto que no estamos obligados a ir al vacio después
de la destruccion de la particula en el estado (. De hecho, si hay varias
particulas, el operador ccs cambiara el nimero cudntico de una particula
del estado 3 al estado « y dejard intactos los niimeros cuanticos de todas las
demas particulas del sistema. Sin embargo, el operador cs operara en todas
las particulas del sistema y, por lo tanto, hara esa transiciéon para la primera,
segunda, etc. realizando automaticamente la suma en (3.54).

La expresion (3.57) permite asi representar cualquier operador de un solo
cuerpo en segunda cuantificacién, conociendo s6lo la accién del operador O
en el espacio de una sola particula. Notese que las funciones de onda prove-
nientes de la eleccion de la base completa « solo intervienen en el calculo de
los elementos de matriz (a|O™M|B). Una vez que se calculan estos elementos
de matriz, todo el operador se reduce a una combinacion lineal de operadores
de creacion y destrucciéon y, por lo tanto, todos los promedios fisicos se pue-
den calcular mediante las técnicas descritas en la seccion anterior, sin tener
que volver a las funciones de onda. Por supuesto, todos los aspectos de su
simetrizacién o la antisimetrizacion son tenidos en cuenta automaticamente
por la naturaleza de los operadores de creacién o destruccion.

Ejemplos

Comencemos con el operador que mide la densidad de particulas en un
punto 7y, que para una particula se escribe

P () = [ro) {mol, (3.58)

debido a que (¥[pM(7o)|1) = |1 (70)]?. En segunda cuantificacién la forma
del operador dependera de la eleccion de la base completa o que tomemos.
Empecemos tomando la base de autoestados de posicién |r), en cuyo caso,
el operador ¢}, es el operador que crea una particula en el punto r. Usando
esta base y la relacién (3.57) se obtiene

p(rg) = /drdr' (r\r0)<ro|r’)ci,cr/,

= /drd’r’ 5(r —1ro)d(ro — ')clhe, (3.59)

¥

= CpyCry-

La expresion c|, ,Cro €8 particularmente simple de interpretar. El operador
CI,OCTO destruye y recrea una particula en el mismo estado cuantico. Por lo
tanto, no ha cambiado nada en el sistema. Sin embargo, la accién del operador
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cr, dard cero si no hay ninguna particula a destruir en el estado cuantico
correspondiente (aqui una particula en el punto o). El operador ¢l ¢y, da
cero si no hay ninguna particula en el estado cuantico correspondiente y uno si
hay una particula. Por tanto, simplemente cuenta el niimero de particulas en
el punto 7y. Generalmente, el operador clc, simplemente cuenta el nimero
de particulas en el estado «. El operador que cuenta el nimero total de
particulas en el sistema estd dado entonces por

N = /dr che. (3.60)

La generalizacion al caso de particulas con spin es inmediata. Para ello la
base completa serd o = (r,0) y el operador densidad solo actiia en la parte
espacial, por lo tanto

p(l) (T(]) = ‘T0><Ir0| ® ]-spin s (361)
y asi (3.57) da lugar a

p(ro) = Z/d’rdr' (ralro)(ro|r'a’Vel cprgr,

=Y / drdr’ (v — 10)8(1g — 7')8serCh Cpr o (3.62)

_ f T
- C'I"()TC"'OT + CTQiCTOi'

También podriamos calcular la densidad de spin a lo largo del eje z en el
punto ry. En ese caso el operador de una particula es

S§1)<’r’0) = ”l"o) <'I“0‘ (024 SZ, (363)
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y usando (3.57) se obtiene?

S.(ro) =Y / drdr' (rolro) (ro] @ S.|r'o’ycl_co,

= Z<U’SZ|OJ>CI'OUCT‘00/7 (364)

oo’

1
T T
§(CT0TC7‘OT - CTQJ,C"'O\L)'

De manera similar, la densidad de spin a lo largo de la direccion x es

Sz(rg) = Z/drdr’ (rolre)(re| @ Su|r'c’)crot Crior,

= Z<0—’SI‘O—/>CI'OO'CTQU/7 (365)

oo’

1
_ T
- §<CT0TCTO~L + Ci‘oicTOT)7

y para la direccién vy,

Sy(ro) = Z/d’rd'r’ (ro|re)(rol @ Sy|r'c’)cpgt Crrgr,

0,0

= Z<O-|Sy|oj>c;r'oacroo"7 (366)

oo’

i
= §<_Cj«0TCT0¢ + CioicToT)a

Alternativamente, podriamos haber usado la base de los autoestados del
operador momento, |k), cuyas funciones de onda son

(rlk) = \/156“". (3.67)

4Recordemos que las expresiones de los operadores de spin en la base |+) son

S = 5 [ (=1 + 1)+,
Sy = S[-FH =1+ 1)+
5. = [0 (H ~ =)+
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Dado que el spin y la parte orbital son independientes, solo daremos las
expresiones para el caso sin espin. Incorporar el spin se realiza exactamente
de la misma forma que en la base de coordenadas. El operador ¢, ahora
destruye una particula momento k (es decir, en un estado de onda plana con
momento k). La ecuacién (3.57) da lugar a

plro) = Y (klro)(mo|ka)ch, cr.

k1ko
, (3.68)
_ Z e—Zklroe’LkQ'r‘ocLl Chy -
kiko

La expresion (3.68) no es tan simple como (3.59) ya que el operador densidad
no es diagonal en la base de momentos. Sin embargo, tanto (3.68) como (3.59)
representan el mismo operador. Esto nos da una conexion directa entre los
operadores que crean una particula en el punto r y los que crean una particula
con momento k. Comparando las ecuaciones (3.68) y (3.59) se obtiene

Cr Lo (3.69)

1

= ﬁ Z e
k

Esta expresion constituye un ejemplo de una transformacién, en este caso
lineal y dada por una transformada de tipo Fourier, entre operadores de
creacion. Esta transformacion preserva los conmutadores, como puede verifi-
case en forma simple, y por lo tanto constituye un ejemplo de transformacién
candnica. Discutiremos mas sobre este tema mas adelante.

Usando la expresion (3.68) también podemos calcular el ntimero total de
particulas en el sistema:

1 o
N = /er S ethireikerel o,
kiks

= Z 5’61’@202161627 (370)
kiko

= ZCLCIW
k

y si tenemos en cuenta que chk cuenta el nimero de particulas en el esta-

do cuantico k, se obtiene nuevamente que el ntimero total de particulas es
la suma de todos los niimeros de particulas en todos los estados cuanticos
posibles. Finalmente se puede usar (3.68) para obtener una expresién simple
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de la transformada de Fourier de la densidad:

pla) = [ dre i),
—iqr 1 —ik1r _ikor T
= [ dre Q e e Chys

Pk (3.71)

_ T
— Z 5k2,k1+qck1 Cky)
kiko

= Z CL—qck
k

Otro operador importante es, por supuesto, la energia cinética de las
particulas. Para una particula se tiene H(1) = %, y de manera mas general,
podriamos tener cualquier funcién del momento H = ¢(p). Por lo tanto, es
muy conveniente utilizar la base de momentos. La energia cinética se expresa
asi como

H =Y (kile(p)|k2) cklckQ,
kiko

= Z 5k1k2€(k2)c;[c1ck27 (372)
kiko

= Z Ckckv

que tiene la interpretacion simple de que la energia cinética total del sistema
es la suma de el nimero de particulas en cada estado k (dado por cLeg )
multiplicado por la energia cinética e(k) de tal estado. La generalizacién
para sistemas con spin es inmediata y, en general se obtiene

H = Z Ck;o'CkU7 (373)

asumiendo que la energia cinética no depende del espin (en ausencia de aco-
plamiento espin-6rbita). Debemos tener en cuenta que dado que el nimero
total de particulas es N = Y, cJ,rcck, agregar un potencial quimico —u/N no
cambia la forma del Hamiltoniano:

H = Z§ Ve Cro (3.74)

y simplemente reemplaza e(k) por £(k) = (k) — u. A temperatura cero la
energia (k) es cero en el nivel de Fermi, negativa por debajo, y positiva por
encima.
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3.2.2. Operadores de dos cuerpos

Veamos ahora los operadores que involucran dos particulas y como definir
sus elementos de matriz. Es en particular el caso del potencial de interaccion
entre dos particulas

V = ZV(Ti,Tj). (375)
i#]

Definicion
Con un espiritu similar al de los operadores de un solo cuerpo, llamemos

0@ al operador correspondiente que acttia en el espacio de Hilbert de sélo
dos particulas. El operador de dos cuerpos que actia en Hy debe tener la

forma )
0= ZOS} ® L=y ZOS} ® L. (3.76)
1<j k#i,j i#£] k#i.j
para que el operador O® pueda operar sobre cada par de particulas en
el sistema. De manera similar que para los operadores de un solo cuerpo,
los coeficientes en la suma anterior deben ser todos iguales, de lo contrario
significaria que las particulas podrian distinguirse.

Para entender como escribir O en segunda cuantificacion, veamos el caso
en el que hay exactamente dos particulas en el sistema. Debemos definir el
operador O por sus elementos de matiz en el espacio fisico de las funcio-
nes (anti)simetrizadas |a, 3), lo que significa que debemos conocer todos los
elementos

(a, 0P|y, 5). (3.77)

Tomemos primero la expresién (3.77) y escribamos |a, §) en términos de los
kets ordenados (3.5) y (3.6)

(o, BOP|, ) = (8, 2|06, ), (3.78)

aqui la igualdad se debe a que simplemente estamos intercambiando particu-
las, y por lo tanto obtenemos

(o, BOP], ) = (av, B|OP|7, 6) £ (o, BJOP)]5, ). (3.79)

Ahora deberiamos encontrar en segunda cuantificacion un operador que re-
produzca estos elementos de matriz y, por supuesto, funcione para N particu-
las en lugar de dos. Se verifica que

1
O =3 3 (. Bl0Py, d)clcheses, (3.80)
a,B,7,0
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funciona tanto para fermiones como para bosones. No demostraremos esta
relacion en general, lo cual puede hacerse calculando los elementos de matriz a
ambos lados, sino que simplemente comprobaremos que funciona para N = 2
particulas. Calculemos, a partir de (3.80), los elementos de matriz

1
(@0, BolOlo, do) = ) Z (0475‘0(2)’% 5)(%,50\03020567\70,50) (3.81)
a,B,7,0

Como |ay, Bo) = cf,, cgo|0) tenemos que calcular promedios de la forma

<O|Cgocaoch}§c§cchcho|O> (3.82)
lo cual puede realizarse mediante la técnica que discutimos antes, consistente
en llevar hacia la derecha a los operadores de destruccion para que actien
sobre el vacio. Esto da

(0lesnCanclichesey el b 10) = [Sag.adp0.5 % Gao,8080.a) (0200506 = 090.60504]
(3.83)
El signo + es el habitual para los bosones y el — para los fermiones. Fisica-
mente significa que cuando los operadores de destruccion actian en la forma

cs5¢+|705 00), (3.84)

tienen que destruir las dos particulas en los dos estados cuanticos posibles
y asi 0 tiene que ser uno de los estados y v el otro con el signo adecuado
dependiendo de la (anti)simetria de la funcién de onda. Usando (3.83) en
(3.81) de hecho recuperamos los mismos elementos de matriz que (3.79).

Fisicamente, la férmula (3.80) tiene una interpretacién similar a la de los
operadores de un solo cuerpo. El término CLCEC(;CW destruye dos particulas
con los nimeros cuanticos v y 9, para esto es necesario que el sistema con-
tenga dos particulas (que es lo que debe ocurrir para que un operador de
dos cuerpos pueda actuar). Luego recrea las dos particulas con dos nuevos
numeros cuanticos a y . La amplitud para este proceso esta dada por los
elementos de matriz del operador O® en una transicién donde la primera
particula va del estado v al estado a y la segunda del estado 0 al estado 3. El
elemento de matriz se escribir para kets ordenados (son kets producto y por
lo tanto més simples); los operadores de creacion y destruccién se encargan
de todas las permutaciones y de realizar esta transiciéon para cualquier par
de particulas en el sistema.

Ejemplos

La interacciéon mas comun entre los electrones es aquella que depende de
la distancia entre las dos particulas. Los dos operadores de tal interaccién
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son, por lo tanto,

0% = V(# — ), (3.85)

donde 71 y 75 son los operadores que miden la posicién de la primera y la
segunda particula respectivamente. Excepcionalmente utilizaremos aqui la
notacion con el sombrero para indicar que son operadores. Por ejemplo, para
la interaccion de Coulomb es

2

V(r) (3.86)

Aregr’

pero otros tipos de interacciones como una interacciéon local V(r) = Ud(r)
también son opciones posibles. Mantendremos V' como funcién general en lo
que sigue.

Para expresar el operador en segunda cuantificacién, tenemos nuevamente
que realizar la eleccién de la base. Debido a que el operador V(7 — 73) es
diagonal en la base de posicién, comencemos con ésta. Usando (3.80) y el
hecho de que « es la base de posiciones, obtenemos

T3T4

1 R ~
V = 5 /drldrgdrgdm (r3ry|V (71 — Tg)"f'l'f'g)CT cf CryCry s

1
= 5 /dTldngngT4V(7“1 — 7”2)5("“3 — ’I"1)(5('I”4 — TQ)CT C-r CryCrpy, (387)

731y

1
= 5 /d’l“ld’l"g V(T’l — TQ)CIalci»Qc'rchl-

Si se incluye el espin, la base completa se convierte en a = (7, 0) y como el
operador V(7 — 73) es la identidad en el sector de espin, se obtiene

1
V=5 [ drdrVin - o)l ol CraoyCrion (3.88)

o102

La expresion (3.88) puede escribirse en una forma maés familiar utilizando
las relaciones de (anti)conmutacién para fermiones

i | i

C'I‘1a’1 C”'20'2 c"’20'2 07"10'1 = _07'10'1 C’I‘QUQ C"'10'1 07’20'2 )

|

_ _ T
= —Cpioy (57‘1701;7'202 07'10'101‘20'2)67’20'27

.|.

= _5r1,crl;rzazcrlalcrm + Cry 6, Cri01 Cryoy Craoas

(3.89)

= _6T1,01§7‘202p01 (rl) + Poy (Tl)pUQ (Ir2>7
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(para bosones se obtiene una expresion similar, con signo +). El segundo
término da lugar a la expresion

1
V=53 [ drdra V(e —r2)ps, (71)pa, (ra), (3.90)

0102

que es la forma familiar de la interaccion entre dos densidades de particulas
(o cargas) en dos puntos diferentes. La diferencia es que ahora los p son
operadores que miden la densidad en lugar de variables clasicas. El primer
término se reduce a

Z/drV(’r = 0)po, (r1) =V (r =0)N, (3.91)

que es simplemente un término de potencial quimico. Téngase en cuenta que
puede ser infinito para algunas interacciones, como la interacciéon de Cou-
lomb. Este primer término esta ahi para corregir el hecho de que la expre-
sion (3.90) contrariamente a (3.88) no contiene solo la interacciéon entre dos
particulas diferentes. Efectivamente, (3.88) tiene dos operadores de destruc-
cion a la derecha, lo que significa que los operadores solo pueden actuar en
estados que contienen dos particulas. Por el contrario, (3.90) es de la forma

cf Ch oy Cracas (3.92)

1‘10107‘101
y por lo tanto puede actuar incluso si solo hay una particula en el sistema.
Por lo tanto, contiene una falsa “autointeraccion” de la particula consigo
misma. Es esta interaccién la que conduce al potencial quimico (3.91) que
debe incluirse adecuadamente junto con (3.90). No obstante, si se fija el
nimero de particulas del sistema, entonces esta modificacion es irrelevante
ya que simplemente se absorbe en una re-definicion del potencial quimico y
se puede usar (3.88) o (3.90) indistintamente.

Reescribamos ahora la interaccién en la base del impulsos. Usando (3.80)
y una base a = (k, o) se tiene

1 A
V = 5 Z(kSO':S; k404|V(T1 — 7"2)|’€10'1, kQUg)CLBUsCL4a4ck2020k101, (393)

kio1,k202,

k3og,kaoq
Lo que sigue es calcular un elemento de matriz que involucra operadores
de posicién en una base de estados de momentos. Esto se realiza, como es
habitual en mecanica cuantica, insertando resoluciones de la identidad en el
espacio de coordenadas

1- /dryr><r|, (3.94)
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y utilizando la funciéon de onda plana (3.67). Se obtiene

V= 1 Z drldrze—i(k3r1+k4r2)v(r1 . ,’,,2)ei(k:1r1+k21‘2)
20?2 A7
kikoksky

i i
X Ck3010k40'20k2‘726k510'17 (395>

A continuacién aprovechamos que el potencial depende de la diferencia de
coordenadas de las dos particulas y cambiamos a las variables de centro de
masa R = (r; + r3)/2 y coordenada relativa » = r; — ry para obtener

V = % Z dR ei(k1+k2*k3*k4)R / dr V(T)ei(klfkgfngrk:A;)r/Z
2Q)

o102
kikoksky

T T
X Ck3016k40'26k20'20k10'1 (396>

Finalmente, integramos en r y R,

1
= 20) E : 5k1+k2,k3+k4v(q = ks — kl)cL3ach4o.20k20—ZCklo-l, (397>
01092

kikoksky

V

Comentemos brevemente esta expresion. La integracién sobre R da lugar al
factor O, tk, ks+k, QUe expresa la conservacion de los momentos de las dos
particulas antes y después de la interaccién. Esto es consecuencia directa del
hecho de que hemos elegido un potencial de interaccion que es invariante
frente a traslaciones V(ry — r3) y, por lo tanto, el momento total (ki + kq) y
ks + k4) debe conservarse. La integral sobre la coordenada relativa conduce
directamente a la transformada de Fourier del potencial de interaccién con
un vector de onda que corresponde al momento transferido de una a otra
de las particulas durante la interaccién. Finalmente, se puede reescribir el
operador V' teniendo en cuenta la restriccion Ok, 4k, kg+k, COMO

1
V = 50 Z V(q)cLl+q7achQ—q7UgCk20'20k10'1 (398)
20 kikag

0102

que se representa graficamente como se muestra en la figura 3.2

3.3. Resolviendo con segunda cuantificacién

Ahora que tenemos las herramientas para expresar todos los operadores
que necesitamos en segunda cuantificacion, ya sea para el Hamiltoniano u
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5 B kio; k3o

(aB|V]v9) V(ks — k)

Y «@ kQO'Q k40’4

Figura 3.2: Visualizacién pictérica del término (3.98). Cada operador de des-
truccién esta representado por una flecha entrante, cada creacién por una
saliente. Uno ve que la interacciéon puede verse como la dispersiéon de una
particula que va del estado ky0; al k1 +q, 01 con g = k3 — k4 por otra que va
del estado kooq al estado ko —q, 05. La amplitud de estos elementos de matriz
es la transformada de Fourier del potencial de interaccién V(q). Dado que el
potencial es invariable por traslacion en el espacio, el impulso se conserva a
lo largo de la interaccion. Dado que el potencial no depende de los grados de
libertad del espin, la interaccién conserva individualmente el espin de cada
particula. Esta representacién se conoce como diagramas de Feynman. Es
extremadamente util cuando se construye la teoria de la perturbacion.

otros observables fisicos, y que sabemos calcular promedios de un ntmero
arbitrario de tales operadores de creacion y destruccion en el vacio, podemos
preguntarnos cémo resolver en la préactica un problema cuando conocemos
el Hamiltoniano. En el esquema usual de la mecanica cuantica, escribimos la
ecuacién de Schrodinger y, a partir de ella, encontramos tanto los autovalores
como las autofunciones, pero la esencia misma de la segunda cuantificacion es
evitar tener que lidiar con la funciéon de onda, por lo que queremos seguir otra
ruta para obtener tales cantidades. Como hacer esto es lo que examinaremos
ahora.

3.3.1. Autovalores y autoestados

Veamos primero si podemos encontrar los valores propios o vectores pro-
pios de algiin Hamiltoniano simple. Comencemos con un Hamiltoniano cuadrati-
co general

d
H=> Aclc, (3.99)
(0%
donde « es una base completa y los coeficientes A, son niimeros arbitrarios.

Varios Hamiltonianos de sistemas fisicos tienen tales formas, por ejemplo, la
1
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energia cinética de un sistema de particulas (3.73) y (3.74). Para Hamilto-
nianos cuadraticos y diagonales de la forma (3.99) el problema esta resuelto.
De hecho cada vector de p particulas de la forma

a] "2 a3

cl el ...ch|0> (3.100)

es un vector propio de H con autovalor
E= Z A; (3.101)

Para mostrar esto, ilustremos el calculo en un estado de dos fermiones |¢) =

¢l ¢l 10) (se puede realizar un célculo andlogo para bosones):

Hcal a9 >: (Z AacTaca> a1 a2|0>
= Z Aaclz<5a,a1 - cLlca)cLQ|0>,
= Aalw ZA CL Llca ! |0>
= Aa1|¢ ZA Ca o<1 ozaz - CTO(QCOC)|0>’

= Aa1‘w> - a2 a2 a1’0>

(3.102)

= Aoz1w> + Aaz’w>'

La fisica de este resultado es simple de entender. El operador n,, = ¢l c, no
es otra cosa que el niimero de ocupacion, y cuenta las particulas en el estado
a. Asi, si en [¢) hay una particula en tal estado devolverd 1 y la energia
correspondiente se contara en H.

Asi vemos que si tenemos un Hamiltoniano que esta en una forma cuadrati-
ca diagonal como (3.99) entonces podemos obtener todos los valores propios
y vectores propios del sistema. A temperatura cero el estado fundamental
consistird simplemente (para los fermiones) en ocupar todos los estados con
la minima energia posible segin el niimero de particulas en el sistema.

= ﬁcgim), (3.103)
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3.3.2. Valores de expectacion térmicos

A temperatura finita también podemos calcular los promedios de muchos
operadores. Un caso importante es el operador que da el niimero de particulas
en el estado a,

Tr {e‘ﬁHch cap}

T _
<Cap00<p> - TI' [e—ﬂH] )
T (3.104)
D (7S P ,n9|675 2a A“C“c‘*cgpc%ml, c,ng)
- _ T
DT (/PP 1703 e B Aaalalp, . ng)

Usando el hecho de que (tanto para fermiones como para bosones) {cgca, Cv} =

0 si o # v y una relacién similar para cL, vemos que el término e ?# se fac-
toriza en la forma

Q
e=PH = [ e PAwichsces (3.105)
j=1

Como en la traza cada término n; es independiente, la media también se
factoriza, y el numerador se convierte en

(Z(nap]e5A&pcfapcapcl[pcap\nap>) 11 (Z(naj|e_ﬁA“JCLjCO‘J‘|naj>) . (3.106)

Tap J#p \"ej

Todos los términos con j # p son idénticos en el numerador y el denominador
y se cancelan entre si. La traza se reduce entonces a

!
Ym0 e PAapcapcapct ¢ Ip
(cf, cap) = = p | o] “">, (3.107)

Z Na efﬂAapCLpCap Ne
Tlap P D

lo cual es bastante obvio fisicamente. De hecho, dado que el Hamiltoniano es
diagonal en «, sélo el estado «y, puede contribuir al promedio de un opera-
dor que solo involucra al estado c,. Como chcap|np> = n,|n,) simplemente
obtenemos

Znap e_ﬂAapnPnp

“BA,
Znape BAapnp

<ch0%> = (3.108)

Hasta ahora todo lo que hicimos es independiente de tener bosones o
fermiones. Sin embargo, el resultado final dependera de cudles sean los valores
permitidos de n,. Para fermiones solo n, = 0 y n, = 1 estan en la suma, y

de este modo
e_BAozp 1

(ch, cap) (3.109)

T 14e P 14 Py
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y se recupera el factor de Fermi. Vemos que este es un resultado totalmente
general (no limitado a autoestados del impulso) para Hamiltonianos bilineales
y se esta en equilibrio térmico.

Para bosones n, = 0,...,+00, y asi la suma se convierte en
i 0 NS frpa
<Ca COép> = _710g e Prriiep )
! aﬁ npzzo

0 | [ 1

Y] Og 751404
0f "Ll —e e (3.110)
e_BAap

S 1 — e Py

1
eBAap — 1’

y se recupera el factor de Bose.

3.3.3. Transformaciones candonicas

Con Hamiltonianos cuadraticos diagonales podemos calcular entonces
esencialmente cualquier valor de expectacion o cantidad fisica que se necesite.
Por supuesto, en general, el Hamiltoniano del sistema no sera ni cuadratico ni
diagonal. Entonces, resolver en segunda cuantificacion significa esencialmente
que tenemos que encontrar una transformacién de los operadores ¢ y ¢' que
lleven al Hamiltoniano en una forma diagonal cuadratica. Aunque en princi-
pio cualquier transformacion es posible, no todas las son buenas. Queremos
que los nuevos operadores d y d' que son los resultados de la transforma-
cién sigan generando el espacio Fock. Significa que sélo podemos considerar
transformaciones que conserven las relaciones canénicas de conmutacién. Por
supuesto, encontrar tales transformaciones es, en general, una tarea formida-
ble. Sin embargo, hay una clase muy importante de transformaciones cuando
el Hamiltoniano sigue siendo una forma cuadratica, pero no diagonal, que
examinaremos en la siguiente seccion.

Antes de hacerlo, comentemos finalmente que incluso sin resolver el Ha-
miltoniano se puede explotar la libertad de elegir diferentes operadores de
creacion y destruccion para usar una representacion mas conveniente. Como
ya se menciond, se permite toda transformacién que conserve las relacio-
nes candnicas de conmutaciéon. Pongamos un ejemplo sencillo, se veran mas
ejemplos en la siguiente seccion. La transformacién més simple es la trans-
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formacion particula-agujero.

ch
(3.111)
Ca

da7

T
dl.
Para los fermiones es facil comprobar, por sustitucion de los operadores d
verifican las relaciones canénicas de anticonmutaciéon. Por ejemplo

[da, dE]-i— = [CLv cgl+ = dap- (3.112)

Si los operadores ¢, y ¢, respectivamente destruyen y crean un electrén en
el estado «, el operador d, y d también son operadores de destruccién y
creacion de “algo mas”, que también tiene una estadistica fermiénica y por
lo tanto, se puede utilizar para construir un espacio de Fock. En ese caso
particular, el operador d, destruye un hueco en el estado estado « (que es
idéntico a crear un electrén) y el operador df, crea un hueco (que es lo mismo
que destruir un electrén).

Un punto importante al hacer la transformacién es no olvidar modificar
también el vacio. De hecho, el vacio de las particulas d no es el mismo que el
vacio de las particulas c. Se tiene asi |0.) y |04). El vacio de las particulas d
se define como siempre por

da|0d> = 07

para todos los estados «. Es facil comprobar usando la relacién (3.111) que
104) = [T hl0c).

Destruir una particula d sobre este vacio es equivalente a crear una de tipo
c. Pero esto no es posible, porque todos los estados estan ocupados.

Mas generalmente, consideremos un Hamiltoniano cuadratico, no diago-
nal, arbitrario:

Ns
H=3" clAijc (3.113)
ij=1
donde A;; son los elementos de una matriz hermitica A, y Ny es un ntimero
del orden del volumen del sistema, €2, que especifica la cantidad de estados
accesibles de particula independiente. Para simplificar la notacién conviene
escribir en forma matricial:

H=c'Ac (3.114)
donde
&1
C
e=| .| d=(d d - ) (3.115)
CNS
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es un vector de N, elementos, donde cada elemento es un operador de crea-
cién, y su transpuesto conjugado. Obsérvese que hemos introducido la nota-
cién con una barra sobre ¢ para indicar la operacion de transposicién sobre el
vector en conjunto con el dagado de sus elementos. La utilidad de esta nota-
cién quedara mas clara en la proxima seccién. La matriz A, al ser hermitica,
puede ser diagonalizada por una matriz unitaria U,

U'AU = A (3.116)

donde A es la matriz diagonal que contiene a los autovalores de A, A, ..., An

s

y U se construye ordenando los autovectores de A en columnas. Una vez
hallada la matriz U, podemos utilizarla para definir un nuevo conjunto de
operadores d, mediante la transformacion

d="U'e, (en componentes, d,, Z U?.ci) (3.117)

de manera tal que el Hamiltoniano, expresado en términos de los d resulta

H=dU'AUd=d'Ad =" A,d\d,. (3.118)

Es decir, resulta ser de la forma diagonal (3.99).

Una condiciéon importante para que esto funcione es que la transformacion
(3.117) conserve los anticonmutadores entre d, que es el caso debido a su
unitariedad, ya que

|df,,d } ZUzaUﬁ] [cz,cj] ZU]aUﬂj (UtU)ga = 0ap. (3.119)

Una vez hallada la forma diagonal (3.118), el estado fundamental de N
particulas estd dado por (3.103)

F) = T d:Jod (3.120)

donde |04) es el estado de vacio de los operadores d, que satisface
du|04) =0 Vo (3.121)

Para este tipo de transformacion, el vacio resulta invariante, es decir |0.) =
|04). En efecto, debido a que los d estéan linealmente relacionados a los ¢, si
aplicamos algin d, sobre |0.), encontramos

da0c) Z ¢5100) (3.122)
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y viceversa, si aplicamos ¢; sobre |04) también se anula, utilizando la trans-
formacién inversa.

Por supuesto, en general, la matriz A, es de tamano Ny x N; y la diago-
nalizacion serd muy dificil de realizar analiticamente. Sin embargo, hay casos
simples donde puede hacerse. En especial, obsérvese que la transformada de
Fourier (3.69), utilizada para relacionar la base de coordenadas, donde la
energia cinética de los electrones en una caja es no diagonal, con la base de
momentos, donde si lo es, es un ejemplo de tal transformacién unitaria.

3.3.4. Ejemplo: Modelo tight binding

Veamos otro modelo que puede resolverse mediante este tipo de transfor-
maciones: el Hamiltoniano de ligadura fuerte o tight-binding que vimos en la
seccion 1.11. Adicionalmente, esto nos permitira escribir este Hamiltoniano
en segunda cuantificacién. Los estados en cada sitio |i) proporcionan una
base completa y, por lo tanto, podemos definir los operadores de creacion y
destruccion asociados con él, es decir, cj es el operador que crea una particula
en el sitio 7. Estos son los andlogos a los ¢, utilizados al estudiar operado-
res de un cuerpo, s6lo que en un espacio discreto. La expresion en segunda

cuantificacion de H se escribe

H =3 (i|HVj)cle;,

2
donde HM es el Hamiltoniano (1.37). Obtenemos asf

H:eZc;rci—thch. (3.123)
i (.4)

El segundo término describe un proceso en el que una particula en el sitio ¢
reaparece en el sitio vecino j y viceversa. Si bien es posible hacer todo este
analisis en dimensién arbitraria, para simplificar la diagonalizacién particién
supondremos que los sitios electronicos se acomodan en un anillo, e identifi-
camos el sitio en la posicion N + 1 con el sitio 1, es decir, introducimos un
operador de destruccion fermionico adicional

CN,+1 = Cq, (3124)

y su complejo conjugado. Este Hamiltoniano es obviamente cuadratico pero
no diagonal. En el lenguaje de (3.113) corresponde a una matriz tri-diagonal.
Para diagonalizarla, primero pensamos en la fisica del problema: dado que
el Hamiltoniano es invariante frente a traslaciones, el momento debe ser un
buen nimero cuantico, y vamos utilizar entonces una combinacion lineal de
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operadores de creacién y destruccion ¢; que corresponden a su transformada
de Fourier. Este es exactamente el mismo razonamiento que el que conduce
a (3.69), sélo que ahora utilizaremos una transformada de Fourier discreta.
Tratados simplemente como una combinacion lineal de operadores, podemos

definir
1 Ns—1

— > e
VN i3
donde hemos usado un nombre diferente d para enfatizar que se trata de nue-

vos operadores, e introducido las posiciones r; = aj donde a es la constante
de red, y

df = iyl (3.125)

2mny
- )
Nga
Se puede comprobar inmediatamente que los operadores d; cumplen las re-
glas canénicas de conmutacion. Verifiquemos uno de los anticonmutadores y
dejemos las otras relaciones como ejercicio:

1 . )
EAAN e feancl]
5 ij
| [
— ﬁ Z e 7 nezqr] 51']'7
S i (3.126)

1 .
_ 7} : i(k—q)r;
fr— [ y
N, ;

nyg € 7.

= Oy

Los operadores dj son, por lo tanto, buenos operadores de Fermiones. Hay
exactamente Ny operadores diferentes (el tamano del espacio de Hilbert no
puede cambiar) y k estd confinado dentro de la primera zona de Brillouin
k € |—m/a,m/a] como se discuti6 para la solucién en primera cuantifica-
cién. Ademads, como resulta obvio de la definicion (3.125), [04) = [0.). La
transformacion (3.125) se invierte facilmente

1 )
T —ikr; gt
Cj = ﬁ Ek € dk? (3127)

y asi, reemplazando los ¢; en (3.123) y haciendo un poco de algebra, se
encuentra

H=¢> did,— " 2t cos(ka)d}dy. (3.128)
k k

Ahora que el Hamiltoniano es diagonal, podemos usar los operadores dy para
obtener el estado fundamental y los diversos promedios. A nivel fisico, hemos
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utilizado que, dado que la cantidad de movimiento se conserva, se pueden
diagonalizar simultdneamente los operadores de impulso y el Hamiltoniano.
Por lo tanto, el Hamiltoniano es una matriz diagonal por bloques en la base
a los autovectores del operador impulso. Como esta base es de tamano N,
(N, diferentes k valores en la primera zona de Brillouin) nos queda para cada
valor de k una matriz de 1 x 1 a diagonalizar, con lo cual el problema esta
completamente resuelto.

3.3.5. Términos anémalos

Estudiemos ahora un Hamiltoniano més general, que incluya términos de
la forma c'c;. Este tipo de términos se denominan anémalos, y hacen que en
el Hamiltoniano no conmute con el operador N y por lo tanto no conserve
el nimero de particulas, y por lo tanto no tiene una expresion simple en
primera cuantificacion. Tipicamente aparecen cuando uno considera teorias
para superconductividad, tales como el llamado Hamiltoniano de Bardeen-
Cooper-Schrieffer (BCS) que estudiaremos més adelante. Consideremos el
Hamiltoniano

N N
s 1 s
H = Z C;[AijCj + 5 Z CiBZ'jCj + h.c. (3129)
ij=1 ij=1
siendo i,j = 1,..., Ny, A una matriz hermitica (A" = A), y B una matriz
antisimétrica (B' = —B), ambas condiciones impuestas por la necesidad de

que H sea un operador hermitico en conjunto con la estadistica fermiéni-
ca. Para escribirlo en forma matricial, debemos considerar ahora que existen
estos dos tipos de términos. Si buscamos utilizar una sola matriz, no sera
posible que su dimensiéon sea N,. La forma usual de hacerlo consiste en intro-
ducir la notaciéon de Nambu, en la cual se define un vector o spinor de Nambu
de dimensién 2N, cuyos elementos son tanto los operadores de creacién como
de destruccion:

V= (c e, a o oew) (3.130)

en conjunto con la matriz

A -B
H = <B _A*>, (3.131)

que se conoce como Hamiltoniano de Bogoliubov-de Gennes. Con estas defi-
niciones el Hamiltoniano se escribe

1
H= 5@*1{@ + Ey (3.132)
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dénde .
Ey = —5 tr A, (3.133)

Obsérvese que a matriz H contintia siendo hermitica (para mostrarlo
es importante la antisimetria de B) y por lo tanto diagonalizable mediante
una transformacion unitaria M de 2N, x 2Ng, de manera similar a como lo
realizamos en la seccion anterior, de manera tal que

MYHM = H = diag(Ay, ..., An., Ay, ..., Ax), (3.134)

donde A, y A, son los autovalores de H. El espinor transformado ® se
relaciona con el sin transformar a través de M:

= MU, (3.135)

Y entonces el Hamiltoniano, en términos de los nuevos operadores, resulta
Lot agt Lot A
H:§<I>MHM<I>:§<I> H? (3.136)

Si escribimos al vector ® en términos de un nuevo conjunto de operadores
N, Eq en la forma

of = (gl -k, & - €l) (3.137)

el Hamiltoniano se escribe

1Y

=1

1Y
Aol + 5 3 Aatléa (3.138)
a=1

Al ser unitaria, la transformacién M preserva los conmutadores y es por lo
tanto canodnica, pero observemos que ahora la transformacion mezcla a los
operadores de creacion y destruccion.

La forma (3.138) del Hamiltoniano posee dos términos y a simple vista
daria la impresién de que como consecuencia de la existencia de términos
andémalos debimos duplicar el nimero de grados de libertad. Veamos que
esto es solo asi en apariencia.

Observemos que H satisface la relacion

H=—0,H"o,, (3.139)

donde la matriz de Pauli o, actia sobre la estructura de Nambu (3.131),
de 2 x 2. Esta transformacién constituye una simetria de H, y resulta ser
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antiunitaria®. La transformacién (3.139) no es mds que la simetria particula-
hueco. Esto implica que si ¢ es un autoestado de H con autovalor A,

Hy = M,

entonces ¢* es autoestado de H* con el mismo autovalor (que es real, dado
que H es hermitico):

y entonces el vector ¢/ = 0,1* también es vector de H con autovalor —A\:
HY)' = HoW* = —0,H*0,0,0* = —0,H*{* = —\o0" = —\).

Dado que son vectores distintos, de otro modo tendrian distinto autovalor (a
menos que A = 0), si escribimos al autovector en la forma

-0

donde u y v son vectores columna de N, elementos, entonces

o= ()

La matriz M, que posee los autovectores en columnas, posee entonces la
forma
M = (“ ”*>, (3.142)
v

donde u y v son matrices de Ny x Ny.En otras palabras, la forma (3.142) es
consecuencia de la simetria particula-hueco de H, ec. (3.139). Los autovalo-
res A, puede tomarse como A, = —A, y la forma diagonal de la matriz de
autovalores se escribe entonces

H = diag(Ay, ..., Ay, —Ay, ..., —An.), (3.143)

SUna transformacién antiunitaria K entre vectores |z), |y) de un espacio de Hilbert (|y) =
K|x)) es un operador antilineal (es decir, tal que K(a|z) + bly)) = a*K|z) + b*Kly) con
a,b € C) tal que transforma el producto escalar en el producto escalar conjugado:

(x| KT K ly) = (zly)". (3.140)

Este tipo de operadores, al igual que los operadores unitarios, no cambia el resultado de una
medida, es decir que
(| KT Ky)[* = |(z]y) . (3.141)
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donde A, son todos positivos. Observemos ademas la transformacion (3.135)
se escribe explicitamente

N = UiiC; + U;}-C}L-, (3.144)
fz‘ = V;5C4 + u:jC}L-, (3145)

pero entonces & no es mas que el adjunto de n;, & = nj , v el Hamiltoniano
se escribe

Ns
H =" Ajnin; + Const. (3.146)

j=1
De modo que sélo tenemos N, grados de libertad, como se esperaba fisi-
camente. Para diagonalizar el Hamiltoniano debimos duplicar el nimero de
grados de libertad introduciendo huecos, pero vimos que esta duplicaciéon es
espuria. Sin embargo, en determinadas circunstancias puede ser util mante-
ner la duplicacion, pero en ese caso debe recordarse que el par de niveles
con energia +A; no corresponde a dos estados cudnticos distintos, sino a uno
solo, que es una superposicion coherente de electrones y huecos —una cuasi-
particula de Bogoliubov, el bogoliubon: tiene una energia de excitacién A,
y es creada por el operador 77; = wj¢; + v;;¢;. Llenar el estado asociado en

energia —A; es equivalente a vaciar el estado de energia positiva.

El Hamiltoniano (3.129) no conserva el nimero de particulas, ya que no
conmuta con N = 7, c;cj, aunque conserva el nimero de cuasi particulas,

M=%, n;nj. Como consecuencia de que la transformaciéon M mezcla ope-

radores ¢; y c} el vacio no es invariante, tenemos un vacio |0.) que satisface

¢;|0.) = 0, y un vacio |0,) que verifica 7;|0,) = 0. Encontrar la relacién entre
ambos puede ser complicado y depende de la forma de A y B. Lo haremos en
el caso especifico del modelo BCS mas adelante. Una vez determinado [0,,), el
estado fundamental de M cuasiparticulas se escribe como un mar de Fermi
de bogoliubones:

M
|F) =[] nll0,). (3.147)
J
cuya energia resulta
M
E = ZAj (3.148)

j
El estado de minima energia para un cierto potencial quimico es entonces
aquel con M = 0 cuasiparticulas, es decir, el vacio mismo de los Bogoliubo-
nes.
Si bien el nimero de particulas no es una cantidad conservada, el operador
de paridad global,
P= (-1 =¢™ (3.149)
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conmuta con H, y por lo tanto los autoestados de energia poseen paridad
fermionica definida +1.

3.4. Gas de Fermi

Desarrollaremos las propiedades basicas de un gas de N fermiones no
interactuantes de masa m, utilizando las técnicas de segunda cuantizacion.
Esto lo haremos no solo por tratarse de un buen ejercicio, sino también
por la enorme utilidad que tienen los resultados que obtendremos, como
una aproximacién de orden cero, en el tratamiento de sistemas de muchos
fermiones. Podemos imaginarnos que estos fermiones estan en una caja ctibica
de volumen V', que eventualmente puede ser muy grande, y que se imponen
condiciones de contorno periddicas. La base de particula independiente se
refiere, por lo tanto, a los autoestados de de impulso hk y proyeccion de spin
o= :I:% :

Pr(rs) = Le““‘xa(s); k={k, o} (3.150)
VQ

con energia e, = h*k?/2m y degencrados en spin o = jzl

Para construir el estado fundamental del gas de Ferml ocupamos a cada
uno de los estados disponibles de particula independiente méas bajos con un
fermion, de acuerdo con el principio de exclusion de Pauli. Esta ocupaciéon
es de a pares ya que las energias de particula independiente no depende de
spin y por cada € tenemos un fermion con o = —I— y uno con o = —s. Los
niveles llenos conforman el mar de Fermi y el ﬁltimo nivel lleno, con 1mpulso
kr y energia ep = %, se llama nivel de Fermi o superficie de Fermi (en el
espacio de los impulsos). La estructura del estado fundamental es:

II <o) (3.151)

kékF,O'

La energia del nivel de Fermi se halla de la condiciéon que el niimero total
de particulas N sea,

ik <k
N = anngﬂc,wc,w\F 22{ 0 ;k‘>k‘§}

(3.152)
= 2 Z 1= 2 Z O(kp —
k<kp
Convirtiendo la suma en la integral, 7. e.,
1 0(kp — k)k2dk /’fF k2dk?
— Y O(kr —k ds) = — 1
a etk =)~ [T , o (3.153)
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se obtiene,

9) kr k3

N=— k2dk = 50 3.154

7r2/0 372 ( )

0 sea,
N K
= — =" 1
Po Q  3r? (3.155)

donde py es la densidad media de particulas.
Calculemos ahora la densidad de particulas en el estado fundamental, que

p(r) = > (Flp(ro)|F) =3 (Flcl,crol F), (3.156)
0 _ 1 ir-(k'—k) T
p(r) = q > % e (F|CppCrro| F). (3.157)

El ultimo valor medio seréa nulo a menos que k = k', ya que si removemos
del estado fundamental una particula con impulso fik’, podremos volver de
nuevo a ese estado sélo creando una particula con el mismo impulso. Por lo
tanto,

<F|01Tka’a|F> = O/ Mo (3.158)
' 1
p(r) = 5 2 ko = Po. (3.159)
ko

Como era de esperar, la densidad del gas es uniforme. Una cantidad muy ttil,
como veremos mas adelante, es la matriz densidad de una particula definida
como

Go(r — 1) = (Flcl cpo|F), (3.160)

es decir, la amplitud de remover del estado fundamental una particula que
esté en el punto 7’ con spin o para luego ponerla de nuevo al estado funda-
mental, pero ahora en la posiciéon 7. Utilizando (3.69),

1 ”
Cro = —= Y €7 Cpg, (3.161)
Vay
y (3.150) el calculo es:
1 ; / !
Golr —7) = 5 2 e T Fch e | F)
L (3.162)
_ 6 Z efzk:-r+k: r 5k’knko-7
k!
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Figura 3.3: Funcién de correlacién C(u) en linea punteada, y 1 — C?*(u) en
linea solida.

1 : , MRk :
Go(r—7') = q > et r=r) / ik (r=r) (3.163)
0

k<kp

Evaluando la integral se tiene®

G, (r—r') = %C(k)F|T—T/|>; Clu) = ;(sin U—UCOSU) = 3‘71u<u). (3.167)

A la cantidad C'(kp|r —7'|) se la denomina funcion de correlacion y tiene

las propiedades de tener un méximo para r = 7', con C'(0) = 1, y de decaer
rapidamente para kgp|r — 7’| > 1 (ver Fig. 3.3).

Vamos a calcular ahora la probabilidad de hallar una particula del sistema

en el punto 7' (con spin ¢’), sabiendo que lay otra particula en el punto r

(con spin o). Esto significa que primero removemos del sistema una particula

que estd en ro, dejando las N — 1 particulas en el estado |ro) = ¢l |F).

Posteriormente, calculamos el valor medio de la densidad p(7’,0’) en ese

6

keodk o, , 1 [hr L
Gc,(rfr’):/ e ik(rr) kzdk/ e thIr =rlu gy, (3.164)
0

(2m)? 4n? 0 -1
11 kr
TR — r/|/ kdk sin k|r — 7’| (3.165)
™Ir = 0
1
= ————(sinkp|r — | — kp|r — 7’| coskp|r —r'|). (3.166)

277r2\r—r’|3
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nuevo estado. Es decir, evaluamos

2
(p20> go’a'/<T - T/) = <F|C']IL'UCI"U’CT"0"CT'U|F>- (3168)

Utilizando la representacion en el espacio k, (3.69), tenemos

2
<p20) oo’ (T_T/) = ig Z e—ik1~r€—ik2~1"6ik3~’r"€ik4-'r‘ <F|CJILlaCJIchU’Ck3U’Ck4U|F>'
kikakska

(3.169)
Dado que cg,|F) = 0, si k > kp (i. e., no podemos destruir particulas que no
estan), vemos de inmediato que la sumatoria estd restringida a los estados
con |ks|, |k4| < kr. Ademas, el valor de expectaciéon se anula a menos que
las particulas que repongamos tengan los mismos impulsos y espines que las
particulas removidas. La forma de hacerlo es emplear los anticonmutadores,
y escribir

(Flclelency| F) = (Flef(0au — cuch)eu|F) = S3u(Flekes|F) — (Fleleucle | F)
= Gx s — O (3.170)

con k, A\, i, v < kp, y por lo tanto”

2 kr
Po / 1 —ik1r _—ikor' _iks-r _iks-r
( Yoo (P —7T') = 5 Y ekt otk T T (5 ks Okikes — O Oy ky Okeakes ) »

2 k1kakska
(3.171)
L (1) ik (/)
-5 S [1 — § e ik (r ) ik (r —”] : (3.172)
kiks
q\2
N _ , 2 !
= <2N> Voo Go(T — 1) (3.173)
donde hemos utilizado (3.163). Finalmente de (3.167) se tiene
Goor (T — 1) =1 = 05 C*(kp|r — 7'|). (3.174)

La cantidad g,/ (r—7") se denomina densidad de correlacion para dos particu-
las y en la Fig. 3.3 se ilustra su comportamiento.

Veamos el significado fisico de esta densidad de correlacion. Si los espines
son diferentes, la probabilidad relativa de encontrar las particulas en r y 7’

"Notemos que, como las sumas se extienden solo sobre estados ocupados, no se pueden
usar relaciones de completitud.
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no depende de la distancia |7 —r'|. Esto es lo mismo que se obtendria clasica-
mente para un gas de particulas que no interactian entre si. En cambio, si los
dos electrones tienen el mismo spin habra una reduccion muy grande en la
probabilidad de hallarlos a distancias menores que kx'. Es decir que el prin-
cipio de Pauli produce correlaciones muy importantes sobre el movimiento
de particulas con el mismo spin. Ocurre como si los fermiones con la misma
orientacién de spin se rechazaran entre si. Esta “repulsion” efectiva proviene
de la simetria de intercambio de la funcién de onda y no de una fuerza real
entre las particulas. Para separaciones grandes g, (7 — ') se aproxima a
uno, o sea al mismo valor que tienen dos particulas con espines diferentes.

Calculemos ahora la energia del estado fundamental del gas de Fermi.
En particular, vamos a considerar que se trata de un gas de electrones de
densidad media pg, que interactian entre si por medio de la interaccion Cou-
lombiana. Partiremos del Hamiltoniano,

H=T+V (3.175)
donde s
. . . hVv
T = Zi:t(ri); t(r)=— 2mr (3.176)
es el operador para la energia cinética, y
V= lza(ri,rj); (11, 1) = e (3.177)
24 |ry — 7o
es el operador para la energia potencial. Dado que
T = Z gkc;fwckg, (3.178)
ko
la energia cinética serd®
EO = (F|T|F) = geFN. (3.180)

8

X ke dk h2k? P ky 3
FIT|F) = o= enblk —kr) - 20 5 =0 =cepN
(FITIF) =Y ennno = 3wk = kr) — /O @m)® 2m  2mbr® 5

k,o ko
(3.179)

Facultad de Cs. Exactas | UNLP | 111



Materia cuantica - C.A. Lamas, A. lucci (autores)

3.4 Gas de Fermi

Para la energia potencial, podemos utilizar la ecuacién (3.88)

EW = (F|V|F) (3.181)
1
=35 /drdr’@(’r,r’) STUF|chehsgicrrgreng| F) (3.182)

= ; (p20)2 / drdr' o(r,r'") Zgogf(T —r') (3.183)

oo’

= <p20)2/drdr’@(r,r') [2 — C*(kp|r — 7“/|)} ; (3.184)

donde hemos usado (3.174). Escribimos ahora,

EW =EY + EW (3.185)
con 1 9 9
By = / drdr’ |re_pj1 7 (3.186)
' W _ € ,C?(kp|r — ')
E;’ = Y drdr T (3.187)

EE)) representa la interaccion media de las particulas entre si y se denomina
energia directa 6 energia de Hartree, mientras que E} ) es la energia de in-
tercambio y se debe al principio de exclusién de Pauli. Haciendo el cambio

de variables: r — ' y r — ' — 7, también resulta,

Npoe? d
BY = ’)206 v v = 7”' (3.188)
' Npoe? C2(k
EW = _ ’Zfe /dr (ker) (3.189)
T

Los electrones de conduccién en un metal corresponden al gas de elec-
trones que estamos considerando. Notemos que en cualquier situacién fisica
nunca se tiene un gas aislado, sino que hay siempre un ntmero suficiente de
cargas positivas, que hacen que el sistema, como un todo, sea neutro. En una
primera aproximacion, todos los iones positivos dentro del metal o dentro de
un plasma, se pueden reemplazar por un fondo (o “background”) de densidad
de cargas positivas ppe. La autoenergia de ese fondo es:

1 2.2
Q/drdr’|:_p2a,| (3.190)
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que junto con la energia electrostatica media entre el fondo positivo y los
electrones,

2 .2
—/drdr’ ¢ %o (3.191)

7
cancela exactamente la energia de Hartree de los electrones. Por lo tanto, en

primer orden de aproximacion, la interaccion neta en un gas de electrones es
precisamente la energia de intercambio (3.189), que integrando resulta:

3

EW = -2 k. (3.192)
41
Definiendo ahora la distancia media entre las particulas, d, por medio de
4rd?
Q=N 7; , (3.193)

resulta,

2\ 1/3 1
37TQ - (99 19247, (3.194)

es decir que kp' = d/2. Otra longitud caracterfstica es el radio de Bohr,
ap = h?/me?. Introducimos entonces un pardmetro sin dimensiones,

kp =

d
s = — 3.195
== (3.195)
por medio del cual escribimos

3 h2k2 s 2,12 €2
E© = =—- () > 3.196
5 2m 7’2 5\ 4 2a0 7’2 2a0 ( )

N 3 /9m\/3 2 0,916 €

g _ N3 < ) — _N 3.197
! re2m \ 4 2a0 Ts 2a0 ( )

La energfa total (F|H|F), evaluada con una funcién de onda antisimetri-
zada, se denomina energia de Hartree-Fock (HF)

(3.198)

2,21 1 2
EHF=N< 2109 6+m> e

2 T 2ag

De la Fig. 3.4 vemos que para r, = 2 resulta Eyp < 0, lo que indica que
el sistema se torna ligado. El principio de exclusion juega un papel importan-
te en esto, evitando que los electrones con los mismos spines se acerquen y
de este modo hace disminuir su energia electrostatica. Notemos que la apro-
ximacién de HF es solo valida para gases densos (r; << 1) y no para los

metales con 1,8 < ry, < 5, 5.
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0.1
\\\ HF
0 7
= L
~ \ . B
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Figura 3.4: Energfa por particula, en unidades de Ry (e?/2ay), para el estado
fundamental del gas de Fermi.

La energia se puede bajar més todavia por el hecho de que también los
electrones con spines opuestos tienden a separarse, debido a la interaccién
Coulombiana. Esta aproximacién se denomina de fases al azar o “random
phase approzimation” (RPA) y lleva al resultado’

2

+0,0621n 7, — 0,142 4 -- > £ (3.199)
2&0

221 0916

2
Ty Ts

Erpa = N(

que también se muestra en la Fig. 3.4.

9Véase D. Pines, Elementary Excitations in Solids p. 118 y M. Gell-Mann and K. Brueckner,
Phys. Rev. 106, 364 (1957).
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Capitulo 4

Propiedades magnéticas de los
sOlidos

A partir de una teoria basada en la estructura de bandas y el llenado
de las mismas podemos realizar una clasificaciéon de los materiales y saber si
es un metal o un aislante. Sin embargo, esta clasificacién no siempre resulta
correcta. El problema es que hemos despreciado la interaccién Coulombia-
na entre los electrones y en algunos casos esto nos conduce a conclusiones
erréneas. Por otro lado, si queremos comprender el comportamiento de los
solidos debemos ser capaces de estudiar la respuesta magnética de los mis-
mos. En este capitulo nos enfocaremos en presentar algunas nociones basicas
del magnetismo de los sélidos.

4.1. Magnetismo e interacciéon de intercam-
bio

Para campos magnéticos pequenos, la magnetizacion de un sistema es en
general lineal con el campo magnético aplicado.

M = yH.

Cuando la susceptibilidad es positiva (xy > 0) decimos que el material es
paramagnético y en este caso el sistema se magnetiza en la direccion del
campo magnético aplicado.

Cuando la susceptibilidad es negativa (x < 0) decimos que el material es
diamagnético y en este caso el sistema se magnetiza en direcciéon contraria
al campo magnético aplicado. El diamagnetismo es el estado que encontra-
remos habitualmente ya que la gran mayoria de los sistemas biol6gicos son
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diamagnéticos. En contraste con el diamagnetismo y el paramagnetismo, en-
contramos a los sistemas ferromagnéticos donde M puede ser distinto de
cero aun en ausencia de campo magnético externo.

Intentaremos recuperar este tipo de respuesta magnética partiendo de no-
ciones bésicas de la mecanica cuantica. Para simplificar la explicacién omiti-
remos los detalles de la estructura atémica que brinda diferentes contribucio-
nes al momento magnético, en particular, no consideraremos la contribucion
orbital, es decir, no consideraremos los términos de interaccién espin-orbita.
Para simplificar usaremos en lo que sigue h = 1, ¢ = 1. El Hamiltoniano de
un electron en un atomo esta dado por

p2

Hy=—+V(r).
"7 om +Vir)
Al aplicar un campo magnético debemos hacer p — p+eA (recordemos que
aqui ¢ = —e) y el Hamiltoniano sera
1
H=o—(p+ eA)?* + gupS - B+ V(7).

Donde pp = 55 es el magneton de Bohr. En general el potencial vector A es
una funcién de las coordenadas y no conmuta con p. Sin embargo, podemos
hacer uso de la libertad de gauge para elegir el potencial vector y tomar uno
que cumpla con la condicion V - A = 0 y entonces el conmutador sera cero.
Podemos elegir por ejemplo

1
A:§BXT

Con esto, el Hamiltoniano queda en la forma

2

e e
—p-(er)+%|B><r|2+ngS-B

1
H=_—p*+V(r)+

2m 2m

Los dos primeros términos corresponden al Hamiltoniano en ausencia de cam-
po magnético aplicado.

El tercer término se puede reescribir usando la propiedad ciclica x - (y x
z) =z (x X y) como

€ e e

2m

1

Donde usamos que 7(r x p) = L. Luego, el Hamiltoniano completo queda

en la forma )
H:H0+MBB-(L+gS)+2€—m]B x |2,
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El primer término (Hp) corresponde a un electrén en ausencia de campo
magnético externo. El segundo término se lo conoce como el término pa-
ramagnético y corresponde al acoplamiento del momento angular total del
electrén con el campo magnético externo. Cuando un campo magnético ex-
terno es aplicado, el momento magnético del electron se alinea con el campo,
por lo que este término esta asociado con la respuesta paramagnética del
sistema. Recordemos que
m = —gupS.

El dltimo término se conoce como término diamagnético y sera el respon-
sable del comportamiento diamagnético de algunos materiales.

4.1.1. Un espin

Consideremos el caso de un solo espin % sometido a un campo magnético
externo. El Hamiltoniano, como vimos estara dado por

H:g/'LBBS7

donde g es el factor giromagnético (el cual tomaremos como g = 2), S = ga',

o = (04,0,,0,) es el vector de matrices de Pauli y pup = 5 es el magneton

de Bohr (recordemos que para simplificar tomamos A = 1). En este caso no

consideraremos el momento angular orbital para simplificar la discusion.
Los autovalores del Hamiltoniano estan dados por £y = £ugB, (donde

B = |B|) y con ellos podemos construir la funcién de particion
7 = e PB4 ePreB — 9 cosh(BugB).
La energia libre se escribe entonces como
F = —kgTlog(Z) = —kpT log (2 cosh(BugpB))

y el momento magnético por espin estarda dado por

OF

m=—on =B tanh(BupB).

Si estudiamos un sistema de muchos espines que pudiéramos suponer inde-
pendientes podemos escribir la magnetizacién por unidad de volumen como

pupB
M = nm = nuptanh , 4.1
o tanh (20 (11)

donde n = N/V es el ntimero de espines por unidad de volumen. En la figura
4.1 podemos observar el comportamiento de la magnetizaciéon con el campo
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Figura 4.1: Magnetizaciéon como funcion del campo magnético

magnético. Para campos magnéticos pequenos vemos que el comportamiento
es aproximadamente lineal y podemos desarrollar en potencias del campo
magnético y obtener

M:nfﬁ% +O(B3),

y por lo tanto, en el limite de campo cero tenemos que
., OM  np%
lim — = —=.

B—0 OB kgT

La expresion anterior es conocida como la Ley de Curie[l2]. Y en ge-
neral se expresa como x = kg% Esta ley aun se puede observar en sistemas
magnéticos mas complejos y la constante C' aporta informacién de la natu-
raleza magnética del sistema.

A partir de la energia libre podemos calcular también algunas cantidades
termodinamicas por ejemplo en la figura 4.2-a mostramos la magnetizacion

normalizada como funcién de kgT'/(upB). Una vez determinada la magne-

tizacion podemos calcular la energia como £ = —M - B (figura 4.2-b), el
calor)especiﬁco como 92 (figura 4.2-c) y la entropfa como —(%%) p_ce, (figura
4.2-d).

De las figuras vemos que cuando 7" — oo la energia tiende a cero indicando
que los momentos magnéticos se vuelven completamente desordenados.
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El calor especifico de la figura (figura 4.2-b) tiene un méximo cuando
T = (upB)/kp. Esto indica que a esta temperatura es posible excitar térmi-
camente a los espines para que efectiien transiciones entre los dos estados.

La entropia aumenta cuando aumentamos la temperatura, como espera-
mos para un sistema que se desordena.

4.1.2. Dos espines - Interaccién de intercambio
Origen de la interaccion de intercambio

La interaccion de intercambio es una de las principales responsables por
las fases magnéticas de largo alcance que podemos encontrar en los sistemas
magnéticos. Su origen esta intimamente relacionado a la indistinguiblilidad
de las particulas y por ende a la mecanica cuantica. Este es un ejemplo claro
de que aun en fenémenos macroscopicos como la atraccién/ repulsién de dos
imanes la mecénica cuantica puede jugar un rol esencial. De hecho el magne-
tismo es un fendémeno basado en la nocién del espin el cual es intrinsecamente
cuantico. Por lo que el magnetismo en si puede verse como una manifestacién
de la mecanica cuantica.

Consideremos un modelo simple donde tenemos solo dos electrones cuyas
coordenadas espaciales son 7y y 75 y escribamos la funcion de onda del estado
de dos electrones como producto de electrones independientes. Supongamos
que el primer electrén estd en un estado ¥,(r1) y el segundo electrén esta
en un estado 1(7s), entonces la funcién de onda producto podria escribirse
como 1,(r1)1y(7s), sin embargo esta funcién de onda no tiene la simetria
correcta ya que si intercambiamos los dos electrones obtenemos la funcién de
onda (7)1, (72) la cual no es un multiplo de la que tenfamos inicialmente,
es decir, la funcién de onda propuesta no es ni simétrica ni antisimétrica ante
el intercambio de particulas.

Sin embargo la simetria corresponde a la funciéon de onda completa, es
decir la funcién que contenga a la funcion orbital y la parte de espin. Sabemos
que la parte de espin de la funcién de onda puede ser antisimétrica (corres-
pondiendo a un estado de tipo singlete S = 0) o simétrica correspondiente
a un estado de tipo triplete (S = 1). Luego podemos escribir la funcién de
onda completa para los casos singlete y triplete como

Ty = jﬁwa(mwb(m)+wa<r2)wb<n>>><s (4.2)
U = jiwa(mmm)—%(rz)wb(rl)m (4.3)

La energia correspondiente a cada uno de estos estados estara dada por
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M/M,
\a)
0
o 1 2 3 a1 5 FkeT/usB
E
b)
0
0 1 2 3 4 5 FkeT/usB

0 1 2 3 4 5 ksT/upB
S 1
ﬁ?)
0 kBT//lBB
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Figura 4.2: a) Magnetizacion normalizada. b) Energia. ¢) Calor especifico.
d) Entropia.
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el valor de expectacion del Hamiltoniano
Es = / Vi HVUg dPr dPry (4.4)
Ep = / VEHU dPrydry (4.5)

Si suponemos que las funciones de onda de espin estan normalizadas tenemos
que la diferencia de energia entre los estados singlete y triplete esta dada por

Bs—Er = 2 [ ir)dirs) Huulrin(r). frid'rs (L6)

Es importante notar que, aunque el Hamiltoniano no contenga explicita-
mente ningin término dependiente del espin, si la integral anterior (conocida
como integral de intercambio) es distinta de cero, entonces los estados de
espin singlete y triplete tienen diferente energia. Si deseamos estudiar solo
los grados de libertad magnéticos podriamos entonces escribir un Hamilto-
niano efectivo que de cuenta de la diferencia de energia al pasar de un estado
de espin a otro.

Se puede escribir dicho Hamiltoniano en términos de un producto de
operadores de espin de la forma S; - S ya que sabemos que (para S = 1/2)
el producto toma el valor Sy - S; = —3/4 si los espines estan en un estado
de singlete y S; - S; = 1/4 en un triplete. Podriamos entonces escribir un
Hamiltoniano de la forma

1
Heff = Z(ES + BET) — (ES — ET)Sl . Sl

Este Hamiltoniano arroja los valores correctos para la energia de los es-
tados singlete y triplete. El mismo esta formado por un término constante y
otro que depende del espin. El primer término es solo un corrimiento en la
energia y podemos olvidarnos de él por el momento. Si definimos la cons-
tante de intercambio como

_ Es—Er

/ 2

= [ watruites) Houritr). drd'rs (47
Podemos escribir el Hamiltoniano dependiente del espin como

Heff = —2J51 . SQ

Si la constante de intercambio es positiva J > 0 entonces EFs > Er y
el estado fundamental corresponde a un estado triplete. Si J < 0 entonces
Es < Er y el estado fundamental corresponde a un estado singlete.
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4.1.3. Muchos espines

Para el caso de un sistema con muchos espines seguir un razonamiento
similar al que usamos para dos espines es mas engorroso, sin embargo, puede
mostrarse se puede utilizar una propuesta similar a la que derivamos para un
par de espines cuando tenemos muchos espines que interactian de a pares.
Esto es lo que se conoce como Hamiltoniano de Hesienberg.

H=-% 7SS (4.8)

Y]

donde J; ; es la constante de intercambio entre los espines ¢ y j. La suma es
sobre todos los espines y el factor 2 es omitido porque al recorrer todos los
espines con los indices 7, j estamos sumando cada par dos veces. Como la
constante de intercambio depende de la superposicion de los orbitales, si dos
espines se encuentran muy alejados esta integral serd pequena. Es por eso que
comunmente la constante de intercambio J; ; se suele tomar distinta de cero
solo para los espines méas cercanos. Una eleccién comun es tomar J; ; = J si
los espines 7, 7 son primeros vecinos y cero en caso contrario.

4.2. Propiedades magnéticas de los sélidos

4.2.1. Tipos de orden magnético

Vamos a estudiar brevemente algunos de los diferentes tipos de ordenes
magnéticos que pueden ser producidas por la interacciéon de intercambio y
algunos ingredientes extra como la frustracion magnética.

Ferromagnetismo

Un material ferromagnético puede tener una magnetizacion diferente de
cero aun en ausencia de campo magnético externo y en este estado de mag-
netizacion todos los espines apuntan en la misma direccién. Este efecto es
generalmente producido por la interaccién de intercambio entre los espines y
puede ser descrito mediante un Hamiltoniano de Heisenberg.

H = —22 JiJSi . Sj + g[LBB . Z Sj
1,3 J
Si consideramos que las constantes de intercambio a primeros vecinos son

positivas y cero a vecinos mas lejanos, el Hamiltoniano anterior describe un
ferromagnéto en presencia de un campo magnético externo.

Facultad de Cs. Exactas | UNLP | 122



Materia cuantica - C.A. Lamas, A. lucci (autores)

Propiedades magnéticas de los solidos

Modelo de Weiss para el ferromagnéto

Una forma de describir aproximadamente la fisica encerrada en el Hamil-
toniano anterior es la siguiente. Definamos un campo efectivo para el espin
en el sitio ¢ de la siguiente manera

2

Bup=———> Ji;(S)
IHB

Ahora concentrémonos por un momento solo en el espin correspondiente al

sitio 4. La contribucién a la energia de intercambio del espin ¢ estard dada

por —23..J;;8; - S; y este termino puede escribirse (en campo medio) en

términos del campo efectivo que definimos antes como

~2) Ji;jSi-S; = gupSi- Bur
J
y entonces el Hamiltoniano para el ferromagnéto puede escribirse como

Hyr =gup Y Si- (B+ Byr)

Al escribir el Hamiltoniano de esta manera asumimos que todos los espines
experimentan el mismo campo efectivo y estamos reemplazando el operador
25 .J;:8; por su a valor de expectacién. El Hamiltoniano efectivo al
gup ] THIT
que llegamos tiene la misma forma que el Hamiltoniano de un paramagnéto
que estudiamos anteriormente. Como el campo efectivo que definimos (a ve-
ces conocido como “campo molecular”) basicamente mide el efecto de orde-
namiento se los espines, podemos suponer que este serd proporcional a la

magnetizacion del sistema.

By =M.

Ahora podemos tratar este problema como si fuera un paramagnéto su-
jeto a un campo magnético B + By r. A bajas temperaturas podemos tener
que los espines se alinean con el campo molecular aun en ausencia de campo
magnético externo B. Esto hace que la magnetizacion total aumente, pero
como el campo molecular es proporcional a la magnetizacién este aumenta
también haciendo que a bajas temperaturas el sistema se mantenga magne-
tizado.

Podemos encontrar soluciones de este modelo usando la ecuacién (4.1)
para la magnetizacién de un espin en un campo magnético que vimos ante-
riormente

B M
M =nug tanh(W). (4.9)
B
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Figura 4.3: Soluciones gréaficas de la ecuaciéon correspondientes a B = (. Para
T < T, tenemos solucion para M # 0

La ecuacién anterior es una ecuacion trascendente que puede ser resuelta
graficamente (ver figura 4.3). Si consideramos el caso sin campo magnético
externo (B = 0), vemos que para temperaturas menores que la temperatura
critica T' < T, la ecuacion tiene soluciones no nulas, mientras que para T > T,
la tnica solucién corresponde a M = 0.

La solucién para M en funcién de T/T. se muestra en la figura 4.4. La
magnetizacion es cero para temperaturas T' > T, y distinta de cero para T <
T.. En T = T, la magnetizacién es continua pero su derivada con respecto a
T no lo es. Esto indica que la transicién entre las fases ferromagnética y no
magnética es de segundo orden.

Antiferromagnetismo

Si la interaccién de intercambio es negativa (J < 0), el campo molecular es
orientado de manera que favorece la alineaciéon antiparalela de los momentos
magnéticos a primeros vecinos. Eso es lo que se denomina antiferromagne-
tismo. Generalmente este tipo de orden se encuentra en redes bipartitas, es
decir, redes que estan compuestas por dos redes interpenetradas. De esta ma-
nera en las redes bipartitas los momentos magnéticos en una de las subredes
apuntan todos en una direcciéon y en la otra subred en direccién opuesta.
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M /M,

0.5 —

0.5

T/T.

Figura 4.4: Solucién para M en funcién de T'/T,

A este tipo de estado magnético se lo conoce como estado de Neél y es

esquematizado por la figura siguiente.

] ?
Jrr = +

1

1 Y

Si identificamos a una subred con el indice + y a la otra con el indice —,

Y

Y

8

entonces podemos escribir el campo molecular sobre cada subred como

By = —AM_
BMF — _\M,.

Luego el campo total efectivo en cada subred sera

B, = B-AM_
B. = B-AM,,

donde A es una constante. En cada subred el campo molecular para el caso
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de espin 1/2 estara dado por

MBBi)

My = M tanh( T
B

(4.10)
donde M, = ,uB%. M representan la magnetizaciéon de cada subred y la
magnetizacion total estard dada por

M:M++M_.

La expresion para M, y M_ es casi idéntica a la que encontramos para el
caso ferromagnético y por lo tanto la magnetizacién en cada subred tendra
el mismo comportamiento que el de un ferromagnéto y se hard cero para
temperaturas mayores que las de la temperatura de transiciéon conocida como
temperatura de Neél.

Aunque la magnetizacién de cada subred se comporte como la de un fe-
rromagnéto, las dos magnetizaciones apuntan en direcciones opuestas y si las
dos subredes son equivalentes a campo magnético externo nulo tendremos
que la magnetizacion total es cero. Para describir al antiferromagnéto en au-
sencia de campo externo se suele usar un parametro de orden diferente al
de la magnetizacién. Este pardmetro se conoce como magnetizacién alterna-
da y consiste simplemente en la diferencia se las magnetizaciones de ambas

subredes.
My=M, — M_.

La magnetizaciéon alternada es entonces distinta de cero para valores de la
temperatura menores que la temperatura de Neel y cero para temperaturas
mayores.

Para temperaturas menores a la de Neel, podemos estudiar el compor-
tamiento de la magnetizacion ante la aplicacion de un campo magnético.
Ya vimos que en ausencia de campo magnético la magnetizacién es cero
(si las subredes son equivalentes). A campo pequeno podemos desarrollar
la magnetizacion a orden lineal en B como lo hicimos antes y obtener el
comportamiento de la susceptibilidad.

A temperaturas altas podemos aproximar la tangente usando que tanh(x) ~
x y asi tenemos que

~ 2MS/'LB/kB
= T+ (Mops/ks)

De esta manera podemos escribir la susceptibilidad a campos pequenos como

M C

NS B T Ty
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Antiferromagnetos frustrados:

En ciertas redes no es posible acomodar este tipo de estados donde cada
espin es antiparalelo a todos sus vecinos. Por ejemplo si consideramos la
red triangular con interacciones antiferromagnéticas entre primeros vecinos
vemos que: una vez que dos espines fueron colocados de forma antiparalela
dentro de un tridngulo, no hay manera de que el tercer espin se acomode de
forma antiparalela a los otros dos. Se dice que en este caso el sistema esta
frustrado ya que no se pueden minimizar todos los términos de la energia al
mismo tiempo.

)

En muchos casos la combinacion entre frustracién y la naturaleza cuantica
de los espines genera fases magnéticas no convencionales.

Ferrimagnetismo

La discusién que dimos antes para el antiferromagnéto asume que en una
red bipartita las dos subredes son equivalentes, pero si por alguna razén no lo
fueran (cristalograficamente esto es posible), entonces la magnetizacion de las
dos subredes no seria igual y por lo tanto no se cancelarian. Esto daria como
resultado que aunque el orden magnético es en esencia antiferromagnético
el sistema tiene una magnetizacion neta. Este fenémeno es conocido como
ferrimagnetismo.

Como el campo molecular de cada subred es diferente entonces la mag-
netizacion espontanea de cada subred tendra diferentes dependencia con la
temperatura y puede ocurrir, por ejemplo, que una subred domine la mag-
netizacion a bajas temperaturas y la otra lo haga a temperaturas mas altas.
Cuando esto ocurre podemos variar la magnetizacion del sistema variando
la temperatura de manera que al aumentar la temperatura el sistema puede
pasar de tener magnetizacion positiva a cero y luego volverse negativa. Final-
mente a temperaturas mas altas el sistema se desordena y la magnetizacion
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es nuevamente cero. La temperatura a la cual la magnetizaciéon cambia de
signo se conoce como Temperatura de compensacion. La susceptibilidad
magnética de los ferrimagnétos no sige en general la ley de Curie. Las fe-
rritas son materiales que presentan ferrimagnetismo. Se conoce cominmente
como ferritas a un grupo de compuestos con la formulas quimicas de la forma

X0O-Fey03, donde la letra X representa a un ion positivo divalente como por
ejemplo Zn?*, Fe?t, Cu?t, Mn?*, Ni?*, etc.

Orden espiral

En algunos casos (como en muchas tierras raras) la estructura cristalina es
tal que los &tomos se acomodan en planos que interactiian fuertemente y estos
planos se acoplan magnéticamente. Consideremos el caso donde los momentos
magnéticos en cada plano interactiian ferromagnéticamente de manera que
el orden magnético en cada plano corresponde a todos los espines del plano
apuntando en la misma direccién. Si consideramos el momento magnético
total en cada plano estard dado por la suma de los momentos magnéticos
de todos los sitos del plano. Esto dard como resultado un valor grande del
momento magnético en cada plano por lo que podremos considerar a cada
plano como un espin clasico. Consideremos ahora la interacciéon entre planos
como una interaccion entre espines clasicos con acoplamientos entre primeros
J1 y segundos vecinos J5. Si el &ngulo entre los momentos magnéticos totales
correspondientes a dos planos sucesivos es 6, entonces podemos escribir la
energia del sistema como

E = —2N?S?(J, cos 0 + J cos(26)),

donde N es el ntmero de sitios en cada plano. Buscamos el minimo de la

energia imponiendo que %—]g = 0 con lo que obtenemos la condicién

(J1 + Jycosf)sinf = 0.

Esta ecuacién tiene como soluciones a sinf = 0 lo que implica que el orden
ferromagnético ( = 0) y antiferromagnético (¢ = m) son extremos de la
energia. La otra solucién corresponde a

J1

4J2
Esta solucién corresponde a lo que se conoce como orden espiral y es
enérgicamente favorable solo cuando J, < 0 y se cumple la condicién |J;| <
4|J5|. Como el dngulo correspondiente a esta solucién depende de los valores
de los acoplamientos J; y Jo, que en principio pueden tomar cualquier valor

cos(f) =
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real, el angulo € no estara en general conmensurado con la red. Es decir que
no se repetird. Para valores arbitrarios de los acoplamientos no habra dos
planos con el mismo angulo 6.

4.3. Ruptura de simetria

En los tipos de orden magnético que vimos antes todos tenian en comun
que su aparicién se daba espontaneamente a bajas temperaturas. Todos estos
ordenamientos estan caracterizados por la dependencia con la temperatura
donde alguna cantidad relevante cambia al pasar de temperaturas menores
a mayores de alguna temperatura critica T,.. Para cada una de estas fases
se puede definir un parametro de orden el cual serda cero para T > T, y
sera diferente de cero para T < T,.. Este parametro actiia entonces como
un indicador de que el sistema esta ordenado. En este tipo de ordenes, el
parametro de orden esta asociado a la ruptura de una simetria.

En el caso de un ferromagnéto cuando el sistema se magnetiza lo hace
en una direccion particular. Por ejemplo, a campo cero todos los momentos
magnéticos se alinean hacia arriba y no hacia abajo. Sin embargo en las ecua-
ciones que escribimos no hay nada que favorezca la alineacion de los espines
hacia arriba comparado con los espines hacia abajo, ya que el Hamiltoniano
es invariante ante inversion. Entonces, el modelo microscépico tiene una si-
metria que no posee el estado fundamental. Observemos por ejemplo lo que
pasa en un ferromagnéto en 2 dimensiones. A temperaturas altas T > T, el
sistema posee una simetria de rotacion completa. Todas las direcciones son
equivalentes ya que el sistema estd completamente desordenado y los mo-
mentos magnéticos alrededor de un punto cualquiera del plano apuntan en
cualquier direccién y el campo efectivo promedia a cero.

Para temperaturas menores a la temperatura critica 7' < T, el sistema
elige una direccién y los momentos magnéticos se alinean es esa direccion.
Ahora la simetria de rotacion esta rota porque tenemos una direccién prefe-
rencial. El estado de baja temperatura a reducido sus simetrias.

Un comentario importante sobre la ruptura de simetria es que es imposible
cambiar la simetria de forma gradual. El sistema posee una simetria o no la
posee. Esto hace que la transicién de fase sea abrupta.
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4.4. Teoria de Landau para el ferromagnetis-
mo

Un modelo simple que reproduce este tipo de transicion de fase fue desa-
rrollado por Landau y se basa en consideraciones muy generales. Supongamos
que podemos escribir la energia libre de un ferromagneto con magnetizacién
M como una serie de potencias en M. Como los estados con magnetizacion
hacia arriba (positiva) y hacia abajo (negativa) tienen la misma energia esta
serie no puede contener potencias impares de M. Podemos entonces escribir
algo como

F(M) = Fy+aM? 4+ bM* + - -

Donde Fy, a y b no dependen de M.
Supongamos ahora que la constante a = a(7") depende de la temperatura. Si
a(T) es tal que cambia de signo en 7" = T, entonces podemos escribir cerca
de T =T¢ que a(T) = ao(T — T¢) donde ag es una constante positiva.
Para encontrar el estado fundamental del sistema buscamos extremos de la
energia libre, es decir soluciones de 0F /0OM = 0. Esta condicién implica que

2M (ao(T — Tg) + 2bM?) = 0.

De esta ecuacion podemos obtener dos soluciones

ao(Te — T)\*
2% '

M=0 0 Mz:l:(

La segunda solucion es valida solo para T < T.. La soluciéon M = 0 es valida
para todo T, pero para T' < T, es un punto de equilibrio inestable. Esto
puede verse facilmente calculando la segunda derivada de la energia libre.

Entonces, la teoria de Landau nos dice que la magnetizacion serd cero para
T > T¢ y para temperaturas menores a T, serd proporcional a (T, — T )1/ 2

La teoria de Landau es una teoria de campo medio en el sentido de que
supone que todos los espines “sienten” el mismo campo producido por todos
sus vecinos. En este sentido es similar al modelo de Weiss. Las teorias de
campo medio fallan al explicar correctamente la transicion de fase porque
ignora las correlaciones y fluctuaciones que se vuelven muy importantes cerca
de Tc.
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4.5. Excitaciones en el ferromagneto: Ondas
de espin

Ya vimos que, cuando consideramos un sistema de muchos espines, pode-
mos utilizar un modelo microscopico como el modelo de Heisenberg

- — Z Ji,jSi . Sj.

i?j

Consideremos la versién unidimensional del modelo de Heisenberg donde
el Hamiltoniano estd dado por

Podemos estudiar como evoluciona con el tiempo el valor medio del espin en
un dado sitio de la forma

sy 1

= —{([S* H

e )

d(Se) 27 o

Sl (88 8]+ (55,8, Sial)

—2J
= — (S[8e, 87,87 +Zsa S7S8%
g

- Zh Z 82, 57] Zs;zsfsm

= m ZS | i€a5nS] + Y i€apyS] ST )

Byy
—2J
= in Z%a,ﬁw 18] D _i€apyS] Sg+1>
CLEN 8,
¥ ¥

= 2}‘;((5 x 8j-1)" + (S; x 8j41)%).

Para poder avanzar, trataremos por el momento a los espines como si fue-
ran clasicos y luego veremos el tratamiento cuantico. El estado fundamental
tiene todos los espines alineados (supondremos que en la direcciéon z). De
esta manera el estado fundamental cldsico cumple que S* = 5, S* = SY = 0.
Consideremos ahora una pequena desviacion del estado fundamental tal que
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S*~ 5 5% 5% <« §. Tenemos entonces que

dS¥ 2JS

SUs 222805, - Sl (4.11)
dSz

—L ~ 0. 4.1
o 0 (4.13)

Si proponemos soluciones de la forma

Sy Agertamwt (4.14)
SY = Ay, (4.15)
Vemos que para que sean solucion debemos tener que A, = ¢A, y la frecuencia

cumple que
fuw = 4JS(1 — cos(qa)).

Esta es la relaciéon de dispersion de las excitaciones sobre el estado fundamen-
tal ferromagnético. Estas excitaciones son conocidas como ondas de espin.

Si bien la solucién anterior corresponde a un modelo clasico nos ensefia
que las excitaciones se comportan como ondas y podemos intentar buscar
una solucién del modelo cudntico con estas caracteristicas[16]. Consideremos
el Hamiltoniano cuantico

H=-27% 88 = —QJZ[Sf ot S S+ 5785

El estado fundamental cuantico puede escribirse como un estado producto

[do) = | THHH1E ),

de manera que H|pg) = —NS?J|¢pg). Ahora creemos una excitacion dando
vuelta un espin en el sitio j

7y = | TP
Este estado lo podemos escribir a partir del estado fundamental como
17} = 55 [o)-
Sin embargo, este no es un autoestado del Hamiltoniano (comprobarlo como

ejercicio).
Ahora bien, como vimos en el caso clasico, podemos construir excitaciones
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de tipo ondulatorio. Intentemos combinar las excitaciones de este tipo en
cada sitio de manera de recuperar la simetria de traslaciéon del Hamiltoniano
proponiendo el estado

1 L
) = —== >_e"°14).
/N 2
Es inmediato mostrar que

Hlq) = E(q)|q),

donde
E(q) = —NS?*J +4JS(1 — cos(qa)).

Si restamos la energia correspondiente al estado fundamental ferromagnético
—NS?J vemos que la energfa de la excitacion es €(q) = 4JS(1 — cos(qa)),
que es el mismo resultado que encontramos para el caso clésico.

4.6. Ondas de espin y operadores de Holstein-
Primakoff

La formulacién de segunda cuantificaciéon que vimos en secciones ante-
riores se basa en el algebra de operadores de creacién y destrucciéon. Esta
formulacién tiene como ventajas que permite representar de forma compacta
el espacio de excitaciones de un sistema y nos permite tener en cuenta la
simetria de la funcién de onda definiendo simples relaciones de conmutacion
de estos operadores. Como el objetivo del formalismo es describir sistemas
cuanticos, consideremos el siguiente conjunto de autovalores 1,, de un Ha-
miltoniano H

HW)n) - €n|¢n>'

De esta manera, la funcion de onda de dos particulas que se encuentran en
estados «, 3 se escribe como
1
|, B) = Eﬂ%h ® |thg)2 — o)1 ® |tha)2),

donde o = 1 si las particulas son fermiones y ¢ = —1 si son bosones. De esta
manera tenemos en cuenta la simetria correcta de la funcién de onda, como
corresponde a particulas indistinguibles. Sin embargo, si queremos usar la
notacion anterior para un sistema de muchas particulas se vuelve un poco
engorroso.

Es aqui donde la formulacién en términos de operadores de creacion es
mas eficiente. Denotemos como |0) a un estado de referencia que llamaremos
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estado de vacio. Fisicamente, este estado representa un estado vacio en el
cual no hay particulas presentes. Definamos ahora operadores que puedan
actuar sobre este estado (junto con su operador adjunto) de manera que

ay|0) = 0
al [0) = |v)
N
C H ajryl|0> = |'71772?737 T 77N7177N>'
i=1
Donde C es un factor de normalizacién, C = ——— con n; el nimero de

Hf\] n;!
particulas en el estado ~;. Noten que con esta definicién para el factor de
normalizacion, como no podemos tener mas de un fermién en cada estado
y 11 = 1, tenemos que C = 1. En cambio, si las particulas son bosones este
factor se vuelve importante.
Para que la simetria de la funcién de onda sea la correcta estos operadores
deben respetar las relaciones de conmutaciéon bosénicas o fermidnicas es decir

[aaa a;]a = 504,/37 [aom aB]U = 07 [aTaa ag]a =0

donde
[A, B], = AB + 0 BA.

Es decir, en el caso de bosones los operadores conmutan y en el caso fermioni-
co anticonmutan. Muchas veces usaremos la notacion [A, B] = AB— BA para
denotar al conmutador y {A, B} = AB + BA para el anticonmutador entre
Ay B.

De esta manera, es facil ver que las relaciones de conmutacién anteriores

implican que

alab|0) = |u.v) = ~oalal|0) = ~olv, ).
Es decir, si ¢ = —1, las particulas son bosones y tenemos que el estado
|, vy = |v, ) es simétrico ante el intercambio de particulas. En cambio, si
o = 1, las particulas son fermiones y tenemos que el estado |u,v) = —|v, p)
es antisimétrico.

Como vimos anteriormente, el conjunto de todos los estados (correspon-
diente a la union de los diferentes subespacios de estados con ntmero fijo
de particula) se denomina espacio de Fock. Una vez definidos los estados del
espacio de Fock podemos expresar cualquier operador en segunda cuantifica-
ciéon.

Una forma conveniente de encontrar la representacion de los operadores
es expresar el operador en términos de una base donde sea diagonal y lue-
go transformar a una base arbitraria. Para esto, es 1util definir el operador
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nimero
ny = CLI\(I)\.
Este operador cumple que
na(a})"[0) = n(a})"|0).

Es decir, el estado (a})”|0) es un autoestado del operador ntimero con auto-
valor n. El operador n) cuenta el niimero de particulas que se encuentran en
el estado A.

4.6.1. Ondas de espin para el ferromagnéto

Estudiaremos ahora las excitaciones sobre el estado fundamental ferro-
magnético usando una representacion de los operadores de espin conocida
como bosones de Holstein-Primakov. Luego, podremos extender de mane-
ra natural el uso de estos operadores bosonicos para estudiar el caso an-
tiferromagnético. Estudiaremos el modelo de Heisenberg correspondiente al
siguiente Hamiltoniano o

H=2J > 55,
<i,j>
donde el caso J < 0 corresponde a un sistema ferromagnético y entenderemos
la notaciéon < 7,7 > como una suma entre vecinos proximos en la red. Los
operadores de espin satisfacen el dlgebra de SU(2)

19, S =i 60 €7 S (4.16)

Dado el signo de la constante de acoplamiento .J, el Hamiltoniano favorece las
configuraciones en las que todos los espines en sitios vecinos estan alineados
en la misma direcciéon. Un estado fundamental del sistema podria ser, por
ejemplo

l95) = @11 (4.17)

donde | 1); representa un estado con méxima componente z del espin en el
sitio j. Si realizamos una rotacion cualquiera de todos los espines simultanea-
mente no cambia la energia, por lo que el estado fundamental es altamente
degenerado y el sistema posee una simetria continua de rotaciéon global.

Para estudiar las pequenas desviaciones alrededor del estado fundamental
|gs) introducimos una representacién de los operadores de espin en términos
de operadores bosonicos conocidos como bosones de Holstein-Primakov

S = s—a'a

T
ST = 1—?\/23@T
S
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El mapeo anterior reproduce las relaciones de conmutacién exactas entre
operadores de espin y el vinculo S? = s(s + 1). Sin embargo, es muy dificil
trabajar con el mismo sin hacer aproximaciones dada la complicada expresion
en términos de los operadores bosoénicos. Notese que el estado de maximo
espin corresponde a un estado sin bosones. El operador S~ actia entonces
incrementando el niimero de bosones presentes en el sistema.

Podemos utilizar un desarrollo en potencias de 1/s, para hacer el proble-
ma mas facil de resolver, desarrollando la raiz en la expresién de los S* a
orden mas bajo tendremos que

S~ ~ V2sal
ST V2s a

S* = s—adala

Q

Para el caso Ferromagnético podemos usar estas expresiones y obtener un
Hamiltoniano cuadratico en los operadores bosonicos.

H=2Js Z (agaj + a}ai — a}ai — a}aj) +2J Z (s + ajaia;aj).

<1,7> <,j>

Atn al mas bajo orden obtenemos un Hamiltoniano que contiene un término
de interaccion generado por la interaccion S*S?#. Nosotros analizaremos pri-
mero la parte cuadratica, que es la que domina en el limite de s grande,
donde ya podran verse las primeras correcciones al comportamiento clasico
(que en este caso asociamos con el limite s — 00).

H=2Js Z (ajaj + a;ai - aIai - a;%)

<ij>

Ahora escribiremos la suma de forma conveniente para poder separarla en
una suma sobre los sitios y otra sobre vecinos cambiando la notaciéon ¢ <> x

H=2Js> (aiazw +al,,a, —ala, — aI:JrramM) : (4.18)

z,r

La suma sobre sobre x corre sobre todas las posiciones de la red mientras que
r corre sobre la mitad de los vecinos de cada sitio de manera de no contar
un par de vecinos dos veces. Por ejemplo en una red cuadrada (2D) puede
entenderse por la suma en r como la suma sobre el vecino de la derecha
y el de arriba como se muestra en la figura 4.5. Transformando Fourier los
operadores bosonicos

1
v

A, =

Z eik-wa]“
k

3
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Figura 4.5: Red cuadrada.

el Hamiltoniano (4.18) queda en la forma

H = 2Js) (—z +3 ey e‘””) alay

k
1

= —2Jsz) (1 — > (e + e‘“”)) alax
k

= —2Jsz) (1 — chos(k : r)) alag,
k o

donde z es lo que se conoce como numero de coordinacion, es decir, la canti-
dad de vecinos que tiene cada sitio de la red. Si consideramos el caso en una
dimension z = 2 y la relacién de dispersion queda como

H = Y —4Js(1 - cos(k)) afay.
k

Es decir la relaciéon de dispersion esta dada por
e(k) = —4Js (1 — cos(k))

que es el mismo resultado que encontramos cuando estudiamos las ondas de
espin en la seccién anterior (a diferencia de un signo porque simplemente
tomamos una convencion diferente para J en el Hamiltoniano).
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—3 —2 =], 0 il 2 3
Figura 4.6: Relacion de dispersion de las ondas de espin ferromagnéticas.

Si desarrollamos alrededor de k£ = 0 tenemos que
2 i
H = —2Jsz) (1- 2 > cos(k - ) | ajax
k r
2 k-r)?
~ —2Jszz < Z ( 27“) ) aLak
k

-27s% <Z(l<: . r)2> dlax

—2Js Y |k[? alag,
k

Q

Q

de donde vemos que la relacion de dispersion e(k) = —2Js|k|? es cuadritica
y va a cero cuando |k| — 0. Este es el modo de Goldstone que corresponde a
la ruptura de simetria del estado fundamental ferromagnético. Es importante
notar que la fisica de bajas energias esta dominada por el modo k£ = 0 donde
la relacion de dispersion va a cero.

4.6.2. Ondas de espin para el antiferromagnéto

Ahora si, podemos estudiar el antiferromagnéto usando bosones de Holstein-
Primakov. Aunque el Hamiltoniano difiere del visto para el ferromagnéto solo
en el signo de la constante de acoplamiento, la fisica del antiferromagnéto es
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muy diferente. Para las llamadas redes bipartitas el estado de minima energia
clasica se alcanza con una configuracion alternada de los espines conocida co-
mo estado de Néel. En este estado tenemos dos subredes dentro de las cuales
todos los espines se encuentran paralelos, mientras que las dos subredes se
encuentran rotadas 1802 una respecto de la otra. De nuevo tenemos que el
sistema posee una simetria global de rotacién pero a diferencia del caso ferro-
magnético, la configuracion clasica de minima energia no es un autoestado
del Hamiltoniano.

A continuacion quisiéramos seguir con la metodologia utilizada para estu-
diar el ferromagnéto usando la representacion de los operadores de espin en
termino de bosones, pero para esto es conveniente realizar antes una transfor-
macién candnica de los operadores de espin donde los espines pertenecientes a
una subred (digamos la subred B) son rotados 180° de manera que la proyec-
cion z del espin cambie de signo y entonces, en términos de estos operadores
transformados, la configuracién clasica de minima energia este dada ahora
por todos los espines paralelos. Esto se logra (por ejemplo) efectuando una
rotacién de 180° de los operadores de espin alrededor del eje z. (R, (7)Sg).
En ese caso tendremos entonces que

S5 = %
gy = s
Sy = —S%,
por lo que los operadores S+ y S~ quedan
Sh = Sy 4iSY =S5y —iSh =Sg (4.19)
Sp = S%—iS%=5%+iS% =S} (4.20)

Luego el Hamiltoniano para el antiferromagnéto queda, en términos de los
operadores transformados

1 ~ ~
H=2J 3 (S5 +5757) = SiS;. (4.21)
<2,)>
Como al rotar los espines conseguimos la misma configuracién de minima
energia que en el caso del ferromagnéto, podemos usar la misma represen-
tacion bosoénica para los operadores de espin y esperar que las fluctuaciones
a este estado produzcan el analogo antiferromagnéto a las ondas de espin
discutidas antes.
Entonces Para la subred A tenemos, como antes

z T
S; = s—aa

ST o~ V2sal
St~ V2sa
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y para la subred B

W -
S7 = s — aja;

ST o~ /2s a}
St~ V2sa;
Noétese que nuevamente el estado con ausencia de bosones corresponde a

todos los espines con proyecciéon maxima. El Hamiltoniano en términos de la
representacion bosonica queda

H = 2J ) s(aa;+ ala T) — (s —ala;)(s — a;r-aj)
<ig>

H = QJZ [ s —|—sOLal—kaozj—i—aa]—i—aT T)—a}aia;aj}.

<i,j>

El dltimo término es de orden s° por lo que podemos despreciarlo en el limite
de s grande donde los términos que dominan seran los de orden O(s) y O(s?)

H = —2JNs*+2Js > {(a a; + a; ta; + aa; +ala T)}

<i,j>

Ahora transformamos Fourier los operadores bosoénicos de la siguiente manera

a; = \/_ Z e —i k-xj g

De esta forma el Hamiltoniano queda

1 )

H = —2JNs*+2Js Z 20k, ko aLlakQ + N Z e~ iheithozs) | g g

k1,k2 <i,j>
1 kix;+kox }
. (N<Z v “)) it
1,)>

Ahora, para poder realizar la suma en coordenadas escribimos x; = r; + a,,
donde a, es un vector que va desde x; hasta el r-esimo vecino. Luego tenemos

1 )

—i(k1zi+kox;) o —ikaa —i(k1+k2) o ikoa

NEG(IZ 2 ) — §€2r§e 1+k2) 6k1,k2§€2r
<%,5>

y una forma analoga para el otro término similar. Usando esto en el Hamil-
toniano obtenemos

H = —2JNs$*+2Js)_ [2 alag + (Z e“““) ara_j + <Z e”““) azaik] :

k
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Como la suma sobre k es simétrica con respecto al limite superior e inferior
(por ejemplo en 1D —7 < k < m) podemos escribir

H = —2JNs*+2Js) |2 alap + (Z cos(k - ar)> aga_j + (Z cos(k - ar)> aLaT_k]

koL
H = —2JNs*+2Js Z 2 aZak + Vi apa_g + Vi aLaT_k}
— |
H = —2JNs*+2Js Z _aLak + aT_ka_k + Vi (aka_k + aLaT_k)} ,
— |

donde 7y, = ¥, cos(k - a,). El Hamiltoniano anterior puede ser diagonaliza-
do facilmente mediante una transformacion de Bogoliubov, definiendo dos
nuevos operadores de la forma

bk = o ar + ﬁk aik QA = O bk — ﬁk C;rf (422)
CL = ﬁk ar + Qi aT_k CLT_k = Qg CL — ﬁk bk (423)

Con la condicién a2 — 37 = 1 para asegurar que los nuevos operadores cum-
plan con el 4lgebra bosonica . Al reemplazar en H obtenemos

H = 2JNs*+2Js) {(a% + B2 — 2’ykak6k) [bLbr + chey] (4.24)
k

+ ((Oéz + 5;3)’)% — QOékﬁk) [bLC}; + bkck] + 2(ﬁz — ’ykakﬁk)} . (425)

Imponemos que el coeficiente que acompafia a los términos que no conservan
el niimero de particulas se anule, junto con la condiciéon sobre los coeficientes
para que se cumplan las relaciones de conmutacién bosonicas.

0 = y(of + B7) — 20ups

2 2
= a;,— b
De las soluciones de este sistema de ecuaciones obtenemos

ap + 0 = 2maBe = /1 -7 (4.26)
2(8f — wawB) = J1-92—1 (4.27)

y reemplazando en el Hamiltoniano obtenemos

H =2JNs(s+1)+2Js> \/1—2 [blby +clex +1].
k

Lel lector lo puede verificar como ejercicio
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-3 -2 -1 0 1 2 3

Figura 4.7: Relacion de dispersion correspondiente a las ondas de espin anti-
ferromagnéticas.

De esta manera la relacion de dispersion de las ondas de espin esta dada por

e(k) = Jsyl—n3 (4.28)

2Js

— || (4.29)
Vz

Notemos aqui que a diferencia del caso ferromagnético, la relacion de disper-
sién en este caso tiene un comportamiento lineal a valores de k cercanos a
cero.

~Y
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Superconductividad

En este capitulo discutiremos un nuevo estado fundamental del gas de
electrones interactuante: el estado superconductor. En este estado cuantico
macroscopico, los electrones se aparean para formar estados ligados coheren-
tes llamados pares de Cooper, que cambian drasticamente las propiedades
macroscopicas del sistema, dando lugar a una conductividad y un diamagne-
tismo perfecto. Nos centraremos principalmente en los superconductores con-
vencionales, donde los pares de Cooper se originan a partir de una pequena
y atractiva interaccion electron-electron mediada por fonones. Sin embargo,
en los llamados superconductores no convencionales —un tema de intensa
investigacion en la fisica del estado sélido actual— el apareamiento puede
originarse incluso a partir de interacciones puramente repulsivas.

5.1. Fenomenologia

La superconductividad fue descubierta por Kamerlingh-Onnes en 1911,
cuando estudiaba las propiedades de transporte del Hg (mercurio) a bajas
temperaturas. Encontré que por debajo de la temperatura de licuefaccion
del helio, alrededor de 4,2K, la resistividad del Hg caia repentinamente a
cero. Aunque en ese momento no habia un modelo bien establecido para el
comportamiento del transporte a baja temperatura en metales, el resultado
fue bastante sorprendente, ya que las expectativas eran que la resistividad
llegara a cero o divergiera a 1" = 0, pero no que se anule a una temperatura
finita.

En un metal, la resistividad a bajas temperaturas tiene una contribucion
constante de la dispersiéon de los electrones por las impurezas, una contri-
bucién T? de la dispersion electrén-electréon y una contribuciéon 77 de la
dispersién por fonones. Asi, la desaparicion de la resistividad a bajas tempe-
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raturas es una clara indicacion de un nuevo estado fundamental. Aqui uno
puede preguntarse si esa resistividad cae exactamente a cero o resta una lige-
ra resistividad residual, aunque pequenia. La respuesta va en la direccién de la
primera afirmacion. De hecho existen materiales que exhiben violentos cam-
bios en la resistividad, alcanzando incluso valores muy pequenos, pero que
no son superconductores. Otra pregunta de interés aqui es por qué aparece
una escala de energia tan baja asociada a esas temperaturas criticas, cuando
la energia caracteristicas de un metal, su energia de Fermi, es del orden de
1 eV. Es de destacar que no todos los metales se vuelven superconductores,
por ejemplo los mejores conductores, Cu, Ag, Au no lo son.

Meissner descubri6 otra propiedad clave del superconductor en 1933. En-
contr6 que la densidad de flujo magnético B se expulsa por debajo de la
temperatura de transicién superconductora T, es decir, B = 0 dentro de un
material superconductor, el llamado efecto Meissner, lo que significa que el
superconductor es un diamagneto perfecto. Recuérdese que la relacion entre
B, el campo magnético H y la magnetizacion M esta dada por:

B=H +47M, (5.1)

y por lo tanto, dado que B = 0 en el interior de un superconductor, la
susceptibilidad magnética y = OM /OH es

1

- (5.2)

X =
y como x < 0 el material es un diamagneto. Ademas, dado que la permeabi-
lidad p = 1+ 47y, que seniala la proporciéon B = p no puede ser negativo, lo
cual violaria la estabilidad termodindmica, realiza el valor més pequeno (més
diamagnético) de u, que es p = 0. Si aumentamos el campo magnético aplica-
do a un superconductor, eventualmente se destruye el estado superconductor,
haciendo que el sistema regrese al estado normal. Los superconductores se
clasifican en dos tipos: en los de de tipo I, no existe un estado intermedio que
separe la transicion del estado superconductor al estado normal al aumentar
el campo, y esta se produce abruptamente, mientras que en los superconduc-
tores de tipo II, existe un estado intermedio, denominado estado mixto, que
aparece antes de la transicion al estado normal. En el estado mixto, el campo
magnético penetra parcialmente en el material a través de la formaciéon de
una serie de tubos de flujo que transportan un multiplo del cuanto de flujo
magnético o = hc/2le|.
Si bien el nombre de estos materiales sugiere que la conductividad perfecta
es la propiedad fundamental de un superconductor, veamos que el diamag-
netismo perfecto no puede deducirse, y es tan fundamental como aquella.
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Estudiemos las implicaciones de la resistividad nula utilizando las ecuaciones
de Maxwell. Si un material es un conductor perfecto, la aplicaciéon de un
campo eléctrico acelera libremente la carga eléctrica:

mi = —ekE. (5.3)
Pero dado que la densidad de corriente estda dada por J = —en,r, donde ng
es el nimero de “electrones superconductores” tenemos que

oJ  nge?

—=—E. 5.4

ot m (54)

Si insertamos esta relacion en la ley de Faraday

10B
VxFE=—— 5.5
obtenemos 37 2 5B
nge
VX—=- —_—. 5.6
% ot cm Ot (56)
Pero al utilizar la ley de Ampeére para un campo eléctrico estatico,
4
VxB=""7, (5.7)
c
se encuentra 9B A 2 9B
V x V x — e (5.8)

ot mc2 Ot

La identidad V x V x C = V(V - C) — V2C y la ecuacién de Maxwell
V - B = 0 permiten llegar a la ecuacién

,(0B\ ., (0B
7 (%) (), o5

donde definimos la profundidad de penetracion:

mc?
A=y s (5.10)

. Cudl es el significado de la Ec. (5.9)7 Consideremos un sistema unidi-
mensional que es un conductor perfecto para x > 0. Resolviendo la ecuacion
diferencial para x, y teniendo en cuenta las condiciones de contorno, obtene-
mos que la derivada 0B /0t decae exponencialmente con x, es decir

9B _ <aB> e "/, (5.11)
=0

o\ ot
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Esto significa que el campo magnético dentro de un conductor perfecto es
constante en el tiempo. Sin embargo, este no es el efecto Meissner, segin el
cual el campo magnético debe anularse dentro del superconductor. Conside-
remos que se aplica un campo magnético By a un material superconductor
por encima de T, cuando ain es un metal normal. Si enfriamos el sistema
por debajo de T,, el efecto Meissner indica que By tiene que ser expulsado
del material, ya que el campo se debe anular en el interior. Sin embargo, para
un conductor perfecto el campo conservaria un valor diferente de cero, By
dentro del material. jEste ejercicio nos dice que un superconductor no es solo
un conductor perfecto! O dicho de otro modo, la resistividad cero no implica
el diamagnetismo perfecto. Ambas son propiedades fundamentales.

Buscando entender el efecto Meissner. los hermanos London propusieron
un modelo fenomenolégico para describir los superconductores que elimina
arbitrariamente las derivadas temporales de la Ec. (5.9):

V’B = \"*B. (5.12)

Esta ecuacion captura correctamente el efecto Meissner, como discutimos
anteriormente, enfatizando las propiedades diamagnéticas perfectas del su-
perconductor. Combinada con la ley de Ampere, esta ecuacion implica la
siguiente relacion entre J y B:

nge>

VxdJ=-—

B. 5.13
e (5.13)

Dado que B =V x A, donde A es el potencial vector magnético, la ecuacion
anterior se convierte en la ecuaciéon de London,

nge?

J=-"4 (5.14)

mc
en el gauge de Coulomb V - A = 0, es decir, en el gauge donde el vector
potencial tiene sélo la componente transversal distinto de cero. Se debe elegir
este gauge porque debe cumplirse ademas la ecuacion de continuidad, V-J =
0.

., Cémo podemos justificar la ecuacién de London? Esta no deja de ser sor-
prendente en algin sentido, ya que la corriente es en principio una cantidad
observable, mientras que el potencial vector no lo es, al menos clasicamen-
te. Sin embargo, en mecanica cuantica la definiciéon de la corriente que es
necesaria para satisfacer la ecuacion de continuidad,

_eh . ez,
J = B [V — V'] — %W\ A, (5.15)
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incluye un término lineal en A. Si el primero pudiera anularse por alguna
razon tendriamos la ecuacion de London.

London propuso ademéas una explicacién basada en la rigidez de la funcion
de onda en el estado superconductor. Por ejemplo, segin el teorema de Bloch,
el momento total del sistema en su estado fundamental |¥) (es decir, en
ausencia de cualquier campo aplicado) tiene un valor medio cero, (V|p|¥) =
0. Ahora, supongamos que la funciéon de onda W es rigida, es decir, que esta
relaciéon se mantiene incluso en presencia de un campo externo. Entonces,
dado que el momento canénico esta dado por p = mv — eA/c, obtenemos,

cA
mc

(v)

Como J = —en,(v), recuperamos la ecuacion de London (5.14).

Por supuesto, la pregunta principal es sobre el mecanismo microscépico
que da lugar a esta rigidez de la funcién de onda y, en tltima instancia, al
estado superconductor. Varios de los fisicos mas brillantes del siglo pasado
intentaron abordar esta pregunta —como Bohr, Einstein, Feynman, Born,
Heisenberg— pero la respuesta llegd recién en 1957 con la famosa teoria de
Bardeen, Cooper y Schrieffer (BCS) jcasi 50 afios después del descubrimiento
experimental de Kamerlingh-Onnes!

Las contribuciones experimentales fundamentales hicieron que las prin-
cipales propiedades de los superconductores fueran mas transparentes antes
de que apareciera la teoria BCS en 1957. La observacion de una disminuciéon
exponencial del calor especifico a bajas temperaturas mostro que el espectro
de energia de un superconductor posee un gap. Esto contrasta con el espectro
de un metal normal, que no posee ningin gap; recuérdese que excitar un par
electron-hueco cerca de la superficie de Fermi le cuesta muy poca energia al
metal.

Otro experimento clave fue la observacién del efecto isétopo. Al estudiar
la temperatura critica T, para la transicion al estado superconductor de ma-
teriales que contienen un isétopo de elemento diferente, se encontré que 7T,
decae con M2 donde M es la masa del isétopo. Dado que esta masa esta
relacionada solo con los iones que forman la red, esta observacién experimen-
tal indic6 que la red, y por lo tanto los fonones, deben desempenar un papel
clave en la formacion del estado superconductor.

El punto principal de la teoria BCS es que la interaccién electrén-electrén,
que resulta atractiva al estar mediada por los fonones da lugar a pares de
Cooper, es decir, estados ligados formados por dos electrones de espines y
momentos opuestos. Estos pares de Cooper forman entonces un estado fun-
damental macroscopico coherente, que presenta un gap en su espectro y un
diamagnetismo perfecto. La clave para la formacion de pares de Cooper es

(5.16)
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la existencia de una superficie de Fermi bien definida, como veremos mas
adelante.

5.2. Un par de Cooper

Gran parte de la fisica involucrada en la teoria BCS, en especial la expli-
cacion del surgimiento de una atraccion entre electrones, se puede discutir
en el contexto de un problema simple de mecénica cuantica. Consideremos
dos electrones que interactiian entre si a través de un potencial atractivo
V (r; — 7). La ecuacién de Schrodinger viene dada por:

h2v2 h2v2
[_ T () - ”)1 U(ry,m) =EV(r,m),  (5.17)

2m 2m

donde W (7r1,75) es la funcién de onda y F la energia del par. Como es
habitual, cambiamos las variables a la coordenada relativa r» = r; —ry ya la
posicién del centro de masa R = 1 (71 +72). En términos de estas nuevas
variables, la ecuacién de Schrodinger se convierte en:

[_ s A

o o V('”)] V(r,R) = EV(r, R), (5.18)

donde m* = 2m es la masa total y u = m/2 es la masa reducida. Como
el potencial no depende de la coordenada del centro de masa R, buscamos
soluciones del a forma:

U(r, R) = (r)e®E, (5.19)

lo que da lugar a la ecuacion:

l V2

2 + V(r)] U(r) = Ep(r), (5.20)

donde definimos E = E — h; ff. Para un valor dado de E, la energia E més
baja es aquella para la que K = 0, es decir, para la que se anula el mo-
mento del centro de masa. Consideremos entonces el centro de masa estd
quicto, vy que E = E. En este caso, los dos electrones tienen momentos
opuestos. Dependiendo de la simetria de la parte espacial de la funcién de
onda, par ¢ (r) = ¢(—r) o impar ¢ (r) = —i)(—r), los espines de los electro-
nes formaran un estado singlete o triplete, respectivamente, para asegurar la
antisimetria de la funciéon de onda total.
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Para proceder, tomamos la transformada de Fourier de la ecuacion de
Schrodinger, introduciendo

(k) = /d% Y(r)e (5.21)

y una expresion andloga para la transformada de Fourier del potencial V (7),
de donde obtenemos

a3k
2ilh) + [ GV =KV K) = Bk, (522
donde ¢ = h;—:f es la energia de los electrones libres. Reescribamos esta
ecuacion en la forma
1 A3k
v(k) = B 2e, / (2ﬂ)3V (k—K)vy (K. (5.23)

Supongamos ahora que la atraccién entre electrones proviene de la me-
diacién de fonones, y para fijar ideas tomemos un modelo simple en el cual
el potencial es constante en el espacio k. Pero dado que los fonones poseen
un una frecuencia maxima de excitacién fijada por la frecuencia de Debye,
wp, si la energia de los electrones individuales es mayor que Awp los fonones
no seran efectivos en acoplarlos, en consecuencia, el potencial debe anularse
cuando los valores de k involucrados impliquen que £ sea mayor que hwp.
Es decir, consideremos un potencial que es atractivo V (k — k') = —V} para
€k, €k < hwp v cero en caso contrario. Obtenemos

W 3K ,

(k) = E — 2, /6k/<th (27)3¢ (K'), (5.24)
T
= Cp—pr (5.25)

donde C contiene a la integral en el lado derecho de la primera linea, que da
lugar a una constante independiente de k. Si ahora integremos a ambos lados
en la region restringida €, < hwp, la constante aparece en ambos miembros
y puede eliminarse, dando lugar a la ecuacion

1 A3k 1
— = — " 5.26
‘/0 lk<ﬁwD (27T>3 E - 26"7 ( )

que representa la ecuacion para las autoenergias E. Para resolverla es con-
veniente introducir la densidad de estados de los electrones libres,

ple) = / (;lﬂl; d(e — ex) (5.27)
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que permite escribir (5.26) en la forma

1 r o ple)
— = — d 5.28
- / e LEL (5.28)

Utilizamos el resultado para la densidad de estados
1 /2m\32
w0 = 53 (32) v (5:29)

y realizando la integral obtenemos

1 1 /2m\3/? —E 2hwp

%= o () [V o = | = arctan (\/ F
Esta ecuacion determina el valor de la energia del estado ligado £ < 0
como funcion del potencial de atraccion Vy. Si tomamos el limite £ — 07, el

segundo término se anula, y vemos que el valor minimo de Vj para tener un
estado ligado es

. (5.30)

%,mfn = (531)

Vhwp  2m
Por lo tanto, encontramos que habra un estado ligado solo si la interaccién
atractiva es lo suficientemente fuerte.

No obstante, en este ejercicio pasamos por alto un aspecto importan-
te: en el sistema real de muchos cuerpos, solo los electrones cercanos al ni-
vel de Fermi se veran afectados por la interaccién atractiva. Para imitar
esta propiedad, consideramos un potencial atractivo V (k — k') = =V} pa-
ra los estados electronicos desocupados por encima de la energia de Fermi
Ep,Ex — Ep, €k — € < hwp. Esto significa que debemos repensar los limites
de integracién, y reescribir la integral en la ecuacion (5.28) con limites ep
y €r + hwp. Mas ain, como hwp < €p, podemos aproximar la densidad de
estados por su valor en €, y entonces la ecuaciéon para E se escribe

272 h? )3/ 2

1 ep+hwp 1
T de ——— 5.32
et [ e (5:32

p(er) <2€F—E+2wD>
= | . 5.33
2 "\ 2, E (5:33)
En el limite de Vpp (ep) < 1, E estd cerca de 2cp, y podemos aproximar
2¢p — E 4+ 2wp =~ 2wp. Definiendo la energia de enlace E, = 2¢ep — FE,
obtenemos: ,

E, = 2wDei Vor(er) (534)
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Se formara entonces un estado ligado independientemente de cuan pequena
sea la interaccion atractiva V, denominado par de Cooper. Esto es funda-
mentalmente diferente del caso de electrones libres que consideramos antes,
donde la interaccién atractiva tiene que superar un umbral para crear un
estado ligado. La propiedad clave responsable de este comportamiento dife-
rente es la existencia de una superficie de Fermi bien definida, que separa los
estados que estan ocupados de los estados que no estan ocupados.

La energia del estado ligado Ej es exponencialmente pequena en 1/Vyp(er),
lo que, como veremos mas adelante, dara lugar a una temperatura critica muy
baja. Mas atin, en los buenos metales, como oro, plata y cobre, el acoplamien-
to electrén foném es muy pequeno (lo que los vuelve buenos conductores al
disminuir la dispersion de electrones por los iones) y por lo tanto la tempe-
ratura critica es minima y la superconductividad indetectable.

Para finalizar este apartado, recordemos que la energia total en el caso
de que el centro de masa tenga un momento finito K viene dada por:

h2K2
E=FEg_o+ A
B2 (5.35)
- 25F - Eb + )
4m

y por lo tanto, en el limite £ — 2cp, todavia podemos obtener un estado
ligado con momento de centro de masa finito:

2
K = 5\/mE, (5.36)

que da lugar a una densidad de corriente finita:

hK E
J = nse— = 2n,ey| —2. (5.37)
m m

5.3. Muchos pares de Cooper: estado BCS

En la seccion anterior vimos que dos electrones cerca del nivel de Fermi
son inestables frente a la formaciéon de un par de Cooper para una interac-
cion atractiva arbitrariamente pequena. Esperamos entonces que el sistema
electronico de muchos cuerpos sea inestable hacia la formacion de un nuevo
estado fundamental, donde proliferen estos pares de Cooper. En esta seccion,
estudiaremos este estado BCS utilizando la teoria de campo medio.
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5.3.1. Hamiltoniano efectivo

Para formular una teoria microscépica de la superconductividad conside-
remos el siguiente Hamiltoniano efectivo de muchas particulas:
1
H= ; fkc;fwc;w + 5 kzk:, ka/c}::'rcik¢c*k’¢ck’?' (538)

Aqui, CLU crea un electrén con momento k y espin o, y ya incluimos el poten-

cial quimico al definir £ = e — u. El segundo término describe la destruccion
de un par de Cooper (dos electrones con momento y espin opuestos) y la
subsiguiente creaciéon de otro par de Cooper. Observemos que este Hamilto-
niano posee una forma reminiscente del Hamiltoniano general estudiado en
las ecuaciones (3.74) y (3.98), s6lo que sélo posee términos donde los pares
se crean con espines opuestos, y ademas la interacciéon pasada al espacio de
coordenadas no se escribe como una funcién simple de la distancia. Esto se
debe a que es el resultado de la atraccion efectiva generada por la media-
cién de los fonones. Como intervienen los fonones, al igual que en el caso de
un solo par de cooper visto anteriormente, sélo pueden acoplarse electrones
cuyo momento esté restringido de modo que su energias permanezca menor
que la frecuencia de Debye, es decir, el potencial V' satisface que Vig = 0 si
€kl > hwp o [§e| > hwp

Para continuar, realizamos el desacople de campo medio habitual del
término cudrtico!

(chyclrycrycwn) = (cgcliy)eoryenn + cpel iy (eopicn)
_<CLTCik¢><C—k’¢Ck’T> (5.41)

El valor medio <C};T6T_k 1) podria no anularse si el estado fundamental super-
conductor. Asi, definimos la funcién del gap:

1
Ak, = _ﬁ Z ka/<c_k/¢ck/¢) (542)
k/
Por ahora, no hay razén para llamarlo gap, pero discutiremos su significado
muy pronto.

'La aproximacién de campo medio consisten en reemplazar un producto de operadores A
y B de acuerdo a
AB =~ (A)B + A(B) — (A)(B) (5.39)

Notese que el error introducido al hacer este reemplazo es
AB = (A)B — A(B) + (A)(B) = (A — (4))(B — (B)), (5.40)

es decir, es de segundo orden en las desviaciones de A y B respecto de sus valores medios.
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El Hamiltoniano efectivo se convierte en:

H =Y &lyCho — (AkCLTCT_m + AZC—MCM) +> Ak<CL¢CT—k¢> (5.43)
ko 2 k

Obsérvese que es de la forma general (3.129) que introducimos en el capitulo
3. Posee términos anémalos, y por lo tanto para resolverlo debemos intro-
ducir alguna transformacién que mezcle electrones con huecos. Empleamos
la transformacién de Bogoliubov del tipo de las ecuaciones (3.144) y (3.145)
y en particular, definimos nuevos operadores fermidnicos v, y coeficientes
Uk, Vg en la forma:

Crt = Up Vit + Uk”YT_]Q

T

; . (5.44)
Cokl = UkT—k] = VkTkt

Para que se satisfagan las relaciones de conmutacién fermidnica, se debe
verificar la condicién de normalizacion:

Jug]? + |v* = 1 (5.45)

que implica, ademds, que la transformacion resulta unitaria. Sustituyendo en
el Hamiltoniano efectivo se obtiene para el término de energia cinética:

> Erchotro = D G [chocnn + Ly con]
ko k
= >k | (lukl” = onl?) (Wever + 3 w70 (5.46)
k
+ 2lu)* + QUkUk’Y;LT’Yim + QUZUZ’%M’YM}
y para el de apareamiento:
=3 (Akchyel gy + Aperiont) = D2 [ (Asurvyy + Ajuivr) (Vorer + 7 w7kt
k k
— (Agugvy, + AZu,*cvk)}
- Z { (Ak“i - szi) %Tcﬂim
k
* *\2 *\2
+ (Ak (ur)” — Ak (vg) )V—ki'YkT}
(5.47)
De este modo, recolectando términos de igual tipo en potencias de v y T, el

Hamiltoniano efectivo adquiere la forma
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con:
Hy=>)_ {Q&\UHQ — Agugvy, — Ajupvg + Ak<cLTcT_k¢>}
k
=) {fk (|Uk|2 - |Uk|2> + Agugvy, + AZu;;vk} (%TCWM + VT_kﬂ—m)
k

Hy = Z {(%kukvk — Agu, + AZ”!%)] (7£T71k¢) + he.,
* (5.49)

Para diagonalizar el Hamiltoniano, debemos encontrar los coeficientes ug, vg
que hace que el término no diagonal H, se anule. Esto se consigue imponiendo
la condicién cuadratica

2§kukvk - Akui + szi = 0. (550)

Resolviendo para el cociente vy /ug se obtiene:

Ui B \/€z+|Ak|2_€k (5 51)

U AZ ’

donde elegimos solo la raiz positiva para asegurarnos de que la energia del
estado BCS sea un minimo y no un maximo. Obsérvese que debido a que
el numerador es real, la fase de la funcién de gap compleja A debe ser la
misma que la fase relativa entre vy y ug. Dado que podemos establecer la
fase de ug en cero sin pérdida de generalidad, se deduce que las fases de vy,
y Ay son las mismas.

Usando la condicién de normalizacién |ug|* + |vg|*> = 1, obtenemos:

1 1 Ag|?
’Uk:|2: _ | k|

L+ 3E2 22 4 |AL)2 — 60/ + |Ag]? (552)
5.52
:1(1_{_&6)
2 Er + |Ak|?

de lo que se sigue que

o 1 §k
=1 - . 5.53
o 2 ( Vée + !AkP) 2:59)

A continuacién introducimos la forma explicita de u y v en las expresiones
para Hy y Hy, Usando las relaciones anteriores, obtenemos:

Hy=%" [2gk|vk|2 — Agugvy, — Apuioy, + Aglcpcl M
k

- Z (gk - \/m + Ak(dﬁcT—m)) )
k

(5.54)
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Z [ (|Uk| |ug| ) + Agugvy, + A};u};vk] (%LT%T + VT_kﬂ—m)
k
Z Vi 2+ |Ak (%LWM + VT_kﬂ—m) .
k

El Hamiltoniano efectivo resulta entonces de la forma

H= Z Ekf)/l];a'y’co' + EOa (556)
ko

(5.55)

donde hemos introducido las energias de los estados de cuasiparticulas,

B = /& + A2, (5.57)

y donde Ej es la energia del estado fundamental:
Eo =" (& — Ex + Arlclycy))) - (5.58)
k

Queda claro a partir de la Ec. (5.57) por qué llamamos a Ay la funcién
del gap: incluso en el nivel de Fermi, donde & = 0, el espectro de energia
del superconductor tiene una gap de tamaro |Ag|. Por lo tanto, necesitamos
entregar una energia minima de 2|Ag| al sistema para excitar sus cuasi-
particulas, que son descritas por los operadores fy,Tw y que son mas que los
Bogoliubones introducidos en la seccién 3.3.5, y que de invertir las Ecs. (5.44)

se observa que son mezcla de electrones y huecos:
Vet = UkCrt — UkCT_k¢
Vim = Ul*cCT—m + Vg Crt
Observemos de las Ecs. (5.53) y (5.52) que describen el comportamiento de
Uk Y Uk, que Ay — 0, |ug|®> — 1 para & > 0y |ug|®> — 0 para & < 0 mientras
que |vg|? — 1 para & < 0y |vg|> — 0 para & > 0. Por lo tanto, en el estado
normal, crear una excitacion de Bogoliubon corresponde a crear un electréon
para energias por encima del nivel de Fermi y crear un agujero (destruyendo
un electrén) de momento y espin opuestos para energias por debajo del nivel
de Fermi. En el estado superconductor, donde tanto u como v son distintos
de cero, un Bogoliubon se convierte en una superposicion de un electrén y
un estado de hueco.

Observemos que, tal como esperabamos, el Hamiltomniano BCS no con-
serva el nimero de particulas, pero si su paridad. Es interesante observar
ademds que el Hamiltoniano original posee simetria SU(2) y por lo tanto, el
spin se conserva y es un buen nimero cuantico. Esto significa que asi como
los electrones poseen spin, los Bogoliubones también, y por ello podemos
asignarles la etiqueta o tal como hicimos en la ecuacién (5.59).

(5.59)
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5.3.2. Estado fundamental: Funcion de onda BCS

El estado de minima energia corresponde al vacio de Bogoliubones, |0.,),
que llamaremos funciéon de onda BCS:

Vo |¥UBos) =0 (5.60)

(recuérdese que en presencia de términos anémalos el mismo no es invariante)
., Como se puede escribir esta funcién de onda en términos del vacio original
de electrones |0)7 Para averiguarlo, escribimos la funcion de onda BCS como
una combinacién arbitraria de pares de Cooper, en la forma:

(o3 CJr CT
|Upes) = W] e*ar-a|0) (5.61)
q

donde W es una constante de normalizacion y o es una funcion a determinar.
Para hacerlo, es suficiente considerar solo una especie de espin. Escrita en
términos de los operadores de electrones, la condicion (5.60) se convierte en:

urckt|¥aes) = vicl ) [ Upes) (5.62)

Claramente entonces, cuando ¢t actia sobre la funcién de onda anterior, el
unico factor dentro del producto que no conmuta con cgy es aquel para el
cual ¢ = k. Centrémonos en este término. Definiendo 0 = OékCL¢CT_k | bara
simplificar la notacién, tenemos:

o Qn
e b |0) = cuge®[0) = 3 o) (5.63)

n=1
Por otro lado, 0;, satisface la relacion de conmutacién Ahora tenemos la
relaciéon de conmutacion

[CkT7 Hk] = O {CkT7 C;E:T} Ciki = OékCJLki, (564)

donde usamos que [A4, BC| = {A, B}C' — B{A, C}. Entonces, de c¢x4]0) = 0,
se sigue que:

ck10k[0) = el 1,1[0) (5.65)

CkT9i|O> = ([ck1Ok, Ok + Ocrrbi) |0) (5.66)

= Ok ([ckt, Or] + k1) |0) (5.67)

= 29k04k0ik¢|0>, ( )

y en general,
crrOp|0) = ndp ety 10). (5.69)

Facultad de Cs. Exactas | UNLP | 156



Materia cuantica - C.A. Lamas, A. lucci (autores)

Superconductividad
Por lo tanto, obtenemos
00 Qn—l
%|0) = kel ]0). 5.70
crre *[0) ak;(n—l)!c_k” ) (5.70)
Ahora bien, del conmutador
llegamos al resultado:
00 en’
crre’|0) = Ozkci,ci > n—';]O} = akcikiee’“ (5.72)
n/=0 :

Sustituyendo en la Ec. (5.62) se obtiene

ukcrt|Tpes) = ukanc g [ Upos) = vee 4| pcs) (5.73)

lo que implica que la funcién a4 viene dada por:

Uk
= . 5.74
Ok n ( )
La funcién de onda BCS resulta entonces
vk it
[Tpes) = W] e +0)
g (5.75)

Vg
=W]] <1 + CLTCT_,CO |0)
k Uk

donde usamos el hecho de que, debido al principio de exclusiéon de Pauli,
n

(cLTcT_k i) = 0 para n > 1. Para normalizar esta funciéon de onda, notamos

que:

(Ol (wp+vgcrre k) (e + vkchrcli,)|0) (
= (0] (Jul* + ok crrchycric ) 10) (5.77
= (O] (Junl® + [vnl” (1 = chyonr) (1= chyery) ) 10)  (
= (O] (Jux[* + [ve]*) [0) (
Por lo tanto, la funcién de onda BCS normalizada finalmente se escribe:

Wnes) = [T (un +veckicl 4, ) [0) (5.80)
k

Recuérdese que la fase de los pares de Cooper esta determinada tinicamente
por el coeficiente vy, y esta fase coincide con la fase de la funcion gap Ag.
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5.4. La ecuacion del gap

Todavia necesitamos determinar la funcién del gap Ay, dada de manera
autoconsistente por la Ec. (5.42). Usando la transformaciéon de Bogoliubov
(5.44), tenemos:

Ar=—5 Z Vit v ((ow Y py) = (byiwen)) - (5.81)

k:l

Los Bogoliubones poseen una distribuciéon de Fermi-Dirac con dispersién Ey,

1
] — (At —
<7kf¢7k/¢> = <V—k'ﬂ—k’¢> = BB 11 (5.82)
lo que arroja:
2 By
Py vy =1 — 2 — k
(et ie) = Olien) = 1= g = tanh (52 ). (5:89)
Utilizamos ademaés las ecs. (5.52) y (5.51), obteniendo:
UZ/U,C/ = ‘UkIQ’Uk:/ (584)
Ut
JANY,
b (5.85)

21/& + |Ag|?

dando lugar finalmente a la ecuacién de la gap:

_ ka’Ak’ Ey
- Z 2Fp (%BT) ' (5.86)

Ahora podemos estudiar para qué valores del potencial Vi v de la tem-
peratura 1" obtenemos un gap distino de cero, y por lo tanto la soluciéon BCS
discutida en la seccién anterior. Para proceder, necesitamos discutir la forma
del potencial. Basados en los resultados para la interaccién electronica me-
diada por fonones, consideramos un potencial atractivo constante Vi = —Vj
en una capa de espesor fiwp alrededor de la energia de Fermi, |&g], || < Awp
(recuerde que & = e — u). Como el potencial no depende de k, k/, buscamos
una funcién de gap que también sea independiente de k y real, A, = A. Este
tipo de funcién de gap se denomina gap de onda s, ya que su dependencia
angular es la del arménico esférico Yy, constante. Obtenemos:

1 F
_n " tanh 5.87
q 2 2E, an <2k:BT> (5.87)
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Introduciendo la densidad de estados por espin p(e), anédloga a la Ec.
(5.27), pero en tamarfio finito, y teniendo en cuenta al potencial quimico,

p(e) = & 30 — &), (5.58)

obtenemos:

hwp 2 2
. Vb/ p(e)de tanh(va +A )

(5.89)
~ Vopr

fwop de tonh Ve? + A2
——tanh | ———

0 A /52 + A2

donde hemos utilizado la forma explicita de la dispersion, eq. (5.57), y en la

ultima linea, usamos el hecho de que hwp < i para aproximar la densidad de

estados dentro de la integral por su valor en el nivel de Fermi. Esta ecuacion

autoconsistente da la funcién gap para una temperatura arbitraria A(T);

estudiemos las comportamientos limites. A T' = 0, ya que tanh(z — 00) — 1,
tenemos:

(5.90)

hwp de
i [
0 e2 + A2
donde denotamos Ay = A(T = 0). La evaluacién de la integral es directa y

ad como resultado:
1

Vopr

: hwp
= arcsinh <A> : (5.91)

0

En la mayoria de los casos, Ay es del orden de unos pocos meV, mucho
menor que hwp, que es del orden de unas pocas centenas de meV. Por lo
tanto, podemos expandir arcsinh(z) a = grande para obtener:

1 2th
=In ) 5.92
Vopr ( Ag ) (592)

que finalmente permite obtener el gap
1
AO = 2771,0[)6_ Vorr (593)

De este modo, recuperamos un resultado similar a nuestro analisis simplifica-
do de la ecuacion de Schrodinger: una interaccion atractiva arbitrariamente
pequena Vj da lugar a un gap finito a temperatura cero, lo que muestra que el
sistema es inestable hacia la formacion del estado superconductor BCS. Tam-
bién vemos que la superconductividad es un efecto no perturbativo, dada la
dependencia no analitica de A con V4.
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., Cual es la temperatura critica T, para la cual aparece por primera vez un
gap distinto de cero? Para determinarlo, volvamos a la Ec. (5.89) y tomemos
A — 0, obteniendo

1 F”“Ddgt n € %d tanh z 5 04
VopF_/o e <2kBTC>_/0 e (5.54)

Evaluamos la integral por partes y usamos el hecho de que hwp > kgT.:

hw

D
FnTe tanh fwp o0 1
/2 P g T (tanhzInz)y 2" —/ dx n:g
0 x 0 cosh” z (5.95)

hwp T 2e"E hwp
~ In —In ( ) =In{———|,
2kgT. 4erE kgl

donde vg ~ 0,577 es la constante de Euler. La temperatura de transicién
superconductora viene entonces dada por:

2 ’YEM !
T.= = e (5.96)

__ 1
que nuevamente depende de e Vorr . siendo distinto de cero para cualquier
Vo arbitrariamente pequenio. Combinando Ecs. (5.93) y (5.96) dan la relaciéon
universal entre el gap a temperatura cero y la temperatura critica:

Ay
kgT.

~ 1,76. (5.97)

Este resultado es remarcable, porque no depende de la interaccién Vi ni de la
frecuencia de los fonones wp. Finalmente, puede mostrarse que en cercanias
del punto de transicién, el gap depende de la temperatura en la forma

8

7¢(3)

donde ((z) es la funcién zeta de Riemann. Utilizando la relacién entre T, y

Ay, ec. (5.97) se obtiene
A(T) T
—= = 1,73/1 — — 5.99
Ao~ L1 1 (5.99)

de nuevo, una relacién universal. La figura 5.1 muestra la forma del gap
A(T)/Ap calculada numéricamente en funciéon de 7'/T,. El comportamiento
(1 —T/T.)z es caracteristico de transiciones de fase de segundo orden.

A? ~ k5T, (T, —T) (5.98)
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Figura 5.1: Gap superconductor como funcion de la temperatura.

Uno de los primeros éxitos de la teoria BCS fue la verificacién de que
la relacion (5.97) se cumple aproximadamente en la mayoria de los super-
conductores conocidos en ese momento. La teoria BCS también aborda el
efecto isétopo que analizamos anteriormente: T, en la ecuacién (5.96) depen-
de linealmente de la frecuencia de Debye wp, que a su vez varia como la
raiz cuadrada inversa de la masa i6nica M, es decir, T, o< wp o< M~'/2, de
acuerdo con las observaciones experimentales.

5.4.1. Propiedades termodinamicas: calor especifico

Una caracteristica clave de la teoria BCS es la presencia de una gap de
energia A en el espectro. Tal gap se manifiesta en varias cantidades termo-
dindmicas, como el calor especifico a temperaturas y la densidad de estados
p(g). Esta dltimo se puede medir experimentalmente a través de microscopia
de efecto tunel. En el estado superconductor tenemos, para energias positivas
e > 0 (una vez mas, nos centramos en la densidad de estados por espin):

ple) = / (25213:35 <5 - \/m)
- /d§ po(€)6 (5 - \/m> (5.100)
:pF/d§5(5_\/A2+§2>,

donde po(€) es la densidad de estados de la fase normal, que se ha aproxi-
mado por su valor en el nivel de Fermi ya que estas son las energias que nos
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interesan. Claramente, el argumento de la funcion delta solo puede ser cero si
e > A, es decir, no hay estados dentro de la gap, como se esperaba. Usando

que
5(5—\/A2+£2> :Zé(gi fLAZ) (5.101)
¥ |m|
obtenemos

. 2pF8
p(g) - m

donde 6(z) es la funcién escalén habitual. El factor 2 aqui es una consecuen-
cia del hecho de que cuando A — 0, la energia F — |£|, es decir, contiene dos
ramas de excitaciones particula-hueco, duplicando la densidad de estados. Si
usamos esta expresion para la densidad de estados dentro del estado super-
conductor, es sencillo mostrar que el calor especifico a bajas temperaturas
muestra un comportamiento del tipo C' ~ e~2/#8T La transicién supercon-
ductora también afecta el calor especifico en 7. Para investigarlo, podriamos
en principio calcular la energia interna total debida a las excitaciones de las
cuasiparticulas,

(e — A) (5.102)

Eint = Eo + . Er{vh o ko) (5.103)
ko
y evaluar la derivada 0FE;,/0T. El problema es que la energia del estado
fundamental E, también depende de la temperatura. Para evitar este pro-
blema, es mas facil calcular la entropia del gas fermidénico libre formado por
las excitaciones de Bogoliubones, de acuerdo a la féormula usual

S=—kgy [(1— f)In (1= fu) + filn fu], (5.104)

ko

donde f = (v} ko) = 1/ (eﬁEk + 1) es la funcién de Fermi-Dirac. El calor
especifico (por unidad de volumen) viene dado por:
_TrdS TdpgdS — pdS

C=Var=vardi~ vV (5109

Entonces,
C:k‘B/ﬁ > %[-m@—fk)—ulnfkﬂ]
kpfp? — d
- el 3 dngk
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La derivada total se escribe

dfi.  Ofs  Ofx 0Ex  Eyx 0fx N Of 1 OA2 (5.107)
ds 08  O0E, 08 S 0E, OE,2E, 0B '

donde usamos el hecho de que Fy, = /&2 + A2. Por lo tanto, obtenemos

_ 2kpp Of ,  BOA?
C = % Ekj 8Ek> (Ek+285>. (5.108)

Analicemos esta expresion cerca de T,.. Por encima de la temperatura critica,

A? = 0y Ep — |&]|. Como Ofy/0& es una funcién par de &, tenemos

Of __ Ofk sz .
] = o6 Usando la expansion de Sommerfeld:

_ Ofk
06

obtenemos, en el estado normal

~0(&)+ —(5”(5) (5.109)

C(.+0") = [agepio
2]{7 82
= BB@ GI (5.110)
2k2
— <27T 3BpF> T, =~T.

Como era de esperar, recuperamos el resultado del gas de Fermi libre

(recuérdese que pr aqui es la densidad de estados por espin). Justo por

debajo de T., podemos volver a tomar Ej — || y gg’; = gé’:, pero ahora

A? es distinto de cero. Por lo tanto, obtenemos:
ON? 0
C(Tc+0‘):C’(T+O)+k362< > /5 _f’“) (©)

C(T.+0%) + pr (—%f)

(5.111)

es decir, en T, el calor especifico es discontinuo, mostrando un salto AC =
C(T.+07)—C(T.+0%):

2
AC = pp fm) (5.112)
Te
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Cerca de T, la funciéon de gap se comporta de acuerdo a la ec. (5.98), y
entonces obtenemos la siguiente relacion universal entre el salto de calor
especifico y su valor en el estado normal, dado por la Ec. (5.110):
AC 12
= —— =~ 1,43. (5.113)
VT, 7¢(3)
La observacion experimental de esta relacion universal en varios materia-
les superconductores es otro éxito de la teoria BCS.

5.5. Ecuacién de London y efecto Meissner

Como ya hemos mencionado, la propiedad fundamental de un supercon-
ductor es el diamagnetismo perfecto, es decir, el efecto Meissner. Aqui mostra-
remos que la teoria BCS aborda naturalmente el efecto Meissner, justificando
microscépicamente la ecuacién fenomenoldgica de London (5.14).

Consideremos el término cinético del Hamiltoniano en presencia de un
campo magnético. El momento canénico estd dado por p + €A, donde A es
el potencial vector, y B = V x A el campo magnético. En el lenguaje de
segunda cuantificacion, introduciendo el operador de aniquilacién fermiénico
Cro, €l Hamiltoniano se escribe

1 2
H = ;/d?’r cio% (p + iA) Cro (5.114)

Trabajamos en el calibre de Coulomb, donde p- A « V- A = 0. Entonces, al
orden mas bajo en la teoria de perturbaciones en A, tenemos H = Hy + H;,
donde Hj es el Hamiltoniano cinético en ausencia de campos externos y H;
viene dado por:

e
H =— d3 f A- ro :
1= EJ / re (A-p)c (5.115)

Ahora bien, el operador corriente total viene dado por:
N e 1 e
J = -3 Zg:/d?’rclam <p + CA) Cro

:—i 12:/0l37"cT c A—egz/dgchr pC
me \ Q% rore me) < roftre

Evaluando el valor medio en el estado fundamental (es decir, a temperatura
cero), obtenemos J = J; + J, con la denominada corriente diamagnética

(5.116)

neQ

Jg=——A, (5.117)
mc
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y la corriente paramagnética J, = (jp>, con

—eﬂz/d?’rcigpcm. (5.118)

Si J, fuera cero, recuperariamos la ecuacion de London (5.14) con todos
los electrones formando parte del condensado superconductor, n, = n. Sin
embargo, el estado fundamental en presencia de un campo no es la funcion
de onda BCS que discutimos anteriormente, que denotamos aqui por |0),
debido a la contribucién (5.114) a la energia cinética. Dado que este término
es lineal en A, en principio J, también puede tener un término lineal en A
que podria cancelar la contribucion diamagnética Jy. Esto es exactamente lo
que sucede en el estado normal, donde no se observa el efecto Meissner.

En el estado superconductor, sin embargo, la situacién es diferente. Usan-
do la teoria de la perturbaciones a primer orden, el estado fundamental cam-
bia en la forma
(l|H:|0)

0) l)
0) = 10) + Y 10 2

10
donde |I) son los estados excitados. Entonces, como (0|J,|0) = 0, tenemos
que

(5.119)

(O[T, 1) (1| Hy |0) (O Hy [1)(1|J,|0)
J = E § : . 12
" & E-E +l¢0 E, — E (5.120)

Analicemos el elemento de la matriz (I[|H;|0), que depende de A lineal-
mente. Cambiando la base de la representacion de coordenadas a la de mo-
mentos, Cp, = % Sk Cko€® T, v considerando la transformacién de Fourier

A=3, Aqeiq‘r, tenemos:

H =— Z > ( /d3r ei(k’“/Jrq)"") Croo (Aq - k) Cro

o kk'q

- ZZ k A Ck-l—qukU

o kq

(5.121)

Para hacer contacto con la teoria BCS, reescribimos este término de la
siguiente manera:

he |
H=—|> k- chkJquCkT + Z k - chk+qick¢]

mc | kq

he
= Z k- AqCLJquCkT — Z (K +q) - AqCTk/¢C—k'—q¢] (5.122)

me | g
he

= k-A,(c c cT_ C_fo
mc%q: ( k+q1tCkT — C—k| -k qi)
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donde usamos el hecho de que, en el gauge de Coulomb, g- A, = 0. Usando la
transformacion de Bogoliubov (5.44) y el hecho de que 7,|0) = 0, obtenemos
el elemento de matriz

(l|cL+chk¢|O) = (| (Uk+q711+q¢ + UZ+q7—k—q¢) (Ul*ﬂkT + UkVT—m) 10)

: ; , (5.123)
= Ukz+qvk<l|%+qﬂ—k¢|0>

<Ucik¢cfqu¢|0) = (Il (uk71k¢ - UI:'YM) (uy;wq'yfqui - Uk+q'YlJ£:+qT) 10)
= _ukvk+q<l|7T—k¢71Tc+qT|O>
(5.124)

Si ahora utilizamos las relaciones de anticonmutacion de los operadores de
Bogoliubov, obtenemos

he
(H0) = =2 S k- A (gt — thtnsg) (1o ]0) (5.125)

kq

Para obtener la conductividad, debemos tomar el limite g — 0 para un campo
uniforme. De la ecuacién anterior, es claro que ([|H;|0) — 0 en este limite.
Ademas, dado que el espectro de energia tiene un hueco, |Ey — Ej| > 2A en
la Ec. (5.120) — esta es la rigidez del estado superconductor. Entonces, se
sigue que J, = 0, y finalmente encontramos que

2
J=J,+J,= <A, (5.126)
mc

es decir, recuperamos la ecuacién de London (5.117) y, en consecuencia, el
efecto Meissner. Al comparar con la Ec. (5.14), notamos que en el estado
fundamental (temperatura cero) todos los electrones participan en el con-
densado superconductor, es decir, ng = n, y no sélo los electrones cercanos
al nivel de Fermi. A temperatura finita, el nimero de electrones supercon-
ductores disminuye y eventualmente desaparece en T,.. Experimentalmente,
la densidad del superfluido n, se puede medir indirectamente a través de la
profundidad de penetracién, de acuerdo a la Ec. (5.10).

5.6. Modelo de Ginzburg-Landau

Terminamos este capitulo discutiendo brevemente otro enfoque para com-
prender la rigidez del estado superconductor y su relaciéon con las corrientes
persistentes. Se basa en el modelo de Ginzburg-Landau, originalmente con-
cebido como un modelo fenomenolégico para describir la superconductividad
y que luego Gor’kov demostré que se derivaba de la teoria BCS [].
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La cantidad principal en el modelo de Ginzburg-Landau es el pardmetro
de orden complejo ¥(r), que puede interpretarse como la funciéon de onda
superconductora. La idea es que, por debajo de T,., el valor medio de la
funcién de onda superconductora no es cero, es decir, (V) # 0, mientras que
por encima de 7 sigue siendo cero. Sea F[¥(r)] la funcional que contiene
la diferencia entre la energia libre del estado superconductor y el estado
normal, F = [dr F[¥(r)]. De ello se deduce que el valor de equilibrio de
F' debe ser positivo por encima de T, (para que la energia libre del estado
normal sea menor que la energia libre del estado superconductor) y negativo
por debajo de T,. Por lo tanto, se debe anular en en T.. Cerca de T, se
puede expandir la energia libre F[¥(r)] en potencias de W. Los requisitos
de simetria y analiticidad imponen que los tnicos términos posibles en la
expansion sean aquellos que involucran potencias pares de |W|. Asi, en el
caso de que ¥(r) no dependa de la posicion 7, se obtiene:

F (U, 0%) = a|¥|* + §|\1fy4. (5.127)

Esta es la llamada expansién de energia libre de Landau, con |¥|* = UU* ya
que ¥ es una funcion compleja. El coeficiente cuartico 8 debe ser positivo, de
lo contrario la energia libre no estaria acotada. Para entender el significado
del coeficiente cuadréatico o, minimizamos la funcién de energia libre tomando
su derivada con respecto a W* (se obtiene el mismo resultado si se toma la
derivada con respecto a ¥), ya que sabemos que en equilibrio la energia libre
toma su valor minimo:

oF 5

50 aVl + U] =0 (5.128)

U (a+ BIY) =0,

y por lo tanto, hay dos posibles soluciones:

=0 o |¥= —g (5.129)

correspondientes al estado normal (¥ = 0) y al estado superconductor (¥ #
0) respectivamente. La energia libre de cada solucién viene dada por:

Oé2

F=0 o F=-3; (5.130)

respectivamente. Por lo tanto, si existe la solucién superconductora (es decir,
la que tiene ¥ # 0), esta da lugar al minimo global de la energia libre.
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Claramente, debido a que 8 > 0, esta solucién solo puede ser fisica si o < 0.
En consecuencia, para o > 0 el estado normal representa el minimo global y
U = 0, mientras que para o < 0 el estado superconductor es el minimo global
y ¥ # 0. Este andlisis nos permite concluir que o debe anularse y cambiar
de signo en T,. El ansatz méas simple consiste en una dependencia lineal:

a=a(T-T,.). (5.131)

Reemplazando esta expresion en la solucién, encontramos que

(W] oc /T — T, (5.132)

y por lo tanto, la funciéon de onda superconductora se anula cuando el sistema
se aproxima a T, desde abajo con una dependencia de tipo raiz cuadrada.

Consideremos ahora el caso mas general, en el que la funcién ¥(r) ya no
es constante. Los requisitos de simetria y analiticidad imponen que solo las
derivadas de segundo orden puedan aparecer en el desarrollo de energia libre,
es decir, términos de la forma |VW|2. El coeficiente de este término debe ser
positivo, ya que al sistema le cuesta energia mantener una funcién de onda
no uniforme, lo cual esté relacionado con el concepto de rigidez. Debido a que
el par de Cooper esta cargado, debe acoplarse al campo electromagnético a
través del acoplamiento minimo usual %V + 2—:A, donde A, donde el factor
2e se debe a que el par de Cooper tiene carga —2e. Por lo tanto, la funcional
de energia libre se convierte en:

F[¥(r), " (r), A] = o[ ()P + 2 [u(r)
1 h 2e B2
+ %| ;V - CA> U2+ o (5.133)

El 4ltimo término es solo la energia del campo electromagnético. El hecho de
que tengamos 4m en lugar del habitual 2m se debe a que el par de Cooper
tiene dos electrones. Esta es la llamada expansion de la energia libre de
Ginzburg-Landau. Fue propuesto por primera vez por Ginzburg y Landau
por motivos fenomenolégicos antes de la teoria BCS. Mas tarde, Gor’kov
demostré que esta energia libre se puede derivar directamente de la teoria
microscépica BCS.

Derivemos ahora las ecuaciones de equilibrio. Téngase en cuenta que ne-
cesitamos minimizar la energia libre con respecto a W y A. Para ello, es
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conveniente escribir explicitamente el término del gradiente en la forma:

L (hV\I/ + 26A\If> : ( hV\If* + 26A\I/*>
c c

4dm \ 1 g
h? ihe e? A?
=Y —0,U9,U* =Y — (U*9,¥ — U0, U*) A, —L w2 (5.134
22.:4771 ;2mc( ) +zi:mc2| " )

donde expresamos la ecuacion en términos de los componentes vectoriales del
operador V y del potencial vector. Minimizando la funcional con respecto a
U* se obtienen la ecuacién de Euler-Lagrange:

1 [k 2 \°
aqf+5\p\xp|2+4— (,V+6A> U = 0. (5.135)
m 1 C

Notese su similitud con la ecuacion de Schrodinger. Para minimizar la funcio-
nal de energia libre con respecto a A, es conveniente reescribir la contribucion
magnética a la energia libre en la forma:

B? V x Al? 1
=i ‘87r’ = Y curcundAdiAy (5.136)

©,9,k,l,m
donde usamos el simbolo de Levi-Civita €;j, y la ecuaciéon de Euler-Lagrange
correspondiente se escribe
ihe 2e?A
— — (U'VV — UVU) +

2mc

1
U2 =—-—V x (VxA). 5.137
LU = -V (VX A). (5.137)
Finalmente, usando la cuarta ecuacion de Maxwell, V x B = 47J /¢, obte-
nemos una ecuacién para la corriente superfluida,

2624
J = - vw - wver) - %
2mi mc

|W|2. (5.138)
Un analisis adicional que no se discutirda aqui revela que la amplitud de

la funcién de onda superconductora |¥(7)|? debe ser igual a la mitad de la
densidad del superfluido ny/2. Por lo tanto, en general podemos escribir

U(r) = \}iy/ns(r)eie(r) (5.139)

donde O(r) denota la fase del condensado superconductor. El factor de 1/2
explica el hecho de que la carga asociada con la funciéon de onda es la carga
del par de Cooper —2e. En el caso de que la densidad del superfluido sea
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homogénea, solo la fase de la funcién de onda superconductora depende de
la posicién, lo que produce la corriente del superfluido

J=— (e;m) Vo — ("862> A. (5.140)

m mc

El segundo término muestra que para una fase superconductora uniforme
V6 = 0, recuperamos la ecuacion de London. El primer término muestra que
cuando A = 0 una fase no uniforme da lugar a un flujo de corriente en estado
superconductor, y viceversa. En la mayoria de los sistemas mecanicos cuanti-
cos, los cambios macroscopicos en la fase global no modifican las propiedades
del sistema. Aqui, sin embargo, todo el estado superconductor tiene la misma
fase, y los cambios macroscopicos en ¢ conducen a cambios en las propieda-
des macroscopicas del sistema debido a esta coherencia de fase global. En el
lenguaje BCS, la coherencia de fase proviene del factor vy en la funcion de
onda (5.80), que dota a cada par de Cooper de la misma fase. Si aplicamos
a la fase una variacion suave en la escala macroscépica, lo que resulta en V6
no nulo, pero pequeiio, el condensado superconductor responde desarrollan-
do una corriente J. Debido a que esta corriente es el resultado de minimizar
la energia libre de Ginzburg-Landau, debe ser una propiedad de equilibrio y
no puede disipar energia. Esto permite que el sistema se comporte como un
conductor perfecto.

La expresion (5.140) tiene otras consecuencias importantes. Primero, obsérve-
se que si colocamos dos superconductores uno al lado del otro, separados por
una delgada barrera aislante, la diferencia en la fase de las dos funciones de
onda superconductoras dard lugar a una corriente que fluird a través de la
unién. Esto se conoce como el efecto Josephson.

En segundo lugar, consideremos la situacion en la que se hace un agujero
dentro de un superconductor, y dentro de este agujero el sistema se encuen-
tra en el estado normal. Si consideramos un camino cerrado que rodea este
agujero, pero que pasa dentro del estado superconductor, la corriente a lo
largo de esta curva tiene que anularse. Entonces, integrando la Ec. (5.140) a
lo largo de este camino se obtiene

%A.dl——;izyﬁve-dl. (5.141)

Si aplicamos ahora el teorema de Stokes se encuentra

%A-dlz/g(VxAde:/SBdS:q), (5.142)
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donde @ es el flujo magnético. Como la fase 6 solo puede cambiar por multi-
plos de 27 desde el punto inicial hasta el punto final del ciclo, obtenemos

he

=—n
2el

(5.143)

donde n es un entero arbitrario. Por lo tanto, el flujo magnético de una region

normal dentro de un superconductor tiene que ser un multiplo del cuanto de
ﬂU.jO (I)o = %.

Notese que la funcional (5.133) es invariante bajo transformaciones de
gauge simultaneas, tanto en el potencial vector A — A + Vx como en la
fase, 0 — 06— % X, ya que ambas se cancelan entre si. Sin embargo, en el estado
superconductor, debido a que la fase se encuentra fija, el sistema en realidad
rompe la invarianza de gauge: la simetria rota por el estado superconductor
es la simetria de gauge U(1). Uno esperaria que la ruptura de esta simetria
continua diera lugar a un modo de Goldstone. Sin embargo, esto no es cierto
porque se trata de una simetria local, no global, que se acopla al potencial
vector electromagnético. Esta es la principal diferencia con un superfluido
neutro, que tiene un modo Goldstone asociado con la fase.

De hecho, se puede demostrar que la ruptura de la invarianza de gauge da
lugar a una masa efectiva para el campo electromagnético, lo que constituye el
célebre mecanismo de Anderson-Higgs. Consideremos, por ejemplo, la energia
libre asociada a los cambios en la fase de un superconductor (es decir, se
supone que la densidad del superfluido es constante). De la ecuacién. (5.133),
la energia libre se escribe

2
Fols / &Pr (hV@ + 2€A> (5.144)
4m c

A esta energia libre se le puede sumar la energia electromagnética, que es
proporcional a ¢?A?, donde ¢ es el vector de onda del campo y A, es la
componente transversal del campo. Sin entrar en detalles, mencionemos que
si se integran las fluctuaciones de la fase a partir de la energia libre, se obtiene
una energia libre efectiva para el campo electromagnético de la forma

Farox > (A2 +¢*) AL(q)- AL(—q). (5.145)

El término A~2  n, es la profundidad de penetracién (al inverso cuadrado)
actiia como una masa efectiva para el campo electromagnético. Esto no es
sorprendente: el efecto Meissner implica que el campo magnético es “masivo”
dentro de un superconductor, ya que decae a medida que se propaga desde
la interfaz hacia el interior del superconductor. El responsable de dar masa
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al superconductor, es decir, el “boséon de Higgs”, es el mismo condensado
superconductor, mas especificamente, su rigidez n,. Por lo tanto, la rigidez
es la propiedad clave responsable del efecto Meissner, y no la funciéon del gap
A; de hecho, se pueden encontrar superconductores sin gap que sin embargo
exhiben efecto Meissner y corrientes persistentes.
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Capitulo 6

Bosonizacion

En este capitulo veremos una breve introduccién a la bosonizacién. Esta
técnica ha sido muy exitosa en el estudio de sistemas fuertemente correla-
cionados en una dimension. Presentaremos aqui solo algunas de las ideas
principales. El lector puede a partir de lo visto en este capitulo profundizar
més en el tema en la bibliografia especifica del tema [11].

6.1. Equivalencia entre operadores fermioni-
cos y bosoénicos

6.1.1. Campos fermidénicos

Tomemos una teoria que puede formularse en términos de un conjunto
de operadores de creaciéon y de aniquilacién fermionicos en una dimension
espacial, que satisfacen relaciones canénicas de anticonmutaciéon

{Ckrs7 C;rc’r’s’} = 5kk’ (57'7"/50'0’- (61)
donde r representa la quiralidad, que distingue particulas que se mueven a
la derecha (r = +1) o a la izquierda (r = —1) y s en general distingue

especies de fermiones, por ejemplo en problemas de miltiples cadenas, pero
que usualmente se utilizard para indicar el spin electrénico (s = +1 para

spin para arriba y s = —1 para spin para abajo), y un indice discreto y no
acotado k que denota el momento (o nimero de onda), de la forma
2 1
k= % (nk — 25r5> , conng € Zy s €0,2). (6.2)

(nétese que los valores de k son diferentes para fermiones de distinto tipo).
Aqui L es la longitud asociada al tamano del sistema y ¢, es un parametro
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que determina las condiciones de contorno del problema. En principio es po-
sible que cada especie posea su propia condicion de contorno. El modelo fisico
original del que provienen estos fermiones sera el responsable de dictarlas. La
cantidad k usualmente etiqueta las autoenergias ¢, del sistema libre (con ¢
correspondiente a la energia de Fermi er). Que este indice sea discreto y no
acotado es un requisito indispensable para realizar una derivacién rigurosa
de las identidades de bosonizacion. Estas identidades son independientes de
un problema especifico como puede serlo el modelo de Tomonaga-Luttinger,
o el problema de Kondo; y de la relacién de dispersion €. Esto es posible
porque dichas identidades son igualdades entre operadores, es decir, validas
cuando acttian sobre cualquier estado del espacio de Fock. Son independien-
tes entonces del Hamiltoniano, cuya forma detallada sélo se vuelve relevante
al calcular funciones de correlacion. Su aplicacién a modelos mas concretos
serd analizada mas adelante. Comenzando con un conjunto de operadores de
destruccion cg,.s con las propiedades (6.1) y (6.2), definimos un conjunto de
campos fermionicos de la siguiente manera:

1 o ikrx i 1 = —ikre T

rslX) = —= e Crrs, () = —= e Chrs) 6.3
W=7z ¥ W=z ¥ e (69

donde z € (—o0, 00) es la variable espacial. Sus inversas son

1 / R t |
Chrs = dx e " s (x), Clirs = / dr el (z).  (6.4)
\/Z 0 g \/z 0
Los operadores v satisfacen las condiciones de contorno

rs(x 4 L) = e 0rsq) (2, (6.5)

que son peridédicas para d,; = 0 y antiperiédicas para d,, = 1. Las ecuaciones
(6.1) y (6.2), junto con la identidad

doe™ =21 > §(y — 2wm), (6.6)

nez mMEZL

implican de inmediato las relaciones de anticonmutacion

{rs(2), ¢:'5’ (@)} = 611000 Z o(r —a’ — mL)e_mrémma (6.7)

meZ

{Urs(2), Vs ()} = (W] (), [a(2)} =0. (6.8)

Para z,2" € [0, L] o L — oo, y condiciones de contorno periédicas se reducen
a las relaciones usuales para campos fermiénicos.
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El vacio fermiénico |0)¢ (llamado a veces mar de Fermi) se define en la
forma

Cers|0)0 =0 para k>0 (i.e. ny > 0), (6.9)
b 0) =0 para k<0 (ie ng <0), (6.10)
es decir que es un estado que posee todos los estados con k£ < 0 ocupados

y aquellos con k > 0 libres. Respecto a este vacio se define la operacion de
orden normal del producto de operadores ABC'... como

:ABC---:= ABC... — ((0|ABC'...|0)o, (6.11)
para A, B, C, ... € {ckTS;cLTs}. Esta definicién es equivalente a agrupar
todos los operadores cg.s con k > 0y todos los C;LTS con k < 0 a la derecha

de los demas. Notese que una expresion del tipo clck con k arbitrario no esta

necesariamente ordenada normalmente, inicamente lo esta si k& > 0.
El operador nimero de particulas se define como

N,, = d oo s = > [czrsckm — 0<0|szckrs|0>o} : (6.12)
k=—o00 k=—o00
Designamos con N = (Ny, ..., Ny) al conjunto de los autovalores N, para

las diferentes especies, y por abuso de lenguaje diremos que un estado de
N particulas es un estado en el que hay N,  particulas de tipo rs. Nétese
que es posible aniquilar particulas con £ < 0 (ya que justamente el mar de
Fermi estd lleno hasta el nivel £ = 0). Alternativamente en este caso decimos
que creamos un agujero con impulso k. Esto disminuye el autovalor N,4, que
puede tomar asi valores negativos.

El conjunto de autoestados con un dado N conforman el espacio de Hilbert
de N particulas Hy. El espacio de Fock F se define como suma directa de los
espacios de Hilbert con ntimero fijo de particulas F = Y,y Hn. Entre todos
los estados con el mismo N hay uno que posee menor energia, es aquel que
estd lleno hasta un determinado nivel, y vacio de alli en mas: es el estado
fundamental de Hy, |N)o. Podemos dar una definicién mds precisa de este

estado:
IN)o = [[Ce

rs

0)o, (6.13)

donde
C;fVT‘SrsCJ(rNTS—l)rs cee CJ{rs para NTS > 07

071’:77'5 =11 para N, = 0, (614)

C(Nys+1)rsC(Nps+2)rs - - - Cors  Pala Nrs < 0.
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6.1.2. Campos bosbénicos

A partir del estado |0), pueden construirse el resto de las excitaciones de
N particulas. Definimos los siguientes operadores de creacion y aniquilacion
bosonicos que cumplen dicha tarea,

P i &
b:;rs e Z ChtqrsChrss quSET Z Clk—qrsChkrss (615)

V nq k=—o00 V '""q k=—oc0

donde n, € Z* es un entero positivo, y ¢ = 27mn,/L > 0. Estos operadores,
al actuar sobre cualquier estado |[N)g crean una combinacién de excitaciones
de particula-agujero sobre ese estado con ¢ unidades de momento mas (o
menos), pero sin salirse de Hy. En este sentido son operadores que aumentan
y disminuyen el momento. Su normalizacion se eligié de modo que satisfagan
relaciones de conmutacién bosénicas

[Bars: bgrrrsr] = [bhg 0] = 0, [Ny, byrg] = [N, 0001 = 0, (6.16)
! L& :
[bq’/‘87 bq/rfsl] :6Tr’5ao’ W Z (Ck—i-q/—q rsChrs — Ck:-i—q’ rsCk+q T‘S)
q'%q k=—0c0
1
=0pr000/04q' Z - {[ cJ,rmckTS = c£+qrsck+qrs ]
kg

+ (o<0|chckm|0>o - 0<O|C;rc+qrsck+q7“8|0>0)}
61160 (6.17)

Las ecuaciones (6.16) se pueden verificar facilmente, pero la derivacién
de (6.17) requiere cierto cuidado, como notaron por primera vez Mattis y
Lieb [11]: para ¢ # ¢ los dos términos en la primera linea ya estdn ordena-
dos normalmente (esto es porque sus valores medios de vacio son nulos) y
pueden restarse trivialmente mediante un cambio k — k — ¢’ en el segun-
do término, dando cero como resultado. Sin embargo, para ¢ = ¢ antes de
hacer la sustraccién debemos construir expresiones ordenadas normalmen-
te, de otro modo estariamos restando expresiones infinitas de un modo no
controlado. Los términos en la segunda linea se cancelan, reemplazando en
el segundo término k — k — g (esto ahora si se puede hacer porque estén
ordenados normalmente). La definicién del vacio (Ecs. (6.9) y (6.10)) implica
que la diferencia en los valores de expectacion de la tercera linea arroja como

resultado
1 e 1

L O ST o I (6.18)

nq nj=—00 nj=—00 nq
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Nétese que la construccion de los operadores by,s (6.15) y la derivacién de
los conmutadores (6.17) descansa fuertemente en el hecho de que el conjunto
de ks es infinito y no acotado por debajo.

Es facil verificar que dentro de Hy, |[N)o actiia como estado fundamental
para las excitaciones bosonicas:

bgrsIN)o = 0, para todo ¢, s. (6.19)

Intuitivamente esto es claro: si |[N)g es el estado fundamental entre todos
aquellos que contienen /N particulas, entonces no se le pueden quitar unidades
de momento sin quitar particulas, es decir, sin salir de Hy.

Es obvio que los estados excitados |N) que conforman el espacio de Hilbert
de N particulas se pueden obtener actuando sobre |N)y con alguna funcién
de los operadores fermiénicos: |N) = f(ck ., cuy)|N)o. Haldane [11] mostré
que también existe una representaciéon en términos de los bf . Mas especifi-

qrs*
camente, mostré lo siguiente:

Teorema 1 Para cualquier estado |N), existe una funcion f(b') tal que
IN) = f(bT)[N)o. (6.20)

Esta es una afirmacién para nada trivial ya que los operadores b crean com-
plejas combinaciones de excitaciones particula-agujero; y constituye el co-
razén de la bosonizacién debido a que implica una igualdad entre espacios
de Fock bosénicos y fermiénicos. Omitiremos aqui la demostracion, y remi-
tiremos al lector a la mencionada referencia.

El estado fundamental |N)q sirve para definir una operacién de orden
normal bosénica de un producto de operadores de tipo by.s ¥ bj}rs de manera
andloga al orden normal fermiénico (6.11). Méas atin, ambos son equivalentes,
es decir que si un producto de operadores bosénicos estd ordenado normal-
mente de acuerdo al orden bosénico, entonces también lo esta de acuerdo al
orden fermioénico, y viceversa. Por este motivo se utiliza la misma notaciéon
para ambos.

Con los operadores bosénicos definidos en la Ec (6.15) podemos definir
campos bosoénicos:

1 )
Ors(x) = =1 = ey, o2

i ; ! . i /2 (6:21)
Sors('r> =T ——e " rse_aq )
>0V Nq !
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y su combinacién hermitica

rs(2) = ors(2) + 9l (2)

1 .
= _TZ - (ezrqqurs Te qub:;rs) —aq/2' (622)
>0V ’qu

Aqui a > 0 es un pardametro infinitesimal que regulariza divergencias ul-
travioletas que ocurren en ciertas expresiones y conmutadores no ordenados
normalmente. Usualmente se toma del orden del espaciado de red a ~ 1/kg.
Por construccion, los campos ¢,.5(x) v ¢,s(x) son periédicos en x con periodo
L. Asi definidos, estos campos satisfacen las relaciones de conmutacion

[rs (), o (2)] = [h(2), L ( Nl=0, (6.23)

[901“5(3:)7 901’3’ (.I'/)] = 7“7"’500 Z eq[zr z=a')=a] (624)
q>0

= (57“7"600—/ ln |:]. — € L [ZT($ r ) a]] (625)

N 9
Lo 55 o [;

l[a —ir(x —2")]|. (6.26)
La Ec. (6.25) se obtuvo utilizando la expansién en serie de log(1l — y). Aqui
se ve claramente que a actia como cut-off de la divergencia ultravioleta
para x = x’. Estos conmutadores son ttiles en la evaluacién del producto

de operadores de vértice (exponenciales de campos bosénicos). Utilizando la

identidad
eAeP = eATBABI2 (6.27)

para operadores A y B que conmutan con [A, B], obtenemos

. . 4 . . L\Y? .
ewis(fﬂ)ewrs(w) — el(ipj«s+<ﬂrs)(1‘)6[1W15($),l§0rs($)]/2 = (27‘_@) 62¢>rs(1)7 (628)

1/2
—irs(@) g=ihs (2) _ omiloratiels) (@) pl—igrs (@),—ighs (2))/2 _ (22“) ———
(6.29)

Notese que estas formulas son validas para cualquier valor de L siempre que
a sea suficientemente chico (esto es asi porque para x = 2’ el limite L — oo
en (6.25) es equivalente a a — 0). Resulta interesante también la evaluacion
del conmutador del campo ¢,s(z) con su derivada:

2 s / ol ,
[¢rs(x), Oty (ZE,)] B N Sl ﬂ— Z {e%hT(:c—a: )—alng 4 6%[—zr(z—:c )—a]nq} .

L ng=1
(6.30)
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A partir de aqui podemos obtener dos expresiones diferentes de acuerdo a
céHmo se tomen los limites para L — oo y a infinitesimal. Si queremos una ex-
presion no periddica, para L grande, es conveniente hacer la suma geométrica,
y posteriormente tomar los limites dejando el limite a — 0 para el final:

2m 1 1
/ = — ’ pRu—
[gbrs(a:), az’(br’s’ (J: )] - 5TT 60‘7 L ur [e?[a—ir(x—x’)] -1 - 62%[a+i7"(x—ar’)] o 11
(6.31)
L—oo . G/’/T 1
—2 (57"7"500’ T N9, o T
—_— Tr [(x — :L‘/)Q T a2 L‘|
(6.32)
a . 1
20 i 8,y O e {6@ — 1) — L} . (6.33)

Notese que para tomar correctamente el limite . — oo en la primera linea
de las expresiones precedentes, se deben desarrollar los exponenciales hasta
orden cuadratico en 1/L. Para L finito, en cambio, tomamos primero el limite
a — 0 en (6.30), y utilizamos la identidad (6.6):

. (6.34)
nel L

[¢rs($)a az/¢r/s’ (.CC/)] = _51"1"500"27”'70 [Z 5($ — ' - nL) o l

donde el término 1/L en esta tltima ecuacion aparece debido a la ausencia
del término n, = 0 (¢ = 0) en la Ec. (6.30). Finalmente podemos calcular el
conmutador del campo ¢, con si mismo, obteniendo

(s (2), drs(2')] 2222220 730,08 ppre(z — o), (6.35)
donde
+1 six =
e(z) = { sz 20, (6.36)
0 siz=0.

6.1.3. Factores de Klein

Los operadores b y b crean excitaciones dentro del espacio de Hilbert
de N particulas. Debemos definir entonces operadores que conecten espacios
de Hilbert con diferente niimero de particulas, es decir, operadores escalera
que aumenten o disminuyan el nimero fermiénico total, cosa que no pueden
hacer los operadores bosonicos.

Definimos los factores de Klein F'y FT como operadores con las siguientes
propiedades: 7) conmutan con todos los operadores bosénicos:

[bgrs, Fih o] = [barss Frrsr] = b5, FV ] = [0, Fug] =0 Vg, (6.37)

qrs? r's qrs? T's
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y ii) su accién sobre un estado [N) = f(b")[N) es la de agregar una particula
en el nivel mas bajo posible, y la de quitar una en el mas alto respectivamente:

FLINY = f(N)ely, 1yrslNDo, (6.38)
Frs|N> = f(bT)CNrsrs|N>0' (639)

Asi definidos, los factores de Klein poseen las siguientes propiedades:

F.Fl.=FlF,,=1 (unitariedad), (6.40)
{Fl Frg} = 20,0500 Vr.r'. s, s (6.41)
{Fl Fl }y ={FsFry} =0 Vr#r' s # s, (6.42)

[Nos, Elrg] = 0,000 F,, [Nys, Fro] = =605 Fre. (6.43)

Para probar la unitariedad es fundamental que el espectro del operador N,
sea no acotado.

6.1.4. Identidades de bosonizacion

Con todas las definiciones y propiedades estudiadas estamos en condi-
ciones de establecer igualdades entre operadores de campos bosonicos y fer-
miodnicos. La primera de ellas, la mas simple de derivar, establece una igual-
dad entre la densidad electronica ordenada normalmente, y la derivada del
campo bosénico 0, ¢,s(x)

1 .
prs(2) = 0 1 (2) s () = T ey C,Lqrsckrs : (6.44)
q k

1 ; irqx —irqxpt 1 t

=7 > iy (e byrs — € qu) +7 > ChyChrs (6.45)
q>0 k
1 1 .

= —%quﬁm(ac) + ENTS (para a — 0). (6.46)

Aqui el orden normal es fundamental para trasladar los indices de suma.
La segunda, relaciona el campo fermiénico con el operador de vértice
bosonico. Para derivarla debemos mostrar previamente la siguiente propie-

dad:
Prop. 1 v¢,s(x)|N)¢ es un estado coherente bosonico

Mostraremos que dicho estado es un autoestado de by,s y por lo tanto posee
una representacion como estado coherente. Para ello basta con calcular los
conmutadores de by b con 1:
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[bars; Yrrsr (2)] = OprrOgor tqr (€)rs (), (6.47)
[b:;rs» Vg ()] = 57“T’500’O‘;r (2)rs(), (6.48)
donde ay, () = \/Lnfqe*"qz. Estos conmutadores y la ecuacion (6.19) implican

inmediatamente que

bqr’s’wrs ('T> | N)O = 5rr’5oo’aqr<x)wrs (I) ’ N>0 (649)

Y por lo tanto, este estado posee una representacion como estado coherente
bosoénico:

Urs(2)[N)o = exp {Zaqr(flf s | Frses()[N)o (6.50)
q>0
— e @ X (2)[NDo. (6.51)

Aqui utilizamos la definicién del campo ¢I, (6.21) en la segunda igualdad.
Hemos agregado el operador de fase A que derivaremos en lo sucesivo; y el
factor de Klein, que es necesario porque 1 remueve una particula del estado
IN)o, cosa que los campos bosénicos bf no pueden hacer. Para obtener el
operador A calculamos el siguiente valor medio de dos formas diferentes: por
un lado,

0<N|F:s¢rs($)|N>0 = O<N|5‘rs($)|N>0 = Ars(x)a (652)

donde hemos pasado adelante el factor de Klein F' en (6.51), ya que segin
su definicién (6.37) conmuta con todos los bf; utilizamos la unitariedad de
los F’s, y expandimos en serie el exponencial, queddndonos con el término
de orden 0, ya que o(N|b},, = 0.

Por otro lado, insertamos la descomposicién de Fourier (6.3) para ,s(x)
y la definicién del factor de Klein (6.38), y nos quedamos s6lo con el término

ng = N, (0 bien k = 2%(]\77«8 - %5,,5)):

0<N| %"8( 0 TZ e N|CNTSrkaTS‘N> (6~53)
k

1
P (Nrs=30r)e (6.54)
\/_

Concluimos entonces que el operador 5\(96) esta dado por

A 1 .27 (AT
Ars() = \/ze"QL(N”“””- (6.55)
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Para derivar las identidades de bosonizacién debemos estudiar la accién
del campo v,.5(x) sobre un estado |N) arbitrario (que segun (6.20) puede
escribirse como [N) = f({b},,})IN)o). Para ello utilizaremos las siguientes
identidades,

Urs () F({bhs}) = <{bq7"s — 07110001 g, () })Ups(2),  (6.56)
({bqrs - rr’éw’aqr(x)}) = e el ({bqrs e irpre )7 (6.57)

que se pueden mostrar facilmente a partir de la férmula de Baker-Hausdorff,
1
e BAeP = A4 [A B] + 5[[A, B|B]+..., (6.58)

expandiendo en serie de Taylor la funcion f y empleando los conmutadores
(6.47) y (6.48). Podemos evaluar entonces 1,s(x)|N) conmutando ,s(x) con
S({bl,.}), insertando la representacion (6.51) y reordenando los factores:

Wrs (2)[N) =tps(2) f({D],1)IN)o (6.59)
(Bl — Do ()} () N, [por Ta Ec. (6.56
= F (Ve = OBy (2)})e @ BN, (2)N)o  [por Ta Ec. (6.51
—Frs/\rs(x)e_””” @f ({qu — 00000y, () })[N)o - [por la Ec. (6.37
= Aea)em ) [ £ (3], 1] Ny [por Ta B (6,57
(x)e’“w” (@) g=irers(@) g FEBLHIN)g [por la Ec. (6.19
(x)e_"“"”(”:) —irers@|N). [por la Ec. (6.20

Dado que |N) es arbitrario, y que todo estado del espacio de Fock es de esta
forma, concluimos que las siguientes formulas de bosonizacion valen como
identidades entre operadores en el espacio de Fock, y para todo L:

s () :Frijrs(x)e*"T‘PIS(‘”)e*iw”(w) (6.60)
1 s 2T (N 1 . T .
=F =T Nrsm20n)e omirers (@) o=irers(@) - [hor Ja Be. (6.55)] (6.61)
“VL
1 2w ,
= Fryei T (Nrs=30rs)a g mirdrs(z) [por la Ec. (6.28)] (6.62)

V2Ta

Puede ser util definir

( ) ¢rs - QI( Ars - ;573)1'. (663)
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Con esta definicién, tenemos que

1 .
rs\T) = 7Frs€_lT¢)TS(x)7 6.64
1 57’5
= ——0.P —. .
prs() 27T8x rs(T) + 5T (6.65)

Por ultimo estudiaremos como representar un Hamiltoniano fermiénico libre
con una relaciéon de dispersiéon lineal

L
Hy = —irvy, / do : 9] (2)050,(v) = D vk Clygtppy 1. (6.66)
0 k

donde v, es la velocidad de Fermi (es siempre positiva, independientemente
de la quiralidad de los fermiones). La segunda forma se obtiene de la primera
insertando el desarrollo de Fourier del campo v (6.3). Recordemos que estas
expresiones no estan ordenadas normalmente de forma automaética, ya que
la expresion czck solo esta ordenada normalmente para k > 0, y es necesario
escribir : ... :. Noétese que la condiciones de contorno periddicas implican
que el modo con k = 0 posee energia cero, y por lo tanto podemos tener
dos estados fundamentales degenerados en los que ese modo esta ocupado o
desocupado.

La ecuacién (6.20) implica que los b'’s actuando sobre |N)q generan todo
el espacio de Hilbert de N particulas. Esto significa entonces, que Hy debe
tener una representacion en términos solamente de variables bosoénicas. Para

hallar esa representacion, estudiemos el conmutador de b:fm con Hy:

[H07"57 b;r/s/] = 57‘7"500’1)7’5(][)27«5' (667)
Ademas, dado que [HDTS,NT/S/} = 0 para todo r,7/,s,s’, todo autoestado

de N,s lo es también de Hy,,, en particular el estado fundamental de N
particulas, |[N)o. Su autovalor es, (se obtiene sumando las energias de los
estados ocupados por encima del ny = 0)

2 .
EN o, (27r> SN (n = 6) = s %(1 —Ncsm) si N >0,
s L O g —(n—6) =N Wel(p 5y i N <0,
(6.68)
v 2w
= Nys(Neo +1 = 6,). 6.69
2 ( L ) (Ns + ) (6.69)
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6.2 Aplicaciones

La tnica forma bosénica para H, que reproduce las Ecs. (6.67) y (6.68) es:

rs 2 4 \
HO’I‘S = Z UrsquﬂsquS + L <7T> Nrs (NTS + 1 - 57‘5) <67O>
= 2 \L
=t [ @)+ (CE) R (S 1-80). 67D
= ; T O Prs X : 5 I rs s rs ) :

La segunda forma es equivalente a la primera, como se comprueba al insertar
la definicién de ¢, en términos de los b’s [Ec. (6.22)] en la Eq. (6.71). Nétese
que en la primera forma podemos suprimir el orden normal, dado que esa
expresion ya esta ordenada normalmente, ya que aqui ¢ solo puede ser posi-
tivo (no asf la segunda donde encontramos la expresién : bTb + bb! := 2b7b).
Ninguna contienen factores de Klein dado que el Hamiltoniano conserva el
nimero de particulas. Con esta tltima ecuaciéon completamos la derivacion
de las identidades de bosonizacién, que valen para L finito. Para obtener
expresiones con L — 0o basta con despreciar los términos ~ 1/L. En este
capitulo seguimos un enfoque constructivo, de modo que no es necesario veri-
ficar los conmutadores de los campos fermionicos o igualdad entre funciones
de Green. A continuacién veremos las aplicaciones del proceso de bosoniza-
cién, y como se vuelve extremadamente 1til para el estudio de complicadas
teorias fermiénicas en una dimensién espacial.

En la literatura es méas comun trabajar con ®, ya que el segundo término
en puede considerarse como un modo cero del campo. En esta notacion el
Hamiltoniano Hj se lee

U?"S

L 2T\ Vps (2T 02
— dr : (8,P,5)" Urs () Ny, — = <> =. 72
47r/0 T 0r) (T o \z ) 67

el dltimo término es una constante y podria suprimirse. Ademés, podemos
escribirlo en términos de densidades,

H()rs =

L 9 N
mmzﬁm/cmmam%+%(ﬁyrwaMy (6.73)
2 . 2 \L

6.2. Aplicaciones

6.2.1. Gas de electrones

Consideremos un gas de electrones independientes, cuyo Hamiltoniano es

Hy =" e,CiCy. (6.74)
k
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En la aproximacion de electrones casi libres, o de ligadura fuerte, la relacion
de dispersion ¢, estd dada por

e = —2tcoska (6.75)

donde ¢ es la constante de intercambio (acoplamiento entre sitios vecinos) y
a es el espaciado entre los atomos de la red.
La superficie de Fermi en un sistema unidimensional consiste en dos pun-

tos, +krp y —kp; en su vecindad podemos linealizar la relaciéon de dispersion
(6.75):

La linealizacion genera dos ramas bien definidas en la relacion de disper-
sion. Los electrones que pertenecen a la rama que contiene al punto +kp y
—kr se mueven hacia la derecha e izquierda respectivamente. Si volvemos al
operador fermiénico original, éste se puede descomponer teniendo en cuenta
unicamente los modos cercanos al nivel de Fermi y despreciando los restantes,

1 .
U(r)=—F= Ze””C ~ — Z e Oy, + e*r Oy, (6.77)
VL% Ly \/_k~kp
= Yr(x) + ¥r(z). (6.78)
Aqui la suma se extiende de k = —oo a k = oo (es una serie de Fourier

de Fourier). Estas aproximaciones, tanto de la dispersién como del operador
fermioénico, en principio, son razonable en un rango finito alrededor de los
puntos de Fermi. Sin embargo, los tratamientos matematicos se simplifican
enormemente si tomamos esta version linealizada para todos los valores de k
entre —oo y 400, es decir, si reemplazamos el espectro libre por una apro-
ximacién lineal, estamos incorporando los infinitos modos requeridos por la
bosonizacion descrita en las seccién precedente. Por otro lado, s6lo estamos
interesados en excitaciones de baja energia, a las que contribuyen estados
proximos a la superficie de Fermi; de modo que la inclusién de los estados
adicionales por efecto de la linealizacion es despreciable en este régimen. Es-
to ultimo se verifica a posteriori al estudiar los efectos producidos por la
curvatura de banda, es decir incluyendo términos cuadraticos y cubicos en
la relacién de dispersion. Se puede mostrar que las contribuciones de estos
términos son irrelevantes frente a las del término lineal. No obstante, la in-
troduccién de los infinitos modos tratada de forma naive presenta algunas
complicaciones matematicas ya que el mar de Fermi tiene ahora energia in-
finita. Para superar este problema, se sustrae la energia infinita del mar de
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Fermi, operacién que matematicamente significa tomar el orden normal. Con-
sideremos las condiciones de contorno para el campo V. Para condiciones de
contorno, ¥(z + L) = ¢ ¥(x) debemos tener que los valores de k son

2nm mo
k=—+4+— 6.79
Tt (6.79)
donde § € [0,2). Es conveniente factorizar los factores de fase e**r* y cam-

biar k£ por —k en el primer término:

w1
U(r) o~ e thre > e* Oy rops (6.80)
VL% VL% )

= e_ikva,bL(x) + e’k”@DR(x). (6.81)

A los operadores que los representan a /7, los denotaremos

e zkwc«_k ke +ezkpx

CrL = C,k,kp, (683)

con k ~ 0. Adicionalmente, extendemos la suma sobre modos para los fer-
miones de tipo Ry L también a todos los valores de k, y entonces

() \/_ > eirkeet | (6.84)

donde 7 toma los valores r = R/L (o r = £1 en expresiones matematicas).
Obsérvese que estos campos satisfacen condiciones de contorno retorcidas

U + L) = e (2), (6.85)

y para ello necesitamos que la expansion de modos para los fermiones quirales
tenga diferentes valores de k para ambas quiralidades, k = 27n/L + 7,/ L,
with d, = rd. Este conjunto de operadores asi definidos satisface los requisitos
de ser un conjunto infinito y no acotado, y los identificamos inmediatamente
con los descritos en las Ecs. (6.1) y (6.2). En término de estos operadores, el
Hamiltoniano libre se escribe

L
Zka e, = —ivp /0 L (Vhowg — v]owy) ¢, (6.86)

donde dividimos la suma sobre k en modos alrededor de +kr y —kp. Observe
que si sigo la ruta

Hy =" e,CiCy. (6.87)
k
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El término kr en el Hamiltoniano es absorbido al redefinir los fermiones en
las Eq. (6.82) y (6.83). Notemos que al reemplazar la dispersién exacta por
su version linealizada, y sumar sobre todos los modos, estamos introduciendo
una suma infinita sobre todos los estados de energia negativa (el mar de Fer-
mi). Es conveniente sustraer la energia del mar de Fermi, lo cual se consigue
ordenando normalmente el Hamiltoniano. Finalmente, recuérdese que junto
con la expresion de la Eq. (6.86), el fermion fisico se escribe

U(2) = e Y (2) + eFF (). (6.88)

Siguiendo la férmula estandar de bosonizacién obtenemos

L
Hy = “F/ dz : (0,P5)* 4 (8,P1)” :
0

4
v (2T N N ) 27
+3 (L) (Ngp+ Np) — — (L) (0% +07). (6.89)

6.2.2. Campos duales

Es usual introducir los campos duales ® y © definidos como

o P
d = R;FL dp=0— 0O, (6.90)
—o P
0= R;L o, =P+ 0. (6.91)
Usando (6.34) y (6.63) podemos mostrar que
[®(2),0,0(2")] = imd(x — 2'), (6.92)

es decir, que poseen relaciones de conmutacién canénicas (definiendo el mo-
mento IT = 19,®). Ademds, definimos

N . . N-—J

N = Np+ Ky, == (6.93)
. . . . N+J

J= —Np+ Ny, Ny, = ; , (6.94)

de donde tanto N como J, sus autovalores, resultan ambos pares o ambos
impares. El Hamiltoniano se escribe

T or

L
H, ”F/ dr : (0,9)* + (0.0) :
0

S GLE LA
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donde
5:5R+5J, 5:_6R+5L- (696)
En términos de estos campos, las identidades de bosonizacién se escriben
1 )
= ——Fpe (®9), 6.97
= oral (6:97)
1 .
L= ———=Fpet*t9), (6.98)
2ma

Obsérvese que los campos ® y O satisfacen las condiciones de contorno
O(x+ L) = d(z) — 7N, (6.99)
Oz + L) =0O(z) — 7. (6.100)
Por lo tanto, los nimeros cuanticos correspondientes a autovalores de N y J
se relacionan con excitaciones topologicas de los campos.

Alternativamente, podemos trabajar con campos duales que no incluyan
los modos cero,

¢ = ¢r+ b1, (6.101)
0 =—¢r+ oL, (6.102)

y que satisfacen condiciones de contorno periddicas. Estan relacionados con
los anteriores de acuerdo a

d=¢— TN’ (6.103)
@:0—%1 (6.104)

El Hamiltoniano, en este lenguaje, resulta

L
o= /0 do : (9,0)2 + (8,0)? -

™

+ o [NV +2) 4 2 - (W6 + Je)] . (6.105)

6.2.3. Interacciones

Analicemos aqui el efecto de las interacciones entre electrones. Es en este
punto donde la bosnizacién se vuelve realmente poderosa, ya que permite
reducir un Hamiltoniano muy complicado a una expresion soluble. Conside-
remos una interaccién de la forma

1 L L
Hing = 5 Z/ dl‘/ dx’ Grr’ (l’ - y) : pT(x)pr/ (-T/) 5 (6106)
rr’ J0 0
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donde p.(x) =: l(x)Y.(x) : satisface condiciones de contorno periédicas
para cualquier 9,. Si introducimos la forma bosonizada para las densidades,
obtenemos

1 L L
Hiny = 5753 Z/ dx/ dr' g (x — ') 0 0,P,(2)0, P (2) :,  (6.107)
2(2m)* ' Jo 0

donde supusimos que g es también una funciéon periédica. A continuacion
redefinimos los acoplamientos, introduciendo g4 = grr = gL V 92 = 9rL =
grr- También es necesario agregar un orden normal al producto de densida-
des, aunque cada factor esté ordenado normalmente, su producto no nece-
sariamente lo esta. Al agregar H finalmente obtenemos para interacciones
locales el modelo de Tomonaga-Luttinger,

xr . (33; . . (33;() .

_|_7

. o7 (Vo + Je). (6.108)

en la notacion de los campos duales, donde K es el llamado parametro de
Luttinger, y v es la velocidad del sonido, o velocidad de los modos colectivos,

ool 3 () 6209

94 __ 92
UF+271' 2

94 g2 "
UF+27r+27r

K= (6.110)
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