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Prélogo

Este libro es el resultado de ensefiar durante muchos afios los temas de Algebra Lineal tanto
en la Facultad de Ingenieria como en la Facultad de Ciencias Astronémicas y Geofisicas y de las
contribuciones importantes que han realizado Ixs estudiantes y que han servido notablemente al
mejoramiento de mis clases.

En el texto, los desarrollos tedricos y las técnicas se presentan de manera equilibrada. Se
describen con detalle y se complementan con numerosos ejemplos, enfatizando la importancia de la
interpretacion geométrica. La Licenciada en Astronomia Lucia Rizzo Buschiazzo, contribuy6 con la
elaboracién de los problemas de aplicacion y de las guias de trabajos pricticos.

Consideramos que el material redactado es adecuado como apoyo y guia de estudio para el
desarrollo de la asignatura Algebra Lineal, cursada por Ixs estudiantes de segundo afio de la carrera

Licenciatura en Astronomia.
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Intfroduccion

Intfroduccién

El Algebra Lineal es una rama de la Matemdtica en la que se introducen numerosos conceptos
abstractos. Es una disciplina de gran utilidad en la actualidad, en la resoluciéon de problemas
complejos y de grandes dimensiones.

Este libro abarca los temas bésicos de Algebra Lineal como son: espacios vectoriales, transforma-
ciones lineales, diagonalizacion de una matriz y espacios vectoriales con producto interno. Si bien
los temas tratados son los mismos que aparecen en la mayoria de los textos introductorios al Algebra
Lineal, el punto de vista con que se enfoca la teoria y la ejercitacidn se aparta del enfoque tradicional,
y se enfatizan las aplicaciones. En todos los temas se establece la conexién fundamental con la
interpretacion geométrica. Se presenta una gran variedad de ejemplos y se proponen, ademads de
ejercicios, actividades de investigacion especialmente disefiadas para estudiantes de Astronomia. El
texto tiene ademas un capitulo de calculo tensorial y otro capitulo que describe aplicaciones en la
resolucion de sistemas ecuaciones diferenciales y en la aproximacién de funciones.

En cuanto al origen, la palabra Algebra procede del titulo de un tratado de un matemético,
geodgrafo y astrénomo persa conocido como Al-Juarismi. Vivié aproximadamente entre los afios 780
y 850, en un tiempo de esplendor del mundo isldmico. Su tratado, el Hisab al-yabr wa’l muqabala es

un Compendio de célculo por restauracién y reduccién [1]:



12

Al-yabr

Al-yabr, restauracion, la palabra del titulo que ha dado origen al término élgebra, es una de
las operaciones bdsicas que ofrece para resolver ecuaciones y que consiste en pasar los términos
negativos de un lado de la ecuacién como positivos al otro. Mientras que la otra operacion, la

mugqgabala, consiste en simplificar la ecuacion agrupando los términos similares.

La historia del Algebra Lineal moderna se remonta a mediados del siglo XIX con los trabajos de
William Hamilton, quien introdujo el uso del término vector. Sin embargo, fue recién en la segunda
mitad del siglo XX, cuando se incorporé al Algebra Lineal como una materia basica e introductoria
en las matemdticas universitarias.

Por sus multiples aplicaciones, el estudio del Algebra Lineal cobra cada dia mas importancia.
Su teoria es extensamente usada en el andlisis funcional, en el anélisis vectorial y en las ecuaciones
diferenciales, entre otras dreas. Cabe sefialar que sus numerosas aplicaciones no se restringen al
campo de las ciencias exactas, sino que se extienden también al campo de las ciencias naturales y de
las ciencias sociales.

Con la escritura de este libro he intentado hacer interesantes y accesibles los temas de Algebra
Lineal, equilibrando los desarrollos tedricos con las técnicas que se utilizan en las aplicaciones,
pretendiendo proporcionar a Ixs estudiantes las habilidades algebraicas necesarias para resolver
problemas. He resaltado las interpretaciones geométricas de conceptos importantes, como las
transformaciones lineales y el producto interno.

El texto tiene siete capitulos, con una breve introduccién al comienzo de cada uno de ellos. Para

facilitar la lectura, en todos los capitulos se ha indicado con 1 alas observaciones importantes.
Ademds, para una mejor comprension de los temas, se han incluido numerosos ejemplos.

A continuacién de la teoria, en cada capitulo, y fruto de la colaboracién de Lucia Rizzo
Buschiazzo, se proponen actividades a desarrollar por Ixs estudiantes. Su tarea consistié en el disefio
de un problema de aplicacion, la seleccién de ejercicios y la elaboracién de una autoevaluacion en
cada capitulo. Propuso, ademds, una serie de ejercicios para realizar como precalentamiento antes de
abordar el libro que se incluye en el apéndice. Estos temas, como también los relacionados con las
plantillas de edicidn e imdgenes de este proyecto, se definieron a partir del intercambio de ideas y de
un trabajo conjunto.

Por dltimo, y para estimular al lector el interés sobre el desarrollo histérico de los temas, se

incluyen varias notas histdricas dispersas a lo largo del libro, y semblanzas breves sobre cientificos
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que han realizado aportes muy valiosos al desarrollo del Algebra Lineal.
Template: the Legrand Orange Book Template
http://www.latextemplates.com/template/the-legrand-orange-book

Imagen en la portada de los capitulos: Nebulosa Roseta, IC 1396B,
obtenida por el relevamiento fotométrico IPHAS/N, preparada por Nick Wright.






1. Espacios Vectoriales

El concepto de espacio vectorial generaliza las propiedades que tienen las operaciones de suma
y producto por escalares para los vectores de R? y R3. Abordaremos en este capitulo la estructura
de espacio vectorial, objeto basico de estudio del Algebra Lineal. A sus elementos se los denomina

vectores, independientemente de su naturaleza.

Definicion de espacio vectorial. Ejemplos

El conjunto de los nimeros reales y el conjunto de los nimeros complejos, con los cuales ya se
trabajo, tienen propiedades similares. En ambos conjuntos pueden definirse dos operaciones + y .
que satisfacen ciertas propiedades y reciben el nombre de cuerpo. Trabajaremos tanto con el cuerpo
de los reales, R como con el cuerpo de los complejos C, denotandolos por K. Al estudiar vectores
en el plano y en el espacio, se ha definido la suma de vectores y la multiplicacion por un niimero
real, y se vieron las propiedades que satisfacian. También para el conjunto de polinomios. Cuando
en varios conjuntos distintos aparecen estructuras similares es conveniente axiomatizar éstas y darles
un nombre al ente resultante, con la ventaja de que estudiando esta estructura, quedan estudiadas
todas las estructuras que en ella se encuadran. Cuando en un conjunto se da una estructura similar a

la de los ejemplos anteriores, se dice que se tiene un espacio vectorial.
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Capitulo 1. Espacios Vectoriales

—

Figuralll: 4 +vV =V + 1

Definicion 1.1.1 Un conjunto V, cuyos elementos se denotan mediante i, ¥, w, se dice que es

un espacio vectorial sobre el cuerpo K, si en €l se han definido dos operaciones: la suma, de

manera que a cada par de elementos i y V de V se le hace corresponder el elemento i +V de V,

denominado suma de i y V, y la multiplicacién por escalares, de manera que a todo elemento #

de V y a todo elemento a de K se le hace corresponder el elemento aii de V, y se satisfacen las

siguientes propiedades:

o =N W

. Conmutativa 4 +V = V + i

— — — —

YuyveV.

Asociativa 4 +(V +w)=(d +V)+ w, Vi,VyweV.

Existe un elemento de V, designado por 0 y denominado elemento neutro, tal que i + 0=1i
VieV.

Para todo elemento i € V, existe un elemento designado por —ii y denominado elemento
opuesto de i, tal que ii + (—if) = 0

14 = u VieV,donde 1 denota el elemento unidad del cuerpo K.

albi)=(ab)i VieV,y Yaybek.

(a+b)ii =aii +bi VieV,ytodoayb e K.

a(i +V)=ad +av Vi,veV,yVaek.

En la Figura 1.1 se muestra la propiedad conmutativa 1.

= Los elementos del espacio vectorial reciben el nombre genérico de vectores.
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= Las primeras cuatro propiedades se refieren a la suma en V, las dos que siguen a la
multiplicacion de elementos de V por escalares y las dos tltimas son las propiedades
distributivas de una operacién con respecto a la otra.

= Si K es R se dice que V es un espacio vectorial real, y si K es C se dice que es un

espacio vectorial complejo.

= Ejemplo 1.1 R es un espacio vectorial sobre Q, C es un espacio vectorial sobre R y sobre Q. R?
o R3 (vectores en el plano, o en el espacio), con las operaciones usuales son espacios vectoriales

sobre R. n

= Ejemplo 1.2
K” = {(X],X27-.- ,Xn), Xj GK,]: 1’2’... ’n}

con las operaciones usuales es un espacio vectorial sobre K. En particular, R” es un espacio vectorial

real y C" es un espacio vectorial complejo. "

m Ejemplo 1.3 Sea Pk [x] el conjunto de todos los polinomios en la variable x sobre el cuerpo K, es

decir, todos los elementos de la forma
p(x) =apg+aix+ax® +---+ax" +---

donde los coeficientes a; € K con las operaciones suma de polinomios y multiplicacion por escalares.

Px [x] es un espacio vectorial sobre K. .

» Ejemplo 1.4 Sea C([a,b]) el conjunto de todas las funciones continuas definidas en el intervalo

real [a,b], con valores en R, {f : [a,b] — R} con las operaciones suma de funciones,

(f+8)(x) = f(x) +g(x),
y multiplicacién de una funcién por un escalar,
(af)(x) = a(f(x)).

Puede comprobarse facilmente que C([a,b]) es un espacio vectorial. El elemento neutro es la funcién

nula. n

= Ejemplo 1.5 El conjunto S(A) de soluciones del sistema homogéneo AX =0, donde A € R"™*" y

X = (x1,x2,- -+ ,x,) € R" es un espacio vectorial sobre R. Es un subespacio de R”". "
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i) Los siguientes son algunos resultados que se deducen de las propiedades que definen un espacio

vectorial y se dejan como ejercicio para el lector.

e El elemento neutro de un espacio vectorial es tnico.

El opuesto de cada elemento en un espacio vectorial es tinico.

Para todo # de un espacio vectorial V, 0.1 = 0.

Para todo elemento # de un espacio vectorial V, (—1)ii es su opuesto.

e En todo espacio vectorial V, a 0= 6 donde a €K'y 0 es el elemento neutro de V.

Subespacio vectorial

Algunos subconjuntos de un espacio vectorial V son a su vez espacios vectoriales con las
operaciones definidas en V; estos subconjuntos especiales reciben el nombre de subespacios

vectoriales de V.

Definicién 1.2.1 Un subespacio vectorial de un espacio vectorial V es un subconjunto S no vacio

de V, que a su vez es un espacio vectorial con las operaciones definidas en V.

i) Para demostrar que un subconjunto S es un subespacio vectorial no es necesario comprobar de
nuevo que satisface todas las propiedades del espacio vectorial. Es suficiente demostrar que
contiene al vector nulo, que la suma de dos elementos de S es otro elemento de S, y que la

multiplicacién de un elemento de S por un elemento del cuerpo K, es otro elemento de S:

1.0es
2. SidyveS,u+9ves
3. SiaeKyueS,aii €8

m Ejemplo 1.6 Sea V un espacio vectorial sobre K. § = {6} es un subespacio de V. "
= Ejemplo 1.7 V es un subespacio de V. n

= Ejemplo 1.8 Veamos cémo caracterizar los subespacios de R?.

1. S={(0,0)} es un subespacio.

2. Supongamos S un subespacio que contiene algin elemento # no nulo. Entonces para todo a
€ R, aii € S. Si esos son todos los elementos de S, S es un subespacio y graficamente es una
recta por el origen.

3. Si S contiene a un ¥ que no es av, contiene a sus miltiplos av. Luego contiene a dos rectas L
y Ly por el origen. Por la regla del paralelogramo cualquier #w € R? es suma de un elemento

de L; y uno de Ly. En consecuencia S = R?.
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Figura 1.2: Recta que no pasa por el origen

N

Los subespacios de R? son entonces, el vector nulo, las rectas por el origen y todo R. "

m Ejemplo 1.9 Sea H = {(x,y) tales que y =mx+b m,b € R, b# 0} (Ver Figura 1.2). H no es un
subespacio de R2. Ya que si (x1,y1) y (x2,y2) son 2 puntos sobre la recta y = mx+b, y; = mx; +be
y2 = mx; + b, se tiene que y; +y, = m(x; +x;2) +2b, y entonces, y; +y2 ¢ H. O bien, directamente,
no es subespacio de R? porque (0,0) ¢ H. .

m Ejemplo 1.10 Siv €V, S = {aV,a € K} es un subespacio de V. Este subespacio se denomina el

subespacio generado por ¥, y se nota § = (V). .

Sean V, v, -+ ,V, € V. Entonces S = {a;V| +axVo + - +a,V,, a; €K} es

un subespacio de V.

Demostracion:

» 0eSyaque0=0V+0V+ - +0v, 0 €K.

s Sid=aVi+avo+--+ay, a; € Kyw=bVi+byvr+---+b,v,, b; €K, entonces
i+w= (a1 +b))Vi+ (a+b2)Vo+ -+ (an+by)Vy, (a;+b;) €K, porlo tanto, i +w € S.

v Sio €K aii= (aa))v+ (aa)va+ -+ (oan) vy, (aa;) € K, por lo tanto aii € S

Se tiene, entonces, que S es un subespacio de V. O

i) Elespacio vectorial RR? no es un subespacio de R?. R? ni siquiera es un subconjunto de R3. En

cambio el conjunto
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Figura 1.3: El plano x1x», (x3 = 0) es un subespacio de R3

X3

S= X2 X, xp €R

si es un subconjunto y un subespacio de R? (Ver Figura 1.3).

= Ejemplo 1.11 Pﬂ({") [t] (polinomios en ¢ de grado < n, con coeficientes reales) es un subespacio
vectorial de Pg [f]; a su vez, Pg [t] es un subespacio vectorial del espacio vectorial de las funciones

continuas en R. n

» Ejemplo 1.12 Sea S = {ii;,i, - ,i,} un conjunto de n vectores de un espacio vectorial V.
Consideremos como en el Ejemplo 1.10 pero con més vectores. Se define el conjunto de todas las

combinaciones lineales de los vectores de S,

n
L(S) :L(ﬁl,ﬁz,... ,ﬁn) = { ajﬁja aj eK,j=1,2,--- ,I’l}
=1

J
El conjunto L(S) es un subespacio vectorial de V (ver Proposicion 1.2.1), que recibe el nombre de
subespacio vectorial generado por S.

En R3, si ¥, y V¥, son dos vectores tales que uno no es miltiplo del otro, entonces, L(V},V,, ) es

un plano que pasa por el origen. Es un subespacio de R?; se muestra en la Figura 1.4.
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Figura 1.4: Subespacio generado por Vi y v,

X3

T

S TTT
77

» Ejemplo 1.13 Sean a;,ay,--- ,a, € K fijos. S = {(x1,x2, -+ ,x,) € K",a1x1 +axxp + -+ apx, =

0} es un subespacio de K. "

» Ejemplo 1.14 Dada una matriz A € R™*" | y de rango r, todas las soluciones del sistema de

ecuaciones homogéneo

AX=0, XeR"

constituyen un subespacio vectorial de R", conocido como espacio nulo de la matriz A. Se anota

Nul(A) y se muestra en la Figura 1.5.

Para el sistema homogéneo:

2y—z+w =
3x+y+10z+5w =
x+3z+w =0

luego de realizar operaciones elementales sobre las filas de la matriz de coeficientes del sistema

(método de eliminacién gaussiana), se llega a la matriz escalonada:
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Figura 1.5: Espacio nulo de una matriz A

rJIJJP — 0
0 >
Hﬂ R i,
31 10 5
0 2 -1 1

00 —1/2 1/2

de donde la solucién es z = —w, y = —w y x = 2w. El subespacio de soluciones del sistema

homogéneo es, entonces,

S =Nul(A) = {(2,—1,—1,1))

i) Asicomo vimos que las rectas que no pasan por el origen no son un subespacio de R? (Ejemplo

1.9), las soluciones de un sistema no homogéneo

S
N
ol

AX = b,

son un subconjunto pero no un subespacio de R”.
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William Rowan Hamilton (1805 - 1865)

Fue un matemético britdnico. Fue uno de los fundadores de la escuela britdnica moderna de
matemadticas puras e hizo importantes contribuciones al desarrollo de la 6ptica, la dindmica, y el
dlgebra. Su descubrimiento del cuaternidn, junto con su sistematizacion de la dindmica, son sus
trabajos mds conocidos. Este ultimo trabajo serfa decisivo en el desarrollo de la mecénica cudntica,
donde un concepto fundamental llamado hamiltoniano lleva su nombre. Hamilton fue el cuarto de
los nueve hijos. Vivian en Dublin. Se dice que Hamilton demostré un inmenso talento a una edad
muy temprana. Su tio observé que Hamilton, habia mostrado una asombrosa habilidad para aprender
idiomas. A la edad de siete afios, ya habia hecho un progreso considerable con el hebreo, y antes
de los trece afios, bajo la supervision de su tio (un lingiiista), habia adquirido conocimientos casi
en tantos idiomas como afios de edad tenia (idiomas europeos cldsicos y modernos, y persa, drabe,
hindustani, sdnscrito e incluso marati y malayo). Hamilton es reconocido como uno de los cientificos
més destacados de Irlanda, y a medida que la nacién se vuelve mds consciente de su herencia
cientifica, cada vez se lo celebra mas. Se dice que se le permitia pisar el césped de la Universidad,
algo totalmente prohibido. Este hecho camina entre la realidad y la ficcién. Posiblemente ocurriera
que, absorto en sus meditaciones, descuidara esta prohibicion y accidentalmente caminase por los
jardines. Esta anécdota seguramente sirve para dar idea de la categoria de Hamilton como uno de
los grandes matematicos de su tiempo y de la historia. El Instituto Hamilton estd dedicado a la
investigacion sobre matematicas aplicadas en la Universidad Maynooth. Irlanda emitié dos sellos
conmemorativos en 1943 para celebrar el centenario del anuncio de los cuaterniones. El Banco
Central de Irlanda acufi6 en 2005 una moneda de plata conmemorativa de 10 euros para conmemorar
los 200 afios desde su nacimiento. Los talleres de mantenimiento mds nuevos del sistema de tranvias
de Dublin (LUAS), llevan su nombre.

En su juventud, Hamilton tuvo un telescopio y se convirtié en un experto en el calculo de
fenémenos celestes, como por ejemplo, la determinacion de la visibilidad de los eclipses de luna. Fue
elegido Astrénomo Real de Irlanda y se instal6 en el Observatorio de Dunsink, donde permaneci6
hasta su muerte en 1865. Hoy en dia, Hamilton no es reconocido como un gran astrénomo, aunque
durante su vida si goz6 de esta consideracion. Sus conferencias de introduccién a la astronomia
fueron famosas; ademas de sus alumnos, atrajeron a muchos eruditos y poetas, e incluso a damas;
en aquellos dias una hazafia notable. La poetisa Felicia Hemans escribié su poema "La oracion del

estudiante solitario"después de escuchar una de sus conferencias. [28]
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Base y dimension de un espacio vectorial

Sea V un espacio vectorial sobre un cuerpo K; un nimero finito de vectores v, Vs, ,--- ,V, se dice

que son linealmente dependientes si existen n elementos de K, ay,az,, -+ ,a, no todos nulos, tal que
apvi+ap +---+a,v, =0

Si los vectores Vi,¥,,,---,V, no son linealmente dependientes, se dice que son linealmente
independientes; por lo tanto, los vectores V1,V,,,- -+ ,V, son linealmente independientes si cualquier
igualdad como la anterior implica que todos los elementos de K, a1,as,,- - ,a, son nulos.

Si en la igualdad anterior a,, es no nulo, podemos escribir

- a a ap—1_,
Vp=—"—"Vi— Vot — Vn-1
an a”l an
y decimos que V, es una combinacion lineal de los vectores vV, Vs, , -, ¥,_1. En general, se dice que
V es combinacion lineal de los vectores Vi, Vs, - - - , Vi, si existen aj,ap,, -+ ,a; € K tal que

V=aVi +axr + - +arvy

Un conjunto finito de vectores {V,Vy,- -,V } de un espacio vectorial V se dice que es un sistema
de generadores de V si todo elemento de V se puede escribir como una combinacion lineal de los

vectores Vi, Vo, -, Vi.

Un conjunto finito de vectores linealmente independientes de un espacio

vectorial V no puede contener un subconjunto de vectores que sean linealmente dependientes.

Demostracion:

Si {V},V,, -+ ,V,} son linealmente independientes y suponemos que {V, Vs, -+, Vi }, k <n

son linealmente dependientes se tendria
V=aVi+ah+ - +aqv=0
con no todos los a; nulos; basta observar que, entonces,

a1Vi +agVp + - - - + apVg + 0 +--- + 0V, =0

con lo cual los originales serian linealmente dependientes. O
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Antes de exponer algunos ejemplos es conveniente realizar algunas observaciones.

= Todo conjunto finito de vectores que contiene al elemento neutro (o nulo) es linealmente

dependiente; basta observar que

a0+ 0 +---+0v, =0

para cualquier a € K.
= Tres vectores no nulos de R? son siempre linealmente dependientes.

= En general, n+ 1 vectores de K" son siempre linealmente dependientes.

» Ejemplo 1.15 Si 4, = (1,0,1), i = (—1,1,0) y 43 = (1,1,2), L(#,,i2,43) es un subespacio
vectorial de R?. No es todo R? porque estos vectores no son linealmente independientes, ya que, se

anula el determinante de la matriz que tiene esos vectores como filas:

1
—1
1

—_ = O

1
0=0
2

Para hallar el subespacio que generan esos vectores se realizan operaciones elementales sobre

las filas, y se llega a la matriz escalonada:

(=
S = O
O = =

La dltima fila de ceros indica que el vector ii3 es combinacion lineal de i) y . Entonces los
vectores generados por i, iy y i3 son de la forma o(1,0,1)+ 3(0,1,1) = (e, B, @+ B) por lo que
L (i ,iy,u3) es el plano por el origen z = x + y. Considerando la matriz que tiene los vectores i;

como filas, L(S) es el espacio generado por las filas de la matriz, conocido como espacio fila. =

= Ejemplo 1.16 Las funciones po(t) = 1, pi(t) =1, p2(t) =12, ---, pa(t) =", son linealmente

independientes, ya que si tenemos la igualdad

apl +ait +axt> + -+ at" =0
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paratodot € R, resultan ag = a; =a, =---a, = 0.
Para demostrarlo basta tomar n puntos #; distintos y resolver el sistema. Tiene como tUnica

solucion la trivial. El determinante del sistema es conocido como determinante de Vandermonde. u

= Ejemplo 1.17 Las funciones f(¢) = cos®(t), g(t) = sen*(t) y h(t) = 1 son linealmente dependientes
en C([0,27]) ya que cos®(t) + sen*(t) = 1, y entonces es posible escribir al vector nulo con
coeficientes no todos nulos

lcos®(t) 4 1sen*(t) + (—1)1 = 0.

Por otro lado, ejemplos de funciones linealmente independientes son fi(t) = "1’ y fo(t) = €*!

con ki # k. "

i) Laindependencia lineal de funciones es de importancia para describir el conjunto solucién de

ecuaciones diferenciales y se determina a partir del cdlculo de un determinante conocido como
Wronskiano (ver [20]).

s Ejemplo 1.18 §= {cos(nx),sen(mx)}, necn es un conjunto de funciones linealmente independiente

en C([0,2x]). .

i Aldesarrollo en serie de una funcion en términos de las funciones cos(nx) y sen(mx) con

n,m € N se lo conoce como Serie de Fourier.

Definicion 1.3.1 Un conjunto finito de vectores {€},é5,--,&,} se dice que es una base de un
espacio vectorial V si se cumplen las dos condiciones siguientes:
1. Los vectores €},é5,- - , €, son linealmente independientes.

2. Todo elemento de V es una combinacidn lineal de los vectores €;,¢€5,- -+ ,&,.

La segunda condicién de esta definicién es equivalente al hecho de que el conjunto de
vectores {€],&,,- - ,€,} sea un sistema de generadores de V. Sin embargo, no todo sistema de

generadores de un espacio vectorial V' es una base. Se deja al lector pensar ejemplos.

m Ejemplo 1.19 Sié; = (0,0,---,1,---,0) € K", donde 1 ocupa el lugar j, se tiene que €,é5,--- ,&,

son linealmente independientes y ademds si X = (x1,x2,--- ,x,) € K", se tiene que

n
X = ijej
J=1
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Figura 1.6: Base candnica de R?

X3

X2

el
X1

Por lo tanto {&},é,,--- ,é,} es una base de K", que recibe el nombre de base candnica de este

espacio. En la Figura 1.6 se muestra para el caso n = 3.

= Ejemplo 1.20 Dada una matriz A de m filas y n columnas, y de rango r, todas las soluciones del

sistema de ecuaciones homogéneo
AX =0, X eR"

constituyen un subespacio vectorial de R" generado por n — r vectores. Recordar que r es la cantidad

de pivotes al realizar operaciones elementales sobre las filas de la matriz en eliminacién gaussiana.

En el Ejemplo 1.14 se tiene que m = 3, n =4 y el rango r = 3. S = Nul(A) = ((2,—1,—1,1)),

es un subespacio de dimensionn —r=4—-3 = 1. "

= Ejemplo 1.21 El conjunto {1,7,---,¢"} es una base de P,((") [t], ya que son polinomios linealmente
independientes de acuerdo con el resultado del Ejemplo 1.16 (para K = R), y todo polinomio p de

grado inferior o igual a n puede escribirse de la forma
p(l‘) =agpl +a1l—|—a2[2+ ... _|_antn

Para para el caso n = 2 se tiene la base {l,t, t2} que se muestra en la Figura 1.7. "
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Figura 1.7: Base candnica de Plgz) [t]

Lt
Il
-

— t”+1

El conjunto {1,z,---,} no es una base de P [t], ya que el polinomio p(t) no es

combinacién lineal de estos. Se puede ver que ninglin conjunto finito de polinomios genera a
Px [t] (ver [20]) .

Coordenadas de un vector
Si {é,é,, - ,€,} es una base de un espacio vectorial V y V es cualquier elemento de V podemos

escribir a ¥ como combinacién lineal de €;,¢5, - - ,&,, de la forma

V=a1é| +axé,+---+a,é,

con a; € K. Los niimeros aj,ay,--- ,a, se denominan coordenadas de V con respecto a la base

€1,€2, " ,€n.

Las coordenadas de un vector v con respecto a una base son tnicas.

Demostracion:

Si suponemos se tienen coordenadas a; y b;, i = 1,---n para un mismo vector v,
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V=a1€1 +axér+ - +ané,

V=081 +bér+---+b,é,

se tiene que

0= (b1 —a1)é, + (br—a)ér + - -+ (by — a,)e,

Como €1,é,,- -+ , &, son linealmente independientes, by = ay, by = az, -+, b, = a,. O

s Ejemplo 1.22 Sea V =R3 y sea E la base candnica. Las coordenadas de un vector v se anotan
(x, ), 2)E = (x,3,2).

Si en lugar de la base canénica la base es B = {(1,1,1),(1,1,0),(1,0,0)}, las coordenadas de
un vector (x,y,z) son (z,y — z,x —y)p y se escribe la igualdad (x,y,z) = (z,y — z,x—Y)5.

Esto se obtiene escribiendo (x,y,z) como combinacién lineal de los vectores de B,
(y.2) = a(1,1,1) +b(1,1,0) +¢(1,0,0),

y resolviendo el sistema lineal:

at+b-+c = X
a+b+0c =y
a+0b+0c = z

Un mismo espacio vectorial puede poseer varias bases; nuestro proximo objetivo es demostrar

que todas ellas han de poseer el mismo niimero de elementos.

Si V es un espacio vectorial que posee una base con n elementos, cualesquiera

n+ 1 vectores de V son linealmente dependientes.

Demostracion:

Sea {€),€,-,&,} una base de V y sean X, X3, -+ ,X,,X,+1, n+ 1 vectores de V,

que pueden escribirse como combinacidn lineal de la base dada:
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L wn . L wn . L e . S wn .
X1 = Lj—1Xj1€j, Xp = Y1 Xj2€j, Xn = Y1 Xjn€j, Y Xnt1 = L1 Xjnt1€;

Se quiere ver si son linealmente independientes. Nos preguntamos si existen @; no todos nulos

tales que
a1¥) + @y + -+ anky + apy 1 X1 =0
Reemplazando, se tiene
ar(Y_ xj18)) + az (X x28;) + an(L=; Xjné;) + an1 (T— Xjnr1€;) = 0

Al desarrollar las sumas anteriores y reordenar sacando factor comiin los vectores €}, se

obtiene
é1(xnar +x12a2 + -+ + X120 + X1p+1an41) =0

& (xa1a1 +x0az + - -+ 4+ X200y + Xop+1an+1) =0

gn(xnlal +Xp2a2 + -+ -+ Xppay +xnn+1an+1) =0

Los términos entre paréntesis constituyen un sistema homogéneo de n ecuaciones con n+ 1

incégnitas, aj, dy, - - -, d,41 por lo que existe una solucién no trivial (a; no todos nulos).
+

Se concluye, entonces, que los vectores X1,X2, - - ,X,,X,+1 son linealmente dependientes.
O

De la proposicién anterior se deduce un resultado un poco mas general: en un espacio vectorial
V que posee una base con n elementos, cualesquiera m vectores de V, con m > n son linealmente
dependientes. Basta observar que n+ 1 de los m vectores dados han de ser linealmente
dependientes, debido a la proposicién anterior, y por lo tanto, todos ellos han de formar
un conjunto de vectores linealmente dependiente. Este resultado se aplica en la demostracién

del teorema que sigue.
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Jean-Baptiste Joseph Fourier (1768 - 1830)

Fue un matematico y fisico francés conocido por sus trabajos sobre la descomposicion de
funciones periddicas en series trigonométricas convergentes llamadas Series de Fourier, método
con el cual consigui6 resolver la ecuacion del calor. La transformada de Fourier recibe su nombre
en su honor. Fue el primero en dar una explicacion cientifica al efecto invernadero en un tratado.
Inici6 sus estudios en la Escuela Superior Benedictina de Auxerre, orientandose inicialmente a la
carrera religiosa, hasta que el monarca Luis XV la convirti6 en academia militar. Jean-Baptiste fue
seleccionado como estudiante en la institucién ya reformada, donde permaneceria hasta los 14 afios
de edad, y empez6 a ser instruido en idiomas, musica, dlgebra y mateméticas, materia en la que
destacd, lo que le encamind a dedicarse al estudio de las ciencias. Posteriormente, particip6 en la
Revolucioén francesa y, gracias a la caida del poder de Robespierre, se salvo de ser guillotinado. Se
incorpord a la Escuela Normal Superior de Paris en donde tuvo entre sus profesores a los matemaéticos
Joseph Louis Lagrange y Pierre Simon Laplace. Posteriormente, ocup6 una catedra como docente
en la prestigiosa Ecole polytechnique. Fourier participé en la expedicién de Napoleén Bonaparte
a Egipto en 1798. Entré a la Academia de Ciencias Francesa en 1817 y al cabo de cinco afios se
convirtié en el secretario perpetuo de las secciones de matematicas y fisica. Fue en Grenoble donde
condujo sus experimentos sobre la propagacion del calor que le permitieron modelar la evolucién de
la temperatura a través de series trigonométricas. Estos trabajos mejoraron el modelado matematico
de fenémenos fisicos y contribuyeron a los fundamentos de la termodindmica. Sin embargo, la
simplificacién excesiva que proponen estas herramientas fue muy debatida, principalmente por sus
maestros Laplace y Lagrange. Publicé en 1822 su Théorie analytique de la chaleur (Teoria analitica
del calor), tratado en el cual estableci6 la ecuacidn diferencial parcial que gobierna la difusién
del calor soluciondandola mediante el uso de series infinitas de funciones trigonométricas, lo que
establece la representacion de cualquier funcién como series de senos y cosenos, ahora conocidas
como las series de Fourier. El trabajo de Fourier provee el impulso para trabajar més tarde en las
series trigonométricas y la teoria de las funciones de variables reales. Fourier en esta obra dedujo
la ecuacién en derivadas parciales que rige tal fenémeno, la cual es conocida como la ecuacién del

calor. [12]
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Todas las bases de un mismo espacio vectorial V poseen el mismo niimero de

elementos.

Demostracion:

Sean {é;,é,,---,&,} y {¢,,&,,--,€,} dos bases de un espacio vectorial V; por lo anterior
m < n, ya que en caso contrario los vectores de la segunda base serian linealmente dependientes.
Similarmente n < m ya que en caso contrario los vectores de la primera base serian linealmente
dependientes. Se tiene, por lo tanto, que n = m.

O

El nimero de elementos que posee una base cualquiera de un espacio vectorial V recibe el
nombre de dimension de V; este nimero serd designado mediante dim (V). Si el espacio vectorial

s6lo contiene un elemento, es decir V = {0} tiene dimension cero.
De los ejemplos anteriores podemos deducir los siguientes resultados:

1. La dimensién de K" es n.

2. La dimensién de P,((") [t] esn+1.

3. En el Ejemplo 1.15 se puede ver que L(iiy,iy,u43), donde i} = (1,0,1), il = (—1,1,0) y

i3 = (1,1,2), es un subespacio vectorial de R* de dimensién 2 (un plano por el origen).

i) EnR"un hiperplano que contiene al vector nulo es un subespacio H de dimension n— 1. O sea
H = {(x1,%2,+,Xp) @11 +axx2 + -+ apxy = 0

donde ay,as, - - - a, son nimeros reales fijos, no todos nulos. Es decir, un hiperplano generaliza

la nocién de plano en R3.

Se llama nulidad de una matriz a la dimension del espacio nulo.

Sea V un espacio vectorial de dimensién n. Todo conjunto de n vectores de V

que sean linealmente independientes son una base de V.
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Demostracion:

Sean X|,X»,- - ,X,, n vectores linealmente independientes. Si V es otro vector de V, por la
Proposicion 1.3.3, v, X, X,, - - - , X, son linealmente dependientes.
Entonces, 3 ag,ay, - ,a, tales que

agV+ a1 Xy +axxs +---a,x, =0, con algiin a; no nulo.

En realidad ¢ debe ser no nulo, ya que si fuera 0, los vectores X1,X>, - - - ,X, serian linealmente

dependientes. Se tiene, entonces,

- Tar, —ap ., —dn .,
V=—X+—Xp -ay+ Xn

ao ao ap

y por lo tanto X;,X>, - - ,X, generan V.

i) Una forma sencilla de encontrar una base de un espacio vectorial V' es agregar vectores a un
conjunto de vectores linealmente independientes de V. En la demostracién de la proposicién

que sigue se explica la forma de agregarlos.

Sea V un espacio de dimensién finita n; todo conjunto de vectores linealmente
independientes de V puede completarse para obtener una base, es decir, dados k vectores
€1,€2, - , €, conk < n,deV, linealmente independientes, existen n — k vectores €1 1,€x12," €y

de V tal que el conjunto {€},é5, -, &, &+1,€x42, - ,€,} €s una base de V.

Demostracion:

Como k < n, puedo encontrar un elemento de V linealmente independiente con €;,€5,- -, &
(sino, {€,&,,--- , €} serian base de V). Lo llamo & . Se repite con {&},é,,- - - , &€} hasta
encontrar n vectores linealmente independientes, que necesariamente serdn base de V. U

SiV es un espacio vectorial de dimension finita n en la Proposicién 1.3.6 probamos que k vectores

linealmente independientes de V pueden completarse para obtener una base. Puede demostrarse
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también que si S es un sistema de generadores de V, de él puede extraerse un subconjunto S; que sea

una base de V.

Ahora unos comentarios acerca de la dependencia o independencia lineal de subconjuntos infinitos

de un espacio vectorial.

= Un conjunto infinito S de elementos de un espacio vectorial V se dice linealmente
independiente si cualquier subconjunto finito de S es linealmente independiente. En caso
contrario, S se dice linealmente dependiente; es decir S es linealmente dependiente si
existe un subconjunto finito de €l que es linealmente dependiente.

= Un espacio vectorial V en el que se puede encontrar un subconjunto S linealmente
independiente y con infinitos elementos, se dice que tiene dimension infinita .

= Los espacios vectoriales Pk [t], y C([0,27]), introducidos en la secciones anteriores, son
espacios vectoriales de dimension infinita.

= El conjunto S = {¢",n € N} es un conjunto linealmente independiente de Pk [¢] mientras
que el conjunto S = {cos(nx),sen(mx)}, ,cy €s un conjunto linealmente independiente

en el espacio vectorial de las funciones continuas C([0,27]).

Interseccion y suma de subespacios vectoriales

Una pregunta que surge es si al considerar las operaciones de unién e interseccién entre
subespacios de un espacio vectorial V (que son subconjuntos de V) se preserva la estructura de
subespacio. Veremos que se preserva en la interseccién pero no en la unién.

Dados dos subespacios V| y V, de un espacio vectorial V podemos definir su interseccion

V1QV2:{ﬁ,ﬁEV1/\ﬁ€V2}

y se demuestra facilmente que V; NV, es un subespacio.

Por otro lado, con un ejemplo se puede ver que con la unién de dos subespacios V; y V,, no
ocurre lo mismo. Si V; y V, son los subespacios generados por los vectores (1,0) y (0, 1) (los ejes x e
y respectivamente) la unién de V; y V5 son los vectores que estdn sobre un eje o el otro. Vi UV, no es
un subespacio, ya que la suma no es cerrada: la suma de los vectores (1,0)+(0,1) = (1,1) ¢ ViUV,
pues (1,1) ¢ Vi y (1,1) ¢ V;, siendo que (1,0) € Vi y (0,1) € V5.

Se define, entonces, para si obtener un subespacio, la suma de dos subespacios V; y V, de la

forma siguiente
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Vi+V, = {LT] +ur,uy EVINI € Vz}

y se puede demostrar que V; + V, es un subespacio vectorial de V (y contiene a V; U V).

La relacidn que existe entre las dimensiones de estos subespacios vectoriales y las dimensiones

de los subespacios V; y V, queda plasmada en el siguiente resultado:

dim(Vy +V,) = dim(Vy) +dim(Va) — dim(Vy NV3)
para cualesquiera subespacios vectoriales V; y V, de un espacio vectorial V de dimensién finita.

Demostracion:

Sea {€],é,,- - ,€;} una base de V| N V5. Es posible completarla:

por un lado hasta obtener una base de Vi, {é’l €0, " ,gl,ﬁ+l,f‘l+2, - ,fk} (de 14 (k—1) vectores)

y por otro, hasta obtener una base de V», {€,&2, - ,€,81+1,81+2, ** ,&m} (de [+ (m—1) vectores).
Veremos que

{glang" 7Elaﬁ+17ﬁ+27"' 7fk7§l+l7gl+27'” 7§M} es base de V] +V2

Esté claro que es un sistema de generadores de V; + V5. Veamos que es un conjunto linealmente

independiente. Se considera una combinacién lineal igual al vector nulo:

a181+ @ + -+ @@ + b1 fir1 Fbisafia o Fbifet ciiBin a8+ + Cmgm =0
que puede escribirse en forma equivalente

@181 + @@+ + @ + bt fsr +bafiva + o+ bifi = —cri18i41 — Cip281i2 = — Cmm

El término del lado izquierdo € Vj, mientras que el lado derecho € V;. Es decir que esté en
Vi NV, cuya base son los vectores {€],é,--,& }. Entonces es posible escribir el término de la
derecha como combinacion lineal de la base {€],é5, - ,&;} con coordenadas ;. Es decir, se tiene

la igualdad
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—C14181+1 — C1428142 = — Cm8m = 61€1 + B2 + -+ - + §i€)
que puede reescribirse,
8181+ 88+ + 88+ 18141 + 2Bl + Cngm =0
Por ser {€1,€2, - ,€/,81+1,81+2, - ,&m} Una base de V>, se tiene que
Clt1 =Clp =" =Cp=01 =6 =--+6=0
y, entonces, el término de la izquierda,

181 +aéy + -+ @@ + by fiyr Fbisafira+ -+ bify =0

y como {Z”l,é'z, sl frats fian, e ,fk} son base de Vi, son linealmente independientes,
Luego,

dim(Vi +V2) =1+ (k—1)+(m—1) =k+m—1 = dim(Vy) +dim(V2) — dim(V, N V2) O

= Si V) y V, son los subespacios generados por los vectores (1,0) y (0, 1) respectivamente,
la suma de V; y V; da todo R?, ya que (x,y) = (x,0) + (0,y), (x,0) € V; y (0,y) € V5.

= Es importante notar que V| 4V, es el menor subespacio (con respecto a la inclusién) que
contiene a Vi U V5.

= Ejemplo 1.23 El subespacio S de las soluciones del sistema homogéneo,

anxi+apxo+--+appx, = 0
S={(x1,x2, -+ ,xy) € K"
A1 X1 + AmpXp + -+ + @pXn - = 0
es un subespacio de K. Es interseccion de m subespacios, S = /., S;, donde S; = {(x1,x2,- -+ ,x,) €

K", apnx; +apxy + -+ +aimmx, =0, },1 <i <m. CadaS; es un subespacio de K" (correspondiente a
las soluciones de cada una de las m ecuaciones, como se vi6 en el Ejemplo 1.13, Seccién 1.2). =

= Ejemplo 1.24 Dos subespacios vectoriales distintos de R2,V, y V, ambos de dimensidn 1, tienen

una suma que coincide con todo R?, ya que
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dim(Vi + V) =dim(Vy) +dim(Va) —dim(ViNV,) =14+1-0=2

Definicion 1.4.1 Un espacio vectorial V es suma directa de dos subespacios V; y V; si
. Vi+W, =V

-

2. VinV, =0

Utilizaremos la notacién V = V| &V, para indicar que V es suma directa de los subespacios V| y V5.

= El plano R? puede escribirse como suma directa de dos rectas no coincidentes que pasan
por el origen.

= El espacio R3 puede escribirse como suma directa de un plano que pasa por el origen y
una recta que le corta en ese punto.

= De acuerdo a la Proposicion 1.4.1 anterior si V = V| @ V3, se tiene que

dim(V) =dim(Vi & V,) = dim(V1) +dim(V2)
ya que el subespacio Vi NV, = 0 tiene dimensi6n 0. Ademas, si By es base de V| y B; es
base de V,, B=B; UB, es una base de V.

= Ejemplo 1.25 Sean los subespacios de R3, S = {X € R3 x; +xo+x3 =0,} y T = ((1,1,1)). Se
tiene que dim(S) = 2, dim(T) = 1y SNT = 0. Entonces, dim(S+T) = 3, de donde, S+ T =R>. =

i) SiV =V;+V, todo elemento V € V puede escribirse de la forma vV = V| +V, con V; € V} y

v, € V. Si la suma es directa, esta descomposicion es tnica.

Sean V; y V, subespacios vectoriales de un espacio vectorial V. Las siguientes
afirmaciones son equivalentes:
1. Vv=VieW,
2. Para todo v € V existe una descomposicion unica de la forma

V=V +Vconv €V y172€V2.

Demostracion:

Veamos que 1 — 2
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Supongamos V=V|+V, con vV, € Vi yvh € Vo yV=1iij +iip coniiy € V) yilp € V5.

Se tiene que,
Vi + Vo = ) + i,

igualdad que puede reescribirse

Vi—Ui =l — V>

De donde V| —ii; € Vi NV,, como por hipétesis, Vi NV, = 6, V1 =) y de la misma forma,

Vo = ip.

Para ver que 2 — 1 alcanza con demostrar que Vi NV, = 0.
SivevinV, = 6, V se puede escribir V =V +0 yv= 0+ ¥, como la descomposicion es tnica,
v=0.
O
En general, dados n subespacios vectoriales Vy,V,,--- .V, de un espacio vectorial V, definimos
n
(\Vi={ieVvieVj=1,-,n}
j=1
y

n n
ZVJ: Ziﬁijevj’j:l"”’”
=1 =1

que reciben el nombre de interseccion y suma, respectivamente, de los subespacios vectoriales V;
dados. Estos dos nuevos subespacios son también subespacios vectoriales de V.

La definicién de suma directa de varios subespacios vectoriales es un poco mds complicada en
general, que si solamente hay dos. Se dice que V es suma directa de los subespacios vectoriales
Vi,Va,---,V, y se escribe

V=VieW,eVse---aV,

si todo vector V € V tiene una descomposicién tnica de laformav =Y vViconv; € V;,i=1,--- ,n.

= Sin =2, esta dltima definicién y la dada anteriormente son equivalentes.

= Paran > 3 se puede demostrar que las siguientes afirmaciones son equivalentes:
cV=VioneVid - dV,
c V=YL ViyVin(Xis Vi) =0
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Figura 1.8: Coordenadas de un vector %, en las bases {b1,b,} (a) y {¢1,¢} (b)

&

Crl o

\ \3b | 6¢]

(@) (b)

Cambio de base

Para visualizar el problema de cambio de base, considere los dos sistemas de coordenadas que se
muestran en la Figura 1.8. En (a), ¥ = 3b; + 1b,, mientras que en (b), el mismo vector X se expresa
como X = 6¢| +4¢,. El problema consiste en encontrar la relacién que hay entre las coordenadas de
un mismo vector X en las dos bases {b1,b} y {¢1,} .

Para el caso general, supongamos que se tienen dos bases B y B de un espacio vectorial V
de dimensién finita. Se verd que con la ayuda de una matriz se pueden obtener las coordenadas
de un vector con respecto a una base de V a partir de las coordenadas del vector en la otra base.
Llamaremos base antigua a la base B y base nueva a la base B'.

Si B={é1,é&,---.,e,} y B ={&],&,,---,€,} son dos bases de un espacio vectorial V de
dimension n, todo elemento de la base B’ puede escribirse como combinacién lineal de los elementos

de la base B :

e = anéi+tanér+---+aué,
&, = ané +ané+---+ané,
(1.1)
— N - -
e, = a1 +axéy+ -+ aué,

que en forma abreviada puede escribirse
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i) Puede escribirse en forma mds concisa usando convenio de Einstein (indice repetido indica
suma)
_’/. =

€; = ajjé;, j=1,---n

La nueva base B’ se obtiene de la base B mediante la siguiente matriz

aip a2 -t din

azr azp -+ A
A p—

dpl dp2 - App

donde la j-ésima columna de A son las coordenadas del vector é’;- con respecto a la base antigua €;,
j: 172a"' 1.

La matriz A se denomina matriz del cambio de base de B’ a B y se denota Ppp.

= A la matriz del cambio de base de B’ a B también se la denomina matriz de transicion de
la base B’ a la base B.

= Cuando sea necesario hacer constar las bases By B’ escribiremos Py g para denotar la
matriz de cambio de base de Ba B'.

= Si By B’ coinciden se tiene que Pp g = Iuxn.

La matriz A del cambio de base de B’ a B es invertible y su inversa es la matriz

de cambio de base de B a B'. Podemos, por lo tanto, escribir

Al — Pz{zlaf =Ppp

Demostracion:

El determinante de la matriz es no nulo, ya que sus columnas son las coordenadas de los vectores

€; que por ser una base son linealmente independientes.

Si A’ es la matriz de cambio de base de B a B/, entonces se tiene

&.Nl
I
™=
NQ\
~
SN
~
I
-
=
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y por la definicién de la matriz A,

_4_
€ =

ayiér, i=1,---n.

D=

k=1

por lo tanto,
¢j =iy ay;(Xici aaée) = Limy (X andip)é,  j=1,---n.

Como el término dentro de la sumatoria en k, Y7 ax;a;;, es el elemento que ocupa el lugar (k, j)

/
ij?
del producto de las matrices A y A, de acuerdo a la igualdad, ese término vale 1 si k = j, y 0 si no.
Es decir que se tiene que el producto de las matrices A y A, es AA" = I,,,.

0

= Las expresiones anteriores pueden reescribirse en forma sintética considerando que el

indice repetido se sumade 1 an: €; = a;;

B
€i

= Usando la delta de Kronecker, & (definida &; = 1sik = jy 6 =0sik # j),

la expresion se escribe €; = akia;ié’k = ek

= Ejemplo 1.26 Dadas las bases de R3, B = {(1,1,1),(1,1,0),(1,0,0)} y B = {€},&5,¢5} (base

canénica), la matriz de cambio de base de B a B’, de acuerdo a las Ecs.(1.1), es

Py p=

—_ =
S =
oS O

i) Silabase nueva, B’ es la base la canénica, la matriz de cambio de base de B a B’ se obtiene
directamente poniendo las coordenadas de los vectores de la base B en cada columna (ver
Ejemplo 1.26).

Relacién entre las coordenadas en la base By en la B’

Tratemos ahora de relacionar entre si las coordenadas de un mismo vector en las bases nueva B y

antigua B. Supongamos que X €V,
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X=x1€1 +x8 + - +x,€, (1.2)
y ademads

= ! =l ! =l ! =l
X=x1€+x6,+---+x,€, 1.3)

Sustituyendo Ec.(1.1) en la segunda expresion, Ec.(1.3), obtenemos
n n n

X= Xll(z a;1€;) +X/2(Zai2§i) +e +X:,(Zain§i)
i=1 i=1 i=1

/ / '\ / /
= (cmxl +a12x2 + - —|—a1,,xn)el + (a21x1 +a22x2 + -

/] \—= / / /I \—=
+aonx,)€r+ -+ - + (an1 X + anpxy + -+ - + annx), )&y

Comparando esta dltima igualdad con la primera expresion Ec.(1.2) podemos escribir

/ / /
X1 = anxytapx -+ t+anx,
/ / /
X2 = a1x; +a22x2+--~+a2nxn (1 4)
Xn = anlxll + anZ-xlz +-- annx;;
x| x|
X x5
Si convenimos en escribir X = | x3 | yX' = x4
Xp x,

a las coordenadas del vector X en la antigua base B y en la nueva base B’ , respectivamente, las

Ecs.(1.4) se escribe de la forma

X = AX' (L.5)

Esto permite obtener las coordenadas del vector X en la base antigua conociendo las coordenadas

del mismo vector en la base nueva.
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» Ejemplo 1.27 Dadas las mismas bases del Ejemplo 1.26, B = {(1,1,1),(1,1,0),(1,0,0)} y
B = {¢€),é,,¢3}, se quieren encontrar las coordenadas del vector X = (3,2,3)p en la base B, para lo
cual se necesita la matriz de cambio de base, Pg p.

De acuerdo a las Ecs. (1.1), la matriz de cambio de base, Pp p se obtiene a partir de encontrar
las coordenadas de los vectores de la base B’ en la base B y colocarlos como columnas. Después de

resolver el sistema de ecuaciones se obtuvo

(1,0,0) = 0(1,1,1)+O(1,1,0)+1(1,0,0)
(0,1,0)0 = 0(1,1,1)+1(1,1,0)+ (—1)(1,0,0) (1.6)
y entonces,
0 O 1
Ppp=10 1 -1
1 -1 O

Otra alternativa para hallar la matriz P g es usar la Proposicion 1.5.1 y entonces Pp g = Pp, IB dado
que Py p se encontro en el Ejemplo 1.26.

Luego, usando (1.5), las coordenadas son

0 0 1 3 3
X=PpX'=|0 1 -1 2 | =] -1
1 -1 0 3 1

B B

Asi se obtuvieron las coordenadas del vector X en la base B conociendo las coordenadas del

mismo vector en la base B'. n

= Ejemplo 1.28 Sean & y &, dos vectores perpendiculares unitarios en R? en la direccién de los

ejes de coordenadas cartesianas. Girando los ejes de coordenadas un dngulo ¢ en sentido positivo,

= 3l

contrario a las agujas del reloj, se obtiene una nueva base B’ = {€}, &, }.
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Figura 1.9: Cambio de base. Rotacion de ejes en un dngulo ¢

X
De acuerdo a la Figura 1.9, se observa que
e, = cos(9)é+sen(¢)é
1 (¢)é) (¢)é2 (7
e, = —sen()é+cos(9)é;

por lo cual, teniendo en cuenta el sistema (1.1), la matriz del cambio de base A es

. cos(@) —sen(9) (1.8)
sen(¢)  cos(9)

Asi, si ¢ = /4, las coordenadas respecto a la base B = {&, &, } del vector (2,3)p

cos(m/4) —sen(m/4) o 2 [ 353

sen(m/4) cos(m/4) 3 BN 0.71 o
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s Ejemplo 1.29 Dadas las bases de Pléz) [x], B= {3, 1 +x,x2} yB = {1,x+3,x2 —i—x}, se quiere
hallar la matriz de cambio de base de B’ a B.
Teniendo en cuenta la Observacion i, luego del Ejemplo 1.26 resulta més simple hallar Pr g y

Pg g, donde E = {l,x,xz} es la base candnica. Como

1 = 1-140-x4+0-x2
x+3 = 3-14+1-x+0-x2

X4x = 0-14+1-x+1-x2

Se tiene que

1 30
PE,B’ - 011
0 0 1
y de la misma forma,
310
Pepg=1 01 0
00

Luego, la matriz de cambio de base de B’ a B sale de multiplicar las matrices de cambio de base

de EaBydeB aE,es decir,

1/3 2/3 —1/3
Pep =Py pPep = (Pep) 'Pop = 0 1 1
0 0 1
1/3 2/3 —1/3 0 ~1/3
0 1 1 0| = 1 =x2+x
0 0 1 1 1
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Ariel Goobar

Nacido en Argentina en 1962. Es un astrofisico sueco que trabaja en la Universidad de Estocolmo
en astroffsica de altas energias y teoria de la relatividad. Es integrante del equipo que gand el Nobel
de Fisica en 2011 por descubrir mediante las mediciones con supernovas, la expansion acelerada
del universo, actualmente es Director del Oskar Klein Centre for Cosmoparticle Physics. Emigré de
Argentina a los 13 afios. Se dedica al contenido de lo que se llama materia oscura. La gran esperanza
—aunque a lo mejor me equivoco dijo— desde el punto de vista experimental es que si entendemos
qué es la energia oscura, muy probablemente eso nos vaya a dar un indicio importante de como se
puede entender la fuerza de gravedad, como casar la teoria de la relatividad con la fisica cudntica.
Muy probablemente estén relacionadas, pero hoy no tenemos idea de cémo. Hoy, si yo pudiera sofar

algo, creo que es entender eso, seria alucinante. [4]
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Figura 1.10

PROPIEDADES PARA ESPACIOS
VECTORIALES

PROPIEDADES PARA SUBESPACIOS
VECTORIALES

Actividades propuestas

Para realizar un cambio de coordenadas celestes a coordenadas

horizontales, es necesario hacer dos rotaciones:

Foi = R, (T'SL) % Vo,

p = Ry(90 — @) Ty

Esto se debe a que entre el sistema ecuatorial celeste y el ecuatorial local, el polo celeste (eje z)
permanece fijo para ambos, pero el origen desde donde medimos uno y otro sistema en el ecuador
celeste, cambia en una cantidad TSL. Usaremos 7'SL como tiempo siderio local, TSL= 18:31:31,
Recuerde pasar de horas a grados para poder operar. Luego para realizar el cambio de coordenadas
de celeste locales a horizontales, se mantiene en comun el eje y, la linea este-oeste, y el 4ngulo en que
se rotan el plano x, z es 90 — . Para el problema actual usaremos la ¢= —34° 50’ que corresponde a
la ciudad de La Plata.

El vector de las coordenadas ecuatoriales celestes se escribe como:

cos(0)cos(ax)
Tee = | cos(8)sen(a)
sen(0)
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Figura 1.11: Coordenadas (x1,y1,21) ¥ (x2,y2,22) en el sistema cartesiano horizontal y en el

cartesiano ecuatorial

NORTE

SUR—> Y4

y el vector de las coordenadas horizontales:

cos(h)cos(A)
n=" —cos(h)sen(A)
sen(h)

donde h = sen~'(z) y A = tan™' (—y/x).

Amplie la Tabla 1.1 con las coordenadas horizontales para cada cimulo. Recuerde pasar de
horas a grados para poder operar. Nota: No tenga en cuenta la precesiéon. Recomendacion: Realice

un programa computacional para hacer los célculos.

Ejercicios

Analice si los siguientes conjuntos son espacios vectoriales sobre R.

a) El conjunto S = {(x,y) :y =2x+1} CR?
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Tabla 1.1: Coordenadas celestes de 13 cimulos abiertos

Ciamulo RAJ2000) Dec(J2000)
NGC6192 16:40:16.40 —43:30:31.0
NGC6242 16:55:32.38 —39:28:02.0
NGC6322 17:18:25.13 —42:56:03.3
NGC6704 18:50:42.00 —05:12:42.5
NGC6737 19:02:16.30 —18:32:56.5
Rup 102 12:13:32.95 —62:43:18.7
Rup 166 13:25:38.14 —63:27:54.6
SLS4565 18:01:59.55 —23:41:06.3
Lynga 14 16:55:03.40 —45:14:09.1
Trumpler 22 14:31:03.33 —61:09:57.0
Trumpler 24 16:56:11.14 —40:40:01.1
Dominici 11 18:57:36.31 —10:23:39.9
Dominici 12 18:51:24.93 —13:18:50.2

b) El semiplano en R?, S = {(x,y) : y > 0},

¢) Los polinomios de grado menor o igual que 2, Pﬂ(g) [x].

Dé al menos 5 ejemplos de espacios vectoriales y escriba, segin su opinién, qué utilidad tendria

saber que su estructura es de espacio vectorial.

De acuerdo con la definicién, S es un subespacio de un espacio vectorial V si y sélo si, se cumplen
las siguientes condiciones:
1) S contiene al vector OdeV.
ii) Si u y V estdn en S, entonces i + V estd en S.
iii) Si # estd en S'y o es un escalar, entonces o estd en S.
Compruebe si valen las siguientes afirmaciones:
a) S = {(x,y,2) : =0}, es un subespacio de R3.
b) El conjunto de polinomios PE(QZ) [x], de grado menor o igual que 2, es subespacio vectorial del

espacio vectorial Pﬂgl) [x] de todos los polinomios con coeficientes reales.
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Dados los subespacios de R?, S={(x,y,z) ER}:x=y=0} y T = {(x,y,2) € R* : x+y+ 2z =0}
calcule: a) Una base y la dimensién de ambos subespacios. b) S+ 7 y SN T, dando las bases de

dichos subespacios. c¢) ;La suma S+ T es directa?

Encuentre en cada uno de los ejemplos siguientes la suma y la interseccién del par de subespacios

dados, y compruebe que se verifica la ecuacion:
dim(Vl) + dim(Vz) = dim(Vl + Vz) + dim(V1 N Vz)

a) Los subespacios que corresponden al conmutador para cada una de las matrices siguientes.

(El conmutador de una matriz A, se define como C(A) = {B € R**? tal que laA.B = B.A}).

b) Los subespacios formados por las bases {sen(t),cos(t)} y {e”,e~"} considerados en el

espacio de las funciones complejas continuas en el intervalo [0, 1] con escalares en R.

1. Demuestre que el conjunto de soluciones de la ecuacién diferencial de primer orden homogénea,
con coeficientes constantes: y' +ky = 0 es un espacio vectorial de dimensién uno, siendo
{e~*} una base. A su vez el conjunto de soluciones de esta ecuacioén es un subespacio vectorial

del espacio de las funciones derivables cuya dimensidn es infinita.

2. Luego resuelva la ecuacién diferencial homogénea de segundo orden:
y" —y —6y =0, con las condiciones iniciales y(0) =3y y'(0) = —1.

Este tipo de ecuaciones se resuelve proponiendo la solucién y = e**

y resolviendo la ecuacién
caracteristica, que para éste caso serfa: A2 — A — 6 =0.
a) Encuentre las raices A; y A, y reemplace en la solucién general: y(x) = Ce** + Cye?*,
b) Escriba la base del conjunto solucién, y especifique que dimension tiene.
¢) Halle la solucién particular definiendo los coeficientes C; y C», con ayuda de las
condiciones iniciales.
3. Investigue que pasaria si las soluciones de la ecuacidn caracteristica de una ecuacion diferencial

homogénea fueran raices dobles. Escriba su base.
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4. Cite al menos un ejemplo de fisica donde se necesita usar ecuaciones diferenciales.

.Son los vectores i = (4,—2,5) y v = (1,—1,—1) de R? combinacién lineal de x; = (1,—1,2) y

%y = (2,0,1)? Interprete geométricamente y conecte con los subespacios de R>.

Los primeros cuatro polinomios de Laguerre son {1,1 —x,2— Ax+x%,6—18x+9x> —x° }. Demuestre

que estos polinomios forman una base de Pﬂg’) [x].

Compruebe que B = {1,x,x>} es una base del espacio vectorial PH(QZ) [x]. En consecuencia, d im(PH(Qz) [x]) =

3. (Es correcta la afirmacién a’im(Pﬂ(J) [X]) =n+1?

Sea la matriz,

x a b
A= a x b

a b x

Encuentre los valores de x para los que el Det(A) = 0. Lo cual es equivalente a decir que columnas o
filas son linealmente dependientes. ;Cuales son las dimensiones posibles del espacio generado por

las filas?

Encuentre las coordenadas del vector ¥ = (1,3, —2) con respecto a la base B = {b),b,, b3} donde

b1 = (1,0,0), by = (1,1,0), b3 = (1,1,1).

Calcule las coordenadas del vector w relativas a la base B = {iij, i }.
a) i) = (1,0), 4, = (0,1); w=(3,7)
b) iy = (2,—4), i, = (3,8); w=(1,1)
o)y = (1,1), i, = (0,2); w = (a,b)
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Encuentre las coordenadas del vector V relativas a la base B = {V},V,V3}.
V1 = (1,0,0), ¥, = (2,2,0), s = (3,3,3); V= (2,—1,3).

Calcule las coordenadas del vector p € Pﬂg) [x] relativas a la base B = {p;(x), p2(x), p3(x)}.
p1(x) =14x, pa(x) = 14+x%, p3(x) =x+x%; p(x) =4 —3x +x?

En R?*2, encuentre las coordenadas de la matriz A = relativas a la base

Considere las bases B = {ii1,ii»} y B' = {V},%,} para R?, donde ii; = (1,0), ii = (0,1), v, = (2,1),
V) =(-3,4).

a) Halle la matriz de cambio de base de B a B, Py p.

b) Utilice la matriz anterior para obtener las coordenadas en la base B’ de w = (3,—5)5.

¢) Verifique lo obtenido en b) haciéndolo directamente.

d) Calcule la matriz de transicion Pg p y verifique que Pp g = PI;,IB'

Considere las bases B = {iij, iis,ii3} y B' = {V1,V,,V3} para R?, donde i} = (—3,0,-3), il =
(=3,2,1),ii3 = (1,6,—1), 1 = (=6, —6,0), ¥» = (—2,—6,4) y s = (=2, -3,7).

a) Halle la matriz de cambio de base de B a B'.

b) Utilice la matriz anterior para obtener las coordenadas en la base B de w = (—5,8,—5)3.

Considere las bases B = {p;(x),p2(x)} y B' = {q1(x),g2(x)} para Pﬂg)[x], donde p;(x) = 6+ 3x,
p2(x) =104 2x, q1(x) =2, g2(x) =3+ 2x.
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a) Halle la matriz de transicién de B a B'.

b) Utilice la matriz anterior para obtener las coordenadas de p(x) = —4 + x en la base B'.

Si se quiere obtener un sistema de coordenadas rectangulares x'y’ haciendo girar un sistema de
coordenadas rectangulares xy hasta describir un angulo de 8 = %n.
a) Halle las coordenadas xy’ del punto cuyas coordenadas xy son (—2,6).

b) Calcule las coordenadas xy del punto cuyas coordenadas x'y" son (5,2).

Si se quiere obtener un sistema de coordenadas rectangulares x’'y’z’ haciendo girar un sistema de
coordenadas rectangulares xyz en sentido contrario a las agujas del reloj alrededor del eje z, cuando
se observa hacia abajo a lo largo del eje z hasta describir un dngulo de 6 = %.

a) Halle las coordenadas x'y'7’ del punto cuyas coordenadas xyz son (—1,2,5).

b) Calcule las coordenadas xyz del punto cuyas coordenadas x'y'z’ son (1,6, —3).

Sea V un espacio vectorial de dimension n. Demuestre que todo conjunto linealmente independiente

de n elementos es una base de V.

Sean po(x), p1(x), .., pn(x) polinomios cualesquiera de P[é") [x] de grado 0,1, - - -, n respectivamente:
demuestre que {po(x), pi(x),.., pu(x)} es una base de Pﬂ(gn) [x]. (Podria encontrar alguna relacién

entre este teorema y el teorema del resto? ;Y con la férmula de Taylor?

En el supuesto que V=V @&V, donde V; y V, son dos subespacios de V de dimensiones n 'y m
respectivamente y sean By = {iiy,ip, - iy} y By = {V,V2,-+-,V,} sus bases, compruebe que

B = B;UB; es una base de V| & V5.

Sea A = LU, donde L es una matriz triangular inferior invertible y U es triangular superior. Explique
por qué la primera columna de A es un miiltiplo de la primera columna de L. ;Cémo se relaciona la

segunda columna de A con las columnas de L?
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Sea {é1,é3, -+ ,e,} la base candnica de R”, y sean i} = &> — €1, h = €3 — €r,++, Uy | = €y —
en_ 1, = €,. Demuestre que {u,u5, - ,u,} es una base de R”. Exprese el vector V = &} + &> +
.-+ 4 &, como una combinacion lineal de los vectores i}, its, -« - , ity,.

Autoevaluacion

Verdadero o Falso

Si una matriz tiene dos filas iguales, su determinante vale 0.
Si F =F ®F®..®F, entonces dimF # dimFy 4 dimFy + .. 4 dimF),.
Si Pp 4 es invertible, entonces Py }‘=PB7A.

Siendo A, By C bases de un espacio vectorial, se cumple que Pc g.Pga=Fc a.

U

Sea S un conjunto de un espacio vectorial V de dimensién n y ademas S contiene menos de n

vectores, entonces S no puede generar V.

6. Un plano en R? es un subespacio de dimensi6n 2 de R3.

7. Siun conjunto {V},V3,---,v,} genera un espacio vectorial V de dimension finita y si U es un
conjunto de mas de p vectores de V, entonces U es linealmente dependiente.

8. La suma del subespacio de las matrices simétricas de R"*” con las matrices antisimétricas de
R™" es directa generando el espacio vectorial de las matrices de R"*".

9. La suma del subespacio de las funciones pares con el subespacio de las funciones impares no

es directa.
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En este capitulo nos interesamos por aquellas aplicaciones entre espacios vectoriales que
preservan las operaciones de suma y producto por escalares. Son las aplicaciones o transformaciones
lineales. Son las funciones con las que se trabaja en Algebra Lineal y tienen una amplia variedad
de aplicaciones. Se vera que, en el caso de dimension finita, es posible asociarles una matriz. Se
estudian los espacios asociados; el espacio nulo y el espacio que generan las columnas de la matriz.
Un resultado Ttil e importante es que las sumas de las dimensiones de esos subespacios dan la
dimension del espacio de partida. Mostramos la interpretacién geométrica tanto de las aplicaciones
lineales en el plano como en el espacio. Se presentan una gran variedad de ejemplos.

Se estudia, ademds, el espacio dual de un espacio vectorial. Es el conjunto de todas las transformaciones

lineales entre un espacio vectorial y el cuerpo de los escalares, conocidas como funcionales lineales.

Definicion de transformacion lineal. Ejemplos

Definicion 2.1.1 Sean V y W dos espacios vectoriales, una transformacion lineal T de V en W

es una aplicacién 7 : V. — W tal que:

1. TG+w)=T(¥)+T(w) paratodo v, w € V.
2. T(aV)=aT(¥) paratodoa € KytodoveV.

Entre las transformaciones lineales mads utilizadas estdn las proyecciones. En la Figura 2.1 se

muestra la proyeccion ortogonal de un vector v = (x,y,z) sobre el plano xy.
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Se tiene T : R? — R3, donde T'((x,y,z)) = (x,,0). Es una transformacién lineal ya que se

cumplen para VvV = (x,y,z), w = (¥',y,Z) yVaeK:
L TE+W) =T((x+x',y+Y,24+7)) = (x+x,y+,0) = (x,,0) + (+',)/,0) = T(¥) + T ().

2. T(aV)=T(a(x,y,z)) =T ((ax,ay,az)) = (ax,ay,0) = a(x,y,0) = a T (V).

Figura 2.1: Proyeccion ortogonal de un vector vV sobre el plano xy

(X’yvz)

v

7@
X (x,y,0)

= En una transformacion lineal V' y W deben ser espacios vectoriales sobre el mismo
cuerpo K.

= Las aplicaciones O:V — W, O(ii) = Oy paratodo i € V y I, :V — V, I;(if) = ii son
transformaciones lineales.

= La traza de una matriz,

Tr: K"™" — K dada por Tr(A) = Y'I | aj;, es una transformacién lineal.

» T :R — R dada por T(x) = x? es un ejemplo de transformacién no lineal. Se tiene
que T(x+y) #T(x)+T(y), yaque T(x+y) = (x+y)> = x*> + y? + 2xy, mientras que
T(x)+T(y) =x*+y%

= Otro ejemplo de transformacion no lineal es el determinante de una matriz, ya que, en
general Det (A + B) # Det(A) + Det(B).

m Ejemplo 2.1 Dado un nimero real a, la aplicacién que asocia a cada polinomio p del conjunto
Pr [t] su valor en x = a, p(a), es una transformacion lineal. Estd definida mediante las siguientes

expresiones:
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El hecho que T es una transformacién lineal se deduce de las igualdades T'(p+¢q) =T (p) + T (q)

y T(cp) = cT (p) que se prueban a continuacion:
T(p+q)(t) = (p+4q)(a) = pla) +q(a) = T(p)(t) + T(q)()

T(cp)(t) = (cp)(a) = c(p(a)) = T (p)(r)

para todo ndmero real c. "

Aplicando repetidas veces las propiedades 1 y 2 de la definicién de transformacion lineal entre
espacios vectoriales V' y W se puede ver que la imagen de una combinacién lineal de vectores del
espacio vectorial inicial V es una combinacion lineal de vectores del espacio vectorial final W, es

decir

n

n
T(Y) cjv)) =
= j

;T (V)
=1

donde cj € Ky V; €V paratodo j=1,2,--- ,n.

Otras propiedades de las transformaciones lineales que se deducen de la definicién se enuncian

en las proposiciones a continuacion.

Sea T una aplicacion lineal entre dos espacios vectoriales V 'y W. Se tienen
los siguientes resultados:
1. La imagen del elemento neutro de V mediante 7" es el neutro de W, es decir, T(f)v) = O
2. La imagen mediante 7 del opuesto de un elemento v € V es el opuesto de 7' (V), es decir,

T(—¥) = -T (%)

Demostracion:

1. T(0y) =T (O +0v) = T(Oy) +T(0v)
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Restando T(ﬁv) en ambos miembros de la igualdad, se tiene

—

T(0y) — T (Oy) = T(Oy) de donde, Oy = T (Oy).

Sea T : V — W una transformacion lineal entre espacios vectoriales. La imagen
mediante 7 de cualquier subespacio vectorial V; de V, W; = T'(V;) es un subespacio vectorial de

w.

Demostracion:

» Oy € T(V1), yaque T(Oy) =Oy.

= Sean w; y wp € T(V;). Existen v,V € V| tales que T'(V,) = w; y T(V2) = wy. Para ver
que w; +wy € T (V) basta ver que, por ser V; subespacio, Vj +V, € Vi y T(V) + ) =
T(V1)+T (Vo) = wi +wa.

» Y también aw; € T(V)), yaque oV € Vi, por ser V; subespacio, y T (av)) = aT (Vi) = aw;

O

Sea T : V — W una transformacidn lineal entre espacios vectoriales. Si U es

un subespacio de W, entonces T~ (U) = {¥#/¥ € V,T(¥) € U} es un subespacio de V.

Demostracion:

» Oy € T-1(U), yaque T~ (Oy) = Oy.
» Sean V) y ¥, € T~ (U). Existen ii; y ita € W tales que T(¥1) = ii; y T (V) = ii. Como
TV +%)=TGF)+T () €U, v +% e T H(U).

= De la misma forma, si ¥; € T~1(U), av; € T~ (U) pues T (o)) = aT (V) = aii.



2.1 Definicion de transformacion lineal. Ejemplos 59

La imagen mediante una transformacidn lineal de un subespacio vectorial de

dimension k es un subespacio vectorial de dimensién no superior a k.

Demostracion:

Por la Proposicién 2.1.2, si el subespacio Vi de V tiene {V;,V,,--,Vx} como base, todo
elemento w de la imagen de W; = T'(V}) puede escribirse como combinacién lineal de los vectores

T(V1),T(V2),---,T (V). Esto es cierto ya que tomando V € V; tal que T (V) = w se tiene que

k k
w=T@) =T(Y c;¥)) =Y ;T ().
j=1 =1

Por lo tanto, W; coincide con el subespacio generado por los vectores T'(Vy), T (V2), -+, T (Vy),

Es decir Wy = L(T (v1),T (V2),---,T(Vk)). T preserva las combinaciones lineales.

En consecuencia, la dimensién de W; no puede superar k.

Demostraremos con el teorema que sigue que una transformacion queda determinada cuando se

conocen las imdgenes de los elementos de una base del espacio vectorial inicial.

SeaB={¢;,é,,---,&,} unabase de un espacio vectorial V y sean wy, wp,--- , W,
n vectores cualesquiera de otro espacio vectorial W. En estas condiciones, existe una tnica

transformacion lineal 7 de V en W tal que

Demostracion:

= Existencia. Dado VeV, V=Y, o;é; con a; € K. Se define T (V) = Y/, %
= T es lineal
= - = = -/ /=
SeanVy V' tales que V=}"_, o;¢; y V' =}, a;é;. Entonces,

n n
\74—\_}4 = Z O@'Ej‘i‘ Z OC;-E} = Z(Olj‘i‘Ol})é}
=1 j=1 =1
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n n
TE+V) =) (040w Z wj+Zocw,_T )+ T (V)
= = =

De la misma forma,
n

=Y (ca; wj—cZaij—cT( V)

Jj=1 Jj=1
m 7T es uUnica

Si T’ cumple T'(¢;) = w; y V= Y}_; €}, se tiene que

Z(XJ ZO‘J T ).

Luego T (V) =T'(V), Ve V,dedonde T =T".

Se presentan a continuacién ejemplos de transformaciones lineales conocidas como la derivada,
la integral definida (entre espacios vectoriales de funciones) y la multiplicacién de una matriz por un

vector. Se deja al lector la verificacion de que son transformaciones lineales.

= Ejemplo 2.2 D : P{" [x] — P{"""[x] (derivada)

D(ap1 +ax+ax* + - +apx") =a; +2ax+ - + nax™!

» Ejemplo 2.3 J: C([0,1]) — R (integral definida)

= /Olf(x)dx

m Ejemplo 2.4 Dada la matriz,

A=
1 ¢ 0

es posible definir la transformacién que multiplica la matriz por un vector ¥ = (z1,22,23) € C2, es

decir, A : C3 — C?, estd dada por A((z1,22,23)) = A(21,22,23)".
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Es una transformacion lineal, ya que se cumple

A(V+V) = AV+ AV

A(cV) = cAV

= Dada una matriz A € K™*", la transformacién A : K" — K™, dada por

A((217Z27"' 7Zn)) :A(Z15Z2a"' 7ZH)T7

es la transformacién lineal asociada con la matriz A.
= Se verd que, reciprocamente, dada una transformacioén lineal es posible hallar la matriz

que la representa.

Matriz de una transformacion lineal

Sean V' y W dos espacios vectoriales sobre el mismo cuerpo K. Sea B = {¢},&,,- - ,€,} una base
deVyB= {f] ,fg, S ,fm} una base de W. El elemento T'(¢€;) es un vector de W, y por lo tanto

puede escribirse como combinacién lineal de los vectores de la base B:

T(2) =anfi+anfo+- - +amfm

Andlogamente,

T () = anfi+anfo+-+amfm

T(gn) = aln]?l +a2nﬁ +--- +amn]?m-

Estas igualdades se escriben de la forma

m
T@) =Y aijfi, j=12--,n 2.1)
i=1
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O en forma més abreviada, usando notacién indicial, es decir, sumando sobre el indice repetido i

delam,
T(g]) :a,-jf;-, J: 1,2 ,n

En estas condiciones diremos que

ari ar? apz -+ dip

ani ann azs -+ Ay
T —

am1 Am2  Am3 " Amn

es la matriz de la aplicacion T con respecto a las bases B y B.

= Enla j-ésima columna de la matriz de la aplicacion lineal T estdn las coordenadas de
T (¢;) con respecto a la base B de W. Ver Seccion 1.5

= El cambio de base para obtener las coordenadas de un vector visto en la Seccién 1.5 es
una transformacion lineal. Las nuevas coordenadas del vector se obtienen al multiplicar
por la matriz de cambio de base. La matriz de una transformacion lineal, se construye,
entonces, de la misma forma que lo hicimos con la matriz de cambio de base.

= A veces se agregan en la notacion las bases By B, para indicar las bases consideradas en
los espacios V y W.

= Para el caso dimensién finita, y si estdn especificadas las bases B y B, es posible
denominar a la matriz de la transformacién lineal con la misma letra que la transformacién

lineal.

Dado ¥ € V, se puede escribir

la relacién entre las coordenadas y; y x; de y y X viene dada por la matriz 7.
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En efecto, teniendo en cuenta la expresion para 7'(é;), Ec.(2.1),

Y yifi = T(R) = T(Z)y xj8) = Xy % T(85) = Ty 5 (T aijfi) = Xy (T aij)) fi
del primer y del dltimo término de la igualdad anterior, se tiene que
n
y=Yapy, =12
=1

J
es decir que la relacion entre las coordenadas y; y x; viene dada por los elementos a;; (ver Seccion

1.5).

= Ejemplo 2.5 Sea P la proyeccién ortogonal sobre el plano xy, (representada en la Figura 2.1).

P:R3 — R3. P es una transformacién lineal que verifica

P(@)=¢, P(@&)=¢, P@)=0

por lo tanto, su matriz con respecto a la base candnica es:

~

I
c o =
c = ©
c o ©

m Ejemplo 2.6 Sea Ry la transformacion que corresponde a una rotacién en un dngulo ¢ en sentido
positivo (antihorario) alrededor del origen (Ver Figura (2.2)). Ry : R? — R?. Su matriz en la base

canodnica es:

Ry cos(¢) —sen(¢) . 22)

sen(9)  cos(0)

De acuerdo a la Figura 2.2, se tiene que

Esta matriz es la matriz de cambio de base del Ejemplo 1.28.
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Figura 2.2: Transformacion de rotacién

= Ejemplo 2.7 En R3, consideramos el subespacio V; correspondiente al plano xy. Si B = {&},¢,,&3}
es la base candnica, y S la transformacion lineal que para cada vector v da el vector simétrico con

respecto al plano xy, como se muestra en la Figura 2.3, se tiene que

Si se quiere hallar la matriz que corresponde a la transformacion lineal que a cada vector le
hace corresponder el vector simétrico con respecto a un plano cualquiera, es conveniente hallar
una base del plano i}, i, y un vector i3 perpendicular. Asi, en la base {i|, 4,43}, la matriz de
la simetria con respecto al plano es la misma que la matriz del Ejemplo 2.7. Una vez obtenida

la matriz, se realiza el cambio de base a la base deseada.

= Ejemplo 2.8 De acuerdo al corolario anterior, para hallar la matriz correspondiente a la simetria
con respecto al plano x +y 4z = 0 (Figura 2.4). se busca una base del plano (como x = —y —z,
los vectores en el plano son de la forma (—y —z,y,z) = y(—1,1,0) +z(—1,0,1), es decir que los

vectores i/} = (—1,1,0) y il = (—1,0,1) son una base del mismo ). Y un vector perpendicular es
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Figura 2.3: Simetria con respecto al plano xy

V1

£2

S(e3)

iz = (1,1,1). En esa base {ii,»,3} la matriz de la simetria con respecto al plano x +y+z = 0 es,

entonces,

=
o —~ o

l o o
o

Si en los espacios vectoriales V' 'y W, de dimensiones finitas n y m, respectivamente, se fijan
bases, existe una correspondencia biunivoca entre las transformaciones lineales de V en W y el
conjunto de las matrices K™*" (de orden m X n) sobre el cuerpo K. Puesto que el conjunto K"*"
posee una estructura de espacio vectorial, también tiene esa estructura el conjunto de todas las
transformaciones lineales entre dos espacios vectoriales sobre el mismo cuerpo K. A ese espacio

vectorial se lo denomina L(V,W).
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Figura 2.4: Simetria respecto al plano x+vy+z=0

S(T3)

Teorema 2.2.1 Sean V y W dos espacios vectoriales sobre un mismo cuerpo K; el conjunto

L(V,W) de las aplicaciones lineales entre V' y W es un espacio vectorial sobre el cuerpo K.

Demostracion:

= Suma.

Dadas T\ y T, € L(V,W), sedefine Ty + T, Ty + T, : V. — W como
(T +T)(V) =T (V) + T (V) Wev

Veamos que 71 + 75 es una transformacion lineal
s (M+D0)V+w)=T1i(V+w)+ L (V+w)
=T1(V) + T1 (W) + T2(V) + T2()
= (N1 + 1) (V) + (11 + T2) (W)

° (T1 + 71 (0617) = Tl(OC\_/") + TQ(OC\_/')
= ol (V) +ah®¥)
=a(h (V) +T2(\7)) = Ot(T] + 1) (V)
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= Producto por escalares.

DadaT € L(V,W) y a € K, se define (aT), (aT):V — W como

(aT) (%) = aT (7)

Veamos que (a7') es una transformacién lineal

Como toda transformacién lineal puede representarse mediante una matriz y reciprocamente, se

tiene el siguiente resultado:

Teorema 2.2.2 Sean V y W espacios vectoriales de dimensiones n y m, respectivamente, entonces,
el espacio vectorial de las transformaciones lineales del espacio vectorial V al espacio vectorial

W, L(V,W), tiene dimensién m X n.

Demostracion:

Se puede ver en el libro de E. Herndndez [21]. En él se construye una base de L(V,W).
También puede demostrarse a partir de la correspondencia biyectiva entre el espacio vectorial de
las matrices K" (de dimensién m x n) y L(V,W).

O

= SiV y W coinciden escribimos L(V') en lugar de L(V,V).

= La matriz de la aplicacién lineal suma coincide con la suma de las matrices de cada una
de las aplicaciones y la matriz de la aplicacion lineal ¢T coincide con el producto de la
matriz T por el escalar ¢. Si llamamos M(T') a la matriz de la aplicacion lineal 7, esto se

escribe
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M(T+T)Y=M(T)+M(T") y M(cT)=cM(T), ceEK

Se verd a continuaciéon que la composiciéon de funciones usual puede realizarse entre dos

transformaciones lineales y el resultado es otra transformacién lineal.

Sean V, W y X espacios vectoriales sobre el cuerpo K. Sean T € L(V,W) y
T’ € L(W,X). Entonces

T'oT € L(V,X)

Demostracion:
Sean V1, V, € V, entonces

(T o T) (¥ +¥2) = T'(T (%1 + T (%)) = T'(T(#)) + T'(T (%))

=(T'oT)(¥)+(T'oT)()

Anélogamente,

(T o T)(aF) = T'(T(aF)) = T'(aT (%)) = a(T’ o T)(at) O

Si los espacios V, W y X tienen dimensién finita y si denotamos por M(T),
M(T") y M(T'oT) las matrices de T, T" y T'oT, respectivamente, con respecto a las bases de

antemano fijadas, se tiene el siguiente resultado:

M(T'oT) = M(T")M(T)

Demostracion:

m
T@€)=Y aijfi, j=12--,n 2.3)
i=1

donde a;; son los elementos de la matriz M(T).
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Sean {€},é>,---,é,}, {fl,fz, fe ,fm} y {81,82,---,8p} bases de V, W y X, respectivamente.
En la i-ésima columna de la matriz M (T’oT) estén las coordenadas del vector (T'0T)(é;) con

respecto a la base gy.

P m
= Y ) bijaig

k=1 j=1

donde b;; son los elementos de la matriz M (T").

Esto prueba que Y7 byjaj; es el elemento que ocupa el lugar (k, i) de la matriz M (T'oT) y
este valor coincide con el elemento (k, i) del producto de las matrices M(T") y M(T).
O

i) Elresultado anterior se generaliza para €l caso de una sucesion de tranformaciones lineales, 7,

i=1,---k aplicadas a un vector V. Se tendrd entonces que resulta equivalente a aplicar a ¥ una

Unica matriz T tal que

M(T) = M(Ti)M(Ti—1) - --M(T2 )M (Th).

Transformaciones lineales inyectivas y suryectivas

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K y T una aplicacién lineal de de V
en W. Recordamos que 7 es inyectiva si T'(X) = T'(¥) implicaX =y y T es suryectiva si para todo
y € W existe X € V tal que T (X) = ¥ (o equivalentemente 7(V) = W, donde T (V) denota la imagen
de V mediante 7). Finalmente recordamos que 7T es biyectiva si es a la vez inyectiva y suryectiva.

i //Enelcaso de transformaciones lineales cada uno de los tipos anteriores recibe un nombre
especial: una aplicacion lineal inyectiva recibe el nombre de monomorfismo; si es suryectiva
se le da el nombre de epimorfismo; finalmente si la aplicacion es biyectiva se dice que es un

isomorfismo.
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Encontraremos ahora condiciones sencillas que sirvan para determinar si una aplicacion lineal
es de cualquiera de los tipos anteriores. Comenzaremos con las aplicaciones inyectivas, y para ello

necesitamos definir el concepto de niicleo de una aplicacién lineal.

Nicleo e imagen de una transformacion lineal

Definicion 2.4.1 Dada una aplicacion lineal 7 : V — W, definimos el niicleo de T, que se denota
por N(T') (o Ker(T), del inglés kernel significa nicleo), como el conjunto de todos los v € V

tales que 7'(¥) = 0, es decir

N(T) = {v ev,/T(¥) = 6}

El subconjunto N(T') nunca es vacio, ya que 0 € N(T) y esto se deduce de que 7'(0) = 0 como

ya fue demostrado. Se tiene ademds, el siguiente resultado:

Si T :V — W es una aplicacién lineal entre espacios vectoriales, N(7') es un

subespacio vectorial de V.

Demostracion:

Esta propiedad es consecuencia de la Proposicion 2.1.3. Por definicion N(T') es la preimagen

de Oy que es un subespacio de W. O

Una aplicacion lineal 7 : V — W es inyectiva si y solo si N(T') = {6}

Demostracion:

= Si T es inyectiva se tiene que 7'(V) = T'(V') implica que v =V. Si 3V € N(T) tal que
T(¥) = 0 como T(0) = 0 resulta ¥ = 0.
= Para ver que 7T es inyectiva suponemos 3 vy V', tales que T'(V) = T(V). Por ser T una
transformaci6n lineal T'(¥) = T(¥') = T (¥— V), y si T(¥— ) =0, entonces, ¥ — ' € N(T).
Como N(T) = {6}, se tiene que v =V y por lo tanto 7 es inyectiva.
O
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m Ejemplo 2.9 Para la proyeccién ortogonal P de la Figura 2.1 (Ejemplo 2.5),
N(P) = {(x,y,2) € R tales que P(x,y,2) = (x,5,0) = (0,0,0)}.

Osea N(P) ={(0,0,z), z € R}, todo el eje z. Por la Proposicién 2.4.2, se tiene que P no es inyectiva
(intuitivamente se ve que muchos vectores de R? dan el mismo vector al proyectar los sobre el plano
xy). Ademas, se tiene que las dimensiones de N(P) y de la Im(P) son 1 y 2, respectivamente, suman

3, que es la dimensién de R3. "

Si bien las soluciones de un sistema AX = b, b #* 0 son un subconjunto pero no un subespacio
de R” (ver Observacion i en 1.2), toda solucién puede expresarse de la forma X = )?NH —H?H,
donde )?NH es solucién de AX = b mientras que )?H € Nul(A). Esto sale porque si )?NH es
solucién de AX = b, A()?NH +)?H) = AXyy +AXy =b+0=0 y si X es otra solucién de
AX = b, entonces A()_f *X'NH) —AX —AXyy =b—b =0, de donde X — Xy € Nul(A) y por
lo tanto X = )?NH +)?H.

Como ejemplo se deja al lector verificar que la solucién del sistema no homogéneo

X+y+w = 1
2x+3y+z+2w = 1
es X = Xyg+Xn = (2,—-1,0,0)+ o (1,—1,1,0)+B(—1,0,0,1) con et y B € R. A

Como se demostrd en la Proposicién 2.1.2, la imagen de una transformacién lineal 7 es un
subespacio. En el teorema que sigue se enuncia la relacién que existe entre las dimensiones del

nuicleo de T, de la imagen de T y la dimensién de V:

Teorema 2.4.3 Sean V y W dos espacios vectoriales de los cuales V es de dimension finita y

T :V — W es una aplicacion lineal. Entonces

dim(N(T)) +dim(Im(T)) = dim(V).

Demostracion:

Sean=dim(V)yk=dim(N(T)),

si k = n, entonces T es la aplicacién nula y la dim(Im(T)) = 0. Por lo tanto el teorema vale.



72 Capitulo 2. Transformaciones Lineales

Si k =0, entonces T es un monomorfismo. Si B es una base de V, T'(V) es base de la Im(T).

Luego la dim(Im(T)) = dim(V) y el teorema vale.

—

Supongamos que 0 < k < n'y sea {V,Vp,-,V;} una base de N(T'). Sean Vi1, Vgi2,"** ,Vn

tales que {V, V2, -, Vi, Vkt1,Vks2, ** ,Vu} €5 una base de V.
Veamos que {T (Vi11),T (Vks2), -+, T (V,)} es una base de Im(T).
En ese caso se tendrd que dim(N(T)) +dim(Im(T)) = k+ (n—k) =n = dim(V).

» SiwelIm(T), 3 vVeVtlqueT(V)=w

Como V=Y"_,cjV;, w=T(¥) =L}_, ;T (V;) = Lj_s11¢;T (V}), ya que {V1,V2, -~ , Vi }

es una base de N(T).
Entonces, {T (Vk+1),T (Vk42),- -+, T (V,)} es un sistema de generadores de Im(T).

= Para ser si en un conjunto linealmente independiente, supongamos
Yk 6T (V) =0=T (L} ¢;Vj), entonces ¥}, c;v; € N(T). Como {Vy,V, -+, Vi}

es una base de N(T'), existen escalares ¢y, ¢z, , ¢y tales que
Y i =Yk eV
j=k+16€jVj j=1C€jVj
que puede reescribirse
k = n =
Yio1(=cj)Vi+ L1V =0

Se tiene que ¢; =0, V 1 < i <n, por ser {V,V2, -, Vi, Vkt1,Vkt2," " ,Vn} Una base de V.
En particular ¢; =0, V k+ 1 <i <n. Luego {T (Vk11),T (Vk+2),- -+, T (¥,)} es un conjunto
linealmente independiente.

O

m Ejemplo 2.10 Se verificard el teorema anterior para la transformacion lineal 7 : R — R3, dada
por T((z1,22,+- ,25)) = A(z1,22,--- ,2z5)7, donde A es la matriz (ver Observacién i al final de la

Seccién 2.1).



2.4 Nucleo e imagen de una transformacion lineal 73

En primer lugar, se resuelve el sistema homogéneo utilizando eliminacién gaussiana (con la

matriz ampliada):

111 1 10 1 1 1 1 1 0 111 1 10
o160 -r1ro0f{—7)0 1 0 -11 0}|—]010-11P0
1 01 2 0O 0O -1 0 1 —-120 000 O OO

Al quedar solo dos pivotes, hay 2 variables dependientes y n — 2 = 3 variables independientes.

Se tiene que dim(N(T))=3.

Para estudiar cudl es el subespacio que corresponde a la imagen de 7', se debe hallar el subespacio
de R? que generan las columnas. Puede repetirse la eliminacién anterior con término independiente

(%, 3,2)-

111 1 1 x 11 1 1 1 «x 111 1 1 X
o010 -11y|=lo10-11 y [=]0o10-11 1y
101 2 0z 0 -1 0 1 -1 z—x 000 0 0 z—x+y

Se tiene, entonces, que Im(T) = {(x,y,z) = (x,y,x—y)}, es el plano por el origen z =x—y, y

dim(N(T)) +dim(Im(T)) =3+2=5=dim(V),

yaqueV =R, "

Para deducir algunas consecuencias del Teorema 2.4.3 es necesario hacer uso del concepto de

rango.

Sea T una aplicacién entre los espacios vectoriales V' 'y W, ambos de dimension finita, m y n
respectivamente. Sea A la matriz de la aplicacién lineal en dos bases cualesquiera de V 'y W. Para
encontrar el nicleo de T, N(T), es necesario resolver el sistema homogéneo AX = 0 (como se hizo
en el ejemplo anterior).

Sir(A) es el rango de la matriz A, se obtienen, r(A) soluciones dependientes y n— r(A) soluciones

linealmente independientes. Es decir que



74 Capitulo 2. Transformaciones Lineales

dim(N(T)) = dim(V) — r(A)

y comparando con el Teorema 2.4.3, se tiene que

dim(Im(T)) =r(A)

Puesto que la dimensién de la Im(T) no depende de las bases que se elijan en V y W, de la
igualdad anterior se deduce que las matrices de la aplicacién T en cualquier base tienen el mismo

rango.

Como consecuencia de lo anterior, es posible definir el rango de una transformacion lineal T,
que escribiremos r(T) como el rango de cualquiera de sus representaciones matriciales, y resumir

los resultados anteriores en el Corolario que sigue:

Sean V' y W dos espacios vectoriales de los cuales V es de dimension finita 'y 7 una
transformacion lineal, 7 : V — W. Entonces
1. T esinyectiva siy sélo si r(T) = dim(V).

2. T es suryectiva siy s6lo si r(T) = dim(W).

Por tltimo, se estudian las aplicaciones lineales entre espacios vectoriales de igual dimension
que son biyectivas. Se conocen como isomorfismos. Supongamos que V y W son espacios vectoriales

de dimensién finita, y que T es un isomorfismo entre ellos. Del Corolario anterior deducimos que

dim(V)=r(T) =dim(W)

Otras consecuencias de resultados anteriores se resumen en el teorema que sigue.

Teorema 2.4.4 Sean V y W espacios vectoriales de dimension finitan y sea T : V — W es una

aplicacion lineal. Las siguientes condiciones son equivalentes:

T es biyectiva

T es inyectiva

N(T) = {6}

T es suryectiva

N

Elrangode T es n
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Demostracion:

Entre 2, 3, 4 y 5 se tienen las equivalencias siguientes:

Prop.2.4.2

2 3
{ Corolario
5 Coyolario 4

Ademis, 1 — 2 porque toda transformacion biyectiva es inyectiva. Como 2 y 4 son equivalentes

en este contexto y ambas implican 1, se tiene que también 2 — 1, y queda demostrado. U

Decimos que dos espacios vectoriales cualesquiera son isomorfos si podemos encontrar un
isomorfismo entre ellos. Para que esto ocurra entre espacios vectoriales de dimension finita ya vimos

que ambos han de tener la misma dimension. El reciproco también es cierto.

Teorema 2.4.5 Dado cualquier nimero natural n, todos los espacios vectoriales de dimension n

sobre un mismo cuerpo son isomorfos.

Demostracion:

Sean V' y W dos espacios vectoriales de dimensién n con bases {€},&,--- ,&,} y {€],&5,- - ,&,}

respectivamente. Existe una transformacién lineal 77, 77 : V — K" definida de la forma siguiente:

Si7 =Y, 02,

(V) = (ou,00, -, )

Es decir que la transformacién da el vector con las coordenadas de V. Se demuestra facilmente
(y se deja al lector) que esta transformacion es lineal, inyectiva y suryectiva. Al ser biyectiva,
existe también su transformacion inversa (Proposicién 2.4.4). Utilizando este isomorfismo de un
espacio vectorial V con K", se tiene que dos espacios cualesquiera de la misma dimensién son
isomorfos. Para encontrar la transformacién entre V y W hay que componer la transformacion
T, entre V y K" con la transformacion 75 entre K" y el espacio vectorial W, T, : K" — W. Esta

ultima estd dada por
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TZ(abaZ?'” 7an) =

I
i
D

El isomorfismo entre V' 'y W estd dado por la transformacién

(TZOTl)(\_;) = T2(T1 (\7)) =w= iaiéﬁ.

m Ejemplo 2.11 Aplicando el Teorema anterior, el isomorfismo entre PI[(RZ) [t] y R? estd dado por
T(a()l “+at +a2t2) = (ao,al,az)’,

mientras que el isomorfismo entre R? y las matrices simétricas de R**? esta dado por:

(

Se consideraron las bases canénicas de R3, de Py ) [t] y de las matrices simétricas de R?*2,

espacios vectoriales de dimensidn 3. Se deja al lector la verificacidn de estos resultados. "

i) SiT esunisomorfismo entre dos espacios vectoriales V' 'y W de dimensién n, por el Teorema

2.4.4, su rango es n, y por lo tanto la matriz M(T) de T en cualesquiera bases de V 'y W es

invertible. Ademds, la inversa de M(T) es la matriz de la aplicacién inversa de T.

m Ejemplo 2.12 Sean V y W dos espacios vectoriales de funciones, de dimensién infinita:
V={feC'0,1]/f(0) =0}y W =C[0,1].
Sea la transformacion

D :V — W dada por D(f) = f’. D es una transformacién lineal (En el Ejemplo 2.2 se vi6 para
polinomios en P{"[x]) .
= D es monomorfismo
Supongamos D(f) = D(g), entonces f' = g’ o, en forma equivalente (f — g)’ = 0. Entonces

f(x) — g(x) = cte. Como f(0) = g(0) =0, se tiene que la cte = 0, por lo tanto f = g.
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= D es epimorfismo

Seage Wysea

Entonces, por el Teorema Fundamental del célculo, f € C'[0,1] y £ = g(x), Vx € [0, 1]. Mds

alin, como

0
| g =o.
0

se tiene que f(0) = 0. Por lo tanto, Vg € W, 3f € V tal que Df = g. O sea D es epimorfismo.

Resulta, entonces, que V' 'y W son espacios isomorfos. "

Gabriela Gonzdlez

Gabriela Gonzélez es una fisica, investigadora y profesora argentina. Nacié en 1965. Fue portavoz
y coordiné durante seis afios un equipo de mil especialistas, que trabaj6 en las detecciones de ondas
gravitacionales efectuadas desde el proyecto LIGO (Ondas Gravitacionales con Interferometro Léser,
por sus siglas en inglés). En febrero de 2016 fue uno de los cuatro cientificos de LIGO que anunciaron
la primera observacion ondulatoria gravitacional, detectada en septiembre de 2015. Egresada de la
Universidad Nacional de Cérdoba y actual profesora en el departamento de fisica y astronomia de la
Universidad de Louisiana, fue reconocida en 2016 como una de los diez cientificos mas destacados
del mundo por la revista académica Nature. Ademads, a partir de 2018 forma parte de la Academia de

Ciencias de Estados Unidos, institucién de maximo prestigio internacional. [9]

Geometria de las transformaciones lineales de R? en R?

Se verdn en esta seccion algunas propiedades geométricas de las transformaciones lineales en el

plano. Dada la matriz
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Figura 2.5: Transformacion de simetria (o reflexion) respecto del eje y

la transformacién L : R? — R? dada por L((x,y)) = A(x,y)" es

X ax+ by
y cx+dy

m Ejemplo 2.13 En la Figura 2.5 se muestra la transformacién que a cada vector le hace corresponder

el simétrico respecto del eje y.

m Ejemplo 2.14 En la Figura 2.6 se muestra la transformacién que a cada vector le hace corresponder

el simétrico respecto del eje x

m Ejemplo 2.15 En la Figura 2.7 se muestra la transformacidn que a cada vector le hace corresponder

su proyeccién ortogonal sobre el eje x:
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Figura 2.6: Transformacion de simetria respecto del eje x

(X,y)

S —— (______;.
x
W

(Xs -Y)

m Ejemplo 2.16 En la Figura 2.8 se muestra la transformacién que a cada vector le hace su reflexién

respecto de la recta y = x:

i) Otras transformaciones se obtienen al multiplicar una de las coordenadas por una constante k.

Asi el efecto es comprimir o dilatar en esa direccidn, dependiendo si k < 1 0 k > 1. También

estan las transformaciones llamadas de trasquillado, dadas por matrices de la forma:

y 0 0 y y
Estos casos se analizaran en los ejercicios propuestos.

Cambio de base para transformaciones lineales

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K de dimensiones n y m, respectivamente.

Sea T una transformacion lineal de V en W con matriz
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Figura 2.7: Proyeccion ortogonal sobre el eje x

(xy)

__(____..

x0 X

W
L

Figura 2.8: Transformacion de reflexion respecto de la recta y = x
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T = (aij)i=1,mj=1n

con respecto a las bases B = {é1,é>,-+-,é,} yB= {fl,fz, e ,fm} de V y W, respectivamente.

Si queremos conocer la matriz 7’ = (@i )i, j=1, de la misma aplicacién T respecto a dos nuevas
bases B' = {¢},&,,---,€,} yB' = {fl’,fé, fee ,f,’n} de V y W, respectivamente, es necesario realizar

los cambios de base adecuados en los espacios vectoriales inicial y final, V 'y W.

Para seguir el razonamiento, veamos el diagrama siguiente:

1% y="T(x) w
- S aij 5 2 7 2
B:{617827"’7en} - B:{f17f27"’afm}
cf 2h))

I 2 — i), R/
B ={¢,¢,,---,¢,} == B =

IN]
—

fllaleu 7fr/n}

En el diagrama

= g;; son los elementos de la matriz de la transformacién T tomando la base B en V y la base B
en W

" d ; son los elementos de la matriz de la transformacion 7' tomando la base B’ enV ylabase B’

en W

» Cy D son las matrices del cambio de base de B’ a By de B’ a B, respectivamente.

Se tiene que X € V puede escribirse de dos formas

- - - ! = ! = —
X1€1 + X262+ - +x,6, = x1€] + X265, + - +Xx,€,

e y = T(X) también

YI]?I +y2f2+ T +Yn]?m :yllfll +y,2fé+ T _|_y;l]_c;;1



82 Capitulo 2. Transformaciones Lineales

En primer lugar, se tiene que,

Y1 X1
Y2 X2
y3 == T X3 (24)
Ym Xn

y de acuerdo a los cambios de base en un mismo espacio vectorial que se estudiaron antes,

/

X1 X1 Y1 Y1
/ /

X2 Xy 2 b
— / — /

x| =C| X v | =D %
/ /

xn 'xn Ym ym

mientras que, considerando las bases B’ y B, se tiene que,

b4 X
¥ X
Yo |=T"| % 2.5)
Vi X,

Sustituyendo en (2.4), se obtiene,

34 X
) X
D y’3 =TC xg
Yim X,

y como D es una matriz de cambio de base, tiene inversa, por lo tanto
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Y1 X1
Vs X
¥, | =D7'TC| X
Vim X,

Comparando esta expresion con (2.5) se obtiene, finalmente que

T'=D7'TC,

y es posible calcular la matriz 7’ de la aplicacién T con respecto a las bases B’ y B/, conocidas la
matriz T de la misma aplicacién con respecto a las bases B y B’ y las matrices C y D del cambio de

base B’ a By de B’ a B, respectivamente.

» Cuando entre dos matrices T y T se tiene la relacién 77 = D~!TC, se dice que las
matrices Ty T’ son equivalentes ( D y C son matrices invertibles). Y si las matrices D y
C coinciden, se dice que las matrices T 'y T’ son semejantes.

= En muchos casos los espacios inicial V' y final W de una transformacién lineal coinciden,
yseanota T € L(V).

» Cuando By B coinciden y B' y B’ coinciden, la férmula del cambio de base es mas
sencilla. Si T es la matriz de la aplicacién T € L(V) con respecto a la base B de V, la

matriz 7’ de la misma aplicacién con respecto a una base B’ de V estd dada por

T'=Cc7'TC.

donde C es la matriz del cambio de base de B’ a B. Al tener esta relacién entre las

matrices, por lo anterior, T y T’ son semejantes.
» SiT' =C~'TC, Det(T'") = Det(T), ya que

Det(T') = Det(C~'TC) = Det(C) "' Det(T).Det(C)
= Det(C~'C)Det(T) = Det(I)Det(T) = Det(T).
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= Ejemplo 2.17 Si B es la base canénica, B’ = {(1,2),(2,3)} y

6 —2
(T)s =
6 —1
se tiene que
~1
1 2 6 -2 1 2 2
(T)p = =
2 3 6 —1 2 3

Espacio dual de un espacio Vectorial

Dado un espacio vectorial V sobre un cuerpo K, podemos considerar el conjunto L(V,K) de

todas las transformaciones lineales de V' en el espacio vectorial K (de dimensién 1 sobre K).

Este espacio vectorial es un caso particular del estudiado anteriormente (L(V,W)), y el Teorema
2.2.1 de la seccién nos permite concluir que L(V, K) es un espacio vectorial sobre K. Este espacio
vectorial recibe el nombre de espacio dual del espacio vectorial V y para indicarlo se utiliza
comtinmente el simbolo V*, en lugar de L(V,K). En otras palabras, V* es el espacio vectorial de

todas las aplicaciones lineales de V en K, también llamados funcionales lineales.

Los elementos de V* son transformaciones lineales. Si V' es un espacio vectorial de dimensién
finita n, del Teorema 2.2.2 se deduce que es espacio dual V* tiene dimensién n. El teorema que sigue
exhibe una base B* asociada de manera tnica y natural a una base B de V. La demostracion del
Teorema 2.2.2, mds general, fue citada. Se presenta a continuacién la demostracidn para este caso

particular.

Teorema 2.7.1 Sea V un espacio vectorial de dimension finitan'y B = {€},€,,- - ,&,} una base

de V. Existe una unica base

B*:{(Pla(P2>"‘a(Pn}

de V* tal que @;(é;) = 1 paratodoi=1,---,n,y @;(é;) =0sii# j. Es decir, los elementos de la
base dual de B satisfacen

(pj(a):(slja j7i:l725"'7n
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La base B* se denomina base dual de B.

Demostracion:

ParaV=Y"_,v;é;, definimos los funcionales ¢;, j = 1,2,--- ,n de la forma siguiente,

—

¢;(V) =v,
es decir, da la coordenada j-ésima.

= @; € V* y satisface @;(¢;) = 6;j

» . {®1,02,---, @, } son linealmente independientes ?
SiYijcip= 0, ; Se cumple que cj=0, Vj?

Notar que el término 0 del miembro derecho de la igualdad es la aplicacion nula (la imagen
de Oes 0 € K V¥ e V). Se deberd cumplir esa igualdad al evaluar las transformaciones
lineales de ambos lados en cualquier vector V. En particular, si se evaludn en los vectores

de la base,
;!:1 Cj(Pj(é}') = 6(3,) =0, VvVi=1,2,---,n.

Por lo tanto, ¢; =0,i=1,2,---,n, ya que @;(¢;) es no nulo solo cuando j = i. De ahi que

B* es un conjunto de aplicaciones linealmente independientes.
» Finalmente, para ver que generan, siA € V*,

A(V) = A(Xj=1v€)) = Ljm1A(vj€))

=Y 1vA(€) =Li_ 9;(VA(€)) = L1 A(€)) 9;(V).

Entonces, se tiene la igualdad

A=Y A(@))o;
il

y por lo tanto, B* = {@;, ¢, -+ , ¢, } es una base y queda demostrado el teorema.
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» Ejemplo 2.18 Se quiere hallar la base dual B* = {1, @2, @3} de la base canénica B = {€],¢,,¢3}
de R3.

La transformacion lineal ¢; debe satisfacer
01(€1) =1, 9,(€2) =0,y ¢1(&3) =0, de donde se obtiene,
@1 (x1,%2,%3) = @1(x1€] + X282 +x3€3) = x1.

De manera similar, @, (x1,x2,x3) =x2 ¥ ©3(x1,X2,X3) = X3.

m Ejemplo 2.19 Sean L;, i = 1,2, 3, funcionales sobre Pﬂg) [t], definidos como L;(p(t)) = p(t;) donde

los t; son distintos.

Son aplicaciones lineales y son linealmente independientes, ya que si ¢{L| +c2Llo +c3l3 = 6,
para todo p € Pﬂg) [t], entonces ¢ = ¢, = ¢3 = 0.

V= PH(;) [t] tiene dimensién 3. Ly, Ly y Ly € V* y entonces, {L;,L;,L3} es una base de V*.
(Recordar que V y V* tienen la misma dimension).

(Existe una base B de V para la cual {L;,L,,L3} es su base dual B*?

Es decir, se quieren hallar {p;, p2, p3} € V tales que

Lj(pi) = &ji

pi(t) =1, pi(t2) =0, p1(13)
p2(t1) =0, p2(t2) = 1, p2(13)
p3(t1) =0, p3(t2) =0, p3(13)

0
0
1

De donde,

_ (t=n)(t—1)
pi(r) = (t _;)(;1_3;3)

(t—11)(t—13)
Par) = (fz—f:)(fz—ia)

(t—1)(t—1)
Palr) = (fs—f:)(B—iZ)



2.7 Espacio dual de un espacio Vectorial 87

Entonces, para cada p € V, sus coordenadas son:

p(t) =Li(p())p1(t) + La(p(1))p2(t) + La(p(2)) p3(t) = p(t1)p1(2) + p(t2) p2(t) + p(t3) p3 (1)

pi1(t),pa2(t), p3(t) son los polinomios de interpolacién de Lagrange. Es importante sefialar
que estos polinomios tienen muchas aplicaciones en aproximacion de funciones y en integracién

numeérica.

Es posible, por ejemplo, expresar el polinomio p(¢) = > + 1 como combinacién lineal de los

funcionales L; sit) =0, =1yt = —1.

S S R S
PO = e oy

(t—11)(t —13) O (t+1)  (2+1)
PO = e~ ® 2

(—0)i-n) OG- (-
PO = e~ ) 2

Como L;(p) = p(t;), se tiene que

Li(p) = p(t1) = p(0) =1, Lo(p) = p(12) = p(1) =2,y L3(p) = p(13) = p(~1) = 2.
Finalmente,

p(t)=()(1-2)+251 420 — 24

Esta tltima es la expresion de p(r) en la base {p;, p2, p3}. Notar que sus coordenadas estdn

dadas por L;(p) = p(t;),i=1,2,3.

Siempre es posible hallar la base de B como se hizo en el ejemplo anterior. Asi como toda base
de V de dimension finita tiene una base dual asociada, toda base de V* es la base dual de una base de
V. Esta propiedad importante -de la cual no incluimos la demostracién- se enuncia en el teorema a

continuacion.
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Teorema 2.7.2 Sea V un espacio vectorial de dimension finita n y sea V* su espacio dual.
Sea B' = {¢,0,,--- ,0,} una base de V*. Existe una dnica base B = {V},V,,--,V,} de V que

satisface B* = B'.

Relacion entre las coordenadas en las bases By B* Si B es una base de un espacio vectorial V

de dimension finita y

B*:{(Pl,(PZa“'a(Pn}

es su base dual, es posible calcular ficilmente las coordenadas de un elemento de V usando la base
B* como se realizo al final del Ejemplo 2.19. Y reciprocamente es posible hallar las coordenadas de

un elemento de V* utilizando la base B. Esto se muestra en el ejemplo que sigue:

» Ejemplo 2.20 SiB={&,,&,} ={(1,1),(1,—1)}y

B*z{wl,%}z{)tyf:y}
La relacién entre las coordenadas en las bases By B* es:
(5,5)=o(1,1)+B(1,-1)
¢1(5,5) =api(1,1)+pei(1,-1) =
?2(5,5) = ap(1,1) + Bea(1, —1) = B
ya que ¢i(€)) = ;.

Por otro lado, dado un funcional @(x,y) € V*, @(x,y) = a*@1(x,y) + B*@2(x,y)

Asi, para
* X+y x XY
o(r.y) =3r+5y =o' () + B (32)

sus coordenadas son, a* = ¢(1,1) y B* = ¢(1,—1)

Entonces, la relacién entre las coordenadas es la siguiente:
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a=p(,1)=8 BT =p(l,~1)=-2

Se puede generalizar lo que vimos en el ejemplo anterior.
Sean B = {¢,é,,---,é,} unabasede Vy B* ={¢,0,---,®,} una base de V*.
» DadoveV,v= Z?:l 0;é;, 0; € K

0;(V) = 0;(} aig) = () o9; (@) = a. (2.6)
i=1 i=1

Luego,
(V) = (91(V), @2(V), -+, @u(V))
» Dadao e V*, 3 BicKtalque o =YY", Bio;

Paracada j, 1 < j <n,

0(7) = <_f21/3i<pi><zj> - iﬁm(a) —B, @7

i Enel Ejemplo 2.19 las coordenadas de p(t) son, de acuerdo a (2.6), Li(p(t)) = p(t;), i=1,2,3.

Anulador de un subespacio
Existe también relacion entre los subespacios de V con ciertos subespacios de V*. En particular,
dado un subespacio S de V si consideramos el conjunto de todas los funcionales lineales que se

anulan en S se prueba que tiene una estructura de subespacio.
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Definicion 2.7.1 Sea V un espacio vectorial y sea S un subespacio de V. Se llama anulador al

conjunto

SO={p cV*, 0()=0Vsc S}

={p €V*, SCN(p)}

S es un subespacio de V*.

Demostracion:

» 0 e s (se anula en todoSy() € 9.

» Si@g y@ € S° entonces ¢i(5) =0y @(5) =0V 5 € S, de donde (¢ + ¢)(5) =
01(5) + () =0V 5 € S. Se tiene, que @1 + @2 € S°.

2 Sic e Kyg, € S, (cg)(5) =c1(5) =c0=0V5 € S.Luego, co; € S°.

Sea V un espacio vectorial de dimensién n y sea S un subespacio de V.

Entonces

dim(S) +dim(S°) = n

Demostracion:

Sea {V},V,,-,V} una base de S, y sean Vi 1,Vii2,--+,V, €V tales que
B={V1,V2, ,Vk, Vi1, ,Vn} seaunabase de V. Sea B* = {1, 02, , @, Q15+ , @} CV*
la base dual de B. Entonces, para cada k+ 1 <i <n, se tiene que @;(V)) = @;(V2) =--- = @;(Vx) =0,
y por lo tanto ¢; se anula en todo S. Se tiene que {@ 1, ,@,} C S°.

Como { @1, ,¢,} es parte de una base, es un conjunto linealmente independiente. Veamos

que es un sistema de generadores de S” y entonces es base de S°.

Sea y € $Y. Como B* es una base de V*, existen ¢,c¢2, -+ ,c, € K tales que ¥y =Y" | ci¢;.
Por la relacién entre las coordenadas (2.7) se tiene que ¢; = w(¥;). Ademds, como y € S°y
{V1,V2,-+,Vx} una base de S, y(¥;) = 0 para cada 1 < i < k. En consecuencia, ¢; = 0 para

1 <i<k, yporlotanto ¥ € (@1, -, Q).
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Luego, {@.1,---,¢,} es una base de S° y entonces,

dim(S°) =n—k = n—dim(S).

= Ejemplo 2.21 Si se desea hallar el subespacio anulador S° para § = ((1,1,1),(1,2,1)) C R3. De
acuerdo a la demostracién de la Proposicién 2.7.4, S° = (¢3), se completa S para tener una base de R?,
B={V|,"%,v3} ={(1,1,1),(1,2,1),(1,0,0)} y luego, a partir de escribir (x,y,z) como combinacién

lineal de esa base y teniendo en cuenta que @;(V;) = J;;, se obtiene que @3(x,y,z) =x—z.

= Ejemplo 2.22 De la misma forma, para hallar una base de S°, donde § = ((—1,—1,1)):
= Se completa la base de S para tener una base de R3, B{¥,,, 73}, por ejemplo,
B={(-1,-1,1),(1,0,0),(0,01)}.
= Se halla la base B* = { ¢, ¢, @3} tal que @;(V;) = &;j, i,j=1,2,3.
» Labase de S” estd dada por {@,, 93} = {x] —x2,%2 +x3}.
.
El ejemplo que sigue muestra que los sistemas de ecuaciones lineales pueden estudiarse desde el

punto de vista de los funcionales lineales.

m Ejemplo 2.23 Sea el sistema lineal homogéneo:

X1 +Xx3 =0

2x1—x+x3 =

Sea S el subespacio de R* generado por o = (1,0,1), oy = (2,—1,1). Entonces el espacio

solucién es el espacio anulador, S°. Es decir, ¢ € S° < ¢(0;) =0, parai= 1,2 "
Se verd a continuacién cémo se comporta el anulador con la suma y la interseccién de subespacios:

Sea V un espacio vectorial de dimensién n 'y sean Sy T subespacios de V.

Entonces,

L. (S+T7)°=5"NnTy
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2. (SNT)°0=80+71°
Demostracion:

1. Sea @ € V*. Se tiene que ¢ € (S+T)° siy solo si ¢(5+7) = 0 para todo 5 € S y para todo
7€ T.Y esto es equivalente a que @(5) = 0 paratodo 5 € Sy @(7) =0 paratodo7 € T, es
decir que ¢ € SN TP,

2. Sea ¢ € S°+T°. Entonces ¢ = @5+ ¢r, ¢s € S° y oy € T°. Para cada ¥ € SN T se tiene
que @(¥) = @s(¥) + @r(¥) =0+0=0. Luego ¢ € (SNT)°. Por lo tanto S* +7° C (SN T)°.
Por el Teorema de la dimension para la suma de subespacios (Proposicién 1.4.1), teniendo

en cuenta que (S+7)° = S°NT° y 1a Proposicién 2.7.4,

dim(S°+T% = dim(S°) +dim(T°) — dim(s° N T°)
= dim(S°) + dim(T°) — dim((S+T)°)
= (n—dim(S)) + (n—dim(T)) — (n— dim(S+T))
= n—(dim(S)+dim(T) —dim(S+T))
= n—dim(SNT)
= dim((SNT)°)

En consecuencia, (SNT)? = S+ 79,

El doble dual

Como V* = L(V,K) es un espacio vectorial, es posible definir su espacio dual. Entonces (V*)* =
L(V*,K). Por las propiedades vistas antes, se tiene que dim(V) = dim(V*) = dim(V**). SiV es de
dimension finita, sabemos que los espacios V' y V*, al tener la misma dimension, son isomorfos.
Para hallar el isomorfismo se debe hallar una base de V y su base dual. En forma similar, como la
dimension de V* es igual a la dimension de V**, existe un isomorfismo entre los espacios V* y V**.

En este segundo caso, el isomorfismo no requiere la eleccion de bases, y se dice que es natural.
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Sea V un espacio vectorial, dim(V) < o sobre K. Para cada vector v € V, se

define L, : V* — K, Ly(@) = ¢(V), o € V*.
La aplicacion ¢ : V — V** que a ¥ hace corresponder L, (¢) es un isomorfismo.

Notar que L, se aplica a elementos de V* y debe dar un escalar. La definicién indica que,
aplicado a ¢ ese escalar es ¢(V), de ahi que el nombre de este isomorfismo es la evaluacion, ya

—

que para cada ¢ da su evaluacion en v, @ (V)

Demostracion:

Se deja al lector probar que L, es una transformacion lineal. Como V' y V** tienen la misma

dimensién, alcanza con probar que la transformacion es inyectiva.

Sea vV € N(¢). Entonces L;(¢) = 0 para todo ¢ en V*, o sea ¢(V) = 0 para todo ¢ en V*.
El tnico elemento de V con esta propiedad (da 0 en cualquier funcional V*), es 0. Es decir que

N(¢) = 0. Asi que, ¢ es inyectiva, y por lo tanto, es un isomorfismo.
O

i) SiV tiene dimensién infinita la aplicacién ¢ : V — V** sigue siendo inyectiva, pero no

suryectiva. Asi que no todo espacio de dimension infinita es isomorfo a su doble dual.

Aplicacion transpuesta
Sean V y W dos espacios vectoriales de dim < oo sobre K. Sea T : V — W una aplicacion lineal. T

induce una aplicacién lineal de W* en V* que llamaremos transpuesta de T,

Sig:W —K,

Se deja al lector probar que 77(¢) es una transformacién lineal.
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Sean V' y W dos espacios vectoriales sobre el mismo cuerpo K. Sea 7" una

aplicacion lineal de V en W, entonces

Se deja la prueba al lector.

Relacion entre las matrices que representan a una aplicacion lineal y su traspuesta

SeanT:V W yT':W*— V*. Y sean By B bases de V y W respectivamente, y B* y B™* bases

de V* y W*, respectivamente.

SiA=[T]ppyC=[T"]p p- entonces C = A’

» Ejemplo 2.24 En este ejemplo se muestra la relacién entre las matrices de la transformacién
T y la de su aplicacién transpuesta T7, en el caso V =R?, W =R?, y T : V — W definida por
T(x,y) = (2x—y,3x,x —2y).

Sean las basesde Vy W,

B=1{(1,2),(1,3)} yB'={(1,1,1),(1,1,0),(1,0,0)}, respectivamente.

= Como
T((Lz)):(0737_3):_3(171717)+6(17170)_3(1a0707)
T((173)):(_1737_5):_5(171717)+8(1>170)_4(170a07)
-3 -5
la matriz de T en las bases By B’ es 6 8
-3 —4

Veamos ahora la matriz correspondiente a la transformacion transpuesta 77, T' : W* — V* |

definida como T7(¢) (V) = (T (V)) y considerando las bases B de W* y B* de V*.
= B = {01, ¢}

(x1,%) = o¢(1,2) 4+ B(1,3) de donde x + f = x1 y 20t + 38 = x».
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Se resuelve el sistema y resulta
01 (x1,%) =a=3x; —x3
02 (x1,x%2) = B =x2 — 2x
= B = {0}, 0,9}
Para hallar esta base se hace lo mismo que para B*, partiendo de
(x1,x2,x3) = a(1,1,1)+ B(1,1,0) +v(1,0,0)
se aplican @/, i = 1,2,3, y se obtiene
@1 (x1,%2,x3) = A =x3
@y (x1,22,x3) = B =x2—x3
P3(x1,x2,x3) =y =x1 — X2
» Para obtener la matriz de 7’ se debe calcular
T (@1)(x1,22,x3) = @ (T (x1,x2,x3)) =x1 =202 = =301 = 5¢,
T (@p)(x1,22,x3) = @3(T (x1,x2,x3)) = 691 + 8¢,
TH(@3)(x1,x2,x3) = @3(T (x1,%2,X3)) = =301 — 4,

-3 6 -3
-5 8 —4

La matriz de T? en las bases B* de W* y B* de V* es

Se verifica que la matriz correspondiente a la transformacién transpuesta, 7* es la matriz

transpuesta de la matriz correspondiente a la transformacion 7.
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Figura 2.9

UN CREYENTE LE PREGUNTA A UN
MATEMATICO:

- ¢CREE USTED EN UN DIOS
UNICO?

Y EL MATEMATICO RESPONDE:

- Si, SALVO ISOMORFISMOS.

Actividades propuestas

Dada una variable aleatoria discreta X con distribucién de probabilidad

P[X =x;] coni=1,2,...,n, laesperanza (o valor medio) de X se define como:
EX]=Y",xP[X = x|

Indique los espacios vectoriales involucrados en esta aplicaciéon. Demuestre que la Esperanza E[-] es
una transformacion lineal, es decir que para cualquier par de variables aleatorias, X e Y y cualquier

¢ € R se cumple que:

EX+Y]=E[X]+E[Y]
E[cX] = cE[X]
(Para una analogia fisica, si los x; son masas puntuales en la recta, cada una con peso P[X = x;],
entonces E[X] es el centro de gravedad de estas masas.)

Busque otros ejemplos e investigue el caso de una variable aleatoria continua, cémo se define su

esperanza en ese caso y si también se tiene una transformacion lineal.

Ejercicios

Utilice la definicion de transformacion lineal para justificar por qué: T : R — R tal que T'(¢) = %E g2

no la cumple (E es una constante). Grafique.
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Sea A la matriz de la transformacién lineal T : R? — R3. Encuentre una X en R? cuya imagen bajo T’
y g 1]

sea b y responda si existe mds de una X cuya imagen bajo T sea b.

1 =3
A=| 3 5 |, b=| 2
-1 7 -5

La transformacién de trasquillado deforma un cuadrado como si este se empujara hacia la derecha

manteniendo fija la base. Grafique el producto de multiplicar por A los vértices del cuadrado: (0,0),
(0,2), (2,0) y (2,2).

Encuentre la expresion de la transformacién proyeccion 7' (X¥) donde X¥=(x;,x2,x3) y describa la
aplicaciéon. Su matriz es:

1 00
A=101 0
000

Dado un escalar r, si T : R — R? es tal que T'(X) = r¥, identifique qué valores debe tomar r para

que T sea una contraccioén y cudles para que T sea una dilatacién.

Dadas:

1 0 -1 0 1 0 -1
A= , B= , C= , D=

0 —1 0 1 1 0 -1 0

-1 0 k O 1 1 %k
E= , F= , G= , H=

0 -1 0 1
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1 0
1= , J= , K=
k1 0 0 0
Indique cudl de ellas es una contraccién o expansion vertical y cudl una horizontal, cual una
proyeccion sobre el eje x; y cudl sobre el eje x;, cudl es un trasquillado vertical y cudl horizontal,
cudl es una reflexion con respecto al origen, cudl a través del eje x| y cudl a través del eje x,, por

ultimo cudl representa una reflexion a través de la recta x;=x; y cudl a través de la recta x;=—x5.

Para las matrices del ejercicio anterior calcule su determinante. Con el resultado exprese de qué
modo el valor del determinante determina el drea que se crea entre dos vectores antes y después de
la transformacién. Comente cémo el signo del determinante estd conectado con la quiralidad para

estas transformaciones.

Hay objetos que vienen en dos variedades: derecha e izquierda. Por ejemplo, hay zapatos
derechos y zapatos izquierdos, orejas derechas y orejas izquierdas. Estos objetos se llaman quirales
(del griego, keir6s= mano). Otros objetos no vienen en dos variedades derecha e izquierda, por
ejemplo las pelotas de fitbol; uno nunca pide una pelota derecha o izquierda. Tales objetos son
aquirales. La propiedad de ser derecho o izquierdo se llama quiralidad (los fisicos la llaman paridad).
Es asi que, los espejos cambian la quiralidad. El drea puede pensarse con quiralidad, piense en el
producto cruz, implica la regla de la mano derecha. Si el Det(T)> 0 no hay cambio de quiralidad,

pero si Det(T)< 0 si lo hay y la transformacién tiene el cardcter de un espejo.

Sea T : R? — R? definida por T ((x,y)) = (x+2y, —x,0)

a) Encuentre la matriz de la transformacion lineal T respecto a las bases B = {iij,i,} y B' =

{V1,V2,V3}, donde

1 2 3
up = Uy = V=1 |.v2=1 2 [V3=
3 4
1 0
14
b) Verifique utilizando la matriz anterior que T’ =1 -8
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Una rotacién de Givens es una transformacion lineal de R” — R” que se utiliza para crear una
entrada cero en un vector. Serfa como generar la rotacion en vez de cambiar el sistema de referencia.

Para n = 2 la rotacién de Givens tiene la forma general:

a —b
b a

, a*+br=1

4
Encuentre a y b tales que gire a
3

Sea T : R? — R?, dada por T ((x,y,z)) = (x+y,x+z). Determinar el niicleo y la imagen de T, y sus

dimensiones. Caracterice el conjunto T~!(C), siendo C = {(x,y) : x = 1}.

2 -1
8 —4

Sea T : R? — R?, la multiplicacién por la matriz

Indique cudles vectores estan en el nicleo de T y cudles en la imagen de T:

SeaT: Pﬂg) [x] — Pé;) [x] 1a transformacién lineal definida por 7' (p(x)) = xp(x).

a) Indique cudles polinomios de los siguientes estan en el niicleo de T: x%, 0, 1 + x.

b) Y cudles polinomios estdn en la imagen de 7: x +x%, 1 4+ x, 3 — x?

Sea T : Pﬂg) [x] — Pﬂg)[x] la transformacién lineal definida por T (ag + a1x + axx*) = (ag +a;) —
(2a; + 3az)x.

Halle la matriz de 7' con respecto a las bases candnicas de Pﬂ(g) [x]y Pﬂg) [x].
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En cada caso utilice la informacién que se da para hallar la nulidad de T'.
a) T : R> — R tiene rango 3.
b) Laimagen de 7 : R® — R3 es R°.

¢) T : R*? — R>? tiene rango 3.

1 3 4
Sea T : R? — R? la multiplicacién de un vector de R? por la matriz 3 4 7
-2 20

a) Demuestre que el ndcleo de T es una recta por el origen y encuentre sus ecuaciones
paramétricas.

b) Demuestre que la imagen de T es un plano por el origen y encuentre su ecuacion.

SeaD: Pﬂ(s) [t] — Pﬂg) [t] 1a transformacion derivacion. Describa el nicleo de D, N(D).

Seal: Plél) 1] — R la transformaci6n integracién de p, [ | P(x)dx. Describa el nicleo de I, N(I).

Explique de qué modo se obtiene la base dual de un espacio vectorial dado; utilice un ejemplo.
Luego, de un ejemplo a la inversa, esto es, teniendo la base dual, encuentre la base del espacio

vectorial.

Responda:
a) ;Qué relacion hay entre las dimensiones del espacio dual con su espacio vectorial V?
b) (A qué se llama espacio anulador?
¢) (Los elementos del espacio anulador pertenecen al dual?
d) (A qué se llama aplicacién transpuesta? De un ejemplo.

e) (A qué se denomina doble dual?

Dado un cuerpo K, sea T : V — V' una transformacion lineal entre dos espacios vectoriales sobre
el cuerpo K. Sean S'y S’ subespacios de V' y V/ respectivamente. Pruebe que T(S), T~!(S") y N(T)

son subespacios vectoriales.
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Sea V un espacio vectorial de dimension n sobre el cuerpo K'y sea T : V — V una transformacién

lineal. Pruebe que T es inyectiva si y solo si T~!(0) = {0}.

Sea V un espacio vectorial sobre K de dimension ny X = {V},---,V,,} un conjunto finito de vectores
de V. Considere la aplicacién lineal E : K™ — V definida por E (ky,--- ,ky) = kiV] +koVo + -+ +
ki Vi

a) Pruebe que E es una transformacion lineal.

b) Demuestre que E es inyectiva si y s6lo si los vectores del conjunto X son linealmente
independientes.

c¢) Pruebe que E es suryectiva si y s6lo si X es un conjunto de generadores de V.

Dado V un espacio vectorial sobre el cuerpo K de dimension n, sea ¢ € V*. Pruebe que Im(¢) =K

y que dim(N(¢@)) =n— 1.

Sea V un C-espacio vectorial. Dados ¢ y ¢ funcionales lineales sobre V, suponga que la funcion

y definida por y(v) = ¢(v).¢(v) también es un funcional lineal sobre V. Demuestre que ¢ =0 o

¢ =0.

Sea V un K-espacio vectorial de dimensidn finita (K cuerpo). Demuestre:
a) Si Ay B son subconjuntos de V tales que A C B, entonces B C A°.
b) Dados S'y T subespacios de V,
(S+T)°=8NTy (SNT)? =5+ T°

Sean V y W dos espacios vectoriales sobre K y sea T : V — W una transformacién lineal. La
traspuesta de T es la funcién T' : W* — V* que aplica a un funcional ¢ € W* en el funcional

T' () € V* definido por
(T'(¢))(v) = (T (v)), paratodov € V

a) Pruebe que T estd bien definida y que es una aplicacién lineal.

b) Pruebe que Nu(T") = (Im(T))°.
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Sea V un espacio vectorial sobre K y sea B = {V},V,--- ,V,} una base ordenada de V, se define la

transformacion lineal 7 : V — V de la siguiente forma:

\_}‘H»l 1§l§n—l

0Oi=n

a) Encuentre la matriz correspondiente a 7' en la base B.

b) Pruebe que 7" = 0, pero T"~' #£ 0.

¢) Sea S cualquier transformacién lineal sobre V tal que S" = 0, pero §"~! # 0. Demuestre que

existe una base ordenada B’ de V tal que la matriz de S en la base B’ coincide con la matriz hallada

en el primer inciso.

d) Demuestre que si M y N son matrices de 7 X n sobre K tales que M" = N" =0, con M"~! #£ 0

y N"~1 =£ 0, entonces M y N son semejantes.

Autoevaluacion

Verdadero o Falso

. Elrango de T es el conjunto de todas las combinaciones lineales de las columnas de A.

La generalizacion T (c¢iV| + .. +cpv,) = 1T (Vi) +..+¢,T(V,) es lo que se conoce como

principio de superposicién en fisica.

. El conocimiento de T(é;) y T(é;) siendo €| y €, los vectores canénicos, no basta para

encontrar 7 sabiendo que 7 es lineal.

A=[T(&))..T(é,)] se llama matriz estandar de 7.

5. T es suryectiva si y sélo si las filas de A generan la imagen de 7.

10.
11.

T es inyectiva si y s6lo si las columnas de A son linealmente independientes y la ecuacién

T (X) = 0 tiene tnicamente la solucidn trivial.

. Para que una transformacién sea isomorfa el dominio y la imagen deben coincidir.

. A es invertible si la dimension del ndcleo de A es cero.

Si los vectores en el dominio generan un 4rea y después que se les aplica una transformacién

lineal siguen generando un drea, cudnto aumente o disminuya el drea dependerd del determinante
de la matriz A de la transformacion lineal.

Una transformacion lineal siempre lleva el vector nulo del dominio al vector nulo de la imagen.

Existe un isomorfismo 7 : Plg) [x] — R4,






3. Autovalores y autovectores

En este capitulo se tratard sobre autovectores y autovalores que es una herramienta matemética
muy ttil a la hora de resolver diversos problemas. Nos ocuparemos de resolver el problema AV = AV,
donde A es una matriz cuadrada. G. Strang [27] lo llama el segundo problema de Algebra lineal,
considerando que el primer problema es resolver Ax = b. Notar que AV = AV es una ecuacién no
lineal, ya que A multiplica a V y ambos A y V son desconocidos. El método de eliminacién gaussiana,
adecuado para el problema Ax = b, no es una herramienta ttil, ya que las operaciones elementales
sobre las filas de una matriz pueden modificar a los autovalores A. El problema se resuelve a partir
de simplificar la matriz, y eso es haciéndola lo mas diagonal posible. A partir del calculo de un
determinante se obtiene un polinomio cuyas raices son los autovalores. La obtencioén de una forma
casi diagonal de la matriz A tiene muchas aplicaciones, entre ellas el cdlculo de las potencias de una

matriz y la resolucién de sistemas de ecuaciones diferenciales.

Intfroduccién

Presentamos a modo de introduccién un modelo lineal que representa la dindmica de la infeccidn
y de la propagacién de una epidemia. En este modelo, la enfermedad se introduce en una poblacidn,
y en cada dia se cuenta la fraccién de la poblacién que se encuentra dividida en cuatro estados o
compartimentos:

= Susceptibles: son los individuos que pueden adquirir la enfermedad al dia siguiente.

» Infectados: son los individuos con la enfermedad.



106 Capitulo 3. Autovalores y autovectores

= Recuperados: son los individuos que tuvieron la enfermedad y se recuperaron. Ahora tienen
inmunidad.

= Fallecidos: son los individuos que tuvieron la enfermedad y fallecieron a causa de ella.

Son llamados modelos compartimentales. A este, en particular, se lo conoce como modelo SIRD
(Susceptible, Infectado, Recuperado, Fallecido) y las variables que indican la cantidad de individuos
en cada compartimento al dfa st son X!, X2, X? y X;*. En este caso, conocidos los valores al dfa ¢, se
supone que al dia siguiente ¢ + 1:

= El 6 % de la poblacién de individuos Susceptibles adquirird la enfermedad (el 94 % restante

sigue siendo Susceptible)

= El 1% de la poblacién infectada morird a causa de la enfermedad, el 16 % se recuperard y

adquirird inmunidad, y el 3 % se recuperard y no adquirird inmunidad y por lo tanto pasard a
ser Susceptible. El 80 % restante seguird Infectado.

= [os individuos Recuperados con inmunidad y los Fallecidos permanecen esos estados

Si X! es la proporcién de individuos Susceptibles al dia ¢, al dia siguiente, thﬂ estd dada por
los Susceptibles de hoy que no se infectaron, 0.94 * X', mds los infectados que se recuperaron
sin inmunidad 0.03 * X?. La proporcién de Infectados, Xt2—|—1 estara dada por los Susceptibles que
adquieren la enfermedad 0.06 + X! , mds los infectados que siguen infectados 0.80 + X?. De igual
forma, la cantidad de Recuperados, Xz3+1 estard dada por los infectados que se recuperen con
inmunidad 0.16 * X més los que permanecen Recuperados, X . Y los Fallecidos, Xt‘fH comprenden

el 1% de los Infectados X més los Fallecidos, X;*.

Es decir que la modelizacién tiene la expresion

Xt—H =AX;
donde
094 003 0 O
B 0.06 080 0 O
0O 016 1 O
0O 001 0 1

Si se desea saber la evolucién de la cantidad de individuos en cada estado después de 6 meses, se

debe calcular jA'30!
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Si A fuera una matriz diagonal esto llevaria un bajo costo computacional, ya que quedarian

elevados al exponente 180 los elementos de la diagonal.

El programa en lenguaje de programacion GNU Octave que sigue diagonaliza la matriz A del

modelo.
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i) Este ejemplo estuvo inspirado en la pandemia del COVID-19 del afio 2020 y en estudios
realizados en el tema, como el del trabajo [19]. Los modelos matematicos de epidemia que
se utilizaron para su andlisis y para hacer predicciones son modelos de dltima generacién,
representados mediante un sistema de ecuaciones diferenciales con muchas variables y poblaciones

y que, entre otros parametros, contemplan los que miden el comportamiento social.

En la Seccién 2.6 vimos, en el Ejemplo 2.17, que dada una aplicacién lineal T cuya matriz en la

base canénica es

6 -2
6 —1

T =

es posible hallar una base tal que la matriz sea diagonal.

T =

La matriz 7’ en esa nueva base es mucho més sencilla que la matriz 7'y se tiene que 7/ = C~'TC

donde C es la matriz de cambio de base. Nos surge la pregunta si esto siempre es posible.

Un ejemplo sencillo que nos permite responder que no siempre es posible es la matriz

Supongamos que existe una matriz C de cambio de base tal que

4 , o 0
C'TC=T =
0 B
o en forma equivalente,
a 0 1
T=C C
0 B
11 a b a 0 d —b 1
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1 1\ [ aa bB d —b 1

0 1 co dp —¢ a | Det(C)
1 1) [ aad—bBc —acb+bPa 1
0 1 coad—cdB —cab+dBa | Det(C)

Igualando los elementos de ambas matrices, se tiene un sistema de ecuaciones:

Det(C) = aod—bBc (3.1)
Det(C) = ba(—a+p) (3.2)

0 = cd(—a+p) (3.3)
Det(C) = —cab+dfa (3.4)

De la igualdad (3.3) se tiene que c=00d =00 oo =fB. Si ¢ =0, de (3.1) y (3.4), queda
Det(C) = aod = dfa,de donde @ = B yen (3.3) setiene 1 =0.Sid =0,de (3.1) y 3.4, Det(C) =
—bPc = —cab, de donde también resulta a = § y en (3.2) se tiene 1 = 0. Lo mismo si ot = f.

Se llega a una contradiccién. Concluimos que no siempre es posible diagonalizar una matriz.

= No todas las matrices son diagonalizables.

= Si es digonalizable, A es semejante a una matriz diagonal y tendremos ventaja al calcular
su potencia. En otros casos serd semejante a una matriz casi diagonal.

= Siempre es posible encontrar una forma mds sencilla de una matriz dada mediante un
cambio de base. Se denomina matriz de Jordan de la matriz dada y el nombre se debe al
matemético Camille Jordan (1838-1922).

Si se desea calcular
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como T = CT'C~!, T? =CT'C-'CT'C~' =CT'IT'C~' = C(T")?>C~", y en general,
T"=C(T")"'C™', neZ

de donde se tiene que

1 2 2600 -3 2

Subespacios invariantes. Valores y vectores propios

Dado un espacio vectorial V' y una aplicacion lineal 7 : V — V, es decir T € L(V), un subespacio
vectorial W de V se dice invariante respecto a T si T(W) C W, es decir, si la imagen 7' (X) de todo

vector X € W es un elemento de W.

= Ejemplo 3.1 Sea T € L(IR?) una aplicacién lineal en R? cuya matriz respecto de la base canénica

{é1,é,} de R? est4 dada por

Entonces W) = {xje1, x; € R} y W = {xz€3, x, € R} son invariantes respecto de 7.

En efecto, de la definicién de matriz de una transformacion lineal se tiene que 7'(é}) = 2¢] + 0¢3

y T(&) = 08 +12.

Luego,

T(xle_’l) :xlT(e_]) :x1(25’1) = (2)61)671 ew

T(Xng) = sz(e}) =xe, €W,



3.2 Subespacios invariantes. Valores y vectores propios 111

= Ejemplo 3.2 Sea R, una rotacién de dngulo o # 0 en R3 con respecto al eje z. Geométricamente
se observa que el plano xy y el eje z son invariantes con respecto a esta aplicacion. Para comprobar

algebraicamente que el plano xy es invariante se observa, en primer lugar, que la matriz de Ry con

respecto a la base canénica de R3 es

cosa —seno 0
R=1] senaa cosa 0
0 0 1

Si X = x1€] + xp€3 es un elemento del plano xy, se tiene que su rotacion da el vector

cosot —sena 0 Xi X1cos0 — xpsena.
senot  cosoe O xy | = | xiseno+xycoso
0 0 1 0 0

¥, por lo tanto, Ry (X) = (xjcosa — xasenat)e) + (xjsena + xpcos)é> y es nuevamente un elemento
del plano xy.

Figura 3.1: Todo plano que contiene al eje 7 es invariante por P

z

N

L 4
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= Ejemplo 3.3 En la Figura 3.1 se muestra la proyeccién ortogonal P de R sobre el plano xy. (Ver

Ejemplo 2.5). La matriz de P es

1 00
P=|1 010
000

con respecto a la base candnica. Se puede ver que todo plano 7 que contiene al eje z es invariante:
el plano 7 tiene ecuacion x;x +x2y +x3z = 0, donde x3 = 0 ya que (0,0, 1) € 7. Los vectores de ese
plano son de la forma X = x; €] + Ax1€2 +x3¢3, A € R, y se tiene que su imagen, P(X), es de nuevo

un elemento del plano 7:

1 00 X1 X1
P=1010 Axi | =] Ax
0 0O X3 0

Otros subespacios invariantes de esta proyeccién ortogonal son el plano xy, el eje z y cualquier

recta del plano xy que pase por el origen de coordenadas. "

i) Para cualquier transformacion lineal T € L(V) (o endomorfismo), el subespacio S = {6},

formado sélo por el elemento nulo, es invariante ya que T(a) =0 y el propio espacio vectorial

V es también invariante ya que 7' (X) para todo vector X € V es un elemento de V.

La interseccién y la suma de subespacios invariantes respecto de una aplicacién
lineal 7 € L(V') son subespacios invariantes respecto de 7.

Se deja la demostracion al lector.

Definicion 3.2.1 Un vector v # 0 de un espacio vectorial V sobre K se llama autovector o vector
propio de una aplicacion lineal T € L(V) si existe un escalar A € K tal que T(V) = AV. Este

ndmero A se denomina autovalor o valor propio de la aplicacién T correspondiente al vector .

i SiVes un vector propio de 7' con autovalor 4, todo elemento no nulo del subespacio
unidimensional generado por V es un autovector de T con el mismo autovalor A. Esto es

porque T (cV) = ¢T (V) = cAV = A(cV).
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Figura 3.2: El vector V es autovector de A, mientras que el vector Ui no es autovector, A no es

muiltiplo de i

1\
X2 Av
+ ®
Ly, 1 v ;
,f’ \. ) //

/// S X1
N — e
6 -5 4 - = 1 2 3 4 5 6

@ 4
Au

Una aplicacion lineal 7 € L(V) es diagonalizable si y sélo si existe una base

de V formada por vectores propios.
Demostracion:

Supongamos que una aplicacion lineal 7 en un espacio V de dimensién »n tiene n vectores
propios linealmente independientes, €1, €5, - - - , &, con valores propios A1, Az, - - - , A, respectivamente,
tomando {&},é,,---,&,} como una base de V se tiene que

T(é1) =Me,T(é) =0, - ,T(€) = Méy

y, por lo tanto, la matriz de T con respecto a esta base es la matriz diagonal

A O 0
0 A 0
T=| 0 O 0 0
0 0
0 0 A

Reciprocamente, toda aplicacion lineal que tiene una matriz diagonal en una cierta base, tiene

a los elementos de esta base como vectores propios.
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g

i Unaaplicacién lineal 7 € L(V) es diagonalizable si'y solo si existe una base de V en la cual la

matriz de T es diagonal.

Definicion 3.2.2 Una matriz T € K"*" se dice diagonalizable en K si la aplicacién lineal

T : K" — K" que la matriz que la representa es diagonalizable.

De esta definicion se deduce que una matriz es diagonalizable en K si existe una matriz C € K"™*"

con determinante no nulo, tal que 77 = C~!TC es una matriz diagonal.

En el ejemplo del inicio de la seccién, para

6 —1

6 —2 1 2 1
= :2
6 —1 4) 2
6 2
=3
) 3

se tiene que

[\

o o
| |
— N
w

Se tiene que T (V1) =2V y T (V2) = 3¥,, siendo V| = (1,2) y ¥, = (2,3), con lo que V; y ¥, son
vectores propios de T con sus correspondientes valores propios 2 y 3 respectivamente. Como V; y Vs
forman una base de R? (son linealmente independientes y son 2), la matriz 7' es diagonalizable en R

y su matriz diagonal asociada es

Calculo de autovalores y autovectores de una transformacion lineal.

Supongamos que ¥ es un vector propio de una aplicacién lineal T en un espacio vectorial V' y

que A es su autovalor, es decir T (V) = AV. Sea {€},é,,--,é,} unabasede V yseanv;, j=1,---n
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las coordenadas de V' en esa base, es decir, V= Y.7_, v;€é;. Si (a;;) es la matriz de T con respecto a la

base tenemos que

Como {€},&,---,&,} es una base de V, del primer y del dltimo término de la igualdad anterior

se tiene que:

Avi = apvi+apva+---Fapv,
Avy = ayvi+anvy+---+anv, 3.5)
Avp = amvi+ampva+--+amva
o en forma equivalente,
(a1 =AW +apva+--+apv,= 0
ayvi+(an—A)va+---+ayv,= 0 (3.6)
ap1vi +an2v2+"'+(ann_/l)vn: 0
Como es un sistema homogéneo, para que exista una solucién no nula debe ocurrir que
an—A an a3 o e ain
a21 azz —_ 2‘ e e DY azn
Det(A—Al) = o =0 (3.7)

anl an2 C Opp—1 App— A



116 Capitulo 3. Autovalores y autovectores

donde I denota la matriz identidad. Esto es una ecuacién de grado n en A y sus soluciones en K (R o
C) son los autovalores de T. Si V' es un espacio vectorial complejo, por el teorema fundamental del
dlgebra la ecuacion anterior tiene n soluciones complejas contando cada una con su multiplicidad.
Si V es un espacio vectorial real, no podemos asegurar que la ecuacién anterior tenga n soluciones

reales.
Pasos para resolver AV = AV

), restando A de los

1. Se calcula Det(A — A1) (se anota en forma equivalente como |A — A1

elementos de la diagonal de la matriz A. Es un polinomio de grado n, con coeficiente (—A)".
2. Se hallan las raices de este polinomio. Las n raices son los autovalores de la matriz A.

3. Para cada autovalor A, se resuelve el sistema lineal (A — AI)V = 0. Como el determinante es

cero, tendra soluciones no nulas. Esos son los autovectores.

m Ejemplo 3.4 Se desea determinar los valores y vectores propios de la aplicacién linealde 7 :V — V,

V =R?, que tiene como matriz,

T =
5 4
1.
1-2 2 5
0=|T—AlIl = =(1-1)4—1)—10=A"—-54—-6
5 4—-2
2. Lasraicesson A; =6y A, = —1
3. Para A; = 6 se resuelve el sistema
X
T-6n| 7| =
X2

Los vectores propios correspondientes a A; = 6 son de la forma o
5

Para A, = —1 se resuelve el sistema
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Los vectores propios correspondientes a A, = 6 son de la forma f3
—1

Como y forman una base de R?, por la Proposicién 3.2.2, T es diagonalizable,

con matriz diagonal

6 0
0 -1

y la matriz de cambio de base (de la base de autovectores a la base canénica) estd dada por la matriz

Williom Gilbert Strang (1934)

Es un matemadtico estadounidense, actualmente Professor Mathworks de Matematicas del
Department of Mathematics del Massachusetts Institute of Technology (MIT). Ha contribuido
a la teoria de elementos finitos, al calculo de variaciones, al andlisis wavelet y al dlgebra lineal.
Ha contribuido enormemente a la educacién en mateméticas, en forma de libros técnicos y cursos
online. En MIT ensefia Algebra Lineal, Ciencia Computacional e Ingenieria, Aprendiendo de los
Datos. Sus clases estan disponibles en la plataforma MIT OpenCourseWare (en inglés). Gilbert
Strang naci6é en Chicago, Illinois. Curs6 estudios en el propio MIT y en el Balliol College, en la
Universidad de Oxford. Se doctor6 en la Universidad de California, Los Angeles (UCLA) y desde
ese momento ha llevado a cabo su actividad docente en el MIT. Entre las publicaciones més notables

del Professor Strang se destaca An Analysis of the Finite Element Method, conjuntamente con
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George Fix, asi como seis manuales: Introduction to Linear Algebra (1993, 1998, 2003), Linear
Algebra and Its Applications (1976, 1980, 1988, 2005), Introduction to Applied Mathematics (1986),
Calculus (1991), Wavelets and Filter Banks, con Truong Nguyen (1996), Linear Algebra, Geodesy,
and GPS, con Kai Borre (1997).

Gilbert Strang fue Presidente de la STAM (Society for Industrial and Applied Mathematics)
durante los afios 1999-2000. También ha sido Chairman of the US National Committee on
Mathematics durante los afios 2003-2004. Es Honorary Fellow, en el Balliol College de Oxford.
También es Chairman, en la National Science Foundation (NSF) del Advisory Panel del area de
Matematicas.

Fue pionero al abrir sus clases y permitir que fueran grabadas en video mientras explicaba

matematicas a sus alumnos del MIT para su difusion abierta y gratuita en Internet. [10]

Localizacion de autovalores

Teorema 3.2.3 Teorema de Gershgorin.
Los autovalores de una matriz A estan en la unién de los discos Dy, D», ---, D, (del plano

complejo) donde D; es el disco centrado en el elemento de la diagonal a;;:

A —ai| <ri

Suradio r; = ¥ j; |a;j| es igual a la suma de los valores absolutos de los elementos del resto

de la fila.

Demostracion:
Supongamos v; es la mayor componente en valor absoluto del autovector ¥, AV = Av. Entonces,
(2' - aii)Vi = Zj?g,-a,'j\/j, de donde,

A —ail < ¥ jpilaijl iy < Ljilai) =ri
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Figura 3.3: Los autovalores de A se encuentran en la union de los cuatro discos, D1,D,,D3y D4

1

-19
4

= Ejemplo 3.5 Dada la matriz,

30 -1 1/2
0 1
~1/2 5/4
0 1/2 1/2 4

o W
| =
WS

Se muestra en la Figura 3.3 la localizacién de sus autovalores de acuerdo al Teorema 3.2.3.
Los discos estdn centrados en los elementos de la diagonal de la matriz A y tienen radios r; = 3/2,

rp»=3/2,r3=7/4y rs=1.Estdn en el intervalo [—19/4,7], en el caso que sean nimeros reales.

Para la matriz del Ejemplo 3.4 se tienen los discos D; = [A — 1| <2y D, =|A —4| <5. Sin

calcular los autovalores, se sabe que si son nimeros reales, estardn en el intervalo [—1,9].

Polinomio caracteristico

Al polinomio Det(T — Al) € PI((") [A] (Ec. (3.7)) se lo denomina polinomio caracteristico de la

aplicacion T (o de la matriz A € K"*"). Lo anotaremos Pr (7).

SeaT € K"*" y sea A € K. Entonces A es autovalor de T si y s6lo si A es raiz

del polinomio caracteristico de 7.
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= Ejemplo 3.6 La matriz
0 1

-1 0

es diagonalizable en C**", pero no es diagonalizable en Q"*" ni en R"*". Sus autovalores son las

raices del polinomio

0—21 1
Det =A24+1=0
-1 0-A

Se tiene, entonces, que los autovalores son Ay, = Fi n

El polinomio caracteristico no depende de la base elegida en V para representar

la aplicacion lineal T'.

Demostracion:

Para demostrar esto, sea Py g(A) = Det(T — AI) el polinomio caracteristico de la aplicacién T
en la base B = {¢},¢>, - ,é,} como una base de V y sea Py g (1) = Det(T' — AI) el polinomio
caracteristico de T en la base B’ = {g’ 1,2’2, e ,g’ m}; si C es la matriz del cambio de base, se

sabe que T = CT'C~!, y se tiene

Prp(A) =Prp(A)

Se deja al lector completar esta demostracion.

= Ejemplo 3.7 La matriz de la proyeccién sobre el eje x, P, (Ver Ejemplo 2.15) en la base canénica

B= {El,gz} €S

Los autovalores son A; = 1 y A, = 0, ya que para los vectores V| que estdn sobre el eje x se
verifica P,(V)) = 1}, mientras que para los los vectores ¥, que estdn sobre el eje y se verifica

Py(%,) =0.
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= 2

Si cambio de base, por ejemplo a la base B’ = {¢},¢,} (rotando en ¢ = /4 los vectores de la
base canénica B), donde los vectores de B’ son las columnas de la matriz A del Ejemplo 1.28, se

tendrd que

P@) = (v2/2,0) = 1/28) — 1/28,

entonces la matriz en esta nueva base es

12 —1)2
—1/2 1)2

Ahora el polinomio caracteristico es Py = (1)(1/2 — A)? —1/4, con las mismas raices, A; = 1

y A =0, y los mismos autovectores que se obtuvieron con la base B, ya que
V= (1, -1 =1(v2/2,v2/2) - 1(-V2/2,¥2/2) = (1,0) y

Se verifica, entonces, como se menciond en la Observacién i en 2.6 que las matrices de una

misma transformacion lineal en distintas bases son semejantes. Se tiene la relacion,

1/2  —1/2
=Ppp / / Py p
12 1)2

donde Pg ' y Pp p son las matrices del cambio de base de B aBydeBabB, respectivamente. =

m Ejemplo 3.8 Se quieren determinar los valores y vectores propios de la aplicacién lineal que

corresponde a la rotacién de dngulo & que tiene como matriz: (ver la matriz 1.8, Ejemplo 1.28 )

Ry— cos(a) —sen(a)
sen(at) cos(a)

con respecto a la base canénica de R.
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cos(a)—A  —sen(a)

0=|Ry—Al|= = (cos(0t) — A)? +sen’(at) = A* —2cos(a) A + 1

sen(ar)  cos(a)—A

Las raices son A; = cos(a) +isen(a) y A, = cos(a) — isen(a), que son nimeros complejos a

no ser que & = 2kmw o & = (2k+1)m, con k € Z.

Si o = 2km, se tiene la matriz identidad y todo vector de R? es autovector, y corresponden a

A=1.

Mientras que si o = (2k + 1), la matriz es —/ y también resulta autovector cualquier vector de
R?, y corresponden a A = —1. En este caso, la transformacién es una simetria respecto al origen de

coordenadas. "

= Ejemplo 3.9 La matriz correspondiente a una rotacién de dngulo & en R? con respecto al eje z, es,

cos(ar) —sen(a) 0O
R= sen(at) cos(a) O
0 0 1

Su polinomio caracteristico es (A2 —2cos(a)A + 1)(1 — 1), cuyas raices son A; = cos(a) +

isen(a), Ay = cos(a) —isen(a) y Az = 1.

Los vectores propios correspondientes a A3 = 1 son las soluciones del sistema:

cos(a)—1 —sen(at) O X1
sen(ar)  cos(a)—1 0 x | =10 (3.8)
0 0 0 X3
Dado que
cos(a)—1 —sen(o)

sen(a)  cos(ar) — 1 = (cos(t) = 1)* +sen*(a) = 2 —2cos(at) = 4sen*(0t/2)

El sistema (3.8) tiene Gnicamente la solucién x; = x, = 0 si & # 2k7, con k € Z. En este caso los

autovectores correspondientes a A3 = 1, son los vectores sobre el eje z, de la forma (0,0, x3).
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Si o = 2k, se trata de la identidad y todos los vectores de R3 son autovectores.

Si oo = (2k+1)m, A = A, = —1, y los autovectores son las soluciones del sistema
0 00 X1
0 00 x | =
00 2 X3

y son los vectores (x1,x2,0) o sea del plano xy, y la transformacion es una simetria respecto al eje z.

Diagonalizacion

La Proposicién 3.2.2 nos da una condicion necesaria y suficiente para saber cudndo una aplicacién
lineal es diagonalizable, a saber, que exista una base del espacio vectorial V formada por vectores
propios. En algunos casos puede resultar laborioso encontrar esta base. Una condicién que es
suficiente para poder asegurar la diagonalizacién de una matriz estd contenida en la proposicién

siguiente:

Los vectores propios de una aplicacién T correspondientes a valores propios

distintos dos a dos, son linealmente independientes.

Demostracion:

Por induccién sobre la cantidad de vectores.

» Para k = 2. Supongamos se tienen V; correspondiente a A; y ¥, correspondiente a A,, con

M # Ay
Si se tiene
v+, = 0 (3.9)
T(ouv +0n,) = T(0)=0
auT()+aT(%h) = 0

ol

oAV oV, =
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De (3.9) se tiene que oV, = —a V. Si se reemplaza en la tltima ecuacidn, se tiene que
O£17L1\71 = OC])QV] =0

ouvi(M—A) =

ol

(3.10)
Como ¥ #0y A — Ay # 0, resulta a; = 0, de donde o, = 0, pues ¥, # 0.
Por lo tanto, V| y ¥, son linealmente independientes.

Supongamos ahora el resultado es valido para k — 1 autovalores distintos.
Si

0V 4 0V + -+ - 4 01 Vk—1 + 04V = 0,

como en el caso k = 2, aplicamos T, despejamos de la igualdad anterior el término oy V.

Entonces,

M) + 0 AgVs + -+ O 1 A1 Vi1 + AT =0

04 AT + 0 AoVs + -+ + Qo1 Ao Tt + (— ¥ — 0o — -+ — g1 F—1) A = 0
o (A1 — )1+ 00 (A — A)Va+ -+ 01 (M1 — )1 =0

Como Vy,Vp,- -+, V;_1 son linealmente independientes y ademds, como

(M=) #0, (A2 —A) #0, -+, (Ak—1 — A) #0,

setiene que o = 0p = --- = 1 =0, y también o, = 0, ya que vy # 0.

Por lo tanto v}, V,, - -+, Vx_1, V¢ son linealmente independientes.

= Una matriz T puede ser diagonalizable y tener autovalores mdltiples. Un ejemplo es la

matriz identidad, que tiene tnico autovalor 1 y es diagonalizable.

» SiunamatrizA € K"*" tiene sus n autovalores distintos, sus autovectores son linealmente

independientes y forman una base, por lo tanto, A es diagonalizable.
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= AV = AV es una ecuacién no lineal (A multiplica V). Si hallamos A, si la ecuacién es
lineal. Como (A — AI)¥ = 0, ¥ esté en el espacio nulo de (A — Al), (¥ € Nul(A — Al)).

» La condicién Det(A — AI) = 0 (donde A es la matriz que representa la aplicacién T en
alguna base) es equivalente a que la aplicacién T — A1 no es inyectiva, o sea N(T — AI) #
{6} O equivalentemente el nicleo de T — Al contiene no solo al vector nulo y es un

subespacio de dimensién es mayor que O.

= Si A es autovalor con autovector ¥ de una matriz A no singular, % es autovalor de A~ !,
con el mismo autovector. Ya que, si AV = AV, multiplicando por la inversa, ¥ = A"V,
se tiene que

Ay = v

>~ —

= Si A es diagonalizable, A = C~!'DC, de donde, aplicando recursivamente, se tiene

A"=C"'D'C VneZ.

= Dos matrices diagonalizables A y B comparten la matriz de autovectores S si y solo si
AB = BA. Para ver esto, supongamos A = SD; S~ y B=SD,S~!. Si comparten la matriz

de autovectores S, se tiene que

AB=SD;S7' SD,S7! =SDD,S~!

BA =SD,S~' SD\S™' = SD,D, 57!,

como DD, = D, D (las matrices diagonales siempre conmutan), entonces AB = BA. Y

reciprocamente, si AB = BA, se puede demostrar que A y B comparten autovectores.

= Se puede demostrar que la suma de los n autovalores de una matriz A es igual a la traza
de la matriz (suma de los elementos de la diagonal), es decir que
Tr(A) =M +L+--+ A,

y que el producto de los n autovalores es el determinante de A.

Det(A)= ] M

i=12,--n
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= Ejemplo 3.10 Se deja al lector estudiar si las matrices

6 -2 1
0 1
A=16 -1 1 T=
-1 0
0 0 1

son diagonalizables.

Notar que la matriz A, por el Teorema 3.2.3, tiene un autovalor A; = 1. Verifique que A es
diagonalizable y los autovalores restantes son A, = 2 y A3 = 3. Puede utilizar las sentencias Octave
del programa presentado en la Introduccion, Seccién 3.1 [U, D] = eig(A). Obtiene asi la matriz U de
autovectores y la matriz diagonal D con los autovalores. O bien, puede usar las sentencias en Python

que estan en recuadro.

En cuanto a la matriz 7T, ya fue estudiada en el Ejemplo 3.8. Es la matriz de una rotacion en /2

en sentido horario.

i) Sentencias en Python para diagonalizar una matriz

import numpy as np

A = np.array([[6,-2,1],[6,-1,1]1,[0,0,111)
print (mat)

print ()

D, U = np.linalg.eig(A)

%print (’autovalores’,D)

print (D)

%print (’autovectores’,U)

print (U)

m Ejemplo 3.11 SealamatrizA=| 0 «

o

Si se desea analizar para qué valores de ¢¢ € R la matriz es diagonalizable, se tiene, en primer

lugar que con solo observar los elementos de la matriz se sabe que tiene un autovalor O y otro ¢ (Por
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Teorema 3.2.3). A partir de esa informacion, hay que ver para qué valores de & € R existe una base

de autovectores.

Se deja al lector verificar que solo es diagonalizable si & = 0 y en ese caso todo vector de R? es

autovector. [ ]

Veamos a continuacién una propiedad especial y muy util de los autovectores de una matriz

simétrica.

Teorema 3.4.2 Los autovectores de una matriz real simétrica, asociados a autovalores diferentes,

son ortogonales.

Demostracion:

Sea A una matriz simétrica y A; # A, autovalores con autovectores correspondientes vy y ¥,

es decir A\71 = )L] 171 y A\72 = 12172. Se vera que \71 . \72 = (\71)I172 =0

M) = LK)

= (V)A%
= L(h)'%h
= LV )
de donde
M (V1-V2) = (V1 - V2) = (A1 — A2) (V1 - 2) =0,
y al ser A; # A,, se tiene que V; - v, = 0 y los vectores son ortogonales. O

m Ejemplo 3.12 Si las matrices A y B de n x n tienen autovalores A y i, podemos preguntarnos si la

matriz producto AB tiene como autovalor a A . Es decir si se verifica para algtin X # 0 tal que,

ABX = AuX = HAX = UAX.
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Se deja al lector analizar este ejemplo:

A=
0
0 0
B=
0
y
1
AB =
00

Espacios propios
Sea T € L(V). El conjunto de los autovectores correspondientes a un autovalor A no es un
subespacio de K", puesto que 0 no es autovector de 7. Sin embargo, podemos considerar el siguiente

subespacio:

Definicion 3.4.1 Sea T € K"*" y sea A un autovalor de T. Se define el espacio propio asociado

adlyseloanotaE, a
E, =N(T—-AI)={VeK"/Tv= AV} (3.11)
E, es un subespacio de K", puesto que es el conjunto de soluciones de un sistema lineal
homogéneo. Contiene todos los vectores propios correspondientes a A junto con el vector 0.

De los resultados ya vistos en el Teorema 2.4.3, se tiene que
dim(Ey) =dim(V) —dim(Im(T — AI)) = dim(V) — r(T — A1)

Teorema 3.4.3 Sea T € L(V), V de dim < . Sean A, Ay, -+, A los k, (k < n ) autovalores

distintos de T'. Entonces E; ,E;, --- ,E; estin en suma directa.

Demostracion:

Lo probaremos por induccion sobre la cantidad k de vectores considerados.

Para k = 2, sean A; y A, autovalores distintos de T. Si vV € Ej, NE,, se tiene que TV = A,V y
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TV = AV, de donde (A; — )V = 0. Como A; — A, # 0, resulta que vV = 0. Luego E;, NE,, = 0 y

la suma es directa.

Supongamos ahora que el resultado vale para el caso de k — 1 autovalores distintos, y sean
A1, A2, - -+, A autovalores distintos de T'.
Debemos probar que para cada 1 <i < k,E; N (Z’jc £ E,l_/,) = 0 (ver Observacion i al final de

la Seccién 1.4).

Supongamos que i =k, y seav € E; N (Z'j‘.;} E,)- Entonces, existen v; €E; , (1 < j<k—1)

tales que
V=Vi+V 4+ V1. (3.12)
Multiplicando la igualdad (3.12) por la matriz T, como v € E;,, se tiene
MV =MV + Ao+ + L1 Vi (3.13)

y multiplicando ahora la igualdad Ec.(3.12) por A, se tiene,

7Lk17 = lk\_ﬁ + lk\_)'z SFooc )Lk‘_;k—l

Restando las igualdades miembro a miembro,

0= (A —A)¥ + (A — ) V2 + - (et — M)W

Como por hipétesis inductiva, los subespacios E;, (1 < j <k — 1) estdn en suma directa, el
vector nulo se escribe de forma tnica como suma de vectores nulos, de donde (A; — A;)¥; = 0

paracada 1 < j <k—1y por lo tanto V; :6paracada 1<j<k—1,conlo cual ¥ = 0. O

Sea T € K"*" y sea A € K un autovalor de T. Sea r la multiplicidad de A

como raiz del polinomio caracteristico Pr y sea E; su espacio propio. Entonces

dim(Ey) <r
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SeaT € K"y sean A1, A2 - -- A& € K los k autovalores distintos de 7' (4; # A;
si i # j). Son equivalentes:
1. T es diagonalizable
2. K"=E; ®E,---©E,

3. El polinomio caracteristico de 7" es
Pr(A) = (A —2)" (A =A)% - (A — )™

y se tiene que o; = dim(E,,), para 1 <i <k.

» Ejemplo 3.13 Se quiere estudiar si la matriz

0o 3 1
T = 2 -1 -1
-2 -1 -1

es diagonalizable. Sus autovalores son: A; = 2, que es una raiz simple (multiplicidad algebraica 1) y

A2 = A3 = —2 que es una raiz doble (multiplicidad algebraica 2).
E;, =N(T-2I) ={VeK"/TV=2v} =((1,1,—-1)")

E), = N(T+2I) = {V € K*/Tv = =25} = ((1,—1,1)")

La dim(E,, ) = 1 coincide con la multiplicidad algebraica mientras que dim(E,,) = 1 es menor

que 2, que es la multiplicidad algebraica. Por el Teorema 3.4.5, T no es diagonalizable. m

SeaT € L(V),V de dim < 0. Si T es diagonalizable y A1, A, -, A son los

autovalores distintos de 7', entonces existen £y, E», - - - , E; aplicaciones lineales tales que
1. B\ + B+ +E =1
2. T=ME +ME +- -+ 4Ey
3. E;oE;=0i#j

4. E?=E;,i=1,2,- .,k



3.4 Diagonalizacion 131

5. Im(E,) = El,-

Demostracion:

1. Por ser T diagonalizable, de la Proposicion 3.4.5 se tiene que
V=E; QE,- - EBEM

Para ver 1, se consideran las proyecciones E; sobre cada espacio propio, E, , asociadas a la
descomposicién anterior y V= w1y +Wwy +--- + W, conw; € Ej .

Entonces,

(Er+Ex+ -+ E)(¥) = (Er + Ex 4+ + E) (W1 +Wo + - + W) = E (W1 +Wa +--- +
W)+ Ey (W 4+ Wy 4 W)+ Ep(Wy + W4+ W) =W+ W+ -+ Wy =7

De donde se tiene, que E1 +Er+---+Ep =1
2. Para ver 2, se usa 1 y se toma la composicién T ol =T =T (E; + E; + - -- + E). Luego, si
VEV.T(E\+Ey+-+Ep) (V) =T(E1(V) + T (E2(V)) - - T (Ex(V))
Como
T(E;(V)) =T (w;) = Aiw; = LE; (V)

se tiene, T(E] (V)) + T(Ez(?)) s T(Ek(\_;)) =ME; (\7) +AQE2(\_;> + - —i—kkEk(\_)’) = (11E1 +
MEy+ -+ MEy)(V), y por lo tanto,

T=ME +ME+ -+ ME;

La demostracién de 3, 4 y 5 se dejan como ejercicio para el lector.

Polinomios minimales

Sea P € Pk [x], P(x) = oty + Qx4 0px> + - -+ 04x”
Dada T € K"*" se define
P(T)=aol, +ouT +opT?+--+ o, T" € K"

Recordar que 77 es la composicién de la aplicacién lineal T r veces, y ademds, que si P, Q

€ Px[x], y T € K™, entonces (P+ Q)(T) = P(T)+Q(T) y (P.O)(T) = P(T).Q(T).
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Dada T una aplicacién lineal cualquiera de un espacio vectorial V sobre K, interesa considerar

polinomios que anulen a 7', es decir
{P € Py x| P(T) = 6} .

(Se pueden ver en [23] mds detalles sobre este tema). El resultado que sigue asegura que para

cualquier matriz existe un polinomio no nulo con esta propiedad.

Sea T € K"*". Existe un polinomio P € P [x], P # 0, tal que P(T) =0

Demostracion:

o o 2 o o
Consideremos el conjunto {I,T,T2,--- , T" } C K™ son n®> + 1 transformaciones lineales de

L(K",K™"). Son linealmente dependientes porque ya vimos que la dimensién es la de K" = n?,

Luego existe una combinacién lineal con escalares no todos nulos tales que

ool + T + T + -+ o, T =0

Sea
P(x) = 0+ 04 x+ 02 + -+ @ px” =0

PePx],P#£0yP(T)=0

Es decir, para toda matriz, distinguimos un polinomio particular entre todos los polinomios
que la anulan: el de grado minimo y ménico. Siempre existe un polinomio con esas propiedades y

ademas, es unico.

Definicion 3.4.2 Sea T € K"*". Se llama polinomio minimal de T al polinomio ménico de grado

minimo que anula a 7'. Lo simbolizamos mr.

mr se caracteriza por

1. mp(T)=0
2. mr es ménico y es el de menor grado que anulaa T

i

3. my /Py (divide al polinomio caracteristico)
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5 -6 -6
m Ejemplo 3.14 Dada la matriz, T = -1 4 2 ,
3 -6 —4

el lector puede verificar que {/, T} son linealmente independientes, es decir, no existe P € Pg [x] de

grado 1y tal que P(T) = 0.

En cambio, {I,7,T?} es un conjunto linealmente dependiente, ya que

2

5 -6 -6 5 -6 -6 1 00
1 4 2 | -3l -1 4 2 |+2]l 010 [=0 (3.14)

3 -6 —4 3 -6 —4 0 0 1

Se tiene que T2 — 3T + 21 = (T —2I)(T — 1I) = 0, luego el polinomio minimal es
mr(A) =A% =31 +2=(A—2)(A—1).
mr divide a Py ya que Py = (A —2)%(A — 1) es el polinomio caracteristico.

[ |

= Enla Proposicién 3.3.1 de la Seccidn 3.3 vimos que las raices del polinomio caracteristico
de una matriz son sus autovalores. Lo mismo vale para el polinomio minimal.
= Dos matrices semejantes tienen el mismo polinomio minimal (y el mismo polinomio

caracteristico como se vio en la Proposicién 3.3.2).

Sea T € K™" sea A € Ky mr el polinomio minimal de 7. Entonces A es

autovalor de T siy sélo si A es raiz de my.

Criterio de diagonalizacién usando el polinomio minimal

Si el polinomio caracteristico de T € K"*", Pr(A) se factoriza linealmente en Pk [x], con todas
sus raices A - - - A, simples (raices distintas), entonces T es diagonalizable.

Esto sale de la Proposicién 3.4.5 de la seccion 3.4.1, ya que existe una base de K" formada por
autovectores y los espacios propios Ej, ,Ey, --- ,E, estdn en suma directa. La reciproca no es cierta,

es decir, Py (A4) puede tener raices miltiples y ser diagonalizable.
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Sea T € K™*". Entonces T es diagonalizable en K"*" si y s6lo si el polinomio
minimal my tiene todas sus raices en K y son simples. O en forma equivalente, sean A1,A,,- -+, A

los autovalores distintos de 7. T es diagonalizable si y sélo si

mr(A) = (A =A) (A =22) - (A = X)

Sea T una aplicacion lineal sobre un espacio vectorial de V de dim < oo.

El polinomio caracteristico y el polinomio minimal tienen las mismas raices.

El Teorema que sigue fue enunciado por Arthur Cayley (1821-1895) en 1858. Lo demostrd

inicialmente para matrices de 2 x 2.

Teorema 3.4.11 Teorema de Cayley-Hamilton:
Sea T una aplicacion lineal sobre un espacio vectorial de V de dim < oo. Si P es el polinomio

caracteristico de T, entonces P7(T) = 0.

Demostracion:

Sea {V|,V2, -+ ,V,} una base de V y sea A la matriz que representa a 7 en la base dada.

Entonces
n
T\j",: Zaj,-\?j, lgzgn
J=1

Estas ecuaciones, que son las mismas que las desarrolladas en 3.5, pueden escribirse en forma

equivalente

n
(5,']'T — ajil)\Tj:O, ISiSI’l
j=1

J
Sea B € K"*" con elementos B;; = 6;;T — ajil

Cuandon =2,
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T — 6111[ —azll

—a121 T — a221

det(B) = (T = alll)(T = a22T)—a21a121
det(B) =T* — (a1 +axn)T + (an1a2 — apaz)I

det(B) = Py (T)

donde Pr es el polinomio caracteristico correspondiente a 7'.
Pr (L) = A% —traza(A)A + det(A)

Para n > 2, también se tiene det(B) = f(T), ya que Pr es el determinante de la matriz

(AI — A) cuyos elementos son los polinomios

(l] — A),‘j = 51'1'}, — aj,-

Se quiere demostrar que P7(T) = 0, y para eso es necesario y suficiente ver que (det(B)) v =

O para 1 <k < n.Por la definicién de B, los vectores Vi, V,,- - - ,V, satisfacen las ecuaciones

n
ZBij‘?j:()v lglgl’l
j=1

Cuando n =2,

T — ayl —ap1 V1

—aypl T — axl V) 0

la matriz adjunta de B transpuesta es
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B* . T — 61221 6121]
a121 T — 61111
y se tiene
. det(B) 0
B*B =
0 det(B)
Luego,
V] Vi 0
@)1 | " | =B " | =
v ) 0

Para el caso general, como

n n
Z ZBkl l] :0

Como B*B = det(B)I, se tiene que Y./, B};Bij = Ojdet(B)

y, por lo tanto,
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= Una utilidad de este teorema es que reduce la bisqueda del polinomio minimal. Si se
conoce la matriz A que representa a 7' en cierta base, se calcula el polinomio caracteristico,

y se sabe que el polinomio minimal lo divide y que los dos tienen las mismas raices.

= En algunos casos el teorema resulta ttil para calcular la inversa de una matriz. Si existe
T—'y Pr(T) = 0, entonces, T~'P7(T) = 0.
Si
Pr(A) = ap+ oA + A + -+ o A"

PT(T) = a01+a1T+(X2T2+...+Tn € KM,

entonces,

T 'Pr(T) =T '+l + T+ +T" ' =0

de donde, despejando,

1
77! = %(—all— ol —---—T" 1)

o # 0, ya que oty = P (0) = Det(0I — T) = (—1)"Det(T) y T es invertible.

Arthur Cayley (1821-1895)

Fue un matematico britdnico. Fue uno de los fundadores de la escuela britdnica moderna de
matemadticas puras. Ademds de su predileccion por las mateméticas, también era un dvido lector
de novelas, le gustaba pintar, sentia pasion por la botdnica y por la naturaleza en general, y era
aficionado al alpinismo. Se educé en el Trinity College de Cambridge. Estudié durante algin tiempo
la carrera de leyes con lo que trabajé de abogado durante 14 afios, a la vez que publicaba un gran
nimero de articulos. Luego paso6 a ser profesor en Cambridge. Fue el primero que introdujo la
multiplicacion de las matrices. Es el autor del teorema de Cayley-Hamilton que dice que cualquier
matriz cuadrada es solucién de su polinomio caracteristico. Dio la primera definicién moderna de la
nocidén de grupo. En combinatoria, su nombre estd unido a la férmula que cuenta los posibles arboles
generadores con nodos etiquetados de orden n. Se llama a veces octavas de Cayley o ndimeros de

Cayley a los octoniones. Es el tercer matematico mas prolifico de la historia, sobrepasado tan solo por
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Euler y Cauchy, con aportaciones a amplias dreas de la matemadtica. En 1889, Cambridge University
Press le pidié que preparara sus articulos matematicos en forma de coleccién. Siete volimenes
aparecieron con Cayley como editor, pero tras su fallecimiento, el resto de articulos fue editado por
Andrew Forsyth, su sucesor en la citedra de Cambridge. En total los Collected Mathematical Papers

comprenden trece grandes volimenes que contienen 967 articulos. [5]

Teorema de la descomposicion prima

Es de interés, dada T una aplicacién lineal sobre un espacio vectorial de V de dim < o, la

descomposicion de V como suma directa de subespacios invariantes por 7',
V=W oW, -®W, W, subespaciode V y T(W;) C W,

es decir, generalizar la Proposicion 3.4.5 de la seccién 3.4.1 para el caso que T no es diagonalizable.

Esto lo muestra el Teorema que sigue.

Teorema 3.5.1 Teorema de la descomposicion prima:

Sea T una aplicacion lineal sobre un espacio vectorial de V de dim < . Sea mr(A) el

polinomio minimal de T cuya factorizacién prima es

mr(A)=pi'py = (A=) (A —=2A)" - (A = Q)™

los p; son los polinomios primos (ménicos e irreducibles) en Pk [A], todos distintos y r; son

enteros positivos.

Sea W; = N(p;'(T)) = N(T — A;)". Entonces

1. V=W W, ---oW;

2. Cada W, es invariante por T, o sea, T (W;) C W,
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I 3. SiT; =T | W; (T restringido a W;), entonces 7; tiene a p;’ como polinomio minimal

= Ejemplo 3.15 Dada la matriz

31 -1
r=12 2 -1
22 0

Las raices del polinomio caracteristico son A; = A, = 2 raiz doble y A3 = 1, raiz simple.
Hay dos opciones para el polinomio minimal,
mr(A)=A—-2)(A—1)omr(A) = (A —2)%(A —1).

Puede verificarse que (T — 21)(T — 1) # 0, asi que resulta my (1) = (A —2)2(A—1) y T no es

diagonalizable (por la Proposicion 3.4.9).
Por el Teorema de la descomposicion prima ,
pr=A-2P2ypr=A-1),(n=2yrn=1)
Teniendo en cuenta que
W; = N(pi(T)) = N(T — A", se tiene que W; = N(p}'(T)) = N(T —2I)*.

Para hallar W, se calcula la matriz (T —2I),

1 1 -1
T-2I=12 0 -1
2 2 =2

luego (T —2I)? y se resuelve el sistema homogéneo con la matriz (T — 21)%:

1 -1 0 X1
0O 0 O x» |=120
2 -2 0 X3 0

Se obtiene que {(1,1,2)}y {(1,1,2),(1,1,0)} son bases de N(T — 2I) y de W}, respectivamente.
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Por otro lado, W, = N(p?(T)) =N(T — 1I) =E,,.

Al resolver este sistema homogéneo,

21 -1 X1
2 1 -1 x |=1]0
2 2 -1 X3 0

se tiene que una base de W es {(1,0,2)}.
Es posible hallar la matriz de T en la base B = {(1,1,2),(1,1,0)(1,0,2)}.

Utilizando la matriz en la base candnica, se tiene que

31 -1 1 2
2 2 -1 1 | =
22 0 2 4

de donde
T((1,1,2)) =2(1,1,2)+0(1,1,0) +0(1,0,2).

(1,1,2) es un autovector correspondiente a A; = A, = 2.

31 -1 1
2 2 -1 1 | =
22 0 0

T((1,1,0)) = (4,4,4) =2(1,1,2) +2(1,1,0) 4+ 0(1,0,2)
De la misma forma,
» 7((1,0,2)) =(1,0,2) =0(1,1,2) +0(1,1,0) + 1(1,0,2),

La matriz de T en la nueva base es casi diagonal,

220
(Tg=| 0 2 0
0 0 1
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Para verificar que

V =R3 =W, ®W,, se toma un vector (xj,x,x3 se buscan sus proyecciones sobre los
» X2 proy

subespacios W) y W,.

A partir de la igualdad (x1,x,x3) = a(1,1,2) + B(1,1,0) + 7(1,0,2) se resuelve el sistema y
se obtiene que & = —x; +x, +x3/2, B =x1 —x3/2 'y ¥ =x; —x. Los dos primeros términos del
lado derecho corresponden a la proyeccion sobre Wy, que llamaremos E y el tercero a la proyeccion

sobre W,, E;. Es decir que

Ey((x1,%2,x3)) = (x2,X2,%3 — 2x1 + 2x2)

E>((x1,x2,x3)) = (x1 —x2,0,2x1 —2x7)

Como ejemplo, las proyecciones del vector (2,1,2) sobre W; y Wa, son E;((2,1,2)) = (1,1,0) y
E>((2,1,2)) = (1,0,2), respectivamente ya que (2,1,2) = (1,1,0) +(1,0,2).

aEjemplo3.16 T:V -V, V=R ymr(A) = (A —-1)(A*+1)(A +1)?
Los autovalores reales son A} =1, A, = A3 = —1
Wi = N(p}!(T)) = N(T — 1) = E,
Wa=N(p§(T)) = N(T? +1)
Ws = N(p5 (T)) = N(T +1)*
V=R =W, oW, Ws

Se deja al lector verificar esta descomposicién de V en suma directa de subespacios .
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Si aplicamos el teorema anterior en el caso que 7' sea un operador diagonalizable se tiene que

mr(A) = (A= A1) (A —Aa)-- (A~ 2)

donde 41,4, -+, A son los autovalores distintos de 7'y entonces, W; = N(T — A;,1) = Ej, y
% :Ell EBE/'LZ "'@Elk

(ver Proposicién 3.4.5).

Definicion 3.5.1 Sea N una aplicacion lineal sobre un espacio vectorial V. Se dice que N es

nilpotente si existe alglin entero positivo r tal que N” = 0 (matriz nula).

Se tiene el siguiente resultado:

Teorema 3.5.2 Sea T una transformacién lineal sobre un espacio vectorial de V de dim < oo,
Supongamos que my(A) = (A —24;)" (A —Ay)"2--- (A — A)"*. Entonces existe una transformacién

lineal D diagonalizable y un operador lineal N nilpotente tal que

1. T=D+N
2. DN=ND

A la transformacion lineal D se la llama parte diagonal de la transformacion lineal 7'.

Demostracion:

1. Supongamos que 7 es una transformacion lineal tal que mr(A) = p|' py -+ pf =

(A—=2)"1(A—2A)2 - (A — L)'
Sean E|, E, - - -, E} las proyecciones tales que Im(E;) = N(T —Al)" "y D = ME| + L,E> +
oo+ M E.

Consideremos N = T — D. De la Proposicién 3.4.6 se tiene que Ey +E> +---+Ey =1y
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T:TE1+TE2+-"—|—TEk.

TE\+TEy+--+TEy) — (ME + LEy + - + AEy)

(

N = (T—)y]I)E] —i—--'(T—AkI)Ek
(T =MDE + (T = M)E) (T — MD)Er + -+ - (T — Ad ) Ey)
(

T —MI)2E + - (T — 1D)*Ey

N = (T=MI)E;+- (T — M) Eq
Sir>rg, setienequeN’zﬁ, yaque,dado VeV, V=vi+v+---V, conv; € N(T —Al)"
NV =(T—-MI)E\v+--- (T — M) EV
N'F = (T = Ml) i+ (T — Ml i

y como ¥; € N(T — A;1)" cada término da el vector nulo, 0.

2. ver en ([23]) U

= Ejemplo 3.17 Del Ejemplo 3.15

220
(Tg=| 0 2 0
0 0 1

D(x17x2>x3) = A1El (X1,X2,X3) +A«2E2(X1,X2,X3)
y de acuerdo a lo obtenido antes, si se reemplazan E| y E», se tiene que la transformacién D es
D((x1,x2,x3)) = Ay (x2,%2,x3 — 2x1 +2x2) + A2 (%1 — x2,0,2x] — 2x7)

Su matriz asociada, en la base B es

200
D)g=1 0 2 0
0 0 1
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mientras que

02 0
N=(T)p—D)p=| 0 0 0
0 0 0

es nilpotente de orden 2 (N? = 0, es la matriz nula). Se cumple ademds que D N = N D.

Forma candnica de Jordan

Como ya vimos, existen transformaciones lineales (o matrices A € K"*™) que no son diagonalizables,
es decir, no existe una base de autovectores. En ese caso, atn es posible demostrar que la matriz es
semejante a otra, una matriz mas sencilla aunque no es diagonal. La matriz de la transformacién es un
poco mds dificil de obtener que en el caso diagonalizable. Veremos a continuacién el procedimiento

para matrices de 2 x 2.

Forma de Jordan de matrices de orden 2

SeaT € L(V), V espacio vectorial de dimensién 2, y supongamos su matriz, en cierta base es

a
T =
C

Su polinomio caracteristico es Py(A1) = (a—A)(d — A) — ¢b con lo que Pr(A) =0 es una
ecuacién de grado 2 en la variable A y se tendrdn dos casos diferentes segin las dos soluciones sean

iguales o distintas.

1. Caso I. Las raices del polinomio caracteristico son distintas A; # A;.
En este caso la matriz T es diagonalizable (consecuencia de la Proposicion 3.4.1). Su forma

de Jordan es la matriz diagonal

A0
0 A

J:

y T = CJC~!, donde la matriz C del cambio de base tiene en sus columnas las coordenadas de

vectores V) e Vo € N(T —Al), i= 1,2, respectivamente.
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2. Caso II. Las raices del polinomio caracteristico coinciden A; = A,
En este caso, si N(T — A1) tiene dimensién 1, no podremos encontrar una base de autovectores

enV.
Se tiene el siguiente resultado:

Lema: Suponga T es una matriz de 2 x 2 que tiene dos autovalores iguales A. Sea V| un

autovector correspondiente a A. Existe un vector ¥, que satisface la ecuacién

(T — AV, =V
Definicion 3.6.1 Se denomina autovector generalizado al vector V5 de la ecuacién anterior.

Como v} y v5 son linealmente independientes, forman una base de V. En esta base tenemos,

(T — AD)¥, =0 < T = AV

(T — AD)is = 7| < T = ¥ + A ¥

con lo que la matriz de la transformacidn lineal en esta base es

Al
0 A

y la matriz de cambio de base C tiene en sus columnas a los vectores V| y v5.

i Apartirde (T —AI)v> = v, se tiene que

(T = AD)(T — M)y = (T — Al)v; =0

y, entonces,
v e N((T —AD)?)

Se pueden resumir estos resultados en la siguiente proposicion, en donde K designa el cuerpo de

los nimeros reales o el de los complejos.
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Dada una matriz 7 € K>*? siempre puede encontrarse una matriz J € K>*? de

una cualquiera de las formas

A O Al
0 A 0 A

con Ay, A, € K y una matriz C € K>*? tal que T = CJC~!.

La matriz J se denomina matriz de Jordan de T .

= Ejemplo 3.18 Dada la matriz,

al tener el polinomio caracteristico una raiz doble (Caso II), su forma de Jordan es:

1/4 -1 1 0 1/2
2 0 0 -1 4 -2

T=cJC "=

Forma de Jordan de matrices de orden 3

Ahora veremos para aplicaciones lineales entre espacios vectoriales de dimension 3. Servirad
para comprender los resultados tedricos necesarios para obtener la forma de Jordan en espacios

vectoriales de cualquier dimension.

= Ejemplo 3.19 Se quiere reducir la matriz

0 3 1
T = 2 -1 -1
-2 -1 -1
a su forma de Jordan. Sus autovalores son A; = 2 (simple) y A, = A3 = —2 (doble), y los espacios

propios correspondientes,
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E,=NT-2={a|l 1 |ack

y

1

E,=NT+2={a|l -1 |ack
1

7
1 1
Vi = 1 yvm=] —1
—1 1

son dos autovectores linealmente independientes pero no forman una base. Se debe realizar un
trabajo andlogo al realizado en el caso de raices iguales para matrices de orden 2.

Se halla v} tal que (7' — A1)V = v, o, equivalentemente, (T — A1) (T — AI)v3 = (T — AI)vs =0,

es decir,
73 € N((T — Ad)*) = N((T +21)%)
0
Seavy=| 0 |, setiene que vy € N((T +2I)?)
0 0
pues (T+20)(T+2I)| 0 |=| 0
1 0
y
1 0
N(T+20)*)=qa| -1 |+B| 0 |aBeckK
1

Abhora es posible elegir una base de V con estos vectores, {v,V3,v3} de manera que la matriz de

T en esta base sea sencilla.

Tvy=2v, Tvy = =2v3, Tv3 = v, — 2v3
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0 O
J= -2 1
0 -2
y la matriz del cambio de base es
1 1 0
C= 1 -1
-1 1 1

Lema: Suponga T es una matriz de 3 x 3 que tiene 3 autovalores iguales a A y la dimensién de

su espacio propio es 1. Sea v} un autovector correspondiente a A.
= Existe un vector v; que satisface la ecuacion
(T — AD)V, = i,
tal que v] y v5 son linealmente independientes.

= Con el v, hallado en el punto anterior, existe un vector v3 solucién del sistema
(T = ALV =

tal que vi, v y v3 son linealmente independientes.

m Ejemplo 3.20 Dada la matriz,

-2 1 -1
r=| -1 -1 0
o 1 =3
A = —2 es raiz triple del polinomio caracteristico. Se deja al lector verificar que su forma de
Jordan es T = CJC~! donde

1 0 -1
cC=111 0
1 0 O
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Las columnas de C son vectores vi, V> y v3 que cumplen el lema anterior, y

-2 1 0
J= 0 -2 1
0O 0 =2

Marie Ennemond Camille Jordan (1838 - 1922)

Fue un matematico francés, conocido tanto por su trabajo sobre la teorfa de grupos, como por
su influyente Curso de andlisis (Cours d’analyse). Estudi6 en la Escuela Politécnica (promocién de
1855). Fue ingeniero de minas y, mds tarde, ejercié como examinador en la misma escuela. En 1876
entré como profesor en el Colegio de Francia, sustituyendo a Joseph Liouville. Su nombre se asocia a
un determinado nimero de resultados fundamentales: El teorema de la curva de Jordan: un resultado
topoldgico recogido en andlisis complejo. La forma candnica de Jordan en dlgebra lineal. El teorema
de Jordan-Holder, que es el resultado basico de unas series de composiciones. El trabajo de Jordan
incidié de manera sustancial en la introduccidn de la teoria de Galois en la corriente del pensamiento
mayoritario. Investigd también los grupos de Mathieu, los primeros ejemplos de grupos esporddicos.
Su Tratado de las sustituciones (Traité des substitutions) sobre las permutaciones de grupos fue
publicado en 1870. El 4 de abril de 1881 fue elegido miembro de la Academia de la Ciencia. De
1885 a 1921 dirige la «Revista de matematicas puras y aplicadas» (Journal de mathématiques pures

et apliqués), fundado por Liouville. [7]

Teorema de clasificacion de Jordan

Se denomina matriz elemental de Jordan de orden k y autovalor A € C a la matriz de orden k
cuyos elementos son todos nulos, excepto los de la diagonal principal, que valen A4 y los situados

inmediatamente encima de la diagonal principal que son unos. Por ejemplo:

A1 0
A1
JiA) =) LQA)= A J3(A)=1| 0 A 1 |y asisucesivamente.
0
0 0 A

Se llama matriz de Jordan a cualquier matriz cuadrada formada por yuxtaposiciéon de matrices

elementales de Jordan a lo largo de la diagonal, de la forma
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Jij 0 0 O

0 Ly 0 O

0O O Jnj
A 10
donde, en el caso de orden 3, J;; = 0 A 1
0 0 A

Una transformacién lineal T puede expresarse en la forma canoénica de Jordan si sus polinomios
caracteristico y minimal se factorizan en polinomios lineales. Esto siempre es verdadero si el cuerpo

K es C. Andlogamente toda matriz es semejante a una matriz en forma canénica de Jordan.

Teorema 3.6.2 Teorema de Jordan:

Sea T € L(V) cuyos polinomios caracteristico y minimal son respectivamente,
Pr(A)=A—A4)" (A=) (A — Q)™
mp(A) = (A —241)" (A —A)™--- (A — A)™ donde los A; son distintos.

Entonces T tiene una representacion matricial J que es diagonal por bloques.

Para cada A; los bloques correspondientes J;; tienen las siguientes propiedades:

1. Existe al menos un J;; de orden m;, los demads J;; son de orden < m;.

2. La suma de los 6rdenes de los J;; es n;.

3. La cantidad de J;; es igual a la multiplicidad geométrica de A; (dimensién de Ej,).

4. La cantidad de J;; de cada orden posible estd determinado tinicamente por 7.

La matriz J se llama forma candnica de Jordan de la transformacién lineal 7. A J;; se lo llama
bloque de Jordan correspondiente al valor propio A4;.Observar que J;; = 4;/ 4+ N, donde N es

una matriz nilpotente. A
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= Ejemplo 3.21 Supongamos
Pr(A) = (A —2)*(A—3)> y mr(A) = (A —2)%(A —3)2.

Se quiere hallar su matriz de Jordan aplicando el teorema anterior:

Como m; = my = 2 existe al menos un bloque de orden 2 paracada A, A} =2y A, =3.
La suma de los 6rdenes de los bloques para Ay =2 esn; =4y para A, =3 es np = 3.

La cantidad de bloques es la dimensién del espacio propio correspondiente. Para A, = 3, hay un

bloque de orden 2 y uno de orden 1.

Para A; = 2 hay 2 posibilidades, dependiendo de su multiplicidad geométrica:

2100000 2100000
0200000 0200000
0021000 0020000
0 0020UO00O0 00020°O00O0
0000310 0000310
00 0O0O0O30 000O0O030
000O0O0O03 00O0O0O0OO03

En el primer caso, la dimensién del espacio propio es 2, hay 2 bloques de orden 2. En el segundo,

como hay 3 autovectores, hay 3 bloques, 1 de orden 2 y 2 de orden 1.

Se puede observar que la cantidad de 1 en la matriz de Jordan corresponde a la resta: multiplicidades
algebraicas - multiplicidades geométricas, 3 =7 —2—2 en el primercasoy 2 =7 —3 —2 en el

segundo.
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Figura 3.4

UNA PROFESORA LE DICE A SUS
ALUMNOS:

- QUIERO QUE GENEREN UN
ESPACIO DE IDEAS
INDEPENDIENTES CON ALTOS
VALORES PROPIOS.

Actividades propuestas

Un circuito eléctico que describe el valor del voltaje de dos capacitores
en funcién del tiempo, y en paralelo como se aprecia en la Figura 3.5 se resuelve con el siguiente

sistema de ecuaciones diferenciales de primer orden:

x’l(t) —(1/R1+1/R2)/C1 1/(R2C1) xl(t)
x(t) 1/(R:C) —1/(R(2) x(t)

donde x;(t) y x»(¢) son los voltajes en los dos capacitores al tiempo 7. El voltaje es la magnitud que
da cuenta de la diferencia en el potencial eléctrico entre dos puntos determinados. Aclaremos que un
capacitor es un dispositivo capaz de almacenar energia a través de campos eléctricos. Los capacitores
se utilizan principalmente como filtros de corriente continua, ya que evitan cambios bruscos y ruidos
en las sefiales debido a su funcionamiento.

En la matriz puede observarse que esta corriente dependera de las resistencias (R) del circuito
en cuestion. Una resistencia es un dispositivo eléctrico que tiene la particularidad de oponerse al
flujo de la corriente. Suponga que las resistencias valen para nuestro problema: R; = 1, Ry = 2, las
capacitancias involucradas tendran el valor de C; = 1 y C; = 0.5. Con todos esos datos es posible
obtener la matriz del problema, a la que deberd encontrarle sus autovectores y autovalores. De esa
manera, haciendo uso de la matriz diagonal pertinente podra desacoplar el sistema. Podra construir
una familia de soluciones. Para hallar la solucién particular del problema necesita conocer los
voltajes iniciales que se miden en los capacitares a un tiempo ¢ = 0. Para este problema supondremos

que las cargas iniciales han sido x; (0)=5y x,(0)=4.
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Su tarea consiste en encontrar las soluciones x;(¢) y x2(¢) que describan cémo los voltajes
evolucionan en el tiempo. Tenga en cuenta que en general dado Y = Ay un sistema de ecuaciones
diferenciales de primer orden donde la matriz A, de dimensién n X n es diagonalizable (los vectores
iy, Uy, ..., U, asociados a los valores propios distintos A, Ay, ..., A, de A, respectivamente, son
linealmente independientes). Entonces el conjunto { MY €M, ..., e™'ii,} es una base del

espacio de soluciones de y = Ay.

Figura 3.5: Circuito

c1
2
-

Ejercicios

Halle el polinomio caracteristico, autovalores y autovectores de las Matrices de Pauli:

Las sentencias Python a continuacién dan los autovalores de la matriz. Investigue cémo puede hallar

los autovectores en Python.

import numpy as np

a = np.array([[0, 1],
[1, 011D

LA.eigvals(a)
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Sea T € L(R?), dado por T ((x,y)) = (v,x). Halle el polinomio caracteristico, autovalores y autovectores.

Interprete geométricamente.

Demuestre que si 0 < 6 < 7, la matriz

cos(0) —sen(0) . . .
Ry = no tiene autovalores ni autovectores reales. Interprete geométricamente.
sen(0) cos(0)

Sea T : R? — R? la transformacién lineal definida por:
T((x,y,2)) = (—x—=2y+2z,—y,—x—3y—4z).

Encuentre una base B de R? tal que (7')p sea diagonal.

1/2 1/2 0
SeaA=| 1/2 1/2 0
0 0 0

la matriz que representa la transformacion lineal que proyecta cualquier vector v € R? sobre la recta
de vector director (1,1,0):

a) Analice si A es semejante sobre el cuerpo R a una matriz diagonal. En caso afirmativo, halle
la matriz diagonal correspondiente.

b) Interprete geométricamente lo hallado en a.

a B O
Sea A = 0 -1
0 O

Indique para qué valores de o y 3 la matriz es diagonalizable.
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Sea
6 -3 -2
A= 0 -1 2
0 -5 -3

Analice si A es semejante sobre el cuerpo R a una matriz diagonal. Idem sobre el cuerpo C. En caso

afirmativo, hallar la matriz diagonal correspondiente.

1 3
-3 -1

Halle A9, donde A =

Debera encontrar una matriz P que diagonalice a A.

Conforme a que A = T~ 'BT con

-3 -4 -2 I 0

8 13 4 8 0 1
A= , B=

4 6 3 4 0 0 —1

-12 -20 -8 -—13 0 0 0

Calcule A°.

Encuentre 1a solucién del sistema

2y1+ 2y +y3 =)
yi+3y2+y3 =y
yi+2y2+2y3 =y}

con las condiciones iniciales y; (0) =0, y2(0) =1y y3(0) = 1.

[T T,

—_— W = O

—_ N = =
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Resuelva la ecuacion diferencial homogénea de tercer orden
y" —y' =0, con las condiciones iniciales
y(0)=1,y(0) =0,ey"(0) =1

Realizando el cambio

/ /!
=y, 2=y, 3=Y.

Sea T € L(R?), definida por T ((x,y,2)) = (x,x+,2)
a) Halle el polinomio caracteristico, y el polinomio minimal.
b) Halle autovalores y una base para cada espacio propio de 7.

c¢) Determine si 7 es o no diagonalizable.

Dada A =

S = O
—_ O =

1
0
0
utilice el teorema de Cayley-Hamilton para hallar A~! y A3,

Utilice las propiedades del polinomio minimal para determinar si las matrices siguientes son

diagonalizables o no (considerar sobre el cuerpo R y sobre el cuerpo C).

2 -1
3 1

a)A =

b) A es una matriz cuadrada tal que A A y A — A2+ A =1

Encuentre la forma de Jordan de la matriz

-10 -7
7 4
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Escriba todas las matrices de Jordan de 4 x 4 posibles.

Determine las formas de Jordan posibles de una matriz de 4 x 4 cuyo polinomio caracteristico es

(A +2)3.(A —3).

Determine las formas de Jordan posibles de una matriz de 5 x 5 cuyo polinomio minimal es (A — 2)2.

Sea T € L(R*), tal que su polinomio caracteristico es (A + 1)%(2 —2)A:
a) Indique los polinomios minimales de 7" y describa en qué casos es diagonalizable.

b) Si T no es diagonalizable, encuentre su forma de Jordan.

Dada

S O O o o O
S O O O O =
S O o O = O
S o o = O O
S o = O O O
S = O O O O

Demuestre que es nilpotente con indice de nilpotencia 6.

La matriz

—
o]
\]

=X S N
|
—
[\
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tiene polinomio caracteristico (A + 1)2(A4 — 1), y polinomio minimal (A + 1)(A — 1)2, por lo que

no es diagonalizable. Encuentre su forma de Jordan y utilicela para encontrar A'°,

Nota: para hallar las potencias de los bloques de Jordan que son de la forma (A1, + N)* utilice el

binomio de Newton y el hecho que N es una matriz nilpotente.

Pruebe la proposicion 3.2.1: La interseccién y la suma de subespacios invariantes respecto de una

aplicacion lineal T € L(V') son subespacios invariantes respecto de T'.

Dado un cuerpo K, sea A € K"*" inversible. Pruebe que los autovalores de A~! son los inversos de

los autovalores de A, y que los autovectores correspondientes a autovalores inversos coinciden.

Demuestre que dos matrices semejantes B y B’ tienen el mismo polinomio caracteristico Pr (1) =

Prp (1)

SeaA =

a) Demuestre que A es diagonalizable si (a —d)? +4bc > 0.

b) Analice el caso que A sea simétrica (b = c).

Sea D el operador derivacion sobre el R-espacio vectorial de las funciones derivables de R en R. Si
k € Z,k # 0, demuestre que las funciones sen(kx) y cos(kx) son autovectores de D?. Indique cudles

son los autovalores correspondientes.

Sea T : R" — R" una transformacion lineal con matriz asociada A respecto a la base candnica, i y V
€ R" autovectores asociados a los autovalores A y . Indique justificando cuéles de las siguientes
afirmaciones son verdaderas

a) Para todo a € R el vector ot es un autovector asociado a A.

b) Todo vector del nicleo es autovector.
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¢) El vector w = V+ il es autovector de 7.
d) A" es autovalor de 7" con autovector asociado i.

¢) Una matriz diagonalizable es invertible.

Dado un cuerpo K, sean A y P € K", P inversible. Demuestre que (P~'AP)> = P~!A%P y
(P~'AP)k = P~1AKP para k un entero positivo.

1 —1
Sea T € L(R?) la transformacion lineal cuya matriz en la base canénica es : A =
2 2
a) Demuestre que los tinicos subespacios de R? invariantes por 7 son R? y 0.
b) Si U es la misma transformacién pero en C2, cuya matriz en la base canénica es A, demuestre

que U tiene algiin subespacio unidimensional invariante.

Sea T € L(R?) la transformacién lineal cuya matriz en la base canénica es :

2

y sea W; el subespacio de R? generado por (1,0)':

a) Pruebe que W, es T-invariante.

b) Demuestre que no existe un subespacio W> que sea invariante tal que R? = W; 4+ Ws.

Autoevaluacion
Verdadero o Falso

1. Si A es invertible entonces cero no es un valor propio de A.

2. Los valores propios de una matriz triangular son los elementos en la diagonal de la matriz.

3. Si la matriz real A € R3*3 tiene tres valores propios distintos, entonces los vectores propios
correspondientes a esos valores propios constituyen una base para R.

4. Sila matriz A € R¥ tiene dos valores propios distintos, entonces A tiene a lo sumo dos

vectores propios linealmente independientes.
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® N oW

10.

11.
12.

13.

14.

15.

16.

Si A tiene elementos reales, entonces A puede tener exactamente un valor propio complejo.
Si Det(A) = 0, entonces 0 es un valor propio de A.

Si una matriz de n X n tiene n valores propios diferentes, se puede diagonalizar.

Si la matriz A de 5 x 5 tiene 3 valores propios diferentes, entonces A no puede ser semejante a
la matriz diagonal.

El subespacio propio contiene todos los vectores propios asociados a A y ademads al vector
nulo.

El determinante de una matriz y el de su transpuesta son iguales, por lo tanto tienen el mismo
polinomio caracteristico, los mismos valores y vectores propios.

La matriz AT - A es invertible entonces A es un valor propio de A.

Dos matrices semejantes tienen el mismo polinomio caracteristico y los mismos valores
propios con las mismas multiplicidades algebraicas.

Una matriz es diagonalizable si la multiplicidad algebraica de cada valor propio de la matriz,
coincide con la dimensién del espacio propio correspondiente.

El determinante de una matriz es igual a la suma de todos sus autovalores (reales y complejos,
y elevados a sus respectivas multiplicidades).

La traza de una matriz es igual al producto de todos sus autovalores (reales y complejos, y
elevados a sus respectivas multiplicidades).

Las variables dngulo-accién estan relacionadas con la diagonalizacidon de matrices simétricas
en la mecanica analitica, y corresponden a las coordenadas en el espacio de los autovectores

de la matriz Hessiana.
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Los conceptos geométricos de longitud, distancia y perpendicularidad, que son bien conocidos
para R? y R3, se definen en este capitulo para cualquier espacio vectorial euclideo V. Estos conceptos
proporcionan herramientas geométricas potentes para resolver muchos problemas aplicados, incluidos
los problemas de minimos cuadrados. Los tres conceptos se definen en términos del producto escalar

o producto interior de dos vectores.

Producto interno. Ejemplos
Definicién 4.1.1 Producto interno

Sea V un espacio vectorial sobre R o C. Un producto interno sobre V es una funcién

¢ :V xV — R (0 C) que cumple:

1. ¢(%,¥) = ¢(y,X) paratodo X,y € V
2. ¢(X+7Z,¥)=0(X,¥)+¢(Z,y), paratodos X, y, Z€V
3. ¢(ax,y) = ad(X,y) paratodo X,y € Vytodox € RoC

4. ¢(%,X) > 0 paratodo X # 0
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Consecuencias de 1,2y 3:

= De 1.y 2. se deduce
0(%¥+7) =90(X,¥)+¢(¥7), paratodos X, ¥, Z€ V.
= De 3.y de 1. se deduce que
(X, ay) =a¢(x,y) paratodo X, y € V y todo a € R.
= De 2. se deduce que
¢(0+7,%) = ¢(5,%) = ¢(0,%) + ¢(5,%), si y s6lo si ¢(0,%) = 0.

Por la propiedad simétrica ¢ (%,0) = 0 y, en particular, ¢ (%,%) = 0 si ¥ = 0.

m Ejemplo 4.1 Los productos internos en R" y C" son, respectivamente:

¢(£’§) = ¢(()C1,X2,' o axn)7(yl>y27 T ,yn)) =X1y1 +X2y2+ -+ XnYn (Rn)

¢(fay) = ¢((X1,X2,' ° axn)7(y1>y27 T ,yn)) = X1y X2y -+ X0y, ((Cn)

Son los productos internos canénicos. Se deja al lector la verificacion de las propiedades 1 —4

de la Definicién 4.1.1 en cada caso. n

= A un espacio vectorial real (o complejo) V provisto de un producto interno se lo llama
espacio euclideo, E, (respectivamente, espacio unitario).

= El producto interno generaliza el producto escalar de los vectores X e y € R” a un espacio
vectorial V cualquiera.

— —

= Si se tiene un producto interno, se anotard ¢ (X,y) = (¥,¥)
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» Ejemplo 4.2 En el espacio vectorial de las funciones continuas en [a,b], C([a,b]), a valores reales,

se define

¢ : C([a,b]) xC([a,b]) = R

0(r.6)= [ rsyar

En el caso de funciones a valores complejos, se define ¢ (f,g) = |, f f(t)g(t)dt (similar a C?).

= El producto interno anterior es el que se utiliza para hallar los coeficientes de la serie
de Fourier de una funcién f(x) en [0,27]. Se calculan con el producto interno entre la
funcién f(x) y la base ortogonal {€*},cz o {1,cos(nx),sen(nx)},en.

= La serie de Fourier tiene importantes aplicaciones, por ejemplo, en el procesamiento de
sefiales. Permite la descomposicion de la sefial en una base ortonormal y obtener sus
componentes frecuenciales. En sefiales de miisica, por ejemplo, posibilita separar los

instrumentos.

Una vez fijada una base de V, si V es un espacio vectorial de dimensién finita con un producto

interno, es posible construir una matriz asociada al producto interno y a dicha base.

Matriz de un producto Interno

Sea V un espacio vectorial sobre R o C de dimensién finita con producto interno y sea B =
{V1,V2,--+,V,} una base de V. Se define la matriz del producto interno (-,-) en la base B como la
matriz € R™*" (resp. € C"™*") tal que

Pj= V) 1<i,j<n

Esta matriz nos permite calcular el producto interno entre cualquier par de vectores. Si X =

Yiogxivi e Y=YV

n n n n
@ = xvi, Y yiv) =Y, Y xy; (V7))
=1 =

i=1j=1
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En particular, para n = 3, se tiene

Fi,v)  (F1,v2)  (V1,%) 1
(X,5) = (x1,x2,x3) | (¥2,¥1) (o,%0) (¥, 73) )
(V3,V1)  (V3,V2)  (V3,V3) Y3

i SiPeslamatriz de un producto interno, entonces P;; = P;; para todo i # j. Sin embargo, esa
condicién no es suficiente para que P sea la matriz de un producto interno. Por ejemplo, la

matriz

no puede ser la matriz de un producto interno en una base, ya que si v es el primer vector de la

base, se tendria (V,¥) = 0 y serfa el vector nulo.

Longitud, dngulos, distancia y ortogonalidad

A partir de la definicién de un producto interno, es posible generalizar las nociones de longitud,

angulos, distancia y ortogonalidad ya vistas para vectores de R? y R3.

Definicion 4.3.1 Longitud o norma de un vector X en un espacio con producto interno se define

como

= Ejemplo 4.3 En R?, si v = (a,b), || es la longitud del segmento que va desde el origen hasta ¥,

y es consecuencia del Teorema de Pitdgoras (ver Figura 4.1).

» Ejemplo 4.4 Sea X = (1,—2,2,0). Como [|%]|* = (1)2+ (—2)2+(2)2 = 9, su longitud o norma
euclidea es ||¥| = v/9 = 3. .
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Figura 4.1: La norma es la longitud del vector

X2 N
(a,b)
ﬂaz + bZ
b
X1
¢ a

= Ladefinicién de longitud tiene sentido por la propiedad 4. del producto interno (Definicién
4.1.1).

= Se tiene la propiedad siguiente:

loX|| = v/ (0%, 0%) = [ & (¥,%) = |a| v/ (X, %) = |ex| || %]

= Todo vector de longitud 1 se dice unitario; todo vector X no nulo de un espacio euclideo

puede normalizarse, es decir, hacerlo unitario multiplicdndolo por ”)17”

= Ejemplo 4.5 El vector unitario # € R* que tiene la misma direccién que el vector X del Ejemplo
4.4 es

0) (4.2)

Angulo entre dos vectores.
En R? el producto escalar verifica la expresién que sigue:
(x,5) = X[l I¥]] cos® 4.3)

La verificacién para R3 es similar. Cuando n > 3, puede usarse la Ec.(4.3) para definir el angulo

entre dos vectores de R", o en espacios vectoriales cualesquiera.
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Dados dos vectores X e ¥ de un espacio euclideo, definimos el coseno del angulo entre ellos como

&)
0) = oY) 4.4
<0s(6) = =57 “4

Para que tenga sentido la definicidn anterior, es necesario demostrar que el valor absoluto del

cociente
(%,5)
[ {[31]

sea menor que o igual que 1.

i En Estadistica, el valor de cos(0) definido mediante la Ec.(4.4) para los vectores X e y es

llamado coeficiente de correlacion entre los vectores X e y, y mide de alguna forma la similitud

entre ambos.

Augustin Louis Cauchy (1789 - 1857)

Fue un matematico francés, miembro de la Academia de Ciencias de Francia y profesor en la
Escuela politécnica. Cauchy ha sido uno de los matemadticos més prolificos de todos los tiempos,
solo superado por Leonhard Euler, Paul Erd6s y Arthur Cayley con cerca de 800 publicaciones y
siete trabajos; su investigacion cubre el conjunto de dreas matematicas de la época. Fue pionero en
andlisis donde se le debe la introduccion de las funciones holomorfas, los criterios de convergencia
de series y las series de potencias. Sus trabajos sobre permutaciones fueron precursores de la teoria
de grupos, contribuyendo de manera medular a su desarrollo. En dptica se le atribuyen trabajos sobre

la propagacion de ondas electromagnéticas. [6]

Desigualdad de Cauchy-Schwartz:

En todo espacio vectorial con producto interno,

9] < 1% 15

paratodo X, y € E.
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Demostracion:

—

Si ¥ = 0 vale, pues ‘()?,0)‘ =0<|X][0=0.

Si ¥+ 0, y llamamos a = ?éfg donde [5]]* = (¥,¥). se tiene que

como

%) 0,%) - o, (%)
— 5o Y =13
1¥01° 115l 1]

se cancelan el segundo y el cuarto término de la desigualdad y queda

aa(y,y) = (¥,%)

Entonces,

|51

=12
15l

L2
0 < |[¥]|"—

que equivale a

22 = =
121~ I¥)1” — (%, 5)
<
= )
[l

En el numerador se tiene la desigualdad que se queria demostrar.

| 2

i

Se acredita a Cauchy la desigualdad para vectores y a Schwarz para los productos escalares
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con integrales. Sin embargo, fue Bunyakovsky quien demostré y publicé la desigualdad de

Schwarz en una monografia, 25 afios antes que Schwarz.

Distancia entre vectores

Definicion 4.4.1 Sea V un espacio vectorial sobre R o C con producto interno. Se define la

distanciad, d : V xV — R como:

d(F

=
I

=
|

=l

Usando las propiedades de la norma, se puede verificar que d satisface:
1. d(%,¥) > O paratodo X,y € E

2. d(x,y)=0siysélosix=y

3. d(X,y) =d(¥,X) paratodo X, y € E

4. d(%,7) <d(X,¥)+d(y,7) paratodo X, ¥, ZE€E.

Karl Herman Amandus Schwarz (1843 - 1921)

Fue un matemético alemédn conocido por su trabajo en andlisis complejo. Schwarz inicialmente
estudio quimica en Berlin pero Kummer y Weierstrass lo persuadieron para que se hiciera matematico.
Entre 1867 y 1869 trabaj6 en Halle, después en Ziirich. Desde 1875 trabajo en el universidad de
Gotinga, tratando los temas de teorfa de funciones, geometria diferencial y calculo de variaciones.
Su memoria en ocasién del 70 aniversario de Weierstrass contiene, entre otros temas importantes, la

desigualdad para integrales que hoy se conoce como desigualdad de Schwarz. [14]
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Figura 4.2: Distancia entre los vectores i y V

X2

Viktor Yakovlevich Bunyakovsky (1804 - 1889)

Naci6 en Ucrania. Estudié matemadticas en la Sorbona, en la que se doctor6 en 1825 bajo la
tutoria de Augustin Cauchy. En 1826 volvié a San Petersburgo donde ejercié como profesor de la
Escuela de Cadetes de la Academia Naval y del Instituto de Comunicaciones. De 1846 a 1880 fue
profesor en la Universidad de San Petersburgo.

Entre otros campos de las matemdticas, Buniakovski trabajé sobre todo en teoria de
nimeros, andlisis matematico y en teoria de la probabilidad. Son relevantes las aportaciones
que llevan su nombre como la conjetura de Buniakovski (nunca demostrada) y la desigualdad
de Cauchy-Buniakovski-Schwarz. Sus aportaciones més originales son en teoria de la probabilidad,
acerca de la cual publicé numerosos articulos sobre el estudio de problemas estadisticos de la

poblacién de Rusia. [17]

m Ejemplo 4.6 En la Figura 4.2 se muestran los vectores i, Vy il — V,
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—

Puede observarse que la distancia de V a i es la misma que la de 7 —V a 0, y también que si se

suma el vector i — vV a V se obtiene el vector u. "

= Dados dos vectores X e ¥, se dice que d(X,¥) es la distancia entre X e y.
= Una distancia es una funcion que verifica las 4 propiedades anteriores. Puede no provenir

de ninguna norma.

Con la definicién que sigue se generaliza la nocién de perpendicularidad entre vectores de un

espacio vectorial.

Definicion 4.4.2 Sea V un espacio vectorial sobre R o C con producto interno. Dos vectores X, y

se dicen ortogonales (o perpendiculares), si

(x,5) =0 4.5)

i) Porlas propiedades vistas en las observaciones i en la Seccién 4.1, el vector nulo, es ortogonal

a todo vector de V.

Teorema 4.4.1 Teorema de Pitagoras

Dos vectores X e ¥ son ortogonales, sii

=

— -2, =12
1%+ 317 = [1%]1" + 3]

La demostracion se deja al lector.

Definicion 4.4.3 Sea V un espacio vectorial sobre R o C de dimensién finita con producto

interno. Se dice que {Vi,V,---,V,} C V es un conjunto ortogonal si (V;,V;) = 0 para todo i # j.

= Ejemplo 4.7 El conjunto S = {i},it>, i3}, donde iy = (3,1, )7, it = (1,2, 1) y i3 = (—1/2,-2,7/2)7,

es un conjunto ortogonal, ya que al considerar los tres pares posibles de vectores,

{ay,wr}, {1, 3}, y {iz, 03}, se tiene
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Figura 4.3: {it),it>, i3 } es un conjunto ortogonal de R3

—F———————————

X4

iy iy =3(—1/2)+1(-2)+ 1(7/2) =0
-ty = —1(—1/2)+2(-2)+1(7/2) =0

Cada par de vectores distintos es ortogonal, asi que S = {u,>,u3 }, es un conjunto ortogonal

como se muestra en la Figura 4.3. m

i Un conjunto de r vectores se dice ortonormal si es ortogonal y ||u;|| = 1 paracada 1 <i<r.

Sea V un espacio vectorial sobre R o C de dimension finita con producto
interno y sea {V,V,,---,V,} C V un conjunto ortogonal de V con ¥; # 0 para 1 <i < r. Entonces

{V1,V2,--+,V,} es un conjunto de vectores linealmente independiente.

Demostracion:

Supongamos que Y7, o4V = 0. Entonces, paracada j, 1 < j <r,
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P
= = [ - 12
0=(0,v)) = Zalv,,v] Za,-(v,-,vj):aijjH
i=1 i=1
y como V; # 0, se tiene que o; = 0 para 1 < j < ry entonces, {V,V2,---,V,} es un conjunto de
vectores linealmente independiente.

0

En el teorema siguiente se muestra por qué una base ortogonal es mas conveniente que otras

bases ya que las coordenadas de un vector en esa base pueden calcularse muy facilmente.

Sea V un espacio vectorial sobre R o C de dimension finita con producto

interno y sea {V;,V,,---,¥,} CV es un conjunto ortogonal de V con V; # 0 para 1 <i < r. Sea
v € (V,V,---,V,). Entonces
" (V,V;
(3%;) (4.6)
= HVJH

Demostracion:

Siv=Y/, oV, paracada j, 1 < j<r, se tiene que

r r
@,7) = (Y v, 7)) = ¥ aa(#,7) = o (7,,7)) = o |7
1 .

=

y como V; # 0, se tiene entonces que
(V7 Vi )

711"

;=

= Ejemplo 4.8 El conjunto {i},it>, i3} del Ejemplo 4.7 es una base ortogonal para R?. Si se desea
expresar el vector ¥ = (6,1, —8)” como una combinacién lineal de los vectores en S, de acuerdo a la

Ec.(4.6) se tiene que,

Para hallar las coordenadas de ¥ en la base ortogonal, se calculan los productos escalares
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(V,u3),  —33
L
i3 | 33/2

Y se obtiene,
¥ = L) — 2ii — 23

que puede verificarse facilmente,

F=(6,1,-8)=(3,1,1)—=2(—1,2,1) —2(—1/2,-2,7/2). .

= Como se vio en el Ejemplo 4.8, es muy fécil calcular las coordenadas de un vector ¥ en
una base ortogonal. En otro caso, se debe que resolver un sistema de ecuaciones lineales
para hallarlas.

= Si el conjunto ademds, es ortonormal, se tiene

1_}’:
J

(V. ¥))7;
1

r

La proposicion que sigue asegura que en todo espacio vectorial de dimension finita con producto
interno tiene bases ortonormales. Més atin, en la demostracion se da un procedimiento recursivo
conocido como Gram-Schmidt que permite obtener una base ortonormal del espacio vectorial a

partir de una base cualquiera del mismo.
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Método de ortonormalizacion de Gram-Schmidt

Sea V un espacio vectorial sobre R o C de dimensién finita con producto interno y sea

{V1,V2,--+,V,} una base de V. Existe una base ortonormal B = {wy,w»,--- ,w,} de V tal que
<‘_;17\_;27'” a‘_;k> - <wla"_‘;27"' )wk>
paratodo 1 <k <n

Demostracion:

Se construyen los vectores {Z,Z2, - ,Z,} de una base ortogonal, recursivamente

1. Setomaz; =V
2. Sebuscaz; €V tal que (Z2,Z1) =0y tal que (Z),Z2) = (Vi,V2)

La segunda condicion vale si'y s6lo si 7 = av + bV, con b # 0. Es posible considerar b = 1

y buscar a para que se cumpla la primera condicién:

0= (22,21) = (0\71 +b§2,21) = a(ﬁl,vl) + (172,\71),

lo que implica

__(‘727‘71)
T
W1
Luego, el vector,

L Vo, V1), L Vo, V1),
ZQZVZ_(i’ 12) :Vz_(ia 12)21
[l (V1]

satisface las condiciones.

Supongamos construidos 71,72, - ,Z» € V tales que

1. (Z,Zj) =0cuando i # j

2. (1,22, ,3r) = (V1,Vp,--+,¥)con 1 <k <r
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consideramos el vector

r

Tl =V — ), ——
=1 |IZ]l

(errlei) =
i

Se tiene que
. <215225"' 7Zrazr+l> - <‘71,\_;2,"‘ ,\_;r,\_/"r+1> con 1 < k <r

» para cada j < r, reemplazando 7, y teniendo en cuenta 1.,

L L GanE) .
S T (F‘H’;)zi,z»
i=1 Zi

(Vrs1,25) @2

(Zr+1,2j) = (Vrt1,,Zj) — ——>5(Z,Z)) =0
[

Luego 7, satisface las condiciones requeridas.

De esta manera, al concluir el n-ésimo paso, se obtiene una base ortogonal {71,7Z2, -

V que ademas satisface

(‘715‘727"' a‘_;k> = <217227"’ azk>
paratodo 1 <k <n.

)
il

L

Finalmente, para cada 1 < i < n consideramos el vector w; =

It

I

\
{W1,W2,- -+, W, } resulta una base de V que cumple lo pedido.

,Zn ) de

. Luego, el conjunto B =

O

Sea V un espacio vectorial sobre R o C de dimensioén finita con producto interno y

sea S un subespacio de V, S # 0. Entonces existe una base ortonormal de V que contiene una base

ortonormal de S. Se demuestra tomando una base de S, completando a una base de V' y aplicando a

esta base el procedimiento de Gram-Schmidt.

» Ejemplo 4.9 Aplicacion del Método de Gram-Schmidt

Dada la base B = {(1,0,i),(1,1,2+1),(0,0,1)} de C? se desea hallar una base ortonormal con

G-S.
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Vi = (1,0,i), Vo = (1,1,241i) y v3 = (0,0,1)

Vi

2
Il

- ,71) .,
2=V2—(; 2)1
[1Z1]]

N

((1,1,241),(1,0,i))

o %

Z=(1,1,2+1i)—
Z=(1,1,2+i)— (1=1i)(1,0,i) = (i,1,1)
y luego,

L. V3,21) ., V3,22)
7 _(iv lz)zl_(ia 22)Z2
[1Z1l 122l

%3 = (i/6,-1/3,1/6)

{71,72,73} resulta una base de ortogonal de C>

Diviendo por su norma queda una base ortonormal {w, Wy, w3}
donde w; = (1/v/2,0,i/v/2)

Wy = (i/v/3,1/v/3,1/V/3)

w3 = (V/6i/6,—/6/3,/6/6)

La existencia de bases ortogonales para subespacios de dimensién finita de un espacio con
producto interior puede establecerse por medio del proceso Gram-Schmidt, de igual forma que en R".
Al aplicar este proceso, es posible plantear ciertas bases ortogonales que surgen con frecuencia en las
aplicaciones y construir la proyeccién ortogonal de un vector sobre un subespacio S. La proyeccion
no depende de la seleccién de la base ortogonal y tiene muy buenas propiedades que se describirdn
mds adelante. En el teorema que sigue se ve cdmo es posible escribir la matriz de una transformacién
lineal usando producto interno para escribir las coordenadas de la imagen de cada vector de la base

ortogonal.
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Teorema 4.4.5 Si T es una transformacion lineal sobre V donde V es un espacio vectorial con

producto interno y de dimension finita, entonces

(T)p = (T (i)), ;)
siendo B = {u}, i3, - - i, } cualquier base ortonormal de V.

Demostracion:

T (idy) = kyidy + katiy + - - - + kyldy,.

En la primera columna de la matriz deben ir las coordenadas de 7 (i), o sea ki, - - - ky,.
y resulta que las coordenadas son

(T (iy), 1) = (kyidy + kaidp - - - + kil ;)

= kl(ﬁl,ﬁ,') —{—kz(ﬁl,ﬁi) + - ~kn(ﬁ1,ﬁi) =k;

Complemento Ortogonal

Definicion 4.4.4 Sea V un espacio vectorial sobre R o C con producto interno y sea S un

subespacio de V. Se define el complemento ortogonal de S como

St={veV (#5)=0 V5eS}

i S* esunsubespacio de V.

= Ejemplo 4.10 Para el subespacio de R? generado por el vector (1, 1), su complemento ortogonal
es ((1,1)" = {(x,y) € R%, ((x,3),(1,1)) =0} = {(x,y) € R%,  x+y=0} = ((1,~1)). .

= Ejemplo 4.11 Sea W un plano que pasa por el origen en R3, y sea L la recta que pasa por el origen
y es perpendicular a W. Si i y i, son diferentes de 6, i esta sobre L, y iiy estien W, iiy - iiy =0,
como se muestra en la Figura 4.4. As{ que cada vector sobre L es ortogonal a cada vector w en W.
De hecho, L consiste en todos los vectores que son ortogonales a los w en W, y W consiste en todos

los vectores ortogonales a los vectores en L. Es decir, L =Wy W = L*. "
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Figura 4.4: Complemento ortogonal

U
w=L"
s
w2
L
= Ejemplo 4.12 En C? hallar el complemento ortogonal de ((1,i,1+1i)).
(Li,1+1)) = {(x1,%,x3) € C, (x1,%2,x3) - (@, @i, (1 +i)) =0 VYo eC}

= {(xl,xng) S (C3,xld+xzﬁ+x3§(l +i) =0 Vae C}

De donde

)ﬁﬁ—)@ﬁi-f—)@ﬁ(l - i) =0

a(x; —xi+x3(1—1)) =0.
Se tiene, entonces, x; = xpi —x3(1 — i) y resulta

<(1,i, 1 +i)>t = {()Qi*)@(l — i),xZ,X3) :xz(i, 1,0) +X3(i* 1,0, 1)}

Teorema 4.4.6 Sea A una matriz de m X n. El complemento ortogonal del espacio fila de A,
FilA, (subespacio de R" que generan los vectores filas de A) es el espacio nulo de A, Nul(A) y
el complemento ortogonal del espacio columna de A, ColA, (subespacio de R” que generan los

vectores columnas de A) es el espacio nulo de la matriz A”. Es decir,
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| (FilA)* = Nul(A) y (ColA)* = Nul(AT)
= Ejemplo 4.13 Dada la matriz

0 2
A= , 4.7)
4

se describen los espacios FilA, Nul(A) y ColA:

Nul(A) son los vectores de R? soluciones del sistema homogéneo. Esos vectores son perpendiculares
a las filas de la matriz A, y pertenecen entonces a subespacio (FilA)*.

Si ahora se resuelve el sistema homogéneo con la matriz A, da el vector nulo de R?. El
subespacio que generan las columnas de A, ColA es todo R?, pues hay en las columnas 2 vectores

linealmente independientes. De ahi que el subespacio ortogonal, (ColA)+ = Nul(AT) = 0.
Sea V un espacio vectorial de dimensién finita con producto interno y sea
S C V un subespacio. Entonces
1. SNst =0
2. dim(S) +dim(S*) = dim(V)

En consecuencia, S & S+.

Demostracion:

—

= Sea v € SNSt. Como v € S*, (¥,5) =0, V5 € S. En particular para 5 = ¥, entonces (V,V)

17]|* = 0, de donde ¥ = 0.

s Sea {5],52,--,5,} una base de S. Existen V,;1,---,V, tales que
B={5,%, " ,5 Vi1, -+ ,V,} es una base de V. Aplicando Gram-Schmidt se obtiene una
base ortonormal de V, B’ = {w;, Wy, -+ ,W,,W,11, Wy } tal que

<w17‘/_‘;27"' 7"_‘51’) = <§17§27“' 7§r> =S.
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Sea j > r. Veamos que w; € S*+. Dado § € S, existen escalares o, --- , @, tales que 5§ =
Y| a;w;, entonces

(W),5) = (W), Y ;) = Y 0i(w;, ;) = 0.
i=1 i=1

como la base es ortonormal y j > r, (w;,w;) = 0 para 1 <i < r. De donde, w; € S*, y se
tiene que,

{Wra1,-- W} € ST,
y, por lo tanto,

<"_‘;r+1>' : "’_‘;n> < SL?
por ser S* un subespacio.
dim(S*) > dim((W,y1,---Wy)) = n—r = n—dim(S). Entonces, dim(S*) + dim(S) > n.
Por otro lado como SN S+ = {0}

dim(St) + dim(S) = dim(S*+ +§) < dim(V) = n.
Entonces dim(S+) +dim(S) = dim(V)
O
i) Del teorema sale como generar el subespacio S+, a partir de la base ortonormal de V.

SL = <"_‘;r+1a""’_‘;n>

Sea V un espacio vectorial de dimension finita con producto interno y sea S

un subespacio de V. Entonces (S*)* =S
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Figura 4.5: El vector )_A; es la proyeccion del vector y sobre la recta L

X2 N
61 Y
\
\
4+ \
\
\
4 L
N
! y
AN
yye 2t
u
| .
4 7 8

Demostracion:

Por definicion, (St)t ={veV/ (¥w)=0 VwecSt}. VeamosqueSC (S1)*. SeaseS.

Para cada w € S se tiene que (5,%) = (w,5) = 0, de donde se deduce que 5 € (S*)*. O

Proyeccién ortogonal

Dado un subespacio S de un espacio vectorial V de dimension finita con producto interno . Como

S @S+ =V se puede considerar el proyector Ps : V — V cuya imagen es S y cuyo nticleo es S*.

Definicion 4.5.1 Sea V un espacio vectorial de dimensién finita con producto interno y sea
S C V un subespacio. Se define la proyeccion ortogonal sobre S como la transformacién lineal

Ps : V — V que satisface
1. Ps(s)=5 V5eS

2. Ps(f)=0 V7est

= Ejemplo 4.14 En R? se desea hallar la proyeccién ortogonal de un vector ¥, § sobre el subespacio
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S generado por otro vector i, o sea sobre la recta L generada por # que pasa por el origen. Esto se

muestra en la Figura 4.5.

Ps(¥) =3 = cil,

y se debe cumplir que i sea ortogonal al vector y — ;, es decir, (¥ — cii) - i = 0, entonces,

V-i—ci-i=0
de donde
i
C=—-=
u-u
y entonces, la proyeccion sobre L es ,
L Vi
F=2tq 438)
u-u
. . . 7 . 4
En el caso de la Figura 4.5, se tiene que y = yiu=
6

Usando Ec.(4.8), como ¥- i =40y i - u = 20, se obtiene,

2 Y, 40, .
Vy=5—=iU=—Uu=2i=
Uu-u 2 4
S oo R -1
y la componente ortogonal aiies y —y =
2

La descomposicién de y, como suma de proyecciones sobre S y sobre S+, es

= SiB={V,V, - ,Vr,Vri1, - Vy} una base ortonormal de V tal que {V,V5,---,V.} es
una base de S'y {¥,,1,---¥,} una base de S*, la proyeccién ortogonal sobre S es la tinica

transformacion lineal P : V — V que satisface
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1. Ps(\75>:\7[ V]Sigr
2. (%) =0 Vr+1<i<n

En consecuencia, para ¥ € V, recordando que v = }}_; (V,V;)V; resulta,

PS() = B (5.9)%) = ¥ (5.9)Ps(5) = ¥ (5.5 “9)

~.
Il
—_
~.
Il
-
~
Il
—_

que es una expresion para Ps(V) en términos de los vectores de la base ortonormal de S.
= Sea V un espacio vectorial de dimension finita con producto interno y sea S C V un

subespacio. Entonces Ps+ Py = idy,

donde, Ps(V) = Yj— (V, V)V y Por (V) = Xy (V,V))V;.

= Ejemplo 4.15 SiV =R*y W es el subespacio

W:{)_C’GR“, x1—2xz+X3=x1—3X2+X4:0},

se desea hallar la proyeccién ortogonal del vector v = (4,8, —4,12) sobre el subespacio W.
Para usar la expresion de la Ec.(4.9) debemos hallar una base ortonormal de W. En primer lugar

calculamos una base de W resolviendo el sistema por eliminacién de Gauss:

. (4.10)

A partir de la matriz escalonada, al resolver el sistema homogéneo, quedan como variables
independientes x3 y x4 y una base de W es {(—3,—1,1,0),(2,1,0,1)}. Una base ortogonal de W a

partir de aplicar Gram-Schmidt es,

1 4 7
—1,1 ——,—, 1) .
{306 )

Si llamamos w; = (—3,—1,1,0) y wy = (

_ Wi
[

obtienen dividiéndolos por su norma, V; =

Entonces, como Py (V) = Z?:l (V,¥})V}, se calculan los productos escalares (V,V;), y se obtiene

que
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124 88 52 140

PW((4787_47 12)) = (77 ﬁ7ﬁ77

)

es el vector del subespacio W mds cercano a vV = (4,8, —4,12).

Teorema 4.5.1 Teorema de la proyeccién ortogonal.
Sea S un subespacio de un espacio vectorial con producto interno, V. Entonces, para cada

v €V, el vector de S a menor distancia de v es Ps(V).

Demostracion:

Si B={Vi,V2, - ,V,Vpi1," -V, } una base ortonormal de V tal que {V},V,,---,V,} es una
base de S.

Sea V€ V. Se tiene que v =} ;_ (V,¥;)V; y Ps(¥) = L), (¥,V;)V;. Por otro lado, si § € S,
§= Y1 (59))7;.

Entonces

de donde,

r n n
F-sP=Y |G-57)+ ¥ (@3] > ¥ |65 =1F-rE|

j=1 Jj=r+1 Jj=r+l1

(el primer término de la desigualdad se anula cuando 5 = Ps(V)) O

= El teorema anterior es conocido también como el teorema de la mejor aproximacion.

= Enla Figura 4.5, Jesel punto de L més cercano a y, en el sentido que
|73 <1531,

para todo ¥ en L distinto de §.
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Problema de cuadrados minimos

El problema de hallar la proyeccién de un vector b sobre un subespacio surge cuando se tiene
el problema Ax = b, con A una matriz de m X n, donde m es la cantidad de observaciones y es
mucho mayor que la cantidad de incégnitas n, de forma tal que se espera que el sistema Ax = b sea
incompatible. En otras palabras, el vector b no es combinacion lineal de los vectores columna de A
(no esté en el espacio columna de A). Se trata entonces de hallar X que minimice el error, y esto se
realizard en el sentido de los cuadrados minimos. El error es E = ||Ax —b|, y es la distancia de b al
vector Ax en el espacio columna. El vector p del espacio columna més préximo a b que cualquier
otro es la proyeccion de b sobre el espacio columna. El error Vece = b — AX es perpendicular al
espacio columna. Recordando que el espacio nulo de la matriz A es el conjunto de vectores de R”
que son perpendiculares a todas las filas de A, el error e pertenecer4 al espacio nulo de la matriz A”
(es perpendicular al espacio columna). Es decir que el error € es perpendicular a cada columna de A

(ver Figura 4.6). Entonces se tiene que,

AT(b-A%)=0 o ATAx=ATb (4.11)

Las ecuaciones (4.11) se conocen como ecuaciones normales. Pueden obtenerse a partir de
buscar x que minimiza E2, tomando derivadas parciales de E? = (Ax —b)” (Ax —b). Al igualar a
cero, se tiene 2ATAx —2ATb = 0.

Si AT A tiene inversa (esto ocurre cuando las columnas de A son linealmente independientes),

entonces

£=(ATA)"'ATp (4.12)

y la proyeccion p de b sobre el espacio columna, es el vector AX

p=A%=A(ATA)"'ATDb (4.13)

Un ejemplo de ajuste de datos por cuadrados minimos

Supongamos realizamos un experimento en el que se espera que la salida b sea una funcién
lineal de la entrada t. Se buscard la recta b = o + ft. Por ejemplo, si a diferentes tiempos medimos
la distancia a un satélite en su recorrido a Marte. En este caso t es el tiempo y b la distancia y el

satélite se moverd con una velocidad casi constante (b = by + vt). ;Es posible calcular c y  ? Si



186 Capitulo 4. Espacios vectoriales con producto interno

Figura 4.6: Proyeccion sobre el espacio columna

columna aq

columna as

no hay errores experimentales dos mediciones determinan la recta b = o + ft. Pero si hay error se

debera promediar los experimentos y hallar la mejor recta. Al realizar m mediciones,

o+pt = b
(X—i—ﬁl‘z = b
a+pt, = by

Se tendrd un sistema sobredeterminado, con m ecuaciones y solo 2 incdgnitas. Si las mediciones

tienen error, el sistema no tiene solucién. En este caso la matriz A tiene dos columnas y x = (a, 8)7:

1 1 by
1 b by
o
B
1 t, b

0 Ax = b. La mejor recta se tendra con X = (&, B) que minimizan

E? = ||Ax=b|* = (b1 — & = B11)* + (b2 — &= B12)* + -+ (b — & = Bt)’
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El vector p = AX es el mds cercano a b. De todas las rectas b = o + Bt estamos eligiendo la
que mejor ajusta los datos. Los errores son las distancias verticales b — o — B¢ (no perpendiculares).

Estas distancias verticales se elevan al cuadrado, se suman y se minimizan.

= Ejemplo 4.16 n

Si se considera como ejemplo, que se tienen tres mediciones: by =lent; = —1,by=1lentp =1

y b3 =3 en 3 =2 se tiene el sistema Ax = b

1 -1 1

o
1 1 5 =11 (4.15)
1 2 3

El sistema es incompatible porque los puntos no estin sobre una misma recta. Se resuelve

entonces, por cuadrados minimos, ATAx =ATb

o)

5
= (4.16)

.z A 9 A 4 . 9 4
La solucién es & = 7, B = 5 y la mejor recta es 7 + 5¢.

Como se muestra en la Figura 4.7, el vector b no es combinacién lineal de las columnas (1,1,1)”

y (—1,1,2)T. Con minimos cuadrados se reemplaza b que no estd en la recta por el vector p = A que

si estd, al no poder resolver AXx = b, se resuelve AX = p. El vector p = (%, %, g) estd en el espacio
columna, es la proyeccidn en ese subespacio. Restando p de b, los errores sone =b—p = (%, —g, %)

Son los errores verticales en la Figura 4.8. Ese vector e, como se muestra en la Figura 4.7, es ortogonal
a las columnas de A (est4 en el espacio nulo de AT).
Para el caso de m mediciones by,by,- - - , by, en puntos distintos 1,5, - - ,t,, la recta o + B¢ que

minimiza E2, surge de resolver el sistema lineal

o3

ATA =ATp 4.17)

=
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Figura 4.7: Proyeccion del vector b en el espacio columna

1f

L ¢
]
1
1
]
1
e
1
1
1
0 ! espacio
6 /7 columna
p= | 13/7
177

Figura 4.8: Recta que ajusta por minimos cuadrados los datos del ejemplo

W
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m
m i=11i

jo)]

_ [ rEib (4.18)

5 .
it Xt B o tibi

Es importante notar que el método de cuadrados minimos no estd limitado a ajustar datos con

i
una recta. En muchos casos interesan otros ajustes, con polinomios de grado mds alto o con
otras funciones como es el caso de ajuste exponencial o el ajuste con senos y cosenos. Pueden
conducir a problemas lineales o a problemas no lineales de cuadrados minimos, siendo estos
ultimos mas complejos de abordar.

i) El método por minimos cuadrados fue inventado por Karl Friedrich Gauss, y lo us6 para

resolver un problema de astronomia. En 1801 el asteroide Ceres se habia observado mucho
mds brillante durante més de un mes antes de desaparecer cuando se acercé al Sol. Con base
en las observaciones disponibles, los astrénomos deseaban aproximar la orbita de Ceres para
observarlo de nuevo cuando se alejara del sol. Gauss empled los minimos cuadrados e impact6
a la comunidad cientifica al predecir la hora y el lugar correctos (unos 10 meses después) para

localizar el asteroide.

Karl Friedrich Gauss (1777 - 1855)

Fue un matematico, astrénomo y fisico aleman que contribuy6 significativamente en muchos
dmbitos, incluida la teorfa de niimeros, el anélisis matematico, la geometria diferencial, la estadistica,
el dlgebra, la geodesia, el magnetismo y la dptica.

Gauss pronto fue reconocido como un nifio prodigio, pese a provenir de una familia campesina
de padres con poca cultura: su madre sabia leer, aunque no escribir; su padre si, pero en cuanto
a las matematicas, no pasaba de la aritmética mds elemental. De Carl Friedrich Gauss existen
muchas anécdotas acerca de su asombrosa precocidad. Completé su magnum opus, Disquisitiones
arithmeticae, a los veintitn afios (1798), aunque la obra no se public6 hasta 1801. Constituye un
trabajo fundamental como consolidacion de la teoria de los nimeros y ha moldeado esta drea hasta

los dias presentes. [8]
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Endomorfismos de espacios vectoriales con producto interno

Vamos a asociar ahora a cada endomorfismo f de un espacio vectorial V de dimensidn finita y

con producto interno otra transformacion lineal f*, f*:V — V.

Definicion 4.6.1 Sea V un espacio vectorial con producto interno y sea f una transformacién

lineal. Se llama adjunta de f y se anota f* a una transformacion lineal f* : V — V tal que

(f@),w) =@ f W)  WweV (4.19)

= Ejemplo 4.17 Sea f : C*> — C? con el producto interno canénico, dada por f(x,y) = ((x +iy,2x —
(1+0)y)

Se tiene que

(f(63), (zw) = ((e iy, 20 = (14 0)y), (2,w)) = (), (242w, =iz + (=1 +i)w))

de donde, f*: C* — C? definida por f*(z,w) = (z+2w, —iz+ (—1+i)w) satisface (f(x,y), (z,w)) =
((x,¥),f*(z,w)) para todo par de vectores (x,y), (z,w) en C2. n

El resultado que sigue prueba que en espacios vectoriales con producto interno de dimensién

finita, la transformacién lineal adjunta existe y es tnica.

Sea V un espacio vectorial de dimensién finita con producto interno y sea f
una transformacion lineal, f : V — V. Entonces existe una tnica transformacién lineal f*:V — V

tal que
(f(7),w) = (v, /" (W)

Demostracion:

Unicidad
Para ver la unicidad supongamos existen transformaciones lineales g*: V -V yh*:V -V

tales que, para w fijo y para cada v

entonces
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(¥,g(W)) = (¥,h(W)) o equivalentemente, (¥, g(w) — h(w)) = 0, para todo v € V; tomando
) —h(w), se tiene (g(w) —h(w),g(w) —h(w)) = 0y por la propiedad del producto escalar
g(w) —h(w) = 0, entonces g(w) = h(w), para cada w € V, con lo cual g y & coinciden.

Existencia
Sea {V},V,,---V,} una base ortonormal de V. Si existe f*:V — V con las condiciones del

enunciado, debe cumplirse, para cada w € V

£0%) = Y. (5, 155 @20

f* es una transformacion lineal

= Usando la definicién Ec.(4.20 ),

n

(Wi +wh) = Z Wi +Wo, f (Vi) Vi

» ParaleCoR)weV



192 Capitulo 4. Espacios vectoriales con producto interno

-2 i(w,f(vi))vi =Af (W)

Veamos que para todo V,w € V vale (f(V),w) = (V, f*(W))

- — —

Sean v,w € V. Se tiene que Vv =Y, (V,V;)V; y entonces, f(V) = Y1, (V, V) f(V)

Por otro lado

A partir de la matriz de una transformacion lineal f : V — V en una base ortonormal de V, puede

obtenerse facilmente la matriz de su adjunta en la misma base.

Sea V un espacio vectorial de dimensiodn finita con producto interno y sea f
una transformacién lineal, f : V — V. Sea B una base ortonormal de V. Entonces, la matriz que
representa la transformacién adjunta es la conjugada y transpuesta de la matriz de la transformacion

f, es decir,

(f")s=((f)B)" 4.21)
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Demostracion:

Supongamos que B = {V},V,,---V,} es una base ortonormal de V. Entonces para cada 1 <

i,j <mn,

((f)B)ij = (f*(¥)), %)

como en cada columna j van las coordenadas de f*(V;) en la base B,

= (Vi f*(V))) = (f (%), Vj) = ((£)B))ji = ((f)B)i;

» Ejemplo 4.18 En el caso de la transformacion lineal adjunta del Ejemplo 4.17, si B es la base

canénica de C?, se tiene, de acuerdo a la proposicién anterior, que la matriz que la representa es:

M= Fa=| 7
N U P SR R

(f*)p es la matriz transpuesta y conjugada de (f)p.

Existe el caso particular de transformaciones lineales f : V — V cuya adjunta f* coincide con f.

Definicion 4.6.2 Sea V un espacio vectorial con producto interno y sea f : V — V una transformacién

lineal. Se dice que f es autoadjunta si f = f* o sea, tal que

(f(),w) =@, f(w)  ViweV (4.22)

Definicién 4.6.3 UnamatrizA € R"*" se dice simétricasiA;j=A;; V1 <i, j <n, o equivalentemente,
siA =AT. Unamatriz A € C"*" se dice hermitiana si A;j = A;; V1 < i, j < n, 0 equivalentemente,
SiA=A".

Si A es la matriz de una transformacioén lineal f en una base ortonormal, sabemos que A* es la
matriz de la transformacién adjunta en la misma base. Si f es autoadjunta se tiene A = A*, por lo

tanto la matriz de una transformacién lineal autoadjunta es simétrica (hermitica).
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Si f es autoadjunta, entonces, es una transformacion lineal diagonalizable. M4s atn, existe una

base ortonormal de V formada por autovectores de f y todos sus autovalores son reales.

Sea V un espacio vectorial de dimension finita con producto interno. Sea f
una transformacion lineal autoadjunta. Entonces el polinomio caracteristico de f tiene todas sus

raices reales.

i) SiA € C"" es una matriz hermitiana, entonces todas las raices del polinomio caracteristico de

A son reales.

El que sigue es un resultado importante sobre diagonalizacion de transformaciones lineales

autoadjuntas.

Sea V un espacio vectorial de dimension finita con producto interno. Sea
f:V — V una transformacioén lineal autoadjunta. Entonces existe una base ortonormal B de V tal

que la matriz (f)p es diagonal real.

= Sea A € R™" es una matriz simétrica. Si se considera el producto interno canénico
en R”, la transformacion lineal f4 : R” — R" definida por f4(X) = AX es autoadjunta.
Por la Proposicién 4.6.4 existe una base ortonormal B de R" tal que (f4)p = D, donde
D es una diagonal real. En este caso, si E es la base canénica de R", (fa)g =A, D =
(Ps.e) 'A(Psg).y (Pse) ' = (Pee).

= Andlogamente, si A € C"*" es una matriz hermitiana. Si se considera C" con el producto
interno candnico, la transformacion lineal f4 : C* — C”", definida por f4(¥) = AX es
autoadjunta, y si E es la base canénica de C", (f4)g = A. Por la proposicién anterior
existe una base ortonormal B de C" tal que (f4)p = D, donde D es una diagonal real.

Entonces (Pg ) 'A(Pg ), donde, por lo anterior (Pg )~ = (Pg 5)*.

Esto anterior nos lleva a la siguiente definicién

Definicién 4.6.4 Una matriz O se dice ortogonal si es invertible y O~' = O'. Una matriz

U € C"™" se dice unitaria si es invertibley U~! = U*.
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= Ejemplo 4.19 Dada la matriz A,

1 1-i
A= ) (4.23)
1+i O
se desea hallar una matriz unitaria U tal que U*AU sea diagonal "

Si en el programa Octave escribimos [U,D] = eig(A) nos devuelve las matrices U y D (con

edicién de 4 digitos):

0.4082 —0.4082i 0.5774 —0.5774i -1 0
U= D= (4.24)

—0.8165 0.5774 ’ 0 2

Se verifican U*U =1y U*AU =D

Resumiendo

1. Sea A € R™" una matriz simétrica. Entonces existe una matriz ortogonal O € R"*" tal que

O'AO es diagonal real.

2. Sea A € C"*"* una matriz hermitiana. Entonces existe una matriz unitaria C € C"" tal que

C*AC es diagonal real.

i) Toda transformacion lineal autoadjunta en un espacio euclideo de dimension finita tiene sus

autovalores reales

m Ejemplo 4.20 Se quiere diagonalizar ortogonalmente la matriz

1 -2
A= , (4.25)
-2 3
., L. - A - 2
La ecuacion caracteristica de A es det(a — Al) = A =A"—4A—-1=0.
-2 3_

Tiene dos raices, A =2 -5y A, =245
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2 . 1-+/5

y los vectores propios correspondientes son v} = y Vo=

—1+5 2

Para obtener vectores ortonormales los dividimos por su longitud, entonces,

= 1 2 = 1 15
T oavs 1445 Y=o )

2 1-/5
o—_ L Vs , (4.26)

V10=2v/5\ —1+V5 2

2—5 0

y OTAO =
0 2445

= Ejemplo 4.21 Sea

2 3-3
A= , 4.27)
343i 5

una matriz hermitiana € C2*2,

Es posible diagonalizarla con la matriz unitaria

1 —1+i 1
U=— ) (4.28)
V3 1 1+i
. -10 o
y se tiene que U*AU = es una matriz diagonal real.
0

Transformaciones ortogonales
Veremos ahora endomorfismos de un espacio vectorial con producto interno que preservan el

producto interno y, en particular, las distancias entre vectores.
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Definicion 4.6.5 Sea V un espacio Euclideo. Una transformacion lineal f se llama ortogonal si

(f(¥),f(w)) = (¥,w) W,w € V. Es decir, cuando f conserva el producto escalar.

Toda transformacién lineal f en un espacio euclideo que conserve la longitud

de los vectores es una transformacion ortogonal.

Demostracion:

If G+ ) = (FT+ %), F(F+w))

= |FG)I>+ 20,3, £(9) + 1 £ ()]
y, por otro lado,
15+ W]> = 9> +2(5, %) + (|9

Como f conserva la longitud de los vectores, || f(V+w)| = [[V+w/|, [[fP)]| = |1V, | fF(W)] =

||w||, entonces, igualando términos en las expresiones anteriores, se tiene que,

y se prueba que f es ortogonal.

m Ejemplo 4.22 f = idy es una transformacidn lineal ortogonal n

» Ejemplo 4.23 Una rotacién en R? (con centro en el origen de coordenadas) es una transformacién
lineal ortogonal.
Ya vimos en la Seccién 2.2, (Ec.(2.2)) que la matriz de una rotacién en un dngulo 6 en sentido

antihorario, respecto de una base ortonormal es

R _ cos(0) —sen(0)
0= , 4.29)
sen(0) cos(0)
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Se verifica que V7 € R2, ||R¥||* = ||7]|* .

= Ejemplo 4.24 En R? cualquier simetria con respecto a un subespacio vectorial unidimensional es

una transformacién lineal ortogonal.

En el caso de simetria respecto del eje x, en la base candnica, la matriz es

S = (4.30)

= En R? las tinicas transformaciones ortogonales son las rotaciones y las simetrias, mientras
que en R? hay mds posibilidades de tener transformaciones lineales ortogonales que en
RZ

= Para estudiar todas las posibles transformaciones lineales ortogonales se deben analizar

los autovalores.
= Puede demostrarse que toda transformacion lineal f que transforma al menos una base

ortonormal en una base ortonormal, es ortogonal.

= Ejemplo 4.25 En R la simetria con respecto a una recta, como se muestra en la Figura 4.9. La

matriz de la transformacién en la base {ii}, i, 13} es

1 0 O
0 -1 0
0 0 -1

Los autovalores reales de una transformacidn lineal ortogonal son iguales a 1

oa—1.

Demostracion:

Si A es un autovalor real de una transformacion ortogonal, con autovector V, se tiene
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Figura 4.9: Simetria con respecto a una recta

SX
3 u
; W= L
U3
U
L
(%,¥) = (f(9), (V) = (AW, A%) = A*(¥,V)

Porlotanto A2 =1y A =+ —1.

= Una transformacién lineal que cumple las condiciones anteriores se dice unitaria si V es

un C espacio vectorial y ortogonal si V es un R espacio vectorial.
f es unitaria (ortogonal) «— (f)p es unitaria (ortogonal)

= Cuando A es simétrica y no demasiado grande, los algoritmos de computadora modernos
que se usan actualmente calculan con gran precision vectores y valores propios. Esos
algoritmos aplican a A una sucesioén de transformaciones de semejanza en las que
intervienen matrices ortogonales. El uso de matrices ortogonales evita que los errores
numéricos se acumulen durante el proceso. Cuando A es simétrica, la sucesién de
matrices ortogonales se combina para formar una matriz ortogonal cuyas columnas son
vectores propios de A. Una matriz no simétrica no puede tener un conjunto completo
de vectores propios ortogonales, por lo que se necesitan técnicas no ortogonales para

calcular los vectores propios.
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= Cuando una matriz A tiene n vectores propios ortogonales se llama descomposicion

espectral de A a la expresion

A= )»lﬁtlljﬁ +l2ﬁt2ﬁ2 +-- '+ﬁ.nﬁ;ﬁn.

La matriz A queda dividida en partes determinadas por el espectro, y cada término es
una matriz de rango 1. Entre las aplicaciones de esta descomposicion estd la compresion

de imagenes, que se realiza considerando k términos en lugar de n, con k < n.
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Figura 4.10

- jYA SE COMO DEFORMAR EL
ESPACIO-TIEMPO!:

iENCONTRARE UNA MATRIZ DE
PRODUCTO INTERNO
ADECUADA!

EINSTEIN

Actividades propuestas

De acuerdo con la segunda ley de Kepler, un cometa deberia tener una
Orbita eliptica, pardbolica o hiperbdlica (despreciando las atracciones gravitacionales de los planetas).
En convenientes coordenadas polares, la posicién (r,4}) de un cometa satisface una ecuacién de la

forma:

r=PB+e(r.cos(?))

donde B es una constante y e es la excentricidad de la 6rbita (con 0 < e < 1 para una elipse, e=1
para una parabola, y e > 1 para una hipérbola). Suponga que los siguientes datos corresponden a las

observaciones de un cometa recién descubierto.

¢ 088 1.10 142 177 2.14
r 300 230 165 125 1.01

Determine el tipo de 6rbita mediante un ajuste por cuadrados minimos. Describa el sistema
de ecuaciones normales (Ecs.(4.11)). Realice un grafico e indique donde estara el cometa cuando

¥ = 4.6 radianes.
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Ejercicios

Sea [E un espacio Euclideo, si X,y y 7 son vectores de E, desarrolle la siguiente expresion: (X+7,X —

Z+Y)

Calcule la distancia entre los vectores i = (2,i,1 —i) y ¥ = (—i,0,4i) en C> con el producto interno

canonico.

Pruebe que las siguientes funciones definen productos internos sobre los espacios vectoriales
considerados:

2) (-,): C[0,1] x C[0,1] = R, (f(x),8(x)) = Jy f(x)g(x)dx.

b) (-,-): K" x K"™" - K, (A,B) =tr(A.B*),con K =Ry K = C (B* es la matriz traspuesta
conjugada de B).

Determine para qué valores de o € R:

O((x1,%2), (Y1,¥2)) = X1y1 — X1y2 — X2)1 + 0X2)2

es un producto interno en R.

Sean il = (—2,—1,1),iy = (0,—1,0) y ii3 = (1,—1,0) tres vectores linealmente independientes de
R3. Si definimos el producto escalar en R3 afirmando que {iy,y,3} es una base ortonormal. ;Cudl

serfa la expresién analitica de este producto escalar en la base canénica de R3?

Demuestre que Q € R>*? es una matriz de rotacién puesto que Q es ortogonal y ademds su
cos(@) —sin(9)
sin(¢)  cos(9)

determinante vale 1. Q =

En PE(QZ) [x] se define el producto escalar: ¢ (p(x),q(x)) = fil p(x)g(x)dx

Pruebe que el conjunto {1,x,3(3x> — 1)} es ortogonal.
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1 =2
Dada la matriz simétrica A = construya una matriz ortogonal T tal que (7'AT)
-2 1
sea una matriz diagonal. Verifique también que 7~!' = T y que el determinante de 7 es igual a 1.

Obtenga asimismo la matriz diagonal (T ~'AT).

Halle una base ortogonal de R? -con el producto interno canénico- que contenga al vector ii =
(1,—1,2).

Sea
1 -2 0
A= -2 2 =2
0O -2 3

a) Halle una base ortonormal de autovectores de A.

b) Halle una matriz P ortogonal tal que P’AP sea diagonal.

SeaB={(1,0,1),(2,0,1),(1,1,0)} una base de R3. Considere el producto interno canénico y utilice
Gram-Schmidt para hallar a partir de B una base B’ que sea ortonormal. Calcule las coordenadas de
V= (2,—1,3) en la base B'. Utilice sus resultados para encontrar la factorizacién A = QOR. Puede

chequear sus resultados utilizando el siguiente programa Python:

import numpy as np
# Definimos la matriz
A = np.array([[4, 3, 1],
(2, t, 31,
[1, 1, 111)
# Realizamos la descomposicidn QR
Q, R = np.linalg.qr(4A)
# Imprimimos las matrices Q y R
print ("Matriz Q:")
print (Q)
print ("Matriz R:")
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print (R)

Demuestre que S={ii}, ii,43} es un conjunto ortogonal donde

1
3 —1 —5 6
ﬁl - 1 ) I’_[2: 2 ) ﬁ3: -2 ) )_;:
1 1 I -8

Exprese el vector ¥ como combinacidn lineal del conjunto S. Recuerde que las coordenadas se

V.l .
calculan como ¢; = MZ = con j=1,2,3 por ser una base ortogonal.
J 7]

Calcule la distancia de un punto y en R* a un subespacio W generado por {ir, i} sabiendo que el

punto mds cercano se calcula como ||y — J||, donde § = proy,y.

-1 5 1

o=
I
|
(93}
=
I
|
\S]
Sy
[ae]
I
\]

Halle el complemento ortogonal para el subespacio de V:

V =R3 8= {(x1,%,x3) € R} 2x; —xo = 0} con el producto interno canénico.

Demuestre que el conjunto S = {cos(nx), sen(mx) }, men es linealmente independiente en C([0,27]).

Sugerencia: observar que

27 2
/ cos? (nx)dx # 0, / sen*(mx)dx #0, n,m €N
0 0

2r 2 2
/ cos(nx)cos(mx)dx = / cos(nx)sen(mx)dx = / sen(nx)sen(mx)dx =0
0 0 0

sin#m,nméeN
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Halle T* para cada una de las transformaciones lineales siguientes:

a) T :R? = R2, T((x1,x2)) = (3x1 +x2, —x1 +x2).

1 0 1
b)T:R> =R talque [T];=| 2 0 —1 |,donde B={(1,2,—1),(1,0,0),(0,1,1)}.
01 0

Determine si los siguientes endomorfismos definidos sobre R® son autoadjuntos:

a) T((x,y,z)) = (x+yaxa _Z)
b) S((x7y7z)) = (_2x+2zay>2x)

Encuentre en cada caso una matriz O € R"*" ortogonal tal que 0.A.O" sea diagonal

1 3
a)A =
3 —1
5 0o -2
b)A = 0 7 =2
-2 -2 6
4 1 i
3 20
Dada A =
—i =20 3 i
0 1 —i 2

encuentre una matriz U € C"*" ortogonal tal que UAU* sea diagonal.

Halle la matriz en la base canénica de las siguientes transformaciones ortogonales
a) T : R* — R?, rotacién de un dngulo de F.

b) T : R? — R?, simetria respecto de la recta x; = xj.
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Sea V un espacio vectorial y sea (-, ) un producto interno sobre V. Pruebe
a) (X,5+7) = (%,5) + (¥,2)
b) (¥,cy) = ¢(x.5)
c) (X)) =(X7) WeV=y=7

—

Sea V un espacio vectorial con producto interno (-,-). Pruebe que |(X,¥)| = ||X|| ||| siy s6lo si {X,¥}

es un conjunto linealmente dependiente.

Pruebe que dos vectores X e ¥ son ortogonales, si

I+ 3117 = 1711 + 151

Sea V un espacio vectorial sobre K de dimension finita con producto interno (-,-). Sea T € L(V)

biyectiva. Considerar la aplicacién (-,-)7 : V xV = K, (X,y)r = (T(3),T(¥)), ¥X,yeV

Pruebe que (-,-)7 también es un producto interno sobre V.

Sea A € R?*2, Sea ¢ : R?> x R? — R definida por ¢(x,y) = y'.A.x. Pruebe que ¢ es un producto
interno sobre R? siy sélo si A = A’, a;; > 0y Det(A) > 0.

Sea V un C-espacio vectorial con producto interno (-,-) y sea 7 € L(V) sobre C. Pruebe que si A es

autovalor de T', entonces 2 es un autovalor de T*.

Sea V un C-espacio vectorial con producto interno (-,-) y sea 7 € L(V') sobre C autoadjunta. Pruebe
que:
a) si A es autovalor de T, entonces A € R.

b) Si V; es autovector asociado al autovalor A; de T’ (parai = 1,2) y A} # A, entonces (Vi,v3) = 0.

Sea V un espacio vectorial de dimension finita con producto internoy sean Sy T € L(V). Sik € K,
pruebe:

a) (S+T)* =8 +T*
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b) (kT)* = kT*
) (ST)* =T*S*

Autoevaluacion
Verdadero o Falso

1. El subespacio imagen de una transformacion lineal es ortogonal a su nicleo.

2. El vector nulo es ortogonal a todo vector en R”.

98]

Sean W un plano a través del origen en R? y L la recta que pasa por el origen y es perpendicular
a W. Entonces L* =W y W+ =L,

T(X) = (’%)\7 es una transformacion de proyeccion.

Una matriz cuadrada U tal que U~! = U’ se denomina ortogonal.

Si U es ortonormal tanto las filas como las columnas de U son ortonormales.

N A

En la factorizacién QR el hecho de que R sea invertible es consecuencia directa de que las
columnas de A sean linealmente independientes.
8. Si {V},V,,V3} es una base ortogonal para W, entonces la multiplicacién de V3 por un escalar,
da una nueva base ortogonal {V},V,3V3}.
9. Si A = OR, donde Q tiene columnas ortonormales, entonces R=0Q'A.
10. Si X no esta en un subespacio W, entonces X — P,.X no es el vector nulo.
11. Un espacio vectorial con un producto escalar se dice que es un espacio vectorial euclideo.
12. Si Q es ortogonal se cumple que la norma de X es igual a la norma de QX.
13. Todo conjunto ortogonal de un espacio euclideo es linealmente dependiente.
14. El determinante de una matriz ortogonal es 1 6 —1.
15. El producto de dos matrices ortogonales es la matriz identidad.
16. Descomponer un vector ¥ en una suma de proyecciones ortogonales sobre espacios unidimensionales
es la esencia del proceso de Gram-Smith.
17. dimV = dimW + dimW~ ( W un subespacio de V).
18. d(i, —v)2= ||@+¥|)* = ||idl|* + ||¥]|* + 2(&, ¥).






5. Formas bilineales y cuadrdticas

En este capitulo se dard una breve introduccién al tema enfocada a mostrar aplicaciones de la
diagonalizacién de las matrices de las formas bilineales y cuadraticas en el estudio de secciones

coénicas y superficies cuddricas.

Formas bilineales y cuadrdticas
La ecuacion general de una cénica estd dada por una ecuacién de segundo grado de la forma
anxi +apxixy +anx; +aixy + ax; +a =0, (5.1)

donde a;}, a; (i, j = 1,2) y a son niimeros reales y al menos uno de los nimeros a;; no es cero. La

parte principal es:

a1 x* + apxy +any? (5.2)

y puede escribirse

X
P(x,y) = anx® +apxy+any* = (x,y) A , (5.3)
y
donde A es la matriz simétrica,
a ain/?2
A— 11 12/ . (5.4)

apn/2  axn
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Y su generalizacion a R”, dado X = (x,x2,x3, -+ ,x,) € R", es
X1
X2
P(f) = (X1,X2,X3, T 7xn)A X3 (55)
Xn

donde A es una matriz simétrica € R"*",

Andlogamente al caso n = 2, para n = 3 se obtienen superficies de segundo grado.

Los dos ejemplos anteriores corresponden a formas cuadrdticas (en R* y en R"), y son casos

particulares de formas bilineales, las que se definen a continuacion.

Definicion 5.1.1 Forma bilineal
Sea V un espacio vectorial sobre R o C. Una aplicacion A : V x V — R (o C) se dice que es

una forma bilineal si y solo si satisface:

i) Los productos internos reales son formas bilineales.

m Ejemplo 5.1 E un espacio euclideo de dimensién finita, y 7 una aplicacion lineal de E en E.

Puede demostrarse que A(X,y) = (¥,7y) es una forma bilineal. .
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= Ejemplo 5.2 Dados

X = (x1,X2,x3, -+ ,x,) € ¥ = (¥1,¥2,¥3," - ,yn) € R", el producto

Y1

Y2

(X1,X2,X3, -, % )A | y3

Yn
donde A es una matriz simétrica € R"*", es una forma bilineal.

La forma cuadratica en R” de la Ec.(5.5) presentada antes sale de tomar para este casoX =Y. m

= Una forma bilineal se dice simétrica si A(X,y) = A(¥,X)

= Una forma bilineal se dice antisimétrica si A(X,¥) = —A(¥,X)

Definicion 5.1.2 Matriz de una forma bilineal

Sea A una forma bilineal en un espacio V' y sea B = {€,¢€,,- - ,&,} una base de V

o en o= = wn -
SiXx=Yx€,ey=Y_1yj€)

Se define la matriz de la forma bilineal A en la base B como la matriz A € R™" tal que
Aij=A(€;,é;)paral <i,j<n

= Si A(X,¥) = A(¥,X) (es decir A es una forma bilineal simétrica), entonces A(¢;,é;) =
A(é;,¢;) para cualquier base {€],€>,--- ,&,} de V, es decir la matriz de una forma bilineal

A simétrica en cualquier base es simétrica. Vale también la reciproca: si la matriz de
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una forma bilineal es simétrica en alguna base {¢},é,,---,é,} de V, entonces la forma

bilineal es simétrica, pues

n
A(y7f) = Z A(Ehgj)yl-xj
i,j=1

n
= Y aijpyixj

i,j=1

= Si A es una forma bilineal antisimétrica, A (¥,y) = —A(¥,X) para cualquier base {&1,&,,-- ,é,}

de V. La matriz satisface a;; = —aj;, de donde ¢;; = 0,i=1,--- ,n.

= Si A es la matriz de una forma bilineal respecto a la base B = {¢,¢>,---,¢,} y A con
respecto a la base B = {iiy,ii»,- - ,ii, }, entonces A = CT AC, donde C es la matriz de

cambio de base de B a B. Tienen el mismo rango A y A, ya que det(C) # 0.

= El rango de una forma bilineal es el rango que tiene la matriz de la forma bilineal en

cualquier base.

Toda forma bilineal puede ser representada como la suma de una forma bilineal

simétrica y una forma bilineal antisimétrica.

Demostracion:

Sea A una forma bilineal definidaen V y sea B : V x V — K definida asi

yseaC:VxV =K
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donde

Esto es similar a lo que ocurre con una matriz A, que puede expresarse,

A+AT A—AT

A=
2+2

T o g _AT °. 0 .o
donde % es simétrica y % antisimétrica.

Definicion 5.1.3 Forma cuadritica

Dada A : V x V — R una forma bilineal, se define una forma cuadrdtica

Q:V =R, Q(X) =A(X,X).

= Ejemplo 5.3

2 2
Q(x1,x2) = ayxi +appxixz +anx;

Usando la matriz P definida antes, Ec.(5.3) una forma cuadratica se escribe,

Q()_C‘) - (Xl,)C2,X3,’ o ,Xn)P(Xl,)C2,X3,’ o 7xn)T~

En general, toda expresion de la forma

n n
Z): aijix;
j=1i<]

en un espacio vectorial define una forma cuadrdtica, ya que alcanza con tomar la forma bilineal

n
A(X,y) = ZazzszL+ZZ xth+ZZ -xjyl

j= 11<J j= ll<]
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- n — = n -z
conx =3} xié;ey=Y’_,y;é;.

i Unejemplo de forma bilineal es el tensor de inercia, /(¥,y). Gran parte de su interés radica en

que I(w, w) da la energia de rotacién cuando la velocidad angular es o.

Formas cuadrdticas. Aplicacién a las secciones conicas

La Ec.(5.1) se reescribe,

2 >
Q(x1,x2) = axj +anxix2 + axx;

y también en forma matricial,

a apn/?2 X X
( X1 X ) 8 12/ ! +( a; a > ! +a=0 (5.6)
app/2  ax X2 X2
xTAx+Kx+a=0 (5.7)
donde
X
x= o K=(a ) (5.8)
y

Con esta notacién, la forma cuadritica asociada a la Ec.(5.7) es XY Ax. La matriz simétrica A se

denomina matriz de la forma cuadrdtica X' AX.

= Ejemplo 5.4 En la ecuacion,

3x} 4 5x1x0 — Tx3 4 2x1 +7 =0, (5.9)
la matriz de la forma cuadratica es,

3 5)2
52 7
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mientras que para la ecuacion

8x2 —4x3 =0, (5.10)
la matriz de la forma cuadratica es,

8 0
0 —4

Para una cénica C con ecuacidn (5.7) es posible hacer girar los ejes de coordenadas x;x; de modo
que la ecuacion de la cénica, en el sistema de coordenadas x/ x5, no tenga término con producto
cruzado.

= Se halla una matriz O que diagonaliza ortogonalmente a A, A = OD(Q'. Se intercambian sus

columnas en el caso que el Det(0O) # 1 para asegurar que la transformacién de coordenadas

sea una rotacion.

x = Ox’'

= Para obtener la ecuacidn en el sistema x’lx’2 se sustituye la ecuacion anterior en la Ec.(5.7).

(x)'0'AOX' + KOX +a=10 (5.11)

A
Como O diagonaliza ortogonalmente a la matriz A, O'AO = ! ,donde A1 y A, son

A2
los autovalores de A. Por lo tanto, la ecuacion (5.11) reescribir como

M0 ) o1 012 Y
( x| X ) /1 +< a, a ) /1 +a=0 (5.12)
0 A Xy 021 02 Xy

() 4+ M (x5)* +ajx] +dhxy +a=0

donde d| = ajo11 +ax021 y dy = a1012 + a202.

El andlisis anterior se resume en el Teorema siguiente:
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Figura 5.1: Elipse

. — X4
Teorema 5.1.2 Teorema de los ejes principales para R>..
Sea
allx%—i—allexg +a22X%+a1xl +axx; +a =0, (5.13)

la ecuacién de una cénica C, y supongamos que

xTAx = auxf +apx1xp + a22x§

es la forma cuadratica asociada. Entonces, es posible girar los ejes de coordenadas de modo que

la ecuacién para C en el nuevo sistema de coordenadas x'y’ tenga la forma

MXE + AxF 4+ dixX +dby +a=0

donde A; y A, son los autovalores de A. Se puede llevar a cabo la rotacién por medio de la

sustitucion x = Ox/, donde O diagonaliza a A y Det(O) = 1.

Si A es una matriz no diagonal, la grafica estd girada hasta salirse de la posicion estdndar, como
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Figura 5.2: Hipérbola

en las Figuras 5.1 y 5.2. Encontrar los ejes principales (determinados por los vectores propios de A)
equivale a encontrar un nuevo sistema de coordenadas con respecto al cual la grifica estd en posicidn

estandar.

Formas cuadrdticas: aplicacion a las supefficies cuddricas

Sea
2 2 2 _
axj +apxixy +azxixs +axx; + ax3xoxs +azzxy +ayx) +axxy +azx; +a= 0 (5.14)

donde a;j, a; (i, j = 1,3) y a son niimeros reales y al menos uno de los nlimeros g;; no es cero. La

parte principal
2 2 2
ajxy +apxixy +apxixs +anx) +axoxs +azx;

es la forma cuadratica asociada.

La Ec.(5.14) puede escribirse en forma matricial
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Figura 5.3: Formas cuadrdticas. a) Definida Positiva. b) Definida Negativa. c) Indefinida

~ S5
NSSSOUS X O
R

‘\\\\\\\\‘“‘v
T

X1

Definida Positiva Definida Negativa Indefinida
aj; ap/2 ap/2 X X
(x y z ) ap/2  ax ax3/2 y +( a, ay as ) y | +a=0 (5.15)
ai3/2 axs/2 a3 z z

Se tiene el Teorema siguiente:

Teorema 5.1.3 Teorema de los ejes principales para R3.

Sea
2 2 2 _ 16
ai1xy +anxi1xy +a3xi1xz + axnx; + axpxxz +azxz +aix; +axxa +asxz+a=0 (5.16)

la ecuacién de una cénica C, y supongamos que

XTAX = anx% +appXx1Xz +a3x1x3 + 322X% + a3XyXx3 + a33x§

es la forma cuadratica asociada. Entonces se puede hacer girar los ejes de coordenadas de modo

que la ecuacién para C en el nuevo sistema de coordenadas x| x5x} tenga la forma

MXE + Aox' 2 + M3} + d\x) + abxy + azxs +a =0

donde A, A, y A3 son los autovalores de A. Como en el caso de R? se puede llevar a cabo la

rotacién por medio de la sustitucién x = Ox’, donde O diagonaliza a A y Det(0) = 1.

Este teorema sugiere el procedimiento para eleminar los términos de productos cruzados de una

ecuacion cuadrética en xq, X2 y x3. Y lo veremos con un ejemplo.

X2
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m Ejemplo 5.5 Se desea describir la superficie cuadrica cuya ecuacion es

4% 4 4xy x4 4x1x3 + 405 +4xoxs +4x3 —3 =0 (5.17)

La forma matricial de la ecuacidn cuadratica anterior es

xTAx—3=0 (5.18)
donde
4 2 2
A= 2 4 2 (5.19)
2 2 4

Los autovalores de A son A} = A, =2y A3 = 8, y A es diagonalizada ortogonalmente por la

matriz

—1/vV2 —1/V/6 1/V/3
o=| 1/V2 -1/V6 1/V3 (5.20)
0 2/vV6  1/V3

donde las dos primeras columnas de O son los autovectores correspondientes a A = A, = 2 mientras
que la tercer columna es un autovector correspondiente a A3 = 8. Se puede verificar que Det(O) = 1
por lo que la transformacién de coordenadas x = Ox’ es una rotacion.

Al sustituir en la Ec.(5.18) se obtiene

xTODOTx —3=xDx' —-3=0 (5.21)
Y como
200
D=0'A0=| 0 2 0 (5.22)
0 0 8

se tiene
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2 00 x
(x’ y z’) 020 y | —=3=0 (5.23)
0 0 8 7
o bien
2(x))? +2(x5)* +8(x3)* =3 =0 (5.24)
que puede reescribirse
W)? (%) (x5)°
= =1 5.25
32 T30 Tags (5.25)
y es la ecuacion de un elipsoide. =

i Las superficies cuddricas han sido representadas en varios edificios contempordneos. Algunos
de ellos son: Puente Juscelino Kubitschek, Brasilia (Brasil), Centro Nacional de las Artes

Escénicas, Pekin (China), L’ Oceanografic, Valencia (Espafia).

Formas cuadraticas y valores propios

Cuando A es una matriz de n x n, la forma cuadritica Q(x) = x'Ax es una funcién de valores
reales con dominio R". Se distinguen varias clases importantes de formas cuadraticas por el tipo de
valores que asumen para diversos X.

En la Figura 5.3 se muestran las gréficas de tres formas cuadréticas. Para cada punto x = (x1,x7)
del dominio de una forma cuadrética Q, se traza un punto (x;,x2,z), donde z = Q(x). Observe que
excepto en x = 0, todos los valores de Q(x) son positivos en la Figura 5.3(a) y negativos en la
Figura 5.3(b). En la Figura 5.3(c), en cambio, toma valores positivos y negativos. De acuerdo a los
autovalores de A se tiene lo siguiente:

Sea A una matriz simétrica de n x n. Entonces una forma cuadratica xTAx es:

» definida positiva si, y s6lo si, todos los valores propios de A son positivos,

= definida negativa si, y s6lo si, todos los valores propios de A son negativos, o

= indefinida si, y sélo si, A tiene valores propios tanto positivos como negativos
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Una de las aplicaciones mds conocidas es el estudio de extremos relativos de funciones de
varias variables. En ese caso se calculan los autovalores de la matriz Hessiana en los puntos
estacionarios. Corresponde a un minimo local en caso de ser definida positiva, a un maximo

local en caso de definida negativa y a un punto silla si es indefinida.
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Figura 5.4

¢COMO SE LLAMA LA FORMA
BILINEAL QUE SIEMPRE ESTA DE MAL
HUMOR?

-UNA FORMA BILINEAL
NEGATIVA.

Actividades propuestas

Realice un cuadro conceptual donde describa las diferentes superficies
cuddricas a partir de la diagonalizacién de las matrices de las formas bilineales y cuadraticas
correspondientes. Indique cudles de ellas tienen centro, cudles no, cudles son degeneradas, y
qué significa ese término. Investigue ademads, qué caracteristica de los paraboloides hace que
los radiotelescopios usen esa forma para sus antenas. Complemente con imagenes de antenas de
algin radiotelescopio y sus caracteristicas fisicas. Se propone la presentacién oral del trabajo con el

fin de contribuir al desarrollo de habilidades y capacidades del estudiante (15 minutos maximo).

Ejercicios

Encuentre la matriz asociada a la forma bilineal A (X,¥) = x1y; —x1y2 +2x2y1 + 6x2y2 — 3x1y3 + X33

y calcule su rango.

Convierta la forma bilineal del ejercicio anterior en una forma cuadrética reemplazando (¥ = ¥).

Calcule su nueva matriz asociada.

Dado que la matriz asociada a una forma cuadritica es simétrica, haga una lista de todas las

propiedades de las matrices simétricas.
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Figura 5.5: Beletsky alma. https://www.eso.org/public/images/beletsky alma 15-cc2/

Encuentre la forma canénica de la siguiente forma cuadratica: Q(X) = x% — 3x§ +2x1%0 + X1X3

Para la elipse Sx% + Sx% —4x1xy = 48, encuentre un cambio de variables por medio de calcular sus

valores y vectores propios unitarios tal que se elimine el producto cruzado de la ecuacidn.

Especifique a qué cénica corresponden las siguientes ecuaciones y especifique su centro.

a) (x—x0)*+(y—y0)> =1
b) (x—2)*~(y-3)*=1
) XX +y*+4x=1

Dada la ecuacién de una cénica: Ax? + 2Bxy + Cy? +2Dx +2Ey + F = 0, encuentre su forma
matricial. Ayuda: si el elemento aj; es F', ;como estdn relacionados los otros elementos de la matriz

con la ecuacion de la conica?
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ajl ap a3 1
( 1 x y) a1 dx» a3 x | =0
asy asy asj y

Datos extras: piense que las cénicas describen las érbitas. Ejemplo de orbitas elipticas pueden
ser el asteroide numerado 433 conocido con el nombre de Eros, en la pdgina de NEODyS (objetos
cercanos al planeta Tierra) podrd encontrar muchos mas. Como ejemplo de drbita hiperbdlica podria
ser el cometa C/2002 E2 Snyder-Murakami, y como ejemplo de érbita parabdlica (excentricidad = 1)
la del cometa C/2002 B2 LINEAR.

Usando la matriz del ejercicio anterior, encuentre la forma de sus invariantes y especifique de qué

tipo de cénica estamos hablando si B> — 4AC = 0

Responda cémo estdn los ejes de las conicas con respecto a los ejes coordenados segtin:
a)B=0
b) B#0

Q) = 3x% + Zx% —i—x% +4x1x; + 4x2x3 es definida positiva?
Autoevaluacion

Verdadero o Falso

Dada una matriz simétrica:

A es definida positiva si y solo si todos los valores propios de A son positivos.

A es definida negativa si y solo si los valores propios van alternando entre positivos y negativos.
A es indefinida si y solo si alguno de los valores propios es 0.

Es posible clasificar A por medio de su determinante.

A

Siempre existe un cambio ortogonal de la variable x = Py tal que Q(X) = x'Ax = y'Dy =

/’le% + lgx% + ...+ Aux2, con A1, A, .., A, los autovalores de A.



6. Cadlculo tensorial

Este capitulo trata de una introduccién al estudio de tensores (escalar, vector, tensor de segundo
orden y de orden superior). Se expone la notacién indicial por su simplicidad y facilidad de uso
en las expresiones matematicas. Se hace una revision de las operaciones entre vectores, y de los
sistemas de coordenadas rectangulares. Luego se plantean los sistemas de coordenadas curvilineas, y
la construccién de bases adecuadas. Para facilitar la comprension de los temas se presentan ejemplos
y aplicaciones. El objetivo de incorporar el cdlculo tensorial es brindar al estudiante de Astronomia

herramientas matemadticas que le resulten de utilidad para los cursos superiores de la carrera.

Invariancia y representacion

Dado un espacio vectorial, la eleccion de la base es arbitraria. Una vez elegida la base, lo que
se tiene es una representacion del vector en una determinada base y por lo tanto, se tienen sus
coordenadas.

Asi para el vector x = (1,2, 3), con las bases canénica, By labase B’ = {(1/2,0,0), (0,0,—2),(0,—1,0)}

se tendrdn dos representaciones,

x=1le +2e+3e3

x=2¢€|+3/2¢,—1¢€}
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En general, en un espacio vectorial de dimensién N, una vez elegida la base B = {e;, ez, - ,e,},

cada vector x estard representado por un conjunto de n coordenadas representadas con A/
n .
Je:
Y Me
Jj=1

pero el vector x es un invariante, ya que no depende de la base. De esta forma, dadas dos bases
B={ej,e, - ,e,} yB ={e|,€, - e, } de un espacio vectorial V de dimensi6n n, para un vector

x se satisface la igualdad
Y Mei=) Ble
j=1 i=1

i) A diferencia de los capitulos anteriores, en este capitulo los vectores se indicardn con trazo

resaltado.

Convenio de suma de Einstein

Albert Einstein, en 1916, propuso un criterio que permite escribir las sumas sin escribir los

simbolos de sumatoria, dando origen a la notacién indicial. Introdujo los dos convenios siguientes:

1. Para un espacio vectorial de dimensién NV, los indices usados, ya sea como subindices o como
supraindices pueden tomar todos los valores de 1 a N, a no ser que se especifique lo contrario.
2. Si se repite un indice en un término, esto implica una suma con respecto a aquel indice desde

1 a N. El indice repetido se llama indice mudo.

Usando los convenios anteriores, un vector X puede expresarse, entonces,

— YJa.— Rl
x=A'e;j= B'e

En las expresiones anteriores i y j son indices mudos.

Asi,

d=a +a+a+-+d

i.
J
subindice j a la columna), a; es la traza de la matriz.

Si los elementos @', son los de una matriz A € R"*", (el supraindice i corresponde a la fila y el
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= Ejemplo 6.1 En la expresion

Aijx,-xj i,j:1,2,3

no hay indice libre, tanto i como j son indices mudos, por lo que al sumar en i y en j, el resultado da

un escalar. n

i) Unade las ventajas de la notacion indicial es que se tiene una expresion muy concisa. Asi, un

sistema lineal de 3 ecuaciones con 3 incdgnitas usando el convenio de suma se escribe:

aijxj:bi i,j:1,273.

Notacién indicial

El sistema de coordenadas cartesianas rectangulares esta definido por tres vectores, i, j, k que
constituyen una base ortonormal. Es decir que se satisfacen dos propiedades: son vectores unitarios
(longitud 1) y son ortogonales entre si. El producto vectorial cumple la regla de la mano derecha:

ixj=k jxk=iykxi=j.
La representacion de un vector P en un sistema de coordenadas rectangulares es:
P=Pi+Pj+Pk 6.1)
que puede reescribirse de la forma
P =Pe| + Pe; + Pse; (6.2)

donde hemos considerado que Py = P, P, = P,, , = P, ¢ =1, e, = j, e3 =k, como se indica en la
Figura 6.1.
La representacién del vector P de la Ec.(6.2) se expresa con la notacién indicial de la forma

siguiente ([18]):
P = Pe; (i=1,2,3) (6.3)

Delta de Kronecker

El simbolo delta de Kronecker, estd definido por

1 sii=],
5 = ‘= 6.4)
0 sii#j.
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Figura 6.1: Vector en el sistema de coordenadas cartesianas

W

y coincide con el resultado de hacer el producto escalar entre los vectores de la base ortonormal e;,

es decir que ;- e; = J;;. Exponiendo esto en forma explicita se tiene:

e -e; e;-e ej-e3 1 00
eei=| e-e e-e e-es [=] 0 10 0;j (6.5)
€3-€; €3-€ e3-€3 0 0 1

Este simbolo 0;; es llamado operador de sustitucion , por la propiedad interesante que mostramos
con un ejemplo.

Sea v un vector de componentes v;, entonces

5ijv,- = 5]jV1 +62jV2+53jV3,

como j es un indice libre, se tiene:

Sij=1,8vi=3081vi+0uva+8&ivi=v;
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Sij=2, 0pvi=012vi +0nv2a+032v3 =0
Sij=3,03vi=011vi+0v2+0ii1v3 =13
de donde

5,'jV,'ZVJ~

es decir, por la presencia de §;; se reemplaza en la componente v;, el indice i por el j. De ahi el

nombre de operador de sustitucion.

Simbolo de Levi-Civita

El simbolo de permutacién es llamado también de Levi-Civita y esta definido por:

1 indices distintos e iji, - - - iy €s una permutacién par de 1,2,3,--- N

irig-iy _ ]

Ciliriy =€ indices distintos e iji, - - - iy €s una permutacién impar de 1,2,3,--- N

0 en otro caso
(6.6)

Este simbolo es utilizado en la definicién de determinante de una matriz de N x N:

Al="Y eiiiy  a1ia, - aniy
iiyin

El determinante de una matriz N X N consiste en la suma de todos los productos posibles de N
elementos que pertenecen a distintas filas y columnas multiplicados por 1 o —1 de acuerdo a si la

permutacion de los segundos indices es par o impar .

En el caso N = 3 se tiene lo siguiente:

Cijk = et = [ei €; ek]

1 si i jk es una permutacion par de 123

eijp =€ ={ —1 siijkesunapermutacién impar de 123 (6.7)

0 en otro caso

Y al calcular el determinante utilizando la definicion anterior, se tiene la suma de seis términos,

que son todos los posibles productos de a tres elementos de la matriz
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ar drz as
azr axp a3 | —

asz) dasy ass

= €123 a11a22a33 + €231 A12a23A3] + €312 A13A21A32 + €321 413422431 + €132 A11A23a32 1+ €213 A124214A33

Luego, reemplazando los simbolos de permutacion e; ; de acuerdo a (6.7), resulta

|A| = ananass +anaaz; +ajzaz az — ajzaxnas) —ay1a3a3 — a12a21433

Por otro lado, si se expresa el simbolo de permutacién en funcién de la delta de Kronecker (u

operador de sustitucién), obtenemos

€ijk = €imn 1iOmjOnk (6.8)

que es igual al resultado del determinante

O1i O1j O
eijk =1 0 O Ox
03 83 O3
= Ejemplo 6.2
013 012 O

en1=| 03 6 & |=
03 On 83

- o O
oS = O
[ R
Il
|
—_
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Operaciones con vectores

Producto escalar

Dadosu= B'e;yv= A/ejconi,j=1,2,--nel producto escalar es

wv= BIA 4 B2A% 4. 4 pA" = BIA!

Esto se obtiene al reemplazar los vectores i y V,

wv=(Be). (A e;) = (BA) (ere)) (6.9)

Usando (6.4), como e;.e; = 9;;, la Ec.( 6.9) queda

wv=(BA)s; = B'A (6.10)

La longitud de u puede escribirse

[uf = VB B’

La multiplicacién de dos matrices A € R™** y B € R¥*" da por resultado una matriz C € R"*",

Si indicamos con el supraindice la fila y con subindice la columna, los elementos de la matriz C son
i il
c;= 121 a; b

que se simplifica usando el convenio de Einstein a

i) Note que c’j tiene dos indices libres. No es un escalar, porque no todos los indices estdn

afectados a sumatorias.
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Producto vectorial

Siu; = ﬁij e; son vectores de R3, i = 1,3, el producto vectorial de uy y u, da como resultado un

vector:

u xuy = e B BE e (6.11)

donde e; j es el simbolo de permutacion. Esa expresion se obtiene a partir de calcular el determinante

€ € €3
wxw=| Bl B B} |=ciei+cer+c3es,
B, B B
donde
203 p2p3 123 , plp3 12 plgp2
c1 = BBy — By Bi c2=—ByB5+B,Bi c3 =B By — B, Bi

Teniendo en cuenta la definicién de los simbolos de permutacién (6.7), pueden reescribirse
203 203 133 1033 132 132
cr=esfif; +enfifi co=emPifitesfoBi 3= e3P By +e3n By B
luego, en forma reducida, usando la notacién de Einstein,

ci= e Bs

y de ahi se obtiene la expresién (6.11).

= Ejemplo 6.3 Si se desarrolla la expresion c; = e; jkAj B parai =1, se tiene:

cp = eljkAjBk
= epA' B e A’BF 4134 B
= enA'B' +e1nA' B +e113A' B +€121A? B! + €10AB?
+ e123A%B + e131A° B! + 13,4’ B? + 1334 B

De acuerdo a la definicién de los simbolos de permutacién (6.7) son nulos los términos con

indices repetidos, entonces resulta
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c1 = e133A%B> +e1pASB? = A’B3 — A3B?

Producto mixto

Siw; = f/ ¢; y anotamos como [u;u,us] al producto mixto,

[111112113] = 111.(112 X 113)

se tiene que
[ujuou3] = [51’ ei B e; i e
i pJj Rk
= Bi B By [eiej e

1 i nk
= Bi B Bs eijk

o sea, es el determinante de la matriz de las coordenadas f3,

[wruzus] = [

Producto tensorial

El producto tensorial o diddico entre dos vectores u y v estd definido de la forma siguiente:

ui V1 uivy urpvz2 upvs
uRXv= uy | | v = Upvy Uvy  Uxv3 (6.12)
us V3 uzvy uzvz usvj

Se obtiene una matriz A, A = u® v, donde, por ejemplo, uzv, es la componente de la fila 3, y
columna 2. En este caso particular, el producto tensorial es el producto matricial usual de los vectores

u(denx1)yv,(delxn).
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Una matriz A puede escribirse en términos de los productos tensoriales de los vectores de la base

e, e,y e3, dela forma siguiente:

1 00 010 0 0 1 0 0O

A=u®@v=uvi| 0 0 0 |[+urv2| O O O |+uvz| 0 0 O |[---+uzvs| O O O
0 0O 0 00 00 0 0 01

(6.13)

A=uRv=uvie e tuvye Qe —+---uzv; e3Res (6.14)

que, utilizando el convenio de Einstein, puede reescribirse

A:u®v:u,~vje,~®ej (6.15)

Transformaciones lineales

Sea T : V — W una transformacioén lineal entre dos espacios vectoriales V' 'y W (ver Definicion
2.1.1). Sean B={vy,v,,-- ,vy} unabasede V' y B={w;,wy, - ,w,, } una base de W. Si aplicamos

T aun vector arbitrariov e V,

— alv;
v=a’v;

T(v)=T(a/ v;) = o T(v;)

Como 7T'(v) es un elemento de W, se puede escribir como combinacién lineal de los vectores de

la base de W,
T(v)= B'w
Por otro lado, si se aplica T a los vectores de la base de V, se obtiene la expresion

T(Vj) = ai- W;
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donde los escalares a! son las coordenadas 7'(v;) en la base de W.
En la expresion anterior el término a} tiene dos indices: j estd asociado al espacio V e i al espacio
W. T es la matriz de la transformacién lineal, en cada columna j estdn las coordenadas de 7'(v;) en

la base de W.
T(v)= o/ T(v)) = Otjaj- w;
T(v)= B'w;= aé-ocj w;
de donde,
(B —aiaj) w; =0
y por ser los w; linealmente independientes (forman una base de W), resulta
B =dia’

que da la relacion entre las coordenadas de v y de T'(v). Corresponde al producto matricial

1 1
B Jdoad g o
) 1 2 n 2
B o
2 2 2
a a Y a
g = T ® n o (6.16)
n n ... n
B ar @ ay o

En los elementos de la matriz el supraindice i y el subindice j del elemento ai. corresponden a la
fila y a la columna respectivamente. Es la matriz asociada a la transformacion lineal 7' definida en la

Seccién 2.2).

» Ejemplo 6.4 Si la transformacion lineal es la identidad, usamos dos bases distintas, B = {e;, e, }
y B' = {u;,uy,}, y las coordenadas en cada base son v = ﬁj e = o/ u j» la relacion entre las
coordenadas es

B =dial.
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B! al al o

2 2 2 2
B aj a; o

Estas expresiones se corresponden con las Ecs.(1.4) y (1.5), donde se vio la relacién entre las
coordenadas del vector X en la antigua base B y en la nueva base B, respectivamente, x' y X", con

i = 1,2. En forma matricial, X = AX’, o

1,71 1,2
X = ax +a,x
2 ; 1 i 2 (6.17)
x* = apx' +azx

Siu; = (2,3) y up = (1,4) usando lo anterior, para el vector

La relacién estd dada por la matriz de cambio de base de B’ a B, Pg p vista en la Seccién 1.5.

Por otro lado, La relacién entre los vectores de las bases B’ y B estd dada por la matriz transpuesta
(Ver Ec.(1.1) en la Seccién (1.5)):

u = ale +ale; =2e; +3e;

u aéel +a%e2 = le; +4e;

Usando el convenio dee suma, la relacion entre los vectores de las bases tiene la expresion

u; :aje1
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Definicion de tensor

El concepto de tensor tiene su origen en la evolucién de la geometria diferencial de Gauss,
Riemann y Christoffel. La necesidad del célculo tensorial, como rama sistemadtica de la matematica,
se debe a Ricci y a su discipulo Levi-Civita, que publicaron en colaboracién el primer trabajo
sobre esta materia: Métodos del cdlculo diferencial absoluto y sus aplicaciones, en Mathematische
Annalen, vol. 54 (1901).

El objeto principal del calculo tensorial es la investigacion de las relaciones que permanecen
invariantes cuando se cambia de un sistema de coordenadas a otro. Las leyes de la fisica no pueden
depender del sistema de referencia que elija el fisico con fines descriptivos. Por eso es, estéticamente
deseable y muchas veces conveniente, utilizar el cdlculo tensorial como fundamento matematico en
que se puedan formular tales leyes. Einstein, en particular, lo considerd un excelente instrumento para
la presentacion de su teoria general de la relatividad. El célculo tensorial alcanz6 gran importancia
y es hoy en dia inapreciable en sus aplicaciones en la mayoria de las ramas de la fisica tedrica; es

también indispensable en geometria diferencial.

Cambio de coordenadas

Si se considera un espacio vectorial V de dimensién N con el sistema de coordenadas x!,x%,x3,- -, x",

las N ecuaciones

Xt :x’i(xl,xz,x3,~-- ) = (pi(xl,xz,x3,--- X", i=1,---N (6.18)

donde ¢’ son funciones continuas y diferenciables de las coordenadas definen un nuevo sistema de

coordenadas x’!, x’%, -, x'N.

La condicién necesaria y suficiente para que las Ec.(6.18) definan una transformacién de
. . . Ji
coordenadas es que el Jacobiano formado por las derivadas parciales % no se anule. En ese

caso se pueden resolver para las x' como funciones de x”* y se obtiene,

., i=1,--N (6.19)
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= Ejemplo 6.5 En el caso particular de un cambio de base en R? la relacién entre las coordenadas

estd dada por el sistema lineal (1.4) paran =3

L — 1/1+al /2+ax
= alx —l—a2x +a3x (6.20)
x3 — % /1 Jra3 /2+a%x/%

Corresponde a relaciones como las de la Ec.(6.19). El determinante de la matriz Jacobiana (cuyos

elementos son gx/ = a;) no se anula, porque la matriz de cambio de base A tiene inversa. Con su

matriz inversa pueden escribirse las ecuaciones (6.18) y asi tener las coordenadas x’' como funciones

de las x'. n

Tensores de orden 0, 1y 2

Es importante tener presente la expresion (1.5) de la relacién ya vista entre las coordenadas
x'"'y x' ante un cambio de base. Porque los tensores se definen en funcién de sus propiedades de

transformacion ante un cambio de coordenadas ([26]).:
X=X i=1,---,N (6.21)
dado por las relaciones de las Ecs.(6.18) y (6.19).
Se tiene lo siguiente:

= Tensor de orden cero o escalar es una cantidad ¢ que permanece invariante al cambiar al

sistema primado,
!
¢ =0
Ejemplos La masa, la energia, la temperatura.
= Tensor de orden uno o vector son N cantidades

* Vectores contravariantes
Las funciones v/ de las N coordenadas x’ se dice que son las componentes de un vector

contravariante si se transforman segun la ecuacién:

RS
R\

n a/' ) )
R I A S R (6.22)
= 0x/
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en un cambio de coordenadas de x’ a x”’.

Ejemplo Los diferenciales dx”,

. oxt .
dx'' = =— dx’/
forman las componentes de un vector contravariante, ya que se transforman de la misma

forma que la expresion (6.22).

* Vectores covariantes
Las funciones v; de las N coordenadas x' se dice que son las componentes de un vector

covariante si se transforman segin la ecuacion:

dx/
Vi ox't Vi

(6.23)

en un cambio de coordendas de x' a x"'. Ejemplo. El vector gradiente de una funcién f

df df ox/  Jx/ df

o2~ 9ad 9 9 Ol (024

De acuerdo a la Ec.(6.23) las magnitudes % son las componentes de un vector covariante

(el indice j es considerado un subindice).
Ejemplos de tensores de orden 1: r, vector posicion y v vector velocidad.
= Tensor de segundo orden: son N? cantidades:

ot/ (i,j=1,---,N) son las componentes de un tensor dos veces contravariante si se

transforman segtin

o oxox'/
W= (6.25)

dxl dxm
* t;;(i,j=1,---,N) sonlas componentes de un tensor dos veces covariante si se transforman

segln

xl Ix™
ti=———"— tim (6.26)

0= 9yl gyl



240 Capitulo 6. Cdlculo tensorial

. t; (i,j =1,---,N) son las componentes de un tensor una vez contravariante y otra

covariante si se transforman segin

. ox ox™

no__ l

1= o (©27
07

o ooxl Xl

=G (©29

Los tensores de segundo orden estan asociados a matrices:

hi to s hn 5
1 t» t12 t%
Lij=| 131 ) l‘;- = l‘13
78] l‘i‘
tS] “ee l’55 l‘ls ce l‘55

Como ejemplo, en (6.12) se obtuvo un tensor de segundo orden A, a partir del producto tensorial

de dos vectores.

Suma. Contraccion de indices

La suma de tensores de igual orden es un tensor del mismo orden, y el producto de un escalar
por un tensor de orden g da un tensor de orden g. El producto de componentes de un tensor por las

componentes de otro da las componentes de un tensor de orden suma de los érdenes originales.

= Ejemplo 6.6 Si u; son las componentes de un vector y #;; son las componentes de un tensor de

orden 2,

Uilim
son las componentes de un tensor de orden 3, ya que tiene 3 indices libres. "

Una operacion importante entre tensores es la llamada contraccion de indices. Es la operacion
de multiplicar 2 tensores de orden n y m y hacer la suma sobre uno de los indices (de 1 a N). Se

obtiene un tensor de orden n+m — 2.



6.6 Definicidn de tensor 241

También puede realizarse incluso sobre el mismo tensor:

Ti

1

obteniéndose un nuevo tensor de rango n — 2 (es un escalar o tensor de orden O para n = 2, como se

vi6 en el ejemplo de la traza en la Seccion 6.2).

m Ejemplo 6.7 Si se tiene un tensor de orden 3, de componentes f; i, contrayendo el segundo y tercer

indice se obtiene un tensor de orden 1:

Vi = 1ijj

= Ejemplo 6.8 Dados 2 tensores de orden 2, en este caso n = m = 2, al sumar sobre el indice j:

THjy=T"Hyp+T?Hyp +--- =S, (6.29)

se tiene como resultado un tensor de rangon+m—2=2+2—-2 =2,

El producto escalar de 2 vectores (n = m = 1) es un caso particular y el resultado es un escalar

o tensor de orden 0.

m Ejemplo 6.9 Aparece con frecuencia la contraccién de uno de los indices de un tensor de orden
2 con el indice de un vector (corresponde al producto escalar del tensor por el vector) y da como

resultado un vector:

Vi =1jjU;
[ ]

Un tensor es simétrico respecto a dos de sus indices si al permutarlos se obtiene el mismo valor,

por ejemplo

lij =1ji
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hijki = hin;

(respecto al segundo y cuarto indice). Serd antisimétrico si cambia de signo:

lij = —1ji

hijii = —hin;

Se dice que es totalmente simétrico o totalmente antisimétrico cuando se cumple lo anterior

respecto de cualquier par de indices.

Se llama tensor isotrdpico a un tensor cuyas componentes son las mismas en cualquier sistema
de coordenadas. Todo escalar es un tensor isotrépico pero no hay vector no nulo que sea
isotrépico. Se puede mostrar que todo tensor isotrépico de orden 2 es un escalar por la delta de

Kronecker §;; y todo tensor isotrépico de orden 3 es un escalar por los simbolos de Levi-Civita.

Tullio Levi-Civita (1873 - 1941)

Fue un matematico italiano, famoso por su trabajo sobre calculo tensorial, pero que también
hizo contribuciones significativas en otras areas de las matematicas. Era discipulo de Gregorio
Ricci-Curbastro, el inventor (algunos dicen co-inventor con Levi-Civita) del cédlculo tensorial. Su
trabajo incluye articulos fundamentales en matemadticas puras y aplicadas, la mecédnica celeste
(notable en el problema de los tres cuerpos) e hidrodindmica. Levi-Civita personalmente ayudé a
Albert Einstein a aprender el cdlculo tensorial, en el cual Einstein basaria su relatividad general, y
que habia luchado por dominar. Su libro de texto en célculo tensorial El Calculo Diferencial Absoluto
(originalmente un conjunto de notas de la conferencia en italiano de coautoria con Ricci-Curbastro)
sigue siendo uno de los textos estdndares mds de un siglo después de su primera publicacién, con

varias traducciones disponibles. [16]
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Transformaciones ortogonales

Si se aplica una transformacién lineal la relacién entre las coordenadas en distintas bases esta

dada por la expresion, (ver Seccién 1.5 y el Ejemplo 6.4)
X = a{x’i (6.30)
donde a{ son los elementos de la matriz cambio de base.

A partir de 1a Ec.(6.30), si B=A"" se tiene que
X' = bl (6.31)
entonces las coordenadas se transforman mediante una ley contravariante .

En la Ec.(6.22), las cantidades ‘(%; son,

ax/i ;
55 = b’ (6.32)

asi que, se tiene

R I
x,lzﬁszszx; i=1,--.n. (6.33)

De la misma manera, un tensor de segundo rango dos veces contravariante se transforma de la

forma siguiente:
T = dlal, T™ (6.34)

Las transformaciones ortogonales son un caso particular de transformaciones lineales, son
aquellas que transforman un sistema de coordenadas cartesianas ortogonales en otro similar también
ortogonal y son tales que la inversa de la matriz que la representa es igual a su transpuesta.
Corresponden a rotaciones o reflexiones (ver matriz ortogonal Definicién 4.6.4, y el Ejemplo

2.6 de la Seccién 2.2). Es decir

o bien
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= Ejemplo 6.10 Las ecuaciones que corresponden a una rotacién de un angulo ¢ alredor del eje z
son (ver Ec.(6.18) y el Ejemplo 6.5).

XU = cos(¢)x! + sen(¢)x? (6.35)
x? = —sen(¢)x' +cos(¢)x* (6.36)
Ho= ) (6.37)

Es una transformacion ortogonal ya que la inversa de la matriz que la representa es igual a su
transpuesta, o sea A’.A = I (ver Seccién 4.6).
Como se vi6 en la Proposicion 4.6.6, si el determinante es 1 corresponde a una rotacién y si es

—1 corresponde a una reflexién (o a una composicién de una simetria y una rotacion). "

m Ejemplo 6.11 Una transformaciéon no ortogonal
Las transformaciones de Lorentz relacionan las coordenadas en dos sistemas de referencia
inerciales (x°,x!,x2, x%) y (x, 2’1, x2,x'3).

2

Son las que dejan invariante s> = (x’0)% — (¥’!)? — (¥?)2 — (x*))?. y su relacién en forma matricial

es la siguiente:

¥/ y By 0O K0
¥ —By 00 x!
x? 0 0 10 x?
X3 0 0 0 1 x3

1
V2

2
es la velocidad del movimiento uniforme y c es la velocidad de la luz en el vacio).

donde y = es el factor de Lorentz y 8 = % es la velocidad relativa respecto de la luz (V
La matriz inversa se obtiene cambiando 3 por —f3, y por lo tanto se tiene que A~! # A’. No es

una transformacién ortogonal. "

Tensores cartesianos

Como se menciond en la Seccidén 6.6.2 los tensores estdn definidos por las propiedades de
transformacién de sus componentes ante cambios de coordenadas.

Se llaman tensores cartesianos a los tensores que estdn definidos por sus propiedades ante
transformaciones entre sistemas de coordenadas cartesianos ortogonales (ver [25]). Esto los diferencia

de los tensores en general, en los que se consideran transformaciones mds generales de coordenadas.
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En los tensores cartesianos no es necesario diferenciar entre componentes covariantes y contravariantes
ya que se transforman igual:

En este caso, la Ec.(6.30) puede escribirse
X; = a;jx; (6.38)

donde a;; son los elementos de la matriz cambio de base.

Los tensores de orden 1 se transforman con la ley

v = aiv; (6.39)

Ya que si se utilizan las relaciones (6.22) y (6.23), como A’.A = I, se obtiene:

Vi= agvj (6.40)

vi=(a v = (a")]vi=djy, 6.41)

Andlogamente, en el caso de tensores de orden 2, la expresion de la Ec.(6.34) se reescribe

!

Si se asocian las componentes #;; a una matriz T, esta ley de transformacién de (6.42) corresponde

a la transformacién
T = ATA (6.43)

Ejemplos de tensores cartesianos: el vector posicién r, el vector velocidad v, el tensor de inercia

I;j, y el tensor de tensiones T;;.

Sistema de coordenadas curvilineas

Las transformaciones de coordenadas se presentaron en las Ecs. (6.18) y (6.19) de la Seccién

6.6.1. Consideremos ahora, en particular, una regién del espacio de tres dimensiones referida a un

sistema de ejes cartesianos ortogonales, caracterizados con supraindices x!, %, y x°.

Sean, ademas
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Figura 6.2: Bases en coordenadas cartesianas

W

¥ =% (2?20, i=1,2,3 (6.44)

funciones continuas con derivadas parciales primeras continuas y tal que el jacobiano formado por

. . b
las derivadas parciales % no se anule.

Entonces las ecuaciones anteriores pueden resolverse en las x', esto es

¥ =xE 23, j=123 (6.45)

Las variables ¥ introducidas son tales que a cada punto P le corresponde una tinica terna de
valores de ellas y reciprocamente: las denominamos coordenadas curvilineas de P.

Uno de los sistemas de coordenadas curvilineas mds usados en el espacio son las coordenadas
cilindricas (r, ¢,z), donde, X' = r, ¥* = @ y ¥ = z. y tales que las relaciones con las cartesianas

(x',x%,x%) son
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¢ = arctan o

Z:x3

Es decir que la Ec.(6.44) expresa la transformacién entre coordenadas cartesianas y coordenadas
cilindricas. En otro caso, puede expresar la transformacion entre coordenadas cartesianas y coordenadas
esféricas, otro sistema que también es utilizado con frecuencia.

Es importante notar que cuando se pasa de un sistema de coordenadas cartesianas a otras
cartesianas, la transformacion es lineal, y la relacion entre las coordenadas de un mismo punto en los

dos sistemas diferentes se obtiene multiplicando por una matriz.

Igualando a una constante la Ec.(6.44)

¥ =% (x',x%,x%) = C; = constante,
obtenemos la ecuacion de una superficie para cada valor de la constante: es decir, la tltima ecuacién
representa para cada i = 1,2, 3 tres familias de superficies, que se denominan superficies coordenadas
y la condicidén de que el jacobiano no se anule, significa geométricamente que tres de ellas (una de

cada familia) se intersecan en uno y sélo un punto P.

La interseccién de las tres superficies que pasan por P determina tres lineas, a lo largo de las

cuales s6lo una coordenada X' es variable: se denominan lineas coordenadas.

Tensor fundamental (o Tensor Métrico)

Supongamos que se requiere calcular la longitud de un vector v dado de R?, por ejemplo
v =(7,4,—1). Entonces:
» Al estar dadas sus coordenadas en la base canénica B = {ej, ey, 3}, (sino se hubiera anotado
v = (7,4, —1)5 para hallar la longitud del vector v = (7,4, —1) se calcula ||v||* = (7)>+ (4)*> +
(—1)2 =49+ 16+ 1 = 66. Se obtiene que su longitud es ||v| = v/66.
= Si se tienen las coordenadas de v en la base B’ = {(1,1,0), (4,2,1),(2,1,-2)},v=(1,1,1)3,

se deben transformar sus coordenadas a la base canénica para calcular la longitud.



248 Capitulo 6. Cdlculo tensorial

Figura 6.3: Bases en coordenadas curvilineas

X3

W

Es deseable, entonces, una definicién de longitud de un vector invariante ante un cambio de base.

Con el llamado tensor métrico se redefine la longitud de un vector segin la expresion:

e -e; e -e e - €3 X
( X Yy Zz ) éz . él éz -éz éz . é3 y (646)
e;-e; es3-e; ez-e3 Z

donde €; son los elementos de la base B, y (x,y,z) sus coordenadas en esa base.

Las componentes del tensor métrico (representado por los elementos ij de la matriz) son los

productos escalares de los vectores de la base B', es decir, €; - €; .

Asi, para el vector v= (1,1, 1), se tiene
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2 6 3 ! !
(1 1 1)3 6 21 8 1 2(11 35 20) 1| =66 (6.47)
38 9)\1)/, |

Con esta definicién nueva, (que da la longitud del vector elevada al cuadrado), el tensor métrico

da la matriz identidad (si la base es la candnica) y se tiene el resultado presentado al inicio:

1 00 7
(7 4 —1) 010 4 2(7 4 —1) 4 =66 (6.48)
0 0 1 —1 —1

De lo anterior surge que es posible introducir el concepto de distancia en un espacio V de
dimensién N cualquiera, y que la distancia ds entre dos puntos préximos de coordenadas x' y x' + dx’,

estd dada por la expresion:

ds*> = gijdxidx-i =g (dxl)2 +grdx'd® + -+ givdx'dxN 4+ gNN(a’xN)2 (6.49)
donde g;; son funciones de x!, con la restriccién que g = ‘ gi j| #£0.

Cuando se cumple esta definicién de longitud se dice que el espacio es un espacio de Riemann.

= Se postula que la distancia entre dos puntos préximos es independiente del sistema de
coordenadas, es decir que ds es un invariante.

= A la forma cuadratica g; jdxidxf se la llama métrica. g;; es un tensor simétrico covariante
de segundo orden llamado tensor fundamental. Sus componentes contravariantes estan

dadas por los elementos de la matriz inversa.
gg =12 (6.50)

Los coeficientes g;; son funciones de las coordenadas, y se obtienen a partir de los

vectores de la base, €;, ya que

8ij =€ € (6.51)
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= gii=gji & jdxidxj es una forma cuadrética. Se llama métrica, y es el cuadrado del

elemento de linea ds.

La longitud de los vectores de la base viene dada por:

& = V/gii (6.52)
donde i no se suma en la tltima expresion. Ademds, si el sistema es ortogonal, g;; =0
parai # j.

En un espacio euclideo de tres dimensiones, referido a un sistema de ejes cartesianos
rectangulares se tiene que la expresion de la Ec.(6.49) para tensores cartesianos para
N =3, es

ds* = (dx")? + (dx*)? + (dx*)? (6.53)
Teniendo en cuenta que,
5 = 5,-j _ 1 cuandoi=j,
0 cuandoi## j

y desarrollando las sumas,
S jxixj = § jxlxj +6& szxj + &3 jx3xj

= Spxla! + 81ax x4 813x P + Skl + Soox®x% + Sr3xxS 4 -+ B33xx

§ijxix) = (x1)? + ()2 + (x3)% = ds?

i) Las expresiones &;x'x/ = §,yx"x! = 834xPx* son equivalentes por ser

los indices mudos.

El tensor métrico en este caso es

o

~

\
oS O =
S = O
- o O

Las componentes del tensor fundamental son cero, excepto g1; = g2 = g33 = 1.
La métrica en un espacio euclideo es positiva. Serd cero solo cuando dx' = dx* = dx> = 0.
En la teoria especial de la relatividad la métrica no siempre es positiva. Su expresion estd

dada por

ds? = —(dx')? = (dx®)? = (dx’)? + 2 (dx*)? (6.54)
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= Otro ejemplo de métrica en un espacio euclideo es la referida a coordenadas polares

esféricas x' = r, x> = 0 y x> = y. La métrica estd dada por

ds* = dr* +r*d6* + r*sen*0d vy (6.55)

Otras métricas:

De acuerdo con la tedria de la relatividad general en presencia de materia, la geometria del
espacio-tiempo no es plana. La métrica de Schwarzchild describe como se curva el espacio-tiempo a
causa de un cuerpo esférico, aislado y estatico que no gira sobre si mismo (r: distancia, G: constante

gravitatoria, M: Masa, c: velocidad de la luz y 6= dngulo):

—c*(1—25M) 0 0 0
o . 0 (1-2GMH-1 0
Meétrica de Schwarzchild: g;; = cr )
0 0 r 0
0 0 0 r’sen*(0)

Por otro lado la métrica de Friedman-Lamaitre-Roberson-Waller nos describe la expansién de
universo en términos del pardmetro k. Si k > 0 el universo es cerrado y volverd a plegarse sobre
s mismo generando un nuevo bigbang (teoria del bigcrush), mientras que si k < 0 el universo se

expande sin limites. (a(r) representa la aceleracion del universo):

—c? 0 0 0
0 1)(+— 0 0
Meétrica de FLRW: g;; = a(t)( 1*"’2) .
0 0 0 a(t)r*sen®(0)( ?]kﬂ )
Bases en coordenadas curvilineas
De acuerdo a la Figura 6.3,
r=x'e; +x%e; +xe; (6.56)
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Para cada punto P del espacio se tienen tres lineas coordenadas X'; es posible definir tres vectores

base para P como:

or

é‘:f
ox

(6.57)
que se llaman vectores tangentes a las lineas coordenadas ([22]) x.

La base €;, representada en la Figura 6.3 es, en general, variable punto a punto y sus versores no
necesariamente tienen longitud unitaria. Se trata de una base /ocal ; cada punto P del espacio tiene
su propia base.

En un sistema de coordenadas curvilineas se tiene, en cada punto P, una base local dada por los
vectores €; de la Ec.(6.57) como se muestra en la Figura 6.3. De ahora en adelante a los vectores de

esta base los denotaremos g;.

» Ejemplo 6.12 Coordenadas cilindricas

F=x'e; +x’e; +xe3 (6.58)

donde x! = rcos(), xr = rsen(Q)y x’ =z

Es una transformacidn entre las coordenadas x' y, X'

Los vectores tangentes (o base covariante, Ec.(6.57)), son

d
g = a—; = cos(p)e; + sen(¢)e, +0.e3 (6.59)
dar
§= 5= —rsen(@)e; +rcos(@)e; +0.e3 (6.60)
g3 or = 0e; +0Oez + les (6.61)

"o
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Existe ademads, para cada punto P, otro conjunto de tres direcciones que puede ser adoptado para

definir otra base local de vectores que denotaremos por g'.

Estos vectores g' constituyen la denominada base reciproca o dual de la g;, en virtud de las

relaciones:
i 5i
g 8i=09;

Pueden obtenerse de la forma siguiente

_EBxs s mxe o B
[g18223] [812283] [812283]

donde [gigg3] =81 X & -G =E

En la Figura 6.4 se muestra un ejemplo en un sistema cartesiano.

Se tiene que,

g’ x g° g xg! g'xg

g = g3 =
g'g?g’] [g'g’g’] [g'g’g’]

g1 =

y [g'g’g’] = Er

De la misma forma que en Ec.(6.51), se tiene

§i=g-g

y naturalmente, g'/ = g/!

(6.62)

(6.63)

(6.64)

(6.65)

Decimos que estas dos bases, que son mutuamente reciprocas, y se pueden demostrar las

siguientes propiedades
" [giges] [g'g’e’] =1 Ep=E"

L] det(g,-j):g:Ez E:\/g
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Figura 6.4: Ejemplo de una base g; y su base reciproca g’

W

= g¥grj =0
" e/xe=0

En un sistema cartesiano ortogonal, la base reciproca coincide con aquella que la genera, es

decir, g' = g;.

m Ejemplo 6.13 Coordenadas cilindricas.

La base reciproca, usando ec.(6.63)

gl = 8278 (6.66)
[218283]
g' = (rcos(p)ey + rsen(@)ey +0e3) /r (6.67)

g? = (—sen(@)e; +cos(@)ey +0e3) /r (6.68)
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g3 = (rcos2(¢)e1 + rsenz((p)ez +0e3)/r (6.69)

En la Figura 6.5 se muestran las coordenadas cilindricas en el espacio R? y los vectores g;.
Como por la Ec.(6.51), gij = gi- g/

g1 = g1 g1 = cos* (@) +sen*(@) =1

212 =81 -8 = —rcos(@Q)sen(@) + rcos(@)sen(p) =0

gi3=2g1-g8=0

g2 = g - 8 = r’sen’(Q) + r’cos* (@) = r?

83=g-8=0

g3 =g3-g=1

1 0 O
gij=| 0 P 0
0 0 1
y su inversa
1 0 O
g/=10 r2 0
0 0 1

Relaciones entre versores de base

Dados dos sistemas de coordenadas curvilineas x’, ¥, y considerando para cada uno de ellos las

bases anteriormente introducidas, existen entre sus versores las relaciones:

o ox
g/ - ﬁgiv

axJ
g = ﬁgj (6.70)
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g =g g =g'g;
Si
oxi oxi ®
oxt _j
gn — ﬁgmig )

se tiene que esta expresion se demuestra de la forma siguiente:

usando Ec.(6.70)

ox _
gm = ng
ox dx/
gn = " o gj
Reemplazando la Ec.(6.71)
ox' Ix'

B = D g S8

Teniendo en cuenta la Ec.(6.72)

dxl ox  9xk _j
B = e g 8

ox/ Ix __ 6]
- VYm»

y como 5% 5

se tiene que

o oxk .
8n — Snﬁgjk ﬁgj

dxk _j
gn = ﬁgmkg )

que coincide con Ec.(6.73) ya que k es un indice mudo.

6.71)

(6.72)

6.73)
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Figura 6.5: Coordenadas cilindricas

TN

v

1

Componentes contravariantes y covariantes de un tensor
De lo anterior surge que dado un tensor A se dispone de dos bases aptas para su expresion: la g; y
su reciproca g/. Las componentes de A en g; las denominamos contravariantes y las indicaremos A’,

mientras que las componentes en g/ las llamaremos covariantes, designandolas A j [24]. Entonces:

Como se menciond antes, si el sistema es cartesiano ortogonal, ambas componentes son
indistinguibles: A' = A;. Cuando A esté dado mediante A’, diremos vector contravariante; o vector

covariante Ay si se nos presenta mediante esas componentes. Entre ellas se cumple:
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Aj=gijA Al =gl (6.75)
asi, g;; y g" bajan y suben indices, respectivamente.

Para demostrar la primera igualdad, partimos de la expresién

A=Acg =Ag

Multiplicando escalarmente por g; a ambos lados,

Avgtogi=Alg g

y teniendo en cuenta la relacion entre los vectores de la base y de su base reciproca, Ec.(6.62),

Ay 5]" =A'g g

y se obtiene
Aj = giin

Entre las componentes contravariantes (o duales) de A en dos sistemas x', X' se verifica:

. ox i 0X
A=A A=A 6.76
o o (0.70)
y entre las covariantes
ox/ — —_ dx/—
y ademas,

Al=A-g/ A=A.g (6.78)
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De lo anterior sale que una vez definido el tensor métrico, las componentes covariantes y

contravariantes de un tensor estdn relacionadas por el tensor métrico, asi por ejemplo,

V= gzjvj

m
Vi = 8imV

Es importante notar que bases definidas (g; y su reciproca g’) cumplen la relacién de la Ec.( 6.62)

y que esta relacién se mantiene al realizar una transformacion de coordenadas. Para demostrarlo, se

utilizan los vectores contravariantes y covariantes, g' y g, y sus relaciones con los vectores gyg s

respectivamente (Ecs.(6.22) y (6.23)). Se veré que g' - g = 5ij.

ox' ; oxk
@g 'ﬁgk

l .

Componentes fisicas de un vector En ciertos contextos son importantes las componentes fisicas

de un vector. Si A = Alg, estdn dadas por

A il = |A"| Ve

Diagonalizacion de tensores de segundo orden. Invariantes

Dado un tensor de segundo orden simétrico y real siempre existe un sistema de coordenadas en

el cual las tnicas componentes no nulas del tensor son las que tienen los dos indices iguales, 7;; =0

sii## j.SiT eslamatriz de los #;;, T es una matriz diagonal:

1 0 0
T = 0O 1 O
0 0 33
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(para N=3). El sistema de coordenadas en el que el tensor es diagonal se llama de ejes principales.
Para demostrar que todo tensor simétrico y real es diagonalizable, se hace el producto escalar del

tensor de componentes #;; por un vector v;, con lo que se obtiene otro vector w;:
W; =1;;V;.
Se trata de hallar los vectores v; tales que el vector resultante sea un multiplo, o sea
Wi:kv,- i:1,2,--'N.

donde A es un escalar. En ese caso a v; se lo llama autovector y a A autovalor.

Para que esto suceda los vectores v; deben satisfacer

tijvj :A,Vi

(tij = A8j)v; =0

Para el caso que N = 3, se tiene un sistema de ecuaciones algebraicas:

(th —A)vi+t2va+1i3v3= 0
Vi + (tr —A)va+13v3= 0 (6.79)
131V1 +l32V2+(l33 —A)V3 = 0

Como es un sistema homogéneo, para que tenga solucién no trivial el determinante del sistema
debe ser nulo. A la ecuacién

Det(T — A1) =0 (6.80)

se la llama ecuacidn caracteristica del tensor T.

El determinante de la Ec.(6.80) es un polinomio de grado 3 con respecto a las potencias de A:

Pr(A) =A% +A%Tr + Al — 1y = 0

llamado polinomio caracteristico del tensor T. I, IIt, Il son los invariantes principales del tensor

T, definidos en funcién de sus componentes #;; por (ver [18]):

It = tr(T) =1
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It = %[tr(T)z —tr(T?)]

Iy = Det(T)

Si T es un tensor simétrico, los invariantes principales se resumen de la forma:

It=t1+tn+133
Iy = ty1t +tiitas +intss — 1 —ti — 13,

It = t11t0133 + tiatists + tistiatas — thtss — tastil — tstn

= Encontrar los autovalores o valores principales es equivalente a encontrar unas direcciones
principales (autovectores) tales que #;; = 0 para i # j.

= Una vez obtenidos los autovalores, los autovectores se obtiene resolviendo las ecuaciones
(l,‘j — )L] 8,‘]')115-1) = 6, (t,'j — 125,']')115-2) = 6 y (t,'j — 13 5,']')115-3) = 6

= Si T es un tensor simétrico el espacio de los autovectores estd definido por una base
ortonormal y los autovalores son todos reales.

= Cuando un tensor presenta los tres autovalores iguales, A = A, = A3 se denomina tensor

esférico.

Tensores de mayor orden

Hemos visto tensores de 6rdenes 0, 1 y 2. De la misma forma es posible definir tensores de orden
mayor.

Un conjunto de N**? funciones A’ql fz'z'j,’fqp de las N coordenadas x’ se dice que son las componentes
de un tensor mixto de orden (s+ p) contravariante de orden s y covariante de orden p si se transforman

segtin la ecuacién

ey OXM JES Qa1 O

ity
M T gyt gyl 9XT 9 14

con el cambio de coordenadas x' en ¥'.
Aunque esta expresion parece complicada es simplemente una combinacién de la Ec.(6.22 ) con

respecto a los indices contravariantes y de la Ec.( 6.23) en cuanto a los indices covariantes.
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Un ejemplo de orden 4 es el tensor constitutivo C que relaciona las componentes de dos tensores

de orden 2, el tensor de deformaciones, € con el tensor de tensiones, 7.

Tij = Cijki €
El tensor constitutivo C;ji; es de orden 4 y sus componentes, considerando dos bases ortogonales
e; y ¢; del sistema cartesiano, se transforman de la forma siguiente

Cijkl = pimpjnpkrplscmnrsskl

i) Enlas ecuaciones de elasticidad para el estudio de tensiones y deformaciones en cdscaras y

Idminas es muy Util expresar el tensor constitutivo en las componentes de una base local no

ortogonal. Se utilizan las bases de vectores covariantes y contravariantes.

Juan Martin Maldacena

Nacido en Buenos Aires, 10 de septiembre de 1968. Entre sus muchos aportes al campo de la
teoria de supercuerdas —o Teoria M—, se encuentra la denominada «conjetura de Maldacena,
«dualidad de Maldacena» o correspondencia AdS/CFT, que propone la equivalencia entre ciertas
teorias de gravedad cudntica y cualquier teoria conforme de campos bajo determinadas condiciones
que satisfacen el principio holografico. En 1997 se uni6 a la Universidad de Harvard como profesor
asociado —entonces el profesor asociado vitalicio mds joven de la historia de Harvard—. Ahi en
1999 ascendi6 a profesor titular. En 2012 fue honrado con el nuevo Premio Yuri Milner a la fisica
fundamental. La distincién le dot6 con tres millones de d6lares. En ese momento sus investigaciones
estaban orientadas a la relacion entre espacio y tiempo cudnticos y a las teorias de particulas. En
2018 recibi6 la Medalla Lorentz siendo asi el tinico cientifico de habla hispana y de Iberoamérica en

haberla recibido. [13]
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Figura 6.6

UN PACIENTE LE DICE A SU
TERAPEUTA:

- DOCTOR SIENTO MUCHA
TENSION.

Y EL TERAPEUTA RESPONDE:

- {iIMAGENATE EL TENSOR DE
TENSIONES!

Actividades propuestas

Para el sistema de coordenadas esféricas

7(@,0,r) = rsen(@)sen(d)e; + rcos(p)ey + rcos(@)sen(d)es
halle:

a) Los vectores base covariantes.
b) Los vectores base contravariantes.
c) La métrica del sistema del coordenadas.
d) La matriz Jacobiana de la transformacién de coordenadas.

e) Calcule el ds? del sistema de coordenadas (@, ¢, 7).

Ejercicios

Responda:
a) ;Qué informacién dan los subindices libres?

b) {Cémo se identifican los subindices mudos?
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¢) (Por qué se llama frecuentemente a la delta de Kronecker operador de sustitucion?

d) (Qué valor toma la terna 132 para el simbolo de permutacién?

Reescriba usando notacion indicial las siguientes expresiones:
1. ayx1x3 + axxpxs + azxzxs

2. x1x1 +x2x2

3.
anx+apy+apz = by
ayx+axpy+axsz = by
az1x+axpy+ayz = b,

Desarrolle las expresiones siguientes para n = 3:
iaql
L. & dl,
2. 51‘ j x' x/ ’
3. &,
4

s gy
- gpdx

Verifique en R? las siguientes igualdades:
1. 87 e =0
2. etkm €jkm =2 5;:
3. ek ey =3I
4

ijm _Sis) _ sis)
e ey = 6,6 0,6/

Utilice el convenio de la suma de Einstein para escribir de forma tensorial:

1. Multiplicacién de dos matrices A € R™™ y B € R™*  C = A.B con elementos clj (el
supraindice indica fila y el subindice indica columna).

2. Latraza de una matriz A € R"™*".

3. El determinante de una matriz A € R"*".

4. El polinomio caracteristico en funcién de los invariantes de un tensor.
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Calcule el producto tensorial de los versores en R?, dos a dos y entre ellos mismos.

(Cudl es el orden de los tensores representados por sus componentes:
Vi, Qijk» Fijjs €ij> Cijits Oij?

(Cuantas componentes tiene cada uno si los indices toman los valores 1,2,3 ?

Dada la transformacion,

T = 6x!

verifique, luego de determinar los versores, g;, y la base reciproca g/, que

1 1 1 18
361 363 873 0 36 3 0
L= 1 1 ij — _ 18
8ij = 3V3 ) 0 g 73 12 0
0 0 1 0 0 1

Responda:

1) (A qué se denomina tensor esférico?
2) (Qué expresién toman los invariantes de una matriz que estd en su espacio principal?
3) {Qué expresion toman los invariantes de un tensor esférico?

4) ;Cémo queda la ecuacién caracteristica de un tensor antisimétrico?
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5) (Cualquier combinacién de los invariantes principales serd un invariante?

6) (A qué se llama representacion espectral de una matriz?

7) {Como se calcula la matriz inversa usando el teorema de Cayley-Hamilton y los invariantes

de un tensor?

8) (La norma de un tensor es también un invariante?

Autoevaluacion

Verdadero o Falso

1.

(98]

N o oA

Si V es de dimensidn finita n, entonces los hiperplanos vectoriales de V son de dimension
n+1.

Un hiperplano de V es el nicleo de un funcional lineal no nulo sobre el espacio V.

Si un espacio vectorial es suma directa de dos espacios vectoriales, la suma directa de los
espacios duales de esos espacios conforman el espacio dual del espacio vectorial original.
La distancia de un punto depende de la forma o métrica donde se mide.

El teorema de Pitagoras se cumple por igual en un plano o sobre una esfera.

El valor de Curvatura Gaussiana o Funcién K en el Espacio Euclideo habitual es igual a 1.
La distancia mds corta entre dos puntos sobre una esfera, se llama geodésica y no es una linea
recta.

En Radioastronomia se suele utilizar el término cubo de datos para nombrar la imagen de una

regién del espacio pero a diferentes velocidades.



/. Aplicaciones

En este capitulo se abordan aplicaciones del Algebra Lineal en dos temas considerados de mucho
interés, como son la resolucién de ecuaciones diferenciales y la aproximacion de funciones. Los
sistemas de ecuaciones diferenciales surgieron para analizar cuantitativamente determinados sistemas
fisicos. En el campo de la astronomia, y contemplando los principios fisicos como las leyes del
movimiento de Newton y la ley de gravitacion, el problema matemaético al estudiar el movimiento de
dos o mas cuerpos, (moviéndose cada uno bajo la accién gravitatoria de los otros) es el de resolver un
sistema de ecuaciones diferenciales ordinarias. Por otro lado, el estudio de la teoria de aproximacién
de funciones también es de importancia fundamental. Comprende dos tipos generales de problemas:
uno se refiere a la biisqueda de la funcién 6ptima que pueda utilizarse para representar un conjunto
de datos y fue tratado en el Capitulo 4, en la aproximacién por minimos cuadrados. En este capitulo
nos ocuparemos del problema que se presenta cuando una funcién se da de manera explicita, pero se
quiere encontrar un tipo mds simple de ella, por ejemplo un polinomio, que sirva para determinar

valores aproximados de la funcién dada.

Ecuaciones diferenciales

Muchas leyes de la fisica, quimica, biologia y economia se expresan en términos de ecuaciones
diferenciales, es decir, en ecuaciones que comprenden funciones y sus derivadas. En esta seccion
veremos que es posible aplicar el dlgebra lineal para resolver ciertos sistemas de ecuaciones

diferenciales. Una de las ecuaciones diferenciales mds simples es

y' =ay (7.1)
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donde y = f(x) es una funcién desconocida que se debe determinar, y = % es su derivada y a es

una constante. La Ec.(7.1) tiene infinitas soluciones, las cuales son funciones de la forma

y = ce™ (7.2)
donde c es una constante arbitraria. Estas funciones son soluciones de y' = ay, dado que

y = cae™ = ay (7.3)

A la Ec.(7.2) se le da el nombre de solucion general de y' = ay

Con frecuencia el problema fisico que genera una ecuacién diferencial impone alguna condicién
que permite hallar una solucién dnica a partir de la solucién general. Por ejemplo, si se requiere que
la solucién de y' = ay satisfaga que y = 3 cuando x = 0, entonces al sustituir en la solucién general

Ec.(7.3), se obtiene un valor para c:
3=ce’ =c¢ (7.4)

Por lo tanto, y = 3¢%* es la tnica solucién de y' = ay que satisface la condicién agregada, que
se conoce como condicion inicial. Al problema de resolver una ecuacion diferencial sujeta a una
condicién inicial se denomina problema de valor inicial.

Dado ahora un sistema de ecuaciones diferenciales, por ejemplo,

i = 3
Yo = =2»
Y3 = 5y
(1.5)
se desea hallar la solucidn del sistema que satisface las condiciones iniciales y; (0) =1, y»(0) =4y
y3(0) = —2. En forma matricial, se tiene
30 0
Y'=[0 -2 0 |Y (7.6)
0 0 5

donde Y = (y1,y2,y3)”. Debido a que cada ecuacién comprende s6lo una funcién desconocida, se

puede resolver cada una de las ecuaciones por separado. De la Ec.(7.2) se obtiene

yi = cre¥
—2x

2 = e
S5x

y3 = c3e
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A partir de las condiciones iniciales dadas, se obtiene

1 :yl(O) = cleo =C]
4=y,(0) = 26’ = ¢y
-2 = y3(0) = C3€0 =C3

(7.7)

de modo que la solucién que satisface las condiciones iniciales es

3x
)

n=e y=4e ¥, y3=-2e"

El sistema de este ejemplo fue facil de resolver porque cada ecuacién comprendia solo una funcién
desconocida, y fue ese el caso porque la matriz de coeficientes (7.6) es diagonal. Para resolver el
caso cuando la matriz no es diagonal es posible hacer una sustitucion para Y, Y = SU que conduzca
a un nuevo sistema con una matriz diagonal de los coeficientes; y una vez resuelto este sistema mas
sencillo, se usa esa solucién para determinar la del sistema original. Si se hacen las sustituciones

Y = PU eY' = PU’ en el sistema original
Y =AY

y se supone que S tiene inversa, se obtiene

SU' = A(SU)
o bien,

U = (S'AS)U
o bien,

Y'=DY

donde D = S'AS. Estd claro cémo elegir S si se desea que la nueva mtriz de los coeficientes D sea
diagonal. Se debe elegir S como la matriz que diagonalice a A. El procedimiento para resolver un

sistema
Y =AY

con una matriz A diagonalizable lo veremos con un ejemplo.
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Suponga que una particula se mueve en un campo de fuerzas plano y que su vector de posicién

X satisface X' = AX y X(0) = Xo, donde

las condiciones iniciales x; (0) = 2.9, x2(0) = 2.6 Se desea resolver este problema de valor inicial, y

trazar la trayectoria de la particula para ¢ > 0. La matriz A de los coeficientes del sistema es

Como se analiz6 en la Seccion 3.2 a partir de Det(A — AI) = 0, se obtienen los autovalores de la
matriz, A; = 6 y A = —1. Los autovectores correspondientes son v; = (—5,2)7 y ¥, = (1,1)7.

De ahi que la matriz

=5 1
2 1

S:

diagonalizaa Ay

6 0
0 -1

D=S"'AS =

Por lo tanto, la sustitucién X = SU y X' = SU’ conduce al nuevo sistema diagonal

6 0
0 -1

De acuerdo a (7.2), si U = (u;,uz)’, la solucién de este sistema es

U = 0166’

u = czeft

y la ecuacién X = SU proporciona la solucién para X
X1 -5 1 cre®

X9 2 1 cre!
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Figura 7.1: El origen es un punto silla

\

==

o bien
_ 6t —t
x1 = —5cie’ +cre
Xy = 201€6t + Czeit
Si se sustituyen las condiciones iniciales, se obtiene ¢; = —3/70 y ¢, = 188/70, de modo que la

solucién que satisface las condiciones iniciales es

x; = 15/70¢% +188/70e"
xy = —6/70¢% +188/70e7"

Las trayectorias de X se muestran en la Figura 7.1. Al origen se le llama punto silla del sistema
dindmico porque algunas trayectorias se aproximan primero al origen y luego cambian de direccién y
se alejan de él. Se presenta un punto silla siempre que la matriz A tiene valores propios tanto positivos
como negativos. La direccién de mayor repulsion es la linea que pasa por v y 0 correspondiente al
valor propio positivo. La direccién de mayor atraccion es la linea que pasa por v, y 0, correspondiente

al valor propio negativo.
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Luis Angel Caffarelli

Nacido el 8 de diciembre de 1948 en Buenos Aires. Es el principal experto mundial en problemas
de frontera libre para ecuaciones diferenciales en derivadas parciales no lineales. También es famoso
por sus contribuciones a la ecuacién Monge-Ampere y mas en general ecuaciones completamente
no lineales. Recientemente se ha interesado por los problemas de homogeneizacién. En 2023,la
Academia Noruega de Ciencias le concedié el Premio Abel, el cual es semejante al Nobel en
matemadticas, puesto que este tltimo no cuenta con distinciones para esta rama del conocimiento.

[15]

Problemas de aproximacién de funciones

En muchas aplicaciones se tiene interés en encontrar la mejor aproximacién posible sobre un
intervalo, para una funcién f, por medio de otra funcién que pertenece a alguna clase especificada;
por ejemplo:

» la mejor aproximacién posible para ¢* en [0,1] por medio de un polinomio de la forma

aop +a1x+a2x2.

» la mejor aproximacion posible para sen(mx) en [—1, 1] por medio de una funcion de la forma

ap+ai e + are* + aze*.

» la mejor aproximacién posible para |x| en [0,27] por medio de una funcién de la forma

ap + aysen(x) + axsen(2x) 4+ bycos(x) + bycos(2x).

En cada uno de esos ejemplos las funciones de aproximacién pertenecen a un subespacio
del espacio vectorial Cla,b] (funciones continuas en [a,b]), es decir que se estd buscando la
mejor aproximacion utilizando funciones de un subespacio W de C|a, b]. Intuitivamente, la mejor
aproximacion posible en [a, b] serd aquella que produzca el menor error. Si se desea aproximar en un
solo punto x, el error al aproximar f(x) con g(x) estaria dado por |f(xo) — g(xo)| (desviacién entre
[y genxp). Si se desea la mejor aproximacién en un intervalo, se necesita medir el error global de
la aproximacién g(x). Una medida posible se obtiene integrando la desviacién |f(x) — g(x)| sobre

todo el intervalo; es decir,

b
[ 176~ gl 78)
a
Geométricamente (7.8) es el drea entre las graficas de f(x) y g(x) sobre el intervalo [a,b]; mayor

el drea, mayor serd el error global. Aunque es natural, y geométricamente atractiva, la presencia del
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valor absoluto hace que se utilice mas frecuentemente otra medida del error, conocida como error

cuadrdtico medio , definido por

b
ECM = [ 1)~ () dx (7.9)

La ventaja adicional del ECM es que puede escribirse a partir de la teoria de espacios vectoriales
con producto interno (ver Ejemplo 4.2).

Considerando el producto interior
b
(1.0)= [ fgtods (7.10)
a
sobre el espacio vectorial C[a, b], el error cuadratico medio
b
ECM = =8> = (f~8.f~8) = [ 1)~ g(x)dx @.11)
a

es el cuadrado de la distancia entre f y g. La aproximacién g en W que minimiza el error cuadratico
medio es el vector g en W muds préximo a f con el producto interno (7.10). Por lo que vimos en
el Teorema 4.5.1, g es la proyeccion ortogonal de f sobre el subespacio W. Entonces, si f es una
funcién continua sobre [a,b] y W es un espacio con dimension finita de C[a, b], 1a funcion g en W
que minimiza el error cuadrético medio Ec.(7.9) es g = Py f, que se conoce como aproximacion de

los minimos cuadrados para f en W.

Series de Fourier

Una funcién de la forma

F(x) =co+crcos(x) + cacos(2x) + - - - + cpcos(nx)
+dysen(x) + dysen(2x) - - - + cysen(nx) (7.12)

se conoce como polinomio trigonométrico; si ¢, y d,, no son ambos nulos, entonces se dice que f(x)

tiene orden n.

= Ejemplo 7.1
f(x) =5+ cos(x) —3cos(2x) + Tsen(4x)
es un polinomio trigonométrico. co =5,c; =1,¢c; =—-3,di =dy =d3 =0y dy =7 de orden 4. =

Por la expresion (7.12) los polinomios trigonométricos de orden n o menos son combinaciones

lineales de

1, cos(x) cos(2x), cos(nx) sen(x), sen(2x)--- sen(nx) (7.13)
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y forman un subespacio W del espacio vectorial de funciones continuas; generado por las 2n + 1
funciones de (7.13). Se puede demostrar que estas funciones son linealmente independientes y, como
consecuencia, forman una base para W.

Si se desea hallar una aproximacion para una funcién continua f(x) sobre el intervalo [—7, 7]
0 [0,27] por medio de un polinomio trigonométrico de orden n o menor se debera calcular la
proyeccién ortogonal de f sobre W. Para hallar esa proyeccion ortogonal (Teorema 4.5.1), se debera

encontrar una base ortonormal go, g1, g2, * - -, g2, para W y luego utilizar la férmula

Py (f) = (f,80)80+ (f,g1)g1+ - (f,&21)82n (7.14)

Es posible obtener una base ortonormal para W aplicando el método de Gram-Schmidt a la base

(7.13) usando el producto interno (7.8). Esto conduce a la base ortonormal.
1 1
—=cos ——cos(2x),

= —, - X 3 -
0= 8Tz (x), & NG
L (nx) L (x)
o n= cos(nx), = sen(x),
P {) \/E 8n+1 \/ﬁ

—sen(m)
il = —=sen(nx
8n+1 \/ﬁ
(7.15)
Si se introduce la notacion
2_(f,0) (F.80)).-- )
a) = —F/— } ’ a) = —= 9 day - 9
0 \/ﬁ 80 1= f 81 \ﬁ 8n
2
blfﬁ( fi8n+1), bn:f(f ,82n), (7.16)
Reemplazando en la Ec.(7.14), se obtiene
a
Py(f)= ?0 +Jaicos(x) + - +aycos(nx)] + [bisen(x) + - - - + bysen(nx)] (7.17)
Los niimeros ag, ai, - - -, ay, b1, - - -, b, se denominan coeficientes de Fourier de f.

m Ejemplo 7.2 Se desea hallar la aproximacién de minimos cuadrados de f(x),

—1 cuando — 7 <x <0,
fx) =

1 cuando0<x <7

n [—x, 7] por medio de un polinomio trigonométrico de orden 2 o menor.

0 T
l f( )dx ;ﬂ(/_ﬂ—ldx—l—/o _ldx>:§(—7r+7t):0
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Figura 7.2: Aproximacion mediante un polinomio trigonométrico

— senx
i
1 P :
I
-7 I
\ 0 T
I
L \‘—// -l
1 [7 1 0 T 4
by=— [ f(x)sen(x)dx= —(/ —sen(x)dx+/ sen(x)dx = —
TJ)—x T -7 0 T

El resto de los coeficientes son nulos, asi que la mejor aproximacién a f(x) (por medio de un

polinomio trigonométrico de orden 2 o menor) es,

fx) =~ %sen(x)

La funcién y su aproximacién se muestran en la figura 7.2. "

» Ejemplo 7.3 Se desea hallar la aproximacion de minimos cuadrados de f(x) = x en [0,27] por

medio de un polinomio trigonométrico de orden 2 o0 menor.

2 2r
ap = 1/ fx)dx = 1/ xdx =21 (7.18)
0

T T Jo

Para k= 1,2,.--n se puede verificar que, realizando integracion por partes, se obtiene

2n 1 /27
ax=— f(x)cos(kx)dx = - / xcos(kx)dx =0
0 0

2 1 [2= -2
by = — f(x)sen(kx)dx = —/ xsen(kx)dx = —
0 T Jo k
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Por lo tanto, la aproximacién de minimos cuadrados por medio de un polinomio trigonométrico de

orden 2 o menor es
x~ 1 —2sen(x) — sen(2x)
| |

De lo anterior se desprende que la aproximacién de minimos cuadrados de f(x) = x en [0,27]

por medio de un polinomio trigonométrico de orden n o menor, teniendo en cuenta (7.19), es

sen(2x)  sen(3x) sen(nx)
2 3 n

x~m—2(sen(x)+

y resulta obvio esperar que el error cuadratico medio disminuya a medida que se aumenta el nimero

de términos en la aproximacién de minimos cuadrados

(ngE

fx) =~ %0 + ) (akcos(kx)+ bysen(kx))
k

Il
—_

Se puede probar que el error cuadratico medio tiende a O cuando n — oo, esto se denota escribiendo

8

fx) = % + Y (axcos(kx) + bysen(kx)) (7.19)
k

I
—_

El segundo miembro de esta ecuacion se denomina serie de Fourier para f. Las series de este

tipo tienen importancia primordial en ingenieria, ciencias y mateméticas.

Series de Haar. Bases de wavelets ortogonales

En la seccidn anterior se describi6 el sistema trigonométrico.
{1,cos(nx),sen(nx) }nen (7.20)

de periodo 27 a partir del cual se halla la serie de Fourier de una funcién f(x). Puede reescribirse

con exponenciales complejas

{e" }nez (7.21)

ya que por la férmula de Euler, ™ = cos(x) + isen(x).
Los sistemas (7.20) y (7.21) pueden obtenerse uno del otro mediante combinaciones lineales

simples. En particular, para n € Z,

cos(nx) +isen(nx) sin =0,

1 sin=0
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yparan € N

emx _|_ e—lnx

2

cos(nx) =

sen(nx) = 5
i

La serie de Fourier (7.19) puede escribirse, entonces,
f@x) =Y clk)e™ (7.22)
keZ
con ciertos coeficientes c(k). Vamos a presentar en esta seccion un ejemplo de sistema ortogonal en
[0, 1] conocido como el sistema de Haar. Es 1a més simple e historicamente el primer ejemplo de
una base wavelet ortogonal. Muchas de sus propiedades contrastan con las propiedades del sistema
trigonométrico (7.21):
= tienen soporte en pequefios subintervalos de [0, 1], mientras que las funciones base de Fourier
son no nulas en todo el intervalo [0, 1].
= son escalonadas, con discontinuidades, mientras que las funciones base de Fourier con C* en
[0,1].
= las bases de Haar tienen un indice que indica la escala j que reemplaza a la frecuencia n de las
bases de Fourier.
= las bases de Haar proveen una representacion eficiente para funciones que son suaves en
algunos segmentos y con picos y discontinuidades en otros, mientras que las bases de Fourier
dan buenas representaciones para funciones con comportamiento oscilatorio en intervalos

largos.

Alfréd Haar (1885 - 1933)

Matematico hiingaro de origen judio, nacido en 1885. En 1904 comenzé a estudiar en la
Universidad de Gotinga. Su doctorado fue supervisado por David Hilbert. La medida de Haar, la
ondicula de Haar y la transformacién de Haar reciben su nombre. Entre 1912 y 1919 ensefi6 en la
Universidad Francisco José de Kolozsvar. Junto con Frigyes Riesz, hizo de la Universidad de Szeged
un centro de las mateméticas. También fundé la revista Acta Scientiarum Mathematicarum junto con

Riesz. [2]
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Figura 7.3: Bases de Haar. Escala j =2 a la izquierday j =4 a la derecha

3 4
25 3
2 2
15 1
1 0
05 -1
0 2
05 <!
4 o

0 02 04 06 08 1 0 01 02 03 04 05 06 07 08 09 1

Para cada par de enteros j, k € Z, se definen

el intervalo diddico I :
Lix=12"7k277(k+1)) (7.23)
y la funcién de Haar:

hja(x) =277 (g () = 217, () (7.24)

De esta forma, h j,k(x) estd soportada en el intervalo /;; (no se anula en ese intervalo). Decimos
que la funcién de Haar h; x(x) estd asociada a ese intervalo.

La longitud del intervalo I;  es 27/, Si j es grande, la longitud es pequefia. Se dice, entonces,
que la funcion h; x(x) estd bien localizada en el tiempo. Esta propiedad contrasta con las bases de
Fourier que tienen todas médulo 1 para todo x € [0, 1) y por lo tanto no se anulan para ningin x de
ese intervalo.

En la Figura 7.3 se muestra un ejemplo de aproximacion de una funcién mediante bases de Haar,

para dos escalas o niveles de resolucién diferentes.

Las bases de Haar, creadas por Alfred Haar en 1909, fueron el primer registro histérico de lo que

hoy se denomina familias de funciones ondiculas o wavelets desarrolladas en los tltimos 40 afios
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para poder analizar sefiales que no se comportan en forma estacionaria o que presentan cambios
bruscos en intervalos pequefios. Esas sefiales de interés provienen de distintas dreas como la medicina,
sismologia, geologia, electrénica y también astronomia. Asi, la Teoria Wavelet, caracterizada por una
base matematica compleja, constituye una potente herramienta en el procesamiento de sefiales y de
imdgenes digitales. Permite la reduccion de ruido, la compresién de sefiales ( muy importante tanto
para la transmision de grandes cantidades de datos como en su almacenamiento) o la deteccién de
determinados objetos en imdgenes o en irregularidades locales, por ejemplo en un electrocardiograma
(ECG).

El concepto de wavelets como lo conocemos fue propuesto por Jean Morlet y el equipo del
Centro de Fisica Tedrica de Marsella, Francia. Con el fin de descomponer y estudiar ciertas sefiales
sismicas, disefiaron la wavelet que se muestra en la Figura 7.4. Cabe sefialar que los métodos del
andlisis wavelet fueron desarrollados principalmente por Yves Meyer y sus colegas y que recién
en 1988 apareci6 el primer algoritmo de calculo y su autor fue Stéphane Mallat. Desde entonces
la investigacion acerca del andlisis Wavelet capté mucho interés y se destacan cientificos como
Ingrid Daubechies, quien en 1988 cred una familia de ondiculas o wavelets ortogonales con soporte
compacto. En la Figura 7.5 se muestra la wavelet de Daubechies de orden 6, utilizada con frecuencia,
por su similitud, para analizar electrocardiogramas.

Su aplicacién se extiende a campos muy diversos. En cuanto a las aplicaciones en medicina,
el andlisis con Wavelets permite interpretar los resultados de exdamenes médicos, facilitando el

diagnéstico de enfermedades.

En Astronomia, algunos ejemplos del uso de Wavelets son:
= para el procesado de imdgenes planetarias.
= en el estudio de la actividad solar.

= para la deteccion de periodos en curvas de luz.

Ingrid Daubechies

Es una matematica y fisica belga. Naci6 en 1954. Estudi¢ fisica en la Vrije Universiteit Brussel (la
universidad de Bruselas en lengua flamenca), en la que también se doctor6 en fisica tedrica en 1980
y estuvo investigando hasta 1987. Ese afio se trasladé a Estados Unidos con su marido, el también

matemadtico Robert Calderbank, recién casados. Daubechies trabajé en los Laboratorios Bell de Nueva
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Figura 7.4: Wavelet Morlet

Morlet Wavelet
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Figura 7.5: Wavelet de Daubechies y latido de un ECG
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Jersey y en varias universidades estadounidenses. En 1993 se convirti6 en profesora de matematica
computacional en la Universidad de Princeton hasta 2011, cuando trasladé a la Universidad Duke
como catedritica de matematicas. En 2012, el rey Alberto II de Bélgica la concedi6 el titulo de
Baronesa en reconocimiento de su trayectoria profesional. Es miembro de numerosas instituciones.
Fue la primera mujer matemdtica en presidir la Unién Matematica Internacional (desde 2011).
En 1993 fue admitida en la Academia Estadounidense de las Artes y las Ciencias, en 1998 en
la Academia Nacional de Ciencias de Estados Unidos y en 2012 en la Sociedad Estadounidense
de Matemadtica. Ademads, ha sido invitada a participar en numerosas ocasiones en el Congreso
Internacional de Matematicas. Daubechies ha recibido numerosos premios, entre ellos destacan el
Premio Nemmers en Matemadticas de 2012 y el Premio Fundacién BBVA Fronteras del Conocimiento
en Ciencias Basicas 2012 junto a David Mumford. En 2020 fue reconocida, junto a Emmanuel
Candes, Yves Meyer y Terence Tao, con el Premio Princesa de Asturias de Investigacion Cientifica
y Técnica por «haber realizado contribuciones pioneras y trascendentales a las teorias y técnicas
modernas del procesamiento matematico de datos y sefiales». En 2023 recibi6 el Premio Wolf en
Matematicas, por sus investigaciones sobre ondiculas y andlisis arménico aplicado. Daubechies es la
primera mujer que ha recibido este reconocimiento.

Ingrid Daubechies ha trabajado en el campo de las ondiculas, herramientas que permiten el
andlisis de sefiales para entregar informacion temporal y frecuencial de manera casi simultinea.
En 1988, Daubechies propuso la ondicula ortogonal con soporte compacto (conocida como
ondicula Daubechies), y en 1992 la ondicula biortogonal, también conocida como ondicula CDF
(Cohen-Daubechies-Feauveau), empleada para el formato de compresién de imagenes JPEG 2000.
Estas herramientas matemadticas permiten el avance e investigacion tanto en matematica tedrica
como aplicada, pues sirve en la demostracién tanto de teoremas como en el desarrollo de las
telecomunicaciones, tanto en audio como video, y hasta el &mbito biosanitario, con transmisién de

datos de imdgenes sanitarias. [11]






Apéndice: Ejercicios preliminares

¢, Puede un escalar no ser un ndmero?

1) AB.C.DEFGHILI.KLMNPQRS. TU.V.W.Y.Z

2) AA, B; AAA, C; AAAA, D; AAAAA, E; AAAAAA, F; AAAAAAA, G; AAAAAAAA, H;
AAAAAAAAA, T; AAAAAAAAA, J;

3) AKALB; AKAKALC; AKAKAKALD; AKALB; BKALC; CKALD; DKALE; BKELG;
GLEKB; FKDLJ; JLFKD.

4) CMALB; DMALC; IMGLB.

5) CKNLC; HKNLH; DMDLN; EMELN.

6) JLAN;:JKALAA;JKBLAB; AAKALAB; JKJLBN; JKJKJKJKLCN; FNKGLFG.

7) BPCLF; EPBLJ; FPJLFN.

8) FQBLC; JQBLE; FNQFLIJ.

9) CRBLI; BRELCB.

10) JPJLJRBLSLANN; JPJPJLIRCLTLANNN; JPSLT; JPTLIRD.

11) AQILU; UQJLAQSLYV.

12) ULWA; UPBLWB; AWDMALWDLDPU; VLWNA; VPCLWNC; VQILWNNA;
VQSLWNNNA; JPEWFGHLEFWGH; SPEWFGHLEFGWH.

13) GIWIHYHN; TKCYT; ZYCWADAF.
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14) DPZPWNNIBRCQC.
Mensaje interplanetario

Por Adrian Paenza

Supongamos que uno quisiera mandar un mensaje al espacio de manera tal de que en el caso de
que fuera interceptado por algin ser “inteligente”, éste pudiera leerlo e interpretarlo. ;Cémo hacer
para escribir algo en “ningtin idioma” en particular, pero lo suficientemente explicito como para que
cualquiera que pueda “razonar” lo pueda entender? Por otro lado, una vez superado el obstaculo del
“medio” o sistema de comunicacién que se va a utilizar y que suponga que “el otro” va a entender,
;,qué escribirle?, ;qué decirle?

Ahora quiero contar una historia que aparecié en un diario japonés. Alicia Dickenstein, una
de las mejores matematicas argentinas de la historia y actual profesora en Exactas (UBA), volvia
de un viaje por Oriente y me comentd lo que habia leido en la revista El Correo de la Unesco,
correspondiente al mes de enero de 1966. Me tomo el atrevimiento de reproducirlo textualmente ya
que el texto circula por Internet desde hace muchisimo tiempo:

“En 1960, Ivan Bell, un profesor de inglés en Tokio, oy6 hablar del ‘Project Ozma’, un plan de
escucha de los mensajes que por radio pudieran venirnos desde el espacio. Bell redacté entonces un
mensaje interplanetario de 24 simbolos, que el diario japonés Japan Times publicé en su edicién del
22 de enero de 1960, pidiendo a sus lectores que lo descifraran. El diario recibié cuatro respuestas.
De las cuatro, una correspondi6 a una lectora norteamericana que contestd usando el mismo c6digo
que habia sido utilizado para escribir el mensaje, agregando que ella vivia en Jupiter.”

Acéd usted se va a encontrar con el mensaje de Ivan Bell que, como dice el articulo original, es
“extraordinariamente facil de descifrar y mucho mas sencillo de lo que parece a simple vista”.

Es un ejemplo muy disfrutable y original de lo que puede hacer el intelecto humano, cualquiera
sea el idioma que hable: sélo se requiere tener voluntad de pensar. Acé va la lista de 14 frases. La

numeracion corre por cuenta mia, pero piense que cada linea es una parte del mensaje.

Ejercicios

Producto escalar. Norma. Distancia y dngulo entre vectores

1. Calcule i -V, siendo - el producto escalar, para ii = (2,—5,—1) y V= (3,2,-3).
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import numpy as np
a=np.array([2,-5,-1])
b=np.array ([3,2,-3])
print (a.dot (b))

2. Sea V= (1,-2,2,0), encuentre un vector unitario i en la misma direccién que V.

3. Demuestre que ¢ es ortogonal a d siendo ¢ = (4/3,-1,2/3) y d= (5, 6,-1).

4. Determine el coseno del dngulo entre los vectores i = (2,—5,—1) y v = (3,2,-3), en
estadistica este valor recibe el nombre de coeficiente de correlacion. Si el valor esta cercano
a 1 oa —1 los datos estan relacionados, de lo contrario si el valor es cercano a 0 no existe
ninguna relacion entre ellos.

5. Encuentre la distancia entre X = (1,—1,2) y y = (3,4, -5).

Sistemas de ecuaciones lineales

6. Dado el sistema

xi+x+x3=1

X1—2X3:3

a) Compruebe que la terna (2¢ 43, —3¢ — 2,¢) es solucién de dicho sistema, Vf € R .
b) Justifique por qué este sistema tiene infinitas soluciones.
¢) Indique como se clasifican los sistemas de ecuaciones lineales.

7. Dados los sistemas

X1 — X2 =3

2X1 —.x2:5
y

xX1—xp =3

X =—1

a) Compruebe que tienen el mismo conjunto solucidn.
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b) Comente la relacion entre los dos sistemas.

¢) Mencione cudles son las llamadas operaciones elementales.

. Encuentre los valores de b que hacen que el sistema

X1 +bxy—2x3=2

—x1+(b—=2)x+2x3 = -2

2x1 4+ 2%+ (b—4)x3 =3
Tenga:

1) Una solucién.
2) Infinitas soluciones.
3) Ninguna solucién.

4) Describa el conjunto solucién para a) y b)

Nota: utilice el algoritmo de eliminacién Gauss prestando atencion a la notacién de las

operaciones.

Matrices. Matrices semejantes. Matrices elementales.

El mismo Arthur Cayley relaté en 1894 que lo condujo a las matrices, el ser estas un modo

conveniente de expresar las ecuaciones
X =ax+by
y =cx+dx

Simbolizando esta transformacion lineal con dos variables independientes por medio de la

disposicion en cuadro.

a b
c d

A=

9. Halle las matrices X e Y sabiendo que:

X+Y =

2X -3Y =
-6 2 =5
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10. Si A es una matriz de tamafio m X n'y B es una matriz de tamafo n X p, el producto de las
matrices A y B es la matriz de tamafio m x p, cuyo elemento (i, k) es el producto escalar de la

fila i de la matriz A por la columna & de B, o sea:

(A-B)ix =X aijbji

1 2
) 2 —1 1
Dadas las matrices: , o111,
3 4

1 0 2 4 5

Analice en qué casos es posible calcular: A.B — B.A, a ésta diferencia se la conoce como

conmutador.

import numpy as np

a = np.array([[1, O],
[o, 111)
b = np.array([[4, 1],
[2, 211)
a @ b
11. Dadas las matrices
2 3
1 0 2 -1 3
4 5
01 5 1 0
A= y B=]1 1
001 2 -1
2 —1
00 2 3 5

Es de destacar que se simplifica el producto A.B si se utilizan submatrices.

12. Calcule A siendo:

0 1 0
1 0 O
A=
1 1 -1
1 -1 -1 1

13. Dados los tres pares de datos (0,—1), (1,1) y (2,0), halle el polinomio de grado menor o
igual que 2: p(x) = ag + ax+ a»x?, que pasa por dichos pares de datos. Evalue el valor de

p(x) six=2/3. Al polinomio resultante se lo denomina: Polinomio de Interpolacion.
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EJERCICIOS PRELIMINARES

Determinantes y matrices inversibles. Rango de una matriz.

14. ; Es invertible la siguiente matriz?:

1 -2 1
A= 2 3 5
—1 -5 -4

Justifique de varias maneras su conclusion.

15. Seala matriz:

2 -1 0
A=13 b 1
b 1 1

Encuentre los valores del pardmetro b para que A sea invertible.

16. Piense una forma conveniente para calcular el valor del determinante de una matriz cuadrada

y dselo para calcular el determinate de:

S O O N
w
(Y
[
(Y

17. Encuentre el rango de la matriz en funcién del pardmetro a:
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18. Demuestre que si
1) D = (d;;) una matriz diagonal de tamaifio n x n. Entonces Det (D) = [T} d;.
2) Si A es una matriz triangular del tamafio n x n, entonces Det(A) es producto de los elementos
diagonales de A.
3) Una matriz A de tamafio n x n, el Det(tA) = t"Det(A) siendo ¢ un escalar cualquiera.

19. Demuestre el siguiente enunciado:
Supongamos que i es una solucidn particular del sistema de ecuaciones lineales AX = b. Si
Vv es una solucién cualquiera del sistema homogéneo asociado AX = 0, entonces i + ¥ es

solucién de AX = b.

Aplique lo demostrado para el siguiente sistema:

x+z+tw=4
2xX+y—w=-2
3x+y+z=T7

Autoevaluacion

Verdadero o Falso.

1. Sila distancia entre # y V es igual a la distancia de & y —V, entonces # y V son ortogonales.
2. Sean las matrices A, B € R™ se verifica que AB' = A’B.

3. Consideremos la matriz A € R*3, donde

x 0 1
A=1]10 x O
1 0 «x

La ecuacion Det(A) = 0, no tiene solucion.

4. Sean A, B € R™", se verifica la relacién (A + B)? =A% +2AB + B2.

5. Sea A € R™" una matriz invertible se verifica que Det(A~!') = —Det(A) = 1.

6. Sea AX= b un sistema de m ecuaciones con n incdgnitas, si se verifica rango de A es n, entonces
el sistema es compatible determinado.

7. Sea A € R™ de forma tal que A% = A, se verifica que Det(A) = 0 o Det(A) = 1.






Glosario

C([a, b] espacio vectorial de las funciones continuas en [a, b]

ColA espacio vectorial generado por los vectores columna de la matriz A.

Det(A) o | A | determinante de la matriz A.

d(X,y) = ||X — || distancia entre los vectores X e y.
dim(V) dimensi6n del espacio vectorial V.

E espacio euclideo

E}. proyecciones tales que Im(E;) = N(T — A;1).

E,, espacio propio correspondiente a 4;.

f* transformacién adjunta de una transformacion lineal f.
FilA espacio vectorial generado por los vectores fila de la matriz A.
A(X,y) forma bilineal

Im(T) imagen de la transformacién lineal 7'

(Z) subespacio generado por el vector 7

L(S) subespacio vectorial de V generado por S.

L(V) espacio vectorial de transformaciones lineales de V en V (endomorfismos).

L(V,W) espacio vectorial de transformaciones lineales de V en W.
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mp polinomio minimal.

N(T) nicleo de la transformacion lineal 7.

Nul(A) espacio nulo de la matriz A.

Px [x] polinomios en x, con coeficientes en K.

PI((n) [x] polinomios en x, con coeficientes en K de grado < n.
P7 (1) polinomio caracteristico de 7.

Pg p matriz del cambio de base de B a B.

Ps(V) proyeccion ortogonal de ¥ sobre el subespacio S.

o (X,¥) = (X,¥) producto interno

r(T) rango de la matriz T'.

S = (V) subespacio generado por el vector V.

S+ complemento ortogonal de S en un espacio vectorial (V con producto interno).
Tr(A) traza de la matriz A

V* espacio dual de V.
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