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Pr´ ologo

La f´ısica del estado s´olido es un campo fascinante que profundiza en las propiedades, estructura y comportamiento de los s´olidos. El mundo que nos rodea est´a hecho de materia, y el estudio de sus propiedades a nivel at´omico y molecular nos ha permitido avanzar en la comprensi´on del universo.

La f´ısica del estado s´olido se enfoca en las propiedades f´ısicas de los s´olidos, incluyendo sus propiedades el´ectricas, magn´eticas, ´opticas y mec´anicas, y trata de los principios fundamentales que rigen su comportamiento. Este campo utiliza disciplinas como la mec´anica cu´antica, la cristalograf´ıa y el electromagnetismo.

Este libro proporciona una introducci´on a los conceptos y modelos que subyacen a la f´ısica del estado s´olido, explorando el mundo de los cristales, aisladores y metales, discutiendo la f´ısica de los superconductores y estudian-do las propiedades magn´eticas de los s´olidos.

En los primeros cap´ıtulos exploraremos algunos de los modelos tradi-cionales que se han utilizado para describir propiedades de los s´olidos. La importancia de estos modelos subyace, no solo en la comprensi´on que ofrecen sobre las caracter´ısticas de los materiales, sino tambi´en sobre la importancia de construir modelos efectivos en f´ısica que describan y permitan identificar los grados de libertad relevantes de un sistema.

Luego presentaremos algunas de las herramientas utilizadas para describir la estructura cristalina de los s´olidos y una introducci´on a segunda cuantifi-caci´on que luego utilizaremos para describir excitaciones magn´eticas.

Haremos una recorrido por el estudio de las propiedades magn´eticas de los s´olidos dedic´andole un lugar especial al fen´omeno de superconductividad. Finalmente presentaremos una introducci´on a la t´ecnica de bosonizaci´on.

Con este libro esperamos inspirar y motivar a los estudiantes de la licen-ciatura en f´ısica y carreras afines para que exploren m´as a fondo el mundo de la f´ısica del estado s´olido. Sin embargo, esperamos que sea de utilidad tanto para estudiantes, investigadores o simplemente personas apasionadas por la f´ısica. Este libro pretende proporcionar herramientas y los conoci-mientos b´asicos para comprender y apreciar las complejidades del mundo
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que nos rodea. Sin embargo, cada uno de los temas introducidos en este libro puede ser extendido y estudiado en mayor profundidad. Invitamos al lec-tor a consultar la bibliograf´ıa espec´ıfica de cada tema. Existen actualmente una gran variedad de libros que tratan algunos de los temas discutidos aqu´ı

[3, 4, 2, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19].

Embarqu´emonos en este viaje de descubrimiento y exploraci´on y adentr´emo-nos en el mundo de la f´ısica del estado s´olido.
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Cap´ıtulo 1

 

Modelos en s´ olidos

Una de las herramientas m´as importantes de la f´ısica de la materia con-densada es el uso de modelos para describir el comportamiento de los materia-les. Estos modelos pueden ser desde simples e intuitivos hasta incre´ıblemente complejos y abstractos, pero la simpleza en los modelos a permitido com-prender en muchos casos cuales son los grados de libertad relevantes a la hora de caracterizar el comportamiento de un sistema.

En este cap´ıtulo, exploraremos algunos de los modelos m´as tradicionales en la f´ısica de la materia condensada, como el modelo de Einstein, el mo-delo de Debye, el modelo de Drude y el modelo de Sommerfeld. Tambi´en discutiremos sus puntos fuertes y sus limitaciones.

Esperamos que este cap´ıtulo le ayude a comprender mejor la belleza y complejidad de la f´ısica de la materia condensada y le inspire a explorar m´as a fondo este fascinante campo.

1.1.   ¿Por qu´ e estudiamos el estado s´ olido de

la materia?

La f´ısica del estado s´olido se enfoca en estudiar las fases s´olidas de la mate-ria mediante un enfoque microsc´opico y para ello se sirve de de herramientas provenientes de la mec´anica cu´antica, la f´ısica estad´ıstica y la termodin´ami-ca. Debido tanto a la diversidad de sistemas que estudia como a la relevancia de sus conceptos fundamentales, la f´ısica del estado s´olido se ha converti-do en una de las ´areas m´as amplias de la f´ısica, con numerosas aplicaciones pr´acticas y tecnol´ogicas. En la actualidad, nuestra capacidad para compren-der la materia ha alcanzado niveles sin precedentes, permiti´endonos dise˜nar materiales de funcionalidades espec´ıfica e incluso llevar a cabo simulaciones num´ericas por computadora antes de proceder a su fabricaci´on. Un ejemplo
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1.1 ¿Por qu´ e estudiamos el estado s´ olido de la materia?

de esta capacidad descriptiva son los materiales semiconductores, que son la base de la industria de la microelectr´onica y de muchos dispositivos que nos rodean a diario (smartphones, laptops, memorias, etc.).

Una caracter´ıstica distintiva de los sistemas estudiados en la f´ısica del s´oli-do y, en general, en la materia condensada, es la gran cantidad de part´ıculas que intervienen. En un s´olido, suele haber del orden de 1023 part´ıculas (elec-trones e iones) que est´an en permanente interacci´on y movimiento, lo que resulta en una din´amica extremadamente compleja de describir. A menudo, incluso teniendo una compresi´on profunda de los mecanismos microsc´opi-cos de interacci´on (como la repulsi´on Coulombiana entre dos electrones), los fen´omenos colectivos que emergen de la interacci´on de un n´umero tan elevado de part´ıculas son totalmente inesperados. Un ejemplo de esto son las transi-ciones de fase, donde un sistema puede volverse ferromagn´etico por debajo de cierta temperatura. Estos fascinantes fen´omenos en los sistemas de materia condensada se conocen como fen´ omenos emergentes. Es justamente la gran cantidad de ´atomos involucrados lo que hace posible realizar una descripci´on cuantitativa de estos sistemas..

La f´ısica del estado s´olido resulta una disciplina conceptualmente fun-damental, ya que se sit´ua en la intersecci´on de diversas ramas de la f´ısica, desde ´areas muy abstractas como la teor´ıa cu´antica de campos, hasta otras m´as aplicadas como la f´ısica de materiales y la electr´onica. La universalidad de sus conceptos nos permite comprender y estblecer conexiones que inicial-mente pueden no ser evidentes. Por este motivo, los s´olidos act´uan como ¹         º laboratorios donde se pueden validar teor´ıas e ideas de diferentes ´ambi-tos de la f´ısica. Por ejemplo, todos estamos familiarizados con el magnetismo (muchos de nosotros hemos manipulado imanes o tenemos alguno en nuestras heladeras). Sin embargo, algo menos evidente sobre esos simples imanes es que la teor´ıa del magnetismo en s´olidos (particularmente, la teor´ıa de campo medio y el fen´omeno de ruptura espont´ anea de la simetr´ıa, tambi´en ofrecen explicaciones para materiales m´as complejos y menos frecuentes, como los

superconductores 1 , que estudiaremos en el cap´ıtulo 5.

Consideremos, por ejemplo, los portadores de carga en un metal responsa-

bles del transporte el´ectrico: los electrones y los        2 huecos. En su teor´ıa cu´antica relativista para describir part´ıculas de spin 1/2 (como el electr´on), el notable f´ısico Paul Dirac propuso el concepto de antimateria, actualmente un elemen-to esencial en el Modelo Est´andar. En la f´ısica del estado s´olido, entendemos

1 Un superconductor es un material que, por debajo de cierta temperatura, pierde toda

resistencia el´ ectrica, permitiendo el flujo de electricidad sin p´ erdida de energ´ıa.

2                                          ¹ Un hueco se puede imaginar como unaburbujaº en un ¹oc´ eano de electronesº, efecti-

vamente comport´ andose como una part´ıcula con carga positiva +e
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Figura 1.1: Izquierda: Imagen generada por computadora de una monocapa de grafeno, donde los ´atomos de carbono se disponen en una red de tipo ¹           º panal de abeja. Derecha: Estructura electr´onica del grafeno, donde pue-den verse los llamados conos de Dirac, cerca de los cuales los electrones se comportan de manera efectiva como si se movieran a velocidades relativistas.

[image: ]

a un hueco como la ¹antipart´ıculaº del electr´on dentro de un s´olido.3

La f´ısica del estado s´olido tambi´en nos ayuda a entender las propieda-des de nuevos materiales con caracter´ısticas innovadoras. Por ejemplo, se ha logrado avances significativos recientemente en la creaci´on de materiales que prometen transformar la industria electr´onica y la ciencia de materiales. Probablemente, el m´as relevante en las ´ultimas d´ecadas es el material deno-minado grafeno, que est´a formado por una ´unica capa de ´atomos de carbono

dispuesta en una estructura similar a un ¹panal de abejasº (ver Figura 1.1). Curiosamente, todos hemos estado en contacto con este material sin saberlo, ya que compone el grafito, que a su vez se encuentra en la punta de cualquier l´apiz. Se puede imaginar el grafito como un conjunto de millones de capas de grafeno apiladas. Aunque el grafito es un material bastante com´un y no muy llamativo, el grafeno s´ı presenta propiedades excepcionales: es m´as fuerte que el acero (comparando una capa de igual espesor), y es uno de los mejores conductores de la electricidad y el calor hallados hasta el momento. Si bien su estructura y ciertas propiedades son conocidas desde hace tiempo, no fue

sino recientemente que se lo logr´o aislar y caracterizar4. Adem´as de sus signi-ficativas aplicaciones tecnol´ogicas, a bajas temperaturas el comportamiento

3                                                                          ¹ No obstante, de manera m´ as precisa, se reconoce hoy en d´ıa que laverdaderaº anti-

part´ıcula del electr´ on es el positr´ on, identificado en 1932.

4 En 2004, Andr´ e Geim y Konstantin Novoselov, lograron separar una monocapa de grafeno

utilizando el m´ etodo de exfoliaci´ on que consiste en aplicar repetidamente cinta adhesiva hasta conseguir una monocapa. Geim y Novoselov ganaron premio Nobel de f´ısica en 2010 por este descubrimiento.
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1.2 Aproximaci´ on de Born-Oppenheimer, o c´ omo encarar un problema tan

complicado

de los electrones en el grafeno simula el de electrones ¹sin masaº o electrones relativistas de Dirac, estableciendo conexiones con la f´ısica de altas energ´ıas. 1.2.   Aproximaci´ on de Born-Oppenheimer, o

c´ omo encarar un problema tan compli-cado

Supongamos que tuvi´eramos una capacidad de c´alculo sin l´ımite y qui-si´eramos describir el comportamiento de una sustancia formada por ´atomos que interact´uan entre s´ı. Esta cuesti´on es pertinente no s´olo para el estado s´olido, sino para la materia en cualquiera de sus estados. El puntapi´e inicial en el que un f´ısico pensar´ıa (tal vez uno no demasiado experimentado) ser´ıa resolver la ecuaci´on de Schr¨odinger para todo el sistema, compuesto de elec-trones y n´ucleos (a quienes tratar´ıamos como una ´unica part´ıcula) y sujetos a las interacciones Coulombianas entre ellos,

H Ψ = EΨ, (1.1)

cuyo Hamiltoniano se escribe como una suma de t´erminos

H = Te + Tn + Vee + Vnn + Ven, (1.2)

y donde los t´erminos de energ´ıas cin´etica y potencial son

T    Ø           Ø , T =   ,       (1.3)

e                                         n m          m 2 2 = Ne    2                            Nn    2 p j                                                  l P

j          e                                         n =1 l =1

V     Ø Ne        2                        Ne           2 Í e Ø Z l Z l e , ee = V nn = ,      (1.4) | Í Í r j − r j | Í | R l − R Í l | j Ó = j =1 l Ó = l =1

Ne,Nn     2 e Z

V     Ø   l =                        (1.5) en                    .

j,l       |r j − Rl| =1

Aqu´ı rj se refiere a las coordenadas de los Ne electrones de masa me y Rl a las Nn coordenadas de los n´ucleos, de masa mn. Zl son los correspondientes n´umeros at´omicos. La funci´on de onda depende de todas las coordenadas, lo cual anotamos en forma compacta en la forma

Ψ(r1, . . . , rNe , R1, . . . , RNn) = Ψ({rj}, {Rl}). (1.6)

Con la excepci´on de efectos de radiaci´on e interacciones spin-´orbita (ambos podr´ıan incorporarse con facilidad en el Hamiltoniano), todos los fen´omenos
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de la materia condensada, y todos los fen´omenos que ocurren en nuestra vi-da cotidiana, est´an contenidos en este Hamiltoniano y las correspondientes ecuaciones de movimiento. La “teor´ıa del todo” en materia condensada est´a entonces bien establecida, y s´olo nos queda resolverla (¡!). Sin embargo aqu´ı es donde los problemas aparecen, el primero de ellos, y no menor, es que resolver estas ecuaciones es imposible tanto anal´ıtica como num´ericamente para sistemas donde el n´umero de constituyentes es mayor a una veintena de part´ıculas, incluso en su versi´on cl´asica. La complejidad de estos sistemas crece exponencialmente con el n´umero de part´ıculas y r´apidamente se alcanza

el l´ımite que es posible tratar computacionalmente5. Anal´ıticamente s´olo el problema de dos cuerpos posee soluci´on exacta. Por otro lado, las aproxima-ciones usuales que podr´ıan emplearse para tratar estas ecuaciones, tales como la teor´ıa de perturbaciones, si bien permiten capturar ciertos fen´omenos, co-mo el comportamiento de los gases , no logran describir la mayor parte de los fen´omenos conocidos de la materia condensada, tales como la supercon-ductividad, superfluidez, efecto Hall cu´antico fraccionario, etc, incluyendo la existencia misma de los s´olidos. Para esto se debe cambiar el enfoque y uti-lizar razonamientos basados en la simetr´ıa y en el an´alisis inteligente de las escalas relevantes de tiempo y longitud. Esta forma de encarar el problema, es la que en ´ultima instancia permite comprenderlo. La “teor´ıa del todo” es de poca utilidad para entender estos fen´omenos complejos.

Volviendo al problema del s´olido, para atacar el conjunto de ecuaciones

(1.1)-(1.5) lo que haremos es analizar las escalas de energ´ıa del problema. Los n´ucleos son varios miles de veces m´as pesados que los electrones. El prot´on, en s´ı mismo, es aproximadamente 2000 veces m´as masivo que un electr´on. En un sentido din´amico, los electrones pueden considerarse como part´ıculas que siguen el movimiento nuclear adiab´aticamente, lo que significa que son “arrastrados” junto con los n´ucleos sin requerir un tiempo de relajaci´on fi-nito. Esto, por supuesto, es una aproximaci´on, ya que podr´ıa haber efectos no adiab´aticos que no permitan que los electrones se muevan de esta mane-ra “instant´anea”, sin embargo, en muchos sistemas la separaci´on adiab´atica entre electrones y n´ucleos es una excelente aproximaci´on. Otra consecuencia de la diferencia de masa entre electrones y n´ucleos es que los componentes nucleares de la funci´on de onda est´an espacialmente m´as localizados que el componente electr´onico. En el l´ımite cl´asico, los n´ucleos est´an completamen-te localizados y representan part´ıculas puntuales cl´asicas. Vamos a explotar esta separaci´on de escalas mediante un ansatz cuasi separable de la forma,

Ψ({rj }, {Rl}) = φe({rj }, {Rl})φn({Rl})            (1.7)

5 Y que ser´ a posible tratar por cualquier computadora en un futuro.
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Al insertar este ansatz en la ecuaci´on de Schr¨odinger, vemos que una posi-bilidad, consistente con la filosof´ıa de la aproximaci´on que buscamos imple-mentar, es que el factor electr´onico satisfaga una ecuaci´on de Schr¨odinger m´as simple, para una configuraci´on fija de los n´ucleos:

H eφe = Eeφe (1.8)

donde ahora

H e = Te + Vee + Ven. (1.9)

Esta ecuaci´on adquiere sentido si pensamos que durante los intervalos de tiempo caracter´ısticos en los que transcurre el movimiento electr´onico, los n´ucleos se quedan fijos y por lo tanto se desprecia su energ´ıa cin´etica. Tam-poco incluimos Vnn porque es una constante para la ecuaci´on electr´onica. Desde el punto de vista de los electrones, el potencial electr´on-n´ucleo ahora juega el papel de un potencial externo,

Ne

Ven = Ø U (rj ) (1.10)

j=1

donde                          Nn    2 e ØZl U ( r ) =                     (1.11) | r − R l | l =1 es un potencial de part´ıcula simple, que depende de una serie de par´ametros

que son las posiciones de los n´ucleos Rl. La ecuaci´on (1.8) determina las energ´ıas propias del sistema electr´onico, que dependen param´etricamente de las posiciones de los iones:

Ee = Ee({Rl}). (1.12)

En una segunda etapa, volvemos al Hamiltoniano original (1.2) e inserta-

mos la forma separada (1.7), y utilizando (1.8) llegamos a

(Tn + Vnn + Ee) φe({rj}, {Rl})φn({Rl}) = Eφe({rj }, {Rl})φn({Rl})

(1.13)

. Obs´ervese que no hemos realizado hasta aqu´ı ninguna aproximaci´on, s´olo

hemos propuesto el ansatz (1.7) con φe satisfaciendo (1.8). Claro, el par

de ecuaciones (1.8) y (1.13) resultan tan complicadas de resolver como el problema original. En especial la segunda: el operador que corresponde a la energ´ıa cin´etica act´ua sobre los dos factores, φe y φn ya que ambos dependen de las coordenadas de los n´ucleos. Sin embargo, la din´amica r´apida de los electrones comparada con la de los n´ucleos implica que el operador energ´ıa
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cin´etica de los n´ucleos actuando sobre φe debe ser muy peque˜no, y entonces suponemos que Tn ´unicamente act´ua sobre φn. Luego, obtenemos la ecuaci´on

(Tn + W ({Rl})) φn({Rl}) = Eφn({Rl})          (1.14)

donde W = Vnn +Ee es un potencial efectivo de interacci´on entre los n´ucleos, que tiene en cuenta la presencia de los electrones. Obtuvimos entonces dos

ecuaciones: la ecuaci´on (1.8) que representa una ecuaci´on para los electrones en presencia de un potencial externo generado por los n´ucleos en posiciones

fijas, y la ecuaci´on (1.14) que describe el movimiento de los n´ucleos, que inter-act´uan mediante un potencial efectivo influido por el movimiento electr´onico a trav´es de Ee({Rl}). Por supuesto, estas ecuaciones siguen acopladas y si bien son m´as simples que la ecuaci´on original continuan siendo muy dif´ıciles de resolver para 1023 variables. Sin embargo, hay una simplificaci´on adicional importante, que da lugar a una teor´ıa del estado s´olido: los s´olidos son estruc-turas peri´odicas formadas por una celda unidad que se repite muchas veces. Esta celda contiene solo unos pocos ´atomos y entonces el problema final es apenas m´as complicado que el de un mol´ecula peque˜na, con el tama˜no de una sola celda.

Para explicar esta estructura peri´odica, supongamos que los n´ucleos son tan pesados que podemos despreciar su energ´ıa cin´etica. Entonces, la confi-guraci´on de equilibrio de los n´ucleos ser´a aquella que minimice el potencial efectivo W . Este t´ıpicamente exhibe una fuerte repulsi´on de corto alcance cuyo origen se encuentra en la repulsi´on Coulombiana entre n´ucleos, y una atracci´on de largo alcance, y un m´ınimo a una cierta distancia. Se puede mostrar, aun que aqu´ı lo supondremos , que bajo condiciones muy generales, el m´ınimo del potencial efectivo ocurre cuando los n´ucleos se disponen en un arreglo regular sobre una red peri´odica, cuyas caracter´ısticas geom´etricas dependen del detalle de las fuerzas efectivas entre los n´ucleos, lo cual, en ´ultima instancia est´a determinado por la naturaleza del material.

1.3.   Modelo de Einstein

El calor espec´ıfico de un s´olido se define como la cantidad de calor que hay que suministrar por unidad de masa para elevar su temperatura en una unidad. El valor del calor espec´ıfico depende del valor de la temperatura inicial, en general aumenta cuando aumentamos la temperatura y tiende a cero cuando la temperatura tiende a 0 K. A medida que la temperatura se hace m´as grande, el crecimiento del calor espec´ıfico se hace cada vez m´as lento hasta que a grandes temperaturas satura a un valor fijo.
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1.3 Modelo de Einstein

Material   C/kB

cobre     2, 94

oro      3, 05

plata     2, 99

aluminio   2, 91 diamante 0, 74

Cuadro 1.1: Calor espec´ıfico por ´atomo para algunos materiales

Lo que es llamativo, es que el valor al que tiende el calor espec´ıfico a temperaturas altas es aproximadamente el mismo para la mayor´ıa de los s´olidos. En base a esto, en 1819 los f´ısicos franceses Pierre Louis Dulong y Alexis Th´eres`ese Petit propusieron lo que hoy se conoce como “ley de Dulong-

Petit”[8], la propuesta estaba basada en la observaci´on experimental de que para muchos s´olidos el calor espec´ıfico por mol est´a dado por

C = 3kB. (1.15)

La “ley de Dulong-Petit” puede deducirse a partir de la estad´ıstica de

Boltzman6. Aunque esta ley no siempre es del todo correcta, se tiene que C/kB Ä 3 se cumple aproximadamente bien a temperatura ambiente pa-ra muchos s´olidos. A temperaturas m´as bajas, los materiales comienzan a desviarse de esta ley y C cae r´apidamente por debajo de cierta temperatura.

Boltzmann construy´o un modelo que explicaba bastante bien esta ley en el que cada ´atomo del s´olido se encuentra unido a los ´atomos vecinos y posee

grados de libertad de vibraci´on[6]. Podemos suponer que cada ´atomo est´a en un pozo de potencial, que supondremos arm´onico formado por la inter-acci´on con sus vecinos. En un modelo mec´anico estad´ıstico cl´asico como el de Boltzmann, el calor espec´ıfico del ´atomo es 3kB, de acuerdo con la ley de Dulong-Petit. El problema que surge del modelo de Boltzmann es que no logra describir el comportamiento del calor espec´ıfico a bajas temperaturas.

Para resolver esto, en 1907 Albert Einstein[9] propuso que, para describir los grados de libertad de vibraci´on a bajas temperaturas era imprescindible un tratamiento cu´antico. Einstein propuso un modelo simple an´alogo al de Boltzmann, suponiendo que cada ´atomo estaba sujeto a un potencial arm´oni-co generado por la interacci´on con sus vecinos, de manera que cada ´atomo representa un oscilador arm´onico cu´antico. Las suposiciones del modelo de s´olido de Einstein son b´asicamente dos:

Cada ´atomo en la red es un oscilador arm´onico cu´antico tridimensional

6 Esto se deja como ejercicio pr´ actico para el lector
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independiente.

Todos los ´atomos oscilan con la misma frecuencia ω

En el modelo de Einstein, cada ´atomo oscila en forma independiente y a la misma frecuencia. Einstein era consciente de que esta era una aproxi-maci´on, sin embargo propuso su teor´ıa como una demostraci´on clara que la mec´anica cu´antica era necesaria para resolver el problema del calor espec´ıfico a temperaturas bajas. El modelo de Einstein representa un claro ejemplo de la utilidad que tienen los modelos simples en f´ısica para identificar que carac-ter´ısticas son relevantes para describir las propiedades f´ısicas de un sistema. Este tipo de enfoque es particularmente ´util en f´ısica y est´a relacionado con el concepto de teor´ıa efectiva. Una teor´ıa efectiva debe incluir los grados de libertad apropiados para describir las propiedades de un sistema a una escala de longitud de energ´ıa determinada.

Veamos que se obtiene al aplicar las suposiciones de Einstein. En una dimensi´on, los autoestados de un oscilador arm´onico est´an dados por:

Ôn = ~ω (n + 1/2)

donde ω es la frecuencia del oscilador arm´onico (a partir de ahora la llama-remos la frecuencia de Einstein).

Podemos entonces construir la funci´on de partici´on de la siguiente manera

∞

Z    Ø −β ~ω(n =

e      +1/2)

n=0

∞

= − ~ βω/2 Ø −β~ωn e e

n=0

= −             n ∞ e β ~ω/2 Ø 1 −β~ 2 ω e .

n=0

Y usando que q∞   n a = 1/ n =0(1 − a) tenemos que

Z =     − 1 e−β~ω/2 − β ~ω e

Z         1 =     −

2 sinh( β ~ω/2)

Calculamos el valor medio de la energ´ıa

é            1 ∂Z   ~ω E ê = − = coth(β ~ω/2) Z ∂β 2 1 3 1 4 3          1 4 é E ê = ~ ω + = β ~ ω n B ( β ~ ω ) + , ~ ω e − 1 2 2
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donde            x n B ( x ) = 1 / ( e − 1) es la distribuci´on de Bose. Derivando la expresi´on para la energ´ıa con respecto a la temperatura obtenemos

C ∂                   β ~ω é E ê e 2 = = k B ( β ~ ω )    . ~ ω ∂T ( β e − 1) 2

En el l´ımite de alta temperatura β → 0 tenemos que

β l´ım C = KB. → 0

La generalizaci´on al caso en tres dimensiones es inmediata, la energ´ıa de un oscilador arm´onico simple en 3D est´a dada por

Ônx,ny,nz = ~ω ((nx + 1/2) + (ny + 1/2) + (nz + 1/2)) .

Con esto podemos construir la funci´on de partici´on y obtener

Z = (Z )3 3 D,

donde Z es la funci´on de partici´on en 1D. De esta manera, al calcular el valor medio de la energ´ıa obtenemos

éE3D ê = 3éEê.

Luego, para el calor espec´ıfico en tres dimensiones obtenemos

.                                    C3D = 3kB(β ~ω) ( 2     eβ ~ω β ~ ω e − 1)2

Es decir, en el l´ımite T → ∞ tenemos que

C3D = 3kB.

El modelo de Einstein recupera correctamente el l´ımite de alta tempe-

ratura. De la figura 1.2 podemos ver que adem´as funciona razonablemente bien a temperaturas intermedias, pudiendo explicar el calor espec´ıfico a tem-peratura ambiente de materiales como el diamante, donde la teor´ıa cl´asica no funcionaba. Sin embargo, aun falla a muy bajas temperaturas ya que el calor espec´ıfico en la teor´ıa de Einstein decrece exponencialmente mientras la mayor´ıa de los materiales aislantes registran un comportamiento de tipo T 3 .

Aunque la teor´ıa de Einstein logra describir razonablemente bien el calor especifico de la mayor´ıa de los s´olidos en un rango de temperaturas alta, para eso se debe ajustar un par´ametro libre de la teor´ıa (ω). A veces es conve-niente expresar la frecuencia de Einstein en t´erminos de una temperatura, denominada “Temperatura de Einstein” ~ω = kBTEinstein
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Figura 1.2: Gr´afico del calor espec´ıfico del diamante publicado en el trabajo

original de Einstein de 1907[9].

1.4.   Teor´ıa del s´ olido de Debye

Si bien la teor´ıa de Einstein describe exitosamente el calor espec´ıfico de muchos materiales a temperatura ambiente, aun se requieren mejoras en el modelo si se quieren describir los rangos de baja temperatura. En la figura

1.2 se puede ver que a baja temperatura los datos experimentales est´an por encima de la curva te´orica.

El poder mejorar el modelo para solucionar esta discrepancia resulta-ba importante ya que se sab´ıa que a bajas temperaturas la mayor´ıa de los materiales tienen un calor espec´ıfico proporcional a   3 T. Adem´as permite com-prender que caracter´ıstica relevante se debe incluir en la teor´ıa cu´antica.

Se debe tener en cuenta tambi´en que no todos los materiales se com-portan de la misma manera, ya que por ejemplo los metales tambi´en tienen un t´ermino adicional proporcional a T y los materiales magn´eticos pueden presentar tambi´en otros t´erminos adicionales.

Salvando estos casos, encontramos que los aislantes no magn´eticos pre-sentan generalmente a muy bajas temperaturas solo el comportamiento   3 T. En cualquier caso, el modelo de Einstein a bajas temperaturas decrece expo-nencialmente con T , por lo que no coincide con ninguna de las medidas del

calor espec´ıfico en materiales reales. Peter Debye[1], propuso una forma de mejorar el tratamiento cu´antico de las oscilaciones de los ´atomos y as´ı poder obtener el comportamiento a bajas temperaturas de tipo de tipo   3 T.

Debye se dio cuenta de que las oscilaciones de los ´atomos representan
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b´asicamente ondas de sonido, por lo que al buscar una teor´ıa cu´antica hay que buscar justamente la forma de cuantificar una onda. Una tarea similar ya hab´ıa sido estudiada algunos a˜nos antes por Planck cuando cuantific´o las ondas de luz.

Al intentar cuantificar las ondas de sonido de forma similar a la luz hay que tener en cuenta una diferencia entre luz y sonido: para la luz, hay dos polarizaciones para cada valor de k mientras que para el sonido, hay tres modos para cada k (un modo longitudinal, y dos modos transversales). La luz tiene solo los modos transversales. Para hacer el desarrollo m´as simple, asumiremos que los modos transversal y longitudinal tienen la misma veloci-dad, aunque en verdad el longitudinal es t´ıpicamente m´as grande que el modo transversal. Siguiendo esta idea, Debye asumi´o que los modos de oscilaci´on eran ondas cuyas frecuencias estaban dadas por

ω(k) = v|k|,

donde la constante v es la velocidad del sonido. Adem´as en el c´alculo debemos tener en cuenta que para cada k hay tres modos de oscilaci´on posibles, uno para cada direcci´on de movimiento. Siguiendo estas suposiciones podemos escribir una expresi´on completamente an´aloga a la expresi´on de Einstein

éEê = 3 Ø ~ω ( 3            4 1 k ) nB(β ~ω ( k)) +

k                        2 L3   ˆ            3               1 4

= 3      dk ~ω(k) nB(β~ω(k)) + (2 π ) 3 2

Como tenemos simetr´ıa esf´erica podemos reducir la integral tridimensio-nal a una integral en una variable.

ˆ          ˆ 2π   ˆ π        ˆ ∞             ˆ ∞

dkf (k) =     dφ    sin(                           2 θ ) 2 dθ k f ( k ) dk = 4 π kf(k)

0         0               0                        0

Luego, tendremos que

é        4      ∞ πL          3            14 2 E 3 ˆ

ê = 3           dk k ~ω(k) nB(β~ω(k)) +    . (2 3 π ) 0 2

Cambiamos la variable de integraci´on de k a ω usando ω = vk y obtenemos

é        4   3   ∞ πL dω      3           4 2 1 E ˆ

ê = 3               ω   ω nB(β ω) +    . π (2 ) 3 3 ~ ~ v 0 2

Podemos agrupar el integrando de forma conveniente

 

Facultad de Cs. Exactas  |  UNLP |   18

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

Modelos en s´ olidos

é       ˆ ∞   A    3 12 2 B πL ω     3         14 E ê = dω ( ) 3 ~ ω n B ( β ~ ω ) + , π 0 (2 ) 3 v 2

llamando           3 2 g ( 12 ω ω ) = πL 3 3 tenemos que (2 π ) v

é       ˆ ∞          3         14 E ê = dω g ( ω ) ( ~ ω ) n B ( β ~ ω ) + .          (1.16) 2 0

La funci´on g(ω) en (1.16) se denomina densidad de estados. La canti-dad de modos de vibraci´on con frecuencias entre ω y ω + dω est´a dada por

g (ω)dω. De esta manera, la interpretaci´on de la ecuaci´on (1.16) es simple-mente que debemos contar cu´antos modos hay por frecuencia (este n´umero est´a dado por la cantidad g(ω)) y luego multiplicarlo por la energ´ıa del modo. Finalmente, se integra en todas las frecuencias.

Al trabajar con la densidad de estados es conveniente tambi´en usar la densidad de part´ıculas

n      3 = N/L

Despejando   3 L y reemplazando en la expresi´on para la densidad de esta-dos tenemos que

2

g (ω) = N            . 3 A      B 12 πω

(2π) 3 vn

Es frecuente definir lo que se conoce como la frecuencia de Debye como ω 3        2    3 π = 6 nv y escribir la densidad de estados en terminos de esta cantidad

D

2               2

g (ω) = N            = N    . π A      B 12 πω    9ω

(2 )3 3            3 v n ω D

De la ecuaci´on (1.16) para el valor medio de la energ´ıa vemos que el factor 1 nos d´a una contribuci´on independiente de la temperatura que no 2

nos afectar´a en el c´alculo del calor espec´ıfico. Es decir que podemos calcular la parte dependiente de la temperatura como

ˆ ∞

éE (T )ê =      dω g(ω) (~ω)nB(β~ω) é              9N ~ ∞      3 ω E 0     ˆ

(T )ê =           dω 3 β~ω ω e − D 0 1

Si cambiamos variables haciendo x = β ~ω tenemos que é                9     ˆ ∞      3 N x E

(T )ê =              dx 3 x ω β e D ( ~ 3 ) − 0 1
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La integral es independiente de la temperatura, de hecho el resultado es

simplemente              ˆ ∞       3       4 x π dx = . x e − 0 1 15 Luego           é              9      4 N π    9N (kBT )4 4 π E ( T ) ê = 3 = . 3

ω β D (~ ) 15       3 3 ω D ~   15

De donde obtenemos para el calor espec´ıfico

∂               4 4 é E ( T ) ê 12 N π k

C                B 3 ( T ) = = T. ∂T      5 3 3 ω D ~

De esta manera se obtiene la esperada dependencia con   3 T. De la misma manera que hicimos para la teor´ıa de Einstein, podemos definir la tempera-tura de Debye como

~ωD = kBTDebye

y reescribir el calor espec´ıfico como

∂               4          3 é E ( T ) ê 12 N π k T

C                B ( T ) = = ∂T        5      3     .

TDebye

1.4.1.   Problemas con la formulaci´ on

Ya se habr´an dado cuenta que; si bien el modelo propuesto por Debye reproduce bien el comportamiento a bajas temperaturas, tiene un problema. En la expresi´on que encontramos para el calor espec´ıfico, ¡ el comportamiento es proporcional a   3 T a bajas y altas temperaturas !

Sabemos sin embargo, que el calor especifico debe tender asint´oticamente al valor 3kBN para T suficientemente alta.

Debye intuy´o que el problema con su aproximaci´on es que contempla un n´umero infinito de modos de vibraci´on. Esto se ve ya que al calcular la energ´ıa la integral en k se realiza hasta valores de k arbitrariamente grandes. Para remediar esto trabaj´o bajo la suposici´on de que deber´ıa haber solo tantos mo-dos de vibraci´on como grados de libertad en el sistema. Para solucionar este problema, Debye decidi´o no considerar ondas por encima de cierta frecuencia m´axima ωcutof f .

Esta frecuencia de corte, debe ser elegida de forma que la cantidad de modos de vibraci´on sea exactamente 3N. Tenemos, entonces que

ˆ ω cutof f

3N =      g(w)dw.

0
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Figura 1.3: Gr´afico del calor espec´ıfico para Ag (Plata). Los puntos son diferentes medidas experimentales, las lineas continuas representan las pre-dicciones te´oricas de Debye y Einstein

As´ı, tenemos que reescribir la ecuaci´on (1.16) como

é       ˆ ωcutof f                  3               1 4 E ê = dω g ( ω ) ( ~ ω ) n B ( β ~ ω ) + .          (1.17) 2 0

Esta expresi´on mantiene el comportamiento a bajas temperaturas, pe-ro la presencia de una frecuencia de corte (cutoff) cambia por completo el comportamiento a altas temperaturas.

Para T grande tenemos que β ¹ 0 y por lo tanto podemos escribir

n            1        1 β B ( ~ ω ) = Ä β ~ ω e − 1 β ~ω

Luego podemos escribir para la energ´ıa

é       ˆ ω                A cutof f 1     1 B E ê Ä dω g ( ω ) ( ~ ω ) + β ω 0 ~ 2

y para la parte dependiente de la temperatura (que es la que nos interesa para calcular el calor espec´ıfico) tenemos

é       1 ˆ ωcutof f              1 E ê Ä dω g ( ω ) = 3N = 3N KBT. β β 0

Es decir, que al calcular el calor espec´ıfico C = ∂éEê/∂T recuperamos la ley de Dulong-Petit C = 3N KB.
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Si queremos hacer el c´alculo para una temperatura arbitraria, tenemos

que calcular la integral (1.17), la cual tiene que ser calculada num´ericamente.

Podemos ver una comparaci´on entre las predicciones hechas por los mo-

delos de Einstein y Debye con datos experimentales en la figura 1.3

1.5. Modos normales para una red unidimen-

sional monoat´ omica.

Consideremos una cadena de ´atomos id´enticos de masa m y supongamos que la distancia de equilibrio entre ´atomos es una cantidad a. Entonces, la posici´on de equilibrio del enesimo ´atomo es   eq x    na n =.

Si permitimos que los ´atomos puedan desviarse de su posici´on de equilibrio y moverse solo en la direcci´on de x (esto es, en nuestro modelo el movimiento es puramente en una dimensi´on) y llamamos xn a la posici´on del enesimo ´atomo, la desviaci´on de la posici´on a partitr de su posici´on de equilibrio puede escribirse como

δx n =      eq x n − x n

Consideremos la energ´ıa potencial de un ´atomo, digamos el ´atomo n. Podemos escribir los primeros t´erminos de su desarrollo de Taylor como

V (x )       eq     dV               d eq eq 12                     3 V eq 2 1 dV n Ä V ( x x − n )+ ( x x n )( n n )+ ( eq x n )( x n − x n ) + ( eq       eq 3 x n )( x n − x 2 dx n 2 dx n 3! n ) 3 dx n

La posici´on de equilibrio   eq x n debe corresponder a un extremo de la energ´ıa potencial, por lo que tendremos que

dx dV   eq x ( n) ≡ 0. n

Luego, si llamamos       2 dV K =   eq 2 ( x    K dx n ) y3 = 3 dV 3 ( eq x dx n) tenemos que n n

V              1        1 x ( n ) Ä V ( eq 2     3 x Kδx K n ) + δx   · · · 2 n + 3! 3 n +

Si solo consideramos peque˜nas desviaciones de la posici´on   eq x n los t´erminos de mayor grado son mucho mucho m´as peque˜nos que el t´ermino cuadr´atico y podemos descartarlos. En general cualquier potencial suave, cuando es es-tudiado lo suficientemente cercano a su m´ınimo, puede aproximarde como cuadr´atico. Consideremos ahora una cadena de ´atomos cuyo potencial de-
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Figura 1.4: Esquema de una cadena monoat´omica

pende de la distancia entre ´atomos consecutivos. De esta manera podemos escribir la energ´ıa potencial para la cadena como

V                          K        2 Ø        Ø V tot = ( x j − x j +1 ) Ä V eq + ( δx j − δx j +1 ) 2 j j

Podemos calcular la fuerza que act´ua sobre el ´atomo n como

F n = −∂V tot = K (δx n+1 − δxn) + K (δxn−1 − δxn )

∂δxn

Y la segunda ley de Newton queda en la forma

m ¨ δxn = K(δxn+1 + δxn−1 − 2δxn)            (1.18)

Obtenemos as´ı, un sistema de ecuaciones acopladas. Llamaremos modo normal de vibraci´on a las soluciones de este sistema donde todos los ´ato-mos de la cadena oscilen con la misma frecuencia. Para encontrar los modos normales propondremos una soluci´on de la forma

δx      iωt      eq − ikx        iωt ikan = = n    Ae          Ae n          −

Donde proponemos una expresi´on compleja por conveniencia, pero al fi-nal consideraremos la parte real como la soluci´on f´ısica. Reemplazamos esta

propuesta en la ecuaci´on (1.18) y obtenemos

− 2                           1                           2 iωt − ikan iωt − ika ( n +1) mω Ae = KAe   e      + − 2 e−ika(n−1)      −ikan e

que podemos escribir como

mω 2                                      2 = 2 K (1 − cos( ka )) = 4 K sin (ka/2)            (1.19)

De donde obtenemos ω

ó

ω = 2 K |sin(ka/2)|                                 (1.20)

m
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Figura 1.5: Relaci´on de dispersi´on para una cadena monoat´omica

A la relaci´on entre energ´ıa (recordemos que E = ~ω ) y momento de lo denomina relaci´ on de dispersi´ on. Vamos a estudiar un poco las propiedades de la relaci´on de dispersi´on que encontramos.

Cuasimomento

Lo primero que debemos observar es que esta relaci´on de dispersi´on es peri´odica, con per´ıodo 2π/a. Esta periodicidad ya estaba impl´ıcita en nuestra propuesta de soluci´on. Notemos que si hacemos un shift en momentos k → k + 2π/a tenemos que

δx n =         2π Aeiωt−i(k+   )an        iωt− a = Ae   ikan

Esta periodicidad en el espacio de momentos viene heredada de la pe-riodicidad de la red real. A la zona del espacio de momento que se repite peri´odicamente se la denomina “zona de Brillouin” y representa un concepto muy importante en materia condensada.

Grandes longitudes de onda

En el l´ımite de grandes longitudes de onda 7 podemos hacer un desarrollo de la relaci´on de dispersi´on alrededor de k = 0 y encontramos que la relaci´on

7 Entenderemos a una onda de sonido como una vibraci´ on que tiene una longitud de onda

larga en comparaci´ on con la interat´ omica.
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de dispersi´on es aproximadamente lineal de la forma                      ñ ω( k ) Ä con = . vk           K v a

Entonces vemos que la conjetura de Debye al poner                       m ω = vk es muy razonable para el caso de grandes longitudes de onda (k peque˜no), sin embargo para valores de k cercanos a ±π/a la aproximaci´on de Debye no es correcta.

La otra suposici´on fuerte que realiz´o Debye fue la de introducir una fre-cuencia de corte (cutoff) en la integral bajo el argumento de que no pod´ıa haber mas modos de vibraci´on que grados de libertad del sistema. Debye impuso que el sistema deb´ıa tener exactamente 3N modos normales para el caso 3D (N si consideraramos solo vibraciones en 1D). Si bien la suposi-ci´on es razonable ahora podemos intentar calcular la cantidad de modos de vibraci´on.

Para realizar este c´alculo debemos considerar que condiciones de contorno impondremos en los bordes de la cadena. Por simplicidad, consideraremos condiciones de contorno peri´odicas. Esto es, asumiremos que xn+N = xn (donde N es el n´umero de ´atomos en la cadena).

Al hacer esto debemos tener cuidado de que la onda que propusimos como soluci´on cumpla con la condici´on de contorno. Por eso debemos tener

eiωt −ika(n+N)        − iωtikan = e

Para que esto se cumpla debemos tener que

eikN a = 1

Esto solo es posible si el momento cumple que

k    2πq    2πq =   = N a L

donde L = N a y q es un n´umero entero. Entonces k est´a cuantificado y ya no es m´as una cantidad continua. El espacio entre dos valores consecutivos de      π k es 2 . N a

Contemos cu´antos modos tenemos. La relaci´on de dispersi´on toma todos sus valores en el intervalo −π < k ≤ π. Como la relaci´on relaci´on de disper-si´on es peri´odica, la relaci´on de dispersi´on evaluada en cualquier valor de k fuera de ese intervalo puede obtenerse evalu´andola en un valor de k dentro del intervalo a un valor del momento que difiera de k en 2πq . Por esta raz´on, el N a sistema se describe completamente con valores de k dentro de dicho intervalo

8 .

Luego, podemos calcular el n´umero total de modos normales de vibraci´on como

8 A este intervalo se lo denomina primer zona de Brillouin. Definiremos este concepto con

m´ as detalle m´ as adelante
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#      2π/a     N modos = = 2 π/ ( N a )

Hay precisamente un modo normal por ´atomo en la cadena, es decir, un modo normal por grado de libertad. Esto es justamente lo que Debye supuso para resolver el problema con la integral.

Cuantos de sonido: Fonones

Ahora que tenemos una expresi´on para las frecuencias de vibraci´on de una cadena podemos seguir los pasos de Debye y tratar las vibraciones con una teor´ıa cu´antica. Para eso, asociaremos a cada modo de vibraci´on ω(k) con un oscilador cuyo espectro de energ´ıa es

E          1 ω n = ~ ( k )( n +) 2

La gran diferencia con el tratamiento cl´asico que hicimos antes es que nuestros osciladores arm´onicos pueden tener excitaciones colectivas y no se reduce simplemente al movimiento de una sola part´ıcula.

Ahora tenemos que, dado un valor del cuasimomento k, existen muchos posibles autoestados (indexados por el n´umero n), de los cuales el estado de m´ınima energ´ıa (ground state) corresponde a n = 0 con energ´ıa ~ω (k)/2. El siguiente estado con energ´ıa mayor al ground state (es decir el primer estado excitado) corresponder´a a n = 1 y la diferencia de energ´ıa entre el ground state y el primer excitado es ~ω(k). Se pueden crear tantas excitaciones con energ´ıa ~ω(k) como se desee, y cada una de estas excitaciones es lo que se conoce como un fon´on. En esta descripci´on cu´antica de las vibraciones, las excitaciones de energ´ıa est´an cuantizadas y a cada cuanto de vibraci´on se lo denomina fon´on. Esta descripci´on nos permite describir la creaci´on de excitaciones en t´erminos de part´ıculas (fonones) de la misma manera que ya lo sabemos hacer para los cuantos de luz (fotones).

Como nada nos proh´ıbe crear dos fonones en el mismo estado debemos tratar estas nuevas part´ıculas como bosones (de la misma manera que lo ha-cemos para los fotones). Luego a temperatura finita tendremos que el n´umero de fonones est´a descripto por la estad´ıstica de Bose.

n           1 β B ( ~ ω ) = β ~ ω e− 1

Con esto podemos escribir el valor medio de la energ´ıa de los fonones con cuasimomento k como
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Ek = ~ω(k) nB(β~ω(k)) + 2 3            4 1

y si queremos calcular la energ´ıa total tendremos que sumar sobre los valores del cuasimomento

π                            1 a            3                    4

E     Ø = ~ ( )   ( ~ ( )) +

total                          B ω k n β ω k       2

k    π = −

a

donde                                         πq k solo puede tomar los valores permitidos k = 2 . Donde q toma N a valores enteros. Para fines pr´acticos (por ejemplo, si queremos implementar la suma en una computadora (Ejercicio)) es conveniente escribir la suma en t´erminos de un ´ındice entero, por lo que podr´ıamos escribir

N −1      2πq           2πq     1 2                     3                            4

E     Ø = ~ (   )   ( ~ (   )) +

total                                B ω n β ω              2 N     N a           N a

q=− 2

Si tenemos una gran cantidad de part´ıculas podemos usar el viejo truco de aproximar la suma por una integral. Esto se puede pensar de la siguien-te manera. Si tuvi´eramos que calcular la integral de una funci´on f (k) en el intervalo [−π/a, π/a] podr´ıamos aproximar esta integral por su suma de Riemman

ˆ π/a

f ( )   Ø k Ä ∆kf (k)

−π/a         k

En nuestro caso, como el cuasimomento esta cuantizado debemos tomar ∆   πq k = 2 y podr´ıamos escribir aN

ˆ                              N −1 π/a 3 1 4 2 π 2     2    3        2πq     1 4 ~ ω ( k ) n B ( β ~ ω ( k )) + Ø πq Ä ~ ω ( ) n B ( β ~ ω ( )) + aN N a − π/a 2 N N a 2 q = − 2

Es decir que podemos aproximar la suma por la integral de manera que

E     aN ˆ π/a      3            14 Ä total ~ ω ( k ) n B ( β ~ ω ( k )) + dk 2 π − π/a 2

Podemos usar esta aproximaci´on en t´erminos de una integral para contar el n´umero total de modos en el sistema

Ø 1 =      dk = N aN ˆ π/a

k       2π −π/a
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1.5 Modos normales para una red unidimensional monoat´ omica.

[image: ]

 

Figura 1.6: Estructura molecular del NaCl.

Es decir, de esta manera vemos que la suposici´on de Debye de que ten´ıamos exactamente N modos normales era correcta.

Frecuentemente es ´util reemplazar la integral sobre k con una integral en frecuencias ω Al hacer esto sabemos que podemos contar la cantidad de estados integrando la funci´on densidad de estados y esto debe dar el mismo resultado que obtengamos con la integral en k y por lo tanto tendremos

ˆ             ˆ π/a aN g ( ω ) dω = dk 2 π − π/a

Para que esta igualdad sea cierta, al realizar el cambio de variables debe-mos tener que

g (      N a-     -dk ω ) =    -     --     -

2-    -π-dω-

En la versi´on unidimensional del modelo de Debye esta densidad de esta-dos era constante mientras que en nuestro caso no. En el modelo de Einstein, la densidad de estados es una delta en la frecuencia de Einstein ya que no hay estados con otra frecuencia.

La expresi´on que obtuvimos para la energ´ıa (y por ende la que ob-tendr´ıamos para el calor espec´ıfico) son muy similares a las que Debye utiliz´o en sus c´alculos. La ´unica diferencia radica en nuestra expresi´on para la fre-cuencia ω(k). Aparte de este cambio en la relaci´on de dispersi´on, nuestro c´alculo del calor espec´ıfico es id´entico al de Debye.
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[image: ]

 

Figura 1.7: Esquema de una cadena diatomica.

1.6.   Modos normales de la cadena diat´ omica.

Ramas ac´ ustica y ´ optica

Anteriormente discutimos en detalle un modelo unidimensional de un s´oli-do en el todos los ´atomos eran id´enticos entre s´ı. Esto nos di´o una buena base para comprender los grados de libertad de vibraci´on de un s´olido, pero clara-mente no representa el caso m´as general. Basta pensar en materiales i´onicos como el NaCl donde tenemos dos tipos de ´atomos que no son equivalentes.

En esta secci´on generalizaremos el estudio anterior a una cadena con dos tipos de ´atomos. Gran parte de lo que hagamos seguir´a pasos similares a los que ya realizamos para el caso de una cadena monoat´omica, pero veremos que ahora surgir´an nuevas caracter´ısticas.

Consideremos el sistema esquematizado en la figura 1.7, el cual representa un arreglo peri´odico de dos tipos diferentes de ´atomos con masas m1 y m2 que se alternan a lo largo de la cadena. Estos “´atomos” est´an sujetos a un potencial que modelaremos por medio de resortes. Los resortes que conectan estos ´atomos tienen constantes el´asticas K1 y K2.

Notemos que en la figura se observa que podemos generar toda la cadena completa si repetimos peri´odicamente la parte de la cadena que est´a recua-drada. Esta es la unidad m´ınima de informaci´on que debemos tener para poder reproducir toda la cadena, algo as´ı como la informaci´on gen´etica de la estructura que queremos estudiar. A esta celda m´ınima de red se la denomina celda unidad o celda unitaria.

A la longitud de la celda unitaria en una dimensi´on se conoce como cons-tante de red y nosotros la denotaremos usualmente con la letra a. La elec-ci´on de la celda unidad no es ´unica, sin embargo lo importante para definir un sistema peri´odico es elegir una celda unitaria que permita construir el sistema completo reproduciendo la misma celda unidad una y otra vez.

Para poder construir el sistema peri´odico completo por medio de trans-laciones de la celda unidad es ´util seleccionar un punto de referencia dentro de cada celda. A partir de este punto de referencia se pueden escribir las posiciones de los ´atomos dentro de cada celda.

Para hacer los c´alculos m´as simples, estudiaremos el caso especial en el
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1.6 Modos normales de la cadena diat´ omica. Ramas ac´ ustica y ´ optica que todas las masas son iguales (es decir m1 = m2) pero las constantes el´asticas son diferentes. Esta suposici´on simplificar´a bastante los c´alculos y no cambiar´a las conclusiones. Se deja como ejercicio al lector resolver el caso m´as general con m1 Ó= m2

Podemos escribir las ecuaciones de movimiento de manera an´aloga a como lo hicimos para el caso monoatomico para las desviaciones de las posiciones respecto de sus posiciones de equilibrio.

m δx n = ¨ K2(δyn − δxn) + K1(δyn−1 − δxn) (1.21)

m δyn = ¨ K1(δxn+1 − δyn) + K2(δxn − δyn) (1.22)

donde llamamos xn e yn a las posiciones cada uno de los ´atomos no equivalentes dentro de la enesima celda unidad. (es decir tenemos at´omos tipo x y ´atomos tipo y)

De la misma manera que lo hicimos antes proponemos soluciones de la forma

δx          iωt−ikna = A e                     (1.23) n        x

δy          iωt−ikna = A e                     (1.24) n        y

donde, como antes, nuestra soluci´on f´ısica ser´a tomar la parte real y de la misma manera que pasaba antes, los valores de k que difieren en 2π/a son equivalentes y utilizaremos solo valores del cuasimomento en la primer zona se Brillouin (es decir −π/a < k ≤ π/a).

De la misma manera que encontramos antes si imponemos condiciones de contorno peri´odicas a nuestro sistema de N celdas unitarias (por lo tanto la longitud total de la cadena ser´a, L = N a) entonces el cuasimomento k se cuantificar´a valores discretos 2π/(N a).

Aqu´ı hay que tener en cuenta un detalle muy importante, la cuantificaci´on del cuasimomento depende del n´umero de celdas N y no del n´umero de ´ato-mos (2N ) ya que la estructura peri´odica que se repite es la celda. Dividiendo el rango de k en la primera zona de Brillouin por el espacio entre las k veci-nas, obtenemos exactamente N diferentes valores posibles de k exactamente como antes.

En otras palabras, solo podemos tener exactamente un valor de k por celda unitaria, o de otra manera, tendremos tantos valores del cuasimomento como celdas unitarias tenga nuestro sistema. Esta es una propiedad funda-mental que estudiaremos en m´as detalle al discutir las estructuras peri´odicas de los s´olidos.
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Figura 1.8: Relaci´on de dispersi´on para la cadena diat´omica. Tenemos dos ramas en la primer zona de Brillouin

Esto podr´ıa confundirnos un poco ya que ser´ıa razonable esperar tener tantos modos de oscilaci´on como grados de libertad en el sistema (y el sistema tiene 2 grados de libertad por celda). Esto es cierto y es la raz´on por la que encontraremos que habr´a dos modos de oscilaci´on posibles para cada cuasimomento k. Para ver esto reemplacemos nuestra propuesta de soluci´on en las ecuaciones de movimiento y simplificando obtenemos

− 2                                                   ika mω A = K A − ( K + K ) A + K A e x         2   y       1      2    x      1   y

− 2                                                   −ika mω A = K A − ( K + K ) A + K A e y          2   x        1       2    y       1   x

Para encontrar la soluci´on de este sistema de ecuaciones es conveniente escribir el sistema en forma matricial

A    B    A                      B A    B A ( K ) K − e = +

K          ika − K    A

mω 2       x                  1      2           2      1             x ( + ) A              −ika − K − K e   K   K      A y                   2       1               1       2             y

Ejercicio: Resolver el sistema de ecuaciones

Resolviendo el sistema de ecuaciones encontramos que

ω          2        ñ   2 ó K1 + K   1 ±                  1 K =    2 ±    K + K      ka 2 + 2 1 K 2 cos()      (1.25) m m
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1.6 Modos normales de la cadena diat´ omica. Ramas ac´ ustica y ´ optica

Como hab´ıamos adelantado, por cada valor del cuasimomento tenemos dos modos normales de vibraci´on. Si tenemos N celdas, tendremos N valores del cuasimomento y por lo tanto 2N modos normales.

En la figura anterior se muestran las dos ramas de dispersi´on en la pri-mer zona de Brillouin (|k| ≤ π/a). A esta forma de mostrar las dispersiones se lo suele llamar esquema de zona reducida. Notese que de las dos ramas de dispersi´on solo una toma valores peque˜nos de energ´ıa. Para esta rama tenemos que la relaci´on de dispersi´on es lineal para k peque˜no. A esta ra-ma se la denomina rama ac´ ustica. En general se denomina rama ac´ ustica a cualquier modo de vibraci´on que tenga una relaci´on de dispersi´on lineal cuando k tiende a cero. A la rama de energ´ıa mas alta se la denomina rama optica . La raz´on por la que se la llama rama ´optica es porque esta rama es la que interviene en el proceso de escatering de luz en el s´olido. Por ahora nos concentraremos en la rama ac´ustica y dejaremos el estudio de la rama ´optica para cuando estudiemos la interacci´on de la luz con los s´olidos.
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Figura 1.9: Relaci´on de dispersi´on para la cadena diat´omica en el esquema de zona extendida. La rama ac´ustica sobre la primer zona de Brillouin (|k| ≤ π/a , mientras que la rama ´optica est´a graficada en la segunda zona (π/a < |k| ≤ 2π/a))

Alternativamente al esquema de zona reducida (donde se grafican todas las ramas en la primer zona de Brillouin) se puede tambi´en usar el esquema de zona extendida que consiste en graficar una rama en la primer zona y la

 

Facultad de Cs. Exactas  |  UNLP |   32

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

Modelos en s´ olidos

[image: ]

 

Figura 1.10: Esquema del movimiento de los electrones en la teor´ıa de Drude

siguiente en la segunda zona9

1.7.   Teor´ıa de Drude de los metales

La principal caracter´ıstica de los metales es que conducen electricidad por medio de electrones m´oviles en el material. Discutiremos m´as adelante porqu´e algunos materiales presentan electrones m´oviles y otros no. Por ahora, asumiremos que hay movilidad de electrones estudiaremos modelos que nos ayuden a comprender algunas de sus propiedades.

Drude construy´o una teor´ıa simple para los metales aplicando la teor´ıa cin´etica de los gases a los metales consider´andolos como un gas de electrones. La teor´ıa cin´etica trata a las part´ıculas como esferas r´ıgidas que se mueven en una trayectoria rectil´ınea hasta que chocan con otra part´ıcula. El tiempo que dura una colisi´on es despreciado, considerando a las colisiones como procesos instant´aneos.

Drude asume que los electrones de valencia est´an desacoplados del resto del ´atomo y pueden moverse libremente a travez del metal, mientras los iones positivos permanecen inmoviles en el metal. Est´a situaci´on est´a esquemati-

zada en la figura 1.10, donde las esferas verdes representan a los electrones de valencia y las esferas azules representan a los iones.

Las suposiciones b´asicas del modelo de Drude son las siguientes:

9 Si hubiera mas ramas se graficaria tambi´ en en la tercera zona de Brillouin y asi. El objetivo

del esquema de zona extendida es que tengamos un solo modo por cada valor de k. Es decir trabajar con la gr´ afica de una funci´ on.
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1.7 Teor´ıa de Drude de los metales

Entre colisiones, la interacci´on que siente un electr´on, tanto con los de-mas electrones, como con los n´ucleos es despreciable. La aproximaci´on de despreciar la interacci´on electr´on-electr´on se conoce como apro-ximaci´ on de electr´ on independiente y el hecho de despreciar la interacci´on electr´on-ion, se conoce como aproximaci´ on de electr´ on libre .

Las colisiones, en el modelo de Drude, se consideran instant´aneas y su efecto consiste en cambiar la velocidad de el electr´on. Veremos que la interacci´on electr´on-electr´on es una de las menos importantes al estu-diar el scatering de electrones en un metal.

Se asume que un electr´on efect´ua una colisi´on en un tiempo dt con probabilidad dt/τ

Los electrones realizan choques el´asticos, por lo tanto se conserva tanto el momento como la energ´ıa cin´etica en las colisiones. Como no hay una direcci´on preferencial, la part´ıcula saldr´a luego del choque en cual-quier direcci´on con igual probabilidad. Por lo tanto, el valor medio del momento ser´a épê = 0

Entre dos choques, los electrones (que asumimos son part´ıculas carga-das de carga −e) responden al campo el´ectrico y magn´etico.

Notese que τ representa un tiempo medio entre dos choque sucesivos, de manera que un valor peque˜no entre choques nos d´a una alta probabilidad (dt/τ) de que el electr´on choque en un per´ıodo de tiempo dt, mientras que el l´ımite τ → ∞ es el l´ımite donde los electrones nunca chocan.

Consideremos un electr´on que a tiempo t tiene momento p. Luego de transcurrido un tiempo dt supondremos que hay dos opciones excluyentes: O el electr´on choc´o (suponemos que este evento ocurre con probabilidad dt/τ ) o el electr´on no choc´o. Este segundo evento tiene asociada una probabilidad 1 − dt/τ si despreciamos la probabilidad de que el electr´on choque dos veces en un tiempo tan corto.
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Luego tendremos que a tiempo t + dt el valor medio del momento estar´a dado por

p(t + dt) = 0 dt/τ + (1 − dt/τ )(p(t) + F dt)

Luego tenemos

dp/dt = F − p/τ + O(dt)

Notese que en el l´ımite τ → ∞ recuperamos la segunda ley de Newton.

dp/dt = F

.

La fuerza F que act´ua sobre los electrones es la fuerza de Lorentz.

F = −e(E + v × B)

.

En ausencia de campos magn´eticos y el´ectricos est´a fuerza es cero, la ecuaci´on para p(t) es

dp/dt = −p/τ

y la soluci´on es de la forma

p(t) =    −t/τ p 0 e

Es decir que en ausencia de fuerzas externas, en este modelo simple para las colisiones de los electrones con los iones de la red el momento p(t) decrece exponencialmente con el tiempo. Adem´as la soluci´on estacionaria (es decir cuando p(t) no depende del tiempo y por lo tanto dp/dt = 0 ) es p = 0.
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1.7 Teor´ıa de Drude de los metales

 

Figura 1.11: Esquema del movimiento de los electrones sometidos a un campo electrico en la teor´ıa de Drude

Electrones en un campo el´ ectrico

Consideremos ahora el caso en el que el campo el´ectrico es distinto de cero pero el campo magn´etico es cero. La ecuaci´on de movimiento queda entonces

d p         p = −eE −

dt            τ

En un estado estacionario tendremos que dp/dt = 0, luego

p = −eτE

mv = −eτ E

Es decir que podemos escribir la siguiente expresi´on para la velocidad media de los electrones

v = eτ − E (1.26)

m

Supongamos ahora que los electrones se mueven a esa velocidad media por un conductor de secci´on A y recordemos que la la corriente se define convencionalmente en t´ermino de la carga positiva.

Si tenemos una densidad de electrones (de carga −e) n movi´endose por el metal con velocidad v, podemos escribir la densidad de corriente como

j = −env

Reemplazando por la expresi´on que encontramos para la velocidad de los electr´ones tenemos que

j = e2 nτ E

m
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Encontramos entonces que en la teor´ıa de Drude la densidad de corriente es proporcional al campo el´ectrico. Es decir, recuperamos la ley de Ohm.

j = σE

donde la conductividad est´a dada por

σ = e2nτ                       (1.27)

m

Para el caso simple de un cable uniforme de largo L podemos recuperar la forma macrosc´opica de la ley de Ohm a partir de la ecuaci´on

j = σE

La intensidad de la corriente I podemos escribirla como jA = I, donde j = |j | y A es el ´area transversal del cable. Suponiendo un campo el´ectrico constante, la diferencia de potencial en los extremos del cable estar´a dada por

V = EL

y podemos escribir

j = σE

A = ρ I       1 V L

I         = 3   4 ρL V

A

I R = V

donde     1 ρ = es la resistividad del material y hemos llamado definido la σ

resistencia del cable como      ρL R = . A

Electrones en un campo magn´ etico

Consideremos ahora el caso de un conductor sujeto a un campo el´ectrico y un campo magn´etico. Como antes tenemos que

dp       p = F −

dt          τ

Pero ahora usamos la expresi´on para la fuerza de Lorentz

F = −e(E + v × B)
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1.7 Teor´ıa de Drude de los metales

Luego

dp                  p = −e ( E + v × B ) −

dt                        τ

Y en el estado estacionario tendremos que

0 =                 p −e( E + v × B) −

τ

usando que p = mv y j = −env podemos escribir que        m p = − j y en reemplazando en la ecuaci´on anterior tenemos

E 0 =   e(E −   j × B) +    j           (1.28) en −     1           m eτ n 1 3 m 4 = ( j × B ) + j (1.29) 2 ne e τ n

En este caso la relaci´on entre la densidad de corriente y el campo el´ectrico es un poco mas compleja que antes, pero veremos que tiene una estructura similar. Para simplificar un poco las expresiones supongamos que el campo el´ectrico esta orientado en la direcci´on z. En ese caso podremos escribir

E = ˜ ρ j

donde ˜ ρ es una matriz de 3 × 3 de la forma

            m B 0

ρ ˜      nτ e 2      ne =      m B       − 2  0                (1.30)

0 ne   nτ e           0 m

nτ e 2

Es decir, podemos definir las componentes diagonales de un tensor de resistividad

ρ                m   1 ρ xx = yy = ρ zz = = 2 nτ e σ

donde σ es la conductividad que calculamos en el caso donde solo ten´ıamos campo el´ectrico. Fuera de la diagonal tenemos

ρxy =         B −ρyx =

ne

Esta componente de la resistividad fuera de la diagonal se conoce como la resistividad Hall y nos indica que, cuando un campo magn´etico es aplicado perpendicular al flujo de corriente, puede medirse un voltaje en la direcci´on perpendicular tanto al flujo de corriente como al campo magn´etico.
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Normalmente se define el coeficiente Hall como

RH = ρyx

|B|

que en el caso de la teor´ıa de Drude es           1 R H = − ne 1.8.   Teor´ıa de Sommerfeld de los metales

Sommerfeld se dio cuenta de que la teor´ıa de los metales de Drude pod´ıa f´acilmente generalizarse para incorporar la mec´anica cu´antica por medio de la estad´ıstica de Fermi para los electrones, que es lo que discutiremos a con-tinuaci´on.

Como habr´an visto en el curso de mec´anica estad´ıstica, dado un sistema de electrones libres con potencial qu´ımico µ, la probabilidad de que un electr´on ocupe un estado de energ´ıa E est´a dada por el factor Fermi

n                1 β F ( ( E − µ )) = β ( E − µ) e + 1

Supongamos que los electrones est´an en una caja de tama˜no        3 V = L y, de la misma manera que hicimos antes, supondremos condiciones de contorno peri´odicas. Podemos escribir las funciones de onda plana en la forma ik·r e donde                     π k debe tomar el valor 2 (n1, n2, n3) con ni enteros. Estos estados de L

onda plana tienen energ´ıas.

Ô        ~2   2 | k | ( k ) = 2 m

Podemos calcular el n´umero total de electrones de la siguiente manera

V   ˆ

N   Ø = 2 nF                            F 3 β ( ( E − µ)) = 2 dk n (β (E − µ ))

k                   (2π)

En general usaremos este tipo de ecuaci´on conociendo el n´umero de elec-trones en el metal y as´ı poder calcular el potencial qu´ımico en funci´on de la temperatura. A temperatura cero el factor de Fermi se transforma en una funci´on escal´on y el potencial qu´ımico es el valor de la energ´ıa que separa los estados ocupados de los desocupados. Llamaremos a esta energ´ıa la energ´ıa de Fermi EF .

Los estados que estan ocupados a T = 0 forman lo que se conoce como el mar de Fermi. A partir de la energ´ıa de Fermi podemos definir el kF como

E   ~2 2 k F = F 2 m
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Tambi´en puede ser ´util definir una temperatura de Fermi TF = EF /kB y la velocidad de Fermi vF = ~kF /m

Con estas definiciones podemos calcular el n´umero de electrones en el metal

N      ˆ                      ˆ | 1 1k|<kF        V   4 = 2 d k θ ( E F − Ô ( k )) = 2 d k = 2 (   3 πk ) V (2 π ) 3 (2 3 π ) (2 ) F 3 π 3

Muchas veces es conveniente realizar estas integrales en energ´ıa en vez de integrar en cuasimomentos. Para esto despejamos k de la energ´ıa

k =    2 ó 2mÔ

~

y el diferencial queda en la forma

dk = ò m 2Ô~2 dÔ

Con esto podemos reescribir la integral para la densidad de electrones como

N ˆ ∞ V =   dÔ g(Ô)nF (β(Ô − µ))

0

de la misma manera, la energ´ıa por unidad de volumen puede escribirse como

E       ˆ                           ˆ ∞ 1 1 = 2 d k Ô ( k ) n F ( β ( Ô ( k ) − µ )) = 2 4   2 πk dk Ô(k)nF (β(Ô(k)−µ)) (2 π ) 3 (2 π ) 3 V 0

E ˆ ∞ V =   g(Ô) Ô dÔ nF (β(Ô − µ))

0

donde la densidad de estados esta dada por

g      (2m)3/2 √ Ô ( ) =Ô 2 2 π ~ 3

La cantidad g(Ô)dÔ representa la cantidad de estados con energ´ıa entre Ô y Ô + dÔ. A la funci´on g(Ô) se la conoce como la densidad de estados por unidad de volumen.

Notemos que la expresi´on para la densidad de electrones puede conside-rarse como la definici´on del potencial qu´ımico en funci´on de la densidad de electrones en el sistema y la temperatura.
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Una vez que con esta ecuaci´on fijamos el potencial qu´ımico, podemos usar la integral para la energ´ıa. Luego de calculada la energ´ıa podemos derivar con respecto a la temperatura para obtener el calor espec´ıfico.

Desafortunadamente, no hay manera de hacer este c´alculo anal´ıticamente. Sin embargo, como la temperatura de Fermi de los metales esta muy por arriba de la temperatura ambiente es razonable pensar que la funci´on de Fermi solo se apartar´a levemente de la funci´on escal´on. Este fu´e el c´alculo

que realiz´o Sommerfeld y se deja como ejercicio pr´actico.10

 

10 El lector puede consultar el libro de Ashcroft[3].
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1.9.   Part´ıcula en una caja

Vamos a usar un modelo simple pero exitoso para el ´atomo de hidr´ogeno, esto es, lo modelaremos como una caja de tama˜no L para un electr´on. Aqu´ı, para hacer las cosas mas simples estudiaremos el caso unidimensional, pero ustedes pueden imaginar f´acilmente la extensi´on a 3D.

La energ´ıa de un solo electr´on en una caja de tama˜no L es

~2 2 π

2    2 mL

Ahora supongamos que tenemos dos de estos ´atomos y los acercamos uno al otro. Si estos ´atomos comparten un electr´on, entonces los ´atomos ahora se pueden deslocalizar y moverse a lo largo de los dos ´atomos, por lo tanto, ahora el electr´on est´a en una caja de tama˜no 2L y su energ´ıa ser´a

~2 2 π

2m(2L)2

que es una energ´ıa menor a la que ten´ıa antes. Es decir, que el electr´on al deslocalizarse se encuentra en un estado de menor energ´ıa.

Esta reducci´on de energ´ıa que ocurre al deslocalizar el electr´on es en parte lo que logra formar algunos de los enlaces qu´ımicos. Este nuevo estado fundamental se conoce como bonding orbital.

Si acercamos dos ´atomos que poseen un solo electr´on cada uno (es decir, son ´atomos de hidr´ogeno), entonces cuando se unen para formar un orbital de menor energ´ıa (lo que denominaremos enlace), ambos electrones pueden ocupar este mismo orbital ya que el electr´on puede tener dos estados de esp´ın diferentes. Sin embargo, esta reducci´on de la energ´ıa deber´a competir contra la energ´ıa debida a la repulsi´on Coulombiana de los dos n´ucleos, y la repulsi´on de ambos electrones entre s´ı. Sin embargo no realizaremos este c´alculo aqu´ı ya que es complejo.

Pero, ¿c´omo cambiar´a la situaci´on si en vez de dos ´atomos de hidr´ogeno comenzamos con dos ´atomos de helio donde cada ´atomo tiene dos electrones?

En este caso, cuando los dos ´atomos se unan, no habr´a suficientes niveles en el estado fundamental y dos de los cuatro electrones deber´an ocupar el primer orbital excitado. Estos estados excitados tienen la misma energ´ıa que el orbital del estado fundamental original ( ya que el factor 2 del segundo nivel se compenza con el 2 del 2L) Como estos electrones no obtienen energ´ıa cuando los dos ´atomos se juntan, estos orbitales se conocen como antibonding orbitals.
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Figura 1.12: Esquema del movimiento de los electrones en la aproximaci´on de tight-binding.

 

Figura 1.13: Esquema del movimiento de los electrones en la aproximaci´on de tight-binding

1.10.   Orbitales moleculares (Tight binding)

Escribamos un Hamiltoniano para los dos ´atomos de hidr´ogeno de los que hablamos anteriormente. Dado que los n´ucleos son pesados en compa-raci´on con los electrones, no es descabellado suponer que las posiciones de los n´ucleos no cambiar´an mucho en comparaci´on con los electrones. Supon-dremos entonces que los n´ucleos se encuentran en reposo y resolveremos la ecuaci´on de Schroedinger para los electrones como funci´on de la distancia entre los n´ucleos. Esta suposici´on de los n´ucleos fijos se conoce como la apro-ximaci´on de “Born-Oppenheimer”. Nuestro objetivo es calcular la energ´ıa del sistema como funci´on de la distancia entre los n´ucleos.

El problema m´as sencillo que podemos encarar es la de un electr´on en presencia de dos nucleos positivos id´enticos.

H = K + V1 + V2

Donde el t´ermino de enrg´ıa cin´etica del electr´on est´a dado por
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K = p2

2m

y la interacci´on Coulombiana entre el electr´on con posici´on r y el n´ucleo i con posici´on Ri est´a dada por

Vi =      e2

4πÔ0|r − Ri|

Aunque podr´ıamos resolver este problema de un electr´on exactamente, intentaremos resolverlo de manera variacional. Es decir, propondremos una soluci´on de la forma

|ψê = φ1|1ê + φ2|2ê

donde los estados |1ê y |2ê son lo que se conoce como “orbitales at´omicos” en indican que el electr´on se encuentra en el estado fundamental del ´atomo 1 o 2 respectivamente.

Con el estado |ψê estamos proponiendo que el electr´on se encuentra en una combinaci´on lineal de orbitales at´omicos. Al tomar los orbitales como el estado fundamental de cada ´atomo tendremos que

(K + V1)|1ê = Ô0|1ê (1.31)

(K + V2)|2ê = Ô0|2ê (1.32)

Supondremos que los dos orbitales son ortonormales.

éi|jê = δi,j

Buscamos autoestados del Hamiltoniano H = K + V1 + V2

H |ψê = E|ψê

y es f´acil mostrar (hacerlo como ejercicio) que esto es equivalente a

Ø H φ = Eφ i,j   j            i


i

donde Hi,j = éi|H|jê son los elementos de una matriz de 2x2 de la forma

A             B Ô + V − t                (1.33) 0      12

− ∗ t    Ô + V 0      12

donde V12 = é1|V2|1ê = é2|V1 |2ê y t = −é1|V1|2ê = é1|V2|2ê
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Figura 1.14: Energ´ıas de los orbitales

es el potencial Coulombiano que siente un electr´on en el orbital |1ê gene-rado por el nucleo 2.

La interpretaci´on del Hamiltoniano es que los orbitales |1ê y |2ê tienen energ´ıas Ô0 que es incrementada por la presencia del otro n´ucleo. Adem´as, el electr´on puede “saltar” de un orbital al otro y a este proceso tiene una energ´ıa t asociado al elemento fuera de diagonal.

Si pensamos en la ecuaci´on de Schr¨odinger dependiente del tiempo, si la matriz del Hamiltoniano fuera diagonal una funci´on de onda que comenz´o en orbital |1ê permanecer´ıa en ese orbital todo el tiempo sin ninguna probabili-dad de saltar al otro orbital. Sin embargo, con el t´ermino fuera de diagonal, la funci´on de onda dependiente del tiempo puede oscilar entre los dos orbitales con probabilidad t.

Para simplificar suponagamos que t > 0 (el caso t < 0 es an´alogo y solo deben ajustarse los signos correspondientes). Diagonalizando el Hamiltoniano obtenemos

E ± = Ô0 + V12 ± t

.

Al estado de m´ınima energ´ıa se lo denomina bonding orbital, mientras que el estado de energ´ıa superior se lo llama anti-bonding orbital.
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Las autofunciones correspondientes tienen la forma

 

ψ ψ         1 √ bonding = (φ1 + φ2 )              (1.34) 2 1 = anti − bonding √ ( φ 1 − φ 2 ) (1.35) 2

A medida que los n´ucleos se acercan, el t´ermino de hopping t aumenta, y la energ´ıa de los orbitales cambia d´andonos un diagrama similar al de la figura siguiente.

Noten que la energ´ıa diverge a medida que los n´ucleos se juntan (como debe ser con la energ´ıa de Coulomb entre los n´ucleos). Esto d´a una energ´ıa m´ınima cuando los n´ucleos se encuentran a una distancia de equilibrio. 1.11.   Modelo de Tight-binding en una red

peri´ odica

Ahora vamos a generalizar lo que hicimos antes considerando una cade-na de orbitales moleculares para representar los orbitales en un s´olido ma-

crosc´opico11.

En este caso consideraremos un solo orbital por ´atomo. Al orbital co-rrespondiente al ´atomo n lo denotaremos por |nê. Para poder trabajar con un sistema con simetr´ıa de traslaci´on impondremos condiciones de contorno peri´odicas. Tambi´en asumiremos que los orbitales son ortogonales unos con otros.

én|mê = δn,m

y como antes propondremos una funci´on de onda que sea combinaci´on lineal de los orbitales de la forma

|ψê = Ø φn|nê

n

y de la misma manera que para el caso de dos ´atomos obtenemos que la ecuaci´on de autovalores puede escribirse como

Ø H φ = Eφ n,m m       n

m

11 En este caso consideraremos un modelo unidimendional por simplicidad, pero la cuenta se

generaliza sin problemas m´ as dimensiones.
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Figura 1.15: Esquema del movimiento de los electrones en la aproximaci´on de tight-binding

Como antes esta ecuaci´on es en realidad una aproximaci´on variacional. Con esta ecuaci´on no estamos encontrando el estado fundamental exacto sino el mejor estado posible que se pueda escribir como combinaci´on lineal de los orbitales que hemos puesto en el modelo.

Se puede mejorar la aproximaci´on variacional agrandando el espacio de Hilbert al considerar m´as orbitales en el modelo.

Por ejemplo, en lugar de tener solo un orbital en un dado sitio, podr´ıamos considerar muchos |nα,iê donde α va de 1 a alg´un n´umero l (l es la cantidad de orbitales que estamos considerando). A medida que aumenta l el enfoque se vuelve cada vez m´as preciso y, finalmente, es esencialmente exacto.

Nosotros usaremos por ahora la aproximaci´on de tener un solo orbital por sitio. Escribiremos el Hamiltoniano como

H = K + Ø Vj

j

donde       2 K = es la energ´ıa cin´etica y    representa al t´ermino de in-

2                                     j p                                   V

teracci´on Coulombiana del electr´on con el n´ucleo situado en el sitio m j . Esta interacci´on es de la forma Vj = V (r − rj), donde r es la posici´on de electr´on y rj es la posici´on del j-esimo n´ucleo. Con esto tenemos que

H|mê = (K + Vm)|mê + Ø Vj |mê

j Ó=m

El primer t´ermino corresponde a la energ´ıa de un electr´on tendr´ıa si hu-biera un solo n´ucleo, es decir que podemos escribir

(K + Vm)|mê = Ô0|mê

donde interpretaremos a Ô0 como la energ´ıa de un electr´on en el n´ucleo m en ausencia de otros n´ucleos. Podemos escribir entonces

én|H|mê = Ô0δn,m + Ø én|Vj |mê

jÓ=m

El segundo t´ermino del lado derecho esta asociado con la energ´ıa corres-pondiente al proceso de un electr´on que se encontraba en el orbital del sitio
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m efect´ue una transici´on al orbital se sitio n mediado por la interacci´on Coulombiana con los n´ucleos que forman la cadena. Supondremos que esta transici´on o salto solo es posible si los sitios est´an lo suficientemente cerca. El modelo m´as simple es suponer que solo puede haber saltos entre primeros vecinos por lo cual escribiremos los elementos de matriz como

 V    n = m  0

Ø      é n | V | m ê = −   = ± 1         (1.36) j                  t n     m

j                        Ó = m   0     otro caso 

Si llamamos Ô = Ô0 + V0 podemos escribir los elementos de matriz del Hamiltoniano como

H n,m = Ôδn,m − t(δn,m+1 + δn,m−1 ). (1.37)

Notemos que esto nos dice que la representaci´on matricial del Hamiltoniano es una matriz tri-diagonal. Num´ericamente, este tipo de matrices es mas simple de diagonalizar. Nosotros encontraremos los autovalores anal´ıticamente.

Para encontrar la soluci´on a la ecuaci´on de autovalores procederemos de forma similar a lo que hicimos para el caso de las vibraciones de una cadena. Primero proponemos una soluci´on que tenga la invarianza traslacional de la cadena. Propongamos algo de la forma

φ     1   − = nikna √ e N

Donde el factor   1 √   es solo una normalizaci´on conveniente. Igual que N

para el caso de las vibraciones es obvio que si cambiamos k por k + 2π/a obtenemos la misma soluci´on y al imponer condiciones de contorno peri´odicas obtenemos que los valores permitidos para el cuasimomento est´an cuantizados en unidades de 2π/L (donde L = N a)

Reemplazando nuestra propuesta en la ecuaci´on de Schrodinger qm Hn,mφm = Eφn tenemos que

Eφn = Ø       Ø H n,m φ m = (Ôδn,m − t(δn,m+1 + δn,m−1)) φm

m         m

Eφ      1 1   −ikna      − √ n = Ô e − t (                 2 ik ( n − 1) a + − ik ( n +1) a e e ) N

Eφ     1                2 − ika Ô − t ( + ) √ n             e      e =             e−ikna ika

N

Eφn = (Ô − 2t cos(ka)) φn

(1.38)
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Luego

E = Ô − 2t cos(ka)

Esta relaci´on de dispersi´on

A diferencia del caso de electrones libres, la dispersi´on de electrones en una red tiene una energ´ıa m´axima y energ´ıa m´ınima. Los electrones solo pueden tener energ´ıas dentro de una determinada banda de energ´ıa. La diferencia de energ´ıa desde la parte inferior de la banda hasta la parte superior se conoce como ancho de banda.

El ancho de banda (que en este modelo es 4|t|) depende de la magnitud de la constante de hopping t , y esta depende de la distancia entre los n´ucleos.

Cerca del m´ınimo de la banda, podemos hacer un desarrollo de Taylor (alrededor de k = 0) y obtener

E         2 2 ( k ) = cte + ta k

Es decir, la relaci´on de dispersi´on es aproximadamente parab´olica de for-ma similar a lo que tenemos para electrones libres.

E    ~2 2 k = libre 2 m

De esta manera se puede, por analog´ıa con el caso libre, definir una masa efectiva para los electrones de forma que

2 2      ~

ta k =   2 2 k

2mef f

Obtenemos entonces

m    ~2 = ef f 22 ta

En otras palabras, la masa efectiva mef f se define de tal manera que la relaci´on de dispersi´on alrededor del m´ınimo de la banda es exactamente como la dispersi´on de part´ıculas libres de masa mef f . Sin embargo, es importante recordar que esta masa efectiva no tiene nada que ver con la masa real del electr´on, sino que depende de la probabilidad de salto t.

Ahora imaginamos que nuestro tight-binding est´a compuesto de ´atomos y cada ´atomo aporta un electr´on a la banda. Como hay N posibles estados en la banda, y los electrones son fermiones, hay dos posibles estados de esp´ın para un electr´on en cada k, entonces solo llenaremos la banda hasta la mitad. Los estados ocupados est´an ocupados tanto por espines up como espines down.
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Los puntos donde se encuentran los dos estados ocupados de mayor energ´ıa

constituyen la superficie de Fermi12.

Si se aplica un peque˜no campo el´ectrico al sistema, solo nos cuesta una peque˜na cantidad de energ´ıa desplazar la superficie de Fermi, ocupando unos pocos estados k que se mueven hacia la derecha y despoblando algunos es-tados k que se mueven hacia la izquierda. En otras palabras, el estado del sistema responde cambiando un poco y se induce una corriente. Como tal, este sistema es un conductor el´ectrico.

 

12 Se suele utilizar el nombre superficie de Fermi en cualquier dimensi´ on aunque claramente

en este caso no es una superficie, sino solo dos puntos. En dos dimensiones tendremos una curva y en tres tendremos una superficie.
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En el cap´ıtulo anterior estudiamos algunas propiedades de una estructura

peri´odica en una dimensi´on como la de la figura 2 .1. C onsideremos p or el momento una cadena en una dimensi´on, donde la posici´on de cada ´atomo puede escribirse como rn = na con n un n´umero entero. Vimos anteriormente que dos puntos en el espacio rec´ıproco (espacio k) eran equivalentes si k1 = k2 + Gm donde Gm = 2πm/a, con m un n´umero entero. Los puntos Gm forman lo que se conoce como la red rec´ıproca.

Queremos ahora ir un poco m´as all´a y estudiar s´olidos cristalinos en 3D. Para esto necesitamos establecer un lenguaje que nos ayude a describir es-tructuras en dos y tres dimensiones de manera inteligente y sobre todo de manera estandarizada para poder ponernos de acuerdo en lo que estamos describiendo y poder comparar con medidas experimentales. Para poder lo-grar esto, dedicaremos buena parte de esta secci´on para presentar una lista de definiciones que debemos aprender para poder estudiar estructuras de s´olidos realistas.

2.1.   Celda unidad y redes de Bravais

Un cristal ideal est´a formado por un arreglo peri´odico infinito de grupos de ´atomos. A cada uno de esos grupos que se repiten peri´odicamente para

[image: ]

 

Figura 2.1: Red periódica en una dimensión.
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Figura 2.2: A partir de una red de Bravais triangular se obtiene una red hexagonal con dos sitos por celda.

formar el cristal lo llamaremos celda, y al conjunto de puntos del espacio

donde se colocan las celdas las llamaremos red. Por ejemplo, en la figura 2.2 se muestra esquem´aticamente como obtener una red hexagonal a partir de una red triangular con dos sitios por celda. Una definici´on importante que usaremos mucho es justamente la de red de Bravais.

Definici´ on: Red de Bravais Llamaremos red de Bravais a un conjunto

infinito de puntos que se obtiene como combinaci´ on lineal de vectores lineal-mente independientes con coeficientes enteros. A estos vectores los llamare-mos vectores primitivos

Por ejemplo, cualquier punto de una red de Bravais en 2 dimensiones puede escribirse como

r n 1 ,n2 = n1a1 + n2a2,

con ni ∈ Z y ai vectores linealmente independientes en R2. De la misma manera, en R3 podemos escribir

rn1,n2 ,n3 = n1a1 + n2 a2 + n3a3

Hasta ahora trabajamos con cadenas de sitios que constituyen redes en una dimensi´on donde la definici´on se cumple trivialmente ya que escribiamos que rn = na.

En dos y tres dimensiones la elecci´on de los vectores primitivos que ge-

neran la red no es ´unica. Ver figura 2.3.

En una red de Bravais, cada punto tiene exactamente el mismo entrono que el resto de los puntos. Esta propiedad suele ser usada para identificar cuando un conjunto de puntos constituye una red de Bravais. Debemos tener cuidado al estudiar arreglos peri´odicos ya que no todos los arreglos peri´odicos
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de puntos constituyen una red de Bravais. La red hexagonal por ejemplo, no lo es, ya que no podemos generar todos los puntos como combinaci´on lineal de dos vectores. Equivalentemente, si miramos el entorno de cada sitio de la red vemos que hay dos subconjuntos de puntos, cada uno de los cuales tiene un entorno diferente. Podemos pensar a la red hexagonal como dos redes de

Bravais interpenetradas (Ver figura 2.2).

Para poder describir redes m´as complejas, como la red hexagonal tenemos que definir el concepto de celda unidad.

Definici´ on: Celda Unidad    Una celda unidad o celda unitaria es una

estructura o motivo que al ser repetido construye la estructura peri´ odica com-pleta.

As´ı como ocurre con los vectores primitivos, la elecci´on de la celda unidad tampoco es ´unica. Tenemos libertad de elegir diferentes celdas para construir un mismo cristal, pero dentro de esa variedad de diferentes celdas hay algunas elecciones que son m´as importantes a la hora de describir un s´olido.

Definici´ on: Celda primitiva    Llamaremos celda primitiva a una celda

unidad que contiene la menor cantidad de sitios posible en ella.

Es decir una celda primitiva es la celda unidad de menor tama˜no que podemos tomar y que aun sirva para construir el cristal. Sin embargo, a veces es ´util definir una celda unitaria que no es primitiva para que sea m´as simple trabajar con las expresiones matem´aticas. Esto se conoce como una celda unidad convencional. Casi siempre estas celdas convencionales se eligen

para tener ejes ortogonales. En la figura 2.3 se muestran algunos ejemplos de posibles celdas unitarias en dos dimensiones. En esta figura, la celda unitaria convencional (arriba a la izquierda) se elige para tener ejes ortogonales.

En la figura hay una celda a la cual llamamos celda de Wigner-Seitz[15]. Esta es una celda muy ´util y es adem´as una celda primitiva.

Definici´ on: Celda de Wigner-Seitz   Dado un punto de la red, el con-

junto de todos los puntos en el espacio que est´ an m´ as cerca de ese dado punto que de cualquier otro punto de la red constituye la celda Wigner-Seitz.
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Figura 2.3: Diferentes elecciones de celdas unitarias para la misma red.

[image: ]

 

Figura 2.4: Construcci´on de una celda de Wigner-Seitz.

Hay una forma simple para construir una celda de Wigner-Seitz. Primero elegimos un punto de la red y dibujamos l´ıneas rectas entre este punto y todos vecinos cercanos. Despu´es dibujamos bisectrices perpendiculares de todas estas l´ıneas. La regi´on que queda encerrada por bisectrices perpendiculares constituyen la celda de Wigner-Seitz. Una propiedad importante es que toda

celda de Wigner-Seitz constituye una celda unitaria primitiva.[3]

En la figura 2.4 mostramos un ejemplo de la construcci´on de Wigner-Seitz para un dise˜no bidimensional. Una construcci´on similar se puede realizar en tres dimensiones, en cuyo caso uno debe construir planos de bisecci´on perpendiculares a los segmentos que unen cada sitio.

La descripci´on de los objetos dentro de la celda unitaria en t´erminos de alg´un punto de referencia en la celda unitaria es conocido como una “base”. Esta definici´on es importante ya que generalmente debemos describir s´olidos cuya estructura no se corresponde con una red de Bravais. Esto generalmente es consecuencia de la estructura interna de la celda unidad.

En la figura 2.5 mostramos una estructura peri´odica en dos dimensiones
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compuesta por dos tipos de ´atomos. A la derecha mostramos una celda uni-taria primitiva con la posici´on de los ´atomos dada con respecto al punto de referencia de la celda unitaria que se considera la esquina inferior izquierda.

Podemos describir en general la posici´on de los sitios de una red con base de la siguiente manera:

r = rcelda + rbase

donde rcell = n1a1 + n2a2 es la posici´on del punto de referencia de la celda unidad donde se encuentra el ´atomo que queremos describir y rbase es la posici´on del ´atomo dentro de la celda con respecto al punto de referencia.

Por ejemplo, para el caso de la red hexagonal de la figura 2.6 tendremos que los puntos de referencia de cada celda (peque˜nos puntos negros) forman una red triangular, para la cual podemos tomar los vectores primitivos como

a      ˆ 1 = i + a   ˆ j                  (2.1) 2 a       3 √ 2

a      ˆ 2 = a i                         (2.2)

2.2.   Redes en tres dimensiones

La descripci´on de redes se generaliza trivialmente de dos a tres dimensio-nes, ahora usando por supuesto tres vectores primitivos. La red m´as simple

en tres dimensiones es la red c´ubica simple que se muestra en la figura 2.7.

En este caso, la celda unidad primitiva se puede tomar convenientemente como un cubo simple, que incluye 1/8 de cada una de sus ocho esquinas.

Estructuras levemente m´as complejas que la red c´ubica simple son las

redes tetragonal y la red ortor´ombicas (ver figura 2.8) donde los ejes perma-necen perpendiculares, pero los vectores primitivos pueden ser de diferentes

[image: ]

 

Figura 2.5: Red con motivo o base.
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Figura 2.6: La red hexagonal y su celda unitaria.

[image: ]

 

Figura 2.7: Red c´ubica.

longitudes. La celda unidad ortorr´ombica tiene tres vectores de longitudes diferentes, mientras que la celda unitaria tetragonal tiene dos vectores de igual longitud y uno diferente.

Por convenci´on, para describir una red en 3 dimensiones se usan tres ´ındices enteros

[u, v, w] = u a1 + v a2 + w a3

Red c´ ubica centrada en el cuerpo (BCC)

La red c´ubica centrada en el cuerpo (bcc) es una red c´ubica simple donde hay un sitio adicional en el centro del cubo (a veces esto se conoce como
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Figura 2.8: Redes tetragonal y ortor´ombica

[image: ]

 

Figura 2.9: Red c´ubica centrada en el cuerpo.

cubic-I). La celda unitaria para esta red se muestra en la figura 2.9.

Otra forma de representar esta celda unitaria sin mostrar una figura tri-dimensional es utilizar una proyecci´on bidimensional de la parte superior de la celda. Esto se conoce como vista en planta de la celda unitaria. Esta vista

se muestra a la derecha de la figura 2.9.

En la imagen de la celda unitaria BCC, hay ocho sitios de red en las esquinas de la celda (cada uno de los cuales cuenta como 1/8 dentro de la celda unidad convencional) y un sitio en el centro de la celda. Por lo tanto, la celda unidad convencional contiene exactamente dos sitios de red.

Una forma conveniente de describir la red bcc, es pensarla como si fuera una red c´ubica simple con una base de dos ´atomos por celda. La red c´ubica simple contiene puntos en [x, y, z] donde las tres coordenadas son m´ultiplos enteros de la constante de red a.

Para obtener la celda unitaria de la BCC tomamos la celda unitaria
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convencional c´ubica simple y colocamos un punto adicional en la posici´on [a/2, a/2, a/2]. Por lo tanto, los puntos de la red BCC se pueden describir como

rvertice   =   a [n1, n2, n3]

r                        1 1 1 a centro = ([ n 1 , n 2 , n 3 ] + [ , , ]) 2 2 2

La elecci´on que hicimos de la celda unidad hace parecer que los dos sitios dentro de la celda unidad son dos tipos diferentes de puntos. Sin embargo esto no es as´ı. Todos los puntos en esta red pueden considerarse equivalentes (solo parecen no equivalentes porque hemos elegido un celda unitaria con dos sitios en ella).

Es facil verificar que si tomamos los vectores primitivos como

a1 = [a, 0, 0] a2 = [0, a, 0] a3 = [ a a a ,    ,    ]

2      , 2 2

cualquier combinaci´on de la forma

r = n1r1 + n2r2 + n3r3

con n1, n2 y n3 enteros, es un vector de la red y cualquier vector de la red puede ser escrito de esa manera.

Tambi´en es f´acil convencerse de que el entorno de cada punto de la red es el mismo. Si nos concentramos en el punto en el centro de la celda unitaria, vemos que tiene exactamente 8 vecinos m´as cercanos en cada una de las diagonales. De la misma forma, cualquiera de los puntos en las esquinas de las celdas tendr´a tambi´en 8 vecinos m´as cercanos correspondiente a los puntos en el centro de las 8 celdas unitarias adyacentes. De hecho esto nos dice que cada sitio de la red tiene siempre 8 vecinos. Esto es lo que se denomina n´ umero de coordinaci´ on.

Definici´ on: N´ umero de coordinaci´ on   El n´ umero de coordinaci´ on de

una red (que frecuentemente denotaremos z) es el n´ umero vecinos m´ as cer-canos que tiene cualquier punto de la red.
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Figura 2.10: Red c´ubica centrada en las caras

Para la red BCC, el n´umero de coordinaci´on es z = 8. De la misma manera que lo hicimos en dos dimensiones, se puede construir una celda de Wigner-Seitz alrededor de cada punto de la red. La diferenecia principal es que ahora en vez de tomar las directrices deberemos trazar los planos perpendiculares a las lineas que unen a un sitio con sus vecinos m´as ceranos. La celda de Wigner-Seitz para la red BCC se muestra en la siguiente figura. Por supuesto que es m´as dificil dibujar las celdas en 3D que en 2D de la misma manera que es m´as dific´ıl graficar funciones en tres variables que en dos.

Red c´ ubica centrada en las caras (FCC)

La red c´ubica centrada en las caras (Face Centered Cubic (FCC)) es una red c´ubica simple donde hay un punto adicional en el centro de cada cara del cubo (esto a veces se conoce como cubic-F, “F por face”). La celda unitaria

se muestra a la izquierda de la figura 2.10 y a la derecha se muestra una vista en planta de la celda unitaria.

En la celda unitaria FCC, hay ocho sitios de red en las esquinas de la celda (cada uno de los cuales los contamos como si tuvieran 1/8 dentro de la celda) y un punto en el centro de cada una de las las 6 caras (que tomamos como 1/2 dentro de la celda ya que es compartido por dos celdas).

Por lo tanto, la celda unitaria contiene exactamente cuatro sitios de red. Las posiciones de estos puntos pueden escribirse como

r vertice   =   a [n1, n2, n3]

 

r                         1 1 a cara XY = ([ n 1 , n 2 , n 3 ] + [ , , 0]) 2 2 1 1 r cara XZ = a ([ n 1 , n 2 , n 3 ] + [ , 0 , ]) 2 2 1 1 r cara a , , Y Z = ([ n 1 , n 2 , n 3 ] + [0 ]) 2 2
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Como antes, esta forma de escribir la red hace parecer como si fueran cuatro tipos diferentes de sitios, pero solo es porque hemos elegido una celda unidad con cuatro sitios.

Como antes podemos verificar que es efectivamente una red de Bravais. Si escribimos los vectores de red como

a 1 = [a/2, a/2, 0] (2.3)

a 2 = [a/2, 0, a/2] (2.4)

a 3 = [0, a/2, a/2] (2.5)

cualquier combinaci´on de la forma

r = n1r1 + n2r2 + n3r3

con n1, n2 y n3 enteros, es un vector de la red y cualquier vector de la red puede ser escrito de esa manera.

Adem´as de las redes que vimos hay otros nueve tipos de redes en tres dimensiones. Estos se conocen como los catorce tipos de redes de Bravais. 2.2.1.   Red rec´ıproca y zona de Brillouin

Como vimos en secciones anteriores, algunos sistemas se describen de manera m´as natural en t´erminos del cuasi-momento. A este espacio se lo denomina habitualmente el espacio rec´ıproco. Recordemos algunos resultados de nuestro estudio de sistemas en una dimensi´on. Tanto en el caso de las vibraciones de una cadena como en el modelo de tight binding consideramos una red simple en una dimensi´on donde los sitios de la red estaban en las posiciones rn = na, con n un n´umero entero. Por otro lado, recordemos que dos puntos k1 y k2 en el espacio de cuasi-momentos son equivalentes entre s´ı cuando se cumple que k1 = k2 + Gm, donde Gm = 2πm/a con m un n´umero entero. Estos puntos Gm tambi´en forman una red, denominada red rec´ıproca.

La raz´on por la que estos valores de k son equivalentes es porque conside-ramos ondas de la forma ikna e con n un n´umero entero. Debido a esta forma propuesta para la onda, encontramos que si realizamos el cambio k → k +Gm no se modifica el valor de la funci´on de onda ya que

ei                                                             2πm ( k + G ) na iG nana        ikna m      ikna   m      ikna i a e = e      = e    e       = e

Luego, para las ondas que hemos estudiado hasta aqu´ı, es equivalente tener cuasi momento k o k + Gm.

Generalizando este concepto podemos realizar la siguiente definici´on
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Definici´ on: Red rec´ıproca   Dado un punto de la red real R, un punto

G ser´ a un punto de la red rec´ıproca, s´ı y solo s´ı

eiR·G = 1

para todo punto R de la red real.

Construcci´ on de la red rec´ıproca

Para construir la red rec´ıproca, escribamos los puntos de la red real de la forma

R = n1a1 + n2 a2 + n3a3

Nos concentramos por un momento en definir el caso tridimensional, pero el caso en dos dimensiones es an´alogo. Queremos definir los puntos de la red rec´ıproca en t´erminos de tres vectores linealmente independientes como hacemos para la red real. Nos aseguraremos que cualquier vector de la red rec´ıproca cumpla con la condici´on

eiR·G = 1,

pidiendo que los vectores que generan la red rec´ıproca cumplan que

ai · bj = 2πδi,j,                             (2.6)

donde los vectores ai son los que generan la red real, los vectores bi son los generadores de la red rec´ıproca y δi,j es la delta de Kronecker. Se pue-den generar vectores bi con estas caracter´ısticas directamente a partir de los vectores de la red real en la forma

b1   = 2    a2 × a3 π                            (2.7)

a1 · (a2 × a3)

b2   = 2    a3 × a1 π                            (2.8)

a1 · (a2 × a3)

b3   = 2    a1 × a2 π                            (2.9)

a1 · (a2 × a3)

Dados estos vectores que cumplen con la ecuaci´on (2.6) podemos escribir un vector arbitrario de la red rec´ıproca como

G = m1v1 + m2v2 + m3 v3.
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Si calculamos la cantidad iR·G e vemos que

eiR·G        (n a     a       · m v +   v i 1 1 + n 2 2 + n 3 a 3 ) ( 1 1 m 22 +m3v3) = e            (2.10)

= i2π(n m n m e 1 1 + 22+n3 m3) (2.11)

Para que G sea un punto de la red rec´ıproca, la exponencial anterior debe ser igual a 1 para cualquier punto R de la red real, es decir, para todos los valores enteros de n1, n2 y n3. Claramente, esto solo puede ser cierto si m1, m2 y m3 tambi´en son enteros. Esto prueba entonces que la red rec´ıproca es de hecho ¡una red de Bravais!

´ Indices de Miller

Una forma alternativa de interpretar la red rec´ıproca es en t´erminos de una familia de planos de la red real. Llamaremos plano cristalino a un plano que contenga al menos tres puntos de la red que no sean colineales. De hecho si un plano contiene tres puntos no colineales de la red, entonces contiene infinitos puntos de la misma. Llamaremos familia de planos cristalinos a un conjunto de planos igualmente separados para los cuales se cumple que el conjunto de planos contiene a todos los puntos de la red.

En la figura 2.11 se muestran dos ejemplos de familias de planos en una red. Noten que los planos son paralelos e igualmente espaciados, y cada punto de la red est´a incluido en exactamente un plano.

Para identificar a las familias de planos cristalinos se hace una correspon-dencia uno a uno con las direcciones de los vectores de la red rec´ıproca, a las cuales son normales. Adem´as, el espacio entre estos los planos de la red es d = 2π/|Gmin | donde Gmin es el vector de red rec´ıproca de longitud m´ınima en esta direcci´on (normal a los planos).

Tomemos un vector del espacio G rec´ıproco y consideremos el plano de-finido por

G · r = 2πn

Esto define una familia de planos paralelos que son perpendiculares a G.

Cualquier punto de la red de Bravais debe pertenecer a alguno de estos planos ya que la definici´on de vector de la red rec´ıproca nos dice que para cualquier punto de la red de Bravais se cumple necesariamente que

e iG·R = 1

y por lo tanto debe ser que G · R = 2πq para alg´un numero entero q. Sin embargo, puede ocurrir que existan planos de la familia definida por la ecua-ci´on G · r = 2πn que no contengan puntos de la red de Bravais. Si tomamos G ë r La distancia entre dos planos adyacentes est´a dada por
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Figura 2.11: Planos Cristalinos: Los planos en la figura de la izquierda corres-ponden a la direcci´on (1,0,0) mientras que los de la derecha se corresponden con la direcci´on (1,1,1)

d    2π = |

G|
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2.3.   Electrones en potenciales peri´ odicos

Ya estudiamos brevemente electrones en un sistema peri´odico cuando es-tudiamos el tight-binding. En esta secci´on estudiaremos electrones sometidos a un potencial peri´odico como el que est´a presente en una red de n´ucleos pero usaremos una perspectiva un poco diferente. Consideraremos a los electrones desde una perspectiva ondulatoria y estudiaremos ondas de electrones libres que son levemente perturbadas por el arreglo peri´odico de los ´atomos en la red.

Comencemos con electrones libres cuyo Hamiltoniano est´a dado por

H0 = p2

2 . m

Los autoestados de energ´ıa se corresponden con ondas planas |kê cuyas au-toenerg´ıas est´an dadas por

Ô         ~   2 | k | ( 0 k ) = . 2 m

Ahora, consideremos el caso de un electr´on sometido a un potencial pe-

ri´odico sobre la red.                   2 p H = + V (r), 2 m donde el potencial cumple que

V (r + R) = V (r)

y R es un vector de la red real (red de Bravais). Si suponemos que el poten-cial es peque˜no podemos intentar corregir perturbativamente la energ´ıa. Los elementos de matriz del potencial en la base de ondas planas est´an dados por

ˆ                     ˆ

ék |V |kê =        dr e       V (r) =            dre          V (r + R), 3 Í                                                                  Í                                                                              Í Ø i ( k − k ) · r i ( k − k)·(r+R) 1 1

L                3 L

R celda

donde la integral del lado derecho de la igualdad se realiza dentro de la celda unidad y la suma es sobre todas las celdas.

ˆ

ék |V |kê =             dre          V (r + R)          (2.12) 3 Í                                      Ø                               Í i ( k − k)·(r+R) 1

= 1 A          B A                 B Í Ø Í i ( k − k ) · R i ( k − k ) · r e L R celda        ˆ

L3 dre       V (r) ,   (2.13)

R           celda
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donde usamos que el potencial es peri´odico V (r + R) = V (r). La suma sobre celdas que est´a dentro del primer par´entesis es distinta de cero solo si

k    Í − k = G.

Es decir que este elemento de matriz es cero salvo que      Í k − k sea un vector de la red reciproca. Esto no es m´as que la conservaci´on del momento cristalino.

Entonces, en un proceso de scatering un estado de onda plana solo puede ir a parar a otra onda plana cuyo vector de onda difiera del incidente en un vector de la red reciproca. Podr´ıamos usar este elemento de matriz para calcular la correcci´on a segundo orden en la energ´ıa como

Ô                   Í k Ô ( k ) + é k |V |                            .         (2.14) (                      kê +       |é Í                 2 k ) =                     Ø   |V |kê|

0                                                Í Ô ( k ) − Ô ( k)

kÍ                  0                  0 = k + G

Donde la suma se realiza sobre los vectores de la red reciproca no nulos. Lo anterior es correcto si supondremos que estamos en un caso no degenerado (es decir, suponemos que Ô0(k)        Í Ó = Ô 0 ( k)).

Para estudiar que pasa en el caso degenerado busquemos soluciones de la forma

Ô                Í ( k ) = Ô ( k)                         (2.15) 0             0

kÍ   = k + G.                    (2.16)

Concentr´emonos por un momento en el caso 1D. Para una cadena donde los sitios est´an igualmente espaciados con par´ametro de red a, los vectores de la red reciproca est´an dados por

G   2π n. n = a

Si consideramos electrones libres cuya energ´ıa este dada por Ô0(k)     2 ∼ k, las ´unicas posibles soluciones para la ecuaci´on Ô0( ) =      Í k Ô 0 ( k) corresponden a k =   Í                          Í ± k . Para satisfacer la ecuaci´on k = k + G con G Ó= 0 solo podemos tener                                     π k = Í − k = n. a Es decir, tendremos un caso degenerado en los niveles de energ´ıa correspon-dientes a los bordes de la zona de Brillouin. Aunque nosotros lo hicimos para el caso en una dimensi´on, esta es una situaci´on m´as general que inclu-ye sistemas en m´as dimensiones. Dado un punto k en el borde de la zona de Brillouin, generalmente existe otro punto   Í k tambi´en sobre el borde de

la zona que cumple con las dos condiciones (2.15) y (2.16). En dos o m´as dimensiones generalmente ocurre que este punto no es ´unico.

 

Facultad de Cs. Exactas  |  UNLP |   65

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

2.3 Electrones en potenciales peri´ odicos

Cuando ocurre esta degeneraci´on, la correcci´on (2.14) diverge y debemos usar una teor´ıa de perturbaciones degenerada. Para calcular la correcci´on en esta teor´ıa debemos primero diagonalizar el Hamiltoniano en el subespacio degenerado y luego tratar el resto de la perturbaci´on. Dicho de otra manera, tomamos estados con la misma energ´ıa que se encuentran conectados por un elemento de matriz y los mezclamos.

Tomemos entonces dos ondas planas con vectores de onda |kê y |k + Gê. Si estos estados tienen la misma energ´ıa, entonces debemos diagonalizar los elementos de matriz del Hamiltoniano correspondiente a estos estados primero, tendremos entonces que

ék|H|kê = Ô0(k)

ék + G|H|k + Gê = Ô0(k + G)

é                      ∗ k | H | k + G ê = V(G) ék + G|H|kê = V (G).

Donde                             ˆ 1       r V ( G G ) = i é k + · G | V | k ê = d r eV (r). L 3 En este subespacio podemos escribir un autovector como

|ψê = a|kê + b|k + Gê.

Al buscar los autovalores en este subespacio debemos resolver la ecuaci´on

A              B A   B    A   B ∗ Ô ( k ) V ( G ) a a =          (2.17)

V ( 0                                     E G) Ô0 ( k + G) b             b

y el polinomio caracter´ıstico queda en la forma

(Ô0(k) − E) (Ô0(k + G) − E) − |V (G) 2 | = 0.

Si k est´a en el borde de la zona de Brillouin, Ô0(k +G) = Ô0(k) y tenemos que

(            2            2 Ô 0 ( k ) − E ) = | V ( G ) |

y por lo tanto

E± = Ô0(k) ± |V (G)|.

Es decir, el estado que antes era doblemente degenerado ahora se convierte en dos estados de energ´ıa diferente. Se ha abierto un gap por la presencia de el potencial peri´odico.
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Ahora veamos que pasa si consideramos estados que no est´an justo en el borde de la zona de Billouin, pero est´an muy cercanos a ella de manera que las energ´ıas Ô0(k) y Ô0(k + G) son casi iguales (cuasi degenerado).

Para simplificar consideremos el caso unidimensional, aunque la mayor parte de los argumentos pueden aplicarse en mayores dimensiones. Consi-deremos el borde de la zona k = ±nπ/a separados por vectores de la red reciproca G = 2πn/a. Ahora consideremos una onda plana cerca del borde, digamos con vectores de onda k = nπ/a + δ. Este vector de onda se conecta mediante un proceso de scattering generado por el potencial peri´odico con el vector de onda k = −nπ/a + δ mediante el vector de la red reciproca G = 2πn/a. Tendremos entonces para la energ´ıa

Ô                    ~2 ( 0 nπ/a + δ ) = ((nπ/a)2 + 2nπδ/a + 2 δ) 2 m

Ô                      ~2         2               2 ( 0 − nπ/a + δ ) = (( nπ/a ) − 2 nπδ/a + δ). 2 m

La ecuaci´on de autovalores puede escribirse como

A                           B B A 2 ~ ((nπ/a)2 + 2             ~ 2                            2         2

2                         2m m       δ ) − E   =     2               2 nπδ/a + | V ( G ) |.

De esta ecuaci´on podemos despejar los autovalores

E± =   ((nπ/a)2          ~ ~               ö       2 2                        õA             B 2 õ 2

2                    2m m     + δ ) ± ô    2nπδ/a   + |V (G)|2.

Si suponemos que δ es peque˜no, podemos desarrollar la ra´ız cuadrada a segundo orden alrededor de delta = 0 y obtener

E    ~2                           ~2 2 A δ    ~2       2 B nπ/a = ± (( nπ/a ) 2 + 2 ( ) δ ) ± | V ( G ) | + 1 ± . 2 m 2 m m | V ( G ) |

Por lo tanto vemos que cerca del borde de la zona de Brillouin, el potencial peri´odico abre un gap y adem´as la dispersi´on cerca del borde es cuadr´atica.

La forma de las bandas que resulta de la interacci´on con un potencial

peri´odico puede verse en la figura 2.12

La estructura general que encontramos es muy parecida a la que esper´aba-mos del modelo de tight-binding. Como en se ve en la figura hay bandas de energ´ıa donde hay estados permitidos, y hay espacios entre las bandas, donde no hay autoestados de energ´ıa.
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[image: ]

 

Figura 2.12: Bandas de energ´ıa.

 

Facultad de Cs. Exactas  |  UNLP |   68

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

Estructura cristalina de los s´ olidos

2.3.1.   Teorema de Bloch

En el estudio anterior, estudiamos a los electrones sometidos a un po-tencial peri´odico desde la perspectiva de ondas planas que est´an d´ebilmente perturbados por un potencial peri´odico. Pero en materiales reales, el poten-cial puede ser muy fuerte y de esta manera la teor´ıa de perturbaci´on puede no ser v´alida.

Si embargo a´un en el r´egimen no perturbativo los resultados anteriores son v´alidos. Lo primero que debemos tener en cuenta es que el impulso de la onda plana no es una cantidad conservada, sino que lo que se conserva es el impulso cristalino. No importa cu´an fuerte sea el potencial peri´odico, siempre que sea peri´odico, el momento cristalino es una cantidad conservada.

Este importante resultado fue descubierto por primera vez por Felix Bloch

en 1928, y es lo que se conoce como el teorema de Bloch[5, 15, 3].

Definici´ on: Teorema de Bloch:   Un electr´ on en un potencial peri´ odico

tiene autoestados de la ecuaci´ on de Schroedinger de la forma:

ψ       i ·r k ( r ) = eu   (r) k,α              k,α

donde uk,α (r) es peri´ odica en la celda unidad y el momento k puede ser to-mado en la primer zona de Brillouin.

La funci´on peri´odica uk,α(r) se conoce como funci´on de Bloch. El ´ındice α contempla el hecho de que al trabajar en el esquema de zona reducida tendremos m´as de un estado correspondiente a cada valor de k.

Como uk,α(r) es peri´odica, podemos escribirla como una suma sobre vec-tores de la red reciproca.

uk,α(r) = Ø u ˜     iG·r G , k ,α e,

G

de esta manera nos aseguramos que uk,α(r) = uk,α(r + R), donde R es un vector de la red real. Luego, la funci´on de onda completa puede escribirse como

ψ k,α( ) = Ø      i G u ˜ (+k)·r r G , k ,α e.

G

De esta expresi´on vemos que una forma alternativa de expresar el teorema de Bloch es decir que podemos escribir cada autoestado como una suma sobre ondas planas cuyos momentos k difieren en un vector de la red reciproca. La raz´on por la cual el teorema de Bloch es v´alido es que los elementos de
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2.3 Electrones en potenciales peri´ odicos

matriz del potencial son cero a menos que       Í k y k difieran en un vector de la red reciproca.

En resumen, el teorema de Bloch nos dice que aunque el potencial que act´ua sobre los electrones sea fuerte, ¡ellos todav´ıa se comportan casi como si fueran libres! Formando estados de onda plana modulados por la funci´on peri´odica de Bloch y el hecho de que el momento es ahora el momento cris-talino.
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Queremos considerar ahora el caso de muchas part´ıculas cu´anticas. Nor-malmente este es un problema que sabemos muy bien c´omo tratar en mec´ani-ca cu´antica: si conocemos el espacio de Hilbert H1 de una sola part´ıcula y una base completa |αê ortogonal,

é    Í                                   Ø α | α ê = δ , |αêéα| = 1,                          (3.1) ααÍ

α

sabemos que para N part´ıculas tenemos un espacio de Hilbert que se cons-truye como el producto directo (tensorial) de los espacios individuales:

N

H               p = H ⊗ H ⊗ · · · ⊗ H = H ,          (3.2) N     1     2         N        i

i=1

y que una base completa de tal espacio es simplemente

|α1 , α2, . . . , αN ) ≡ |α1ê ⊗ |α2ê · · · |αN ê,                  (3.3)

el estado factorizado de N part´ıculas independientes. Aqu´ı utilizamos a no-taci´on | · · · ) para indicar que el estado no posee ninguna simetr´ıa frente al intercambio de part´ıculas.

Debemos resolver entonces una ecuaci´on de Schr¨odinger con una funci´on de onda que depende de las N variables ri correspondientes a las N part´ıcu-las,

Ψ(r1, r2, . . . , rN ) = (r1, r2, . . . , rN |α1 , α2, . . . , αN ).           (3.4)

Aunque este es un programa perfectamente aceptable cuando el n´umero de part´ıculas es peque˜no, es particularmente inadecuado para abordar el caso de muchos fermiones o bosones cu´anticos interactuantes, por varias razones.

La primera raz´on tiene que ver con la indistinguibilidad de las part´ıcu-las. Incluso si son libres entre ellas, no todos los estados son aceptables para
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las funciones de onda de N part´ıculas indistinguibles, para las que s´olo se permiten las funciones de onda totalmente sim´etricas (para bosones) o an-tisim´etricas (para fermiones). Esto significa que incluso para part´ıculas que no interact´uan no podemos usar directamente estados producto de la forma

(3.3) y debemos lidiar con sus versiones simetrizadas o antisimetrizadas,

|                                  1        Ø α 1 . . . α N ê S = ñ Pν |α1 . . . αN ),           (3.5) ! N n ν α 1 ! . . . n α N ! |                         1 Ø   s α √ 1 . . . α N ê A = ( − 1)ν Pν |α1 . . . αN ),                 (3.6) N ! ν

que se obtienen del estado factorizado (3.3) aplicando los operadores de si-metrizaci´on o antisimetrizaci´on, al igual que las funciones de onda. En cierto modo, el hecho de que tengamos que tratar con part´ıculas indistinguibles ya introduce correlaciones en la funci´on de onda incluso cuando las interacciones no est´an presentes. La funci´on de onda se vuelve bastante complicada ya que deben estar correctamente (anti-)simetrizadas y normalizadas, lo que las ha-ce muy dif´ıciles de manejar. que se escriban en la forma de un determinante ayuda un poco para los c´alculos pr´acticos, pero no mucho. En resumen, in-cluso para los electrones que no interact´uan, ¡habr´ıa que tratar con funciones de onda que contienen 1023! t´erminos, lo cual es realmente desagradable.

El segundo problema est´a relacionado con la forma en que representa-mos a los operadores en la mec´anica cu´antica est´andar. Si consideramos, por ejemplo, un operador que mide el momento total de un sistema de part´ıculas, este tiene que escribirse como una suma de operadores que act´uan sobre cada part´ıcula individualmente:

N

P    Ø = P                 (3.7) tot            i

i=1

donde Pi es el operador que act´ua sobre la part´ıcula i-´esima. T´engase en cuenta que esto es un abuso de notaci´on ya que Ptot es un operador de HN , que rigurosamente se debe escribir como

P i = 1 ⊗ 1 ⊗ . . . ⊗ P ⊗ . . . ⊗ 1, (3.8)

donde 1 es la identidad y P se inserta en la posici´on i-´esima. El operador y las funciones de onda dependen as´ı expl´ıcitamente del n´umero de part´ıculas. Por lo tanto, uno deber´ıa cambiar completamente todo el c´alculo dependiendo de si miramos 2 o 20000 part´ıculas, lo que nuevamente es particularmente molesto. Tambi´en impide tomar de manera directa el l´ımite termodin´amico N → ∞ cuando el volumen de los sistemas tambi´en tiende a infinito. Dada
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la gran cantidad de part´ıculas, est´a claro que tomar este l´ımite es lo deseable

ya que simplificar´ıa mucho los c´alculos1.

Una tercera raz´on, quiz´as m´as profunda y m´as f´ısica, y que definitiva-mente liquida la posibilidad de utilizar la mec´anica cu´antica usual, es que ¡en muchos sistemas el n´umero de part´ıculas no se conserva! Esto puede ocu-rrir por varias razones, por ejemplo, en sistemas de altas energ´ıas, porque buscamos describir sistemas de part´ıculas que pueden aniquilarse y conver-tirse en otras, tales como electrones y positr´ones. O para un ejemplo m´as ligado a los materiales, mencionemos el modelo BCS para un superconduc-tor, que discutiremos en el cap´ıtulo siguiente. Veremos que las cuasipart´ıculas fermi´onicas que son responsables de la superconductividad se forman por una superposici´on de electrones y huecos y no se conservan en n´umero.

Por estas razones, debemos buscar una reformulaci´on de la representaci´on est´andar de la mec´anica cu´antica (tambi´en conocida como primera cuanti-ficaci´on) para sistemas de varias part´ıculas indistinguibles. Idealmente de-ber´ıamos hallar un formalismo que se ocupe autom´aticamente de lo siguiente:

1. Que la simetrizaci´on o antisimetrizaci´on se realizara de manera au-

tom´atica sin tener que tratar expl´ıcitamente con N ! t´erminos.

2. Que la forma de describir el sistema no dependa expl´ıcitamente del

n´umero de part´ıculas presentes en ´el. Esto deber´ıa permitir tomar el l´ımite termodin´amico f´acilmente y tambi´en abordar situaciones m´as generales en las que el n´umero de part´ıculas puede cambiar.

Esto lo proporciona el llamado m´etodo de “segunda cuantificaci´on”2 que describiremos en este cap´ıtulo.

3.1.   Espacio de Fock

La idea b´asica es convertir el hecho de que las part´ıculas sean indistingui-bles en una ventaja. De hecho, si este es el caso, significa que no es necesario conocer el estado cu´antico de cada part´ıcula individual, sino simplemente cu´antas part´ıculas hay en un estado cu´antico dado. Supongamos que uno tiene una base completa |αê de estados para una sola part´ıcula. En general, esta base es infinita, pero tomemos por conveniencia un espacio de dimensi´on

1 Trabajar en el l´ımite termodin´ amico es deseable, adem´ as, porque es all´ı donde ocurren

verdaderamente las transiciones de fase.

2 La terminolog´ıa usual de “primera” y “segunda” cuantificaci´ on es bastante desafortunada.

Da a entender que hay otro objeto que ahora se est´ a cuantificando, m´ as espec´ıficamente la funci´ on de onda, pero esto es incorrecto, como veremos m´ as adelante.
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|α1⟩             |α2⟩                               |αi⟩                               |αd⟩

Figura 3.1: El estado de un sistema con un n´umero arbitrario de part´ıculas indistinguibles se conoce por completo si se sabe cu´antas part´ıculas hay en un estado cu´antico determinado.

finita d y un n´umero finito de estados. Siempre podemos tomar        3 d → ∞.As´ı, denotamos todos los estados en esta base como

|α1ê, |α2ê, . . . , |αdê, (3.9)

T´engase en cuenta que el tama˜no de la base no est´a relacionado con la can-tidad de part´ıculas que est´an presentes en el sistema. Para los bosones, por ejemplo, uno podr´ıa tener una base completa de los estados de una part´ıcula que contienen solo dos estados y tener 10000 bosones presentes en el sistema (ya que varios de ellos pueden ir en el mismo estado cu´antico). Para los fer-miones, por supuesto, el n´umero total de part´ıculas siempre es menor que el n´umero total de estados disponibles debido al principio de Pauli. Podemos describir completamente el sistema y reconstruir su funci´on de onda si cono-cemos el n´umero de part´ıculas ni en cada estado |αiê de la base completa de estados de part´ıculas individuales, y por lo tanto, podemos caracterizar com-pletamente la funci´on de onda del sistema mediante el conjunto de n´umeros n1, n2, . . . , nd. El n´umero total de part´ıculas en el sistema es, por supuesto, N = n1 + n2 + · · · + nd, y puede variar si uno var´ıa uno de los ni .

Definamos entonces un espacio en el que puedan existir un n´umero arbi-trario de part´ıculas. Si llamamos HN al espacio de Hilbert con N part´ıculas,

como en la ec. (3.2), podemos definir

+ ∞

F = H0 ⊕ H1 ⊕ H2 . . . = n Hj (3.10)

j=0

que es la suma directa de todos los espacios de Hilbert con 0, 1, 2, etc. part´ıcu-las. Tal espacio se llama espacio de Fock. En este espacio definamos ahora el estado

|n 1, n2, n3, . . . , ndê (3.11)

como los estados simetrizados o antisimetrizados (3.5) y (3.6). Es. decir, en lugar de rotular a esos estados mediante el conjunto αi de estados estados

3                                                                                       1 Por supuesto que siempre existen sistemas donde d es finita. Por ejemplo, un spin .

2
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de part´ıcula independiente en el que est´a cada. part´ıcula, los rotulamos por el n´umero de part´ıculas que contiene cada uno de ellos. Dos estados de la

forma (3.11) que tienen un n´umero diferente de part´ıculas N pertenecen a dos espacios de Hilbert diferentes y, por lo tanto, son obviamente ortogonales en el espacio de Fock. Para sistemas con el mismo n´umero total de part´ıculas,

se puede verificar usando (3.5) y (3.6) que los estados (3.11) para una base ortogonal y normalizada satisfacen

é                 Í        Í                  Í n 1    2         d   1    2         d           Í , n , . . . , n | n , n , . . . , n ê = δ    δ       · · ·                  (3.12)

n1,n   n 12         n ,n 2 dd ,nÍ                      Í δ

Por lo tanto, podemos usar la base (3.11) para caracterizar cada operador y elemento de matriz en el espacio de Fock. Como se mencion´o antes, esta base es extremadamente conveniente ya que se basa en la cantidad m´ınima de informaci´on necesaria para describir un sistema de part´ıculas indistinguibles. En particular, el n´umero de “contadores” ni necesarios no crece con el n´umero total de part´ıculas.

3.2.   Operadores de creaci´ on y destrucci´ on

Introduciremos a continuaci´on un conjunto de operadores que nos permi-

tir´a generar todos los elementos de la base (3.11). Para cada estado αi de la base completa de una sola part´ıcula, definimos un operador de creaci´on y destrucci´on, que aumentar´a o disminuir´a en uno el n´umero de part´ıculas en este estado particular. De este modo, podremos usar estos operadores para modificar el contador ni dando el n´umero de part´ıculas en un estado cu´antico dado, y as´ı abarcar todo el espacio de Fock. La definici´on pr´actica de estos operadores es diferente dependiendo de la estad´ıstica de las part´ıculas. Bosones

Introducimos los operadores de creaci´on † ai y destrucci´on ai por su acci´on sobre todos los estados de una base completa en el espacio de Fock, en la forma

a |n , . . . , n           ê       n i 1 i , . . . , n d = †                            √ + 1              + 1 i            1             i                    d | n , . . . , n , . . . , nê,

√                   (3.13)

ai |n1, . . . , ni, . . . , ndê =    ni|n1, . . . , ni − 1, . . . , ndê.

Estas definiciones determinan por completo a los operadores por sus elemen-

tos de matriz en la base de n´umeros de ocupaci´on (3.11). Comprobemos que los operadores † a i y ai son efectivamente herm´ıticos conjugados uno del otro.
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Dado que (3.11) es una base ortogonal, el ´unico elemento de matriz distinto de cero para † a i es

én 1, . . . , ni + 1             †                            √ , . . . , nd|a |n                               n i 1 , . . . , n i , . . . , n d ê = + 1            (3.14) i        .

Tomando el complejo conjugado de esta expresi´on se obtiene

én 1, . . . , ni , . . . , nd|ai|n1, . . . , ni + 1                 √ , . . . , ndê =n i + 1, (3.15)

que de hecho es exactamente la definici´on del operador ai en (3.13) (con el reemplazo de ni por ni + 1). Otra propiedad importante de los operadores es que solo abarcan el espacio de Fock. De hecho, aunque parece formalmente

de (3.13) que el operador ai podr´ıa operar en un estado que tiene ni = 0 part´ıculas en el estado αi el prefactor en la definici´on asegura que el elemento de matriz correspondiente es cero:

a i |n1, . . . , ni = 0, . . . , ndê = 0, (3.16)

y as´ı, si uno intenta aplicar el operador de destrucci´on en un estado que no tiene ninguna part´ıcula en el estado cu´antico correspondiente, obtiene un resultado trivial, lo que significa que no se pueden generar estados no f´ısicos con n´umeros de ocupaci´on negativos.

Si definimos el estado que no contiene part´ıculas en ninguno de los estados cu´anticos (a veces denominado vac´ıo) en la forma

|0ê = |n1 = 0, n2 = 0, . . . , nd = 0ê, (3.17)

se verifica que a partir de este vac´ıo                         † | 0 ê y los operadores a i podemos construir todos los vectores de la base completa del espacio de Fock, ya que

|                                 ( † n a 1 )1 . . . ( † n ad n 1 , . . . , n i , . . . , n d ê = d ) √ √ |0ê.                (3.18) n 1 ! . . . n d !

Por lo tanto, uno puede generar completamente el espacio de Fock desde el estado ´unico |0ê mediante los operadores de creaci´on (y destrucci´on ya que son conjugados herm´ıticos). El vac´ıo verifica la propiedad de que para cualquier i

a i |0ê = 0 (3.19)

Debemos tener cuidado de no mezclar el vac´ıo |0ê, que es un vector del espacio de Fock, y uno sobre el que los operadores pueden actuar para dar otros estados del espacio de Fock, con el cero 0.

Los operadores de creaci´on y destrucci´on constituyen as´ı una manera muy conveniente de describir el espacio de Fock. En lugar de definirlos a
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partir de sus elementos de matriz en una base dada, tal como (3.11), es m´as conveniente definirlos a partir de sus propiedades intr´ınsecas. Mostremos que

la definici´on (3.13) implica que los operadores † a   a i yi poseen ciertas relaciones de conmutaci´on espec´ıficas. Y a la inversa, si se obedecen estas relaciones de conmutaci´on, entonces los operadores, y el vac´ıo correspondiente definido por

(3.17), servir´an para construir un espacio de Fock a partir de (3.18) en el que

tendr´an los elementos de matriz (3.14) y (3.15).

Calculemos primero la acci´on de un producto de dos operadores de crea-ci´on   †      † a a                              Ó i y j en estados distintos ( i= j) sobre un estado arbitrario de la base:

a†                                           ñ † † a | n , . . . , n , . . . , n , . . . , n ê =    + 1|                       + 1          ê

i         1 j             i            j             d          i       j           1            i            j                   d a n n , . . . , n , . . . , n , . . . , n

= √    ñ ni + 1nj + 1|n 1, . . . , ni + 1, . . . , nj + 1, . . . , ndê.

(3.20)

y es f´acil comprobar que la acci´on de   † † a a j producir´a exactamente el mismo resultado. As´ı, para cualquier elemento de la base se tiene i

è      é † † a , a |n , . . . , n , . . . , n , . . . , n ê = 0,                  (3.21)

i      j       1             i             j            d

lo que significa que

è      é † † a , a     . = 0                             (3.22)

i     j

Dado que un operador conmuta consigo mismo, esto tambi´en es cierto cuando i = j. Tomando el herm´ıtico conjugado del conmutador anterior obtenemos

[ai, aj] = 0.                                 (3.23)

Veamos ahora qu´e ocurre si calculamos la acci´on del producto de un operador de destrucci´on con uno de creaci´on, siempre con (i Ó= j):

a a n , . . . , n , . . . , n , . . . , n ê     a        |    , . . . , n , . . . , n −   , . . . , n ê i j | 1 i j d = †                                          †√ i     n j n1          i          j     1 d

= √    √ ni + 1nj |n1, . . . , ni + 1, . . . , n j − 1, . . . , n d ê

(3.24)

y de manera similar la acci´on de    † a j a        Ó i (con i= j ) dar´ıa el mismo resultado. Se tiene as´ı è      é † a , a i = 0 cuando   Ó= . El caso   =   es especial. Por un lado j                      i     j               i     j

tenemos que

a a |n        , . . . , n ê i i 1 , . . . , n i d = †                                 √ † a   n |n i i1, . . . , ni − 1, . . . , ndê

= ñ      √ ( ni − 1) + 1ni |n1, . . . , ni, . . . , ndê       (3.25) = ni|n1, . . . , ni, . . . , ndê,
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y por otra parte

a ia |n i1, . . . , ni, . . . , ndê = †                              √ ai   ni + 1|n1, . . . , ni + 1, . . . , n d ê

= √    √ n i + 1n i + 1|n 1, . . . , ni, . . . , ndê (3.26)

= (ni + 1)|n1, . . . , ni, . . . , ndê.

Concluimos entonces que

è      é † a i     i , a |n       , . . . , n 1 , . . . , ni ê = |                      ê            (3.27) d       1        i        d n , . . . , n , . . . , n .

Juntando los dos resultados, encontramos finalmente que el conmutador es

è      é † a i     j , a = δ                                 (3.28) i,j .

Se puede entonces resumir las propiedades de los operadores de creaci´on y destrucci´on mediante el conjunto de relaciones fundamentales

è      é † a , a    δ   , =

i     j          i,j

è      é † † a , a     ,                                (3.29) = 0

i      j

[ai, aj ] = 0.

llamado tambi´en ´algebra de los operadores. Junto con la acci´on de los ope-

radores de destrucci´on sobre el vac´ıo (3.19), son equivalentes a las definici´on

de los elementos de matriz (3.15) y (3.14). Esto implica que si disponemos de

1. Una base completa |αiê de estados de part´ıculas individuales (y las

funciones de onda correspondientes ér |αiê)

2. Operadores de creaci´on y destrucci´on, † a   a i yi, para cada uno de estos

estados, que obedecen relaciones conmutaci´on can´onicas (3.29).

3. Un vac´ıo |0ê que es destruido por los operadores de destrucci´on ai|0ê =

0,

podemos construir completamente un espacio de Fock para bosones. La idea es entonces explotar directamente las propiedades anteriores y utilizar las re-laciones de conmutaci´on can´onicas entre los operadores bos´onicos para calcu-lar las propiedades f´ısicas, en lugar de las funciones de onda. Esta descripci´on se conoce como segunda cuantificaci´on.
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Tomemos por ejemplo el siguiente estado de dos part´ıculas:

|           † † ψ ê = a a | ê    | 1            n    , n 2 0 = = 1 = 1ê                   (3.30) 1         2       .

y reconstruyamos la expresi´on para la funci´on de onda usando. Se obtiene

Ψ( 1, r2) = (r1r        √ 2 | ψ ê = [ϕα (r1)ϕα (r2) + ϕα 1 21 (r2)ϕα2 (r1)] ,    (3.31) r                  1

2

que es la funci´on correctamente simetrizada que describe dos bosones. Sin embargo, el inter´es de la segunda cuantificaci´on es apegarse a los operadores y sus relaciones de conmutaci´on y evitar volver a las funciones de onda, que en general son bastante intratables. Por ejemplo, los operadores de creaci´on conmuntan entre s´ı, y por lo tanto † †      † † a a    a a 1 =. Entonces 2      2 1

a† †          † † a | 0 ê =| ê 0                            (3.32)

1 2          2 1 a a    ,

y as´ı la funci´on de onda |ψê resulta ser sim´etrica por permutaci´on de las part´ıculas. Los operadores de creaci´on y destrucci´on est´an as´ı directamente dise˜nados para tener en cuenta adecuadamente la simetrizaci´on de las funcio-nes de onda y la indistinguibilidad de las part´ıculas. De hecho, las relaciones de conmutaci´on permiten obtener directamente la informaci´on sin pasar por ning´un proceso de simetrizaci´on. En particular, los promedios se pueden cal-cular directamente. Ilustr´emoslo calculando la normalizaci´on de la funci´on |ψê. Queremos calcular

é                  † † ψ | ψ ê = é 0 | a2 a1 a a | ê 1       . 2 0                      (3.33)

Aunque este es un ejemplo espec´ıfico, veremos que generalmente todos los observables f´ısicos se reducen al promedio en el vac´ıo de un determinado pro-ducto de los operadores de creaci´on y destrucci´on, por lo que el m´etodo que describimos se puede aplicar de manera general. Para calcular el promedio, lo ´unico que necesitamos usar es el hecho de que el vac´ıo es destruido por todos los ai. Por tanto, utilizando las relaciones de conmutaci´on, deber´ıamos llevar los operadores ai a la derecha, de modo de hacerlos actuar sobre el vac´ıo. para actuar sobre el vac´ıo. Primero escribimos     †          † a 1 a 1 = 1 + aa 11 de la relaci´on de conmutaci´on. Tenemos entonces

é                     †      † ψ | ψ ê = é 0 | a2 (1 + a a 1 )|0ê

†                                             (3.34) † 1   2 a    ,

=             † é 0 | a2 a | ê | 2           a 0 + é 0| ê 0 2 1 1 2 a a a    .

En el segundo t´ermino podemos usar ahora la relaci´on de conmutaci´on    † a 1 a2 = a†                                         † † a é | a a para reescribirlo como 0 aa | ê 0 que inmediatamente da cero. Para

2 1                                    2 1 2 1
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el primero usamos de nuevo las relaciones de conmutaci´on, y obtenemos

é                †                   † ψ | ψ ê = é 0 | a a | ê 0 = é 0 | (1 + aa )|0ê,

2 2                   2 2

= é0|1|0ê, (3.35)

= 1.

Aunque los c´alculos pueden volverse tediosos cuando crece el n´umero de operadores, la mec´anica siempre es la misma, y con un poco de pr´actica se pueden acelerar.

Fermiones

Pasemos ahora a los operadores de creaci´on y destrucci´on de fermiones. De manera similar que para los bosones, definimos

c†                                            Ôi | n , . . . , n , . . . , n ê = (1 − n )( − 1)|n , . . . , n + 1, . . . , n ê,

i     1         i         d              i             1         i              d         (3.36)

c i |n1, . . . , ni, . . . , ndê = ni(−1)Ôi |n1, . . . , ni − 1, . . . , ndê,

donde Ôi = qi−1 n    Ô j =1 j y1 = 0. El orden de los elementos en la base debe fijarse una vez, y utilizar siempre la misma convenci´on, pero, por supuesto, es arbitraria.

En estas definiciones, algunos t´erminos son bastante transparentes: dado que para los fermiones el principio de Pauli impide que dos fermiones est´en en el miso estado, los n´umeros de ocupaci´on ni est´an restringido a toar los valores 0 o 1 . Por lo tanto, es importante que el operador de creaci´on no pueda crear dos part´ıculas en un estado, lo cual queda asegurado por el factor 1                        † − n i que garantiza que si c                          n i act´ua sobre un estado coni = 1 entonces la acci´on del operador dar´a cero. De manera similar, el factor ni asegura que el operador de destrucci´on no puede destruir una part´ıcula en el estado para el cual ni = 0. La f´ısica del factor extra˜no (−1)Ôi no es obvia por el momento, y uno podr´ıa tener la tentaci´on de definir los operadores sin tal factor de fase. Veremos su utilidad un poco m´as adelante.

Procedemos ahora exactamente como con los bosones: comprobemos pri-mero que los operadores † c i y ci son efectivamente herm´ıticos conjugados uno del otro. De hecho, los c´alculos con fermiones son m´as simples en cierto sen-tido, ya que para cada estado αi solo hay dos posibilidades ni = 0 o ni = 1 para el estado correspondiente. El ´unico elemento de matriz distinto de cero para el operador † c i es

é                          †                                        Ôi n , . . . , n = 1 , . . . , n | c | n , . . . , n = 0 , . . . , n ê = ( − 1).         (3.37)

1         i               d   i   1         i               d
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mientras que para ci el ´unico elemento de matriz distinto de cero es

én1, . . . , ni = 0, . . . , nd|ci|n1, . . . , ni = 1, . . . , ndê = (−1)Ôi.          (3.38)

que obviamente es el complejo conjugado del otro.

Para continuar con las relaciones de conmutaci´on y comprender el papel de los coeficientes (−1)Ô                                                     † i , veamos primero la acci´on de c i c i. Como esto solo afecta al estado αi, podemos simplemente considerar su acci´on sobre los dos estados con ni = 0 y ni = 1:

c †                                        Ôi c | n , . . . , n = 0 ê = ( − 1)   |             = 1          ê i i     1             i                    d                     i    1            i                    d , . . . , n c n , . . . , n , . . . , n

= (−1)2Ôi |n1, . . . , ni = 0, . . . , ndê        (3.39) = |n1, . . . , ni = 0, . . . , ndê

Por otro lado,

c†c |n , . . . , n = 0, . . . , n ê = 0.                      (3.40)

i   i     1            i                     d

N´otese que en este resultado los factores (−1)Ôi no juegan ning´un papel, y podr´ıamos haber definido los operadores sin incluirlos. En forma similar,

c † c|n , . . . , n = 1, . . . , n ê = 0

i   i     1             i                    d                                                             (3.41)

c †c n , . . . , n                      |n | = 1 ê =           = 1          ê i   i     1             i                    d           1            i                    d , . . . , n , . . . , n , . . . , n .

Se observa entonces que è     é no tiene ninguna expresi´on simple. En cambio, c   † , c

i     i

el anticonmutador

î    ï †     †    † c , c = c c c +c                    (3.42)

i    i            i   i        i   i

conduce a

î    ï † c , c |n        , . . . , n ê    |n , . . . , n , . . . , n ê , . . . , n =           (3.43) i    i        1             i             d           1             i             d ,

y por lo tanto

î    ï † c , c = 1                        (3.44)

i    i

Por lo tanto, se puede adivinar que en lugar del conmutador, es el anticon-mutador el que jugar´a un papel importante. El rol del factor (    Ô − 1)i ser´a, por lo tanto, asegurar que para las otras combinaciones tambi´en se obtengan relaciones simples para el anticonmutador. Ilustr´emoslo con la acci´on de    † ci c j con i Ó= j. Suponiendo que i < j, tenemos que c †                                                      Ôj i j c | n , . . . , n            , . . . , n ê = (1 − )( − 1)   |                       + 1          ê 1         i         j         d              j            i   1         i         j               d , . . . , n n c n , . . . , n , . . . , n , . . . , n

= (1 − nj )(−1)Ôj ni(−1)Ôi|n1, . . . , ni − 1, . . . , nj + 1, . . . , ndê.

(3.45)
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Por otro lado,

c†                                                Ô   † i c | n , . . . , n n −|    , . . . , n , . . . , n , . . . , n ê = ( 1) − 1                    ê j i    1           i           j           d         i            j    1           i                 j           d c n , . . . , n , . . . , n

= (1           Í − n j )( − 1) Ô            Ô j n ( − 1) |           − 1        + 1        ê i                1             i                    j                    d n , . . . , n , . . . , n , . . . , n . i

(3.46)

El t´ermino Í Ô j corresponde al factor de fase en un estado con ni − 1 en lugar de ni . As´ı, Í Ô     Ô − j = j1. En ausencia de dichos t´erminos de fase, las dos expresiones

(3.45) y (3.45) ser´ıan id´enticas y tendr´ıamos que [    † ci , cj] = 0. Gracias a los factores de fase Ôj ahora tenemos un signo menos entre los dos t´erminos y la relaci´on se convierte en

î    ï † c , c = 0,                        (3.47)

i     j

lo que permitir´a definir los operadores ci s´olo en t´erminos de sus anticonmu-tadores. Es f´acil comprobar las restantes relaciones, y as´ı se tiene, de forma similar que para los bosones,

î    ï † c i     j , c = δ i,j ,

î    ï † † c , c    ,                          (3.48) = 0

i     j

{ci, cj} = 0.

Por otro lado, de la misma forma que para los bosones, se puede construir todos los estados del espacio de Fock a partir de un vac´ıo |0ê que es destruido

por todos los ci(ci|0ê = 0) usando la relaci´on (3.18)

Las funciones de onda y los promedios se pueden calcular tambi´en con las mismas t´ecnicas que antes, veamos como ejemplo la funci´on de onda de dos fermiones en los estados α1 y α2:

|          † † ψ ê = c c | ê 1       . 2 0                               (3.49)

y entonces la funci´on de onda resulta

é             1 r 1 r 2 | ψ ê = √ [α1 (r1)α2(r2) − α1(r2)α2(r1)] ,          (3.50) 2

que es, por supuesto, la funci´on de onda correctamente antisimetrizada para fermiones. Sin ir a la funci´on de onda, se puede ver directamente la antisi-metrizaci´on a nivel de estados y operadores: usando la relaci´on de anticon-mutaci´on {c1, c2} = 0 se encuentra que

c † †            † † c | ê − c c| ê, 0 = 0                          (3.51)

1 2            2 1
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y as´ı la funci´on de onda |ψê es obviamente antisim´etrica por permutaci´on de las part´ıculas.

El hecho de que el operador ci se ocupe autom´aticamente de la antisimetri-zaci´on hace que sea muy conveniente escribir incluso funciones complicadas. Por ejemplo, el mar de Fermi, que corresponde al estado de N fermiones de menor energ´ıa posible, se escribe

N

|          Ù † F ê = c |0ê                          (3.52)

j

j=1

Los promedios en el vac´ıo se pueden calcular exactamente con la mis-ma t´ecnica descrita para los bosones. Por ejemplo, si tomamos         † | ψ ê = c | ê 0, 1

entonces (usando las relaciones de anticonmutaci´on),

é               † ψ | ψ ê = é 0 | ci c | ê 0 i

=     †                                  (3.53) é0 |1 − c c | i 0 i    ê

= é0|1|0ê = 1.

Generalizando el c´alculo anterior puede mostrarse el mar de Fermi est´a co-rrectamente normalizado, éF|Fê = 1. 3.2.1.   Operadores de un cuerpo

Ahora que tenemos definidos a los operadores que permiten construir todo el espacio de Fock, lo que queda por resolver es expresar los observables f´ısicos que queremos calcular en t´erminos de estos operadores. Para hacerlo, debemos tener en cuenta que los observables deben actuar sobre part´ıculas indistinguibles, lo que establece algunas restricciones sobre su forma. Antes de dar sus expresiones en segunda cuantificaci´on, es conveniente clasificarlos de acuerdo al n´umero de part´ıculas sobre las que act´uan. Hay observables f´ısicos que miden solo los n´umeros cu´anticos de una part´ıcula a la vez (tales como el momento, la densidad, etc.) y otros que necesitan tratar con los n´umeros cu´anticos de dos de las part´ıculas para determinar sus elementos de matriz. Este es caso, por ejemplo, del operador que mide las interacciones entre las part´ıculas. El primer tipo se llama operadores de un cuerpo, mientras que el segundo es de dos cuerpos. En principio, se pueden tener operadores que involucren m´as de dos part´ıculas (tales como colisiones de tres cuerpos y m´as), pero son de poca utilidad pr´actica en la f´ısica del estado s´olido, por lo que discutiremos principalmente aqu´ı los de uno y dos cuerpos. Las f´ormulas dadas aqu´ı se pueden generalizar f´acilmente si es necesario.
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Definici´ on

Comencemos primero con los operadores de un cuerpo. De manera bas-tante general, llamemos O a un operador que representa alguna propiedad de una part´ıcula a la vez. Por supuesto, si O act´ua en el espacio de Hilbert con N part´ıculas, debe actuar sobre cada part´ıcula del sistema. Llamemos O (1) al operador que act´ua en el espacio de Hilbert de una sola part´ıcula; el operador O correspondiente a las N part´ıculas debe ser

O   (1)                                    (1)                                            (1) = O ⊗ 1 ⊗ . . . ⊗ 1 1 ⊗ O + ⊗ . . . ⊗ 1 + . . . + 1 ⊗ . . . ⊗ O (3.54)

1       2            N      1      2              N            1            N

donde   (1) O                                         i i es el operador que act´ua sobre la part´ıcula-´esima. El hecho de que en la suma anterior, todos los coeficientes sean id´enticos, es la consecuen-cia directa del hecho de que las part´ıculas son indistinguibles, y no podemos distinguir en una medida si un cierto conjunto de n´umeros cu´anticos corres-

ponden a una u otra part´ıcula del sistema. La forma (3.54) es por lo tanto la forma m´as general posible de un operador de un solo cuerpo para part´ıculas indistinguibles.

Para expresar (3.54) en segunda cuantficaci´on, debemos comenzar por analizar qu´e sucede si tenemos un sistema con una sola part´ıcula (si no hay ninguna part´ıcula, un operador de un cuerpo es trivialmente nulo). En ese caso O = (1) O y usando la base completa α podemos escribir

O Ø = |αêéα|O |βêéβ|, (3.55)

(1)

α,β

y luego utilizamos que        † | α ê = c | ê α 0 para obtener

O Ø    † = é α | O | β ê c |0êé0|c .            (3.56) (1)

α       β

α,β

La interpretaci´on f´ısica de esta f´ormula es bastante simple: el operador cβ destruye una part´ıcula en un estado β; como solo tenemos una part´ıcula en el sistema, nos vemos obligados a ir al vac´ıo, luego, desde el vac´ıo, el operador c † recrea la part´ıcula en el estado α. El resultado neto es que todav´ıa tenemos

α

una part´ıcula en el sistema pero ha cambiado su estado cu´antico al pasar del estado β al estado α. La amplitud de dicha transici´on est´a dada por los elementos de matriz del operador   (1) O entre los estados β y α.

Si en lugar de una part´ıcula tuvi´eramos ahora un n´umero arbitrario de part´ıculas en el sistema, tendr´ıamos que hacer exactamente lo mismo para cada una de ellas, dejando invariantes los n´umeros cu´anticos de las dem´as,

como sugiere (3.54), y hacer la suma. Un operador que logra esto est´a dado por la expresi´on

O = Ø (1)   † é α | O | β ê c c αβ                (3.57)

α,β
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que es id´entica a (3.56) excepto que no estamos obligados a ir al vac´ıo despu´es de la destrucci´on de la part´ıcula en el estado β. De hecho, si hay varias part´ıculas, el operador   † c c αβ cambiar´a el n´umero cu´antico de una part´ıcula del estado β al estado α y dejar´a intactos los n´umeros cu´anticos de todas las dem´as part´ıculas del sistema. Sin embargo, el operador cβ operar´a en todas las part´ıculas del sistema y, por lo tanto, har´a esa transici´on para la primera,

segunda, etc. realizando autom´aticamente la suma en (3.54).

La expresi´on (3.57) permite as´ı representar cualquier operador de un solo cuerpo en segunda cuantificaci´on, conociendo s´olo la acci´on del operador   (1) O en el espacio de una sola part´ıcula. N´otese que las funciones de onda prove-nientes de la elecci´on de la base completa α s´olo intervienen en el c´alculo de los elementos de matriz      (1) é α | O|βê. Una vez que se calculan estos elementos de matriz, todo el operador se reduce a una combinaci´on lineal de operadores de creaci´on y destrucci´on y, por lo tanto, todos los promedios f´ısicos se pue-den calcular mediante las t´ecnicas descritas en la secci´on anterior, sin tener que volver a las funciones de onda. Por supuesto, todos los aspectos de su simetrizaci´on o la antisimetrizaci´on son tenidos en cuenta autom´aticamente por la naturaleza de los operadores de creaci´on o destrucci´on. Ejemplos

Comencemos con el operador que mide la densidad de part´ıculas en un punto r0, que para una part´ıcula se escribe

ρ(1) (r ) = |r êér |,                          (3.58) 0        0    0

debido a que     (1) é ψ | ρ(r0)              2 | ψ ê = | ψ ( r 0 ) |. En segunda cuantificaci´on la forma del operador depender´a de la elecci´on de la base completa α que tomemos. Empecemos tomando la base de autoestados de posici´on |rê, en cuyo caso, el operador † c r es el operador que crea una part´ıcula en el punto r. Usando

esta base y la relaci´on (3.57) se obtiene

ˆ

ρ             Í                                    † Í ( r 0                      0    0          Í d ) = r d r é r | r êé r | r ê c c ,

r r

=     Í                       (3.59) ˆ

drdr δ (     0)        Í r − r δ ( † r   Í 0 − r ) c c , r r

= † c c rr . 0 0

La expresi´on † c c r 0r0 es particularmente simple de interpretar. El operador c† c   destruye y recrea una part´ıcula en el mismo estado cu´antico. Por lo tanto, no ha cambiado nada en el sistema. Sin embargo, la acci´on del operador r r 00
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c r0 dar´a cero si no hay ninguna part´ıcula a destruir en el estado cu´antico correspondiente (aqu´ı una part´ıcula en el punto                    † r 0 ). El operador c c r 0r0 da cero si no hay ninguna part´ıcula en el estado cu´antico correspondiente y uno si hay una part´ıcula. Por tanto, simplemente cuenta el n´umero de part´ıculas en el punto                                † r 0 . Generalmente, el operador c c α simplemente cuenta el n´umero de part´ıculas en el estado α. El operador que cuenta el n´umero total de part´ıculas en el sistema est´a dado entonces por

ˆ

N      † = d r c c .                 (3.60)

r r

La generalizaci´on al caso de part´ıculas con spin es inmediata. Para ello la base completa ser´a α = (r, σ) y el operador densidad solo act´ua en la parte espacial, por lo tanto

ρ(1) (r ) = |r êér | ⊗ 1    ,                    (3.61) 0        0    0       spin

y as´ı (3.57) da lugar a

ˆ

ρ      Ø   Í ( r 0                            0     0              Í d ) = r d r é r σ | r êé r | r σ ê c c , Í    Í      †

r      Í σ r σ

σ,σÍ

= Ø    Í          Í    †        (3.62) d r d r δ ( r − r 0 ) δ ( r 0 − r ) δ Í Í Í σσ c c , r ˆ

σ r ,σ

σ,σÍ

= †       † c c c c r 0 ↑ r 0 ↑ +   . r 0 ↓ r 0 ↓

Tambi´en podr´ıamos calcular la densidad de spin a lo largo del eje z en el punto r0 . En ese caso el operador de una part´ıcula es

S (1) r     |r êér ( ) = | ⊗ S ,                     (3.63)

z     0        0     0       z
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y usando (3.57) se obtiene4

ˆ

Sz (                 Í                       † r 0 ) = Ø Í Í d r d r é r σ | r 0 êé r 0 | ⊗ S z | r σ ê c c Í Í r σ r σ ,

σ,σÍ

= Ø    Í † é σ | S z | σ ê c c Í , r 0 σ r 0 σ                     (3.64)

σσÍ

= 1 †         † c ( c r ↑ − c c 2 r 0 ↑ 0 r 0 ↓r0 ↓).

De manera similar, la densidad de spin a lo largo de la direcci´on x es

ˆ

S      Ø   Í        Í x   0                         0                        Í r ( ) = d r d r é r σ | r êé r 0       x           †     Í | ⊗ S | r σ ê c c, Í

r    r σ σ

σ,σÍ

= Ø    Í † é σ | S    Í x | σ ê c c r σ 0 σ r 0 ,                     (3.65)

σσÍ

= 1 †         † c ( c c 2 r r 0 ↑ 0 ↓ + c r ↑ , 0 ↓ 0 )

y para la direcci´on y,

ˆ

S                                † y ( Ø   Í r 0 ) = Í Í d r d r é r σ | r 0 êé r 0 | ⊗ S y | r σ ê c c Í Í , r σ r σ

σ,σÍ

= Ø    Í † é σ | S y | σ ê c c Í , r 0 σ r 0 σ                     (3.66)

σσÍ

= i      †            † ( −c c r 0 ↑r0↓ + 2            c r c    , 0 ↓ r 0 ↑ )

Alternativamente, podr´ıamos haber usado la base de los autoestados del operador momento, |kê, cuyas funciones de onda son

é          1   ikr r | k ê = √ e.                        (3.67) Ω

4 Recordemos que las expresiones de los operadores de spin en la base |±ê son

1

Sx = [|+êé−| + |−êé+|] ,

2


i

S y = [−|+êé−| + |−êé+|],

2

1

Sz = [|+êé+| − |−êé+|].

2
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Dado que el spin y la parte orbital son independientes, solo daremos las expresiones para el caso sin esp´ın. Incorporar el spin se realiza exactamente de la misma forma que en la base de coordenadas. El operador ck ahora destruye una part´ıcula momento k (es decir, en un estado de onda plana con

momento k). La ecuaci´on (3.57) da lugar a

ρ(r0) = Ø      † é k 1 | r 0 êé r 0 | k 2 ê c c , k k 1 2

k1 k2

= 1 (3.68)  Ø  −  i  k  r  e  1  0  i  k  r  e  2  0  †  c  c  .  Ω  k  1  k  2  k  1  k  2

La expresi´on (3.68) no es tan simple como (3.59) ya que el operador densidad

no es diagonal en la base de momentos. Sin embargo, tanto (3.68) como (3.59) representan el mismo operador. Esto nos da una conexi´on directa entre los operadores que crean una part´ıcula en el punto r y los que crean una part´ıcula

con momento k. Comparando las ecuaciones (3.68) y (3.59) se obtiene

c      1 Ø √ r = ikr eck.                   (3.69) Ω k

Esta expresi´on constituye un ejemplo de una transformaci´on, en este caso lineal y dada por una transformada de tipo Fourier, entre operadores de creaci´on. Esta transformaci´on preserva los conmutadores, como puede verifi-case en forma simple, y por lo tanto constituye un ejemplo de transformaci´on can´onica. Discutiremos m´as sobre este tema m´as adelante.

Usando la expresi´on (3.68) tambi´en podemos calcular el n´umero total de part´ıculas en el sistema:

N      1 Ø − k r = ˆ

d          i        ik r † 1 2 r e e c c   , Ω          k k 12 k

1 2 k

= Ø   † δ k 1 k c c , 2 k k 1 2                     (3.70)

k1k2

= Ø † c c , k k

k

y si tenemos en cuenta que † c c k cuenta el n´umero de part´ıculas en el esta-do cu´antico k, se obtiene nuevamente que el n´umero total de part´ıculas es la suma de todos los n´umeros de part´ıculas en todos los estados cu´anticos

posibles. Finalmente se puede usar (3.68) para obtener una expresi´on simple
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de la transformada de Fourier de la densidad:

ˆ

ρ(             i q ) = −qr d r eρ(r),

=     iqr   Ø −ik ik r † −   1 ˆ

dr e          e   1 re 2 c c , k Ω k 1 2 k 1 k 2            (3.71)

= Ø     † δ k 2 , k 1 + q c c k , 1 2

k1k2

= Ø † c c . k − q k

k

Otro operador importante es, por supuesto, la energ´ıa cin´etica de las part´ıculas. Para una part´ıcula se tiene           2 = , y de manera m´as general, H (1)      p podr´ıamos tener cualquier funci´on del momento 2m     = ( ). Por lo tanto, es H (1)   Ô p muy conveniente utilizar la base de momentos. La energ´ıa cin´etica se expresa as´ı como                       Ø H =             † é k 1 | ε ( p ) | k 2 ê c c , k 1 k 2

k1k2

= Ø      † δ k 1 k 2 ε ( k 2 ) c c k 1k2 ,              (3.72)

k1k2

= Ø ε(k) † c c kk,

k

que tiene la interpretaci´on simple de que la energ´ıa cin´etica total del sistema es la suma de el n´umero de part´ıculas en cada estado k (dado por † c c kk ) multiplicado por la energ´ıa cin´etica Ô(k) de tal estado. La generalizaci´on para sistemas con spin es inmediata y, en general se obtiene

H Ø † = ε ( k ) c c ,              (3.73)

k kσ σ

kσ

asumiendo que la energ´ıa cin´etica no depende del esp´ın (en ausencia de aco-plamiento esp´ın-´orbita). Debemos tener en cuenta que dado que el n´umero total de part´ıculas es N = q † c c                                −µN k k k , agregar un potencial qu´ımico no cambia la forma del Hamiltoniano:

H = Ø   † ξ ( k ) c ckσ, k σ               (3.74)

kσ

y simplemente reemplaza ε(k) por ξ(k) = ε(k) − µ. A temperatura cero la energ´ıa ξ(k) es cero en el nivel de Fermi, negativa por debajo, y positiva por encima.
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3.2.2.   Operadores de dos cuerpos

Veamos ahora los operadores que involucran dos part´ıculas y como definir sus elementos de matriz. Es en particular el caso del potencial de interacci´on entre dos part´ıculas

V = Ø V (ri, rj). (3.75)

iÓ=j

Definici´ on

Con un esp´ıritu similar al de los operadores de un solo cuerpo, llamemos O (2) al operador correspondiente que act´ua en el espacio de Hilbert de s´olo dos part´ıculas. El operador de dos cuerpos que act´ua en HN debe tener la forma

O Ø p   Ø p = O 1 i,j            k               O = 1 , 2     i,j       k (2)                         (2) 1            (3.76)

i<j       kÓ=i,j           iÓ=j       kÓ=i,j

para que el operador   (2) O pueda operar sobre cada par de part´ıculas en el sistema. De manera similar que para los operadores de un solo cuerpo, los coeficientes en la suma anterior deben ser todos iguales, de lo contrario significar´ıa que las part´ıculas podr´ıan distinguirse.

Para entender c´omo escribir O en segunda cuantificaci´on, veamos el caso en el que hay exactamente dos part´ıculas en el sistema. Debemos definir el operador O por sus elementos de matiz en el espacio f´ısico de las funcio-nes (anti)simetrizadas |α, βê, lo que significa que debemos conocer todos los elementos

é        (2) α, β | O|γ, δê.                             (3.77)

Tomemos primero la expresi´on (3.77) y escribamos |α, βê en t´erminos de los

kets ordenados (3.5) y (3.6)

(        (2)                   (2) α, β | O | γ, δ ) = ( β, α | O|δ, γ),                   (3.78)

aqu´ı la igualdad se debe a que simplemente estamos intercambiando part´ıcu-las, y por lo tanto obtenemos

é        (2)                       (2)                      (2) α, β | O | γ, δ ê = ( α, β | O | γ, δ ) ± ( α, β | O|δ, γ ).         (3.79)

Ahora deber´ıamos encontrar en segunda cuantificaci´on un operador que re-produzca estos elementos de matriz y, por supuesto, funcione para N part´ıcu-las en lugar de dos. Se verifica que

O 1 Ø     (2) = (     † † α, β | O | γ, δ ) c c cδc ,            (3.80) 2 α β γ α,β,γ,δ
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funciona tanto para fermiones como para bosones. No demostraremos esta relaci´on en general, lo cual puede hacerse calculando los elementos de matriz a ambos lados, sino que simplemente comprobaremos que funciona para N = 2

part´ıculas. Calculemos, a partir de (3.80), los elementos de matriz

é                    1 Ø     (2) α 0 , β 0 | O | γ 0 , δ 0 ê = ( α, β | O|γ, δ)        † † é α 0 , β 0 | c c c c |γ , δ ê. α β δ γ 0 0    (3.81) 2 α,β,γ,δ

Como |α0, β0ê = † † c c | ê α 0 β 0 0 tenemos que calcular promedios de la forma

é0        † †      †   † | c β c c 0 α c c c c 0 α β δ γ c | ê γ 0 δ 0 0                      (3.82)

lo cual puede realizarse mediante la t´ecnica que discutimos antes, consistente en llevar hacia la derecha a los operadores de destrucci´on para que act´uen sobre el vac´ıo. Esto da

é0        † †       †   † | c β c c 0 α c c c c 0 α β δ γ c | ê     δ                 δ      δ γ ,α δ ,β δ ,β ,αγ ,γ 0 δ α β ± α β 0 0 = [ 0 0 0 0 ] [δδ0,δ ± δ 0γ0 ,δδδ0 ,γ] .

(3.83)

El signo + es el habitual para los bosones y el − para los fermiones. F´ısica-mente significa que cuando los operadores de destrucci´on act´uan en la forma

cδcγ |γ0, δ0ê,                                (3.84)

tienen que destruir las dos part´ıculas en los dos estados cu´anticos posibles y as´ı δ tiene que ser uno de los estados y γ el otro con el signo adecuado

dependiendo de la (anti)simetr´ıa de la funci´on de onda. Usando (3.83) en

(3.81) de hecho recuperamos los mismos elementos de matriz que (3.79).

F´ısicamente, la f´ormula (3.80) tiene una interpretaci´on similar a la de los operadores de un solo cuerpo. El t´ermino † † c c c c α destruye dos part´ıculas β δ γ con los n´umeros cu´anticos γ y δ, para esto es necesario que el sistema con-tenga dos part´ıculas (que es lo que debe ocurrir para que un operador de dos cuerpos pueda actuar). Luego recrea las dos part´ıculas con dos nuevos n´umeros cu´anticos α y β. La amplitud para este proceso est´a dada por los elementos de matriz del operador   (2) O en una transici´on donde la primera part´ıcula va del estado γ al estado α y la segunda del estado δ al estado β. El elemento de matriz se escribir para kets ordenados (son kets producto y por lo tanto m´as simples); los operadores de creaci´on y destrucci´on se encargan de todas las permutaciones y de realizar esta transici´on para cualquier par de part´ıculas en el sistema.

Ejemplos

La interacci´on m´as com´un entre los electrones es aquella que depende de la distancia entre las dos part´ıculas. Los dos operadores de tal interacci´on
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son, por lo tanto,

O (2) = V (ˆ r − r ˆ ), (3.85)

1      2

donde ˆ r1 y ˆ r 2 son los operadores que miden la posici´on de la primera y la segunda part´ıcula respectivamente. Excepcionalmente utilizaremos aqu´ı la notaci´on con el sombrero para indicar que son operadores. Por ejemplo, para la interacci´on de Coulomb es

V (       e2 r ) = , (3.86)

4πÔ0r

pero otros tipos de interacciones como una interacci´on local V (r) = U δ(r) tambi´en son opciones posibles. Mantendremos V como funci´on general en lo que sigue.

Para expresar el operador en segunda cuantificaci´on, tenemos nuevamente que realizar la elecci´on de la base. Debido a que el operador V (ˆ r1 − r ˆ2) es

diagonal en la base de posici´on, comencemos con ´esta. Usando (3.80) y el hecho de que α es la base de posiciones, obtenemos

V    1                                   † † d ˆ

=    r1dr2 dr3dr4 (r3r4|V (ˆ r1 − r ˆ2)|r1r2)c c c c r 2 3 r 4 r 2r , 1 = 1                                          † † d ˆ

2    r dr                ) (   − r ) (   − r )   c 1 2 d r 3 d r 4 V ( r 1 − r 2 δ r 3 1 δ r 4 2 c c r 3 r 4r2 cr1 , (3.87) 1                   † † d ˆ

=    r1dr2 V (r1 − r2 )c c c c r 2 1 r rr . 2 2 1

Si se incluye el esp´ın, la base completa se convierte en α = (r, σ) y como el operador V (ˆ r1 − r ˆ 2) es la identidad en el sector de esp´ın, se obtiene

V    1 Ø                † = ˆ

2         1   2 V d                    † r d r − ) c (r1    r2      c    c    c r 1 1    2 2    2 σ r σ rσ2 r1 σ1 .          (3.88)

σ1σ2

La expresi´on (3.88) puede escribirse en una forma m´as familiar utilizando las relaciones de (anti)conmutaci´on para fermiones

c†     †                       †     † c c c − c    c     c     , r σ        r σ   r σ            c =

1                                                  σ   r σ 1 r 2 σ 2 2 2 1 1 r 1 σ 1 r 2 σ r 2 1 1 22

= † − c   δ r 1 σ 1 (             † r 1 ,σ 1; r 2 σ 2 − c r 1 σ 1 c    c r 2 σr 2 )2 σ2 ,

(3.89)

=       †       † − δ r 1 ,σ 1; r 2 σ 2 c c c   c r σ 1 σ r 1 2 2 +    † r r 1 σ 1 1 σ 1 c   c   , r 2 σ r 2 2 σ 2 = −δr1 ,σ1;r   ρ                     , 2 σ 2 σ 1 ( r 1 ) + ρ σ ρ 1 ( r 1 ) σ 2 ( r 2 )
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(para bosones se obtiene una expresi´on similar, con signo +). El segundo t´ermino da lugar a la expresi´on

V   1 Ø   d ˆ

=      r1dr2 V (r1 − r2)ρσ (r1)ρσ    ), 1 2 ( r 2        (3.90)

2 σ1σ2

que es la forma familiar de la interacci´on entre dos densidades de part´ıculas (o cargas) en dos puntos diferentes. La diferencia es que ahora los ρ son operadores que miden la densidad en lugar de variables cl´asicas. El primer t´ermino se reduce a

ˆ

Ø drV (r = 0)ρ (r ) = V (r = 0)N,          (3.91)

σ1    1

σ

que es simplemente un t´ermino de potencial qu´ımico. T´engase en cuenta que puede ser infinito para algunas interacciones, como la interacci´on de Cou-lomb. Este primer t´ermino est´a ah´ı para corregir el hecho de que la expre-

si´on (3.90) contrariamente a (3.88) no contiene solo la interacci´on entre dos

part´ıculas diferentes. Efectivamente, (3.88) tiene dos operadores de destruc-ci´on a la derecha, lo que significa que los operadores solo pueden actuar en

estados que contienen dos part´ıculas. Por el contrario, (3.90) es de la forma

c†           † c    c     , c                            (3.92)

r1σ1 r1 σ1 r2σ2 r2σ2

y por lo tanto puede actuar incluso si solo hay una part´ıcula en el sistema. Por lo tanto, contiene una falsa “autointeracci´on” de la part´ıcula consigo

misma. Es esta interacci´on la que conduce al potencial qu´ımico (3.91) que

debe incluirse adecuadamente junto con (3.90). No obstante, si se fija el n´umero de part´ıculas del sistema, entonces esta modificaci´on es irrelevante ya que simplemente se absorbe en una re-definici´on del potencial qu´ımico y

se puede usar (3.88) o (3.90) indistintamente.

Reescribamos ahora la interacci´on en la base del impulsos. Usando (3.80) y una base α = (k, σ) se tiene

V    1   Ø k = (3σ3, k4σ4|V (ˆ r1 − r ˆ2)           †    † | k 1 σ 1 , k 2 σ 2 ) c c   c    c    . k 3 σ 3 k 4 σ 4 k 2 σ 2 k 1 σ 1 (3.93) 2 k 1 σ 1 , k 2 σ 2 ,

k 3 σ3,k4σ4

Lo que sigue es calcular un elemento de matriz que involucra operadores de posici´on en una base de estados de momentos. Esto se realiza, como es habitual en mec´anica cu´antica, insertando resoluciones de la identidad en el espacio de coordenadas           ˆ

1 =   dr |rêér|,                     (3.94)
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y utilizando la funci´on de onda plana (3.67). Se obtiene

V    1    Ø          − = ˆ

2Ω         d       i(k r + 3 1k r 42 )               i(k r       ) 1 1 + k 2 r 2 r r V r − 2                  1    2                      1      2 d e            (     r )e

σ1σ2

k 1k2k3k4

× †     † c c   c    c k        k σ k   , (3.95)

3 1    4 2    2 σ k        σ σ 2 11

A continuaci´on aprovechamos que el potencial depende de la diferencia de coordenadas de las dos part´ıculas y cambiamos a las variables de centro de masa R = (r1 + r2)/2 y coordenada relativa r = r1 − r2 para obtener

V    1    Ø       i = ˆ                 ˆ d    (k1+k2−k3−k4 )R             i( −k − +k ) / k2 1 3 k 2 4 r R e d r V ( r ) e

2Ω2   σ1σ2

k1k2k3k4

× †      † c c   c    c      (3.96)

k3σ        k 1 k 4 σ σ 2 22 k1σ1

Finalmente, integramos en r y R,

V    1   Ø                      † δ = 2Ω k 1 + k 2 , k 3 + k 4 V ( q =   † k 3 − k 1 ) c c   c   c   , k 3 σ 1 k 4 σ 2 k 2 σ 2 k 1 σ 1    (3.97) σ 1 σ 2

k1k2 k3 k4

Comentemos brevemente esta expresi´on. La integraci´on sobre R da lugar al factor δk1+k2 ,k3+k4 que expresa la conservaci´on de los momentos de las dos part´ıculas antes y despu´es de la interacci´on. Esto es consecuencia directa del hecho de que hemos elegido un potencial de interacci´on que es invariante frente a traslaciones V (r1 − r2) y, por lo tanto, el momento total (k1 + k2) y k3 + k4) debe conservarse. La integral sobre la coordenada relativa conduce directamente a la transformada de Fourier del potencial de interacci´on con un vector de onda que corresponde al momento transferido de una a otra de las part´ıculas durante la interacci´on. Finalmente, se puede reescribir el operador V teniendo en cuenta la restricci´on δk1+k2,k3+k4 como

V    1 Ø V = (        † q ) † c c     c   c k 1 + q ,σ 1 k 2 − q ,σ 2 k 2 σ 2k1σ1          (3.98) 2Ω k 1 k 2 q

σ1σ2

que se representa gr´aficamente como se muestra en la figura 3.2 3.3.   Resolviendo con segunda cuantificaci´ on

Ahora que tenemos las herramientas para expresar todos los operadores que necesitamos en segunda cuantificaci´on, ya sea para el Hamiltoniano u
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δ                       β             k1σ1                       k3σ3

(↵β |V |γδ)                               V (k3 − k4)

γ                    ↵           k2σ2                    k4σ4

Figura 3.2: Visualizaci´on pict´orica del t´ermino (3.98). Cada operador de des-trucci´on est´a representado por una flecha entrante, cada creaci´on por una saliente. Uno ve que la interacci´on puede verse como la dispersi´on de una part´ıcula que va del estado k1σ1 al k1 +q, σ1 con q = k3 − k4 por otra que va del estado k2σ2 al estado k2 −q, σ2. La amplitud de estos elementos de matriz es la transformada de Fourier del potencial de interacci´on V (q). Dado que el potencial es invariable por traslaci´on en el espacio, el impulso se conserva a lo largo de la interacci´on. Dado que el potencial no depende de los grados de libertad del esp´ın, la interacci´on conserva individualmente el esp´ın de cada part´ıcula. Esta representaci´on se conoce como diagramas de Feynman. Es extremadamente ´util cuando se construye la teor´ıa de la perturbaci´on. otros observables f´ısicos, y que sabemos calcular promedios de un n´umero arbitrario de tales operadores de creaci´on y destrucci´on en el vac´ıo, podemos preguntarnos c´omo resolver en la pr´actica un problema cuando conocemos el Hamiltoniano. En el esquema usual de la mec´anica cu´antica, escribimos la ecuaci´on de Schr¨odinger y, a partir de ella, encontramos tanto los autovalores como las autofunciones, pero la esencia misma de la segunda cuantificaci´on es evitar tener que lidiar con la funci´on de onda, por lo que queremos seguir otra ruta para obtener tales cantidades. C´omo hacer esto es lo que examinaremos ahora.

3.3.1.   Autovalores y autoestados

Veamos primero si podemos encontrar los valores propios o vectores pro-pios de alg´un Hamiltoniano simple. Comencemos con un Hamiltoniano cuadr´ati-co general

d

H Ø = A c c              (3.99) †

α α α

α

donde α es una base completa y los coeficientes Aα son n´umeros arbitrarios. Varios Hamiltonianos de sistemas f´ısicos tienen tales formas, por ejemplo, la

1
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energ´ıa cin´etica de un sistema de part´ıculas (3.73) y (3.74). Para Hamilto-

nianos cuadr´aticos y diagonales de la forma (3.99) el problema est´a resuelto. De hecho cada vector de p part´ıculas de la forma

c †   †   †        † c c . . . c | ê 0                             (3.100)

α 1 α2 α3      αp

es un vector propio de H con autovalor

p

E Ø = A (3.101)

i

i=1

Para mostrar esto, ilustremos el c´alculo en un estado de dos fermiones |ψê = c †   † c | ê 0 (se puede realizar un c´alculo an´alogo para bosones):

α1 α2

A       B

Hc†   †           Ø     †      †   † c | ê 0 = A c c | ê, c c 0

α 1 α2               α α α    α1 α2

α

= Ø †      †   † A α c δ c ê α ( α,α − c 1 α α | 1 ) c, α 2 0

α

=      Ø   † †   † A α | ψ ê − A c 1 α c c c α α 1 α | ê, α 2 0

α (3.102)

=      Ø   † †      † A α 1 | ψ ê − A α c c δ − c c α α 1 ( α,α 2 α 2α)|0ê,

α

=          † † A α | ψ ê − A 1 α c c | ê, 2 α 2 α 1 0 = Aα |ψê 1 + Aα |ψ ê. 2

La f´ısica de este resultado es simple de entender. El operador        † n α = c c αα no es otra cosa que el n´umero de ocupaci´on, y cuenta las part´ıculas en el estado α. As´ı, si en |ψ ê hay una part´ıcula en tal estado devolver´a 1 y la energ´ıa correspondiente se contar´a en H.

As´ıvemos que si tenemos un Hamiltoniano que est´a en una forma cuadr´ati-

ca diagonal como (3.99) entonces podemos obtener todos los valores propios y vectores propios del sistema. A temperatura cero el estado fundamental consistir´a simplemente (para los fermiones) en ocupar todos los estados con la m´ınima energ´ıa posible seg´un el n´umero de part´ıculas en el sistema.

N

|F   Ù ê = † c | α i0ê,                    (3.103)

i=1

si E1 6 E2 6 . . . 6 Ed.
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3.3.2.   Valores de expectaci´ on t´ ermicos

A temperatura finita tambi´en podemos calcular los promedios de muchos operadores. Un caso importante es el operador que da el n´umero de part´ıculas en el estado αp

Tr è            é

e−βH † c c

é †                        α    p p α c c                      , α p   p α               −βH e ê

=

Tr [      ]

= q             α α α α − β A é n , . . . , n c c † n ,...,n 1 Ω | e c c   n , . . . , n ê 1 Ω α p α p | 1 Ω . q † − q   †              (3.104)

q             α α α α β A c c é n , . . . , n | e n 1 ,...,n Ω 1 Ω|n1, . . . , nΩê

Usando el hecho de que (tanto para fermiones como para bosones) è        é = c† c , c

α α γ

toriza en la forma                  Ω         † − 0 si                                           † α Ó = γ y una relaci´on similar para                            −βH c γ , vemos que el t´ermino e se fac-

e βH    Ù −βA c c αj = αjαj e .                  (3.105)

j=1

Como en la traza cada t´ermino ni es independiente, la media tambi´en se factoriza, y el numerador se convierte en

                                    

Ø     †                                                         † Ù − βA c c − βA c c é n αp αp αp † Ø α p | e c c ê α p α  p | é αjαj n n α | e αj α  |n     p . j α ê j (3.106)

n αp                                jÓ=p   nαj Todos los t´erminos con j Ó= p son id´enticos en el numerador y el denominador y se cancelan entre s´ı. La traza se reduce entonces a

q      αp − † βA c αp é n   e       c      |   ê | αp † c c   n

é †              n    α              α αp pp αp   αp c c α p   p α                              † q ê = ,              (3.107)

n é      −βA c c αp αp n | eαp |n   ê αp α p α p

lo cual es bastante obvio f´ısicamente. De hecho, dado que el Hamiltoniano es diagonal en α, s´olo el estado αp puede contribuir al promedio de un opera-

obtenemos                           − qβA eαpnpn np † αp é dor que solo involucra al estado             † α p . Como c c |n ê         ê α p α p p = n p | n p simplemente

c c ê α p α p =                 . q − βA                (3.108) αp n e p n αp

Hasta ahora todo lo que hicimos es independiente de tener bosones o fermiones. Sin embargo, el resultado final depender´a de cu´ales sean los valores permitidos de np . Para fermiones solo np = 0 y np = 1 est´an en la suma, y

de este modo                    −βA eαp †          1 é c c ê α p α p = =    , 1 + −             (3.109) βA e αp 1 + βA e αp
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y se recupera el factor de Fermi. Vemos que este es un resultado totalmente general (no limitado a autoestados del impulso) para Hamiltonianos bilineales y se est´a en equilibrio t´ermico.

Para bosones np = 0, . . . , +∞, y as´ı la suma se convierte en

∂                + ∞

é †                         Ø   −βn A p αp c c − ê = log e   ,

α                  p α p              ∂β

np=0

=    log          , ∂β − ∂     5     1     6 1 − βA − e αp            (3.110) = e − βA αp 1    −    , − βAαp e

=   1    , βA e αp − 1

y se recupera el factor de Bose.

3.3.3.   Transformaciones can´ onicas

Con Hamiltonianos cuadr´aticos diagonales podemos calcular entonces esencialmente cualquier valor de expectaci´on o cantidad f´ısica que se necesite. Por supuesto, en general, el Hamiltoniano del sistema no ser´a ni cuadr´atico ni diagonal. Entonces, resolver en segunda cuantificaci´on significa esencialmente que tenemos que encontrar una transformaci´on de los operadores c y † c que lleven al Hamiltoniano en una forma diagonal cuadr´atica. Aunque en princi-pio cualquier transformaci´on es posible, no todas las son buenas. Queremos que los nuevos operadores d y   † d que son los resultados de la transforma-ci´on sigan generando el espacio Fock. Significa que s´olo podemos considerar transformaciones que conserven las relaciones can´onicas de conmutaci´on. Por supuesto, encontrar tales transformaciones es, en general, una tarea formida-ble. Sin embargo, hay una clase muy importante de transformaciones cuando el Hamiltoniano sigue siendo una forma cuadr´atica, pero no diagonal, que examinaremos en la siguiente secci´on.

Antes de hacerlo, comentemos finalmente que incluso sin resolver el Ha-miltoniano se puede explotar la libertad de elegir diferentes operadores de creaci´on y destrucci´on para usar una representaci´on m´as conveniente. Como ya se mencion´o, se permite toda transformaci´on que conserve las relacio-nes can´onicas de conmutaci´on. Pongamos un ejemplo sencillo, se ver´an m´as ejemplos en la siguiente secci´on. La transformaci´on m´as simple es la trans-
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formaci´on part´ıcula-agujero.

c †    d = ,

α     α                           (3.111)

c      † = d .

α     α

Para los fermiones es f´acil comprobar, por sustituci´on de los operadores d verifican las relaciones can´onicas de anticonmutaci´on. Por ejemplo

[        †           † d α , d β ] + = [ c , c αβ ]+ = δα,β.                       (3.112)

Si los operadores       † c α y c α respectivamente destruyen y crean un electr´on en el estado α, el operador        † d α y d α tambi´en son operadores de destrucci´on y creaci´on de “algo m´as”, que tambi´en tiene una estad´ıstica fermi´onica y por lo tanto, se puede utilizar para construir un espacio de Fock. En ese caso particular, el operador dα destruye un hueco en el estado estado α (que es id´entico a crear un electr´on) y el operador † d α crea un hueco (que es lo mismo que destruir un electr´on).

Un punto importante al hacer la transformaci´on es no olvidar modificar tambi´en el vac´ıo. De hecho, el vac´ıo de las part´ıculas d no es el mismo que el vac´ıo de las part´ıculas c. Se tiene as´ı |0cê y |0dê. El vac´ıo de las part´ıculas d se define como siempre por

dα |0dê = 0,

para todos los estados α. Es f´acil comprobar usando la relaci´on (3.111) que

|0dê = Ù † c | ê. α 0 c

α

Destruir una part´ıcula d sobre este vac´ıo es equivalente a crear una de tipo c. Pero esto no es posible, porque todos los estados est´an ocupados.

M´as generalmente, consideremos un Hamiltoniano cuadr´atico, no diago-nal, arbitrario:

Ns

H = Ø † cA c i ij                (3.113)

i,j=1

donde Aij son los elementos de una matriz herm´ıtica A, y Ns es un n´umero del orden del volumen del sistema, Ω, que especifica la cantidad de estados accesibles de part´ıcula independiente. Para simplificar la notaci´on conviene escribir en forma matricial:

H = † cAc                (3.114)

donde

  c

1

c                  1              2 , c = · · ·          (3.115) ...

=   c

  2     †    †   †      †          c c     c            1  2      Ns  

c Ns
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es un vector de Ns elementos, donde cada elemento es un operador de crea-ci´on, y su transpuesto conjugado. Obs´ervese que hemos introducido la nota-ci´on con una barra sobre c para indicar la operaci´on de transposici´on sobre el vector en conjunto con el dagado de sus elementos. La utilidad de esta nota-ci´on quedar´a m´as clara en la pr´oxima secci´on. La matriz A, al ser herm´ıtica, puede ser diagonalizada por una matriz unitaria U ,

U †AU = ˜ A (3.116)

donde ˜ A es la matriz diagonal que contiene a los autovalores de A, A1, . . . , ANs y U se construye ordenando los autovectores de A en columnas. Una vez hallada la matriz U , podemos utilizarla para definir un nuevo conjunto de operadores dα mediante la transformaci´on

Ns

d    †                                        Ø   ∗ = U c , (en componentes, d α        iα U =ci)        (3.117)

k=1

de manera tal que el Hamiltoniano, expresado en t´erminos de los d resulta

H              Ø = ˜ = =           (3.118)

d†   †              †                  † U AU d d Ad A α α dd . α

α

Es decir, resulta ser de la forma diagonal (3.99).

Una condici´on importante para que esto funcione es que la transformaci´on

(3.117) conserve los anticonmutadores entre d, que es el caso debido a su unitariedad, ya que

è       é                 è      é Ø † † †     Ø      †       † d , d U = = = ( UU )   =        (3.119)

α   β           iα βj   i   j           jα βj           βα     αβ U c , c U U δ.

+                +

ij                                   j

Una vez hallada la forma diagonal (3.118), el estado fundamental de N

part´ıculas est´a dado por (3.103)

N

|          Ù † F ê = d |   ê 0                        (3.120)

α d

α=1

donde |0dê es el estado de vac´ıo de los operadores d, que satisface

dα |0dê = 0     ∀α.                     (3.121)

Para este tipo de transformaci´on, el vac´ıo resulta invariante, es decir |0cê = |0dê. En efecto, debido a que los d est´an linealmente relacionados a los c, si aplicamos alg´un dα sobre |0cê, encontramos

dα |0cê = Ø † U c | αj j0cê = 0, (3.122)

j
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y viceversa, si aplicamos cj sobre |0dê tambi´en se anula, utilizando la trans-formaci´on inversa.

Por supuesto, en general, la matriz Aαβ es de tama˜no Ns × Ns y la diago-nalizaci´on ser´a muy dif´ıcil de realizar anal´ıticamente. Sin embargo, hay casos simples donde puede hacerse. En especial, obs´ervese que la transformada de

Fourier (3.69), utilizada para relacionar la base de coordenadas, donde la energ´ıa cin´etica de los electrones en una caja es no diagonal, con la base de momentos, donde s´ı lo es, es un ejemplo de tal transformaci´on unitaria. 3.3.4.   Ejemplo: Modelo tight binding

Veamos otro modelo que puede resolverse mediante este tipo de transfor-maciones: el Hamiltoniano de ligadura fuerte o tight-binding que vimos en la

secci´on 1.11. Adicionalmente, esto nos permitir´a escribir este Hamiltoniano en segunda cuantificaci´on. Los estados en cada sitio |iê proporcionan una base completa y, por lo tanto, podemos definir los operadores de creaci´on y destrucci´on asociados con ´el, es decir, † c i es el operador que crea una part´ıcula en el sitio i. Estos son los an´alogos a los   † c r utilizados al estudiar operado-res de un cuerpo, s´olo que en un espacio discreto. La expresi´on en segunda cuantificaci´on de H se escribe

H Ø    † = ( | | ) i    (1) H j c c ,

i   j

i,j

donde   (1) H es el Hamiltoniano (1.37). Obtenemos as´ı

H   Ø   Ø † = Ô c c − t c . c          (3.123) †

i   i                 i   j

i                  éi,jê

El segundo t´ermino describe un proceso en el que una part´ıcula en el sitio i reaparece en el sitio vecino j y viceversa. Si bien es posible hacer todo este an´alisis en dimensi´on arbitraria, para simplificar la diagonalizaci´on partici´on supondremos que los sitios electr´onicos se acomodan en un anillo, e identifi-camos el sitio en la posici´on Ns + 1 con el sitio 1, es decir, introducimos un operador de destrucci´on fermi´onico adicional

cNs+1 ≡ c1,                         (3.124)

y su complejo conjugado. Este Hamiltoniano es obviamente cuadr´atico pero

no diagonal. En el lenguaje de (3.113) corresponde a una matriz tri-diagonal. Para diagonalizarla, primero pensamos en la f´ısica del problema: dado que el Hamiltoniano es invariante frente a traslaciones, el momento debe ser un buen n´umero cu´antico, y vamos utilizar entonces una combinaci´on lineal de
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operadores de creaci´on y destrucci´on ci que corresponden a su transformada de Fourier. Este es exactamente el mismo razonamiento que el que conduce

a (3.69), s´olo que ahora utilizaremos una transformada de Fourier discreta. Tratados simplemente como una combinaci´on lineal de operadores, podemos

definir                                     − 1 † N s1 Ø ikr † d √ e c, k = j j                     (3.125) N s j =0 donde hemos usado un nombre diferente d para enfatizar que se trata de nue-vos operadores, e introducido las posiciones rj = aj donde a es la constante de red, y                  k   2πnk , =       nk ∈ Z. N s a

Se puede comprobar inmediatamente que los operadores dk cumplen las re-glas can´onicas de conmutaci´on. Verifiquemos uno de los anticonmutadores y dejemos las otras relaciones como ejercicio:

è      é         Ø †          è     é − ikr iqr † j i 1 dk, d                e     e q =     ci, c     , j +

N            + s ij

= 1 Ø −ikr iqr e i ejδij , N s ij (3.126)

= 1 Ø i(k−q)r ej, N s j = δkq.

Los operadores dk son, por lo tanto, buenos operadores de Fermiones. Hay exactamente Ns operadores diferentes (el tama˜no del espacio de Hilbert no puede cambiar) y k est´a confinado dentro de la primera zona de Brillouin k ∈ [−π/a, π/a] como se discuti´o para la soluci´on en primera cuantifica-

ci´on. Adem´as, como resulta obvio de la definici´on (3.125), |0dê = |0cê. La

transformaci´on (3.125) se invierte f´acilmente

c†            Ø −ikr   † j √ 1 j = e d , k                     (3.127) N s k

y as´ı, reemplazando los cj en (3.123) y haciendo un poco de ´algebra, se encuentra

H   Ø   Ø = Ô d d −     d d . 2 t cos( ka )        (3.128) †                         † k k                   k k

k           k

Ahora que el Hamiltoniano es diagonal, podemos usar los operadores dk para obtener el estado fundamental y los diversos promedios. A nivel f´ısico, hemos
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utilizado que, dado que la cantidad de movimiento se conserva, se pueden diagonalizar simult´aneamente los operadores de impulso y el Hamiltoniano. Por lo tanto, el Hamiltoniano es una matriz diagonal por bloques en la base a los autovectores del operador impulso. Como esta base es de tama˜no Ns (Ns diferentes k valores en la primera zona de Brillouin) nos queda para cada valor de k una matriz de 1 × 1 a diagonalizar, con lo cual el problema est´a completamente resuelto.

3.3.5.   T´ erminos an´ omalos

Estudiemos ahora un Hamiltoniano m´as general, que incluya t´erminos de la forma i ccj . Este tipo de t´erminos se denominan an´omalos, y hacen que en el Hamiltoniano no conmute con el operador N y por lo tanto no conserve el n´umero de part´ıculas, y por lo tanto no tiene una expresi´on simple en primera cuantificaci´on. T´ıpicamente aparecen cuando uno considera teor´ıas para superconductividad, tales como el llamado Hamiltoniano de Bardeen-Cooper-Schrieffer (BCS) que estudiaremos m´as adelante. Consideremos el Hamiltoniano

Ns              Ns 1

H = Ø †      Ø c A B c i ij c j + c i ij + h.c.         (3.129)

ij=1               ij=1 2

siendo i, j = 1, . . . , Ns, A una matriz herm´ıtica (   † A = A), y B una matriz antisim´etrica (   t B = −B), ambas condiciones impuestas por la necesidad de que H sea un operador herm´ıtico en conjunto con la estad´ıstica fermi´oni-ca. Para escribirlo en forma matricial, debemos considerar ahora que existen estos dos tipos de t´erminos. Si buscamos utilizar una sola matriz, no ser´a posible que su dimensi´on sea Ns. La forma usual de hacerlo consiste en intro-ducir la notaci´on de Nambu, en la cual se define un vector o spinor de Nambu de dimensi´on 2Ns cuyos elementos son tanto los operadores de creaci´on como de destrucci´on:

Ψ   1                       2 = · · · · · ·             (3.130) †       †           † c c     c          c

1           Ns    1           Ns

en conjunto con la matriz

H = A      B ∗ A − B              (3.131) ∗   ,

B −A

que se conoce como Hamiltoniano de Bogoliubov-de Gennes. Con estas defi-niciones el Hamiltoniano se escribe

H 1 † = ΨHΨ + E               (3.132) 2 0
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d´onde                         E    1 −

0 =    tr A,                      (3.133)

2

Obs´ervese que a matriz H contin´ua siendo herm´ıtica (para mostrarlo es importante la antisimetr´ıa de B) y por lo tanto diagonalizable mediante una transformaci´on unitaria M de 2Ns × 2NS, de manera similar a como lo realizamos en la secci´on anterior, de manera tal que

M †HM = ˜ H = diag(Λ , . . . , Λ , ¯Λ      ¯Λ )         (3.134) 1         Ns    1         Ns , . . . , ,

donde Λα y ¯Λα son los autovalores de H. El espinor transformado Φ se relaciona con el sin transformar a trav´es de M :

Φ = M Ψ, (3.135)

Y entonces el Hamiltoniano, en t´erminos de los nuevos operadores, resulta

H 1               1 † = Φ †   ˜ M HM Φ = Φ † HΦ           (3.136) 2 2

Si escribimos al vector Φ en t´erminos de un nuevo conjunto de operadores η α, ξα en la forma

Φ                   2 † = 1 † † † † η · · · η ξ · · · ξ . 1 N s 1 N           (3.137) s

el Hamiltoniano se escribe

H 1 Ns             N † 1s = Ø Λ α η η + Ø ¯Λ † 2 α α α ξ ξ α =1 2 αα            (3.138) α =1

Al ser unitaria, la transformaci´on M preserva los conmutadores y es por lo tanto can´onica, pero observemos que ahora la transformaci´on mezcla a los operadores de creaci´on y destrucci´on.

La forma (3.138) del Hamiltoniano posee dos t´erminos y a simple vista dar´ıa la impresi´on de que como consecuencia de la existencia de t´erminos an´omalos debimos duplicar el n´umero de grados de libertad. Veamos que esto es s´olo as´ı en apariencia.

Observemos que H satisface la relaci´on

H =    ∗ − σ x Hσx,              (3.139)

donde la matriz de Pauli σx act´ua sobre la estructura de Nambu (3.131), de 2 × 2. Esta transformaci´on constituye una simetr´ıa de H, y resulta ser
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antiunitaria5. La transformaci´on (3.139) no es m´as que la simetr´ıa part´ıcula-hueco. Esto implica que si ψ es un autoestado de H con autovalor λ,

Hψ = λψ,

entonces   ∗ ψ es autoestado de    ∗ H con el mismo autovalor (que es real, dado que H es herm´ıtico):

H ∗   ∗        ∗ ψ = λψ

y entonces el vector   Í        ∗ ψ = σ x ψ tambi´en es vector de H con autovalor −λ:

H Í                         ∗                         ∗                ∗                        ∗     ∗                        ∗                   Í ψ = H σ ψ = − σ H σ σ ψ = − σ H ψ = − λσ ψ = − λψ . x          x      x x          x               x

Dado que son vectores distintos, de otro modo tendr´ıan distinto autovalor (a menos que λ = 0), si escribimos al autovector en la forma

ψ = A B u


v

donde u y v son vectores columna de Ns elementos, entonces

ψ Í

= A B ∗ v

u∗

La matriz M , que posee los autovectores en columnas, posee entonces la forma                           A     B ∗ u v M = ∗ ,                    (3.142) v u

donde u y v son matrices de Ns × Ns.En otras palabras, la forma (3.142) es

consecuencia de la simetr´ıa part´ıcula-hueco de H, ec. (3.139). Los autovalo-res ¯Λα puede tomarse como ¯Λα = −Λα y la forma diagonal de la matriz de autovalores se escribe entonces

H ˜ = diag(Λ1, . . . , ΛN , −        − s Λ 1 , . . . ,ΛNs ),            (3.143)

5 Una transformaci´ on antiunitaria K entre vectores |xê, |yê de un espacio de Hilbert (|yê =

K                                  ∗          ∗ | x ê ) es un operador antilineal (es decir, tal que K ( a | x ê + b | y ê ) = a K | x ê + bK|yê con a, b ∈ C) tal que transforma el producto escalar en el producto escalar conjugado:

é     †                  ∗ x | K K | y ê = é x | y ê.                               (3.140)

Este tipo de operadores, al igual que los operadores unitarios, no cambia el resultado de una medida, es decir que

|é      †        2            2 x | K K | y ê| = |é x | y ê|.                              (3.141)
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donde Λα son todos positivos. Observemos adem´as la transformaci´on (3.135) se escribe expl´ıcitamente

η           ∗ † = +                    (3.144)

i         ij   j        ij   j u c v c,

ξ            ∗   † = v c + u c,                      (3.145)

i         ij   j        ij   j

pero entonces                                        † ξ i no es m´as que el adjunto de η i , ξ i = η i, y el Hamiltoniano se escribe                        Ns

H = Ø † Λ j ηη jj + Const. (3.146)

j=1

De modo que s´olo tenemos Ns grados de libertad, como se esperaba f´ısi-camente. Para diagonalizar el Hamiltoniano debimos duplicar el n´umero de grados de libertad introduciendo huecos, pero vimos que esta duplicaci´on es espuria. Sin embargo, en determinadas circunstancias puede ser ´util mante-ner la duplicaci´on, pero en ese caso debe recordarse que el par de niveles con energ´ıa ±Λj no corresponde a dos estados cu´anticos distintos, sino a uno solo, que es una superposici´on coherente de electrones y huecos —una cuasi-part´ıcula de Bogoliubov, el bogoliubon: tiene una energ´ıa de excitaci´on Λj , y es creada por el operador †               ∗ η u j = ij c j + v ij c j. Llenar el estado asociado en energ´ıa −Λj es equivalente a vaciar el estado de energ´ıa positiva.

El Hamiltoniano (3.129) no conserva el n´umero de part´ıculas, ya que no conmuta con N = q † cc j j , aunque conserva el n´umero de cuasi part´ıculas, M = q † ηη j jj . Como consecuencia de que la transformaci´on M mezcla ope-radores       † c j y cj el vac´ıo no es invariante, tenemos un vac´ıo |0 ê que satisface c

c j |0cê = 0, y un vac´ıo |0η ê que verifica ηj|0η ê = 0. Encontrar la relaci´on entre ambos puede ser complicado y depende de la forma de A y B. Lo haremos en el caso espec´ıfico del modelo BCS m´as adelante. Una vez determinado |0ηê, el estado fundamental de M cuasipart´ıculas se escribe como un mar de Fermi de bogoliubones:

M

|         Ù † F ê = η| j    η . 0 ê                          (3.147)

j

cuya energ´ıa resulta

M

E Ø = Λ (3.148)

j

j

El estado de m´ınima energ´ıa para un cierto potencial qu´ımico es entonces aquel con M = 0 cuasipart´ıculas, es decir, el vac´ıo mismo de los Bogoliubo-nes.

Si bien el n´umero de part´ıculas no es una cantidad conservada, el operador de paridad global,

P = (−1)N = iπN e (3.149)

 

Facultad de Cs. Exactas  |  UNLP |   106

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

Segunda cuantificaci´ on

conmuta con H, y por lo tanto los autoestados de energ´ıa poseen paridad fermi´onica definida ±1.

3.4.   Gas de Fermi

Desarrollaremos las propiedades b´asicas de un gas de N fermiones no interactuantes de masa m, utilizando las t´ecnicas de segunda cuantizaci´on. Esto lo haremos no s´olo por tratarse de un buen ejercicio, sino tambi´en por la enorme utilidad que tienen los resultados que obtendremos, como una aproximaci´on de orden cero, en el tratamiento de sistemas de muchos fermiones. Podemos imaginarnos que estos fermiones est´an en una caja c´ubica de volumen V , que eventualmente puede ser muy grande, y que se imponen condiciones de contorno peri´odicas. La base de part´ıcula independiente se refiere, por lo tanto, a los autoestados de de impulso hk y proyecci´on de spin

σ = 1 ± : 2         ϕ       1   ik r √ κ ( r s ) = · eχσ (s);   κ = {k, σ}           (3.150) Ω con energ´ıa εk = ~2 2                                   1 k / 2 m y degencrados en spin σ = ± . 2

Para construir el estado fundamental del gas de Fermi ocupamos a cada uno de los estados disponibles de part´ıcula independiente m´as bajos con un fermi´on, de acuerdo con el principio de exclusi´on de Pauli. Esta ocupaci´on es de a pares ya que las energ´ıas de part´ıcula independiente no depende de spin                                               1                        1 y por cada ε tenemos un fermi´on con σ = + y uno con σ = − . Los niveles llenos conforman el mar de Fermi y el ´ultimo nivel lleno, con impulso k                               2                  2 k             h2 2 k y energ´ıa = , se llama               o                   (en el

F            F     2m ε           nivel de Fermi   superficie de Fermi F

espacio de los impulsos). La estructura del estado fundamental es:

|F ê = Ù   † c | k σ0ê.                   (3.151)

k kF 6 ,σ

La energ´ıa del nivel de Fermi se halla de la condici´on que el n´umero total de part´ıculas N sea,

I         J 1 ; k 6

N = Ø          Ø Ø    k n kσ = = 2

é    †                                    F F | c c | F ê 0 ;

k                                           F kσ kσ                   k > k          (3.152) σ         kσ                     k

= 2 Ø 1 = 2 Ø θ(kF − k).

k kF 6        k

Convirtiendo la suma en la integral, i. e.,

Ω 1               ˆ                 ˆ 2 k   2   2 θ Ø ( k F − k ) k dk F k dk θ ( k F − k ) → d Ω =       (3.153) (2 2 π ) 3 π k 0 2
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se obtiene,                        ˆ Ω kF           3 k 2 N = k dk = F Ω                  (3.154) 2 2 π π 0 3 o sea,

ρ          F 0               2 π Ω 3 = N    3 k =                (3.155)

donde ρ0 es la densidad media de part´ıculas.

Calculemos ahora la densidad de part´ıculas en el estado fundamental, que es

ρ(r) = Ø            Ø é F | ρ ˆ ( r σ ) | F ê =    † é F | c c r σrσ|F ),         (3.156)

σ                    s

o               ρ      1 Ø Ø   Í · k     † ( r ) =          i            ) r ( − k eéF |c   c Í   F ê k Ω σ k σ |   .              (3.157)

σ    Í kk

El ´ultimo valor medio ser´a nulo a menos que k =   Í k, ya que si removemos del estado fundamental una part´ıcula con impulso ~ Í k , podremos volver de nuevo a ese estado s´olo creando una part´ıcula con el mismo impulso. Por lo tanto,

é    † F | c c   |F ê    δ =   n                      (3.158)

k   Í                            Í σ k σ kk    kσ

y ρ      1 r ( ) = Ø nkσ = ρ0.                 (3.159) Ω

kσ

Como era de esperar, la densidad del gas es uniforme. Una cantidad muy ´util, como veremos m´as adelante, es la matriz densidad de una part´ıcula definida como

G     Í                      † σ                      Í F ( r − r ) = é | c c rσ r σ F | ê,                     (3.160)

es decir, la amplitud de remover del estado fundamental una part´ıcula que est´a en el punto   Í r con spin σ para luego ponerla de nuevo al estado funda-

mental, pero ahora en la posici´on r. Utilizando (3.69),

c       1 Ø ik·r √ r σ = eckσ,                  (3.161) Ω k σ

y (3.150) el c´alculo es:

G σ (    Í      Ø      Í 1 Í − i k · r    † r − r ) = r + k · e é F | c c Í Ω k σ kσ |F ê Í kk         (3.162) 1 = Ø Í Í − i k · r + k · r e δ Í k k n k σ , Ω Í kk
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Figura 3.3: Funci´on de correlaci´on                                    2 C ( u ) en l´ınea punteada, y 1 − C(u) en l´ınea s´olida.

o                                  ˆ k 1 ÍF Ø Í   d          Í − G σ ( − r ) = i k · k ( r − r ) − i k · ( r − r) r e → e.       (3.163) Ω (2 π ) 3 k 6 k 0 F

Evaluando la integral se tiene6

G    Í            ρ0                       Í                              3                                        3j1(u) r σ ( − r ) = C ( k F | r − r | ); C ( u ) = (sin u − u cos u ) =. (3.167) 2 3 u u

A la cantidad            Í C ( k F | r − r|) se la denomina funci´ on de correlaci´ on y tiene las propiedades de tener un m´aximo para       Í r = r, con C(0) = 1, y de decaer

r´apidamente para          Í k F | r − r| > 1 (ver Fig. 3.3).

Vamos a calcular ahora la probabilidad de hallar una part´ıcula del sistema en el punto   Í r (con        Í spin σ), sabiendo que lay otra part´ıcula en el punto r (con spin σ). Esto significa que primero removemos del sistema una part´ıcula que est´a en                                                            † r σ , dejando las N − 1 part´ıculas en el estado | r σ ê = c |F ê r σ. Posteriormente, calculamos el valor medio de la densidad       Í ρ ( Í r , σ) en ese

6

G     Í          ˆ k                       ˆ F k       ˆ d F 1 k Í 1       Í   Í − i k · ( r − r ) 2 − ik | r − r|u ( σ r − r ) = e = k dk edu      (3.164) 3 2 (2 0 π ) 4 π 0 − 1 ˆ k 1 1 F Í = kdk sin k | r − r | (3.165) 2 Í 2 π | r − r | 0

= 1      1                Í            Í             Í (sin k F | r − r | − k F | r − r | cos k F | r − r|).        (3.166) 2 Í 2 π | r − r | 3
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3.4 Gas de Fermi

nuevo estado. Es decir, evaluamos

3 42 ρ    ( − r ) ≡ éF |c c Í      Í    Í r c c   |F ê.           (3.168) 0                 Í            †    † g σσ Í                                                  Í r

2                    rσ r σ   σ rσ

Utilizando la representaci´on en el espacio k, (3.69), tenemos

3 4 ρ2                                                Í 0                Í             Ø                         Í − i k 1 Í 1 gσσ (r−r ) =           e    ·r −ik ·      r   k · e 2 r i k e 3 · i e 4r     †

2               Ω                               k        3      4 σ k σ 2 1 σ k 2 σ k é        † F | c c   Í           Í k cc    |F ê.

1 2 3 4 k k k                                                   (3.169)

Dado que ckσ|F ê = 0, si k > kF (i. e., no podemos destruir part´ıculas que no est´an), vemos de inmediato que la sumatoria est´a restringida a los estados con |k3 |, |k4| 6 kF . Adem´as, el valor de expectaci´on se anula a menos que las part´ıculas que repongamos tengan los mismos impulsos y espines que las part´ıculas removidas. La forma de hacerlo es emplear los anticonmutadores, y escribir

é    † †                    †              †                                        †     † † F | c c c c | F ê = é F | c δ c c | c | ê − é | c c   |F ( − ) c | F ê = δ é F c F F c c ê

κ    µ ν            κ   λ,µ     µ λ   ν         λµ λ     κ ν            κ µ λ ν

= δλ,µδκ,ν − δκ,µδλ,ν                                   (3.170)

con κ, λ, µ, ν 6 kF , y por lo tanto7

3 4                F 2 k ρ 0 Í 1 Ø            Í    Í − i · r − i k g 2 · r i k · Í σσ ( r − r ) = k e 1 e e 3 r ik ·r e 4 (δ             Í k δ −          , 2 Ω 2 k δ 3 k 1 k δ δ 4 σσ k 1 k 3 k 2 k 4 ) 2 k 1 k 2 k 3 k 4

(3.171)

= 1 kF è Ø              Í       Í   é − 1 i k · ( r − r ) − i k · ( r − δ 1 − r ) Í σσ e e 2 ,         (3.172) Ω 2 k 1 k 2 =          2    Í − δ Í σσ G ( r − r)                (3.173) σ 2 A   B2 Ω N

donde hemos utilizado (3.163). Finalmente de (3.167) se tiene

g Í                  Í                                                              Í σσ ( 2 r − r ) = 1 − δ Í σσ C ( k F | r − r|).                       (3.174)

La cantidad g Í σσ (     Í r − r ) se denomina densidad de correlaci´ on para dos part´ıcu-

las y en la Fig. 3.3 se ilustra su comportamiento.

Veamos el significado f´ısico de esta densidad de correlaci´on. Si los espines son diferentes, la probabilidad relativa de encontrar las part´ıculas en r y   Í r

7 Notemos que, como las sumas se extienden solo sobre estados ocupados, no se pueden

usar relaciones de completitud.
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no depende de la distancia       Í | r − r |. Esto es lo mismo que se obtendr´ıa cl´asica-mente para un gas de part´ıculas que no interact´uan entre s´ı. En cambio, si los dos electrones tienen el mismo spin habr´a una reducci´on muy grande en la probabilidad de hallarlos a distancias menores que   −1 k F . Es decir que el prin-cipio de Pauli produce correlaciones muy importantes sobre el movimiento de part´ıculas con el mismo spin. Ocurre como si los fermiones con la misma orientaci´on de spin se rechazaran entre s´ı. Esta “repulsi´on” efectiva proviene de la simetr´ıa de intercambio de la funci´on de onda y no de una fuerza real entre las part´ıculas. Para separaciones grandes g   Í σσ (      Í r − r) se aproxima a uno, o sea al mismo valor que tienen dos part´ıculas con espines diferentes.

Calculemos ahora la energ´ıa del estado fundamental del gas de Fermi. En particular, vamos a considerar que se trata de un gas de electrones de densidad media ρ0, que interact´uan entre s´ı por medio de la interacci´on Cou-lombiana. Partiremos del Hamiltoniano,

H = ˆ ˆ T + ˆ V                  (3.175)

donde

T =               2   2 ∇ ˆ ˆ ~ Ø t(r ); ˆ t (r) = −                (3.176)

i                              m 2 r

i

es el operador para la energ´ıa cin´etica, y

V    1                           2 e ˆ = Ø ˆ v ( r i , r j ); ˆ v ( r ) = 2 1 , r 2            (3.177) | r 1 − r 2 | ij

es el operador para la energ´ıa potencial. Dado que

T        † ˆ = Ø ε k c c , k σ k σ                  (3.178)

kσ

la energ´ıa cin´etica ser´a8

E = éF |T ˆ (0)                      3 |F ê = εF N.                (3.180)

5

8

é    ˆ                                       ˆ kF        2         2   5 d Ø Ø k ~ 2 k ~ k     3 F F | T | F ê = ε k n k σ = ε k θ ( k − k F ) → 2Ω = Ω = εF N 3 2 (2 π ) 2 m 2 m 5 π 5 0 k ,σ k σ

(3.179)
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3.4 Gas de Fermi

Para la energ´ıa potencial, podemos utilizar la ecuaci´on (3.88)

E (1)      V ˆ = éF | |F ê (3.181)

= 1        Í      Í Ø    † d ˆ

2    rdr v ˆ(r, r )          † é F | c cÍ Í c Í Í c   F r σ r σ r σ r σ | ê           (3.182)

σσ

= 1 3 ρ 42 0        Í      Í d ˆ        Í

2   2                   Í σσ ˆ rdr v ˆ(r, r ) Ø g Í σσ (     Í r − r)            (3.183)

0                         è                        é Í Í 2 Í d r d r ˆ v ( r , r ) 2 − C ( kF | r − r | ) , (3.184)

= 3 42 ρ

2

donde hemos usado (3.174). Escribimos ahora,

E (1)        (1)       (1) = E E +                         (3.185)

D     I

con                            ˆ 1 (1)         2 2 e ρ Í E r d r D = 0 d ,                 (3.186) 2 | r − r Í |

y                            ˆ 2 2        2         Í e (1) ρ C k | r r| 0 Í ( F −) E − d r d r I = .           (3.187) 4 | r − r Í | E (1) representa la interacci´on media de las part´ıculas entre s´ı y se denomina

D

energ´ıa directa ´o energ´ıa de Hartree, mientras que   (1) EI es la energ´ıa de in-tercambio y se debe al principio de exclusi´on de Pauli. Haciendo el cambio de variables:        Í         Í r → r y r − r → r, tambi´en resulta,

2                 ˆ

ED = (1)          0 N ρe                      dr v0 ; v 0 = , (3.188)

2                 r

y                                ˆ 2      2 N ρ (1) 0 e C (kF r) E − d I = r .              (3.189) 4 r

Los electrones de conducci´on en un metal corresponden al gas de elec-trones que estamos considerando. Notemos que en cualquier situaci´on f´ısica nunca se tiene un gas aislado, sino que hay siempre un n´umero suficiente de cargas positivas, que hacen que el sistema, como un todo, sea neutro. En una primera aproximaci´on, todos los iones positivos dentro del metal o dentro de un plasma, se pueden reemplazar por un fondo (o “background ”) de densidad de cargas positivas ρ0e. La autoenerg´ıa de ese fondo es:

1 ˆ        2 2 e ρ Í 0 d r d r                     (3.190) 2 | r − r Í |
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que junto con la energ´ıa electrost´atica media entre el fondo positivo y los

electrones,                       ˆ           2 2 e ρ Í 0 − d r d r                         (3.191) Í | r − r | cancela exactamente la energ´ıa de Hartree de los electrones. Por lo tanto, en primer orden de aproximaci´on, la interacci´on neta en un gas de electrones es

precisamente la energ´ıa de intercambio (3.189), que integrando resulta:

E      e k I = −F .                (3.192) 4 (1)             2 3 π

Definiendo ahora la distancia media entre las part´ıculas, d, por medio de

Ω =      ,                    (3.193) N 4   3 πd

3

resulta,              k    3 2           1/3 π N 3 9 π 4 1 ∼ F = = = 1,92 −1 d,            (3.194) Ω 4     d

es decir que      ∼ − 1 k d/ F =2. Otra longitud caracter´ıstica es el radio de Bohr, a     2      2 = ~. Introducimos entonces un par´ametro sin dimensiones, 0        /me

rs = d                         (3.195)

a0

por medio del cual escribimos

3 2 2                      / 3 4 23    2                2 k N π 3 9 c 2 , 12 e

E = (0)             F ~ N =                   = N          (3.196)

5 2         2 m r s 5   4     2         2 a 0 r   a s 20

3   41/3    2              2

EI = −               = −N                (3.197) r (1)        N 3    9π          e           0,916 e

s                       0              s      0 2 π 4 2 a r 2 a

La energ´ıa total éF |H ˆ|F ê, evaluada con una funci´on de onda antisimetri-zada, se denomina energ´ıa de Hartree-Fock (HF)

2

EHF = N     −     + · · ·     .          (3.198) 2 A             B 2 , 21 0 , 916 e

r       r            a s s 20

De la Fig. 3.4 vemos que para rs & 2 resulta EHF < 0, lo que indica que el sistema se torna ligado. El principio de exclusi´on juega un papel importan-te en esto, evitando que los electrones con los mismos spines se acerquen y de este modo hace disminuir su energ´ıa electrost´atica. Notemos que la apro-ximaci´on de HF es solo v´alida para gases densos (rs << 1) y no para los metales con 1, 8 6 rs 6 5, 5.
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Figura 3.4: Energ´ıa por part´ıcula, en unidades de Ry ( 2 e/2a0), para el estado fundamental del gas de Fermi.

La energ´ıa se puede bajar m´as todav´ıa por el hecho de que tambi´en los electrones con spines opuestos tienden a separarse, debido a la interacci´on Coulombiana. Esta aproximaci´on se denomina de fases al azar o “random

phase approximation                          9 ” (RPA) y lleva al resultado

2

ERP A = N      −      + 0,062 ln rs − 0,142 + · · ·           (3.199) 2 A                          B 2 , 21 0 , 916 e

r       r                                a s s 20

que tambi´en se muestra en la Fig. 3.4.

 

9 V´ ease D. Pines, Elementary Excitations in Solids p. 118 y M. Gell-Mann and K. Brueckner,

Phys. Rev. 106, 364 (1957).
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Propiedades magn´ eticas de los s´ olidos

A partir de una teor´ıa basada en la estructura de bandas y el llenado de las mismas podemos realizar una clasificaci´on de los materiales y saber si es un metal o un aislante. Sin embargo, esta clasificaci´on no siempre resulta correcta. El problema es que hemos despreciado la interacci´on Coulombia-na entre los electrones y en algunos casos esto nos conduce a conclusiones err´oneas. Por otro lado, si queremos comprender el comportamiento de los s´olidos debemos ser capaces de estudiar la respuesta magn´etica de los mis-mos. En este cap´ıtulo nos enfocaremos en presentar algunas nociones b´asicas del magnetismo de los s´olidos.

4.1.   Magnetismo e interacci´ on de intercam-

bio

Para campos magn´eticos peque˜nos, la magnetizaci´on de un sistema es en general lineal con el campo magn´etico aplicado.

M = χH.

Cuando la susceptibilidad es positiva (χ > 0) decimos que el material es paramagn´ etico y en este caso el sistema se magnetiza en la direcci´on del campo magn´etico aplicado.

Cuando la susceptibilidad es negativa (χ < 0) decimos que el material es diamagn´ etico y en este caso el sistema se magnetiza en direcci´on contraria al campo magn´etico aplicado. El diamagnetismo es el estado que encontra-remos habitualmente ya que la gran mayor´ıa de los sistemas biol´ogicos son

 

Facultad de Cs. Exactas  |  UNLP |   115

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

4.1 Magnetismo e interacci´ on de intercambio

diamagn´eticos. En contraste con el diamagnetismo y el paramagnetismo, en-contramos a los sistemas ferromagn´ eticos donde M puede ser distinto de cero aun en ausencia de campo magn´etico externo.

Intentaremos recuperar este tipo de respuesta magn´etica partiendo de no-ciones b´asicas de la mec´anica cu´antica. Para simplificar la explicaci´on omiti-remos los detalles de la estructura at´omica que brinda diferentes contribucio-nes al momento magn´etico, en particular, no consideraremos la contribuci´on orbital, es decir, no consideraremos los t´erminos de interacci´on esp´ın-orbita. Para simplificar usaremos en lo que sigue ~ = 1, c = 1. El Hamiltoniano de un electr´on en un ´atomo est´a dado por

H0 = p 2 + V (r )

2         . m

Al aplicar un campo magn´etico debemos hacer p → p + eA (recordemos que aqu´ı q = −e) y el Hamiltoniano ser´a

H   1 p = ( + eA)2 + gµBS · B + V (r). 2 m

Donde µB = e es el magnet´on de Bohr. En general el potencial vector A es 2 m

una funci´on de las coordenadas y no conmuta con p. Sin embargo, podemos hacer uso de la libertad de gauge para elegir el potencial vector y tomar uno que cumpla con la condici´on ∇ · A = 0 y entonces el conmutador ser´a cero. Podemos elegir por ejemplo

A 1 B = × r 2

Con esto, el Hamiltoniano queda en la forma

H   1                             2 e e 2 = p + V ( r ) + p · ( B × r ) +       2 | B × r | + gµBS · B 2 m 2 m 2 m

Los dos primeros t´erminos corresponden al Hamiltoniano en ausencia de cam-po magn´etico aplicado.

El tercer t´ermino se puede reescribir usando la propiedad c´ıclica x · (y × z) = z · (x × y) como

H = e                 e                 e p · ( B × r ) = B · ( r × p) =

2                                 B · L m        2 m        2 m

en la forma                                    2 e H Donde usamos que 1 (r × p) = L. Luego, el Hamiltoniano completo queda ~

= H0 +                   2 µ B B · ( L + g S ) + | B × r | . m 2
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El primer t´ermino (H0) corresponde a un electr´on en ausencia de campo magn´etico externo. El segundo t´ermino se lo conoce como el t´ ermino pa-ramagn´ etico y corresponde al acoplamiento del momento angular total del electr´on con el campo magn´etico externo. Cuando un campo magn´etico ex-terno es aplicado, el momento magn´etico del electr´on se alinea con el campo, por lo que este t´ermino est´a asociado con la respuesta paramagn´etica del sistema. Recordemos que

m = −gµBS.

El ´ultimo t´ermino se conoce como t´ ermino diamagn´ etico y ser´a el respon-sable del comportamiento diamagn´etico de algunos materiales. 4.1.1.   Un esp´ın

Consideremos el caso de un solo esp´ın 1 sometido a un campo magn´etico 2 externo. El Hamiltoniano, como vimos estar´a dado por

H = gµBB · S,

donde g                                                               ~ es el factor giromagn´etico (el cual tomaremos como g = 2), S = σ, 2 σ = (                                         e σ x , σ y , σ z ) es el vector de matrices de Pauli y µ B = es el magnet´on 2 m de Bohr (recordemos que para simplificar tomamos ~ = 1). En este caso no consideraremos el momento angular orbital para simplificar la discusi´on.

Los autovalores del Hamiltoniano est´an dados por E± = ±µBB, (donde B = |B|) y con ellos podemos construir la funci´on de partici´on

Z = −   B βµ e B + βµ B e B = 2 cosh(βµBB ).

La energ´ıa libre se escribe entonces como

F = −kBT log(Z) = −kBT log (2 cosh(βµBB))

y el momento magn´etico por esp´ın estar´a dado por

m = ∂F −   = µ B tanh(βµ BB ).

∂B

Si estudiamos un sistema de muchos espines que pudi´eramos suponer inde-pendientes podemos escribir la magnetizaci´on por unidad de volumen como

M =         µ BB n m = nµB tanh( ),                                (4.1)

kBT

donde n = N/V es el n´umero de esp´ınes por unidad de volumen. En la figura

4.1 podemos observar el comportamiento de la magnetizaci´on con el campo
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Figura 4.1: Magnetizaci´on como funci´on del campo magn´etico

magn´etico. Para campos magn´eticos peque˜nos vemos que el comportamiento es aproximadamente lineal y podemos desarrollar en potencias del campo magn´etico y obtener

Bµ2 + O B ,

M    B     1   2 3 Ä n

k BT

y por lo tanto, en el l´ımite de campo cero tenemos que

l´ım ∂         2 M nµ = B .

B→0 ∂B   k BT

La expresi´on anterior es conocida como la Ley de Curie[12]. Y en ge-neral se expresa como       C χ = . Esta ley aun se puede observar en sistemas k B T magn´eticos m´as complejos y la constante C aporta informaci´on de la natu-raleza magn´etica del sistema.

A partir de la energ´ıa libre podemos calcular tambi´en algunas cantidades

termodin´amicas por ejemplo en la figura 4.2-a mostramos la magnetizaci´on normalizada como funci´on de kBT /(µBB). Una vez determinada la magne-

tizaci´on podemos calcular la energ´ıa como E = −M · B (figura 4.2-b), el

calor espec´ıfico como ∂E (figura 4.2-c) y la entrop´ıa como −( ∂F )B=cte, (figura ∂T ∂T

4.2-d).

De las figuras vemos que cuando T → ∞ la energ´ıa tiende a cero indicando que los momentos magn´eticos se vuelven completamente desordenados.
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El calor espec´ıfico de la figura (figura 4.2-b) tiene un m´aximo cuando T = (µBB)/kB. Esto indica que a esta temperatura es posible excitar t´ermi-camente a los espines para que efect´uen transiciones entre los dos estados.

La entrop´ıa aumenta cuando aumentamos la temperatura, como espera-mos para un sistema que se desordena.

4.1.2.   Dos espines - Interacci´ on de intercambio Origen de la interacci´ on de intercambio

La interacci´on de intercambio es una de las principales responsables por las fases magn´eticas de largo alcance que podemos encontrar en los sistemas magn´eticos. Su origen esta ´ıntimamente relacionado a la indistinguiblilidad de las part´ıculas y por ende a la mec´anica cu´antica. Este es un ejemplo claro de que aun en fen´omenos macrosc´opicos como la atracci´on/ repulsi´on de dos imanes la mec´anica cu´antica puede jugar un rol esencial. De hecho el magne-tismo es un fen´omeno basado en la noci´on del esp´ın el cual es intr´ınsecamente cu´antico. Por lo que el magnetismo en s´ı puede verse como una manifestaci´on de la mec´anica cu´antica.

Consideremos un modelo simple donde tenemos solo dos electrones cuyas coordenadas espaciales son r1 y r2 y escribamos la funci´on de onda del estado de dos electrones como producto de electrones independientes. Supongamos que el primer electr´on est´a en un estado ψa(r1) y el segundo electr´on est´a en un estado ψb(r2), entonces la funci´on de onda producto podr´ıa escribirse como ψa(r1)ψb(r2), sin embargo esta funci´on de onda no tiene la simetr´ıa correcta ya que si intercambiamos los dos electrones obtenemos la funci´on de onda ψb(r1)ψa(r2) la cual no es un m´ultiplo de la que ten´ıamos inicialmente, es decir, la funci´on de onda propuesta no es ni sim´etrica ni antisim´etrica ante el intercambio de part´ıculas.

Sin embargo la simetr´ıa corresponde a la funci´on de onda completa, es decir la funci´on que contenga a la funci´on orbital y la parte de esp´ın. Sabemos que la parte de esp´ın de la funci´on de onda puede ser antisim´etrica (corres-pondiendo a un estado de tipo singlete S = 0) o sim´etrica correspondiente a un estado de tipo triplete (S = 1). Luego podemos escribir la funci´on de onda completa para los casos singlete y triplete como

ΨS =    (ψa(r1)ψb(r2) + ψa(r2)ψb (r1)) χS          (4.2) √ 1

2

ΨT =    (ψa(r1)ψb(r2) − ψa(r2)ψb(r1)) χT          (4.3) √ 1

2

La energ´ıa correspondiente a cada uno de estos estados estar´a dada por
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Figura 4.2: a) Magnetizaci´on normalizada. b) Energ´ıa. c) Calor espec´ıfico. d) Entrop´ıa.
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el valor de expectaci´on del Hamiltoniano

ˆ

ES =    Ψ∗     3 H d S Ψ   3 S r 1 dr2               (4.4)

ˆ

E       ∗          3     3 = Ψ H r Ψ d dr                  (4.5)

T            S     T     1    2

Si suponemos que las funciones de onda de esp´ın est´an normalizadas tenemos que la diferencia de energ´ıa entre los estados singlete y triplete esta dada por

ˆ

E           ∗        ∗                            3     3 − E = 2 ψ ( r ) ( ψ r ) H ψ ( r ) ψ ( r ) , d r dr      (4.6)

S     T            a   1   b   2      a   2   b   1      1    2

Es importante notar que, aunque el Hamiltoniano no contenga expl´ıcita-mente ning´un t´ermino dependiente del esp´ın, si la integral anterior (conocida como integral de intercambio) es distinta de cero, entonces los estados de esp´ın singlete y triplete tienen diferente energ´ıa. Si deseamos estudiar solo los grados de libertad magn´eticos podr´ıamos entonces escribir un Hamilto-niano efectivo que de cuenta de la diferencia de energ´ıa al pasar de un estado de esp´ın a otro.

Se puede escribir dicho Hamiltoniano en t´erminos de un producto de operadores de esp´ın de la forma S1 · S1 ya que sabemos que (para S = 1/2) el producto toma el valor S1 · S1 = −3/4 si los espines est´an en un estado de singlete y S1 · S1 = 1/4 en un triplete. Podr´ıamos entonces escribir un Hamiltoniano de la forma

H    1 E ef f = (S + 3ET ) − (ES − ET )S1 · S1 4

Este Hamiltoniano arroja los valores correctos para la energ´ıa de los es-tados singlete y triplete. El mismo est´a formado por un t´ermino constante y otro que depende del esp´ın. El primer t´ermino es solo un corrimiento en la energ´ıa y podemos olvidarnos de ´el por el momento. Si definimos la cons-tante de intercambio como

J   E       ˆ − S E T = = ∗    ∗ ψ r 1 ) ψ 2 a ( b(r2) H ψa(         3 r 2 ) ψ b ( r 1 )   3 , d r 1 dr2      (4.7)

Podemos escribir el Hamiltoniano dependiente del esp´ın como

Hef f = −2JS1 · S2

Si la constante de intercambio es positiva J > 0 entonces ES > ET y el estado fundamental corresponde a un estado triplete. Si J < 0 entonces ES < ET y el estado fundamental corresponde a un estado singlete.
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4.1.3.   Muchos espines

Para el caso de un sistema con muchos espines seguir un razonamiento similar al que usamos para dos esp´ınes es mas engorroso, sin embargo, puede mostrarse se puede utilizar una propuesta similar a la que derivamos para un par de espines cuando tenemos muchos espines que interact´uan de a pares. Esto es lo que se conoce como Hamiltoniano de Hesienberg.

H = Ø − Ji,j Si · Sj , (4.8)

i,j

donde Ji,j es la constante de intercambio entre los espines i y j. La suma es sobre todos los espines y el factor 2 es omitido porque al recorrer todos los espines con los ´ındices i, j estamos sumando cada par dos veces. Como la constante de intercambio depende de la superposici´on de los orbitales, si dos espines se encuentran muy alejados esta integral ser´a peque˜na. Es por eso que com´unmente la constante de intercambio Ji,j se suele tomar distinta de cero solo para los espines m´as cercanos. Una elecci´on com´un es tomar Ji,j = J si los espines i, j son primeros vecinos y cero en caso contrario.

4.2.   Propiedades magn´ eticas de los s´ olidos 4.2.1.   Tipos de orden magn´ etico

Vamos a estudiar brevemente algunos de los diferentes tipos de ordenes magn´eticos que pueden ser producidas por la interacci´on de intercambio y algunos ingredientes extra como la frustraci´on magn´etica. Ferromagnetismo

Un material ferromagn´etico puede tener una magnetizaci´on diferente de cero a´un en ausencia de campo magn´etico externo y en este estado de mag-netizaci´on todos los espines apuntan en la misma direcci´on. Este efecto es generalmente producido por la interacci´on de intercambio entre los espines y puede ser descrito mediante un Hamiltoniano de Heisenberg.

H = −2 Ø           Ø J i,j S i · S j + gµ B B · Sj

i,j                                        j

Si consideramos que las constantes de intercambio a primeros vecinos son positivas y cero a vecinos m´as lejanos, el Hamiltoniano anterior describe un ferromagn´eto en presencia de un campo magn´etico externo.
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Modelo de Weiss para el ferromagn´ eto

Una forma de describir aproximadamente la f´ısica encerrada en el Hamil-toniano anterior es la siguiente. Definamos un campo efectivo para el esp´ın en el sitio i de la siguiente manera

B     2 Ø − M F = Ji,jéSjê gµ B j

Ahora concentr´emonos por un momento solo en el esp´ın correspondiente al sitio i. La contribuci´on a la energ´ıa de intercambio del esp´ın i estar´a dada por −2 q Ji,jSi · j Sj y este termino puede escribirse (en campo medio) en t´erminos del campo efectivo que definimos antes como

−2 Ø Ji,j Si · Sj = gµBSi · BM F

j

y entonces el Hamiltoniano para el ferromagn´eto puede escribirse como

H      Ø = gµ S · (B + B ) M F       B      i           M F


i

Al escribir el Hamiltoniano de esta manera asumimos que todos los espines experimentan el mismo campo efectivo y estamos reemplazando el operador − 2   q J     por su a valor de expectaci´on. El Hamiltoniano efectivo al S

que llegamos tiene la misma forma que el Hamiltoniano de un paramagn´eto gµ            j i,j i,j B

que estudiamos anteriormente. Como el campo efectivo que definimos (a ve-ces conocido como “campo molecular”) b´asicamente mide el efecto de orde-namiento se los espines, podemos suponer que este ser´a proporcional a la magnetizaci´on del sistema.

B M F = λM .

Ahora podemos tratar este problema como si fuera un paramagn´eto su-jeto a un campo magn´etico B + BM F . A bajas temperaturas podemos tener que los espines se alinean con el campo molecular aun en ausencia de campo magn´etico externo B. Esto hace que la magnetizaci´on total aumente, pero como el campo molecular es proporcional a la magnetizaci´on este aumenta tambi´en haciendo que a bajas temperaturas el sistema se mantenga magne-tizado.

Podemos encontrar soluciones de este modelo usando la ecuaci´on (4.1) para la magnetizaci´on de un esp´ın en un campo magn´etico que vimos ante-riormente

M       µB (B + λM ) nµ = B tanh().             (4.9) k B T
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Figura 4.3: Soluciones gr´aficas de la ecuaci´on correspondientes a B = 0. Para T < T c tenemos soluci´on para M Ó= 0 La ecuaci´on anterior es una ecuaci´on trascendente que puede ser resuelta

gr´aficamente (ver figura 4.3). Si consideramos el caso sin campo magn´etico externo (B = 0), vemos que para temperaturas menores que la temperatura cr´ıtica T < Tc la ecuaci´on tiene soluciones no nulas, mientras que para T > Tc la ´unica soluci´on corresponde a M = 0.

La soluci´on para M en funci´on de T /Tc se muestra en la figura 4.4. La magnetizaci´on es cero para temperaturas T ≥ Tc y distinta de cero para T < Tc. En T = Tc la magnetizaci´on es continua pero su derivada con respecto a T no lo es. Esto indica que la transici´on entre las fases ferromagn´etica y no magn´etica es de segundo orden.

Antiferromagnetismo

Si la interacci´on de intercambio es negativa (J < 0), el campo molecular es orientado de manera que favorece la alineaci´on antiparalela de los momentos magn´eticos a primeros vecinos. Eso es lo que se denomina antiferromagne-tismo. Generalmente este tipo de orden se encuentra en redes bipartitas, es decir, redes que est´an compuestas por dos redes interpenetradas. De esta ma-nera en las redes bipartitas los momentos magn´eticos en una de las subredes apuntan todos en una direcci´on y en la otra subred en direcci´on opuesta.
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Figura 4.4: Soluci´on para M en funci´on de T /Tc

A este tipo de estado magn´etico se lo conoce como estado de Ne´ el y es esquematizado por la figura siguiente.

[image: ]

 

Si identificamos a una subred con el ´ındice + y a la otra con el ´ındice −, entonces podemos escribir el campo molecular sobre cada subred como

B M F   −λM =

+        −

B M F     λM . = − −        +

Luego el campo total efectivo en cada subred ser´a

B+ = B − λM− B− = B − λM+,

donde λ es una constante. En cada subred el campo molecular para el caso
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de esp´ın 1/2 estar´a dado por

M± =      µ BB± Ms tanh( ), (4.10)

kBT

donde Ms =    N µ B . M± representan la magnetizaci´on de cada subred y la V

magnetizaci´on total estar´a dada por

M = M+ + M−.

La expresi´on para M+ y M− es casi id´entica a la que encontramos para el caso ferromagn´etico y por lo tanto la magnetizaci´on en cada subred tendr´a el mismo comportamiento que el de un ferromagn´eto y se har´a cero para temperaturas mayores que las de la temperatura de transici´on conocida como temperatura de Ne´ el .

Aunque la magnetizaci´on de cada subred se comporte como la de un fe-rromagn´eto, las dos magnetizaciones apuntan en direcciones opuestas y si las dos subredes son equivalentes a campo magn´etico externo nulo tendremos que la magnetizaci´on total es cero. Para describir al antiferromagn´eto en au-sencia de campo externo se suele usar un par´ametro de orden diferente al de la magnetizaci´on. Este par´ametro se conoce como magnetizaci´on alterna-da y consiste simplemente en la diferencia se las magnetizaciones de ambas subredes.

Ms = M+ − M−.

La magnetizaci´on alternada es entonces distinta de cero para valores de la temperatura menores que la temperatura de Neel y cero para temperaturas mayores.

Para temperaturas menores a la de Neel, podemos estudiar el compor-tamiento de la magnetizaci´on ante la aplicaci´on de un campo magn´etico. Ya vimos que en ausencia de campo magn´etico la magnetizaci´on es cero (si las subredes son equivalentes). A campo peque˜no podemos desarrollar la magnetizaci´on a orden lineal en B como lo hicimos antes y obtener el comportamiento de la susceptibilidad.

A temperaturas altas podemos aproximar la tangente usando que tanh(x) Ä

x y as´ı tenemos que      M   2MsµB/kB Ä B. T

+ (MsµB/kB)

De esta manera podemos escribir la susceptibilidad a campos peque˜nos como

χ = M    C =

B   T + TN
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Antiferromagnetos frustrados:

En ciertas redes no es posible acomodar este tipo de estados donde cada esp´ın es antiparalelo a todos sus vecinos. Por ejemplo si consideramos la red triangular con interacciones antiferromagn´eticas entre primeros vecinos vemos que: una vez que dos espines fueron colocados de forma antiparalela dentro de un tri´angulo, no hay manera de que el tercer esp´ın se acomode de forma antiparalela a los otros dos. Se dice que en este caso el sistema est´a frustrado ya que no se pueden minimizar todos los t´erminos de la energ´ıa al mismo tiempo.

[image: ]

 

En muchos casos la combinaci´on entre frustraci´on y la naturaleza cu´antica de los espines genera fases magn´eticas no convencionales. Ferrimagnetismo

La discusi´on que dimos antes para el antiferromagn´eto asume que en una red bipartita las dos subredes son equivalentes, pero si por alguna raz´on no lo fueran (cristalograficamente esto es posible), entonces la magnetizaci´on de las dos subredes no ser´ıa igual y por lo tanto no se cancelar´ıan. Esto dar´ıa como resultado que aunque el orden magn´etico es en esencia antiferromagn´etico el sistema tiene una magnetizaci´on neta. Este fen´omeno es conocido como ferrimagnetismo.

Como el campo molecular de cada subred es diferente entonces la mag-netizaci´on espont´anea de cada subred tendr´a diferentes dependencia con la temperatura y puede ocurrir, por ejemplo, que una subred domine la mag-netizaci´on a bajas temperaturas y la otra lo haga a temperaturas m´as altas. Cuando esto ocurre podemos variar la magnetizaci´on del sistema variando la temperatura de manera que al aumentar la temperatura el sistema puede pasar de tener magnetizaci´on positiva a cero y luego volverse negativa. Final-mente a temperaturas m´as altas el sistema se desordena y la magnetizaci´on
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es nuevamente cero. La temperatura a la cual la magnetizaci´on cambia de signo se conoce como Temperatura de compensaci´ on. La susceptibilidad magn´etica de los ferrimagn´etos no sige en general la ley de Curie. Las fe-rritas son materiales que presentan ferrimagnetismo. Se conoce com´unmente como ferritas a un grupo de compuestos con la formulas qu´ımicas de la forma XO·Fe2O3, donde la letra X representa a un ion positivo divalente como por ejemplo Zn2+, Fe2+, Cu2+, Mn2+, Ni2+, etc. Orden espiral

En algunos casos (como en muchas tierras raras) la estructura cristalina es tal que los ´atomos se acomodan en planos que interact´uan fuertemente y estos planos se acoplan magn´eticamente. Consideremos el caso donde los momentos magn´eticos en cada plano interact´uan ferromagn´eticamente de manera que el orden magn´etico en cada plano corresponde a todos los espines del plano apuntando en la misma direcci´on. Si consideramos el momento magn´etico total en cada plano estar´a dado por la suma de los momentos magn´eticos de todos los sitos del plano. Esto dar´a como resultado un valor grande del momento magn´etico en cada plano por lo que podremos considerar a cada plano como un esp´ın cl´asico. Consideremos ahora la interacci´on entre planos como una interacci´on entre espines cl´asicos con acoplamientos entre primeros J 1 y segundos vecinos J2. Si el ´angulo entre los momentos magn´eticos totales correspondientes a dos planos sucesivos es θ, entonces podemos escribir la energ´ıa del sistema como

E = −2 2 2 N S (J1 cos θ + J2 cos(2θ)),

donde N es el n´umero de sitios en cada plano. Buscamos el m´ınimo de la energ´ıa imponiendo que ∂E = 0 con lo que obtenemos la condici´on ∂θ

(J1 + J2 cos θ) sin θ = 0.

Esta ecuaci´on tiene como soluciones a sin θ = 0 lo que implica que el orden ferromagn´etico (θ = 0) y antiferromagn´etico (θ = π) son extremos de la energ´ıa. La otra soluci´on corresponde a

cos(        J1 θ ) =

− 4J2

Esta soluci´on corresponde a lo que se conoce como orden espiral y es en´ergicamente favorable solo cuando J2 < 0 y se cumple la condici´on |J1 | < 4|J2|. Como el ´angulo correspondiente a esta soluci´on depende de los valores de los acoplamientos J1 y J2 , que en principio pueden tomar cualquier valor
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real, el ´angulo θ no estar´a en general conmensurado con la red. Es decir que no se repetir´a. Para valores arbitrarios de los acoplamientos no habr´a dos planos con el mismo ´angulo θ.

 

4.3.   Ruptura de simetr´ıa

En los tipos de orden magn´etico que vimos antes todos ten´ıan en com´un que su aparici´on se daba espont´aneamente a bajas temperaturas. Todos estos ordenamientos est´an caracterizados por la dependencia con la temperatura donde alguna cantidad relevante cambia al pasar de temperaturas menores a mayores de alguna temperatura cr´ıtica Tc. Para cada una de estas fases se puede definir un par´ametro de orden el cual ser´a cero para T > Tc y ser´a diferente de cero para T < Tc. Este par´ametro act´ua entonces como un indicador de que el sistema esta ordenado. En este tipo de ordenes, el par´ametro de orden esta asociado a la ruptura de una simetr´ıa.

En el caso de un ferromagn´eto cuando el sistema se magnetiza lo hace en una direcci´on particular. Por ejemplo, a campo cero todos los momentos magn´eticos se alinean hacia arriba y no hacia abajo. Sin embargo en las ecua-ciones que escribimos no hay nada que favorezca la alineaci´on de los espines hacia arriba comparado con los espines hacia abajo, ya que el Hamiltoniano es invariante ante inversi´on. Entonces, el modelo microsc´opico tiene una si-metr´ıa que no posee el estado fundamental. Observemos por ejemplo lo que pasa en un ferromagn´eto en 2 dimensiones. A temperaturas altas T > Tc el sistema posee una simetr´ıa de rotaci´on completa. Todas las direcciones son equivalentes ya que el sistema est´a completamente desordenado y los mo-mentos magn´eticos alrededor de un punto cualquiera del plano apuntan en cualquier direcci´on y el campo efectivo promedia a cero.

Para temperaturas menores a la temperatura cr´ıtica T < Tc el sistema elige una direcci´on y los momentos magn´eticos se alinean es esa direcci´on. Ahora la simetr´ıa de rotaci´on est´a rota porque tenemos una direcci´on prefe-rencial. El estado de baja temperatura a reducido sus simetr´ıas.

Un comentario importante sobre la ruptura de simetr´ıa es que es imposible cambiar la simetr´ıa de forma gradual. El sistema posee una simetr´ıa o no la posee. Esto hace que la transici´on de fase sea abrupta.
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4.4. Teor´ıa de Landau para el ferromagnetis-

mo

Un modelo simple que reproduce este tipo de transici´on de fase fue desa-rrollado por Landau y se basa en consideraciones muy generales. Supongamos que podemos escribir la energ´ıa libre de un ferromagneto con magnetizaci´on M como una serie de potencias en M . Como los estados con magnetizaci´on hacia arriba (positiva) y hacia abajo (negativa) tienen la misma energ´ıa esta serie no puede contener potencias impares de M . Podemos entonces escribir algo como

F (             2 M ) =      4 F 0 + aM + bM + · · ·

Donde F0, a y b no dependen de M . Supongamos ahora que la constante a = a(T ) depende de la temperatura. Si a(T ) es tal que cambia de signo en T = Tc entonces podemos escribir cerca de T = TC que a(T ) = a0(T − TC ) donde a0 es una constante positiva. Para encontrar el estado fundamental del sistema buscamos extremos de la energ´ıa libre, es decir soluciones de ∂F/∂M = 0. Esta condici´on implica que

2M (a0(T − TC) + 2   2 bM) = 0.

De esta ecuaci´on podemos obtener dos soluciones

A        B1/2 a ( − )

M = 0             0    C T    T o    M =

±          . 2 b

La segunda soluci´on es v´alida solo para T < Tc. La soluci´on M = 0 es v´alida para todo T , pero para T < Tc es un punto de equilibrio inestable. Esto puede verse f´acilmente calculando la segunda derivada de la energ´ıa libre.

Entonces, la teor´ıa de Landau nos dice que la magnetizaci´on ser´a cero para T > T C y para temperaturas menores a Tc ser´a proporcional a (Tc − T )1/2

La teor´ıa de Landau es una teor´ıa de campo medio en el sentido de que supone que todos los espines “sienten” el mismo campo producido por todos sus vecinos. En este sentido es similar al modelo de Weiss. Las teor´ıas de campo medio fallan al explicar correctamente la transici´on de fase porque ignora las correlaciones y fluctuaciones que se vuelven muy importantes cerca de TC .
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4.5.   Excitaciones en el ferromagneto: Ondas

de esp´ın

Ya vimos que, cuando consideramos un sistema de muchos espines, pode-mos utilizar un modelo microsc´opico como el modelo de Heisenberg

H   Ø = − J S · S . i,j    i       j

i,j

Consideremos la versi´on unidimensional del modelo de Heisenberg donde el Hamiltoniano est´a dado por

H     Ø = − 2 J S · S . i       i+1


i

Podemos estudiar como evoluciona con el tiempo el valor medio del esp´ın en un dado sitio de la forma

d   α é Sê      1

j                    α = é [ S, H ê ]

dt              j i ~

d   α é Sê      −2J

j                        α                        α = é [ S , · j      j −1     j      S S S ] + [, S · S    ]ê

dt                                  j      j      j+1 i ~ = −2J Ø é [ α β   β   Ø α β β S , S S S , S S ê j j − 1 j ] + [ j j j +1 ] i

~   β              β

= −2J Ø β   α β   Ø α β β é S , S S , S S ê j − 1 [ S j j ] + [ j j ] i ~ j +1 β β = −2J Ø β      γ Ø     γ β é S iÔ S iÔ S S ê j − 1 α,β,γ j + α,β,γ j j +1 i ~ β,γ β,γ = −2J Ø     β   γ Ø     γ β é iÔ α,β,γ S S j − S S ê 1 j + iÔ α,β,γ i ~ j j +1 β,γ β,γ = 2J é(         α S j × S j − 1 ) + ( j × Sj+1)α Sê. ~

Para poder avanzar, trataremos por el momento a los espines como si fue-ran cl´asicos y luego veremos el tratamiento cu´antico. El estado fundamental tiene todos los espines alineados (supondremos que en la direcci´on z). De esta manera el estado fundamental cl´asico cumple que   z        x S = S ,     y S = S = 0. Consideremos ahora una peque˜na desviaci´on del estado fundamental tal que
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S z          x    y Ä S , S , S ¹ S. Tenemos entonces que

dS x      2J S

dt                j        j −1      +1 ~ j                       y       y          y Ä (2 S − S − S   )                     (4.11) j

dS y        2J S

dt                  j        j−1 ~     j+1 z j                                  x          x x Ä − (2 S − S − S) (4.12)

dSj   Ä 0.                                 (4.13)

dt

Si proponemos soluciones de la forma

S x           iqja−ωt A = e                        (4.14)

j             x

S y             iqja−ωt A. = e                         (4.15)

j            y

Vemos que para que sean soluci´on debemos tener que Ax = iAy y la frecuencia cumple que

~ω = 4J S (1 − cos(qa)).

Esta es la relaci´on de dispersi´on de las excitaciones sobre el estado fundamen-tal ferromagn´etico. Estas excitaciones son conocidas como ondas de esp´ın.

Si bien la soluci´on anterior corresponde a un modelo cl´asico nos ense˜na que las excitaciones se comportan como ondas y podemos intentar buscar

una soluci´on del modelo cu´antico con estas caracter´ısticas[16]. Consideremos el Hamiltoniano cu´antico

H =   Ø            + −     − + z − 2 Ø z J S i · S i +1 = − 2 J S S S S S i i +1 + ( S   . i i +1 + i i +1 ) 2 5                             6 1

i                                     i

El estado fundamental cu´antico puede escribirse como un estado producto

|φ 0ê = | ↑↑↑↑↑↑ · · · ê,

de manera que              2 H | φ 0 ê = − N SJ|φ0 ê. Ahora creemos una excitaci´on dando vuelta un esp´ın en el sitio j

|jê = | ↑↑↓j ↑↑↑ · · · ê.

Este estado lo podemos escribir a partir del estado fundamental como

|          − j ê = S|φ ê.

j     0

Sin embargo, este no es un autoestado del Hamiltoniano (comprobarlo como ejercicio).

Ahora bien, como vimos en el caso cl´asico, podemos construir excitaciones
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de tipo ondulatorio. Intentemos combinar las excitaciones de este tipo en cada sitio de manera de recuperar la simetr´ıa de traslaci´on del Hamiltoniano proponiendo el estado      |           1      iqja q

ê =     Ø √ e   |jê.

N j

Es inmediato mostrar que

H |qê = E(q)|qê,

donde

E (q) =     2 − N SJ + 4J S(1 − cos(qa)).

Si restamos la energ´ıa correspondiente al estado fundamental ferromagn´etico − 2 N SJ vemos que la energ´ıa de la excitaci´on es Ô(q) = 4J S(1 − cos(qa)), que es el mismo resultado que encontramos para el caso cl´asico. 4.6.   Ondas de esp´ın y operadores de Holstein-

Primakoff

La formulaci´on de segunda cuantificaci´on que vimos en secciones ante-riores se basa en el ´algebra de operadores de creaci´on y destrucci´on. Esta formulaci´on tiene como ventajas que permite representar de forma compacta el espacio de excitaciones de un sistema y nos permite tener en cuenta la simetr´ıa de la funci´on de onda definiendo simples relaciones de conmutaci´on de estos operadores. Como el objetivo del formalismo es describir sistemas cu´anticos, consideremos el siguiente conjunto de autovalores ψn de un Ha-miltoniano H

H|ψ nê = Ôn|ψnê.

De esta manera, la funci´on de onda de dos part´ıculas que se encuentran en estados α, β se escribe como

|              1 α, β ê = √ (|ψαê1 ⊗ |ψβê2 − σ|ψβ ê1 ⊗ |ψαê2), 2

donde σ = 1 si las part´ıculas son fermiones y σ = −1 si son bosones. De esta manera tenemos en cuenta la simetr´ıa correcta de la funci´on de onda, como corresponde a part´ıculas indistinguibles. Sin embargo, si queremos usar la notaci´on anterior para un sistema de muchas part´ıculas se vuelve un poco engorroso.

Es aqu´ı donde la formulaci´on en t´erminos de operadores de creaci´on es m´as eficiente. Denotemos como |0ê a un estado de referencia que llamaremos
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estado de vac´ıo. F´ısicamente, este estado representa un estado vac´ıo en el cu´al no hay part´ıculas presentes. Definamos ahora operadores que puedan actuar sobre este estado (junto con su operador adjunto) de manera que

aγi |0ê   = 0 a† | ê       γ ê 0 = |

γ i              i

N

C Ù † a | ê         , γ , · · · , γ γ                             − i γ 0 = |     ê 1    2    3         N 1   N , γ , γ .

i=1

Donde C es un factor de normalizaci´on, C =     1 ñ    , con ni el n´umero de N r n i ! i part´ıculas en el estado γi. Noten que con esta definici´on para el factor de normalizaci´on, como no podemos tener m´as de un fermi´on en cada estado y 1! = 1, tenemos que C = 1. En cambio, si las part´ıculas son bosones este factor se vuelve importante.

Para que la simetr´ıa de la funci´on de onda sea la correcta estos operadores deben respetar las relaciones de conmutaci´on bos´onicas o fermi´onicas es decir

[        †                                              †    † aα , a        δ    , β ] = [ ] = 0 [ ]   = 0 σ     α,β          α   β σ               α   β σ a , a , a , a

donde

[A, B]σ = AB + σBA.

Es decir, en el caso de bosones los operadores conmutan y en el caso fermi´oni-co anticonmutan. Muchas veces usaremos la notaci´on [A, B ] = AB −BA para denotar al conmutador y {A, B} = AB + BA para el anticonmutador entre A y B.

De esta manera, es f´acil ver que las relaciones de conmutaci´on anteriores implican que

a† †                        † † a | ê | µ, ν ê 0 = = − σa a | ê        |     ê 0 = − σ ν, µ.

µ ν                    ν µ

Es decir, si σ = −1, las part´ıculas son bosones y tenemos que el estado |µ, νê = |ν, µê es sim´etrico ante el intercambio de part´ıculas. En cambio, si σ = 1, las part´ıculas son fermiones y tenemos que el estado |µ, ν ê = −|ν, µê es antisim´etrico.

Como vimos anteriormente, el conjunto de todos los estados (correspon-diente a la uni´on de los diferentes subespacios de estados con n´umero fijo de part´ıcula) se denomina espacio de Fock. Una vez definidos los estados del espacio de Fock podemos expresar cualquier operador en segunda cuantifica-ci´on.

Una forma conveniente de encontrar la representaci´on de los operadores es expresar el operador en t´erminos de una base donde sea diagonal y lue-go transformar a una base arbitraria. Para esto, es ´util definir el operador
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n´umero

n     † = a a .

λ     λ λ

Este operador cumple que

n   † n           † n ( | ê ) 0 = (| )0ê

λ   λ             λ a n a      .

Es decir, el estado ( † a λ)n|0ê es un autoestado del operador n´umero con auto-valor n. El operador nλ cuenta el n´umero de part´ıculas que se encuentran en el estado λ.

4.6.1.   Ondas de esp´ın para el ferromagn´ eto

Estudiaremos ahora las excitaciones sobre el estado fundamental ferro-magn´etico usando una representaci´on de los operadores de esp´ın conocida como bosones de Holstein-Primakov. Luego, podremos extender de mane-ra natural el uso de estos operadores bos´onicos para estudiar el caso an-tiferromagn´etico. Estudiaremos el modelo de Heisenberg correspondiente al siguiente Hamiltoniano

H    Ø ˆ = 2 J    Si · ˆ Sj ,

<i,j>

donde el caso J < 0 corresponde a un sistema ferromagn´etico y entenderemos la notaci´on < i, j > como una suma entre vecinos pr´oximos en la red. Los operadores de esp´ın satisfacen el ´algebra de SU(2)

[ ˆα    β             αβγ   γ S , S ˆ i δ Ô S ˆ. j k ] = j,k k                          (4.16)

Dado el signo de la constante de acoplamiento J , el Hamiltoniano favorece las configuraciones en las que todos los espines en sitios vecinos est´an alineados en la misma direcci´on. Un estado fundamental del sistema podr´ıa ser, por ejemplo

|          p gs ê = | ↑ê ,                              (4.17) j

j

donde | ↑êj representa un estado con m´axima componente z del esp´ın en el sitio j. Si realizamos una rotaci´on cualquiera de todos los espines simult´anea-mente no cambia la energ´ıa, por lo que el estado fundamental es altamente degenerado y el sistema posee una simetr´ıa continua de rotaci´on global.

Para estudiar las peque˜nas desviaciones alrededor del estado fundamental |gsê introducimos una representaci´on de los operadores de esp´ın en t´erminos de operadores bosonicos conocidos como bosones de Holstein-Primakov

S z              † = s − aa

ó   † √ a a

S−                  † = 1 − 2 s a

2s
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El mapeo anterior reproduce las relaciones de conmutaci´on exactas entre operadores de esp´ın y el vinculo   2 S = s(s + 1). Sin embargo, es muy dif´ıcil trabajar con el mismo sin hacer aproximaciones dada la complicada expresi´on en t´erminos de los operadores bos´onicos. N´otese que el estado de m´aximo esp´ın corresponde a un estado sin bosones. El operador   − S act´ua entonces incrementando el n´umero de bosones presentes en el sistema.

Podemos utilizar un desarrollo en potencias de 1/s, para hacer el proble-ma mas f´acil de resolver, desarrollando la ra´ız en la expresi´on de los ±  S  a

orden mas bajo tendremos que

S −     √   † ≈ 2 s a √ + S ≈ 2 s a

S z              † = s − aa

Para el caso Ferromagn´etico podemos usar estas expresiones y obtener un Hamiltoniano cuadr´atico en los operadores bos´onicos.

H     Ø 1                     2 † † † †      Ø   2    †   † = 2 J s        a a    a a − a − i                                        a      J     s     a a j + j                                                   a i a     a i + 2 ( +   ) i        j   j                                   i   i   j   j a   .

<i,j>                                       <i,j>

A´un al mas bajo orden obtenemos un Hamiltoniano que contiene un t´ermino de interacci´on generado por la interacci´on   z z S S. Nosotros analizaremos pri-mero la parte cuadr´atica, que es la que domina en el l´ımite de s grande, donde ya podr´an verse las primeras correcciones al comportamiento cl´asico (que en este caso asociamos con el l´ımite s → ∞).

H     Ø 1                     2 † † † † = 2 J s        a a     a                a i + − − j       j   i       i   i       j   j a a a a

<i,j>

Ahora escribiremos la suma de forma conveniente para poder separarla en una suma sobre los sitios y otra sobre vecinos cambiando la notaci´on i ↔ x

H = 2   Ø 1     †     †    †    2 † J s a a a x x + r + a − a a − a . + r x x x a x x + r x + r       (4.18)

x,r

La suma sobre sobre x corre sobre todas las posiciones de la red mientras que r corre sobre la mitad de los vecinos de cada sitio de manera de no contar un par de vecinos dos veces. Por ejemplo en una red cuadrada (2D) puede entenderse por la suma en r como la suma sobre el vecino de la derecha

y el de arriba como se muestra en la figura 4.5. Transformando Fourier los operadores bos´onicos

a     1 Ø ik·x √ x = eak, V k
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Figura 4.5: Red cuadrada.

el Hamiltoniano (4.18) queda en la forma

A                B

H = 2 Ø        − Ø Øik· † J s − z + ik · r e + r e aa kk

k           r           r

= −2   Ø J sz 1    Ø ik·r         † − ( e + − ik · r e ) a a k 1 A               B

z                      k

k           r

A            B 2

=     Ø   Ø − 2 J sz 1 − cos(k · r) a a , †

z                k k

k           r

donde z es lo que se conoce como n´umero de coordinaci´on, es decir, la canti-dad de vecinos que tiene cada sitio de la red. Si consideramos el caso en una dimensi´on z = 2 y la relaci´on de dispersi´on queda como

H    Ø = 4J s (1 − cos(k)) − a a . †

k k

k

Es decir la relaci´on de dispersi´on est´a dada por

Ô(k) = −4J s (1 − cos(k))

que es el mismo resultado que encontramos cuando estudiamos las ondas de esp´ın en la secci´on anterior (a diferencia de un signo porque simplemente tomamos una convenci´on diferente para J en el Hamiltoniano).
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[image: ]

 

Figura 4.6: Relaci´on de dispersi´on de las ondas de esp´ın ferromagn´eticas.

Si desarrollamos alrededor de k = 0 tenemos que

A            B 2

H       Ø   Ø = − 2 J sz 1 − cos(k · r) a a †

z                k k

k            r

≈ −2   Ø   Ø k A        B 2 · ) (      2 r

J sz                       † a a z       2      k k

k       r

A       B

≈ −   Ø Ø 2( J sk · r) a a 2     †

k k

k     r

≈ −2 Ø 2   † J s | k | aa , k k

k

de donde vemos que la relaci´on de dispersi´on                 2 ε ( k ) = − 2 J s | k | es cuadr´atica y va a cero cuando |k| → 0. Este es el modo de Goldstone que corresponde a la ruptura de simetr´ıa del estado fundamental ferromagn´etico. Es importante notar que la f´ısica de bajas energ´ıas esta dominada por el modo k = 0 donde la relaci´on de dispersi´on va a cero.

4.6.2.   Ondas de esp´ın para el antiferromagn´ eto

Ahora si, podemos estudiar el antiferromagn´eto usando bosones de Holstein-Primakov. Aunque el Hamiltoniano difiere del visto para el ferromagn´eto solo en el signo de la constante de acoplamiento, la f´ısica del antiferromagn´eto es
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muy diferente. Para las llamadas redes bipartitas el estado de m´ınima energ´ıa cl´asica se alcanza con una configuraci´on alternada de los espines conocida co-mo estado de N´eel. En este estado tenemos dos subredes dentro de las cuales todos los espines se encuentran paralelos, mientras que las dos subredes se encuentran rotadas 180º una respecto de la otra. De nuevo tenemos que el sistema posee una simetr´ıa global de rotaci´on pero a diferencia del caso ferro-magn´etico, la configuraci´on cl´asica de m´ınima energ´ıa no es un autoestado del Hamiltoniano.

A continuaci´on quisi´eramos seguir con la metodolog´ıa utilizada para estu-diar el ferromagn´eto usando la representaci´on de los operadores de esp´ın en termino de bosones, pero para esto es conveniente realizar antes una transfor-maci´on can´onica de los operadores de esp´ın donde los espines pertenecientes a una subred (digamos la subred B) son rotados 180º de manera que la proyec-ci´on z del esp´ın cambie de signo y entonces, en t´erminos de estos operadores transformados, la configuraci´on cl´asica de m´ınima energ´ıa este dada ahora por todos los espines paralelos. Esto se logra (por ejemplo) efectuando una rotaci´on de 180º de los operadores de esp´ın alrededor del eje x. (Rx(π)SB). En ese caso tendremos entonces que

S ˜x        x S B = B S y             y ˜ − =

B       B S

S z             z ˜ B        , = −S B

por lo que los operadores ˜+ S y ˜− S quedan

S +                    y x y x     − ˜ ˜ B          S = ˜ SB + i        S     iS B = B −    S B =            (4.19) B

S − ˜ = ˜x    y    x         + S − i S ˜ y S iS B B B = B + S B =. B           (4.20)

Luego el Hamiltoniano para el antiferromagn´eto queda, en t´erminos de los operadores transformados

H = 2J     ( + +    − − S S ˜ Ø 1 i              S S ˜

j        i    j          i    j + ) −                      (4.21)

<i,j>

2                 S z   z S.

Como al rotar los espines conseguimos la misma configuraci´on de m´ınima energ´ıa que en el caso del ferromagn´eto, podemos usar la misma represen-taci´on bos´onica para los operadores de esp´ın y esperar que las fluctuaciones a este estado produzcan el an´alogo antiferromagn´eto a las ondas de esp´ın discutidas antes.

Entonces Para la subred A tenemos, como antes

Sz               † s − aa =

i                      i   i √

S −          † Ä s a 2

i                         i √

S + Ä    s a 2

i                         i
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y para la subred B

Sz               † ˜ s − j                a a =

√ j   j

S −          † ˜ Ä j               s a 2 S ˜+     √   j

j     Ä   s a 2j.

N´otese que nuevamente el estado con ausencia de bosones corresponde a todos los espines con proyecci´on m´axima. El Hamiltoniano en t´erminos de la representaci´on bos´onica queda

H = 2 Ø     † † J s ( a i a j + a a i j) − (    †      † s − a a s − i i )( aa jj )

<i,j>

H     Ø è     †   †       † †   † † é 2 = 2 J     − s + s( a a i + + + − ) i        j   j        i   j            j i          i   i   j   j a a a a a a a a   . a a

<i,j>

El ´ultimo t´ermino es de orden 0 s por lo que podemos despreciarlo en el l´ımite de s grande donde los t´erminos que dominan ser´an los de orden O(s) y O( 2 s)

H =                 † − 2 2 J N s + 2 Ø è           é † † J s ( † a a a i i + a j j + a i a j + a a . i j )

<i,j>

Ahora transformamos Fourier los operadores bos´onicos de la siguiente manera

a     1      −i k·x = j Ø √ ej ak N k

De esta forma el Hamiltoniano queda

                            1

H       2                           † Ø               Ø   −i(k 1 xi+k2xj) = − 2 J N s + 2 J s    1 2   k k δ 2 ,k         k       1 a a 2 + e            ak1 2  a

N k

k 1 ,k2                              <i,j>

+     Ø i(k i+k2xj)   † †  e 1 x  a a  . k N                  1 1    2 k

<i,j>

Ahora, para poder realizar la suma en coordenadas escribimos xi = xi + ar, donde ar es un vector que va desde xi hasta el r-esimo vecino. Luego tenemos              1    1 A                  B

Ø        Ø   Ø        Ø − i ( k e = e e = δ e   ,

                                  k , −k N N 1 i    2 j                                                  2 2 r 1   i                                 r 2 x + k x ) − i k + x a − ik a − ( k ik ) 1     2

<i,j>                           r           i                             r

y una forma an´aloga para el otro t´ermino similar. Usando esto en el Hamil-toniano obtenemos

C        A        B        A      B     D

H       2          Ø     †              ika                   ika       † Ø † − Ø r r = − 2 J N s + 2 J s      2 a a        e k k                  k −k                 k a + a   + e      a a    . − k

k                r                       r
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Como la suma sobre k es sim´etrica con respecto al limite superior e inferior (por ejemplo en 1D −π < k < π) podemos escribir

C        A           B        A           B     D

H = −2 2 †                                                              † †  J N s  + 2  Ø  J s  2  Ø  Ø  a  a  a  k  k  +  cos(  k  ·  r  )  a  k  a  −  k  +  cos(  k  ·  a  r  )  a  a  k  −k

k                r                           r

H       2                  † Ø è                                é † † = − 2 J N s + 2 J s      2 a a k k     k   k −k     k   k γ + a a   + γ a a − k

k

H =     2 − 2     Ø è            1         2é † † † † J N s + 2 J s a a a k k + a γ a , − k − k + k a k a − k + a k − k

k

donde γ    q k =     k · a r cos(r). El Hamiltoniano anterior puede ser diagonaliza-do f´acilmente mediante una transformaci´on de Bogoliubov, definiendo dos nuevos operadores de la forma

b k   = αk ak +     †                            † β k a a b − c − k k = α k k β k       (4.22) c†                        †                  †            † α a k        k β = a k + k   −             a      α c − k                             β b − =        (4.23) k      k k     k k

Con la condici´on   2     2 α − β k k = 1 para asegurar que los nuevos operadores cum-

plan con el ´algebra bosonica 1. Al reemplazar en H obtenemos

H = 2   2                         2               † J N s + 2 Ø î1               2 2      † J s α β α k + − γ b k 2 k k β k [ bc k k + c kk]     (4.24)

k

+ 1(              2                      ï 2 2 † † α β γ − α β b b c − γ α β . k + k ) k 2 2 k k [ c k k + k k ] + 2( β k k k k ) (4.25)

Imponemos que el coeficiente que acompa˜na a los t´erminos que no conservan el n´umero de part´ıculas se anule, junto con la condici´on sobre los coeficientes para que se cumplan las relaciones de conmutaci´on bos´onicas.

0 =     2 γ k ( + 2 α β    α β k k ) − 2 kk 1 =   2   2 α − β. k k

De las soluciones de este sistema de ecuaciones obtenemos

α2      2                               2 α β − γ 2 γ β = 1 −                    (4.26)

k     k      k k k               k +           ñ

2(                  ñ ) =1       1             (4.27) β 2                               2 − γ α β − γ −

k     k k k                k

y reemplazando en el Hamiltoniano obtenemos

H            Ø ñ    è         é † = 2 J N s( s + 1) + 2 J s        1 − + + 1 γ 2    † b b     c c       .

k    k k     k k

k

1 el lector lo puede verificar como ejercicio
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4.6 Ondas de esp´ın y operadores de Holstein-Primakoff

[image: ]

 

Figura 4.7: Relaci´on de dispersi´on correspondiente a las ondas de esp´ın anti-ferromagn´eticas.

De esta manera la relaci´on de dispersi´on de las ondas de esp´ın esta dada por

ε(           ñ k ) = J s   1                         (4.28) − 2 γ

k

∼ 2J s √ |k| (4.29)  z

Notemos aqu´ı que a diferencia del caso ferromagn´etico, la relaci´on de disper-si´on en este caso tiene un comportamiento lineal a valores de k cercanos a cero.
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Superconductividad

En este cap´ıtulo discutiremos un nuevo estado fundamental del gas de electrones interactuante: el estado superconductor. En este estado cu´antico macrosc´opico, los electrones se aparean para formar estados ligados coheren-tes llamados pares de Cooper, que cambian dr´asticamente las propiedades macrosc´opicas del sistema, dando lugar a una conductividad y un diamagne-tismo perfecto. Nos centraremos principalmente en los superconductores con-vencionales, donde los pares de Cooper se originan a partir de una peque˜na y atractiva interacci´on electr´on-electr´on mediada por fonones. Sin embargo, en los llamados superconductores no convencionales —un tema de intensa investigaci´on en la f´ısica del estado s´olido actual— el apareamiento puede originarse incluso a partir de interacciones puramente repulsivas.

5.1.   Fenomenolog´ıa

La superconductividad fue descubierta por Kamerlingh-Onnes en 1911, cuando estudiaba las propiedades de transporte del Hg (mercurio) a bajas temperaturas. Encontr´o que por debajo de la temperatura de licuefacci´on del helio, alrededor de 4, 2 K, la resistividad del Hg ca´ıa repentinamente a cero. Aunque en ese momento no hab´ıa un modelo bien establecido para el comportamiento del transporte a baja temperatura en metales, el resultado fue bastante sorprendente, ya que las expectativas eran que la resistividad llegara a cero o divergiera a T = 0, pero no que se anule a una temperatura finita.

En un metal, la resistividad a bajas temperaturas tiene una contribuci´on constante de la dispersi´on de los electrones por las impurezas, una contri-buci´on   2 T de la dispersi´on electr´on-electr´on y una contribuci´on   5 T de la dispersi´on por fonones. As´ı, la desaparici´on de la resistividad a bajas tempe-
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5.1 Fenomenolog´ıa

raturas es una clara indicaci´on de un nuevo estado fundamental. Aqu´ı uno puede preguntarse si esa resistividad cae exactamente a cero o resta una lige-ra resistividad residual, aunque peque˜na. La respuesta va en la direcci´on de la primera afirmaci´on. De hecho existen materiales que exhiben violentos cam-bios en la resistividad, alcanzando incluso valores muy peque˜nos, pero que no son superconductores. Otra pregunta de inter´es aqu´ı es por qu´e aparece una escala de energ´ıa tan baja asociada a esas temperaturas cr´ıticas, cuando la energ´ıa caracter´ısticas de un metal, su energ´ıa de Fermi, es del orden de 1 eV. Es de destacar que no todos los metales se vuelven superconductores, por ejemplo los mejores conductores, Cu, Ag, Au no lo son.

Meissner descubri´o otra propiedad clave del superconductor en 1933. En-contr´o que la densidad de flujo magn´etico B se expulsa por debajo de la temperatura de transici´on superconductora Tc, es decir, B = 0 dentro de un material superconductor, el llamado efecto Meissner, lo que significa que el superconductor es un diamagneto perfecto. Recu´erdese que la relaci´on entre B, el campo magn´etico H y la magnetizaci´on M est´a dada por:

B = H + 4πM , (5.1)

y por lo tanto, dado que B = 0 en el interior de un superconductor, la susceptibilidad magn´etica χ = ∂ M /∂H es

χ     1 − = .                    (5.2) 4 π

y como χ < 0 el material es un diamagneto. Adem´as, dado que la permeabi-lidad µ = 1 + 4πχ, que se˜nala la proporci´on B = µ no puede ser negativo, lo cual violar´ıa la estabilidad termodin´amica, realiza el valor m´as peque˜no (m´as diamagn´etico) de µ, que es µ = 0. Si aumentamos el campo magn´etico aplica-do a un superconductor, eventualmente se destruye el estado superconductor, haciendo que el sistema regrese al estado normal. Los superconductores se clasifican en dos tipos: en los de de tipo I, no existe un estado intermedio que separe la transici´on del estado superconductor al estado normal al aumentar el campo, y esta se produce abruptamente, mientras que en los superconduc-tores de tipo II, existe un estado intermedio, denominado estado mixto, que aparece antes de la transici´on al estado normal. En el estado mixto, el campo magn´etico penetra parcialmente en el material a trav´es de la formaci´on de una serie de tubos de flujo que transportan un m´ultiplo del cuanto de flujo magn´etico Φ0 = hc/2|e|.

Si bien el nombre de estos materiales sugiere que la conductividad perfecta es la propiedad fundamental de un superconductor, veamos que el diamag-netismo perfecto no puede deducirse, y es tan fundamental como aquella.
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Estudiemos las implicaciones de la resistividad nula utilizando las ecuaciones de Maxwell. Si un material es un conductor perfecto, la aplicaci´on de un campo el´ectrico acelera libremente la carga el´ectrica:

mr ¨ = −eE.                   (5.3)

Pero dado que la densidad de corriente est´a dada por J = −ensr ˙, donde ns es el n´umero de “electrones superconductores” tenemos que

∂        2 J n e =                         (5.4) s   E.

∂t     m

Si insertamos esta relaci´on en la ley de Faraday

∇ ×      1 ∂B E = − ,                 (5.5) c ∂t

obtenemos                             2 ∂ J n s e ∂B ∇ × = − .                   (5.6) ∂t cm ∂t Pero al utilizar la ley de Amp`ere para un campo el´ectrico est´atico,

∇ ×     4π B = J ,                  (5.7) c

se encuentra                                  2 ∂ B 4 πn s e ∂B ∇ × ∇ × = − .                 (5.8) 2 ∂t mc ∂t La identidad                              2 ∇ × ∇ × C = ∇ ( ∇ · C ) − ∇C y la ecuaci´on de Maxwell ∇ · B = 0 permiten llegar a la ecuaci´on

A   B     A   B ∂ B ∂ B =              (5.9)

∇2                −2 λ         ,

∂t           ∂t

donde definimos la profundidad de penetraci´on:

λ = ó   2 mc .                                       (5.10)

4    2 πn s e

¿Cu´al es el significado de la Ec. (5.9)? Consideremos un sistema unidi-mensional que es un conductor perfecto para x > 0. Resolviendo la ecuaci´on diferencial para x, y teniendo en cuenta las condiciones de contorno, obtene-mos que la derivada ∂B/∂t decae exponencialmente con x, es decir

∂     A   B B ∂ B =                     (5.11) e−x/λ.

∂t      ∂t   x=0
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Esto significa que el campo magn´etico dentro de un conductor perfecto es constante en el tiempo. Sin embargo, este no es el efecto Meissner, seg´un el cual el campo magn´etico debe anularse dentro del superconductor. Conside-remos que se aplica un campo magn´etico B0 a un material superconductor por encima de Tc, cuando a´un es un metal normal. Si enfriamos el sistema por debajo de Tc, el efecto Meissner indica que B0 tiene que ser expulsado del material, ya que el campo se debe anular en el interior. Sin embargo, para un conductor perfecto el campo conservar´ıa un valor diferente de cero, B0 dentro del material. ¡Este ejercicio nos dice que un superconductor no es solo un conductor perfecto! O dicho de otro modo, la resistividad cero no implica el diamagnetismo perfecto. Ambas son propiedades fundamentales.

Buscando entender el efecto Meissner. los hermanos London propusieron un modelo fenomenol´ogico para describir los superconductores que elimina

arbitrariamente las derivadas temporales de la Ec. (5.9):

∇2         −2 B = λB.                       (5.12)

Esta ecuaci´on captura correctamente el efecto Meissner, como discutimos anteriormente, enfatizando las propiedades diamagn´eticas perfectas del su-perconductor. Combinada con la ley de Amp`ere, esta ecuaci´on implica la siguiente relaci´on entre J y B:

∇ ×       s J − B.                 (5.13) = n 2 e

mc

Dado que B = ∇ × A, donde A es el potencial vector magn´etico, la ecuaci´on anterior se convierte en la ecuaci´on de London,

J     s − A,                   (5.14) = n 2 e

mc

en el gauge de Coulomb ∇ · A = 0, es decir, en el gauge donde el vector potencial tiene s´olo la componente transversal distinto de cero. Se debe elegir este gauge porque debe cumplirse adem´as la ecuaci´on de continuidad, ∇· J = 0.

¿C´omo podemos justificar la ecuaci´on de London? Esta no deja de ser sor-prendente en alg´un sentido, ya que la corriente es en principio una cantidad observable, mientras que el potencial vector no lo es, al menos cl´asicamen-te. Sin embargo, en mec´anica cu´antica la definici´on de la corriente que es necesaria para satisfacer la ecuaci´on de continuidad,

J    e                       2 ~ e = [ ∗ ∗    2 ψ ∇ ψ − ψ ∇ ψ ] − | ψ |A,            (5.15) 2 mi mc
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incluye un t´ermino lineal en A. Si el primero pudiera anularse por alguna raz´on tendr´ıamos la ecuaci´on de London.

London propuso adem´as una explicaci´on basada en la rigidez de la funci´on de onda en el estado superconductor. Por ejemplo, seg´un el teorema de Bloch, el momento total del sistema en su estado fundamental |Ψê (es decir, en ausencia de cualquier campo aplicado) tiene un valor medio cero, éΨ|p|Ψê = 0. Ahora, supongamos que la funci´on de onda Ψ es r´ıgida, es decir, que esta relaci´on se mantiene incluso en presencia de un campo externo. Entonces, dado que el momento can´onico est´a dado por p = mv − eA/c, obtenemos,

évê = eA                      (5.16)

mc

Como J = −ensévê, recuperamos la ecuaci´on de London (5.14).

Por supuesto, la pregunta principal es sobre el mecanismo microsc´opico que da lugar a esta rigidez de la funci´on de onda y, en ´ultima instancia, al estado superconductor. Varios de los f´ısicos m´as brillantes del siglo pasado intentaron abordar esta pregunta —como Bohr, Einstein, Feynman, Born, Heisenberg— pero la respuesta lleg´o reci´en en 1957 con la famosa teor´ıa de Bardeen, Cooper y Schrieffer (BCS) ¡casi 50 a˜nos despu´es del descubrimiento experimental de Kamerlingh-Onnes!

Las contribuciones experimentales fundamentales hicieron que las prin-cipales propiedades de los superconductores fueran m´as transparentes antes de que apareciera la teor´ıa BCS en 1957. La observaci´on de una disminuci´on exponencial del calor espec´ıfico a bajas temperaturas mostr´o que el espectro de energ´ıa de un superconductor posee un gap. Esto contrasta con el espectro de un metal normal, que no posee ning´un gap; recu´erdese que excitar un par electr´on-hueco cerca de la superficie de Fermi le cuesta muy poca energ´ıa al metal.

Otro experimento clave fue la observaci´on del efecto is´otopo. Al estudiar la temperatura cr´ıtica Tc para la transici´on al estado superconductor de ma-teriales que contienen un is´otopo de elemento diferente, se encontr´o que Tc decae con   −1/2 M, donde M es la masa del is´otopo. Dado que esta masa est´a relacionada solo con los iones que forman la red, esta observaci´on experimen-tal indic´o que la red, y por lo tanto los fonones, deben desempe˜nar un papel clave en la formaci´on del estado superconductor.

El punto principal de la teor´ıa BCS es que la interacci´on electr´on-electr´on, que resulta atractiva al estar mediada por los fonones da lugar a pares de Cooper, es decir, estados ligados formados por dos electrones de espines y momentos opuestos. Estos pares de Cooper forman entonces un estado fun-damental macrosc´opico coherente, que presenta un gap en su espectro y un diamagnetismo perfecto. La clave para la formaci´on de pares de Cooper es
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5.2 Un par de Cooper

la existencia de una superficie de Fermi bien definida, como veremos m´as adelante.

5.2.   Un par de Cooper

Gran parte de la f´ısica involucrada en la teor´ıa BCS, en especial la expli-caci´on del surgimiento de una atracci´on entre electrones, se puede discutir en el contexto de un problema simple de mec´anica cu´antica. Consideremos dos electrones que interact´uan entre s´ı a trav´es de un potencial atractivo V (r1 − r2). La ecuaci´on de Schr¨odinger viene dada por:

C                           D ~ ∇ ∇ ~

2   2        2   2

−   r1          r2 − + V (r − r ) Ψ (r , r ) = EΨ (r , r ) ,      (5.17)

2                  1      2         1    2              1    2 m    2

m

donde Ψ (r1, r2) es la funci´on de onda y E la energ´ıa del par. Como es habitual, cambiamos las variables a la coordenada relativa r = r1 − r2 ya la posici´on del centro de masa R = 1 (r1 + r2). En t´erminos de estas nuevas 2 variables, la ecuaci´on de Schr¨odinger se convierte en:

C                     D ~ ∇ ~ ∇ 2   2       2   2

−   R      r − + V (r) Ψ(r, R) = EΨ(r, R),      (5.18)

2 ∗ m     2µ

donde   ∗ m = 2m es la masa total y µ = m/2 es la masa reducida. Como el potencial no depende de la coordenada del centro de masa R, buscamos soluciones del a forma:

Ψ(           iK·R r , R ) = ψ ( r ) e,                  (5.19)

lo que da lugar a la ecuaci´on:

C             D ~ ∇ 2   2

−   r + V (r) ψ(r) = ˜ Eψ(r ),            (5.20)

2µ

donde definimos ˜ E     ~2   2 = K E − ∗ . Para un valor dado de ˜ E, la energ´ıa E m´as 2 m baja es aquella para la que K = 0, es decir, para la que se anula el mo-mento del centro de masa. Consideremos entonces el centro de masa est´a quieto, y que E = ˜ E. En este caso, los dos electrones tienen momentos opuestos. Dependiendo de la simetr´ıa de la parte espacial de la funci´on de onda, par ψ(r) = ψ(−r) o impar ψ(r ) = −ψ(−r), los espines de los electro-nes formar´an un estado singlete o triplete, respectivamente, para asegurar la antisimetr´ıa de la funci´on de onda total.
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Para proceder, tomamos la transformada de Fourier de la ecuaci´on de Schr¨odinger, introduciendo

ˆ

ψ        3          −i · kr ( k ) = d r ψ ( r ) e,                   (5.21)

y una expresi´on an´aloga para la transformada de Fourier del potencial V (r),

de donde obtenemos     ˆ   3 Í d 2 ε              k          Í k ψ ( k ) + V (      Í k − k ) ψ ( k) = Eψ(k),        (5.22) (2 π 3 )

donde ε      ~2 k = 2 k es la energ´ıa de los electrones libres. Reescribamos esta 2 m

ecuaci´on en la forma ψ        1    ˆ   3 Í d k (

k) =                V (     Í k − k) ψ ( Í k) .          (5.23) E − 2 ε k (2 π ) 3

Supongamos ahora que la atracci´on entre electrones proviene de la me-diaci´on de fonones, y para fijar ideas tomemos un modelo simple en el cual el potencial es constante en el espacio k. Pero dado que los fonones poseen un una frecuencia m´axima de excitaci´on fijada por la frecuencia de Debye, ωD , si la energ´ıa de los electrones individuales es mayor que ~ωD los fonones no ser´an efectivos en acoplarlos, en consecuencia, el potencial debe anularse cuando los valores de k involucrados impliquen que εk sea mayor que ~ωD . Es decir, consideremos un potencial que es atractivo V (      Í k − k ) = −V0 para

ε Í k , εk < ~ωD y cero en caso contrario. Obtenemos ψ      −   ˆ        3 Í V d k (

k ) =     0               ψ ( Í k) ,            (5.24) 3 E − 2 ε k π ε Í < ~ ω D (2 ) k

=   −V0 C      ,                     (5.25)

E − 2εk

donde C contiene a la integral en el lado derecho de la primera l´ınea, que da lugar a una constante independiente de k. Si ahora integremos a ambos lados en la regi´on restringida εk < ~ωD , la constante aparece en ambos miembros

y puede eliminarse, dando lugar a la ecuaci´on 1      ˆ       3 dk     1 =

V    −             ,          (5.26) 3 0 π E − ε k < (2 ) ~ ω D 2 ε k

que representa la ecuaci´on para las autoenerg´ıas E. Para resolverla es con-

veniente introducir la densidad de estados de los electrones libres, ρ      ˆ   3 dk (

ε) =         δ(ε − εk)                   (5.27) π (2 ) 3
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que permite escribir (5.26) en la forma

V 1      ˆ ~ωD     ρ(ε) = − dε ,                  (5.28) 0 E − ε 0 2

Utilizamos el resultado para la densidad de estados

ρ       1 3 2m 43/2 √ ε ( ) =ε                 (5.29) 2 2 2 π ~

y realizando la integral obtenemos

1                       ó         ó      1 2 − 2 ~ 3/

=   3   4    ñ 2 m        E          ω arctan ~ ω                  D   .     (5.30)

V      2      2 π ~                   2             − 0                                                             E 2                                    D −

Esta ecuaci´on determina el valor de la energ´ıa del estado ligado E < 0 como funci´on del potencial de atracci´on                                  − V 0 . Si tomamos el l´ımite E → 0, el segundo t´ermino se anula, y vemos que el valor m´ınimo de V0 para tener un estado ligado es

V       2 2            3 2 π ~ B/2 = 0 , m´ın √                     (5.31) ~ ω D 2 m

Por lo tanto, encontramos que habr´a un estado ligado solo si la interacci´on atractiva es lo suficientemente fuerte.

No obstante, en este ejercicio pasamos por alto un aspecto importan-te: en el sistema real de muchos cuerpos, solo los electrones cercanos al ni-vel de Fermi se ver´an afectados por la interacci´on atractiva. Para imitar esta propiedad, consideramos un potencial atractivo          Í V ( k − k) = −V0 pa-ra los estados electr´onicos desocupados por encima de la energ´ıa de Fermi εF , ε Í k − εF , εk − εF < ~ωD. Esto significa que debemos repensar los l´ımites

de integraci´on, y reescribir la integral en la ecuaci´on (5.28) con l´ımites εF y εF + ~ωD . M´as a´un, como ~ωD ¹ εF , podemos aproximar la densidad de estados por su valor en εF , y entonces la ecuaci´on para E se escribe

V 1          ˆ    ~ ε F +ωD      1 ≈ − ρ ( ε F ) dε   ,              (5.32) 0 E − ε ε F 2

= ρ(εF )   3 2εF − E + 2ω 4 D . ln             (5.33) 2 2 ε F − E

En el l´ımite de V0ρ (εF ) ¹ 1, E est´a cerca de 2εF , y podemos aproximar 2εF − E + 2ωD ≈ 2ωD . Definiendo la energ´ıa de enlace Eb ≡ 2εF − E, obtenemos:                             2 − ) E 0 ( εF b = 2 ω ρ D e V .                      (5.34)
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Se formar´a entonces un estado ligado independientemente de cu´an peque˜na sea la interacci´on atractiva V0, denominado par de Cooper. Esto es funda-mentalmente diferente del caso de electrones libres que consideramos antes, donde la interacci´on atractiva tiene que superar un umbral para crear un estado ligado. La propiedad clave responsable de este comportamiento dife-rente es la existencia de una superficie de Fermi bien definida, que separa los estados que est´an ocupados de los estados que no est´an ocupados.

La energ´ıa del estado ligado Eb es exponencialmente peque˜na en 1/V0ρ(εF ), lo que, como veremos m´as adelante, dar´a lugar a una temperatura cr´ıtica muy baja. M´as a´un, en los buenos metales, como oro, plata y cobre, el acoplamien-to electr´on fon´on es muy peque˜no (lo que los vuelve buenos conductores al disminuir la dispersi´on de electrones por los iones) y por lo tanto la tempe-ratura cr´ıtica es m´ınima y la superconductividad indetectable.

Para finalizar este apartado, recordemos que la energ´ıa total en el caso de que el centro de masa tenga un momento finito K viene dada por:

E        ~2   2 K = E K =0 + , 4 m                 (5.35) ~ 2 2 K = 2 ε F − E b + , 4 m

y por lo tanto, en el l´ımite E → 2εF , todav´ıa podemos obtener un estado ligado con momento de centro de masa finito:

K 2 ñmE =b,                 (5.36) ~

que da lugar a una densidad de corriente finita:

J = nse    = 2nse    .                 (5.37) m ~        ó K      Eb m

5.3.   Muchos pares de Cooper: estado BCS

En la secci´on anterior vimos que dos electrones cerca del nivel de Fermi son inestables frente a la formaci´on de un par de Cooper para una interac-ci´on atractiva arbitrariamente peque˜na. Esperamos entonces que el sistema electr´onico de muchos cuerpos sea inestable hacia la formaci´on de un nuevo estado fundamental, donde proliferen estos pares de Cooper. En esta secci´on, estudiaremos este estado BCS utilizando la teor´ıa de campo medio.
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5.3.1.   Hamiltoniano efectivo

Para formular una teor´ıa microsc´opica de la superconductividad conside-remos el siguiente Hamiltoniano efectivo de muchas part´ıculas:

H = Ø †                       †   † 1 Ø ξ k c c c k σ k σ + V Í kk c   c   Í   Í − k ↓ c k↑.          (5.38) Ω k ↑ − k ↓ Í k σ kk

Aqu´ı, † c                                k crea un electr´on con momento y esp´ın   , y ya incluimos el poten-kσ                                          σ

cial qu´ımico al definir ξk = εk− µ. El segundo t´ermino describe la destrucci´on de un par de Cooper (dos electrones con momento y esp´ın opuestos) y la subsiguiente creaci´on de otro par de Cooper. Observemos que este Hamilto-niano posee una forma reminiscente del Hamiltoniano general estudiado en

las ecuaciones (3.74) y (3.98), s´olo que s´olo posee t´erminos donde los pares se crean con espines opuestos, y adem´as la interacci´on pasada al espacio de coordenadas no se escribe como una funci´on simple de la distancia. Esto se debe a que es el resultado de la atracci´on efectiva generada por la media-ci´on de los fonones. Como intervienen los fonones, al igual que en el caso de un solo par de cooper visto anteriormente, s´olo pueden acoplarse electrones cuyo momento est´e restringido de modo que su energ´ıas permanezca menor que la frecuencia de Debye, es decir, el potencial V satisface que V   Í kk = 0 si |ξ k| > ~ω       Í D o | ξ k| > ~ωD

Para continuar, realizamos el desacople de campo medio habitual del

t´ermino cu´artico1

é †   †                      †   †                    †   † c c c c c c c ê c ê ≈ é c + c   éc     c   ê

k         Í        Í                                                      Í Í                                        Í        Í − ↓ ↑ ↑ ↓ ↑ k ↓ − k k k ↑ − k ↓ − k k ↑ − − ↓↑ k k ↓ k k

− é †   † c c   êéc    c   ê   (5.41)

k          Í        Í ↑ − k ↓ − k ↓ k↑

El valor medio   †   † é c c    ê podr´ıa no anularse si el estado fundamental super-conductor. As´ı, definimos la funci´on del k↑ −k↓ gap :

∆k =      V Í    Í kk é c − k↓c Í k↑ê               (5.42) Ω Í k − 1 Ø

Por ahora, no hay raz´on para llamarlo gap, pero discutiremos su significado muy pronto.

1 La aproximaci´ on de campo medio consisten en reemplazar un producto de operadores A

y B de acuerdo a

AB ≈ éAêB + AéB ê − éAêéBê (5.39)

N´ otese que el error introducido al hacer este reemplazo es

AB − éAêB − AéBê + éAêéBê = (A − éAê)(B − éBê), (5.40)

es decir, es de segundo orden en las desviaciones de A y B respecto de sus valores medios.
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El Hamiltoniano efectivo se convierte en:

H = Ø †              1      †   †                                      † Ø 2 ∗ Ø † ξ k c c c c − ↓ c ↑ é c k σ k σ − ∆ k c k ↑ − k ↓ + ∆ k k k + ∆ k c   ê k ↑ − k ↓ (5.43)

kσ              k                               k

Obs´ervese que es de la forma general (3.129) que introducimos en el cap´ıtulo

3. Posee t´erminos an´omalos, y por lo tanto para resolverlo debemos intro-ducir alguna transformaci´on que mezcle electrones con huecos. Empleamos

la transformaci´on de Bogoliubov del tipo de las ecuaciones (3.144) y (3.145) y en particular, definimos nuevos operadores fermi´onicos γkσ y coeficientes uk, vk en la forma:

c       ∗             † k↑      k u = γ     v k ↑      k − γ +

k↓                        (5.44)

c †            †         ∗ u γ −k↓     k        v = − −      γ k ↓      k k↑

Para que se satisfagan las relaciones de conmutaci´on fermi´onica, se debe verificar la condici´on de normalizaci´on:

|     2         2 u | + | v | = 1                             (5.45) k      k

que implica, adem´as, que la transformaci´on resulta unitaria. Sustituyendo en el Hamiltoniano efectivo se obtiene para el t´ermino de energ´ıa cin´etica:

Ø     Ø è †       é † † ξ k k c σ ck σ         k    ↑ ξ = c ck + k   ↑   c    c − k↓ −k↓

kσ              k

= Ø è 1          † 2 1           2 2 2 † ξ k | u k | − | v k | γ γ ↑ γ k ↑ k + γ − k ↓ − k ↓        (5.46)

k

+ 2                                 é | k       k k k↑ −              ↓ u + 2 + 2 v 2                 †          ∗ ∗ † | v γ γ u v γ    γ k                ↑ ↓ k k − k k

y para el de apareamiento:

− Ø 1 † †         2    è            1           2 ∗ Ø ∗ ∗ ∗ † † ∆ k k c ↑ c− k↓      k − c + ∆ k↓ k↑             k k k c = (∆ u v + ∆ k u v    γ       γ k k    k γ ) ↑ k↑         γ + −k↓ −k↓

k                              k

−     ∗                é ∗ (∆ + ∆ )

k k k     k k k v u v u       ∗

− Ø è 1         2 2 ∗ 2 † † ∆ u − v ∆ γ γ

k k     k k   k↑ −k↓

k

+ 1                 2       é ∆ k   k       k   k     − u ( − ) ∆ ( ) ∗    ∗ 2           ∗ 2 v   γ     γ k↓ k↑

(5.47)

De este modo, recolectando t´erminos de igual tipo en potencias de      † γ y γ, el Hamiltoniano efectivo adquiere la forma

H = H0 + H1 + H2              (5.48)
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con:

H0 = Ø è2                          é 2 ∗ ∗ ∗ † ξ k | v k | − ∆ † k u k v − k ∆ u v c k k k + ∆ k é c ê k ↑ − k ↓

k

H Ø è   1             2                      é 1                   2 2 2 ∗ ∗ ∗ † † 1           k     k        k          k k k      k k k     k↑ k↑ ξ = | u | − | v | + ∆ u v      u + ∆ v    γ γ         γ γ + −k↓ −k↓

k

H Ø è1             2é 1 2 ∗ 2 † † 2 = 2 − ∆ + ∆ + h.c.

2              k k k      k k      k k      k↑ −k↓ ξ u v u γ           , v γ

k (5.49)

Para diagonalizar el Hamiltoniano, debemos encontrar los coeficientes uk, vk que hace que el t´ermino no diagonal H2 se anule. Esto se consigue imponiendo la condici´on cuadr´atica

2ξkukvk − ∆ 2     ∗ 2 k u    . k + ∆ v k k = 0                (5.50)

Resolviendo para el cociente vk/uk se obtiene:

ñ + ∆   ξ

v        2          2 ξ | | −

k       k      k      k = ∗          ,                           (5.51)

uk          ∆k

donde elegimos solo la ra´ız positiva para asegurarnos de que la energ´ıa del estado BCS sea un m´ınimo y no un m´aximo. Obs´ervese que debido a que el numerador es real, la fase de la funci´on de gap compleja ∆k debe ser la misma que la fase relativa entre vk y uk. Dado que podemos establecer la fase de uk en cero sin p´erdida de generalidad, se deduce que las fases de vk y ∆k son las mismas.

Usando la condici´on de normalizaci´on     2 | u k | +     2 | v k | = 1, obtenemos:

 

|     2                                    | 1 1∆   2 k | u k | = 1 + v = | k | 2 2 ñ 2 u k ξ k + | ∆ 2 | 2 −         2 k ξ k ξ | k + ∆ k |         (5.52)   1 ξ k = 1 + 2  ñ  2 ξ k + | ∆ 2 k |

de lo que se sigue que

|vk| =      −  1 ñ          .               (5.53) 2 2                      k ξ 1           

2        ξk + |∆k|2

A continuaci´on introducimos la forma expl´ıcita de u y v en las expresiones para H0 y H1, Usando las relaciones anteriores, obtenemos:

H Ø è    2     ∗   ∗ ∗      † † é = 2 ξ | v | − ∆ u v − ∆ u v + ∆ é c c ê

0             k   k        k k k            k      k k k   k↑ −k↓

= Ø 3                       4 ñ † k (5.54)

ξ       2                         † 2 k − ξ | c k + ∆ k | + ∆ k é c   ê , k ↑ − k ↓

k
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y

H1 = Ø è   1             2                      é 1                   2 2              ∗       ∗ ∗ 2 ξ k | u k | − | v k | + ∆ k u k v u k + ∆ † † v γ k k k γ γ k ↑ k ↑ + γ − k ↓ − k ↓

k

= Ø ñ      1          2 † 2 ξ | k + ∆ 2 k | γ γ k ↑ k ↑ + † γ γ . − k ↓ − k ↓

k                                                         (5.55)

El Hamiltoniano efectivo resulta entonces de la forma

H Ø † = Ek γ γ     E , k +              (5.56) σ kσ     0

kσ

donde hemos introducido las energ´ıas de los estados de cuasipart´ıculas,

E     2          2 ξ + | ∆ |,                     (5.57)

k      k      k = ñ

y donde E0 es la energ´ıa del estado fundamental:

E0 = Ø 1                    2 †   † ξ k − E k + ∆ k é c c ê . k ↑ − k ↓             (5.58)

k

Queda claro a partir de la Ec. (5.57) por qu´e llamamos a ∆k la funci´on del gap: incluso en el nivel de Fermi, donde ξk = 0, el espectro de energ´ıa del superconductor tiene una gap de tama˜no |∆k|. Por lo tanto, necesitamos entregar una energ´ıa m´ınima de 2|∆k| al sistema para excitar sus cuasi-part´ıculas, que son descritas por los operadores   † γ k y que son m´as que los

Bogoliubones introducidos en la secci´on 3.3.5, y que de invertir las Ecs. (5.44) σ se observa que son mezcla de electrones y huecos:

γk↑ =           † u k c k ↑ − v k c −k↓ †         ∗ †         ∗                                (5.59)

γ      u c − k ↓ =      v c k − k ↓ + k ↑

Observemos de las Ecs. (5.53) y (5.52) que describen el comportamiento de uk y vk, que ∆k → 0     2                     2 , | u k | → 1 para ξ k > 0 y | u k | → 0 para ξk < 0 mientras que    2 | v k | → 1 para ξk < 0 y    2 | v k | → 0 para ξk > 0. Por lo tanto, en el estado normal, crear una excitaci´on de Bogoliubon corresponde a crear un electr´on para energ´ıas por encima del nivel de Fermi y crear un agujero (destruyendo un electr´on) de momento y esp´ın opuestos para energ´ıas por debajo del nivel de Fermi. En el estado superconductor, donde tanto u como v son distintos de cero, un Bogoliubon se convierte en una superposici´on de un electr´on y un estado de hueco.

Observemos que, tal como esper´abamos, el Hamiltomniano BCS no con-serva el n´umero de part´ıculas, pero s´ı su paridad. Es interesante observar adem´as que el Hamiltoniano original posee simetr´ıa SU(2) y por lo tanto, el spin se conserva y es un buen n´umero cu´antico. Esto significa que as´ı como los electrones poseen spin, los Bogoliubones tambi´en, y por ello podemos

asignarles la etiqueta σ tal como hicimos en la ecuaci´on (5.59).
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5.3.2.   Estado fundamental: Funci´ on de onda BCS

El estado de m´ınima energ´ıa corresponde al vac´ıo de Bogoliubones, |0γê, que llamaremos funci´on de onda BCS:

γ kσ |ΨBCSê = 0 (5.60)

(recu´erdese que en presencia de t´erminos an´omalos el mismo no es invariante) ¿C´omo se puede escribir esta funci´on de onda en t´erminos del vac´ıo original de electrones |0ê? Para averiguarlo, escribimos la funci´on de onda BCS como una combinaci´on arbitraria de pares de Cooper, en la forma:

|                   Ù BCS             q ê = W αq   c ↑ e    |0ê                    (5.61) Ψ         c†   † −q↓

q

donde W es una constante de normalizaci´on y αq es una funci´on a determinar. Para hacerlo, es suficiente considerar solo una especie de esp´ın. Escrita en

t´erminos de los operadores de electrones, la condici´on (5.60) se convierte en:

u              † k k ↑   BCS      k − c | Ψ ê = v c    |     ê Ψ                (5.62) k↓   BCS

Claramente entonces, cuando ck↑ act´ua sobre la funci´on de onda anterior, el ´unico factor dentro del producto que no conmuta con ck↑ es aquel para el cual                                                            †   † q = k . Centr´emonos en este t´ermino. Definiendo θk = αk c c k    para simplificar la notaci´on, tenemos:                                   ↑ −k↓

c   α †                                    ∞    n † c k c c k ↑ k ↑ − k ↑ e k ↓ | 0 ê = θ Ø θ k c k k ↑ e | 0 ê = |0ê             (5.63) n ! n =1

Por otro lado, θk satisface la relaci´on de conmutaci´on Ahora tenemos la relaci´on de conmutaci´on

[                    î      ï c k ↑   k       k    k↑   k , θ ] =       =                         (5.64) α      †     †            † c , c c α c   , ↑    −k↓      k −k↓

donde usamos que [A, BC ] = {A, B}C − B {A, C}. Entonces, de ck↑|0ê = 0, se sigue que:

c             † θ | 0 ê =   | ê 0                             (5.65)

k↑ k        k −k↓ α c

c   2 θ | ê 0 = ([c   θ , θ ] + θ c θ ) |0ê                (5.66)

k↑ k         k↑ k   k     k k↑ k

= θk ([ck↑ , θk] + ck↑θk) |0ê (5.67)

= 2     † θ k α k c   | ê, − k ↓ 0                        (5.68)

y en general,

c    n        n−1    † k↑ k θ | ê 0 = nθ   α      ê k            . k c    | 0                  (5.69) −k↓
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Por lo tanto, obtenemos

c   θ             Ø k    k      † k↑            k               − e | ê = α          c   | ê k    . ↓ 0                (5.70) n    n − =1 ( 0       ∞   n−1 θ 1)!

Ahora bien, del conmutador

è         é       è              é † θ , c α = = 0                 (5.71)

k −k↓      k   k↑ −k↓   −k↓ c c , c †   †      †

llegamos al resultado:

∞   Í n θ

c   θ              † k     Ø   k            †     θk k↑            k −k↓                k −k↓ Í e |0 ê = α c         | ê 0 = α c   e           (5.72)

Í        n !

n =0

Sustituyendo en la Ec. (5.62) se obtiene

u                †                    † k k↑   BCS      k k − c | Ψ ê = u α c   | ê v      |     ê Ψ = Ψ        (5.73)

k↓   BCS      k −k↓   BCS c

lo que implica que la funci´on αk viene dada por:

αk = v k .                                           (5.74)

uk

La funci´on de onda BCS resulta entonces

|                   Ù vk †   † c c u Ψ BCS ê = W e k ↑ −k↓ k|0ê

k                                  (5.75)

=    3          4 v 1 + 0 W Ù   k † † c c   | ê

u k↑ −k↓

k        k

donde usamos el hecho de que, debido al principio de exclusi´on de Pauli, n 1 2 † † c c n > k ↑ − k ↓ = 0 para 1. Para normalizar esta funci´on de onda, notamos que:

é0|( ∗     ∗                      †   † u v u c k + c k k ↑ c − k ↓ )( k + v k c    | ê k ↑ − k ↓ ) 0                             (5.76)

=   1                       2 † † é 0 | | k      k   k↑    − k v | + | | | ê 0                 (5.77) u 2         2c   c   c ↑    k↓ c −k↓

=   1           1         2 1          22 é 0 | | k      k            ↑             ↓ k v + 1 ↑ k              − c 1 0       (5.78) u 2         2         †                † | | | − c c − c          | ê k ↑   k

=   1           2 é 0 | | | + | | |0ê                            (5.79) u 2         2 v

k      k

Por lo tanto, la funci´on de onda BCS normalizada finalmente se escribe:

|Ψ      Ù     † 1 † 2 BCS ê = u k + v k c c | ê k ↑ − k ↓ 0            (5.80)

k

Recu´erdese que la fase de los pares de Cooper est´a determinada ´unicamente por el coeficiente vk, y esta fase coincide con la fase de la funci´on gap ∆k.
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5.4.   La ecuaci´ on del gap

Todav´ıa necesitamos determinar la funci´on del gap ∆k, dada de manera

autoconsistente por la Ec. (5.42). Usando la transformaci´on de Bogoliubov

(5.44), tenemos:

∆           Í k = V Í kk u Í v éγ Í − k Ω − 1            1 Ø ∗      †        †      2 k k ↓ γ Í ê − é γ Í γ Í ê − ↑ . k ↓ k ↑ k         (5.81) Í k

Los Bogoliubones poseen una distribuci´on de Fermi-Dirac con dispersi´on Ek,

éγ Í γ Í ê    éγ k ↑ k ↑ =   Í γ   Í − k ↓ − k↓ê =                          (5.82) βE †               †                     1

e    Í k + 1

lo que arroja:

é       †            †                                              Í 3 2 E 4 k γ Í − k ↓ γ Í ê − é γ Í γ Í ê − k ↓ k ↑ k ↑ = 1 − = tanh .        (5.83) βE e Í k + 1 2 k B T

Utilizamos adem´as las ecs. (5.52) y (5.51), obteniendo:

u∗                v Í 2 k v Í Í | u | k k = k                                  (5.84) u Í k

=    ∆ Í k     , ñ              (5.85) 2 2 2 ξ Í k + | ∆ Í k |

dando lugar finalmente a la ecuaci´on de la gap:

∆k =           tanh       .          (5.86) E − 1    V Í   Í kk ∆      3 k E   4 Í k Ø Ω Í Í 2 k 2 k B T k

Ahora podemos estudiar para qu´e valores del potencial V   Í kk y de la tem-peratura T obtenemos un gap distino de cero, y por lo tanto la soluci´on BCS discutida en la secci´on anterior. Para proceder, necesitamos discutir la forma del potencial. Basados en los resultados para la interacci´on electr´onica me-diada por fonones, consideramos un potencial atractivo constante V   Í kk = −V0 en una capa de espesor ~ωD alrededor de la energ´ıa de Fermi, |ξk|, |ξ Í k | < ~ωD (recuerde que ξk =                                           Í ε k − µ ). Como el potencial no depende de k , k, buscamos una funci´on de gap que tambi´en sea independiente de k y real, ∆k = ∆. Este tipo de funci´on de gap se denomina gap de onda s, ya que su dependencia angular es la del arm´onico esf´erico Y00, constante. Obtenemos:

1 =               tanh                     (5.87) E V                     4 0 1 3 Ø E k

Ω      2 k     2kBT k , | ξ k < ~ ω D
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Introduciendo la densidad de estados por esp´ın ρ(ε), an´aloga a la Ec.

(5.27), pero en tama˜no finito, y teniendo en cuenta al potencial qu´ımico,

ρ      1 Ø ε ( ) = δ(ε − ξ Ωk),                  (5.88) k

 

obtenemos:           ˆ                     √ ~ ω D ρ ( 2 ε ) A      B 2 dε ε + ∆ 1 = V √ 0 tanh 2 2 − ~ ω ε D 2 + ∆ 2 k B T ˆ √ ~ ω A D 2 2 dε ε + ∆ B         (5.89) ≈ V √ 0 ρ F tanh 2 2 0 ε + ∆ 2 k B T

donde hemos utilizado la forma expl´ıcita de la dispersi´on, eq. (5.57), y en la ´ultima l´ınea, usamos el hecho de que ~ωD ¹ µ para aproximar la densidad de estados dentro de la integral por su valor en el nivel de Fermi. Esta ecuaci´on autoconsistente da la funci´on gap para una temperatura arbitraria ∆(T ); estudiemos las comportamientos l´ımites. A T = 0, ya que tanh(x → ∞) → 1,

tenemos:                        ˆ ~ωD     dε 1 = V 0 ρ F ñ    ,                  (5.90) 2 2 0 ε + ∆ 0 donde denotamos ∆0 ≡ ∆(T = 0). La evaluaci´on de la integral es directa y

ad como resultado:                      A     B ω 1 ~ D = arcsinh .                   (5.91) V 0 ρ F ∆ 0

En la mayor´ıa de los casos, ∆0 es del orden de unos pocos meV, mucho menor que ~ωD , que es del orden de unas pocas centenas de meV. Por lo tanto, podemos expandir arcsinh(x) a x grande para obtener:

V 1       A 2~   B ω D = ln ,                   (5.92) ρ 0 F ∆ 0

que finalmente permite obtener el gap

∆      − 1 0               V = 2 ~ ω    0 ρF D e .                    (5.93)

De este modo, recuperamos un resultado similar a nuestro an´alisis simplifica-do de la ecuaci´on de Schr¨odinger: una interacci´on atractiva arbitrariamente peque˜na V0 da lugar a un gap finito a temperatura cero, lo que muestra que el sistema es inestable hacia la formaci´on del estado superconductor BCS. Tam-bi´en vemos que la superconductividad es un efecto no perturbativo, dada la dependencia no anal´ıtica de ∆ con V0.
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¿Cu´al es la temperatura cr´ıtica Tc para la cual aparece por primera vez un

gap distinto de cero? Para determinarlo, volvamos a la Ec. (5.89) y tomemos ∆ → 0, obteniendo

V 1     ˆ ~ωD                   ˆ ~ωD dε 3 ε 4 2 kB Tc    tanh x = tanh = dx      (5.94) ρ 0 F ε 0 2 k B T c x 0

Evaluamos la integral por partes y usamos el hecho de que ~ωD º kBTc:

ˆ ~ωD                         ~      ˆ ωD ∞ 2 kB Tc tanh x       x dx ≈ (tanh 2 kB Tc ln x ln x ) − dx 0 2 x x 0 0 cosh             (5.95) A ~ B A ω 3 D π 4 2 γ e E ~ B ω D ≈ ln − ln = ln , 2 k B T 4 γ e E c πk B T c

donde γE ≈ 0,577 es la constante de Euler. La temperatura de transici´on superconductora viene entonces dada por:

T    2 γ eE ~ω      1 − 0 c = D e V ρF ,                    (5.96) π k B

que nuevamente depende de − 1 e V0 ρF , siendo distinto de cero para cualquier

V0 arbitrariamente peque˜no. Combinando Ecs. (5.93) y (5.96) dan la relaci´on universal entre el gap a temperatura cero y la temperatura cr´ıtica:

k ∆0 ≈ 1,76. (5.97)  B  T  c

Este resultado es remarcable, porque no depende de la interacci´on V0 ni de la frecuencia de los fonones ωD . Finalmente, puede mostrarse que en cercan´ıas del punto de transici´on, el gap depende de la temperatura en la forma

∆      2 ≈ k T Bc (Tc − T )             (5.98) 7 2      8 2 π ζ (3)

donde ζ(x) es la funci´on zeta de Riemann. Utilizando la relaci´on entre Tc y

∆0, ec. (5.97) se obtiene

∆(        ó T )    T ≈ 1 , 73 1 − ,                (5.99) ∆(0) T c

de nuevo, una relaci´on universal. La figura 5.1 muestra la forma del gap ∆(T )/∆0 calculada num´ericamente en funci´on de T /Tc. El comportamiento (1         1 − T /T 2 c ) es caracter´ıstico de transiciones de fase de segundo orden.
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Figura 5.1: Gap superconductor como funci´on de la temperatura.

Uno de los primeros ´exitos de la teor´ıa BCS fue la verificaci´on de que

la relaci´on (5.97) se cumple aproximadamente en la mayor´ıa de los super-conductores conocidos en ese momento. La teor´ıa BCS tambi´en aborda el

efecto is´otopo que analizamos anteriormente: Tc en la ecuaci´on (5.96) depen-de linealmente de la frecuencia de Debye ωD , que a su vez var´ıa como la ra´ız cuadrada inversa de la masa i´onica M , es decir,                −1/2 T c ∝ ω D ∝ M, de acuerdo con las observaciones experimentales.

5.4.1.   Propiedades termodin´ amicas: calor espec´ıfico

Una caracter´ıstica clave de la teor´ıa BCS es la presencia de una gap de energ´ıa ∆ en el espectro. Tal gap se manifiesta en varias cantidades termo-din´amicas, como el calor espec´ıfico a temperaturas y la densidad de estados ρ(ε). Esta ´ultimo se puede medir experimentalmente a trav´es de microscop´ıa de efecto t´unel. En el estado superconductor tenemos, para energ´ıas positivas ε > 0 (una vez m´as, nos centramos en la densidad de estados por esp´ın):

ρ      ˆ   3 dk   3            4 ñ 2 ( ε ) = 2 δ ε − ∆ + ξ (2 k π ) 3 ˆ 3 4 ñ = dξ ρ 0 ( ξ ) δ ε − ∆ 2 + 2 ξ            (5.100)

ˆ     3           4 ñ

=           2   2 ρ F dξ δ ε − ∆ + ξ ,

donde ρ0(ξ) es la densidad de estados de la fase normal, que se ha aproxi-mado por su valor en el nivel de Fermi ya que estas son las energ´ıas que nos
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interesan. Claramente, el argumento de la funci´on delta solo puede ser cero si ε > ∆, es decir, no hay estados dentro de la gap, como se esperaba. Usando

que                                      √ 1       2 δ 3          4 ñ   Ø δ ξ ±   2 ε − ∆2 2 ε − ∆ + 2 ξ =        (5.101) ξ |

±        2 2 ∆ | √ + ξ

obtenemos                      ρ 2F ε ρ ( ε ) = √   θ(ε − ∆)                (5.102) 2 ε − ∆ 2 donde θ(x) es la funci´on escal´on habitual. El factor 2 aqu´ı es una consecuen-cia del hecho de que cuando ∆ → 0, la energ´ıa E → |ξ|, es decir, contiene dos ramas de excitaciones part´ıcula-hueco, duplicando la densidad de estados. Si usamos esta expresi´on para la densidad de estados dentro del estado super-conductor, es sencillo mostrar que el calor espec´ıfico a bajas temperaturas muestra un comportamiento del tipo       −∆/k T C ∼ e B . La transici´on supercon-ductora tambi´en afecta el calor espec´ıfico en Tc. Para investigarlo, podr´ıamos en principio calcular la energ´ıa interna total debida a las excitaciones de las cuasipart´ıculas,

Eint = E0 + Ø     † E k é γ γ k σkσ ê               (5.103)

kσ

y evaluar la derivada ∂Eint/∂T . El problema es que la energ´ıa del estado fundamental E0 tambi´en depende de la temperatura. Para evitar este pro-blema, es m´as f´acil calcular la entrop´ıa del gas fermi´onico libre formado por las excitaciones de Bogoliubones, de acuerdo a la f´ormula usual

S =    Ø − k B [(1 − fk) ln (1 − fk) + fk ln fk] ,        (5.104)

kσ

donde                  1        2 ≡ é ê = 1 + 1 es la funci´on de Fermi-Dirac. El calor f      †                  βEk γ γ / e

k      kσ kσ

espec´ıfico (por unidad de volumen) viene dado por:

C = T dS   T dβ dS     β dS = = − (5.105)

V dT    V dT dβ     V dβ

Entonces,

C = kBβ Ø dfk [− ln (1 − fk) − 1 + ln fk + 1]

V     dβ k σ

k            C               D 1 df e + 1

β                 βEk ln                 (5.106)

= B      k Ø

V          eβEk + 1    βE dβ ek k σ

=         Ek V − 2    2 k B β      k Ø df dβ k
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La derivada total se escribe

dfk    ∂fk    ∂fk ∂Ek    Ek ∂fk    ∂fk 1 ∂∆2 dβ =   +      =     +             (5.107) ∂β

∂Ek ∂β    β ∂Ek   ∂Ek 2Ek ∂β

donde usamos el hecho de que       ñ =   + ∆ . Por lo tanto, obtenemos

Ek      k ξ 2       2

C 2              B A          2 B k B β ∂f k β ∂ 2 ∆ = Ø − E k + .         (5.108) V ∂E k 2 ∂β k

Analicemos esta expresi´on cerca de Tc. Por encima de la temperatura cr´ıtica, ∆2 = 0 y Ek → |ξk|. Como ∂fk/∂ξk es una funci´on par de ξk, tenemos

∂f k     ∂fk . Usando la expansi´on de Sommerfeld: =

∂|ξ k|     ∂ξk

∂f           2 π ( ) +   ( )                (5.109)

− k               ÍÍ ≈ δ ξ δ ξ

∂ξ          6 2 k β

obtenemos, en el estado normal

2     ˆ

1       2   π k + 0 =         ( ) ( )

C     +       B      2     ÍÍ T dξξ ρ ξ δ ξ

c               3β

B    è     é 2 ξ ρ ( ξ)               (5.110)

= π 2       2 k ∂

3     2 β ∂ξ        ξ=0

2 2

=    B F A      B 2 π k ρ

3      Tc ≡ γTc

Como era de esperar, recuperamos el resultado del gas de Fermi libre (recu´erdese que ρF aqu´ı es la densidad de estados por esp´ın). Justo por debajo de                                               ∂f T c , podemos volver a tomar E k → | ξ k | y ∂f k =k , pero ahora ∂E k ∂ξ k ∆2 es distinto de cero. Por lo tanto, obtenemos:

A   B          B ∂ ∆ ∂f 2      ˆ

C 1                           2 2 1 2 − +                   k T + 0 = C T + 0 + k β dξ − ρ(ξ)

c                   c              B       ∂β                  ∂ξ            (5.111) Tc

= 1     2       ∂ A     B C T c + 0 +

+          ∆2

ρF −

∂T Tc

es decir, en Tc el calor espec´ıfico es discontinuo, mostrando un salto ∆C ≡ C     −          + ( T + 0 ) − C ( T + 0):

c                  c

∆C = ρF −                  (5.112) ∂T ∂ 2 B ∆

Tc
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Cerca de Tc, la funci´on de gap se comporta de acuerdo a la ec. (5.98), y entonces obtenemos la siguiente relaci´on universal entre el salto de calor

espec´ıfico y su valor en el estado normal, dado por la Ec. (5.110):

∆C   12 ≈ = 1,43.               (5.113) γT c 7 ζ (3)

La observaci´on experimental de esta relaci´on universal en varios materia-les superconductores es otro ´exito de la teor´ıa BCS.

5.5.   Ecuaci´ on de London y efecto Meissner

Como ya hemos mencionado, la propiedad fundamental de un supercon-ductor es el diamagnetismo perfecto, es decir, el efecto Meissner. Aqu´ımostra-remos que la teor´ıa BCS aborda naturalmente el efecto Meissner, justificando

microsc´opicamente la ecuaci´on fenomenol´ogica de London (5.14).

Consideremos el t´ermino cin´etico del Hamiltoniano en presencia de un campo magn´etico. El momento can´onico est´a dado por      e p +A, donde A es c el potencial vector, y B = ∇ × A el campo magn´etico. En el lenguaje de segunda cuantificaci´on, introduciendo el operador de aniquilaci´on fermi´onico

c rσ , el Hamiltoniano se escribe H Ø ˆ          3      42 e 3 † 1 =

σ d r crσ      p + A   c σ r            (5.114) m  2  c

Trabajamos en el calibre de Coulomb, donde p · A ∝ ∇ · A = 0. Entonces, al orden m´as bajo en la teor´ıa de perturbaciones en A, tenemos H = H0 + H1, donde H0 es el Hamiltoniano cin´etico en ausencia de campos externos y H1 viene dado por:

e     ˆ

H    Ø = d r c    · c ( A p )           (5.115)

1                       rσ           rσ mc 3    †

σ

Ahora bien, el operador corriente total viene dado por: e    ˆ          3 1 J ˆ             3 = Ø   †        e 4 − d r c σ Ω r σ p + A c r m c σ ˆ 2 A B     ˆ               (5.116) e

=     1 Ø             e 3 † Ø   3 † − d r c c A − r σ r σ d r c pc r σrσ mc Ω m σ Ω σ

Evaluando el valor medio en el estado fundamental (es decir, a temperatura cero), obtenemos J = Jd + Jp con la denominada corriente diamagn´etica

Jd = ne2 −   A,               (5.117)

mc
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y la corriente paramagn´etica Jp = é ˆ J pê, con

J ˆ         Ø      † p = 3 − d r c pc r σrσ.              (5.118) m Ω σ e      ˆ

Si Jp fuera cero, recuperar´ıamos la ecuaci´on de London (5.14) con todos los electrones formando parte del condensado superconductor, ns = n. Sin embargo, el estado fundamental en presencia de un campo no es la funci´on de onda BCS que discutimos anteriormente, que denotamos aqu´ı por |0ê,

debido a la contribuci´on (5.114) a la energ´ıa cin´etica. Dado que este t´ermino es lineal en A, en principio Jp tambi´en puede tener un t´ermino lineal en A que podr´ıa cancelar la contribuci´on diamagn´etica Jd. Esto es exactamente lo que sucede en el estado normal, donde no se observa el efecto Meissner.

En el estado superconductor, sin embargo, la situaci´on es diferente. Usan-do la teor´ıa de la perturbaciones a primer orden, el estado fundamental cam-bia en la forma          |0ê → |0ê + Ø l H | ê é | 1 0 |lê            ,                         (5.119) E

l                − E Ó 0l =0

donde |lê son los estados excitados. Entonces, como é0| ˆ J p|0ê = 0, tenemos que          J      é   ˆ                        ˆ 0 p l l H | ê = p                              +                        .          (5.120) Ø       Ø | J | êé | 0 |H | êé é 0 ll|J |0ê 1                  1        p

l             E0 − E Ól                   E0 − E =0 l Ól =0

Analicemos el elemento de la matriz él|H1|0ê, que depende de A lineal-mente. Cambiando la base de la representaci´on de coordenadas a la de mo-mentos,        1           r c q i k · √ r σ = c e k k σ, y considerando la transformaci´on de Fourier Ω

A = q   iq·r e q A q, tenemos:

H   ~e Ø Ø 1           B Í 3 i ( − q · † = A ˆ 1                                                  Í kσ     q d k k + ) r r e c · ( A k) ckσ mc σ Í Ω kk q .

= ~ Ø Ø     † ( e                                                    (5.121)

mc      k · Aq ) c    c k + q σkσ

σ kq

Para hacer contacto con la teor´ıa BCS, reescribimos este t´ermino de la siguiente manera:

~                               

H 1 = e                                † Ø † Ø +

                               k · A q        ↑ k c c +q ↑ k            q        ↓ c k · A c

mc                      k+q ↓ k

kq                   kq

=                        †  k · A q c c − k + q ↑ k ↑ ( k + q ) · A q c Í c Í − k−q↓   (5.122) ~                                       e   Ø      †       Ø Í

mc                           −k ↓

kq                    Í kq

= ~e          1                   2 Ø † † k · A q c c ↑ − c c − − ↓ k + q ↑ k − k ↓ k q mc kq
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donde usamos el hecho de que, en el gauge de Coulomb, q ·Aq = 0. Usando la

transformaci´on de Bogoliubov (5.44) y el hecho de que γkσ |0ê = 0, obtenemos el elemento de matriz

é   †                   1        †                      2 1 ∗ ∗             †   2 l | c c | ê é | u 0 = | ê + + 0

k+q↑ k↑            k+q k+q↑     k+q −k−q↓     k k↑    k −k↓ l γ v γ u γ v γ     , (5.123)

=       †      † uk é | | ê 0

+q k    k+q↑ −k↓ v l γ γ

y

é   †                       1     †              2 1                              2 ∗ ∗ † l | c c ê −   − k ↓k−q↓       l | 0 = é | uk γ    − v γ                − −                     v ↑ k            u   γ ↓ k              − k − ↓ k + q k q    k+q γ      | ê 0

k+q ↑

=        †   † − u k v k + q é l | γ γ   | ê − k ↓ k + q ↑ 0

(5.124)

Si ahora utilizamos las relaciones de anticonmutaci´on de los operadores de Bogoliubov, obtenemos

é            ~e l | H 1 | 0 = Ø                             †     † ê k · A q ( u k + q v k − u k v k + q ) é l | γ γ   | k + q ↑ − k ↓0ê.     (5.125) mc kq

Para obtener la conductividad, debemos tomar el l´ımite q → 0 para un campo uniforme. De la ecuaci´on anterior, es claro que él|H1 |0ê → 0 en este l´ımite. Adem´as, dado que el espectro de energ´ıa tiene un hueco, |E0 − El| > 2∆ en

la Ec. (5.120) — esta es la rigidez del estado superconductor. Entonces, se sigue que Jp = 0, y finalmente encontramos que

J =         ne 2 J p + Jd = −   A,            (5.126)

mc

es decir, recuperamos la ecuaci´on de London (5.117) y, en consecuencia, el

efecto Meissner. Al comparar con la Ec. (5.14), notamos que en el estado fundamental (temperatura cero) todos los electrones participan en el con-densado superconductor, es decir, ns = n, y no s´olo los electrones cercanos al nivel de Fermi. A temperatura finita, el n´umero de electrones supercon-ductores disminuye y eventualmente desaparece en Tc. Experimentalmente, la densidad del superfluido ns se puede medir indirectamente a trav´es de la

profundidad de penetraci´on, de acuerdo a la Ec. (5.10). 5.6.   Modelo de Ginzburg-Landau

Terminamos este cap´ıtulo discutiendo brevemente otro enfoque para com-prender la rigidez del estado superconductor y su relaci´on con las corrientes persistentes. Se basa en el modelo de Ginzburg-Landau, originalmente con-cebido como un modelo fenomenol´ogico para describir la superconductividad y que luego Gor’kov demostr´o que se derivaba de la teor´ıa BCS [].
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La cantidad principal en el modelo de Ginzburg-Landau es el par´ametro de orden complejo Ψ(r), que puede interpretarse como la funci´on de onda superconductora. La idea es que, por debajo de Tc, el valor medio de la funci´on de onda superconductora no es cero, es decir, éΨê Ó= 0, mientras que por encima de Tc sigue siendo cero. Sea F [Ψ(r)] la funcional que contiene la diferencia entre la energ´ıa libre del estado superconductor y el estado ´ F normal, = d r F [Ψ( r )]. De ello se deduce que el valor de equilibrio de F debe ser positivo por encima de Tc (para que la energ´ıa libre del estado normal sea menor que la energ´ıa libre del estado superconductor) y negativo por debajo de Tc. Por lo tanto, se debe anular en en Tc. Cerca de Tc, se puede expandir la energ´ıa libre F [Ψ(r)] en potencias de Ψ. Los requisitos de simetr´ıa y analiticidad imponen que los ´unicos t´erminos posibles en la expansi´on sean aquellos que involucran potencias pares de |Ψ|. As´ı, en el caso de que Ψ(r) no dependa de la posici´on r, se obtiene:

F (Ψ, Ψ∗            2    β ) = α | Ψ | + |Ψ 4 | .                  (5.127) 2

Esta es la llamada expansi´on de energ´ıa libre de Landau, con |Ψ 2 | = ΨΨ∗ ya que Ψ es una funci´on compleja. El coeficiente cu´artico β debe ser positivo, de lo contrario la energ´ıa libre no estar´ıa acotada. Para entender el significado del coeficiente cuadr´atico α, minimizamos la funci´on de energ´ıa libre tomando su derivada con respecto a Ψ∗ (se obtiene el mismo resultado si se toma la derivada con respecto a Ψ), ya que sabemos que en equilibrio la energ´ıa libre toma su valor m´ınimo:

∂ ∂F            2 α = Ψ + β Ψ | Ψ | = 0 ∗ Ψ               (5.128)

Ψ 1         2 a + β | Ψ | = 0 2        ,

y por lo tanto, hay dos posibles soluciones:

|Ψ               ó α | = 0 o |Ψ | = −           (5.129)

β

correspondientes al estado normal (Ψ = 0) y al estado superconductor (Ψ Ó= 0) respectivamente. La energ´ıa libre de cada soluci´on viene dada por:

F = 0            α2 or F = −             (5.130)

2β

respectivamente. Por lo tanto, si existe la soluci´on superconductora (es decir, la que tiene Ψ Ó= 0), esta da lugar al m´ınimo global de la energ´ıa libre.
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Claramente, debido a que β > 0, esta soluci´on solo puede ser f´ısica si α < 0. En consecuencia, para α > 0 el estado normal representa el m´ınimo global y Ψ = 0, mientras que para α < 0 el estado superconductor es el m´ınimo global y Ψ Ó= 0. Este an´alisis nos permite concluir que α debe anularse y cambiar de signo en Tc. El ansatz m´as simple consiste en una dependencia lineal:

α = a (T − Tc) . (5.131)

Reemplazando esta expresi´on en la soluci´on, encontramos que

|Ψ   ñ | ∝T c − T , (5.132)

y por lo tanto, la funci´on de onda superconductora se anula cuando el sistema se aproxima a Tc desde abajo con una dependencia de tipo ra´ız cuadrada.

Consideremos ahora el caso m´as general, en el que la funci´on Ψ(r) ya no es constante. Los requisitos de simetr´ıa y analiticidad imponen que solo las derivadas de segundo orden puedan aparecer en el desarrollo de energ´ıa libre, es decir, t´erminos de la forma |∇Ψ 2 |. El coeficiente de este t´ermino debe ser positivo, ya que al sistema le cuesta energ´ıa mantener una funci´on de onda no uniforme, lo cual est´a relacionado con el concepto de rigidez. Debido a que el par de Cooper est´a cargado, debe acoplarse al campo electromagn´etico a trav´es del acoplamiento m´ınimo usual ~       2e ∇ +A, donde A, donde el factor i c 2e se debe a que el par de Cooper tiene carga −2e. Por lo tanto, la funcional de energ´ıa libre se convierte en:

F [Ψ(r), Ψ ∗                            β ( r ) 2 , A ] =        4 α | Ψ( r ) | + | Ψ( r ) | 2

+ 1    ~     2   B        2 e B ∇ + A Ψ 2 | | + . (5.133) 4 m i c 8 π

El ´ultimo t´ermino es s´olo la energ´ıa del campo electromagn´etico. El hecho de que tengamos 4m en lugar del habitual 2m se debe a que el par de Cooper tiene dos electrones. Esta es la llamada expansi´on de la energ´ıa libre de Ginzburg-Landau. Fue propuesto por primera vez por Ginzburg y Landau por motivos fenomenol´ogicos antes de la teor´ıa BCS. M´as tarde, Gor’kov demostr´o que esta energ´ıa libre se puede derivar directamente de la teor´ıa microsc´opica BCS.

Derivemos ahora las ecuaciones de equilibrio. T´engase en cuenta que ne-cesitamos minimizar la energ´ıa libre con respecto a Ψ y A. Para ello, es
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conveniente escribir expl´ıcitamente el t´ermino del gradiente en la forma:

4 1 A ~      2    B A e ~       2     B e ∇ Ψ + A Ψ · − ∇ Ψ ∗ + A Ψ ∗ m i c i c

= Ø      ∗ Ø i ~ 2~                2 2 e e A ∗ ∗ ∂ i Ψ Ø ∂ i Ψ − (Ψ ∂ i Ψ − Ψ ∂ i Ψ ) A i + i   2 | Ψ | (5.134) 4 m mc i i 2 2 mc i donde expresamos la ecuaci´on en t´erminos de los componentes vectoriales del operador ∇ y del potencial vector. Minimizando la funcional con respecto a Ψ∗ se obtienen la ecuaci´on de Euler-Lagrange:

1 A        B e2

αΨ + βΨ|Ψ| +      ∇ +   A   Ψ = 0.        (5.135) m 2            ~       2

4    i      c

N´otese su similitud con la ecuaci´on de Schr¨odinger. Para minimizar la funcio-nal de energ´ıa libre con respecto a A, es conveniente reescribir la contribuci´on magn´etica a la energ´ıa libre en la forma:

B 2                2 |∇ × A |     1 8        8π      8π i,j,k,l,m π =      =    Ø εijkεilm ∂jAk∂lAm      (5.136)

donde usamos el s´ımbolo de Levi-Civita εijk, y la ecuaci´on de Euler-Lagrange correspondiente se escribe

− i e                         2 ~ 2 e (Ψ ∗ ∇ Ψ − Ψ ∇ Ψ ∗A ) +    2      1 | Ψ | = − ∇ × (∇ × A).     (5.137) 2 2 mc mc 4 π

Finalmente, usando la cuarta ecuaci´on de Maxwell, ∇ × B = 4πJ /c, obte-nemos una ecuaci´on para la corriente superfluida,

J     e                        e ∗ ~ (Ψ 22 A = ∇ Ψ − Ψ ∇ Ψ ∗ )   2 − − | Ψ |.         (5.138) 2 mi mc

Un an´alisis adicional que no se discutir´a aqu´ı revela que la amplitud de la funci´on de onda superconductora       2 | Ψ( r ) | debe ser igual a la mitad de la densidad del superfluido ns/2. Por lo tanto, en general podemos escribir

Ψ(      1 ñ      r r ) = iθ () √ n s ( r ) e                (5.139) 2

donde θ(r) denota la fase del condensado superconductor. El factor de 1/2 explica el hecho de que la carga asociada con la funci´on de onda es la carga del par de Cooper −2e. En el caso de que la densidad del superfluido sea
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homog´enea, solo la fase de la funci´on de onda superconductora depende de la posici´on, lo que produce la corriente del superfluido

A         A B    B 2 e ~ ns n s

J =              e −     ∇θ −     A.         (5.140)

2m        mc

El segundo t´ermino muestra que para una fase superconductora uniforme ∇θ = 0, recuperamos la ecuaci´on de London. El primer t´ermino muestra que cuando A = 0 una fase no uniforme da lugar a un flujo de corriente en estado superconductor, y viceversa. En la mayor´ıa de los sistemas mec´anicos cu´anti-cos, los cambios macrosc´opicos en la fase global no modifican las propiedades del sistema. Aqu´ı, sin embargo, todo el estado superconductor tiene la misma fase, y los cambios macrosc´opicos en θ conducen a cambios en las propieda-des macrosc´opicas del sistema debido a esta coherencia de fase global. En el lenguaje BCS, la coherencia de fase proviene del factor vk en la funci´on de

onda (5.80), que dota a cada par de Cooper de la misma fase. Si aplicamos a la fase una variaci´on suave en la escala macrosc´opica, lo que resulta en ∇θ no nulo, pero peque˜no, el condensado superconductor responde desarrollan-do una corriente J . Debido a que esta corriente es el resultado de minimizar la energ´ıa libre de Ginzburg-Landau, debe ser una propiedad de equilibrio y no puede disipar energ´ıa. Esto permite que el sistema se comporte como un conductor perfecto.

La expresi´on (5.140) tiene otras consecuencias importantes. Primero, obs´erve-se que si colocamos dos superconductores uno al lado del otro, separados por una delgada barrera aislante, la diferencia en la fase de las dos funciones de onda superconductoras dar´a lugar a una corriente que fluir´a a trav´es de la uni´on. Esto se conoce como el efecto Josephson.

En segundo lugar, consideremos la situaci´on en la que se hace un agujero dentro de un superconductor, y dentro de este agujero el sistema se encuen-tra en el estado normal. Si consideramos un camino cerrado que rodea este agujero, pero que pasa dentro del estado superconductor, la corriente a lo

largo de esta curva tiene que anularse. Entonces, integrando la Ec. (5.140) a lo largo de este camino se obtiene

˛            ˛ c ~ A · d l = − ∇θ · dl.              (5.141) 2 e

Si aplicamos ahora el teorema de Stokes se encuentra

˛        ˆ              ˆ

A · dl =   (∇ × A) · dS =   B · dS = Φ,      (5.142)

S                  S
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donde Φ es el flujo magn´etico. Como la fase θ solo puede cambiar por m´ulti-plos de 2π desde el punto inicial hasta el punto final del ciclo, obtenemos

Φ = hc n                    (5.143)

2|e|

donde n es un entero arbitrario. Por lo tanto, el flujo magn´etico de una regi´on normal dentro de un superconductor tiene que ser un m´ultiplo del cuanto de flujo Φ     hc 0 = 2 | e| .

N´otese que la funcional (5.133) es invariante bajo transformaciones de gauge simult´aneas, tanto en el potencial vector A → A + ∇χ como en la fase,          2e θ → θ −χ, ya que ambas se cancelan entre s´ı. Sin embargo, en el estado ~ c

superconductor, debido a que la fase se encuentra fija, el sistema en realidad rompe la invarianza de gauge: la simetr´ıa rota por el estado superconductor es la simetr´ıa de gauge U(1). Uno esperar´ıa que la ruptura de esta simetr´ıa continua diera lugar a un modo de Goldstone. Sin embargo, esto no es cierto porque se trata de una simetr´ıa local, no global, que se acopla al potencial vector electromagn´etico. Esta es la principal diferencia con un superfluido neutro, que tiene un modo Goldstone asociado con la fase.

De hecho, se puede demostrar que la ruptura de la invarianza de gauge da lugar a una masa efectiva para el campo electromagn´etico, lo que constituye el c´elebre mecanismo de Anderson-Higgs. Consideremos, por ejemplo, la energ´ıa libre asociada a los cambios en la fase de un superconductor (es decir, se

supone que la densidad del superfluido es constante). De la ecuaci´on. (5.133), la energ´ıa libre se escribe

F   n ˆ     3           2 2 3 e 4 s = d r ~ ∇ θ + A            (5.144) 4 m c

A esta energ´ıa libre se le puede sumar la energ´ıa electromagn´etica, que es proporcional a 2 2 q A ⊥, donde q es el vector de onda del campo y A⊥ es la componente transversal del campo. Sin entrar en detalles, mencionemos que si se integran las fluctuaciones de la fase a partir de la energ´ıa libre, se obtiene una energ´ıa libre efectiva para el campo electromagn´etico de la forma

F   Ø 1        2 − 2 2 ∝ λ + A (q) · A (−q)         (5.145) eff                                   ⊥             ⊥ q         .

q

El t´ermino   −2 λ ∝ ns es la profundidad de penetraci´on (al inverso cuadrado) act´ua como una masa efectiva para el campo electromagn´etico. Esto no es sorprendente: el efecto Meissner implica que el campo magn´etico es “masivo” dentro de un superconductor, ya que decae a medida que se propaga desde la interfaz hacia el interior del superconductor. El responsable de dar masa
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5.6 Modelo de Ginzburg-Landau

al superconductor, es decir, el “bos´on de Higgs”, es el mismo condensado superconductor, m´as espec´ıficamente, su rigidez ns. Por lo tanto, la rigidez es la propiedad clave responsable del efecto Meissner, y no la funci´on del gap ∆; de hecho, se pueden encontrar superconductores sin gap que sin embargo exhiben efecto Meissner y corrientes persistentes.
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Bosonizaci´ on

En este cap´ıtulo veremos una breve introducci´on a la bosonizaci´on. Esta t´ecnica ha sido muy exitosa en el estudio de sistemas fuertemente correla-cionados en una dimensi´on. Presentaremos aqu´ı solo algunas de las ideas principales. El lector puede a partir de lo visto en este capitulo profundizar

m´as en el tema en la bibliograf´ıa espec´ıfica del tema [11]. 6.1.   Equivalencia entre operadores fermi´ oni-

cos y bos´ onicos

6.1.1.   Campos fermi´ onicos

Tomemos una teor´ıa que puede formularse en t´erminos de un conjunto de operadores de creaci´on y de aniquilaci´on fermi´onicos en una dimensi´on espacial, que satisfacen relaciones can´onicas de anticonmutaci´on

{     † c , c    }   δ   δ   δ   . =                    (6.1)

krs    Í   Í   Í                   Í        Í         Í k r s kk rr σσ

donde r representa la quiralidad, que distingue part´ıculas que se mueven a la derecha (r = +1) o a la izquierda (r = −1) y s en general distingue especies de fermiones, por ejemplo en problemas de m´ultiples cadenas, pero que usualmente se utilizar´a para indicar el spin electr´onico (s = +1 para spin para arriba y s = −1 para spin para abajo), y un ´ındice discreto y no acotado k que denota el momento (o n´umero de onda), de la forma

k   2π 3     1   4 n = k − δ rs ,     con nk ∈ Z y δrs ∈ [0, 2).       (6.2) L 2

(n´otese que los valores de k son diferentes para fermiones de distinto tipo). Aqu´ı L es la longitud asociada al tama˜no del sistema y δrs es un par´ametro
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que determina las condiciones de contorno del problema. En principio es po-sible que cada especie posea su propia condici´on de contorno. El modelo f´ısico original del que provienen estos fermiones ser´a el responsable de dictarlas. La cantidad k usualmente etiqueta las autoenerg´ıas Ôk del sistema libre (con Ô0 correspondiente a la energ´ıa de Fermi ÔF). Que este ´ındice sea discreto y no acotado es un requisito indispensable para realizar una derivaci´on rigurosa de las identidades de bosonizaci´on. Estas identidades son independientes de un problema espec´ıfico como puede serlo el modelo de Tomonaga-Luttinger, o el problema de Kondo; y de la relaci´on de dispersi´on Ôk. Esto es posible porque dichas identidades son igualdades entre operadores, es decir, v´alidas cuando act´uan sobre cualquier estado del espacio de Fock. Son independien-tes entonces del Hamiltoniano, cuya forma detallada s´olo se vuelve relevante al calcular funciones de correlaci´on. Su aplicaci´on a modelos m´as concretos ser´a analizada m´as adelante. Comenzando con un conjunto de operadores de

destrucci´on ckrs con las propiedades (6.1) y (6.2), definimos un conjunto de campos fermi´onicos de la siguiente manera:

rs                            krs          rs                             krs ( x     1    ∞ Ø ikrx ) = †                Ø   −ikrx † 1 ∞

√    e c ,      x () = √      e    c ,    (6.3)

L                    L k = −∞ k=−∞

donde x ∈ (−∞, ∞) es la variable espacial. Sus inversas son

c       1 ˆ L                          ˆ L 1 − † = krs irkx √ dx e ψ rs ( x ) , c √ krs =    irkx † dx e ψ    . rs ( x )    (6.4) L 0 L 0 Los operadores ψ satisfacen las condiciones de contorno

rs                         rs ( x + L ) = e ψ(x),                      (6.5) −iπrδrs

que son peri´odicas para δrs = 0 y antiperi´odicas para δrs = 1. Las ecuaciones

(6.1) y (6.2), junto con la identidad

Ø    Ø iny e = 2 π δ(y − 2πm),           (6.6) n∈ Z          m∈Z

implican de inmediato las relaciones de anticonmutaci´on

{        †      Í                  Ø           Í           −iπrδ Í ψ rs ( x ) , ψ Í Í x δ Í δ x − x e r s ( ) } = rr δ σσ ( − mL )rsm,      (6.7)

m ∈Z

{            Í                     †                †          Í ψ rs         Í   Í                                                    Í x ( ) , ψ r s               rs x ( ) } = { ψ ( x) ( ,    Í    x )} = 0                                (6.8) r s             .

Para    Í x, x ∈ [0, L] o L → ∞, y condiciones de contorno peri´odicas se reducen a las relaciones usuales para campos fermi´onicos.
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El vac´ıo fermi´onico |0ê0 (llamado a veces mar de Fermi ) se define en la forma

c krs |0ê0 ≡ 0     para     k > 0 (i.e. nk > 0),            (6.9) c † |0ê ≡ 0     para     k ≤ 0 (i.e. n ≤ 0),          (6.10)

krs    0                                      k

es decir que es un estado que posee todos los estados con k < 0 ocupados y aquellos con k > 0 libres. Respecto a este vac´ıo se define la operaci´on de orden normal del producto de operadores ABC . . . como

: ABC · · · : = ABC . . . − 0é0|ABC . . . |0ê0,           (6.11)

para                       † A, B, C, . . . ∈ { ckrs ; c   }. Esta definici´on es equivalente a agrupar

krs

todos los operadores                            † ckrs con k > 0 y todos los c krs con k ≤ 0 a la derecha de los dem´as. N´otese que una expresi´on del tipo † c c       k k k con arbitrario no est´a necesariamente ordenada normalmente, ´unicamente lo est´a si k > 0.

El operador n´umero de part´ıculas se define como

N    Ø      Ø è † †      †    é ≡ : − é | | ê :=    (6.12) ˆ      ∞          ∞

rs               krs krs               krs krs    0     krs krs    0 c c c c c 0 c 0 .

k=−∞          k=−∞

Designamos con N = (N1, . . . , NM ) al conjunto de los autovalores Nrs para las diferentes especies, y por abuso de lenguaje diremos que un estado de N part´ıculas es un estado en el que hay Nrs part´ıculas de tipo rs. N´otese que es posible aniquilar part´ıculas con k < 0 (ya que justamente el mar de Fermi est´a lleno hasta el nivel k = 0). Alternativamente en este caso decimos que creamos un agujero con impulso k. Esto disminuye el autovalor Nrs, que puede tomar as´ı valores negativos.

El conjunto de autoestados con un dado N conforman el espacio de Hilbert de N part´ıculas HN. El espacio de Fock F se define como suma directa de los espacios de Hilbert con n´umero fijo de part´ıculas F = q   H ⊕ NN. Entre todos los estados con el mismo N hay uno que posee menor energ´ıa, es aquel que est´a lleno hasta un determinado nivel, y vac´ıo de all´ı en m´as: es el estado fundamental de HN, |Nê0 . Podemos dar una definici´on m´as precisa de este estado:

|           Ù N N ê 0          rs C ≡ |0ê ,                         (6.13) rs

0

rs

donde               †     †          † c  c . . . c            N   > , N  rs rs ( N rs − 1) rs 1 rs para rs 0  N C rs ≡ rs 1 para N rs = 0 ,       (6.14)

                para N < 0. c      c       . . . c  (N +1)rs (N +2)rs     0rs          rs rs           rs
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6.1.2.   Campos bos´ onicos

A partir del estado |0ê0 pueden construirse el resto de las excitaciones de N part´ıculas. Definimos los siguientes operadores de creaci´ on y aniquilaci´ on bos´ onicos que cumplen dicha tarea,

i      ∞                  ∞ − i             (6.15)

b†               Ø   †                              Ø   † ≡ qrs                    k+q rs krs √ c     c   ,     bqrs ≡ √ c     c   , k

n                                −q rs krs n

q                                         q k = −∞ k=−∞

donde       + n q ∈ Z es un entero positivo, y q = 2πnq/L > 0. Estos operadores, al actuar sobre cualquier estado |Nê0 crean una combinaci´on de excitaciones de part´ıcula-agujero sobre ese estado con q unidades de momento m´as (o menos), pero sin salirse de HN. En este sentido son operadores que aumentan y disminuyen el momento. Su normalizaci´on se eligi´o de modo que satisfagan relaciones de conmutaci´on bos´onicas

[                       †     †                                                  † b Í qrs , b Í Í q r s ] = [ b , b Í Í Í , N , b Í Í Í N , b qrs q r s ] = 0 [ ˆ rs q r s ] = [ ˆ rsÍ Í Í        , q r s ] = 0     (6.16)

[         †                                        1 1 ∞

b                              Ø           2 † † qrs    Í                                Í , b q Í   Í                Í δ δ r s      rr   σσ ñ                   Í                  Í k + q − q rs krs k + q rs k+q rs Í c ] =

c   − c     c

nqn q k=−∞

=      Ø î †       † δ Í Í rr δ σσ δ qq [: c c krs 1 krs : − : c    c k + q rsk+q rs :] n q k + 1                                2ï é | ê | − é | | ê

0      krs krs    0    0     k+q rs k+q rs    0 c c 0 0 c c 0 0 †                      †

=δ Í      Í rr δ Í σσ δ qq .                                         (6.17)

Las ecuaciones (6.16) se pueden verificar f´acilmente, pero la derivaci´on

de (6.17) requiere cierto cuidado, como notaron por primera vez Mattis y

Lieb [11]: para q Ó= Í q los dos t´erminos en la primera l´ınea ya est´an ordena-dos normalmente (esto es porque sus valores medios de vac´ıo son nulos) y pueden restarse trivialmente mediante un cambio            Í k → k − q en el segun-do t´ermino, dando cero como resultado. Sin embargo, para q = Í q antes de hacer la sustracci´on debemos construir expresiones ordenadas normalmen-te, de otro modo estar´ıamos restando expresiones infinitas de un modo no controlado. Los t´erminos en la segunda l´ınea se cancelan, reemplazando en el segundo t´ermino k → k − q (esto ahora si se puede hacer porque est´an

ordenados normalmente). La definici´on del vac´ıo (Ecs. (6.9) y (6.10)) implica que la diferencia en los valores de expectaci´on de la tercera l´ınea arroja como

resultado                               − n 1 0 q Ø Ø    1 −   = nq = 1.             (6.18) n q n n k = −∞ n k = −∞ q
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N´otese que la construcci´on de los operadores bqrs (6.15) y la derivaci´on de

los conmutadores (6.17) descansa fuertemente en el hecho de que el conjunto de ks es infinito y no acotado por debajo.

Es f´acil verificar que dentro de HN, |Nê0 act´ua como estado fundamental para las excitaciones bos´onicas:

b qrs |Nê0 = 0,      para todo q, r, s.                 (6.19)

Intuitivamente esto es claro: si |Nê0 es el estado fundamental entre todos aquellos que contienen N part´ıculas, entonces no se le pueden quitar unidades de momento sin quitar part´ıculas, es decir, sin salir de HN.

Es obvio que los estados excitados |Nê que conforman el espacio de Hilbert de N part´ıculas se pueden obtener actuando sobre |Nê0 con alguna funci´on

de los operadores fermi´onicos: |Nê = ¯ f ( † c , c Í Í Í | ê krs k r s ) N0. Haldane [11] mostr´o que tambi´en existe una representaci´on en t´erminos de los † b qrs. M´as espec´ıfi-camente, mostr´o lo siguiente:

Teorema 1                                      † Para cualquier estado | N ê , existe una funci´ on f ( b) tal que

|              † N ê = f ( b)|Nê .                              (6.20) 0

Esta es una afirmaci´on para nada trivial ya que los operadores † b crean com-plejas combinaciones de excitaciones part´ıcula-agujero; y constituye el co-raz´on de la bosonizaci´on debido a que implica una igualdad entre espacios de Fock bos´onicos y fermi´onicos. Omitiremos aqu´ı la demostraci´on, y remi-tiremos al lector a la mencionada referencia.

El estado fundamental |Nê0 sirve para definir una operaci´on de orden normal bos´onica de un producto de operadores de tipo bqrs y † b qrs de manera

an´aloga al orden normal fermi´onico (6.11). M´as a´un, ambos son equivalentes, es decir que si un producto de operadores bos´onicos est´a ordenado normal-mente de acuerdo al orden bos´onico, entonces tambi´en lo est´a de acuerdo al orden fermi´onico, y viceversa. Por este motivo se utiliza la misma notaci´on para ambos.

Con los operadores bos´onicos definidos en la Ec (6.15) podemos definir campos bos´onicos:

ϕrs (x) =             irqx     −aq/2 − r √ e b qrs e , n Ø 1

q>0     q                                (6.21) 1

ϕ†              Ø       −irqx †    −aq/2 x ( ) = − r √ e b e,

rs                               qrs n

q>0     q
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y su combinaci´on herm´ıtica

φ               † ( x ) = ϕ ( x ) + ϕ x ()

rs          rs          rs

=        irqx     −irqx †    −aq/2       (6.22) Ø 1 1                 2 − r √ e b qrs + e b e . qrs n q q> 0

Aqu´ı a > 0 es un par´ametro infinitesimal que regulariza divergencias ul-travioletas que ocurren en ciertas expresiones y conmutadores no ordenados normalmente. Usualmente se toma del orden del espaciado de red a ∼ 1/kF. Por construcci´on, los campos ϕrs(x) y φrs(x) son peri´odicos en x con per´ıodo L. As´ı definidos, estos campos satisfacen las relaciones de conmutaci´on

[                                            †       Í ϕ Í rs ( x ) Í † , ϕ Í r s ( x )] = [ ϕ x Í rs ( ) , ϕ Í x         , r s ( )] = 0                               (6.23) [              † ϕ rs ( x )      Í                 Ø              Í 1 , ϕ Í Í x δ Í Í s ( )] = q [ ir ( x − x)−a] rr δ σσ e r                        (6.24) n q q> 0

=       è      2π       Í     é − δ Í                                      [ir(x−x )−a] rr     Í δ σσ           L − ln 1 e (6.25)

L              5                  6 →∞ 2 π

−−−→ −                    Í δ δ ln [ a − ir ( x − x)] .      (6.26)

rrÍ         Í σσ          L

La Ec. (6.25) se obtuvo utilizando la expansi´on en serie de log(1 − y). Aqu´ı se ve claramente que a act´ua como cut-off de la divergencia ultravioleta para x = Í x . Estos conmutadores son ´utiles en la evaluaci´on del producto de operadores de v´ertice (exponenciales de campos bos´onicos). Utilizando la identidad

eA B    A+B    ] [ A,B/2 e = e e,                    (6.27)

para operadores A y B que conmutan con [A, B], obtenemos

e iϕ †                                                                  3   41/2 † † L ( x ) ( x ϕ ϕ ) ( x / rs iϕ + e rs ) = i ( x ) )] e rs rs )( [ iϕ ( x ,iϕ 2 e rs rs =   iφ   x e rs (),    (6.28) 2 πa

e−        †                                                              3   4 2πa 1/2 † † iϕ ) i ϕ + )( ) [ iϕ ( ) − ( )] 2 rs ( x − iϕ ( ) ϕ x − x iϕ x e rs x = − ( / e rs rs e rs , rs = −iφ (x) e rs. L (6.29)

N´otese que estas f´ormulas son v´alidas para cualquier valor de L siempre que a sea suficientemente chico (esto es as´ı porque para       Í x = x el l´ımite L → ∞

en (6.25) es equivalente a a → 0). Resulta interesante tambi´en la evaluaci´on del conmutador del campo φrs(x) con su derivada:

[ rs(x)            Í , ∂ Í Í x φ Í r s ( x )] =                            [ir(x−x )−a]n         [−ir( −x − ] q Í δ q x ) a − irδ Í L L rr σσ e + n e . L φ 2   ∞ π è Ø 2π     Í        2π      Í     é  n  q  =1

(6.30)
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A partir de aqu´ı podemos obtener dos expresiones diferentes de acuerdo a c´omo se tomen los l´ımites para L → ∞ y a infinitesimal. Si queremos una ex-presi´on no peri´odica, para L grande, es conveniente hacer la suma geom´etrica, y posteriormente tomar los l´ımites dejando el l´ımite a → 0 para el final:

[               Í rs ( x )          Í , ∂ Í x φ Í                   Í r s ( x )] = − δ Í rr δ σσ     ir     2π           Í         +   2π           Í L φ                       2    C π       1                1       D [ a − ir ( x − x )] a + ir x − x e L − 1 [ ( )] e L − 1 (6.31)

C                 D a/π 1

−−−→ − L →∞2πirδ Í rr δ Í σσ               −

(      Í 2 x − x ) + 2 a    L

(6.32)

−−→ − 2 a →              5              6 0 πirδ Í rr δ   Í σσ δ( x − x ) −   .    (6.33) Í            1

L

N´otese que para tomar correctamente el l´ımite L → ∞ en la primera l´ınea de las expresiones precedentes, se deben desarrollar los exponenciales hasta orden cuadr´atico en 1/L. Para L finito, en cambio, tomamos primero el l´ımite

a → 0 en (6.30), y utilizamos la identidad (6.6):

[                         Í                               Ø            Í φ rs ( x ) , ∂ Í x φ Í Í r s ( x )] = − δ Í rr δ Í σσ 2 πir  δ ( x − x − nL) −     ,      (6.34) L 1                   

n∈Z

donde el t´ermino 1/L en esta ´ultima ecuaci´on aparece debido a la ausencia

del t´ermino nq = 0 (q = 0) en la Ec. (6.30). Finalmente podemos calcular el conmutador del campo φrs con si mismo, obteniendo

[φrs(x), φrs( Í        L →∞,a→0 x )]                       Í −−−−−−→ πirδ Í Í rr δ σσ Ô ( x − x ),           (6.35)

donde                        

±1 si x ≷ 0

Ô(                      , x) =                       (6.36)

0   si x = 0.

6.1.3.   Factores de Klein

Los operadores b y † b crean excitaciones dentro del espacio de Hilbert de N part´ıculas. Debemos definir entonces operadores que conecten espacios de Hilbert con diferente n´umero de part´ıculas, es decir, operadores escalera que aumenten o disminuyan el n´umero fermi´onico total, cosa que no pueden hacer los operadores bos´onicos.

Definimos los                        † factores de Klein F y F como operadores con las siguientes propiedades: i ) conmutan con todos los operadores bos´onicos:

[          †                               †       †           † b qrs , F Í Í b , F Í Í b , F Í b   , F Í Í           ∀ r s ] = [ qrs r s ] = [ Íq, qrs r s ] = [ qrs r s ] = 0         (6.37)
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y ii) su acci´on sobre un estado           † | N ê = f ( b)|Nê0 es la de agregar una part´ıcula en el nivel m´as bajo posible, y la de quitar una en el m´as alto respectivamente:

F †             †   † | N ê ≡ f c         Nê ( ) |                      (6.38)

rs                              0 ( N rs +1) rs b,

F        † | N ê ≡ f ( b)c    |Nê .                   (6.39) rs                Nrsrs     0

As´ı definidos, los factores de Klein poseen las siguientes propiedades:

F   †        † F F = F                                      , = 1 (unitariedad)      (6.40)

rs rs      rs rs

{ †                                                                Í      Í F , F δ ∀ } = 2 δ r, r , s, s,       (6.41)

rs     Í   Í                      Í         Í r s rr σσ

{ †     †                                                        Í Í F , F Í Í } { F , F rs r s =        Í Í rs r s } = 0 ∀ r Ó = r , s Ó = s,       (6.42)

[ ˆ      †                 † N rs , F Í Í δ Í δ Í F                   , F r s ] = rr σσ , N rs [ ˆ Í Í r s ] = −δ Í    Í rs rr δ σσ Frs.       (6.43)

Para probar la unitariedad es fundamental que el espectro del operador ˆ Nrs sea no acotado.

6.1.4.   Identidades de bosonizaci´ on

Con todas las definiciones y propiedades estudiadas estamos en condi-ciones de establecer igualdades entre operadores de campos bos´onicos y fer-mi´onicos. La primera de ellas, la m´as simple de derivar, establece una igual-dad entre la densidad electr´onica ordenada normalmente, y la derivada del campo bos´onico ∂xφrs(x)

ρrs (x) ≡ :   †                 Ø irqx Ø   † ψ ψ rs 1 ( x ) rs ( x ) := e : c    c k − q rskrs :             (6.44) L q k

= 1     √   1                2 Ø irqx − irqx †   1 Ø   † i n q e b qrs − e b qrs + : c c krskrs :     (6.45) L L q> 0 k

=   ∂        N x φ ˆ − 1           1 2 rs ( x ) +rs    (para a → 0).               (6.46) π L

Aqu´ı el orden normal es fundamental para trasladar los ´ındices de suma.

La segunda, relaciona el campo fermi´onico con el operador de v´ertice bos´onico. Para derivarla debemos mostrar previamente la siguiente propie-dad:

Prop. 1 ψ rs(x)|Nê0 es un estado coherente bos´ onico Mostraremos que dicho estado es un autoestado de bqrs y por lo tanto posee una representaci´on como estado coherente. Para ello basta con calcular los conmutadores de b y † b con ψ:
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[b          Í qrs , ψ Í                  Í r s ( x )] = δ Í rr δ σσ αqr(x)ψrs(x),                  (6.47) [ † b   , ψ Í Í qrs r s(x)] =            ∗ δ Í rr δ Í σσ α      ψ qr ( x )rs(x),                  (6.48)

donde          i   −irqx α qr ( x ) = √ e. Estos conmutadores y la ecuaci´on (6.19) implican n q

inmediatamente que

b Í Í                         Í qr s ψ rs ( x ) | N ê 0 = δ rrδ   Í σσαqr(x)ψrs(x)|Nê0.              (6.49)

Y por lo tanto, este estado posee una representaci´on como estado coherente bos´onico:

          

ψrs (               Ø      ˆ x) |Nê0 = exp ( ) ( )          (6.50)            qr x b F λ   x |Nê α    †

qrs     rs rs         0

q>0

=   †     ˆ ( )                 (6.51) e−irϕ (x) rsF λ   x |Nê . rs rs         0

Aqu´ı utilizamos la definici´on del campo   † ϕ rs (6.21) en la segunda igualdad. Hemos agregado el operador de fase ˆ λ que derivaremos en lo sucesivo; y el factor de Klein, que es necesario porque ψ remueve una part´ıcula del estado |Nê0 , cosa que los campos bos´onicos   † b no pueden hacer. Para obtener el operador ˆ λ calculamos el siguiente valor medio de dos formas diferentes: por un lado,

0       rs rs        0     0      rs        0      rs N | F ψ | N ê ˆ ( ) = ( )( )             (6.52) é     †                                 ≡ λ   x , x é N | λ x | N ê

donde hemos pasado adelante el factor de Klein F en (6.51), ya que seg´un

su definici´on (6.37) conmuta con todos los † b; utilizamos la unitariedad de los F ’s, y expandimos en serie el exponencial, qued´andonos con el t´ermino de orden 0, ya que      † 0 é N | b qrs = 0.

Por otro lado, insertamos la descomposici´on de Fourier (6.3) para ψrs(x)

y la definici´on del factor de Klein (6.38), y nos quedamos s´olo con el t´ermino n                 2π          1 k      rs                     rs      rs L N = (o bien k = ( N − δ )): 2

†                        Ø irkx       † 1

0      rs   rs        0                    0      Nrsrs krs     0 é N | F ψ | N √ e é | ( x) ê = N c    c | Nê         (6.53)

L k

= 1    2π     1 ir ( N rs − δrs)x √ e L 2.                  (6.54) L

Concluimos entonces que el operador ˆ λ(x) est´a dado por

ˆ        1    2π     1 ( ˆ N − δ λ rs ( x ) = ir √ e rsrs)x L 2.                  (6.55) L
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Para derivar las identidades de bosonizaci´on debemos estudiar la acci´on

del campo ψrs(x) sobre un estado |Nê arbitrario (que seg´un (6.20) puede escribirse como             † | N ê = f ( { b } Nê qrs ) |0). Para ello utilizaremos las siguientes identidades,

ψ       †                †                  ∗ rs            Í Í                Í Í         Í x ( ) f ( { b    } f { b     − δ   δ Íα     } qr                                           ψ s ) = ( ( ) ) ( )      (6.56) qr s      rr σσ   qr         rs x x ,

f (   †              ∗          −irϕ (x) { b Í Í − δ Í δ Í x } rs qr s rr σσ α qr ( ) ) = ef (   †       irϕ ( { b rsx) Í Í } e, qr s )            (6.57)

que se pueden mostrar f´acilmente a partir de la f´ormula de Baker-Hausdorff,

−B   B              1

e   Ae = A + [A, B] +   [[A, B]B ] + . . . ,           (6.58)

2!

expandiendo en serie de Taylor la funci´on f y empleando los conmutadores

(6.47) y (6.48). Podemos evaluar entonces ψrs(x)|Nê conmutando ψrs(x) con

f (   † { b } qrs), insertando la representaci´on (6.51) y reordenando los factores: ψrs (x)|Nê =ψrs(x)f ( † { b } N qrs ) |ê0 (6.59)

=f ( †            ∗ { b Í Í − δ Í δ Í α qr s rr σσ qr(x)})ψrs(x)|Nê0               [por la Ec. (6.56)]

=   †                                 † f ( {b Í Í − δ Í              ∗ q            δ Í α r ( ) )        ˆ   ( )          [por la Ec. (6.51)] s      rr σσ   qr                   rs rs        0 x } e F λ x | N ê −     ) ( irϕ rs x

= ˆ         † F rs λ rs ( x ) − irϕ rs(x)f ( †              ∗ e { b Í Í − δ Í δ Í x } qr s rr σσ α qr ( ))|Nê0    [por la Ec. (6.37)]

=F λ ˆ       †   è                  é ( ) irϕ ( ) ) rs rs ( x ) − irϕ − x e rs x e rs f ( † irϕ ( x { b } e rs qrs ) |Nê0 [por la Ec. (6.57)]

= ˆ         † − (x) −irϕ (x) F rs λ rs ( x ) irϕ     † e rs e rs f ( { b } qrs)|Nê0            [por la Ec. (6.19)]

=        † ˆ ( )                        [por la Ec. (6.20)] F       −irϕ ( ) −     (x rs x irϕ rs) λ x e e|Nê. rs rs

Dado que |Nê es arbitrario, y que todo estado del espacio de Fock es de esta forma, concluimos que las siguientes f´ ormulas de bosonizaci´ on valen como identidades entre operadores en el espacio de Fock, y para todo L:

ψ        ˆ         † − irϕ (x   irϕ ( rs ( x ) = F rs − rs rs λ rs ( x ) )x) e e                                (6.60)

=   1    2π     1         † ir ( ˆ N − δ irϕ x −irϕ ( F rs √ e rs rs ) x − rs ( ) rsx) L 2 e e [por la Ec. (6.55)] (6.61) L

= 1        2π     1 ir ( ˆ N   )x −    (x √ F rs e rs − δ rs irφ) L 2 e rs.        [por la Ec. (6.28)] (6.62) 2 πa

Puede ser ´util definir

Φrs( ) = φrs −    ( ˆ Nrs − δrs)x.               (6.63) L x        2π       1 2
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Con esta definici´on, tenemos que

ψ        1      −ir   (x ( rs x ) = Φ √ F rs) rs e,                 (6.64) 2 πa ρ          1           δrs x rs ( ) = − ∂ x Φ rs ( x ) + .                (6.65) 2 π 2 L

Por ´ultimo estudiaremos como representar un Hamiltoniano fermi´onico libre con una relaci´on de dispersi´on lineal

ˆ L

H           †                     Ø         † ≡ − irv dx : ( ) ( ) := :      :       (6.66)

0           rs              rs      x rs               rs      krs krs ψ x ∂ ψ x v k c c   .

0                                  k

donde vrs es la velocidad de Fermi (es siempre positiva, independientemente de la quiralidad de los fermiones). La segunda forma se obtiene de la primera

insertando el desarrollo de Fourier del campo ψ (6.3). Recordemos que estas expresiones no est´an ordenadas normalmente de forma autom´atica, ya que la expresi´on † c c                                       k > k solo est´a ordenada normalmente para 0, y es necesario k

escribir : . . . :. N´otese que la condiciones de contorno peri´odicas implican que el modo con k = 0 posee energ´ıa cero, y por lo tanto podemos tener dos estados fundamentales degenerados en los que ese modo est´a ocupado o desocupado.

La ecuaci´on (6.20) implica que los † b’s actuando sobre |Nê0 generan todo el espacio de Hilbert de N part´ıculas. Esto significa entonces, que H0 debe tener una representaci´on en t´erminos solamente de variables bos´onicas. Para hallar esa representaci´on, estudiemos el conmutador de † b       H qrs con0 :

[          †                        † Í H 0 rs , b Í Í δ qr s ] = δ Í rr σσ v rs qb   . qrs                       (6.67)

Adem´as, dado que [      ˆ                       Í    Í H Í Í 0 rs , N r s ] = 0 para todo r, r , s, s, todo autoestado de ˆ Nrs lo es tambi´en de H0rs, en particular el estado fundamental de N part´ıculas, |Nê0. Su autovalor es, (se obtiene sumando las energ´ıas de los estados ocupados por encima del nk = 0)

N            π 3     qN             2 2 n=1      rs                    rs 2 δ ( ) = + (1)        si     0 N    N

E    v 0 rs =     4    rs            rs    rs n − δ   −              N ≥ ,

rs                                           2 q 0 N     | L 2 ( ) = +    (1       ) si       0

      − n − δ n=N          rs rs +1                   rs 2 δ −     N < , rs        rs N| 2

(6.68)

= v   3 rs 2π 4 Nrs(Nrs + 1 − δrs).                             (6.69) 2 L
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La ´unica forma bos´onica para H0 que reproduce las Ecs. (6.67) y (6.68) es:

H0rs = Ø †      v 3   4 rs 2 π v N ˆ 1          2 rs qb b N ˆ qrs qrs + rs rs + 1 − δ rs            (6.70) L q> 0 2 ˆ L v rs = 2 v 3 rs 2 π 4 dx : ( ∂ x )) : + N ˆ 1 2 N ˆ + 1 − δ . (6.71) 4 x φ rs ( π 2 rs rs rs L 0

La segunda forma es equivalente a la primera, como se comprueba al insertar

la definici´on de φrs en t´erminos de los b’s [Ec. (6.22)] en la Eq. (6.71). N´otese que en la primera forma podemos suprimir el orden normal, dado que esa expresi´on ya est´a ordenada normalmente, ya que aqu´ı q solo puede ser posi-tivo (no as´ı la segunda donde encontramos la expresi´on : † bb +   † bb := 2 † bb). Ninguna contienen factores de Klein dado que el Hamiltoniano conserva el n´umero de part´ıculas. Con esta ´ultima ecuaci´on completamos la derivaci´on de las identidades de bosonizaci´on, que valen para L finito. Para obtener expresiones con L → ∞ basta con despreciar los t´erminos ∼ 1/L. En este cap´ıtulo seguimos un enfoque constructivo, de modo que no es necesario veri-ficar los conmutadores de los campos fermi´onicos o igualdad entre funciones de Green. A continuaci´on veremos las aplicaciones del proceso de bosoniza-ci´on, y como se vuelve extremadamente ´util para el estudio de complicadas teor´ıas fermi´onicas en una dimensi´on espacial.

En la literatura es m´as com´un trabajar con Φ, ya que el segundo t´ermino en puede considerarse como un modo cero del campo. En esta notaci´on el Hamiltoniano H0 se lee

H   v   ˆ L                   3 v rs           v   3 2 rs 2 π 4 rs 2π 4 2 δ ˆ 0 rs = dx : ( rs ∂ x Φ rs ) : + N rs − .    (6.72) 4 π L L 0 2 2 4

el ´ultimo t´ermino es una constante y podr´ıa suprimirse. Adem´as, podemos escribirlo en t´erminos de densidades,

H = v       ˆ L                      4 v rs 3 rs 2 π (2 2 0 rs π ) dx : ρ rs ( x ) : + (1 − δrs) ˆ Nrs.      (6.73) 2 0 2 L

6.2.   Aplicaciones 6.2.1.   Gas de electrones

Consideremos un gas de electrones independientes, cuyo Hamiltoniano es

H Ø † = (6.74)

0          k   k   k ε C C.

k
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En la aproximaci´on de electrones casi libres, o de ligadura fuerte, la relaci´on de dispersi´on Ôk est´a dada por

Ôk = −2t cos ka                      (6.75)

donde t es la constante de intercambio (acoplamiento entre sitios vecinos) y a es el espaciado entre los ´atomos de la red.

La superficie de Fermi en un sistema unidimensional consiste en dos pun-tos, +kF y −kF; en su vecindad podemos linealizar la relaci´on de dispersi´on

(6.75):

Ôk Ä vF (|k| − kF).                       (6.76)

La linealizaci´on genera dos ramas bien definidas en la relaci´on de disper-si´on. Los electrones que pertenecen a la rama que contiene al punto +kF y −kF se mueven hacia la derecha e izquierda respectivamente. Si volvemos al operador fermi´onico original, ´este se puede descomponer teniendo en cuenta ´unicamente los modos cercanos al nivel de Fermi y despreciando los restantes,

Ψ( ) =     Ø ikx          Ø   ikx         Ø ikx √ e C k Ä √ e C k + √ eCk,    (6.77) x     1             1               1

L          L k k∼−          L k F k∼kF

= ˜ ψL(x) + ˜ ψR(x).                                     (6.78)

Aqu´ı la suma se extiende de k = −∞ a k = ∞ (es una serie de Fourier de Fourier). Estas aproximaciones, tanto de la dispersi´on como del operador fermi´onico, en principio, son razonable en un rango finito alrededor de los puntos de Fermi. Sin embargo, los tratamientos matem´aticos se simplifican enormemente si tomamos esta versi´on linealizada para todos los valores de k entre −∞ y +∞, es decir, si reemplazamos el espectro libre por una apro-ximaci´on lineal, estamos incorporando los infinitos modos requeridos por la bosonizaci´on descrita en las secci´on precedente. Por otro lado, s´olo estamos interesados en excitaciones de baja energ´ıa, a las que contribuyen estados pr´oximos a la superficie de Fermi; de modo que la inclusi´on de los estados adicionales por efecto de la linealizaci´on es despreciable en este r´egimen. Es-to ´ultimo se verifica a posteriori al estudiar los efectos producidos por la curvatura de banda, es decir incluyendo t´erminos cuadr´aticos y c´ubicos en la relaci´on de dispersi´on. Se puede mostrar que las contribuciones de estos t´erminos son irrelevantes frente a las del t´ermino lineal. No obstante, la in-troducci´on de los infinitos modos tratada de forma na¨ıve presenta algunas complicaciones matem´aticas ya que el mar de Fermi tiene ahora energ´ıa in-finita. Para superar este problema, se sustrae la energ´ıa infinita del mar de

 

Facultad de Cs. Exactas  |  UNLP |   185

Materia cuántica - C.A. Lamas, A. Iucci (autores)

 

6.2 Aplicaciones

Fermi, operaci´on que matem´aticamente significa tomar el orden normal. Con-sideremos las condiciones de contorno para el campo Ψ. Para condiciones de contorno, Ψ(           iπδ x + L ) = eΨ(x) debemos tener que los valores de k son

k   2nπ   πδ , = +                    (6.79) L L

donde                                                 ik δ ∈ [0 , 2). Es conveniente factorizar los factores de fase ± x e F y cam-biar k por −k en el primer t´ermino:

Ψ( )    −ik x         −ikx           ik x Ä e F √ e C F − k − k e F +     Ø ikx √ e Ck+k , F     (6.80) L x         1 Ø 1 L k ∼ 0 k ∼ 0

= −ik x e F         ik x ψ L ( x ) + e FψR(x).                            (6.81)

A los operadores que los representan a ψR/L los denotaremos

c kR = Ck+kF , (6.82)

c kL = C−k−k , F (6.83)

con k ∼ 0. Adicionalmente, extendemos la suma sobre modos para los fer-miones de tipo R y L tambi´en a todos los valores de k, y entonces

ψ      1 Ø    † x r ( ) = irkx √ e c , kr                (6.84) L k

donde r toma los valores r = R/L (o r = ±1 en expresiones matem´aticas). Obs´ervese que estos campos satisfacen condiciones de contorno retorcidas

ψr (x + L) = iπδ eψr(x), (6.85)

y para ello necesitamos que la expansi´on de modos para los fermiones quirales tenga diferentes valores de k para ambas quiralidades, k = 2πn/L + πδr/L, with δr = rδ. Este conjunto de operadores as´ı definidos satisface los requisitos de ser un conjunto infinito y no acotado, y los identificamos inmediatamente

con los descritos en las Ecs. (6.1) y (6.2). En t´ermino de estos operadores, el Hamiltoniano libre se escribe

ˆ L

H0 = Ø          1                2 † † † v F k : c c − iv ψ ψ kr kr := F : ψ ∂ ∂ R x ψ − R L x :, L     (6.86)

k                          0

donde dividimos la suma sobre k en modos alrededor de +kF y −kF . Observe que si sigo la ruta

H 0 = Ø   † ε k CC . k k                (6.87)

k
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El t´ermino kF en el Hamiltoniano es absorbido al redefinir los fermiones en

las Eq. (6.82) y (6.83). Notemos que al reemplazar la dispersi´on exacta por su versi´on linealizada, y sumar sobre todos los modos, estamos introduciendo una suma infinita sobre todos los estados de energ´ıa negativa (el mar de Fer-mi). Es conveniente sustraer la energ´ıa del mar de Fermi, lo cual se consigue ordenando normalmente el Hamiltoniano. Finalmente, recu´erdese que junto

con la expresi´on de la Eq. (6.86), el fermi´on f´ısico se escribe

Ψ(      ik x x ) = −           x e F ik ψ L ( x ) + e FψR(x).              (6.88)

Siguiendo la f´ormula est´andar de bosonizaci´on obtenemos

v ˆ L

H   F                2          2 = : ( Φ ) + ( Φ ) :

0                       x   R         x   L dx ∂ ∂ 4

π 0          + v 3 2π 4            v 3 2π 4 F   2 ( ˆ N                2 + ˆ N ) − ( δ + δ . ) (6.89)

2         R    L            R    L L            8 L

6.2.2.   Campos duales

Es usual introducir los campos duales Φ y Θ definidos como

Θ = Φ = ΦR + ΦL ,              ΦR = Φ − Θ,        (6.90) 2 Φ − R + Φ L , Φ L = Φ + Θ . (6.91) 2

Usando (6.34) y (6.63) podemos mostrar que

[Φ(          Í x ) , ∂ Í x Θ( x)] = iπδ(      Í x − x ),                  (6.92)

es decir, que poseen relaciones de conmutaci´on can´onicas (definiendo el mo-mento Π = 1 ∂xΦ). Adem´as, definimos π

N                    N − ˆ J ˆ ˆ = ˆ N R + ˆ N L , N ˆ R =,      (6.93) 2 ˆ N + ˆ J J ˆ ˆ = − N R + ˆ N L , N ˆ L = , (6.94) 2

de donde tanto N como J, sus autovalores, resultan ambos pares o ambos impares. El Hamiltoniano se escribe

v ˆ L

H   F               2         2 = dx : ( ∂ Φ) + ( ∂ Θ) :

0                       x           x 2 π 0

+ v 3 F 2π 4     v    2 ˆ 3 Fπ 4 N − ( ˆ N δ + ˆ J ε), (6.95) 2 L 4 L
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donde

δ = δR + δJ ,     ε = −δR + δL.              (6.96)

En t´erminos de estos campos, las identidades de bosonizaci´on se escriben

R         R = 1      −i(Φ−Θ) √

2

πa F e      ,                 (6.97)

L          L = √ 1      +i(Φ+Θ) F

2

πa e       .                     (6.98)

Obs´ervese que los campos Φ y Θ satisfacen las condiciones de contorno

Φ(x + L) = Φ(x) − πN , ˆ (6.99)

Θ(x              ˆ + L ) = Θ( x ) − π J .                (6.100)

Por lo tanto, los n´umeros cu´anticos correspondientes a autovalores de ˆ N y ˆ J se relacionan con excitaciones topol´ogicas de los campos.

Alternativamente, podemos trabajar con campos duales que no incluyan los modos cero,

φ = φR + φL, (6.101)

θ = −φR + φL, (6.102)

y que satisfacen condiciones de contorno peri´odicas. Est´an relacionados con los anteriores de acuerdo a

Φ =    πx φ −   N , ˆ                  (6.103)

L

Θ =    πx θ −   J . ˆ                    (6.104)

L

El Hamiltoniano, en este lenguaje, resulta

v ˆ L

H   F               2        2 = dx : ( ∂ φ ) + ( ∂ θ ) :

0                       x           x 2 π 0

+ v π è F ˆ N                     é ( ˆ N + 2) + ˆ 2 J − ( ˆ N δ + ˆ J ε ) . (6.105) 2 L

6.2.3.   Interacciones

Analicemos aqu´ı el efecto de las interacciones entre electrones. Es en este punto donde la bosnizaci´on se vuelve realmente poderosa, ya que permite reducir un Hamiltoniano muy complicado a una expresi´on soluble. Conside-remos una interacci´on de la forma

1    ˆ L   ˆ L

H    Ø     Í          Í int                                       Í dx = dx g rr                      Í x ( − y ) : ρ ( x ) ρ ( x) :,        (6.106)

2                           r      r

rr Í      0            0
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donde           † ρ r ( x ) =: ψ r(x)ψr(x) : satisface condiciones de contorno peri´odicas para cualquier δr. Si introducimos la forma bosonizada para las densidades, obtenemos

1      ˆ L   ˆ L

H       Ø int                                               Í dx = dx g rr               x   r          Í x ( − x ) : ∂ Φ ( x ) ∂ Φ (x ) :,    (6.107) 2(2   2                                                    x r π ) Í rr Í                          Í                                                Í

0        0

donde supusimos que g es tambi´en una funci´on peri´odica. A continuaci´on redefinimos los acoplamientos, introduciendo g4 ≡ gRR = gLL y g2 = gRL = gLR . Tambi´en es necesario agregar un orden normal al producto de densida-des, aunque cada factor est´e ordenado normalmente, su producto no nece-sariamente lo est´a. Al agregar H0 finalmente obtenemos para interacciones locales el modelo de Tomonaga-Luttinger,

H   v ˆ L   5 1                     6 = dx : ( ∂ x Φ) 2 : + K : ( ∂ x Θ) : 2 π K 0

+ vF π     vF π ˆ N − ( ˆ N δ + ˆ J ε). (6.108) L 2 L

en la notaci´on de los campos duales, donde K es el llamado par´ametro de Luttinger, y v es la velocidad del sonido, o velocidad de los modos colectivos,

3      4   3   4 g +             (6.109) 2

v              4            2 v −    ,

= ó      2   g

F    2π       2π

ö   g v + − õ    4   2 g

K õ F 2π   π =                  (6.110)

ô   g   g v + 4       2

F    2π    2π +    2 .
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