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Prólogo

La f́ısica del estado sólido es un campo fascinante que profundiza en las
propiedades, estructura y comportamiento de los sólidos. El mundo que nos
rodea está hecho de materia, y el estudio de sus propiedades a nivel atómico
y molecular nos ha permitido avanzar en la comprensión del universo.

La f́ısica del estado sólido se enfoca en las propiedades f́ısicas de los sólidos,
incluyendo sus propiedades eléctricas, magnéticas, ópticas y mecánicas, y
trata de los principios fundamentales que rigen su comportamiento. Este
campo utiliza disciplinas como la mecánica cuántica, la cristalograf́ıa y el
electromagnetismo.

Este libro proporciona una introducción a los conceptos y modelos que
subyacen a la f́ısica del estado sólido, explorando el mundo de los cristales,
aisladores y metales, discutiendo la f́ısica de los superconductores y estudian-
do las propiedades magnéticas de los sólidos.

En los primeros caṕıtulos exploraremos algunos de los modelos tradi-
cionales que se han utilizado para describir propiedades de los sólidos. La
importancia de estos modelos subyace, no solo en la comprensión que ofrecen
sobre las caracteŕısticas de los materiales, sino también sobre la importancia
de construir modelos efectivos en f́ısica que describan y permitan identificar
los grados de libertad relevantes de un sistema.

Luego presentaremos algunas de las herramientas utilizadas para describir
la estructura cristalina de los sólidos y una introducción a segunda cuantifi-
cación que luego utilizaremos para describir excitaciones magnéticas.

Haremos una recorrido por el estudio de las propiedades magnéticas de
los sólidos dedicándole un lugar especial al fenómeno de superconductividad.
Finalmente presentaremos una introducción a la técnica de bosonización.

Con este libro esperamos inspirar y motivar a los estudiantes de la licen-
ciatura en f́ısica y carreras afines para que exploren más a fondo el mundo
de la f́ısica del estado sólido. Sin embargo, esperamos que sea de utilidad
tanto para estudiantes, investigadores o simplemente personas apasionadas
por la f́ısica. Este libro pretende proporcionar herramientas y los conoci-
mientos básicos para comprender y apreciar las complejidades del mundo
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que nos rodea. Sin embargo, cada uno de los temas introducidos en este libro
puede ser extendido y estudiado en mayor profundidad. Invitamos al lec-
tor a consultar la bibliograf́ıa espećıfica de cada tema. Existen actualmente
una gran variedad de libros que tratan algunos de los temas discutidos aqúı
[3, 4, 2, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19].

Embarquémonos en este viaje de descubrimiento y exploración y adentrémo-
nos en el mundo de la f́ısica del estado sólido.

Materia cuántica - C.A. Lamas, A. Iucci (autores)

Facultad de Cs. Exactas  |  UNLP |   6



Caṕıtulo 1

Modelos en sólidos

Una de las herramientas más importantes de la f́ısica de la materia con-
densada es el uso de modelos para describir el comportamiento de los materia-
les. Estos modelos pueden ser desde simples e intuitivos hasta incréıblemente
complejos y abstractos, pero la simpleza en los modelos a permitido com-
prender en muchos casos cuales son los grados de libertad relevantes a la
hora de caracterizar el comportamiento de un sistema.

En este caṕıtulo, exploraremos algunos de los modelos más tradicionales
en la f́ısica de la materia condensada, como el modelo de Einstein, el mo-
delo de Debye, el modelo de Drude y el modelo de Sommerfeld. También
discutiremos sus puntos fuertes y sus limitaciones.

Esperamos que este caṕıtulo le ayude a comprender mejor la belleza y
complejidad de la f́ısica de la materia condensada y le inspire a explorar más
a fondo este fascinante campo.

1.1. ¿Por qué estudiamos el estado sólido de
la materia?

La f́ısica del estado sólido se enfoca en estudiar las fases sólidas de la mate-
ria mediante un enfoque microscópico y para ello se sirve de de herramientas
provenientes de la mecánica cuántica, la f́ısica estad́ıstica y la termodinámi-
ca. Debido tanto a la diversidad de sistemas que estudia como a la relevancia
de sus conceptos fundamentales, la f́ısica del estado sólido se ha converti-
do en una de las áreas más amplias de la f́ısica, con numerosas aplicaciones
prácticas y tecnológicas. En la actualidad, nuestra capacidad para compren-
der la materia ha alcanzado niveles sin precedentes, permitiéndonos diseñar
materiales de funcionalidades espećıfica e incluso llevar a cabo simulaciones
numéricas por computadora antes de proceder a su fabricación. Un ejemplo
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1.1 ¿Por qué estudiamos el estado sólido de la materia?

de esta capacidad descriptiva son los materiales semiconductores, que son la
base de la industria de la microelectrónica y de muchos dispositivos que nos
rodean a diario (smartphones, laptops, memorias, etc.).

Una caracteŕıstica distintiva de los sistemas estudiados en la f́ısica del sóli-
do y, en general, en la materia condensada, es la gran cantidad de part́ıculas
que intervienen. En un sólido, suele haber del orden de 1023 part́ıculas (elec-
trones e iones) que están en permanente interacción y movimiento, lo que
resulta en una dinámica extremadamente compleja de describir. A menudo,
incluso teniendo una compresión profunda de los mecanismos microscópi-
cos de interacción (como la repulsión Coulombiana entre dos electrones), los
fenómenos colectivos que emergen de la interacción de un número tan elevado
de part́ıculas son totalmente inesperados. Un ejemplo de esto son las transi-
ciones de fase, donde un sistema puede volverse ferromagnético por debajo de
cierta temperatura. Estos fascinantes fenómenos en los sistemas de materia
condensada se conocen como fenómenos emergentes. Es justamente la gran
cantidad de átomos involucrados lo que hace posible realizar una descripción
cuantitativa de estos sistemas..

La f́ısica del estado sólido resulta una disciplina conceptualmente fun-
damental, ya que se sitúa en la intersección de diversas ramas de la f́ısica,
desde áreas muy abstractas como la teoŕıa cuántica de campos, hasta otras
más aplicadas como la f́ısica de materiales y la electrónica. La universalidad
de sus conceptos nos permite comprender y estblecer conexiones que inicial-
mente pueden no ser evidentes. Por este motivo, los sólidos actúan como
¹laboratoriosº donde se pueden validar teoŕıas e ideas de diferentes ámbi-
tos de la f́ısica. Por ejemplo, todos estamos familiarizados con el magnetismo
(muchos de nosotros hemos manipulado imanes o tenemos alguno en nuestras
heladeras). Sin embargo, algo menos evidente sobre esos simples imanes es
que la teoŕıa del magnetismo en sólidos (particularmente, la teoŕıa de campo
medio y el fenómeno de ruptura espontánea de la simetŕıa, también ofrecen
explicaciones para materiales más complejos y menos frecuentes, como los
superconductores1, que estudiaremos en el caṕıtulo 5.

Consideremos, por ejemplo, los portadores de carga en un metal responsa-
bles del transporte eléctrico: los electrones y los huecos2. En su teoŕıa cuántica
relativista para describir part́ıculas de spin 1/2 (como el electrón), el notable
f́ısico Paul Dirac propuso el concepto de antimateria, actualmente un elemen-
to esencial en el Modelo Estándar. En la f́ısica del estado sólido, entendemos

1Un superconductor es un material que, por debajo de cierta temperatura, pierde toda
resistencia eléctrica, permitiendo el flujo de electricidad sin pérdida de enerǵıa.

2Un hueco se puede imaginar como una ¹burbujaº en un ¹océano de electronesº, efecti-
vamente comportándose como una part́ıcula con carga positiva +e

Materia cuántica - C.A. Lamas, A. Iucci (autores)
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Modelos en sólidos

Figura 1.1: Izquierda: Imagen generada por computadora de una monocapa
de grafeno, donde los átomos de carbono se disponen en una red de tipo
¹panal de abejaº. Derecha: Estructura electrónica del grafeno, donde pue-
den verse los llamados conos de Dirac, cerca de los cuales los electrones se
comportan de manera efectiva como si se movieran a velocidades relativistas.

a un hueco como la ¹antipart́ıculaº del electrón dentro de un sólido.3
La f́ısica del estado sólido también nos ayuda a entender las propieda-

des de nuevos materiales con caracteŕısticas innovadoras. Por ejemplo, se
ha logrado avances significativos recientemente en la creación de materiales
que prometen transformar la industria electrónica y la ciencia de materiales.
Probablemente, el más relevante en las últimas décadas es el material deno-
minado grafeno, que está formado por una única capa de átomos de carbono
dispuesta en una estructura similar a un ¹panal de abejasº (ver Figura 1.1).
Curiosamente, todos hemos estado en contacto con este material sin saberlo,
ya que compone el grafito, que a su vez se encuentra en la punta de cualquier
lápiz. Se puede imaginar el grafito como un conjunto de millones de capas de
grafeno apiladas. Aunque el grafito es un material bastante común y no muy
llamativo, el grafeno śı presenta propiedades excepcionales: es más fuerte
que el acero (comparando una capa de igual espesor), y es uno de los mejores
conductores de la electricidad y el calor hallados hasta el momento. Si bien
su estructura y ciertas propiedades son conocidas desde hace tiempo, no fue
sino recientemente que se lo logró aislar y caracterizar4. Además de sus signi-
ficativas aplicaciones tecnológicas, a bajas temperaturas el comportamiento

3No obstante, de manera más precisa, se reconoce hoy en d́ıa que la ¹verdaderaº anti-
part́ıcula del electrón es el positrón, identificado en 1932.

4En 2004, André Geim y Konstantin Novoselov, lograron separar una monocapa de grafeno
utilizando el método de exfoliación que consiste en aplicar repetidamente cinta adhesiva hasta
conseguir una monocapa. Geim y Novoselov ganaron premio Nobel de f́ısica en 2010 por este
descubrimiento.

Materia cuántica - C.A. Lamas, A. Iucci (autores)
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1.2 Aproximación de Born-Oppenheimer, o cómo encarar un problema tan
complicado

de los electrones en el grafeno simula el de electrones ¹sin masaº o electrones
relativistas de Dirac, estableciendo conexiones con la f́ısica de altas enerǵıas.

1.2. Aproximación de Born-Oppenheimer, o
cómo encarar un problema tan compli-
cado

Supongamos que tuviéramos una capacidad de cálculo sin ĺımite y qui-
siéramos describir el comportamiento de una sustancia formada por átomos
que interactúan entre śı. Esta cuestión es pertinente no sólo para el estado
sólido, sino para la materia en cualquiera de sus estados. El puntapié inicial
en el que un f́ısico pensaŕıa (tal vez uno no demasiado experimentado) seŕıa
resolver la ecuación de Schrödinger para todo el sistema, compuesto de elec-
trones y núcleos (a quienes trataŕıamos como una única part́ıcula) y sujetos
a las interacciones Coulombianas entre ellos,

HΨ = EΨ, (1.1)

cuyo Hamiltoniano se escribe como una suma de términos

H = Te + Tn + Vee + Vnn + Ven, (1.2)

y donde los términos de enerǵıas cinética y potencial son

Te =
NeØ
j=1

p2
j

2me

, Tn =
NnØ
l=1

P 2
l

2mn

, (1.3)

Vee =
NeØ

j Ó=jÍ=1

e2

|rj − rjÍ|
, Vnn =

NeØ
l Ó=lÍ=1

ZlZlÍe
2

|Rl −RlÍ |
, (1.4)

Ven =
Ne,NnØ
j,l=1

e2Zl

|rj −Rl|
. (1.5)

Aqúı rj se refiere a las coordenadas de los Ne electrones de masa me y Rl a
las Nn coordenadas de los núcleos, de masa mn. Zl son los correspondientes
números atómicos. La función de onda depende de todas las coordenadas, lo
cual anotamos en forma compacta en la forma

Ψ(r1, . . . , rNe ,R1, . . . ,RNn) = Ψ({rj}, {Rl}). (1.6)

Con la excepción de efectos de radiación e interacciones spin-órbita (ambos
podŕıan incorporarse con facilidad en el Hamiltoniano), todos los fenómenos
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Modelos en sólidos

de la materia condensada, y todos los fenómenos que ocurren en nuestra vi-
da cotidiana, están contenidos en este Hamiltoniano y las correspondientes
ecuaciones de movimiento. La “teoŕıa del todo” en materia condensada está
entonces bien establecida, y sólo nos queda resolverla (¡!). Sin embargo aqúı
es donde los problemas aparecen, el primero de ellos, y no menor, es que
resolver estas ecuaciones es imposible tanto anaĺıtica como numéricamente
para sistemas donde el número de constituyentes es mayor a una veintena
de part́ıculas, incluso en su versión clásica. La complejidad de estos sistemas
crece exponencialmente con el número de part́ıculas y rápidamente se alcanza
el ĺımite que es posible tratar computacionalmente5. Anaĺıticamente sólo el
problema de dos cuerpos posee solución exacta. Por otro lado, las aproxima-
ciones usuales que podŕıan emplearse para tratar estas ecuaciones, tales como
la teoŕıa de perturbaciones, si bien permiten capturar ciertos fenómenos, co-
mo el comportamiento de los gases , no logran describir la mayor parte de
los fenómenos conocidos de la materia condensada, tales como la supercon-
ductividad, superfluidez, efecto Hall cuántico fraccionario, etc, incluyendo la
existencia misma de los sólidos. Para esto se debe cambiar el enfoque y uti-
lizar razonamientos basados en la simetŕıa y en el análisis inteligente de las
escalas relevantes de tiempo y longitud. Esta forma de encarar el problema,
es la que en última instancia permite comprenderlo. La “teoŕıa del todo” es
de poca utilidad para entender estos fenómenos complejos.

Volviendo al problema del sólido, para atacar el conjunto de ecuaciones
(1.1)-(1.5) lo que haremos es analizar las escalas de enerǵıa del problema. Los
núcleos son varios miles de veces más pesados que los electrones. El protón,
en śı mismo, es aproximadamente 2000 veces más masivo que un electrón.
En un sentido dinámico, los electrones pueden considerarse como part́ıculas
que siguen el movimiento nuclear adiabáticamente, lo que significa que son
“arrastrados” junto con los núcleos sin requerir un tiempo de relajación fi-
nito. Esto, por supuesto, es una aproximación, ya que podŕıa haber efectos
no adiabáticos que no permitan que los electrones se muevan de esta mane-
ra “instantánea”, sin embargo, en muchos sistemas la separación adiabática
entre electrones y núcleos es una excelente aproximación. Otra consecuencia
de la diferencia de masa entre electrones y núcleos es que los componentes
nucleares de la función de onda están espacialmente más localizados que el
componente electrónico. En el ĺımite clásico, los núcleos están completamen-
te localizados y representan part́ıculas puntuales clásicas. Vamos a explotar
esta separación de escalas mediante un ansatz cuasi separable de la forma,

Ψ({rj}, {Rl}) = φe({rj}, {Rl})φn({Rl}) (1.7)

5Y que será posible tratar por cualquier computadora en un futuro.
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1.2 Aproximación de Born-Oppenheimer, o cómo encarar un problema tan
complicado

Al insertar este ansatz en la ecuación de Schrödinger, vemos que una posi-
bilidad, consistente con la filosof́ıa de la aproximación que buscamos imple-
mentar, es que el factor electrónico satisfaga una ecuación de Schrödinger
más simple, para una configuración fija de los núcleos:

Heφe = Eeφe (1.8)

donde ahora
He = Te + Vee + Ven. (1.9)

Esta ecuación adquiere sentido si pensamos que durante los intervalos de
tiempo caracteŕısticos en los que transcurre el movimiento electrónico, los
núcleos se quedan fijos y por lo tanto se desprecia su enerǵıa cinética. Tam-
poco incluimos Vnn porque es una constante para la ecuación electrónica.
Desde el punto de vista de los electrones, el potencial electrón-núcleo ahora
juega el papel de un potencial externo,

Ven =
NeØ
j=1

U(rj) (1.10)

donde
U(r) =

NnØ
l=1

e2Zl

|r −Rl|
(1.11)

es un potencial de part́ıcula simple, que depende de una serie de parámetros
que son las posiciones de los núcleos Rl. La ecuación (1.8) determina las
enerǵıas propias del sistema electrónico, que dependen paramétricamente de
las posiciones de los iones:

Ee = Ee({Rl}). (1.12)

En una segunda etapa, volvemos al Hamiltoniano original (1.2) e inserta-
mos la forma separada (1.7), y utilizando (1.8) llegamos a

(Tn + Vnn + Ee)φe({rj}, {Rl})φn({Rl}) = Eφe({rj}, {Rl})φn({Rl})
(1.13)

. Obsérvese que no hemos realizado hasta aqúı ninguna aproximación, sólo
hemos propuesto el ansatz (1.7) con φe satisfaciendo (1.8). Claro, el par
de ecuaciones (1.8) y (1.13) resultan tan complicadas de resolver como el
problema original. En especial la segunda: el operador que corresponde a la
enerǵıa cinética actúa sobre los dos factores, φe y φn ya que ambos dependen
de las coordenadas de los núcleos. Sin embargo, la dinámica rápida de los
electrones comparada con la de los núcleos implica que el operador enerǵıa
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Modelos en sólidos

cinética de los núcleos actuando sobre φe debe ser muy pequeño, y entonces
suponemos que Tn únicamente actúa sobre φn. Luego, obtenemos la ecuación

(Tn +W ({Rl}))φn({Rl}) = Eφn({Rl}) (1.14)

donde W = Vnn +Ee es un potencial efectivo de interacción entre los núcleos,
que tiene en cuenta la presencia de los electrones. Obtuvimos entonces dos
ecuaciones: la ecuación (1.8) que representa una ecuación para los electrones
en presencia de un potencial externo generado por los núcleos en posiciones
fijas, y la ecuación (1.14) que describe el movimiento de los núcleos, que inter-
actúan mediante un potencial efectivo influido por el movimiento electrónico
a través de Ee({Rl}). Por supuesto, estas ecuaciones siguen acopladas y si
bien son más simples que la ecuación original continuan siendo muy dif́ıciles
de resolver para 1023 variables. Sin embargo, hay una simplificación adicional
importante, que da lugar a una teoŕıa del estado sólido: los sólidos son estruc-
turas periódicas formadas por una celda unidad que se repite muchas veces.
Esta celda contiene solo unos pocos átomos y entonces el problema final es
apenas más complicado que el de un molécula pequeña, con el tamaño de
una sola celda.

Para explicar esta estructura periódica, supongamos que los núcleos son
tan pesados que podemos despreciar su enerǵıa cinética. Entonces, la confi-
guración de equilibrio de los núcleos será aquella que minimice el potencial
efectivo W . Este t́ıpicamente exhibe una fuerte repulsión de corto alcance
cuyo origen se encuentra en la repulsión Coulombiana entre núcleos, y una
atracción de largo alcance, y un mı́nimo a una cierta distancia. Se puede
mostrar, aun que aqúı lo supondremos , que bajo condiciones muy generales,
el mı́nimo del potencial efectivo ocurre cuando los núcleos se disponen en
un arreglo regular sobre una red periódica, cuyas caracteŕısticas geométricas
dependen del detalle de las fuerzas efectivas entre los núcleos, lo cual, en
última instancia está determinado por la naturaleza del material.

1.3. Modelo de Einstein
El calor espećıfico de un sólido se define como la cantidad de calor que

hay que suministrar por unidad de masa para elevar su temperatura en una
unidad. El valor del calor espećıfico depende del valor de la temperatura
inicial, en general aumenta cuando aumentamos la temperatura y tiende a
cero cuando la temperatura tiende a 0 K. A medida que la temperatura se
hace más grande, el crecimiento del calor espećıfico se hace cada vez más
lento hasta que a grandes temperaturas satura a un valor fijo.

Materia cuántica - C.A. Lamas, A. Iucci (autores)
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1.3 Modelo de Einstein

Material C/kB

cobre 2, 94
oro 3, 05

plata 2, 99
aluminio 2, 91
diamante 0, 74

Cuadro 1.1: Calor espećıfico por átomo para algunos materiales

Lo que es llamativo, es que el valor al que tiende el calor espećıfico a
temperaturas altas es aproximadamente el mismo para la mayoŕıa de los
sólidos. En base a esto, en 1819 los f́ısicos franceses Pierre Louis Dulong y
Alexis Théresèse Petit propusieron lo que hoy se conoce como “ley de Dulong-
Petit”[8], la propuesta estaba basada en la observación experimental de que
para muchos sólidos el calor espećıfico por mol está dado por

C = 3kB. (1.15)

La “ley de Dulong-Petit” puede deducirse a partir de la estad́ıstica de
Boltzman6. Aunque esta ley no siempre es del todo correcta, se tiene que
C/kB Ä 3 se cumple aproximadamente bien a temperatura ambiente pa-
ra muchos sólidos. A temperaturas más bajas, los materiales comienzan a
desviarse de esta ley y C cae rápidamente por debajo de cierta temperatura.

Boltzmann construyó un modelo que explicaba bastante bien esta ley en
el que cada átomo del sólido se encuentra unido a los átomos vecinos y posee
grados de libertad de vibración[6]. Podemos suponer que cada átomo está
en un pozo de potencial, que supondremos armónico formado por la inter-
acción con sus vecinos. En un modelo mecánico estad́ıstico clásico como el
de Boltzmann, el calor espećıfico del átomo es 3kB, de acuerdo con la ley
de Dulong-Petit. El problema que surge del modelo de Boltzmann es que no
logra describir el comportamiento del calor espećıfico a bajas temperaturas.
Para resolver esto, en 1907 Albert Einstein[9] propuso que, para describir
los grados de libertad de vibración a bajas temperaturas era imprescindible
un tratamiento cuántico. Einstein propuso un modelo simple análogo al de
Boltzmann, suponiendo que cada átomo estaba sujeto a un potencial armóni-
co generado por la interacción con sus vecinos, de manera que cada átomo
representa un oscilador armónico cuántico. Las suposiciones del modelo de
sólido de Einstein son básicamente dos:

Cada átomo en la red es un oscilador armónico cuántico tridimensional
6Esto se deja como ejercicio práctico para el lector
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Modelos en sólidos

independiente.

Todos los átomos oscilan con la misma frecuencia ω

En el modelo de Einstein, cada átomo oscila en forma independiente y
a la misma frecuencia. Einstein era consciente de que esta era una aproxi-
mación, sin embargo propuso su teoŕıa como una demostración clara que la
mecánica cuántica era necesaria para resolver el problema del calor espećıfico
a temperaturas bajas. El modelo de Einstein representa un claro ejemplo de
la utilidad que tienen los modelos simples en f́ısica para identificar que carac-
teŕısticas son relevantes para describir las propiedades f́ısicas de un sistema.
Este tipo de enfoque es particularmente útil en f́ısica y está relacionado con
el concepto de teoŕıa efectiva. Una teoŕıa efectiva debe incluir los grados de
libertad apropiados para describir las propiedades de un sistema a una escala
de longitud de enerǵıa determinada.

Veamos que se obtiene al aplicar las suposiciones de Einstein. En una
dimensión, los autoestados de un oscilador armónico están dados por:

Ôn = ~ω(n+ 1/2)
donde ω es la frecuencia del oscilador armónico (a partir de ahora la llama-
remos la frecuencia de Einstein).
Podemos entonces construir la función de partición de la siguiente manera

Z =
∞Ø

n=0
e−β~ω(n+1/2)

= e−β~ω/2
∞Ø

n=0
e−β~ωn

= e−β~ω/2
∞Ø

n=0

1
e−β~ω

2n
.

Y usando que q∞
n=0 a

n = 1/(1 − a) tenemos que

Z = e−β~ω/2

1 − e−β~ω

Z = 1
2 sinh(−β~ω/2)

Calculamos el valor medio de la enerǵıa

éEê = − 1
Z

∂Z

∂β
= ~ω

2 coth(β~ω/2)

éEê = ~ω
3 1
eβ~ω − 1 + 1

2

4
= ~ω

3
nB(β~ω) + 1

2

4
,
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1.3 Modelo de Einstein

donde nB(x) = 1/(ex − 1) es la distribución de Bose. Derivando la expresión
para la enerǵıa con respecto a la temperatura obtenemos

C = ∂éEê
∂T

= kB(β~ω)2 eβ~ω

(eβ~ω − 1)2 .

En el ĺımite de alta temperatura β → 0 tenemos que

ĺım
β→0

C = KB.

La generalización al caso en tres dimensiones es inmediata, la enerǵıa de
un oscilador armónico simple en 3D está dada por

Ônx,ny,nz = ~ω ((nx + 1/2) + (ny + 1/2) + (nz + 1/2)) .
Con esto podemos construir la función de partición y obtener

Z3D = (Z)3,

donde Z es la función de partición en 1D. De esta manera, al calcular el valor
medio de la enerǵıa obtenemos

éE3Dê = 3éEê.
Luego, para el calor espećıfico en tres dimensiones obtenemos

C3D = 3kB(β~ω)2 eβ~ω

(eβ~ω − 1)2

.
Es decir, en el ĺımite T → ∞ tenemos que

C3D = 3kB.

El modelo de Einstein recupera correctamente el ĺımite de alta tempe-
ratura. De la figura 1.2 podemos ver que además funciona razonablemente
bien a temperaturas intermedias, pudiendo explicar el calor espećıfico a tem-
peratura ambiente de materiales como el diamante, donde la teoŕıa clásica
no funcionaba. Sin embargo, aun falla a muy bajas temperaturas ya que el
calor espećıfico en la teoŕıa de Einstein decrece exponencialmente mientras
la mayoŕıa de los materiales aislantes registran un comportamiento de tipo
T 3.

Aunque la teoŕıa de Einstein logra describir razonablemente bien el calor
especifico de la mayoŕıa de los sólidos en un rango de temperaturas alta, para
eso se debe ajustar un parámetro libre de la teoŕıa (ω). A veces es conve-
niente expresar la frecuencia de Einstein en términos de una temperatura,
denominada “Temperatura de Einstein” ~ω = kBTEinstein
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Modelos en sólidos

Figura 1.2: Gráfico del calor espećıfico del diamante publicado en el trabajo
original de Einstein de 1907[9].

1.4. Teoŕıa del sólido de Debye
Si bien la teoŕıa de Einstein describe exitosamente el calor espećıfico de

muchos materiales a temperatura ambiente, aun se requieren mejoras en el
modelo si se quieren describir los rangos de baja temperatura. En la figura
1.2 se puede ver que a baja temperatura los datos experimentales están por
encima de la curva teórica.

El poder mejorar el modelo para solucionar esta discrepancia resulta-
ba importante ya que se sab́ıa que a bajas temperaturas la mayoŕıa de los
materiales tienen un calor espećıfico proporcional a T 3. Además permite com-
prender que caracteŕıstica relevante se debe incluir en la teoŕıa cuántica.

Se debe tener en cuenta también que no todos los materiales se com-
portan de la misma manera, ya que por ejemplo los metales también tienen
un término adicional proporcional a T y los materiales magnéticos pueden
presentar también otros términos adicionales.

Salvando estos casos, encontramos que los aislantes no magnéticos pre-
sentan generalmente a muy bajas temperaturas solo el comportamiento T 3.
En cualquier caso, el modelo de Einstein a bajas temperaturas decrece expo-
nencialmente con T , por lo que no coincide con ninguna de las medidas del
calor espećıfico en materiales reales. Peter Debye[1], propuso una forma de
mejorar el tratamiento cuántico de las oscilaciones de los átomos y aśı poder
obtener el comportamiento a bajas temperaturas de tipo de tipo T 3.

Debye se dio cuenta de que las oscilaciones de los átomos representan
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1.4 Teoŕıa del sólido de Debye

básicamente ondas de sonido, por lo que al buscar una teoŕıa cuántica hay
que buscar justamente la forma de cuantificar una onda. Una tarea similar
ya hab́ıa sido estudiada algunos años antes por Planck cuando cuantificó las
ondas de luz.

Al intentar cuantificar las ondas de sonido de forma similar a la luz hay
que tener en cuenta una diferencia entre luz y sonido: para la luz, hay dos
polarizaciones para cada valor de k mientras que para el sonido, hay tres
modos para cada k (un modo longitudinal, y dos modos transversales). La
luz tiene solo los modos transversales. Para hacer el desarrollo más simple,
asumiremos que los modos transversal y longitudinal tienen la misma veloci-
dad, aunque en verdad el longitudinal es t́ıpicamente más grande que el modo
transversal. Siguiendo esta idea, Debye asumió que los modos de oscilación
eran ondas cuyas frecuencias estaban dadas por

ω(k) = v|k|,

donde la constante v es la velocidad del sonido. Además en el cálculo debemos
tener en cuenta que para cada k hay tres modos de oscilación posibles, uno
para cada dirección de movimiento. Siguiendo estas suposiciones podemos
escribir una expresión completamente análoga a la expresión de Einstein

éEê = 3
Ø
k

~ω(k)
3
nB(β~ω(k)) + 1

2

4

= 3 L3

(2π)3

ˆ
dk ~ω(k)

3
nB(β~ω(k)) + 1

2

4

Como tenemos simetŕıa esférica podemos reducir la integral tridimensio-
nal a una integral en una variable.

ˆ
dkf(k) =

ˆ 2π

0
dφ

ˆ π

0
sin(θ)dθ

ˆ ∞

0
k2f(k)dk = 4π

ˆ ∞

0
k2f(k)

Luego, tendremos que

éEê = 3 4πL3

(2π)3

ˆ ∞

0
dk k2~ω(k)

3
nB(β~ω(k)) + 1

2

4
.

Cambiamos la variable de integración de k a ω usando ω = vk y obtenemos

éEê = 3 4πL3

(2π)3

ˆ ∞

0

dω

v3 ω2~ω
3
nB(β~ω) + 1

2

4
.

Podemos agrupar el integrando de forma conveniente
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éEê =
ˆ ∞

0
dω

A
12πL3ω2

(2π)3v3

B
(~ω)

3
nB(β~ω) + 1

2

4
,

llamando g(ω) = 12πL3ω2

(2π)3v3 tenemos que

éEê =
ˆ ∞

0
dω g(ω) (~ω)

3
nB(β~ω) + 1

2

4
. (1.16)

La función g(ω) en (1.16) se denomina densidad de estados. La canti-
dad de modos de vibración con frecuencias entre ω y ω + dω está dada por
g(ω)dω. De esta manera, la interpretación de la ecuación (1.16) es simple-
mente que debemos contar cuántos modos hay por frecuencia (este número
está dado por la cantidad g(ω)) y luego multiplicarlo por la enerǵıa del modo.
Finalmente, se integra en todas las frecuencias.

Al trabajar con la densidad de estados es conveniente también usar la
densidad de part́ıculas

n = N/L3

Despejando L3 y reemplazando en la expresión para la densidad de esta-
dos tenemos que

g(ω) = N

A
12πω2

(2π)3v3n

B
.

Es frecuente definir lo que se conoce como la frecuencia de Debye como
ω3

D = 6π2nv3 y escribir la densidad de estados en terminos de esta cantidad

g(ω) = N

A
12πω2

(2π)3v3n

B
= N

9ω2

ω3
D

.

De la ecuación (1.16) para el valor medio de la enerǵıa vemos que el
factor 1

2 nos dá una contribución independiente de la temperatura que no
nos afectará en el cálculo del calor espećıfico. Es decir que podemos calcular
la parte dependiente de la temperatura como

éE(T )ê =
ˆ ∞

0
dω g(ω) (~ω)nB(β~ω)

éE(T )ê = 9N~
ω3

D

ˆ ∞

0
dω

ω3

eβ~ω − 1

Si cambiamos variables haciendo x = β~ω tenemos que

éE(T )ê = 9N
ω3

D(β~3)

ˆ ∞

0
dx

x3

ex − 1
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1.4 Teoŕıa del sólido de Debye

La integral es independiente de la temperatura, de hecho el resultado es
simplemente ˆ ∞

0
dx

x3

ex − 1 = π4

15 .

Luego
éE(T )ê = 9N

ω3
D(β~3)

π4

15 = 9N(kBT )4

ω3
D~3

π4

15 .

De donde obtenemos para el calor espećıfico

C(T ) = ∂éE(T )ê
∂T

= 12Nπ4k4
B

5ω3
D~3 T 3.

De esta manera se obtiene la esperada dependencia con T 3. De la misma
manera que hicimos para la teoŕıa de Einstein, podemos definir la tempera-
tura de Debye como

~ωD = kBTDebye

y reescribir el calor espećıfico como

C(T ) = ∂éE(T )ê
∂T

= 12Nπ4kB

5
T 3

T 3
Debye

.

1.4.1. Problemas con la formulación
Ya se habrán dado cuenta que; si bien el modelo propuesto por Debye

reproduce bien el comportamiento a bajas temperaturas, tiene un problema.
En la expresión que encontramos para el calor espećıfico, ¡ el comportamiento
es proporcional a T 3 a bajas y altas temperaturas !

Sabemos sin embargo, que el calor especifico debe tender asintóticamente
al valor 3kBN para T suficientemente alta.

Debye intuyó que el problema con su aproximación es que contempla un
número infinito de modos de vibración. Esto se ve ya que al calcular la enerǵıa
la integral en k se realiza hasta valores de k arbitrariamente grandes. Para
remediar esto trabajó bajo la suposición de que debeŕıa haber solo tantos mo-
dos de vibración como grados de libertad en el sistema. Para solucionar este
problema, Debye decidió no considerar ondas por encima de cierta frecuencia
máxima ωcutoff .

Esta frecuencia de corte, debe ser elegida de forma que la cantidad de
modos de vibración sea exactamente 3N .
Tenemos, entonces que

3N =
ˆ ωcutoff

0
g(w)dw.
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Figura 1.3: Gráfico del calor espećıfico para Ag (Plata). Los puntos son
diferentes medidas experimentales, las lineas continuas representan las pre-
dicciones teóricas de Debye y Einstein

Aśı, tenemos que reescribir la ecuación (1.16) como

éEê =
ˆ ωcutoff

0
dω g(ω) (~ω)

3
nB(β~ω) + 1

2

4
. (1.17)

Esta expresión mantiene el comportamiento a bajas temperaturas, pe-
ro la presencia de una frecuencia de corte (cutoff) cambia por completo el
comportamiento a altas temperaturas.

Para T grande tenemos que β ¹ 0 y por lo tanto podemos escribir

nB(β~ω) = 1
eβ~ω − 1 Ä 1

β~ω
Luego podemos escribir para la enerǵıa

éEê Ä
ˆ ωcutoff

0
dω g(ω) (~ω)

A
1

β~ω
+ 1

2

B

y para la parte dependiente de la temperatura (que es la que nos interesa
para calcular el calor espećıfico) tenemos

éEê Ä 1
β

ˆ ωcutoff

0
dω g(ω) = 1

β
3N = 3NKBT.

Es decir, que al calcular el calor espećıfico C = ∂éEê/∂T recuperamos la
ley de Dulong-Petit C = 3NKB.
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1.5 Modos normales para una red unidimensional monoatómica.

Si queremos hacer el cálculo para una temperatura arbitraria, tenemos
que calcular la integral (1.17), la cual tiene que ser calculada numéricamente.

Podemos ver una comparación entre las predicciones hechas por los mo-
delos de Einstein y Debye con datos experimentales en la figura 1.3

1.5. Modos normales para una red unidimen-
sional monoatómica.

Consideremos una cadena de átomos idénticos de masa m y supongamos
que la distancia de equilibrio entre átomos es una cantidad a. Entonces, la
posición de equilibrio del enesimo átomo es xeq

n = na.
Si permitimos que los átomos puedan desviarse de su posición de equilibrio

y moverse solo en la dirección de x (esto es, en nuestro modelo el movimiento
es puramente en una dimensión) y llamamos xn a la posición del enesimo
átomo, la desviación de la posición a partitr de su posición de equilibrio
puede escribirse como

δxn = xn − xeq
n

Consideremos la enerǵıa potencial de un átomo, digamos el átomo n.
Podemos escribir los primeros términos de su desarrollo de Taylor como

V (xn) Ä V (xeq
n )+ dV

dxn

(xeq
n )(xn−xeq

n )+1
2
d2V

dx2
n

(xeq
n )(xn−xeq

n )2+ 1
3!
d3V

dx3
n

(xeq
n )(xn−xeq

n )3

La posición de equilibrio xeq
n debe corresponder a un extremo de la enerǵıa

potencial, por lo que tendremos que

dV

dxn

(xeq
n ) ≡ 0.

Luego, si llamamos K = d2V
dx2
n

(xeq
n ) y K3 = d3V

dx3
n

(xeq
n ) tenemos que

V (xn) Ä V (xeq
n ) + 1

2Kδx
2
n + 1

3!K3δx
3
n + · · ·

Si solo consideramos pequeñas desviaciones de la posición xeq
n los términos

de mayor grado son mucho mucho más pequeños que el término cuadrático
y podemos descartarlos. En general cualquier potencial suave, cuando es es-
tudiado lo suficientemente cercano a su mı́nimo, puede aproximarde como
cuadrático. Consideremos ahora una cadena de átomos cuyo potencial de-
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Figura 1.4: Esquema de una cadena monoatómica

pende de la distancia entre átomos consecutivos. De esta manera podemos
escribir la enerǵıa potencial para la cadena como

Vtot =
Ø

j

V (xj − xj+1) Ä Veq +
Ø

j

K

2 (δxj − δxj+1)2

Podemos calcular la fuerza que actúa sobre el átomo n como

Fn = −∂Vtot

∂δxn

= K(δxn+1 − δxn) +K(δxn−1 − δxn)

Y la segunda ley de Newton queda en la forma

m ¨δxn = K(δxn+1 + δxn−1 − 2δxn) (1.18)

Obtenemos aśı, un sistema de ecuaciones acopladas. Llamaremos modo
normal de vibración a las soluciones de este sistema donde todos los áto-
mos de la cadena oscilen con la misma frecuencia. Para encontrar los modos
normales propondremos una solución de la forma

δxn = Aeiωt−ikxeqn = Aeiωt−ikan

Donde proponemos una expresión compleja por conveniencia, pero al fi-
nal consideraremos la parte real como la solución f́ısica. Reemplazamos esta
propuesta en la ecuación (1.18) y obtenemos

−mω2Aeiωt−ikan = KAeiωt
1
e−ika(n+1) + e−ika(n−1) − 2e−ikan

2
que podemos escribir como

mω2 = 2K (1 − cos(ka)) = 4K sin2(ka/2) (1.19)

De donde obtenemos ω

ω = 2
ó
K

m
|sin(ka/2)| (1.20)
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Figura 1.5: Relación de dispersión para una cadena monoatómica

A la relación entre enerǵıa (recordemos que E = ~ω) y momento de lo
denomina relación de dispersión. Vamos a estudiar un poco las propiedades
de la relación de dispersión que encontramos.

Cuasimomento

Lo primero que debemos observar es que esta relación de dispersión es
periódica, con peŕıodo 2π/a. Esta periodicidad ya estaba impĺıcita en nuestra
propuesta de solución. Notemos que si hacemos un shift en momentos k →
k + 2π/a tenemos que

δxn = Aeiωt−i(k+ 2π
a

)an = Aeiωt−ikan

Esta periodicidad en el espacio de momentos viene heredada de la pe-
riodicidad de la red real. A la zona del espacio de momento que se repite
periódicamente se la denomina “zona de Brillouin” y representa un concepto
muy importante en materia condensada.

Grandes longitudes de onda

En el ĺımite de grandes longitudes de onda 7 podemos hacer un desarrollo
de la relación de dispersión alrededor de k = 0 y encontramos que la relación

7Entenderemos a una onda de sonido como una vibración que tiene una longitud de onda
larga en comparación con la interatómica.
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de dispersión es aproximadamente lineal de la forma ω(k) Ä vk con v = a
ñ

K
m

.
Entonces vemos que la conjetura de Debye al poner ω = vk es muy razonable
para el caso de grandes longitudes de onda (k pequeño), sin embargo para
valores de k cercanos a ±π/a la aproximación de Debye no es correcta.

La otra suposición fuerte que realizó Debye fue la de introducir una fre-
cuencia de corte (cutoff) en la integral bajo el argumento de que no pod́ıa
haber mas modos de vibración que grados de libertad del sistema. Debye
impuso que el sistema deb́ıa tener exactamente 3N modos normales para
el caso 3D (N si consideraramos solo vibraciones en 1D). Si bien la suposi-
ción es razonable ahora podemos intentar calcular la cantidad de modos de
vibración.

Para realizar este cálculo debemos considerar que condiciones de contorno
impondremos en los bordes de la cadena. Por simplicidad, consideraremos
condiciones de contorno periódicas. Esto es, asumiremos que xn+N = xn

(donde N es el número de átomos en la cadena).
Al hacer esto debemos tener cuidado de que la onda que propusimos como

solución cumpla con la condición de contorno. Por eso debemos tener

eiωt−ika(n+N) = eiωt−ikan

Para que esto se cumpla debemos tener que

eikNa = 1

Esto solo es posible si el momento cumple que

k = 2πq
Na

= 2πq
L

donde L = Na y q es un número entero. Entonces k está cuantificado y ya
no es más una cantidad continua. El espacio entre dos valores consecutivos
de k es 2π

Na
.

Contemos cuántos modos tenemos. La relación de dispersión toma todos
sus valores en el intervalo −π < k ≤ π. Como la relación relación de disper-
sión es periódica, la relación de dispersión evaluada en cualquier valor de k
fuera de ese intervalo puede obtenerse evaluándola en un valor de k dentro del
intervalo a un valor del momento que difiera de k en 2πq

Na
. Por esta razón, el

sistema se describe completamente con valores de k dentro de dicho intervalo
8.

Luego, podemos calcular el número total de modos normales de vibración
como

8A este intervalo se lo denomina primer zona de Brillouin. Definiremos este concepto con
más detalle más adelante
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1.5 Modos normales para una red unidimensional monoatómica.

#modos = 2π/a
2π/(Na) = N

Hay precisamente un modo normal por átomo en la cadena, es decir, un
modo normal por grado de libertad. Esto es justamente lo que Debye supuso
para resolver el problema con la integral.

Cuantos de sonido: Fonones

Ahora que tenemos una expresión para las frecuencias de vibración de
una cadena podemos seguir los pasos de Debye y tratar las vibraciones con
una teoŕıa cuántica. Para eso, asociaremos a cada modo de vibración ω(k)
con un oscilador cuyo espectro de enerǵıa es

En = ~ω(k)(n+ 1
2)

La gran diferencia con el tratamiento clásico que hicimos antes es que
nuestros osciladores armónicos pueden tener excitaciones colectivas y no se
reduce simplemente al movimiento de una sola part́ıcula.

Ahora tenemos que, dado un valor del cuasimomento k, existen muchos
posibles autoestados (indexados por el número n), de los cuales el estado de
mı́nima enerǵıa (ground state) corresponde a n = 0 con enerǵıa ~ω(k)/2. El
siguiente estado con enerǵıa mayor al ground state (es decir el primer estado
excitado) corresponderá a n = 1 y la diferencia de enerǵıa entre el ground
state y el primer excitado es ~ω(k). Se pueden crear tantas excitaciones con
enerǵıa ~ω(k) como se desee, y cada una de estas excitaciones es lo que se
conoce como un fonón. En esta descripción cuántica de las vibraciones, las
excitaciones de enerǵıa están cuantizadas y a cada cuanto de vibración se
lo denomina fonón. Esta descripción nos permite describir la creación de
excitaciones en términos de part́ıculas (fonones) de la misma manera que ya
lo sabemos hacer para los cuantos de luz (fotones).

Como nada nos proh́ıbe crear dos fonones en el mismo estado debemos
tratar estas nuevas part́ıculas como bosones (de la misma manera que lo ha-
cemos para los fotones). Luego a temperatura finita tendremos que el número
de fonones está descripto por la estad́ıstica de Bose.

nB(β~ω) = 1
eβ~ω − 1

Con esto podemos escribir el valor medio de la enerǵıa de los fonones con
cuasimomento k como
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Ek = ~ω(k)
3
nB(β~ω(k)) + 1

2

4
y si queremos calcular la enerǵıa total tendremos que sumar sobre los

valores del cuasimomento

Etotal =
π
aØ

k=−π
a

~ω(k)
3
nB(β~ω(k)) + 1

2

4

donde k solo puede tomar los valores permitidos k = 2πq
Na

. Donde q toma
valores enteros. Para fines prácticos (por ejemplo, si queremos implementar
la suma en una computadora (Ejercicio)) es conveniente escribir la suma en
términos de un ı́ndice entero, por lo que podŕıamos escribir

Etotal =
N
2 −1Ø

q=−N
2

~ω(2πq
Na

)
3
nB(β~ω(2πq

Na
)) + 1

2

4

Si tenemos una gran cantidad de part́ıculas podemos usar el viejo truco
de aproximar la suma por una integral. Esto se puede pensar de la siguien-
te manera. Si tuviéramos que calcular la integral de una función f(k) en
el intervalo [−π/a, π/a] podŕıamos aproximar esta integral por su suma de
Riemman

ˆ π/a

−π/a

f(k) Ä
Ø

k

∆kf(k)

En nuestro caso, como el cuasimomento esta cuantizado debemos tomar
∆k = 2πq

aN
y podŕıamos escribir

ˆ π/a

−π/a

~ω(k)
3
nB(β~ω(k)) + 1

2

4
Ä 2π
aN

N
2 −1Ø

q=−N
2

~ω(2πq
Na

)
3
nB(β~ω(2πq

Na
)) + 1

2

4

Es decir que podemos aproximar la suma por la integral de manera que

Etotal Ä aN

2π

ˆ π/a

−π/a

~ω(k)
3
nB(β~ω(k)) + 1

2

4
dk

Podemos usar esta aproximación en términos de una integral para contar
el número total de modos en el sistema

Ø
k

1 = aN

2π

ˆ π/a

−π/a

dk = N
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1.5 Modos normales para una red unidimensional monoatómica.

Figura 1.6: Estructura molecular del NaCl.

Es decir, de esta manera vemos que la suposición de Debye de que teńıamos
exactamente N modos normales era correcta.

Frecuentemente es útil reemplazar la integral sobre k con una integral
en frecuencias ω Al hacer esto sabemos que podemos contar la cantidad de
estados integrando la función densidad de estados y esto debe dar el mismo
resultado que obtengamos con la integral en k y por lo tanto tendremos

ˆ
g(ω)dω = aN

2π

ˆ π/a

−π/a

dk

Para que esta igualdad sea cierta, al realizar el cambio de variables debe-
mos tener que

g(ω) = Na

2π

-----dkdω
-----

En la versión unidimensional del modelo de Debye esta densidad de esta-
dos era constante mientras que en nuestro caso no. En el modelo de Einstein,
la densidad de estados es una delta en la frecuencia de Einstein ya que no
hay estados con otra frecuencia.

La expresión que obtuvimos para la enerǵıa (y por ende la que ob-
tendŕıamos para el calor espećıfico) son muy similares a las que Debye utilizó
en sus cálculos. La única diferencia radica en nuestra expresión para la fre-
cuencia ω(k). Aparte de este cambio en la relación de dispersión, nuestro
cálculo del calor espećıfico es idéntico al de Debye.
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Figura 1.7: Esquema de una cadena diatomica.

1.6. Modos normales de la cadena diatómica.
Ramas acústica y óptica

Anteriormente discutimos en detalle un modelo unidimensional de un sóli-
do en el todos los átomos eran idénticos entre śı. Esto nos dió una buena base
para comprender los grados de libertad de vibración de un sólido, pero clara-
mente no representa el caso más general. Basta pensar en materiales iónicos
como el NaCl donde tenemos dos tipos de átomos que no son equivalentes.

En esta sección generalizaremos el estudio anterior a una cadena con dos
tipos de átomos. Gran parte de lo que hagamos seguirá pasos similares a los
que ya realizamos para el caso de una cadena monoatómica, pero veremos
que ahora surgirán nuevas caracteŕısticas.

Consideremos el sistema esquematizado en la figura 1.7, el cual representa
un arreglo periódico de dos tipos diferentes de átomos con masas m1 y m2
que se alternan a lo largo de la cadena. Estos “átomos” están sujetos a un
potencial que modelaremos por medio de resortes. Los resortes que conectan
estos átomos tienen constantes elásticas K1 y K2.

Notemos que en la figura se observa que podemos generar toda la cadena
completa si repetimos periódicamente la parte de la cadena que está recua-
drada. Esta es la unidad mı́nima de información que debemos tener para
poder reproducir toda la cadena, algo aśı como la información genética de la
estructura que queremos estudiar. A esta celda mı́nima de red se la denomina
celda unidad o celda unitaria.

A la longitud de la celda unitaria en una dimensión se conoce como cons-
tante de red y nosotros la denotaremos usualmente con la letra a. La elec-
ción de la celda unidad no es única, sin embargo lo importante para definir
un sistema periódico es elegir una celda unitaria que permita construir el
sistema completo reproduciendo la misma celda unidad una y otra vez.

Para poder construir el sistema periódico completo por medio de trans-
laciones de la celda unidad es útil seleccionar un punto de referencia dentro
de cada celda. A partir de este punto de referencia se pueden escribir las
posiciones de los átomos dentro de cada celda.

Para hacer los cálculos más simples, estudiaremos el caso especial en el
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1.6 Modos normales de la cadena diatómica. Ramas acústica y óptica

que todas las masas son iguales (es decir m1 = m2) pero las constantes
elásticas son diferentes. Esta suposición simplificará bastante los cálculos y
no cambiará las conclusiones. Se deja como ejercicio al lector resolver el caso
más general con m1 Ó= m2

Podemos escribir las ecuaciones de movimiento de manera análoga a como
lo hicimos para el caso monoatomico para las desviaciones de las posiciones
respecto de sus posiciones de equilibrio.

m ¨δxn = K2(δyn − δxn) +K1(δyn−1 − δxn) (1.21)
m ¨δyn = K1(δxn+1 − δyn) +K2(δxn − δyn) (1.22)

donde llamamos xn e yn a las posiciones cada uno de los átomos no
equivalentes dentro de la enesima celda unidad. (es decir tenemos atómos
tipo x y átomos tipo y)

De la misma manera que lo hicimos antes proponemos soluciones de la
forma

δxn = Axe
iωt−ikna (1.23)

δyn = Aye
iωt−ikna (1.24)

donde, como antes, nuestra solución f́ısica será tomar la parte real y de
la misma manera que pasaba antes, los valores de k que difieren en 2π/a son
equivalentes y utilizaremos solo valores del cuasimomento en la primer zona
se Brillouin (es decir −π/a < k ≤ π/a).

De la misma manera que encontramos antes si imponemos condiciones
de contorno periódicas a nuestro sistema de N celdas unitarias (por lo tanto
la longitud total de la cadena será, L = Na) entonces el cuasimomento k se
cuantificará valores discretos 2π/(Na).

Aqúı hay que tener en cuenta un detalle muy importante, la cuantificación
del cuasimomento depende del número de celdas N y no del número de áto-
mos (2N) ya que la estructura periódica que se repite es la celda. Dividiendo
el rango de k en la primera zona de Brillouin por el espacio entre las k veci-
nas, obtenemos exactamente N diferentes valores posibles de k exactamente
como antes.

En otras palabras, solo podemos tener exactamente un valor de k por
celda unitaria, o de otra manera, tendremos tantos valores del cuasimomento
como celdas unitarias tenga nuestro sistema. Esta es una propiedad funda-
mental que estudiaremos en más detalle al discutir las estructuras periódicas
de los sólidos.
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Figura 1.8: Relación de dispersión para la cadena diatómica. Tenemos dos
ramas en la primer zona de Brillouin

Esto podŕıa confundirnos un poco ya que seŕıa razonable esperar tener
tantos modos de oscilación como grados de libertad en el sistema (y el sistema
tiene 2 grados de libertad por celda). Esto es cierto y es la razón por la
que encontraremos que habrá dos modos de oscilación posibles para cada
cuasimomento k. Para ver esto reemplacemos nuestra propuesta de solución
en las ecuaciones de movimiento y simplificando obtenemos

−mω2Ax = K2Ay − (K1 +K2)Ax +K1Aye
ika

−mω2Ay = K2Ax − (K1 +K2)Ay +K1Axe
−ika

Para encontrar la solución de este sistema de ecuaciones es conveniente
escribir el sistema en forma matricial

mω2
A
Ax

Ay

B
=

A
(K1 +K2) −K2 −K1e

ika

−K2 −K1e
−ika (K1 +K2)

BA
Ax

Ay

B

Ejercicio: Resolver el sistema de ecuaciones
Resolviendo el sistema de ecuaciones encontramos que

ω± =
ó
K1 +K2

m
± 1
m

ñ
K2

1 +K2
2 + 2K1K2 cos(ka) (1.25)
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1.6 Modos normales de la cadena diatómica. Ramas acústica y óptica

Como hab́ıamos adelantado, por cada valor del cuasimomento tenemos
dos modos normales de vibración. Si tenemos N celdas, tendremos N valores
del cuasimomento y por lo tanto 2N modos normales.

En la figura anterior se muestran las dos ramas de dispersión en la pri-
mer zona de Brillouin (|k| ≤ π/a). A esta forma de mostrar las dispersiones
se lo suele llamar esquema de zona reducida. Notese que de las dos ramas
de dispersión solo una toma valores pequeños de enerǵıa. Para esta rama
tenemos que la relación de dispersión es lineal para k pequeño. A esta ra-
ma se la denomina rama acústica. En general se denomina rama acústica
a cualquier modo de vibración que tenga una relación de dispersión lineal
cuando k tiende a cero. A la rama de enerǵıa mas alta se la denomina rama
optica. La razón por la que se la llama rama óptica es porque esta rama es
la que interviene en el proceso de escatering de luz en el sólido. Por ahora
nos concentraremos en la rama acústica y dejaremos el estudio de la rama
óptica para cuando estudiemos la interacción de la luz con los sólidos.
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Figura 1.9: Relación de dispersión para la cadena diatómica en el esquema
de zona extendida. La rama acústica sobre la primer zona de Brillouin (|k| ≤
π/a, mientras que la rama óptica está graficada en la segunda zona (π/a <
|k| ≤ 2π/a))

Alternativamente al esquema de zona reducida (donde se grafican todas
las ramas en la primer zona de Brillouin) se puede también usar el esquema
de zona extendida que consiste en graficar una rama en la primer zona y la
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Figura 1.10: Esquema del movimiento de los electrones en la teoŕıa de Drude

siguiente en la segunda zona9

1.7. Teoŕıa de Drude de los metales
La principal caracteŕıstica de los metales es que conducen electricidad

por medio de electrones móviles en el material. Discutiremos más adelante
porqué algunos materiales presentan electrones móviles y otros no. Por ahora,
asumiremos que hay movilidad de electrones estudiaremos modelos que nos
ayuden a comprender algunas de sus propiedades.

Drude construyó una teoŕıa simple para los metales aplicando la teoŕıa
cinética de los gases a los metales considerándolos como un gas de electrones.
La teoŕıa cinética trata a las part́ıculas como esferas ŕıgidas que se mueven en
una trayectoria rectiĺınea hasta que chocan con otra part́ıcula. El tiempo que
dura una colisión es despreciado, considerando a las colisiones como procesos
instantáneos.

Drude asume que los electrones de valencia están desacoplados del resto
del átomo y pueden moverse libremente a travez del metal, mientras los iones
positivos permanecen inmoviles en el metal. Está situación está esquemati-
zada en la figura 1.10, donde las esferas verdes representan a los electrones
de valencia y las esferas azules representan a los iones.

Las suposiciones básicas del modelo de Drude son las siguientes:

9Si hubiera mas ramas se graficaria también en la tercera zona de Brillouin y asi. El objetivo
del esquema de zona extendida es que tengamos un solo modo por cada valor de k. Es decir
trabajar con la gráfica de una función.
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1.7 Teoŕıa de Drude de los metales

Entre colisiones, la interacción que siente un electrón, tanto con los de-
mas electrones, como con los núcleos es despreciable. La aproximación
de despreciar la interacción electrón-electrón se conoce como apro-
ximación de electrón independiente y el hecho de despreciar la
interacción electrón-ion, se conoce como aproximación de electrón
libre.

Las colisiones, en el modelo de Drude, se consideran instantáneas y su
efecto consiste en cambiar la velocidad de el electrón. Veremos que la
interacción electrón-electrón es una de las menos importantes al estu-
diar el scatering de electrones en un metal.

Se asume que un electrón efectúa una colisión en un tiempo dt con
probabilidad dt/τ

Los electrones realizan choques elásticos, por lo tanto se conserva tanto
el momento como la enerǵıa cinética en las colisiones. Como no hay
una dirección preferencial, la part́ıcula saldrá luego del choque en cual-
quier dirección con igual probabilidad. Por lo tanto, el valor medio del
momento será épê = 0

Entre dos choques, los electrones (que asumimos son part́ıculas carga-
das de carga −e) responden al campo eléctrico y magnético.

Notese que τ representa un tiempo medio entre dos choque sucesivos, de
manera que un valor pequeño entre choques nos dá una alta probabilidad
(dt/τ) de que el electrón choque en un peŕıodo de tiempo dt, mientras que
el ĺımite τ → ∞ es el ĺımite donde los electrones nunca chocan.

Consideremos un electrón que a tiempo t tiene momento p. Luego de
transcurrido un tiempo dt supondremos que hay dos opciones excluyentes:
O el electrón chocó (suponemos que este evento ocurre con probabilidad dt/τ)
o el electrón no chocó. Este segundo evento tiene asociada una probabilidad
1 − dt/τ si despreciamos la probabilidad de que el electrón choque dos veces
en un tiempo tan corto.
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Luego tendremos que a tiempo t+ dt el valor medio del momento estará
dado por

p(t+ dt) = 0 dt/τ + (1 − dt/τ)(p(t) + F dt)
Luego tenemos

dp/dt = F − p/τ +O(dt)
Notese que en el ĺımite τ → ∞ recuperamos la segunda ley de Newton.

dp/dt = F

.
La fuerza F que actúa sobre los electrones es la fuerza de Lorentz.

F = −e(E + v ×B)
.

En ausencia de campos magnéticos y eléctricos está fuerza es cero, la
ecuación para p(t) es

dp/dt = −p/τ

y la solución es de la forma

p(t) = p0e
−t/τ

Es decir que en ausencia de fuerzas externas, en este modelo simple para
las colisiones de los electrones con los iones de la red el momento p(t) decrece
exponencialmente con el tiempo. Además la solución estacionaria (es decir
cuando p(t) no depende del tiempo y por lo tanto dp/dt = 0 ) es p = 0.
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1.7 Teoŕıa de Drude de los metales

Figura 1.11: Esquema del movimiento de los electrones sometidos a un campo
electrico en la teoŕıa de Drude

Electrones en un campo eléctrico

Consideremos ahora el caso en el que el campo eléctrico es distinto de cero
pero el campo magnético es cero. La ecuación de movimiento queda entonces

dp

dt
= −eE − p

τ

En un estado estacionario tendremos que dp/dt = 0, luego

p = −eτE

mv = −eτE
Es decir que podemos escribir la siguiente expresión para la velocidad

media de los electrones

v = −eτ

m
E (1.26)

Supongamos ahora que los electrones se mueven a esa velocidad media
por un conductor de sección A y recordemos que la la corriente se define
convencionalmente en término de la carga positiva.

Si tenemos una densidad de electrones (de carga −e) n moviéndose por
el metal con velocidad v, podemos escribir la densidad de corriente como

j = −env
Reemplazando por la expresión que encontramos para la velocidad de los

electrónes tenemos que

j = e2nτ

m
E
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Encontramos entonces que en la teoŕıa de Drude la densidad de corriente
es proporcional al campo eléctrico. Es decir, recuperamos la ley de Ohm.

j = σE

donde la conductividad está dada por

σ = e2nτ

m
(1.27)

Para el caso simple de un cable uniforme de largo L podemos recuperar
la forma macroscópica de la ley de Ohm a partir de la ecuación

j = σE

La intensidad de la corriente I podemos escribirla como jA = I, donde
j = |j| y A es el área transversal del cable. Suponiendo un campo eléctrico
constante, la diferencia de potencial en los extremos del cable estará dada
por

V = EL

y podemos escribir

j = σE
I

A
= 1

ρ

V

L

I
3
ρL

A

4
= V

I R = V

donde ρ = 1
σ

es la resistividad del material y hemos llamado definido la
resistencia del cable como R = ρL

A
.

Electrones en un campo magnético

Consideremos ahora el caso de un conductor sujeto a un campo eléctrico
y un campo magnético. Como antes tenemos que

dp

dt
= F − p

τ

Pero ahora usamos la expresión para la fuerza de Lorentz

F = −e(E + v ×B)
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1.7 Teoŕıa de Drude de los metales

Luego

dp

dt
= −e(E + v ×B) − p

τ

Y en el estado estacionario tendremos que

0 = −e(E + v ×B) − p

τ

usando que p = mv y j = −env podemos escribir que p = − m
en
j y

reemplazando en la ecuación anterior tenemos

0 = −e(E − 1
en
j ×B) + m

eτn
j (1.28)

E =
3 1
ne

(j ×B) + m

e2τn
j
4

(1.29)

En este caso la relación entre la densidad de corriente y el campo eléctrico
es un poco mas compleja que antes, pero veremos que tiene una estructura
similar. Para simplificar un poco las expresiones supongamos que el campo
eléctrico esta orientado en la dirección z. En ese caso podremos escribir

E = ρ̃j

donde ρ̃ es una matriz de 3 × 3 de la forma

ρ̃ =


m

nτe2
B
ne

0
− B

ne
m

nτe2 0
0 0 m

nτe2

 (1.30)

Es decir, podemos definir las componentes diagonales de un tensor de
resistividad

ρxx = ρyy = ρzz = m

nτe2 = 1
σ

donde σ es la conductividad que calculamos en el caso donde solo teńıamos
campo eléctrico. Fuera de la diagonal tenemos

ρxy = −ρyx = B

ne

Esta componente de la resistividad fuera de la diagonal se conoce como la
resistividad Hall y nos indica que, cuando un campo magnético es aplicado
perpendicular al flujo de corriente, puede medirse un voltaje en la dirección
perpendicular tanto al flujo de corriente como al campo magnético.
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Normalmente se define el coeficiente Hall como

RH = ρyx

|B|
que en el caso de la teoŕıa de Drude es RH = − 1

ne

1.8. Teoŕıa de Sommerfeld de los metales
Sommerfeld se dio cuenta de que la teoŕıa de los metales de Drude pod́ıa

fácilmente generalizarse para incorporar la mecánica cuántica por medio de
la estad́ıstica de Fermi para los electrones, que es lo que discutiremos a con-
tinuación.

Como habrán visto en el curso de mecánica estad́ıstica, dado un sistema de
electrones libres con potencial qúımico µ, la probabilidad de que un electrón
ocupe un estado de enerǵıa E está dada por el factor Fermi

nF (β(E − µ)) = 1
eβ(E−µ) + 1

Supongamos que los electrones están en una caja de tamaño V = L3 y, de
la misma manera que hicimos antes, supondremos condiciones de contorno
periódicas. Podemos escribir las funciones de onda plana en la forma eik·r

donde k debe tomar el valor 2π
L

(n1, n2, n3) con ni enteros. Estos estados de
onda plana tienen enerǵıas.

Ô(k) = ~2|k|2

2m
Podemos calcular el número total de electrones de la siguiente manera

N = 2
Ø
k

nF (β(E − µ)) = 2 V

(2π)3

ˆ
dk nF (β(E − µ))

En general usaremos este tipo de ecuación conociendo el número de elec-
trones en el metal y aśı poder calcular el potencial qúımico en función de la
temperatura. A temperatura cero el factor de Fermi se transforma en una
función escalón y el potencial qúımico es el valor de la enerǵıa que separa los
estados ocupados de los desocupados. Llamaremos a esta enerǵıa la enerǵıa
de Fermi EF .

Los estados que estan ocupados a T = 0 forman lo que se conoce como el
mar de Fermi. A partir de la enerǵıa de Fermi podemos definir el kF como

EF = ~2k2
F

2m
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1.8 Teoŕıa de Sommerfeld de los metales

También puede ser útil definir una temperatura de Fermi TF = EF/kB y
la velocidad de Fermi vF = ~kF/m

Con estas definiciones podemos calcular el número de electrones en el
metal

N

V
= 2 1

(2π)3

ˆ
dk θ(EF − Ô(k)) = 2 1

(2π)3

ˆ |k|<kF

dk = 2 V

(2π)3 (4
3πk

3
F )

Muchas veces es conveniente realizar estas integrales en enerǵıa en vez de
integrar en cuasimomentos. Para esto despejamos k de la enerǵıa

k =
ó

2mÔ
~2

y el diferencial queda en la forma

dk =
ò

m

2Ô~2dÔ

Con esto podemos reescribir la integral para la densidad de electrones
como

N

V
=
ˆ ∞

0
dÔ g(Ô)nF (β(Ô− µ))

de la misma manera, la enerǵıa por unidad de volumen puede escribirse
como

E

V
= 2 1

(2π)3

ˆ
dk Ô(k)nF (β(Ô(k)−µ)) = 2 1

(2π)3

ˆ ∞

0
4πk2dk Ô(k)nF (β(Ô(k)−µ))

E

V
=
ˆ ∞

0
g(Ô) Ô dÔ nF (β(Ô− µ))

donde la densidad de estados esta dada por

g(Ô) = (2m)3/2

2π2~3

√
Ô

La cantidad g(Ô)dÔ representa la cantidad de estados con enerǵıa entre
Ô y Ô + dÔ. A la función g(Ô) se la conoce como la densidad de estados por
unidad de volumen.

Notemos que la expresión para la densidad de electrones puede conside-
rarse como la definición del potencial qúımico en función de la densidad de
electrones en el sistema y la temperatura.
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Modelos en sólidos

Una vez que con esta ecuación fijamos el potencial qúımico, podemos usar
la integral para la enerǵıa. Luego de calculada la enerǵıa podemos derivar
con respecto a la temperatura para obtener el calor espećıfico.

Desafortunadamente, no hay manera de hacer este cálculo anaĺıticamente.
Sin embargo, como la temperatura de Fermi de los metales esta muy por
arriba de la temperatura ambiente es razonable pensar que la función de
Fermi solo se apartará levemente de la función escalón. Este fué el cálculo
que realizó Sommerfeld y se deja como ejercicio práctico.10

10El lector puede consultar el libro de Ashcroft[3].
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1.9 Part́ıcula en una caja

1.9. Part́ıcula en una caja
Vamos a usar un modelo simple pero exitoso para el átomo de hidrógeno,

esto es, lo modelaremos como una caja de tamaño L para un electrón. Aqúı,
para hacer las cosas mas simples estudiaremos el caso unidimensional, pero
ustedes pueden imaginar fácilmente la extensión a 3D.

La enerǵıa de un solo electrón en una caja de tamaño L es

~2π2

2mL2

Ahora supongamos que tenemos dos de estos átomos y los acercamos uno
al otro. Si estos átomos comparten un electrón, entonces los átomos ahora
se pueden deslocalizar y moverse a lo largo de los dos átomos, por lo tanto,
ahora el electrón está en una caja de tamaño 2L y su enerǵıa será

~2π2

2m(2L)2

que es una enerǵıa menor a la que teńıa antes. Es decir, que el electrón
al deslocalizarse se encuentra en un estado de menor enerǵıa.

Esta reducción de enerǵıa que ocurre al deslocalizar el electrón es en
parte lo que logra formar algunos de los enlaces qúımicos. Este nuevo estado
fundamental se conoce como bonding orbital.

Si acercamos dos átomos que poseen un solo electrón cada uno (es decir,
son átomos de hidrógeno), entonces cuando se unen para formar un orbital
de menor enerǵıa (lo que denominaremos enlace), ambos electrones pueden
ocupar este mismo orbital ya que el electrón puede tener dos estados de esṕın
diferentes. Sin embargo, esta reducción de la enerǵıa deberá competir contra
la enerǵıa debida a la repulsión Coulombiana de los dos núcleos, y la repulsión
de ambos electrones entre śı. Sin embargo no realizaremos este cálculo aqúı
ya que es complejo.

Pero, ¿cómo cambiará la situación si en vez de dos átomos de hidrógeno
comenzamos con dos átomos de helio donde cada átomo tiene dos electrones?

En este caso, cuando los dos átomos se unan, no habrá suficientes niveles
en el estado fundamental y dos de los cuatro electrones deberán ocupar el
primer orbital excitado. Estos estados excitados tienen la misma enerǵıa que
el orbital del estado fundamental original ( ya que el factor 2 del segundo
nivel se compenza con el 2 del 2L) Como estos electrones no obtienen enerǵıa
cuando los dos átomos se juntan, estos orbitales se conocen como antibonding
orbitals.
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Figura 1.12: Esquema del movimiento de los electrones en la aproximación
de tight-binding.

Figura 1.13: Esquema del movimiento de los electrones en la aproximación
de tight-binding

1.10. Orbitales moleculares (Tight binding)

Escribamos un Hamiltoniano para los dos átomos de hidrógeno de los
que hablamos anteriormente. Dado que los núcleos son pesados en compa-
ración con los electrones, no es descabellado suponer que las posiciones de
los núcleos no cambiarán mucho en comparación con los electrones. Supon-
dremos entonces que los núcleos se encuentran en reposo y resolveremos la
ecuación de Schroedinger para los electrones como función de la distancia
entre los núcleos. Esta suposición de los núcleos fijos se conoce como la apro-
ximación de “Born-Oppenheimer”. Nuestro objetivo es calcular la enerǵıa del
sistema como función de la distancia entre los núcleos.

El problema más sencillo que podemos encarar es la de un electrón en
presencia de dos nucleos positivos idénticos.

H = K + V1 + V2

Donde el término de enrǵıa cinética del electrón está dado por
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1.10 Orbitales moleculares (Tight binding)

K = p2

2m
y la interacción Coulombiana entre el electrón con posición r y el núcleo

i con posición Ri está dada por

Vi = e2

4πÔ0|r −Ri|
Aunque podŕıamos resolver este problema de un electrón exactamente,

intentaremos resolverlo de manera variacional. Es decir, propondremos una
solución de la forma

|ψê = φ1|1ê + φ2|2ê
donde los estados |1ê y |2ê son lo que se conoce como “orbitales atómicos”

en indican que el electrón se encuentra en el estado fundamental del átomo
1 o 2 respectivamente.

Con el estado |ψê estamos proponiendo que el electrón se encuentra en
una combinación lineal de orbitales atómicos. Al tomar los orbitales como el
estado fundamental de cada átomo tendremos que

(K + V1)|1ê = Ô0|1ê (1.31)
(K + V2)|2ê = Ô0|2ê (1.32)

Supondremos que los dos orbitales son ortonormales.

éi|jê = δi,j

Buscamos autoestados del Hamiltoniano H = K + V1 + V2

H|ψê = E|ψê
y es fácil mostrar (hacerlo como ejercicio) que esto es equivalente a

Ø
i

Hi,jφj = Eφi

donde Hi,j = éi|H|jê son los elementos de una matriz de 2x2 de la forma

A
Ô0 + V12 −t

−t∗ Ô0 + V12

B
(1.33)

donde V12 = é1|V2|1ê = é2|V1|2ê y t = −é1|V1|2ê = é1|V2|2ê
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Figura 1.14: Enerǵıas de los orbitales

es el potencial Coulombiano que siente un electrón en el orbital |1ê gene-
rado por el nucleo 2.

La interpretación del Hamiltoniano es que los orbitales |1ê y |2ê tienen
enerǵıas Ô0 que es incrementada por la presencia del otro núcleo. Además,
el electrón puede “saltar” de un orbital al otro y a este proceso tiene una
enerǵıa t asociado al elemento fuera de diagonal.

Si pensamos en la ecuación de Schrödinger dependiente del tiempo, si la
matriz del Hamiltoniano fuera diagonal una función de onda que comenzó en
orbital |1ê permaneceŕıa en ese orbital todo el tiempo sin ninguna probabili-
dad de saltar al otro orbital. Sin embargo, con el término fuera de diagonal, la
función de onda dependiente del tiempo puede oscilar entre los dos orbitales
con probabilidad t.

Para simplificar suponagamos que t > 0 (el caso t < 0 es análogo y solo
deben ajustarse los signos correspondientes). Diagonalizando el Hamiltoniano
obtenemos

E± = Ô0 + V12 ± t

.
Al estado de mı́nima enerǵıa se lo denomina bonding orbital, mientras que

el estado de enerǵıa superior se lo llama anti-bonding orbital.
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1.11 Modelo de Tight-binding en una red periódica

Las autofunciones correspondientes tienen la forma

ψbonding = 1√
2

(φ1 + φ2) (1.34)

ψanti−bonding = 1√
2

(φ1 − φ2) (1.35)

A medida que los núcleos se acercan, el término de hopping t aumenta,
y la enerǵıa de los orbitales cambia dándonos un diagrama similar al de la
figura siguiente.

Noten que la enerǵıa diverge a medida que los núcleos se juntan (como
debe ser con la enerǵıa de Coulomb entre los núcleos). Esto dá una enerǵıa
mı́nima cuando los núcleos se encuentran a una distancia de equilibrio.

1.11. Modelo de Tight-binding en una red
periódica

Ahora vamos a generalizar lo que hicimos antes considerando una cade-
na de orbitales moleculares para representar los orbitales en un sólido ma-
croscópico11.

En este caso consideraremos un solo orbital por átomo. Al orbital co-
rrespondiente al átomo n lo denotaremos por |nê. Para poder trabajar con
un sistema con simetŕıa de traslación impondremos condiciones de contorno
periódicas. También asumiremos que los orbitales son ortogonales unos con
otros.

én|mê = δn,m

y como antes propondremos una función de onda que sea combinación
lineal de los orbitales de la forma

|ψê =
Ø

n

φn|nê

y de la misma manera que para el caso de dos átomos obtenemos que la
ecuación de autovalores puede escribirse como

Ø
m

Hn,mφm = Eφn

11En este caso consideraremos un modelo unidimendional por simplicidad, pero la cuenta se
generaliza sin problemas más dimensiones.
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Figura 1.15: Esquema del movimiento de los electrones en la aproximación
de tight-binding

Como antes esta ecuación es en realidad una aproximación variacional.
Con esta ecuación no estamos encontrando el estado fundamental exacto sino
el mejor estado posible que se pueda escribir como combinación lineal de los
orbitales que hemos puesto en el modelo.

Se puede mejorar la aproximación variacional agrandando el espacio de
Hilbert al considerar más orbitales en el modelo.

Por ejemplo, en lugar de tener solo un orbital en un dado sitio, podŕıamos
considerar muchos |nα,iê donde α va de 1 a algún número l (l es la cantidad
de orbitales que estamos considerando). A medida que aumenta l el enfoque
se vuelve cada vez más preciso y, finalmente, es esencialmente exacto.

Nosotros usaremos por ahora la aproximación de tener un solo orbital por
sitio. Escribiremos el Hamiltoniano como

H = K +
Ø

j

Vj

donde K = p2

2m
es la enerǵıa cinética y Vj representa al término de in-

teracción Coulombiana del electrón con el núcleo situado en el sitio j. Esta
interacción es de la forma Vj = V (r − rj), donde r es la posición de electrón
y rj es la posición del j-esimo núcleo. Con esto tenemos que

H|mê = (K + Vm)|mê +
Ø
j Ó=m

Vj|mê

El primer término corresponde a la enerǵıa de un electrón tendŕıa si hu-
biera un solo núcleo, es decir que podemos escribir

(K + Vm)|mê = Ô0|mê

donde interpretaremos a Ô0 como la enerǵıa de un electrón en el núcleo
m en ausencia de otros núcleos. Podemos escribir entonces

én|H|mê = Ô0δn,m +
Ø
j Ó=m

én|Vj|mê

El segundo término del lado derecho esta asociado con la enerǵıa corres-
pondiente al proceso de un electrón que se encontraba en el orbital del sitio
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1.11 Modelo de Tight-binding en una red periódica

m efectúe una transición al orbital se sitio n mediado por la interacción
Coulombiana con los núcleos que forman la cadena. Supondremos que esta
transición o salto solo es posible si los sitios están lo suficientemente cerca.
El modelo más simple es suponer que solo puede haber saltos entre primeros
vecinos por lo cual escribiremos los elementos de matriz como

Ø
j Ó=m

én|Vj|mê =


V0 n = m
−t n = m± 1
0 otro caso

(1.36)

Si llamamos Ô = Ô0 + V0 podemos escribir los elementos de matriz del
Hamiltoniano como

Hn,m = Ôδn,m − t(δn,m+1 + δn,m−1). (1.37)
Notemos que esto nos dice que la representación matricial del Hamiltoniano es
una matriz tri-diagonal. Numéricamente, este tipo de matrices es mas simple
de diagonalizar. Nosotros encontraremos los autovalores anaĺıticamente.

Para encontrar la solución a la ecuación de autovalores procederemos de
forma similar a lo que hicimos para el caso de las vibraciones de una cadena.
Primero proponemos una solución que tenga la invarianza traslacional de la
cadena. Propongamos algo de la forma

φn = 1√
N
e−ikna

Donde el factor 1√
N

es solo una normalización conveniente. Igual que
para el caso de las vibraciones es obvio que si cambiamos k por k + 2π/a
obtenemos la misma solución y al imponer condiciones de contorno periódicas
obtenemos que los valores permitidos para el cuasimomento están cuantizados
en unidades de 2π/L (donde L = Na)

Reemplazando nuestra propuesta en la ecuación de Schrodingerqm Hn,mφm =
Eφn tenemos que

Eφn =
Ø
m

Hn,mφm =
Ø
m

(Ôδn,m − t(δn,m+1 + δn,m−1))φm

Eφn = 1√
N

1
Ô e−ikna − t(e−ik(n−1)a + e−ik(n+1)a)

2
Eφn =

1
Ô − t(eika + e−ika)

2 e−ikna

√
N

Eφn = (Ô − 2t cos(ka))φn

(1.38)
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Luego

E = Ô− 2t cos(ka)

Esta relación de dispersión
A diferencia del caso de electrones libres, la dispersión de electrones en una

red tiene una enerǵıa máxima y enerǵıa mı́nima. Los electrones solo pueden
tener enerǵıas dentro de una determinada banda de enerǵıa. La diferencia de
enerǵıa desde la parte inferior de la banda hasta la parte superior se conoce
como ancho de banda.

El ancho de banda (que en este modelo es 4|t|) depende de la magnitud de
la constante de hopping t , y esta depende de la distancia entre los núcleos.

Cerca del mı́nimo de la banda, podemos hacer un desarrollo de Taylor
(alrededor de k = 0) y obtener

E(k) = cte+ ta2k2

Es decir, la relación de dispersión es aproximadamente parabólica de for-
ma similar a lo que tenemos para electrones libres.

Elibre = ~2k2

2m
De esta manera se puede, por analoǵıa con el caso libre, definir una masa

efectiva para los electrones de forma que

ta2k2 = ~2k2

2meff

Obtenemos entonces

meff = ~2

2ta2

En otras palabras, la masa efectiva meff se define de tal manera que la
relación de dispersión alrededor del mı́nimo de la banda es exactamente como
la dispersión de part́ıculas libres de masa meff . Sin embargo, es importante
recordar que esta masa efectiva no tiene nada que ver con la masa real del
electrón, sino que depende de la probabilidad de salto t.

Ahora imaginamos que nuestro tight-binding está compuesto de átomos y
cada átomo aporta un electrón a la banda. Como hay N posibles estados en la
banda, y los electrones son fermiones, hay dos posibles estados de esṕın para
un electrón en cada k, entonces solo llenaremos la banda hasta la mitad. Los
estados ocupados están ocupados tanto por espines up como espines down.
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1.11 Modelo de Tight-binding en una red periódica

Los puntos donde se encuentran los dos estados ocupados de mayor enerǵıa
constituyen la superficie de Fermi12.

Si se aplica un pequeño campo eléctrico al sistema, solo nos cuesta una
pequeña cantidad de enerǵıa desplazar la superficie de Fermi, ocupando unos
pocos estados k que se mueven hacia la derecha y despoblando algunos es-
tados k que se mueven hacia la izquierda. En otras palabras, el estado del
sistema responde cambiando un poco y se induce una corriente. Como tal,
este sistema es un conductor eléctrico.

12Se suele utilizar el nombre superficie de Fermi en cualquier dimensión aunque claramente
en este caso no es una superficie, sino solo dos puntos. En dos dimensiones tendremos una
curva y en tres tendremos una superficie.
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Caṕıtulo 2

Estructura cristalina de los
sólidos

En el caṕıtulo anterior estudiamos algunas propiedades de una estructura 
periódica en una dimensión como la de la figura 2 .1. C onsideremos p or el 
momento una cadena en una dimensión, donde la posición de cada átomo 
puede escribirse como rn = na con n un número entero. Vimos anteriormente 
que dos puntos en el espacio rećıproco (espacio k) eran equivalentes si k1 = 
k2 + Gm donde Gm = 2πm/a, con m un número entero. Los puntos Gm 
forman lo que se conoce como la red rećıproca.

Queremos ahora ir un poco más allá y estudiar sólidos cristalinos en 3D. 
Para esto necesitamos establecer un lenguaje que nos ayude a describir es-
tructuras en dos y tres dimensiones de manera inteligente y sobre todo de 
manera estandarizada para poder ponernos de acuerdo en lo que estamos 
describiendo y poder comparar con medidas experimentales. Para poder lo-
grar esto, dedicaremos buena parte de esta sección para presentar una lista de 
definiciones que debemos aprender para poder estudiar estructuras de sólidos 
realistas.

2.1. Celda unidad y redes de Bravais
Un cristal ideal está formado por un arreglo periódico infinito de grupos 

de átomos. A cada uno de esos grupos que se repiten periódicamente para
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2.1 Celda unidad y redes de Bravais

Figura 2.2: A partir de una red de Bravais triangular se obtiene una red
hexagonal con dos sitos por celda.

formar el cristal lo llamaremos celda, y al conjunto de puntos del espacio
donde se colocan las celdas las llamaremos red. Por ejemplo, en la figura 2.2
se muestra esquemáticamente como obtener una red hexagonal a partir de
una red triangular con dos sitios por celda. Una definición importante que
usaremos mucho es justamente la de red de Bravais.

Definición: Red de Bravais Llamaremos red de Bravais a un conjunto
infinito de puntos que se obtiene como combinación lineal de vectores lineal-
mente independientes con coeficientes enteros. A estos vectores los llamare-
mos vectores primitivos

Por ejemplo, cualquier punto de una red de Bravais en 2 dimensiones
puede escribirse como

rn1,n2 = n1a1 + n2a2,

con ni ∈ Z y ai vectores linealmente independientes en R2. De la misma
manera, en R3 podemos escribir

rn1,n2,n3 = n1a1 + n2a2 + n3a3

Hasta ahora trabajamos con cadenas de sitios que constituyen redes en
una dimensión donde la definición se cumple trivialmente ya que escribiamos
que rn = na.

En dos y tres dimensiones la elección de los vectores primitivos que ge-
neran la red no es única. Ver figura 2.3.

En una red de Bravais, cada punto tiene exactamente el mismo entrono
que el resto de los puntos. Esta propiedad suele ser usada para identificar
cuando un conjunto de puntos constituye una red de Bravais. Debemos tener
cuidado al estudiar arreglos periódicos ya que no todos los arreglos periódicos
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de puntos constituyen una red de Bravais. La red hexagonal por ejemplo, no
lo es, ya que no podemos generar todos los puntos como combinación lineal
de dos vectores. Equivalentemente, si miramos el entorno de cada sitio de la
red vemos que hay dos subconjuntos de puntos, cada uno de los cuales tiene
un entorno diferente. Podemos pensar a la red hexagonal como dos redes de
Bravais interpenetradas (Ver figura 2.2).

Para poder describir redes más complejas, como la red hexagonal tenemos
que definir el concepto de celda unidad.

Definición: Celda Unidad Una celda unidad o celda unitaria es una
estructura o motivo que al ser repetido construye la estructura periódica com-
pleta.

Aśı como ocurre con los vectores primitivos, la elección de la celda unidad
tampoco es única. Tenemos libertad de elegir diferentes celdas para construir
un mismo cristal, pero dentro de esa variedad de diferentes celdas hay algunas
elecciones que son más importantes a la hora de describir un sólido.

Definición: Celda primitiva Llamaremos celda primitiva a una celda
unidad que contiene la menor cantidad de sitios posible en ella.

Es decir una celda primitiva es la celda unidad de menor tamaño que
podemos tomar y que aun sirva para construir el cristal. Sin embargo, a veces
es útil definir una celda unitaria que no es primitiva para que sea más simple
trabajar con las expresiones matemáticas. Esto se conoce como una celda
unidad convencional. Casi siempre estas celdas convencionales se eligen
para tener ejes ortogonales. En la figura 2.3 se muestran algunos ejemplos de
posibles celdas unitarias en dos dimensiones. En esta figura, la celda unitaria
convencional (arriba a la izquierda) se elige para tener ejes ortogonales.

En la figura hay una celda a la cual llamamos celda de Wigner-Seitz[15].
Esta es una celda muy útil y es además una celda primitiva.

Definición: Celda de Wigner-Seitz Dado un punto de la red, el con-
junto de todos los puntos en el espacio que están más cerca de ese dado punto
que de cualquier otro punto de la red constituye la celda Wigner-Seitz.
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2.1 Celda unidad y redes de Bravais

Figura 2.3: Diferentes elecciones de celdas unitarias para la misma red.

Figura 2.4: Construcción de una celda de Wigner-Seitz.

Hay una forma simple para construir una celda de Wigner-Seitz. Primero
elegimos un punto de la red y dibujamos ĺıneas rectas entre este punto y todos
vecinos cercanos. Después dibujamos bisectrices perpendiculares de todas
estas ĺıneas. La región que queda encerrada por bisectrices perpendiculares
constituyen la celda de Wigner-Seitz. Una propiedad importante es que toda
celda de Wigner-Seitz constituye una celda unitaria primitiva.[3]

En la figura 2.4 mostramos un ejemplo de la construcción de Wigner-Seitz
para un diseño bidimensional. Una construcción similar se puede realizar
en tres dimensiones, en cuyo caso uno debe construir planos de bisección
perpendiculares a los segmentos que unen cada sitio.

La descripción de los objetos dentro de la celda unitaria en términos de
algún punto de referencia en la celda unitaria es conocido como una “base”.
Esta definición es importante ya que generalmente debemos describir sólidos
cuya estructura no se corresponde con una red de Bravais. Esto generalmente
es consecuencia de la estructura interna de la celda unidad.

En la figura 2.5 mostramos una estructura periódica en dos dimensiones
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compuesta por dos tipos de átomos. A la derecha mostramos una celda uni-
taria primitiva con la posición de los átomos dada con respecto al punto de
referencia de la celda unitaria que se considera la esquina inferior izquierda.

Podemos describir en general la posición de los sitios de una red con base
de la siguiente manera:

r = rcelda + rbase

donde rcell = n1a1 + n2a2 es la posición del punto de referencia de la
celda unidad donde se encuentra el átomo que queremos describir y rbase es
la posición del átomo dentro de la celda con respecto al punto de referencia.

Por ejemplo, para el caso de la red hexagonal de la figura 2.6 tendremos
que los puntos de referencia de cada celda (pequeños puntos negros) forman
una red triangular, para la cual podemos tomar los vectores primitivos como

a1 = a

2 î+ a

√
3

2 ĵ (2.1)

a2 = âi (2.2)

2.2. Redes en tres dimensiones
La descripción de redes se generaliza trivialmente de dos a tres dimensio-

nes, ahora usando por supuesto tres vectores primitivos. La red más simple
en tres dimensiones es la red cúbica simple que se muestra en la figura 2.7.

En este caso, la celda unidad primitiva se puede tomar convenientemente
como un cubo simple, que incluye 1/8 de cada una de sus ocho esquinas.

Estructuras levemente más complejas que la red cúbica simple son las
redes tetragonal y la red ortorómbicas (ver figura 2.8) donde los ejes perma-
necen perpendiculares, pero los vectores primitivos pueden ser de diferentes

Figura 2.5: Red con motivo o base.
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Figura 2.6: La red hexagonal y su celda unitaria.

Figura 2.7: Red cúbica.

longitudes. La celda unidad ortorrómbica tiene tres vectores de longitudes
diferentes, mientras que la celda unitaria tetragonal tiene dos vectores de
igual longitud y uno diferente.

Por convención, para describir una red en 3 dimensiones se usan tres
ı́ndices enteros

[u, v, w] = u a1 + v a2 + w a3

Red cúbica centrada en el cuerpo (BCC)

La red cúbica centrada en el cuerpo (bcc) es una red cúbica simple donde
hay un sitio adicional en el centro del cubo (a veces esto se conoce como
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Figura 2.8: Redes tetragonal y ortorómbica

Figura 2.9: Red cúbica centrada en el cuerpo.

cubic-I). La celda unitaria para esta red se muestra en la figura 2.9.
Otra forma de representar esta celda unitaria sin mostrar una figura tri-

dimensional es utilizar una proyección bidimensional de la parte superior de
la celda. Esto se conoce como vista en planta de la celda unitaria. Esta vista
se muestra a la derecha de la figura 2.9.

En la imagen de la celda unitaria BCC, hay ocho sitios de red en las
esquinas de la celda (cada uno de los cuales cuenta como 1/8 dentro de la
celda unidad convencional) y un sitio en el centro de la celda. Por lo tanto,
la celda unidad convencional contiene exactamente dos sitios de red.

Una forma conveniente de describir la red bcc, es pensarla como si fuera
una red cúbica simple con una base de dos átomos por celda. La red cúbica
simple contiene puntos en [x, y, z] donde las tres coordenadas son múltiplos
enteros de la constante de red a.

Para obtener la celda unitaria de la BCC tomamos la celda unitaria
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convencional cúbica simple y colocamos un punto adicional en la posición
[a/2, a/2, a/2]. Por lo tanto, los puntos de la red BCC se pueden describir
como

rvertice = a [n1, n2, n3]

rcentro = a ([n1, n2, n3] + [12 ,
1
2 ,

1
2])

La elección que hicimos de la celda unidad hace parecer que los dos sitios
dentro de la celda unidad son dos tipos diferentes de puntos. Sin embargo
esto no es aśı. Todos los puntos en esta red pueden considerarse equivalentes
(solo parecen no equivalentes porque hemos elegido un celda unitaria con dos
sitios en ella).

Es facil verificar que si tomamos los vectores primitivos como

a1 = [a, 0, 0]
a2 = [0, a, 0]
a3 = [a2 ,

a

2 ,
a

2],

cualquier combinación de la forma

r = n1r1 + n2r2 + n3r3

con n1, n2 y n3 enteros, es un vector de la red y cualquier vector de la red
puede ser escrito de esa manera.

También es fácil convencerse de que el entorno de cada punto de la red es
el mismo. Si nos concentramos en el punto en el centro de la celda unitaria,
vemos que tiene exactamente 8 vecinos más cercanos en cada una de las
diagonales. De la misma forma, cualquiera de los puntos en las esquinas de
las celdas tendrá también 8 vecinos más cercanos correspondiente a los puntos
en el centro de las 8 celdas unitarias adyacentes. De hecho esto nos dice que
cada sitio de la red tiene siempre 8 vecinos. Esto es lo que se denomina
número de coordinación.

Definición: Número de coordinación El número de coordinación de
una red (que frecuentemente denotaremos z) es el número vecinos más cer-
canos que tiene cualquier punto de la red.
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Figura 2.10: Red cúbica centrada en las caras

Para la red BCC, el número de coordinación es z = 8. De la misma
manera que lo hicimos en dos dimensiones, se puede construir una celda
de Wigner-Seitz alrededor de cada punto de la red. La diferenecia principal
es que ahora en vez de tomar las directrices deberemos trazar los planos
perpendiculares a las lineas que unen a un sitio con sus vecinos más ceranos.
La celda de Wigner-Seitz para la red BCC se muestra en la siguiente figura.
Por supuesto que es más dificil dibujar las celdas en 3D que en 2D de la
misma manera que es más difićıl graficar funciones en tres variables que en
dos.

Red cúbica centrada en las caras (FCC)

La red cúbica centrada en las caras (Face Centered Cubic (FCC)) es una
red cúbica simple donde hay un punto adicional en el centro de cada cara del
cubo (esto a veces se conoce como cubic-F, “F por face”). La celda unitaria
se muestra a la izquierda de la figura 2.10 y a la derecha se muestra una vista
en planta de la celda unitaria.

En la celda unitaria FCC, hay ocho sitios de red en las esquinas de la
celda (cada uno de los cuales los contamos como si tuvieran 1/8 dentro de la
celda) y un punto en el centro de cada una de las las 6 caras (que tomamos
como 1/2 dentro de la celda ya que es compartido por dos celdas).

Por lo tanto, la celda unitaria contiene exactamente cuatro sitios de red.
Las posiciones de estos puntos pueden escribirse como

rvertice = a [n1, n2, n3]

rcaraXY = a ([n1, n2, n3] + [12 ,
1
2 , 0])

rcaraXZ = a ([n1, n2, n3] + [12 , 0,
1
2])

rcaraY Z = a ([n1, n2, n3] + [0, 1
2 ,

1
2])
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Como antes, esta forma de escribir la red hace parecer como si fueran
cuatro tipos diferentes de sitios, pero solo es porque hemos elegido una celda
unidad con cuatro sitios.

Como antes podemos verificar que es efectivamente una red de Bravais.
Si escribimos los vectores de red como

a1 = [a/2, a/2, 0] (2.3)
a2 = [a/2, 0, a/2] (2.4)
a3 = [0, a/2, a/2] (2.5)

cualquier combinación de la forma

r = n1r1 + n2r2 + n3r3

con n1, n2 y n3 enteros, es un vector de la red y cualquier vector de la
red puede ser escrito de esa manera.

Además de las redes que vimos hay otros nueve tipos de redes en tres
dimensiones. Estos se conocen como los catorce tipos de redes de Bravais.

2.2.1. Red rećıproca y zona de Brillouin
Como vimos en secciones anteriores, algunos sistemas se describen de

manera más natural en términos del cuasi-momento. A este espacio se lo
denomina habitualmente el espacio rećıproco. Recordemos algunos resultados
de nuestro estudio de sistemas en una dimensión. Tanto en el caso de las
vibraciones de una cadena como en el modelo de tight binding consideramos
una red simple en una dimensión donde los sitios de la red estaban en las
posiciones rn = na, con n un número entero. Por otro lado, recordemos que
dos puntos k1 y k2 en el espacio de cuasi-momentos son equivalentes entre śı
cuando se cumple que k1 = k2 +Gm, donde Gm = 2πm/a con m un número
entero. Estos puntos Gm también forman una red, denominada red rećıproca.

La razón por la que estos valores de k son equivalentes es porque conside-
ramos ondas de la forma eikna con n un número entero. Debido a esta forma
propuesta para la onda, encontramos que si realizamos el cambio k → k+Gm

no se modifica el valor de la función de onda ya que

ei(k+Gm)na = eiknaeiGmna = eiknaei 2πm
a

na = eikna

Luego, para las ondas que hemos estudiado hasta aqúı, es equivalente
tener cuasi momento k o k +Gm.

Generalizando este concepto podemos realizar la siguiente definición
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Definición: Red rećıproca Dado un punto de la red real R, un punto
G será un punto de la red rećıproca, śı y solo śı

eiR·G = 1

para todo punto R de la red real.

Construcción de la red rećıproca

Para construir la red rećıproca, escribamos los puntos de la red real de la
forma

R = n1a1 + n2a2 + n3a3

Nos concentramos por un momento en definir el caso tridimensional, pero
el caso en dos dimensiones es análogo. Queremos definir los puntos de la
red rećıproca en términos de tres vectores linealmente independientes como
hacemos para la red real. Nos aseguraremos que cualquier vector de la red
rećıproca cumpla con la condición

eiR·G = 1,

pidiendo que los vectores que generan la red rećıproca cumplan que

ai · bj = 2πδi,j, (2.6)

donde los vectores ai son los que generan la red real, los vectores bi son
los generadores de la red rećıproca y δi,j es la delta de Kronecker. Se pue-
den generar vectores bi con estas caracteŕısticas directamente a partir de los
vectores de la red real en la forma

b1 = 2π a2 × a3

a1 · (a2 × a3) (2.7)

b2 = 2π a3 × a1

a1 · (a2 × a3) (2.8)

b3 = 2π a1 × a2

a1 · (a2 × a3) (2.9)

Dados estos vectores que cumplen con la ecuación (2.6) podemos escribir
un vector arbitrario de la red rećıproca como

G = m1v1 +m2v2 +m3v3.
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Si calculamos la cantidad eiR·G vemos que

eiR·G = ei(n1a1+n2a2+n3a3)·(m1v1+m2v2+m3v3) (2.10)
= ei2π(n1m1+n2m2+n3m3) (2.11)

Para que G sea un punto de la red rećıproca, la exponencial anterior debe
ser igual a 1 para cualquier punto R de la red real, es decir, para todos los
valores enteros de n1, n2 y n3. Claramente, esto solo puede ser cierto si m1,
m2 y m3 también son enteros. Esto prueba entonces que la red rećıproca es
de hecho ¡una red de Bravais!

Índices de Miller

Una forma alternativa de interpretar la red rećıproca es en términos de
una familia de planos de la red real. Llamaremos plano cristalino a un plano
que contenga al menos tres puntos de la red que no sean colineales. De hecho
si un plano contiene tres puntos no colineales de la red, entonces contiene
infinitos puntos de la misma. Llamaremos familia de planos cristalinos a un
conjunto de planos igualmente separados para los cuales se cumple que el
conjunto de planos contiene a todos los puntos de la red.

En la figura 2.11 se muestran dos ejemplos de familias de planos en una
red. Noten que los planos son paralelos e igualmente espaciados, y cada punto
de la red está incluido en exactamente un plano.

Para identificar a las familias de planos cristalinos se hace una correspon-
dencia uno a uno con las direcciones de los vectores de la red rećıproca, a las
cuales son normales. Además, el espacio entre estos los planos de la red es
d = 2π/|Gmin| donde Gmin es el vector de red rećıproca de longitud mı́nima
en esta dirección (normal a los planos).

Tomemos un vector del espacio G rećıproco y consideremos el plano de-
finido por

G · r = 2πn
Esto define una familia de planos paralelos que son perpendiculares a G.

Cualquier punto de la red de Bravais debe pertenecer a alguno de estos
planos ya que la definición de vector de la red rećıproca nos dice que para
cualquier punto de la red de Bravais se cumple necesariamente que

eiG·R = 1

y por lo tanto debe ser que G · R = 2πq para algún numero entero q. Sin
embargo, puede ocurrir que existan planos de la familia definida por la ecua-
ción G · r = 2πn que no contengan puntos de la red de Bravais. Si tomamos
G ë r La distancia entre dos planos adyacentes está dada por
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Figura 2.11: Planos Cristalinos: Los planos en la figura de la izquierda corres-
ponden a la dirección (1,0,0) mientras que los de la derecha se corresponden
con la dirección (1,1,1)

d = 2π
|G|
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2.3. Electrones en potenciales periódicos
Ya estudiamos brevemente electrones en un sistema periódico cuando es-

tudiamos el tight-binding. En esta sección estudiaremos electrones sometidos
a un potencial periódico como el que está presente en una red de núcleos pero
usaremos una perspectiva un poco diferente. Consideraremos a los electrones
desde una perspectiva ondulatoria y estudiaremos ondas de electrones libres
que son levemente perturbadas por el arreglo periódico de los átomos en la
red.

Comencemos con electrones libres cuyo Hamiltoniano está dado por

H0 = p2

2m.

Los autoestados de enerǵıa se corresponden con ondas planas |kê cuyas au-
toenerǵıas están dadas por

Ô0(k) = ~|k|2

2m .

Ahora, consideremos el caso de un electrón sometido a un potencial pe-
riódico sobre la red.

H = p2

2m + V (r),

donde el potencial cumple que

V (r +R) = V (r)

y R es un vector de la red real (red de Bravais). Si suponemos que el poten-
cial es pequeño podemos intentar corregir perturbativamente la enerǵıa. Los
elementos de matriz del potencial en la base de ondas planas están dados por

ékÍ|V |kê = 1
L3

ˆ
drei(k−kÍ)·rV (r) = 1

L3

Ø
R

ˆ
celda

drei(k−kÍ)·(r+R)V (r +R),

donde la integral del lado derecho de la igualdad se realiza dentro de la celda
unidad y la suma es sobre todas las celdas.

ékÍ|V |kê = 1
L3

Ø
R

ˆ
celda

drei(k−kÍ)·(r+R)V (r +R) (2.12)

= 1
L3

AØ
R

ei(k−kÍ)·R
BAˆ

celda

drei(k−kÍ)·rV (r)
B
, (2.13)
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donde usamos que el potencial es periódico V (r+R) = V (r). La suma sobre
celdas que está dentro del primer paréntesis es distinta de cero solo si

k − kÍ = G.

Es decir que este elemento de matriz es cero salvo que k−kÍ sea un vector de
la red reciproca. Esto no es más que la conservación del momento cristalino.

Entonces, en un proceso de scatering un estado de onda plana solo puede
ir a parar a otra onda plana cuyo vector de onda difiera del incidente en
un vector de la red reciproca. Podŕıamos usar este elemento de matriz para
calcular la corrección a segundo orden en la enerǵıa como

Ô(k) = Ô0(k) + ékÍ|V |kê +
Ø

kÍ=k+G

|ékÍ|V |kê|2

Ô0(k) − Ô0(kÍ) . (2.14)

Donde la suma se realiza sobre los vectores de la red reciproca no nulos. Lo
anterior es correcto si supondremos que estamos en un caso no degenerado
(es decir, suponemos que Ô0(k) Ó= Ô0(kÍ)).

Para estudiar que pasa en el caso degenerado busquemos soluciones de la
forma

Ô0(k) = Ô0(kÍ) (2.15)
kÍ = k +G. (2.16)

Concentrémonos por un momento en el caso 1D. Para una cadena donde
los sitios están igualmente espaciados con parámetro de red a, los vectores
de la red reciproca están dados por

Gn = 2π
a
n.

Si consideramos electrones libres cuya enerǵıa este dada por Ô0(k) ∼ k2,
las únicas posibles soluciones para la ecuación Ô0(k) = Ô0(kÍ) corresponden
a k = ±kÍ. Para satisfacer la ecuación kÍ = k + G con G Ó= 0 solo podemos
tener

k = −kÍ = π

a
n.

Es decir, tendremos un caso degenerado en los niveles de enerǵıa correspon-
dientes a los bordes de la zona de Brillouin. Aunque nosotros lo hicimos
para el caso en una dimensión, esta es una situación más general que inclu-
ye sistemas en más dimensiones. Dado un punto k en el borde de la zona
de Brillouin, generalmente existe otro punto kÍ también sobre el borde de
la zona que cumple con las dos condiciones (2.15) y (2.16). En dos o más
dimensiones generalmente ocurre que este punto no es único.
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Cuando ocurre esta degeneración, la corrección (2.14) diverge y debemos
usar una teoŕıa de perturbaciones degenerada. Para calcular la corrección en
esta teoŕıa debemos primero diagonalizar el Hamiltoniano en el subespacio
degenerado y luego tratar el resto de la perturbación. Dicho de otra manera,
tomamos estados con la misma enerǵıa que se encuentran conectados por un
elemento de matriz y los mezclamos.

Tomemos entonces dos ondas planas con vectores de onda |kê y |k +
Gê. Si estos estados tienen la misma enerǵıa, entonces debemos diagonalizar
los elementos de matriz del Hamiltoniano correspondiente a estos estados
primero, tendremos entonces que

ék|H|kê = Ô0(k)
ék +G|H|k +Gê = Ô0(k +G)

ék|H|k +Gê = V ∗(G)
ék +G|H|kê = V (G).

Donde
V (G) = ék +G|V |kê = 1

L3

ˆ
dr eiG ·rV (r).

En este subespacio podemos escribir un autovector como

|ψê = a|kê + b|k +Gê.

Al buscar los autovalores en este subespacio debemos resolver la ecuaciónA
Ô0(k) V ∗(G)
V (G) Ô0(k +G)

BA
a
b

B
= E

A
a
b

B
(2.17)

y el polinomio caracteŕıstico queda en la forma

(Ô0(k) − E) (Ô0(k +G) − E) − |V (G)|2 = 0.

Si k está en el borde de la zona de Brillouin, Ô0(k+G) = Ô0(k) y tenemos
que

(Ô0(k) − E)2 = |V (G)|2

y por lo tanto
E± = Ô0(k) ± |V (G)|.

Es decir, el estado que antes era doblemente degenerado ahora se convierte
en dos estados de enerǵıa diferente. Se ha abierto un gap por la presencia de
el potencial periódico.
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Ahora veamos que pasa si consideramos estados que no están justo en el
borde de la zona de Billouin, pero están muy cercanos a ella de manera que
las enerǵıas Ô0(k) y Ô0(k +G) son casi iguales (cuasi degenerado).

Para simplificar consideremos el caso unidimensional, aunque la mayor
parte de los argumentos pueden aplicarse en mayores dimensiones. Consi-
deremos el borde de la zona k = ±nπ/a separados por vectores de la red
reciproca G = 2πn/a. Ahora consideremos una onda plana cerca del borde,
digamos con vectores de onda k = nπ/a+ δ. Este vector de onda se conecta
mediante un proceso de scattering generado por el potencial periódico con
el vector de onda k = −nπ/a + δ mediante el vector de la red reciproca
G = 2πn/a. Tendremos entonces para la enerǵıa

Ô0(nπ/a+ δ) = ~2

2m((nπ/a)2 + 2nπδ/a+ δ2)

Ô0(−nπ/a+ δ) = ~2

2m((nπ/a)2 − 2nπδ/a+ δ2).

La ecuación de autovalores puede escribirse como
A
~2

2m((nπ/a)2 + δ2) − E

B2

=
A
~2

2m2nπδ/a
B2

+ |V (G)|2.

De esta ecuación podemos despejar los autovalores

E± = ~2

2m((nπ/a)2 + δ2) ±

öõõôA ~2

2m2nπδ/a
B2

+ |V (G)|2.

Si suponemos que δ es pequeño, podemos desarrollar la ráız cuadrada a
segundo orden alrededor de delta = 0 y obtener

E± = ~2

2m((nπ/a)2 + δ2) ± |V (G)| + ~2δ2

2m

A
1 ± ~2(nπ/a)2

m|V (G)|

B
.

Por lo tanto vemos que cerca del borde de la zona de Brillouin, el potencial
periódico abre un gap y además la dispersión cerca del borde es cuadrática.

La forma de las bandas que resulta de la interacción con un potencial
periódico puede verse en la figura 2.12

La estructura general que encontramos es muy parecida a la que esperába-
mos del modelo de tight-binding. Como en se ve en la figura hay bandas de
enerǵıa donde hay estados permitidos, y hay espacios entre las bandas, donde
no hay autoestados de enerǵıa.
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Figura 2.12: Bandas de enerǵıa.
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Estructura cristalina de los sólidos

2.3.1. Teorema de Bloch
En el estudio anterior, estudiamos a los electrones sometidos a un po-

tencial periódico desde la perspectiva de ondas planas que están débilmente
perturbados por un potencial periódico. Pero en materiales reales, el poten-
cial puede ser muy fuerte y de esta manera la teoŕıa de perturbación puede
no ser válida.

Si embargo aún en el régimen no perturbativo los resultados anteriores
son válidos. Lo primero que debemos tener en cuenta es que el impulso de
la onda plana no es una cantidad conservada, sino que lo que se conserva
es el impulso cristalino. No importa cuán fuerte sea el potencial periódico,
siempre que sea periódico, el momento cristalino es una cantidad conservada.

Este importante resultado fue descubierto por primera vez por Felix Bloch
en 1928, y es lo que se conoce como el teorema de Bloch[5, 15, 3].

Definición: Teorema de Bloch: Un electrón en un potencial periódico
tiene autoestados de la ecuación de Schroedinger de la forma:

ψk,α(r) = eik·ruk,α(r)

donde uk,α(r) es periódica en la celda unidad y el momento k puede ser to-
mado en la primer zona de Brillouin.

La función periódica uk,α(r) se conoce como función de Bloch. El ı́ndice
α contempla el hecho de que al trabajar en el esquema de zona reducida
tendremos más de un estado correspondiente a cada valor de k.

Como uk,α(r) es periódica, podemos escribirla como una suma sobre vec-
tores de la red reciproca.

uk,α(r) =
Ø
G

ũG,k,αe
iG·r,

de esta manera nos aseguramos que uk,α(r) = uk,α(r +R), donde R es un
vector de la red real. Luego, la función de onda completa puede escribirse
como

ψk,α(r) =
Ø
G

ũG,k,αe
i(G+k)·r.

De esta expresión vemos que una forma alternativa de expresar el teorema de
Bloch es decir que podemos escribir cada autoestado como una suma sobre
ondas planas cuyos momentos k difieren en un vector de la red reciproca.
La razón por la cual el teorema de Bloch es válido es que los elementos de
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matriz del potencial son cero a menos que k y kÍ difieran en un vector de la
red reciproca.

En resumen, el teorema de Bloch nos dice que aunque el potencial que
actúa sobre los electrones sea fuerte, ¡ellos todav́ıa se comportan casi como
si fueran libres! Formando estados de onda plana modulados por la función
periódica de Bloch y el hecho de que el momento es ahora el momento cris-
talino.
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Caṕıtulo 3

Segunda cuantificación

Queremos considerar ahora el caso de muchas part́ıculas cuánticas. Nor-
malmente este es un problema que sabemos muy bien cómo tratar en mecáni-
ca cuántica: si conocemos el espacio de Hilbert H1 de una sola part́ıcula y
una base completa |αê ortogonal,

éα|αÍê = δααÍ ,
Ø

α

|αêéα| = 1, (3.1)

sabemos que para N part́ıculas tenemos un espacio de Hilbert que se cons-
truye como el producto directo (tensorial) de los espacios individuales:

HN = H1 ⊗ H2 ⊗ · · · ⊗ HN =
Np

i=1
Hi, (3.2)

y que una base completa de tal espacio es simplemente

|α1, α2, . . . , αN) ≡ |α1ê ⊗ |α2ê · · · |αNê, (3.3)

el estado factorizado de N part́ıculas independientes. Aqúı utilizamos a no-
tación | · · · ) para indicar que el estado no posee ninguna simetŕıa frente al
intercambio de part́ıculas.

Debemos resolver entonces una ecuación de Schrödinger con una función
de onda que depende de las N variables ri correspondientes a las N part́ıcu-
las,

Ψ(r1, r2, . . . , rN) = (r1, r2, . . . , rN |α1, α2, . . . , αN). (3.4)
Aunque este es un programa perfectamente aceptable cuando el número de
part́ıculas es pequeño, es particularmente inadecuado para abordar el caso
de muchos fermiones o bosones cuánticos interactuantes, por varias razones.

La primera razón tiene que ver con la indistinguibilidad de las part́ıcu-
las. Incluso si son libres entre ellas, no todos los estados son aceptables para
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las funciones de onda de N part́ıculas indistinguibles, para las que sólo se
permiten las funciones de onda totalmente simétricas (para bosones) o an-
tisimétricas (para fermiones). Esto significa que incluso para part́ıculas que
no interactúan no podemos usar directamente estados producto de la forma
(3.3) y debemos lidiar con sus versiones simetrizadas o antisimetrizadas,

|α1 . . . αNêS = 1ñ
N !nα1 ! . . . nαN !

Ø
ν

Pν |α1 . . . αN), (3.5)

|α1 . . . αNêA = 1√
N !

Ø
ν

(−1)sνPν |α1 . . . αN), (3.6)

que se obtienen del estado factorizado (3.3) aplicando los operadores de si-
metrización o antisimetrización, al igual que las funciones de onda. En cierto
modo, el hecho de que tengamos que tratar con part́ıculas indistinguibles ya
introduce correlaciones en la función de onda incluso cuando las interacciones
no están presentes. La función de onda se vuelve bastante complicada ya que
deben estar correctamente (anti-)simetrizadas y normalizadas, lo que las ha-
ce muy dif́ıciles de manejar. que se escriban en la forma de un determinante
ayuda un poco para los cálculos prácticos, pero no mucho. En resumen, in-
cluso para los electrones que no interactúan, ¡habŕıa que tratar con funciones
de onda que contienen 1023! términos, lo cual es realmente desagradable.

El segundo problema está relacionado con la forma en que representa-
mos a los operadores en la mecánica cuántica estándar. Si consideramos, por
ejemplo, un operador que mide el momento total de un sistema de part́ıculas,
este tiene que escribirse como una suma de operadores que actúan sobre cada
part́ıcula individualmente:

Ptot =
NØ

i=1
Pi (3.7)

donde Pi es el operador que actúa sobre la part́ıcula i-ésima. Téngase en
cuenta que esto es un abuso de notación ya que Ptot es un operador de HN ,
que rigurosamente se debe escribir como

Pi = 1 ⊗ 1 ⊗ . . .⊗ P ⊗ . . .⊗ 1, (3.8)

donde 1 es la identidad y P se inserta en la posición i-ésima. El operador y
las funciones de onda dependen aśı expĺıcitamente del número de part́ıculas.
Por lo tanto, uno debeŕıa cambiar completamente todo el cálculo dependiendo
de si miramos 2 o 20000 part́ıculas, lo que nuevamente es particularmente
molesto. También impide tomar de manera directa el ĺımite termodinámico
N → ∞ cuando el volumen de los sistemas también tiende a infinito. Dada
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la gran cantidad de part́ıculas, está claro que tomar este ĺımite es lo deseable
ya que simplificaŕıa mucho los cálculos1.

Una tercera razón, quizás más profunda y más f́ısica, y que definitiva-
mente liquida la posibilidad de utilizar la mecánica cuántica usual, es que
¡en muchos sistemas el número de part́ıculas no se conserva! Esto puede ocu-
rrir por varias razones, por ejemplo, en sistemas de altas enerǵıas, porque
buscamos describir sistemas de part́ıculas que pueden aniquilarse y conver-
tirse en otras, tales como electrones y positrónes. O para un ejemplo más
ligado a los materiales, mencionemos el modelo BCS para un superconduc-
tor, que discutiremos en el caṕıtulo siguiente. Veremos que las cuasipart́ıculas
fermiónicas que son responsables de la superconductividad se forman por una
superposición de electrones y huecos y no se conservan en número.

Por estas razones, debemos buscar una reformulación de la representación
estándar de la mecánica cuántica (también conocida como primera cuanti-
ficación) para sistemas de varias part́ıculas indistinguibles. Idealmente de-
beŕıamos hallar un formalismo que se ocupe automáticamente de lo siguiente:

1. Que la simetrización o antisimetrización se realizara de manera au-
tomática sin tener que tratar expĺıcitamente con N ! términos.

2. Que la forma de describir el sistema no dependa expĺıcitamente del
número de part́ıculas presentes en él. Esto debeŕıa permitir tomar el
ĺımite termodinámico fácilmente y también abordar situaciones más
generales en las que el número de part́ıculas puede cambiar.

Esto lo proporciona el llamado método de “segunda cuantificación”2 que
describiremos en este caṕıtulo.

3.1. Espacio de Fock
La idea básica es convertir el hecho de que las part́ıculas sean indistingui-

bles en una ventaja. De hecho, si este es el caso, significa que no es necesario
conocer el estado cuántico de cada part́ıcula individual, sino simplemente
cuántas part́ıculas hay en un estado cuántico dado. Supongamos que uno
tiene una base completa |αê de estados para una sola part́ıcula. En general,
esta base es infinita, pero tomemos por conveniencia un espacio de dimensión

1Trabajar en el ĺımite termodinámico es deseable, además, porque es alĺı donde ocurren
verdaderamente las transiciones de fase.

2La terminoloǵıa usual de “primera” y “segunda” cuantificación es bastante desafortunada.
Da a entender que hay otro objeto que ahora se está cuantificando, más espećıficamente la
función de onda, pero esto es incorrecto, como veremos más adelante.
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3.1 Espacio de Fock

|α1⟩ |α2⟩ |αi⟩ |αd⟩

Figura 3.1: El estado de un sistema con un número arbitrario de part́ıculas
indistinguibles se conoce por completo si se sabe cuántas part́ıculas hay en
un estado cuántico determinado.

finita d y un número finito de estados. Siempre podemos tomar d → ∞3.Aśı,
denotamos todos los estados en esta base como

|α1ê, |α2ê, . . . , |αdê, (3.9)

Téngase en cuenta que el tamaño de la base no está relacionado con la can-
tidad de part́ıculas que están presentes en el sistema. Para los bosones, por
ejemplo, uno podŕıa tener una base completa de los estados de una part́ıcula
que contienen solo dos estados y tener 10000 bosones presentes en el sistema
(ya que varios de ellos pueden ir en el mismo estado cuántico). Para los fer-
miones, por supuesto, el número total de part́ıculas siempre es menor que el
número total de estados disponibles debido al principio de Pauli. Podemos
describir completamente el sistema y reconstruir su función de onda si cono-
cemos el número de part́ıculas ni en cada estado |αiê de la base completa de
estados de part́ıculas individuales, y por lo tanto, podemos caracterizar com-
pletamente la función de onda del sistema mediante el conjunto de números
n1, n2, . . . , nd. El número total de part́ıculas en el sistema es, por supuesto,
N = n1 + n2 + · · · + nd, y puede variar si uno vaŕıa uno de los ni.

Definamos entonces un espacio en el que puedan existir un número arbi-
trario de part́ıculas. Si llamamos HN al espacio de Hilbert con N part́ıculas,
como en la ec. (3.2), podemos definir

F = H0 ⊕ H1 ⊕ H2 . . . =
+∞n
j=0

Hj (3.10)

que es la suma directa de todos los espacios de Hilbert con 0, 1, 2, etc. part́ıcu-
las. Tal espacio se llama espacio de Fock. En este espacio definamos ahora el
estado

|n1, n2, n3, . . . , ndê (3.11)
como los estados simetrizados o antisimetrizados (3.5) y (3.6). Es. decir, en
lugar de rotular a esos estados mediante el conjunto αi de estados estados

3Por supuesto que siempre existen sistemas donde d es finita. Por ejemplo, un spin 1
2 .
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de part́ıcula independiente en el que está cada. part́ıcula, los rotulamos por
el número de part́ıculas que contiene cada uno de ellos. Dos estados de la
forma (3.11) que tienen un número diferente de part́ıculas N pertenecen a
dos espacios de Hilbert diferentes y, por lo tanto, son obviamente ortogonales
en el espacio de Fock. Para sistemas con el mismo número total de part́ıculas,
se puede verificar usando (3.5) y (3.6) que los estados (3.11) para una base
ortogonal y normalizada satisfacen

én1, n2, . . . , nd|nÍ
1, n

Í
2, . . . , n

Í
dê = δn1,nÍ

1
δn2,nÍ

2
· · · δnd,nÍ

d
(3.12)

Por lo tanto, podemos usar la base (3.11) para caracterizar cada operador y
elemento de matriz en el espacio de Fock. Como se mencionó antes, esta base
es extremadamente conveniente ya que se basa en la cantidad mı́nima de
información necesaria para describir un sistema de part́ıculas indistinguibles.
En particular, el número de “contadores” ni necesarios no crece con el número
total de part́ıculas.

3.2. Operadores de creación y destrucción
Introduciremos a continuación un conjunto de operadores que nos permi-

tirá generar todos los elementos de la base (3.11). Para cada estado αi de
la base completa de una sola part́ıcula, definimos un operador de creación y
destrucción, que aumentará o disminuirá en uno el número de part́ıculas en
este estado particular. De este modo, podremos usar estos operadores para
modificar el contador ni dando el número de part́ıculas en un estado cuántico
dado, y aśı abarcar todo el espacio de Fock. La definición práctica de estos
operadores es diferente dependiendo de la estad́ıstica de las part́ıculas.

Bosones

Introducimos los operadores de creación a†
i y destrucción ai por su acción

sobre todos los estados de una base completa en el espacio de Fock, en la
forma

a†
i |n1, . . . , ni, . . . , ndê =

√
ni + 1|n1, . . . , ni + 1, . . . , ndê,

ai|n1, . . . , ni, . . . , ndê = √
ni|n1, . . . , ni − 1, . . . , ndê.

(3.13)

Estas definiciones determinan por completo a los operadores por sus elemen-
tos de matriz en la base de números de ocupación (3.11). Comprobemos que
los operadores a†

i y ai son efectivamente hermı́ticos conjugados uno del otro.
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Dado que (3.11) es una base ortogonal, el único elemento de matriz distinto
de cero para a†

i es

én1, . . . , ni + 1, . . . , nd|a†
i |n1, . . . , ni, . . . , ndê =

√
ni + 1. (3.14)

Tomando el complejo conjugado de esta expresión se obtiene

én1, . . . , ni, . . . , nd|ai|n1, . . . , ni + 1, . . . , ndê =
√
ni + 1, (3.15)

que de hecho es exactamente la definición del operador ai en (3.13) (con el
reemplazo de ni por ni + 1). Otra propiedad importante de los operadores es
que solo abarcan el espacio de Fock. De hecho, aunque parece formalmente
de (3.13) que el operador ai podŕıa operar en un estado que tiene ni = 0
part́ıculas en el estado αi el prefactor en la definición asegura que el elemento
de matriz correspondiente es cero:

ai|n1, . . . , ni = 0, . . . , ndê = 0, (3.16)

y aśı, si uno intenta aplicar el operador de destrucción en un estado que
no tiene ninguna part́ıcula en el estado cuántico correspondiente, obtiene un
resultado trivial, lo que significa que no se pueden generar estados no f́ısicos
con números de ocupación negativos.

Si definimos el estado que no contiene part́ıculas en ninguno de los estados
cuánticos (a veces denominado vaćıo) en la forma

|0ê = |n1 = 0, n2 = 0, . . . , nd = 0ê, (3.17)

se verifica que a partir de este vaćıo |0ê y los operadores a†
i podemos construir

todos los vectores de la base completa del espacio de Fock, ya que

|n1, . . . , ni, . . . , ndê = (a†
1)n1 . . . (a†

d)nd

√
n1! . . .

√
nd!

|0ê. (3.18)

Por lo tanto, uno puede generar completamente el espacio de Fock desde
el estado único |0ê mediante los operadores de creación (y destrucción ya
que son conjugados hermı́ticos). El vaćıo verifica la propiedad de que para
cualquier i

ai|0ê = 0 (3.19)
Debemos tener cuidado de no mezclar el vaćıo |0ê, que es un vector del
espacio de Fock, y uno sobre el que los operadores pueden actuar para dar
otros estados del espacio de Fock, con el cero 0.

Los operadores de creación y destrucción constituyen aśı una manera
muy conveniente de describir el espacio de Fock. En lugar de definirlos a
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partir de sus elementos de matriz en una base dada, tal como (3.11), es más
conveniente definirlos a partir de sus propiedades intŕınsecas. Mostremos que
la definición (3.13) implica que los operadores a†

i y ai poseen ciertas relaciones
de conmutación espećıficas. Y a la inversa, si se obedecen estas relaciones de
conmutación, entonces los operadores, y el vaćıo correspondiente definido por
(3.17), servirán para construir un espacio de Fock a partir de (3.18) en el que
tendrán los elementos de matriz (3.14) y (3.15).

Calculemos primero la acción de un producto de dos operadores de crea-
ción a†

i y a†
j en estados distintos (i Ó= j) sobre un estado arbitrario de la

base:

a†
ia

†
j|n1, . . . , ni, . . . , nj, . . . , ndê = a†

i

ñ
nj + 1|n1, . . . , ni, . . . , nj + 1, . . . , ndê

=
√
ni + 1

ñ
nj + 1|n1, . . . , ni + 1, . . . , nj + 1, . . . , ndê.

(3.20)
y es fácil comprobar que la acción de a†

ja
†
i producirá exactamente el mismo

resultado. Aśı, para cualquier elemento de la base se tieneè
a†

i , a
†
j

é
|n1, . . . , ni, . . . , nj, . . . , ndê = 0, (3.21)

lo que significa que è
a†

i , a
†
j

é
= 0. (3.22)

Dado que un operador conmuta consigo mismo, esto también es cierto cuando
i = j. Tomando el hermı́tico conjugado del conmutador anterior obtenemos

[ai, aj] = 0. (3.23)

Veamos ahora qué ocurre si calculamos la acción del producto de un
operador de destrucción con uno de creación, siempre con (i Ó= j):

a†
iaj|n1, . . . , ni, . . . , nj, . . . , ndê = a†

i

√
nj|n1, . . . , ni, . . . , nj − 1, . . . , ndê

=
√
ni + 1√

nj|n1, . . . , ni + 1, . . . , nj − 1, . . . , ndê
(3.24)

y de manera similar la acción de aja
†
i (con i Ó= j ) daŕıa el mismo resultado.

Se tiene aśı
è
a†

i , aj

é
= 0 cuando i Ó= j. El caso i = j es especial. Por un lado

tenemos que

a†
iai|n1, . . . , ni, . . . , ndê = a†

i

√
ni|n1, . . . , ni − 1, . . . , ndê

=
ñ

(ni − 1) + 1√
ni|n1, . . . , ni, . . . , ndê

= ni|n1, . . . , ni, . . . , ndê,

(3.25)
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y por otra parte

aia
†
i |n1, . . . , ni, . . . , ndê = ai

√
ni + 1|n1, . . . , ni + 1, . . . , ndê

=
√
ni + 1

√
ni + 1|n1, . . . , ni, . . . , ndê

= (ni + 1)|n1, . . . , ni, . . . , ndê.

(3.26)

Concluimos entonces queè
ai, a

†
i

é
|n1, . . . , ni, . . . , ndê = |n1, . . . , ni, . . . , ndê. (3.27)

Juntando los dos resultados, encontramos finalmente que el conmutador esè
ai, a

†
j

é
= δi,j. (3.28)

Se puede entonces resumir las propiedades de los operadores de creación
y destrucción mediante el conjunto de relaciones fundamentalesè

ai, a
†
j

é
= δi,j,è

a†
i , a

†
j

é
= 0,

[ai, aj] = 0.

(3.29)

llamado también álgebra de los operadores. Junto con la acción de los ope-
radores de destrucción sobre el vaćıo (3.19), son equivalentes a las definición
de los elementos de matriz (3.15) y (3.14). Esto implica que si disponemos
de

1. Una base completa |αiê de estados de part́ıculas individuales (y las
funciones de onda correspondientes ér|αiê)

2. Operadores de creación y destrucción, a†
i y ai, para cada uno de estos

estados, que obedecen relaciones conmutación canónicas (3.29).

3. Un vaćıo |0ê que es destruido por los operadores de destrucción ai|0ê =
0,

podemos construir completamente un espacio de Fock para bosones. La idea
es entonces explotar directamente las propiedades anteriores y utilizar las re-
laciones de conmutación canónicas entre los operadores bosónicos para calcu-
lar las propiedades f́ısicas, en lugar de las funciones de onda. Esta descripción
se conoce como segunda cuantificación.
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Tomemos por ejemplo el siguiente estado de dos part́ıculas:

|ψê = a†
1a

†
2|0ê = |n1 = 1, n2 = 1ê. (3.30)

y reconstruyamos la expresión para la función de onda usando. Se obtiene

Ψ(r1, r2) = (r1r2|ψê = 1√
2

[ϕα1(r1)ϕα2(r2) + ϕα1(r2)ϕα2(r1)] , (3.31)

que es la función correctamente simetrizada que describe dos bosones. Sin
embargo, el interés de la segunda cuantificación es apegarse a los operadores
y sus relaciones de conmutación y evitar volver a las funciones de onda, que
en general son bastante intratables. Por ejemplo, los operadores de creación
conmuntan entre śı, y por lo tanto a†

1a
†
2 = a†

2a
†
1. Entonces

a†
1a

†
2|0ê = a†

2a
†
1|0ê, (3.32)

y aśı la función de onda |ψê resulta ser simétrica por permutación de las
part́ıculas. Los operadores de creación y destrucción están aśı directamente
diseñados para tener en cuenta adecuadamente la simetrización de las funcio-
nes de onda y la indistinguibilidad de las part́ıculas. De hecho, las relaciones
de conmutación permiten obtener directamente la información sin pasar por
ningún proceso de simetrización. En particular, los promedios se pueden cal-
cular directamente. Ilustrémoslo calculando la normalización de la función
|ψê. Queremos calcular

éψ|ψê = é0|a2a1a
†
1a

†
2|0ê. (3.33)

Aunque este es un ejemplo espećıfico, veremos que generalmente todos los
observables f́ısicos se reducen al promedio en el vaćıo de un determinado pro-
ducto de los operadores de creación y destrucción, por lo que el método que
describimos se puede aplicar de manera general. Para calcular el promedio,
lo único que necesitamos usar es el hecho de que el vaćıo es destruido por
todos los ai. Por tanto, utilizando las relaciones de conmutación, debeŕıamos
llevar los operadores ai a la derecha, de modo de hacerlos actuar sobre el
vaćıo. para actuar sobre el vaćıo. Primero escribimos a1a

†
1 = 1 + a†

1a1 de la
relación de conmutación. Tenemos entonces

éψ|ψê = é0|a2(1 + a†
1a1)a†

2|0ê,

= é0|a2a
†
2|0ê + é0|a2a

†
1a1a

†
2|0ê.

(3.34)

En el segundo término podemos usar ahora la relación de conmutación a1a
†
2 =

a†
2a1 para reescribirlo como é0|a2a

†
1a

†
2a1|0ê que inmediatamente da cero. Para

Materia cuántica - C.A. Lamas, A. Iucci (autores)

Facultad de Cs. Exactas  |  UNLP |   79



3.2 Operadores de creación y destrucción

el primero usamos de nuevo las relaciones de conmutación, y obtenemos

éψ|ψê = é0|a2a
†
2|0ê = é0|(1 + a†

2a2)|0ê,

= é0|1|0ê,

= 1.

(3.35)

Aunque los cálculos pueden volverse tediosos cuando crece el número de
operadores, la mecánica siempre es la misma, y con un poco de práctica se
pueden acelerar.

Fermiones

Pasemos ahora a los operadores de creación y destrucción de fermiones.
De manera similar que para los bosones, definimos

c†
i |n1, . . . , ni, . . . , ndê = (1 − ni)(−1)Ôi|n1, . . . , ni + 1, . . . , ndê,

ci|n1, . . . , ni, . . . , ndê = ni(−1)Ôi|n1, . . . , ni − 1, . . . , ndê,
(3.36)

donde Ôi = qi−1
j=1 nj y Ô1 = 0. El orden de los elementos en la base debe

fijarse una vez, y utilizar siempre la misma convención, pero, por supuesto,
es arbitraria.

En estas definiciones, algunos términos son bastante transparentes: dado
que para los fermiones el principio de Pauli impide que dos fermiones estén
en el miso estado, los números de ocupación ni están restringido a toar los
valores 0 o 1 . Por lo tanto, es importante que el operador de creación no
pueda crear dos part́ıculas en un estado, lo cual queda asegurado por el factor
1 − ni que garantiza que si c†

i actúa sobre un estado con ni = 1 entonces la
acción del operador dará cero. De manera similar, el factor ni asegura que el
operador de destrucción no puede destruir una part́ıcula en el estado para el
cual ni = 0. La f́ısica del factor extraño (−1)Ôi no es obvia por el momento, y
uno podŕıa tener la tentación de definir los operadores sin tal factor de fase.
Veremos su utilidad un poco más adelante.

Procedemos ahora exactamente como con los bosones: comprobemos pri-
mero que los operadores c†

i y ci son efectivamente hermı́ticos conjugados uno
del otro. De hecho, los cálculos con fermiones son más simples en cierto sen-
tido, ya que para cada estado αi solo hay dos posibilidades ni = 0 o ni = 1
para el estado correspondiente. El único elemento de matriz distinto de cero
para el operador c†

i es

én1, . . . , ni = 1, . . . , nd|c†
i |n1, . . . , ni = 0, . . . , ndê = (−1)Ôi . (3.37)

Materia cuántica - C.A. Lamas, A. Iucci (autores)

Facultad de Cs. Exactas  |  UNLP |   80



Segunda cuantificación

mientras que para ci el único elemento de matriz distinto de cero es

én1, . . . , ni = 0, . . . , nd|ci|n1, . . . , ni = 1, . . . , ndê = (−1)Ôi . (3.38)

que obviamente es el complejo conjugado del otro.
Para continuar con las relaciones de conmutación y comprender el papel

de los coeficientes (−1)Ôi , veamos primero la acción de cic
†
i . Como esto solo

afecta al estado αi, podemos simplemente considerar su acción sobre los dos
estados con ni = 0 y ni = 1:

cic
†
i |n1, . . . , ni = 0, . . . , ndê = (−1)Ôici|n1, . . . , ni = 1, . . . , ndê

= (−1)2Ôi|n1, . . . , ni = 0, . . . , ndê

= |n1, . . . , ni = 0, . . . , ndê

(3.39)

Por otro lado,
c†

ici|n1, . . . , ni = 0, . . . , ndê = 0. (3.40)
Nótese que en este resultado los factores (−1)Ôi no juegan ningún papel, y
podŕıamos haber definido los operadores sin incluirlos. En forma similar,

cic
†
i |n1, . . . , ni = 1, . . . , ndê = 0

c†
ici|n1, . . . , ni = 1, . . . , ndê = |n1, . . . , ni = 1, . . . , ndê.

(3.41)

Se observa entonces que
è
ci, c

†
i

é
no tiene ninguna expresión simple. En cambio,

el anticonmutador î
ci, c

†
i

ï
= cic

†
i + c†

ici (3.42)
conduce a î

ci, c
†
i

ï
|n1, . . . , ni, . . . , ndê = |n1, . . . , ni, . . . , ndê, (3.43)

y por lo tanto î
ci, c

†
i

ï
= 1 (3.44)

Por lo tanto, se puede adivinar que en lugar del conmutador, es el anticon-
mutador el que jugará un papel importante. El rol del factor (−1)Ôi será,
por lo tanto, asegurar que para las otras combinaciones también se obtengan
relaciones simples para el anticonmutador. Ilustrémoslo con la acción de cic

†
j

con i Ó= j. Suponiendo que i < j, tenemos que

cic
†
j|n1, . . . , ni, . . . , nj, . . . , ndê = (1 − nj)(−1)Ôjci|n1, . . . , ni, . . . , nj + 1, . . . , ndê

= (1 − nj)(−1)Ôjni(−1)Ôi|n1, . . . , ni − 1, . . . , nj + 1, . . . , ndê.
(3.45)
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Por otro lado,

c†
jci|n1, . . . , ni, . . . , nj, . . . , ndê = ni(−1)Ôic†

j|n1, . . . , ni − 1, . . . , nj, . . . , ndê

= (1 − nj)(−1)ÔÍ
jni(−1)Ôi|n1, . . . , ni − 1, . . . , nj + 1, . . . , ndê.

(3.46)
El término ÔÍ

j corresponde al factor de fase en un estado con ni −1 en lugar de
ni. Aśı, ÔÍ

j = Ôj −1. En ausencia de dichos términos de fase, las dos expresiones
(3.45) y (3.45) seŕıan idénticas y tendŕıamos que [ci, c

†
j] = 0. Gracias a los

factores de fase Ôj ahora tenemos un signo menos entre los dos términos y la
relación se convierte en î

ci, c
†
j

ï
= 0, (3.47)

lo que permitirá definir los operadores ci sólo en términos de sus anticonmu-
tadores. Es fácil comprobar las restantes relaciones, y aśı se tiene, de forma
similar que para los bosones, î

ci, c
†
j

ï
= δi,j,î

c†
i , c

†
j

ï
= 0,

{ci, cj} = 0.

(3.48)

Por otro lado, de la misma forma que para los bosones, se puede construir
todos los estados del espacio de Fock a partir de un vaćıo |0ê que es destruido
por todos los ci(ci|0ê = 0) usando la relación (3.18)

Las funciones de onda y los promedios se pueden calcular también con
las mismas técnicas que antes, veamos como ejemplo la función de onda de
dos fermiones en los estados α1 y α2:

|ψê = c†
1c

†
2|0ê. (3.49)

y entonces la función de onda resulta

ér1r2|ψê = 1√
2

[α1(r1)α2(r2) − α1(r2)α2(r1)] , (3.50)

que es, por supuesto, la función de onda correctamente antisimetrizada para
fermiones. Sin ir a la función de onda, se puede ver directamente la antisi-
metrización a nivel de estados y operadores: usando la relación de anticon-
mutación {c1, c2} = 0 se encuentra que

c†
1c

†
2|0ê = −c†

2c
†
1|0ê, (3.51)
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y aśı la función de onda |ψê es obviamente antisimétrica por permutación de
las part́ıculas.

El hecho de que el operador ci se ocupe automáticamente de la antisimetri-
zación hace que sea muy conveniente escribir incluso funciones complicadas.
Por ejemplo, el mar de Fermi, que corresponde al estado de N fermiones de
menor enerǵıa posible, se escribe

|F ê =
NÙ

j=1
c†

j|0ê (3.52)

Los promedios en el vaćıo se pueden calcular exactamente con la mis-
ma técnica descrita para los bosones. Por ejemplo, si tomamos |ψê = c†

1|0ê,
entonces (usando las relaciones de anticonmutación),

éψ|ψê = é0|cic
†
i |0ê

= é0|1 − c†
ici|0ê

= é0|1|0ê = 1.

(3.53)

Generalizando el cálculo anterior puede mostrarse el mar de Fermi está co-
rrectamente normalizado, éF|Fê = 1.

3.2.1. Operadores de un cuerpo
Ahora que tenemos definidos a los operadores que permiten construir

todo el espacio de Fock, lo que queda por resolver es expresar los observables
f́ısicos que queremos calcular en términos de estos operadores. Para hacerlo,
debemos tener en cuenta que los observables deben actuar sobre part́ıculas
indistinguibles, lo que establece algunas restricciones sobre su forma. Antes de
dar sus expresiones en segunda cuantificación, es conveniente clasificarlos de
acuerdo al número de part́ıculas sobre las que actúan. Hay observables f́ısicos
que miden solo los números cuánticos de una part́ıcula a la vez (tales como
el momento, la densidad, etc.) y otros que necesitan tratar con los números
cuánticos de dos de las part́ıculas para determinar sus elementos de matriz.
Este es caso, por ejemplo, del operador que mide las interacciones entre las
part́ıculas. El primer tipo se llama operadores de un cuerpo, mientras que
el segundo es de dos cuerpos. En principio, se pueden tener operadores que
involucren más de dos part́ıculas (tales como colisiones de tres cuerpos y
más), pero son de poca utilidad práctica en la f́ısica del estado sólido, por lo
que discutiremos principalmente aqúı los de uno y dos cuerpos. Las fórmulas
dadas aqúı se pueden generalizar fácilmente si es necesario.
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Definición

Comencemos primero con los operadores de un cuerpo. De manera bas-
tante general, llamemos O a un operador que representa alguna propiedad
de una part́ıcula a la vez. Por supuesto, si O actúa en el espacio de Hilbert
con N part́ıculas, debe actuar sobre cada part́ıcula del sistema. Llamemos
O(1) al operador que actúa en el espacio de Hilbert de una sola part́ıcula; el
operador O correspondiente a las N part́ıculas debe ser

O = O
(1)
1 ⊗ 12 ⊗ . . .⊗ 1N + 11 ⊗O

(1)
2 ⊗ . . .⊗ 1N + . . .+ 11 ⊗ . . .⊗O

(1)
N (3.54)

donde O(1)
i es el operador que actúa sobre la part́ıcula i-ésima. El hecho de

que en la suma anterior, todos los coeficientes sean idénticos, es la consecuen-
cia directa del hecho de que las part́ıculas son indistinguibles, y no podemos
distinguir en una medida si un cierto conjunto de números cuánticos corres-
ponden a una u otra part́ıcula del sistema. La forma (3.54) es por lo tanto la
forma más general posible de un operador de un solo cuerpo para part́ıculas
indistinguibles.

Para expresar (3.54) en segunda cuantficación, debemos comenzar por
analizar qué sucede si tenemos un sistema con una sola part́ıcula (si no hay
ninguna part́ıcula, un operador de un cuerpo es trivialmente nulo). En ese
caso O = O(1) y usando la base completa α podemos escribir

O =
Ø
α,β

|αêéα|O(1)|βêéβ|, (3.55)

y luego utilizamos que |αê = c†
α|0ê para obtener

O =
Ø
α,β

éα|O(1)|βêc†
α|0êé0|cβ. (3.56)

La interpretación f́ısica de esta fórmula es bastante simple: el operador cβ

destruye una part́ıcula en un estado β; como solo tenemos una part́ıcula en
el sistema, nos vemos obligados a ir al vaćıo, luego, desde el vaćıo, el operador
c†

α recrea la part́ıcula en el estado α. El resultado neto es que todav́ıa tenemos
una part́ıcula en el sistema pero ha cambiado su estado cuántico al pasar del
estado β al estado α. La amplitud de dicha transición está dada por los
elementos de matriz del operador O(1) entre los estados β y α.

Si en lugar de una part́ıcula tuviéramos ahora un número arbitrario de
part́ıculas en el sistema, tendŕıamos que hacer exactamente lo mismo para
cada una de ellas, dejando invariantes los números cuánticos de las demás,
como sugiere (3.54), y hacer la suma. Un operador que logra esto está dado
por la expresión

O =
Ø
α,β

éα|O(1)|βêc†
αcβ (3.57)
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que es idéntica a (3.56) excepto que no estamos obligados a ir al vaćıo después
de la destrucción de la part́ıcula en el estado β. De hecho, si hay varias
part́ıculas, el operador c†

αcβ cambiará el número cuántico de una part́ıcula
del estado β al estado α y dejará intactos los números cuánticos de todas las
demás part́ıculas del sistema. Sin embargo, el operador cβ operará en todas
las part́ıculas del sistema y, por lo tanto, hará esa transición para la primera,
segunda, etc. realizando automáticamente la suma en (3.54).

La expresión (3.57) permite aśı representar cualquier operador de un solo
cuerpo en segunda cuantificación, conociendo sólo la acción del operador O(1)

en el espacio de una sola part́ıcula. Nótese que las funciones de onda prove-
nientes de la elección de la base completa α sólo intervienen en el cálculo de
los elementos de matriz éα|O(1)|βê. Una vez que se calculan estos elementos
de matriz, todo el operador se reduce a una combinación lineal de operadores
de creación y destrucción y, por lo tanto, todos los promedios f́ısicos se pue-
den calcular mediante las técnicas descritas en la sección anterior, sin tener
que volver a las funciones de onda. Por supuesto, todos los aspectos de su
simetrización o la antisimetrización son tenidos en cuenta automáticamente
por la naturaleza de los operadores de creación o destrucción.

Ejemplos

Comencemos con el operador que mide la densidad de part́ıculas en un
punto r0, que para una part́ıcula se escribe

ρ(1)(r0) = |r0êér0|, (3.58)

debido a que éψ|ρ(1)(r0)|ψê = |ψ(r0)|2. En segunda cuantificación la forma
del operador dependerá de la elección de la base completa α que tomemos.
Empecemos tomando la base de autoestados de posición |rê, en cuyo caso,
el operador c†

r es el operador que crea una part́ıcula en el punto r. Usando
esta base y la relación (3.57) se obtiene

ρ(r0) =
ˆ
drdrÍ ér|r0êér0|rÍêc†

rcrÍ ,

=
ˆ
drdrÍ δ(r − r0)δ(r0 − rÍ)c†

rcrÍ ,

= c†
r0cr0 .

(3.59)

La expresión c†
r0cr0 es particularmente simple de interpretar. El operador

c†
r0cr0 destruye y recrea una part́ıcula en el mismo estado cuántico. Por lo

tanto, no ha cambiado nada en el sistema. Sin embargo, la acción del operador
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cr0 dará cero si no hay ninguna part́ıcula a destruir en el estado cuántico
correspondiente (aqúı una part́ıcula en el punto r0). El operador c†

r0cr0 da
cero si no hay ninguna part́ıcula en el estado cuántico correspondiente y uno si
hay una part́ıcula. Por tanto, simplemente cuenta el número de part́ıculas en
el punto r0. Generalmente, el operador c†

αcα simplemente cuenta el número
de part́ıculas en el estado α. El operador que cuenta el número total de
part́ıculas en el sistema está dado entonces por

N =
ˆ
dr c†

rcr. (3.60)

La generalización al caso de part́ıculas con spin es inmediata. Para ello la
base completa será α = (r, σ) y el operador densidad solo actúa en la parte
espacial, por lo tanto

ρ(1)(r0) = |r0êér0| ⊗ 1spin , (3.61)

y aśı (3.57) da lugar a

ρ(r0) =
Ø
σ,σÍ

ˆ
drdrÍ érσ|r0êér0|rÍσÍêc†

rσcrÍσÍ ,

=
Ø
σ,σÍ

ˆ
drdrÍ δ(r − r0)δ(r0 − rÍ)δσσÍc†

rσcrÍ,σÍ ,

= c†
r0↑cr0↑ + c†

r0↓cr0↓.

(3.62)

También podŕıamos calcular la densidad de spin a lo largo del eje z en el
punto r0. En ese caso el operador de una part́ıcula es

S(1)
z (r0) = |r0êér0| ⊗ Sz, (3.63)
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y usando (3.57) se obtiene4

Sz(r0) =
Ø
σ,σÍ

ˆ
drdrÍ érσ|r0êér0| ⊗ Sz|rÍσÍêc†

rσcrÍσÍ ,

=
Ø
σσÍ

éσ|Sz|σÍêc†
r0σcr0σÍ ,

= 1
2(c†

r0↑cr0↑ − c†
r0↓cr0↓).

(3.64)

De manera similar, la densidad de spin a lo largo de la dirección x es

Sx(r0) =
Ø
σ,σÍ

ˆ
drdrÍ érσ|r0êér0| ⊗ Sx|rÍσÍêcrσ†crÍσÍ ,

=
Ø
σσÍ

éσ|Sx|σÍêc†
r0σcr0σÍ ,

= 1
2(c†

r0↑cr0↓ + c†
r0↓cr0↑),

(3.65)

y para la dirección y,

Sy(r0) =
Ø
σ,σÍ

ˆ
drdrÍ érσ|r0êér0| ⊗ Sy|rÍσÍêcrσ†crÍσÍ ,

=
Ø
σσÍ

éσ|Sy|σÍêc†
r0σcr0σÍ ,

= i

2(−c†
r0↑cr0↓ + c†

r0↓cr0↑),

(3.66)

Alternativamente, podŕıamos haber usado la base de los autoestados del
operador momento, |kê, cuyas funciones de onda son

ér|kê = 1√
Ω
eikr. (3.67)

4Recordemos que las expresiones de los operadores de spin en la base |±ê son

Sx = 1
2 [|+êé−| + |−êé+|] ,

Sy = i

2 [−|+êé−| + |−êé+|],

Sz = 1
2[|+êé+| − |−êé+|].
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Dado que el spin y la parte orbital son independientes, solo daremos las
expresiones para el caso sin esṕın. Incorporar el spin se realiza exactamente
de la misma forma que en la base de coordenadas. El operador ck ahora
destruye una part́ıcula momento k (es decir, en un estado de onda plana con
momento k). La ecuación (3.57) da lugar a

ρ(r0) =
Ø
k1k2

ék1|r0êér0|k2êc†
k1ck2 ,

= 1
Ω
Ø
k1k2

e−ik1r0eik2r0c†
k1ck2 .

(3.68)

La expresión (3.68) no es tan simple como (3.59) ya que el operador densidad
no es diagonal en la base de momentos. Sin embargo, tanto (3.68) como (3.59)
representan el mismo operador. Esto nos da una conexión directa entre los
operadores que crean una part́ıcula en el punto r y los que crean una part́ıcula
con momento k. Comparando las ecuaciones (3.68) y (3.59) se obtiene

cr = 1√
Ω
Ø
k

eikrck. (3.69)

Esta expresión constituye un ejemplo de una transformación, en este caso
lineal y dada por una transformada de tipo Fourier, entre operadores de
creación. Esta transformación preserva los conmutadores, como puede verifi-
case en forma simple, y por lo tanto constituye un ejemplo de transformación
canónica. Discutiremos más sobre este tema más adelante.

Usando la expresión (3.68) también podemos calcular el número total de
part́ıculas en el sistema:

N =
ˆ
dr

1
Ω
Ø
k1k2

e−ik1reik2rc†
k1ck2 ,

=
Ø
k1k2

δk1k2c
†
k1ck2 ,

=
Ø
k

c†
kck,

(3.70)

y si tenemos en cuenta que c†
kck cuenta el número de part́ıculas en el esta-

do cuántico k, se obtiene nuevamente que el número total de part́ıculas es
la suma de todos los números de part́ıculas en todos los estados cuánticos
posibles. Finalmente se puede usar (3.68) para obtener una expresión simple
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de la transformada de Fourier de la densidad:

ρ(q) =
ˆ
dr e−iqrρ(r),

=
ˆ
dr e−iqr 1

Ω
Ø
k1k2

e−ik1reik2rc†
k1ck2 ,

=
Ø
k1k2

δk2,k1+qc
†
k1ck2 ,

=
Ø
k

c†
k−qck.

(3.71)

Otro operador importante es, por supuesto, la enerǵıa cinética de las
part́ıculas. Para una part́ıcula se tiene H(1) = p2

2m
, y de manera más general,

podŕıamos tener cualquier función del momento H(1) = Ô(p). Por lo tanto, es
muy conveniente utilizar la base de momentos. La enerǵıa cinética se expresa
aśı como

H =
Ø
k1k2

ék1|ε(p)|k2êc†
k1ck2 ,

=
Ø
k1k2

δk1k2ε(k2)c†
k1ck2 ,

=
Ø
k

ε(k)c†
kck,

(3.72)

que tiene la interpretación simple de que la enerǵıa cinética total del sistema
es la suma de el número de part́ıculas en cada estado k (dado por c†

kck )
multiplicado por la enerǵıa cinética Ô(k) de tal estado. La generalización
para sistemas con spin es inmediata y, en general se obtiene

H =
Ø
kσ

ε(k)c†
kσckσ, (3.73)

asumiendo que la enerǵıa cinética no depende del esṕın (en ausencia de aco-
plamiento esṕın-órbita). Debemos tener en cuenta que dado que el número
total de part́ıculas es N = q

k c
†
kck, agregar un potencial qúımico −µN no

cambia la forma del Hamiltoniano:

H =
Ø
kσ

ξ(k)c†
kσckσ, (3.74)

y simplemente reemplaza ε(k) por ξ(k) = ε(k) − µ. A temperatura cero la
enerǵıa ξ(k) es cero en el nivel de Fermi, negativa por debajo, y positiva por
encima.
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3.2.2. Operadores de dos cuerpos
Veamos ahora los operadores que involucran dos part́ıculas y como definir

sus elementos de matriz. Es en particular el caso del potencial de interacción
entre dos part́ıculas

V =
Ø
iÓ=j

V (ri, rj). (3.75)

Definición

Con un esṕıritu similar al de los operadores de un solo cuerpo, llamemos
O(2) al operador correspondiente que actúa en el espacio de Hilbert de sólo
dos part́ıculas. El operador de dos cuerpos que actúa en HN debe tener la
forma

O =
Ø
i<j

O
(2)
i,j

p
k Ó=i,j

1k = 1
2
Ø
iÓ=j

O
(2)
i,j

p
k Ó=i,j

1k, (3.76)

para que el operador O(2) pueda operar sobre cada par de part́ıculas en
el sistema. De manera similar que para los operadores de un solo cuerpo,
los coeficientes en la suma anterior deben ser todos iguales, de lo contrario
significaŕıa que las part́ıculas podŕıan distinguirse.

Para entender cómo escribir O en segunda cuantificación, veamos el caso
en el que hay exactamente dos part́ıculas en el sistema. Debemos definir el
operador O por sus elementos de matiz en el espacio f́ısico de las funcio-
nes (anti)simetrizadas |α, βê, lo que significa que debemos conocer todos los
elementos

éα, β|O(2)|γ, δê. (3.77)

Tomemos primero la expresión (3.77) y escribamos |α, βê en términos de los
kets ordenados (3.5) y (3.6)

(α, β|O(2)|γ, δ) = (β, α|O(2)|δ, γ), (3.78)

aqúı la igualdad se debe a que simplemente estamos intercambiando part́ıcu-
las, y por lo tanto obtenemos

éα, β|O(2)|γ, δê = (α, β|O(2)|γ, δ) ± (α, β|O(2)|δ, γ). (3.79)

Ahora debeŕıamos encontrar en segunda cuantificación un operador que re-
produzca estos elementos de matriz y, por supuesto, funcione para N part́ıcu-
las en lugar de dos. Se verifica que

O = 1
2
Ø

α,β,γ,δ

(α, β|O(2)|γ, δ)c†
αc

†
βcδcγ, (3.80)
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funciona tanto para fermiones como para bosones. No demostraremos esta
relación en general, lo cual puede hacerse calculando los elementos de matriz a
ambos lados, sino que simplemente comprobaremos que funciona para N = 2
part́ıculas. Calculemos, a partir de (3.80), los elementos de matriz

éα0, β0|O|γ0, δ0ê = 1
2
Ø

α,β,γ,δ

(α, β|O(2)|γ, δ)éα0, β0|c†
αc

†
βcδcγ|γ0, δ0ê. (3.81)

Como |α0, β0ê = c†
α0c

†
β0|0ê tenemos que calcular promedios de la forma

é0|cβ0cα0c
†
αc

†
βcδcγc

†
γ0c

†
δ0 |0ê (3.82)

lo cual puede realizarse mediante la técnica que discutimos antes, consistente
en llevar hacia la derecha a los operadores de destrucción para que actúen
sobre el vaćıo. Esto da

é0|cβ0cα0c
†
αc

†
βcδcγc

†
γ0c

†
δ0|0ê = [δα0,αδβ0,β ± δα0,βδβ0,α] [δγ0,γδδ0,δ ± δγ0,δδδ0,γ] .

(3.83)
El signo + es el habitual para los bosones y el − para los fermiones. F́ısica-
mente significa que cuando los operadores de destrucción actúan en la forma

cδcγ|γ0, δ0ê, (3.84)

tienen que destruir las dos part́ıculas en los dos estados cuánticos posibles
y aśı δ tiene que ser uno de los estados y γ el otro con el signo adecuado
dependiendo de la (anti)simetŕıa de la función de onda. Usando (3.83) en
(3.81) de hecho recuperamos los mismos elementos de matriz que (3.79).

F́ısicamente, la fórmula (3.80) tiene una interpretación similar a la de los
operadores de un solo cuerpo. El término c†

αc
†
βcδcγ destruye dos part́ıculas

con los números cuánticos γ y δ, para esto es necesario que el sistema con-
tenga dos part́ıculas (que es lo que debe ocurrir para que un operador de
dos cuerpos pueda actuar). Luego recrea las dos part́ıculas con dos nuevos
números cuánticos α y β. La amplitud para este proceso está dada por los
elementos de matriz del operador O(2) en una transición donde la primera
part́ıcula va del estado γ al estado α y la segunda del estado δ al estado β. El
elemento de matriz se escribir para kets ordenados (son kets producto y por
lo tanto más simples); los operadores de creación y destrucción se encargan
de todas las permutaciones y de realizar esta transición para cualquier par
de part́ıculas en el sistema.

Ejemplos

La interacción más común entre los electrones es aquella que depende de
la distancia entre las dos part́ıculas. Los dos operadores de tal interacción
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3.2 Operadores de creación y destrucción

son, por lo tanto,
O(2) = V (r̂1 − r̂2), (3.85)

donde r̂1 y r̂2 son los operadores que miden la posición de la primera y la
segunda part́ıcula respectivamente. Excepcionalmente utilizaremos aqúı la
notación con el sombrero para indicar que son operadores. Por ejemplo, para
la interacción de Coulomb es

V (r) = e2

4πÔ0r
, (3.86)

pero otros tipos de interacciones como una interacción local V (r) = Uδ(r)
también son opciones posibles. Mantendremos V como función general en lo
que sigue.

Para expresar el operador en segunda cuantificación, tenemos nuevamente
que realizar la elección de la base. Debido a que el operador V (r̂1 − r̂2) es
diagonal en la base de posición, comencemos con ésta. Usando (3.80) y el
hecho de que α es la base de posiciones, obtenemos

V = 1
2

ˆ
dr1dr2dr3dr4 (r3r4|V (r̂1 − r̂2)|r1r2)c†

r3c
†
r4cr2cr1 ,

= 1
2

ˆ
dr1dr2d r3dr4V (r1 − r2)δ(r3 − r1)δ(r4 − r2)c†

r3c
†
r4cr2cr1 ,

= 1
2

ˆ
dr1dr2 V (r1 − r2)c†

r1c
†
r2cr2cr1 .

(3.87)

Si se incluye el esṕın, la base completa se convierte en α = (r, σ) y como el
operador V (r̂1 − r̂2) es la identidad en el sector de esṕın, se obtiene

V = 1
2
Ø
σ1σ2

ˆ
dr1dr2 V (r1 − r2)c†

r1σ1c
†
r2σ2cr2σ2cr1σ1 . (3.88)

La expresión (3.88) puede escribirse en una forma más familiar utilizando
las relaciones de (anti)conmutación para fermiones

c†
r1σ1c

†
r2σ2cr2σ2cr1σ1 = −c†

r1σ1c
†
r2σ2cr1σ1cr2σ2 ,

= −c†
r1σ1(δr1,σ1;r2σ2 − cr1σ1c

†
r2σ2)cr2σ2 ,

= −δr1,σ1;r2σ2c
†
r1σ1cr2σ2 + c†

r1σ1cr1σ1c
†
r2σ2cr2σ2 ,

= −δr1,σ1;r2σ2ρσ1(r1) + ρσ1(r1)ρσ2(r2),

(3.89)
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(para bosones se obtiene una expresión similar, con signo +). El segundo
término da lugar a la expresión

V = 1
2
Ø
σ1σ2

ˆ
dr1dr2 V (r1 − r2)ρσ1(r1)ρσ2(r2), (3.90)

que es la forma familiar de la interacción entre dos densidades de part́ıculas
(o cargas) en dos puntos diferentes. La diferencia es que ahora los ρ son
operadores que miden la densidad en lugar de variables clásicas. El primer
término se reduce aØ

σ

ˆ
drV (r = 0)ρσ1(r1) = V (r = 0)N, (3.91)

que es simplemente un término de potencial qúımico. Téngase en cuenta que
puede ser infinito para algunas interacciones, como la interacción de Cou-
lomb. Este primer término está ah́ı para corregir el hecho de que la expre-
sión (3.90) contrariamente a (3.88) no contiene solo la interacción entre dos
part́ıculas diferentes. Efectivamente, (3.88) tiene dos operadores de destruc-
ción a la derecha, lo que significa que los operadores solo pueden actuar en
estados que contienen dos part́ıculas. Por el contrario, (3.90) es de la forma

c†
r1σ1cr1σ1c

†
r2σ2cr2σ2 , (3.92)

y por lo tanto puede actuar incluso si solo hay una part́ıcula en el sistema.
Por lo tanto, contiene una falsa “autointeracción” de la part́ıcula consigo
misma. Es esta interacción la que conduce al potencial qúımico (3.91) que
debe incluirse adecuadamente junto con (3.90). No obstante, si se fija el
número de part́ıculas del sistema, entonces esta modificación es irrelevante
ya que simplemente se absorbe en una re-definición del potencial qúımico y
se puede usar (3.88) o (3.90) indistintamente.

Reescribamos ahora la interacción en la base del impulsos. Usando (3.80)
y una base α = (k, σ) se tiene

V = 1
2

Ø
k1σ1,k2σ2,
k3σ3,k4σ4

(k3σ3,k4σ4|V (r̂1 − r̂2)|k1σ1,k2σ2)c†
k3σ3c

†
k4σ4ck2σ2ck1σ1 . (3.93)

Lo que sigue es calcular un elemento de matriz que involucra operadores
de posición en una base de estados de momentos. Esto se realiza, como es
habitual en mecánica cuántica, insertando resoluciones de la identidad en el
espacio de coordenadas

1 =
ˆ
dr |rêér|, (3.94)
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y utilizando la función de onda plana (3.67). Se obtiene

V = 1
2Ω2

Ø
σ1σ2

k1k2k3k4

ˆ
dr1dr2e

−i(k3r1+k4r2)V (r1 − r2)ei(k1r1+k2r2)

× c†
k3σ1c

†
k4σ2ck2σ2ck1σ1 , (3.95)

A continuación aprovechamos que el potencial depende de la diferencia de
coordenadas de las dos part́ıculas y cambiamos a las variables de centro de
masa R = (r1 + r2)/2 y coordenada relativa r = r1 − r2 para obtener

V = 1
2Ω2

Ø
σ1σ2

k1k2k3k4

ˆ
dR ei(k1+k2−k3−k4)R

ˆ
dr V (r)ei(k1−k3−k2+k4)r/2

× c†
k3σ1c

†
k4σ2ck2σ2ck1σ1 (3.96)

Finalmente, integramos en r y R,

V = 1
2Ω

Ø
σ1σ2

k1k2k3k4

δk1+k2,k3+k4V (q = k3 − k1)c†
k3σ1c

†
k4σ2ck2σ2ck1σ1 , (3.97)

Comentemos brevemente esta expresión. La integración sobre R da lugar al
factor δk1+k2,k3+k4 que expresa la conservación de los momentos de las dos
part́ıculas antes y después de la interacción. Esto es consecuencia directa del
hecho de que hemos elegido un potencial de interacción que es invariante
frente a traslaciones V (r1 − r2) y, por lo tanto, el momento total (k1 +k2) y
k3 + k4) debe conservarse. La integral sobre la coordenada relativa conduce
directamente a la transformada de Fourier del potencial de interacción con
un vector de onda que corresponde al momento transferido de una a otra
de las part́ıculas durante la interacción. Finalmente, se puede reescribir el
operador V teniendo en cuenta la restricción δk1+k2,k3+k4 como

V = 1
2Ω

Ø
k1k2q
σ1σ2

V (q)c†
k1+q,σ1c

†
k2−q,σ2ck2σ2ck1σ1 (3.98)

que se representa gráficamente como se muestra en la figura 3.2

3.3. Resolviendo con segunda cuantificación
Ahora que tenemos las herramientas para expresar todos los operadores

que necesitamos en segunda cuantificación, ya sea para el Hamiltoniano u
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(↵β|V |γδ)

γ

δ

↵

β

V (k3 − k4)

k2σ2

k1σ1

k4σ4

k3σ3

1

Figura 3.2: Visualización pictórica del término (3.98). Cada operador de des-
trucción está representado por una flecha entrante, cada creación por una
saliente. Uno ve que la interacción puede verse como la dispersión de una
part́ıcula que va del estado k1σ1 al k1 +q, σ1 con q = k3 −k4 por otra que va
del estado k2σ2 al estado k2−q, σ2. La amplitud de estos elementos de matriz
es la transformada de Fourier del potencial de interacción V (q). Dado que el
potencial es invariable por traslación en el espacio, el impulso se conserva a
lo largo de la interacción. Dado que el potencial no depende de los grados de
libertad del esṕın, la interacción conserva individualmente el esṕın de cada
part́ıcula. Esta representación se conoce como diagramas de Feynman. Es
extremadamente útil cuando se construye la teoŕıa de la perturbación.

otros observables f́ısicos, y que sabemos calcular promedios de un número
arbitrario de tales operadores de creación y destrucción en el vaćıo, podemos
preguntarnos cómo resolver en la práctica un problema cuando conocemos
el Hamiltoniano. En el esquema usual de la mecánica cuántica, escribimos la
ecuación de Schrödinger y, a partir de ella, encontramos tanto los autovalores
como las autofunciones, pero la esencia misma de la segunda cuantificación es
evitar tener que lidiar con la función de onda, por lo que queremos seguir otra
ruta para obtener tales cantidades. Cómo hacer esto es lo que examinaremos
ahora.

3.3.1. Autovalores y autoestados
Veamos primero si podemos encontrar los valores propios o vectores pro-

pios de algún Hamiltoniano simple. Comencemos con un Hamiltoniano cuadráti-
co general

H =
dØ
α

Aαc
†
αcα (3.99)

donde α es una base completa y los coeficientes Aα son números arbitrarios.
Varios Hamiltonianos de sistemas f́ısicos tienen tales formas, por ejemplo, la
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enerǵıa cinética de un sistema de part́ıculas (3.73) y (3.74). Para Hamilto-
nianos cuadráticos y diagonales de la forma (3.99) el problema está resuelto.
De hecho cada vector de p part́ıculas de la forma

c†
α1c

†
α2c

†
α3 . . . c

†
αp|0ê (3.100)

es un vector propio de H con autovalor

E =
pØ

i=1
Ai (3.101)

Para mostrar esto, ilustremos el cálculo en un estado de dos fermiones |ψê =
c†

α1c
†
α2|0ê (se puede realizar un cálculo análogo para bosones):

Hc†
α1c

†
α2|0ê =

AØ
α

Aαc
†
αcα

B
c†

α1c
†
α2|0ê,

=
Ø

α

Aαc
†
α(δα,α1 − c†

α1cα)c†
α2|0ê,

= Aα1|ψê −
Ø

α

Aαc
†
αc

†
α1cαc

†
α2|0ê,

= Aα1|ψê −
Ø

α

Aαc
†
αc

†
α1(δα,α2 − c†

α2cα)|0ê,

= Aα1 |ψê − Aα2c
†
α2c

†
α1 |0ê,

= Aα1 |ψê + Aα2 |ψê.

(3.102)

La f́ısica de este resultado es simple de entender. El operador nα = c†
αcα no

es otra cosa que el número de ocupación, y cuenta las part́ıculas en el estado
α. Aśı, si en |ψê hay una part́ıcula en tal estado devolverá 1 y la enerǵıa
correspondiente se contará en H.

Aśı vemos que si tenemos un Hamiltoniano que está en una forma cuadráti-
ca diagonal como (3.99) entonces podemos obtener todos los valores propios
y vectores propios del sistema. A temperatura cero el estado fundamental
consistirá simplemente (para los fermiones) en ocupar todos los estados con
la mı́nima enerǵıa posible según el número de part́ıculas en el sistema.

|Fê =
NÙ

i=1
c†

αi
|0ê, (3.103)

si E1 6 E2 6 . . . 6 Ed.
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3.3.2. Valores de expectación térmicos
A temperatura finita también podemos calcular los promedios de muchos

operadores. Un caso importante es el operador que da el número de part́ıculas
en el estado αp

éc†
αpcαpê =

Tr
è
e−βHc†

αpcαp

é
Tr [e−βH ] ,

=
q

n1,...,nΩén1, . . . , nΩ|e−β
q

α
Aαc†

αcαc†
αpcαp|n1, . . . , nΩêq

n1,...,nΩén1, . . . , nΩ|e−β
q

α
Aαc†

αcα|n1, . . . , nΩê
.

(3.104)

Usando el hecho de que (tanto para fermiones como para bosones)
è
c†

αcα, cγ

é
=

0 si α Ó= γ y una relación similar para c†
γ, vemos que el término e−βH se fac-

toriza en la forma
e−βH =

ΩÙ
j=1

e−βAαj c†
αj

cαj . (3.105)

Como en la traza cada término ni es independiente, la media también se
factoriza, y el numerador se convierte enØ

nαp

énαp|e−βAαpc†
αpcαpc†

αpcαp|nαpê

Ù
j Ó=p

Ø
nαj

énαj |e
−βAαj c†

αj
cαj |nαjê

 . (3.106)

Todos los términos con j Ó= p son idénticos en el numerador y el denominador
y se cancelan entre śı. La traza se reduce entonces a

éc†
αpcαpê =

q
nαp

énαp|e−βAαpc†
αpcαpc†

αpcαp|nαpêq
nαp

énαp|e−βAαpc†
αpcαp |nαpê

, (3.107)

lo cual es bastante obvio f́ısicamente. De hecho, dado que el Hamiltoniano es
diagonal en α, sólo el estado αp puede contribuir al promedio de un opera-
dor que solo involucra al estado αp. Como c†

αpcαp|npê = np|npê simplemente
obtenemos

éc†
αpcαpê =

q
nαp

e−βAαpnpnpq
nαp

e−βAαpnp
. (3.108)

Hasta ahora todo lo que hicimos es independiente de tener bosones o
fermiones. Sin embargo, el resultado final dependerá de cuáles sean los valores
permitidos de np. Para fermiones solo np = 0 y np = 1 están en la suma, y
de este modo

éc†
αpcαpê = e−βAαp

1 + e−βAαp
= 1

1 + eβAαp
, (3.109)
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y se recupera el factor de Fermi. Vemos que este es un resultado totalmente
general (no limitado a autoestados del impulso) para Hamiltonianos bilineales
y se está en equilibrio térmico.

Para bosones np = 0, . . . ,+∞, y aśı la suma se convierte en

éc†
αpcαpê = − ∂

∂β
log

 +∞Ø
np=0

e−βnpAαp

 ,
= − ∂

∂β
log

5 1
1 − e−βAαp

6
,

= e−βAαp

1 − e−βAαp
,

= 1
eβAαp − 1 ,

(3.110)

y se recupera el factor de Bose.

3.3.3. Transformaciones canónicas

Con Hamiltonianos cuadráticos diagonales podemos calcular entonces
esencialmente cualquier valor de expectación o cantidad f́ısica que se necesite.
Por supuesto, en general, el Hamiltoniano del sistema no será ni cuadrático ni
diagonal. Entonces, resolver en segunda cuantificación significa esencialmente
que tenemos que encontrar una transformación de los operadores c y c† que
lleven al Hamiltoniano en una forma diagonal cuadrática. Aunque en princi-
pio cualquier transformación es posible, no todas las son buenas. Queremos
que los nuevos operadores d y d† que son los resultados de la transforma-
ción sigan generando el espacio Fock. Significa que sólo podemos considerar
transformaciones que conserven las relaciones canónicas de conmutación. Por
supuesto, encontrar tales transformaciones es, en general, una tarea formida-
ble. Sin embargo, hay una clase muy importante de transformaciones cuando
el Hamiltoniano sigue siendo una forma cuadrática, pero no diagonal, que
examinaremos en la siguiente sección.

Antes de hacerlo, comentemos finalmente que incluso sin resolver el Ha-
miltoniano se puede explotar la libertad de elegir diferentes operadores de
creación y destrucción para usar una representación más conveniente. Como
ya se mencionó, se permite toda transformación que conserve las relacio-
nes canónicas de conmutación. Pongamos un ejemplo sencillo, se verán más
ejemplos en la siguiente sección. La transformación más simple es la trans-
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formación part́ıcula-agujero.
c†

α = dα,

cα = d†
α.

(3.111)

Para los fermiones es fácil comprobar, por sustitución de los operadores d
verifican las relaciones canónicas de anticonmutación. Por ejemplo

[dα, d
†
β]+ = [c†

α, cβ]+ = δα,β. (3.112)

Si los operadores cα y c†
α respectivamente destruyen y crean un electrón en

el estado α, el operador dα y d†
α también son operadores de destrucción y

creación de “algo más”, que también tiene una estad́ıstica fermiónica y por
lo tanto, se puede utilizar para construir un espacio de Fock. En ese caso
particular, el operador dα destruye un hueco en el estado estado α (que es
idéntico a crear un electrón) y el operador d†

α crea un hueco (que es lo mismo
que destruir un electrón).

Un punto importante al hacer la transformación es no olvidar modificar
también el vaćıo. De hecho, el vaćıo de las part́ıculas d no es el mismo que el
vaćıo de las part́ıculas c. Se tiene aśı |0cê y |0dê. El vaćıo de las part́ıculas d
se define como siempre por

dα|0dê = 0,
para todos los estados α. Es fácil comprobar usando la relación (3.111) que

|0dê =
Ù
α

c†
α|0cê.

Destruir una part́ıcula d sobre este vaćıo es equivalente a crear una de tipo
c. Pero esto no es posible, porque todos los estados están ocupados.

Más generalmente, consideremos un Hamiltoniano cuadrático, no diago-
nal, arbitrario:

H =
NsØ

i,j=1
c†

iAijcj (3.113)

donde Aij son los elementos de una matriz hermı́tica A, y Ns es un número
del orden del volumen del sistema, Ω, que especifica la cantidad de estados
accesibles de part́ıcula independiente. Para simplificar la notación conviene
escribir en forma matricial:

H = c†Ac (3.114)
donde

c =


c1
c2
...
cNs

 , c† =
1
c†

1 c†
2 · · · c†

Ns

2
(3.115)
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3.3 Resolviendo con segunda cuantificación

es un vector de Ns elementos, donde cada elemento es un operador de crea-
ción, y su transpuesto conjugado. Obsérvese que hemos introducido la nota-
ción con una barra sobre c para indicar la operación de transposición sobre el
vector en conjunto con el dagado de sus elementos. La utilidad de esta nota-
ción quedará más clara en la próxima sección. La matriz A, al ser hermı́tica,
puede ser diagonalizada por una matriz unitaria U ,

U †AU = Ã (3.116)

donde Ã es la matriz diagonal que contiene a los autovalores deA,A1, . . . , ANs

y U se construye ordenando los autovectores de A en columnas. Una vez
hallada la matriz U , podemos utilizarla para definir un nuevo conjunto de
operadores dα mediante la transformación

d = U †c, (en componentes, dα =
NsØ

k=1
U∗

iαci) (3.117)

de manera tal que el Hamiltoniano, expresado en términos de los d resulta

H = d†U †AUd = d†Ãd =
Ø

α

Aαd
†
αdα. (3.118)

Es decir, resulta ser de la forma diagonal (3.99).
Una condición importante para que esto funcione es que la transformación

(3.117) conserve los anticonmutadores entre d, que es el caso debido a su
unitariedad, ya queè

d†
α, dβ

é
+

=
Ø
ij

UiαU
†
βj

è
c†

i , cj

é
+

=
Ø

j

UjαU
†
βj = (U †U)βα = δαβ. (3.119)

Una vez hallada la forma diagonal (3.118), el estado fundamental de N
part́ıculas está dado por (3.103)

|Fê =
NÙ

α=1
d†

α|0dê (3.120)

donde |0dê es el estado de vaćıo de los operadores d, que satisface

dα|0dê = 0 ∀α. (3.121)

Para este tipo de transformación, el vaćıo resulta invariante, es decir |0cê =
|0dê. En efecto, debido a que los d están linealmente relacionados a los c, si
aplicamos algún dα sobre |0cê, encontramos

dα|0cê =
Ø

j

U †
αjcj|0cê = 0, (3.122)

Materia cuántica - C.A. Lamas, A. Iucci (autores)

Facultad de Cs. Exactas  |  UNLP |   100



Segunda cuantificación

y viceversa, si aplicamos cj sobre |0dê también se anula, utilizando la trans-
formación inversa.

Por supuesto, en general, la matriz Aαβ es de tamaño Ns ×Ns y la diago-
nalización será muy dif́ıcil de realizar anaĺıticamente. Sin embargo, hay casos
simples donde puede hacerse. En especial, obsérvese que la transformada de
Fourier (3.69), utilizada para relacionar la base de coordenadas, donde la
enerǵıa cinética de los electrones en una caja es no diagonal, con la base de
momentos, donde śı lo es, es un ejemplo de tal transformación unitaria.

3.3.4. Ejemplo: Modelo tight binding
Veamos otro modelo que puede resolverse mediante este tipo de transfor-

maciones: el Hamiltoniano de ligadura fuerte o tight-binding que vimos en la
sección 1.11. Adicionalmente, esto nos permitirá escribir este Hamiltoniano
en segunda cuantificación. Los estados en cada sitio |iê proporcionan una
base completa y, por lo tanto, podemos definir los operadores de creación y
destrucción asociados con él, es decir, c†

i es el operador que crea una part́ıcula
en el sitio i. Estos son los análogos a los c†

r utilizados al estudiar operado-
res de un cuerpo, sólo que en un espacio discreto. La expresión en segunda
cuantificación de H se escribe

H =
Ø
i,j

(i|H(1)|j)c†
icj,

donde H(1) es el Hamiltoniano (1.37). Obtenemos aśı

H = Ô
Ø

i

c†
ici − t

Ø
éi,jê

c†
icj. (3.123)

El segundo término describe un proceso en el que una part́ıcula en el sitio i
reaparece en el sitio vecino j y viceversa. Si bien es posible hacer todo este
análisis en dimensión arbitraria, para simplificar la diagonalización partición
supondremos que los sitios electrónicos se acomodan en un anillo, e identifi-
camos el sitio en la posición Ns + 1 con el sitio 1, es decir, introducimos un
operador de destrucción fermiónico adicional

cNs+1 ≡ c1, (3.124)

y su complejo conjugado. Este Hamiltoniano es obviamente cuadrático pero
no diagonal. En el lenguaje de (3.113) corresponde a una matriz tri-diagonal.
Para diagonalizarla, primero pensamos en la f́ısica del problema: dado que
el Hamiltoniano es invariante frente a traslaciones, el momento debe ser un
buen número cuántico, y vamos utilizar entonces una combinación lineal de
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3.3 Resolviendo con segunda cuantificación

operadores de creación y destrucción ci que corresponden a su transformada
de Fourier. Este es exactamente el mismo razonamiento que el que conduce
a (3.69), sólo que ahora utilizaremos una transformada de Fourier discreta.
Tratados simplemente como una combinación lineal de operadores, podemos
definir

d†
k = 1√

Ns

Ns−1Ø
j=0

eikrjc†
j, (3.125)

donde hemos usado un nombre diferente d para enfatizar que se trata de nue-
vos operadores, e introducido las posiciones rj = aj donde a es la constante
de red, y

k = 2πnk

Nsa
, nk ∈ Z.

Se puede comprobar inmediatamente que los operadores dk cumplen las re-
glas canónicas de conmutación. Verifiquemos uno de los anticonmutadores y
dejemos las otras relaciones como ejercicio:è

dk, d
†
q

é
+

= 1
Ns

Ø
ij

e−ikrieiqrj
è
ci, c

†
j

é
+
,

= 1
Ns

Ø
ij

e−ikrieiqrjδij,

= 1
Ns

Ø
j

ei(k−q)rj ,

= δkq.

(3.126)

Los operadores dk son, por lo tanto, buenos operadores de Fermiones. Hay
exactamente Ns operadores diferentes (el tamaño del espacio de Hilbert no
puede cambiar) y k está confinado dentro de la primera zona de Brillouin
k ∈ [−π/a, π/a] como se discutió para la solución en primera cuantifica-
ción. Además, como resulta obvio de la definición (3.125), |0dê = |0cê. La
transformación (3.125) se invierte fácilmente

c†
j = 1√

Ns

Ø
k

e−ikrjd†
k, (3.127)

y aśı, reemplazando los cj en (3.123) y haciendo un poco de álgebra, se
encuentra

H = Ô
Ø

k

d†
kdk −

Ø
k

2t cos(ka)d†
kdk. (3.128)

Ahora que el Hamiltoniano es diagonal, podemos usar los operadores dk para
obtener el estado fundamental y los diversos promedios. A nivel f́ısico, hemos
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utilizado que, dado que la cantidad de movimiento se conserva, se pueden
diagonalizar simultáneamente los operadores de impulso y el Hamiltoniano.
Por lo tanto, el Hamiltoniano es una matriz diagonal por bloques en la base
a los autovectores del operador impulso. Como esta base es de tamaño Ns

(Ns diferentes k valores en la primera zona de Brillouin) nos queda para cada
valor de k una matriz de 1 × 1 a diagonalizar, con lo cual el problema está
completamente resuelto.

3.3.5. Términos anómalos
Estudiemos ahora un Hamiltoniano más general, que incluya términos de

la forma cicj. Este tipo de términos se denominan anómalos, y hacen que en
el Hamiltoniano no conmute con el operador N y por lo tanto no conserve
el número de part́ıculas, y por lo tanto no tiene una expresión simple en
primera cuantificación. T́ıpicamente aparecen cuando uno considera teoŕıas
para superconductividad, tales como el llamado Hamiltoniano de Bardeen-
Cooper-Schrieffer (BCS) que estudiaremos más adelante. Consideremos el
Hamiltoniano

H =
NsØ

ij=1
c†

iAijcj + 1
2

NsØ
ij=1

ciBijcj + h.c. (3.129)

siendo i, j = 1, . . . , Ns, A una matriz hermı́tica (A† = A), y B una matriz
antisimétrica (Bt = −B), ambas condiciones impuestas por la necesidad de
que H sea un operador hermı́tico en conjunto con la estad́ıstica fermióni-
ca. Para escribirlo en forma matricial, debemos considerar ahora que existen
estos dos tipos de términos. Si buscamos utilizar una sola matriz, no será
posible que su dimensión sea Ns. La forma usual de hacerlo consiste en intro-
ducir la notación de Nambu, en la cual se define un vector o spinor de Nambu
de dimensión 2Ns cuyos elementos son tanto los operadores de creación como
de destrucción:

Ψ† =
1
c†

1 · · · c†
Ns

c1 · · · cNs

2
(3.130)

en conjunto con la matriz

H =
A
A −B∗

B −A∗

B
, (3.131)

que se conoce como Hamiltoniano de Bogoliubov-de Gennes. Con estas defi-
niciones el Hamiltoniano se escribe

H = 1
2Ψ†HΨ + E0 (3.132)
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3.3 Resolviendo con segunda cuantificación

dónde
E0 = −1

2 trA, (3.133)

Obsérvese que a matriz H continúa siendo hermı́tica (para mostrarlo
es importante la antisimetŕıa de B) y por lo tanto diagonalizable mediante
una transformación unitaria M de 2Ns × 2NS, de manera similar a como lo
realizamos en la sección anterior, de manera tal que

M †HM = H̃ = diag(Λ1, . . . ,ΛNs , Λ̄1, . . . , Λ̄Ns), (3.134)

donde Λα y Λ̄α son los autovalores de H . El espinor transformado Φ se
relaciona con el sin transformar a través de M :

Φ = MΨ, (3.135)

Y entonces el Hamiltoniano, en términos de los nuevos operadores, resulta

H = 1
2Φ†M †HMΦ = 1

2Φ†H̃Φ (3.136)

Si escribimos al vector Φ en términos de un nuevo conjunto de operadores
ηα, ξα en la forma

Φ† =
1
η†

1 · · · η†
Ns

ξ†
1 · · · ξ†

Ns

2
. (3.137)

el Hamiltoniano se escribe

H = 1
2

NsØ
α=1

Λαη
†
αηα + 1

2

NsØ
α=1

Λ̄αξ
†
αξα (3.138)

Al ser unitaria, la transformación M preserva los conmutadores y es por lo
tanto canónica, pero observemos que ahora la transformación mezcla a los
operadores de creación y destrucción.

La forma (3.138) del Hamiltoniano posee dos términos y a simple vista
daŕıa la impresión de que como consecuencia de la existencia de términos
anómalos debimos duplicar el número de grados de libertad. Veamos que
esto es sólo aśı en apariencia.

Observemos que H satisface la relación

H = −σxH
∗σx, (3.139)

donde la matriz de Pauli σx actúa sobre la estructura de Nambu (3.131),
de 2 × 2. Esta transformación constituye una simetŕıa de H , y resulta ser

Materia cuántica - C.A. Lamas, A. Iucci (autores)

Facultad de Cs. Exactas  |  UNLP |   104



Segunda cuantificación

antiunitaria5. La transformación (3.139) no es más que la simetŕıa part́ıcula-
hueco. Esto implica que si ψ es un autoestado de H con autovalor λ,

Hψ = λψ,

entonces ψ∗ es autoestado de H∗ con el mismo autovalor (que es real, dado
que H es hermı́tico):

H∗ψ∗ = λψ∗

y entonces el vector ψÍ = σxψ
∗ también es vector de H con autovalor −λ:

HψÍ = Hσxψ
∗ = −σxH

∗σxσxψ
∗ = −σxH

∗ψ∗ = −λσxψ
∗ = −λψÍ.

Dado que son vectores distintos, de otro modo tendŕıan distinto autovalor (a
menos que λ = 0), si escribimos al autovector en la forma

ψ =
A
u
v

B

donde u y v son vectores columna de Ns elementos, entonces

ψÍ =
A
v∗

u∗

B

La matriz M , que posee los autovectores en columnas, posee entonces la
forma

M =
A
u v∗

v u∗

B
, (3.142)

donde u y v son matrices de Ns ×Ns.En otras palabras, la forma (3.142) es
consecuencia de la simetŕıa part́ıcula-hueco de H, ec. (3.139). Los autovalo-
res Λ̄α puede tomarse como Λ̄α = −Λα y la forma diagonal de la matriz de
autovalores se escribe entonces

H̃ = diag(Λ1, . . . ,ΛNs ,−Λ1, . . . ,−ΛNs), (3.143)
5Una transformación antiunitaria K entre vectores |xê, |yê de un espacio de Hilbert (|yê =

K|xê) es un operador antilineal (es decir, tal que K(a|xê + b|yê) = a∗K|xê + b∗K|yê con
a, b ∈ C) tal que transforma el producto escalar en el producto escalar conjugado:

éx|K†K|yê = éx|yê∗. (3.140)

Este tipo de operadores, al igual que los operadores unitarios, no cambia el resultado de una
medida, es decir que

|éx|K†K|yê|2 = |éx|yê|2. (3.141)
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donde Λα son todos positivos. Observemos además la transformación (3.135)
se escribe expĺıcitamente

ηi = uijcj + v∗
ijc

†
j, (3.144)

ξi = vijcj + u∗
ijc

†
j, (3.145)

pero entonces ξi no es más que el adjunto de ηi, ξi = η†
i , y el Hamiltoniano

se escribe
H =

NsØ
j=1

Λjη
†
jηj + Const. (3.146)

De modo que sólo tenemos Ns grados de libertad, como se esperaba f́ısi-
camente. Para diagonalizar el Hamiltoniano debimos duplicar el número de
grados de libertad introduciendo huecos, pero vimos que esta duplicación es
espuria. Sin embargo, en determinadas circunstancias puede ser útil mante-
ner la duplicación, pero en ese caso debe recordarse que el par de niveles
con enerǵıa ±Λj no corresponde a dos estados cuánticos distintos, sino a uno
solo, que es una superposición coherente de electrones y huecos —una cuasi-
part́ıcula de Bogoliubov, el bogoliubon: tiene una enerǵıa de excitación Λj,
y es creada por el operador η†

j = uijcj + vijc
∗
j . Llenar el estado asociado en

enerǵıa −Λj es equivalente a vaciar el estado de enerǵıa positiva.
El Hamiltoniano (3.129) no conserva el número de part́ıculas, ya que no

conmuta con N = q
j c

†
jcj, aunque conserva el número de cuasi part́ıculas,

M = q
j η

†
jηj. Como consecuencia de que la transformación M mezcla ope-

radores cj y c†
j el vaćıo no es invariante, tenemos un vaćıo |0cê que satisface

cj|0cê = 0, y un vaćıo |0ηê que verifica ηj|0ηê = 0. Encontrar la relación entre
ambos puede ser complicado y depende de la forma de A y B. Lo haremos en
el caso espećıfico del modelo BCS más adelante. Una vez determinado |0ηê, el
estado fundamental de M cuasipart́ıculas se escribe como un mar de Fermi
de bogoliubones:

|F ê =
MÙ
j

η†
j |0ηê. (3.147)

cuya enerǵıa resulta

E =
MØ
j

Λj (3.148)

El estado de mı́nima enerǵıa para un cierto potencial qúımico es entonces
aquel con M = 0 cuasipart́ıculas, es decir, el vaćıo mismo de los Bogoliubo-
nes.

Si bien el número de part́ıculas no es una cantidad conservada, el operador
de paridad global,

P = (−1)N = eiπN (3.149)
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conmuta con H, y por lo tanto los autoestados de enerǵıa poseen paridad
fermiónica definida ±1.

3.4. Gas de Fermi
Desarrollaremos las propiedades básicas de un gas de N fermiones no

interactuantes de masa m, utilizando las técnicas de segunda cuantización.
Esto lo haremos no sólo por tratarse de un buen ejercicio, sino también
por la enorme utilidad que tienen los resultados que obtendremos, como
una aproximación de orden cero, en el tratamiento de sistemas de muchos
fermiones. Podemos imaginarnos que estos fermiones están en una caja cúbica
de volumen V , que eventualmente puede ser muy grande, y que se imponen
condiciones de contorno periódicas. La base de part́ıcula independiente se
refiere, por lo tanto, a los autoestados de de impulso hk y proyección de spin
σ = ±1

2 :
ϕκ(rs) = 1√

Ω
eik·rχσ(s); κ = {k, σ} (3.150)

con enerǵıa εk = ~2k2/2m y degencrados en spin σ = ±1
2 .

Para construir el estado fundamental del gas de Fermi ocupamos a cada
uno de los estados disponibles de part́ıcula independiente más bajos con un
fermión, de acuerdo con el principio de exclusión de Pauli. Esta ocupación
es de a pares ya que las enerǵıas de part́ıcula independiente no depende de
spin y por cada εk tenemos un fermión con σ = +1

2 y uno con σ = −1
2 . Los

niveles llenos conforman el mar de Fermi y el último nivel lleno, con impulso
kF y enerǵıa εF = h2k2

F

2m
, se llama nivel de Fermi o superficie de Fermi (en el

espacio de los impulsos). La estructura del estado fundamental es:

|F ê =
Ù

k6kF ,σ

c†
kσ|0ê. (3.151)

La enerǵıa del nivel de Fermi se halla de la condición que el número total
de part́ıculas N sea,

N =
Ø
kσ

nkσ =
Ø
kσ

éF |c†
kσckσ|F ê = 2

Ø
k

I
1 ; k 6 kF

0 ; k > kF

J
= 2

Ø
k6kF

1 = 2
Ø
k

θ(kF − k).
(3.152)

Convirtiendo la suma en la integral, i. e.,

1
Ω
Ø
k

θ(kF − k) →
ˆ
θ(kF − k)k2dk

(2π)3 dΩ =
ˆ kF

0

k2dk2

2π2 (3.153)
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se obtiene,

N = Ω
π2

ˆ kF

0
k2dk = k3

F

3π2 Ω (3.154)

o sea,

ρ0 = N

Ω = k3
F

3π2 (3.155)

donde ρ0 es la densidad media de part́ıculas.
Calculemos ahora la densidad de part́ıculas en el estado fundamental, que

es
ρ(r) =

Ø
σ

éF |ρ̂(rσ)|F ê =
Ø

s

éF |c†
rσcrσ|F ), (3.156)

o
ρ(r) = 1

Ω
Ø

σ

Ø
kkÍ

eir·(kÍ−k)éF |c†
kσckÍσ|F ê. (3.157)

El último valor medio será nulo a menos que k = kÍ, ya que si removemos
del estado fundamental una part́ıcula con impulso ~kÍ, podremos volver de
nuevo a ese estado sólo creando una part́ıcula con el mismo impulso. Por lo
tanto,

éF |c†
kσckÍσ|F ê = δkkÍnkσ (3.158)

y
ρ(r) = 1

Ω
Ø
kσ

nkσ = ρ0. (3.159)

Como era de esperar, la densidad del gas es uniforme. Una cantidad muy útil,
como veremos más adelante, es la matriz densidad de una part́ıcula definida
como

Gσ(r − rÍ) = éF |c†
rσcrÍσ|F ê, (3.160)

es decir, la amplitud de remover del estado fundamental una part́ıcula que
está en el punto rÍ con spin σ para luego ponerla de nuevo al estado funda-
mental, pero ahora en la posición r. Utilizando (3.69),

crσ = 1√
Ω
Ø
kσ

eik·rckσ, (3.161)

y (3.150) el cálculo es:

Gσ(r − rÍ) = 1
Ω
Ø
kkÍ

e−ik·r+kÍ·rÍéF |c†
kσckÍσ|F ê

= 1
Ω
Ø
kkÍ

e−ik·r+kÍ·rÍ
δkÍknkσ,

(3.162)
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Figura 3.3: Función de correlación C(u) en ĺınea punteada, y 1 − C2(u) en
ĺınea sólida.

o
Gσ(r − rÍ) = 1

Ω
Ø

k6kF

e−ik·(r−rÍ) →
ˆ kF

0

dk

(2π)3 e
−ik·(r−rÍ). (3.163)

Evaluando la integral se tiene6

Gσ(r−rÍ) = ρ0

2 C(kF |r−rÍ|); C(u) = 3
u3 (sin u−u cosu) = 3j1(u)

u
. (3.167)

A la cantidad C(kF |r−rÍ|) se la denomina función de correlación y tiene
las propiedades de tener un máximo para r = rÍ, con C(0) = 1, y de decaer
rápidamente para kF |r − rÍ| > 1 (ver Fig. 3.3).

Vamos a calcular ahora la probabilidad de hallar una part́ıcula del sistema
en el punto rÍ (con spin σÍ), sabiendo que lay otra part́ıcula en el punto r
(con spin σ). Esto significa que primero removemos del sistema una part́ıcula
que está en rσ, dejando las N − 1 part́ıculas en el estado |rσê = c†

rσ|F ê.
Posteriormente, calculamos el valor medio de la densidad ρ(rÍ, σÍ) en ese

6

Gσ(r − rÍ) =
ˆ kF

0

dk

(2π)3 e
−ik·(r−rÍ) = 1

4π2

ˆ kF

0
k2dk

ˆ 1

−1
e−ik|rÍ−rÍ|udu (3.164)

= 1
2π2

1
|r − rÍ|

ˆ kF

0
kdk sin k|r − rÍ| (3.165)

= 1
2π2

1
|r − rÍ|3

(sin kF |r − rÍ| − kF |r − rÍ| cos kF |r − rÍ|). (3.166)
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3.4 Gas de Fermi

nuevo estado. Es decir, evaluamos
3
ρ0

2

42
gσσÍ(r − rÍ) ≡ éF |c†

rσc
†
rÍσÍcrÍσÍcrσ|F ê. (3.168)

Utilizando la representación en el espacio k, (3.69), tenemos
3
ρ0

2

42
gσσÍ(r−rÍ) = 1

Ω2

Ø
k1k2k3k4

e−ik1·re−ik2·rÍ
eik3·rÍ

eik4·réF |c†
k1σc

†
k2σÍck3σÍck4σ|F ê.

(3.169)
Dado que ckσ|F ê = 0, si k > kF (i. e., no podemos destruir part́ıculas que no
están), vemos de inmediato que la sumatoria está restringida a los estados
con |k3|, |k4| 6 kF . Además, el valor de expectación se anula a menos que
las part́ıculas que repongamos tengan los mismos impulsos y espines que las
part́ıculas removidas. La forma de hacerlo es emplear los anticonmutadores,
y escribir

éF |c†
κc

†
λcµcν |F ê = éF |c†

κ(δλ,µ − cµc
†
λ)cν |F ê = δλµéF |c†

κcν |F ê − éF |c†
κcµc

†
λcν |F ê

= δλ,µδκ,ν − δκ,µδλ,ν (3.170)

con κ, λ, µ, ν 6 kF , y por lo tanto7

3
ρ0

2

42
gσσÍ(r − rÍ) = 1

Ω2

kFØ
k1k2k3k4

e−ik1·re−ik2·rÍ
eik3·rÍ

eik4·r (δk2k3δk1k4 − δσσÍδk1k3δk2k4) ,

(3.171)

= 1
Ω2

kFØ
k1k2

è
1 − δσσÍe−ik1·(r−rÍ)e−ik2·(rÍ−r)

é
, (3.172)

=
A

Ω
2N

B2

− δσσÍG2
σ(r − rÍ) (3.173)

donde hemos utilizado (3.163). Finalmente de (3.167) se tiene

gσσÍ(r − rÍ) = 1 − δσσÍC2(kF |r − rÍ|). (3.174)

La cantidad gσσÍ(r−rÍ) se denomina densidad de correlación para dos part́ıcu-
las y en la Fig. 3.3 se ilustra su comportamiento.

Veamos el significado f́ısico de esta densidad de correlación. Si los espines
son diferentes, la probabilidad relativa de encontrar las part́ıculas en r y rÍ

7Notemos que, como las sumas se extienden solo sobre estados ocupados, no se pueden
usar relaciones de completitud.
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Segunda cuantificación

no depende de la distancia |r−rÍ|. Esto es lo mismo que se obtendŕıa clásica-
mente para un gas de part́ıculas que no interactúan entre śı. En cambio, si los
dos electrones tienen el mismo spin habrá una reducción muy grande en la
probabilidad de hallarlos a distancias menores que k−1

F . Es decir que el prin-
cipio de Pauli produce correlaciones muy importantes sobre el movimiento
de part́ıculas con el mismo spin. Ocurre como si los fermiones con la misma
orientación de spin se rechazaran entre śı. Esta “repulsión” efectiva proviene
de la simetŕıa de intercambio de la función de onda y no de una fuerza real
entre las part́ıculas. Para separaciones grandes gσσÍ(r − rÍ) se aproxima a
uno, o sea al mismo valor que tienen dos part́ıculas con espines diferentes.

Calculemos ahora la enerǵıa del estado fundamental del gas de Fermi.
En particular, vamos a considerar que se trata de un gas de electrones de
densidad media ρ0, que interactúan entre śı por medio de la interacción Cou-
lombiana. Partiremos del Hamiltoniano,

Ĥ = T̂ + V̂ (3.175)

donde

T̂ =
Ø

i

t̂(ri); t̂(r) = −~2∇2
r

2m (3.176)

es el operador para la enerǵıa cinética, y

V̂ = 1
2
Ø
ij

v̂(ri, rj); v̂(r1, r2) = e2

|r1 − r2|
(3.177)

es el operador para la enerǵıa potencial. Dado que

T̂ =
Ø
kσ

εkc
†
kσckσ, (3.178)

la enerǵıa cinética será8

E(0) = éF |T̂ |F ê = 3
5εFN. (3.180)

8

éF |T̂ |F ê =
Ø
k,σ

εknkσ =
Ø
kσ

εkθ(k − kF ) → 2Ω
ˆ kF

0

dk

(2π)3
~2k2

2m = Ω ~2

2m
k5
F

5π2 = 3
5εFN

(3.179)
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3.4 Gas de Fermi

Para la enerǵıa potencial, podemos utilizar la ecuación (3.88)

E(1) = éF |V̂ |F ê (3.181)

= 1
2

ˆ
drdrÍ v̂(r, rÍ)

Ø
σσÍ

éF |c†
rσc

†
rÍσÍcrÍσÍcrσ|F ê (3.182)

= 1
2

3
ρ0

2

42 ˆ
drdrÍ v̂(r, rÍ)

Ø
σσÍ

gσσÍ(r − rÍ) (3.183)

=
3
ρ0

2

42 ˆ
drdrÍv̂(r, rÍ)

è
2 − C2(kF |r − rÍ|)

é
, (3.184)

donde hemos usado (3.174). Escribimos ahora,

E(1) = E
(1)
D + E

(1)
I (3.185)

con
E

(1)
D = 1

2

ˆ
drdrÍ e2ρ2

0
|r − rÍ|

, (3.186)

y
E

(1)
I = −e2ρ2

0
4

ˆ
drdrÍC

2(kF |r − rÍ|)
|r − rÍ|

. (3.187)

E
(1)
D representa la interacción media de las part́ıculas entre śı y se denomina

enerǵıa directa ó enerǵıa de Hartree, mientras que E(1)
I es la enerǵıa de in-

tercambio y se debe al principio de exclusión de Pauli. Haciendo el cambio
de variables: r → rÍ y r − rÍ → r, también resulta,

E
(1)
D = Nρ0e

2

2 v0; v0 =
ˆ
dr

r
, (3.188)

y
E

(1)
I = −Nρ0e

2

4

ˆ
dr
C2(kF r)

r
. (3.189)

Los electrones de conducción en un metal corresponden al gas de elec-
trones que estamos considerando. Notemos que en cualquier situación f́ısica
nunca se tiene un gas aislado, sino que hay siempre un número suficiente de
cargas positivas, que hacen que el sistema, como un todo, sea neutro. En una
primera aproximación, todos los iones positivos dentro del metal o dentro de
un plasma, se pueden reemplazar por un fondo (o “background”) de densidad
de cargas positivas ρ0e. La autoenerǵıa de ese fondo es:

1
2

ˆ
drdrÍ e2ρ2

0
|r − rÍ|

(3.190)
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Segunda cuantificación

que junto con la enerǵıa electrostática media entre el fondo positivo y los
electrones,

−
ˆ
drdrÍ e2ρ2

0
|r − rÍ|

(3.191)

cancela exactamente la enerǵıa de Hartree de los electrones. Por lo tanto, en
primer orden de aproximación, la interacción neta en un gas de electrones es
precisamente la enerǵıa de intercambio (3.189), que integrando resulta:

E
(1)
I = − 3

4πe
2kF . (3.192)

Definiendo ahora la distancia media entre las part́ıculas, d, por medio de

Ω = N
4πd3

3 , (3.193)

resulta,

kF = 3π2N

Ω =
39π

4

41/3 1
d

∼= 1,92d−1, (3.194)

es decir que k−1
F

∼= d/2. Otra longitud caracteŕıstica es el radio de Bohr,
a0 = ~2/me2. Introducimos entonces un parámetro sin dimensiones,

rs = d

a0
(3.195)

por medio del cual escribimos

E(0) = 3
5
~2k2

F

2m N = N

r2
s

3
5

39π
4

42/3 c2

2a0
= N

2,12
r2

s

e2

2a0
(3.196)

E
(1)
I = −N

rs

3
2π

39π
4

41/3 e2

2a0
= −N 0,916

rs

e2

2a0
(3.197)

La enerǵıa total éF |Ĥ|F ê, evaluada con una función de onda antisimetri-
zada, se denomina enerǵıa de Hartree-Fock (HF)

EHF = N

A
2,21
r2

s

− 0,916
rs

+ · · ·
B
e2

2a0
. (3.198)

De la Fig. 3.4 vemos que para rs & 2 resulta EHF < 0, lo que indica que
el sistema se torna ligado. El principio de exclusión juega un papel importan-
te en esto, evitando que los electrones con los mismos spines se acerquen y
de este modo hace disminuir su enerǵıa electrostática. Notemos que la apro-
ximación de HF es solo válida para gases densos (rs << 1) y no para los
metales con 1, 8 6 rs 6 5, 5.
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Figura 3.4: Enerǵıa por part́ıcula, en unidades de Ry (e2/2a0), para el estado
fundamental del gas de Fermi.

La enerǵıa se puede bajar más todav́ıa por el hecho de que también los
electrones con spines opuestos tienden a separarse, debido a la interacción
Coulombiana. Esta aproximación se denomina de fases al azar o “random
phase approximation” (RPA) y lleva al resultado9

ERP A = N

A
2,21
r2

s

− 0,916
rs

+ 0,062 ln rs − 0,142 + · · ·
B
e2

2a0
(3.199)

que también se muestra en la Fig. 3.4.

9Véase D. Pines, Elementary Excitations in Solids p. 118 y M. Gell-Mann and K. Brueckner,
Phys. Rev. 106, 364 (1957).
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Caṕıtulo 4

Propiedades magnéticas de los
sólidos

A partir de una teoŕıa basada en la estructura de bandas y el llenado
de las mismas podemos realizar una clasificación de los materiales y saber si
es un metal o un aislante. Sin embargo, esta clasificación no siempre resulta
correcta. El problema es que hemos despreciado la interacción Coulombia-
na entre los electrones y en algunos casos esto nos conduce a conclusiones
erróneas. Por otro lado, si queremos comprender el comportamiento de los
sólidos debemos ser capaces de estudiar la respuesta magnética de los mis-
mos. En este caṕıtulo nos enfocaremos en presentar algunas nociones básicas
del magnetismo de los sólidos.

4.1. Magnetismo e interacción de intercam-
bio

Para campos magnéticos pequeños, la magnetización de un sistema es en
general lineal con el campo magnético aplicado.

M = χH .

Cuando la susceptibilidad es positiva (χ > 0) decimos que el material es
paramagnético y en este caso el sistema se magnetiza en la dirección del
campo magnético aplicado.

Cuando la susceptibilidad es negativa (χ < 0) decimos que el material es
diamagnético y en este caso el sistema se magnetiza en dirección contraria
al campo magnético aplicado. El diamagnetismo es el estado que encontra-
remos habitualmente ya que la gran mayoŕıa de los sistemas biológicos son
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4.1 Magnetismo e interacción de intercambio

diamagnéticos. En contraste con el diamagnetismo y el paramagnetismo, en-
contramos a los sistemas ferromagnéticos donde M puede ser distinto de
cero aun en ausencia de campo magnético externo.

Intentaremos recuperar este tipo de respuesta magnética partiendo de no-
ciones básicas de la mecánica cuántica. Para simplificar la explicación omiti-
remos los detalles de la estructura atómica que brinda diferentes contribucio-
nes al momento magnético, en particular, no consideraremos la contribución
orbital, es decir, no consideraremos los términos de interacción esṕın-orbita.
Para simplificar usaremos en lo que sigue ~ = 1, c = 1. El Hamiltoniano de
un electrón en un átomo está dado por

H0 = p2

2m + V (r).

Al aplicar un campo magnético debemos hacer p → p+ eA (recordemos que
aqúı q = −e) y el Hamiltoniano será

H = 1
2m(p+ eA)2 + gµBS ·B + V (r).

Donde µB = e
2m

es el magnetón de Bohr. En general el potencial vector A es
una función de las coordenadas y no conmuta con p. Sin embargo, podemos
hacer uso de la libertad de gauge para elegir el potencial vector y tomar uno
que cumpla con la condición ∇ ·A = 0 y entonces el conmutador será cero.
Podemos elegir por ejemplo

A = 1
2B × r

Con esto, el Hamiltoniano queda en la forma

H = 1
2mp

2 + V (r) + e

2mp · (B × r) + e2

2m |B × r|2 + gµBS ·B

Los dos primeros términos corresponden al Hamiltoniano en ausencia de cam-
po magnético aplicado.

El tercer término se puede reescribir usando la propiedad ćıclica x · (y ×
z) = z · (x× y) como

H = e

2mp · (B × r) = e

2mB · (r × p) = e

2mB ·L

Donde usamos que 1
~(r × p) = L. Luego, el Hamiltoniano completo queda

en la forma
H = H0 + µBB · (L+ gS) + e2

2m |B × r|2.
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Propiedades magnéticas de los sólidos

El primer término (H0) corresponde a un electrón en ausencia de campo
magnético externo. El segundo término se lo conoce como el término pa-
ramagnético y corresponde al acoplamiento del momento angular total del
electrón con el campo magnético externo. Cuando un campo magnético ex-
terno es aplicado, el momento magnético del electrón se alinea con el campo,
por lo que este término está asociado con la respuesta paramagnética del
sistema. Recordemos que

m = −gµBS.

El último término se conoce como término diamagnético y será el respon-
sable del comportamiento diamagnético de algunos materiales.

4.1.1. Un esṕın
Consideremos el caso de un solo esṕın 1

2 sometido a un campo magnético
externo. El Hamiltoniano, como vimos estará dado por

H = gµBB · S,

donde g es el factor giromagnético (el cual tomaremos como g = 2), S = ~
2σ,

σ = (σx, σy, σz) es el vector de matrices de Pauli y µB = e
2m

es el magnetón
de Bohr (recordemos que para simplificar tomamos ~ = 1). En este caso no
consideraremos el momento angular orbital para simplificar la discusión.

Los autovalores del Hamiltoniano están dados por E± = ±µBB, (donde
B = |B|) y con ellos podemos construir la función de partición

Z = e−βµBB + eβµBB = 2 cosh(βµBB).

La enerǵıa libre se escribe entonces como

F = −kBT log(Z) = −kBT log (2 cosh(βµBB))

y el momento magnético por esṕın estará dado por

m = −∂F

∂B
= µB tanh(βµBB).

Si estudiamos un sistema de muchos espines que pudiéramos suponer inde-
pendientes podemos escribir la magnetización por unidad de volumen como

M = nm = nµB tanh(µBB

kBT
), (4.1)

donde n = N/V es el número de esṕınes por unidad de volumen. En la figura
4.1 podemos observar el comportamiento de la magnetización con el campo
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Figura 4.1: Magnetización como función del campo magnético

magnético. Para campos magnéticos pequeños vemos que el comportamiento
es aproximadamente lineal y podemos desarrollar en potencias del campo
magnético y obtener

M Ä n
Bµ2

B

kBT
+O

1
B3
2
,

y por lo tanto, en el ĺımite de campo cero tenemos que

ĺım
B→0

∂M

∂B
= nµ2

B

kBT
.

La expresión anterior es conocida como la Ley de Curie[12]. Y en ge-
neral se expresa como χ = C

kBT
. Esta ley aun se puede observar en sistemas

magnéticos más complejos y la constante C aporta información de la natu-
raleza magnética del sistema.

A partir de la enerǵıa libre podemos calcular también algunas cantidades
termodinámicas por ejemplo en la figura 4.2-a mostramos la magnetización
normalizada como función de kBT/(µBB). Una vez determinada la magne-
tización podemos calcular la enerǵıa como E = −M · B (figura 4.2-b), el
calor espećıfico como ∂E

∂T
(figura 4.2-c) y la entroṕıa como −(∂F

∂T
)B=cte, (figura

4.2-d).
De las figuras vemos que cuando T → ∞ la enerǵıa tiende a cero indicando

que los momentos magnéticos se vuelven completamente desordenados.
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Propiedades magnéticas de los sólidos

El calor espećıfico de la figura (figura 4.2-b) tiene un máximo cuando
T = (µBB)/kB. Esto indica que a esta temperatura es posible excitar térmi-
camente a los espines para que efectúen transiciones entre los dos estados.

La entroṕıa aumenta cuando aumentamos la temperatura, como espera-
mos para un sistema que se desordena.

4.1.2. Dos espines - Interacción de intercambio
Origen de la interacción de intercambio

La interacción de intercambio es una de las principales responsables por
las fases magnéticas de largo alcance que podemos encontrar en los sistemas
magnéticos. Su origen esta ı́ntimamente relacionado a la indistinguiblilidad
de las part́ıculas y por ende a la mecánica cuántica. Este es un ejemplo claro
de que aun en fenómenos macroscópicos como la atracción/ repulsión de dos
imanes la mecánica cuántica puede jugar un rol esencial. De hecho el magne-
tismo es un fenómeno basado en la noción del esṕın el cual es intŕınsecamente
cuántico. Por lo que el magnetismo en śı puede verse como una manifestación
de la mecánica cuántica.

Consideremos un modelo simple donde tenemos solo dos electrones cuyas
coordenadas espaciales son r1 y r2 y escribamos la función de onda del estado
de dos electrones como producto de electrones independientes. Supongamos
que el primer electrón está en un estado ψa(r1) y el segundo electrón está
en un estado ψb(r2), entonces la función de onda producto podŕıa escribirse
como ψa(r1)ψb(r2), sin embargo esta función de onda no tiene la simetŕıa
correcta ya que si intercambiamos los dos electrones obtenemos la función de
onda ψb(r1)ψa(r2) la cual no es un múltiplo de la que teńıamos inicialmente,
es decir, la función de onda propuesta no es ni simétrica ni antisimétrica ante
el intercambio de part́ıculas.

Sin embargo la simetŕıa corresponde a la función de onda completa, es
decir la función que contenga a la función orbital y la parte de esṕın. Sabemos
que la parte de esṕın de la función de onda puede ser antisimétrica (corres-
pondiendo a un estado de tipo singlete S = 0) o simétrica correspondiente
a un estado de tipo triplete (S = 1). Luego podemos escribir la función de
onda completa para los casos singlete y triplete como

ΨS = 1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS (4.2)

ΨT = 1√
2

(ψa(r1)ψb(r2) − ψa(r2)ψb(r1))χT (4.3)

La enerǵıa correspondiente a cada uno de estos estados estará dada por
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4.1 Magnetismo e interacción de intercambio

Figura 4.2: a) Magnetización normalizada. b) Enerǵıa. c) Calor espećıfico.
d) Entroṕıa.
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el valor de expectación del Hamiltoniano

ES =
ˆ

Ψ∗
SHΨS d

3r1d
3r2 (4.4)

ET =
ˆ

Ψ∗
SHΨT d

3r1d
3r2 (4.5)

Si suponemos que las funciones de onda de esṕın están normalizadas tenemos
que la diferencia de enerǵıa entre los estados singlete y triplete esta dada por

ES − ET = 2
ˆ
ψ∗

a(r1)ψ∗
b (r2)H ψa(r2)ψb(r1), d3r1d

3r2 (4.6)

Es importante notar que, aunque el Hamiltoniano no contenga expĺıcita-
mente ningún término dependiente del esṕın, si la integral anterior (conocida
como integral de intercambio) es distinta de cero, entonces los estados de
esṕın singlete y triplete tienen diferente enerǵıa. Si deseamos estudiar solo
los grados de libertad magnéticos podŕıamos entonces escribir un Hamilto-
niano efectivo que de cuenta de la diferencia de enerǵıa al pasar de un estado
de esṕın a otro.

Se puede escribir dicho Hamiltoniano en términos de un producto de
operadores de esṕın de la forma S1 · S1 ya que sabemos que (para S = 1/2)
el producto toma el valor S1 · S1 = −3/4 si los espines están en un estado
de singlete y S1 · S1 = 1/4 en un triplete. Podŕıamos entonces escribir un
Hamiltoniano de la forma

Heff = 1
4(ES + 3ET ) − (ES − ET )S1 · S1

Este Hamiltoniano arroja los valores correctos para la enerǵıa de los es-
tados singlete y triplete. El mismo está formado por un término constante y
otro que depende del esṕın. El primer término es solo un corrimiento en la
enerǵıa y podemos olvidarnos de él por el momento. Si definimos la cons-
tante de intercambio como

J = ES − ET

2 =
ˆ
ψ∗

a(r1)ψ∗
b (r2)H ψa(r2)ψb(r1), d3r1d

3r2 (4.7)

Podemos escribir el Hamiltoniano dependiente del esṕın como

Heff = −2JS1 · S2

Si la constante de intercambio es positiva J > 0 entonces ES > ET y
el estado fundamental corresponde a un estado triplete. Si J < 0 entonces
ES < ET y el estado fundamental corresponde a un estado singlete.
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4.1.3. Muchos espines
Para el caso de un sistema con muchos espines seguir un razonamiento

similar al que usamos para dos esṕınes es mas engorroso, sin embargo, puede
mostrarse se puede utilizar una propuesta similar a la que derivamos para un
par de espines cuando tenemos muchos espines que interactúan de a pares.
Esto es lo que se conoce como Hamiltoniano de Hesienberg.

H = −
Ø
i,j

Ji,jSi · Sj, (4.8)

donde Ji,j es la constante de intercambio entre los espines i y j. La suma es
sobre todos los espines y el factor 2 es omitido porque al recorrer todos los
espines con los ı́ndices i, j estamos sumando cada par dos veces. Como la
constante de intercambio depende de la superposición de los orbitales, si dos
espines se encuentran muy alejados esta integral será pequeña. Es por eso que
comúnmente la constante de intercambio Ji,j se suele tomar distinta de cero
solo para los espines más cercanos. Una elección común es tomar Ji,j = J si
los espines i, j son primeros vecinos y cero en caso contrario.

4.2. Propiedades magnéticas de los sólidos

4.2.1. Tipos de orden magnético
Vamos a estudiar brevemente algunos de los diferentes tipos de ordenes

magnéticos que pueden ser producidas por la interacción de intercambio y
algunos ingredientes extra como la frustración magnética.

Ferromagnetismo

Un material ferromagnético puede tener una magnetización diferente de
cero aún en ausencia de campo magnético externo y en este estado de mag-
netización todos los espines apuntan en la misma dirección. Este efecto es
generalmente producido por la interacción de intercambio entre los espines y
puede ser descrito mediante un Hamiltoniano de Heisenberg.

H = −2
Ø
i,j

Ji,jSi · Sj + gµBB ·
Ø

j

Sj

Si consideramos que las constantes de intercambio a primeros vecinos son
positivas y cero a vecinos más lejanos, el Hamiltoniano anterior describe un
ferromagnéto en presencia de un campo magnético externo.
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Modelo de Weiss para el ferromagnéto

Una forma de describir aproximadamente la f́ısica encerrada en el Hamil-
toniano anterior es la siguiente. Definamos un campo efectivo para el esṕın
en el sitio i de la siguiente manera

BMF = − 2
gµB

Ø
j

Ji,jéSjê

Ahora concentrémonos por un momento solo en el esṕın correspondiente al
sitio i. La contribución a la enerǵıa de intercambio del esṕın i estará dada
por −2qj Ji,jSi · Sj y este termino puede escribirse (en campo medio) en
términos del campo efectivo que definimos antes como

−2
Ø

j

Ji,jSi · Sj = gµBSi ·BMF

y entonces el Hamiltoniano para el ferromagnéto puede escribirse como

HMF = gµB

Ø
i

Si · (B +BMF )

Al escribir el Hamiltoniano de esta manera asumimos que todos los espines
experimentan el mismo campo efectivo y estamos reemplazando el operador
− 2

gµB

q
i,j Ji,jSj por su a valor de expectación. El Hamiltoniano efectivo al

que llegamos tiene la misma forma que el Hamiltoniano de un paramagnéto
que estudiamos anteriormente. Como el campo efectivo que definimos (a ve-
ces conocido como “campo molecular”) básicamente mide el efecto de orde-
namiento se los espines, podemos suponer que este será proporcional a la
magnetización del sistema.

BMF = λM .

Ahora podemos tratar este problema como si fuera un paramagnéto su-
jeto a un campo magnético B+BMF . A bajas temperaturas podemos tener
que los espines se alinean con el campo molecular aun en ausencia de campo
magnético externo B. Esto hace que la magnetización total aumente, pero
como el campo molecular es proporcional a la magnetización este aumenta
también haciendo que a bajas temperaturas el sistema se mantenga magne-
tizado.

Podemos encontrar soluciones de este modelo usando la ecuación (4.1)
para la magnetización de un esṕın en un campo magnético que vimos ante-
riormente

M = nµB tanh(µB(B + λM)
kBT

). (4.9)
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Figura 4.3: Soluciones gráficas de la ecuación correspondientes a B = 0. Para
T < Tc tenemos solución para M Ó= 0

La ecuación anterior es una ecuación trascendente que puede ser resuelta
gráficamente (ver figura 4.3). Si consideramos el caso sin campo magnético
externo (B = 0), vemos que para temperaturas menores que la temperatura
cŕıtica T < Tc la ecuación tiene soluciones no nulas, mientras que para T > Tc

la única solución corresponde a M = 0.
La solución para M en función de T/Tc se muestra en la figura 4.4. La

magnetización es cero para temperaturas T ≥ Tc y distinta de cero para T <
Tc. En T = Tc la magnetización es continua pero su derivada con respecto a
T no lo es. Esto indica que la transición entre las fases ferromagnética y no
magnética es de segundo orden.

Antiferromagnetismo

Si la interacción de intercambio es negativa (J < 0), el campo molecular es
orientado de manera que favorece la alineación antiparalela de los momentos
magnéticos a primeros vecinos. Eso es lo que se denomina antiferromagne-
tismo. Generalmente este tipo de orden se encuentra en redes bipartitas, es
decir, redes que están compuestas por dos redes interpenetradas. De esta ma-
nera en las redes bipartitas los momentos magnéticos en una de las subredes
apuntan todos en una dirección y en la otra subred en dirección opuesta.
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Figura 4.4: Solución para M en función de T/Tc

A este tipo de estado magnético se lo conoce como estado de Neél y es
esquematizado por la figura siguiente.

Si identificamos a una subred con el ı́ndice + y a la otra con el ı́ndice −,
entonces podemos escribir el campo molecular sobre cada subred como

BMF
+ = −λM−

BMF
− = −λM+.

Luego el campo total efectivo en cada subred será

B+ = B − λM−

B− = B − λM+,

donde λ es una constante. En cada subred el campo molecular para el caso
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de esṕın 1/2 estará dado por

M± = Ms tanh(µBB±

kBT
), (4.10)

donde Ms = µB
N
V

. M± representan la magnetización de cada subred y la
magnetización total estará dada por

M = M+ +M−.

La expresión para M+ y M− es casi idéntica a la que encontramos para el
caso ferromagnético y por lo tanto la magnetización en cada subred tendrá
el mismo comportamiento que el de un ferromagnéto y se hará cero para
temperaturas mayores que las de la temperatura de transición conocida como
temperatura de Neél.

Aunque la magnetización de cada subred se comporte como la de un fe-
rromagnéto, las dos magnetizaciones apuntan en direcciones opuestas y si las
dos subredes son equivalentes a campo magnético externo nulo tendremos
que la magnetización total es cero. Para describir al antiferromagnéto en au-
sencia de campo externo se suele usar un parámetro de orden diferente al
de la magnetización. Este parámetro se conoce como magnetización alterna-
da y consiste simplemente en la diferencia se las magnetizaciones de ambas
subredes.

Ms = M+ −M−.

La magnetización alternada es entonces distinta de cero para valores de la
temperatura menores que la temperatura de Neel y cero para temperaturas
mayores.

Para temperaturas menores a la de Neel, podemos estudiar el compor-
tamiento de la magnetización ante la aplicación de un campo magnético.
Ya vimos que en ausencia de campo magnético la magnetización es cero
(si las subredes son equivalentes). A campo pequeño podemos desarrollar
la magnetización a orden lineal en B como lo hicimos antes y obtener el
comportamiento de la susceptibilidad.

A temperaturas altas podemos aproximar la tangente usando que tanh(x) Ä
x y aśı tenemos que

M Ä 2MsµB/kB

T + (MsµB/kB) B.

De esta manera podemos escribir la susceptibilidad a campos pequeños como

χ = M

B
= C

T + TN
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Antiferromagnetos frustrados:

En ciertas redes no es posible acomodar este tipo de estados donde cada
esṕın es antiparalelo a todos sus vecinos. Por ejemplo si consideramos la
red triangular con interacciones antiferromagnéticas entre primeros vecinos
vemos que: una vez que dos espines fueron colocados de forma antiparalela
dentro de un triángulo, no hay manera de que el tercer esṕın se acomode de
forma antiparalela a los otros dos. Se dice que en este caso el sistema está
frustrado ya que no se pueden minimizar todos los términos de la enerǵıa al
mismo tiempo.

En muchos casos la combinación entre frustración y la naturaleza cuántica
de los espines genera fases magnéticas no convencionales.

Ferrimagnetismo

La discusión que dimos antes para el antiferromagnéto asume que en una
red bipartita las dos subredes son equivalentes, pero si por alguna razón no lo
fueran (cristalograficamente esto es posible), entonces la magnetización de las
dos subredes no seŕıa igual y por lo tanto no se cancelaŕıan. Esto daŕıa como
resultado que aunque el orden magnético es en esencia antiferromagnético
el sistema tiene una magnetización neta. Este fenómeno es conocido como
ferrimagnetismo.

Como el campo molecular de cada subred es diferente entonces la mag-
netización espontánea de cada subred tendrá diferentes dependencia con la
temperatura y puede ocurrir, por ejemplo, que una subred domine la mag-
netización a bajas temperaturas y la otra lo haga a temperaturas más altas.
Cuando esto ocurre podemos variar la magnetización del sistema variando
la temperatura de manera que al aumentar la temperatura el sistema puede
pasar de tener magnetización positiva a cero y luego volverse negativa. Final-
mente a temperaturas más altas el sistema se desordena y la magnetización
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es nuevamente cero. La temperatura a la cual la magnetización cambia de
signo se conoce como Temperatura de compensación. La susceptibilidad
magnética de los ferrimagnétos no sige en general la ley de Curie. Las fe-
rritas son materiales que presentan ferrimagnetismo. Se conoce comúnmente
como ferritas a un grupo de compuestos con la formulas qúımicas de la forma
XO·Fe2O3, donde la letra X representa a un ion positivo divalente como por
ejemplo Zn2+, Fe2+, Cu2+, Mn2+, Ni2+, etc.

Orden espiral

En algunos casos (como en muchas tierras raras) la estructura cristalina es
tal que los átomos se acomodan en planos que interactúan fuertemente y estos
planos se acoplan magnéticamente. Consideremos el caso donde los momentos
magnéticos en cada plano interactúan ferromagnéticamente de manera que
el orden magnético en cada plano corresponde a todos los espines del plano
apuntando en la misma dirección. Si consideramos el momento magnético
total en cada plano estará dado por la suma de los momentos magnéticos
de todos los sitos del plano. Esto dará como resultado un valor grande del
momento magnético en cada plano por lo que podremos considerar a cada
plano como un esṕın clásico. Consideremos ahora la interacción entre planos
como una interacción entre espines clásicos con acoplamientos entre primeros
J1 y segundos vecinos J2. Si el ángulo entre los momentos magnéticos totales
correspondientes a dos planos sucesivos es θ, entonces podemos escribir la
enerǵıa del sistema como

E = −2N2S2(J1 cos θ + J2 cos(2θ)),

donde N es el número de sitios en cada plano. Buscamos el mı́nimo de la
enerǵıa imponiendo que ∂E

∂θ
= 0 con lo que obtenemos la condición

(J1 + J2 cos θ) sin θ = 0.

Esta ecuación tiene como soluciones a sin θ = 0 lo que implica que el orden
ferromagnético (θ = 0) y antiferromagnético (θ = π) son extremos de la
enerǵıa. La otra solución corresponde a

cos(θ) = − J1

4J2

Esta solución corresponde a lo que se conoce como orden espiral y es
enérgicamente favorable solo cuando J2 < 0 y se cumple la condición |J1| <
4|J2|. Como el ángulo correspondiente a esta solución depende de los valores
de los acoplamientos J1 y J2, que en principio pueden tomar cualquier valor
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real, el ángulo θ no estará en general conmensurado con la red. Es decir que
no se repetirá. Para valores arbitrarios de los acoplamientos no habrá dos
planos con el mismo ángulo θ.

4.3. Ruptura de simetŕıa

En los tipos de orden magnético que vimos antes todos teńıan en común
que su aparición se daba espontáneamente a bajas temperaturas. Todos estos
ordenamientos están caracterizados por la dependencia con la temperatura
donde alguna cantidad relevante cambia al pasar de temperaturas menores
a mayores de alguna temperatura cŕıtica Tc. Para cada una de estas fases
se puede definir un parámetro de orden el cual será cero para T > Tc y
será diferente de cero para T < Tc. Este parámetro actúa entonces como
un indicador de que el sistema esta ordenado. En este tipo de ordenes, el
parámetro de orden esta asociado a la ruptura de una simetŕıa.

En el caso de un ferromagnéto cuando el sistema se magnetiza lo hace
en una dirección particular. Por ejemplo, a campo cero todos los momentos
magnéticos se alinean hacia arriba y no hacia abajo. Sin embargo en las ecua-
ciones que escribimos no hay nada que favorezca la alineación de los espines
hacia arriba comparado con los espines hacia abajo, ya que el Hamiltoniano
es invariante ante inversión. Entonces, el modelo microscópico tiene una si-
metŕıa que no posee el estado fundamental. Observemos por ejemplo lo que
pasa en un ferromagnéto en 2 dimensiones. A temperaturas altas T > Tc el
sistema posee una simetŕıa de rotación completa. Todas las direcciones son
equivalentes ya que el sistema está completamente desordenado y los mo-
mentos magnéticos alrededor de un punto cualquiera del plano apuntan en
cualquier dirección y el campo efectivo promedia a cero.

Para temperaturas menores a la temperatura cŕıtica T < Tc el sistema
elige una dirección y los momentos magnéticos se alinean es esa dirección.
Ahora la simetŕıa de rotación está rota porque tenemos una dirección prefe-
rencial. El estado de baja temperatura a reducido sus simetŕıas.

Un comentario importante sobre la ruptura de simetŕıa es que es imposible
cambiar la simetŕıa de forma gradual. El sistema posee una simetŕıa o no la
posee. Esto hace que la transición de fase sea abrupta.
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4.4 Teoŕıa de Landau para el ferromagnetismo

4.4. Teoŕıa de Landau para el ferromagnetis-
mo

Un modelo simple que reproduce este tipo de transición de fase fue desa-
rrollado por Landau y se basa en consideraciones muy generales. Supongamos
que podemos escribir la enerǵıa libre de un ferromagneto con magnetización
M como una serie de potencias en M . Como los estados con magnetización
hacia arriba (positiva) y hacia abajo (negativa) tienen la misma enerǵıa esta
serie no puede contener potencias impares de M . Podemos entonces escribir
algo como

F (M) = F0 + aM2 + bM4 + · · ·

Donde F0, a y b no dependen de M .
Supongamos ahora que la constante a = a(T ) depende de la temperatura. Si
a(T ) es tal que cambia de signo en T = Tc entonces podemos escribir cerca
de T = TC que a(T ) = a0(T − TC) donde a0 es una constante positiva.
Para encontrar el estado fundamental del sistema buscamos extremos de la
enerǵıa libre, es decir soluciones de ∂F/∂M = 0. Esta condición implica que

2M(a0(T − TC) + 2bM2) = 0.

De esta ecuación podemos obtener dos soluciones

M = 0 o M = ±
A
a0(TC − T )

2b

B1/2

.

La segunda solución es válida solo para T < Tc. La solución M = 0 es válida
para todo T , pero para T < Tc es un punto de equilibrio inestable. Esto
puede verse fácilmente calculando la segunda derivada de la enerǵıa libre.

Entonces, la teoŕıa de Landau nos dice que la magnetización será cero para
T > TC y para temperaturas menores a Tc será proporcional a (Tc − T )1/2

La teoŕıa de Landau es una teoŕıa de campo medio en el sentido de que
supone que todos los espines “sienten” el mismo campo producido por todos
sus vecinos. En este sentido es similar al modelo de Weiss. Las teoŕıas de
campo medio fallan al explicar correctamente la transición de fase porque
ignora las correlaciones y fluctuaciones que se vuelven muy importantes cerca
de TC .
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4.5. Excitaciones en el ferromagneto: Ondas
de esṕın

Ya vimos que, cuando consideramos un sistema de muchos espines, pode-
mos utilizar un modelo microscópico como el modelo de Heisenberg

H = −
Ø
i,j

Ji,jSi · Sj.

Consideremos la versión unidimensional del modelo de Heisenberg donde
el Hamiltoniano está dado por

H = −2J
Ø

i

Si · Si+1.

Podemos estudiar como evoluciona con el tiempo el valor medio del esṕın en
un dado sitio de la forma

déSα
j ê

dt
= 1

i~
é[Sα

j , H]ê

déSα
j ê

dt
= −2J

i~
é[Sα

j ,Sj−1 · Sj] + [Sα
j ,Sj · Sj+1]ê

= −2J
i~

é
Ø

β

[Sα
j , S

β
j−1S

β
j ] +

Ø
β

[Sα
j , S

β
j S

β
j+1]ê

= −2J
i~

é
Ø

β

Sβ
j−1[Sα

j , S
β
j ] +

Ø
β

[Sα
j , S

β
j ]Sβ

j+1ê

= −2J
i~

é
Ø
β,γ

Sβ
j−1iÔα,β,γS

γ
j +

Ø
β,γ

iÔα,β,γS
γ
j S

β
j+1ê

= −2J
i~

é
Ø
β,γ

iÔα,β,γS
β
j−1S

γ
j +

Ø
β,γ

iÔα,β,γS
γ
j S

β
j+1ê

= 2J
~

é(Sj × Sj−1)α + (Sj × Sj+1)αê.

Para poder avanzar, trataremos por el momento a los espines como si fue-
ran clásicos y luego veremos el tratamiento cuántico. El estado fundamental
tiene todos los espines alineados (supondremos que en la dirección z). De
esta manera el estado fundamental clásico cumple que Sz = S, Sx = Sy = 0.
Consideremos ahora una pequeña desviación del estado fundamental tal que
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Sz Ä S, Sx, Sy ¹ S. Tenemos entonces que

dSx
j

dt
Ä 2JS

~
(2Sy

j − Sy
j−1 − Sy

j+1) (4.11)

dSy
j

dt
Ä −2JS

~
(2Sx

j − Sx
j−1 − Sx

j+1) (4.12)
dSz

j

dt
Ä 0. (4.13)

Si proponemos soluciones de la forma

Sx
j = Axe

iqja−ωt (4.14)
Sy

j = Aye
iqja−ωt. (4.15)

Vemos que para que sean solución debemos tener que Ax = iAy y la frecuencia
cumple que

~ω = 4JS(1 − cos(qa)).
Esta es la relación de dispersión de las excitaciones sobre el estado fundamen-
tal ferromagnético. Estas excitaciones son conocidas como ondas de esṕın.

Si bien la solución anterior corresponde a un modelo clásico nos enseña
que las excitaciones se comportan como ondas y podemos intentar buscar
una solución del modelo cuántico con estas caracteŕısticas[16]. Consideremos
el Hamiltoniano cuántico

H = −2J
Ø

i

Si · Si+1 = −2J
Ø

i

5
Sz

i S
z
i+1 + 1

2(S+
i S

−
i+1 + S−

i S
+
i+1)

6
.

El estado fundamental cuántico puede escribirse como un estado producto

|φ0ê = | ↑↑↑↑↑↑ · · · ê,

de manera que H|φ0ê = −NS2J |φ0ê. Ahora creemos una excitación dando
vuelta un esṕın en el sitio j

|jê = | ↑↑↓j↑↑↑ · · · ê.

Este estado lo podemos escribir a partir del estado fundamental como

|jê = S−
j |φ0ê.

Sin embargo, este no es un autoestado del Hamiltoniano (comprobarlo como
ejercicio).
Ahora bien, como vimos en el caso clásico, podemos construir excitaciones
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de tipo ondulatorio. Intentemos combinar las excitaciones de este tipo en
cada sitio de manera de recuperar la simetŕıa de traslación del Hamiltoniano
proponiendo el estado

|qê = 1√
N

Ø
j

eiqja|jê.

Es inmediato mostrar que

H|qê = E(q)|qê,

donde
E(q) = −NS2J + 4JS(1 − cos(qa)).

Si restamos la enerǵıa correspondiente al estado fundamental ferromagnético
−NS2J vemos que la enerǵıa de la excitación es Ô(q) = 4JS(1 − cos(qa)),
que es el mismo resultado que encontramos para el caso clásico.

4.6. Ondas de esṕın y operadores de Holstein-
Primakoff

La formulación de segunda cuantificación que vimos en secciones ante-
riores se basa en el álgebra de operadores de creación y destrucción. Esta
formulación tiene como ventajas que permite representar de forma compacta
el espacio de excitaciones de un sistema y nos permite tener en cuenta la
simetŕıa de la función de onda definiendo simples relaciones de conmutación
de estos operadores. Como el objetivo del formalismo es describir sistemas
cuánticos, consideremos el siguiente conjunto de autovalores ψn de un Ha-
miltoniano H

H|ψnê = Ôn|ψnê.

De esta manera, la función de onda de dos part́ıculas que se encuentran en
estados α, β se escribe como

|α, βê = 1√
2

(|ψαê1 ⊗ |ψβê2 − σ|ψβê1 ⊗ |ψαê2),

donde σ = 1 si las part́ıculas son fermiones y σ = −1 si son bosones. De esta
manera tenemos en cuenta la simetŕıa correcta de la función de onda, como
corresponde a part́ıculas indistinguibles. Sin embargo, si queremos usar la
notación anterior para un sistema de muchas part́ıculas se vuelve un poco
engorroso.

Es aqúı donde la formulación en términos de operadores de creación es
más eficiente. Denotemos como |0ê a un estado de referencia que llamaremos
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estado de vaćıo. F́ısicamente, este estado representa un estado vaćıo en el
cuál no hay part́ıculas presentes. Definamos ahora operadores que puedan
actuar sobre este estado (junto con su operador adjunto) de manera que

aγi|0ê = 0
a†

γi
|0ê = |γiê

C
NÙ

i=1
a†

γi
|0ê = |γ1, γ2, γ3, · · · , γN−1, γNê.

Donde C es un factor de normalización, C = 1ñrN

i
ni!

, con ni el número de

part́ıculas en el estado γi. Noten que con esta definición para el factor de
normalización, como no podemos tener más de un fermión en cada estado
y 1! = 1, tenemos que C = 1. En cambio, si las part́ıculas son bosones este
factor se vuelve importante.

Para que la simetŕıa de la función de onda sea la correcta estos operadores
deben respetar las relaciones de conmutación bosónicas o fermiónicas es decir

[aα, a
†
β]σ = δα,β, [aα, aβ]σ = 0, [a†

α, a
†
β]σ = 0

donde
[A,B]σ = AB + σBA.

Es decir, en el caso de bosones los operadores conmutan y en el caso fermióni-
co anticonmutan. Muchas veces usaremos la notación [A,B] = AB−BA para
denotar al conmutador y {A,B} = AB + BA para el anticonmutador entre
A y B.

De esta manera, es fácil ver que las relaciones de conmutación anteriores
implican que

a†
µa

†
ν |0ê = |µ, νê = −σa†

νa
†
µ|0ê = −σ|ν, µê.

Es decir, si σ = −1, las part́ıculas son bosones y tenemos que el estado
|µ, νê = |ν, µê es simétrico ante el intercambio de part́ıculas. En cambio, si
σ = 1, las part́ıculas son fermiones y tenemos que el estado |µ, νê = −|ν, µê
es antisimétrico.

Como vimos anteriormente, el conjunto de todos los estados (correspon-
diente a la unión de los diferentes subespacios de estados con número fijo
de part́ıcula) se denomina espacio de Fock. Una vez definidos los estados del
espacio de Fock podemos expresar cualquier operador en segunda cuantifica-
ción.

Una forma conveniente de encontrar la representación de los operadores
es expresar el operador en términos de una base donde sea diagonal y lue-
go transformar a una base arbitraria. Para esto, es útil definir el operador
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número
nλ = a†

λaλ.

Este operador cumple que
nλ(a†

λ)n|0ê = n(a†
λ)n|0ê.

Es decir, el estado (a†
λ)n|0ê es un autoestado del operador número con auto-

valor n. El operador nλ cuenta el número de part́ıculas que se encuentran en
el estado λ.

4.6.1. Ondas de esṕın para el ferromagnéto
Estudiaremos ahora las excitaciones sobre el estado fundamental ferro-

magnético usando una representación de los operadores de esṕın conocida
como bosones de Holstein-Primakov. Luego, podremos extender de mane-
ra natural el uso de estos operadores bosónicos para estudiar el caso an-
tiferromagnético. Estudiaremos el modelo de Heisenberg correspondiente al
siguiente Hamiltoniano

H = 2J
Ø

<i,j>

Ŝi · Ŝj,

donde el caso J < 0 corresponde a un sistema ferromagnético y entenderemos
la notación < i, j > como una suma entre vecinos próximos en la red. Los
operadores de esṕın satisfacen el álgebra de SU(2)

[Ŝα
j , Ŝ

β
k ] = i δj,k Ô

αβγ Ŝγ
k . (4.16)

Dado el signo de la constante de acoplamiento J , el Hamiltoniano favorece las
configuraciones en las que todos los espines en sitios vecinos están alineados
en la misma dirección. Un estado fundamental del sistema podŕıa ser, por
ejemplo

|gsê =
p

j

| ↑êj, (4.17)

donde | ↑êj representa un estado con máxima componente z del esṕın en el
sitio j. Si realizamos una rotación cualquiera de todos los espines simultánea-
mente no cambia la enerǵıa, por lo que el estado fundamental es altamente
degenerado y el sistema posee una simetŕıa continua de rotación global.

Para estudiar las pequeñas desviaciones alrededor del estado fundamental
|gsê introducimos una representación de los operadores de esṕın en términos
de operadores bosonicos conocidos como bosones de Holstein-Primakov

Sz = s− a†a

S− =
ó

1 − a†a

2s
√

2s a†
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El mapeo anterior reproduce las relaciones de conmutación exactas entre
operadores de esṕın y el vinculo S2 = s(s + 1). Sin embargo, es muy dif́ıcil
trabajar con el mismo sin hacer aproximaciones dada la complicada expresión
en términos de los operadores bosónicos. Nótese que el estado de máximo
esṕın corresponde a un estado sin bosones. El operador S− actúa entonces
incrementando el número de bosones presentes en el sistema.

Podemos utilizar un desarrollo en potencias de 1/s, para hacer el proble-
ma mas fácil de resolver, desarrollando la ráız en la expresión de los S± a
orden mas bajo tendremos que

S− ≈
√

2s a†

S+ ≈
√

2s a
Sz = s− a†a

Para el caso Ferromagnético podemos usar estas expresiones y obtener un
Hamiltoniano cuadrático en los operadores bosónicos.

H = 2Js
Ø

<i,j>

1
a†

iaj + a†
jai − a†

iai − a†
jaj

2
+ 2J

Ø
<i,j>

(s2 + a†
iaia

†
jaj).

Aún al mas bajo orden obtenemos un Hamiltoniano que contiene un término
de interacción generado por la interacción SzSz. Nosotros analizaremos pri-
mero la parte cuadrática, que es la que domina en el ĺımite de s grande,
donde ya podrán verse las primeras correcciones al comportamiento clásico
(que en este caso asociamos con el ĺımite s → ∞).

H = 2Js
Ø

<i,j>

1
a†

iaj + a†
jai − a†

iai − a†
jaj

2
Ahora escribiremos la suma de forma conveniente para poder separarla en
una suma sobre los sitios y otra sobre vecinos cambiando la notación i ↔ x

H = 2Js
Ø
x,r

1
a†

xax+r + a†
x+rax − a†

xax − a†
x+rax+r

2
. (4.18)

La suma sobre sobre x corre sobre todas las posiciones de la red mientras que
r corre sobre la mitad de los vecinos de cada sitio de manera de no contar
un par de vecinos dos veces. Por ejemplo en una red cuadrada (2D) puede
entenderse por la suma en r como la suma sobre el vecino de la derecha
y el de arriba como se muestra en la figura 4.5. Transformando Fourier los
operadores bosónicos

ax = 1√
V

Ø
k

eik·xak,
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Figura 4.5: Red cuadrada.

el Hamiltoniano (4.18) queda en la forma

H = 2Js
Ø

k

A
−z +

Ø
r

eik·r +
Ø

r

e−ik·r
B
a†

kak

= −2Jsz
Ø

k

A
1 − 1

z

Ø
r

(eik·r + e−ik·r)
B
a†

kak

= −2Jsz
Ø

k

A
1 − 2

z

Ø
r

cos(k · r)
B
a†

kak,

donde z es lo que se conoce como número de coordinación, es decir, la canti-
dad de vecinos que tiene cada sitio de la red. Si consideramos el caso en una
dimensión z = 2 y la relación de dispersión queda como

H =
Ø

k

−4Js (1 − cos(k)) a†
kak.

Es decir la relación de dispersión está dada por

Ô(k) = −4Js (1 − cos(k))

que es el mismo resultado que encontramos cuando estudiamos las ondas de
esṕın en la sección anterior (a diferencia de un signo porque simplemente
tomamos una convención diferente para J en el Hamiltoniano).
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Figura 4.6: Relación de dispersión de las ondas de esṕın ferromagnéticas.

Si desarrollamos alrededor de k = 0 tenemos que

H = −2Jsz
Ø

k

A
1 − 2

z

Ø
r

cos(k · r)
B
a†

kak

≈ −2Jsz
Ø

k

A
2
z

Ø
r

(k · r)2

2

B
a†

kak

≈ −2Js
Ø

k

AØ
r

(k · r)2
B
a†

kak

≈ −2Js
Ø

k

|k|2 a†
kak,

de donde vemos que la relación de dispersión ε(k) = −2Js|k|2 es cuadrática
y va a cero cuando |k| → 0. Este es el modo de Goldstone que corresponde a
la ruptura de simetŕıa del estado fundamental ferromagnético. Es importante
notar que la f́ısica de bajas enerǵıas esta dominada por el modo k = 0 donde
la relación de dispersión va a cero.

4.6.2. Ondas de esṕın para el antiferromagnéto
Ahora si, podemos estudiar el antiferromagnéto usando bosones de Holstein-

Primakov. Aunque el Hamiltoniano difiere del visto para el ferromagnéto solo
en el signo de la constante de acoplamiento, la f́ısica del antiferromagnéto es
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muy diferente. Para las llamadas redes bipartitas el estado de mı́nima enerǵıa
clásica se alcanza con una configuración alternada de los espines conocida co-
mo estado de Néel. En este estado tenemos dos subredes dentro de las cuales
todos los espines se encuentran paralelos, mientras que las dos subredes se
encuentran rotadas 180º una respecto de la otra. De nuevo tenemos que el
sistema posee una simetŕıa global de rotación pero a diferencia del caso ferro-
magnético, la configuración clásica de mı́nima enerǵıa no es un autoestado
del Hamiltoniano.

A continuación quisiéramos seguir con la metodoloǵıa utilizada para estu-
diar el ferromagnéto usando la representación de los operadores de esṕın en
termino de bosones, pero para esto es conveniente realizar antes una transfor-
mación canónica de los operadores de esṕın donde los espines pertenecientes a
una subred (digamos la subred B) son rotados 180º de manera que la proyec-
ción z del esṕın cambie de signo y entonces, en términos de estos operadores
transformados, la configuración clásica de mı́nima enerǵıa este dada ahora
por todos los espines paralelos. Esto se logra (por ejemplo) efectuando una
rotación de 180º de los operadores de esṕın alrededor del eje x. (Rx(π)SB).
En ese caso tendremos entonces que

S̃x
B = Sx

B

S̃y
B = −Sy

B

S̃z
B = −Sz

B,

por lo que los operadores S̃+ y S̃− quedan
S̃+

B = S̃x
B + iS̃y

B = Sx
B − iSy

B = S−
B (4.19)

S̃−
B = S̃x

B − iS̃y
B = Sx

B + iSy
B = S+

B . (4.20)
Luego el Hamiltoniano para el antiferromagnéto queda, en términos de los
operadores transformados

H = 2J
Ø

<i,j>

1
2(S+

i S̃
+
j + S−

i S̃
−
j ) − Sz

i S
z
j . (4.21)

Como al rotar los espines conseguimos la misma configuración de mı́nima
enerǵıa que en el caso del ferromagnéto, podemos usar la misma represen-
tación bosónica para los operadores de esṕın y esperar que las fluctuaciones
a este estado produzcan el análogo antiferromagnéto a las ondas de esṕın
discutidas antes.

Entonces Para la subred A tenemos, como antes
Sz

i = s− a†
iai

S−
i Ä

√
2s a†

i

S+
i Ä

√
2s ai
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4.6 Ondas de esṕın y operadores de Holstein-Primakoff

y para la subred B

S̃z
j = s− a†

jaj

S̃−
j Ä

√
2s a†

j

S̃+
j Ä

√
2s aj.

Nótese que nuevamente el estado con ausencia de bosones corresponde a
todos los espines con proyección máxima. El Hamiltoniano en términos de la
representación bosónica queda

H = 2J
Ø

<i,j>

s(aiaj + a†
ia

†
j) − (s− a†

iai)(s− a†
jaj)

H = 2J
Ø

<i,j>

è
−s2 + s(a†

iai + a†
jaj + aiaj + a†

ia
†
j) − a†

iaia
†
jaj

é
.

El último término es de orden s0 por lo que podemos despreciarlo en el ĺımite
de s grande donde los términos que dominan serán los de orden O(s) y O(s2)

H = −2JNs2 + 2Js
Ø

<i,j>

è
(a†

iai + a†
jaj + aiaj + a†

ia
†
j)
é
.

Ahora transformamos Fourier los operadores bosónicos de la siguiente manera

aj = 1√
N

Ø
k

e−i k·xj ak

De esta forma el Hamiltoniano queda

H = −2JNs2 + 2Js
Ø

k1,k2

2δk1,k2 a
†
k1ak2 +

 1
N

Ø
<i,j>

e−i(k1xi+k2xj)

 ak1ak2

+
 1
N

Ø
<i,j>

ei(k1xi+k2xj)

 a†
k1a

†
k2

 .
Ahora, para poder realizar la suma en coordenadas escribimos xi = xi + ar,
donde ar es un vector que va desde xi hasta el r-esimo vecino. Luego tenemos 1
N

Ø
<i,j>

e−i(k1xi+k2xj)

 =
A

1
N

Ø
r

e−ik2ar
Ø

i

e−i(k1+k2)xi

B
= δk1,−k2

Ø
r

e−ik2ar ,

y una forma análoga para el otro término similar. Usando esto en el Hamil-
toniano obtenemos

H = −2JNs2 + 2Js
Ø

k

C
2 a†

kak +
AØ

r

e−ikar

B
aka−k +

AØ
r

eikar

B
a†

ka
†
−k

D
.
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Como la suma sobre k es simétrica con respecto al limite superior e inferior
(por ejemplo en 1D −π < k < π) podemos escribir

H = −2JNs2 + 2Js
Ø

k

C
2 a†

kak +
AØ

r

cos(k · ar)
B
aka−k +

AØ
r

cos(k · ar)
B
a†

ka
†
−k

D

H = −2JNs2 + 2Js
Ø

k

è
2 a†

kak + γk aka−k + γk a
†
ka

†
−k

é
H = −2JNs2 + 2Js

Ø
k

è
a†

kak + a†
−ka−k + γk

1
aka−k + a†

ka
†
−k

2é
,

donde γk = q
r cos(k · ar). El Hamiltoniano anterior puede ser diagonaliza-

do fácilmente mediante una transformación de Bogoliubov, definiendo dos
nuevos operadores de la forma

bk = αk ak + βk a
†
−k ak = αk bk − βk c

†
k (4.22)

c†
k = βk ak + αk a

†
−k a†

−k = αk c
†
k − βk bk (4.23)

Con la condición α2
k − β2

k = 1 para asegurar que los nuevos operadores cum-
plan con el álgebra bosonica 1. Al reemplazar en H obtenemos

H = 2JNs2 + 2Js
Ø

k

î1
α2

k + β2
k − 2γkαkβk

2
[b†

kbk + c†
kck] (4.24)

+
1
(α2

k + β2
k)γk − 2αkβk

2
[b†

kc
†
k + bkck] + 2(β2

k − γkαkβk)
ï
. (4.25)

Imponemos que el coeficiente que acompaña a los términos que no conservan
el número de part́ıculas se anule, junto con la condición sobre los coeficientes
para que se cumplan las relaciones de conmutación bosónicas.

0 = γk(α2
k + β2

k) − 2αkβk

1 = α2
k − β2

k .

De las soluciones de este sistema de ecuaciones obtenemos

α2
k + β2

k − 2γkαkβk =
ñ

1 − γ2
k (4.26)

2(β2
k − γkαkβk) =

ñ
1 − γ2

k − 1 (4.27)

y reemplazando en el Hamiltoniano obtenemos

H = 2JNs(s+ 1) + 2Js
Ø

k

ñ
1 − γ2

k

è
b†

kbk + c†
kck + 1

é
.

1el lector lo puede verificar como ejercicio
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Figura 4.7: Relación de dispersión correspondiente a las ondas de esṕın anti-
ferromagnéticas.

De esta manera la relación de dispersión de las ondas de esṕın esta dada por

ε(k) = Js
ñ

1 − γ2
k (4.28)

∼ 2Js√
z

|k| (4.29)

Notemos aqúı que a diferencia del caso ferromagnético, la relación de disper-
sión en este caso tiene un comportamiento lineal a valores de k cercanos a
cero.
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Caṕıtulo 5

Superconductividad

En este caṕıtulo discutiremos un nuevo estado fundamental del gas de
electrones interactuante: el estado superconductor. En este estado cuántico
macroscópico, los electrones se aparean para formar estados ligados coheren-
tes llamados pares de Cooper, que cambian drásticamente las propiedades
macroscópicas del sistema, dando lugar a una conductividad y un diamagne-
tismo perfecto. Nos centraremos principalmente en los superconductores con-
vencionales, donde los pares de Cooper se originan a partir de una pequeña
y atractiva interacción electrón-electrón mediada por fonones. Sin embargo,
en los llamados superconductores no convencionales —un tema de intensa
investigación en la f́ısica del estado sólido actual— el apareamiento puede
originarse incluso a partir de interacciones puramente repulsivas.

5.1. Fenomenoloǵıa
La superconductividad fue descubierta por Kamerlingh-Onnes en 1911,

cuando estudiaba las propiedades de transporte del Hg (mercurio) a bajas
temperaturas. Encontró que por debajo de la temperatura de licuefacción
del helio, alrededor de 4, 2 K, la resistividad del Hg cáıa repentinamente a
cero. Aunque en ese momento no hab́ıa un modelo bien establecido para el
comportamiento del transporte a baja temperatura en metales, el resultado
fue bastante sorprendente, ya que las expectativas eran que la resistividad
llegara a cero o divergiera a T = 0, pero no que se anule a una temperatura
finita.

En un metal, la resistividad a bajas temperaturas tiene una contribución
constante de la dispersión de los electrones por las impurezas, una contri-
bución T 2 de la dispersión electrón-electrón y una contribución T 5 de la
dispersión por fonones. Aśı, la desaparición de la resistividad a bajas tempe-
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raturas es una clara indicación de un nuevo estado fundamental. Aqúı uno
puede preguntarse si esa resistividad cae exactamente a cero o resta una lige-
ra resistividad residual, aunque pequeña. La respuesta va en la dirección de la
primera afirmación. De hecho existen materiales que exhiben violentos cam-
bios en la resistividad, alcanzando incluso valores muy pequeños, pero que
no son superconductores. Otra pregunta de interés aqúı es por qué aparece
una escala de enerǵıa tan baja asociada a esas temperaturas cŕıticas, cuando
la enerǵıa caracteŕısticas de un metal, su enerǵıa de Fermi, es del orden de
1 eV. Es de destacar que no todos los metales se vuelven superconductores,
por ejemplo los mejores conductores, Cu, Ag, Au no lo son.

Meissner descubrió otra propiedad clave del superconductor en 1933. En-
contró que la densidad de flujo magnético B se expulsa por debajo de la
temperatura de transición superconductora Tc, es decir, B = 0 dentro de un
material superconductor, el llamado efecto Meissner, lo que significa que el
superconductor es un diamagneto perfecto. Recuérdese que la relación entre
B, el campo magnético H y la magnetización M está dada por:

B = H + 4πM , (5.1)

y por lo tanto, dado que B = 0 en el interior de un superconductor, la
susceptibilidad magnética χ = ∂M/∂H es

χ = − 1
4π . (5.2)

y como χ < 0 el material es un diamagneto. Además, dado que la permeabi-
lidad µ = 1 + 4πχ, que señala la proporción B = µ no puede ser negativo, lo
cual violaŕıa la estabilidad termodinámica, realiza el valor más pequeño (más
diamagnético) de µ, que es µ = 0. Si aumentamos el campo magnético aplica-
do a un superconductor, eventualmente se destruye el estado superconductor,
haciendo que el sistema regrese al estado normal. Los superconductores se
clasifican en dos tipos: en los de de tipo I, no existe un estado intermedio que
separe la transición del estado superconductor al estado normal al aumentar
el campo, y esta se produce abruptamente, mientras que en los superconduc-
tores de tipo II, existe un estado intermedio, denominado estado mixto, que
aparece antes de la transición al estado normal. En el estado mixto, el campo
magnético penetra parcialmente en el material a través de la formación de
una serie de tubos de flujo que transportan un múltiplo del cuanto de flujo
magnético Φ0 = hc/2|e|.

Si bien el nombre de estos materiales sugiere que la conductividad perfecta
es la propiedad fundamental de un superconductor, veamos que el diamag-
netismo perfecto no puede deducirse, y es tan fundamental como aquella.
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Estudiemos las implicaciones de la resistividad nula utilizando las ecuaciones
de Maxwell. Si un material es un conductor perfecto, la aplicación de un
campo eléctrico acelera libremente la carga eléctrica:

mr̈ = −eE. (5.3)

Pero dado que la densidad de corriente está dada por J = −ensṙ, donde ns

es el número de “electrones superconductores” tenemos que

∂J

∂t
= nse

2

m
E. (5.4)

Si insertamos esta relación en la ley de Faraday

∇ ×E = −1
c

∂B

∂t
, (5.5)

obtenemos
∇ × ∂J

∂t
= −nse

2

cm

∂B

∂t
. (5.6)

Pero al utilizar la ley de Ampère para un campo eléctrico estático,

∇ ×B = 4π
c
J , (5.7)

se encuentra
∇ × ∇ × ∂B

∂t
= −4πnse

2

mc2
∂B

∂t
. (5.8)

La identidad ∇ × ∇ × C = ∇(∇ · C) − ∇2C y la ecuación de Maxwell
∇ ·B = 0 permiten llegar a la ecuación

∇2
A
∂B

∂t

B
= λ−2

A
∂B

∂t

B
, (5.9)

donde definimos la profundidad de penetración:

λ =
ó

mc2

4πnse2 . (5.10)

¿Cuál es el significado de la Ec. (5.9)? Consideremos un sistema unidi-
mensional que es un conductor perfecto para x > 0. Resolviendo la ecuación
diferencial para x, y teniendo en cuenta las condiciones de contorno, obtene-
mos que la derivada ∂B/∂t decae exponencialmente con x, es decir

∂B

∂t
=
A
∂B

∂t

B
x=0

e−x/λ. (5.11)
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Esto significa que el campo magnético dentro de un conductor perfecto es
constante en el tiempo. Sin embargo, este no es el efecto Meissner, según el
cual el campo magnético debe anularse dentro del superconductor. Conside-
remos que se aplica un campo magnético B0 a un material superconductor
por encima de Tc, cuando aún es un metal normal. Si enfriamos el sistema
por debajo de Tc, el efecto Meissner indica que B0 tiene que ser expulsado
del material, ya que el campo se debe anular en el interior. Sin embargo, para
un conductor perfecto el campo conservaŕıa un valor diferente de cero, B0
dentro del material. ¡Este ejercicio nos dice que un superconductor no es solo
un conductor perfecto! O dicho de otro modo, la resistividad cero no implica
el diamagnetismo perfecto. Ambas son propiedades fundamentales.

Buscando entender el efecto Meissner. los hermanos London propusieron
un modelo fenomenológico para describir los superconductores que elimina
arbitrariamente las derivadas temporales de la Ec. (5.9):

∇2B = λ−2B. (5.12)

Esta ecuación captura correctamente el efecto Meissner, como discutimos
anteriormente, enfatizando las propiedades diamagnéticas perfectas del su-
perconductor. Combinada con la ley de Ampère, esta ecuación implica la
siguiente relación entre J y B:

∇ × J = −nse
2

mc
B. (5.13)

Dado que B = ∇×A, donde A es el potencial vector magnético, la ecuación
anterior se convierte en la ecuación de London,

J = −nse
2

mc
A, (5.14)

en el gauge de Coulomb ∇ · A = 0, es decir, en el gauge donde el vector
potencial tiene sólo la componente transversal distinto de cero. Se debe elegir
este gauge porque debe cumplirse además la ecuación de continuidad, ∇·J =
0.

¿Cómo podemos justificar la ecuación de London? Esta no deja de ser sor-
prendente en algún sentido, ya que la corriente es en principio una cantidad
observable, mientras que el potencial vector no lo es, al menos clásicamen-
te. Sin embargo, en mecánica cuántica la definición de la corriente que es
necesaria para satisfacer la ecuación de continuidad,

J = e~
2mi [ψ∗∇ψ − ψ∇ψ∗] − e2

mc
|ψ|2A, (5.15)
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incluye un término lineal en A. Si el primero pudiera anularse por alguna
razón tendŕıamos la ecuación de London.

London propuso además una explicación basada en la rigidez de la función
de onda en el estado superconductor. Por ejemplo, según el teorema de Bloch,
el momento total del sistema en su estado fundamental |Ψê (es decir, en
ausencia de cualquier campo aplicado) tiene un valor medio cero, éΨ|p|Ψê =
0. Ahora, supongamos que la función de onda Ψ es ŕıgida, es decir, que esta
relación se mantiene incluso en presencia de un campo externo. Entonces,
dado que el momento canónico está dado por p = mv − eA/c, obtenemos,

évê = eA

mc
(5.16)

Como J = −ensévê, recuperamos la ecuación de London (5.14).
Por supuesto, la pregunta principal es sobre el mecanismo microscópico

que da lugar a esta rigidez de la función de onda y, en última instancia, al
estado superconductor. Varios de los f́ısicos más brillantes del siglo pasado
intentaron abordar esta pregunta —como Bohr, Einstein, Feynman, Born,
Heisenberg— pero la respuesta llegó recién en 1957 con la famosa teoŕıa de
Bardeen, Cooper y Schrieffer (BCS) ¡casi 50 años después del descubrimiento
experimental de Kamerlingh-Onnes!

Las contribuciones experimentales fundamentales hicieron que las prin-
cipales propiedades de los superconductores fueran más transparentes antes
de que apareciera la teoŕıa BCS en 1957. La observación de una disminución
exponencial del calor espećıfico a bajas temperaturas mostró que el espectro
de enerǵıa de un superconductor posee un gap. Esto contrasta con el espectro
de un metal normal, que no posee ningún gap; recuérdese que excitar un par
electrón-hueco cerca de la superficie de Fermi le cuesta muy poca enerǵıa al
metal.

Otro experimento clave fue la observación del efecto isótopo. Al estudiar
la temperatura cŕıtica Tc para la transición al estado superconductor de ma-
teriales que contienen un isótopo de elemento diferente, se encontró que Tc

decae con M−1/2, donde M es la masa del isótopo. Dado que esta masa está
relacionada solo con los iones que forman la red, esta observación experimen-
tal indicó que la red, y por lo tanto los fonones, deben desempeñar un papel
clave en la formación del estado superconductor.

El punto principal de la teoŕıa BCS es que la interacción electrón-electrón,
que resulta atractiva al estar mediada por los fonones da lugar a pares de
Cooper, es decir, estados ligados formados por dos electrones de espines y
momentos opuestos. Estos pares de Cooper forman entonces un estado fun-
damental macroscópico coherente, que presenta un gap en su espectro y un
diamagnetismo perfecto. La clave para la formación de pares de Cooper es
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la existencia de una superficie de Fermi bien definida, como veremos más
adelante.

5.2. Un par de Cooper
Gran parte de la f́ısica involucrada en la teoŕıa BCS, en especial la expli-

cación del surgimiento de una atracción entre electrones, se puede discutir
en el contexto de un problema simple de mecánica cuántica. Consideremos
dos electrones que interactúan entre śı a través de un potencial atractivo
V (r1 − r2). La ecuación de Schrödinger viene dada por:C

−
~2∇2

r1

2m −
~2∇2

r2

2m + V (r1 − r2)
D

Ψ (r1, r2) = EΨ (r1, r2) , (5.17)

donde Ψ (r1, r2) es la función de onda y E la enerǵıa del par. Como es
habitual, cambiamos las variables a la coordenada relativa r = r1 − r2 ya la
posición del centro de masa R = 1

2 (r1 + r2). En términos de estas nuevas
variables, la ecuación de Schrödinger se convierte en:C

−~2∇2
R

2m∗ − ~2∇2
r

2µ + V (r)
D

Ψ(r,R) = EΨ(r,R), (5.18)

donde m∗ = 2m es la masa total y µ = m/2 es la masa reducida. Como
el potencial no depende de la coordenada del centro de masa R, buscamos
soluciones del a forma:

Ψ(r,R) = ψ(r)eiK·R, (5.19)

lo que da lugar a la ecuación:C
−~2∇2

r

2µ + V (r)
D
ψ(r) = Ẽψ(r), (5.20)

donde definimos Ẽ = E − ~2K2

2m∗ . Para un valor dado de Ẽ, la enerǵıa E más
baja es aquella para la que K = 0, es decir, para la que se anula el mo-
mento del centro de masa. Consideremos entonces el centro de masa está
quieto, y que E = Ẽ. En este caso, los dos electrones tienen momentos
opuestos. Dependiendo de la simetŕıa de la parte espacial de la función de
onda, par ψ(r) = ψ(−r) o impar ψ(r) = −ψ(−r), los espines de los electro-
nes formarán un estado singlete o triplete, respectivamente, para asegurar la
antisimetŕıa de la función de onda total.
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Para proceder, tomamos la transformada de Fourier de la ecuación de
Schrödinger, introduciendo

ψ(k) =
ˆ
d3r ψ(r)e−ik·r, (5.21)

y una expresión análoga para la transformada de Fourier del potencial V (r),
de donde obtenemos

2εkψ(k) +
ˆ

d3kÍ

(2π)3 V (k − kÍ)ψ (kÍ) = Eψ(k), (5.22)

donde εk = ~2k2

2m
es la enerǵıa de los electrones libres. Reescribamos esta

ecuación en la forma

ψ(k) = 1
E − 2εk

ˆ
d3kÍ

(2π)3V (k − kÍ)ψ (kÍ) . (5.23)

Supongamos ahora que la atracción entre electrones proviene de la me-
diación de fonones, y para fijar ideas tomemos un modelo simple en el cual
el potencial es constante en el espacio k. Pero dado que los fonones poseen
un una frecuencia máxima de excitación fijada por la frecuencia de Debye,
ωD, si la enerǵıa de los electrones individuales es mayor que ~ωD los fonones
no serán efectivos en acoplarlos, en consecuencia, el potencial debe anularse
cuando los valores de k involucrados impliquen que εk sea mayor que ~ωD.
Es decir, consideremos un potencial que es atractivo V (k − kÍ) = −V0 para
εkÍ , εk < ~ωD y cero en caso contrario. Obtenemos

ψ(k) = −V0

E − 2εk

ˆ
εkÍ <~ωD

d3kÍ

(2π)3ψ (kÍ) , (5.24)

= C
−V0

E − 2εk
, (5.25)

donde C contiene a la integral en el lado derecho de la primera ĺınea, que da
lugar a una constante independiente de k. Si ahora integremos a ambos lados
en la región restringida εk < ~ωD, la constante aparece en ambos miembros
y puede eliminarse, dando lugar a la ecuación

1
V0

= −
ˆ

εk<~ωD

d3k

(2π)3
1

E − 2εk
, (5.26)

que representa la ecuación para las autoenerǵıas E. Para resolverla es con-
veniente introducir la densidad de estados de los electrones libres,

ρ(ε) =
ˆ

d3k

(2π)3 δ(ε− εk) (5.27)
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que permite escribir (5.26) en la forma

1
V0

= −
ˆ ~ωD

0
dε

ρ(ε)
E − 2ε, (5.28)

Utilizamos el resultado para la densidad de estados

ρ(ε) = 1
2π2

32m
~2

43/2 √
ε (5.29)

y realizando la integral obtenemos

1
V0

= 1
2π2

32m
~2

43/2
ñ~ωD −

ó
−E
2 arctan

ó2~ωD

−E

 . (5.30)

Esta ecuación determina el valor de la enerǵıa del estado ligado E < 0
como función del potencial de atracción V0. Si tomamos el ĺımite E → 0−, el
segundo término se anula, y vemos que el valor mı́nimo de V0 para tener un
estado ligado es

V0,mı́n = 2π2
√
~ωD

~2

2m

B3/2

(5.31)

Por lo tanto, encontramos que habrá un estado ligado solo si la interacción
atractiva es lo suficientemente fuerte.

No obstante, en este ejercicio pasamos por alto un aspecto importan-
te: en el sistema real de muchos cuerpos, solo los electrones cercanos al ni-
vel de Fermi se verán afectados por la interacción atractiva. Para imitar
esta propiedad, consideramos un potencial atractivo V (k − kÍ) = −V0 pa-
ra los estados electrónicos desocupados por encima de la enerǵıa de Fermi
εF , εkÍ − εF , εk − εF < ~ωD. Esto significa que debemos repensar los ĺımites
de integración, y reescribir la integral en la ecuación (5.28) con ĺımites εF

y εF + ~ωD. Más aún, como ~ωD ¹ εF , podemos aproximar la densidad de
estados por su valor en εF , y entonces la ecuación para E se escribe

1
V0

≈ −ρ(εF )
ˆ εF+~ωD

εF

dε
1

E − 2ε, (5.32)

= ρ(εF )
2 ln

32εF − E + 2ωD

2εF − E

4
. (5.33)

En el ĺımite de V0ρ (εF ) ¹ 1, E está cerca de 2εF , y podemos aproximar
2εF − E + 2ωD ≈ 2ωD. Definiendo la enerǵıa de enlace Eb ≡ 2εF − E,
obtenemos:

Eb = 2ωDe
− 2
V0ρ(εF ) . (5.34)
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Se formará entonces un estado ligado independientemente de cuán pequeña
sea la interacción atractiva V0, denominado par de Cooper. Esto es funda-
mentalmente diferente del caso de electrones libres que consideramos antes,
donde la interacción atractiva tiene que superar un umbral para crear un
estado ligado. La propiedad clave responsable de este comportamiento dife-
rente es la existencia de una superficie de Fermi bien definida, que separa los
estados que están ocupados de los estados que no están ocupados.

La enerǵıa del estado ligado Eb es exponencialmente pequeña en 1/V0ρ(εF ),
lo que, como veremos más adelante, dará lugar a una temperatura cŕıtica muy
baja. Más aún, en los buenos metales, como oro, plata y cobre, el acoplamien-
to electrón fonón es muy pequeño (lo que los vuelve buenos conductores al
disminuir la dispersión de electrones por los iones) y por lo tanto la tempe-
ratura cŕıtica es mı́nima y la superconductividad indetectable.

Para finalizar este apartado, recordemos que la enerǵıa total en el caso
de que el centro de masa tenga un momento finito K viene dada por:

E = EK=0 + ~2K2

4m ,

= 2εF − Eb + ~2K2

4m ,

(5.35)

y por lo tanto, en el ĺımite E → 2εF , todav́ıa podemos obtener un estado
ligado con momento de centro de masa finito:

K = 2
~

ñ
mEb, (5.36)

que da lugar a una densidad de corriente finita:

J = nse
~K
m

= 2nse

ó
Eb

m
. (5.37)

5.3. Muchos pares de Cooper: estado BCS
En la sección anterior vimos que dos electrones cerca del nivel de Fermi

son inestables frente a la formación de un par de Cooper para una interac-
ción atractiva arbitrariamente pequeña. Esperamos entonces que el sistema
electrónico de muchos cuerpos sea inestable hacia la formación de un nuevo
estado fundamental, donde proliferen estos pares de Cooper. En esta sección,
estudiaremos este estado BCS utilizando la teoŕıa de campo medio.
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5.3.1. Hamiltoniano efectivo
Para formular una teoŕıa microscópica de la superconductividad conside-

remos el siguiente Hamiltoniano efectivo de muchas part́ıculas:

H =
Ø
kσ

ξkc
†
kσckσ + 1

Ω
Ø
kkÍ

VkkÍc†
k↑c

†
−k↓c−kÍ↓ckÍ↑. (5.38)

Aqúı, c†
kσ crea un electrón con momento k y esṕın σ, y ya incluimos el poten-

cial qúımico al definir ξk = εk−µ. El segundo término describe la destrucción
de un par de Cooper (dos electrones con momento y esṕın opuestos) y la
subsiguiente creación de otro par de Cooper. Observemos que este Hamilto-
niano posee una forma reminiscente del Hamiltoniano general estudiado en
las ecuaciones (3.74) y (3.98), sólo que sólo posee términos donde los pares
se crean con espines opuestos, y además la interacción pasada al espacio de
coordenadas no se escribe como una función simple de la distancia. Esto se
debe a que es el resultado de la atracción efectiva generada por la media-
ción de los fonones. Como intervienen los fonones, al igual que en el caso de
un solo par de cooper visto anteriormente, sólo pueden acoplarse electrones
cuyo momento esté restringido de modo que su enerǵıas permanezca menor
que la frecuencia de Debye, es decir, el potencial V satisface que VkkÍ = 0 si
|ξk| > ~ωD o |ξkÍ | > ~ωD

Para continuar, realizamos el desacople de campo medio habitual del
término cuártico1

éc†
k↑c

†
−k↓c−kÍ↓ckÍ↑ê ≈ éc†

k↑c
†
−k↓êc−kÍ↓ckÍ↑ + c†

k↑c
†
−k↓éc−kÍ↓ckÍ↑ê
− éc†

k↑c
†
−k↓êéc−kÍ↓ckÍ↑ê (5.41)

El valor medio éc†
k↑c

†
−k↓ê podŕıa no anularse si el estado fundamental super-

conductor. Aśı, definimos la función del gap:

∆k = − 1
Ω
Ø
kÍ
VkkÍéc−kÍ↓ckÍ↑ê (5.42)

Por ahora, no hay razón para llamarlo gap, pero discutiremos su significado
muy pronto.

1La aproximación de campo medio consisten en reemplazar un producto de operadores A
y B de acuerdo a

AB ≈ éAêB +AéBê − éAêéBê (5.39)
Nótese que el error introducido al hacer este reemplazo es

AB − éAêB −AéBê + éAêéBê = (A− éAê)(B − éBê), (5.40)

es decir, es de segundo orden en las desviaciones de A y B respecto de sus valores medios.

Materia cuántica - C.A. Lamas, A. Iucci (autores)

Facultad de Cs. Exactas  |  UNLP |   152



Superconductividad

El Hamiltoniano efectivo se convierte en:

H =
Ø
kσ

ξkc
†
kσckσ −

Ø
k

1
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
2

+
Ø
k

∆kéc†
k↑c

†
−k↓ê (5.43)

Obsérvese que es de la forma general (3.129) que introducimos en el caṕıtulo
3. Posee términos anómalos, y por lo tanto para resolverlo debemos intro-
ducir alguna transformación que mezcle electrones con huecos. Empleamos
la transformación de Bogoliubov del tipo de las ecuaciones (3.144) y (3.145)
y en particular, definimos nuevos operadores fermiónicos γkσ y coeficientes
uk, vk en la forma:

ck↑ = u∗
kγk↑ + vkγ

†
−k↓

c†
−k↓ = ukγ

†
−k↓ − v∗

kγk↑
(5.44)

Para que se satisfagan las relaciones de conmutación fermiónica, se debe
verificar la condición de normalización:

|uk|2 + |vk|2 = 1 (5.45)

que implica, además, que la transformación resulta unitaria. Sustituyendo en
el Hamiltoniano efectivo se obtiene para el término de enerǵıa cinética:

Ø
kσ

ξkc
†
kσckσ =

Ø
k

ξk
è
c†
k↑ck↑ + c†

−k↓c−k↓
é

=
Ø
k

ξk
è 1

|uk|2 − |vk|2
2 1
γ†
k↑γk↑ + γ†

−k↓γ−k↓
2

+ 2|vk|2 + 2ukvkγ†
k↑γ

†
−k↓ + 2u∗

kv
∗
kγ−k↓γk↑

é (5.46)

y para el de apareamiento:

−
Ø
k

1
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
2

=
Ø
k

è
(∆kukv

∗
k + ∆∗

ku
∗
kvk)

1
γ†
k↑γk↑ + γ†

−k↓γ−k↓
2

− (∆kukv
∗
k + ∆∗

ku
∗
kvk)

é
−
Ø
k

è 1
∆ku

2
k − ∆∗

kv
2
k

2
γ†
k↑γ

†
−k↓

+
1
∆∗

k (u∗
k)2 − ∆k (v∗

k)2
2
γ−k↓γk↑

é
(5.47)

De este modo, recolectando términos de igual tipo en potencias de γ y γ†, el
Hamiltoniano efectivo adquiere la forma

H = H0 +H1 +H2 (5.48)
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con:
H0 =

Ø
k

è
2ξk|vk|2 − ∆kukv

∗
k − ∆∗

ku
∗
kvk + ∆kéc†

k↑c
†
−k↓ê

é
H1 =

Ø
k

è
ξk
1
|uk|2 − |vk|2

2
+ ∆kukv

∗
k + ∆∗

ku
∗
kvk

é 1
γ†
k↑γk↑ + γ†

−k↓γ−k↓
2

H2 =
Ø
k

è1
2ξkukvk − ∆ku

2
k + ∆∗

kv
2
k

2é 1
γ†
k↑γ

†
−k↓

2
+ h.c. ,

(5.49)
Para diagonalizar el Hamiltoniano, debemos encontrar los coeficientes uk, vk
que hace que el término no diagonal H2 se anule. Esto se consigue imponiendo
la condición cuadrática

2ξkukvk − ∆ku
2
k + ∆∗

kv
2
k = 0. (5.50)

Resolviendo para el cociente vk/uk se obtiene:

vk
uk

=

ñ
ξ2
k + |∆k|2 − ξk

∆∗
k

, (5.51)

donde elegimos solo la ráız positiva para asegurarnos de que la enerǵıa del
estado BCS sea un mı́nimo y no un máximo. Obsérvese que debido a que
el numerador es real, la fase de la función de gap compleja ∆k debe ser la
misma que la fase relativa entre vk y uk. Dado que podemos establecer la
fase de uk en cero sin pérdida de generalidad, se deduce que las fases de vk
y ∆k son las mismas.

Usando la condición de normalización |uk|2 + |vk|2 = 1, obtenemos:

|uk|2 = 1
1 + | vk

uk
|2

= 1
2

|∆k|2

ξ2
k + |∆k|2 − ξk

ñ
ξ2
k + |∆k|2

= 1
2

1 + ξkñ
ξ2
k + |∆k|2

 (5.52)

de lo que se sigue que

|vk|2 = 1
2

1 − ξkñ
ξ2
k + |∆k|2

 . (5.53)

A continuación introducimos la forma expĺıcita de u y v en las expresiones
para H0 y H1, Usando las relaciones anteriores, obtenemos:

H0 =
Ø
k

è
2ξk|vk|2 − ∆kukv

∗
k − ∆∗

ku
∗
kvk + ∆kéc†

k↑c
†
−k↓ê

é
=
Ø
k

3
ξk −

ñ
ξ2
k + |∆k|2 + ∆kéc†

k↑c
†
−k↓ê

4
,

(5.54)
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y
H1 =

Ø
k

è
ξk
1
|uk|2 − |vk|2

2
+ ∆kukv

∗
k + ∆∗

ku
∗
kvk

é 1
γ†
k↑γk↑ + γ†

−k↓γ−k↓
2

=
Ø
k

ñ
ξ2
k + |∆k|2

1
γ†
k↑γk↑ + γ†

−k↓γ−k↓
2
.

(5.55)
El Hamiltoniano efectivo resulta entonces de la forma

H =
Ø
kσ

Ekγ
†
kσγkσ + E0, (5.56)

donde hemos introducido las enerǵıas de los estados de cuasipart́ıculas,

Ek =
ñ
ξ2
k + |∆k|2, (5.57)

y donde E0 es la enerǵıa del estado fundamental:
E0 =

Ø
k

1
ξk − Ek + ∆kéc†

k↑c
†
−k↓ê

2
. (5.58)

Queda claro a partir de la Ec. (5.57) por qué llamamos a ∆k la función
del gap: incluso en el nivel de Fermi, donde ξk = 0, el espectro de enerǵıa
del superconductor tiene una gap de tamaño |∆k|. Por lo tanto, necesitamos
entregar una enerǵıa mı́nima de 2|∆k| al sistema para excitar sus cuasi-
part́ıculas, que son descritas por los operadores γ†

kσ y que son más que los
Bogoliubones introducidos en la sección 3.3.5, y que de invertir las Ecs. (5.44)
se observa que son mezcla de electrones y huecos:

γk↑ = ukck↑ − vkc
†
−k↓

γ†
−k↓ = u∗

kc
†
−k↓ + v∗

kck↑
(5.59)

Observemos de las Ecs. (5.53) y (5.52) que describen el comportamiento de
uk y vk, que ∆k → 0, |uk|2 → 1 para ξk > 0 y |uk|2 → 0 para ξk < 0 mientras
que |vk|2 → 1 para ξk < 0 y |vk|2 → 0 para ξk > 0. Por lo tanto, en el estado
normal, crear una excitación de Bogoliubon corresponde a crear un electrón
para enerǵıas por encima del nivel de Fermi y crear un agujero (destruyendo
un electrón) de momento y esṕın opuestos para enerǵıas por debajo del nivel
de Fermi. En el estado superconductor, donde tanto u como v son distintos
de cero, un Bogoliubon se convierte en una superposición de un electrón y
un estado de hueco.

Observemos que, tal como esperábamos, el Hamiltomniano BCS no con-
serva el número de part́ıculas, pero śı su paridad. Es interesante observar
además que el Hamiltoniano original posee simetŕıa SU(2) y por lo tanto, el
spin se conserva y es un buen número cuántico. Esto significa que aśı como
los electrones poseen spin, los Bogoliubones también, y por ello podemos
asignarles la etiqueta σ tal como hicimos en la ecuación (5.59).
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5.3 Muchos pares de Cooper: estado BCS

5.3.2. Estado fundamental: Función de onda BCS
El estado de mı́nima enerǵıa corresponde al vaćıo de Bogoliubones, |0γê,

que llamaremos función de onda BCS:

γkσ|ΨBCSê = 0 (5.60)

(recuérdese que en presencia de términos anómalos el mismo no es invariante)
¿Cómo se puede escribir esta función de onda en términos del vaćıo original
de electrones |0ê? Para averiguarlo, escribimos la función de onda BCS como
una combinación arbitraria de pares de Cooper, en la forma:

|ΨBCSê = W
Ù
q

eαqc†
q↑c†

−q↓|0ê (5.61)

donde W es una constante de normalización y αq es una función a determinar.
Para hacerlo, es suficiente considerar solo una especie de esṕın. Escrita en
términos de los operadores de electrones, la condición (5.60) se convierte en:

ukck↑|ΨBCSê = vkc
†
−k↓|ΨBCSê (5.62)

Claramente entonces, cuando ck↑ actúa sobre la función de onda anterior, el
único factor dentro del producto que no conmuta con ck↑ es aquel para el
cual q = k. Centrémonos en este término. Definiendo θk = αkc

†
k↑c

†
−k↓ para

simplificar la notación, tenemos:

ck↑e
αkc†

k↑c†
−k↓|0ê = ck↑e

θk |0ê =
∞Ø

n=1

ck↑θ
n
k

n! |0ê (5.63)

Por otro lado, θk satisface la relación de conmutación Ahora tenemos la
relación de conmutación

[ck↑, θk] = αk

î
ck↑, c

†
k↑

ï
c†

−k↓ = αkc
†
−k↓, (5.64)

donde usamos que [A,BC] = {A,B}C − B{A,C}. Entonces, de ck↑|0ê = 0,
se sigue que:

ck↑θk|0ê = αkc
†
−k↓|0ê (5.65)

ck↑θ
2
k|0ê = ([ck↑θk, θk] + θkck↑θk) |0ê (5.66)

= θk ([ck↑, θk] + ck↑θk) |0ê (5.67)
= 2θkαkc

†
−k↓|0ê, (5.68)

y en general,
ck↑θ

n
k|0ê = nθn−1

k αkc
†
−k↓|0ê. (5.69)
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Por lo tanto, obtenemos

ck↑e
θk|0ê = αk

∞Ø
n=1

θn−1
k

(n− 1)!c
†
−k↓|0ê. (5.70)

Ahora bien, del conmutadorè
θk, c

†
−k↓

é
= αk

è
c†
k↑c

†
−k↓, c

†
−k↓

é
= 0 (5.71)

llegamos al resultado:

ck↑e
θk |0ê = αkc

†
−k↓

∞Ø
nÍ=0

θnÍ
k

nÍ! |0ê = αkc
†
−k↓e

θk (5.72)

Sustituyendo en la Ec. (5.62) se obtiene

ukck↑|ΨBCSê = ukαkc
†
−k↓|ΨBCSê = vkc

†
−k↓|ΨBCSê (5.73)

lo que implica que la función αk viene dada por:

αk = vk
uk
. (5.74)

La función de onda BCS resulta entonces

|ΨBCSê = W
Ù
k

e
vk
uk

c†
k↑c†

−k↓|0ê

= W
Ù
k

3
1 + vk

uk
c†
k↑c

†
−k↓

4
|0ê

(5.75)

donde usamos el hecho de que, debido al principio de exclusión de Pauli,1
c†
k↑c

†
−k↓

2n
= 0 para n > 1. Para normalizar esta función de onda, notamos

que:

é0|(u∗
k+v∗

kck↑c−k↓)(uk + vkc
†
k↑c

†
−k↓)|0ê (5.76)

= é0|
1
|uk|2 + |vk|2ck↑c

†
k↑c−k↓c

†
−k↓

2
|0ê (5.77)

= é0|
1
|uk|2 + |vk|2

1
1 − c†

k↑ck↑
2 1

1 − c†
k↑c−k↓

22
|0ê (5.78)

= é0|
1
|uk|2 + |vk|2

2
|0ê (5.79)

Por lo tanto, la función de onda BCS normalizada finalmente se escribe:

|ΨBCSê =
Ù
k

1
uk + vkc

†
k↑c

†
−k↓

2
|0ê (5.80)

Recuérdese que la fase de los pares de Cooper está determinada únicamente
por el coeficiente vk, y esta fase coincide con la fase de la función gap ∆k.
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5.4 La ecuación del gap

5.4. La ecuación del gap
Todav́ıa necesitamos determinar la función del gap ∆k, dada de manera

autoconsistente por la Ec. (5.42). Usando la transformación de Bogoliubov
(5.44), tenemos:

∆k = − 1
Ω
Ø
kÍ
VkkÍu∗

kÍvkÍ

1
éγ−kÍ↓γ

†
−kÍ↓ê − éγ†

kÍ↑γkÍ↑ê
2
. (5.81)

Los Bogoliubones poseen una distribución de Fermi-Dirac con dispersión Ek,

éγ†
kÍ↑γkÍ↑ê = éγ†

−kÍ↓γ−kÍ↓ê = 1
eβEkÍ + 1 (5.82)

lo que arroja:

éγ−kÍ↓γ
†
−kÍ↓ê − éγ†

kÍ↑γkÍ↑ê = 1 − 2
eβEkÍ + 1 = tanh

3
EkÍ

2kBT

4
. (5.83)

Utilizamos además las ecs. (5.52) y (5.51), obteniendo:

u∗
kÍvkÍ = |uk|2 vk

Í

ukÍ
(5.84)

= ∆kÍ

2
ñ
ξ2
kÍ + |∆kÍ|2

, (5.85)

dando lugar finalmente a la ecuación de la gap:

∆k = − 1
Ω
Ø
kÍ

VkkÍ∆kÍ

2EkÍ
tanh

3
EkÍ

2kBT

4
. (5.86)

Ahora podemos estudiar para qué valores del potencial VkkÍ y de la tem-
peratura T obtenemos un gap distino de cero, y por lo tanto la solución BCS
discutida en la sección anterior. Para proceder, necesitamos discutir la forma
del potencial. Basados en los resultados para la interacción electrónica me-
diada por fonones, consideramos un potencial atractivo constante VkkÍ = −V0
en una capa de espesor ~ωD alrededor de la enerǵıa de Fermi, |ξk|, |ξkÍ| < ~ωD

(recuerde que ξk = εk −µ). Como el potencial no depende de k,kÍ, buscamos
una función de gap que también sea independiente de k y real, ∆k = ∆. Este
tipo de función de gap se denomina gap de onda s, ya que su dependencia
angular es la del armónico esférico Y00, constante. Obtenemos:

1 = V0

Ω
Ø

k,|ξk<~ωD

1
2Ek

tanh
3
Ek

2kBT

4
(5.87)
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Introduciendo la densidad de estados por esṕın ρ(ε), análoga a la Ec.
(5.27), pero en tamaño finito, y teniendo en cuenta al potencial qúımico,

ρ(ε) = 1
Ω
Ø
k

δ(ε− ξk), (5.88)

obtenemos:
1 = V0

ˆ ~ωD

−~ωD

ρ(ε)dε
2
√
ε2 + ∆2

tanh
A√

ε2 + ∆2

2kBT

B

≈ V0ρF

ˆ ~ωD

0

dε√
ε2 + ∆2

tanh
A√

ε2 + ∆2

2kBT

B (5.89)

donde hemos utilizado la forma expĺıcita de la dispersión, eq. (5.57), y en la
última ĺınea, usamos el hecho de que ~ωD ¹ µ para aproximar la densidad de
estados dentro de la integral por su valor en el nivel de Fermi. Esta ecuación
autoconsistente da la función gap para una temperatura arbitraria ∆(T );
estudiemos las comportamientos ĺımites. A T = 0, ya que tanh(x → ∞) → 1,
tenemos:

1 = V0ρF

ˆ ~ωD

0

dεñ
ε2 + ∆2

0

, (5.90)

donde denotamos ∆0 ≡ ∆(T = 0). La evaluación de la integral es directa y
ad como resultado:

1
V0ρF

= arcsinh
A
~ωD

∆0

B
. (5.91)

En la mayoŕıa de los casos, ∆0 es del orden de unos pocos meV, mucho
menor que ~ωD, que es del orden de unas pocas centenas de meV. Por lo
tanto, podemos expandir arcsinh(x) a x grande para obtener:

1
V0ρF

= ln
A

2~ωD

∆0

B
, (5.92)

que finalmente permite obtener el gap

∆0 = 2~ωDe
− 1
V0ρF . (5.93)

De este modo, recuperamos un resultado similar a nuestro análisis simplifica-
do de la ecuación de Schrödinger: una interacción atractiva arbitrariamente
pequeña V0 da lugar a un gap finito a temperatura cero, lo que muestra que el
sistema es inestable hacia la formación del estado superconductor BCS. Tam-
bién vemos que la superconductividad es un efecto no perturbativo, dada la
dependencia no anaĺıtica de ∆ con V0.
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5.4 La ecuación del gap

¿Cuál es la temperatura cŕıtica Tc para la cual aparece por primera vez un
gap distinto de cero? Para determinarlo, volvamos a la Ec. (5.89) y tomemos
∆ → 0, obteniendo

1
V0ρF

=
ˆ ~ωD

0

dε

ε
tanh

3
ε

2kBTc

4
=
ˆ ~ωD

2kBTc

0
dx

tanh x
x

(5.94)

Evaluamos la integral por partes y usamos el hecho de que ~ωD º kBTc:
ˆ ~ωD

2kBTc

0
dx

tanh x
x

≈ (tanh x ln x)
~ωD

2kBTc
0 −

ˆ ∞

0
dx

ln x
cosh2 x

≈ ln
A

~ωD

2kBTc

B
− ln

3
π

4eγE

4
= ln

A
2eγE~ωD

πkBTc

B
,

(5.95)

donde γE ≈ 0,577 es la constante de Euler. La temperatura de transición
superconductora viene entonces dada por:

Tc = 2eγE

π

~ωD

kB

e
− 1
V0ρF , (5.96)

que nuevamente depende de e− 1
V0ρF , siendo distinto de cero para cualquier

V0 arbitrariamente pequeño. Combinando Ecs. (5.93) y (5.96) dan la relación
universal entre el gap a temperatura cero y la temperatura cŕıtica:

∆0

kBTc

≈ 1,76. (5.97)

Este resultado es remarcable, porque no depende de la interacción V0 ni de la
frecuencia de los fonones ωD. Finalmente, puede mostrarse que en cercańıas
del punto de transición, el gap depende de la temperatura en la forma

∆2 ≈ 8π2

7ζ(3)k
2
BTc (Tc − T ) (5.98)

donde ζ(x) es la función zeta de Riemann. Utilizando la relación entre Tc y
∆0, ec. (5.97) se obtiene

∆(T )
∆(0) ≈ 1, 73

ó
1 − T

Tc

, (5.99)

de nuevo, una relación universal. La figura 5.1 muestra la forma del gap
∆(T )/∆0 calculada numéricamente en función de T/Tc. El comportamiento
(1 − T/Tc)

1
2 es caracteŕıstico de transiciones de fase de segundo orden.
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Figura 5.1: Gap superconductor como función de la temperatura.

Uno de los primeros éxitos de la teoŕıa BCS fue la verificación de que
la relación (5.97) se cumple aproximadamente en la mayoŕıa de los super-
conductores conocidos en ese momento. La teoŕıa BCS también aborda el
efecto isótopo que analizamos anteriormente: Tc en la ecuación (5.96) depen-
de linealmente de la frecuencia de Debye ωD, que a su vez vaŕıa como la
ráız cuadrada inversa de la masa iónica M , es decir, Tc ∝ ωD ∝ M−1/2, de
acuerdo con las observaciones experimentales.

5.4.1. Propiedades termodinámicas: calor espećıfico
Una caracteŕıstica clave de la teoŕıa BCS es la presencia de una gap de

enerǵıa ∆ en el espectro. Tal gap se manifiesta en varias cantidades termo-
dinámicas, como el calor espećıfico a temperaturas y la densidad de estados
ρ(ε). Esta último se puede medir experimentalmente a través de microscoṕıa
de efecto túnel. En el estado superconductor tenemos, para enerǵıas positivas
ε > 0 (una vez más, nos centramos en la densidad de estados por esṕın):

ρ(ε) =
ˆ

d3k

(2π)3 δ
3
ε−

ñ
∆2 + ξ2

k

4
=
ˆ
dξ ρ0(ξ)δ

3
ε−

ñ
∆2 + ξ2

4
= ρF

ˆ
dξ δ

3
ε−

ñ
∆2 + ξ2

4
,

(5.100)

donde ρ0(ξ) es la densidad de estados de la fase normal, que se ha aproxi-
mado por su valor en el nivel de Fermi ya que estas son las enerǵıas que nos
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interesan. Claramente, el argumento de la función delta solo puede ser cero si
ε > ∆, es decir, no hay estados dentro de la gap, como se esperaba. Usando
que

δ
3
ε−

ñ
∆2 + ξ2

4
=
Ø
±

δ
1
ξ ±

√
ε2 − ∆2

2
| ξ√

∆2+ξ2
|

(5.101)

obtenemos
ρ(ε) = 2ρF ε√

ε2 − ∆2
θ(ε− ∆) (5.102)

donde θ(x) es la función escalón habitual. El factor 2 aqúı es una consecuen-
cia del hecho de que cuando ∆ → 0, la enerǵıa E → |ξ|, es decir, contiene dos
ramas de excitaciones part́ıcula-hueco, duplicando la densidad de estados. Si
usamos esta expresión para la densidad de estados dentro del estado super-
conductor, es sencillo mostrar que el calor espećıfico a bajas temperaturas
muestra un comportamiento del tipo C ∼ e−∆/kBT . La transición supercon-
ductora también afecta el calor espećıfico en Tc. Para investigarlo, podŕıamos
en principio calcular la enerǵıa interna total debida a las excitaciones de las
cuasipart́ıculas,

Eint = E0 +
Ø
kσ

Ekéγ†
kσγkσê (5.103)

y evaluar la derivada ∂Eint/∂T . El problema es que la enerǵıa del estado
fundamental E0 también depende de la temperatura. Para evitar este pro-
blema, es más fácil calcular la entroṕıa del gas fermiónico libre formado por
las excitaciones de Bogoliubones, de acuerdo a la fórmula usual

S = −kB

Ø
kσ

[(1 − fk) ln (1 − fk) + fk ln fk] , (5.104)

donde fk ≡ éγ†
kσγkσê = 1/

1
eβEk + 1

2
es la función de Fermi-Dirac. El calor

espećıfico (por unidad de volumen) viene dado por:

C = T

V

dS

dT
= T

V

dβ

dT

dS

dβ
= − β

V

dS

dβ
(5.105)

Entonces,
C = kBβ

V

Ø
kσ

dfk
dβ

[− ln (1 − fk) − 1 + ln fk + 1]

= kBβ

V

Ø
kσ

dfk
dβ

ln
C

1
eβEk + 1

eβEk + 1
eβEk

D

= −2kBβ
2

V

Ø
k

dfk
dβ

Ek

(5.106)
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La derivada total se escribe

dfk
dβ

= ∂fk
∂β

+ ∂fk
∂Ek

∂Ek

∂β
= Ek

β

∂fk
∂Ek

+ ∂fk
∂Ek

1
2Ek

∂∆2

∂β
(5.107)

donde usamos el hecho de que Ek =
ñ
ξ2
k + ∆2. Por lo tanto, obtenemos

C = 2kBβ

V

Ø
k

− ∂fk
∂Ek

BA
E2

k + β

2
∂∆2

∂β

B
. (5.108)

Analicemos esta expresión cerca de Tc. Por encima de la temperatura cŕıtica,
∆2 = 0 y Ek → |ξk|. Como ∂fk/∂ξk es una función par de ξk, tenemos
∂fk
∂|ξk| = ∂fk

∂ξk
. Usando la expansión de Sommerfeld:

− ∂fk
∂ξk

≈ δ(ξ) + π2

6β2 δ
ÍÍ(ξ) (5.109)

obtenemos, en el estado normal

C
1
Tc + 0+

2
= π2kB

3β

ˆ
dξξ2ρ(ξ)δÍÍ(ξ)

= π2kB

3β
∂2

∂ξ2

è
ξ2ρ(ξ)

é
ξ=0

=
A

2π2k2
BρF

3

B
Tc ≡ γTc

(5.110)

Como era de esperar, recuperamos el resultado del gas de Fermi libre
(recuérdese que ρF aqúı es la densidad de estados por esṕın). Justo por
debajo de Tc, podemos volver a tomar Ek → |ξk| y ∂fk

∂Ek
= ∂fk

∂ξk
, pero ahora

∆2 es distinto de cero. Por lo tanto, obtenemos:

C
1
Tc + 0−

2
= C

1
Tc + 0+

2
+ kBβ

2
A
∂∆2

∂β

B
Tc

ˆ
dξ −∂fk

∂ξ

B
ρ(ξ)

= C
1
Tc + 0+

2
+ ρF

A
−∂∆2

∂T

B
Tc

(5.111)

es decir, en Tc el calor espećıfico es discontinuo, mostrando un salto ∆C ≡
C (Tc + 0−) − C (Tc + 0+):

∆C = ρF −∂∆2

∂T

B
Tc

(5.112)
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5.5 Ecuación de London y efecto Meissner

Cerca de Tc, la función de gap se comporta de acuerdo a la ec. (5.98), y
entonces obtenemos la siguiente relación universal entre el salto de calor
espećıfico y su valor en el estado normal, dado por la Ec. (5.110):

∆C
γTc

= 12
7ζ(3) ≈ 1,43. (5.113)

La observación experimental de esta relación universal en varios materia-
les superconductores es otro éxito de la teoŕıa BCS.

5.5. Ecuación de London y efecto Meissner
Como ya hemos mencionado, la propiedad fundamental de un supercon-

ductor es el diamagnetismo perfecto, es decir, el efecto Meissner. Aqúı mostra-
remos que la teoŕıa BCS aborda naturalmente el efecto Meissner, justificando
microscópicamente la ecuación fenomenológica de London (5.14).

Consideremos el término cinético del Hamiltoniano en presencia de un
campo magnético. El momento canónico está dado por p+ e

c
A, donde A es

el potencial vector, y B = ∇ × A el campo magnético. En el lenguaje de
segunda cuantificación, introduciendo el operador de aniquilación fermiónico
crσ, el Hamiltoniano se escribe

H =
Ø

σ

ˆ
d3r c†

rσ

1
2m

3
p+ e

c
A
42
crσ (5.114)

Trabajamos en el calibre de Coulomb, donde p ·A ∝ ∇ ·A = 0. Entonces, al
orden más bajo en la teoŕıa de perturbaciones en A, tenemos H = H0 +H1,
donde H0 es el Hamiltoniano cinético en ausencia de campos externos y H1
viene dado por:

H1 = e

mc

Ø
σ

ˆ
d3r c†

rσ(A · p)crσ (5.115)

Ahora bien, el operador corriente total viene dado por:

Ĵ = − e

Ω
Ø

σ

ˆ
d3r c†

rσ

1
m

3
p+ e

c
A
4
crσ

= − e2

mc

A
1
Ω
Ø

σ

ˆ
d3r c†

rσcrσ

B
A− e

mΩ
Ø

σ

ˆ
d3r c†

rσpcrσ

(5.116)

Evaluando el valor medio en el estado fundamental (es decir, a temperatura
cero), obtenemos J = Jd + Jp con la denominada corriente diamagnética

Jd = −ne2

mc
A, (5.117)
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y la corriente paramagnética Jp = éĴpê, con

Ĵp = − e

mΩ
Ø

σ

ˆ
d3r c†

rσpcrσ. (5.118)

Si Jp fuera cero, recuperaŕıamos la ecuación de London (5.14) con todos
los electrones formando parte del condensado superconductor, ns = n. Sin
embargo, el estado fundamental en presencia de un campo no es la función
de onda BCS que discutimos anteriormente, que denotamos aqúı por |0ê,
debido a la contribución (5.114) a la enerǵıa cinética. Dado que este término
es lineal en A, en principio Jp también puede tener un término lineal en A
que podŕıa cancelar la contribución diamagnética Jd. Esto es exactamente lo
que sucede en el estado normal, donde no se observa el efecto Meissner.

En el estado superconductor, sin embargo, la situación es diferente. Usan-
do la teoŕıa de la perturbaciones a primer orden, el estado fundamental cam-
bia en la forma

|0ê → |0ê +
Ø
l Ó=0

|lêél|H1|0ê
E0 − El

, (5.119)

donde |lê son los estados excitados. Entonces, como é0|Ĵp|0ê = 0, tenemos
que

Jp =
Ø
l Ó=0

é0|Ĵp|lêél|H1|0ê
E0 − El

+
Ø
l Ó=0

é0|H1|lêél|Ĵp|0ê
E0 − El

. (5.120)

Analicemos el elemento de la matriz él|H1|0ê, que depende de A lineal-
mente. Cambiando la base de la representación de coordenadas a la de mo-
mentos, crσ = 1√

Ω
q

k ckσe
ik·r, y considerando la transformación de Fourier

A = q
qAqe

iq·r, tenemos:

H1 = ~e
mc

Ø
σ

Ø
kkÍq

A
1
Ω

ˆ
d3r ei(k−kÍ+q)·r

B
c†
kÍσ (Aq · k) ckσ

= ~e
mc

Ø
σ

Ø
kq

(k ·Aq) c†
k+qσckσ

. (5.121)

Para hacer contacto con la teoŕıa BCS, reescribimos este término de la
siguiente manera:

H1 = ~e
mc

Ø
kq

k ·Aqc
†
k+q↑ck↑ +

Ø
kq

k ·Aqc
†
k+q↓ck↓


= ~e
mc

Ø
kq

k ·Aqc
†
k+q↑ck↑ −

Ø
kÍq

(kÍ + q) ·Aqc
†
−kÍ↓c−kÍ−q↓


= ~e
mc

Ø
kq

k ·Aq

1
c†
k+q↑ck↑ − c†

−k↓c−k−q↓
2

(5.122)
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donde usamos el hecho de que, en el gauge de Coulomb, q ·Aq = 0. Usando la
transformación de Bogoliubov (5.44) y el hecho de que γkσ|0ê = 0, obtenemos
el elemento de matriz

él|c†
k+q↑ck↑|0ê = él|

1
uk+qγ

†
k+q↑ + v∗

k+qγ−k−q↓
2 1
u∗
kγk↑ + vkγ

†
−k↓

2
|0ê

= uk+qvkél|γ†
k+q↑γ

†
−k↓|0ê

, (5.123)

y

él|c†
−k↓c−k−q↓|0ê = él|

1
ukγ

†
−k↓ − v∗

kγk↑
2 1
u∗
k+qγ−k−q↓ − vk+qγ

†
k+q↑

2
|0ê

= −ukvk+qél|γ†
−k↓γ

†
k+q↑|0ê

(5.124)
Si ahora utilizamos las relaciones de anticonmutación de los operadores de
Bogoliubov, obtenemos

él|H1|0ê = ~e
mc

Ø
kq

k ·Aq (uk+qvk − ukvk+q) él|γ†
k+q↑γ

†
−k↓|0ê. (5.125)

Para obtener la conductividad, debemos tomar el ĺımite q → 0 para un campo
uniforme. De la ecuación anterior, es claro que él|H1|0ê → 0 en este ĺımite.
Además, dado que el espectro de enerǵıa tiene un hueco, |E0 − El| > 2∆ en
la Ec. (5.120) — esta es la rigidez del estado superconductor. Entonces, se
sigue que Jp = 0, y finalmente encontramos que

J = Jp + Jd = −ne2

mc
A, (5.126)

es decir, recuperamos la ecuación de London (5.117) y, en consecuencia, el
efecto Meissner. Al comparar con la Ec. (5.14), notamos que en el estado
fundamental (temperatura cero) todos los electrones participan en el con-
densado superconductor, es decir, ns = n, y no sólo los electrones cercanos
al nivel de Fermi. A temperatura finita, el número de electrones supercon-
ductores disminuye y eventualmente desaparece en Tc. Experimentalmente,
la densidad del superfluido ns se puede medir indirectamente a través de la
profundidad de penetración, de acuerdo a la Ec. (5.10).

5.6. Modelo de Ginzburg-Landau
Terminamos este caṕıtulo discutiendo brevemente otro enfoque para com-

prender la rigidez del estado superconductor y su relación con las corrientes
persistentes. Se basa en el modelo de Ginzburg-Landau, originalmente con-
cebido como un modelo fenomenológico para describir la superconductividad
y que luego Gor’kov demostró que se derivaba de la teoŕıa BCS [].
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La cantidad principal en el modelo de Ginzburg-Landau es el parámetro
de orden complejo Ψ(r), que puede interpretarse como la función de onda
superconductora. La idea es que, por debajo de Tc, el valor medio de la
función de onda superconductora no es cero, es decir, éΨê Ó= 0, mientras que
por encima de Tc sigue siendo cero. Sea F [Ψ(r)] la funcional que contiene
la diferencia entre la enerǵıa libre del estado superconductor y el estado
normal, F =

´
dr F [Ψ(r)]. De ello se deduce que el valor de equilibrio de

F debe ser positivo por encima de Tc (para que la enerǵıa libre del estado
normal sea menor que la enerǵıa libre del estado superconductor) y negativo
por debajo de Tc. Por lo tanto, se debe anular en en Tc. Cerca de Tc, se
puede expandir la enerǵıa libre F [Ψ(r)] en potencias de Ψ. Los requisitos
de simetŕıa y analiticidad imponen que los únicos términos posibles en la
expansión sean aquellos que involucran potencias pares de |Ψ|. Aśı, en el
caso de que Ψ(r) no dependa de la posición r, se obtiene:

F (Ψ,Ψ∗) = α|Ψ|2 + β

2 |Ψ|4. (5.127)

Esta es la llamada expansión de enerǵıa libre de Landau, con |Ψ|2 = ΨΨ∗ ya
que Ψ es una función compleja. El coeficiente cuártico β debe ser positivo, de
lo contrario la enerǵıa libre no estaŕıa acotada. Para entender el significado
del coeficiente cuadrático α, minimizamos la función de enerǵıa libre tomando
su derivada con respecto a Ψ∗ (se obtiene el mismo resultado si se toma la
derivada con respecto a Ψ), ya que sabemos que en equilibrio la enerǵıa libre
toma su valor mı́nimo:

∂F

∂Ψ∗ =αΨ + βΨ|Ψ|2 = 0

Ψ
1
a+ β|Ψ|2

2
= 0,

(5.128)

y por lo tanto, hay dos posibles soluciones:

|Ψ| = 0 o |Ψ| =
ó

−α

β
(5.129)

correspondientes al estado normal (Ψ = 0) y al estado superconductor (Ψ Ó=
0) respectivamente. La enerǵıa libre de cada solución viene dada por:

F = 0 or F = −α2

2β (5.130)

respectivamente. Por lo tanto, si existe la solución superconductora (es decir,
la que tiene Ψ Ó= 0), esta da lugar al mı́nimo global de la enerǵıa libre.
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5.6 Modelo de Ginzburg-Landau

Claramente, debido a que β > 0, esta solución solo puede ser f́ısica si α < 0.
En consecuencia, para α > 0 el estado normal representa el mı́nimo global y
Ψ = 0, mientras que para α < 0 el estado superconductor es el mı́nimo global
y Ψ Ó= 0. Este análisis nos permite concluir que α debe anularse y cambiar
de signo en Tc. El ansatz más simple consiste en una dependencia lineal:

α = a (T − Tc) . (5.131)

Reemplazando esta expresión en la solución, encontramos que

|Ψ| ∝
ñ
Tc − T , (5.132)

y por lo tanto, la función de onda superconductora se anula cuando el sistema
se aproxima a Tc desde abajo con una dependencia de tipo ráız cuadrada.

Consideremos ahora el caso más general, en el que la función Ψ(r) ya no
es constante. Los requisitos de simetŕıa y analiticidad imponen que solo las
derivadas de segundo orden puedan aparecer en el desarrollo de enerǵıa libre,
es decir, términos de la forma |∇Ψ|2. El coeficiente de este término debe ser
positivo, ya que al sistema le cuesta enerǵıa mantener una función de onda
no uniforme, lo cual está relacionado con el concepto de rigidez. Debido a que
el par de Cooper está cargado, debe acoplarse al campo electromagnético a
través del acoplamiento mı́nimo usual ~

i
∇ + 2e

c
A, donde A, donde el factor

2e se debe a que el par de Cooper tiene carga −2e. Por lo tanto, la funcional
de enerǵıa libre se convierte en:

F [Ψ(r),Ψ∗(r),A] = α|Ψ(r)|2 + β

2 |Ψ(r)|4

+ 1
4m | ~

i
∇ + 2e

c
A

B
Ψ|2 + B2

8π . (5.133)

El último término es sólo la enerǵıa del campo electromagnético. El hecho de
que tengamos 4m en lugar del habitual 2m se debe a que el par de Cooper
tiene dos electrones. Esta es la llamada expansión de la enerǵıa libre de
Ginzburg-Landau. Fue propuesto por primera vez por Ginzburg y Landau
por motivos fenomenológicos antes de la teoŕıa BCS. Más tarde, Gor’kov
demostró que esta enerǵıa libre se puede derivar directamente de la teoŕıa
microscópica BCS.

Derivemos ahora las ecuaciones de equilibrio. Téngase en cuenta que ne-
cesitamos minimizar la enerǵıa libre con respecto a Ψ y A. Para ello, es
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conveniente escribir expĺıcitamente el término del gradiente en la forma:

1
4m

A
~
i
∇Ψ + 2e

c
AΨ

B
·
A

−~
i
∇Ψ∗ + 2e

c
AΨ∗

B

=
Ø

i

~2

4m∂iΨ∂iΨ∗ −
Ø

i

i~e
2mc (Ψ∗∂iΨ − Ψ∂iΨ∗)Ai +

Ø
i

e2A2
i

mc2 |Ψ|2 (5.134)

donde expresamos la ecuación en términos de los componentes vectoriales del
operador ∇ y del potencial vector. Minimizando la funcional con respecto a
Ψ∗ se obtienen la ecuación de Euler-Lagrange:

αΨ + βΨ|Ψ|2 + 1
4m

A
~
i
∇ + 2e

c
A

B2

Ψ = 0. (5.135)

Nótese su similitud con la ecuación de Schrödinger. Para minimizar la funcio-
nal de enerǵıa libre con respecto aA, es conveniente reescribir la contribución
magnética a la enerǵıa libre en la forma:

B2

8π = |∇ ×A|2

8π = 1
8π

Ø
i,j,k,l,m

εijkεilm∂jAk∂lAm (5.136)

donde usamos el śımbolo de Levi-Civita εijk, y la ecuación de Euler-Lagrange
correspondiente se escribe

− i~e
2mc (Ψ∗∇Ψ − Ψ∇Ψ∗) + 2e2A

mc2 |Ψ|2 = − 1
4π∇ × (∇ ×A). (5.137)

Finalmente, usando la cuarta ecuación de Maxwell, ∇ ×B = 4πJ/c, obte-
nemos una ecuación para la corriente superfluida,

J = − e~
2mi (Ψ∗∇Ψ − Ψ∇Ψ∗) − 2e2A

mc
|Ψ|2. (5.138)

Un análisis adicional que no se discutirá aqúı revela que la amplitud de
la función de onda superconductora |Ψ(r)|2 debe ser igual a la mitad de la
densidad del superfluido ns/2. Por lo tanto, en general podemos escribir

Ψ(r) = 1√
2

ñ
ns(r)eiθ(r) (5.139)

donde θ(r) denota la fase del condensado superconductor. El factor de 1/2
explica el hecho de que la carga asociada con la función de onda es la carga
del par de Cooper −2e. En el caso de que la densidad del superfluido sea
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homogénea, solo la fase de la función de onda superconductora depende de
la posición, lo que produce la corriente del superfluido

J = −
A
e~ns

2m

B
∇θ −

A
nse

2

mc

B
A. (5.140)

El segundo término muestra que para una fase superconductora uniforme
∇θ = 0, recuperamos la ecuación de London. El primer término muestra que
cuando A = 0 una fase no uniforme da lugar a un flujo de corriente en estado
superconductor, y viceversa. En la mayoŕıa de los sistemas mecánicos cuánti-
cos, los cambios macroscópicos en la fase global no modifican las propiedades
del sistema. Aqúı, sin embargo, todo el estado superconductor tiene la misma
fase, y los cambios macroscópicos en θ conducen a cambios en las propieda-
des macroscópicas del sistema debido a esta coherencia de fase global. En el
lenguaje BCS, la coherencia de fase proviene del factor vk en la función de
onda (5.80), que dota a cada par de Cooper de la misma fase. Si aplicamos
a la fase una variación suave en la escala macroscópica, lo que resulta en ∇θ
no nulo, pero pequeño, el condensado superconductor responde desarrollan-
do una corriente J . Debido a que esta corriente es el resultado de minimizar
la enerǵıa libre de Ginzburg-Landau, debe ser una propiedad de equilibrio y
no puede disipar enerǵıa. Esto permite que el sistema se comporte como un
conductor perfecto.

La expresión (5.140) tiene otras consecuencias importantes. Primero, obsérve-
se que si colocamos dos superconductores uno al lado del otro, separados por
una delgada barrera aislante, la diferencia en la fase de las dos funciones de
onda superconductoras dará lugar a una corriente que fluirá a través de la
unión. Esto se conoce como el efecto Josephson.

En segundo lugar, consideremos la situación en la que se hace un agujero
dentro de un superconductor, y dentro de este agujero el sistema se encuen-
tra en el estado normal. Si consideramos un camino cerrado que rodea este
agujero, pero que pasa dentro del estado superconductor, la corriente a lo
largo de esta curva tiene que anularse. Entonces, integrando la Ec. (5.140) a
lo largo de este camino se obtiene

˛
A · dl = −~c

2e

˛
∇θ · dl. (5.141)

Si aplicamos ahora el teorema de Stokes se encuentra
˛
A · dl =

ˆ
S

(∇ ×A) · dS =
ˆ

S

B · dS = Φ, (5.142)
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donde Φ es el flujo magnético. Como la fase θ solo puede cambiar por múlti-
plos de 2π desde el punto inicial hasta el punto final del ciclo, obtenemos

Φ = hc

2|e|
n (5.143)

donde n es un entero arbitrario. Por lo tanto, el flujo magnético de una región
normal dentro de un superconductor tiene que ser un múltiplo del cuanto de
flujo Φ0 = hc

2|e| .
Nótese que la funcional (5.133) es invariante bajo transformaciones de

gauge simultáneas, tanto en el potencial vector A → A + ∇χ como en la
fase, θ → θ− 2e

~c
χ, ya que ambas se cancelan entre śı. Sin embargo, en el estado

superconductor, debido a que la fase se encuentra fija, el sistema en realidad
rompe la invarianza de gauge: la simetŕıa rota por el estado superconductor
es la simetŕıa de gauge U(1). Uno esperaŕıa que la ruptura de esta simetŕıa
continua diera lugar a un modo de Goldstone. Sin embargo, esto no es cierto
porque se trata de una simetŕıa local, no global, que se acopla al potencial
vector electromagnético. Esta es la principal diferencia con un superfluido
neutro, que tiene un modo Goldstone asociado con la fase.

De hecho, se puede demostrar que la ruptura de la invarianza de gauge da
lugar a una masa efectiva para el campo electromagnético, lo que constituye el
célebre mecanismo de Anderson-Higgs. Consideremos, por ejemplo, la enerǵıa
libre asociada a los cambios en la fase de un superconductor (es decir, se
supone que la densidad del superfluido es constante). De la ecuación. (5.133),
la enerǵıa libre se escribe

F = ns

4m

ˆ
d3r

3
~∇θ + 2e

c
A
42

(5.144)

A esta enerǵıa libre se le puede sumar la enerǵıa electromagnética, que es
proporcional a q2A2

⊥, donde q es el vector de onda del campo y A⊥ es la
componente transversal del campo. Sin entrar en detalles, mencionemos que
si se integran las fluctuaciones de la fase a partir de la enerǵıa libre, se obtiene
una enerǵıa libre efectiva para el campo electromagnético de la forma

Feff ∝
Ø
q

1
λ−2 + q2

2
A⊥(q) ·A⊥(−q). (5.145)

El término λ−2 ∝ ns es la profundidad de penetración (al inverso cuadrado)
actúa como una masa efectiva para el campo electromagnético. Esto no es
sorprendente: el efecto Meissner implica que el campo magnético es “masivo”
dentro de un superconductor, ya que decae a medida que se propaga desde
la interfaz hacia el interior del superconductor. El responsable de dar masa
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al superconductor, es decir, el “bosón de Higgs”, es el mismo condensado
superconductor, más espećıficamente, su rigidez ns. Por lo tanto, la rigidez
es la propiedad clave responsable del efecto Meissner, y no la función del gap
∆; de hecho, se pueden encontrar superconductores sin gap que sin embargo
exhiben efecto Meissner y corrientes persistentes.
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Caṕıtulo 6

Bosonización

En este caṕıtulo veremos una breve introducción a la bosonización. Esta
técnica ha sido muy exitosa en el estudio de sistemas fuertemente correla-
cionados en una dimensión. Presentaremos aqúı solo algunas de las ideas
principales. El lector puede a partir de lo visto en este capitulo profundizar
más en el tema en la bibliograf́ıa espećıfica del tema [11].

6.1. Equivalencia entre operadores fermióni-
cos y bosónicos

6.1.1. Campos fermiónicos
Tomemos una teoŕıa que puede formularse en términos de un conjunto

de operadores de creación y de aniquilación fermiónicos en una dimensión
espacial, que satisfacen relaciones canónicas de anticonmutación

{ckrs, c
†
kÍrÍsÍ} = δkkÍδrrÍδσσÍ . (6.1)

donde r representa la quiralidad, que distingue part́ıculas que se mueven a
la derecha (r = +1) o a la izquierda (r = −1) y s en general distingue
especies de fermiones, por ejemplo en problemas de múltiples cadenas, pero
que usualmente se utilizará para indicar el spin electrónico (s = +1 para
spin para arriba y s = −1 para spin para abajo), y un ı́ndice discreto y no
acotado k que denota el momento (o número de onda), de la forma

k = 2π
L

3
nk − 1

2δrs

4
, con nk ∈ Z y δrs ∈ [0, 2). (6.2)

(nótese que los valores de k son diferentes para fermiones de distinto tipo).
Aqúı L es la longitud asociada al tamaño del sistema y δrs es un parámetro
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que determina las condiciones de contorno del problema. En principio es po-
sible que cada especie posea su propia condición de contorno. El modelo f́ısico
original del que provienen estos fermiones será el responsable de dictarlas. La
cantidad k usualmente etiqueta las autoenerǵıas Ôk del sistema libre (con Ô0
correspondiente a la enerǵıa de Fermi ÔF). Que este ı́ndice sea discreto y no
acotado es un requisito indispensable para realizar una derivación rigurosa
de las identidades de bosonización. Estas identidades son independientes de
un problema espećıfico como puede serlo el modelo de Tomonaga-Luttinger,
o el problema de Kondo; y de la relación de dispersión Ôk. Esto es posible
porque dichas identidades son igualdades entre operadores, es decir, válidas
cuando actúan sobre cualquier estado del espacio de Fock. Son independien-
tes entonces del Hamiltoniano, cuya forma detallada sólo se vuelve relevante
al calcular funciones de correlación. Su aplicación a modelos más concretos
será analizada más adelante. Comenzando con un conjunto de operadores de
destrucción ckrs con las propiedades (6.1) y (6.2), definimos un conjunto de
campos fermiónicos de la siguiente manera:

rs(x) = 1√
L

∞Ø
k=−∞

eikrxckrs,
†
rs(x) = 1√

L

∞Ø
k=−∞

e−ikrxc†
krs, (6.3)

donde x ∈ (−∞,∞) es la variable espacial. Sus inversas son

ckrs = 1√
L

ˆ L

0
dx e−irkxψrs(x), c†

krs = 1√
L

ˆ L

0
dx eirkxψ†

rs(x). (6.4)

Los operadores ψ satisfacen las condiciones de contorno

rs(x+ L) = e−iπrδrsψrs(x), (6.5)

que son periódicas para δrs = 0 y antiperiódicas para δrs = 1. Las ecuaciones
(6.1) y (6.2), junto con la identidadØ

n∈Z
einy = 2π

Ø
m∈Z

δ(y − 2πm), (6.6)

implican de inmediato las relaciones de anticonmutación

{ψrs(x), ψ†
rÍsÍ(xÍ)} = δrrÍδσσÍ

Ø
m∈Z

δ(x− xÍ −mL)e−iπrδrsm, (6.7)

{ψrs(x), ψrÍsÍ(xÍ)} = {ψ†
rs(x), †

rÍsÍ(xÍ)} = 0. (6.8)

Para x, xÍ ∈ [0, L] o L → ∞, y condiciones de contorno periódicas se reducen
a las relaciones usuales para campos fermiónicos.
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El vaćıo fermiónico |0ê0 (llamado a veces mar de Fermi) se define en la
forma

ckrs|0ê0 ≡ 0 para k > 0 (i.e. nk > 0), (6.9)
c†

krs|0ê0 ≡ 0 para k ≤ 0 (i.e. nk ≤ 0), (6.10)

es decir que es un estado que posee todos los estados con k < 0 ocupados
y aquellos con k > 0 libres. Respecto a este vaćıo se define la operación de
orden normal del producto de operadores ABC . . . como

: ABC · · · : = ABC . . . − 0é0|ABC . . . |0ê0, (6.11)

para A, B, C, . . . ∈ {ckrs; c†
krs}. Esta definición es equivalente a agrupar

todos los operadores ckrs con k > 0 y todos los c†
krs con k ≤ 0 a la derecha

de los demás. Nótese que una expresión del tipo c†
kck con k arbitrario no está

necesariamente ordenada normalmente, únicamente lo está si k > 0.
El operador número de part́ıculas se define como

N̂rs ≡
∞Ø

k=−∞
: c†

krsckrs :=
∞Ø

k=−∞

è
c†

krsckrs − 0é0|c†
krsckrs|0ê0

é
. (6.12)

Designamos con N = (N1, . . . , NM) al conjunto de los autovalores Nrs para
las diferentes especies, y por abuso de lenguaje diremos que un estado de
N part́ıculas es un estado en el que hay Nrs part́ıculas de tipo rs. Nótese
que es posible aniquilar part́ıculas con k < 0 (ya que justamente el mar de
Fermi está lleno hasta el nivel k = 0). Alternativamente en este caso decimos
que creamos un agujero con impulso k. Esto disminuye el autovalor Nrs, que
puede tomar aśı valores negativos.

El conjunto de autoestados con un dado N conforman el espacio de Hilbert
de N part́ıculas HN. El espacio de Fock F se define como suma directa de los
espacios de Hilbert con número fijo de part́ıculas F = q

⊕N HN. Entre todos
los estados con el mismo N hay uno que posee menor enerǵıa, es aquel que
está lleno hasta un determinado nivel, y vaćıo de alĺı en más: es el estado
fundamental de HN, |Nê0. Podemos dar una definición más precisa de este
estado:

|Nê0 ≡
Ù
rs

CNrs
rs |0ê0, (6.13)

donde

CNrs
rs ≡


c†

Nrsrsc
†
(Nrs−1)rs . . . c

†
1rs paraNrs > 0,

1 paraNrs = 0,
c(Nrs+1)rsc(Nrs+2)rs . . . c0rs paraNrs < 0.

(6.14)
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6.1.2. Campos bosónicos
A partir del estado |0ê0 pueden construirse el resto de las excitaciones de

N part́ıculas. Definimos los siguientes operadores de creación y aniquilación
bosónicos que cumplen dicha tarea,

b†
qrs ≡ i

√
nq

∞Ø
k=−∞

c†
k+q rsckrs, bqrs ≡ −i

√
nq

∞Ø
k=−∞

c†
k−q rsckrs, (6.15)

donde nq ∈ Z+ es un entero positivo, y q = 2πnq/L > 0. Estos operadores,
al actuar sobre cualquier estado |Nê0 crean una combinación de excitaciones
de part́ıcula-agujero sobre ese estado con q unidades de momento más (o
menos), pero sin salirse de HN. En este sentido son operadores que aumentan
y disminuyen el momento. Su normalización se eligió de modo que satisfagan
relaciones de conmutación bosónicas

[bqrs, bqÍrÍsÍ ] = [b†
qrs, b

†
qÍrÍsÍ ] = 0, [N̂rs, bqÍrÍsÍ ] = [N̂rs, b

†
qÍrÍsÍ ] = 0, (6.16)

[bqrs, b
†
qÍrÍsÍ ] =δrrÍδσσÍ

1ñ
nqnÍ

q

∞Ø
k=−∞

1
c†

k+qÍ−q rsckrs − c†
k+qÍ rsck+q rs

2

=δrrδσσÍδqqÍ
Ø

k

1
nq

î
[: c†

krsckrs : − : c†
k+q rsck+q rs :]

+
1

0é0|c†
krsckrs|0ê0 − 0é0|c†

k+q rsck+q rs|0ê0
2ï

=δrrÍδσσÍδqqÍ . (6.17)

Las ecuaciones (6.16) se pueden verificar fácilmente, pero la derivación
de (6.17) requiere cierto cuidado, como notaron por primera vez Mattis y
Lieb [11]: para q Ó= qÍ los dos términos en la primera ĺınea ya están ordena-
dos normalmente (esto es porque sus valores medios de vaćıo son nulos) y
pueden restarse trivialmente mediante un cambio k → k − qÍ en el segun-
do término, dando cero como resultado. Sin embargo, para q = qÍ antes de
hacer la sustracción debemos construir expresiones ordenadas normalmen-
te, de otro modo estaŕıamos restando expresiones infinitas de un modo no
controlado. Los términos en la segunda ĺınea se cancelan, reemplazando en
el segundo término k → k − q (esto ahora si se puede hacer porque están
ordenados normalmente). La definición del vaćıo (Ecs. (6.9) y (6.10)) implica
que la diferencia en los valores de expectación de la tercera ĺınea arroja como
resultado

1
nq

 0Ø
nk=−∞

−
−nqØ

nk=−∞

 = 1
nq

nq = 1. (6.18)
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Nótese que la construcción de los operadores bqrs (6.15) y la derivación de
los conmutadores (6.17) descansa fuertemente en el hecho de que el conjunto
de ks es infinito y no acotado por debajo.

Es fácil verificar que dentro de HN, |Nê0 actúa como estado fundamental
para las excitaciones bosónicas:

bqrs|Nê0 = 0, para todo q, r, s. (6.19)

Intuitivamente esto es claro: si |Nê0 es el estado fundamental entre todos
aquellos que contienen N part́ıculas, entonces no se le pueden quitar unidades
de momento sin quitar part́ıculas, es decir, sin salir de HN.

Es obvio que los estados excitados |Nê que conforman el espacio de Hilbert
de N part́ıculas se pueden obtener actuando sobre |Nê0 con alguna función
de los operadores fermiónicos: |Nê = f̄(c†

krs, ckÍrÍsÍ)|Nê0. Haldane [11] mostró
que también existe una representación en términos de los b†

qrs. Más espećıfi-
camente, mostró lo siguiente:

Teorema 1 Para cualquier estado |Nê, existe una función f(b†) tal que

|Nê = f(b†)|Nê0. (6.20)

Esta es una afirmación para nada trivial ya que los operadores b† crean com-
plejas combinaciones de excitaciones part́ıcula-agujero; y constituye el co-
razón de la bosonización debido a que implica una igualdad entre espacios
de Fock bosónicos y fermiónicos. Omitiremos aqúı la demostración, y remi-
tiremos al lector a la mencionada referencia.

El estado fundamental |Nê0 sirve para definir una operación de orden
normal bosónica de un producto de operadores de tipo bqrs y b†

qrs de manera
análoga al orden normal fermiónico (6.11). Más aún, ambos son equivalentes,
es decir que si un producto de operadores bosónicos está ordenado normal-
mente de acuerdo al orden bosónico, entonces también lo está de acuerdo al
orden fermiónico, y viceversa. Por este motivo se utiliza la misma notación
para ambos.

Con los operadores bosónicos definidos en la Ec (6.15) podemos definir
campos bosónicos:

ϕrs(x) = −r
Ø
q>0

1
√
nq

eirqxbqrse
−aq/2,

ϕ†
rs(x) = −r

Ø
q>0

1
√
nq

e−irqxb†
qrse

−aq/2,
(6.21)
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y su combinación hermı́tica

φrs(x) = ϕrs(x) + ϕ†
rs(x)

= −r
Ø
q>0

1
√
nq

1
eirqxbqrs + e−irqxb†

qrs

2
e−aq/2.

(6.22)

Aqúı a > 0 es un parámetro infinitesimal que regulariza divergencias ul-
travioletas que ocurren en ciertas expresiones y conmutadores no ordenados
normalmente. Usualmente se toma del orden del espaciado de red a ∼ 1/kF.
Por construcción, los campos ϕrs(x) y φrs(x) son periódicos en x con peŕıodo
L. Aśı definidos, estos campos satisfacen las relaciones de conmutación

[ϕrs(x), ϕrÍsÍ(xÍ)] = [ϕ†
rs(x), ϕ†

rÍsÍ(xÍ)] = 0, (6.23)

[ϕrs(x), ϕ†
rÍsÍ(xÍ)] = δrrÍδσσÍ

Ø
q>0

1
nq

eq[ir(x−xÍ)−a] (6.24)

= −δrrÍδσσÍ ln
è
1 − e

2π
L

[ir(x−xÍ)−a]
é

(6.25)
L→∞−−−→ −δrrÍδσσÍ ln

52π
L

[a− ir(x− xÍ)]
6
. (6.26)

La Ec. (6.25) se obtuvo utilizando la expansión en serie de log(1 − y). Aqúı
se ve claramente que a actúa como cut-off de la divergencia ultravioleta
para x = xÍ. Estos conmutadores son útiles en la evaluación del producto
de operadores de vértice (exponenciales de campos bosónicos). Utilizando la
identidad

eAeB = eA+Be[A,B]/2, (6.27)
para operadores A y B que conmutan con [A,B], obtenemos

eiϕ†
rs(x)eiϕrs(x) = ei(ϕ†

rs+ϕrs)(x)e[iϕ†
rs(x),iϕrs(x)]/2 =

3
L

2πa

41/2
eiφrs(x), (6.28)

e−iϕrs(x)e−iϕ†
rs(x) = e−i(ϕrs+ϕ†

rs)(x)e[−iϕrs(x),−iϕ†
rs(x)]/2 =

32πa
L

41/2
e−iφrs(x).

(6.29)

Nótese que estas fórmulas son válidas para cualquier valor de L siempre que
a sea suficientemente chico (esto es aśı porque para x = xÍ el ĺımite L → ∞
en (6.25) es equivalente a a → 0). Resulta interesante también la evaluación
del conmutador del campo φrs(x) con su derivada:

[φrs(x), ∂xÍφrÍsÍ(xÍ)] = −irδrrÍδσσÍ
2π
L

∞Ø
nq=1

è
e

2π
L

[ir(x−xÍ)−a]nq + e
2π
L

[−ir(x−xÍ)−a]nq
é
.

(6.30)
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A partir de aqúı podemos obtener dos expresiones diferentes de acuerdo a
cómo se tomen los ĺımites para L → ∞ y a infinitesimal. Si queremos una ex-
presión no periódica, para L grande, es conveniente hacer la suma geométrica,
y posteriormente tomar los ĺımites dejando el ĺımite a → 0 para el final:

[φrs(x), ∂xÍφrÍsÍ(xÍ)] = −δrrÍδσσÍ
2π
L
ir

C
1

e
2π
L

[a−ir(x−xÍ)] − 1
+ 1
e

2π
L

[a+ir(x−xÍ)] − 1

D
(6.31)

L→∞−−−→ −2πirδrrÍδσσÍ

C
a/π

(x− xÍ)2 + a2 − 1
L

D
(6.32)

a→0−−→ −2πirδrrÍδσσÍ

5
δ(x− xÍ) − 1

L

6
. (6.33)

Nótese que para tomar correctamente el ĺımite L → ∞ en la primera ĺınea
de las expresiones precedentes, se deben desarrollar los exponenciales hasta
orden cuadrático en 1/L. Para L finito, en cambio, tomamos primero el ĺımite
a → 0 en (6.30), y utilizamos la identidad (6.6):

[φrs(x), ∂xÍφrÍsÍ(xÍ)] = −δrrÍδσσÍ2πir
Ø

n∈Z
δ(x− xÍ − nL) − 1

L

 , (6.34)

donde el término 1/L en esta última ecuación aparece debido a la ausencia
del término nq = 0 (q = 0) en la Ec. (6.30). Finalmente podemos calcular el
conmutador del campo φrs con si mismo, obteniendo

[φrs(x), φrs(xÍ)] L→∞,a→0−−−−−−→ πirδrrÍδσσÍÔ(x− xÍ), (6.35)

donde

Ô(x) =
±1 si x ≷ 0,

0 si x = 0.
(6.36)

6.1.3. Factores de Klein
Los operadores b y b† crean excitaciones dentro del espacio de Hilbert

de N part́ıculas. Debemos definir entonces operadores que conecten espacios
de Hilbert con diferente número de part́ıculas, es decir, operadores escalera
que aumenten o disminuyan el número fermiónico total, cosa que no pueden
hacer los operadores bosónicos.

Definimos los factores de Klein F y F † como operadores con las siguientes
propiedades: i) conmutan con todos los operadores bosónicos:

[bqrs, F
†
rÍsÍ ] = [bqrs, FrÍsÍ ] = [b†

qrs, F
†
rÍsÍ ] = [b†

qrs, FrÍsÍ ] = 0 ∀q, (6.37)
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y ii) su acción sobre un estado |Nê = f(b†)|Nê0 es la de agregar una part́ıcula
en el nivel más bajo posible, y la de quitar una en el más alto respectivamente:

F †
rs|Nê ≡ f(b†)c†

(Nrs+1)rs|Nê0, (6.38)
Frs|Nê ≡ f(b†)cNrsrs|Nê0. (6.39)

Aśı definidos, los factores de Klein poseen las siguientes propiedades:

FrsF
†
rs = F †

rsFrs = 1 (unitariedad), (6.40)
{F †

rs, FrÍsÍ} = 2δrrÍδσσÍ ∀ r, rÍ, s, sÍ, (6.41)
{F †

rs, F
†
rÍsÍ} = {Frs, FrÍsÍ} = 0 ∀r Ó= rÍ, s Ó= sÍ, (6.42)

[N̂rs, F
†
rÍsÍ ] = δrrÍδσσÍF †

rs, [N̂rs, FrÍsÍ ] = −δrrÍδσσÍFrs. (6.43)

Para probar la unitariedad es fundamental que el espectro del operador N̂rs

sea no acotado.

6.1.4. Identidades de bosonización
Con todas las definiciones y propiedades estudiadas estamos en condi-

ciones de establecer igualdades entre operadores de campos bosónicos y fer-
miónicos. La primera de ellas, la más simple de derivar, establece una igual-
dad entre la densidad electrónica ordenada normalmente, y la derivada del
campo bosónico ∂xφrs(x)

ρrs(x) ≡ : ψ†
rs(x)ψrs(x) := 1

L

Ø
q

eirqx
Ø

k

: c†
k−q rsckrs : (6.44)

= 1
L

Ø
q>0

i
√
nq

1
eirqxbqrs − e−irqxb†

qrs

2
+ 1
L

Ø
k

: c†
krsckrs : (6.45)

= − 1
2π∂xφrs(x) + 1

L
N̂rs (para a → 0). (6.46)

Aqúı el orden normal es fundamental para trasladar los ı́ndices de suma.
La segunda, relaciona el campo fermiónico con el operador de vértice

bosónico. Para derivarla debemos mostrar previamente la siguiente propie-
dad:

Prop. 1 ψrs(x)|Nê0 es un estado coherente bosónico

Mostraremos que dicho estado es un autoestado de bqrs y por lo tanto posee
una representación como estado coherente. Para ello basta con calcular los
conmutadores de b y b† con ψ:
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[bqrs, ψrÍsÍ(x)] = δrrÍδσσÍαqr(x)ψrs(x), (6.47)
[b†

qrs, ψrÍsÍ(x)] = δrrÍδσσÍα∗
qr(x)ψrs(x), (6.48)

donde αqr(x) = i√
nq
e−irqx. Estos conmutadores y la ecuación (6.19) implican

inmediatamente que

bqrÍsÍψrs(x)|Nê0 = δrrÍδσσÍαqr(x)ψrs(x)|Nê0. (6.49)
Y por lo tanto, este estado posee una representación como estado coherente
bosónico:

ψrs(x)|Nê0 = exp
Ø

q>0
αqr(x)b†

qrs

Frsλ̂rs(x)|Nê0 (6.50)

= e−irϕ†
rs(x)Frsλ̂rs(x)|Nê0. (6.51)

Aqúı utilizamos la definición del campo ϕ†
rs (6.21) en la segunda igualdad.

Hemos agregado el operador de fase λ̂ que derivaremos en lo sucesivo; y el
factor de Klein, que es necesario porque ψ remueve una part́ıcula del estado
|Nê0, cosa que los campos bosónicos b† no pueden hacer. Para obtener el
operador λ̂ calculamos el siguiente valor medio de dos formas diferentes: por
un lado,

0éN|F †
rsψrs(x)|Nê0 = 0éN|λ̂rs(x)|Nê0 ≡ λrs(x), (6.52)

donde hemos pasado adelante el factor de Klein F en (6.51), ya que según
su definición (6.37) conmuta con todos los b†; utilizamos la unitariedad de
los F ’s, y expandimos en serie el exponencial, quedándonos con el término
de orden 0, ya que 0éN|b†

qrs = 0.
Por otro lado, insertamos la descomposición de Fourier (6.3) para ψrs(x)

y la definición del factor de Klein (6.38), y nos quedamos sólo con el término
nk = N rs (o bien k = 2π

L
(Nrs − 1

2δrs)):

0éN|F †
rsψrs(x)|Nê0 = 1√

L

Ø
k

eirkx
0éN|c†

Nrsrsckrs|Nê0 (6.53)

= 1√
L
eir 2π

L
(Nrs− 1

2 δrs)x. (6.54)

Concluimos entonces que el operador λ̂(x) está dado por

λ̂rs(x) = 1√
L
eir 2π

L
(N̂rs− 1

2 δrs)x. (6.55)
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Para derivar las identidades de bosonización debemos estudiar la acción
del campo ψrs(x) sobre un estado |Nê arbitrario (que según (6.20) puede
escribirse como |Nê = f({b†

qrs})|Nê0). Para ello utilizaremos las siguientes
identidades,

ψrs(x)f({b†
qrÍsÍ}) = f({b†

qrÍsÍ − δrrÍδσσÍα∗
qr(x)})ψrs(x), (6.56)

f({b†
qrÍsÍ − δrrÍδσσÍα∗

qr(x)}) = e−irϕrs(x)f({b†
qrÍsÍ})eirϕrs(x), (6.57)

que se pueden mostrar fácilmente a partir de la fórmula de Baker-Hausdorff,

e−BAeB = A+ [A,B] + 1
2! [[A,B]B] + . . . , (6.58)

expandiendo en serie de Taylor la función f y empleando los conmutadores
(6.47) y (6.48). Podemos evaluar entonces ψrs(x)|Nê conmutando ψrs(x) con
f({b†

qrs}), insertando la representación (6.51) y reordenando los factores:

ψrs(x)|Nê =ψrs(x)f({b†
qrs})|Nê0 (6.59)

=f({b†
qrÍsÍ − δrrÍδσσÍα∗

qr(x)})ψrs(x)|Nê0 [por la Ec. (6.56)]

=f({b†
qÍrÍs − δrrÍδσσÍα∗

qr(x)})e−irϕ†
rs(x)Frsλ̂rs(x)|Nê0 [por la Ec. (6.51)]

=Frsλ̂rs(x)e−irϕ†
rs(x)f({b†

qrÍsÍ − δrrÍδσσÍα∗
qr(x)})|Nê0 [por la Ec. (6.37)]

=Frsλ̂rs(x)e−irϕ†
rs(x)

è
e−irϕrs(x)f({b†

qrs})eirϕrs(x)
é

|Nê0 [por la Ec. (6.57)]

=Frsλ̂rs(x)e−irϕ†
rs(x)e−irϕrs(x)f({b†

qrs})|Nê0 [por la Ec. (6.19)]

=Frsλ̂rs(x)e−irϕ†
rs(x)e−irϕrs(x)|Nê. [por la Ec. (6.20)]

Dado que |Nê es arbitrario, y que todo estado del espacio de Fock es de esta
forma, concluimos que las siguientes fórmulas de bosonización valen como
identidades entre operadores en el espacio de Fock, y para todo L:

ψrs(x) =Frsλ̂rs(x)e−irϕ†
rs(x)e−irϕrs(x) (6.60)

=Frs
1√
L
eir 2π

L
(N̂rs− 1

2 δrs)xe−irϕ†
rs(x)e−irϕrs(x) [por la Ec. (6.55)] (6.61)

= 1√
2πa

Frse
ir 2π
L

(N̂rs− 1
2 δrs)xe−irφrs(x). [por la Ec. (6.28)] (6.62)

Puede ser útil definir

Φrs(x) = φrs − 2π
L

(N̂rs − 1
2δrs)x. (6.63)
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Con esta definición, tenemos que

ψrs(x) = 1√
2πa

Frse
−irΦrs(x), (6.64)

ρrs(x) = − 1
2π∂xΦrs(x) + δrs

2L. (6.65)

Por último estudiaremos como representar un Hamiltoniano fermiónico libre
con una relación de dispersión lineal

H0 ≡ −irvrs

ˆ L

0
dx : ψ†

rs(x)∂xψrs(x) :=
Ø

k

vrsk : c†
krsckrs : . (6.66)

donde vrs es la velocidad de Fermi (es siempre positiva, independientemente
de la quiralidad de los fermiones). La segunda forma se obtiene de la primera
insertando el desarrollo de Fourier del campo ψ (6.3). Recordemos que estas
expresiones no están ordenadas normalmente de forma automática, ya que
la expresión c†

kck solo está ordenada normalmente para k > 0, y es necesario
escribir : . . . :. Nótese que la condiciones de contorno periódicas implican
que el modo con k = 0 posee enerǵıa cero, y por lo tanto podemos tener
dos estados fundamentales degenerados en los que ese modo está ocupado o
desocupado.

La ecuación (6.20) implica que los b†’s actuando sobre |Nê0 generan todo
el espacio de Hilbert de N part́ıculas. Esto significa entonces, que H0 debe
tener una representación en términos solamente de variables bosónicas. Para
hallar esa representación, estudiemos el conmutador de b†

qrs con H0:

[H0rs, b
†
qrÍsÍ ] = δrrÍδσσÍvrsqb

†
qrs. (6.67)

Además, dado que [H0rs, N̂rÍsÍ ] = 0 para todo r, rÍ, s, sÍ, todo autoestado
de N̂rs lo es también de H0rs, en particular el estado fundamental de N
part́ıculas, |Nê0. Su autovalor es, (se obtiene sumando las enerǵıas de los
estados ocupados por encima del nk = 0)

EN
0rs = vrs

32π
L

4
qNrs

n=1(n− δrs) = N2
rs

2 + Nrs

2 (1 − δrs) si N ≥ 0,q0
n=Nrs+1 −(n− δrs) = N2

rs

2 + |Nrs|
2 (1 − δrs) si N < 0,

(6.68)

= vrs

2

32π
L

4
Nrs(Nrs + 1 − δrs). (6.69)
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La única forma bosónica para H0 que reproduce las Ecs. (6.67) y (6.68) es:

H0rs =
Ø
q>0

vrsqb
†
qrsbqrs + vrs

2

32π
L

4
N̂rs

1
N̂rs + 1 − δrs

2
(6.70)

=vrs

4π

ˆ L

0
dx : (∂xφrs(x))2 : +vrs

2

32π
L

4
N̂rs

1
N̂rs + 1 − δrs

2
. (6.71)

La segunda forma es equivalente a la primera, como se comprueba al insertar
la definición de φrs en términos de los b’s [Ec. (6.22)] en la Eq. (6.71). Nótese
que en la primera forma podemos suprimir el orden normal, dado que esa
expresión ya está ordenada normalmente, ya que aqúı q solo puede ser posi-
tivo (no aśı la segunda donde encontramos la expresión : b†b + bb† := 2b†b).
Ninguna contienen factores de Klein dado que el Hamiltoniano conserva el
número de part́ıculas. Con esta última ecuación completamos la derivación
de las identidades de bosonización, que valen para L finito. Para obtener
expresiones con L → ∞ basta con despreciar los términos ∼ 1/L. En este
caṕıtulo seguimos un enfoque constructivo, de modo que no es necesario veri-
ficar los conmutadores de los campos fermiónicos o igualdad entre funciones
de Green. A continuación veremos las aplicaciones del proceso de bosoniza-
ción, y como se vuelve extremadamente útil para el estudio de complicadas
teoŕıas fermiónicas en una dimensión espacial.

En la literatura es más común trabajar con Φ, ya que el segundo término
en puede considerarse como un modo cero del campo. En esta notación el
Hamiltoniano H0 se lee

H0rs = vrs

4π

ˆ L

0
dx : (∂xΦrs)2 : +vrs

2

32π
L

4
N̂rs − vrs

2

32π
L

4
δ2

rs

4 . (6.72)

el último término es una constante y podŕıa suprimirse. Además, podemos
escribirlo en términos de densidades,

H0rs = vrs

2 (2π)
ˆ L

0
dx : ρrs(x)2 : +vrs

2

32π
L

4
(1 − δrs)N̂rs. (6.73)

6.2. Aplicaciones

6.2.1. Gas de electrones
Consideremos un gas de electrones independientes, cuyo Hamiltoniano es

H0 =
Ø

k

εkC
†
kCk. (6.74)
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En la aproximación de electrones casi libres, o de ligadura fuerte, la relación
de dispersión Ôk está dada por

Ôk = −2t cos ka (6.75)

donde t es la constante de intercambio (acoplamiento entre sitios vecinos) y
a es el espaciado entre los átomos de la red.

La superficie de Fermi en un sistema unidimensional consiste en dos pun-
tos, +kF y −kF; en su vecindad podemos linealizar la relación de dispersión
(6.75):

Ôk Ä vF(|k| − kF). (6.76)

La linealización genera dos ramas bien definidas en la relación de disper-
sión. Los electrones que pertenecen a la rama que contiene al punto +kF y
−kF se mueven hacia la derecha e izquierda respectivamente. Si volvemos al
operador fermiónico original, éste se puede descomponer teniendo en cuenta
únicamente los modos cercanos al nivel de Fermi y despreciando los restantes,

Ψ(x) = 1√
L

Ø
k

eikxCk Ä 1√
L

Ø
k∼−kF

eikxCk + 1√
L

Ø
k∼kF

eikxCk, (6.77)

= ψ̃L(x) + ψ̃R(x). (6.78)

Aqúı la suma se extiende de k = −∞ a k = ∞ (es una serie de Fourier
de Fourier). Estas aproximaciones, tanto de la dispersión como del operador
fermiónico, en principio, son razonable en un rango finito alrededor de los
puntos de Fermi. Sin embargo, los tratamientos matemáticos se simplifican
enormemente si tomamos esta versión linealizada para todos los valores de k
entre −∞ y +∞, es decir, si reemplazamos el espectro libre por una apro-
ximación lineal, estamos incorporando los infinitos modos requeridos por la
bosonización descrita en las sección precedente. Por otro lado, sólo estamos
interesados en excitaciones de baja enerǵıa, a las que contribuyen estados
próximos a la superficie de Fermi; de modo que la inclusión de los estados
adicionales por efecto de la linealización es despreciable en este régimen. Es-
to último se verifica a posteriori al estudiar los efectos producidos por la
curvatura de banda, es decir incluyendo términos cuadráticos y cúbicos en
la relación de dispersión. Se puede mostrar que las contribuciones de estos
términos son irrelevantes frente a las del término lineal. No obstante, la in-
troducción de los infinitos modos tratada de forma näıve presenta algunas
complicaciones matemáticas ya que el mar de Fermi tiene ahora enerǵıa in-
finita. Para superar este problema, se sustrae la enerǵıa infinita del mar de
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Fermi, operación que matemáticamente significa tomar el orden normal. Con-
sideremos las condiciones de contorno para el campo Ψ. Para condiciones de
contorno, Ψ(x+ L) = eiπδΨ(x) debemos tener que los valores de k son

k = 2nπ
L

+ πδ

L
, (6.79)

donde δ ∈ [0, 2). Es conveniente factorizar los factores de fase e±ikF x y cam-
biar k por −k en el primer término:

Ψ(x) Ä e−ikF x 1√
L

Ø
k∼0

e−ikxC−k−kF + eikF x 1√
L

Ø
k∼0

eikxCk+kF , (6.80)

= e−ikF xψL(x) + eikF xψR(x). (6.81)

A los operadores que los representan a ψR/L los denotaremos

ckR = Ck+kF , (6.82)
ckL = C−k−kF , (6.83)

con k ∼ 0. Adicionalmente, extendemos la suma sobre modos para los fer-
miones de tipo R y L también a todos los valores de k, y entonces

ψr(x) = 1√
L

Ø
k

eirkxc†
kr, (6.84)

donde r toma los valores r = R/L (o r = ±1 en expresiones matemáticas).
Obsérvese que estos campos satisfacen condiciones de contorno retorcidas

ψr(x+ L) = eiπδψr(x), (6.85)

y para ello necesitamos que la expansión de modos para los fermiones quirales
tenga diferentes valores de k para ambas quiralidades, k = 2πn/L + πδr/L,
with δr = rδ. Este conjunto de operadores aśı definidos satisface los requisitos
de ser un conjunto infinito y no acotado, y los identificamos inmediatamente
con los descritos en las Ecs. (6.1) y (6.2). En término de estos operadores, el
Hamiltoniano libre se escribe

H0 =
Ø

k

vFk : c†
krckr := −ivF

ˆ L

0
:
1
ψ†

R∂xψR − ψ†
L∂xψL

2
:, (6.86)

donde dividimos la suma sobre k en modos alrededor de +kF y −kF . Observe
que si sigo la ruta

H0 =
Ø

k

εkC
†
kCk. (6.87)
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El término kF en el Hamiltoniano es absorbido al redefinir los fermiones en
las Eq. (6.82) y (6.83). Notemos que al reemplazar la dispersión exacta por
su versión linealizada, y sumar sobre todos los modos, estamos introduciendo
una suma infinita sobre todos los estados de enerǵıa negativa (el mar de Fer-
mi). Es conveniente sustraer la enerǵıa del mar de Fermi, lo cual se consigue
ordenando normalmente el Hamiltoniano. Finalmente, recuérdese que junto
con la expresión de la Eq. (6.86), el fermión f́ısico se escribe

Ψ(x) = e−ikF xψL(x) + eikF xψR(x). (6.88)

Siguiendo la fórmula estándar de bosonización obtenemos

H0 = vF

4π

ˆ L

0
dx : (∂xΦR)2 + (∂xΦL)2 :

+ v

2

32π
L

4
(N̂R + N̂L) − vF

8

32π
L

4
(δ2

R + δ2
L). (6.89)

6.2.2. Campos duales
Es usual introducir los campos duales Φ y Θ definidos como

Φ = ΦR + ΦL

2 , ΦR = Φ − Θ, (6.90)

Θ = −ΦR + ΦL

2 , ΦL = Φ + Θ. (6.91)

Usando (6.34) y (6.63) podemos mostrar que

[Φ(x), ∂xÍΘ(xÍ)] = iπδ(x− xÍ), (6.92)

es decir, que poseen relaciones de conmutación canónicas (definiendo el mo-
mento Π = 1

π
∂xΦ). Además, definimos

N̂ = N̂R + N̂L, N̂R = N̂ − Ĵ

2 , (6.93)

Ĵ = −N̂R + N̂L, N̂L = N̂ + Ĵ

2 , (6.94)

de donde tanto N como J , sus autovalores, resultan ambos pares o ambos
impares. El Hamiltoniano se escribe

H0 = vF

2π

ˆ L

0
dx : (∂xΦ)2 + (∂xΘ)2 :

+ vF

2

32π
L

4
N̂ − vF

4

32π
L

4
(N̂δ + Ĵε), (6.95)
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donde
δ = δR + δJ , ε = −δR + δL. (6.96)

En términos de estos campos, las identidades de bosonización se escriben

R = 1√
2πa

FRe
−i(Φ−Θ), (6.97)

L = 1√
2πa

FLe
+i(Φ+Θ). (6.98)

Obsérvese que los campos Φ y Θ satisfacen las condiciones de contorno

Φ(x+ L) = Φ(x) − πN̂, (6.99)
Θ(x+ L) = Θ(x) − πĴ. (6.100)

Por lo tanto, los números cuánticos correspondientes a autovalores de N̂ y Ĵ
se relacionan con excitaciones topológicas de los campos.

Alternativamente, podemos trabajar con campos duales que no incluyan
los modos cero,

φ = φR + φL, (6.101)
θ = −φR + φL, (6.102)

y que satisfacen condiciones de contorno periódicas. Están relacionados con
los anteriores de acuerdo a

Φ = φ− πx

L
N̂, (6.103)

Θ = θ − πx

L
Ĵ. (6.104)

El Hamiltoniano, en este lenguaje, resulta

H0 = vF

2π

ˆ L

0
dx : (∂xφ)2 + (∂xθ)2 :

+ vFπ

2L
è
N̂(N̂ + 2) + Ĵ2 − (N̂δ + Ĵε)

é
. (6.105)

6.2.3. Interacciones
Analicemos aqúı el efecto de las interacciones entre electrones. Es en este

punto donde la bosnización se vuelve realmente poderosa, ya que permite
reducir un Hamiltoniano muy complicado a una expresión soluble. Conside-
remos una interacción de la forma

Hint = 1
2
Ø
rrÍ

ˆ L

0
dx

ˆ L

0
dxÍ grrÍ(x− y) : ρr(x)ρrÍ(xÍ) :, (6.106)
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donde ρr(x) =: ψ†
r(x)ψr(x) : satisface condiciones de contorno periódicas

para cualquier δr. Si introducimos la forma bosonizada para las densidades,
obtenemos

Hint = 1
2(2π)2

Ø
rrÍ

ˆ L

0
dx

ˆ L

0
dxÍ grrÍ(x− xÍ) : ∂xΦr(x)∂xΦrÍ(xÍ) :, (6.107)

donde supusimos que g es también una función periódica. A continuación
redefinimos los acoplamientos, introduciendo g4 ≡ gRR = gLL y g2 = gRL =
gLR. También es necesario agregar un orden normal al producto de densida-
des, aunque cada factor esté ordenado normalmente, su producto no nece-
sariamente lo está. Al agregar H0 finalmente obtenemos para interacciones
locales el modelo de Tomonaga-Luttinger,

H = v

2π

ˆ L

0
dx
5 1
K

: (∂xΦ)2 : +K : (∂xΘ) :
6

+ vFπ

L
N̂ − vFπ

2L (N̂δ + Ĵε). (6.108)

en la notación de los campos duales, donde K es el llamado parámetro de
Luttinger, y v es la velocidad del sonido, o velocidad de los modos colectivos,

v =
ó3

vF + g4

2π

42
−
3
g2

2π

42
, (6.109)

K =
öõõôvF + g4

2π
− g2

2π

vF + g4
2π

+ g2
2π

. (6.110)
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1878—1887. Bulletin de Minéralogie, 1(1):5–35, 1888.

Facultad de Cs. Exactas  |  UNLP |   191



BIBLIOGRAFÍA
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centros internacionales. Su ĺınea de investigación se centra en el estudio de
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