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Prólogo

Este libro es el resultado de enseñar durante muchos años los temas de Álgebra Lineal tanto

en la Facultad de Ingeniería como en la Facultad de Ciencias Astronómicas y Geofísicas y de las

contribuciones importantes que han realizado lxs estudiantes y que han servido notablemente al

mejoramiento de mis clases.

En el texto, los desarrollos teóricos y las técnicas se presentan de manera equilibrada. Se

describen con detalle y se complementan con numerosos ejemplos, enfatizando la importancia de la

interpretación geométrica. La Licenciada en Astronomía Lucía Rizzo Buschiazzo, contribuyó con la

elaboración de los problemas de aplicación y de las guías de trabajos prácticos.

Consideramos que el material redactado es adecuado como apoyo y guía de estudio para el

desarrollo de la asignatura Álgebra Lineal, cursada por lxs estudiantes de segundo año de la carrera

Licenciatura en Astronomía.
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Introducción

Introducción

El Álgebra Lineal es una rama de la Matemática en la que se introducen numerosos conceptos

abstractos. Es una disciplina de gran utilidad en la actualidad, en la resolución de problemas

complejos y de grandes dimensiones.

Este libro abarca los temas básicos de Álgebra Lineal como son: espacios vectoriales, transforma-

ciones lineales, diagonalización de una matriz y espacios vectoriales con producto interno. Si bien

los temas tratados son los mismos que aparecen en la mayoría de los textos introductorios al Álgebra

Lineal, el punto de vista con que se enfoca la teoría y la ejercitación se aparta del enfoque tradicional,

y se enfatizan las aplicaciones. En todos los temas se establece la conexión fundamental con la

interpretación geométrica. Se presenta una gran variedad de ejemplos y se proponen, además de

ejercicios, actividades de investigación especialmente diseñadas para estudiantes de Astronomía. El

texto tiene además un capítulo de cálculo tensorial y otro capítulo que describe aplicaciones en la

resolución de sistemas ecuaciones diferenciales y en la aproximación de funciones.

En cuanto al origen, la palabra Álgebra procede del título de un tratado de un matemático,

geógrafo y astrónomo persa conocido como Al-Juarismi. Vivió aproximadamente entre los años 780

y 850, en un tiempo de esplendor del mundo islámico. Su tratado, el Hisab al-yabr wa’l muqabala es

un Compendio de cálculo por restauración y reducción [1]:
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Al-yabr

Al-yabr, restauración, la palabra del título que ha dado origen al término álgebra, es una de

las operaciones básicas que ofrece para resolver ecuaciones y que consiste en pasar los términos

negativos de un lado de la ecuación como positivos al otro. Mientras que la otra operación, la

muqabala, consiste en simplificar la ecuación agrupando los términos similares.

La historia del Álgebra Lineal moderna se remonta a mediados del siglo XIX con los trabajos de

William Hamilton, quien introdujo el uso del término vector. Sin embargo, fue recién en la segunda

mitad del siglo XX, cuando se incorporó al Álgebra Lineal como una materia básica e introductoria

en las matemáticas universitarias.

Por sus múltiples aplicaciones, el estudio del Álgebra Lineal cobra cada día más importancia.

Su teoría es extensamente usada en el análisis funcional, en el análisis vectorial y en las ecuaciones

diferenciales, entre otras áreas. Cabe señalar que sus numerosas aplicaciones no se restringen al

campo de las ciencias exactas, sino que se extienden también al campo de las ciencias naturales y de

las ciencias sociales.

Con la escritura de este libro he intentado hacer interesantes y accesibles los temas de Álgebra

Lineal, equilibrando los desarrollos teóricos con las técnicas que se utilizan en las aplicaciones,

pretendiendo proporcionar a lxs estudiantes las habilidades algebraicas necesarias para resolver

problemas. He resaltado las interpretaciones geométricas de conceptos importantes, como las

transformaciones lineales y el producto interno.

El texto tiene siete capítulos, con una breve introducción al comienzo de cada uno de ellos. Para

facilitar la lectura, en todos los capítulos se ha indicado con i a las observaciones importantes.

Además, para una mejor comprensión de los temas, se han incluido numerosos ejemplos.

A continuación de la teoría, en cada capítulo, y fruto de la colaboración de Lucía Rizzo

Buschiazzo, se proponen actividades a desarrollar por lxs estudiantes. Su tarea consistió en el diseño

de un problema de aplicación, la selección de ejercicios y la elaboración de una autoevaluación en

cada capítulo. Propuso, además, una serie de ejercicios para realizar como precalentamiento antes de

abordar el libro que se incluye en el apéndice. Estos temas, como también los relacionados con las

plantillas de edición e imágenes de este proyecto, se definieron a partir del intercambio de ideas y de

un trabajo conjunto.

Por último, y para estimular al lector el interés sobre el desarrollo histórico de los temas, se

incluyen varias notas históricas dispersas a lo largo del libro, y semblanzas breves sobre científicos
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que han realizado aportes muy valiosos al desarrollo del Álgebra Lineal.

Template: the Legrand Orange Book Template

http://www.latextemplates.com/template/the-legrand-orange-book

Imagen en la portada de los capítulos: Nebulosa Roseta, IC 1396B,

obtenida por el relevamiento fotométrico IPHAS/N, preparada por Nick Wright.





1. Espacios Vectoriales

El concepto de espacio vectorial generaliza las propiedades que tienen las operaciones de suma

y producto por escalares para los vectores de R2 y R3. Abordaremos en este capítulo la estructura

de espacio vectorial, objeto básico de estudio del Álgebra Lineal. A sus elementos se los denomina

vectores, independientemente de su naturaleza.

1.1 Definición de espacio vectorial. Ejemplos

El conjunto de los números reales y el conjunto de los números complejos, con los cuales ya se

trabajó, tienen propiedades similares. En ambos conjuntos pueden definirse dos operaciones + y .

que satisfacen ciertas propiedades y reciben el nombre de cuerpo. Trabajaremos tanto con el cuerpo

de los reales, R como con el cuerpo de los complejos C, denotándolos por K. Al estudiar vectores

en el plano y en el espacio, se ha definido la suma de vectores y la multiplicación por un número

real, y se vieron las propiedades que satisfacían. También para el conjunto de polinomios. Cuando

en varios conjuntos distintos aparecen estructuras similares es conveniente axiomatizar éstas y darles

un nombre al ente resultante, con la ventaja de que estudiando esta estructura, quedan estudiadas

todas las estructuras que en ella se encuadran. Cuando en un conjunto se da una estructura similar a

la de los ejemplos anteriores, se dice que se tiene un espacio vectorial.
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Figura 1.1: u⃗ + v⃗ = v⃗ + u⃗

Definición 1.1.1 Un conjunto V , cuyos elementos se denotan mediante u⃗, v⃗, w⃗, se dice que es

un espacio vectorial sobre el cuerpo K, si en él se han definido dos operaciones: la suma, de

manera que a cada par de elementos u⃗ y v⃗ de V se le hace corresponder el elemento u⃗+ v⃗ de V ,

denominado suma de u⃗ y v⃗, y la multiplicación por escalares, de manera que a todo elemento u⃗

de V y a todo elemento a de K se le hace corresponder el elemento a⃗u de V , y se satisfacen las

siguientes propiedades:

1. Conmutativa u⃗ + v⃗ = v⃗ + u⃗ ∀ u⃗ y v⃗ ∈ V .

2. Asociativa u⃗ +( v⃗ + w⃗ ) = ( u⃗ + v⃗ )+ w⃗ , ∀ u⃗, v⃗ y w⃗ ∈ V .

3. Existe un elemento de V , designado por 0⃗ y denominado elemento neutro, tal que u⃗ + 0⃗ = u⃗

∀ u⃗ ∈ V .

4. Para todo elemento u⃗ ∈ V , existe un elemento designado por −u⃗ y denominado elemento

opuesto de u⃗, tal que u⃗ + (−u⃗) = 0⃗

5. 1 u⃗ = u⃗ ∀ u⃗ ∈ V , donde 1 denota el elemento unidad del cuerpo K.

6. a(b u⃗ ) = (ab) u⃗ ∀ u⃗ ∈ V , y ∀ a y b ∈ K.

7. (a+b) u⃗ = a u⃗ +b u⃗ ∀ u⃗ ∈ V , y todo a y b ∈ K.

8. a( u⃗ + v⃗ ) = a u⃗ +a v⃗ ∀ u⃗, v⃗ ∈ V , y ∀ a ∈ K.

En la Figura 1.1 se muestra la propiedad conmutativa 1.

i

Los elementos del espacio vectorial reciben el nombre genérico de vectores.
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Las primeras cuatro propiedades se refieren a la suma en V , las dos que siguen a la

multiplicación de elementos de V por escalares y las dos últimas son las propiedades

distributivas de una operación con respecto a la otra.

Si K es R se dice que V es un espacio vectorial real, y si K es C se dice que es un

espacio vectorial complejo.

■ Ejemplo 1.1 R es un espacio vectorial sobre Q, C es un espacio vectorial sobre R y sobre Q. R2

o R3 (vectores en el plano, o en el espacio), con las operaciones usuales son espacios vectoriales

sobre R. ■

■ Ejemplo 1.2

Kn = {(x1,x2, · · · ,xn), x j ∈ K, j = 1,2, · · · ,n}

con las operaciones usuales es un espacio vectorial sobre K. En particular, Rn es un espacio vectorial

real y Cn es un espacio vectorial complejo. ■

■ Ejemplo 1.3 Sea PK [x] el conjunto de todos los polinomios en la variable x sobre el cuerpo K, es

decir, todos los elementos de la forma

p(x) = a0 +a1x+a2x2 + · · ·+anxn + · · ·

donde los coeficientes a j ∈ K con las operaciones suma de polinomios y multiplicación por escalares.

PK [x] es un espacio vectorial sobre K. ■

■ Ejemplo 1.4 Sea C([a,b]) el conjunto de todas las funciones continuas definidas en el intervalo

real [a,b], con valores en R, { f : [a,b]→ R} con las operaciones suma de funciones,

( f +g)(x) = f (x)+g(x),

y multiplicación de una función por un escalar,

(a f )(x) = a( f (x)).

Puede comprobarse fácilmente que C([a,b]) es un espacio vectorial. El elemento neutro es la función

nula. ■

■ Ejemplo 1.5 El conjunto S(A) de soluciones del sistema homogéneo AX⃗ = 0⃗, donde A ∈ Rm×n y

X⃗ = (x1,x2, · · · ,xn) ∈ Rn es un espacio vectorial sobre R. Es un subespacio de Rn. ■
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i Los siguientes son algunos resultados que se deducen de las propiedades que definen un espacio

vectorial y se dejan como ejercicio para el lector.

• El elemento neutro de un espacio vectorial es único.

• El opuesto de cada elemento en un espacio vectorial es único.

• Para todo u⃗ de un espacio vectorial V , 0.⃗u = 0⃗.

• Para todo elemento u⃗ de un espacio vectorial V , (−1)⃗u es su opuesto.

• En todo espacio vectorial V , a 0⃗ = 0⃗, donde a ∈K y 0⃗ es el elemento neutro de V .

1.2 Subespacio vectorial

Algunos subconjuntos de un espacio vectorial V son a su vez espacios vectoriales con las

operaciones definidas en V ; estos subconjuntos especiales reciben el nombre de subespacios

vectoriales de V .

Definición 1.2.1 Un subespacio vectorial de un espacio vectorial V es un subconjunto S no vacío

de V , que a su vez es un espacio vectorial con las operaciones definidas en V .

i Para demostrar que un subconjunto S es un subespacio vectorial no es necesario comprobar de

nuevo que satisface todas las propiedades del espacio vectorial. Es suficiente demostrar que

contiene al vector nulo, que la suma de dos elementos de S es otro elemento de S, y que la

multiplicación de un elemento de S por un elemento del cuerpo K, es otro elemento de S:

1. 0⃗ ∈ S

2. Si u⃗ y v⃗ ∈ S, u⃗ + v⃗ ∈ S

3. Si a ∈ K y u⃗ ∈ S, a u⃗ ∈ S

■ Ejemplo 1.6 Sea V un espacio vectorial sobre K. S = {⃗0} es un subespacio de V . ■

■ Ejemplo 1.7 V es un subespacio de V . ■

■ Ejemplo 1.8 Veamos cómo caracterizar los subespacios de R2.

1. S = {(0,0)} es un subespacio.

2. Supongamos S un subespacio que contiene algún elemento u⃗ no nulo. Entonces para todo a

∈ R, a⃗u ∈ S. Si esos son todos los elementos de S, S es un subespacio y gráficamente es una

recta por el origen.

3. Si S contiene a un v⃗ que no es a⃗v, contiene a sus múltiplos a⃗v. Luego contiene a dos rectas Lu⃗

y L⃗v por el origen. Por la regla del paralelogramo cualquier w⃗ ∈ R2 es suma de un elemento

de Lu⃗ y uno de L⃗v. En consecuencia S = R2.
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Figura 1.2: Recta que no pasa por el origen

Los subespacios de R2 son entonces, el vector nulo, las rectas por el origen y todo R2. ■

■ Ejemplo 1.9 Sea H = {(x,y) tales que y = mx+b m,b∈R, b ̸= 0} (Ver Figura 1.2). H no es un

subespacio de R2. Ya que si (x1,y1) y (x2,y2) son 2 puntos sobre la recta y = mx+b, y1 = mx1 +b e

y2 = mx2 +b, se tiene que y1 + y2 = m(x1 + x2)+2b, y entonces, y1 + y2 /∈ H. O bien, directamente,

no es subespacio de R2 porque (0,0) /∈ H. ■

■ Ejemplo 1.10 Si v⃗ ∈ V , S = {a⃗v,a ∈ K} es un subespacio de V . Este subespacio se denomina el

subespacio generado por v⃗, y se nota S = ⟨⃗v⟩. ■

Proposición 1.2.1 Sean v⃗1, v⃗2, · · · , v⃗n ∈ V . Entonces S = {a1⃗v1 +a2⃗v2 + · · ·+an⃗vn, ai ∈ K} es

un subespacio de V .

Demostración:

0⃗ ∈ S ya que 0⃗ = 0⃗v1 + 0⃗v2 + · · ·+ 0⃗vn, 0 ∈ K.

Si u⃗ = a1⃗v1 +a2⃗v2 + · · ·+an⃗vn, ai ∈ K y w⃗ = b1⃗v1 +b2⃗v2 + · · ·+bn⃗vn, bi ∈ K, entonces

u⃗+ w⃗ = (a1+b1)⃗v1+(a2+b2)⃗v2+ · · ·+(an+bn)⃗vn, (ai+bi) ∈K, por lo tanto, u⃗+ w⃗∈ S.

Si α ∈ K α u⃗ = (αa1)⃗v1 +(αa2)⃗v2 + · · ·+(αan)⃗vn, (αai) ∈ K, por lo tanto α u⃗ ∈ S

Se tiene, entonces, que S es un subespacio de V . □

i El espacio vectorial R2 no es un subespacio de R3. R2 ni siquiera es un subconjunto de R3. En

cambio el conjunto
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Figura 1.3: El plano x1x2, (x3 = 0) es un subespacio de R3

S =




x1

x2

0

 x1, x2 ∈ R


sí es un subconjunto y un subespacio de R3 (Ver Figura 1.3).

■ Ejemplo 1.11 P(n)
R [t] (polinomios en t de grado ≤ n, con coeficientes reales) es un subespacio

vectorial de PR [t]; a su vez, PR [t] es un subespacio vectorial del espacio vectorial de las funciones

continuas en R. ■

■ Ejemplo 1.12 Sea S = {⃗u1, u⃗2, · · · , u⃗n} un conjunto de n vectores de un espacio vectorial V .

Consideremos como en el Ejemplo 1.10 pero con más vectores. Se define el conjunto de todas las

combinaciones lineales de los vectores de S,

L(S) = L(⃗u1, u⃗2, · · · , u⃗n) =

{
n

∑
j=1

a j⃗u j, a j ∈ K, j = 1,2, · · · ,n

}
El conjunto L(S) es un subespacio vectorial de V (ver Proposición 1.2.1), que recibe el nombre de

subespacio vectorial generado por S.

En R3, si v⃗1 y v⃗2 son dos vectores tales que uno no es múltiplo del otro, entonces, L(⃗v1, v⃗2,) es

un plano que pasa por el origen. Es un subespacio de R3; se muestra en la Figura 1.4.

■
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Figura 1.4: Subespacio generado por v⃗1 y v⃗2

■ Ejemplo 1.13 Sean a1,a2, · · · ,an ∈ K fijos. S = {(x1,x2, · · · ,xn) ∈ Kn,a1x1 +a2x2 + · · ·+anxn =

0} es un subespacio de Kn. ■

■ Ejemplo 1.14 Dada una matriz A ∈ Rm×n , y de rango r, todas las soluciones del sistema de

ecuaciones homogéneo

AX⃗ = 0⃗, X⃗ ∈ Rn

constituyen un subespacio vectorial de Rn, conocido como espacio nulo de la matriz A. Se anota

Nul(A) y se muestra en la Figura 1.5.

Para el sistema homogéneo:


2y− z+w = 0

3x+ y+10z+5w = 0

x+3z+w = 0

luego de realizar operaciones elementales sobre las filas de la matriz de coeficientes del sistema

(método de eliminación gaussiana), se llega a la matriz escalonada:
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Figura 1.5: Espacio nulo de una matriz A


3 1 10 5

0 2 −1 1

0 0 −1/2 1/2



de donde la solución es z = −w, y = −w y x = 2w. El subespacio de soluciones del sistema

homogéneo es, entonces,

S = Nul(A) = ⟨(2,−1,−1,1)⟩

■

i Así como vimos que las rectas que no pasan por el origen no son un subespacio de R2 (Ejemplo

1.9), las soluciones de un sistema no homogéneo

AX⃗ = b⃗, b⃗ ̸= 0⃗

son un subconjunto pero no un subespacio de Rn.
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William Rowan Hamilton (1805 - 1865)

Fue un matemático británico. Fue uno de los fundadores de la escuela británica moderna de

matemáticas puras e hizo importantes contribuciones al desarrollo de la óptica, la dinámica, y el

álgebra. Su descubrimiento del cuaternión, junto con su sistematización de la dinámica, son sus

trabajos más conocidos. Este último trabajo sería decisivo en el desarrollo de la mecánica cuántica,

donde un concepto fundamental llamado hamiltoniano lleva su nombre. Hamilton fue el cuarto de

los nueve hijos. Vivían en Dublín. Se dice que Hamilton demostró un inmenso talento a una edad

muy temprana. Su tío observó que Hamilton, había mostrado una asombrosa habilidad para aprender

idiomas. A la edad de siete años, ya había hecho un progreso considerable con el hebreo, y antes

de los trece años, bajo la supervisión de su tío (un lingüista), había adquirido conocimientos casi

en tantos idiomas como años de edad tenía (idiomas europeos clásicos y modernos, y persa, árabe,

hindustaní, sánscrito e incluso maratí y malayo). Hamilton es reconocido como uno de los científicos

más destacados de Irlanda, y a medida que la nación se vuelve más consciente de su herencia

científica, cada vez se lo celebra más. Se dice que se le permitía pisar el césped de la Universidad,

algo totalmente prohibido. Este hecho camina entre la realidad y la ficción. Posiblemente ocurriera

que, absorto en sus meditaciones, descuidara esta prohibición y accidentalmente caminase por los

jardines. Esta anécdota seguramente sirve para dar idea de la categoría de Hamilton como uno de

los grandes matemáticos de su tiempo y de la historia. El Instituto Hamilton está dedicado a la

investigación sobre matemáticas aplicadas en la Universidad Maynooth. Irlanda emitió dos sellos

conmemorativos en 1943 para celebrar el centenario del anuncio de los cuaterniones. El Banco

Central de Irlanda acuñó en 2005 una moneda de plata conmemorativa de 10 euros para conmemorar

los 200 años desde su nacimiento. Los talleres de mantenimiento más nuevos del sistema de tranvías

de Dublín (LUAS), llevan su nombre.

En su juventud, Hamilton tuvo un telescopio y se convirtió en un experto en el cálculo de

fenómenos celestes, como por ejemplo, la determinación de la visibilidad de los eclipses de luna. Fue

elegido Astrónomo Real de Irlanda y se instaló en el Observatorio de Dunsink, donde permaneció

hasta su muerte en 1865. Hoy en día, Hamilton no es reconocido como un gran astrónomo, aunque

durante su vida si gozó de esta consideración. Sus conferencias de introducción a la astronomía

fueron famosas; además de sus alumnos, atrajeron a muchos eruditos y poetas, e incluso a damas;

en aquellos días una hazaña notable. La poetisa Felicia Hemans escribió su poema "La oración del

estudiante solitario"después de escuchar una de sus conferencias. [28]
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1.3 Base y dimensión de un espacio vectorial

Sea V un espacio vectorial sobre un cuerpo K; un número finito de vectores v⃗1, v⃗2, , · · · , v⃗n se dice

que son linealmente dependientes si existen n elementos de K, a1,a2, , · · · ,an no todos nulos, tal que

a1⃗v1 +a2⃗v2 + · · ·+an⃗vn = 0⃗

Si los vectores v⃗1, v⃗2, , · · · , v⃗n no son linealmente dependientes, se dice que son linealmente

independientes; por lo tanto, los vectores v⃗1, v⃗2, , · · · , v⃗n son linealmente independientes si cualquier

igualdad como la anterior implica que todos los elementos de K, a1,a2, , · · · ,an son nulos.

Si en la igualdad anterior an es no nulo, podemos escribir

v⃗n =−
a1

an
v⃗1−

a1

an
v⃗2 + · · ·−

an−1

an
v⃗n−1

y decimos que v⃗n es una combinación lineal de los vectores v⃗1, v⃗2, , · · · , v⃗n−1. En general, se dice que

v⃗ es combinación lineal de los vectores v⃗1, v⃗2, · · · , v⃗k, si existen a1,a2, , · · · ,ak ∈ K tal que

v⃗ = a1⃗v1 +a2⃗v2 + · · ·+ak⃗vk

Un conjunto finito de vectores {⃗v1, v⃗2, · · · , v⃗k} de un espacio vectorial V se dice que es un sistema

de generadores de V si todo elemento de V se puede escribir como una combinación lineal de los

vectores v⃗1, v⃗2, · · · , v⃗k.

Proposición 1.3.1 Un conjunto finito de vectores linealmente independientes de un espacio

vectorial V no puede contener un subconjunto de vectores que sean linealmente dependientes.

Demostración:

Si {⃗v1, v⃗2, · · · , v⃗n} son linealmente independientes y suponemos que {⃗v1, v⃗2, · · · , v⃗k}, k ≤ n

son linealmente dependientes se tendría

v⃗ = a1⃗v1 +a2⃗v2 + · · ·+ak⃗vk = 0⃗

con no todos los a j nulos; basta observar que, entonces,

a1⃗v1 +a2⃗v2 + · · ·+ak⃗vk + 0⃗vk+1 + · · ·+ 0⃗vn = 0⃗

con lo cual los originales serían linealmente dependientes. □
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Antes de exponer algunos ejemplos es conveniente realizar algunas observaciones.

i

Todo conjunto finito de vectores que contiene al elemento neutro (o nulo) es linealmente

dependiente; basta observar que

a⃗0+0v⃗2 + · · ·+0v⃗n = 0⃗

para cualquier a ∈ K.

Tres vectores no nulos de R2 son siempre linealmente dependientes.

En general, n+1 vectores de Kn son siempre linealmente dependientes.

■ Ejemplo 1.15 Si u⃗1 = (1,0,1), u⃗2 = (−1,1,0) y u⃗3 = (1,1,2), L(⃗u1, u⃗2, u⃗3) es un subespacio

vectorial de R3. No es todo R3 porque estos vectores no son linealmente independientes, ya que, se

anula el determinante de la matriz que tiene esos vectores como filas:∣∣∣∣∣∣∣∣
1 0 1

−1 1 0

1 1 2

∣∣∣∣∣∣∣∣= 0

Para hallar el subespacio que generan esos vectores se realizan operaciones elementales sobre

las filas, y se llega a la matriz escalonada:


1 0 1

0 1 1

0 0 0



La última fila de ceros indica que el vector u⃗3 es combinación lineal de u⃗1 y u⃗2. Entonces los

vectores generados por u⃗1, u⃗2 y u⃗3 son de la forma α(1,0,1)+β (0,1,1) = (α,β ,α +β ) por lo que

L(⃗u1, u⃗2, u⃗3) es el plano por el origen z = x+ y. Considerando la matriz que tiene los vectores u⃗i

como filas, L(S) es el espacio generado por las filas de la matriz, conocido como espacio fila. ■

■ Ejemplo 1.16 Las funciones p0(t) = 1, p1(t) = t, p2(t) = t2, · · · , pn(t) = tn, son linealmente

independientes, ya que si tenemos la igualdad

a01+a1t +a2t2 + · · ·+antn = 0
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para todo t ∈ R, resultan a0 = a1 = a2 = · · ·an = 0.

Para demostrarlo basta tomar n puntos ti distintos y resolver el sistema. Tiene como única

solución la trivial. El determinante del sistema es conocido como determinante de Vandermonde. ■

■ Ejemplo 1.17 Las funciones f (t)= cos2(t), g(t)= sen2(t) y h(t)= 1 son linealmente dependientes

en C([0,2π]) ya que cos2(t) + sen2(t) = 1, y entonces es posible escribir al vector nulo con

coeficientes no todos nulos

1cos2(t)+1sen2(t)+(−1)1 = 0.

Por otro lado, ejemplos de funciones linealmente independientes son f1(t) = ek1t y f2(t) = ek2t

con k1 ̸= k2. ■

i La independencia lineal de funciones es de importancia para describir el conjunto solución de

ecuaciones diferenciales y se determina a partir del cálculo de un determinante conocido como

Wronskiano (ver [20]).

■ Ejemplo 1.18 S= {cos(nx),sen(mx)}n,m∈N es un conjunto de funciones linealmente independiente

en C([0,2π]). ■

i Al desarrollo en serie de una función en términos de las funciones cos(nx) y sen(mx) con

n,m ∈ N se lo conoce como Serie de Fourier.

Definición 1.3.1 Un conjunto finito de vectores {⃗e1, e⃗2, · · · , e⃗n} se dice que es una base de un

espacio vectorial V si se cumplen las dos condiciones siguientes:

1. Los vectores e⃗1, e⃗2, · · · , e⃗n son linealmente independientes.

2. Todo elemento de V es una combinación lineal de los vectores e⃗1, e⃗2, · · · , e⃗n.

i
La segunda condición de esta definición es equivalente al hecho de que el conjunto de

vectores {⃗e1, e⃗2, · · · , e⃗n} sea un sistema de generadores de V . Sin embargo, no todo sistema de

generadores de un espacio vectorial V es una base. Se deja al lector pensar ejemplos.

■ Ejemplo 1.19 Si e⃗ j = (0,0, · · · ,1, · · · ,0) ∈ Kn, donde 1 ocupa el lugar j, se tiene que e⃗1, e⃗2, · · · , e⃗n

son linealmente independientes y además si x⃗ = (x1,x2, · · · ,xn) ∈ Kn, se tiene que

x⃗ =
n

∑
j=1

x j⃗e j
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Figura 1.6: Base canónica de R3

Por lo tanto {⃗e1, e⃗2, · · · , e⃗n} es una base de Kn, que recibe el nombre de base canónica de este

espacio. En la Figura 1.6 se muestra para el caso n = 3.

■

■ Ejemplo 1.20 Dada una matriz A de m filas y n columnas, y de rango r, todas las soluciones del

sistema de ecuaciones homogéneo

AX⃗ = 0⃗, X⃗ ∈ Rn

constituyen un subespacio vectorial de Rn generado por n− r vectores. Recordar que r es la cantidad

de pivotes al realizar operaciones elementales sobre las filas de la matriz en eliminación gaussiana.

En el Ejemplo 1.14 se tiene que m = 3, n = 4 y el rango r = 3. S = Nul(A) = ⟨(2,−1,−1,1)⟩,
es un subespacio de dimensión n− r = 4−3 = 1. ■

■ Ejemplo 1.21 El conjunto {1, t, · · · , tn} es una base de P(n)
K [t], ya que son polinomios linealmente

independientes de acuerdo con el resultado del Ejemplo 1.16 (para K = R), y todo polinomio p de

grado inferior o igual a n puede escribirse de la forma

p(t) = a01+a1t +a2t2 + · · ·+antn

Para para el caso n = 2 se tiene la base
{

1, t, t2
}

que se muestra en la Figura 1.7. ■
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Figura 1.7: Base canónica de P(2)
R [t]

i El conjunto {1, t, · · · , tn} no es una base de PK [t], ya que el polinomio p(t) = tn+1 no es

combinación lineal de estos. Se puede ver que ningún conjunto finito de polinomios genera a

PK [t] (ver [20]) .

Coordenadas de un vector

Si {⃗e1, e⃗2, · · · , e⃗n} es una base de un espacio vectorial V y v⃗ es cualquier elemento de V podemos

escribir a v⃗ como combinación lineal de e⃗1, e⃗2, · · · , e⃗n, de la forma

v⃗ = a1⃗e1 +a2⃗e2 + · · ·+an⃗en

con a j ∈ K. Los números a1,a2, · · · ,an se denominan coordenadas de v⃗ con respecto a la base

e⃗1, e⃗2, · · · , e⃗n.

Proposición 1.3.2 Las coordenadas de un vector v⃗ con respecto a una base son únicas.

Demostración:

Si suponemos se tienen coordenadas ai y bi, i = 1, · · ·n para un mismo vector v⃗,
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v⃗ = a1⃗e1 +a2⃗e2 + · · ·+an⃗en

y

v⃗ = b1⃗e1 +b2⃗e2 + · · ·+bn⃗en

se tiene que

0⃗ = (b1−a1)⃗e1 +(b2−a2)⃗e2 + · · ·+(bn−an)⃗en

Como e⃗1, e⃗2, · · · , e⃗n son linealmente independientes, b1 = a1, b2 = a2, · · · , bn = an. □

■ Ejemplo 1.22 Sea V = R3 y sea E la base canónica. Las coordenadas de un vector v⃗ se anotan

(x,y,z)E = (x,y,z).

Si en lugar de la base canónica la base es B = {(1,1,1),(1,1,0),(1,0,0)}, las coordenadas de

un vector (x,y,z) son (z,y− z,x− y)B y se escribe la igualdad (x,y,z) = (z,y− z,x− y)B.

Esto se obtiene escribiendo (x,y,z) como combinación lineal de los vectores de B,

(x,y,z) = a(1,1,1)+b(1,1,0)+ c(1,0,0),

y resolviendo el sistema lineal:


a+b+ c = x

a+b+0c = y

a+0b+0c = z

■

Un mismo espacio vectorial puede poseer varias bases; nuestro próximo objetivo es demostrar

que todas ellas han de poseer el mismo número de elementos.

Proposición 1.3.3 Si V es un espacio vectorial que posee una base con n elementos, cualesquiera

n+1 vectores de V son linealmente dependientes.

Demostración:

Sea {⃗e1, e⃗2, · · · , e⃗n} una base de V y sean x⃗1, x⃗2, · · · , x⃗n, x⃗n+1, n+1 vectores de V ,

que pueden escribirse como combinación lineal de la base dada:
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x⃗1 = ∑
n
j=1 x j1⃗e j, x⃗2 = ∑

n
j=1 x j2⃗e j, x⃗n = ∑

n
j=1 x jn⃗e j, y x⃗n+1 = ∑

n
j=1 x jn+1⃗e j

Se quiere ver si son linealmente independientes. Nos preguntamos si existen ai no todos nulos

tales que

a1⃗x1 +a2⃗x2 + · · ·+an⃗xn +an+1⃗xn+1 = 0⃗

Reemplazando, se tiene

a1(∑
n
j=1 x j1⃗e j)+a2(∑

n
j=1 x j2⃗e j)+an(∑

n
j=1 x jn⃗e j)+an+1(∑

n
j=1 x jn+1⃗e j) = 0⃗

Al desarrollar las sumas anteriores y reordenar sacando factor común los vectores e⃗ j, se

obtiene

e⃗1(x11a1 + x12a2 + · · ·+ x1nan + x1n+1an+1) = 0

e⃗2(x21a1 + x22a2 + · · ·+ x2nan + x2n+1an+1) = 0

· · ·

e⃗n(xn1a1 + xn2a2 + · · ·+ xnnan + xnn+1an+1) = 0

Los términos entre paréntesis constituyen un sistema homogéneo de n ecuaciones con n+1

incógnitas, a1, a2, · · · , an+1 por lo que existe una solución no trivial (ai no todos nulos).

Se concluye, entonces, que los vectores x⃗1, x⃗2, · · · , x⃗n, x⃗n+1 son linealmente dependientes.

□

i De la proposición anterior se deduce un resultado un poco más general: en un espacio vectorial

V que posee una base con n elementos, cualesquiera m vectores de V , con m> n son linealmente

dependientes. Basta observar que n + 1 de los m vectores dados han de ser linealmente

dependientes, debido a la proposición anterior, y por lo tanto, todos ellos han de formar

un conjunto de vectores linealmente dependiente. Este resultado se aplica en la demostración

del teorema que sigue.
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Jean-Baptiste Joseph Fourier (1768 - 1830)

Fue un matemático y físico francés conocido por sus trabajos sobre la descomposición de

funciones periódicas en series trigonométricas convergentes llamadas Series de Fourier, método

con el cual consiguió resolver la ecuación del calor. La transformada de Fourier recibe su nombre

en su honor. Fue el primero en dar una explicación científica al efecto invernadero en un tratado.

Inició sus estudios en la Escuela Superior Benedictina de Auxerre, orientándose inicialmente a la

carrera religiosa, hasta que el monarca Luis XV la convirtió en academia militar. Jean-Baptiste fue

seleccionado como estudiante en la institución ya reformada, donde permanecería hasta los 14 años

de edad, y empezó a ser instruido en idiomas, música, álgebra y matemáticas, materia en la que

destacó, lo que le encaminó a dedicarse al estudio de las ciencias. Posteriormente, participó en la

Revolución francesa y, gracias a la caída del poder de Robespierre, se salvó de ser guillotinado. Se

incorporó a la Escuela Normal Superior de París en donde tuvo entre sus profesores a los matemáticos

Joseph Louis Lagrange y Pierre Simon Laplace. Posteriormente, ocupó una cátedra como docente

en la prestigiosa École polytechnique. Fourier participó en la expedición de Napoleón Bonaparte

a Egipto en 1798. Entró a la Academia de Ciencias Francesa en 1817 y al cabo de cinco años se

convirtió en el secretario perpetuo de las secciones de matemáticas y física. Fue en Grenoble donde

condujo sus experimentos sobre la propagación del calor que le permitieron modelar la evolución de

la temperatura a través de series trigonométricas. Estos trabajos mejoraron el modelado matemático

de fenómenos físicos y contribuyeron a los fundamentos de la termodinámica. Sin embargo, la

simplificación excesiva que proponen estas herramientas fue muy debatida, principalmente por sus

maestros Laplace y Lagrange. Publicó en 1822 su Théorie analytique de la chaleur (Teoría analítica

del calor), tratado en el cual estableció la ecuación diferencial parcial que gobierna la difusión

del calor solucionándola mediante el uso de series infinitas de funciones trigonométricas, lo que

establece la representación de cualquier función como series de senos y cosenos, ahora conocidas

como las series de Fourier. El trabajo de Fourier provee el impulso para trabajar más tarde en las

series trigonométricas y la teoría de las funciones de variables reales. Fourier en esta obra dedujo

la ecuación en derivadas parciales que rige tal fenómeno, la cual es conocida como la ecuación del

calor. [12]
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Proposición 1.3.4 Todas las bases de un mismo espacio vectorial V poseen el mismo número de

elementos.

Demostración:

Sean {⃗e1, e⃗2, · · · , e⃗n} y {⃗e′1, e⃗′2, · · · , e⃗′m} dos bases de un espacio vectorial V ; por lo anterior

m≤ n, ya que en caso contrario los vectores de la segunda base serían linealmente dependientes.

Similarmente n≤ m ya que en caso contrario los vectores de la primera base serían linealmente

dependientes. Se tiene, por lo tanto, que n = m.

□

El número de elementos que posee una base cualquiera de un espacio vectorial V recibe el

nombre de dimensión de V ; este número será designado mediante dim(V ). Si el espacio vectorial

sólo contiene un elemento, es decir V =
{⃗

0
}

tiene dimensión cero.

De los ejemplos anteriores podemos deducir los siguientes resultados:

1. La dimensión de Kn es n.

2. La dimensión de P(n)
K [t] es n+1.

3. En el Ejemplo 1.15 se puede ver que L(⃗u1, u⃗2, u⃗3), donde u⃗1 = (1,0,1), u⃗2 = (−1,1,0) y

u⃗3 = (1,1,2), es un subespacio vectorial de R3 de dimensión 2 (un plano por el origen).

i En Rn un hiperplano que contiene al vector nulo es un subespacio H de dimensión n−1. O sea

H = {(x1,x2, · · · ,xn) : a1x1 +a2x2 + · · ·anxn = 0

donde a1,a2, · · ·an son números reales fijos, no todos nulos. Es decir, un hiperplano generaliza

la noción de plano en R3.

i Se llama nulidad de una matriz a la dimensión del espacio nulo.

Proposición 1.3.5 Sea V un espacio vectorial de dimensión n. Todo conjunto de n vectores de V

que sean linealmente independientes son una base de V .
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Demostración:

Sean x⃗1, x⃗2, · · · , x⃗n, n vectores linealmente independientes. Si v⃗ es otro vector de V , por la

Proposición 1.3.3, v⃗, x⃗1, x⃗2, · · · , x⃗n son linealmente dependientes.

Entonces, ∃ a0,a1, · · · ,an tales que

a0⃗v+a1⃗x1 +a2⃗x2 + · · ·an⃗xn = 0⃗, con algún a j no nulo.

En realidad a0 debe ser no nulo, ya que si fuera 0, los vectores x⃗1, x⃗2, · · · , x⃗n serían linealmente

dependientes. Se tiene, entonces,

v⃗ =
−a1

a0
x⃗1 +

−a2

a0
x⃗2 · · ·an +

−an

a0
x⃗n

y por lo tanto x⃗1, x⃗2, · · · , x⃗n generan V .

□

i Una forma sencilla de encontrar una base de un espacio vectorial V es agregar vectores a un

conjunto de vectores linealmente independientes de V . En la demostración de la proposición

que sigue se explica la forma de agregarlos.

Proposición 1.3.6 Sea V un espacio de dimensión finita n; todo conjunto de vectores linealmente

independientes de V puede completarse para obtener una base, es decir, dados k vectores

e⃗1, e⃗2, · · · , e⃗k, con k < n, de V , linealmente independientes, existen n−k vectores e⃗k+1, e⃗k+2, · · · , e⃗n

de V tal que el conjunto {⃗e1, e⃗2, · · · , e⃗k, e⃗k+1, e⃗k+2, · · · , e⃗n} es una base de V .

Demostración:

Como k < n, puedo encontrar un elemento de V linealmente independiente con e⃗1, e⃗2, · · · , e⃗k

(sino, {⃗e1, e⃗2, · · · , e⃗k} serían base de V ). Lo llamo e⃗k+1. Se repite con {⃗e1, e⃗2, · · · , e⃗k, e⃗k+1} hasta

encontrar n vectores linealmente independientes, que necesariamente serán base de V . □

Si V es un espacio vectorial de dimensión finita n en la Proposición 1.3.6 probamos que k vectores

linealmente independientes de V pueden completarse para obtener una base. Puede demostrarse
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también que si S es un sistema de generadores de V , de él puede extraerse un subconjunto S1 que sea

una base de V .

Ahora unos comentarios acerca de la dependencia o independencia lineal de subconjuntos infinitos

de un espacio vectorial.

i

Un conjunto infinito S de elementos de un espacio vectorial V se dice linealmente

independiente si cualquier subconjunto finito de S es linealmente independiente. En caso

contrario, S se dice linealmente dependiente; es decir S es linealmente dependiente si

existe un subconjunto finito de él que es linealmente dependiente.

Un espacio vectorial V en el que se puede encontrar un subconjunto S linealmente

independiente y con infinitos elementos, se dice que tiene dimensión infinita .

Los espacios vectoriales PK [t], y C([0,2π]), introducidos en la secciones anteriores, son

espacios vectoriales de dimensión infinita.

El conjunto S = {tn,n ∈ N} es un conjunto linealmente independiente de PK [t] mientras

que el conjunto S = {cos(nx),sen(mx)}n,m∈N es un conjunto linealmente independiente

en el espacio vectorial de las funciones continuas C([0,2π]).

1.4 Intersección y suma de subespacios vectoriales

Una pregunta que surge es si al considerar las operaciones de unión e intersección entre

subespacios de un espacio vectorial V (que son subconjuntos de V ) se preserva la estructura de

subespacio. Veremos que se preserva en la intersección pero no en la unión.

Dados dos subespacios V1 y V2 de un espacio vectorial V podemos definir su intersección

V1∩V2 = {⃗u, u⃗ ∈V1∧ u⃗ ∈V2}

y se demuestra fácilmente que V1∩V2 es un subespacio.

Por otro lado, con un ejemplo se puede ver que con la unión de dos subespacios V1 y V2, no

ocurre lo mismo. Si V1 y V2 son los subespacios generados por los vectores (1,0) y (0,1) (los ejes x e

y respectivamente) la unión de V1 y V2 son los vectores que están sobre un eje o el otro. V1∪V2 no es

un subespacio, ya que la suma no es cerrada: la suma de los vectores (1,0)+(0,1) = (1,1) /∈V1∪V2

pues (1,1) /∈V1 y (1,1) /∈V2 siendo que (1,0) ∈V1 y (0,1) ∈V2.

Se define, entonces, para sí obtener un subespacio, la suma de dos subespacios V1 y V2 de la

forma siguiente
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V1 +V2 = {u⃗1 + u⃗2, u⃗1 ∈V1∧ u⃗2 ∈V2}

y se puede demostrar que V1 +V2 es un subespacio vectorial de V (y contiene a V1∪V2).

La relación que existe entre las dimensiones de estos subespacios vectoriales y las dimensiones

de los subespacios V1 y V2 queda plasmada en el siguiente resultado:

Proposición 1.4.1

dim(V1 +V2) = dim(V1)+dim(V2)−dim(V1∩V2)

para cualesquiera subespacios vectoriales V1 y V2 de un espacio vectorial V de dimensión finita.

Demostración:

Sea {⃗e1, e⃗2, · · · , e⃗l} una base de V1∩V2. Es posible completarla:

por un lado hasta obtener una base de V1,
{⃗

e1, e⃗2, · · · , e⃗l, f⃗l+1, f⃗l+2, · · · , f⃗k

}
(de l+(k− l) vectores)

y por otro, hasta obtener una base de V2, {⃗e1, e⃗2, · · · , e⃗l, g⃗l+1, g⃗l+2, · · · , g⃗m} (de l+(m− l) vectores).

Veremos que{⃗
e1, e⃗2, · · · , e⃗l, f⃗l+1, f⃗l+2, · · · , f⃗k, g⃗l+1, g⃗l+2, · · · , g⃗m

}
es base de V1 +V2.

Está claro que es un sistema de generadores de V1+V2. Veamos que es un conjunto linealmente

independiente. Se considera una combinación lineal igual al vector nulo:

a1⃗e1+a2⃗e2+ · · ·+al⃗el +bl+1 f⃗l+1+bl+2 f⃗l+2+ · · ·+bk f⃗k +cl+1⃗gl+1+cl+2⃗gl+2+ · · ·+cmg⃗m = 0⃗

que puede escribirse en forma equivalente

a1⃗e1 +a2⃗e2 + · · ·+al⃗el +bl+1 f⃗l+1 +bl+2 f⃗l+2 + · · ·+bk f⃗k =−cl+1⃗gl+1− cl+2⃗gl+2−·· ·− cmg⃗m

El término del lado izquierdo ∈V1, mientras que el lado derecho ∈V2. Es decir que está en

V1∩V2 cuya base son los vectores {⃗e1, e⃗2, · · · , e⃗l}. Entonces es posible escribir el término de la

derecha como combinación lineal de la base {⃗e1, e⃗2, · · · , e⃗l} con coordenadas δi. Es decir, se tiene

la igualdad
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−cl+1⃗gl+1− cl+2⃗gl+2−·· ·− cmg⃗m = δ1⃗e1 +δ2⃗e2 + · · ·+δl⃗el

que puede reescribirse,

δ1⃗e1 +δ2⃗e2 + · · ·+δl⃗el + cl+1⃗gl+1 + cl+2⃗gl+2 + · · ·+ cmg⃗m = 0⃗

Por ser {⃗e1, e⃗2, · · · , e⃗l, g⃗l+1, g⃗l+2, · · · , g⃗m} una base de V2, se tiene que

cl+1 = cl+2 = · · ·= cm = δ1 = δ2 = · · ·+δl = 0

y, entonces, el término de la izquierda,

a1⃗e1 +a2⃗e2 + · · ·+al⃗el +bl+1 f⃗l+1 +bl+2 f⃗l+2 + · · ·+bk f⃗k = 0⃗

y como
{⃗

e1, e⃗2, · · · , e⃗l, f⃗l+1, f⃗l+2, · · · , f⃗k

}
son base de V1, son linealmente independientes,

a1 = a2 = · · ·+al = bl+1 = bl+2 = · · ·= bk = 0

Luego,

dim(V1 +V2) = l +(k− l)+(m− l) = k+m− l = dim(V1)+dim(V2)−dim(V1∩V2) □

i
Si V1 y V2 son los subespacios generados por los vectores (1,0) y (0,1) respectivamente,

la suma de V1 y V2 da todo R2, ya que (x,y) = (x,0)+(0,y), (x,0) ∈V1 y (0,y) ∈V2.

Es importante notar que V1 +V2 es el menor subespacio (con respecto a la inclusión) que

contiene a V1∪V2.

■ Ejemplo 1.23 El subespacio S de las soluciones del sistema homogéneo,

S = {(x1,x2, · · · ,xn) ∈ Kn


a11x1 +a12x2 + · · ·+a1nxn = 0

· · ·
am1x1 +am2x2 + · · ·+amnxn = 0

es un subespacio de Kn. Es intersección de m subespacios, S =
⋂m

i=1 Si, donde Si = {(x1,x2, · · · ,xn)∈
Kn,ai1x1 +ai2x2 + · · ·+ainxn = 0,},1≤ i≤ m. Cada Si es un subespacio de Kn (correspondiente a

las soluciones de cada una de las m ecuaciones, como se vió en el Ejemplo 1.13, Sección 1.2). ■

■ Ejemplo 1.24 Dos subespacios vectoriales distintos de R2, V1 y V2, ambos de dimensión 1, tienen

una suma que coincide con todo R2, ya que



1.4 Intersección y suma de subespacios vectoriales 37

dim(V1 +V2) = dim(V1)+dim(V2)−dim(V1∩V2) = 1+1−0 = 2

■

Definición 1.4.1 Un espacio vectorial V es suma directa de dos subespacios V1 y V2 si

1. V1 +V2 =V

2. V1∩V2 = 0⃗

Utilizaremos la notación V =V1⊕V2 para indicar que V es suma directa de los subespacios V1 y V2.

i
El plano R2 puede escribirse como suma directa de dos rectas no coincidentes que pasan

por el origen.

El espacio R3 puede escribirse como suma directa de un plano que pasa por el origen y

una recta que le corta en ese punto.

De acuerdo a la Proposición 1.4.1 anterior si V =V1⊕V2, se tiene que

dim(V ) = dim(V1⊕V2) = dim(V1)+dim(V2)

ya que el subespacio V1∩V2 = 0⃗ tiene dimensión 0. Además, si B1 es base de V1 y B2 es

base de V2, B = B1∪B2 es una base de V .

■ Ejemplo 1.25 Sean los subespacios de R3, S = {⃗x ∈ R3,x1 + x2 + x3 = 0,} y T = ⟨(1,1,1)⟩. Se

tiene que dim(S) = 2, dim(T ) = 1 y S∩T = 0⃗. Entonces, dim(S+T ) = 3, de donde, S+T = R3. ■

i Si V = V1 +V2 todo elemento v⃗ ∈ V puede escribirse de la forma v⃗ = v⃗1 + v⃗2 con v⃗1 ∈ V1 y

v⃗2 ∈V2. Si la suma es directa, esta descomposición es única.

Proposición 1.4.2 Sean V1 y V2 subespacios vectoriales de un espacio vectorial V . Las siguientes

afirmaciones son equivalentes:

1. V =V1⊕V2

2. Para todo v⃗ ∈V existe una descomposición única de la forma

v⃗ = v⃗1 + v⃗2 con v⃗1 ∈V1 y v⃗2 ∈V2.

Demostración:

Veamos que 1→ 2
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Supongamos v⃗ = v⃗1 + v⃗2 con v⃗1 ∈V1 y v⃗2 ∈V2 y v⃗ = u⃗1 + u⃗2 con u⃗1 ∈V1 y u⃗2 ∈V2.

Se tiene que,

v⃗1 + v⃗2 = u⃗1 + u⃗2,

igualdad que puede reescribirse

v⃗1− u⃗1 = u⃗2− v⃗2

De donde v⃗1− u⃗1 ∈ V1∩V2, como por hipótesis, V1∩V2 = 0⃗, v⃗1 = u⃗1 y de la misma forma,

v⃗2 = u⃗2.

Para ver que 2→ 1 alcanza con demostrar que V1∩V2 = 0⃗.

Si v⃗ ∈V1∩V2 = 0⃗, v⃗ se puede escribir v⃗ = v⃗+ 0⃗ y v⃗ = 0⃗+ v⃗, como la descomposición es única,

v⃗ = 0⃗.

□

En general, dados n subespacios vectoriales V1,V2, · · · ,Vn de un espacio vectorial V , definimos

n⋂
j=1

Vj =
{⃗

u ∈V, u⃗ ∈Vj, j = 1, · · · ,n
}

y

n

∑
j=1

Vj =

{
n

∑
j=1

u⃗ j, u⃗ j ∈Vj, j = 1, · · · ,n

}

que reciben el nombre de intersección y suma, respectivamente, de los subespacios vectoriales Vj

dados. Estos dos nuevos subespacios son también subespacios vectoriales de V .

La definición de suma directa de varios subespacios vectoriales es un poco más complicada en

general, que si solamente hay dos. Se dice que V es suma directa de los subespacios vectoriales

V1,V2, · · · ,Vn y se escribe

V =V1⊕V2⊕V3⊕·· ·⊕Vn

si todo vector v⃗ ∈V tiene una descomposición única de la forma v⃗ = ∑
n
i=1 v⃗i con v⃗i ∈Vi, i = 1, · · · ,n.

i
Si n = 2, esta última definición y la dada anteriormente son equivalentes.

Para n≥ 3 se puede demostrar que las siguientes afirmaciones son equivalentes:

• V =V1⊕V2⊕V3⊕·· ·⊕Vn

• V = ∑
n
i=1 Vi y Vi∩ (∑n

k ̸=i Vk) = 0⃗
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Figura 1.8: Coordenadas de un vector x⃗, en las bases {⃗b1 ,⃗b2} (a) y {⃗c1, c⃗2} (b)

1.5 Cambio de base

Para visualizar el problema de cambio de base, considere los dos sistemas de coordenadas que se

muestran en la Figura 1.8. En (a), x⃗ = 3⃗b1 + 1⃗b2, mientras que en (b), el mismo vector x⃗ se expresa

como x⃗ = 6⃗c1 + 4⃗c2. El problema consiste en encontrar la relación que hay entre las coordenadas de

un mismo vector x⃗ en las dos bases {⃗b1 ,⃗b2} y {⃗c1, c⃗2} .

Para el caso general, supongamos que se tienen dos bases B y B′ de un espacio vectorial V

de dimensión finita. Se verá que con la ayuda de una matriz se pueden obtener las coordenadas

de un vector con respecto a una base de V a partir de las coordenadas del vector en la otra base.

Llamaremos base antigua a la base B y base nueva a la base B′.

Si B = {e⃗1, e⃗2, · · · , e⃗n} y B′ = {⃗e′1, e⃗′2, · · · , e⃗′n} son dos bases de un espacio vectorial V de

dimensión n, todo elemento de la base B′ puede escribirse como combinación lineal de los elementos

de la base B :


e⃗′1 = a11⃗e1 +a21⃗e2 + · · ·+an1⃗en

e⃗′2 = a12⃗e1 +a22⃗e2 + · · ·+an2⃗en

· · ·
e⃗′n = a1n⃗e1 +a2n⃗e2 + · · ·+ann⃗en

(1.1)

que en forma abreviada puede escribirse

e⃗′j =
n

∑
i=1

ai j⃗ei, j = 1, · · ·n
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i Puede escribirse en forma más concisa usando convenio de Einstein (índice repetido indica

suma)

e⃗′j = ai j⃗ei, j = 1, · · ·n

La nueva base B′ se obtiene de la base B mediante la siguiente matriz

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann


donde la j-ésima columna de A son las coordenadas del vector e⃗′j con respecto a la base antigua e⃗ j,

j = 1,2, · · · ,n.

La matriz A se denomina matriz del cambio de base de B′ a B y se denota PB,B′ .

i
A la matriz del cambio de base de B′ a B también se la denomina matriz de transición de

la base B′ a la base B.

Cuando sea necesario hacer constar las bases B y B′ escribiremos PB′,B para denotar la

matriz de cambio de base de B a B′.

Si B y B′ coinciden se tiene que PB′,B = In×n.

Proposición 1.5.1 La matriz A del cambio de base de B′ a B es invertible y su inversa es la matriz

de cambio de base de B a B′. Podemos, por lo tanto, escribir

A−1 = P−1
B,B′ = PB′,B

Demostración:

El determinante de la matriz es no nulo, ya que sus columnas son las coordenadas de los vectores

e⃗ j que por ser una base son linealmente independientes.

Si A′ es la matriz de cambio de base de B a B′, entonces se tiene

e⃗ j =
n

∑
i=1

a′i j⃗e
′
i, j = 1, · · ·n
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y por la definición de la matriz A,

e⃗′i =
n

∑
k=1

aki⃗ek, i = 1, · · ·n.

por lo tanto,

e⃗ j = ∑
n
i=1 a′i j(∑

n
k=1 aki⃗ek) = ∑

n
k=1(∑

n
i=1 akia′i j )⃗ek, j = 1, · · ·n.

Como el término dentro de la sumatoria en k, ∑
n
k=1 akia′i j, es el elemento que ocupa el lugar (k, j)

del producto de las matrices A y A′, de acuerdo a la igualdad, ese término vale 1 si k = j, y 0 si no.

Es decir que se tiene que el producto de las matrices A y A′, es AA′ = In×n.

□

i
Las expresiones anteriores pueden reescribirse en forma sintética considerando que el

índice repetido se suma de 1 a n: e⃗ j = a′i j⃗e
′
i

Usando la delta de Kronecker, δk j (definida δk j = 1 si k = j y δk j = 0 si k ̸= j),

la expresión se escribe e⃗ j = akia′i j⃗ek = δk j⃗ek

■ Ejemplo 1.26 Dadas las bases de R3, B = {(1,1,1),(1,1,0),(1,0,0)} y B′ = {⃗e1, e⃗2, e⃗3} (base

canónica), la matriz de cambio de base de B a B′, de acuerdo a las Ecs.(1.1), es

PB′,B =


1 1 1

1 1 0

1 0 0


■

i Si la base nueva, B′ es la base la canónica, la matriz de cambio de base de B a B′ se obtiene

directamente poniendo las coordenadas de los vectores de la base B en cada columna (ver

Ejemplo 1.26).

Relación entre las coordenadas en la base B y en la B′

Tratemos ahora de relacionar entre sí las coordenadas de un mismo vector en las bases nueva B′ y

antigua B. Supongamos que x⃗ ∈V ,
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x⃗ = x1⃗e1 + x2⃗e2 + · · ·+ xn⃗en (1.2)

y además

x⃗ = x′1⃗e′1 + x′2⃗e′2 + · · ·+ x′n⃗e′n (1.3)

Sustituyendo Ec.(1.1) en la segunda expresión, Ec.(1.3), obtenemos

x⃗ = x′1(
n

∑
i=1

ai1⃗ei)+ x′2(
n

∑
i=1

ai2⃗ei)+ · · ·+ x′n(
n

∑
i=1

ain⃗ei)

= (a11x′1 +a12x′2 + · · ·+a1nx′n)⃗e1 +(a21x′1 +a22x′2 + · · ·

+a2nx′n)⃗e2 + · · ·+(an1x′1 +an2x′2 + · · ·+annx′n)⃗en

Comparando esta última igualdad con la primera expresión Ec.(1.2) podemos escribir


x1 = a11x′1 +a12x′2 + · · ·+a1nx′n
x2 = a21x′1 +a22x′2 + · · ·+a2nx′n
· · ·
xn = an1x′1 +an2x′2 + · · ·+annx′n

(1.4)

Si convenimos en escribir X =



x1

x2

x3

· · ·
xn


y X ′ =



x′1
x′2
x′3
· · ·
x′n


a las coordenadas del vector x⃗ en la antigua base B y en la nueva base B′ , respectivamente, las

Ecs.(1.4) se escribe de la forma

X = AX ′ (1.5)

Esto permite obtener las coordenadas del vector x⃗ en la base antigua conociendo las coordenadas

del mismo vector en la base nueva.
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■ Ejemplo 1.27 Dadas las mismas bases del Ejemplo 1.26, B = {(1,1,1),(1,1,0),(1,0,0)} y

B′ = {⃗e1, e⃗2, e⃗3}, se quieren encontrar las coordenadas del vector x⃗ = (3,2,3)B′ en la base B, para lo

cual se necesita la matriz de cambio de base, PB,B′ .

De acuerdo a las Ecs. (1.1), la matriz de cambio de base, PB,B′ se obtiene a partir de encontrar

las coordenadas de los vectores de la base B′ en la base B y colocarlos como columnas. Después de

resolver el sistema de ecuaciones se obtuvo


(1,0,0) = 0(1,1,1)+0(1,1,0)+1(1,0,0)

(0,1,0) = 0(1,1,1)+1(1,1,0)+(−1)(1,0,0)

(0,0,1) = 1(1,1,1)+(−1)(1,1,0)+0(1,0,0)

(1.6)

y entonces,

PB,B′ =


0 0 1

0 1 −1

1 −1 0


Otra alternativa para hallar la matriz PB,B′ es usar la Proposición 1.5.1 y entonces PB,B′ = P−1

B′,B dado

que PB′,B se encontró en el Ejemplo 1.26.

Luego, usando (1.5), las coordenadas son

X = PB,B′X ′ =


0 0 1

0 1 −1

1 −1 0




3

2

3


B′

=


3

−1

1


B

Así se obtuvieron las coordenadas del vector x⃗ en la base B conociendo las coordenadas del

mismo vector en la base B′. ■

■ Ejemplo 1.28 Sean e⃗1 y e⃗2 dos vectores perpendiculares unitarios en R2 en la dirección de los

ejes de coordenadas cartesianas. Girando los ejes de coordenadas un ángulo φ en sentido positivo,

contrario a las agujas del reloj, se obtiene una nueva base B′ = {⃗e′1, e⃗′2}.
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Figura 1.9: Cambio de base. Rotación de ejes en un ángulo φ

De acuerdo a la Figura 1.9, se observa que

 e⃗′1 = cos(φ )⃗e1 + sen(φ )⃗e2

e⃗′2 = −sen(φ )⃗e1 + cos(φ )⃗e2
(1.7)

por lo cual, teniendo en cuenta el sistema (1.1), la matriz del cambio de base A es

A =

 cos(φ) −sen(φ)

sen(φ) cos(φ)

 (1.8)

Así, si φ = π/4, las coordenadas respecto a la base B = {⃗e′1, e⃗′2} del vector (2,3)B

 cos(π/4) −sen(π/4)

sen(π/4) cos(π/4)

−1 2

3


B

≈

 3.53

0.71


B′

■
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■ Ejemplo 1.29 Dadas las bases de P(2)
R [x], B =

{
3,1+ x,x2

}
y B′ =

{
1,x+3,x2 + x

}
, se quiere

hallar la matriz de cambio de base de B′ a B.

Teniendo en cuenta la Observación i, luego del Ejemplo 1.26 resulta más simple hallar PE,B y

PE,B′ , donde E =
{

1,x,x2
}

es la base canónica. Como

1 = 1 ·1+0 · x+0 · x2

x+3 = 3 ·1+1 · x+0 · x2

x2 + x = 0 ·1+1 · x+1 · x2

Se tiene que

PE,B′ =


1 3 0

0 1 1

0 0 1


y de la misma forma,

PE,B =


3 1 0

0 1 0

0 0 1



Luego, la matriz de cambio de base de B′ a B sale de multiplicar las matrices de cambio de base

de E a B y de B′ a E, es decir,

PB,B′ = PB,EPE,B′ = (PE,B)
−1PE,B′ =


1/3 2/3 −1/3

0 1 1

0 0 1




1/3 2/3 −1/3

0 1 1

0 0 1




0

0

1


B′

=


−1/3

1

1


B

= x2 + x

■
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Argentina a los 13 años. Se dedica al contenido de lo que se llama materia oscura. La gran esperanza

–aunque a lo mejor me equivoco dijo– desde el punto de vista experimental es que si entendemos

qué es la energía oscura, muy probablemente eso nos vaya a dar un indicio importante de cómo se

puede entender la fuerza de gravedad, cómo casar la teoría de la relatividad con la física cuántica.

Muy probablemente estén relacionadas, pero hoy no tenemos idea de cómo. Hoy, si yo pudiera soñar

algo, creo que es entender eso, sería alucinante. [4]
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Figura 1.10

1.6 Actividades propuestas

Problema de Aplicación 1 Para realizar un cambio de coordenadas celestes a coordenadas

horizontales, es necesario hacer dos rotaciones:

r⃗el = Rz(T SL)∗ r⃗ec

r⃗h = Ry(90−ϕ)∗ r⃗el

Esto se debe a que entre el sistema ecuatorial celeste y el ecuatorial local, el polo celeste (eje z)

permanece fijo para ambos, pero el origen desde donde medimos uno y otro sistema en el ecuador

celeste, cambia en una cantidad TSL. Usaremos T SL como tiempo siderio local, T SL= 18:31:31,

Recuerde pasar de horas a grados para poder operar. Luego para realizar el cambio de coordenadas

de celeste locales a horizontales, se mantiene en común el eje y, la línea este-oeste, y el ángulo en que

se rotan el plano x, z es 90−ϕ . Para el problema actual usaremos la ϕ= −34º 50’ que corresponde a

la ciudad de La Plata.

El vector de las coordenadas ecuatoriales celestes se escribe como:

r⃗ec =


cos(δ )cos(α)

cos(δ )sen(α)

sen(δ )


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Figura 1.11: Coordenadas (x1,y1,z1) y (x2,y2,z2) en el sistema cartesiano horizontal y en el

cartesiano ecuatorial

y el vector de las coordenadas horizontales:

r⃗h =


cos(h)cos(A)

−cos(h)sen(A)

sen(h)


donde h = sen−1(z) y A = tan−1(−y/x).

Amplíe la Tabla 1.1 con las coordenadas horizontales para cada cúmulo. Recuerde pasar de

horas a grados para poder operar. Nota: No tenga en cuenta la precesión. Recomendación: Realice

un programa computacional para hacer los cálculos.

1.6.1 Ejercicios

Ejercicio 1.1

Analice si los siguientes conjuntos son espacios vectoriales sobre R.

a) El conjunto S = {(x,y) : y = 2x+1} ⊆ R2
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Tabla 1.1: Coordenadas celestes de 13 cúmulos abiertos

Cúmulo RA(J2000) Dec(J2000)

NGC6192 16:40:16.40 −43:30:31.0

NGC6242 16:55:32.38 −39:28:02.0

NGC6322 17:18:25.13 −42:56:03.3

NGC6704 18:50:42.00 −05:12:42.5

NGC6737 19:02:16.30 −18:32:56.5

Rup 102 12:13:32.95 −62:43:18.7

Rup 166 13:25:38.14 −63:27:54.6

SLS4565 18:01:59.55 −23:41:06.3

Lynga 14 16:55:03.40 −45:14:09.1

Trumpler 22 14:31:03.33 −61:09:57.0

Trumpler 24 16:56:11.14 −40:40:01.1

Dominici 11 18:57:36.31 −10:23:39.9

Dominici 12 18:51:24.93 −13:18:50.2

b) El semiplano en R2, S = {(x,y) : y≥ 0},

c) Los polinomios de grado menor o igual que 2, P(2)
R [x].

Ejercicio 1.2

Dé al menos 5 ejemplos de espacios vectoriales y escriba, según su opinión, qué utilidad tendría

saber que su estructura es de espacio vectorial.

Ejercicio 1.3

De acuerdo con la definición, S es un subespacio de un espacio vectorial V sí y sólo sí, se cumplen

las siguientes condiciones:

i) S contiene al vector 0⃗ de V .

ii) Si u⃗ y v⃗ están en S, entonces u⃗ + v⃗ está en S.

iii) Si u⃗ está en S y α es un escalar, entonces α u⃗ está en S.

Compruebe si valen las siguientes afirmaciones:

a) S = {(x,y,z) : z = 0}, es un subespacio de R3.

b) El conjunto de polinomios P(2)
R [x], de grado menor o igual que 2, es subespacio vectorial del

espacio vectorial P(n)
R [x] de todos los polinomios con coeficientes reales.
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Ejercicio 1.4

Dados los subespacios de R3, S={(x,y,z) ∈ R3 : x = y = 0} y T = {(x,y,z) ∈ R3 : x+ y+ z = 0}
calcule: a) Una base y la dimensión de ambos subespacios. b) S+T y S∩T , dando las bases de

dichos subespacios. c) ¿La suma S+T es directa?

Ejercicio 1.5

Encuentre en cada uno de los ejemplos siguientes la suma y la intersección del par de subespacios

dados, y compruebe que se verifica la ecuación:

dim(V1)+dim(V2) = dim(V1 +V2)+dim(V1∩V2)

a) Los subespacios que corresponden al conmutador para cada una de las matrices siguientes.

A1 =

 2 1

0 2

 , A2 =

 2 0

1 2


(El conmutador de una matriz A, se define como C(A) = {B ∈ R2×2 tal que laA.B = B.A}).

b) Los subespacios formados por las bases {sen(t),cos(t)} y {eit ,e−it} considerados en el

espacio de las funciones complejas continuas en el intervalo [0,1] con escalares en R.

Ejercicio 1.6

1. Demuestre que el conjunto de soluciones de la ecuación diferencial de primer orden homogénea,

con coeficientes constantes: y′+ ky = 0 es un espacio vectorial de dimensión uno, siendo

{e−kx} una base. A su vez el conjunto de soluciones de esta ecuación es un subespacio vectorial

del espacio de las funciones derivables cuya dimensión es infinita.

2. Luego resuelva la ecuación diferencial homogénea de segundo orden:

y′′− y′−6y = 0, con las condiciones iniciales y(0) = 3 y y′(0) =−1.

Este tipo de ecuaciones se resuelve proponiendo la solución y = eλx y resolviendo la ecuación

característica, que para éste caso sería: λ 2−λ −6 = 0.

a) Encuentre las raíces λ1 y λ2 y reemplace en la solución general: y(x) =C1eλ1x +C2eλ2x.

b) Escriba la base del conjunto solución, y especifique que dimensión tiene.

c) Halle la solución particular definiendo los coeficientes C1 y C2, con ayuda de las

condiciones iniciales.

3. Investigue que pasaría si las soluciones de la ecuación característica de una ecuación diferencial

homogénea fueran raíces dobles. Escriba su base.
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4. Cite al menos un ejemplo de física donde se necesita usar ecuaciones diferenciales.

Ejercicio 1.7

¿Son los vectores u⃗ = (4,−2,5) y v⃗ = (1,−1,−1) de R3 combinación lineal de x⃗1 = (1,−1,2) y

x⃗2 = (2,0,1)? Interprete geométricamente y conecte con los subespacios de R3.

Ejercicio 1.8

Los primeros cuatro polinomios de Laguerre son {1,1−x,2−4x+x2,6−18x+9x2−x3}. Demuestre

que estos polinomios forman una base de P(3)
R [x].

Ejercicio 1.9

Compruebe que B= {1,x,x2} es una base del espacio vectorial P(2)
R [x]. En consecuencia, dim(P(2)

R [x])=

3. ¿Es correcta la afirmación dim(P(n)
R [x]) = n+1?

Ejercicio 1.10

Sea la matriz,

A =


x a b

a x b

a b x


Encuentre los valores de x para los que el Det(A) = 0. Lo cual es equivalente a decir que columnas o

filas son linealmente dependientes. ¿Cuáles son las dimensiones posibles del espacio generado por

las filas?

Ejercicio 1.11

Encuentre las coordenadas del vector x⃗ = (1,3,−2) con respecto a la base B = {b⃗1, b⃗2, b⃗3} donde

b⃗1 = (1,0,0), b⃗2 = (1,1,0), b⃗3 = (1,1,1).

Ejercicio 1.12

Calcule las coordenadas del vector w⃗ relativas a la base B = {⃗u1, u⃗2}.
a) u⃗1 = (1,0), u⃗2 = (0,1); w⃗ = (3,7)

b) u⃗1 = (2,−4), u⃗2 = (3,8); w⃗ = (1,1)

c) u⃗1 = (1,1), u⃗2 = (0,2); w⃗ = (a,b)
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Ejercicio 1.13

Encuentre las coordenadas del vector v⃗ relativas a la base B = {⃗v1, v⃗2, v⃗3}.
v⃗1 = (1,0,0), v⃗2 = (2,2,0), v⃗3 = (3,3,3); v⃗ = (2,−1,3).

Ejercicio 1.14

Calcule las coordenadas del vector p ∈ P(2)
R [x] relativas a la base B = {p1(x), p2(x), p3(x)}.

p1(x) = 1+ x, p2(x) = 1+ x2, p3(x) = x+ x2; p(x) = 4−3x+ x2

Ejercicio 1.15

En R2×2, encuentre las coordenadas de la matriz A =

 2 0

−1 3

 relativas a la base

B =


 −1 1

0 0

 ,

 1 1

0 0

 ,

 0 0

1 0

 ,

 0 0

0 1



Ejercicio 1.16

Considere las bases B = {⃗u1, u⃗2} y B′ = {⃗v1, v⃗2} para R2, donde u⃗1 = (1,0), u⃗2 = (0,1), v⃗1 = (2,1),

v⃗2 = (−3,4).

a) Halle la matriz de cambio de base de B a B′, PB′,B.

b) Utilice la matriz anterior para obtener las coordenadas en la base B′ de w⃗ = (3,−5)B.

c) Verifique lo obtenido en b) haciéndolo directamente.

d) Calcule la matriz de transición PB,B′ y verifique que PB,B′ = P−1
B′,B.

Ejercicio 1.17

Considere las bases B = {⃗u1, u⃗2, u⃗3} y B′ = {⃗v1, v⃗2, v⃗3} para R3, donde u⃗1 = (−3,0,−3), u⃗2 =

(−3,2,1), u⃗3 = (1,6,−1), v⃗1 = (−6,−6,0), v⃗2 = (−2,−6,4) y v⃗3 = (−2,−3,7).

a) Halle la matriz de cambio de base de B a B′.

b) Utilice la matriz anterior para obtener las coordenadas en la base B′ de w⃗ = (−5,8,−5)B.

Ejercicio 1.18

Considere las bases B = {p1(x), p2(x)} y B′ = {q1(x),q2(x)} para P(1)
R [x], donde p1(x) = 6+ 3x,

p2(x) = 10+2x, q1(x) = 2, q2(x) = 3+2x.
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a) Halle la matriz de transición de B a B′.

b) Utilice la matriz anterior para obtener las coordenadas de p(x) =−4+ x en la base B′.

Ejercicio 1.19

Si se quiere obtener un sistema de coordenadas rectangulares x′y′ haciendo girar un sistema de

coordenadas rectangulares xy hasta describir un ángulo de θ = 3
4 π .

a) Halle las coordenadas x′y′ del punto cuyas coordenadas xy son (−2,6).

b) Calcule las coordenadas xy del punto cuyas coordenadas x′y′ son (5,2).

Ejercicio 1.20

Si se quiere obtener un sistema de coordenadas rectangulares x′y′z′ haciendo girar un sistema de

coordenadas rectangulares xyz en sentido contrario a las agujas del reloj alrededor del eje z, cuando

se observa hacia abajo a lo largo del eje z hasta describir un ángulo de θ = π

4 .

a) Halle las coordenadas x′y′z′ del punto cuyas coordenadas xyz son (−1,2,5).

b) Calcule las coordenadas xyz del punto cuyas coordenadas x′y′z′ son (1,6,−3).

Ejercicio 1.21

Sea V un espacio vectorial de dimensión n. Demuestre que todo conjunto linealmente independiente

de n elementos es una base de V .

Ejercicio 1.22

Sean p0(x), p1(x), .., pn(x) polinomios cualesquiera de P(n)
R [x] de grado 0,1, · · · ,n respectivamente:

demuestre que {p0(x), p1(x), .., pn(x)} es una base de P(n)
R [x]. ¿Podría encontrar alguna relación

entre este teorema y el teorema del resto? ¿Y con la fórmula de Taylor?

Ejercicio 1.23

En el supuesto que V=V1⊕V2 donde V1 y V2 son dos subespacios de V de dimensiones n y m

respectivamente y sean B1 = {⃗u1, u⃗2, · · · , u⃗n} y B2 = {⃗v1, v⃗2, · · · , v⃗n} sus bases, compruebe que

B = B1∪B2 es una base de V1⊕V2.

Ejercicio 1.24

Sea A = LU , donde L es una matriz triangular inferior invertible y U es triangular superior. Explique

por qué la primera columna de A es un múltiplo de la primera columna de L. ¿Cómo se relaciona la

segunda columna de A con las columnas de L?
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Ejercicio 1.25

Sea {e⃗1, e⃗2, · · · , e⃗n} la base canónica de Rn, y sean u⃗1 = e⃗2− e⃗1, u⃗2 = e⃗3− e⃗2, · · · , ⃗un−1 = e⃗n−
⃗en−1, u⃗n = e⃗n. Demuestre que {u⃗1, u⃗2, · · · , u⃗n} es una base de Rn. Exprese el vector v⃗ = e⃗1 + e⃗2 +

· · ·+ e⃗n como una combinación lineal de los vectores u⃗1, u⃗2, · · · , u⃗n.

1.6.2 Autoevaluación

Verdadero o Falso

1. Si una matriz tiene dos filas iguales, su determinante vale 0.

2. Si F = F1⊕F2⊕ ..⊕Fp entonces dimF ̸= dimF1 +dimF1 + ..+dimFp.

3. Si PB,A es invertible, entonces P−1
B,A=PB,A.

4. Siendo A, B y C bases de un espacio vectorial, se cumple que PC,B.PB,A=PC,A.

5. Sea S un conjunto de un espacio vectorial V de dimensión n y además S contiene menos de n

vectores, entonces S no puede generar V .

6. Un plano en R3 es un subespacio de dimensión 2 de R3.

7. Si un conjunto {v⃗1, v⃗2, · · · , v⃗p} genera un espacio vectorial V de dimensión finita y si U es un

conjunto de más de p vectores de V , entonces U es linealmente dependiente.

8. La suma del subespacio de las matrices simétricas de Rn×n con las matrices antisimétricas de

Rn×n es directa generando el espacio vectorial de las matrices de Rn×n.

9. La suma del subespacio de las funciones pares con el subespacio de las funciones impares no

es directa.



2. Transformaciones Lineales

En este capítulo nos interesamos por aquellas aplicaciones entre espacios vectoriales que

preservan las operaciones de suma y producto por escalares. Son las aplicaciones o transformaciones

lineales. Son las funciones con las que se trabaja en Álgebra Lineal y tienen una amplia variedad

de aplicaciones. Se verá que, en el caso de dimensión finita, es posible asociarles una matriz. Se

estudian los espacios asociados; el espacio nulo y el espacio que generan las columnas de la matriz.

Un resultado útil e importante es que las sumas de las dimensiones de esos subespacios dan la

dimensión del espacio de partida. Mostramos la interpretación geométrica tanto de las aplicaciones

lineales en el plano como en el espacio. Se presentan una gran variedad de ejemplos.

Se estudia, además, el espacio dual de un espacio vectorial. Es el conjunto de todas las transformaciones

lineales entre un espacio vectorial y el cuerpo de los escalares, conocidas como funcionales lineales.

2.1 Definición de transformación lineal. Ejemplos

Definición 2.1.1 Sean V y W dos espacios vectoriales, una transformación lineal T de V en W

es una aplicación T : V →W tal que:

1. T (⃗v+ w⃗) = T (⃗v)+T (w⃗) para todo v⃗, w⃗ ∈V .

2. T (a v⃗) = a T (⃗v) para todo a ∈ K y todo v⃗ ∈V .

Entre las transformaciones lineales más utilizadas están las proyecciones. En la Figura 2.1 se

muestra la proyección ortogonal de un vector v⃗ = (x,y,z) sobre el plano xy.
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Se tiene T : R3 → R3, donde T ((x,y,z)) = (x,y,0). Es una transformación lineal ya que se

cumplen para ∀ v⃗ = (x,y,z), w⃗ = (x′,y′,z′) y ∀ a ∈ K:

1. T (⃗v+ w⃗) = T ((x+ x′,y+ y′,z+ z′)) = (x+ x′,y+ y′,0) = (x,y,0)+(x′,y′,0) = T (⃗v)+T (w⃗).

2. T (a v⃗) = T (a(x,y,z)) = T ((ax,ay,az)) = (ax,ay,0) = a(x,y,0) = a T (⃗v).

Figura 2.1: Proyección ortogonal de un vector v⃗ sobre el plano xy

i
En una transformación lineal V y W deben ser espacios vectoriales sobre el mismo

cuerpo K.

Las aplicaciones O : V →W , O(⃗u) = 0⃗W para todo u⃗ ∈ V y Id : V → V , Id (⃗u) = u⃗ son

transformaciones lineales.

La traza de una matriz,

Tr : Kn×n→ K dada por Tr(A) = ∑
n
i=1 aii, es una transformación lineal.

T : R→ R dada por T (x) = x2 es un ejemplo de transformación no lineal. Se tiene

que T (x+ y) ̸= T (x)+T (y), ya que T (x+ y) = (x+ y)2 = x2 + y2 +2xy, mientras que

T (x)+T (y) = x2 + y2.

Otro ejemplo de transformación no lineal es el determinante de una matriz, ya que, en

general Det(A+B) ̸= Det(A)+Det(B).

■ Ejemplo 2.1 Dado un número real a, la aplicación que asocia a cada polinomio p del conjunto

PR [t] su valor en x = a, p(a), es una transformación lineal. Está definida mediante las siguientes

expresiones:
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T : PR [t]→ R

T (p(t)) = p(a)

El hecho que T es una transformación lineal se deduce de las igualdades T (p+q) = T (p)+T (q)

y T (cp) = cT (p) que se prueban a continuación:

T (p+q)(t) = (p+q)(a) = p(a)+q(a) = T (p)(t)+T (q)(t)

y

T (cp)(t) = (cp)(a) = c(p(a)) = cT (p)(t)

para todo número real c. ■

Aplicando repetidas veces las propiedades 1 y 2 de la definición de transformación lineal entre

espacios vectoriales V y W se puede ver que la imagen de una combinación lineal de vectores del

espacio vectorial inicial V es una combinación lineal de vectores del espacio vectorial final W , es

decir

T (
n

∑
j=1

c j⃗v j) =
n

∑
j=1

c jT (⃗v j)

donde c j ∈ K y v⃗ j ∈V para todo j = 1,2, · · · ,n.

Otras propiedades de las transformaciones lineales que se deducen de la definición se enuncian

en las proposiciones a continuación.

Proposición 2.1.1 Sea T una aplicación lineal entre dos espacios vectoriales V y W . Se tienen

los siguientes resultados:

1. La imagen del elemento neutro de V mediante T es el neutro de W , es decir, T (⃗0V ) = 0⃗W

2. La imagen mediante T del opuesto de un elemento v⃗ ∈V es el opuesto de T (⃗v), es decir,

T (−⃗v) =−T (⃗v)

Demostración:

1. T (⃗0V ) = T (⃗0V + 0⃗V ) = T (⃗0V )+T (⃗0V )
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Restando T (⃗0V ) en ambos miembros de la igualdad, se tiene

T (⃗0V )−T (⃗0V ) = T (⃗0V ) de donde, 0⃗W = T (⃗0V ).

2. T (−⃗v) = T ((−1)⃗v) = (−1)T (⃗v) =−T (⃗v), ∀ v⃗ ∈V .

□

Proposición 2.1.2 Sea T : V →W una transformación lineal entre espacios vectoriales. La imagen

mediante T de cualquier subespacio vectorial V1 de V , W1 = T (V1) es un subespacio vectorial de

W .

Demostración:

0W ∈ T (V1), ya que T (0V ) = 0W .

Sean w⃗1 y w⃗2 ∈ T (V1). Existen v⃗1, v⃗2 ∈ V1 tales que T (⃗v1) = w⃗1 y T (⃗v2) = w⃗2. Para ver

que w⃗1 + w⃗2 ∈ T (V1) basta ver que, por ser V1 subespacio, v⃗1 + v⃗2 ∈ V1 y T (⃗v1 + v⃗2) =

T (⃗v1)+T (⃗v2) = w⃗1 + w⃗2.

Y también αw⃗1 ∈ T (V1), ya que α v⃗1 ∈V1, por ser V1 subespacio, y T (α v⃗1)=αT (⃗v1)=αw⃗1

.

□

Proposición 2.1.3 Sea T : V →W una transformación lineal entre espacios vectoriales. Si U es

un subespacio de W , entonces T−1(U) = {⃗v/⃗v ∈V,T (⃗v) ∈U} es un subespacio de V .

Demostración:

0V ∈ T−1(U), ya que T−1(0W ) = 0V .

Sean v⃗1 y v⃗2 ∈ T−1(U). Existen u⃗1 y u⃗2 ∈W tales que T (⃗v1) = u⃗1 y T (⃗v2) = u⃗2. Como

T (⃗v1 + v⃗2) = T (⃗v1)+T (⃗v2) ∈U , v⃗1 + v⃗2 ∈ T−1(U).

De la misma forma, si v⃗1 ∈ T−1(U), α v⃗1 ∈ T−1(U) pues T (α v⃗1) = αT (⃗v1) = α u⃗1.

□
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Proposición 2.1.4 La imagen mediante una transformación lineal de un subespacio vectorial de

dimensión k es un subespacio vectorial de dimensión no superior a k.

Demostración:

Por la Proposición 2.1.2, si el subespacio V1 de V tiene {⃗v1, v⃗2, · · · , v⃗k} como base, todo

elemento w de la imagen de W1 = T (V1) puede escribirse como combinación lineal de los vectores

T (⃗v1),T (⃗v2), · · · ,T (⃗vk). Esto es cierto ya que tomando v⃗ ∈V1 tal que T (⃗v) = w⃗ se tiene que

w⃗ = T (⃗v) = T (
k

∑
j=1

c j⃗v j) =
k

∑
j=1

c jT (⃗v j).

Por lo tanto, W1 coincide con el subespacio generado por los vectores T (⃗v1),T (⃗v2), · · · ,T (⃗vk),

⟨T (⃗v1),T (⃗v2), · · · ,T (⃗vk)⟩

Es decir W1 = L(T (⃗v1),T (⃗v2), · · · ,T (⃗vk)). T preserva las combinaciones lineales.

En consecuencia, la dimensión de W1 no puede superar k.

□

Demostraremos con el teorema que sigue que una transformación queda determinada cuando se

conocen las imágenes de los elementos de una base del espacio vectorial inicial.

Proposición 2.1.5 Sea B= {⃗e1, e⃗2, · · · , e⃗n} una base de un espacio vectorial V y sean w⃗1, w⃗2, · · · , w⃗n

n vectores cualesquiera de otro espacio vectorial W . En estas condiciones, existe una única

transformación lineal T de V en W tal que

T (⃗e j) = w⃗ j, j = 1,2, · · · ,n

Demostración:

Existencia. Dado v⃗ ∈V , v⃗ = ∑
n
j=1 α j⃗e j con α j ∈ K. Se define T (⃗v) = ∑

n
j=1 α jw⃗ j.

T es lineal

Sean v⃗ y v⃗′ tales que v⃗ = ∑
n
j=1 α j⃗e j y v⃗′ = ∑

n
j=1 α ′j⃗e j. Entonces,

v⃗+ v⃗′ =
n

∑
j=1

α j⃗e j +
n

∑
j=1

α
′
j⃗e j =

n

∑
j=1

(α j +α
′
j )⃗e j
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y

T (⃗v+ v⃗′) =
n

∑
j=1

(α j +α
′
j)w⃗ j =

n

∑
j=1

α jw⃗ j +
n

∑
j=1

α
′
jw⃗ j = T (⃗v)+T (⃗v′)

De la misma forma,

T (c⃗v) =
n

∑
j=1

(cα j)w⃗ j = c
n

∑
j=1

α jw⃗ j = cT (⃗v)

T es única

Si T ′ cumple T ′(⃗e j) = w⃗ j y v⃗ = ∑
n
j=1 α j⃗e j, se tiene que

T ′(⃗v) =
n

∑
j=1

α jT ′(⃗e j) =
n

∑
j=1

α jT (⃗e j) = T (⃗v).

Luego T (⃗v) = T ′(⃗v), ∀⃗v ∈V , de donde T = T ′.

□

Se presentan a continuación ejemplos de transformaciones lineales conocidas como la derivada,

la integral definida (entre espacios vectoriales de funciones) y la multiplicación de una matriz por un

vector. Se deja al lector la verificación de que son transformaciones lineales.

■ Ejemplo 2.2 D : P(n)
R [x]→ P(n−1)

R [x] (derivada)

D(a01+a1x+a2x2 + · · ·+anxn) = a1 +2a2x+ · · ·+nanxn−1

■

■ Ejemplo 2.3 J : C([0,1])→ R (integral definida)

J( f ) =
∫ 1

0
f (x)dx

■

■ Ejemplo 2.4 Dada la matriz,

A =

 i 1 0

1 i 0


es posible definir la transformación que multiplica la matriz por un vector v⃗ = (z1,z2,z3) ∈ C2, es

decir, A : C3→ C2, está dada por A((z1,z2,z3)) = A(z1,z2,z3)
t .
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Es una transformación lineal, ya que se cumple

A(⃗v+ v⃗′) = A⃗v+ A⃗v′

y

A(c⃗v) = cA⃗v

■

i
Dada una matriz A ∈ Km×n, la transformación A : Kn→ Km, dada por

A((z1,z2, · · · ,zn)) = A(z1,z2, · · · ,zn)
T ,

es la transformación lineal asociada con la matriz A.

Se verá que, recíprocamente, dada una transformación lineal es posible hallar la matriz

que la representa.

2.2 Matriz de una transformación lineal

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Sea B = {⃗e1, e⃗2, · · · , e⃗n} una base

de V y B̄ =
{

f⃗1, f⃗2, · · · , f⃗m

}
una base de W . El elemento T (⃗e1) es un vector de W , y por lo tanto

puede escribirse como combinación lineal de los vectores de la base B̄:

T (⃗e1) = a11 f⃗1 +a21 f⃗2 + · · ·+am1 f⃗m

Análogamente,

T (⃗e2) = a12 f⃗1 +a22 f⃗2 + · · ·+am2 f⃗m

· · · · · · · · ·

T (⃗en) = a1n f⃗1 +a2n f⃗2 + · · ·+amn f⃗m.

Estas igualdades se escriben de la forma

T (⃗e j) =
m

∑
i=1

ai j f⃗i, j = 1,2 · · · ,n (2.1)
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O en forma más abreviada, usando notación indicial, es decir, sumando sobre el índice repetido i

de 1 a m,

T (⃗e j) = ai j f⃗i, j = 1,2 · · · ,n

En estas condiciones diremos que

T =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

· · · · · ·
am1 am2 am3 · · · amn


es la matriz de la aplicación T con respecto a las bases B y B̄.

i
En la j-ésima columna de la matriz de la aplicación lineal T están las coordenadas de

T (⃗e j) con respecto a la base B̄ de W . Ver Sección 1.5

El cambio de base para obtener las coordenadas de un vector visto en la Sección 1.5 es

una transformación lineal. Las nuevas coordenadas del vector se obtienen al multiplicar

por la matriz de cambio de base. La matriz de una transformación lineal, se construye,

entonces, de la misma forma que lo hicimos con la matriz de cambio de base.

A veces se agregan en la notación las bases B y B̄, para indicar las bases consideradas en

los espacios V y W .

Para el caso dimensión finita, y si están especificadas las bases B y B̄, es posible

denominar a la matriz de la transformación lineal con la misma letra que la transformación

lineal.

Dado x⃗ ∈V , se puede escribir

x⃗ =
n

∑
j=1

x j⃗e j e

y⃗ = T (⃗x) =
m

∑
i=1

yi f⃗i,

la relación entre las coordenadas yi y x j de y⃗ y x⃗ viene dada por la matriz T .
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En efecto, teniendo en cuenta la expresión para T (⃗e j), Ec.(2.1),

∑
m
i=1 yi f⃗i = T (⃗x) = T (∑n

j=1 x j⃗e j) = ∑
n
j=1 x jT (⃗e j) = ∑

n
j=1 x j(∑

m
i=1 ai j f⃗i) = ∑

m
i=1(∑

n
j=1 ai jx j) f⃗i

del primer y del último término de la igualdad anterior, se tiene que

yi =
n

∑
j=1

ai jx j, i = 1,2 · · · ,m

es decir que la relación entre las coordenadas yi y x j viene dada por los elementos ai j (ver Sección

1.5).

■ Ejemplo 2.5 Sea P la proyección ortogonal sobre el plano xy, (representada en la Figura 2.1).

P : R3→ R3. P es una transformación lineal que verifica

P(⃗e1) = e⃗1, P(⃗e2) = e⃗2, P(⃗e3) = 0⃗

por lo tanto, su matriz con respecto a la base canónica es:

P =


1 0 0

0 1 0

0 0 0


■

■ Ejemplo 2.6 Sea Rφ la transformación que corresponde a una rotación en un ángulo φ en sentido

positivo (antihorario) alrededor del origen (Ver Figura (2.2)). Rφ : R2→ R2. Su matriz en la base

canónica es:

Rφ =

 cos(φ) −sen(φ)

sen(φ) cos(φ)

 . (2.2)

De acuerdo a la Figura 2.2, se tiene que x′

y′

= Rφ

 x

y


Esta matriz es la matriz de cambio de base del Ejemplo 1.28.

■
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Figura 2.2: Transformación de rotación

■ Ejemplo 2.7 En R3, consideramos el subespacio V1 correspondiente al plano xy. Si B = {⃗e1, e⃗2, e⃗3}
es la base canónica, y S la transformación lineal que para cada vector v⃗ da el vector simétrico con

respecto al plano xy, como se muestra en la Figura 2.3, se tiene que

S(⃗e1) = e⃗1, S(⃗e2) = e⃗2, S(⃗e3) = −⃗e3.

Por lo tanto, su matriz con respecto a la base canónica es

S =


1 0 0

0 1 0

0 0 −1


■

i
Si se quiere hallar la matriz que corresponde a la transformación lineal que a cada vector le

hace corresponder el vector simétrico con respecto a un plano cualquiera, es conveniente hallar

una base del plano u⃗1, u⃗2 y un vector u⃗3 perpendicular. Así, en la base {⃗u1, u⃗2, u⃗3}, la matriz de

la simetría con respecto al plano es la misma que la matriz del Ejemplo 2.7. Una vez obtenida

la matriz, se realiza el cambio de base a la base deseada.

■ Ejemplo 2.8 De acuerdo al corolario anterior, para hallar la matriz correspondiente a la simetría

con respecto al plano x+ y+ z = 0 (Figura 2.4). se busca una base del plano (como x = −y− z,

los vectores en el plano son de la forma (−y− z,y,z) = y(−1,1,0)+ z(−1,0,1), es decir que los

vectores u⃗1 = (−1,1,0) y u⃗2 = (−1,0,1) son una base del mismo ). Y un vector perpendicular es
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Figura 2.3: Simetría con respecto al plano xy

u⃗3 = (1,1,1). En esa base {⃗u1, u⃗2, u⃗3} la matriz de la simetría con respecto al plano x+ y+ z = 0 es,

entonces,


1 0 0

0 1 0

0 0 −1


■

Si en los espacios vectoriales V y W , de dimensiones finitas n y m, respectivamente, se fijan

bases, existe una correspondencia biunívoca entre las transformaciones lineales de V en W y el

conjunto de las matrices Km×n (de orden m×n) sobre el cuerpo K. Puesto que el conjunto Km×n

posee una estructura de espacio vectorial, también tiene esa estructura el conjunto de todas las

transformaciones lineales entre dos espacios vectoriales sobre el mismo cuerpo K. A ese espacio

vectorial se lo denomina L(V,W ).
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Figura 2.4: Simetría respecto al plano x+ y+ z = 0

Teorema 2.2.1 Sean V y W dos espacios vectoriales sobre un mismo cuerpo K; el conjunto

L(V,W ) de las aplicaciones lineales entre V y W es un espacio vectorial sobre el cuerpo K.

Demostración:

Suma.

Dadas T1 y T2 ∈ L(V,W ), se define T1 +T2, T1 +T2 : V →W como

(T1 +T2)(⃗v) = T1(⃗v)+T2(⃗v) ∀⃗v ∈V

Veamos que T1 +T2 es una transformación lineal

• (T1 +T2)(⃗v+ w⃗) = T1(⃗v+ w⃗)+T2(⃗v+ w⃗)

= T1(⃗v)+T1(w⃗)+T2(⃗v)+T2(w⃗)

= (T1 +T2)(⃗v)+(T1 +T2)(w⃗)

• (T1 +T2)(α v⃗) = T1(α v⃗)+T2(α v⃗)

= αT1(⃗v)+αT2(⃗v)

= α(T1(⃗v)+T2(⃗v)) = α(T1 +T2)(⃗v)
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Producto por escalares.

Dada T ∈ L(V,W ) y α ∈ K, se define (αT ), (αT ) : V →W como

(αT )(⃗v) = αT (⃗v)

Veamos que (αT ) es una transformación lineal

• (αT )(⃗v+ w⃗) = α(T (⃗v+ w⃗))

= α(T (⃗v)+T (w⃗)) = αT (⃗v)+αT (w⃗)

= (αT )(⃗v)+(αT )(w⃗)

• (αT )(β v⃗) = α(T (β v⃗))

= α(βT (⃗v)) = (αβ )T (⃗v)

= β (αT (⃗v)) = β (αT )(⃗v)

□

Como toda transformación lineal puede representarse mediante una matriz y recíprocamente, se

tiene el siguiente resultado:

Teorema 2.2.2 Sean V y W espacios vectoriales de dimensiones n y m, respectivamente, entonces,

el espacio vectorial de las transformaciones lineales del espacio vectorial V al espacio vectorial

W , L(V,W ), tiene dimensión m×n.

Demostración:

Se puede ver en el libro de E. Hernández [21]. En él se construye una base de L(V,W ).

También puede demostrarse a partir de la correspondencia biyectiva entre el espacio vectorial de

las matrices Km×n (de dimensión m×n) y L(V,W ).

□

i

Si V y W coinciden escribimos L(V ) en lugar de L(V,V ).

La matriz de la aplicación lineal suma coincide con la suma de las matrices de cada una

de las aplicaciones y la matriz de la aplicación lineal cT coincide con el producto de la

matriz T por el escalar c. Si llamamos M(T ) a la matriz de la aplicación lineal T , esto se

escribe
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M(T +T ′) = M(T )+M(T ′) y M(cT ) = cM(T ), c ∈ K

Se verá a continuación que la composición de funciones usual puede realizarse entre dos

transformaciones lineales y el resultado es otra transformación lineal.

Proposición 2.2.3 Sean V , W y X espacios vectoriales sobre el cuerpo K. Sean T ∈ L(V,W ) y

T ′ ∈ L(W,X). Entonces

T ′ ◦T ∈ L(V,X)

Demostración:

Sean v⃗1, v⃗2 ∈V , entonces

(T ′ ◦T )(⃗v1 + v⃗2) = T ′(T (⃗v1 +T (⃗v2)) = T ′(T (⃗v1))+T ′(T (⃗v2))

= (T ′ ◦T )(⃗v1)+(T ′ ◦T )(⃗v2)

Análogamente,

(T ′ ◦T )(α v⃗) = T ′(T (α v⃗)) = T ′(αT (⃗v)) = α(T ′ ◦T )(α v⃗) □

Proposición 2.2.4 Si los espacios V , W y X tienen dimensión finita y si denotamos por M(T ),

M(T ′) y M(T ′oT ) las matrices de T , T ′ y T ′oT , respectivamente, con respecto a las bases de

antemano fijadas, se tiene el siguiente resultado:

M(T ′oT ) = M(T ′)M(T )

Demostración:

T (⃗e j) =
m

∑
i=1

ai j f⃗i, j = 1,2 · · · ,n (2.3)

donde ai j son los elementos de la matriz M(T ).
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Sean {⃗e1, e⃗2, · · · , e⃗n},
{

f⃗1, f⃗2, · · · , f⃗m

}
y {⃗g1, g⃗2, · · · , g⃗p} bases de V , W y X , respectivamente.

En la i-ésima columna de la matriz M(T ′oT ) están las coordenadas del vector (T ′oT )(⃗ei) con

respecto a la base gk.

T ′(T (⃗ei)) = T ′(
m

∑
j=1

a ji f⃗ j)

=
m

∑
j=1

a jiT ′( f⃗ j)

=
m

∑
j=1

a ji

p

∑
k=1

bk j⃗gk

=
p

∑
k=1

m

∑
j=1

bk ja ji⃗gk

donde bi j son los elementos de la matriz M(T ′).

Esto prueba que ∑
m
j=1 bk ja ji es el elemento que ocupa el lugar (k, i) de la matriz M(T ′oT ) y

este valor coincide con el elemento (k, i) del producto de las matrices M(T ′) y M(T ).

□

i El resultado anterior se generaliza para el caso de una sucesión de tranformaciones lineales, Ti,

i = 1, · · ·k aplicadas a un vector v⃗. Se tendrá entonces que resulta equivalente a aplicar a v⃗ una

única matriz T tal que

M(T ) = M(Tk)M(Tk−1) · · ·M(T2)M(T1).

2.3 Transformaciones lineales inyectivas y suryectivas

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K y T una aplicación lineal de de V

en W . Recordamos que T es inyectiva si T (⃗x) = T (⃗y) implica x⃗ = y⃗ y T es suryectiva si para todo

y⃗ ∈W existe x⃗ ∈V tal que T (⃗x) = y⃗ (o equivalentemente T (V ) =W , donde T (V ) denota la imagen

de V mediante T ). Finalmente recordamos que T es biyectiva si es a la vez inyectiva y suryectiva.

i // En el caso de transformaciones lineales cada uno de los tipos anteriores recibe un nombre

especial: una aplicación lineal inyectiva recibe el nombre de monomorfismo; si es suryectiva

se le da el nombre de epimorfismo; finalmente si la aplicación es biyectiva se dice que es un

isomorfismo.
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Encontraremos ahora condiciones sencillas que sirvan para determinar si una aplicación lineal

es de cualquiera de los tipos anteriores. Comenzaremos con las aplicaciones inyectivas, y para ello

necesitamos definir el concepto de núcleo de una aplicación lineal.

2.4 Núcleo e imagen de una transformación lineal

Definición 2.4.1 Dada una aplicación lineal T : V →W , definimos el núcleo de T , que se denota

por N(T ) (o Ker(T ), del inglés kernel significa núcleo), como el conjunto de todos los v⃗ ∈ V

tales que T (⃗v) = 0⃗, es decir

N(T ) =
{⃗

v ∈V,/T (⃗v) = 0⃗
}

El subconjunto N(T ) nunca es vacío, ya que 0⃗ ∈ N(T ) y esto se deduce de que T (⃗0) = 0⃗ como

ya fue demostrado. Se tiene además, el siguiente resultado:

Proposición 2.4.1 Si T : V →W es una aplicación lineal entre espacios vectoriales, N(T ) es un

subespacio vectorial de V .

Demostración:

Esta propiedad es consecuencia de la Proposición 2.1.3. Por definición N(T ) es la preimagen

de 0⃗W que es un subespacio de W . □

Proposición 2.4.2 Una aplicación lineal T : V →W es inyectiva si y solo si N(T ) =
{⃗

0
}

.

Demostración:

Si T es inyectiva se tiene que T (⃗v) = T (⃗v′) implica que v⃗ = v⃗′. Si ∃ v⃗ ∈ N(T ) tal que

T (⃗v) = 0⃗ como T (⃗0) = 0⃗ resulta v⃗ = 0⃗.

Para ver que T es inyectiva suponemos ∃ v⃗ y v⃗′, tales que T (⃗v) = T (⃗v′). Por ser T una

transformación lineal T (⃗v) = T (⃗v′) = T (⃗v− v⃗′), y si T (⃗v− v⃗′) = 0⃗, entonces, v⃗− v⃗′ ∈ N(T ).

Como N(T ) =
{⃗

0
}

, se tiene que v⃗ = v⃗′ y por lo tanto T es inyectiva.

□
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■ Ejemplo 2.9 Para la proyección ortogonal P de la Figura 2.1 (Ejemplo 2.5),

N(P) = {(x,y,z) ∈ R3 tales que P(x,y,z) = (x,y,0) = (0,0,0)}.

O sea N(P) = {(0,0,z), z ∈R}, todo el eje z. Por la Proposición 2.4.2, se tiene que P no es inyectiva

(intuitivamente se ve que muchos vectores de R3 dan el mismo vector al proyectar los sobre el plano

xy). Además, se tiene que las dimensiones de N(P) y de la Im(P) son 1 y 2, respectivamente, suman

3, que es la dimensión de R3. ■

i Si bien las soluciones de un sistema AX⃗ = b⃗, b⃗ ̸= 0⃗ son un subconjunto pero no un subespacio

de Rn (ver Observación i en 1.2), toda solución puede expresarse de la forma X⃗ = X⃗NH + X⃗H ,

donde X⃗NH es solución de AX⃗ = b⃗ mientras que X⃗H ∈ Nul(A). Esto sale porque si X⃗NH es

solución de AX⃗ = b⃗, A(X⃗NH + X⃗H) = AX⃗NH +AX⃗H = b⃗+ 0⃗ = b⃗ y si X⃗ es otra solución de

AX⃗ = b⃗, entonces A(X⃗− X⃗NH) = AX⃗−AX⃗NH = b⃗− b⃗ = 0⃗, de donde X⃗− X⃗NH ∈ Nul(A) y por

lo tanto X⃗ = X⃗NH + X⃗H .

Como ejemplo se deja al lector verificar que la solución del sistema no homogéneo{
x+ y+w = 1

2x+3y+ z+2w = 1

es X⃗ = X⃗NH + X⃗H = (2,−1,0,0)+α(1,−1,1,0)+β (−1,0,0,1) con α y β ∈ R. ▲

Como se demostró en la Proposición 2.1.2, la imagen de una transformación lineal T es un

subespacio. En el teorema que sigue se enuncia la relación que existe entre las dimensiones del

núcleo de T , de la imagen de T y la dimensión de V :

Teorema 2.4.3 Sean V y W dos espacios vectoriales de los cuales V es de dimensión finita y

T : V →W es una aplicación lineal. Entonces

dim(N(T ))+dim(Im(T )) = dim(V ).

Demostración:

Sea n = dim(V ) y k = dim(N(T )),

si k = n, entonces T es la aplicación nula y la dim(Im(T )) = 0. Por lo tanto el teorema vale.
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Si k = 0, entonces T es un monomorfismo. Si B es una base de V , T (V ) es base de la Im(T ).

Luego la dim(Im(T )) = dim(V ) y el teorema vale.

Supongamos que 0 < k < n y sea {⃗v1, v⃗2, · · · , v⃗k} una base de N(T ). Sean v⃗k+1, v⃗k+2, · · · , v⃗n

tales que {⃗v1, v⃗2, · · · , v⃗k, v⃗k+1, v⃗k+2, · · · , v⃗n} es una base de V .

Veamos que {T (⃗vk+1),T (⃗vk+2), · · · ,T (⃗vn)} es una base de Im(T ).

En ese caso se tendrá que dim(N(T ))+dim(Im(T )) = k+(n− k) = n = dim(V ).

Si w⃗ ∈ Im(T ), ∃ v⃗ ∈V tal que T (⃗v) = w⃗.

Como v⃗ = ∑
n
j=1 c j⃗v j, w⃗ = T (⃗v) = ∑

n
j=1 c jT (⃗v j) = ∑

n
j=k+1 c jT (⃗v j), ya que {⃗v1, v⃗2, · · · , v⃗k}

es una base de N(T ).

Entonces, {T (⃗vk+1),T (⃗vk+2), · · · ,T (⃗vn)} es un sistema de generadores de Im(T ).

Para ser si en un conjunto linealmente independiente, supongamos

∑
n
j=k+1 c jT (⃗v j)= 0⃗=T (∑n

j=k+1 c j⃗v j), entonces ∑
n
j=k+1 c j⃗v j ∈ N(T ). Como {⃗v1, v⃗2, · · · , v⃗k}

es una base de N(T ), existen escalares c1,c2, · · · ,ck tales que

∑
n
j=k+1 c j⃗v j = ∑

k
j=1 c j⃗v j

que puede reescribirse

∑
k
j=1(−c j )⃗v j +∑

n
j=k+1 c j⃗v j = 0

Se tiene que ci = 0, ∀ 1≤ i≤ n, por ser {⃗v1, v⃗2, · · · , v⃗k, v⃗k+1, v⃗k+2, · · · , v⃗n} una base de V .

En particular ci = 0, ∀ k+1≤ i≤ n. Luego {T (⃗vk+1),T (⃗vk+2), · · · ,T (⃗vn)} es un conjunto

linealmente independiente.

□

■ Ejemplo 2.10 Se verificará el teorema anterior para la transformación lineal T : R5→ R3, dada

por T ((z1,z2, · · · ,z5)) = A(z1,z2, · · · ,z5)
T , donde A es la matriz (ver Observación i al final de la

Sección 2.1).

A =


1 1 1 1 1

0 1 0 −1 1

1 0 1 2 0


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En primer lugar, se resuelve el sistema homogéneo utilizando eliminación gaussiana (con la

matriz ampliada):


1 1 1 1 1 0

0 1 0 −1 1 0

1 0 1 2 0 0

→


1 1 1 1 1 0

0 1 0 −1 1 0

0 −1 0 1 −1 0

→


1 1 1 1 1 0

0 1 0 −1 1 0

0 0 0 0 0 0



Al quedar solo dos pivotes, hay 2 variables dependientes y n−2 = 3 variables independientes.

Se tiene que dim(N(T))=3.

Para estudiar cuál es el subespacio que corresponde a la imagen de T , se debe hallar el subespacio

de R3 que generan las columnas. Puede repetirse la eliminación anterior con término independiente

(x,y,z).


1 1 1 1 1 x

0 1 0 −1 1 y

1 0 1 2 0 z

→


1 1 1 1 1 x

0 1 0 −1 1 y

0 −1 0 1 −1 z− x

→


1 1 1 1 1 x

0 1 0 −1 1 y

0 0 0 0 0 z− x+ y



Se tiene, entonces, que Im(T ) = {(x,y,z) = (x,y,x− y)}, es el plano por el origen z = x− y, y

dim(N(T ))+dim(Im(T )) = 3+2 = 5 = dim(V ),

ya que V = R5. ■

Para deducir algunas consecuencias del Teorema 2.4.3 es necesario hacer uso del concepto de

rango.

Sea T una aplicación entre los espacios vectoriales V y W , ambos de dimensión finita, m y n

respectivamente. Sea A la matriz de la aplicación lineal en dos bases cualesquiera de V y W . Para

encontrar el núcleo de T , N(T ), es necesario resolver el sistema homogéneo A⃗x = 0⃗ (como se hizo

en el ejemplo anterior).

Si r(A) es el rango de la matriz A, se obtienen, r(A) soluciones dependientes y n−r(A) soluciones

linealmente independientes. Es decir que
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dim(N(T )) = dim(V )− r(A)

y comparando con el Teorema 2.4.3, se tiene que

dim(Im(T )) = r(A)

Puesto que la dimensión de la Im(T ) no depende de las bases que se elijan en V y W , de la

igualdad anterior se deduce que las matrices de la aplicación T en cualquier base tienen el mismo

rango.

Como consecuencia de lo anterior, es posible definir el rango de una transformación lineal T ,

que escribiremos r(T ) como el rango de cualquiera de sus representaciones matriciales, y resumir

los resultados anteriores en el Corolario que sigue:

Corolario Sean V y W dos espacios vectoriales de los cuales V es de dimensión finita y T una

transformación lineal, T : V →W . Entonces

1. T es inyectiva sí y sólo sí r(T ) = dim(V ).

2. T es suryectiva sí y sólo sí r(T ) = dim(W ).

Por último, se estudian las aplicaciones lineales entre espacios vectoriales de igual dimensión

que son biyectivas. Se conocen como isomorfismos. Supongamos que V y W son espacios vectoriales

de dimensión finita, y que T es un isomorfismo entre ellos. Del Corolario anterior deducimos que

dim(V ) = r(T ) = dim(W )

Otras consecuencias de resultados anteriores se resumen en el teorema que sigue.

Teorema 2.4.4 Sean V y W espacios vectoriales de dimensión finita n y sea T : V →W es una

aplicación lineal. Las siguientes condiciones son equivalentes:

1. T es biyectiva

2. T es inyectiva

3. N(T ) =
{⃗

0
}

4. T es suryectiva

5. El rango de T es n
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Demostración:

Entre 2, 3, 4 y 5 se tienen las equivalencias siguientes:

2
Prop.2.4.2⇐⇒ 3

⇕Corolario

5 Corolario⇐⇒ 4

Además, 1→ 2 porque toda transformación biyectiva es inyectiva. Como 2 y 4 son equivalentes

en este contexto y ambas implican 1, se tiene que también 2→ 1, y queda demostrado. □

Decimos que dos espacios vectoriales cualesquiera son isomorfos si podemos encontrar un

isomorfismo entre ellos. Para que esto ocurra entre espacios vectoriales de dimensión finita ya vimos

que ambos han de tener la misma dimensión. El recíproco también es cierto.

Teorema 2.4.5 Dado cualquier número natural n, todos los espacios vectoriales de dimensión n

sobre un mismo cuerpo son isomorfos.

Demostración:

Sean V y W dos espacios vectoriales de dimensión n con bases {⃗e1, e⃗2, · · · , e⃗n} y {⃗e′1, e⃗′2, · · · , e⃗′n}
respectivamente. Existe una transformación lineal T1, T1 : V → Kn definida de la forma siguiente:

Si v⃗ = ∑
n
i=1 αi⃗ei,

T1(⃗v) = (α1,α2, · · · ,αn)

Es decir que la transformación da el vector con las coordenadas de v⃗. Se demuestra fácilmente

(y se deja al lector) que esta transformación es lineal, inyectiva y suryectiva. Al ser biyectiva,

existe también su transformación inversa (Proposición 2.4.4). Utilizando este isomorfismo de un

espacio vectorial V con Kn, se tiene que dos espacios cualesquiera de la misma dimensión son

isomorfos. Para encontrar la transformación entre V y W hay que componer la transformación

T1 entre V y Kn con la transformación T2 entre Kn y el espacio vectorial W , T2 : Kn→W . Esta

última está dada por
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T2(α1,α2, · · · ,αn) =
n

∑
i=1

αi⃗e′i.

El isomorfismo entre V y W está dado por la transformación

(T2 ◦T1)(⃗v) = T2(T1(⃗v)) = w⃗ =
n

∑
i=1

αi⃗e′i.

□

■ Ejemplo 2.11 Aplicando el Teorema anterior, el isomorfismo entre P(2)
R [t] y R3 está dado por

T (a01+a1t +a2t2) = (a0,a1,a2)
t ,

mientras que el isomorfismo entre R3 y las matrices simétricas de R2×2 está dado por:

T (x,y,z) =

 x y

y z

 .

Se consideraron las bases canónicas de R3, de P(2)
R [t] y de las matrices simétricas de R2×2,

espacios vectoriales de dimensión 3. Se deja al lector la verificación de estos resultados. ■

i Si T es un isomorfismo entre dos espacios vectoriales V y W de dimensión n, por el Teorema

2.4.4, su rango es n, y por lo tanto la matriz M(T ) de T en cualesquiera bases de V y W es

invertible. Además, la inversa de M(T ) es la matriz de la aplicación inversa de T .

■ Ejemplo 2.12 Sean V y W dos espacios vectoriales de funciones, de dimensión infinita:

V = { f ∈C1[0,1]/ f (0) = 0} y W =C[0,1].

Sea la transformación

D : V →W dada por D( f ) = f ′. D es una transformación lineal (En el Ejemplo 2.2 se vió para

polinomios en P(n)
R [x]) .

D es monomorfismo

Supongamos D( f ) = D(g), entonces f ′ = g′ o, en forma equivalente ( f −g)′ = 0. Entonces

f (x)−g(x) = cte. Como f (0) = g(0) = 0, se tiene que la cte = 0, por lo tanto f = g.
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D es epimorfismo

Sea g ∈W y sea

f (x) =
∫ x

0
g(t)dt.

Entonces, por el Teorema Fundamental del cálculo, f ∈C1[0,1] y f ′ = g(x), ∀x ∈ [0,1]. Más

aún, como∫ 0

0
g(t)dt = 0,

se tiene que f (0) = 0. Por lo tanto, ∀g ∈W, ∃ f ∈V tal que D f = g. O sea D es epimorfismo.

Resulta, entonces, que V y W son espacios isomorfos. ■

Gabriela González

Gabriela González es una física, investigadora y profesora argentina. Nació en 1965. Fue portavoz

y coordinó durante seis años un equipo de mil especialistas, que trabajó en las detecciones de ondas

gravitacionales efectuadas desde el proyecto LIGO (Ondas Gravitacionales con Interferómetro Láser,

por sus siglas en inglés). En febrero de 2016 fue uno de los cuatro científicos de LIGO que anunciaron

la primera observación ondulatoria gravitacional, detectada en septiembre de 2015. Egresada de la

Universidad Nacional de Córdoba y actual profesora en el departamento de física y astronomía de la

Universidad de Louisiana, fue reconocida en 2016 como una de los diez científicos más destacados

del mundo por la revista académica Nature. Además, a partir de 2018 forma parte de la Academia de

Ciencias de Estados Unidos, institución de máximo prestigio internacional. [9]

2.5 Geometría de las transformaciones lineales de R2 en R2

Se verán en esta sección algunas propiedades geométricas de las transformaciones lineales en el

plano. Dada la matriz

A =

 a b

c d


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Figura 2.5: Transformación de simetría (o reflexión) respecto del eje y

la transformación L : R2→ R2 dada por L((x,y)) = A(x,y)t es

L

 x

y

=

 ax+by

cx+dy


.

■ Ejemplo 2.13 En la Figura 2.5 se muestra la transformación que a cada vector le hace corresponder

el simétrico respecto del eje y.

L

 x

y

=

 −1 0

0 1

 x

y

=

 −x

y


. ■

■ Ejemplo 2.14 En la Figura 2.6 se muestra la transformación que a cada vector le hace corresponder

el simétrico respecto del eje x

L

 x

y

=

 1 0

0 −1

 x

y

=

 x

−y


. ■

■ Ejemplo 2.15 En la Figura 2.7 se muestra la transformación que a cada vector le hace corresponder

su proyección ortogonal sobre el eje x:

L

 x

y

=

 1 0

0 0

 x

y

=

 x

0

 .
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Figura 2.6: Transformación de simetría respecto del eje x

■

■ Ejemplo 2.16 En la Figura 2.8 se muestra la transformación que a cada vector le hace su reflexión

respecto de la recta y = x:

L

 x

y

=

 0 1

1 0

 x

y

=

 y

x


. ■

i Otras transformaciones se obtienen al multiplicar una de las coordenadas por una constante k.

Así el efecto es comprimir o dilatar en esa dirección, dependiendo si k < 1 o k > 1. También

están las transformaciones llamadas de trasquillado, dadas por matrices de la forma:

L

(
x

y

)
=

(
1 k

0 0

)(
x

y

)
=

(
x+ ky

y

)
.

Estos casos se analizarán en los ejercicios propuestos.

2.6 Cambio de base para transformaciones lineales

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K de dimensiones n y m, respectivamente.

Sea T una transformación lineal de V en W con matriz
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Figura 2.7: Proyección ortogonal sobre el eje x

Figura 2.8: Transformación de reflexión respecto de la recta y = x
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T = (ai, j)i=1,m, j=1,n

con respecto a las bases B = {⃗e1, e⃗2, · · · , e⃗n} y B̄ =
{

f⃗1, f⃗2, · · · , f⃗m

}
de V y W , respectivamente.

Si queremos conocer la matriz T ′ = (ai, j)i, j=1,n de la misma aplicación T respecto a dos nuevas

bases B′ = {⃗e′1, e⃗′2, · · · , e⃗′n} y B̄′ =
{

f⃗ ′1, f⃗ ′2, · · · , f⃗ ′m
}

de V y W , respectivamente, es necesario realizar

los cambios de base adecuados en los espacios vectoriales inicial y final, V y W .

Para seguir el razonamiento, veamos el diagrama siguiente:

V y = T (x) W

B = {⃗e1, e⃗2, · · · , e⃗n}
ai, j
=⇒ B̄ =

{
f⃗1, f⃗2, · · · , f⃗m

}
C ⇑ D ⇑

B′ = {⃗e′1, e⃗′2, · · · , e⃗′n}
a′i, j
=⇒ B̄′ =

{
f⃗ ′1, f⃗ ′2, · · · , f⃗ ′m

}

En el diagrama

ai j son los elementos de la matriz de la transformación T tomando la base B en V y la base B̄

en W

a′i j son los elementos de la matriz de la transformación T tomando la base B′ en V y la base B̄′

en W

C y D son las matrices del cambio de base de B′ a B y de B̄′ a B̄, respectivamente.

Se tiene que x⃗ ∈V puede escribirse de dos formas

x1⃗e1 + x2⃗e2 + · · ·+ xn⃗en = x′1⃗e′1 + x′2⃗e′2 + · · ·+ x′n⃗e′n

e y⃗ = T (⃗x) también

y1 f⃗1 + y2 f⃗2 + · · ·+ yn f⃗m = y′1 f⃗ ′1 + y′2 f⃗ ′2 + · · ·+ y′n f⃗ ′m



82 Capítulo 2. Transformaciones Lineales

En primer lugar, se tiene que,



y1

y2

y3

· · ·
ym


= T



x1

x2

x3

· · ·
xn


(2.4)

y de acuerdo a los cambios de base en un mismo espacio vectorial que se estudiaron antes,



x1

x2

x3

· · ·
xn


=C



x′1
x′2
x′3
· · ·
x′n





y1

y2

y3

· · ·
ym


= D



y′1
y′2
y′3
· · ·
y′m


mientras que, considerando las bases B′ y B̄′, se tiene que,



y′1
y′2
y′3
· · ·
y′m


= T ′



x′1
x′2
x′3
· · ·
x′n


(2.5)

Sustituyendo en (2.4), se obtiene,

D



y′1
y′2
y′3
· · ·
y′m


= TC



x′1
x′2
x′3
· · ·
x′n


y como D es una matriz de cambio de base, tiene inversa, por lo tanto
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

y′1
y′2
y′3
· · ·
y′m


= D−1TC



x′1
x′2
x′3
· · ·
x′n



Comparando esta expresión con (2.5) se obtiene, finalmente que

T ′ = D−1TC,

y es posible calcular la matriz T ′ de la aplicación T con respecto a las bases B′ y B̄′, conocidas la

matriz T de la misma aplicación con respecto a las bases B̄ y B̄′ y las matrices C y D del cambio de

base B′ a B y de B̄′ a B̄, respectivamente.

i

Cuando entre dos matrices T y T ′ se tiene la relación T ′ = D−1TC, se dice que las

matrices T y T ′ son equivalentes ( D y C son matrices invertibles). Y si las matrices D y

C coinciden, se dice que las matrices T y T ′ son semejantes.

En muchos casos los espacios inicial V y final W de una transformación lineal coinciden,

y se anota T ∈ L(V ).

Cuando B y B̄ coinciden y B′ y B̄′ coinciden, la fórmula del cambio de base es más

sencilla. Si T es la matriz de la aplicación T ∈ L(V ) con respecto a la base B de V , la

matriz T ′ de la misma aplicación con respecto a una base B′ de V está dada por

T ′ =C−1TC.

donde C es la matriz del cambio de base de B′ a B. Al tener esta relación entre las

matrices, por lo anterior, T y T ′ son semejantes.

Si T ′ =C−1TC, Det(T ′) = Det(T ), ya que

Det(T ′) = Det(C−1TC) = Det(C)−1Det(T ).Det(C)

= Det(C−1C)Det(T ) = Det(I)Det(T ) = Det(T ).
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■ Ejemplo 2.17 Si B es la base canónica, B′ = {(1,2),(2,3)} y

(T )B =

 6 −2

6 −1


se tiene que

(T )B′ =

 1 2

2 3

−1 6 −2

6 −1

 1 2

2 3

=

 2 0

0 3


. ■

2.7 Espacio dual de un espacio Vectorial

Dado un espacio vectorial V sobre un cuerpo K, podemos considerar el conjunto L(V,K) de

todas las transformaciones lineales de V en el espacio vectorial K (de dimensión 1 sobre K).

Este espacio vectorial es un caso particular del estudiado anteriormente (L(V,W )), y el Teorema

2.2.1 de la sección nos permite concluir que L(V,K) es un espacio vectorial sobre K. Este espacio

vectorial recibe el nombre de espacio dual del espacio vectorial V y para indicarlo se utiliza

comúnmente el símbolo V ∗, en lugar de L(V,K). En otras palabras, V ∗ es el espacio vectorial de

todas las aplicaciones lineales de V en K, también llamados funcionales lineales.

Los elementos de V ∗ son transformaciones lineales. Si V es un espacio vectorial de dimensión

finita n, del Teorema 2.2.2 se deduce que es espacio dual V ∗ tiene dimensión n. El teorema que sigue

exhibe una base B∗ asociada de manera única y natural a una base B de V . La demostración del

Teorema 2.2.2, más general, fue citada. Se presenta a continuación la demostración para este caso

particular.

Teorema 2.7.1 Sea V un espacio vectorial de dimensión finita n y B = {⃗e1, e⃗2, · · · , e⃗n} una base

de V . Existe una única base

B∗ = {ϕ1,ϕ2, · · · ,ϕn}

de V ∗ tal que ϕi(⃗ei) = 1 para todo i = 1, · · · ,n, y ϕ j (⃗ei) = 0 si i ̸= j. Es decir, los elementos de la

base dual de B satisfacen

ϕ j (⃗ei) = δi j, j, i = 1,2, · · · ,n
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La base B∗ se denomina base dual de B.

Demostración:

Para v⃗ = ∑
n
j=1 v j⃗e j, definimos los funcionales ϕ j, j = 1,2, · · · ,n de la forma siguiente,

ϕ j (⃗v) = v j

es decir, da la coordenada j-ésima.

ϕ j ∈V ∗ y satisface ϕ j (⃗ei) = δi j

¿{ϕ1,ϕ2, · · · ,ϕn} son linealmente independientes ?

Si ∑
n
j=1 c jϕ j = 0⃗, ¿ Se cumple que c j = 0, ∀ j ?

Notar que el término 0⃗ del miembro derecho de la igualdad es la aplicación nula (la imagen

de 0⃗ es 0 ∈ K ∀⃗v ∈ V ). Se deberá cumplir esa igualdad al evaluar las transformaciones

lineales de ambos lados en cualquier vector v⃗. En particular, si se evaluán en los vectores

de la base,

∑
n
j=1 c jϕ j (⃗ei) = 0⃗(⃗ei) = 0, ∀i = 1,2, · · · ,n.

Por lo tanto, ci = 0, i = 1,2, · · · ,n, ya que ϕ j (⃗ei) es no nulo solo cuando j = i. De ahí que

B∗ es un conjunto de aplicaciones linealmente independientes.

Finalmente, para ver que generan, si A ∈V ∗,

A(⃗v) = A(∑n
j=1 v j⃗e j) = ∑

n
j=1 A(v j⃗e j)

= ∑
n
j=1 v jA(⃗e j) = ∑

n
j=1 ϕ j (⃗v)A(⃗e j) = ∑

n
j=1 A(⃗e j)ϕ j (⃗v).

Entonces, se tiene la igualdad

A =
n

∑
j=1

A(⃗e j)ϕ j

y por lo tanto, B∗ = {ϕ1,ϕ2, · · · ,ϕn} es una base y queda demostrado el teorema.

□
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■ Ejemplo 2.18 Se quiere hallar la base dual B∗ = {ϕ1,ϕ2,ϕ3} de la base canónica B = {⃗e1, e⃗2, e⃗3}
de R3.

La transformación lineal ϕ1 debe satisfacer

ϕ1(⃗e1) = 1, ϕ1(⃗e2) = 0, y ϕ1(⃗e3) = 0, de donde se obtiene,

ϕ1(x1,x2,x3) = ϕ1(x1⃗e1 + x2⃗e2 + x3⃗e3) = x1.

De manera similar, ϕ2(x1,x2,x3) = x2 y ϕ3(x1,x2,x3) = x3.

■

■ Ejemplo 2.19 Sean Li, i = 1,2,3, funcionales sobre P(2)
R [t], definidos como Li(p(t)) = p(ti) donde

los ti son distintos.

Son aplicaciones lineales y son linealmente independientes, ya que si c1L1 + c2L2 + c3L3 = 0⃗,

para todo p ∈ P(2)
R [t], entonces c1 = c2 = c3 = 0.

V = P(2)
R [t] tiene dimensión 3. L1, L2 y L3 ∈ V ∗ y entonces, {L1,L2,L3} es una base de V ∗.

(Recordar que V y V ∗ tienen la misma dimensión).

¿Existe una base B de V para la cual {L1,L2,L3} es su base dual B∗?

Es decir, se quieren hallar {p1, p2, p3} ∈V tales que

L j(pi) = δ ji

p1(t1) = 1, p1(t2) = 0, p1(t3) = 0

p2(t1) = 0, p2(t2) = 1, p2(t3) = 0

p3(t1) = 0, p3(t2) = 0, p3(t3) = 1

De donde,

p1(t) =
(t− t2)(t− t3)
(t1− t2)(t1− t3)

p2(t) =
(t− t1)(t− t3)
(t2− t1)(t2− t3)

p3(t) =
(t− t1)(t− t2)
(t3− t1)(t3− t2)
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Entonces, para cada p ∈V , sus coordenadas son:

p(t) = L1(p(t))p1(t)+L2(p(t))p2(t)+L3(p(t))p3(t) = p(t1)p1(t)+ p(t2)p2(t)+ p(t3)p3(t)

p1(t), p2(t), p3(t) son los polinomios de interpolación de Lagrange. Es importante señalar

que estos polinomios tienen muchas aplicaciones en aproximación de funciones y en integración

numérica.

Es posible, por ejemplo, expresar el polinomio p(t) = t2 +1 como combinación lineal de los

funcionales Li si t1 = 0, t2 = 1 y t3 =−1.

p1(t) =
(t− t2)(t− t3)
(t1− t2)(t1− t3)

=
(t−1)(t +1)
(−1)(1)

= 1− t2

p2(t) =
(t− t1)(t− t3)
(t2− t1)(t2− t3)

=
(t)(t +1)
(1)(2)

=
(t2 + t)

2

p3(t) =
(t− t1)(t− t2)
(t3− t1)(t3− t2)

=
(t)(t−1)
(−1)(−2)

=
(t2− t)

2

Como Li(p) = p(ti), se tiene que

L1(p) = p(t1) = p(0) = 1, L2(p) = p(t2) = p(1) = 2, y L3(p) = p(t3) = p(−1) = 2.

Finalmente,

p(t) = (1)(1− t2)+2 (t2+t)
2 +2 (t2−t)

2 = t2 +1

Esta última es la expresión de p(t) en la base {p1, p2, p3}. Notar que sus coordenadas están

dadas por Li(p) = p(ti), i = 1,2,3.

■

Siempre es posible hallar la base de B como se hizo en el ejemplo anterior. Así como toda base

de V de dimensión finita tiene una base dual asociada, toda base de V ∗ es la base dual de una base de

V . Esta propiedad importante -de la cual no incluimos la demostración- se enuncia en el teorema a

continuación.
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Teorema 2.7.2 Sea V un espacio vectorial de dimensión finita n y sea V ∗ su espacio dual.

Sea B′ = {φ1,φ2, · · · ,φn} una base de V ∗. Existe una única base B = {⃗v1, v⃗2, · · · , v⃗n} de V que

satisface B∗ = B′.

Relación entre las coordenadas en las bases B y B∗ Si B es una base de un espacio vectorial V

de dimensión finita y

B∗ = {ϕ1,ϕ2, · · · ,ϕn}

es su base dual, es posible calcular fácilmente las coordenadas de un elemento de V usando la base

B∗ como se realizó al final del Ejemplo 2.19. Y recíprocamente es posible hallar las coordenadas de

un elemento de V ∗ utilizando la base B. Esto se muestra en el ejemplo que sigue:

■ Ejemplo 2.20 Si B = {⃗e1, e⃗2}= {(1,1),(1,−1)} y

B∗ = {ϕ1,ϕ2}=
{

x+ y
2

,
x− y

2

}
La relación entre las coordenadas en las bases B y B∗ es:

(5,5) = α(1,1)+β (1,−1)

ϕ1(5,5) = αϕ1(1,1)+βϕ1(1,−1) = α

ϕ2(5,5) = αϕ2(1,1)+βϕ2(1,−1) = β

ya que ϕi(⃗e j) = δi j.

Por otro lado, dado un funcional ϕ(x,y) ∈V ∗, ϕ(x,y) = α∗ϕ1(x,y)+β ∗ϕ2(x,y)

Así, para

ϕ(x,y) = 3x+5y = α
∗(

x+ y
2

)+β
∗(

x− y
2

)

sus coordenadas son, α∗ = ϕ(1,1) y β ∗ = ϕ(1,−1)

Entonces, la relación entre las coordenadas es la siguiente:

α = ϕ1(5,5) = 5 β = ϕ2(5,5) = 0



2.7 Espacio dual de un espacio Vectorial 89

α
∗ = ϕ(1,1) = 8 β

∗ = ϕ(1,−1) =−2

■

Se puede generalizar lo que vimos en el ejemplo anterior.

Sean B = {⃗e1, e⃗2, · · · , e⃗n} una base de V y B∗ = {ϕ1,ϕ2, · · · ,ϕn} una base de V ∗.

Dado v⃗ ∈V , v⃗ = ∑
n
i=1 αi⃗ei, αi ∈ K

ϕ j (⃗v) = ϕ j(
n

∑
i=1

αi⃗ei) = (
n

∑
i=1

αiϕ j (⃗ei)) = α j. (2.6)

Luego,

(⃗v)B = (ϕ1(⃗v),ϕ2(⃗v), · · · ,ϕn(⃗v))

Dada ϕ ∈V ∗, ∃ βi ∈ K tal que ϕ = ∑
n
i=1 βiϕi

Para cada j, 1≤ j ≤ n,

ϕ (⃗e j) = (
n

∑
i=1

βiϕi)(⃗e j) =
n

∑
i=1

βiϕi(⃗e j) = β j (2.7)

Luego,

(ϕ)B∗ = (ϕ (⃗e1),ϕ (⃗e2), · · · ,ϕ (⃗en))

i En el Ejemplo 2.19 las coordenadas de p(t) son, de acuerdo a (2.6), Li(p(t)) = p(ti), i = 1,2,3.

Anulador de un subespacio

Existe también relación entre los subespacios de V con ciertos subespacios de V ∗. En particular,

dado un subespacio S de V si consideramos el conjunto de todas los funcionales lineales que se

anulan en S se prueba que tiene una estructura de subespacio.
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Definición 2.7.1 Sea V un espacio vectorial y sea S un subespacio de V . Se llama anulador al

conjunto

S0 = {ϕ ∈V ∗,ϕ (⃗s) = 0 ∀⃗s ∈ S}

= {ϕ ∈V ∗, S⊆ N(ϕ)}

Proposición 2.7.3 S0 es un subespacio de V ∗.

Demostración:

0⃗ ∈ S0 (se anula en todo S y 0⃗ ∈ S).

Si ϕ1 y ϕ2 ∈ S0, entonces ϕ1(⃗s) = 0 y ϕ2(⃗s) = 0 ∀ s⃗ ∈ S, de donde (ϕ1 +ϕ2)(⃗s) =

ϕ1(⃗s)+ϕ2(⃗s) = 0 ∀ s⃗ ∈ S. Se tiene, que ϕ1 +ϕ2 ∈ S0.

Si c ∈ K y ϕ1 ∈ S0, (cϕ1)(⃗s) = cϕ1(⃗s) = c0 = 0 ∀ s⃗ ∈ S. Luego, cϕ1 ∈ S0.

□

Proposición 2.7.4 Sea V un espacio vectorial de dimensión n y sea S un subespacio de V .

Entonces

dim(S)+dim(S0) = n

Demostración:

Sea {⃗v1, v⃗2, · · · , v⃗k} una base de S, y sean v⃗k+1, v⃗k+2, · · · , v⃗n ∈V tales que

B = {⃗v1, v⃗2, · · · , v⃗k, v⃗k+1, · · · , v⃗n} sea una base de V . Sea B∗ = {ϕ1,ϕ2, · · · ,ϕk,ϕk+1, · · · ,ϕk} ⊂V ∗

la base dual de B. Entonces, para cada k+1≤ i≤ n, se tiene que ϕi(⃗v1)=ϕi(⃗v2)= · · ·=ϕi(⃗vk)= 0,

y por lo tanto ϕi se anula en todo S. Se tiene que {ϕk+1, · · · ,ϕn} ⊆ S0.

Como {ϕk+1, · · · ,ϕn} es parte de una base, es un conjunto linealmente independiente. Veamos

que es un sistema de generadores de S0 y entonces es base de S0.

Sea ψ ∈ S0. Como B∗ es una base de V ∗, existen c1,c2, · · · ,cn ∈ K tales que ψ = ∑
n
i=1 ciϕi.

Por la relación entre las coordenadas (2.7) se tiene que ci = ψ (⃗vi). Además, como ψ ∈ S0 y

{⃗v1, v⃗2, · · · , v⃗k} una base de S, ψ (⃗vi) = 0 para cada 1 ≤ i ≤ k. En consecuencia, ci = 0 para

1≤ i≤ k, y por lo tanto ψ ∈ ⟨ϕk+1, · · · ,ϕn⟩.
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Luego, {ϕk+1, · · · ,ϕn} es una base de S0 y entonces,

dim(S0) = n− k = n−dim(S).

□

■ Ejemplo 2.21 Si se desea hallar el subespacio anulador S0 para S = ⟨(1,1,1),(1,2,1)⟩ ⊂ R3. De

acuerdo a la demostración de la Proposición 2.7.4, S0 = ⟨ϕ3⟩, se completa S para tener una base de R3,

B = {⃗v1, v⃗2, v⃗3}= {(1,1,1),(1,2,1),(1,0,0)} y luego, a partir de escribir (x,y,z) como combinación

lineal de esa base y teniendo en cuenta que ϕi(⃗v j) = δi j, se obtiene que ϕ3(x,y,z) = x− z.

■

■ Ejemplo 2.22 De la misma forma, para hallar una base de S0, donde S = ⟨(−1,−1,1)⟩:
Se completa la base de S para tener una base de R3, B {⃗v1, v⃗2, v⃗3}, por ejemplo,

B = {(−1,−1,1),(1,0,0),(0,01)}.
Se halla la base B∗ = {ϕ1,ϕ2,ϕ3} tal que ϕ j (⃗vi) = δi j, i, j = 1,2,3.

La base de S0 está dada por {ϕ2,ϕ3}= {x1− x2,x2 + x3}.
■

El ejemplo que sigue muestra que los sistemas de ecuaciones lineales pueden estudiarse desde el

punto de vista de los funcionales lineales.

■ Ejemplo 2.23 Sea el sistema lineal homogéneo:

 x1 + x3 = 0

2x1− x2 + x3 = 0

Sea S el subespacio de R3 generado por α1 = (1,0,1), α2 = (2,−1,1). Entonces el espacio

solución es el espacio anulador, S0. Es decir, ϕ ∈ S0⇔ ϕ(αi) = 0, para i = 1,2 ■

Se verá a continuación cómo se comporta el anulador con la suma y la intersección de subespacios:

Proposición 2.7.5 Sea V un espacio vectorial de dimensión n y sean S y T subespacios de V .

Entonces,

1. (S+T )0 = S0∩T 0 y
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2. (S∩T )0 = S0 +T 0

Demostración:

1. Sea ϕ ∈V ∗. Se tiene que ϕ ∈ (S+T )0 sí y solo sí ϕ (⃗s+ t⃗) = 0 para todo s⃗ ∈ S y para todo

t⃗ ∈ T . Y esto es equivalente a que ϕ (⃗s) = 0 para todo s⃗ ∈ S y ϕ (⃗t) = 0 para todo t⃗ ∈ T , es

decir que ϕ ∈ S0∩T 0.

2. Sea ϕ ∈ S0 +T 0. Entonces ϕ = ϕS +ϕT , ϕS ∈ S0 y ϕT ∈ T 0. Para cada x⃗ ∈ S∩T se tiene

que ϕ (⃗x) = ϕS(⃗x)+ϕT (⃗x) = 0+0 = 0. Luego ϕ ∈ (S∩T )0. Por lo tanto S0+T 0 ⊆ (S∩T )0.

Por el Teorema de la dimensión para la suma de subespacios (Proposición 1.4.1), teniendo

en cuenta que (S+T )0 = S0∩T 0 y la Proposición 2.7.4,

dim(S0 +T 0) = dim(S0)+dim(T 0)−dim(S0∩T 0)

= dim(S0)+dim(T 0)−dim((S+T )0)

= (n−dim(S))+(n−dim(T ))− (n−dim(S+T ))

= n− (dim(S)+dim(T )−dim(S+T ))

= n−dim(S∩T )

= dim((S∩T )0)

En consecuencia, (S∩T )0 = S0 +T 0.

□

El doble dual

Como V ∗ = L(V,K) es un espacio vectorial, es posible definir su espacio dual. Entonces (V ∗)∗ =

L(V ∗,K). Por las propiedades vistas antes, se tiene que dim(V ) = dim(V ∗) = dim(V ∗∗). Si V es de

dimensión finita, sabemos que los espacios V y V ∗, al tener la misma dimensión, son isomorfos.

Para hallar el isomorfismo se debe hallar una base de V y su base dual. En forma similar, como la

dimensión de V ∗ es igual a la dimensión de V ∗∗, existe un isomorfismo entre los espacios V ∗ y V ∗∗.

En este segundo caso, el isomorfismo no requiere la elección de bases, y se dice que es natural.
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Proposición 2.7.6 Sea V un espacio vectorial, dim(V )< ∞ sobre K. Para cada vector v ∈V , se

define Lv : V ∗→ K, L⃗v(ϕ) = ϕ (⃗v), ϕ ∈V ∗.

La aplicación φ : V →V ∗∗ que a v⃗ hace corresponder Lv(ϕ) es un isomorfismo.

Notar que Lv se aplica a elementos de V ∗ y debe dar un escalar. La definición indica que,

aplicado a ϕ ese escalar es ϕ (⃗v), de ahí que el nombre de este isomorfismo es la evaluación, ya

que para cada ϕ da su evaluación en v⃗, ϕ (⃗v).

Demostración:

Se deja al lector probar que Lv es una transformación lineal. Como V y V ∗∗ tienen la misma

dimensión, alcanza con probar que la transformación es inyectiva.

Sea v⃗ ∈ N(φ). Entonces L⃗v(ϕ) = 0 para todo ϕ en V ∗, o sea ϕ (⃗v) = 0 para todo ϕ en V ∗.

El único elemento de V con esta propiedad (da 0 en cualquier funcional V ∗), es 0⃗. Es decir que

N(φ) = 0⃗. Así que, φ es inyectiva, y por lo tanto, es un isomorfismo.

□

i Si V tiene dimensión infinita la aplicación φ : V → V ∗∗ sigue siendo inyectiva, pero no

suryectiva. Así que no todo espacio de dimensión infinita es isomorfo a su doble dual.

Aplicación transpuesta

Sean V y W dos espacios vectoriales de dim < ∞ sobre K. Sea T : V →W una aplicación lineal. T

induce una aplicación lineal de W ∗ en V ∗ que llamaremos transpuesta de T ,

Si ϕ : W → K,

T t : W ∗→V ∗

T t(ϕ) = ϕ ◦T

T t(ϕ)(⃗v) = ϕ(T (⃗v))

Se deja al lector probar que T t(ϕ) es una transformación lineal.
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Proposición 2.7.7 Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Sea T una

aplicación lineal de V en W , entonces

N(T t) = Im(T )0

Se deja la prueba al lector.

Relación entre las matrices que representan a una aplicación lineal y su traspuesta

Sean T : V →W y T t : W ∗→V ∗. Y sean B y B′ bases de V y W respectivamente, y B∗ y B′∗ bases

de V ∗ y W ∗, respectivamente.

Si A = [T ]B′,B y C = [T t ]B∗,B′∗ , entonces C = At

■ Ejemplo 2.24 En este ejemplo se muestra la relación entre las matrices de la transformación

T y la de su aplicación transpuesta T t , en el caso V = R2, W = R3, y T : V →W definida por

T (x,y) = (2x− y,3x,x−2y).

Sean las bases de V y W ,

B = {(1,2),(1,3)} y B′ = {(1,1,1),(1,1,0),(1,0,0)}, respectivamente.

Como

T ((1,2)) = (0,3,−3) =−3(1,1,1,)+6(1,1,0)−3(1,0,0,)

T ((1,3)) = (−1,3,−5) =−5(1,1,1,)+8(1,1,0)−4(1,0,0,)

la matriz de T en las bases B y B′ es


−3 −5

6 8

−3 −4


Veamos ahora la matriz correspondiente a la transformación transpuesta T t , T t : W ∗→V ∗ ,

definida como T t(ϕ)(⃗v) = ϕ(T (⃗v)) y considerando las bases B′∗ de W ∗ y B∗ de V ∗.

B∗ = {ϕ1,ϕ2}

(x1,x2) = α(1,2)+β (1,3) de donde α +β = x1 y 2α +3β = x2.
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Se resuelve el sistema y resulta

ϕ1(x1,x2) = α = 3x1− x2

ϕ2(x1,x2) = β = x2−2x1

B′∗ = {ϕ ′1,ϕ ′2,ϕ ′3}

Para hallar esta base se hace lo mismo que para B∗, partiendo de

(x1,x2,x3) = α(1,1,1)+β (1,1,0)+ γ(1,0,0)

se aplican ϕ ′i , i = 1,2,3, y se obtiene

ϕ ′1(x1,x2,x3) = α = x3

ϕ ′2(x1,x2,x3) = β = x2− x3

ϕ ′3(x1,x2,x3) = γ = x1− x2

Para obtener la matriz de T t se debe calcular

T t(ϕ ′1)(x1,x2,x3) = ϕ ′1(T (x1,x2,x3)) = x1−2x2 =−3ϕ1−5ϕ2

T t(ϕ ′2)(x1,x2,x3) = ϕ ′2(T (x1,x2,x3)) = 6ϕ1 +8ϕ2

T t(ϕ ′3)(x1,x2,x3) = ϕ ′3(T (x1,x2,x3)) =−3ϕ1−4ϕ2

La matriz de T t en las bases B′∗ de W ∗ y B∗ de V ∗ es

 −3 6 −3

−5 8 −4


Se verifica que la matriz correspondiente a la transformación transpuesta, T t es la matriz

transpuesta de la matriz correspondiente a la transformación T .

■
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Figura 2.9

2.8 Actividades propuestas

Problema de Aplicación 2 Dada una variable aleatoria discreta X con distribución de probabilidad

P[X = xi] con i = 1,2, . . . ,n, la esperanza (o valor medio) de X se define como:

E[X ] = ∑
n
i=1 xi P[X = xi]

Indique los espacios vectoriales involucrados en esta aplicación. Demuestre que la Esperanza E[·] es

una transformación lineal, es decir que para cualquier par de variables aleatorias, X e Y y cualquier

c ∈ R se cumple que:

E[X +Y ] = E[X ]+E[Y ]

E[cX ] = cE[X ]

(Para una analogía física, si los xi son masas puntuales en la recta, cada una con peso P[X = xi],

entonces E[X ] es el centro de gravedad de estas masas.)

Busque otros ejemplos e investigue el caso de una variable aleatoria continua, cómo se define su

esperanza en ese caso y si también se tiene una transformación lineal.

2.8.1 Ejercicios

Ejercicio 2.1

Utilice la definición de transformación lineal para justificar por qué: T : R→R tal que T (ε) = 1
3 Eε2

no la cumple (E es una constante). Grafique.



98 Capítulo 2. Transformaciones Lineales

Ejercicio 2.2

Sea A la matriz de la transformación lineal T : R2→ R3. Encuentre una x⃗ en R2 cuya imagen bajo T

sea b⃗ y responda si existe más de una x⃗ cuya imagen bajo T sea b⃗.

A =


1 −3

3 5

−1 7

, b⃗ =


3

2

−5


Ejercicio 2.3

La transformación de trasquillado deforma un cuadrado como si este se empujara hacia la derecha

manteniendo fija la base. Grafique el producto de multiplicar por A los vértices del cuadrado: (0,0),

(0,2), (2,0) y (2,2).

A =

 1 3

0 1


Ejercicio 2.4

Encuentre la expresión de la transformación proyección T (⃗x) donde x⃗=(x1,x2,x3) y describa la

aplicación. Su matriz es:

A =


1 0 0

0 1 0

0 0 0



Ejercicio 2.5

Dado un escalar r, si T : R2→ R2 es tal que T (⃗x) = r⃗x, identifique qué valores debe tomar r para

que T sea una contracción y cuáles para que T sea una dilatación.

Dadas:

A =

 1 0

0 −1

 , B =

 −1 0

0 1

 , C =

 0 1

1 0

 , D =

 0 −1

−1 0



E =

 −1 0

0 −1

 , F =

 k 0

0 1

 , G =

 1 0

0 k

 , H =

 1 k

0 1


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I =

 1 0

k 1

 , J =

 1 0

0 0

 , K =

 0 0

0 1


Indique cuál de ellas es una contracción o expansión vertical y cuál una horizontal, cuál una

proyección sobre el eje x1 y cuál sobre el eje x2, cuál es un trasquillado vertical y cuál horizontal,

cuál es una reflexión con respecto al origen, cuál a través del eje x1 y cuál a través del eje x2, por

último cuál representa una reflexión a través de la recta x1=x2 y cuál a través de la recta x1=−x2.

Ejercicio 2.6

Para las matrices del ejercicio anterior calcule su determinante. Con el resultado exprese de qué

modo el valor del determinante determina el área que se crea entre dos vectores antes y después de

la transformación. Comente cómo el signo del determinante está conectado con la quiralidad para

estas transformaciones.

Hay objetos que vienen en dos variedades: derecha e izquierda. Por ejemplo, hay zapatos

derechos y zapatos izquierdos, orejas derechas y orejas izquierdas. Estos objetos se llaman quirales

(del griego, keirós= mano). Otros objetos no vienen en dos variedades derecha e izquierda, por

ejemplo las pelotas de fútbol; uno nunca pide una pelota derecha o izquierda. Tales objetos son

aquirales. La propiedad de ser derecho o izquierdo se llama quiralidad (los físicos la llaman paridad).

Es así que, los espejos cambian la quiralidad. El área puede pensarse con quiralidad, piense en el

producto cruz, implica la regla de la mano derecha. Si el Det(T)≥ 0 no hay cambio de quiralidad,

pero si Det(T)≤ 0 sí lo hay y la transformación tiene el carácter de un espejo.

Ejercicio 2.7

Sea T : R2→ R3 definida por T ((x,y)) = (x+2y,−x,0)

a) Encuentre la matriz de la transformación lineal T respecto a las bases B = {⃗u1, u⃗2} y B′ =

{⃗v1, v⃗2, v⃗3}, donde

u⃗1 =

 1

3

, u⃗2 =

 −2

4

, v⃗1 =


1

1

1

, v⃗2 =


2

2

0

, v⃗3 =


3

0

0

 .

b) Verifique utilizando la matriz anterior que T

 8

3

=


14

−8

0


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Ejercicio 2.8

Una rotación de Givens es una transformación lineal de Rn → Rn que se utiliza para crear una

entrada cero en un vector. Sería como generar la rotación en vez de cambiar el sistema de referencia.

Para n = 2 la rotación de Givens tiene la forma general: a −b

b a

, a2 +b2 = 1

Encuentre a y b tales que

 4

3

 gire a

 5

0



Ejercicio 2.9

Sea T : R3→ R2, dada por T ((x,y,z)) = (x+ y,x+ z). Determinar el núcleo y la imagen de T , y sus

dimensiones. Caracterice el conjunto T−1(C), siendo C = {(x,y) : x = 1}.

Ejercicio 2.10

Sea T : R2→ R2, la multiplicación por la matriz

 2 −1

−8 −4


Indique cuáles vectores están en el núcleo de T y cuáles en la imagen de T: 1

−4

,

 5

0

,

 −3

12

,

 5

10

,

 3

2

,

 1

1


Ejercicio 2.11

Sea T : P(2)
R [x]→ P(3)

R [x] la transformación lineal definida por T (p(x)) = xp(x).

a) Indique cuáles polinomios de los siguientes están en el núcleo de T: x2, 0, 1+ x.

b) Y cuáles polinomios están en la imagen de T : x+ x2, 1+ x, 3− x2

Ejercicio 2.12

Sea T : P(2)
R [x]→ P(1)

R [x] la transformación lineal definida por T (a0 + a1x+ a2x2) = (a0 + a1)−
(2a1 +3a2)x.

Halle la matriz de T con respecto a las bases canónicas de P(2)
R [x] y P(1)

R [x].
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Ejercicio 2.13

En cada caso utilice la información que se da para hallar la nulidad de T .

a) T : R5→ R7 tiene rango 3.

b) La imagen de T : R6→ R3 es R3.

c) T : R2x2→ R2x2 tiene rango 3.

Ejercicio 2.14

Sea T : R3→ R3 la multiplicación de un vector de R3 por la matriz


1 3 4

3 4 7

−2 2 0


a) Demuestre que el núcleo de T es una recta por el origen y encuentre sus ecuaciones

paramétricas.

b) Demuestre que la imagen de T es un plano por el origen y encuentre su ecuación.

Ejercicio 2.15

Sea D : P(3)
R [t]→ P(2)

R [t] la transformación derivación. Describa el núcleo de D, N(D).

Ejercicio 2.16

Sea I : P(1)
R [t]→ R la transformación integración de p,

∫ 1
−1 p(x)dx. Describa el núcleo de I, N(I).

Ejercicio 2.17

Explique de qué modo se obtiene la base dual de un espacio vectorial dado; utilice un ejemplo.

Luego, de un ejemplo a la inversa, esto es, teniendo la base dual, encuentre la base del espacio

vectorial.

Ejercicio 2.18

Responda:

a) ¿Qué relación hay entre las dimensiones del espacio dual con su espacio vectorial V?

b) ¿A qué se llama espacio anulador?

c) ¿Los elementos del espacio anulador pertenecen al dual?

d) ¿A qué se llama aplicación transpuesta? De un ejemplo.

e) ¿A qué se denomina doble dual?

Ejercicio 2.19

Dado un cuerpo K, sea T : V →V ′ una transformación lineal entre dos espacios vectoriales sobre

el cuerpo K. Sean S y S′ subespacios de V y V ′ respectivamente. Pruebe que T (S), T−1(S′) y N(T )

son subespacios vectoriales.
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Ejercicio 2.20

Sea V un espacio vectorial de dimensión n sobre el cuerpo K y sea T : V →V una transformación

lineal. Pruebe que T es inyectiva si y solo si T−1(⃗0) = {⃗0}.

Ejercicio 2.21

Sea V un espacio vectorial sobre K de dimensión n y X = {⃗v1, · · · , v⃗m} un conjunto finito de vectores

de V . Considere la aplicación lineal E : Km→ V definida por E(k1, · · · ,km) = k1⃗v1 + k2⃗v2 + · · ·+
km⃗vm.

a) Pruebe que E es una transformación lineal.

b) Demuestre que E es inyectiva sí y sólo sí los vectores del conjunto X son linealmente

independientes.

c) Pruebe que E es suryectiva sí y sólo sí X es un conjunto de generadores de V .

Ejercicio 2.22

Dado V un espacio vectorial sobre el cuerpo K de dimensión n, sea ϕ ∈V ∗. Pruebe que Im(ϕ) = K

y que dim(N(ϕ)) = n−1.

Ejercicio 2.23

Sea V un C-espacio vectorial. Dados ϕ y φ funcionales lineales sobre V , suponga que la función

ψ definida por ψ(v) = ϕ(v).φ(v) también es un funcional lineal sobre V . Demuestre que ϕ = 0 o

φ = 0.

Ejercicio 2.24

Sea V un K-espacio vectorial de dimensión finita (K cuerpo). Demuestre:

a) Si A y B son subconjuntos de V tales que A⊆ B, entonces B0 ⊆ A0.

b) Dados S y T subespacios de V ,

(S+T )0 = S0∩T 0 y (S∩T )0 = S0 +T 0

Ejercicio 2.25

Sean V y W dos espacios vectoriales sobre K y sea T : V →W una transformación lineal. La

traspuesta de T es la función T t : W ∗ → V ∗ que aplica a un funcional ϕ ∈W ∗ en el funcional

T t(ϕ) ∈V ∗ definido por

(T t(ϕ))(v) = ϕ(T (v)), para todo v ∈V

a) Pruebe que T t está bien definida y que es una aplicación lineal.

b) Pruebe que Nu(T t) = (Im(T ))0.
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Ejercicio 2.26

Sea V un espacio vectorial sobre K y sea B = {⃗v1, v⃗2, · · · , v⃗n} una base ordenada de V , se define la

transformación lineal T : V →V de la siguiente forma:

T (⃗vi) =

 v⃗i+1 1≤ i≤ n−1

0 i = n

a) Encuentre la matriz correspondiente a T en la base B.

b) Pruebe que T n = 0, pero T n−1 ̸= 0.

c) Sea S cualquier transformación lineal sobre V tal que Sn = 0, pero Sn−1 ̸= 0. Demuestre que

existe una base ordenada B′ de V tal que la matriz de S en la base B′ coincide con la matriz hallada

en el primer inciso.

d) Demuestre que si M y N son matrices de n×n sobre K tales que Mn = Nn = 0, con Mn−1 ̸= 0

y Nn−1 ̸= 0, entonces M y N son semejantes.

2.8.2 Autoevaluación

Verdadero o Falso

1. El rango de T es el conjunto de todas las combinaciones lineales de las columnas de A.

2. La generalización T (c1⃗v1 + ..+ cp⃗vp) = c1T (⃗v1)+ ..+ cpT (⃗vp) es lo que se conoce como

principio de superposición en física.

3. El conocimiento de T (⃗e1) y T (⃗e2) siendo e⃗1 y e⃗2 los vectores canónicos, no basta para

encontrar T sabiendo que T es lineal.

4. A=[T (⃗e1)..T (⃗en)] se llama matriz estandar de T .

5. T es suryectiva si y sólo si las filas de A generan la imagen de T .

6. T es inyectiva sí y sólo sí las columnas de A son linealmente independientes y la ecuación

T (⃗x) = 0⃗ tiene únicamente la solución trivial.

7. Para que una transformación sea isomorfa el dominio y la imagen deben coincidir.

8. A es invertible si la dimensión del núcleo de A es cero.

9. Si los vectores en el dominio generan un área y después que se les aplica una transformación

lineal siguen generando un área, cuánto aumente o disminuya el área dependerá del determinante

de la matriz A de la transformación lineal.

10. Una transformación lineal siempre lleva el vector nulo del dominio al vector nulo de la imagen.

11. Existe un isomorfismo T : P(3)
R [x]→ R4.





3. Autovalores y autovectores

En este capítulo se tratará sobre autovectores y autovalores que es una herramienta matemática

muy útil a la hora de resolver diversos problemas. Nos ocuparemos de resolver el problema A⃗v = λ v⃗,

donde A es una matriz cuadrada. G. Strang [27] lo llama el segundo problema de Álgebra lineal,

considerando que el primer problema es resolver Ax = b. Notar que A⃗v = λ v⃗ es una ecuación no

lineal, ya que λ multiplica a v⃗ y ambos λ y v⃗ son desconocidos. El método de eliminación gaussiana,

adecuado para el problema Ax = b, no es una herramienta útil, ya que las operaciones elementales

sobre las filas de una matriz pueden modificar a los autovalores λ . El problema se resuelve a partir

de simplificar la matriz, y eso es haciéndola lo más diagonal posible. A partir del cálculo de un

determinante se obtiene un polinomio cuyas raíces son los autovalores. La obtención de una forma

casi diagonal de la matriz A tiene muchas aplicaciones, entre ellas el cálculo de las potencias de una

matriz y la resolución de sistemas de ecuaciones diferenciales.

3.1 Introducción

Presentamos a modo de introducción un modelo lineal que representa la dinámica de la infección

y de la propagación de una epidemia. En este modelo, la enfermedad se introduce en una población,

y en cada día se cuenta la fracción de la población que se encuentra dividida en cuatro estados o

compartimentos:

Susceptibles: son los individuos que pueden adquirir la enfermedad al día siguiente.

Infectados: son los individuos con la enfermedad.
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Recuperados: son los individuos que tuvieron la enfermedad y se recuperaron. Ahora tienen

inmunidad.

Fallecidos: son los individuos que tuvieron la enfermedad y fallecieron a causa de ella.

Son llamados modelos compartimentales. A este, en particular, se lo conoce como modelo SIRD

(Susceptible, Infectado, Recuperado, Fallecido) y las variables que indican la cantidad de individuos

en cada compartimento al día st son X1
t , X2

t , X3
t y X4

t . En este caso, conocidos los valores al día t, se

supone que al día siguiente t +1:

El 6% de la población de individuos Susceptibles adquirirá la enfermedad (el 94% restante

sigue siendo Susceptible)

El 1% de la población infectada morirá a causa de la enfermedad, el 16% se recuperará y

adquirirá inmunidad, y el 3% se recuperará y no adquirirá inmunidad y por lo tanto pasará a

ser Susceptible. El 80% restante seguirá Infectado.

Los individuos Recuperados con inmunidad y los Fallecidos permanecen esos estados

Si X1
t es la proporción de individuos Susceptibles al día t, al día siguiente, X1

t+1 está dada por

los Susceptibles de hoy que no se infectaron, 0.94 ∗X1
t , más los infectados que se recuperaron

sin inmunidad 0.03 ∗X2
t . La proporción de Infectados, X2

t+1 estará dada por los Susceptibles que

adquieren la enfermedad 0.06∗X1
t , más los infectados que siguen infectados 0.80∗X2

t . De igual

forma, la cantidad de Recuperados, X3
t+1 estará dada por los infectados que se recuperen con

inmunidad 0.16∗X2
t más los que permanecen Recuperados, X3

t . Y los Fallecidos, X4
t+1 comprenden

el 1% de los Infectados X2
t más los Fallecidos, X4

t .

Es decir que la modelización tiene la expresión

Xt+1 = AXt

donde

A =


0.94 0.03 0 0

0.06 0.80 0 0

0 0.16 1 0

0 0.01 0 1



Si se desea saber la evolución de la cantidad de individuos en cada estado después de 6 meses, se

debe calcular ¡A180!
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Si A fuera una matriz diagonal esto llevaría un bajo costo computacional, ya que quedarían

elevados al exponente 180 los elementos de la diagonal.

El programa en lenguaje de programación GNU Octave que sigue diagonaliza la matriz A del

modelo.

1 % MODELO SIRD ( SUSCEPTIBLES , INFECTADOS , RECUPERADOS, FALLECIDOS)

2 c l e a r a l l

3 c l o s e a l l

4 A= [ . 9 4 . 0 3 0 0 ; 0 . 0 6 . 8 0 0 ; 0 0 . 1 6 1 0 ; 0 0 . 0 1 0 1 ] ;

5 X=[1 0 0 0 ] ’ ;

6 t = 0 : 2 0 0 ;

7 f o r k= 1 :200

8 X ( : , k +1)=A*X ( : , k ) ;

9 end

10 f o r k =1:4

11 %p l o t ( t ,X( k , : ) , ’ l i n e w i d t h ’ , 1 . 5 )

12 ho ld on

13 a x i s t i g h t

14 end

15 XF=A^180

16 [U,D]= e i g (A) ;

17 XFD=U*D^180* i n v (U)
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i Este ejemplo estuvo inspirado en la pandemia del COVID-19 del año 2020 y en estudios

realizados en el tema, como el del trabajo [19]. Los modelos matemáticos de epidemia que

se utilizaron para su análisis y para hacer predicciones son modelos de última generación,

representados mediante un sistema de ecuaciones diferenciales con muchas variables y poblaciones

y que, entre otros parámetros, contemplan los que miden el comportamiento social.

En la Sección 2.6 vimos, en el Ejemplo 2.17, que dada una aplicación lineal T cuya matriz en la

base canónica es

T =

 6 −2

6 −1


es posible hallar una base tal que la matriz sea diagonal.

T ′ =

 2 0

0 3


La matriz T ′ en esa nueva base es mucho más sencilla que la matriz T y se tiene que T ′ =C−1TC

donde C es la matriz de cambio de base. Nos surge la pregunta si esto siempre es posible.

Un ejemplo sencillo que nos permite responder que no siempre es posible es la matriz

T =

 1 1

0 1


Supongamos que existe una matriz C de cambio de base tal que

C−1TC = T ′ =

 α 0

0 β


o en forma equivalente,

T =C

 α 0

0 β

C−1

 1 1

0 1

=

 a b

c d

 α 0

0 β

 d −b

−c a

 1
Det(C)
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 1 1

0 1

=

 aα bβ

cα dβ

 d −b

−c a

 1
Det(C)

 1 1

0 1

=

 aαd−bβc −aαb+bβa

cαd− cdβ −cαb+dβa

 1
Det(C)

Igualando los elementos de ambas matrices, se tiene un sistema de ecuaciones:

Det(C) = aαd−bβc (3.1)

Det(C) = ba(−α +β ) (3.2)

0 = cd(−α +β ) (3.3)

Det(C) = −cαb+dβa (3.4)

De la igualdad (3.3) se tiene que c = 0 o d = 0 o α = β . Si c = 0, de (3.1) y (3.4), queda

Det(C) = aαd = dβa, de donde α = β y en (3.3) se tiene 1 = 0. Si d = 0, de (3.1) y 3.4, Det(C) =

−bβc =−cαb, de donde también resulta α = β y en (3.2) se tiene 1 = 0. Lo mismo si α = β .

Se llega a una contradicción. Concluimos que no siempre es posible diagonalizar una matriz.

i
No todas las matrices son diagonalizables.

Si es digonalizable, A es semejante a una matriz diagonal y tendremos ventaja al calcular

su potencia. En otros casos será semejante a una matriz casi diagonal.

Siempre es posible encontrar una forma más sencilla de una matriz dada mediante un

cambio de base. Se denomina matriz de Jordan de la matriz dada y el nombre se debe al

matemático Camille Jordan (1838-1922).

Si se desea calcular

T 6 =

 6 −2

6 −1

6
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como T =CT ′C−1, T 2 =CT ′C−1CT ′C−1 =CT ′IT ′C−1 =C(T ′)2C−1, y en general,

T n =C(T ′)nC−1, n ∈ Z

de donde se tiene que

T 6 =

 1 2

2 3

 26 0

0 36

 −3 2

2 −1



3.2 Subespacios invariantes. Valores y vectores propios

Dado un espacio vectorial V y una aplicación lineal T : V →V , es decir T ∈ L(V ), un subespacio

vectorial W de V se dice invariante respecto a T si T (W )⊂W , es decir, si la imagen T (⃗x) de todo

vector x⃗ ∈W es un elemento de W .

■ Ejemplo 3.1 Sea T ∈ L(R2) una aplicación lineal en R2 cuya matriz respecto de la base canónica

{e⃗1, e⃗2} de R2 está dada por

T =

 2 0

0 1


Entonces W1 = {x1e⃗1, x1 ∈ R} y W2 = {x2e⃗2, x2 ∈ R} son invariantes respecto de T .

En efecto, de la definición de matriz de una transformación lineal se tiene que T (e⃗1) = 2e⃗1 +0e⃗2

y T (e⃗2) = 0e⃗1 +1e⃗2.

Luego,

T (x1e⃗1) = x1T (e⃗1) = x1(2e⃗1) = (2x1)e⃗1 ∈W1

y

T (x2e⃗2) = x2T (e⃗2) = x2e⃗2 ∈W2

■
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■ Ejemplo 3.2 Sea Rα una rotación de ángulo α ̸= 0 en R3 con respecto al eje z. Geométricamente

se observa que el plano xy y el eje z son invariantes con respecto a esta aplicación. Para comprobar

algebraicamente que el plano xy es invariante se observa, en primer lugar, que la matriz de Rα con

respecto a la base canónica de R3 es

R =


cosα −senα 0

senα cosα 0

0 0 1

 .

Si x⃗ = x1e⃗1 + x2e⃗2 es un elemento del plano xy, se tiene que su rotación da el vector


cosα −senα 0

senα cosα 0

0 0 1




x1

x2

0

=


x1cosα− x2senα

x1senα + x2cosα

0


y, por lo tanto, Rα (⃗x) = (x1cosα− x2senα)e⃗1 +(x1senα + x2cosα)e⃗2 y es nuevamente un elemento

del plano xy.

■

Figura 3.1: Todo plano que contiene al eje z es invariante por P
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■ Ejemplo 3.3 En la Figura 3.1 se muestra la proyección ortogonal P de R3 sobre el plano xy. (Ver

Ejemplo 2.5). La matriz de P es

P =


1 0 0

0 1 0

0 0 0


con respecto a la base canónica. Se puede ver que todo plano π que contiene al eje z es invariante:

el plano π tiene ecuación x1x+ x2y+ x3z = 0, donde x3 = 0 ya que (0,0,1) ∈ π . Los vectores de ese

plano son de la forma x⃗ = x1e⃗1 +λx1e⃗2 + x3e⃗3, λ ∈ R, y se tiene que su imagen, P(⃗x), es de nuevo

un elemento del plano π:

P =


1 0 0

0 1 0

0 0 0




x1

λx1

x3

=


x1

λx1

0


Otros subespacios invariantes de esta proyección ortogonal son el plano xy, el eje z y cualquier

recta del plano xy que pase por el origen de coordenadas. ■

i Para cualquier transformación lineal T ∈ L(V ) (o endomorfismo), el subespacio S =
{⃗

0
}

,

formado sólo por el elemento nulo, es invariante ya que T (⃗0) = 0⃗ y el propio espacio vectorial

V es también invariante ya que T (⃗x) para todo vector x⃗ ∈V es un elemento de V .

Proposición 3.2.1 La intersección y la suma de subespacios invariantes respecto de una aplicación

lineal T ∈ L(V ) son subespacios invariantes respecto de T .

Se deja la demostración al lector.

Definición 3.2.1 Un vector v⃗ ̸= 0⃗ de un espacio vectorial V sobre K se llama autovector o vector

propio de una aplicación lineal T ∈ L(V ) si existe un escalar λ ∈ K tal que T (⃗v) = λ v⃗. Este

número λ se denomina autovalor o valor propio de la aplicación T correspondiente al vector v⃗.

i Si v⃗ es un vector propio de T con autovalor λ , todo elemento no nulo del subespacio

unidimensional generado por v⃗ es un autovector de T con el mismo autovalor λ . Esto es

porque T (c⃗v) = cT (⃗v) = cλ v⃗ = λ (c⃗v).
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Figura 3.2: El vector v⃗ es autovector de A, mientras que el vector u⃗ no es autovector, A⃗u no es

múltiplo de u⃗

Proposición 3.2.2 Una aplicación lineal T ∈ L(V ) es diagonalizable si y sólo si existe una base

de V formada por vectores propios.

Demostración:

Supongamos que una aplicación lineal T en un espacio V de dimensión n tiene n vectores

propios linealmente independientes, e⃗1, e⃗2, · · · , e⃗n con valores propios λ1,λ2, · · · ,λn respectivamente,

tomando {⃗e1, e⃗2, · · · , e⃗n} como una base de V se tiene que

T (⃗e1) = λ1⃗e1,T (⃗e2) = λ2⃗e2, · · · ,T (⃗en) = λn⃗en

y, por lo tanto, la matriz de T con respecto a esta base es la matriz diagonal

T =



λ1 0 0 0 0

0 λ2 0 0 0

0 0
. . . 0 0

0 0 0
. . . 0

0 0 0 0 λn


Recíprocamente, toda aplicación lineal que tiene una matriz diagonal en una cierta base, tiene

a los elementos de esta base como vectores propios.
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□

i Una aplicación lineal T ∈ L(V ) es diagonalizable sí y solo sí existe una base de V en la cual la

matriz de T es diagonal.

Definición 3.2.2 Una matriz T ∈ Kn×n se dice diagonalizable en K si la aplicación lineal

T : Kn→ Kn que la matriz que la representa es diagonalizable.

De esta definición se deduce que una matriz es diagonalizable en K si existe una matriz C ∈ Kn×n

con determinante no nulo, tal que T ′ =C−1TC es una matriz diagonal.

En el ejemplo del inicio de la sección, para

T =

 6 −2

6 −1


se tiene que  6 −2

6 −1

 1

2

=

 2

4

= 2

 1

2


 6 −2

6 −1

 2

3

=

 6

9

= 3

 2

3


Se tiene que T (⃗v1) = 2⃗v1 y T (⃗v2) = 3⃗v2, siendo v⃗1 = (1,2) y v⃗2 = (2,3), con lo que v⃗1 y v⃗2 son

vectores propios de T con sus correspondientes valores propios 2 y 3 respectivamente. Como v⃗1 y v⃗2

forman una base de R2 (son linealmente independientes y son 2), la matriz T es diagonalizable en R

y su matriz diagonal asociada es  2 0

0 3


Cálculo de autovalores y autovectores de una transformación lineal.

Supongamos que v⃗ es un vector propio de una aplicación lineal T en un espacio vectorial V y

que λ es su autovalor, es decir T (⃗v) = λ v⃗. Sea {⃗e1, e⃗2, · · · , e⃗n} una base de V y sean v j, j = 1, · · ·n
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las coordenadas de v⃗ en esa base, es decir, v⃗ = ∑
n
j=1 v j⃗e j. Si (ai j) es la matriz de T con respecto a la

base tenemos que

n

∑
j=1

λv j⃗e j = λ

n

∑
j=1

v j⃗e j = λ v⃗ = T (⃗v) = T (
n

∑
j=1

v j⃗e j)

=
n

∑
j=1

v jT (⃗e j) =
n

∑
j=1

v j(
n

∑
i=1

ai j⃗ei) =
n

∑
i=1

(
n

∑
j=1

ai jv j )⃗ei

Como {⃗e1, e⃗2, · · · , e⃗n} es una base de V , del primer y del último término de la igualdad anterior

se tiene que:


λv1 = a11v1 +a12v2 + · · ·+a1nvn

λv2 = a21v1 +a22v2 + · · ·+a2nvn

· · ·
λvn = an1v1 +an2v2 + · · ·+annvn

(3.5)

o en forma equivalente,


(a11−λ )v1 +a12v2 + · · ·+a1nvn = 0

a21v1 +(a22−λ )v2 + · · ·+a2nvn = 0

· · ·
an1v1 +an2v2 + · · ·+(ann−λ )vn = 0

(3.6)

Como es un sistema homogéneo, para que exista una solución no nula debe ocurrir que

Det(A−λ I) =



a11−λ a12 a13 · · · · · · a1n

a21 a22−λ · · · · · · · · · a2n

· · · · · · . . . · · · · · ·

· · · · · · · · · . . . · · · · · ·

· · · · · · · · · · · · . . . · · ·
an1 an2 · · · ann−1 ann−λ


= 0 (3.7)
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donde I denota la matriz identidad. Esto es una ecuación de grado n en λ y sus soluciones en K (R o

C) son los autovalores de T . Si V es un espacio vectorial complejo, por el teorema fundamental del

álgebra la ecuación anterior tiene n soluciones complejas contando cada una con su multiplicidad.

Si V es un espacio vectorial real, no podemos asegurar que la ecuación anterior tenga n soluciones

reales.

Pasos para resolver A⃗v = λ v⃗

1. Se calcula Det(A−λ I) (se anota en forma equivalente como |A−λ I|) , restando λ de los

elementos de la diagonal de la matriz A. Es un polinomio de grado n, con coeficiente (−λ )n.

2. Se hallan las raíces de este polinomio. Las n raíces son los autovalores de la matriz A.

3. Para cada autovalor λ , se resuelve el sistema lineal (A−λ I)⃗v = 0⃗. Como el determinante es

cero, tendrá soluciones no nulas. Esos son los autovectores.

■ Ejemplo 3.4 Se desea determinar los valores y vectores propios de la aplicación lineal de T :V→V ,

V = R2, que tiene como matriz,

T =

 1 2

5 4


1.

0 = |T −λ I|=

∣∣∣∣∣∣ 1−λ 2

5 4−λ

∣∣∣∣∣∣= (1−λ )(4−λ )−10 = λ
2−5λ −6

2. Las raíces son λ1 = 6 y λ2 =−1

3. Para λ1 = 6 se resuelve el sistema

(T −6I)

 x1

x2

=

 0

0


Los vectores propios correspondientes a λ1 = 6 son de la forma α

 2

5

.

Para λ2 =−1 se resuelve el sistema
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(T − (−1)I)

 x1

x2

=

 0

0


Los vectores propios correspondientes a λ2 = 6 son de la forma β

 1

−1

.

Como

 2

5

 y

 1

−1

 forman una base de R2, por la Proposición 3.2.2, T es diagonalizable,

con matriz diagonal  6 0

0 −1


y la matriz de cambio de base (de la base de autovectores a la base canónica) está dada por la matriz

C =

 2 1

5 −1


■

William Gilbert Strang (1934)

Es un matemático estadounidense, actualmente Professor Mathworks de Matemáticas del

Department of Mathematics del Massachusetts Institute of Technology (MIT). Ha contribuido

a la teoría de elementos finitos, al cálculo de variaciones, al análisis wavelet y al álgebra lineal.

Ha contribuido enormemente a la educación en matemáticas, en forma de libros técnicos y cursos

online. En MIT enseña Álgebra Lineal, Ciencia Computacional e Ingeniería, Aprendiendo de los

Datos. Sus clases están disponibles en la plataforma MIT OpenCourseWare (en inglés). Gilbert

Strang nació en Chicago, Illinois. Cursó estudios en el propio MIT y en el Balliol College, en la

Universidad de Oxford. Se doctoró en la Universidad de California, Los Ángeles (UCLA) y desde

ese momento ha llevado a cabo su actividad docente en el MIT. Entre las publicaciones más notables

del Professor Strang se destaca An Analysis of the Finite Element Method, conjuntamente con
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George Fix, así como seis manuales: Introduction to Linear Algebra (1993, 1998, 2003), Linear

Algebra and Its Applications (1976, 1980, 1988, 2005), Introduction to Applied Mathematics (1986),

Calculus (1991), Wavelets and Filter Banks, con Truong Nguyen (1996), Linear Algebra, Geodesy,

and GPS, con Kai Borre (1997).

Gilbert Strang fue Presidente de la SIAM (Society for Industrial and Applied Mathematics)

durante los años 1999-2000. También ha sido Chairman of the US National Committee on

Mathematics durante los años 2003-2004. Es Honorary Fellow, en el Balliol College de Oxford.

También es Chairman, en la National Science Foundation (NSF) del Advisory Panel del área de

Matemáticas.

Fue pionero al abrir sus clases y permitir que fueran grabadas en vídeo mientras explicaba

matemáticas a sus alumnos del MIT para su difusión abierta y gratuita en Internet. [10]

3.2.1 Localización de autovalores

Teorema 3.2.3 Teorema de Gershgorin.

Los autovalores de una matriz A están en la unión de los discos D1, D2, · · · , Dn (del plano

complejo) donde Di es el disco centrado en el elemento de la diagonal aii:

|λ −aii| ≤ ri

Su radio ri = ∑ j ̸=i |ai j| es igual a la suma de los valores absolutos de los elementos del resto

de la fila.

Demostración:

Supongamos vi es la mayor componente en valor absoluto del autovector v⃗, A⃗v= λ v⃗. Entonces,

(λ −aii)vi = ∑ j ̸=i ai jv j, de donde,

|λ −aii| ≤ ∑ j ̸=i |ai j|
|v j|
|vi| ≤ ∑ j ̸=i |ai j|= ri

□
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Figura 3.3: Los autovalores de A se encuentran en la unión de los cuatro discos, D1,D2,D3 y D4

■ Ejemplo 3.5 Dada la matriz,

A =


3 0 −1 1/2

0 5 1/2 1

−1/2 0 −3 5/4

0 1/2 1/2 4


Se muestra en la Figura 3.3 la localización de sus autovalores de acuerdo al Teorema 3.2.3.

Los discos están centrados en los elementos de la diagonal de la matriz A y tienen radios r1 = 3/2,

r2 = 3/2, r3 = 7/4 y r4 = 1. Están en el intervalo [−19/4,7], en el caso que sean números reales.

■

Para la matriz del Ejemplo 3.4 se tienen los discos D1 = |λ − 1| ≤ 2 y D2 = |λ − 4| ≤ 5. Sin

calcular los autovalores, se sabe que si son números reales, estarán en el intervalo [−1,9].

3.3 Polinomio característico

Al polinomio Det(T −λ I) ∈ P(n)
K [λ ] (Ec. (3.7)) se lo denomina polinomio característico de la

aplicación T (o de la matriz A ∈ Kn×n). Lo anotaremos PT (λ ).

Proposición 3.3.1 Sea T ∈ Kn×n y sea λ ∈ K. Entonces λ es autovalor de T sí y sólo sí λ es raíz

del polinomio característico de T .
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■ Ejemplo 3.6 La matriz  0 1

−1 0


es diagonalizable en Cn×n, pero no es diagonalizable en Qn×n ni en Rn×n. Sus autovalores son las

raíces del polinomio

Det

 0−λ 1

−1 0−λ

= λ
2 +1 = 0

Se tiene, entonces, que los autovalores son λ1−2 =∓i ■

Proposición 3.3.2 El polinomio característico no depende de la base elegida en V para representar

la aplicación lineal T .

Demostración:

Para demostrar esto, sea PT,B(λ ) = Det(T −λ I) el polinomio característico de la aplicación T

en la base B = {⃗e1, e⃗2, · · · , e⃗n} como una base de V y sea PT,B′(λ ) = Det(T ′−λ I) el polinomio

característico de T en la base B′ =
{

e⃗′1, e⃗′2, · · · , e⃗′m
}

; si C es la matriz del cambio de base, se

sabe que T =CT ′C−1, y se tiene

PT,B(λ ) = PT,B′(λ )

Se deja al lector completar esta demostración.

□

■ Ejemplo 3.7 La matriz de la proyección sobre el eje x, Px, (Ver Ejemplo 2.15) en la base canónica

B = {⃗e1, e⃗2} es  1 0

0 0


Los autovalores son λ1 = 1 y λ2 = 0, ya que para los vectores v⃗1 que están sobre el eje x se

verifica Px(⃗v1) = 1⃗v1, mientras que para los los vectores v⃗2 que están sobre el eje y se verifica

Px(⃗v2) = 0⃗.
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Si cambio de base, por ejemplo a la base B′ = {⃗e′1, e⃗′2} (rotando en φ = π/4 los vectores de la

base canónica B), donde los vectores de B′ son las columnas de la matriz A del Ejemplo 1.28, se

tendrá que

Px(⃗e′1) = (
√

2/2,0) = 1/2⃗e′1−1/2⃗e′2

y

Px(⃗e′2) = (−
√

2/2,0) =−1/2⃗e′1 +1/2⃗e′2

entonces la matriz en esta nueva base es 1/2 −1/2

−1/2 1/2


Ahora el polinomio característico es PB′ = (λ )(1/2−λ )2−1/4, con las mismas raíces, λ1 = 1

y λ2 = 0, y los mismos autovectores que se obtuvieron con la base B, ya que

v⃗′1 = (1,−1)B′ = 1(
√

2/2,
√

2/2)−1(−
√

2/2,
√

2/2) = (1,0) y

v⃗′2 = (1,1)B′ = 1(
√

2/2,
√

2/2)+1(−
√

2/2,
√

2/2) = (0,1).

Se verifica, entonces, como se mencionó en la Observación i en 2.6 que las matrices de una

misma transformación lineal en distintas bases son semejantes. Se tiene la relación,

 1 0

0 0

= PB,B′

 1/2 −1/2

−1/2 1/2

PB′,B

donde PB,B′ y PB′,B son las matrices del cambio de base de B′ a B y de B a B′, respectivamente. ■

■ Ejemplo 3.8 Se quieren determinar los valores y vectores propios de la aplicación lineal que

corresponde a la rotación de ángulo α que tiene como matriz: (ver la matriz 1.8, Ejemplo 1.28 )

Rα =

 cos(α) −sen(α)

sen(α) cos(α)


con respecto a la base canónica de R2.
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0 = |Rα −λ I|=

∣∣∣∣∣∣ cos(α)−λ −sen(α)

sen(α) cos(α)−λ

∣∣∣∣∣∣= (cos(α)−λ )2+sen2(α) = λ
2−2cos(α)λ +1

Las raíces son λ1 = cos(α)+ isen(α) y λ2 = cos(α)− isen(α), que son números complejos a

no ser que α = 2kπ o α = (2k+1)π , con k ∈ Z.

Si α = 2kπ , se tiene la matriz identidad y todo vector de R2 es autovector, y corresponden a

λ = 1.

Mientras que si α = (2k+1)π , la matriz es −I y también resulta autovector cualquier vector de

R2, y corresponden a λ =−1. En este caso, la transformación es una simetría respecto al origen de

coordenadas. ■

■ Ejemplo 3.9 La matriz correspondiente a una rotación de ángulo α en R3 con respecto al eje z, es,

R =


cos(α) −sen(α) 0

sen(α) cos(α) 0

0 0 1


Su polinomio característico es (λ 2− 2cos(α)λ + 1)(1−λ ), cuyas raíces son λ1 = cos(α)+

isen(α), λ2 = cos(α)− isen(α) y λ3 = 1.

Los vectores propios correspondientes a λ3 = 1 son las soluciones del sistema:


cos(α)−1 −sen(α) 0

sen(α) cos(α)−1 0

0 0 0




x1

x2

x3

=


0

0

0

 (3.8)

Dado que∣∣∣∣∣∣ cos(α)−1 −sen(α)

sen(α) cos(α)−1

∣∣∣∣∣∣= (cos(α)−1)2 + sen2(α) = 2−2cos(α) = 4sen2(α/2)

El sistema (3.8) tiene únicamente la solución x1 = x2 = 0 si α ̸= 2kπ , con k ∈ Z. En este caso los

autovectores correspondientes a λ3 = 1, son los vectores sobre el eje z, de la forma (0,0,x3).
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Si α = 2kπ , se trata de la identidad y todos los vectores de R3 son autovectores.

Si α = (2k+1)π , λ1 = λ2 =−1, y los autovectores son las soluciones del sistema


0 0 0

0 0 0

0 0 2




x1

x2

x3

=


0

0

0


y son los vectores (x1,x2,0) o sea del plano xy, y la transformación es una simetría respecto al eje z.

■

3.4 Diagonalización

La Proposición 3.2.2 nos da una condición necesaria y suficiente para saber cuándo una aplicación

lineal es diagonalizable, a saber, que exista una base del espacio vectorial V formada por vectores

propios. En algunos casos puede resultar laborioso encontrar esta base. Una condición que es

suficiente para poder asegurar la diagonalización de una matriz está contenida en la proposición

siguiente:

Proposición 3.4.1 Los vectores propios de una aplicación T correspondientes a valores propios

distintos dos a dos, son linealmente independientes.

Demostración:

Por inducción sobre la cantidad de vectores.

Para k = 2. Supongamos se tienen v⃗1 correspondiente a λ1 y v⃗2 correspondiente a λ2, con

λ1 ̸= λ2.

Si se tiene

α1⃗v1 +α2⃗v2 = 0⃗ (3.9)

T (α1⃗v1 +α2⃗v2) = T (⃗0) = 0⃗

α1T (⃗v1)+α1T (⃗v2) = 0⃗

α1λ1⃗v1 +α1λ2⃗v2 = 0⃗
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De (3.9) se tiene que α2⃗v2 =−α1⃗v1. Si se reemplaza en la última ecuación, se tiene que

α1λ1⃗v1−α1λ2⃗v1 = 0⃗

α1⃗v1(λ1−λ2) = 0⃗ (3.10)

Como v⃗1 ̸= 0⃗ y λ1−λ2 ̸= 0, resulta α1 = 0, de donde α2 = 0, pues v⃗2 ̸= 0⃗.

Por lo tanto, v⃗1 y v⃗2 son linealmente independientes.

Supongamos ahora el resultado es válido para k−1 autovalores distintos.

Si

α1⃗v1 +α2⃗v2 + · · ·+αk−1⃗vk−1 +αk⃗vk = 0⃗,

como en el caso k = 2, aplicamos T , despejamos de la igualdad anterior el término αk⃗vk.

Entonces,

α1λ1⃗v1 +α2λ2⃗v2 + · · ·+αk−1λk−1⃗vk−1 +αkλk⃗vk = 0⃗

α1λ1⃗v1 +α2λ2⃗v2 + · · ·+αk−1λk−1⃗vk−1 +(−α1⃗v1−α2⃗v2−·· ·−αk−1⃗vk−1)λk = 0⃗

α1(λ1−λk)⃗v1 +α2(λ2−λk)⃗v2 + · · ·+αk−1(λk−1−λk)⃗vk−1 = 0⃗

Como v⃗1, v⃗2, · · · , v⃗k−1 son linealmente independientes y además, como

(λ1−λk) ̸= 0, (λ2−λk) ̸= 0, · · · , (λk−1−λk) ̸= 0,

se tiene que α1 = α2 = · · ·= αk−1 = 0, y también αk = 0, ya que v⃗k ̸= 0⃗.

Por lo tanto v⃗1, v⃗2, · · · , v⃗k−1, v⃗k son linealmente independientes.

□

i

Una matriz T puede ser diagonalizable y tener autovalores múltiples. Un ejemplo es la

matriz identidad, que tiene único autovalor 1 y es diagonalizable.

Si una matriz A∈Kn×n tiene sus n autovalores distintos, sus autovectores son linealmente

independientes y forman una base, por lo tanto, A es diagonalizable.
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A⃗v = λ v⃗ es una ecuación no lineal (λ multiplica v⃗). Si hallamos λ , sí la ecuación es

lineal. Como (A−λ I)⃗v = 0⃗, v⃗ está en el espacio nulo de (A−λ I), (⃗v ∈ Nul(A−λ I)).

La condición Det(A−λ I) = 0 (donde A es la matriz que representa la aplicación T en

alguna base) es equivalente a que la aplicación T −λ I no es inyectiva, o sea N(T −λ I) ̸=
{⃗0}. O equivalentemente el núcleo de T −λ I contiene no solo al vector nulo y es un

subespacio de dimensión es mayor que 0.

Si λ es autovalor con autovector v⃗ de una matriz A no singular, 1
λ

es autovalor de A−1,

con el mismo autovector. Ya que, si A⃗v = λ v⃗, multiplicando por la inversa, v⃗ = A−1λ v⃗,

se tiene que

A−1⃗v =
1
λ

v⃗.

Si A es diagonalizable, A =C−1DC, de donde, aplicando recursivamente, se tiene

An =C−1DnC ∀n ∈ Z.

Dos matrices diagonalizables A y B comparten la matriz de autovectores S sí y solo sí

AB = BA. Para ver esto, supongamos A = SD1S−1 y B = SD2S−1. Si comparten la matriz

de autovectores S, se tiene que

AB = SD1S−1 SD2S−1 = SD1D2S−1

y

BA = SD2S−1 SD1S−1 = SD2D1S−1,

como D1D2 = D2D1 (las matrices diagonales siempre conmutan), entonces AB = BA. Y

recíprocamente, si AB = BA, se puede demostrar que A y B comparten autovectores.

Se puede demostrar que la suma de los n autovalores de una matriz A es igual a la traza

de la matriz (suma de los elementos de la diagonal), es decir que

Tr(A) = λ1 +λ2 + · · ·+λn

y que el producto de los n autovalores es el determinante de A.

Det(A) = ∏
i=1,2,···n

λi
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■ Ejemplo 3.10 Se deja al lector estudiar si las matrices

A =


6 −2 1

6 −1 1

0 0 1

 T =

 0 1

−1 0


son diagonalizables.

Notar que la matriz A, por el Teorema 3.2.3, tiene un autovalor λ1 = 1. Verifique que A es

diagonalizable y los autovalores restantes son λ2 = 2 y λ3 = 3. Puede utilizar las sentencias Octave

del programa presentado en la Introducción, Sección 3.1 [U,D] = eig(A). Obtiene así la matriz U de

autovectores y la matriz diagonal D con los autovalores. O bien, puede usar las sentencias en Python

que están en recuadro.

En cuanto a la matriz T , ya fue estudiada en el Ejemplo 3.8. Es la matriz de una rotación en π/2

en sentido horario.

■

i Sentencias en Python para diagonalizar una matriz

import numpy as np

A = np.array ([[6,-2,1],[6,-1,1],[0,0,1]])

print(mat)

print()

D, U = np.linalg.eig(A)

%print('autovalores ',D)

print(D)

%print('autovectores ',U)

print(U)

■ Ejemplo 3.11 Sea la matriz A =


0 0 0

0 α 0

α 0 0

 .

Si se desea analizar para qué valores de α ∈ R la matriz es diagonalizable, se tiene, en primer

lugar que con solo observar los elementos de la matriz se sabe que tiene un autovalor 0 y otro α (Por
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Teorema 3.2.3). A partir de esa información, hay que ver para qué valores de α ∈ R existe una base

de autovectores.

Se deja al lector verificar que solo es diagonalizable si α = 0 y en ese caso todo vector de R3 es

autovector. ■

Veamos a continuación una propiedad especial y muy útil de los autovectores de una matriz

simétrica.

Teorema 3.4.2 Los autovectores de una matriz real simétrica, asociados a autovalores diferentes,

son ortogonales.

Demostración:

Sea A una matriz simétrica y λ1 ̸= λ2 autovalores con autovectores correspondientes v⃗1 y v⃗2,

es decir A⃗v1 = λ1⃗v1 y A⃗v2 = λ2⃗v2. Se verá que v⃗1 · v⃗2 = (⃗v1)
t⃗v2 = 0

λ1(⃗v1 · v⃗2) = λ1(⃗v1)
t⃗v2

= (A⃗v1)
t⃗v2

= (⃗v1)
tAt⃗v2

= (⃗v1)
t A⃗v2

= λ2(⃗v1)
t⃗v2

= λ2(⃗v1 · v⃗2)

de donde

λ1(⃗v1 · v⃗2)−λ2(⃗v1 · v⃗2) = (λ1−λ2)(⃗v1 · v⃗2) = 0,

y al ser λ1 ̸= λ2, se tiene que v⃗1 · v⃗2 = 0 y los vectores son ortogonales. □

■ Ejemplo 3.12 Si las matrices A y B de n×n tienen autovalores λ y µ , podemos preguntarnos si la

matriz producto AB tiene como autovalor a λ µ . Es decir si se verifica para algún x⃗ ̸= 0⃗ tal que,

AB⃗x = Aµ x⃗ = µA⃗x = µλ x⃗.
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Se deja al lector analizar este ejemplo:

A =

 0 1

0 0


B =

 0 0

1 0


y

AB =

 1 0

0 0


■

3.4.1 Espacios propios

Sea T ∈ L(V ). El conjunto de los autovectores correspondientes a un autovalor λ no es un

subespacio de Kn, puesto que 0⃗ no es autovector de T . Sin embargo, podemos considerar el siguiente

subespacio:

Definición 3.4.1 Sea T ∈ Kn×n y sea λ un autovalor de T . Se define el espacio propio asociado

a λ y se lo anota Eλ a

Eλ = N(T −λ I) = {⃗v ∈ Kn/T v⃗ = λ v⃗} (3.11)

Eλ es un subespacio de Kn, puesto que es el conjunto de soluciones de un sistema lineal

homogéneo. Contiene todos los vectores propios correspondientes a λ junto con el vector 0⃗ .

De los resultados ya vistos en el Teorema 2.4.3, se tiene que

dim(Eλ ) = dim(V )−dim(Im(T −λ I)) = dim(V )− r(T −λ I)

Teorema 3.4.3 Sea T ∈ L(V ), V de dim < ∞. Sean λ1,λ2, · · · ,λk los k, (k ≤ n ) autovalores

distintos de T . Entonces Eλ1 ,Eλ2 · · · ,Eλk están en suma directa.

Demostración:

Lo probaremos por inducción sobre la cantidad k de vectores considerados.

Para k = 2, sean λ1 y λ2 autovalores distintos de T . Si v⃗ ∈ Eλ1 ∩Eλ2 , se tiene que T v⃗ = λ1⃗v y
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T v⃗ = λ2⃗v, de donde (λ1−λ2)⃗v = 0. Como λ1−λ2 ̸= 0, resulta que v⃗ = 0⃗. Luego Eλ1 ∩Eλ2 = 0⃗ y

la suma es directa.

Supongamos ahora que el resultado vale para el caso de k−1 autovalores distintos, y sean

λ1,λ2, · · · ,λk autovalores distintos de T .

Debemos probar que para cada 1≤ i≤ k,Eλi ∩ (∑
k
j ̸=i Eλ j) = 0⃗ (ver Observación i al final de

la Sección 1.4).

Supongamos que i = k, y sea v⃗∈Eλk ∩(∑
k−1
j=1 Eλ j). Entonces, existen v⃗ j ∈Eλ j , (1≤ j≤ k−1)

tales que

v⃗ = v⃗1 + v⃗2 + · · · v⃗k−1. (3.12)

Multiplicando la igualdad (3.12) por la matriz T , como v⃗ ∈ Eλk , se tiene

λk⃗v = λ1⃗v1 +λ2⃗v2 + · · ·+λk−1⃗vk−1 (3.13)

y multiplicando ahora la igualdad Ec.(3.12) por λk, se tiene,

λk⃗v = λk⃗v1 +λk⃗v2 + · · ·λk⃗vk−1

Restando las igualdades miembro a miembro,

0⃗ = (λ1−λk)⃗v1 +(λ2−λk)⃗v2 + · · ·(λk−1−λk)⃗vk−1

Como por hipótesis inductiva, los subespacios Eλ j (1≤ j ≤ k−1) están en suma directa, el

vector nulo se escribe de forma única como suma de vectores nulos, de donde (λ j−λk)⃗v j = 0⃗

para cada 1≤ j ≤ k−1 y por lo tanto v⃗ j = 0⃗ para cada 1≤ j ≤ k−1, con lo cual v⃗ = 0⃗. □

Proposición 3.4.4 Sea T ∈ Kn×n y sea λ ∈ K un autovalor de T . Sea r la multiplicidad de λ

como raíz del polinomio característico PT y sea Eλ su espacio propio. Entonces

dim(Eλ )≤ r
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Proposición 3.4.5 Sea T ∈ Kn×n y sean λ1,λ2 · · ·λk ∈ K los k autovalores distintos de T (λi ̸= λ j

si i ̸= j). Son equivalentes:

1. T es diagonalizable

2. Kn = Eλ1⊕Eλ2 · · ·⊕Eλk

3. El polinomio característico de T es

PT (λ ) = (λ −λ1)
α1(λ −λ2)

α2 · · ·(λ −λk)
αk

y se tiene que αi = dim(Eλi), para 1≤ i≤ k.

■ Ejemplo 3.13 Se quiere estudiar si la matriz

T =


0 3 1

2 −1 −1

−2 −1 −1


es diagonalizable. Sus autovalores son: λ1 = 2, que es una raíz simple (multiplicidad algebraica 1) y

λ2 = λ3 =−2 que es una raíz doble (multiplicidad algebraica 2).

Eλ1 = N(T −2I) = {⃗v ∈ Kn/T v⃗ = 2⃗v}= ⟨(1,1,−1)t⟩

Eλ2 = N(T +2I) = {⃗v ∈ Kn/T v⃗ =−2⃗v}= ⟨(1,−1,1)t⟩

La dim(Eλ1) = 1 coincide con la multiplicidad algebraica mientras que dim(Eλ2) = 1 es menor

que 2, que es la multiplicidad algebraica. Por el Teorema 3.4.5, T no es diagonalizable. ■

Proposición 3.4.6 Sea T ∈ L(V ), V de dim < ∞. Si T es diagonalizable y λ1,λ2, · · · ,λk son los

autovalores distintos de T , entonces existen E1,E2, · · · ,Ek aplicaciones lineales tales que

1. E1 +E2 + · · ·+Ek = I

2. T = λ1E1 +λ2E2 + · · ·+λkEk

3. Ei ◦E j = 0⃗ i ̸= j

4. E2
i = Ei, i = 1,2, · · · ,k
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5. Im(Ei) = Eλi

Demostración:

1. Por ser T diagonalizable, de la Proposición 3.4.5 se tiene que

V = Eλ1⊕Eλ2 · · ·⊕Eλk

Para ver 1, se consideran las proyecciones Ei sobre cada espacio propio, Eλi , asociadas a la

descomposición anterior y v⃗ = w⃗1 + w⃗2 + · · ·+ w⃗k, con w⃗i ∈ Eλi .

Entonces,

(E1 +E2 + · · ·+Ek)(⃗v) = (E1 +E2 + · · ·+Ek)(w⃗1 + w⃗2 + · · ·+ w⃗k) = E1(w⃗1 + w⃗2 + · · ·+
w⃗k)+E2(w⃗1 + w⃗2 + · · ·+ w⃗k) · · ·+Ek(w⃗1 + w⃗2 + · · ·+ w⃗k) = w⃗1 + w⃗2 + · · ·+ w⃗k = v⃗.

De donde se tiene, que E1 +E2 + · · ·+Ek = I

2. Para ver 2, se usa 1 y se toma la composición T ◦ I = T = T (E1 +E2 + · · ·+Ek). Luego, si

v⃗ ∈V , T (E1 +E2 + · · ·+Ek)(⃗v) = T (E1(⃗v))+T (E2(⃗v)) · · ·T (Ek(⃗v))

Como

T (Ei(⃗v)) = T (w⃗i) = λiw⃗i = λiEi(⃗v)

se tiene, T (E1(⃗v))+T (E2(⃗v)) · · ·T (Ek(⃗v)) = λ1E1(⃗v)+λ2E2(⃗v)+ · · ·+λkEk(⃗v) = (λ1E1 +

λ2E2 + · · ·λkEk)(⃗v), y por lo tanto,

T = λ1E1 +λ2E2 + · · ·+λkEk

La demostración de 3, 4 y 5 se dejan como ejercicio para el lector.

□

3.4.2 Polinomios minimales

Sea P ∈ PK [x], P(x) = α0 +α1x+α2x2 + · · ·+αrxr

Dada T ∈ Kn×n se define

P(T ) = α0In +α1T +α2T 2 + · · ·+αrT r ∈ Kn×n

Recordar que T r es la composición de la aplicación lineal T r veces, y además, que si P, Q

∈ PK [x], y T ∈ Kn×n, entonces (P+Q)(T ) = P(T )+Q(T ) y (P.Q)(T ) = P(T ).Q(T ).
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Dada T una aplicación lineal cualquiera de un espacio vectorial V sobre K, interesa considerar

polinomios que anulen a T , es decir {
P ∈ PK [x]P(T ) = 0⃗

}
.

(Se pueden ver en [23] más detalles sobre este tema). El resultado que sigue asegura que para

cualquier matriz existe un polinomio no nulo con esta propiedad.

Proposición 3.4.7 Sea T ∈ Kn×n. Existe un polinomio P ∈ PK [x], P ̸= 0, tal que P(T ) = 0⃗

Demostración:

Consideremos el conjunto {I,T,T 2, · · · ,T n2} ⊆ Kn×n son n2 +1 transformaciones lineales de

L(Kn,Kn). Son linealmente dependientes porque ya vimos que la dimensión es la de Kn×n = n2.

Luego existe una combinación lineal con escalares no todos nulos tales que

α0I +α1T +α2T 2 + · · ·+αn2T n2
= 0⃗

Sea

P(x) = α0 +α1x+α2x2 + · · ·+αn2xn2
= 0⃗

P ∈ PK [x], P ̸= 0⃗ y P(T ) = 0⃗

□

Es decir, para toda matriz, distinguimos un polinomio particular entre todos los polinomios

que la anulan: el de grado mínimo y mónico. Siempre existe un polinomio con esas propiedades y

además, es único.

Definición 3.4.2 Sea T ∈ Kn×n. Se llama polinomio minimal de T al polinomio mónico de grado

mínimo que anula a T . Lo simbolizamos mT .

i mT se caracteriza por

1. mT (T ) = 0⃗

2. mT es mónico y es el de menor grado que anula a T

3. mT/PT (divide al polinomio característico)
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■ Ejemplo 3.14 Dada la matriz, T =


5 −6 −6

−1 4 2

3 −6 −4

 ,

el lector puede verificar que {I,T} son linealmente independientes, es decir, no existe P ∈ PR [x] de

grado 1 y tal que P(T ) = 0⃗.

En cambio, {I,T,T 2} es un conjunto linealmente dependiente, ya que


5 −6 −6

−1 4 2

3 −6 −4


2

−3


5 −6 −6

−1 4 2

3 −6 −4

+2


1 0 0

0 1 0

0 0 1

= 0⃗ (3.14)

Se tiene que T 2−3T +2I = (T −2I)(T −1I) = 0⃗, luego el polinomio minimal es

mT (λ ) = λ
2−3λ +2 = (λ −2)(λ −1).

mT divide a PT ya que PT = (λ −2)2(λ −1) es el polinomio característico.

■

i
En la Proposición 3.3.1 de la Sección 3.3 vimos que las raíces del polinomio característico

de una matriz son sus autovalores. Lo mismo vale para el polinomio minimal.

Dos matrices semejantes tienen el mismo polinomio minimal (y el mismo polinomio

característico como se vio en la Proposición 3.3.2).

Proposición 3.4.8 Sea T ∈ Kn×n, sea λ ∈ K y mT el polinomio minimal de T . Entonces λ es

autovalor de T sí y sólo sí λ es raíz de mT .

Criterio de diagonalización usando el polinomio minimal

Si el polinomio característico de T ∈ Kn×n, PT (λ ) se factoriza linealmente en PK [x], con todas

sus raíces λ1 · · ·λn simples (raíces distintas), entonces T es diagonalizable.

Esto sale de la Proposición 3.4.5 de la sección 3.4.1, ya que existe una base de Kn formada por

autovectores y los espacios propios Eλ1 ,Eλ2 · · · ,Eλn están en suma directa. La recíproca no es cierta,

es decir, PT (λ ) puede tener raíces múltiples y ser diagonalizable.
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Proposición 3.4.9 Sea T ∈ Kn×n. Entonces T es diagonalizable en Kn×n sí y sólo sí el polinomio

minimal mT tiene todas sus raíces en K y son simples. O en forma equivalente, sean λ1,λ2, · · · ,λk

los autovalores distintos de T . T es diagonalizable sí y sólo sí

mT (λ ) = (λ −λ1)(λ −λ2) · · ·(λ −λk)

Proposición 3.4.10 Sea T una aplicación lineal sobre un espacio vectorial de V de dim < ∞.

El polinomio característico y el polinomio minimal tienen las mismas raíces.

El Teorema que sigue fue enunciado por Arthur Cayley (1821-1895) en 1858. Lo demostró

inicialmente para matrices de 2×2.

Teorema 3.4.11 Teorema de Cayley-Hamilton:

Sea T una aplicación lineal sobre un espacio vectorial de V de dim < ∞. Si PT es el polinomio

característico de T , entonces PT (T ) = 0⃗.

Demostración:

Sea {⃗v1, v⃗2, · · · , v⃗n} una base de V y sea A la matriz que representa a T en la base dada.

Entonces

T v⃗i =
n

∑
j=1

a jiv⃗ j, 1≤ i≤ n

Estas ecuaciones, que son las mismas que las desarrolladas en 3.5, pueden escribirse en forma

equivalente

n

∑
j=1

(δi jT − a jiI)v⃗ j = 0⃗, 1≤ i≤ n

Sea B ∈ Kn×n con elementos Bi j = δi jT − a jiI

Cuando n = 2,
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B =

 T − a11I −a21I

−a12I T − a22I


y

det(B) = (T − a11I)(T − a22T )−a21a12I

det(B) = T 2− (a11 +a22)T +(a11a22−a12a21)I

det(B) = PT (T )

donde PT es el polinomio característico correspondiente a T .

PT (λ ) = λ
2− traza(A)λ +det(A)

Para n > 2, también se tiene det(B) = f (T ), ya que PT es el determinante de la matriz

(λ I − A) cuyos elementos son los polinomios

(λ I − A)i j = δi jλ − a ji

Se quiere demostrar que PT (T ) = 0⃗, y para eso es necesario y suficiente ver que (det(B)) v⃗k =

0⃗ para 1≤ k ≤ n. Por la definición de B, los vectores v⃗1, v⃗2, · · · , v⃗n satisfacen las ecuaciones

n

∑
j=1

Bi jv⃗ j = 0⃗, 1≤ i≤ n

Cuando n = 2,  T − a11I −a21I

−a12I T − a22I

 v⃗1

v⃗2

=

 0

0


la matriz adjunta de B transpuesta es
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B∗ =

 T − a22I a21I

a12I T − a11I


y se tiene

B∗B =

 det(B) 0

0 det(B)


Luego,

(det(B)) I

 v⃗1

v⃗2

= B∗B

 v⃗1

v⃗2

=

 0

0


Para el caso general, como

n

∑
j=1

Bi jv⃗ j = 0⃗, 1≤ i≤ n

n

∑
j=1

B∗kiBi jv⃗ j = 0⃗

para todo par k, i, y sumando sobre i, se tiene ∑
n
i=1 ∑

n
j=1 B∗kiBi jv⃗ j = 0⃗, y entonces,

n

∑
j=1

(
n

∑
i=1

B∗kiBi j)v⃗ j = 0⃗

Como B∗B = det(B)I, se tiene que ∑
n
i=1 B∗kiBi j = δk jdet(B)

y, por lo tanto,

n

∑
j=1

δk jdet(B)v⃗ j = det(B)v⃗ j = 0⃗

□
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i
Una utilidad de este teorema es que reduce la búsqueda del polinomio minimal. Si se

conoce la matriz A que representa a T en cierta base, se calcula el polinomio característico,

y se sabe que el polinomio minimal lo divide y que los dos tienen las mismas raíces.

En algunos casos el teorema resulta útil para calcular la inversa de una matriz. Si existe

T−1‘y PT (T ) = 0⃗, entonces, T−1PT (T ) = 0⃗.

Si

PT (λ ) = α0 +α1λ +α2λ
2 + · · ·+αnλ

n

PT (T ) = α0I +α1T +α2T 2 + · · ·+T n ∈ Kn×n,

entonces,

T−1PT (T ) = α0T−1 +α1I +α2T + · · ·+T n−1 = 0⃗

de donde, despejando,

T−1 =
1

α0
(−α1I−α2T −·· ·−T n−1)

α0 ̸= 0, ya que α0 = PT (⃗0) = Det(0I−T ) = (−1)nDet(T ) y T es invertible.

Arthur Cayley (1821-1895)

Fue un matemático británico. Fue uno de los fundadores de la escuela británica moderna de

matemáticas puras. Además de su predilección por las matemáticas, también era un ávido lector

de novelas, le gustaba pintar, sentía pasión por la botánica y por la naturaleza en general, y era

aficionado al alpinismo. Se educó en el Trinity College de Cambridge. Estudió durante algún tiempo

la carrera de leyes con lo que trabajó de abogado durante 14 años, a la vez que publicaba un gran

número de artículos. Luego pasó a ser profesor en Cambridge. Fue el primero que introdujo la

multiplicación de las matrices. Es el autor del teorema de Cayley-Hamilton que dice que cualquier

matriz cuadrada es solución de su polinomio característico. Dio la primera definición moderna de la

noción de grupo. En combinatoria, su nombre está unido a la fórmula que cuenta los posibles árboles

generadores con nodos etiquetados de orden n. Se llama a veces octavas de Cayley o números de

Cayley a los octoniones. Es el tercer matemático más prolífico de la historia, sobrepasado tan solo por
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Euler y Cauchy, con aportaciones a amplias áreas de la matemática. En 1889, Cambridge University

Press le pidió que preparara sus artículos matemáticos en forma de colección. Siete volúmenes

aparecieron con Cayley como editor, pero tras su fallecimiento, el resto de artículos fue editado por

Andrew Forsyth, su sucesor en la cátedra de Cambridge. En total los Collected Mathematical Papers

comprenden trece grandes volúmenes que contienen 967 artículos. [5]

3.5 Teorema de la descomposición prima

Es de interés, dada T una aplicación lineal sobre un espacio vectorial de V de dim < ∞, la

descomposición de V como suma directa de subespacios invariantes por T ,

V =W1⊕W2 · · ·⊕Wk, Wi subespacio de V y T (Wi)⊆Wi

es decir, generalizar la Proposición 3.4.5 de la sección 3.4.1 para el caso que T no es diagonalizable.

Esto lo muestra el Teorema que sigue.

Teorema 3.5.1 Teorema de la descomposición prima:

Sea T una aplicación lineal sobre un espacio vectorial de V de dim < ∞. Sea mT (λ ) el

polinomio minimal de T cuya factorización prima es

mT (λ ) = pr1
1 pr2

2 · · · p
rk
k = (λ −λ1)

r1(λ −λ2)
r2 · · ·(λ −λk)

rk

los pi son los polinomios primos (mónicos e irreducibles) en PK [λ ], todos distintos y ri son

enteros positivos.

Sea Wi = N(pri
i (T )) = N(T −λi)

ri . Entonces

1. V =W1⊕W2 · · ·⊕Wk

2. Cada Wi es invariante por T , o sea, T (Wi)⊆Wi
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3. Si Ti = T |Wi (T restringido a Wi), entonces Ti tiene a pri
i como polinomio minimal

■ Ejemplo 3.15 Dada la matriz

T =


3 1 −1

2 2 −1

2 2 0


Las raíces del polinomio característico son λ1 = λ2 = 2 raíz doble y λ3 = 1, raíz simple.

Hay dos opciones para el polinomio minimal,

mT (λ ) = (λ −2)(λ −1) o mT (λ ) = (λ −2)2(λ −1).

Puede verificarse que (T −2I)(T − I) ̸= 0⃗, así que resulta mT (λ ) = (λ −2)2(λ −1) y T no es

diagonalizable (por la Proposición 3.4.9).

Por el Teorema de la descomposición prima ,

p1 = (λ −2)2 y p2 = (λ −1), (r1 = 2 y r2 = 1)

Teniendo en cuenta que

Wi = N(pri
i (T )) = N(T −λi)

ri , se tiene que W1 = N(pr1
1 (T )) = N(T −2I)2.

Para hallar W1 se calcula la matriz (T −2I),

T −2I =


1 1 −1

2 0 −1

2 2 −2


luego (T −2I)2 y se resuelve el sistema homogéneo con la matriz (T −2I)2:


1 −1 0

0 0 0

2 −2 0




x1

x2

x3

=


0

0

0


Se obtiene que {(1,1,2)} y {(1,1,2),(1,1,0)} son bases de N(T −2I) y de W1, respectivamente.
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Por otro lado, W2 = N(pr2
2 (T )) = N(T −1I) = Eλ3 .

Al resolver este sistema homogéneo,


2 1 −1

2 1 −1

2 2 −1




x1

x2

x3

=


0

0

0


se tiene que una base de W2 es {(1,0,2)}.

Es posible hallar la matriz de T en la base B = {(1,1,2),(1,1,0)(1,0,2)}.

Utilizando la matriz en la base canónica, se tiene que


3 1 −1

2 2 −1

2 2 0




1

1

2

=


2

2

4


de donde

T ((1,1,2)) = 2(1,1,2)+0(1,1,0)+0(1,0,2).

(1,1,2) es un autovector correspondiente a λ1 = λ2 = 2.


3 1 −1

2 2 −1

2 2 0




1

1

0

=


4

4

4


T ((1,1,0)) = (4,4,4) = 2(1,1,2)+2(1,1,0)+0(1,0,2)

De la misma forma,

T ((1,0,2)) = (1,0,2) = 0(1,1,2)+0(1,1,0)+1(1,0,2),

La matriz de T en la nueva base es casi diagonal,

(T )B =


2 2 0

0 2 0

0 0 1

 .
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Para verificar que

V = R3 = W1 ⊕W2, se toma un vector (x1,x2,x3) y se buscan sus proyecciones sobre los

subespacios W1 y W2.

A partir de la igualdad (x1,x2,x3) = α(1,1,2)+β (1,1,0)+ γ(1,0,2) se resuelve el sistema y

se obtiene que α = −x1 + x2 + x3/2, β = x1− x3/2 y γ = x1− x2. Los dos primeros términos del

lado derecho corresponden a la proyección sobre W1, que llamaremos E1 y el tercero a la proyección

sobre W2, E2. Es decir que

E1((x1,x2,x3)) = (x2,x2,x3−2x1 +2x2)

y

E2((x1,x2,x3)) = (x1− x2,0,2x1−2x2)

Como ejemplo, las proyecciones del vector (2,1,2) sobre W1 y W2, son E1((2,1,2)) = (1,1,0) y

E2((2,1,2)) = (1,0,2), respectivamente ya que (2,1,2) = (1,1,0)+(1,0,2).

■

■ Ejemplo 3.16 T : V →V , V = R5 y mT (λ ) = (λ −1)(λ 2 +1)(λ +1)2

Los autovalores reales son λ1 = 1, λ2 = λ3 =−1

W1 = N(pr1
1 (T )) = N(T −1I) = Eλ1

W2 = N(pr2
2 (T )) = N(T 2 + I)

W3 = N(pr3
3 (T )) = N(T + I)2

V = R5 =W1⊕W2⊕W3

Se deja al lector verificar esta descomposición de V en suma directa de subespacios .

■
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i
Si aplicamos el teorema anterior en el caso que T sea un operador diagonalizable se tiene que

mT (λ ) = (λ −λ1)(λ −λ2) · · ·(λ −λk)

donde λ1,λ2, · · · ,λk son los autovalores distintos de T y entonces, Wi = N(T −λiI) = Eλi y

V = Eλ1 ⊕Eλ2 · · ·⊕Eλk

(ver Proposición 3.4.5).

Definición 3.5.1 Sea N una aplicación lineal sobre un espacio vectorial V . Se dice que N es

nilpotente si existe algún entero positivo r tal que Nr = 0 (matriz nula).

Se tiene el siguiente resultado:

Teorema 3.5.2 Sea T una transformación lineal sobre un espacio vectorial de V de dim < ∞.

Supongamos que mT (λ )= (λ−λ1)
r1(λ−λ2)

r2 · · ·(λ−λk)
rk . Entonces existe una transformación

lineal D diagonalizable y un operador lineal N nilpotente tal que

1. T = D+N

2. DN = ND

A la transformación lineal D se la llama parte diagonal de la transformación lineal T .

Demostración:

1. Supongamos que T es una transformación lineal tal que mT (λ ) = pr1
1 pr2

2 · · · p
rk
k =

(λ −λ1)
r1(λ −λ2)

r2 · · ·(λ −λk)
rk .

Sean E1, E2, · · · , Ek las proyecciones tales que Im(Ei) = N(T −λiI)ri y D = λ1E1 +λ2E2 +

· · ·+λkEk.

Consideremos N = T −D. De la Proposición 3.4.6 se tiene que E1 +E2 + · · ·+Ek = I y
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T = T E1 +T E2 + · · ·+T Ek.

N = (T E1 +T E2 + · · ·+T Ek)− (λ1E1 +λ2E2 + · · ·+λkEk)

N = (T −λ1I)E1 + · · ·(T −λkI)Ek

N2 = ((T −λ1I)E1 + · · ·(T −λkI)Ek)((T −λ1I)E1 + · · ·(T −λkI)Ek)

N2 = (T −λ1I)2E1 + · · ·(T −λkI)2Ek

· · · = · · ·

Nr = (T −λ1I)rE1 + · · ·(T −λkI)rEk

Si r ≥ ri, se tiene que Nr = 0⃗, ya que, dado v⃗ ∈V , v⃗ = v⃗1 + v⃗2 + · · · v⃗k, con v⃗i ∈ N(T −λiI)ri

N r⃗v = (T −λ1I)rE1⃗v+ · · ·(T −λkI)rEk⃗v

N r⃗v = (T −λ1I)rv⃗1 + · · ·(T −λkI)rv⃗k

y como v⃗i ∈ N(T −λiI)ri cada término da el vector nulo, 0⃗.

2. ver en ([23]) □

■ Ejemplo 3.17 Del Ejemplo 3.15

(T )B =


2 2 0

0 2 0

0 0 1



D(x1,x2,x3) = λ1E1(x1,x2,x3)+λ2E2(x1,x2,x3)

y de acuerdo a lo obtenido antes, si se reemplazan E1 y E2, se tiene que la transformación D es

D((x1,x2,x3)) = λ1(x2,x2,x3−2x1 +2x2)+λ2(x1− x2,0,2x1−2x2)

Su matriz asociada, en la base B es

(D)B =


2 0 0

0 2 0

0 0 1





144 Capítulo 3. Autovalores y autovectores

mientras que

N = (T )B− (D)B =


0 2 0

0 0 0

0 0 0



es nilpotente de orden 2 (N2 = 0, es la matriz nula). Se cumple además que D N = N D.

■

3.6 Forma canónica de Jordan

Como ya vimos, existen transformaciones lineales (o matrices A∈Kn×n) que no son diagonalizables,

es decir, no existe una base de autovectores. En ese caso, aún es posible demostrar que la matriz es

semejante a otra, una matriz más sencilla aunque no es diagonal. La matriz de la transformación es un

poco más difícil de obtener que en el caso diagonalizable. Veremos a continuación el procedimiento

para matrices de 2×2.

Forma de Jordan de matrices de orden 2

Sea T ∈ L(V ), V espacio vectorial de dimensión 2, y supongamos su matriz, en cierta base es

T =

 a b

c d


Su polinomio característico es PT (λ ) = (a− λ )(d− λ )− cb con lo que PT (λ ) = 0 es una

ecuación de grado 2 en la variable λ y se tendrán dos casos diferentes según las dos soluciones sean

iguales o distintas.

1. Caso I. Las raíces del polinomio característico son distintas λ1 ̸= λ2.

En este caso la matriz T es diagonalizable (consecuencia de la Proposición 3.4.1). Su forma

de Jordan es la matriz diagonal

J =

 λ1 0

0 λ2



y T =CJC−1, donde la matriz C del cambio de base tiene en sus columnas las coordenadas de

vectores v⃗1 e v⃗2 ∈ N(T −λiI), i = 1,2, respectivamente.
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2. Caso II. Las raíces del polinomio característico coinciden λ1 = λ2

En este caso, si N(T−λ1I) tiene dimensión 1, no podremos encontrar una base de autovectores

en V .

Se tiene el siguiente resultado:

Lema: Suponga T es una matriz de 2× 2 que tiene dos autovalores iguales λ . Sea v⃗1 un

autovector correspondiente a λ . Existe un vector v⃗2 que satisface la ecuación

(T −λ I)⃗v2 = v⃗1

Definición 3.6.1 Se denomina autovector generalizado al vector v⃗2 de la ecuación anterior.

Como v⃗1 y v⃗2 son linealmente independientes, forman una base de V . En esta base tenemos,

(T −λ I)⃗v1 = 0⃗⇔ T v⃗1 = λ v⃗1

(T −λ I)v⃗2 = v⃗1⇔ T v⃗2 = v⃗1 +λ v⃗2

con lo que la matriz de la transformación lineal en esta base es λ 1

0 λ



y la matriz de cambio de base C tiene en sus columnas a los vectores v⃗1 y v⃗2.

i A partir de (T −λ I)v⃗2 = v⃗1, se tiene que

(T −λ I)(T −λ I)v⃗2 = (T −λ I)v⃗1 = 0⃗

y, entonces,

v⃗2 ∈ N((T −λ I)2)

Se pueden resumir estos resultados en la siguiente proposición, en donde K designa el cuerpo de

los números reales o el de los complejos.
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Proposición 3.6.1 Dada una matriz T ∈ K2×2 siempre puede encontrarse una matriz J ∈ K2×2 de

una cualquiera de las formas

 λ1 0

0 λ2

 o

 λ 1

0 λ



con λ1,λ2 ∈ K y una matriz C ∈ K2×2 tal que T =CJC−1.

La matriz J se denomina matriz de Jordan de T .

■ Ejemplo 3.18 Dada la matriz,

T =

 3 −2

8 −5


al tener el polinomio característico una raíz doble (Caso II), su forma de Jordan es:

T =CJC−1 =

 1 1/4

2 0

 −1 1

0 −1

 0 1/2

4 −2


■

Forma de Jordan de matrices de orden 3

Ahora veremos para aplicaciones lineales entre espacios vectoriales de dimensión 3. Servirá

para comprender los resultados teóricos necesarios para obtener la forma de Jordan en espacios

vectoriales de cualquier dimensión.

■ Ejemplo 3.19 Se quiere reducir la matriz

T =


0 3 1

2 −1 −1

−2 −1 −1


a su forma de Jordan. Sus autovalores son λ1 = 2 (simple) y λ2 = λ3 =−2 (doble), y los espacios

propios correspondientes,
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Eλ1 = N(T −2I) =

α


1

1

−1

α ∈ K


y

Eλ2 = N(T +2I) =

α


1

−1

1

α ∈ K



v⃗1 =


1

1

−1

 y v⃗2 =


1

−1

1


son dos autovectores linealmente independientes pero no forman una base. Se debe realizar un

trabajo análogo al realizado en el caso de raíces iguales para matrices de orden 2.

Se halla v⃗3 tal que (T −λ I)v⃗3 = v⃗2, o, equivalentemente, (T −λ I)(T −λ I)v⃗3 = (T −λ I)v⃗2 = 0⃗,

es decir,

v⃗3 ∈ N((T −λ2I)2) = N((T +2I)2)

Sea v⃗3 =


0

0

1

, se tiene que v⃗3 ∈ N((T +2I)2)

pues (T +2I)(T +2I)


0

0

1

=


0

0

0


y

N((T +2I)2) =

α


1

−1

1

+β


0

0

1

α,β ∈ K


Ahora es posible elegir una base de V con estos vectores, {v⃗1, v⃗2, v⃗3} de manera que la matriz de

T en esta base sea sencilla.

T v⃗1 = 2v⃗1, T v⃗2 =−2v⃗2, T v⃗3 = v⃗2−2v⃗3

T


0

0

1

=


1

−1

−1

=


1

−1

1

−2


0

0

1


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J =


2 0 0

0 −2 1

0 0 −2


y la matriz del cambio de base es

C =


1 1 0

1 −1 0

−1 1 1


■

Lema: Suponga T es una matriz de 3×3 que tiene 3 autovalores iguales a λ y la dimensión de

su espacio propio es 1. Sea v⃗1 un autovector correspondiente a λ .

Existe un vector v⃗2 que satisface la ecuación

(T −λ I)v⃗2 = v⃗1,

tal que v⃗1 y v⃗2 son linealmente independientes.

Con el v⃗2 hallado en el punto anterior, existe un vector v⃗3 solución del sistema

(T −λ I)v⃗3 = v⃗2

tal que v⃗1, v⃗2 y v⃗3 son linealmente independientes.

■ Ejemplo 3.20 Dada la matriz,

T =


−2 1 −1

−1 −1 0

0 1 −3


λ = −2 es raíz triple del polinomio característico. Se deja al lector verificar que su forma de

Jordan es T =CJC−1 donde

C =


1 0 −1

1 1 0

1 0 0


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Las columnas de C son vectores v⃗1, v⃗2 y v⃗3 que cumplen el lema anterior, y

J =


−2 1 0

0 −2 1

0 0 −2


■

Marie Ennemond Camille Jordan (1838 - 1922)

Fue un matemático francés, conocido tanto por su trabajo sobre la teoría de grupos, como por

su influyente Curso de análisis (Cours d’analyse). Estudió en la Escuela Politécnica (promoción de

1855). Fue ingeniero de minas y, más tarde, ejerció como examinador en la misma escuela. En 1876

entró como profesor en el Colegio de Francia, sustituyendo a Joseph Liouville. Su nombre se asocia a

un determinado número de resultados fundamentales: El teorema de la curva de Jordan: un resultado

topológico recogido en análisis complejo. La forma canónica de Jordan en álgebra lineal. El teorema

de Jordan-Holder, que es el resultado básico de unas series de composiciones. El trabajo de Jordan

incidió de manera sustancial en la introducción de la teoría de Galois en la corriente del pensamiento

mayoritario. Investigó también los grupos de Mathieu, los primeros ejemplos de grupos esporádicos.

Su Tratado de las sustituciones (Traité des substitutions) sobre las permutaciones de grupos fue

publicado en 1870. El 4 de abril de 1881 fue elegido miembro de la Academia de la Ciencia. De

1885 a 1921 dirige la «Revista de matemáticas puras y aplicadas» (Journal de mathèmatiques pures

et apliqués), fundado por Liouville. [7]

Teorema de clasificación de Jordan

Se denomina matriz elemental de Jordan de orden k y autovalor λ ∈ C a la matriz de orden k

cuyos elementos son todos nulos, excepto los de la diagonal principal, que valen λ y los situados

inmediatamente encima de la diagonal principal que son unos. Por ejemplo:

J1(λ ) = (λ ) J2(λ ) =

 λ 1

0 λ

 J3(λ ) =


λ 1 0

0 λ 1

0 0 λ

 y así sucesivamente.

Se llama matriz de Jordan a cualquier matriz cuadrada formada por yuxtaposición de matrices

elementales de Jordan a lo largo de la diagonal, de la forma
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
J1 j 0 0 0

0 J2 j 0 0

· · · · · · · · · · · ·
0 0 · · · Jn j



donde, en el caso de orden 3, Ji j =


λi 1 0

0 λi 1

0 0 λi



Una transformación lineal T puede expresarse en la forma canónica de Jordan si sus polinomios

característico y minimal se factorizan en polinomios lineales. Esto siempre es verdadero si el cuerpo

K es C. Análogamente toda matriz es semejante a una matriz en forma canónica de Jordan.

Teorema 3.6.2 Teorema de Jordan:

Sea T ∈ L(V ) cuyos polinomios característico y minimal son respectivamente,

PT (λ ) = (λ −λ1)
n1(λ −λ2)

n2 · · ·(λ −λk)
nk

mT (λ ) = (λ −λ1)
m1(λ −λ2)

m2 · · ·(λ −λk)
mk donde los λi son distintos.

Entonces T tiene una representación matricial J que es diagonal por bloques.

Para cada λi los bloques correspondientes Ji j tienen las siguientes propiedades:

1. Existe al menos un Ji j de orden mi, los demás Ji j son de orden ≤ mi.

2. La suma de los órdenes de los Ji j es ni.

3. La cantidad de Ji j es igual a la multiplicidad geométrica de λi (dimensión de Eλi).

4. La cantidad de Ji j de cada orden posible está determinado únicamente por T .

i La matriz J se llama forma canónica de Jordan de la transformación lineal T . A Ji j se lo llama

bloque de Jordan correspondiente al valor propio λi.Observar que Ji j = λiI +N, donde N es

una matriz nilpotente. ▲
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■ Ejemplo 3.21 Supongamos

PT (λ ) = (λ −2)4(λ −3)3 y mT (λ ) = (λ −2)2(λ −3)2.

Se quiere hallar su matriz de Jordan aplicando el teorema anterior:

Como m1 = m2 = 2 existe al menos un bloque de orden 2 para cada λ , λ1 = 2 y λ2 = 3.

La suma de los órdenes de los bloques para λ1 = 2 es n1 = 4 y para λ2 = 3 es n2 = 3.

La cantidad de bloques es la dimensión del espacio propio correspondiente. Para λ2 = 3, hay un

bloque de orden 2 y uno de orden 1.

Para λ1 = 2 hay 2 posibilidades, dependiendo de su multiplicidad geométrica:



2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 3 1 0

0 0 0 0 0 3 0

0 0 0 0 0 0 3





2 1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 3 1 0

0 0 0 0 0 3 0

0 0 0 0 0 0 3


En el primer caso, la dimensión del espacio propio es 2, hay 2 bloques de orden 2. En el segundo,

como hay 3 autovectores, hay 3 bloques, 1 de orden 2 y 2 de orden 1.

Se puede observar que la cantidad de 1 en la matriz de Jordan corresponde a la resta: multiplicidades

algebraicas - multiplicidades geométricas, 3 = 7− 2− 2 en el primer caso y 2 = 7− 3− 2 en el

segundo.

■
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Figura 3.4

3.7 Actividades propuestas

Problema de Aplicación 3 Un circuito eléctico que describe el valor del voltaje de dos capacitores

en función del tiempo, y en paralelo como se aprecia en la Figura 3.5 se resuelve con el siguiente

sistema de ecuaciones diferenciales de primer orden: x′1(t)

x′2(t)

=

 −(1/R1 +1/R2)/C1 1/(R2C1)

1/(R2C2) −1/(R2C2)

 x1(t)

x2(t)


donde x1(t) y x2(t) son los voltajes en los dos capacitores al tiempo t. El voltaje es la magnitud que

da cuenta de la diferencia en el potencial eléctrico entre dos puntos determinados. Aclaremos que un

capacitor es un dispositivo capaz de almacenar energía a través de campos eléctricos. Los capacitores

se utilizan principalmente como filtros de corriente continua, ya que evitan cambios bruscos y ruidos

en las señales debido a su funcionamiento.

En la matriz puede observarse que esta corriente dependerá de las resistencias (R) del circuito

en cuestión. Una resistencia es un dispositivo eléctrico que tiene la particularidad de oponerse al

flujo de la corriente. Suponga que las resistencias valen para nuestro problema: R1 = 1, R2 = 2, las

capacitancias involucradas tendrán el valor de C1 = 1 y C2 = 0.5. Con todos esos datos es posible

obtener la matriz del problema, a la que deberá encontrarle sus autovectores y autovalores. De esa

manera, haciendo uso de la matriz diagonal pertinente podrá desacoplar el sistema. Podrá construir

una familia de soluciones. Para hallar la solución particular del problema necesita conocer los

voltajes iniciales que se miden en los capacitares a un tiempo t = 0. Para este problema supondremos

que las cargas iniciales han sido x1(0)=5 y x2(0)=4.



3.7 Actividades propuestas 153

Su tarea consiste en encontrar las soluciones x1(t) y x2(t) que describan cómo los voltajes

evolucionan en el tiempo. Tenga en cuenta que en general dado y⃗′ = A⃗y un sistema de ecuaciones

diferenciales de primer orden donde la matriz A, de dimensión n×n es diagonalizable (los vectores

u⃗1, u⃗2, ..., u⃗n asociados a los valores propios distintos λ1, λ2, ..., λn de A, respectivamente, son

linealmente independientes). Entonces el conjunto {eλ1x⃗u1 ,eλ2x⃗u2, ..., eλnx⃗un} es una base del

espacio de soluciones de y⃗′ = A⃗y.

Figura 3.5: Circuito

3.7.1 Ejercicios

Ejercicio 3.1

Halle el polinomio característico, autovalores y autovectores de las Matrices de Pauli:

σx)

 0 1

1 0

, σy)

 0 −i

i 0

, σz)

 1 0

0 −1



Las sentencias Python a continuación dan los autovalores de la matriz. Investigue cómo puede hallar

los autovectores en Python.

import numpy as np

a = np.array ([[0, 1],

[1, 0]])

LA.eigvals(a)
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Ejercicio 3.2

Sea T ∈L(R2), dado por T ((x,y))= (y,x). Halle el polinomio característico, autovalores y autovectores.

Interprete geométricamente.

Ejercicio 3.3

Demuestre que si 0 < θ < π , la matriz

Rθ =

 cos(θ) −sen(θ)

sen(θ) cos(θ)

 no tiene autovalores ni autovectores reales. Interprete geométricamente.

Ejercicio 3.4

Sea T : R3→ R3 la transformación lineal definida por:

T ((x,y,z)) = (−x−2y+2z,−y,−x−3y−4z).

Encuentre una base B de R3 tal que (T )B sea diagonal.

Ejercicio 3.5

Sea A =


1/2 1/2 0

1/2 1/2 0

0 0 0


la matriz que representa la transformación lineal que proyecta cualquier vector v ∈ R3 sobre la recta

de vector director (1,1,0):

a) Analice si A es semejante sobre el cuerpo R a una matriz diagonal. En caso afirmativo, halle

la matriz diagonal correspondiente.

b) Interprete geométricamente lo hallado en a.

Ejercicio 3.6

Sea A =


α β 0

0 −1 0

0 0 1



Indique para qué valores de α y β la matriz es diagonalizable.
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Ejercicio 3.7

Sea

A =


6 −3 −2

0 −1 2

0 −5 −3


Analice si A es semejante sobre el cuerpo R a una matriz diagonal. Idem sobre el cuerpo C. En caso

afirmativo, hallar la matriz diagonal correspondiente.

Ejercicio 3.8

Halle A10, donde A =

 1 3

−3 −1


Deberá encontrar una matriz P que diagonalice a A.

Ejercicio 3.9

Conforme a que A = T−1BT con

A =


−3 −4 0 −2

8 13 4 8

4 6 3 4

−12 −20 −8 −13

, B =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

, T =


1 0 4 1

1 1 2 1

2 3 1 2

0 1 1 1

.

Calcule A6.

Ejercicio 3.10

Encuentre la solución del sistema


2y1 +2y2 + y3 = y′1
y1 +3y2 + y3 = y′2
y1 +2y2 +2y3 = y′3

con las condiciones iniciales y1(0) = 0, y2(0) = 1 y y3(0) = 1.
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Ejercicio 3.11

Resuelva la ecuación diferencial homogénea de tercer orden

y′′′− y′ = 0, con las condiciones iniciales

y(0)=1, y′(0) = 0, e y′′(0) = 1

Realizando el cambio

z1 = y, z2 = y′, z3 = y′′.

Ejercicio 3.12

Sea T ∈ L(R3), definida por T ((x,y,z)) = (x,x+ y,z)

a) Halle el polinomio característico, y el polinomio minimal.

b) Halle autovalores y una base para cada espacio propio de T .

c) Determine si T es o no diagonalizable.

Ejercicio 3.13

Dada A =


0 1 1

1 0 0

0 1 0


utilice el teorema de Cayley-Hamilton para hallar A−1 y A3.

Ejercicio 3.14

Utilice las propiedades del polinomio minimal para determinar si las matrices siguientes son

diagonalizables o no (considerar sobre el cuerpo R y sobre el cuerpo C).

a) A =

 2 −1

3 1


b) A es una matriz cuadrada tal que A ̸= I y A3−A2 +A = I

Ejercicio 3.15

Encuentre la forma de Jordan de la matriz −10 −7

7 4


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Ejercicio 3.16

Escriba todas las matrices de Jordan de 4×4 posibles.

Ejercicio 3.17

Determine las formas de Jordan posibles de una matriz de 4×4 cuyo polinomio característico es

(λ +2)3.(λ −3).

Ejercicio 3.18

Determine las formas de Jordan posibles de una matriz de 5×5 cuyo polinomio minimal es (λ −2)2.

Ejercicio 3.19

Sea T ∈ L(R4), tal que su polinomio característico es (λ +1)2(λ −2)λ :

a) Indique los polinomios minimales de T y describa en qué casos es diagonalizable.

b) Si T no es diagonalizable, encuentre su forma de Jordan.

Ejercicio 3.20

Dada

N6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


Demuestre que es nilpotente con índice de nilpotencia 6.

Ejercicio 3.21

La matriz

A =


1 0 0 2

2 −1 0 2

2 0 −1 2

0 0 0 1


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tiene polinomio característico (λ +1)2(λ −1)2, y polinomio minimal (λ +1)(λ −1)2, por lo que

no es diagonalizable. Encuentre su forma de Jordan y utilícela para encontrar A10.

Nota: para hallar las potencias de los bloques de Jordan que son de la forma (λ Im +N)k utilice el

binomio de Newton y el hecho que N es una matriz nilpotente.

Ejercicio 3.22

Pruebe la proposición 3.2.1: La intersección y la suma de subespacios invariantes respecto de una

aplicación lineal T ∈ L(V ) son subespacios invariantes respecto de T .

Ejercicio 3.23

Dado un cuerpo K, sea A ∈ Kn×n inversible. Pruebe que los autovalores de A−1 son los inversos de

los autovalores de A, y que los autovectores correspondientes a autovalores inversos coinciden.

Ejercicio 3.24

Demuestre que dos matrices semejantes B y B′ tienen el mismo polinomio característico PT,B(λ ) =

PT,B′(λ )

Ejercicio 3.25

Sea A =

 a b

c d


a) Demuestre que A es diagonalizable si (a−d)2 +4bc > 0.

b) Analice el caso que A sea simétrica (b = c).

Ejercicio 3.26

Sea D el operador derivación sobre el R-espacio vectorial de las funciones derivables de R en R. Si

k ∈ Z,k ̸= 0, demuestre que las funciones sen(kx) y cos(kx) son autovectores de D2. Indique cuáles

son los autovalores correspondientes.

Ejercicio 3.27

Sea T : Rn→ Rn una transformación lineal con matriz asociada A respecto a la base canónica, u⃗ y v⃗

∈ Rn autovectores asociados a los autovalores λ y µ . Indique justificando cuáles de las siguientes

afirmaciones son verdaderas

a) Para todo α ∈ R el vector α u⃗ es un autovector asociado a λ .

b) Todo vector del núcleo es autovector.
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c) El vector w⃗ = v⃗+ u⃗ es autovector de T .

d) λ n es autovalor de T n con autovector asociado u⃗.

e) Una matriz diagonalizable es invertible.

Ejercicio 3.28

Dado un cuerpo K, sean A y P ∈ Kn×n, P inversible. Demuestre que (P−1AP)2 = P−1A2P y

(P−1AP)k = P−1AkP para k un entero positivo.

Ejercicio 3.29

Sea T ∈ L(R2) la transformación lineal cuya matriz en la base canónica es : A =

 1 −1

2 2


a) Demuestre que los únicos subespacios de R2 invariantes por T son R2 y 0.

b) Si U es la misma transformación pero en C2, cuya matriz en la base canónica es A, demuestre

que U tiene algún subespacio unidimensional invariante.

Ejercicio 3.30

Sea T ∈ L(R2) la transformación lineal cuya matriz en la base canónica es :

A =

 2 1

0 2


y sea W1 el subespacio de R2 generado por (1,0)t :

a) Pruebe que W1 es T -invariante.

b) Demuestre que no existe un subespacio W2 que sea invariante tal que R2 =W1 +W2.

3.7.2 Autoevaluación

Verdadero o Falso

1. Si A es invertible entonces cero no es un valor propio de A.

2. Los valores propios de una matriz triangular son los elementos en la diagonal de la matriz.

3. Si la matriz real A ∈ R3×3 tiene tres valores propios distintos, entonces los vectores propios

correspondientes a esos valores propios constituyen una base para R3.

4. Si la matriz A ∈ R3×3 tiene dos valores propios distintos, entonces A tiene a lo sumo dos

vectores propios linealmente independientes.



160 Capítulo 3. Autovalores y autovectores

5. Si A tiene elementos reales, entonces A puede tener exactamente un valor propio complejo.

6. Si Det(A) = 0, entonces 0 es un valor propio de A.

7. Si una matriz de n×n tiene n valores propios diferentes, se puede diagonalizar.

8. Si la matriz A de 5×5 tiene 3 valores propios diferentes, entonces A no puede ser semejante a

la matriz diagonal.

9. El subespacio propio contiene todos los vectores propios asociados a λ y además al vector

nulo.

10. El determinante de una matriz y el de su transpuesta son iguales, por lo tanto tienen el mismo

polinomio característico, los mismos valores y vectores propios.

11. La matriz λ I - A es invertible entonces λ es un valor propio de A.

12. Dos matrices semejantes tienen el mismo polinomio característico y los mismos valores

propios con las mismas multiplicidades algebraicas.

13. Una matriz es diagonalizable si la multiplicidad algebraica de cada valor propio de la matriz,

coincide con la dimensión del espacio propio correspondiente.

14. El determinante de una matriz es igual a la suma de todos sus autovalores (reales y complejos,

y elevados a sus respectivas multiplicidades).

15. La traza de una matriz es igual al producto de todos sus autovalores (reales y complejos, y

elevados a sus respectivas multiplicidades).

16. Las variables ángulo-acción están relacionadas con la diagonalización de matrices simétricas

en la mecánica analítica, y corresponden a las coordenadas en el espacio de los autovectores

de la matriz Hessiana.



4. Espacios vectoriales con producto interno

Los conceptos geométricos de longitud, distancia y perpendicularidad, que son bien conocidos

para R2 y R3, se definen en este capítulo para cualquier espacio vectorial euclídeo V . Estos conceptos

proporcionan herramientas geométricas potentes para resolver muchos problemas aplicados, incluidos

los problemas de mínimos cuadrados. Los tres conceptos se definen en términos del producto escalar

o producto interior de dos vectores.

4.1 Producto interno. Ejemplos

Definición 4.1.1 Producto interno

Sea V un espacio vectorial sobre R o C. Un producto interno sobre V es una función

φ : V ×V → R (o C) que cumple:

1. φ (⃗x, y⃗) = φ (⃗y, x⃗) para todo x⃗, y⃗ ∈V

2. φ (⃗x+ z⃗, y⃗) = φ (⃗x, y⃗)+φ (⃗z, y⃗), para todos x⃗, y⃗, z⃗ ∈V

3. φ(α x⃗, y⃗) = αφ (⃗x, y⃗) para todo x⃗,⃗y ∈V y todo α ∈ R o C

4. φ (⃗x, x⃗)> 0 para todo x⃗ ̸= 0
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i

Consecuencias de 1, 2 y 3:

De 1. y 2. se deduce

φ (⃗x, y⃗+ z⃗) = φ (⃗x, y⃗)+φ (⃗x,⃗z), para todos x⃗, y⃗, z⃗ ∈V .

De 3. y de 1. se deduce que

φ (⃗x,α y⃗) = αφ (⃗x, y⃗) para todo x⃗, y⃗ ∈V y todo α ∈ R.

De 2. se deduce que

φ (⃗0+ y⃗, x⃗) = φ (⃗y, x⃗) = φ (⃗0, x⃗)+φ (⃗y, x⃗), sí y sólo sí φ (⃗0, x⃗) = 0.

Por la propiedad simétrica φ (⃗x,⃗0) = 0 y, en particular, φ (⃗x, x⃗) = 0 si x⃗ = 0⃗.

■ Ejemplo 4.1 Los productos internos en Rn y Cn son, respectivamente:

φ (⃗x, y⃗) = φ((x1,x2, · · · ,xn),(y1,y2, · · · ,yn)) = x1y1 + x2y2 + · · ·+ xnyn (Rn)

φ (⃗x, y⃗) = φ((x1,x2, · · · ,xn),(y1,y2, · · · ,yn)) = x1y1 + x2y2 + · · ·+ xnyn (Cn)

Son los productos internos canónicos. Se deja al lector la verificación de las propiedades 1−4

de la Definición 4.1.1 en cada caso. ■

i

A un espacio vectorial real (o complejo) V provisto de un producto interno se lo llama

espacio euclídeo, E, (respectivamente, espacio unitario).

El producto interno generaliza el producto escalar de los vectores x⃗ e y⃗ ∈Rn a un espacio

vectorial V cualquiera.

Si se tiene un producto interno, se anotará φ (⃗x, y⃗) = (⃗x, y⃗)
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■ Ejemplo 4.2 En el espacio vectorial de las funciones continuas en [a,b], C([a,b]), a valores reales,

se define

φ : C([a,b])×C([a,b])→ R

φ( f ,g) =
∫ b

a
f (t)g(t)dt.

En el caso de funciones a valores complejos, se define φ( f ,g) =
∫ b

a f (t)g(t)dt (similar a C2).

■

i

El producto interno anterior es el que se utiliza para hallar los coeficientes de la serie

de Fourier de una función f (x) en [0,2π]. Se calculan con el producto interno entre la

función f (x) y la base ortogonal {einx}n∈Z o {1,cos(nx),sen(nx)}n∈N .

La serie de Fourier tiene importantes aplicaciones, por ejemplo, en el procesamiento de

señales. Permite la descomposición de la señal en una base ortonormal y obtener sus

componentes frecuenciales. En señales de música, por ejemplo, posibilita separar los

instrumentos.

Una vez fijada una base de V , si V es un espacio vectorial de dimensión finita con un producto

interno, es posible construir una matriz asociada al producto interno y a dicha base.

4.2 Matriz de un producto Interno

Sea V un espacio vectorial sobre R o C de dimensión finita con producto interno y sea B =

{⃗v1, v⃗2, · · · , v⃗n} una base de V . Se define la matriz del producto interno (·, ·) en la base B como la

matriz ∈ Rn×n (resp. ∈ Cn×n) tal que

Pi j = (⃗vi, v⃗ j) 1≤ i, j ≤ n

Esta matriz nos permite calcular el producto interno entre cualquier par de vectores. Si x⃗ =

∑
n
i=1 xi⃗vi e y⃗ = ∑

n
j=1 y j⃗v j

(⃗x, y⃗) = (
n

∑
i=1

xi⃗vi,
n

∑
j=1

y j⃗v j) =
n

∑
i=1

n

∑
j=1

xiy j (⃗vi, v⃗ j)
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En particular, para n = 3, se tiene

(⃗x, y⃗) = (x1,x2,x3)


(⃗v1, v⃗1) (⃗v1, v⃗2) (⃗v1, v⃗3)

(⃗v2, v⃗1) (⃗v2, v⃗2) (⃗v2, v⃗3)

(⃗v3, v⃗1) (⃗v3, v⃗2) (⃗v3, v⃗3)




y1

y2

y3



i Si P es la matriz de un producto interno, entonces Pi j = P ji para todo i ̸= j. Sin embargo, esa

condición no es suficiente para que P sea la matriz de un producto interno. Por ejemplo, la

matriz

A =

(
0 1

1 1

)

no puede ser la matriz de un producto interno en una base, ya que si v⃗ es el primer vector de la

base, se tendría (⃗v, v⃗) = 0 y sería el vector nulo.

4.3 Longitud, ángulos, distancia y ortogonalidad

A partir de la definición de un producto interno, es posible generalizar las nociones de longitud,

ángulos, distancia y ortogonalidad ya vistas para vectores de R2 y R3.

Definición 4.3.1 Longitud o norma de un vector x⃗ en un espacio con producto interno se define

como

∥⃗x∥=
√
(⃗x, x⃗), x⃗ ∈ E (4.1)

■ Ejemplo 4.3 En R2, si v⃗ = (a,b), ∥⃗v∥ es la longitud del segmento que va desde el origen hasta v⃗,

y es consecuencia del Teorema de Pitágoras (ver Figura 4.1).

■

■ Ejemplo 4.4 Sea x⃗ = (1,−2,2,0). Como ∥⃗x∥2 = (1)2 +(−2)2 +(2)2 = 9, su longitud o norma

euclídea es ∥⃗x∥=
√

9 = 3. ■
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Figura 4.1: La norma es la longitud del vector

i
La definición de longitud tiene sentido por la propiedad 4. del producto interno (Definición

4.1.1).

Se tiene la propiedad siguiente:

∥α x⃗∥=
√
(α x⃗,α x⃗) =

√
α2(⃗x, x⃗) = |α|

√
(⃗x, x⃗) = |α| ∥⃗x∥

Todo vector de longitud 1 se dice unitario; todo vector x⃗ no nulo de un espacio euclídeo

puede normalizarse, es decir, hacerlo unitario multiplicándolo por 1
∥⃗x∥ .

■ Ejemplo 4.5 El vector unitario u⃗ ∈ R4 que tiene la misma dirección que el vector x⃗ del Ejemplo

4.4 es

u⃗ =
x⃗
∥⃗x∥

= (
1
3
,−2

3
,
2
3
,0) (4.2)

■

Ángulo entre dos vectores.

En R2 el producto escalar verifica la expresión que sigue:

(⃗x, y⃗) = ∥⃗x∥∥⃗y∥cosθ (4.3)

La verificación para R3 es similar. Cuando n > 3, puede usarse la Ec.(4.3) para definir el ángulo

entre dos vectores de Rn, o en espacios vectoriales cualesquiera.
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Dados dos vectores x⃗ e y⃗ de un espacio euclídeo, definimos el coseno del ángulo entre ellos como

cos(θ) =
(⃗x, y⃗)
∥⃗x∥∥⃗y∥

(4.4)

Para que tenga sentido la definición anterior, es necesario demostrar que el valor absoluto del

cociente

(⃗x, y⃗)
∥⃗x∥∥⃗y∥

sea menor que o igual que 1.

i En Estadística, el valor de cos(θ) definido mediante la Ec.(4.4) para los vectores x⃗ e y⃗ es

llamado coeficiente de correlación entre los vectores x⃗ e y⃗, y mide de alguna forma la similitud

entre ambos.

Augustin Louis Cauchy (1789 - 1857)

Fue un matemático francés, miembro de la Academia de Ciencias de Francia y profesor en la

Escuela politécnica. Cauchy ha sido uno de los matemáticos más prolíficos de todos los tiempos,

solo superado por Leonhard Euler, Paul Erdős y Arthur Cayley con cerca de 800 publicaciones y

siete trabajos; su investigación cubre el conjunto de áreas matemáticas de la época. Fue pionero en

análisis donde se le debe la introducción de las funciones holomorfas, los criterios de convergencia

de series y las series de potencias. Sus trabajos sobre permutaciones fueron precursores de la teoría

de grupos, contribuyendo de manera medular a su desarrollo. En óptica se le atribuyen trabajos sobre

la propagación de ondas electromagnéticas. [6]

Proposición 4.3.1 Desigualdad de Cauchy-Schwartz:

En todo espacio vectorial con producto interno,

|(⃗x, y⃗)| ≤ ∥⃗x∥∥⃗y∥

para todo x⃗, y⃗ ∈ E.
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Demostración:

Si y⃗ = 0⃗ vale, pues
∣∣∣(⃗x,⃗0)∣∣∣= 0≤ ∥⃗x∥0 = 0.

Si y⃗ ̸= 0⃗, y llamamos a = (⃗x,⃗y)
∥⃗y∥2 donde ∥⃗y∥2 = (⃗y, y⃗), se tiene que

0≤ (⃗x− a⃗y, x⃗− a⃗y)

0≤ (⃗x, x⃗− a⃗y)−a(⃗y, x⃗− a⃗y)

0≤ (⃗x, x⃗)−a(⃗x, y⃗)−a(⃗y, x⃗)+aa(⃗y, y⃗)

como

a(⃗x, y⃗) =
(⃗y, x⃗)

∥⃗y∥2 (⃗x, y⃗)

a(⃗y, x⃗) =
(⃗x, y⃗)

∥⃗y∥2 (⃗y, x⃗)

y

aa(⃗y, y⃗) =
(⃗x, y⃗)

∥⃗y∥2
(⃗y, x⃗)

∥⃗y∥2 (⃗y, y⃗) =
(⃗x, y⃗)

∥⃗y∥2 (⃗y, x⃗)

se cancelan el segundo y el cuarto término de la desigualdad y queda

0≤ (⃗x, x⃗)−a(⃗y, x⃗)

0≤ (⃗x, x⃗)−a(⃗x, y⃗)

0≤ (⃗x, x⃗)− (⃗x, y⃗)

∥⃗y∥2 (⃗x, y⃗)

Entonces,

0≤ ∥⃗x∥2− |(⃗x, y⃗)|
2

∥⃗y∥2

que equivale a

0≤ ∥⃗x∥
2 ∥⃗y∥2−|(⃗x, y⃗)|2

∥⃗y∥2

En el numerador se tiene la desigualdad que se quería demostrar.

□

i Se acredita a Cauchy la desigualdad para vectores y a Schwarz para los productos escalares
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con integrales. Sin embargo, fue Bunyakovsky quien demostró y publicó la desigualdad de

Schwarz en una monografía, 25 años antes que Schwarz.

4.4 Distancia entre vectores

Definición 4.4.1 Sea V un espacio vectorial sobre R o C con producto interno. Se define la

distancia d, d : V ×V → R como:

d(⃗x, y⃗) = ∥⃗x− y⃗∥ .

Usando las propiedades de la norma, se puede verificar que d satisface:

1. d(⃗x, y⃗)≥ 0 para todo x⃗, y⃗ ∈ E

2. d(⃗x, y⃗) = 0 sí y sólo sí x⃗ = y⃗

3. d(⃗x, y⃗) = d(⃗y, x⃗) para todo x⃗, y⃗ ∈ E

4. d(⃗x,⃗z)≤ d(⃗x, y⃗)+d(⃗y,⃗z) para todo x⃗, y⃗, z⃗ ∈ E.

Karl Herman Amandus Schwarz (1843 - 1921)

Fue un matemático alemán conocido por su trabajo en análisis complejo. Schwarz inicialmente

estudio química en Berlín pero Kummer y Weierstrass lo persuadieron para que se hiciera matemático.

Entre 1867 y 1869 trabajó en Halle, después en Zürich. Desde 1875 trabajó en el universidad de

Gotinga, tratando los temas de teoría de funciones, geometría diferencial y cálculo de variaciones.

Su memoria en ocasión del 70 aniversario de Weierstrass contiene, entre otros temas importantes, la

desigualdad para integrales que hoy se conoce como desigualdad de Schwarz. [14]
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Figura 4.2: Distancia entre los vectores u⃗ y v⃗

Viktor Yakovlevich Bunyakovsky (1804 - 1889)

Nació en Ucrania. Estudió matemáticas en la Sorbona, en la que se doctoró en 1825 bajo la

tutoría de Augustin Cauchy. En 1826 volvió a San Petersburgo donde ejerció como profesor de la

Escuela de Cadetes de la Academia Naval y del Instituto de Comunicaciones. De 1846 a 1880 fue

profesor en la Universidad de San Petersburgo.

Entre otros campos de las matemáticas, Buniakovski trabajó sobre todo en teoría de

números, análisis matemático y en teoría de la probabilidad. Son relevantes las aportaciones

que llevan su nombre como la conjetura de Buniakovski (nunca demostrada) y la desigualdad

de Cauchy-Buniakovski-Schwarz. Sus aportaciones más originales son en teoría de la probabilidad,

acerca de la cual publicó numerosos artículos sobre el estudio de problemas estadísticos de la

población de Rusia. [17]

■ Ejemplo 4.6 En la Figura 4.2 se muestran los vectores u⃗, v⃗ y u⃗− v⃗,

u⃗− v⃗ =

 7

1

−
 3

2

=

 4

−1


∥⃗u− v⃗∥=

√
44 +(−1)2 =

√
17.
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Puede observarse que la distancia de v⃗ a u⃗ es la misma que la de u⃗− v⃗ a 0⃗, y también que si se

suma el vector u⃗− v⃗ a v⃗ se obtiene el vector u⃗. ■

i

Dados dos vectores x⃗ e y⃗, se dice que d(⃗x, y⃗) es la distancia entre x⃗ e y⃗.

Una distancia es una función que verifica las 4 propiedades anteriores. Puede no provenir

de ninguna norma.

Con la definición que sigue se generaliza la noción de perpendicularidad entre vectores de un

espacio vectorial.

Definición 4.4.2 Sea V un espacio vectorial sobre R o C con producto interno. Dos vectores x⃗, y⃗

se dicen ortogonales (o perpendiculares), si

(⃗x, y⃗) = 0 (4.5)

i Por las propiedades vistas en las observaciones i en la Sección 4.1, el vector nulo, es ortogonal

a todo vector de V .

Teorema 4.4.1 Teorema de Pitágoras

Dos vectores x⃗ e y⃗ son ortogonales, sii

∥⃗x+ y⃗∥2 = ∥⃗x∥2 + ∥⃗y∥2

La demostración se deja al lector.

Definición 4.4.3 Sea V un espacio vectorial sobre R o C de dimensión finita con producto

interno. Se dice que {⃗v1, v⃗2, · · · , v⃗r} ⊂V es un conjunto ortogonal si (⃗vi, v⃗ j) = 0 para todo i ̸= j.

■ Ejemplo 4.7 El conjunto S= {u⃗1, u⃗2, u⃗3}, donde u⃗1 =(3,1,1)T , u⃗2 =(−1,2,1)T y u⃗3 =(−1/2,−2,7/2)T ,

es un conjunto ortogonal, ya que al considerar los tres pares posibles de vectores,

{u⃗1, u⃗2}, {u⃗1, u⃗3}, y {u⃗2, u⃗3}, se tiene
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Figura 4.3: {u⃗1, u⃗2, u⃗3} es un conjunto ortogonal de R3

u⃗1 · u⃗2 = 3(−1)+1(2)+1(1) = 0

u⃗1 · u⃗3 = 3(−1/2)+1(−2)+1(7/2) = 0

u⃗2 · u⃗3 =−1(−1/2)+2(−2)+1(7/2) = 0

Cada par de vectores distintos es ortogonal, así que S = {u⃗1, u⃗2, u⃗3}, es un conjunto ortogonal

como se muestra en la Figura 4.3. ■

i Un conjunto de r vectores se dice ortonormal si es ortogonal y ∥⃗ui∥= 1 para cada 1≤ i≤ r.

Proposición 4.4.2 Sea V un espacio vectorial sobre R o C de dimensión finita con producto

interno y sea {⃗v1, v⃗2, · · · , v⃗r} ⊂V un conjunto ortogonal de V con v⃗i ̸= 0 para 1≤ i≤ r. Entonces

{⃗v1, v⃗2, · · · , v⃗r} es un conjunto de vectores linealmente independiente.

Demostración:

Supongamos que ∑
r
i=1 αi⃗vi = 0⃗. Entonces, para cada j, 1≤ j ≤ r,
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0 = (⃗0, v⃗ j) = (
r

∑
i=1

αi⃗vi, v⃗ j) =
r

∑
i=1

αi(⃗vi, v⃗ j) = α j
∥∥⃗v j
∥∥2

,

y como v⃗ j ̸= 0⃗, se tiene que α j = 0 para 1≤ j ≤ r y entonces, {⃗v1, v⃗2, · · · , v⃗r} es un conjunto de

vectores linealmente independiente.

□

En el teorema siguiente se muestra por qué una base ortogonal es más conveniente que otras

bases ya que las coordenadas de un vector en esa base pueden calcularse muy fácilmente.

Proposición 4.4.3 Sea V un espacio vectorial sobre R o C de dimensión finita con producto

interno y sea {⃗v1, v⃗2, · · · , v⃗r} ⊂ V es un conjunto ortogonal de V con v⃗i ̸= 0 para 1 ≤ i ≤ r. Sea

v⃗ ∈ ⟨⃗v1, v⃗2, · · · , v⃗r⟩. Entonces

v⃗ =
r

∑
j=1

(⃗v, v⃗ j)∥∥⃗v j
∥∥2 v⃗ j (4.6)

Demostración:

Si v⃗ = ∑
r
i=1 αi⃗vi, para cada j, 1≤ j ≤ r, se tiene que

(⃗v, v⃗ j) = (
r

∑
i=1

αi⃗vi, v⃗ j) =
r

∑
i=1

αi(⃗vi, v⃗ j) = α j (⃗v j, v⃗ j) = α j
∥∥⃗v j
∥∥2

,

y como v⃗ j ̸= 0⃗, se tiene entonces que

α j =
(⃗v, v⃗ j)∥∥⃗v j
∥∥2

□

■ Ejemplo 4.8 El conjunto {u⃗1, u⃗2, u⃗3} del Ejemplo 4.7 es una base ortogonal para R3. Si se desea

expresar el vector y⃗ = (6,1,−8)T como una combinación lineal de los vectores en S, de acuerdo a la

Ec.(4.6) se tiene que,

y⃗ =
3

∑
j=1

(⃗y, u⃗ j)∥∥⃗u j
∥∥2 u⃗ j

Para hallar las coordenadas de y⃗ en la base ortogonal, se calculan los productos escalares
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y⃗.u⃗1 = 11, y⃗.u⃗2 =−12, y⃗.u⃗3 =−33

y u⃗1.u⃗1 = 11, u⃗2.u⃗2 = 6, u⃗3.u⃗3 = 33/2

(⃗y, u⃗1)

∥⃗u1∥2 u⃗1 =
11
11

(3,1,1) = (3,1,1)

(⃗y, u⃗2)

∥⃗u2∥2 u⃗2 =
−12

6
(−1,2,1) = 2(−1,2,1)

(⃗y, u⃗3)

∥⃗u3∥2 u⃗3 =
−33
33/2

(−1/2,−2,7/2) = 2(−1/2,−2,7/2)

Y se obtiene,

y⃗ = 1⃗u1− 2⃗u2− 2⃗u3

que puede verificarse fácilmente,

y⃗ = (6,1,−8) = (3,1,1)−2(−1,2,1)−2(−1/2,−2,7/2). ■

i
Como se vio en el Ejemplo 4.8, es muy fácil calcular las coordenadas de un vector y⃗ en

una base ortogonal. En otro caso, se debe que resolver un sistema de ecuaciones lineales

para hallarlas.

Si el conjunto además, es ortonormal, se tiene

v⃗ =
r

∑
j=1

(⃗v, v⃗ j )⃗v j

La proposición que sigue asegura que en todo espacio vectorial de dimensión finita con producto

interno tiene bases ortonormales. Más aún, en la demostración se da un procedimiento recursivo

conocido como Gram-Schmidt que permite obtener una base ortonormal del espacio vectorial a

partir de una base cualquiera del mismo.
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Proposición 4.4.4 Método de ortonormalización de Gram-Schmidt

Sea V un espacio vectorial sobre R o C de dimensión finita con producto interno y sea

{⃗v1, v⃗2, · · · , v⃗n} una base de V . Existe una base ortonormal B = {w⃗1, w⃗2, · · · , w⃗n} de V tal que

⟨⃗v1, v⃗2, · · · , v⃗k⟩= ⟨w⃗1, w⃗2, · · · , w⃗k⟩

para todo 1≤ k ≤ n

Demostración:

Se construyen los vectores {⃗z1 ,⃗z2, · · · ,⃗zn} de una base ortogonal, recursivamente

1. Se toma z⃗1 = v⃗1

2. Se busca z⃗2 ∈V tal que (⃗z2 ,⃗z1) = 0 y tal que ⟨⃗z1 ,⃗z2⟩= ⟨⃗v1, v⃗2⟩

La segunda condición vale sí y sólo sí z⃗2 = a⃗v1 + b⃗v2 con b ̸= 0. Es posible considerar b = 1

y buscar a para que se cumpla la primera condición:

0 = (⃗z2 ,⃗z1) = (a⃗v1 + b⃗v2 ,⃗z1) = a(⃗v1, v⃗1)+ (⃗v2, v⃗1),

lo que implica

a =
−(⃗v2, v⃗1)

∥⃗v1∥2 .

Luego, el vector,

z⃗2 = v⃗2−
(⃗v2, v⃗1)

∥⃗v1∥2 v⃗1 = v⃗2−
(⃗v2, v⃗1)

∥⃗v1∥2 z⃗1

satisface las condiciones.

Supongamos construídos z⃗1 ,⃗z2, · · · ,⃗zr ∈V tales que

1. (⃗zi ,⃗z j) = 0 cuando i ̸= j

2. ⟨⃗z1 ,⃗z2, · · · ,⃗zr⟩= ⟨⃗v1, v⃗2, · · · , v⃗r⟩ con 1≤ k ≤ r
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consideramos el vector

z⃗r+1 = v⃗r+1−
r

∑
i=1

(⃗vr+1 ,⃗zi)

∥⃗zi∥2 z⃗i

Se tiene que

⟨⃗z1 ,⃗z2, · · · ,⃗zr ,⃗zr+1⟩= ⟨⃗v1, v⃗2, · · · , v⃗r, v⃗r+1⟩ con 1≤ k ≤ r

para cada j ≤ r, reemplazando z⃗r+1 y teniendo en cuenta 1.,

(⃗zr+1 ,⃗z j) = (⃗vr+1−
r

∑
i=1

(⃗vr+1 ,⃗zi)

∥⃗zi∥2 z⃗i ,⃗z j)

(⃗zr+1 ,⃗z j) = (⃗vr+1, ,⃗z j)−
(⃗vr+1 ,⃗z j)∥∥⃗z j

∥∥2 (⃗z j ,⃗z j) = 0

Luego z⃗r+1 satisface las condiciones requeridas.

De esta manera, al concluir el n-ésimo paso, se obtiene una base ortogonal {⃗z1 ,⃗z2, · · · ,⃗zn} de

V que además satisface

⟨⃗v1, v⃗2, · · · , v⃗k⟩= ⟨⃗z1 ,⃗z2, · · · ,⃗zk⟩

para todo 1≤ k ≤ n.

Finalmente, para cada 1 ≤ i ≤ n consideramos el vector w⃗i =
z⃗i)
∥⃗zi∥ . Luego, el conjunto B =

{w⃗1, w⃗2, · · · , w⃗n} resulta una base de V que cumple lo pedido.

□

Corolario Sea V un espacio vectorial sobre R o C de dimensión finita con producto interno y

sea S un subespacio de V , S ̸= 0⃗. Entonces existe una base ortonormal de V que contiene una base

ortonormal de S. Se demuestra tomando una base de S, completando a una base de V y aplicando a

esta base el procedimiento de Gram-Schmidt. ■

■ Ejemplo 4.9 Aplicación del Método de Gram-Schmidt

Dada la base B = {(1,0, i),(1,1,2+ i),(0,0,1)} de C3 se desea hallar una base ortonormal con

G-S.
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v⃗1 = (1,0, i), v⃗2 = (1,1,2+ i) y v⃗3 = (0,0,1)

z⃗1 = v⃗1

z⃗2 = v⃗2−
(⃗v2 ,⃗z1)

∥⃗z1∥2 z⃗1

z⃗2 = (1,1,2+ i)− ((1,1,2+ i),(1,0, i))

∥(1,0, i)∥2 (1,0, i)

z⃗2 = (1,1,2+ i)− (1− i)(1,0, i) = (i,1,1)

y luego,

z⃗3 = v⃗3−
(⃗v3 ,⃗z1)

∥⃗z1∥2 z⃗1−
(⃗v3 ,⃗z2)

∥⃗z2∥2 z⃗2

z⃗3 = (i/6,−1/3,1/6)

{⃗z1 ,⃗z2 ,⃗z3} resulta una base de ortogonal de C3

Diviendo por su norma queda una base ortonormal {w⃗1, w⃗2, w⃗3}

donde w⃗1 = (1/
√

2,0, i/
√

2)

w⃗2 = (i/
√

3,1/
√

3,1/
√

3)

w⃗3 = (
√

6i/6,−
√

6/3,
√

6/6)

■

La existencia de bases ortogonales para subespacios de dimensión finita de un espacio con

producto interior puede establecerse por medio del proceso Gram-Schmidt, de igual forma que en Rn.

Al aplicar este proceso, es posible plantear ciertas bases ortogonales que surgen con frecuencia en las

aplicaciones y construir la proyección ortogonal de un vector sobre un subespacio S. La proyección

no depende de la selección de la base ortogonal y tiene muy buenas propiedades que se describirán

más adelante. En el teorema que sigue se ve cómo es posible escribir la matriz de una transformación

lineal usando producto interno para escribir las coordenadas de la imagen de cada vector de la base

ortogonal.
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Teorema 4.4.5 Si T es una transformación lineal sobre V donde V es un espacio vectorial con

producto interno y de dimensión finita, entonces

(T )B = (T (u⃗ j), u⃗i)i j

siendo B = {u⃗1, u⃗2, · · · u⃗n} cualquier base ortonormal de V .

Demostración:

T (⃗u1) = k1⃗u1 + k2⃗u2 + · · ·+ kn⃗un.

En la primera columna de la matriz deben ir las coordenadas de T (⃗u1), o sea k1, · · ·kn.

y resulta que las coordenadas son

(T (⃗u1), u⃗i) = (k1⃗u1 + k2⃗u2 · · ·+ kn⃗un, u⃗i)

= k1(⃗u1, u⃗i)+ k2(⃗u1, u⃗i)+ · · ·kn(⃗u1, u⃗i) = ki

□

4.4.1 Complemento Ortogonal

Definición 4.4.4 Sea V un espacio vectorial sobre R o C con producto interno y sea S un

subespacio de V . Se define el complemento ortogonal de S como

S⊥ = {⃗v ∈V (⃗v, s⃗) = 0 ∀⃗s ∈ S}

i S⊥ es un subespacio de V .

■ Ejemplo 4.10 Para el subespacio de R2 generado por el vector (1,1), su complemento ortogonal

es ⟨(1,1)⟩⊥ =
{
(x,y) ∈ R2,((x,y),(1,1)) = 0

}
=
{
(x,y) ∈ R2, x+ y = 0

}
= ⟨(1,−1)⟩. ■

■ Ejemplo 4.11 Sea W un plano que pasa por el origen en R3, y sea L la recta que pasa por el origen

y es perpendicular a W . Si u⃗1 y u⃗2 son diferentes de 0⃗, u⃗1 está sobre L, y u⃗2 está en W , u⃗1 · u⃗2 = 0,

como se muestra en la Figura 4.4. Así que cada vector sobre L es ortogonal a cada vector w⃗ en W .

De hecho, L consiste en todos los vectores que son ortogonales a los w⃗ en W , y W consiste en todos

los vectores ortogonales a los vectores en L. Es decir, L =W⊥ y W = L⊥. ■
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Figura 4.4: Complemento ortogonal

■ Ejemplo 4.12 En C3 hallar el complemento ortogonal de ⟨(1, i,1+ i)⟩.

⟨(1, i,1+ i)⟩t =
{
(x1,x2,x3) ∈ C3,(x1,x2,x3) · (α,αi,α(1+ i)) = 0 ∀α ∈ C

}
=

{
(x1,x2,x3) ∈ C3,x1α + x2αi+ x3α(1+ i) = 0 ∀α ∈ C

}
De donde

x1α− x2αi+ x3α(1− i) = 0

o

α(x1− x2i+ x3(1− i)) = 0.

Se tiene, entonces, x1 = x2i− x3(1− i) y resulta

⟨(1, i,1+ i)⟩t = {(x2i− x3(1− i),x2,x3) = x2(i,1,0)+ x3(i−1,0,1)}

■

Teorema 4.4.6 Sea A una matriz de m× n. El complemento ortogonal del espacio fila de A,

FilA, (subespacio de Rn que generan los vectores filas de A) es el espacio nulo de A, Nul(A) y

el complemento ortogonal del espacio columna de A, ColA, (subespacio de Rm que generan los

vectores columnas de A) es el espacio nulo de la matriz AT . Es decir,
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(FilA)⊥ = Nul(A) y (ColA)⊥ = Nul(AT )

■ Ejemplo 4.13 Dada la matriz

A =

 1 0 2

1 1 4

 , (4.7)

■

se describen los espacios FilA, Nul(A) y ColA:

Nul(A) son los vectores de R3 soluciones del sistema homogéneo. Esos vectores son perpendiculares

a las filas de la matriz A, y pertenecen entonces a subespacio (FilA)⊥.

Si ahora se resuelve el sistema homogéneo con la matriz AT , da el vector nulo de R2. El

subespacio que generan las columnas de A, ColA es todo R2, pues hay en las columnas 2 vectores

linealmente independientes. De ahí que el subespacio ortogonal, (ColA)⊥ = Nul(AT ) = 0⃗.

Proposición 4.4.7 Sea V un espacio vectorial de dimensión finita con producto interno y sea

S⊆V un subespacio. Entonces

1. S∩S⊥ = 0⃗

2. dim(S)+dim(S⊥) = dim(V )

En consecuencia, S⊕S⊥.

Demostración:

Sea v⃗ ∈ S∩S⊥. Como v⃗ ∈ S⊥, (⃗v, s⃗) = 0, ∀⃗s ∈ S. En particular para s⃗ = v⃗, entonces (⃗v, v⃗) =

∥⃗v∥2 = 0, de donde v⃗ = 0⃗.

Sea {⃗s1, s⃗2, · · · , s⃗r} una base de S. Existen v⃗r+1, · · · , v⃗n tales que

B = {⃗s1, s⃗2, · · · , s⃗r, v⃗r+1, · · · , v⃗n} es una base de V . Aplicando Gram-Schmidt se obtiene una

base ortonormal de V , B′ = {w⃗1, w⃗2, · · · , w⃗r, w⃗r+1, · · · w⃗n} tal que

⟨w⃗1, w⃗2, · · · , w⃗r⟩= ⟨⃗s1, s⃗2, · · · , s⃗r⟩= S.
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Sea j > r. Veamos que w⃗ j ∈ S⊥. Dado s⃗ ∈ S, existen escalares α1, · · · ,αr, tales que s⃗ =

∑
r
i=1 αiw⃗i, entonces

(w⃗ j, s⃗) = (w⃗ j,
r

∑
i=1

αiw⃗i) =
r

∑
i=1

α i(w⃗ j, w⃗i) = 0.

como la base es ortonormal y j > r, (w⃗ j, w⃗i) = 0 para 1≤ i≤ r. De donde, w⃗ j ∈ S⊥, y se

tiene que,

{w⃗r+1, · · · w⃗n} ∈ S⊥,

y, por lo tanto,

⟨w⃗r+1, · · · w⃗n⟩ ⊆ S⊥,

por ser S⊥ un subespacio.

dim(S⊥)≥ dim(⟨w⃗r+1, · · · w⃗n⟩) = n− r = n−dim(S). Entonces, dim(S⊥)+dim(S)≥ n.

Por otro lado como S∩S⊥ = {⃗0}

dim(S⊥)+dim(S) = dim(S⊥+S)≤ dim(V ) = n.

Entonces dim(S⊥)+dim(S) = dim(V )

□

i Del teorema sale cómo generar el subespacio S⊥, a partir de la base ortonormal de V .

S⊥ = ⟨w⃗r+1, · · · w⃗n⟩

Proposición 4.4.8 Sea V un espacio vectorial de dimensión finita con producto interno y sea S

un subespacio de V . Entonces (S⊥)⊥ = S
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Figura 4.5: El vector ⃗̂y es la proyección del vector y⃗ sobre la recta L

Demostración:

Por definición, (S⊥)⊥ = {⃗v ∈V/ (⃗v, w⃗) = 0 ∀ w⃗ ∈ S⊥}. Veamos que S⊆ (S⊥)⊥. Sea s⃗ ∈ S.

Para cada w⃗ ∈ S⊥ se tiene que (⃗s, w⃗) = (w⃗, s⃗) = 0, de donde se deduce que s⃗ ∈ (S⊥)⊥. □

4.5 Proyección ortogonal

Dado un subespacio S de un espacio vectorial V de dimensión finita con producto interno . Como

S⊕S⊥ =V se puede considerar el proyector PS : V →V cuya imagen es S y cuyo núcleo es S⊥.

Definición 4.5.1 Sea V un espacio vectorial de dimensión finita con producto interno y sea

S⊆V un subespacio. Se define la proyección ortogonal sobre S como la transformación lineal

PS : V →V que satisface

1. PS(⃗s) = s⃗ ∀ s⃗ ∈ S

2. PS(⃗t) = 0⃗ ∀ t⃗ ∈ S⊥

■ Ejemplo 4.14 En R2 se desea hallar la proyección ortogonal de un vector y⃗, ⃗̂y sobre el subespacio
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S generado por otro vector u⃗, o sea sobre la recta L generada por u⃗ que pasa por el origen. Esto se

muestra en la Figura 4.5.

PS(⃗y) = ⃗̂y = c⃗u,

y se debe cumplir que u⃗ sea ortogonal al vector y⃗−⃗̂y, es decir, (⃗y− c⃗u) · u⃗ = 0, entonces,

y⃗ · u⃗− c⃗u · u⃗ = 0

de donde

c =
y⃗ · u⃗
u⃗ · u⃗

y entonces, la proyección sobre L es ,

⃗̂y =
y⃗ · u⃗
u⃗ · u⃗

u⃗ (4.8)

En el caso de la Figura 4.5, se tiene que y⃗ =

 7

6

 y u⃗ =

 4

2

 .

Usando Ec.(4.8), como y⃗ · u⃗ = 40 y u⃗ · u⃗ = 20, se obtiene,

⃗̂y =
y⃗ · u⃗
u⃗ · u⃗

u⃗ =
40
20

u⃗ = 2⃗u =

 8

4



y la componente ortogonal a u⃗ es y⃗−⃗̂y =

 −1

2

 .

La descomposición de y⃗, como suma de proyecciones sobre S y sobre S⊥, es 7

6

=

 8

4

+

 −1

2


■

i
Si B = {⃗v1, v⃗2, · · · , v⃗r, v⃗r+1, · · · v⃗n} una base ortonormal de V tal que {⃗v1, v⃗2, · · · , v⃗r} es

una base de S y {⃗vr+1, · · · v⃗n} una base de S⊥, la proyección ortogonal sobre S es la única

transformación lineal PS : V →V que satisface



4.5 Proyección ortogonal 183

1. PS(⃗vi) = v⃗i ∀ 1≤ i≤ r

2. PS(⃗vi) = 0⃗ ∀ r+1≤ i≤ n

En consecuencia, para v⃗ ∈V , recordando que v⃗ = ∑
n
j=1(⃗v, v⃗ j )⃗v j resulta,

PS(⃗v) = PS(
n

∑
j=1

(⃗v, v⃗ j )⃗v j) =
n

∑
j=1

(⃗v, v⃗ j)PS(⃗v j) =
r

∑
j=1

(⃗v, v⃗ j )⃗v j, (4.9)

que es una expresión para PS(⃗v) en términos de los vectores de la base ortonormal de S.

Sea V un espacio vectorial de dimensión finita con producto interno y sea S ⊆ V un

subespacio. Entonces PS +PS⊥ = idV ,

donde, PS(⃗v) = ∑
r
j=1(⃗v, v⃗ j )⃗v j y PS⊥ (⃗v) = ∑

n
j=r+1(⃗v, v⃗ j )⃗v j.

■ Ejemplo 4.15 Si V = R4 y W es el subespacio

W =
{⃗

x ∈ R4, x1−2x2 + x3 = x1−3x2 + x4 = 0
}
,

se desea hallar la proyección ortogonal del vector v⃗ = (4,8,−4,12) sobre el subespacio W .

Para usar la expresión de la Ec.(4.9) debemos hallar una base ortonormal de W . En primer lugar

calculamos una base de W resolviendo el sistema por eliminación de Gauss:

 1 −2 1 0

1 −3 0 1

→
 1 −2 1 0

0 −1 −1 1

 (4.10)

A partir de la matriz escalonada, al resolver el sistema homogéneo, quedan como variables

independientes x3 y x4 y una base de W es {(−3,−1,1,0),(2,1,0,1)}. Una base ortogonal de W a

partir de aplicar Gram-Schmidt es,{
(−3,−1,1,0),(

1
11

,
4
11

,
7
11

,1)
}
.

Si llamamos w⃗1 = (−3,−1,1,0) y w⃗2 = ( 1
11 ,

4
11 ,

7
11 ,1), los vectores de la base ortonormal v⃗i se

obtienen dividiéndolos por su norma, v⃗i =
w⃗i
∥w⃗i∥ .

Entonces, como PW (⃗v) = ∑
2
j=1(⃗v, v⃗ j )⃗v j, se calculan los productos escalares (⃗v, v⃗ j), y se obtiene

que
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PW ((4,8,−4,12)) = (
124
17

,
88
17

,
52
17

,
140
17

)

es el vector del subespacio W más cercano a v⃗ = (4,8,−4,12).

■

Teorema 4.5.1 Teorema de la proyección ortogonal.

Sea S un subespacio de un espacio vectorial con producto interno, V . Entonces, para cada

v⃗ ∈V , el vector de S a menor distancia de v⃗ es PS(⃗v).

Demostración:

Si B = {⃗v1, v⃗2, · · · , v⃗r, v⃗r+1, · · · v⃗n} una base ortonormal de V tal que {⃗v1, v⃗2, · · · , v⃗r} es una

base de S.

Sea v⃗ ∈ V . Se tiene que v⃗ = ∑
n
j=1(⃗v, v⃗ j )⃗v j y PS(⃗v) = ∑

r
j=1(⃗v, v⃗ j )⃗v j. Por otro lado, si s⃗ ∈ S,

s⃗ = ∑
r
j=1(⃗s, v⃗ j )⃗v j.

Entonces

v⃗− s⃗ =
n

∑
j=1

(⃗v, v⃗ j )⃗v j−
r

∑
j=1

(⃗s, v⃗ j )⃗v j =
r

∑
j=1

(⃗v− s⃗, v⃗ j )⃗v j +
n

∑
j=r+1

(⃗v, v⃗ j )⃗v j

de donde,

∥⃗v− s⃗∥2 =
r

∑
j=1

∣∣(⃗v− s⃗, v⃗ j)
∣∣2 + n

∑
j=r+1

∣∣(⃗v, v⃗ j)
∣∣2 ≥ n

∑
j=r+1

∣∣(⃗v, v⃗ j)
∣∣2 = ∥⃗v−PS(⃗v)∥2

(el primer término de la desigualdad se anula cuando s⃗ = PS(⃗v)) □

i

El teorema anterior es conocido también como el teorema de la mejor aproximación.

En la Figura 4.5, ⃗̂y es el punto de L más cercano a y⃗, en el sentido que∥∥∥⃗y−⃗̂y
∥∥∥≤ ∥⃗y− v⃗∥ ,

para todo v⃗ en L distinto de ⃗̂y.
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4.5.1 Problema de cuadrados mínimos

El problema de hallar la proyección de un vector b sobre un subespacio surge cuando se tiene

el problema Ax = b, con A una matriz de m× n, donde m es la cantidad de observaciones y es

mucho mayor que la cantidad de incógnitas n, de forma tal que se espera que el sistema Ax = b sea

incompatible. En otras palabras, el vector b no es combinación lineal de los vectores columna de A

(no está en el espacio columna de A). Se trata entonces de hallar x̂ que minimice el error, y esto se

realizará en el sentido de los cuadrados mínimos. El error es E = ∥Ax−b∥, y es la distancia de b al

vector Ax en el espacio columna. El vector p del espacio columna más próximo a b que cualquier

otro es la proyección de b sobre el espacio columna. El error Vece = b−Ax̂ es perpendicular al

espacio columna. Recordando que el espacio nulo de la matriz A es el conjunto de vectores de Rn

que son perpendiculares a todas las filas de A, el error e pertenecerá al espacio nulo de la matriz AT

(es perpendicular al espacio columna). Es decir que el error e⃗ es perpendicular a cada columna de A

(ver Figura 4.6). Entonces se tiene que,

AT (b−Ax̂) = 0 o AT Ax̂ = AT b (4.11)

Las ecuaciones (4.11) se conocen como ecuaciones normales. Pueden obtenerse a partir de

buscar x que minimiza E2, tomando derivadas parciales de E2 = (Ax−b)T (Ax−b). Al igualar a

cero, se tiene 2AT Ax−2AT b = 0.

Si AT A tiene inversa (esto ocurre cuando las columnas de A son linealmente independientes),

entonces

x̂ = (AT A)−1AT b (4.12)

y la proyección p de b sobre el espacio columna, es el vector Ax̂

p = Ax̂ = A(AT A)−1AT b (4.13)

Un ejemplo de ajuste de datos por cuadrados mínimos

Supongamos realizamos un experimento en el que se espera que la salida b sea una función

lineal de la entrada t. Se buscará la recta b = α +β t. Por ejemplo, si a diferentes tiempos medimos

la distancia a un satélite en su recorrido a Marte. En este caso t es el tiempo y b la distancia y el

satélite se moverá con una velocidad casi constante (b = b0 + vt). ¿Es posible calcular α y β ? Si
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Figura 4.6: Proyección sobre el espacio columna

no hay errores experimentales dos mediciones determinan la recta b = α +β t. Pero si hay error se

deberá promediar los experimentos y hallar la mejor recta. Al realizar m mediciones,

α +β t1 = b1

α +β t2 = b2

· · ·

α +β tm = bm

Se tendrá un sistema sobredeterminado, con m ecuaciones y solo 2 incógnitas. Si las mediciones

tienen error, el sistema no tiene solución. En este caso la matriz A tiene dos columnas y x = (α,β )T :



1 t1

1 t2

1 t3

· · ·
1 tm


 α

β

=



b1

b2

b3

· · ·
bm


(4.14)

o Ax = b. La mejor recta se tendrá con x̂ = (α̂, β̂ ) que minimizan

E2 = ∥Ax−b∥2 = (b1−α−β t1)2 +(b2−α−β t2)2 + · · ·(bm−α−β tm)2
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.

El vector p = Ax̂ es el más cercano a b. De todas las rectas b = α +β t estamos eligiendo la

que mejor ajusta los datos. Los errores son las distancias verticales b−α−β t (no perpendiculares).

Estas distancias verticales se elevan al cuadrado, se suman y se minimizan.

■ Ejemplo 4.16 ■

Si se considera como ejemplo, que se tienen tres mediciones: b1 = 1 en t1 =−1, b2 = 1 en t2 = 1

y b3 = 3 en t3 = 2 se tiene el sistema Ax = b


1 −1

1 1

1 2


 α

β

=


1

1

3

 (4.15)

El sistema es incompatible porque los puntos no están sobre una misma recta. Se resuelve

entonces, por cuadrados mínimos, AT Ax̂ = AT b

 3 2

2 6

 α̂

β̂

=

 5

6

 (4.16)

La solución es α̂ = 9
7 , β̂ = 4

7 y la mejor recta es 9
7 +

4
7 t.

Como se muestra en la Figura 4.7, el vector b no es combinación lineal de las columnas (1,1,1)T

y (−1,1,2)T . Con mínimos cuadrados se reemplaza b que no está en la recta por el vector p= Ax̂ que

sí está, al no poder resolver Ax = b, se resuelve Ax̂ = p. El vector p = (5
7 ,

13
7 ,

17
7 ) está en el espacio

columna, es la proyección en ese subespacio. Restando p de b, los errores son e = b−p = (2
7 ,−

6
7 ,

4
7).

Son los errores verticales en la Figura 4.8. Ese vector e, como se muestra en la Figura 4.7, es ortogonal

a las columnas de A (está en el espacio nulo de AT ).

Para el caso de m mediciones b1,b2, · · · ,bm en puntos distintos t1, t2, · · · , tm, la recta α +β t que

minimiza E2, surge de resolver el sistema lineal

AT A

 α̂

β̂

= AT b (4.17)

o
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Figura 4.7: Proyección del vector b en el espacio columna

Figura 4.8: Recta que ajusta por mínimos cuadrados los datos del ejemplo
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 m ∑
m
i=1 ti

∑
m
i=1 ti ∑

m
i=1 t2

i

 α̂

β̂

=

 ∑
m
i=1 bi

∑
m
i=1 tibi

 (4.18)

i Es importante notar que el método de cuadrados mínimos no está limitado a ajustar datos con

una recta. En muchos casos interesan otros ajustes, con polinomios de grado más alto o con

otras funciones como es el caso de ajuste exponencial o el ajuste con senos y cosenos. Pueden

conducir a problemas lineales o a problemas no lineales de cuadrados mínimos, siendo estos

últimos más complejos de abordar.

i El método por mínimos cuadrados fue inventado por Karl Friedrich Gauss, y lo usó para

resolver un problema de astronomía. En 1801 el asteroide Ceres se había observado mucho

más brillante durante más de un mes antes de desaparecer cuando se acercó al Sol. Con base

en las observaciones disponibles, los astrónomos deseaban aproximar la órbita de Ceres para

observarlo de nuevo cuando se alejara del sol. Gauss empleó los mínimos cuadrados e impactó

a la comunidad científica al predecir la hora y el lugar correctos (unos 10 meses después) para

localizar el asteroide.

Karl Friedrich Gauss (1777 - 1855)

Fue un matemático, astrónomo y físico alemán que contribuyó significativamente en muchos

ámbitos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la estadística,

el álgebra, la geodesia, el magnetismo y la óptica.

Gauss pronto fue reconocido como un niño prodigio, pese a provenir de una familia campesina

de padres con poca cultura: su madre sabía leer, aunque no escribir; su padre sí, pero en cuanto

a las matemáticas, no pasaba de la aritmética más elemental. De Carl Friedrich Gauss existen

muchas anécdotas acerca de su asombrosa precocidad. Completó su magnum opus, Disquisitiones

arithmeticae, a los veintiún años (1798), aunque la obra no se publicó hasta 1801. Constituye un

trabajo fundamental como consolidación de la teoría de los números y ha moldeado esta área hasta

los días presentes. [8]
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4.6 Endomorfismos de espacios vectoriales con producto interno

Vamos a asociar ahora a cada endomorfismo f de un espacio vectorial V de dimensión finita y

con producto interno otra transformación lineal f ∗, f ∗ : V →V .

Definición 4.6.1 Sea V un espacio vectorial con producto interno y sea f una transformación

lineal. Se llama adjunta de f y se anota f ∗ a una transformación lineal f ∗ : V →V tal que

( f (⃗v), w⃗) = (⃗v, f ∗(w⃗)) ∀⃗v, w⃗ ∈V (4.19)

■ Ejemplo 4.17 Sea f : C2→C2 con el producto interno canónico, dada por f (x,y) = ((x+ iy,2x−
(1+ i)y)

Se tiene que

( f (x,y),(z,w)) = ((x+ iy,2x− (1+ i)y),(z,w)) = ((x,y),(z+2w,−iz+(−1+ i)w))

de donde, f ∗ :C2→C2 definida por f ∗(z,w) = (z+2w,−iz+(−1+ i)w) satisface ( f (x,y),(z,w)) =

((x,y), f ∗(z,w)) para todo par de vectores (x,y),(z,w) en C2. ■

El resultado que sigue prueba que en espacios vectoriales con producto interno de dimensión

finita, la transformación lineal adjunta existe y es única.

Proposición 4.6.1 Sea V un espacio vectorial de dimensión finita con producto interno y sea f

una transformación lineal, f : V →V . Entonces existe una única transformación lineal f ∗ : V →V

tal que

( f (⃗v), w⃗) = (⃗v, f ∗(w⃗))

Demostración:

Unicidad

Para ver la unicidad supongamos existen transformaciones lineales g∗ : V →V y h∗ : V →V

tales que, para w⃗ fijo y para cada v⃗

( f (⃗v), w⃗) = (⃗v,g(w⃗)) ( f (⃗v), w⃗) = (⃗v,h(w⃗))

entonces
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(⃗v,g(w⃗)) = (⃗v,h(w⃗)) o equivalentemente, (⃗v,g(w⃗)− h(w⃗)) = 0⃗, para todo v⃗ ∈ V ; tomando

v⃗ = g(w⃗)−h(w⃗), se tiene (g(w⃗)−h(w⃗),g(w⃗)−h(w⃗)) = 0 y por la propiedad del producto escalar

g(w⃗)−h(w⃗) = 0, entonces g(w⃗) = h(w⃗), para cada w⃗ ∈V , con lo cual g y h coinciden.

Existencia

Sea {⃗v1, v⃗2, · · · v⃗n} una base ortonormal de V . Si existe f ∗ : V → V con las condiciones del

enunciado, debe cumplirse, para cada w⃗ ∈V

f ∗(w⃗) =
n

∑
i=1

( f ∗(w⃗), v⃗i)⃗vi

=
n

∑
i=1

(⃗vi, f ∗(w))⃗vi

=
n

∑
i=1

( f (⃗vi), w⃗)⃗vi =
n

∑
i=1

(w⃗, f (⃗vi))⃗vi

Se define entonces, f ∗ : V →V

f ∗(w⃗) =
n

∑
i=1

(w⃗, f (⃗vi))⃗vi (4.20)

f ∗ es una transformación lineal

Usando la definición Ec.(4.20 ),

f ∗(w⃗1 + w⃗2) =
n

∑
i=1

(w⃗1 + w⃗2, f (⃗vi))⃗vi

=
n

∑
i=1

(w⃗1, f (⃗vi))+(w⃗2, f (⃗vi))⃗vi

=
n

∑
i=1

(w⃗1, f (⃗vi))⃗vi +
n

∑
i=1

(w⃗2, f (⃗vi))⃗vi

= f ∗(w⃗1)+ f ∗(w⃗2)

Para λ ∈ C (o R) w⃗ ∈V

f ∗(λ w⃗) =
n

∑
i=1

(λ w⃗, f (⃗vi))⃗vi
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= λ

n

∑
i=1

(w⃗, f (⃗vi))⃗vi = λ f ∗(w⃗)

Veamos que para todo v⃗, w⃗ ∈V vale ( f (⃗v), w⃗) = (⃗v, f ∗(w⃗))

Sean v⃗, w⃗ ∈V . Se tiene que v⃗ = ∑
n
i=1(⃗v, v⃗i)⃗vi y entonces, f (⃗v) = ∑

n
i=1(⃗v, v⃗i) f (⃗vi)

( f (⃗v), w⃗) = (
n

∑
i=1

(⃗v, v⃗i) f (⃗vi), w⃗)

=
n

∑
i=1

(⃗v, v⃗i)( f (⃗vi), w⃗)

Por otro lado

(⃗v, f ∗(w⃗)) = (
n

∑
i=1

(⃗v, v⃗i)⃗vi),
n

∑
j=1

(w⃗, f (⃗v j))⃗v j)

n

∑
i=1

(⃗v, v⃗i)(⃗vi,
n

∑
j=1

(w⃗, f (⃗v j))⃗v j)

n

∑
i=1

(⃗v, v⃗i)
n

∑
j=1

(w⃗, f (⃗v j))(⃗vi, v⃗ j)

n

∑
i=1

(⃗v, v⃗i)(w⃗, f (⃗vi)) =
n

∑
i=1

(⃗v, v⃗i)( f (⃗vi), w⃗)

Concluimos entonces que se cumple ( f (⃗v), w⃗) = (⃗v, f ∗(w⃗))

□

A partir de la matriz de una transformación lineal f : V →V en una base ortonormal de V , puede

obtenerse fácilmente la matriz de su adjunta en la misma base.

Proposición 4.6.2 Sea V un espacio vectorial de dimensión finita con producto interno y sea f

una transformación lineal, f : V →V . Sea B una base ortonormal de V . Entonces, la matriz que

representa la transformación adjunta es la conjugada y transpuesta de la matriz de la transformación

f , es decir,

( f ∗)B = (( f )B)
∗ (4.21)
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Demostración:

Supongamos que B = {⃗v1, v⃗2, · · · v⃗n} es una base ortonormal de V . Entonces para cada 1 ≤
i, j ≤ n,

(( f ∗)B)i j = ( f ∗(⃗v j), v⃗i)

como en cada columna j van las coordenadas de f ∗(⃗v j) en la base B,

= (⃗vi, f ∗(⃗v j)) = ( f (⃗vi), v⃗ j) = (( f )B)) ji = (( f )B)
∗
i j

□

■ Ejemplo 4.18 En el caso de la transformación lineal adjunta del Ejemplo 4.17, si B es la base

canónica de C2, se tiene, de acuerdo a la proposición anterior, que la matriz que la representa es:

( f )B =

 1 i

2 −1− i

 y ( f ∗)B =

 1 2

−i −1+ i


( f ∗)B es la matriz transpuesta y conjugada de ( f )B.

■

Existe el caso particular de transformaciones lineales f : V →V cuya adjunta f ∗ coincide con f .

Definición 4.6.2 Sea V un espacio vectorial con producto interno y sea f :V→V una transformación

lineal. Se dice que f es autoadjunta si f = f ∗ o sea, tal que

( f (⃗v), w⃗) = (⃗v, f (w⃗)) ∀ v⃗, w⃗ ∈V (4.22)

Definición 4.6.3 Una matriz A∈Rn×n se dice simétrica si Ai j =A ji ∀1≤ i, j≤ n, o equivalentemente,

si A = AT . Una matriz A ∈Cn×n se dice hermitiana si Ai j = A ji ∀1≤ i, j≤ n, o equivalentemente,

si A = A∗.

Si A es la matriz de una transformación lineal f en una base ortonormal, sabemos que A∗ es la

matriz de la transformación adjunta en la misma base. Si f es autoadjunta se tiene A = A∗, por lo

tanto la matriz de una transformación lineal autoadjunta es simétrica (hermítica).
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Si f es autoadjunta, entonces, es una transformación lineal diagonalizable. Más aún, existe una

base ortonormal de V formada por autovectores de f y todos sus autovalores son reales.

Proposición 4.6.3 Sea V un espacio vectorial de dimensión finita con producto interno. Sea f

una transformación lineal autoadjunta. Entonces el polinomio característico de f tiene todas sus

raíces reales.

i Si A ∈ Cn×n es una matriz hermitiana, entonces todas las raíces del polinomio característico de

A son reales.

El que sigue es un resultado importante sobre diagonalización de transformaciones lineales

autoadjuntas.

Proposición 4.6.4 Sea V un espacio vectorial de dimensión finita con producto interno. Sea

f : V →V una transformación lineal autoadjunta. Entonces existe una base ortonormal B de V tal

que la matriz ( f )B es diagonal real.

i

Sea A ∈ Rn×n es una matriz simétrica. Si se considera el producto interno canónico

en Rn, la transformación lineal fA : Rn→ Rn definida por fA(⃗x) = A⃗x es autoadjunta.

Por la Proposición 4.6.4 existe una base ortonormal B de Rn tal que ( fA)B = D, donde

D es una diagonal real. En este caso, si E es la base canónica de Rn, ( fA)E = A, D =

(PB,E)
−1A(PB,E), y (PB,E)

−1 = (PB,E)
t .

Análogamente, si A ∈Cn×n es una matriz hermitiana. Si se considera Cn con el producto

interno canónico, la transformación lineal fA : Cn → Cn, definida por fA(⃗x) = A⃗x es

autoadjunta, y si E es la base canónica de Cn, ( fA)E = A. Por la proposición anterior

existe una base ortonormal B de Cn tal que ( fA)B = D, donde D es una diagonal real.

Entonces (PE,B)
−1A(PE,B), donde, por lo anterior (PE,B)

−1 = (PE,B)
∗.

Esto anterior nos lleva a la siguiente definición

Definición 4.6.4 Una matriz O se dice ortogonal si es invertible y O−1 = Ot . Una matriz

U ∈ Cn×n se dice unitaria si es invertible y U−1 =U∗.
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■ Ejemplo 4.19 Dada la matriz A,

A =

 1 1− i

1+ i 0

 , (4.23)

se desea hallar una matriz unitaria U tal que U∗AU sea diagonal ■

Si en el programa Octave escribimos [U,D] = eig(A) nos devuelve las matrices U y D (con

edición de 4 dígitos):

U =

 0.4082−0.4082i 0.5774−0.5774i

−0.8165 0.5774

 , D =

 −1 0

0 2

 (4.24)

Se verifican U∗U = I y U∗AU = D

Resumiendo

1. Sea A ∈ Rn×n una matriz simétrica. Entonces existe una matriz ortogonal O ∈ Rn×n tal que

OtAO es diagonal real.

2. Sea A ∈ Cn×n una matriz hermitiana. Entonces existe una matriz unitaria C ∈ Cn×n tal que

C∗AC es diagonal real.

i Toda transformación lineal autoadjunta en un espacio euclídeo de dimensión finita tiene sus

autovalores reales

■ Ejemplo 4.20 Se quiere diagonalizar ortogonalmente la matriz

A =

 1 −2

−2 3

 , (4.25)

La ecuación característica de A es det(a−λ I) =

∣∣∣∣∣∣ 1−λ −2

−2 3−λ

∣∣∣∣∣∣= λ 2−4λ −1 = 0.

Tiene dos raíces, λ1 = 2−
√

5 y λ2 = 2+
√

5
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y los vectores propios correspondientes son v⃗1 =

 2

−1+
√

5

 y v⃗2 =

 1−
√

5

2

.

Para obtener vectores ortonormales los dividimos por su longitud, entonces,

u⃗1 =
1√

10−2
√

5

 2

−1+
√

5

 y u⃗2 =
1√

10−2
√

5

 1−
√

5

2



O =
1√

10−2
√

5

 2 1−
√

5

−1+
√

5 2

 , (4.26)

y OT AO =

 2−
√

5 0

0 2+
√

5


■

■ Ejemplo 4.21 Sea

A =

 2 3−3i

3+3i 5

 , (4.27)

una matriz hermitiana ∈ C2×2.

Es posible diagonalizarla con la matriz unitaria

U =
1√
3

 −1+ i 1

1 1+ i

 , (4.28)

y se tiene que U∗AU =

 −1 0

0 8

 es una matriz diagonal real.

■

Transformaciones ortogonales

Veremos ahora endomorfismos de un espacio vectorial con producto interno que preservan el

producto interno y, en particular, las distancias entre vectores.
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Definición 4.6.5 Sea V un espacio Euclídeo. Una transformación lineal f se llama ortogonal si

( f (⃗v), f (w⃗)) = (⃗v, w⃗) ∀⃗v, w⃗ ∈V . Es decir, cuando f conserva el producto escalar.

Proposición 4.6.5 Toda transformación lineal f en un espacio euclídeo que conserve la longitud

de los vectores es una transformación ortogonal.

Demostración:

∥ f (⃗v+ w⃗)∥2 = ( f (⃗v+ w⃗), f (⃗v+ w⃗))

= ∥ f (⃗v)∥2 +2( f (⃗v), f (w⃗))+∥ f (w⃗)∥2

y, por otro lado,

∥⃗v+ w⃗∥2 = ∥⃗v∥2 +2(⃗v, w⃗)+∥w⃗∥2

Como f conserva la longitud de los vectores, ∥ f (⃗v+ w⃗)∥= ∥⃗v+ w⃗∥, ∥ f (⃗v)∥= ∥⃗v∥, ∥ f (w⃗)∥=
∥w⃗∥, entonces, igualando términos en las expresiones anteriores, se tiene que,

( f (⃗v), f (w⃗)) = (⃗v, w⃗),

y se prueba que f es ortogonal.

□

■ Ejemplo 4.22 f = idV es una transformación lineal ortogonal ■

■ Ejemplo 4.23 Una rotación en R2 (con centro en el origen de coordenadas) es una transformación

lineal ortogonal.

Ya vimos en la Sección 2.2, (Ec.(2.2)) que la matriz de una rotación en un ángulo θ en sentido

antihorario, respecto de una base ortonormal es

Rθ =

 cos(θ) −sen(θ)

sen(θ) cos(θ)

 , (4.29)
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Se verifica que ∀⃗v ∈ R2, ∥R⃗v∥2 = ∥⃗v∥2
■

■ Ejemplo 4.24 En R2 cualquier simetría con respecto a un subespacio vectorial unidimensional es

una transformación lineal ortogonal.

En el caso de simetría respecto del eje x, en la base canónica, la matriz es

S =

 1 0

0 −1

 , (4.30)

■

i
En R2 las únicas transformaciones ortogonales son las rotaciones y las simetrías, mientras

que en R3 hay más posibilidades de tener transformaciones lineales ortogonales que en

R2.

Para estudiar todas las posibles transformaciones lineales ortogonales se deben analizar

los autovalores.

Puede demostrarse que toda transformación lineal f que transforma al menos una base

ortonormal en una base ortonormal, es ortogonal.

■ Ejemplo 4.25 En R3 la simetría con respecto a una recta, como se muestra en la Figura 4.9. La

matriz de la transformación en la base {⃗u1, u⃗2, u⃗3} es


1 0 0

0 −1 0

0 0 −1


■

Proposición 4.6.6 Los autovalores reales de una transformación lineal ortogonal son iguales a 1

o a −1.

Demostración:

Si λ es un autovalor real de una transformación ortogonal, con autovector v⃗, se tiene
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Figura 4.9: Simetría con respecto a una recta

(⃗v, v⃗) = ( f (⃗v), f (⃗v)) = (λ v⃗,λ v⃗) = λ
2(⃗v, v⃗)

Por lo tanto λ 2 = 1 y λ =+−1.

□

i

Una transformación lineal que cumple las condiciones anteriores se dice unitaria si V es

un C espacio vectorial y ortogonal si V es un R espacio vectorial.

f es unitaria (ortogonal)←→ ( f )B es unitaria (ortogonal)

Cuando A es simétrica y no demasiado grande, los algoritmos de computadora modernos

que se usan actualmente calculan con gran precisión vectores y valores propios. Esos

algoritmos aplican a A una sucesión de transformaciones de semejanza en las que

intervienen matrices ortogonales. El uso de matrices ortogonales evita que los errores

numéricos se acumulen durante el proceso. Cuando A es simétrica, la sucesión de

matrices ortogonales se combina para formar una matriz ortogonal cuyas columnas son

vectores propios de A. Una matriz no simétrica no puede tener un conjunto completo

de vectores propios ortogonales, por lo que se necesitan técnicas no ortogonales para

calcular los vectores propios.
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Cuando una matriz A tiene n vectores propios ortogonales se llama descomposición

espectral de A a la expresión

A = λ1u⃗t
1u⃗1 +λ2u⃗t

2u⃗2 + · · ·+λnu⃗t
nu⃗n.

La matriz A queda dividida en partes determinadas por el espectro, y cada término es

una matriz de rango 1. Entre las aplicaciones de esta descomposición está la compresión

de imágenes, que se realiza considerando k términos en lugar de n, con k < n.
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Figura 4.10

4.7 Actividades propuestas

Problema de Aplicación 4 De acuerdo con la segunda ley de Kepler, un cometa debería tener una

órbita elíptica, parábolica o hiperbólica (despreciando las atracciones gravitacionales de los planetas).

En convenientes coordenadas polares, la posición (r,ϑ ) de un cometa satisface una ecuación de la

forma:

r = β + e(r.cos(ϑ))

donde β es una constante y e es la excentricidad de la órbita (con 0 ≤ e ≤ 1 para una elipse, e=1

para una parábola, y e≥ 1 para una hipérbola). Suponga que los siguientes datos corresponden a las

observaciones de un cometa recién descubierto.

ϑ 0.88 1.10 1.42 1.77 2.14

r 3.00 2.30 1.65 1.25 1.01

Determine el tipo de órbita mediante un ajuste por cuadrados mínimos. Describa el sistema

de ecuaciones normales (Ecs.(4.11)). Realice un gráfico e indique dónde estará el cometa cuando

ϑ = 4.6 radianes.
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4.7.1 Ejercicios

Ejercicio 4.1

Sea E un espacio Euclídeo, si x⃗, y⃗ y z⃗ son vectores de E, desarrolle la siguiente expresión: (⃗x+ z⃗, x⃗−
z⃗+ y⃗)

Ejercicio 4.2

Calcule la distancia entre los vectores u⃗ = (2, i,1− i) y v⃗ = (−i,0,4i) en C3 con el producto interno

canónico.

Ejercicio 4.3

Pruebe que las siguientes funciones definen productos internos sobre los espacios vectoriales

considerados:

a) (·, ·): C [0,1]×C [0,1]→ R, ( f (x),g(x)) =
∫ 1

0 f (x)g(x)dx.

b) (·, ·): Kn×n×Kn×n→ K, (A,B) = tr(A.B∗), con K = R y K = C (B∗ es la matriz traspuesta

conjugada de B).

Ejercicio 4.4

Determine para qué valores de α ∈ R:

φ((x1,x2),(y1,y2)) = x1y1− x1y2− x2y1 +αx2y2

es un producto interno en R2.

Ejercicio 4.5

Sean u⃗1 = (−2,−1,1), u⃗2 = (0,−1,0) y u⃗3 = (1,−1,0) tres vectores linealmente independientes de

R3. Si definimos el producto escalar en R3 afirmando que {⃗u1, u⃗2, u⃗3} es una base ortonormal. ¿Cuál

sería la expresión analítica de este producto escalar en la base canónica de R3?

Ejercicio 4.6

Demuestre que Q ∈ R2×2 es una matriz de rotación puesto que Q es ortogonal y además su

determinante vale 1. Q =

 cos(φ) −sin(φ)

sin(φ) cos(φ)


Ejercicio 4.7

En P(2)
R [x] se define el producto escalar: φ(p(x),q(x)) =

∫ 1
−1 p(x)q(x)dx

Pruebe que el conjunto
{

1,x, 1
3(3x2−1)

}
es ortogonal.
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Ejercicio 4.8

Dada la matriz simétrica A =

 1 −2

−2 1

 construya una matriz ortogonal T tal que (T−1AT )

sea una matriz diagonal. Verifique también que T−1 = T t y que el determinante de T es igual a 1.

Obtenga asímismo la matriz diagonal (T−1AT ).

Ejercicio 4.9

Halle una base ortogonal de R3 -con el producto interno canónico- que contenga al vector u⃗ =

(1,−1,2).

Ejercicio 4.10

Sea

A =


1 −2 0

−2 2 −2

0 −2 3


a) Halle una base ortonormal de autovectores de A.

b) Halle una matriz P ortogonal tal que PtAP sea diagonal.

Ejercicio 4.11

Sea B= {(1,0,1),(2,0,1),(1,1,0)} una base de R3. Considere el producto interno canónico y utilice

Gram-Schmidt para hallar a partir de B una base B′ que sea ortonormal. Calcule las coordenadas de

v⃗ = (2,−1,3) en la base B′. Utilice sus resultados para encontrar la factorización A = QR. Puede

chequear sus resultados utilizando el siguiente programa Python:

import numpy as np

# Definimos la matriz

A = np.array ([[4, 3, 1],

[2, 1, 3],

[1, 1, 1]])

# Realizamos la descomposición QR

Q, R = np.linalg.qr(A)

# Imprimimos las matrices Q y R

print("Matriz Q:")

print(Q)

print("Matriz R:")
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print(R)

Ejercicio 4.12

Demuestre que S={⃗u1, u⃗2, u⃗3} es un conjunto ortogonal donde

u⃗1 =


3

1

1

 , u⃗2 =


−1

2

1

 , u⃗3 =


−1

2

−2
7
2

 , y⃗ =


6

1

−8


Exprese el vector y⃗ como combinación lineal del conjunto S. Recuerde que las coordenadas se

calculan como c j =
y⃗.u⃗ j
u⃗ j.u⃗ j

con j = 1,2,3 por ser una base ortogonal.

Ejercicio 4.13

Calcule la distancia de un punto y⃗ en R3 a un subespacio W generado por {u⃗1, u⃗2} sabiendo que el

punto más cercano se calcula como ∥⃗y− ŷ∥, donde ŷ = proyw⃗y.

y⃗ =


−1

−5

10

 , u⃗1 =


5

−2

−1

 , u⃗2 =


1

2

−1


Ejercicio 4.14

Halle el complemento ortogonal para el subespacio de V :

V = R3, S = {(x1,x2,x3) ∈ R3,2x1− x2 = 0} con el producto interno canónico.

Ejercicio 4.15

Demuestre que el conjunto S = {cos(nx),sen(mx)}n,m∈N es linealmente independiente en C([0,2π]).

Sugerencia: observar que

∫ 2π

0
cos2(nx)dx ̸= 0,

∫ 2π

0
sen2(mx)dx ̸= 0, n,m ∈ N

y

∫ 2π

0
cos(nx)cos(mx)dx =

∫ 2π

0
cos(nx)sen(mx)dx =

∫ 2π

0
sen(nx)sen(mx)dx = 0

si n ̸= m,n,m ∈ N
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Ejercicio 4.16

Halle T ∗ para cada una de las transformaciones lineales siguientes:

a) T : R2→ R2, T ((x1,x2)) = (3x1 + x2,−x1 + x2).

b) T : R3→ R3, tal que [T ]B =


1 0 1

2 0 −1

0 1 0

, donde B = {(1,2,−1),(1,0,0),(0,1,1)}.

Ejercicio 4.17

Determine si los siguientes endomorfismos definidos sobre R3 son autoadjuntos:

a) T ((x,y,z)) = (x+ y,x,−z)

b) S((x,y,z)) = (−2x+2z,y,2x)

Ejercicio 4.18

Encuentre en cada caso una matriz O ∈ Rn×n ortogonal tal que O.A.Ot sea diagonal

a) A =

 1 3

3 −1



b) A =


5 0 −2

0 7 −2

−2 −2 6


Ejercicio 4.19

Dada A =


4 1 i 0

1 3 2i 0

−i −2i 3 i

0 1 −i 2


encuentre una matriz U ∈ Cn×n ortogonal tal que UAU∗ sea diagonal.

Ejercicio 4.20

Halle la matriz en la base canónica de las siguientes transformaciones ortogonales

a) T : R2→ R2, rotación de un ángulo de π

4 .

b) T : R2→ R2, simetría respecto de la recta x1 = x2.
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Ejercicio 4.21

Sea V un espacio vectorial y sea (·, ·) un producto interno sobre V . Pruebe

a) (⃗x, y⃗+ z⃗) = (⃗x, y⃗)+ (⃗x,⃗z)

b) (⃗x, c⃗y) = c(⃗x, y⃗)

c) (⃗x, y⃗) = (⃗x,⃗z) ∀⃗x ∈V ⇒ y⃗ = z⃗

Ejercicio 4.22

Sea V un espacio vectorial con producto interno (·, ·). Pruebe que |(⃗x, y⃗)|= ∥⃗x∥∥⃗y∥ sí y sólo sí {⃗x, y⃗}
es un conjunto linealmente dependiente.

Ejercicio 4.23

Pruebe que dos vectores x⃗ e y⃗ son ortogonales, si

∥⃗x+ y⃗∥2 = ∥⃗x∥2 + ∥⃗y∥2

Ejercicio 4.24

Sea V un espacio vectorial sobre K de dimensión finita con producto interno (·, ·). Sea T ∈ L(V )

biyectiva. Considerar la aplicación (·, ·)T : V ×V → K, (⃗x, y⃗)T = (T (⃗x),T (⃗y)), ∀⃗x, y⃗ ∈V

Pruebe que (·, ·)T también es un producto interno sobre V .

Ejercicio 4.25

Sea A ∈ R2×2. Sea φ : R2×R2 → R definida por φ(x,y) = yt .A.x. Pruebe que φ es un producto

interno sobre R2 sí y sólo sí A = At , a11 ≥ 0 y Det(A)≥ 0.

Ejercicio 4.26

Sea V un C-espacio vectorial con producto interno (·, ·) y sea T ∈ L(V ) sobre C. Pruebe que si λ es

autovalor de T , entonces λ es un autovalor de T ∗.

Ejercicio 4.27

Sea V un C-espacio vectorial con producto interno (·, ·) y sea T ∈ L(V ) sobre C autoadjunta. Pruebe

que:

a) si λ es autovalor de T , entonces λ ∈ R.

b) Si v⃗i es autovector asociado al autovalor λi de T (para i = 1,2) y λ1 ̸= λ2, entonces (v⃗1, v⃗2) = 0.

Ejercicio 4.28

Sea V un espacio vectorial de dimensión finita con producto interno y sean S y T ∈ L(V ). Si k ∈ K,

pruebe:

a) (S+T )∗ = S∗+T ∗
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b) (kT )∗ = kT ∗

c) (ST )∗ = T ∗S∗

4.7.2 Autoevaluación

Verdadero o Falso

1. El subespacio imagen de una transformación lineal es ortogonal a su núcleo.

2. El vector nulo es ortogonal a todo vector en Rn.

3. Sean W un plano a través del origen en R3 y L la recta que pasa por el origen y es perpendicular

a W. Entonces L⊥ =W y W⊥ = L.

4. T (⃗x) = ( x⃗·⃗v
v⃗·⃗v )⃗v es una transformación de proyección.

5. Una matriz cuadrada U tal que U−1 =U t se denomina ortogonal.

6. Si U es ortonormal tanto las filas como las columnas de U son ortonormales.

7. En la factorización QR el hecho de que R sea invertible es consecuencia directa de que las

columnas de A sean linealmente independientes.

8. Si {⃗v1, v⃗2, v⃗3} es una base ortogonal para W, entonces la multiplicación de v⃗3 por un escalar,

da una nueva base ortogonal {⃗v1, v⃗2, 3⃗v3}.
9. Si A = QR, donde Q tiene columnas ortonormales, entonces R=QtA.

10. Si x⃗ no esta en un subespacio W , entonces x⃗−Pw⃗x no es el vector nulo.

11. Un espacio vectorial con un producto escalar se dice que es un espacio vectorial euclídeo.

12. Si Q es ortogonal se cumple que la norma de x⃗ es igual a la norma de Q⃗x.

13. Todo conjunto ortogonal de un espacio euclídeo es linealmente dependiente.

14. El determinante de una matriz ortogonal es 1 ó −1.

15. El producto de dos matrices ortogonales es la matriz identidad.

16. Descomponer un vector y⃗ en una suma de proyecciones ortogonales sobre espacios unidimensionales

es la esencia del proceso de Gram-Smith.

17. dimV = dimW + dimW⊥ ( W un subespacio de V ).

18. d(⃗u,−⃗v)2= ∥⃗u+ v⃗∥2 = ∥⃗u∥2 + ∥⃗v∥2 +2(⃗u, v⃗).





5. Formas bilineales y cuadráticas

En este capítulo se dará una breve introducción al tema enfocada a mostrar aplicaciones de la

diagonalización de las matrices de las formas bilineales y cuadráticas en el estudio de secciones

cónicas y superficies cuádricas.

5.1 Formas bilineales y cuadráticas

La ecuación general de una cónica está dada por una ecuación de segundo grado de la forma

a11x2
1 +a12x1x2 +a22x2

2 +a1x1 +a2x2 +a = 0, (5.1)

donde ai j, ai (i, j = 1,2) y a son números reales y al menos uno de los números ai j no es cero. La

parte principal es:

a11x2 +a12xy+a22y2 (5.2)

y puede escribirse

P(x,y) = a11x2 +a12xy+a22y2 = (x,y) A

 x

y

 , (5.3)

donde A es la matriz simétrica,

A =

 a11 a12/2

a12/2 a22

 . (5.4)
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Y su generalización a Rn, dado x⃗ = (x1,x2,x3, · · · ,xn) ∈ Rn, es

P(⃗x) = (x1,x2,x3, · · · ,xn)A



x1

x2

x3

· · ·
xn


(5.5)

donde A es una matriz simétrica ∈ Rn×n.

Análogamente al caso n = 2, para n = 3 se obtienen superficies de segundo grado.

Los dos ejemplos anteriores corresponden a formas cuadráticas (en R2 y en Rn), y son casos

particulares de formas bilineales, las que se definen a continuación.

Definición 5.1.1 Forma bilineal

Sea V un espacio vectorial sobre R o C. Una aplicación A : V ×V → R (o C) se dice que es

una forma bilineal si y solo si satisface:

1. A(⃗x+ z⃗, y⃗) = A(⃗x, y⃗)+A(⃗z, y⃗), ∀ x⃗, y⃗, z⃗ ∈V

2. A(α x⃗, y⃗) = αA(⃗x, y⃗) ∀ x⃗, y⃗ ∈V y ∀ α ∈ R o C

3. A(⃗x, y⃗+ z⃗) = A(⃗x, y⃗)+A(⃗x,⃗z), ∀ x⃗, y⃗, z⃗ ∈V

4. A(⃗x,β y⃗) = βA(⃗x, y⃗) ∀ x⃗, y⃗ y ∀ β ∈ R o C

i Los productos internos reales son formas bilineales.

■ Ejemplo 5.1 E un espacio euclídeo de dimensión finita, y T una aplicación lineal de E en E.

Puede demostrarse que A(⃗x, y⃗) = (⃗x,T y⃗) es una forma bilineal. ■
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■ Ejemplo 5.2 Dados

x⃗ = (x1,x2,x3, · · · ,xn) e y⃗ = (y1,y2,y3, · · · ,yn) ∈ Rn, el producto

(x1,x2,x3, · · · ,xn)A



y1

y2

y3

· · ·
yn


donde A es una matriz simétrica ∈ Rn×n, es una forma bilineal.

La forma cuadrática en Rn de la Ec.(5.5) presentada antes sale de tomar para este caso x⃗ = y⃗. ■

i
Una forma bilineal se dice simétrica si A(⃗x, y⃗) = A(⃗y, x⃗)

Una forma bilineal se dice antisimétrica si A(⃗x, y⃗) =−A(⃗y, x⃗)

Definición 5.1.2 Matriz de una forma bilineal

Sea A una forma bilineal en un espacio V y sea B = {⃗e1, e⃗2, · · · , e⃗n} una base de V .

Si x⃗ = ∑
n
i=1 xi⃗ei, e y⃗ = ∑

n
j=1 y j⃗e j,

A(⃗x, y⃗) = A(
n

∑
i=1

xi⃗ei,
n

∑
j=1

y j⃗e j)

=
n

∑
i=1

n

∑
j=1

xiy jA(⃗ei, e⃗ j)

Se define la matriz de la forma bilineal A en la base B como la matriz A ∈ Rn×n tal que

Ai j = A(⃗ei, e⃗ j) para 1≤ i, j ≤ n

i
Si A(⃗x, y⃗) = A(⃗y, x⃗) (es decir A es una forma bilineal simétrica), entonces A(⃗ei, e⃗ j) =

A(⃗e j, e⃗i) para cualquier base {⃗e1, e⃗2, · · · , e⃗n} de V , es decir la matriz de una forma bilineal

A simétrica en cualquier base es simétrica. Vale también la recíproca: si la matriz de
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una forma bilineal es simétrica en alguna base {⃗e1, e⃗2, · · · , e⃗n} de V , entonces la forma

bilineal es simétrica, pues

A(⃗y, x⃗) =
n

∑
i, j=1

A(⃗ei, e⃗ j)yix j

=
n

∑
i, j=1

ai jyix j

=
n

∑
i, j=1

a jix jyi

=
n

∑
i, j=1

A(⃗e j, e⃗i)x jyi

= A(⃗x, y⃗)

Si A es una forma bilineal antisimétrica, A(⃗x, y⃗)=−A(⃗y, x⃗) para cualquier base {⃗e1, e⃗2, · · · , e⃗n}
de V . La matriz satisface ai j =−a ji, de donde aii = 0, i = 1, · · · ,n.

Si A es la matriz de una forma bilineal respecto a la base B = {⃗e1, e⃗2, · · · , e⃗n} y Ã con

respecto a la base B̃ = {⃗u1, u⃗2, · · · , u⃗n}, entonces A = CT ÃC, donde C es la matriz de

cambio de base de B a B̃. Tienen el mismo rango Ã y A, ya que det(C) ̸= 0.

El rango de una forma bilineal es el rango que tiene la matriz de la forma bilineal en

cualquier base.

Proposición 5.1.1 Toda forma bilineal puede ser representada como la suma de una forma bilineal

simétrica y una forma bilineal antisimétrica.

Demostración:

Sea A una forma bilineal definida en V y sea B : V ×V → K definida así

B(⃗x, y⃗) = A(⃗x, y⃗)+A(⃗y, x⃗)

y sea C : V ×V → K

C(⃗x, y⃗) = A(⃗x, y⃗)−A(⃗y, x⃗)

2A(⃗x, y⃗) = B(⃗x, y⃗)+C(⃗x, y⃗)
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A(⃗x, y⃗) =
B(⃗x, y⃗)

2
+

C(⃗x, y⃗)
2

donde

B(⃗y, x⃗) = A(⃗y, x⃗)+A(⃗x, y⃗) = B(⃗x, y⃗)

C(⃗y, x⃗) = A(⃗y, x⃗)−A(⃗x, y⃗) =−C(⃗x, y⃗)

Esto es similar a lo que ocurre con una matriz A, que puede expresarse,

A =
A+AT

2
+

A−AT

2

donde A+AT

2 es simétrica y A−AT

2 antisimétrica.

□

Definición 5.1.3 Forma cuadrática

Dada A : V ×V → R una forma bilineal, se define una forma cuadrática

Q : V → R, Q(⃗x) = A(⃗x, x⃗).

■ Ejemplo 5.3

Q(x1,x2) = a11x2
1 +a12x1x2 +a22x2

2

■

Usando la matriz P definida antes, Ec.(5.3) una forma cuadrática se escribe,

Q(⃗x) = (x1,x2,x3, · · · ,xn)P(x1,x2,x3, · · · ,xn)
T .

En general, toda expresión de la forma

Q(⃗x) =
n

∑
j=1

n

∑
i≤ j

ai jxix j

en un espacio vectorial define una forma cuadrática, ya que alcanza con tomar la forma bilineal

A(⃗x, y⃗) =
n

∑
i=1

aiixiyi +
n

∑
j=1

n

∑
i< j

ai j

2
xiy j +

n

∑
j=1

n

∑
i< j

ai j

2
x jyi
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con x⃗ = ∑
n
i=1 xi⃗ei e y⃗ = ∑

n
j=1 y j⃗e j.

i Un ejemplo de forma bilineal es el tensor de inercia, I(⃗x, y⃗). Gran parte de su interés radica en

que I(ω,ω) da la energía de rotación cuando la velocidad angular es ω .

5.1.1 Formas cuadráticas. Aplicación a las secciones cónicas

La Ec.(5.1) se reescribe,

Q(x1,x2) = a11x2
1 +a12x1x2 +a22x2

2

y también en forma matricial,

(
x1 x2

) a11 a12/2

a12/2 a22

 x1

x2

+
(

a1 a2

) x1

x2

+a = 0 (5.6)

xTAx+Kx+a = 0 (5.7)

donde

x =

 x

y

 , K =
(

a1 a2

)
(5.8)

Con esta notación, la forma cuadrática asociada a la Ec.(5.7) es xTAx. La matriz simétrica A se

denomina matriz de la forma cuadrática xTAx.

■ Ejemplo 5.4 En la ecuación,

3x2
1 +5x1x2−7x2

2 +2x1 +7 = 0, (5.9)

la matriz de la forma cuadrática es, 3 5/2

5/2 7

.
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mientras que para la ecuación

8x2
1−4x2

2 = 0, (5.10)

la matriz de la forma cuadrática es, 8 0

0 −4

.

■

Para una cónica C con ecuación (5.7) es posible hacer girar los ejes de coordenadas x1x2 de modo

que la ecuación de la cónica, en el sistema de coordenadas x′1x′2, no tenga término con producto

cruzado.

Se halla una matriz O que diagonaliza ortogonalmente a A, A = ODOt . Se intercambian sus

columnas en el caso que el Det(O) ̸= 1 para asegurar que la transformación de coordenadas

sea una rotación.

x = Ox′

Para obtener la ecuación en el sistema x′1x′2 se sustituye la ecuación anterior en la Ec.(5.7).

(x′)tOtAOx′+KOx′+a = 0 (5.11)

Como O diagonaliza ortogonalmente a la matriz A, OtAO =

 λ1 0

0 λ2

, donde λ1 y λ2 son

los autovalores de A. Por lo tanto, la ecuación (5.11) reescribir como

(
x′1 x′2

) λ1 0

0 λ2

 x′1
x′2

+
(

a1 a2

) o11 o12

o21 o22

 x′1
x′2

+a = 0 (5.12)

o bien

λ1(x′1)
2 +λ2(x′2)

2 +a′1x′1 +a′2x′2 +a = 0

donde a′1 = a1o11 +a2o21 y a′2 = a1o12 +a2o22.

El análisis anterior se resume en el Teorema siguiente:
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Figura 5.1: Elipse

Teorema 5.1.2 Teorema de los ejes principales para R2..

Sea

a11x2
1 +a12x1x2 +a22x2

2 +a1x1 +a2x2 +a = 0, (5.13)

la ecuación de una cónica C, y supongamos que

xTAx = a11x2
1 +a12x1x2 +a22x2

2

es la forma cuadrática asociada. Entonces, es posible girar los ejes de coordenadas de modo que

la ecuación para C en el nuevo sistema de coordenadas x′y′ tenga la forma

λ1x′21 +λ2x′22 +a′1x′+a′2y′+a = 0

donde λ1 y λ2 son los autovalores de A. Se puede llevar a cabo la rotación por medio de la

sustitución x = Ox′, donde O diagonaliza a A y Det(O) = 1.

Si A es una matriz no diagonal, la gráfica está girada hasta salirse de la posición estándar, como
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Figura 5.2: Hipérbola

en las Figuras 5.1 y 5.2. Encontrar los ejes principales (determinados por los vectores propios de A)

equivale a encontrar un nuevo sistema de coordenadas con respecto al cual la gráfica está en posición

estándar.

5.1.2 Formas cuadráticas: aplicación a las superficies cuádricas

Sea

a11x2
1 +a12x1x2 +a13x1x3 +a22x2

2 +a23x2x3 +a33x2
3 +a1x1 +a2x2 +a3x3 +a = 0 (5.14)

donde ai j, ai (i, j = 1,3) y a son números reales y al menos uno de los números ai j no es cero. La

parte principal

a11x2
1 +a12x1x2 +a13x1x3 +a22x2

2 +a23x2x3 +a33x2
3

es la forma cuadrática asociada.

La Ec.(5.14) puede escribirse en forma matricial
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Figura 5.3: Formas cuadráticas. a) Definida Positiva. b) Definida Negativa. c) Indefinida

(
x y z

)
a11 a12/2 a13/2

a12/2 a22 a23/2

a13/2 a23/2 a33




x

y

z

+
(

a1 a2 a3

)
x

y

z

+a = 0 (5.15)

Se tiene el Teorema siguiente:

Teorema 5.1.3 Teorema de los ejes principales para R3.

Sea

a11x2
1 +a12x1x2 +a13x1x3 +a22x2

2 +a23x2x3 +a33x2
3 +a1x1 +a2x2 +a3x3 +a = 0 (5.16)

la ecuación de una cónica C, y supongamos que

xTAx = a11x2
1 +a12x1x2 +a13x1x3 +a22x2

2 +a23x2x3 +a33x2
3

es la forma cuadrática asociada. Entonces se puede hacer girar los ejes de coordenadas de modo

que la ecuación para C en el nuevo sistema de coordenadas x′1x′2x′3 tenga la forma

λ1x′21 +λ2x′22 +λ3x′23 +a′1x′1 +a′2x′2 +a3x′3 +a = 0

donde λ1, λ2 y λ3 son los autovalores de A. Como en el caso de R2 se puede llevar a cabo la

rotación por medio de la sustitución x = Ox′, donde O diagonaliza a A y Det(O) = 1.

Este teorema sugiere el procedimiento para eleminar los términos de productos cruzados de una

ecuación cuadrática en x1, x2 y x3. Y lo veremos con un ejemplo.
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■ Ejemplo 5.5 Se desea describir la superficie cuádrica cuya ecuación es

4x2
1 +4x1x2 +4x1x3 +4x2

2 +4x2x3 +4x2
3−3 = 0 (5.17)

La forma matricial de la ecuación cuadrática anterior es

xTAx−3 = 0 (5.18)

donde

A =


4 2 2

2 4 2

2 2 4

 (5.19)

Los autovalores de A son λ1 = λ2 = 2 y λ3 = 8, y A es diagonalizada ortogonalmente por la

matriz

O =


−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

 (5.20)

donde las dos primeras columnas de O son los autovectores correspondientes a λ1 = λ2 = 2 mientras

que la tercer columna es un autovector correspondiente a λ3 = 8. Se puede verificar que Det(O) = 1

por lo que la transformación de coordenadas x = Ox′ es una rotación.

Al sustituir en la Ec.(5.18) se obtiene

xTODOTx−3 = x′Dx′−3 = 0 (5.21)

Y como

D = OtAO =


2 0 0

0 2 0

0 0 8

 (5.22)

se tiene
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(
x′ y′ z′

)
2 0 0

0 2 0

0 0 8




x′

y′

z′

−3 = 0 (5.23)

o bien

2(x′1)
2 +2(x′2)

2 +8(x′3)
2−3 = 0 (5.24)

que puede reescribirse

(x′1)
2

3/2
+

(x′2)
2

3/2
+

(x′3)
2

3/8
= 1 (5.25)

y es la ecuación de un elipsoide. ■

i Las superficies cuádricas han sido representadas en varios edificios contemporáneos. Algunos

de ellos son: Puente Juscelino Kubitschek, Brasilia (Brasil), Centro Nacional de las Artes

Escénicas, Pekín (China), L’Oceanogràfic, Valencia (España).

Formas cuadráticas y valores propios

Cuando A es una matriz de n×n, la forma cuadrática Q(x) = xTAx es una función de valores

reales con dominio Rn. Se distinguen varias clases importantes de formas cuadráticas por el tipo de

valores que asumen para diversos x.

En la Figura 5.3 se muestran las gráficas de tres formas cuadráticas. Para cada punto x = (x1,x2)

del dominio de una forma cuadrática Q, se traza un punto (x1,x2,z), donde z = Q(x). Observe que

excepto en x = 0, todos los valores de Q(x) son positivos en la Figura 5.3(a) y negativos en la

Figura 5.3(b). En la Figura 5.3(c), en cambio, toma valores positivos y negativos. De acuerdo a los

autovalores de A se tiene lo siguiente:

Sea A una matriz simétrica de n×n. Entonces una forma cuadrática xTAx es:

definida positiva si, y sólo si, todos los valores propios de A son positivos,

definida negativa si, y sólo si, todos los valores propios de A son negativos, o

indefinida si, y sólo si, A tiene valores propios tanto positivos como negativos
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i Una de las aplicaciones más conocidas es el estudio de extremos relativos de funciones de

varias variables. En ese caso se calculan los autovalores de la matriz Hessiana en los puntos

estacionarios. Corresponde a un mínimo local en caso de ser definida positiva, a un máximo

local en caso de definida negativa y a un punto silla si es indefinida.
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Figura 5.4

5.2 Actividades propuestas

Problema de Aplicación 5 Realice un cuadro conceptual donde describa las diferentes superficies

cuádricas a partir de la diagonalización de las matrices de las formas bilineales y cuadráticas

correspondientes. Indique cuáles de ellas tienen centro, cuáles no, cuáles son degeneradas, y

qué significa ese término. Investigue además, qué característica de los paraboloides hace que

los radiotelescopios usen esa forma para sus antenas. Complemente con imágenes de antenas de

algún radiotelescopio y sus características físicas. Se propone la presentación oral del trabajo con el

fin de contribuir al desarrollo de habilidades y capacidades del estudiante (15 minutos máximo).

5.2.1 Ejercicios

Ejercicio 5.1

Encuentre la matriz asociada a la forma bilineal A(⃗x, y⃗) = x1y1−x1y2+2x2y1+6x2y2−3x1y3+x3y3

y calcule su rango.

Ejercicio 5.2

Convierta la forma bilineal del ejercicio anterior en una forma cuadrática reemplazando (⃗x = y⃗).

Calcule su nueva matriz asociada.

Ejercicio 5.3

Dado que la matriz asociada a una forma cuadrática es simétrica, haga una lista de todas las

propiedades de las matrices simétricas.
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Figura 5.5: Beletsky alma. https://www.eso.org/public/images/beletsky alma 15-cc2/

Ejercicio 5.4

Encuentre la forma canónica de la siguiente forma cuadrática: Q(⃗x) = x2
2−3x2

3 +2x1x2 + x1x3

Ejercicio 5.5

Para la elipse 5x2
1 +5x2

2−4x1x2 = 48, encuentre un cambio de variables por medio de calcular sus

valores y vectores propios unitarios tal que se elimine el producto cruzado de la ecuación.

Ejercicio 5.6

Especifique a qué cónica corresponden las siguientes ecuaciones y especifique su centro.

a) (x− x0)
2 +(y− y0)

2 = r2

b) (x−2)2− (y−3)2 = 1

c) x2 + y2 +4x = 1

Ejercicio 5.7

Dada la ecuación de una cónica: Ax2 + 2Bxy+Cy2 + 2Dx + 2Ey+ F = 0, encuentre su forma

matricial. Ayuda: si el elemento a11 es F , ¿cómo están relacionados los otros elementos de la matriz

con la ecuación de la cónica?



224 Capítulo 5. Formas bilineales y cuadráticas

(
1 x y

)
a11 a12 a13

a21 a22 a23

a31 a32 a33




1

x

y

= 0

Datos extras: piense que las cónicas describen las órbitas. Ejemplo de órbitas elípticas pueden

ser el asteroide numerado 433 conocido con el nombre de Eros, en la página de NEODyS (objetos

cercanos al planeta Tierra) podrá encontrar muchos más. Como ejemplo de órbita hiperbólica podría

ser el cometa C/2002 E2 Snyder-Murakami, y como ejemplo de órbita parabólica (excentricidad = 1)

la del cometa C/2002 B2 LINEAR.

Ejercicio 5.8

Usando la matriz del ejercicio anterior, encuentre la forma de sus invariantes y especifique de qué

tipo de cónica estamos hablando si B2−4AC = 0

Ejercicio 5.9

Responda cómo están los ejes de las cónicas con respecto a los ejes coordenados según:

a) B = 0

b) B ̸= 0

Ejercicio 5.10

¿Q(⃗x) = 3x2
1 +2x2

2 + x2
3 +4x1x2 +4x2x3 es definida positiva?

5.2.2 Autoevaluación

Verdadero o Falso

Dada una matriz simétrica:

1. A es definida positiva si y solo si todos los valores propios de A son positivos.

2. A es definida negativa si y solo si los valores propios van alternando entre positivos y negativos.

3. A es indefinida si y solo si alguno de los valores propios es 0.

4. Es posible clasificar A por medio de su determinante.

5. Siempre existe un cambio ortogonal de la variable x = Py tal que Q(X) = xtAx = ytDy =

λ1x2
1 +λ2x2

2 + ...+λnx2
n, con λ1,λ2, ..,λn los autovalores de A.



6. Cálculo tensorial

Este capítulo trata de una introducción al estudio de tensores (escalar, vector, tensor de segundo

orden y de orden superior). Se expone la notación indicial por su simplicidad y facilidad de uso

en las expresiones matemáticas. Se hace una revisión de las operaciones entre vectores, y de los

sistemas de coordenadas rectangulares. Luego se plantean los sistemas de coordenadas curvilíneas, y

la construcción de bases adecuadas. Para facilitar la comprensión de los temas se presentan ejemplos

y aplicaciones. El objetivo de incorporar el cálculo tensorial es brindar al estudiante de Astronomía

herramientas matemáticas que le resulten de utilidad para los cursos superiores de la carrera.

6.1 Invariancia y representación

Dado un espacio vectorial, la elección de la base es arbitraria. Una vez elegida la base, lo que

se tiene es una representación del vector en una determinada base y por lo tanto, se tienen sus

coordenadas.

Así para el vector x=(1,2,3), con las bases canónica, B y la base B′= {(1/2,0,0),(0,0,−2),(0,−1,0)}
se tendrán dos representaciones,

x = 1 e1 +2 e2 +3 e3

y

x = 2 e′1 +3/2 e′2−1 e′3
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.

En general, en un espacio vectorial de dimensión N, una vez elegida la base B = {e1,e2, · · · ,en},
cada vector x estará representado por un conjunto de n coordenadas representadas con λ j

n

∑
j=1

λ
j e j

pero el vector x es un invariante, ya que no depende de la base. De esta forma, dadas dos bases

B = {e1,e2, · · · ,en} y B′ = {e′1,e′2, · · · ,e′n} de un espacio vectorial V de dimensión n, para un vector

x se satisface la igualdad

n

∑
j=1

λ
j e j =

n

∑
i=1

β
i e′i

i A diferencia de los capítulos anteriores, en este capítulo los vectores se indicarán con trazo

resaltado.

6.2 Convenio de suma de Einstein

Albert Einstein, en 1916, propuso un criterio que permite escribir las sumas sin escribir los

símbolos de sumatoria, dando origen a la notación indicial. Introdujo los dos convenios siguientes:

1. Para un espacio vectorial de dimensión N, los índices usados, ya sea como subíndices o como

supraíndices pueden tomar todos los valores de 1 a N, a no ser que se especifique lo contrario.

2. Si se repite un índice en un término, esto implica una suma con respecto a aquel índice desde

1 a N. El índice repetido se llama índice mudo.

Usando los convenios anteriores, un vector x puede expresarse, entonces,

x = λ
j e j = β

i e′i

En las expresiones anteriores i y j son índices mudos.

Así,

ai
i = a1

1 + a2
2 + a3

3 + · · ·+ an
n

Si los elementos ai
j son los de una matriz A ∈ Rn×n, (el supraíndice i corresponde a la fila y el

subíndice j a la columna), ai
i es la traza de la matriz.
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■ Ejemplo 6.1 En la expresión

Ai jxix j i, j = 1,2,3

no hay índice libre, tanto i como j son índices mudos, por lo que al sumar en i y en j, el resultado da

un escalar. ■

i Una de las ventajas de la notación indicial es que se tiene una expresión muy concisa. Así, un

sistema lineal de 3 ecuaciones con 3 incógnitas usando el convenio de suma se escribe:

ai jx j = bi i, j = 1,2,3.

6.3 Notación indicial

El sistema de coordenadas cartesianas rectangulares está definido por tres vectores, i, j, k que

constituyen una base ortonormal. Es decir que se satisfacen dos propiedades: son vectores unitarios

(longitud 1) y son ortogonales entre sí. El producto vectorial cumple la regla de la mano derecha:

i× j = k, j×k = i y k× i = j.

La representación de un vector P en un sistema de coordenadas rectangulares es:

P = Pxi+Pyj+Pzk (6.1)

que puede reescribirse de la forma

P = P1e1 +P2e2 +P3e3 (6.2)

donde hemos considerado que P1 ≡ Px, P2 ≡ Py, P3 ≡ Pz, e1 ≡ i, e2 ≡ j, e3 ≡ k, como se indica en la

Figura 6.1.

La representación del vector P de la Ec.(6.2) se expresa con la notación indicial de la forma

siguiente ([18]):

P = Piei (i = 1,2,3) (6.3)

6.3.1 Delta de Kronecker

El símbolo delta de Kronecker, está definido por

δi j =

 1 si i = j,

0 si i ̸= j.
(6.4)
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Figura 6.1: Vector en el sistema de coordenadas cartesianas

y coincide con el resultado de hacer el producto escalar entre los vectores de la base ortonormal ei,

es decir que ei · e j = δi j. Exponiendo esto en forma explícita se tiene:

ei.e j =


e1 · e1 e1 · e2 e1 · e3

e2 · e1 e2 · e2 e2 · e3

e3 · e1 e3 · e2 e3 · e3

=


1 0 0

0 1 0

0 0 1

= δi j (6.5)

Este símbolo δi j es llamado operador de sustitución , por la propiedad interesante que mostramos

con un ejemplo.

Sea v un vector de componentes vi, entonces

δi jvi = δ1 jv1 +δ2 jv2 +δ3 jv3,

como j es un índice libre, se tiene:

Si j = 1, δi1vi = δ11v1 +δ21v2 +δ31v3 = v1
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Si j = 2, δi2vi = δ12v1 +δ22v2 +δ32v3 = v2

Si j = 3, δi3vi = δ11v1 +δ21v2 +δ31v3 = v3

de donde

δi jvi = v j

es decir, por la presencia de δi j se reemplaza en la componente vi, el índice i por el j. De ahí el

nombre de operador de sustitución.

6.3.2 Símbolo de Levi-Civita

El símbolo de permutación es llamado también de Levi-Civita y está definido por:

ei1i2···iN = ei1i2···iN =


1 índices distintos e i1i2 · · · iN es una permutación par de 1,2,3, · · · ,N
−1 índices distintos e i1i2 · · · iN es una permutación impar de 1,2,3, · · · ,N
0 en otro caso

(6.6)

Este símbolo es utilizado en la definición de determinante de una matriz de N×N:

|A|= ∑
i1i2···iN

ei1i2···iN a1i1a2i2 · · ·aNiN

El determinante de una matriz N×N consiste en la suma de todos los productos posibles de N

elementos que pertenecen a distintas filas y columnas multiplicados por 1 o −1 de acuerdo a si la

permutación de los segundos índices es par o impar .

En el caso N = 3 se tiene lo siguiente:

ei jk = ei jk = [ ei e j ek]

ei jk = ei jk =


1 si i jk es una permutación par de 123

−1 si i jk es una permutación impar de 123

0 en otro caso

(6.7)

Y al calcular el determinante utilizando la definición anterior, se tiene la suma de seis términos,

que son todos los posibles productos de a tres elementos de la matriz
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∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣=

= e123 a11a22a33+e231 a12a23a31+e312 a13a21a32+e321 a13a22a31+e132 a11a23a32+e213 a12a21a33

Luego, reemplazando los símbolos de permutación ei jk de acuerdo a (6.7), resulta

|A|= a11a22a33 +a12a23a31 +a13a21a32−a13a22a31−a11a23a32−a12a21a33

Por otro lado, si se expresa el símbolo de permutación en función de la delta de Kronecker (u

operador de sustitución), obtenemos

ei jk = elmn δliδm jδnk (6.8)

que es igual al resultado del determinante

ei jk =

∣∣∣∣∣∣∣∣
δ1i δ1 j δ1k

δ2i δ2 j δ2k

δ3i δ3 j δ3k

∣∣∣∣∣∣∣∣
■ Ejemplo 6.2

e321 =

∣∣∣∣∣∣∣∣
δ13 δ12 δ11

δ23 δ22 δ21

δ33 δ32 δ31

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

0 0 1

0 1 0

1 0 0

∣∣∣∣∣∣∣∣=−1

■
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6.4 Operaciones con vectores

Producto escalar

Dados u = β i ei y v = λ j e j con i, j = 1,2, · · ·n el producto escalar es

u.v = β
1
λ

1 +β
2
λ

2 + · · ·+β
n
λ

n = β
l
λ

l

Esto se obtiene al reemplazar los vectores u⃗ y v⃗,

u.v = ( β
i ei). (λ

j e j) = ( β
i
λ

j) (ei.e j) (6.9)

Usando (6.4), como ei.e j = δi j, la Ec.( 6.9) queda

u.v = ( β
i
λ

j)δi j = β
i
λ

i (6.10)

La longitud de u puede escribirse

∥u∥=
√

β i β i

La multiplicación de dos matrices A ∈ Rm×k y B ∈ Rk×n da por resultado una matriz C ∈ Rm×n.

Si indicamos con el supraíndice la fila y con subíndice la columna, los elementos de la matriz C son

ci
j =

k

∑
l=1

ai
l bl

j

que se simplifica usando el convenio de Einstein a

ci
j = ai

l bl
j.

i Note que ci
j tiene dos índices libres. No es un escalar, porque no todos los índices están

afectados a sumatorias.
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Producto vectorial

Si ui = β
j

i e j son vectores de R3, i = 1,3, el producto vectorial de u1 y u2 da como resultado un

vector:

u1×u2 = ei jk β
j

1 β
k
2 ei (6.11)

donde ei jk es el símbolo de permutación. Esa expresión se obtiene a partir de calcular el determinante

u1×u2 =

∣∣∣∣∣∣∣∣
e1 e2 e3

β 1
1 β 2

1 β 3
1

β 1
2 β 2

2 β 3
2

∣∣∣∣∣∣∣∣= c1e1 + c2e2 + c3e3,

donde

c1 = β
2
1 β

3
2 −β

2
2 β

3
1 c2 =−β

1
1 β

3
2 +β

1
2 β

3
1 c3 = β

1
1 β

2
2 −β

1
2 β

2
1

Teniendo en cuenta la definición de los símbolos de permutación (6.7), pueden reescribirse

c1 = e123β
2
1 β

3
2 + e132β

2
2 β

3
1 c2 = e231β

1
1 β

3
2 + e213β

1
2 β

3
1 c3 = e312β

1
1 β

2
2 + e321β

1
2 β

2
1

luego, en forma reducida, usando la notación de Einstein,

ci = ei jkβ
j

1 β
k
2

y de ahí se obtiene la expresión (6.11).

■ Ejemplo 6.3 Si se desarrolla la expresión ci = ei jkA jBk para i = 1, se tiene:

c1 = e1 jkA jBk

= e11kA1Bk + e12kA2Bk + e13kA3Bk

= e111A1B1 + e112A1B2 + e113A1B3 + e121A2B1 + e122A2B2

+ e123A2B3 + e131A3B1 + e132A3B2 + e133A3B3

De acuerdo a la definición de los símbolos de permutación (6.7) son nulos los términos con

índices repetidos, entonces resulta
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c1 = e123A2B3 + e132A3B2 = A2B3−A3B2

■

Producto mixto

Si ul = β i
l ei y anotamos como [u1u2u3] al producto mixto,

[u1u2u3] = u1.(u2×u3)

se tiene que

[u1u2u3] =
[

β
i
1 ei β

j
2 e j β

k
3 ek

]

= β
i
1 β

j
2 β

k
3 [ ei e j ek]

= β
i
1 β

j
2 β

k
3 ei jk

o sea, es el determinante de la matriz de las coordenadas β i
j,

[u1u2u3] =
∣∣β i

j

∣∣
Producto tensorial

El producto tensorial o diádico entre dos vectores u y v está definido de la forma siguiente:

u⊗v =


u1

u2

u3

⊗


v1

v2

v3

=


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 (6.12)

Se obtiene una matriz A, A = u⊗v, donde, por ejemplo, u3v2 es la componente de la fila 3, y

columna 2. En este caso particular, el producto tensorial es el producto matricial usual de los vectores

u (de n×1) y vt , (de 1×n).
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Una matriz A puede escribirse en términos de los productos tensoriales de los vectores de la base

e1, e2, y e3, de la forma siguiente:

A=u⊗v= u1v1


1 0 0

0 0 0

0 0 0

+u1v2


0 1 0

0 0 0

0 0 0

+u1v3


0 0 1

0 0 0

0 0 0

 · · ·+u3v3


0 0 0

0 0 0

0 0 1


(6.13)

A = u⊗v = u1v1 e1⊗ e1 +u1v2 e1⊗ e2 + · · ·u3v3 e3⊗ e3 (6.14)

que, utilizando el convenio de Einstein, puede reescribirse

A = u⊗v = uiv j ei⊗ e j (6.15)

6.5 Transformaciones lineales

Sea T : V →W una transformación lineal entre dos espacios vectoriales V y W (ver Definición

2.1.1). Sean B= {v1,v2, · · · ,vN} una base de V y B̄= {w1,w2, · · · ,wm} una base de W . Si aplicamos

T a un vector arbitrario v ∈V ,

v = α
j v j

T (v) = T (α j v j) = α
j T (v j)

Como T (v) es un elemento de W , se puede escribir como combinación lineal de los vectores de

la base de W ,

T (v) = β
i wi

Por otro lado, si se aplica T a los vectores de la base de V , se obtiene la expresión

T (v j) = ai
j wi
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donde los escalares a j
i son las coordenadas T (v j) en la base de W .

En la expresión anterior el término ai
j tiene dos índices: j está asociado al espacio V e i al espacio

W . T es la matriz de la transformación lineal, en cada columna j están las coordenadas de T (v j) en

la base de W .

T (v) = α
j T (v j) = α

jai
j wi

T (v) = β
i wi = ai

jα
j wi

de donde,

( β
i −ai

jα
j) wi = 0

y por ser los wi linealmente independientes (forman una base de W ), resulta

β
i = ai

jα
j

que da la relación entre las coordenadas de v y de T (v). Corresponde al producto matricial



β 1

β 2

β 3

· · ·
β n


=


a1

1 a1
2 · · · a1

n

a2
1 a2

2 · · · a2
n

· · · · · · · · · · · ·
an

1 an
2 · · · an

n





α1

α2

α3

· · ·
αn


(6.16)

En los elementos de la matriz el supraíndice i y el subíndice j del elemento ai
j corresponden a la

fila y a la columna respectivamente. Es la matriz asociada a la transformación lineal T definida en la

Sección 2.2).

■ Ejemplo 6.4 Si la transformación lineal es la identidad, usamos dos bases distintas, B = {e1,e2}
y B′ = {u1,u2,}, y las coordenadas en cada base son v = β j e j = α j u j, la relación entre las

coordenadas es

β
i = ai

jα
j.
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 β 1

β 2

=

 a1
1 a1

2

a2
1 a2

2

 α1

α2



Estas expresiones se corresponden con las Ecs.(1.4) y (1.5), donde se vio la relación entre las

coordenadas del vector x⃗ en la antigua base B y en la nueva base B′, respectivamente, xi y x′i, con

i = 1,2. En forma matricial, X = AX ′, o

 x1 = a1
1x′1 +a1

2x′2

x2 = a2
1x′1 +a2

2x′2
(6.17)

Si u1 = (2,3) y u2 = (1,4) usando lo anterior, para el vector

 7

7


B

=

 2 1

3 4

 3

1


B′

= PB,B′

 3

1


B′

La relación está dada por la matriz de cambio de base de B′ a B, PB,B′ vista en la Sección 1.5.

Por otro lado, La relación entre los vectores de las bases B′ y B está dada por la matriz transpuesta

(Ver Ec.(1.1) en la Sección (1.5)):

 u1 = a1
1e1 +a2

1e2 = 2e1 +3e2

u2 = a1
2e1 +a2

2e2 = 1e1 +4e2

Usando el convenio dee suma, la relación entre los vectores de las bases tiene la expresión

u j = al
jel

■
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6.6 Definición de tensor

El concepto de tensor tiene su origen en la evolución de la geometría diferencial de Gauss,

Riemann y Christoffel. La necesidad del cálculo tensorial, como rama sistemática de la matemática,

se debe a Ricci y a su discípulo Levi-Civita, que publicaron en colaboración el primer trabajo

sobre esta materia: Métodos del cálculo diferencial absoluto y sus aplicaciones, en Mathematische

Annalen, vol. 54 (1901).

El objeto principal del cálculo tensorial es la investigación de las relaciones que permanecen

invariantes cuando se cambia de un sistema de coordenadas a otro. Las leyes de la física no pueden

depender del sistema de referencia que elija el físico con fines descriptivos. Por eso es, estéticamente

deseable y muchas veces conveniente, utilizar el cálculo tensorial como fundamento matemático en

que se puedan formular tales leyes. Einstein, en particular, lo consideró un excelente instrumento para

la presentación de su teoría general de la relatividad. El cálculo tensorial alcanzó gran importancia

y es hoy en día inapreciable en sus aplicaciones en la mayoría de las ramas de la física teórica; es

también indispensable en geometría diferencial.

6.6.1 Cambio de coordenadas

Si se considera un espacio vectorial V de dimensión N con el sistema de coordenadas x1,x2,x3, · · · ,xn,

las N ecuaciones

x′i = x′i(x1,x2,x3, · · · ,xn) = ϕ
i(x1,x2,x3, · · · ,xn), i = 1, · · ·N (6.18)

donde ϕ i son funciones continuas y diferenciables de las coordenadas definen un nuevo sistema de

coordenadas x′1,x′2, · · · ,x′N .

La condición necesaria y suficiente para que las Ec.(6.18) definan una transformación de

coordenadas es que el Jacobiano formado por las derivadas parciales ∂x′i
∂x j no se anule. En ese

caso se pueden resolver para las xi como funciones de x′i y se obtiene,

xi = ψ
i(x′1,x′2, · · · ,x′N), i = 1, · · ·N (6.19)
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■ Ejemplo 6.5 En el caso particular de un cambio de base en R3 la relación entre las coordenadas

está dada por el sistema lineal (1.4) para n = 3


x1 = a1

1x′1 +a1
2x′2 +a1

3x′3

x2 = a2
1x′1 +a2

2x′2 +a2
3x′3

x3 = a3
1x′1 +a3

2x′2 +a3
3x′3

(6.20)

Corresponde a relaciones como las de la Ec.(6.19). El determinante de la matriz Jacobiana (cuyos

elementos son ∂xi

∂x′j
= ai

j) no se anula, porque la matriz de cambio de base A tiene inversa. Con su

matriz inversa pueden escribirse las ecuaciones (6.18) y así tener las coordenadas x′i como funciones

de las xi. ■

6.6.2 Tensores de orden 0, 1 y 2

Es importante tener presente la expresión (1.5) de la relación ya vista entre las coordenadas

x′i y xi ante un cambio de base. Porque los tensores se definen en función de sus propiedades de

transformación ante un cambio de coordenadas ([26]).:

xi→ x′i i = 1, · · · ,N (6.21)

dado por las relaciones de las Ecs.(6.18) y (6.19).

Se tiene lo siguiente:

Tensor de orden cero o escalar es una cantidad φ que permanece invariante al cambiar al

sistema primado,

φ
′ = φ

Ejemplos La masa, la energía, la temperatura.

Tensor de orden uno o vector son N cantidades

• Vectores contravariantes

Las funciones v j de las N coordenadas xi se dice que son las componentes de un vector

contravariante si se transforman según la ecuación:

v′i =
n

∑
i=1

∂x′i

∂x j v j =
∂x′i

∂x j v j i = 1, · · · ,n (6.22)
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en un cambio de coordenadas de xi a x′i.

Ejemplo Los diferenciales dx′i,

dx′i =
∂x′i

∂x j dx j

forman las componentes de un vector contravariante, ya que se transforman de la misma

forma que la expresión (6.22).

• Vectores covariantes

Las funciones v j de las N coordenadas xi se dice que son las componentes de un vector

covariante si se transforman según la ecuación:

v′i =
∂x j

∂x′i
v j (6.23)

en un cambio de coordendas de xi a x′i. Ejemplo. El vector gradiente de una función f

∂ f
∂x′i

=
∂ f
∂x j

∂x j

∂x′i
=

∂x j

∂x′i
∂ f
∂x j (6.24)

De acuerdo a la Ec.(6.23) las magnitudes ∂ f
∂x j son las componentes de un vector covariante

(el índice j es considerado un subíndice).

Ejemplos de tensores de orden 1: r, vector posición y v vector velocidad.

Tensor de segundo orden: son N2 cantidades:

• t i j (i, j = 1, · · · ,N) son las componentes de un tensor dos veces contravariante si se

transforman según

t ′i j =
∂x′i

∂xl
∂x′ j

∂xm t lm (6.25)

• ti j (i, j = 1, · · · ,N) son las componentes de un tensor dos veces covariante si se transforman

según

t ′i j =
∂xl

∂x′i
∂xm

∂x′ j
tlm (6.26)
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• t i
j (i, j = 1, · · · ,N) son las componentes de un tensor una vez contravariante y otra

covariante si se transforman según

t ′ij =
∂x′i

∂xl
∂xm

∂x′ j
t l
m (6.27)

o,

t ′ ji =
∂xl

∂x′i
∂x′ j

∂xm tm
l (6.28)

Los tensores de segundo orden están asociados a matrices:

ti j =



t11 t12 · · · t15

t21 t22

t31

t41

t51 · · · t55


, t i

j =



t1
1 t1

2 · · · t1
5

t2
1 t2

2

t3
1

t4
1

t5
1 · · · t5

5


Como ejemplo, en (6.12) se obtuvo un tensor de segundo orden A, a partir del producto tensorial

de dos vectores.

6.6.3 Suma. Contracción de índices

La suma de tensores de igual orden es un tensor del mismo orden, y el producto de un escalar

por un tensor de orden q da un tensor de orden q. El producto de componentes de un tensor por las

componentes de otro da las componentes de un tensor de orden suma de los órdenes originales.

■ Ejemplo 6.6 Si ui son las componentes de un vector y ti j son las componentes de un tensor de

orden 2,

uitlm

son las componentes de un tensor de orden 3, ya que tiene 3 índices libres. ■

Una operación importante entre tensores es la llamada contracción de índices. Es la operación

de multiplicar 2 tensores de orden n y m y hacer la suma sobre uno de los índices (de 1 a N). Se

obtiene un tensor de orden n+m−2.
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También puede realizarse incluso sobre el mismo tensor:

T i
i

obteniéndose un nuevo tensor de rango n−2 (es un escalar o tensor de orden 0 para n = 2, como se

vió en el ejemplo de la traza en la Sección 6.2).

■ Ejemplo 6.7 Si se tiene un tensor de orden 3, de componentes ti jk, contrayendo el segundo y tercer

índice se obtiene un tensor de orden 1:

vi = ti j j

■

■ Ejemplo 6.8 Dados 2 tensores de orden 2, en este caso n = m = 2, al sumar sobre el índice j:

T i jH jm = T i1H1m +T i2H2m + · · ·= Si
m (6.29)

se tiene como resultado un tensor de rango n+m−2 = 2+2−2 = 2.

■

i
El producto escalar de 2 vectores (n = m = 1) es un caso particular y el resultado es un escalar

o tensor de orden 0.

■ Ejemplo 6.9 Aparece con frecuencia la contracción de uno de los índices de un tensor de orden

2 con el índice de un vector (corresponde al producto escalar del tensor por el vector) y da como

resultado un vector:

vi = ti ju j

■

Un tensor es simétrico respecto a dos de sus índices si al permutarlos se obtiene el mismo valor,

por ejemplo

ti j = t ji

o
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hi jkl = hilk j

(respecto al segundo y cuarto índice). Será antisimétrico si cambia de signo:

ti j =−t ji

o

hi jkl =−hilk j

Se dice que es totalmente simétrico o totalmente antisimétrico cuando se cumple lo anterior

respecto de cualquier par de índices.

i Se llama tensor isotrópico a un tensor cuyas componentes son las mismas en cualquier sistema

de coordenadas. Todo escalar es un tensor isotrópico pero no hay vector no nulo que sea

isotrópico. Se puede mostrar que todo tensor isotrópico de orden 2 es un escalar por la delta de

Kronecker δi j y todo tensor isotrópico de orden 3 es un escalar por los símbolos de Levi-Civita.

Tullio Levi-Civita (1873 - 1941)

Fue un matemático italiano, famoso por su trabajo sobre cálculo tensorial, pero que también

hizo contribuciones significativas en otras áreas de las matemáticas. Era discípulo de Gregorio

Ricci-Curbastro, el inventor (algunos dicen co-inventor con Levi-Civita) del cálculo tensorial. Su

trabajo incluye artículos fundamentales en matemáticas puras y aplicadas, la mecánica celeste

(notable en el problema de los tres cuerpos) e hidrodinámica. Levi-Civita personalmente ayudó a

Albert Einstein a aprender el cálculo tensorial, en el cual Einstein basaría su relatividad general, y

que había luchado por dominar. Su libro de texto en cálculo tensorial El Cálculo Diferencial Absoluto

(originalmente un conjunto de notas de la conferencia en italiano de coautoría con Ricci-Curbastro)

sigue siendo uno de los textos estándares más de un siglo después de su primera publicación, con

varias traducciones disponibles. [16]
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6.6.4 Transformaciones ortogonales

Si se aplica una transformación lineal la relación entre las coordenadas en distintas bases está

dada por la expresión, (ver Sección 1.5 y el Ejemplo 6.4)

x j = a j
i x′i (6.30)

donde a j
i son los elementos de la matriz cambio de base.

A partir de la Ec.(6.30), si B = A−1 se tiene que

x′i = bi
jx

j (6.31)

entonces las coordenadas se transforman mediante una ley contravariante .

En la Ec.(6.22), las cantidades ∂x
′i

∂x j son,

∂x′i

∂x j = bi
j (6.32)

así que, se tiene

x′i =
∂x′i

∂x j x j = bi
j x j i = 1, · · · ,n. (6.33)

De la misma manera, un tensor de segundo rango dos veces contravariante se transforma de la

forma siguiente:

T ′i j = ai
la

j
mT lm (6.34)

Las transformaciones ortogonales son un caso particular de transformaciones lineales, son

aquellas que transforman un sistema de coordenadas cartesianas ortogonales en otro similar también

ortogonal y son tales que la inversa de la matriz que la representa es igual a su transpuesta.

Corresponden a rotaciones o reflexiones (ver matriz ortogonal Definición 4.6.4, y el Ejemplo

2.6 de la Sección 2.2). Es decir

A−1 = At

o bien

ai
j(a

t) j
l = δ

i
l

o

ai
ja

l
j = δ

il
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■ Ejemplo 6.10 Las ecuaciones que corresponden a una rotación de un ángulo φ alredor del eje z

son (ver Ec.(6.18) y el Ejemplo 6.5).

x′1 = cos(φ)x1 + sen(φ)x2 (6.35)

x′2 = −sen(φ)x1 + cos(φ)x2 (6.36)

x′3 = x3 (6.37)

Es una transformación ortogonal ya que la inversa de la matriz que la representa es igual a su

transpuesta, o sea At .A = I (ver Sección 4.6).

Como se vió en la Proposición 4.6.6, si el determinante es 1 corresponde a una rotación y si es

−1 corresponde a una reflexión (o a una composición de una simetría y una rotación). ■

■ Ejemplo 6.11 Una transformación no ortogonal

Las transformaciones de Lorentz relacionan las coordenadas en dos sistemas de referencia

inerciales (x0,x1,x2,x3) y (x′0,x′1,x′2,x′3).

Son las que dejan invariante s2 = (x′0)2−(x′1)2−(x′2)2−(x′3))2. y su relación en forma matricial

es la siguiente:


x′0

x′1

x′2

x′3




γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3



donde γ = 1√
1−V 2

c2

es el factor de Lorentz y β = V
c es la velocidad relativa respecto de la luz (V

es la velocidad del movimiento uniforme y c es la velocidad de la luz en el vacío).

La matriz inversa se obtiene cambiando β por −β , y por lo tanto se tiene que A−1 ̸= At . No es

una transformación ortogonal. ■

6.7 Tensores cartesianos

Como se mencionó en la Sección 6.6.2 los tensores están definidos por las propiedades de

transformación de sus componentes ante cambios de coordenadas.

Se llaman tensores cartesianos a los tensores que están definidos por sus propiedades ante

transformaciones entre sistemas de coordenadas cartesianos ortogonales (ver [25]). Esto los diferencia

de los tensores en general, en los que se consideran transformaciones más generales de coordenadas.
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En los tensores cartesianos no es necesario diferenciar entre componentes covariantes y contravariantes

ya que se transforman igual:

En este caso, la Ec.(6.30) puede escribirse

x
′
i = ai jx j (6.38)

donde ai j son los elementos de la matriz cambio de base.

Los tensores de orden 1 se transforman con la ley

v
′
i = ai jv j (6.39)

Ya que si se utilizan las relaciones (6.22) y (6.23), como At .A = I, se obtiene:

v
′i = ai

jv
j (6.40)

v
′
i = (a−1) j

i v j = (aT ) j
i v j = ai

jv j (6.41)

Análogamente, en el caso de tensores de orden 2, la expresión de la Ec.(6.34) se reescribe

t
′
i j = aila jmtlm (6.42)

Si se asocian las componentes ti j a una matriz T , esta ley de transformación de (6.42) corresponde

a la transformación

T
′
= ATAt (6.43)

Ejemplos de tensores cartesianos: el vector posición r, el vector velocidad v, el tensor de inercia

Ii j, y el tensor de tensiones τi j.

6.8 Sistema de coordenadas curvilíneas

Las transformaciones de coordenadas se presentaron en las Ecs. (6.18) y (6.19) de la Sección

6.6.1. Consideremos ahora, en particular, una región del espacio de tres dimensiones referida a un

sistema de ejes cartesianos ortogonales, caracterizados con supraíndices x1, x2, y x3.

Sean, además
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Figura 6.2: Bases en coordenadas cartesianas

xi = xi(x1,x2,x3), i = 1,2,3 (6.44)

funciones continuas con derivadas parciales primeras continuas y tal que el jacobiano formado por

las derivadas parciales ∂xi

∂x j no se anule.

Entonces las ecuaciones anteriores pueden resolverse en las xi, esto es

x j = x j(x1,x2,x3), j = 1,2,3 (6.45)

Las variables xi introducidas son tales que a cada punto P le corresponde una única terna de

valores de ellas y recíprocamente: las denominamos coordenadas curvilíneas de P.

Uno de los sistemas de coordenadas curvilíneas más usados en el espacio son las coordenadas

cilíndricas (r,ϕ,z), donde, x1 = r, x2 = ϕ y x3 = z. y tales que las relaciones con las cartesianas

(x1,x2,x3) son
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r =
√
(x1)2 +(x2)2

ϕ = arctan
(

x2

x1

)
z = x3

Es decir que la Ec.(6.44) expresa la transformación entre coordenadas cartesianas y coordenadas

cilíndricas. En otro caso, puede expresar la transformación entre coordenadas cartesianas y coordenadas

esféricas, otro sistema que también es utilizado con frecuencia.

Es importante notar que cuando se pasa de un sistema de coordenadas cartesianas a otras

cartesianas, la transformación es lineal, y la relación entre las coordenadas de un mismo punto en los

dos sistemas diferentes se obtiene multiplicando por una matriz.

Igualando a una constante la Ec.(6.44)

xi = xi(x1,x2,x3) =Ci = constante,

obtenemos la ecuación de una superficie para cada valor de la constante: es decir, la última ecuación

representa para cada i= 1,2,3 tres familias de superficies, que se denominan superficies coordenadas

y la condición de que el jacobiano no se anule, significa geométricamente que tres de ellas (una de

cada familia) se intersecan en uno y sólo un punto P.

La intersección de las tres superficies que pasan por P determina tres líneas, a lo largo de las

cuales sólo una coordenada xi es variable: se denominan líneas coordenadas.

6.8.1 Tensor fundamental (o Tensor Métrico)

Supongamos que se requiere calcular la longitud de un vector v dado de R3, por ejemplo

v = (7,4,−1). Entonces:

Al estar dadas sus coordenadas en la base canónica B = {e1,e2,e3}, (sino se hubiera anotado

v = (7,4,−1)B para hallar la longitud del vector v = (7,4,−1) se calcula ∥v∥2 = (7)2+(4)2+

(−1)2 = 49+16+1 = 66. Se obtiene que su longitud es ∥v∥=
√

66.

Si se tienen las coordenadas de v en la base B′ = {(1,1,0),(4,2,1),(2,1,−2)}, v = (1,1,1)B,

se deben transformar sus coordenadas a la base canónica para calcular la longitud.
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Figura 6.3: Bases en coordenadas curvilíneas

Es deseable, entonces, una definición de longitud de un vector invariante ante un cambio de base.

Con el llamado tensor métrico se redefine la longitud de un vector según la expresión:

(
x y z

)
e1 · e1 e1 · e2 e1 · e3

e2 · e1 e2 · e2 e2 · e3

e3 · e1 e3 · e2 e3 · e3




x

y

z

 (6.46)

donde ei son los elementos de la base B′, y (x,y,z) sus coordenadas en esa base.

Las componentes del tensor métrico (representado por los elementos i j de la matriz) son los

productos escalares de los vectores de la base B′, es decir, ei · e j .

Así, para el vector v = (1,1,1)B, se tiene
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(
1 1 1

)
B


2 6 3

6 21 8

3 8 9




1

1

1


B

=
(

11 35 20
)

1

1

1

= 66 (6.47)

Con esta definición nueva, (que da la longitud del vector elevada al cuadrado), el tensor métrico

da la matriz identidad (si la base es la canónica) y se tiene el resultado presentado al inicio:

(
7 4 −1

)
1 0 0

0 1 0

0 0 1




7

4

−1

=
(

7 4 −1
)

7

4

−1

= 66 (6.48)

De lo anterior surge que es posible introducir el concepto de distancia en un espacio V de

dimensión N cualquiera, y que la distancia ds entre dos puntos próximos de coordenadas xi y xi+dxi,

está dada por la expresión:

ds2 = gi jdxidx j = g11(dx1)2 +g12dx1dx2 + · · ·+g1Ndx1dxN + · · ·+gNN(dxN)2 (6.49)

donde gi j son funciones de xi, con la restricción que g =
∣∣gi j
∣∣ ̸= 0.

Cuando se cumple esta definición de longitud se dice que el espacio es un espacio de Riemann.

i
Se postula que la distancia entre dos puntos próximos es independiente del sistema de

coordenadas, es decir que ds es un invariante.

A la forma cuadrática gi jdxidx j se la llama métrica. gi j es un tensor simétrico covariante

de segundo orden llamado tensor fundamental. Sus componentes contravariantes están

dadas por los elementos de la matriz inversa.

gi jg jk = δ
i
k (6.50)

Los coeficientes gi j son funciones de las coordenadas, y se obtienen a partir de los

vectores de la base, ei, ya que

gi j = ei · e j (6.51)
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gi j = g ji. gi jdxidx j es una forma cuadrática. Se llama métrica, y es el cuadrado del

elemento de línea ds.

La longitud de los vectores de la base viene dada por:

|ei|=
√

gii (6.52)

donde i no se suma en la última expresión. Además, si el sistema es ortogonal, gi j = 0

para i ̸= j.

En un espacio euclídeo de tres dimensiones, referido a un sistema de ejes cartesianos

rectangulares se tiene que la expresión de la Ec.(6.49) para tensores cartesianos para

N = 3, es

ds2 = (dx1)2 +(dx2)2 +(dx3)2 (6.53)

Teniendo en cuenta que,

δi j = δ
j

i =

{
1 cuando i = j,

0 cuando i ̸= j

y desarrollando las sumas,

δi jxix j = δ1 jx1x j +δ2 jx2x j +δ3 jx3x j

= δ11x1x1 +δ12x1x2 +δ13x1x3 +δ21x2x1 +δ22x2x2 +δ23x2x3 + · · ·+δ33x3x3

δi jxix j = (x1)2 +(x2)2 +(x3)2 = ds2

i Las expresiones δi jxix j = δmlxmxl = δβα xβ xα son equivalentes por ser

los índices mudos.

El tensor métrico en este caso es

gi j =


1 0 0

0 1 0

0 0 1



Las componentes del tensor fundamental son cero, excepto g11 = g22 = g33 = 1.

La métrica en un espacio euclídeo es positiva. Será cero solo cuando dx1 = dx2 = dx3 = 0.

En la teoría especial de la relatividad la métrica no siempre es positiva. Su expresión está

dada por

ds2 =−(dx1)2− (dx2)2− (dx3)2 + c2(dx4)2 (6.54)



6.8 Sistema de coordenadas curvilíneas 251

Otro ejemplo de métrica en un espacio euclídeo es la referida a coordenadas polares

esféricas x1 = r, x2 = θ y x3 = ψ . La métrica está dada por

ds2 = dr2 + r2dθ
2 + r2sen2

θdψ
2 (6.55)

Otras métricas:

De acuerdo con la teória de la relatividad general en presencia de materia, la geometría del

espacio-tiempo no es plana. La métrica de Schwarzchild describe como se curva el espacio-tiempo a

causa de un cuerpo esférico, aislado y estático que no gira sobre si mismo (r: distancia, G: constante

gravitatoria, M: Masa, c: velocidad de la luz y θ= ángulo):

Métrica de Schwarzchild: gi j =


−c2(1− 2GM

c2r ) 0 0 0

0 (1− 2GM
c2r )−1 0 0

0 0 r2 0

0 0 0 r2sen2(θ)


Por otro lado la métrica de Friedman-Lamaitre-Roberson-Waller nos describe la expansión de

universo en términos del parámetro k. Si k > 0 el universo es cerrado y volverá a plegarse sobre

sí mismo generando un nuevo bigbang (teoría del bigcrush), mientras que si k ≤ 0 el universo se

expande sin límites. (a(t) representa la aceleración del universo):

Métrica de FLRW: gi j =


−c2 0 0 0

0 a(t)( 1
1−kr2 ) 0 0

0 0 a(t)( 1
1−kr2 ) 0

0 0 0 a(t)r2sen2(θ)( 1
1−kr2 )


6.8.2 Bases en coordenadas curvilíneas

De acuerdo a la Figura 6.3,

r = x1e1 + x2e2 + x3e3 (6.56)

donde

e j =
∂r
∂x j
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Para cada punto P del espacio se tienen tres líneas coordenadas xi; es posible definir tres vectores

base para P como:

ei =
∂r
∂xi (6.57)

que se llaman vectores tangentes a las lineas coordenadas ([22]) xi.

La base ei, representada en la Figura 6.3 es, en general, variable punto a punto y sus versores no

necesariamente tienen longitud unitaria. Se trata de una base local ; cada punto P del espacio tiene

su propia base.

En un sistema de coordenadas curvilíneas se tiene, en cada punto P, una base local dada por los

vectores ei de la Ec.(6.57) como se muestra en la Figura 6.3. De ahora en adelante a los vectores de

esta base los denotaremos gi.

■ Ejemplo 6.12 Coordenadas cilíndricas

r⃗ = x1e1 + x2e2 + x3e3 (6.58)

donde x1 = rcos(ϕ), x2 = rsen(ϕ) y x3 = z

Es una transformación entre las coordenadas xi y, xi

x1 = r, x2 = ϕ y x3 = z

Los vectores tangentes (o base covariante, Ec.(6.57)), son

g1 =
∂r
∂x1 = cos(ϕ)e1 + sen(ϕ)e2 +0.e3 (6.59)

g2 =
∂r
∂x2 =−rsen(ϕ)e1 + rcos(ϕ)e2 +0.e3 (6.60)

g3 =
∂r
∂x3 = 0e1 +0e2 +1e3 (6.61)

■
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Existe además, para cada punto P, otro conjunto de tres direcciones que puede ser adoptado para

definir otra base local de vectores que denotaremos por gi.

Estos vectores gi constituyen la denominada base recíproca o dual de la gi, en virtud de las

relaciones:

gi ·g j = δ
i
j (6.62)

Pueden obtenerse de la forma siguiente

g1 =
g2×g3

[g1g2g3]
g2 =

g3×g1

[g1g2g3]
g3 =

g1×g2

[g1g2g3]
(6.63)

donde [g1g2g3] = g1×g2 ·g3 = E

En la Figura 6.4 se muestra un ejemplo en un sistema cartesiano.

Se tiene que,

g1 =
g2×g3

[g1g2g3]
g2 =

g3×g1

[g1g2g3]
g3 =

g1×g2

[g1g2g3]
(6.64)

y
[
g1g2g3

]
= ER

De la misma forma que en Ec.(6.51), se tiene

gi j = gi ·g j (6.65)

y naturalmente, gi j = g ji

Decimos que estas dos bases, que son mutuamente recíprocas, y se pueden demostrar las

siguientes propiedades

[g1g2g3]
[
g1g2g3

]
= 1 ER = E−1

det(gi j) = g = E2 E =
√

g



254 Capítulo 6. Cálculo tensorial

Figura 6.4: Ejemplo de una base gi y su base recíproca g j

gikgk j = δ i
j

e j× e j = 0

En un sistema cartesiano ortogonal, la base recíproca coincide con aquella que la genera, es

decir, gi = gi.

■ Ejemplo 6.13 Coordenadas cilíndricas.

La base recíproca, usando ec.(6.63)

g1 =
g2×g3

[g1g2g3]
(6.66)

g1 = (rcos(ϕ)e1 + rsen(ϕ)e2 +0e3)/r (6.67)

g2 = (−sen(ϕ)e1 + cos(ϕ)e2 +0e3)/r (6.68)
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g3 = (rcos2(ϕ)e1 + rsen2(ϕ)e2 +0e3)/r (6.69)

En la Figura 6.5 se muestran las coordenadas cilíndricas en el espacio R3 y los vectores gi.

Como por la Ec.(6.51), gi j = gi ·g j

g11 = g1 ·g1 = cos2(ϕ)+ sen2(ϕ) = 1

g12 = g1 ·g2 =−rcos(ϕ)sen(ϕ)+ rcos(ϕ)sen(ϕ) = 0

g13 = g1 ·g3 = 0

g22 = g2 ·g2 = r2sen2(ϕ)+ r2cos2(ϕ) = r2

g23 = g2 ·g3 = 0

g33 = g3 ·g3 = 1

gi j =


1 0 0

0 r2 0

0 0 1


y su inversa

gi j =


1 0 0

0 r−2 0

0 0 1


■

Relaciones entre versores de base

Dados dos sistemas de coordenadas curvilíneas xi, xi, y considerando para cada uno de ellos las

bases anteriormente introducidas, existen entre sus versores las relaciones:

g j =
∂xi

∂x j gi,

gi =
∂x j

∂xi g j (6.70)
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gi = gi jg j gi = gi jg j (6.71)

Si

gk =
∂xk

∂x j g j, gk =
∂xk

∂x j g j (6.72)

gm =
∂xi

∂x j gmig j, (6.73)

se tiene que esta expresión se demuestra de la forma siguiente:

usando Ec.(6.70)

gm =
∂xi

∂xm gi

gm =
∂xi

∂xm
∂x j

∂xi g j

Reemplazando la Ec.(6.71)

gm =
∂xi

∂xm
∂x j

∂xi g jkgk

Teniendo en cuenta la Ec.(6.72)

gm =
∂x j

∂xi
∂xi

∂xm g jk
∂xk

∂x j g j

y como ∂x j

∂xi
∂xi

∂xm = δ
j

m,

se tiene que

gm = δ
j

mg jk
∂xk

∂x j g j

gm =
∂xk

∂x j gmkg j,

que coincide con Ec.(6.73) ya que k es un índice mudo.
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Figura 6.5: Coordenadas cilíndricas

Componentes contravariantes y covariantes de un tensor

De lo anterior surge que dado un tensor A se dispone de dos bases aptas para su expresión: la gi y

su recíproca g j. Las componentes de A en gi las denominamos contravariantes y las indicaremos Ai,

mientras que las componentes en g j las llamaremos covariantes, designándolas A j [24]. Entonces:

A = Aigi = A jg j (6.74)

Como se mencionó antes, si el sistema es cartesiano ortogonal, ambas componentes son

indistinguibles: Ai = Ai. Cuando A esté dado mediante Ai, diremos vector contravariante; o vector

covariante Ak si se nos presenta mediante esas componentes. Entre ellas se cumple:
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A j = gi jAi A j = gi jAi (6.75)

así, gi j y gi j bajan y suben índices, respectivamente.

Para demostrar la primera igualdad, partimos de la expresión

A = Ak gk = Al gl

Multiplicando escalarmente por g j a ambos lados,

Ak gk ·g j = Al gl ·g j

y teniendo en cuenta la relación entre los vectores de la base y de su base recíproca, Ec.(6.62),

Ak δ
k
j = Ai gi g j

y se obtiene

A j = gi jAi

Entre las componentes contravariantes (o duales) de A en dos sistemas xi, xi se verifica:

Ai =
∂xi

∂x j A j A j
=

∂x j

∂xi Ai (6.76)

y entre las covariantes

Ai =
∂x j

∂xi A j Ak =
∂x j

∂xk A j (6.77)

y además,

A j = A ·g j Ai = A ·gi (6.78)
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De lo anterior sale que una vez definido el tensor métrico, las componentes covariantes y

contravariantes de un tensor están relacionadas por el tensor métrico, así por ejemplo,

vi = gi jv j

vl = glmvm

T i j = gilT j
l = gilg jmTlm

Es importante notar que bases definidas (gi y su recíproca gi) cumplen la relación de la Ec.( 6.62)

y que esta relación se mantiene al realizar una transformación de coordenadas. Para demostrarlo, se

utilizan los vectores contravariantes y covariantes, gi y g j, y sus relaciones con los vectores gi y g j,

respectivamente (Ecs.(6.22) y (6.23)). Se verá que gi ·g j = δ i
j.

gi ·g j =
∂xi

∂xl gl · ∂xk

∂x j gk

=
∂xi

∂xl
∂xk

∂x j gl ·gk

=
∂xi

∂xl
∂xk

∂x j δ
l
k

=
∂xi

∂xl
∂xl

∂x j

= δ
i
j

Componentes físicas de un vector En ciertos contextos son importantes las componentes físicas

de un vector. Si A = Algl , están dadas por

∣∣Al
∣∣ |gl|=

∣∣Al
∣∣√g j j

6.9 Diagonalización de tensores de segundo orden. Invariantes

Dado un tensor de segundo orden simétrico y real siempre existe un sistema de coordenadas en

el cual las únicas componentes no nulas del tensor son las que tienen los dos índices iguales, ti j = 0

si i ̸= j. Si T es la matriz de los ti j, T es una matriz diagonal:

T =


t11 0 0

0 t22 0

0 0 t33





260 Capítulo 6. Cálculo tensorial

(para N=3). El sistema de coordenadas en el que el tensor es diagonal se llama de ejes principales.

Para demostrar que todo tensor simétrico y real es diagonalizable, se hace el producto escalar del

tensor de componentes ti j por un vector vi, con lo que se obtiene otro vector wi:

wi = ti jv j.

Se trata de hallar los vectores vi tales que el vector resultante sea un múltiplo, o sea

wi = λvi i = 1,2, · · ·N.

donde λ es un escalar. En ese caso a vi se lo llama autovector y a λ autovalor.

Para que esto suceda los vectores vi deben satisfacer

ti jv j = λvi

o

(ti j−λδi j)v j = 0⃗

Para el caso que N = 3, se tiene un sistema de ecuaciones algebraicas:


(t11−λ )v1 + t12v2 + t13v3 = 0

t21v1 +(t22−λ )v2 + t23v3 = 0

t31v1 + t32v2 +(t33−λ )v3 = 0

(6.79)

Como es un sistema homogéneo, para que tenga solución no trivial el determinante del sistema

debe ser nulo. A la ecuación

Det(T −λ I) = 0 (6.80)

se la llama ecuación característica del tensor T.

El determinante de la Ec.(6.80) es un polinomio de grado 3 con respecto a las potencias de λ :

PT (λ ) = λ
3 +λ

2IT +λ IIT− IIIT = 0

llamado polinomio característico del tensor T. IT, IIT, IIIT son los invariantes principales del tensor

T, definidos en función de sus componentes ti j por (ver [18]):

IT = tr(T) = tii
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IIT =
1
2
[tr(T)2− tr(T2)]

IIIT = Det(T)

Si T es un tensor simétrico, los invariantes principales se resumen de la forma:

IT = t11 + t22 + t33

IIT = t11t22 + t11t33 + t22t33− t2
12− t2

13− t2
23

IIIT = t11t22t33 + t12t13t23 + t13t12t23− t2
12t33− t2

23t11− t2
13t22

i

Encontrar los autovalores o valores principales es equivalente a encontrar unas direcciones

principales (autovectores) tales que ti j = 0 para i ̸= j.

Una vez obtenidos los autovalores, los autovectores se obtiene resolviendo las ecuaciones

(ti j−λ1δi j)n
(1)
j = 0⃗, (ti j−λ2δi j)n

(2)
j = 0⃗ y (ti j−λ3δi j)n

(3)
j = 0⃗.

Si T es un tensor simétrico el espacio de los autovectores está definido por una base

ortonormal y los autovalores son todos reales.

Cuando un tensor presenta los tres autovalores iguales, λ1 = λ2 = λ3 se denomina tensor

esférico.

6.10 Tensores de mayor orden

Hemos visto tensores de órdenes 0, 1 y 2. De la misma forma es posible definir tensores de orden

mayor.

Un conjunto de Ns+p funciones At1t2···ts
q1q2···qp

de las N coordenadas xi se dice que son las componentes

de un tensor mixto de orden (s+ p) contravariante de orden s y covariante de orden p si se transforman

según la ecuación

Au1u2···us
r1r2···rp

=
∂xu1

∂xt1
· · · ∂xus

∂xts

∂xq1

∂xr1
· · · ∂xqp

∂xrp
At1t2···ts

q1q2···qp

con el cambio de coordenadas xi en xi.

Aunque esta expresión parece complicada es simplemente una combinación de la Ec.(6.22 ) con

respecto a los índices contravariantes y de la Ec.( 6.23) en cuanto a los índices covariantes.
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Un ejemplo de orden 4 es el tensor constitutivo C que relaciona las componentes de dos tensores

de orden 2, el tensor de deformaciones, ε con el tensor de tensiones, τ .

τi j =Ci jklεkl

El tensor constitutivo Ci jkl es de orden 4 y sus componentes, considerando dos bases ortogonales

ei y e j del sistema cartesiano, se transforman de la forma siguiente

Ci jkl = pim p jn pkr plsCmnrsεkl

i En las ecuaciones de elasticidad para el estudio de tensiones y deformaciones en cáscaras y

láminas es muy útil expresar el tensor constitutivo en las componentes de una base local no

ortogonal. Se utilizan las bases de vectores covariantes y contravariantes.

Juan Martín Maldacena

Nacido en Buenos Aires, 10 de septiembre de 1968. Entre sus muchos aportes al campo de la

teoría de supercuerdas —o Teoría M—, se encuentra la denominada «conjetura de Maldacena»,

«dualidad de Maldacena» o correspondencia AdS/CFT, que propone la equivalencia entre ciertas

teorías de gravedad cuántica y cualquier teoría conforme de campos bajo determinadas condiciones

que satisfacen el principio holográfico. En 1997 se unió a la Universidad de Harvard como profesor

asociado —entonces el profesor asociado vitalicio más joven de la historia de Harvard—. Ahí en

1999 ascendió a profesor titular. En 2012 fue honrado con el nuevo Premio Yuri Milner a la física

fundamental. La distinción le dotó con tres millones de dólares. En ese momento sus investigaciones

estaban orientadas a la relación entre espacio y tiempo cuánticos y a las teorías de partículas. En

2018 recibió la Medalla Lorentz siendo así el único científico de habla hispana y de Iberoamérica en

haberla recibido. [13]
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Figura 6.6

6.11 Actividades propuestas

Problema de Aplicación 6 Para el sistema de coordenadas esféricas

r⃗(ϕ,φ ,r) = rsen(ϕ)sen(φ)e1 + rcos(φ)e2 + rcos(ϕ)sen(φ)e3

halle:

a) Los vectores base covariantes.

b) Los vectores base contravariantes.

c) La métrica del sistema del coordenadas.

d) La matriz Jacobiana de la transformación de coordenadas.

e) Calcule el ds2 del sistema de coordenadas (ϕ,φ ,r).

6.11.1 Ejercicios

Ejercicio 6.1

Responda:

a) ¿Qué información dan los subíndices libres?

b) ¿Cómo se identifican los subíndices mudos?
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c) ¿Por qué se llama frecuentemente a la delta de Kronecker operador de sustitución?

d) ¿Qué valor toma la terna 132 para el símbolo de permutación?

Ejercicio 6.2

Reescriba usando notación indicial las siguientes expresiones:

1. a1x1x3 +a2x2x3 +a3x3x3

2. x1x1 + x2x2

3. 
a11x+a12y+a13z = bx

a21x+a22y+a23z = by

a31x+a32y+a33z = bz

Ejercicio 6.3

Desarrolle las expresiones siguientes para n = 3:

1. δ i
j a j,

2. δi j xi x j,

3. δ i
i ,

4. ∂ fi
∂x j dx j

Ejercicio 6.4

Verifique en R3 las siguientes igualdades:

1. δ i j ei jk = 0

2. eikm e jkm = 2 δ i
j

3. ei jk ei jk = 3!

4. ei jm eklm = δ i
kδ

j
l − δ i

l δ
j

k

Ejercicio 6.5

Utilice el convenio de la suma de Einstein para escribir de forma tensorial:

1. Multiplicación de dos matrices A ∈ Rn×m y B ∈ Rm×k , C = A.B con elementos c j
i (el

supraíndice indica fila y el subíndice indica columna).

2. La traza de una matriz A ∈ Rn×n.

3. El determinante de una matriz A ∈ Rn×n.

4. El polinomio característico en función de los invariantes de un tensor.
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Ejercicio 6.6

Calcule el producto tensorial de los versores en R3, dos a dos y entre ellos mismos.

Ejercicio 6.7

¿Cuál es el orden de los tensores representados por sus componentes:

vi, ϕi jk, Fi j j, εi j, Ci jkl , σi j?

¿Cuántas componentes tiene cada uno si los índices toman los valores 1,2,3 ?

Ejercicio 6.8

Dada la transformación,

x1 = 6x1

x2 = −3√
3
/x1 +3x2

x3 = x3

y su inversa,

x1 = x1

x2 = 1
6
√

3
x1 +1/3x2

x3 = x3

verifique, luego de determinar los versores, gi, y la base recíproca g j, que

gi j =


1
36 +

1
36·3

1
18
√

3
0

1
18
√

3
1
9 0

0 0 1

 gi j =


36 − 18√

3
0

− 18√
3

12 0

0 0 1


Ejercicio 6.9

Responda:

1) ¿A qué se denomina tensor esférico?

2) ¿Qué expresión toman los invariantes de una matriz que está en su espacio principal?

3) ¿Qué expresión toman los invariantes de un tensor esférico?

4) ¿Cómo queda la ecuación característica de un tensor antisimétrico?
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5) ¿Cualquier combinación de los invariantes principales será un invariante?

6) ¿A qué se llama representación espectral de una matriz?

7) ¿Cómo se calcula la matriz inversa usando el teorema de Cayley-Hamilton y los invariantes

de un tensor?

8) ¿La norma de un tensor es también un invariante?

6.11.2 Autoevaluación

Verdadero o Falso

1. Si V es de dimensión finita n, entonces los hiperplanos vectoriales de V son de dimensión

n+1.

2. Un hiperplano de V es el núcleo de un funcional lineal no nulo sobre el espacio V .

3. Si un espacio vectorial es suma directa de dos espacios vectoriales, la suma directa de los

espacios duales de esos espacios conforman el espacio dual del espacio vectorial original.

4. La distancia de un punto depende de la forma o métrica donde se mide.

5. El teorema de Pitágoras se cumple por igual en un plano o sobre una esfera.

6. El valor de Curvatura Gaussiana o Función K en el Espacio Euclídeo habitual es igual a 1.

7. La distancia más corta entre dos puntos sobre una esfera, se llama geodésica y no es una línea

recta.

8. En Radioastronomía se suele utilizar el término cubo de datos para nombrar la imagen de una

región del espacio pero a diferentes velocidades.



7. Aplicaciones

En este capítulo se abordan aplicaciones del Álgebra Lineal en dos temas considerados de mucho

interés, como son la resolución de ecuaciones diferenciales y la aproximación de funciones. Los

sistemas de ecuaciones diferenciales surgieron para analizar cuantitativamente determinados sistemas

físicos. En el campo de la astronomía, y contemplando los principios físicos como las leyes del

movimiento de Newton y la ley de gravitación, el problema matemático al estudiar el movimiento de

dos o más cuerpos, (moviéndose cada uno bajo la acción gravitatoria de los otros) es el de resolver un

sistema de ecuaciones diferenciales ordinarias. Por otro lado, el estudio de la teoría de aproximación

de funciones también es de importancia fundamental. Comprende dos tipos generales de problemas:

uno se refiere a la búsqueda de la función óptima que pueda utilizarse para representar un conjunto

de datos y fue tratado en el Capítulo 4, en la aproximación por mínimos cuadrados. En este capítulo

nos ocuparemos del problema que se presenta cuando una función se da de manera explícita, pero se

quiere encontrar un tipo más simple de ella, por ejemplo un polinomio, que sirva para determinar

valores aproximados de la función dada.

7.1 Ecuaciones diferenciales

Muchas leyes de la física, química, biología y economía se expresan en términos de ecuaciones

diferenciales, es decir, en ecuaciones que comprenden funciones y sus derivadas. En esta sección

veremos que es posible aplicar el álgebra lineal para resolver ciertos sistemas de ecuaciones

diferenciales. Una de las ecuaciones diferenciales más simples es

y′ = ay (7.1)
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donde y = f (x) es una función desconocida que se debe determinar, y′ = dy
dx es su derivada y a es

una constante. La Ec.(7.1) tiene infinitas soluciones, las cuales son funciones de la forma

y = ceax (7.2)

donde c es una constante arbitraria. Estas funciones son soluciones de y′ = ay, dado que

y′ = caeax = ay (7.3)

A la Ec.(7.2) se le da el nombre de solución general de y′ = ay

Con frecuencia el problema físico que genera una ecuación diferencial impone alguna condición

que permite hallar una solución única a partir de la solución general. Por ejemplo, si se requiere que

la solución de y′ = ay satisfaga que y = 3 cuando x = 0, entonces al sustituir en la solución general

Ec.(7.3), se obtiene un valor para c:

3 = ce0 = c (7.4)

Por lo tanto, y = 3eax es la única solución de y′ = ay que satisface la condición agregada, que

se conoce como condición inicial. Al problema de resolver una ecuación diferencial sujeta a una

condición inicial se denomina problema de valor inicial.

Dado ahora un sistema de ecuaciones diferenciales, por ejemplo,

y′1 = 3y1

y′2 = −2y2

y′3 = 5y3

(7.5)

se desea hallar la solución del sistema que satisface las condiciones iniciales y1(0) = 1, y2(0) = 4 y

y3(0) =−2. En forma matricial, se tiene

Y ′ =


3 0 0

0 −2 0

0 0 5

Y (7.6)

donde Y = (y1,y2,y3)
T . Debido a que cada ecuación comprende sólo una función desconocida, se

puede resolver cada una de las ecuaciones por separado. De la Ec.(7.2) se obtiene

y1 = c1e3x

y2 = c2e−2x

y3 = c3e5x
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A partir de las condiciones iniciales dadas, se obtiene

1 = y1(0) = c1e0 = c1

4 = y2(0) = c2e0 = c2

−2 = y3(0) = c3e0 = c3

(7.7)

de modo que la solución que satisface las condiciones iniciales es

y1 = e3x, y2 = 4e−2x, y3 =−2e5x.

El sistema de este ejemplo fue fácil de resolver porque cada ecuación comprendía solo una función

desconocida, y fue ese el caso porque la matriz de coeficientes (7.6) es diagonal. Para resolver el

caso cuando la matriz no es diagonal es posible hacer una sustitución para Y , Y = SU que conduzca

a un nuevo sistema con una matriz diagonal de los coeficientes; y una vez resuelto este sistema más

sencillo, se usa esa solución para determinar la del sistema original. Si se hacen las sustituciones

Y = PU e Y ′ = PU ′ en el sistema original

Y ′ = AY

y se supone que S tiene inversa, se obtiene

SU ′ = A(SU)

o bien,

U ′ = (S−1AS)U

o bien,

Y ′ = DY

donde D = S−1AS. Está claro cómo elegir S si se desea que la nueva mtriz de los coeficientes D sea

diagonal. Se debe elegir S como la matriz que diagonalice a A. El procedimiento para resolver un

sistema

Y ′ = AY

con una matriz A diagonalizable lo veremos con un ejemplo.
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Suponga que una partícula se mueve en un campo de fuerzas plano y que su vector de posición

X satisface X ′ = AX y X(0) = X0, donde

Y ′ =

 4 −5

−2 1

Y

las condiciones iniciales x1(0) = 2.9, x2(0) = 2.6 Se desea resolver este problema de valor inicial, y

trazar la trayectoria de la partícula para t ≥ 0. La matriz A de los coeficientes del sistema es 4 −5

−2 1

 .

Como se analizó en la Sección 3.2 a partir de Det(A−λ I) = 0, se obtienen los autovalores de la

matriz, λ1 = 6 y λ2 =−1. Los autovectores correspondientes son v⃗1 = (−5,2)T y v⃗2 = (1,1)T .

De ahí que la matriz

S =

 −5 1

2 1


diagonaliza a A y

D = S−1AS =

 6 0

0 −1

 .

Por lo tanto, la sustitución X = SU y X ′ = SU ′ conduce al nuevo sistema diagonal

U ′ = DU =

 6 0

0 −1

U.

De acuerdo a (7.2), si U = (u1,u2)
t , la solución de este sistema es

u1 = c1e6t

u2 = c2e−t

y la ecuación X = SU proporciona la solución para X

X =

 x1

x2

=

 −5 1

2 1

 c1e6t

c2e−t


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Figura 7.1: El origen es un punto silla

o bien

x1 = −5c1e6t + c2e−t

x2 = 2c1e6t + c2e−t

Si se sustituyen las condiciones iniciales, se obtiene c1 =−3/70 y c2 = 188/70, de modo que la

solución que satisface las condiciones iniciales es

x1 = 15/70e6t +188/70e−t

x2 = −6/70e6t +188/70e−t

Las trayectorias de X se muestran en la Figura 7.1. Al origen se le llama punto silla del sistema

dinámico porque algunas trayectorias se aproximan primero al origen y luego cambian de dirección y

se alejan de él. Se presenta un punto silla siempre que la matriz A tiene valores propios tanto positivos

como negativos. La dirección de mayor repulsión es la línea que pasa por v⃗1 y 0⃗ correspondiente al

valor propio positivo. La dirección de mayor atracción es la línea que pasa por v⃗2 y 0⃗, correspondiente

al valor propio negativo.
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Luis Ángel Caffarelli

Nacido el 8 de diciembre de 1948 en Buenos Aires. Es el principal experto mundial en problemas

de frontera libre para ecuaciones diferenciales en derivadas parciales no lineales. También es famoso

por sus contribuciones a la ecuación Monge-Ampere y más en general ecuaciones completamente

no lineales. Recientemente se ha interesado por los problemas de homogeneización. En 2023,la

Academia Noruega de Ciencias le concedió el Premio Abel, el cual es semejante al Nobel en

matemáticas, puesto que este último no cuenta con distinciones para esta rama del conocimiento.

[15]

7.2 Problemas de aproximación de funciones

En muchas aplicaciones se tiene interés en encontrar la mejor aproximación posible sobre un

intervalo, para una función f , por medio de otra función que pertenece a alguna clase especificada;

por ejemplo:

la mejor aproximación posible para ex en [0,1] por medio de un polinomio de la forma

a0 +a1x+a2x2.

la mejor aproximación posible para sen(πx) en [−1,1] por medio de una función de la forma

a0 +a1ex +a2e2x +a3e3x.

la mejor aproximación posible para |x| en [0,2π] por medio de una función de la forma

a0 +a1sen(x)+a2sen(2x)+b1cos(x)+b2cos(2x).

En cada uno de esos ejemplos las funciones de aproximación pertenecen a un subespacio

del espacio vectorial C[a,b] (funciones continuas en [a,b]), es decir que se está buscando la

mejor aproximación utilizando funciones de un subespacio W de C[a,b]. Intuitivamente, la mejor

aproximación posible en [a,b] será aquella que produzca el menor error. Si se desea aproximar en un

solo punto x0, el error al aproximar f (x) con g(x) estaría dado por | f (x0)−g(x0)| (desviación entre

f y g en x0). Si se desea la mejor aproximación en un intervalo, se necesita medir el error global de

la aproximación g(x). Una medida posible se obtiene integrando la desviación | f (x)−g(x)| sobre

todo el intervalo; es decir,∫ b

a
| f (x)−g(x)|dx (7.8)

Geométricamente (7.8) es el área entre las gráficas de f (x) y g(x) sobre el intervalo [a,b]; mayor

el área, mayor será el error global. Aunque es natural, y geométricamente atractiva, la presencia del
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valor absoluto hace que se utilice más frecuentemente otra medida del error, conocida como error

cuadrático medio , definido por

ECM =
∫ b

a
| f (x)−g(x)|2 dx (7.9)

La ventaja adicional del ECM es que puede escribirse a partir de la teoría de espacios vectoriales

con producto interno (ver Ejemplo 4.2).

Considerando el producto interior

( f ,g) =
∫ b

a
f (x)g(x)dx (7.10)

sobre el espacio vectorial C[a,b], el error cuadrático medio

ECM = ∥ f −g∥2 = ( f −g, f −g) =
∫ b

a
| f (x)−g(x)|2 dx (7.11)

es el cuadrado de la distancia entre f y g. La aproximación g en W que minimiza el error cuadrático

medio es el vector g en W más próximo a f con el producto interno (7.10). Por lo que vimos en

el Teorema 4.5.1, g es la proyección ortogonal de f sobre el subespacio W . Entonces, si f es una

función continua sobre [a,b] y W es un espacio con dimensión finita de C[a,b], la función g en W

que minimiza el error cuadrático medio Ec.(7.9) es g = PW f , que se conoce como aproximación de

los mínimos cuadrados para f en W.

7.2.1 Series de Fourier

Una función de la forma

f (x) = c0 + c1cos(x)+ c2cos(2x)+ · · ·+ cncos(nx)

+d1sen(x)+d2sen(2x) · · ·+ cnsen(nx) (7.12)

se conoce como polinomio trigonométrico; si cn y dn no son ambos nulos, entonces se dice que f (x)

tiene orden n.

■ Ejemplo 7.1

f (x) = 5+ cos(x)−3cos(2x)+7sen(4x)

es un polinomio trigonométrico. c0 = 5, c1 = 1, c2 =−3, d1 = d2 = d3 = 0 y d4 = 7 de orden 4. ■

Por la expresión (7.12) los polinomios trigonométricos de orden n o menos son combinaciones

lineales de

1, cos(x) cos(2x), cos(nx) sen(x), sen(2x) · · · sen(nx) (7.13)
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y forman un subespacio W del espacio vectorial de funciones continuas; generado por las 2n+1

funciones de (7.13). Se puede demostrar que estas funciones son linealmente independientes y, como

consecuencia, forman una base para W .

Si se desea hallar una aproximación para una función continua f (x) sobre el intervalo [−π,π]

o [0,2π] por medio de un polinomio trigonométrico de orden n o menor se deberá calcular la

proyección ortogonal de f sobre W . Para hallar esa proyección ortogonal (Teorema 4.5.1), se deberá

encontrar una base ortonormal g0, g1, g2, · · · , g2n para W y luego utilizar la fórmula

PW ( f ) = ( f ,g0)g0 +( f ,g1)g1 + · · ·( f ,g2n)g2n (7.14)

Es posible obtener una base ortonormal para W aplicando el método de Gram-Schmidt a la base

(7.13) usando el producto interno (7.8). Esto conduce a la base ortonormal.

g0 =
1√
2π

, g1 =
1√
π

cos(x), g1 =
1√
π

cos(2x),

· · · , gn =
1√
π

cos(nx), gn+1 =
1√
π

sen(x),

· · · gn+1 =
1√
π

sen(nx)

(7.15)

Si se introduce la notación

a0 =
2√
2π

( f ,g0), a1 =
1√
π
( f ,g1)), · · · an =

2√
2π

( f ,gn),

b1 =
1√
π
( f ,gn+1), · · · bn =

2√
2π

( f ,g2n), (7.16)

Reemplazando en la Ec.(7.14), se obtiene

PW ( f ) =
a0

2
+[a1cos(x)+ · · ·+ancos(nx)]+ [b1sen(x)+ · · ·+bnsen(nx)] (7.17)

Los números a0, a1, · · · , an, b1, · · · , bn se denominan coeficientes de Fourier de f .

■ Ejemplo 7.2 Se desea hallar la aproximación de mínimos cuadrados de f (x),

f (x) =

 −1 cuando −π ≤ x≤ 0,

1 cuando 0 < x≤ π

en [−π,π] por medio de un polinomio trigonométrico de orden 2 o menor.

a0 =
1

2π

∫
π

−π

f (x)dx =
1

2π
(
∫ 0

−π

−1dx+
∫

π

0
−1dx) =

1
2π

(−π +π) = 0
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Figura 7.2: Aproximación mediante un polinomio trigonométrico

b1 =
1
π

∫
π

−π

f (x)sen(x)dx =
1
π
(
∫ 0

−π

−sen(x)dx+
∫

π

0
sen(x)dx =

4
π

El resto de los coeficientes son nulos, así que la mejor aproximación a f (x) (por medio de un

polinomio trigonométrico de orden 2 o menor) es,

f (x)≈ 4
π

sen(x)

La función y su aproximación se muestran en la figura 7.2. ■

■ Ejemplo 7.3 Se desea hallar la aproximación de mínimos cuadrados de f (x) = x en [0,2π] por

medio de un polinomio trigonométrico de orden 2 o menor.

a0 =
1
π

∫ 2π

0
f (x)dx =

1
π

∫ 2π

0
xdx = 2π (7.18)

Para k = 1,2, · · ·n se puede verificar que, realizando integración por partes, se obtiene

ak =
1
π

∫ 2π

0
f (x)cos(kx)dx =

1
π

∫ 2π

0
xcos(kx)dx = 0

bk =
1
π

∫ 2π

0
f (x)sen(kx)dx =

1
π

∫ 2π

0
xsen(kx)dx =

−2
k
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Por lo tanto, la aproximación de mínimos cuadrados por medio de un polinomio trigonométrico de

orden 2 o menor es

x≈ π−2sen(x)− sen(2x)

■

De lo anterior se desprende que la aproximación de mínimos cuadrados de f (x) = x en [0,2π]

por medio de un polinomio trigonométrico de orden n o menor, teniendo en cuenta (7.19), es

x≈ π−2(sen(x)+
sen(2x)

2
+

sen(3x)
3

+ · · · sen(nx)
n

y resulta obvio esperar que el error cuadrático medio disminuya a medida que se aumenta el número

de términos en la aproximación de mínimos cuadrados

f (x)≈ a0

2
+

n

∑
k=1

(akcos(kx)+bksen(kx))

Se puede probar que el error cuadrático medio tiende a 0 cuando n→ ∞, esto se denota escribiendo

f (x) =
a0

2
+

∞

∑
k=1

(akcos(kx)+bksen(kx)) (7.19)

El segundo miembro de esta ecuación se denomina serie de Fourier para f . Las series de este

tipo tienen importancia primordial en ingeniería, ciencias y matemáticas.

7.2.2 Series de Haar. Bases de wavelets ortogonales

En la sección anterior se describió el sistema trigonométrico.

{1,cos(nx),sen(nx)}n∈N (7.20)

de período 2π a partir del cual se halla la serie de Fourier de una función f (x). Puede reescribirse

con exponenciales complejas

{einx}n∈Z (7.21)

ya que por la fórmula de Euler, eix = cos(x)+ isen(x).

Los sistemas (7.20) y (7.21) pueden obtenerse uno del otro mediante combinaciones lineales

simples. En particular, para n ∈ Z,

einx =

 cos(nx)+ isen(nx) si n ̸= 0,

1 si n = 0



7.2 Problemas de aproximación de funciones 277

y para n ∈ N

cos(nx) =
einx + e−inx

2

y

sen(nx) =
einx− e−inx

2i
.

La serie de Fourier (7.19) puede escribirse, entonces,

f (x) = ∑
k∈Z

c(k)einx (7.22)

con ciertos coeficientes c(k). Vamos a presentar en esta sección un ejemplo de sistema ortogonal en

[0,1] conocido como el sistema de Haar. Es la más simple e históricamente el primer ejemplo de

una base wavelet ortogonal. Muchas de sus propiedades contrastan con las propiedades del sistema

trigonométrico (7.21):

tienen soporte en pequeños subintervalos de [0,1], mientras que las funciones base de Fourier

son no nulas en todo el intervalo [0,1].

son escalonadas, con discontinuidades, mientras que las funciones base de Fourier con C∞ en

[0,1].

las bases de Haar tienen un índice que indica la escala j que reemplaza a la frecuencia n de las

bases de Fourier.

las bases de Haar proveen una representación eficiente para funciones que son suaves en

algunos segmentos y con picos y discontinuidades en otros, mientras que las bases de Fourier

dan buenas representaciones para funciones con comportamiento oscilatorio en intervalos

largos.

Alfréd Haar (1885 - 1933)

Matemático húngaro de origen judío, nacido en 1885. En 1904 comenzó a estudiar en la

Universidad de Gotinga. Su doctorado fue supervisado por David Hilbert. La medida de Haar, la

ondícula de Haar y la transformación de Haar reciben su nombre. Entre 1912 y 1919 enseñó en la

Universidad Francisco José de Kolozsvár. Junto con Frigyes Riesz, hizo de la Universidad de Szeged

un centro de las matemáticas. También fundó la revista Acta Scientiarum Mathematicarum junto con

Riesz. [2]
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Figura 7.3: Bases de Haar. Escala j = 2 a la izquierda y j = 4 a la derecha

Para cada par de enteros j, k ∈ Z, se definen

el intervalo diádico I j,k:

I j,k = [2− jk,2− j(k+1)) (7.23)

y la función de Haar:

h j,k(x) = 2 j/2(χIl
j,k
(x)−χIr

j,k
(x)) (7.24)

De esta forma, h j,k(x) está soportada en el intervalo I j,k (no se anula en ese intervalo). Decimos

que la función de Haar h j,k(x) está asociada a ese intervalo.

La longitud del intervalo I j,k es 2− j. Si j es grande, la longitud es pequeña. Se dice, entonces,

que la función h j,k(x) está bien localizada en el tiempo. Esta propiedad contrasta con las bases de

Fourier que tienen todas módulo 1 para todo x ∈ [0,1) y por lo tanto no se anulan para ningún x de

ese intervalo.

En la Figura 7.3 se muestra un ejemplo de aproximación de una función mediante bases de Haar,

para dos escalas o niveles de resolución diferentes.

Las bases de Haar, creadas por Alfred Haar en 1909, fueron el primer registro histórico de lo que

hoy se denomina familias de funciones ondículas o wavelets desarrolladas en los últimos 40 años



7.2 Problemas de aproximación de funciones 279

para poder analizar señales que no se comportan en forma estacionaria o que presentan cambios

bruscos en intervalos pequeños. Esas señales de interés provienen de distintas áreas como la medicina,

sismología, geología, electrónica y también astronomía. Así, la Teoría Wavelet, caracterizada por una

base matemática compleja, constituye una potente herramienta en el procesamiento de señales y de

imágenes digitales. Permite la reducción de ruido, la compresión de señales ( muy importante tanto

para la transmisión de grandes cantidades de datos como en su almacenamiento) o la detección de

determinados objetos en imágenes o en irregularidades locales, por ejemplo en un electrocardiograma

(ECG).

El concepto de wavelets como lo conocemos fue propuesto por Jean Morlet y el equipo del

Centro de Física Teórica de Marsella, Francia. Con el fin de descomponer y estudiar ciertas señales

sísmicas, diseñaron la wavelet que se muestra en la Figura 7.4. Cabe señalar que los métodos del

análisis wavelet fueron desarrollados principalmente por Yves Meyer y sus colegas y que recién

en 1988 apareció el primer algoritmo de cálculo y su autor fue Stéphane Mallat. Desde entonces

la investigación acerca del análisis Wavelet captó mucho interés y se destacan científicos como

Ingrid Daubechies, quien en 1988 creó una familia de ondículas o wavelets ortogonales con soporte

compacto. En la Figura 7.5 se muestra la wavelet de Daubechies de orden 6, utilizada con frecuencia,

por su similitud, para analizar electrocardiogramas.

Su aplicación se extiende a campos muy diversos. En cuanto a las aplicaciones en medicina,

el análisis con Wavelets permite interpretar los resultados de exámenes médicos, facilitando el

diagnóstico de enfermedades.

En Astronomía, algunos ejemplos del uso de Wavelets son:

para el procesado de imágenes planetarias.

en el estudio de la actividad solar.

para la detección de períodos en curvas de luz.

Ingrid Daubechies

Es una matemática y física belga. Nació en 1954. Estudió física en la Vrije Universiteit Brussel (la

universidad de Bruselas en lengua flamenca), en la que también se doctoró en física teórica en 1980

y estuvo investigando hasta 1987. Ese año se trasladó a Estados Unidos con su marido, el también

matemático Robert Calderbank, recién casados. Daubechies trabajó en los Laboratorios Bell de Nueva
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Figura 7.4: Wavelet Morlet

Figura 7.5: Wavelet de Daubechies y latido de un ECG
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Jersey y en varias universidades estadounidenses. En 1993 se convirtió en profesora de matemática

computacional en la Universidad de Princeton hasta 2011, cuando trasladó a la Universidad Duke

como catedrática de matemáticas. En 2012, el rey Alberto II de Bélgica la concedió el título de

Baronesa en reconocimiento de su trayectoria profesional. Es miembro de numerosas instituciones.

Fue la primera mujer matemática en presidir la Unión Matemática Internacional (desde 2011).

En 1993 fue admitida en la Academia Estadounidense de las Artes y las Ciencias, en 1998 en

la Academia Nacional de Ciencias de Estados Unidos y en 2012 en la Sociedad Estadounidense

de Matemática. Además, ha sido invitada a participar en numerosas ocasiones en el Congreso

Internacional de Matemáticas. Daubechies ha recibido numerosos premios, entre ellos destacan el

Premio Nemmers en Matemáticas de 2012 y el Premio Fundación BBVA Fronteras del Conocimiento

en Ciencias Básicas 2012 junto a David Mumford. En 2020 fue reconocida, junto a Emmanuel

Candès, Yves Meyer y Terence Tao, con el Premio Princesa de Asturias de Investigación Científica

y Técnica por «haber realizado contribuciones pioneras y trascendentales a las teorías y técnicas

modernas del procesamiento matemático de datos y señales». En 2023 recibió el Premio Wolf en

Matemáticas, por sus investigaciones sobre ondículas y análisis armónico aplicado. Daubechies es la

primera mujer que ha recibido este reconocimiento.

Ingrid Daubechies ha trabajado en el campo de las ondículas, herramientas que permiten el

análisis de señales para entregar información temporal y frecuencial de manera casi simultánea.

En 1988, Daubechies propuso la ondícula ortogonal con soporte compacto (conocida como

ondícula Daubechies), y en 1992 la ondícula biortogonal, también conocida como ondícula CDF

(Cohen-Daubechies-Feauveau), empleada para el formato de compresión de imágenes JPEG 2000.

Estas herramientas matemáticas permiten el avance e investigación tanto en matemática teórica

como aplicada, pues sirve en la demostración tanto de teoremas como en el desarrollo de las

telecomunicaciones, tanto en audio como vídeo, y hasta el ámbito biosanitario, con transmisión de

datos de imágenes sanitarias. [11]





Apéndice: Ejercicios preliminares

¿Puede un escalar no ser un número?

1) A.B.C.D.E.F.G.H.I.J.K.L.M.N.P.Q.R.S. T.U.V.W.Y.Z

2) AA, B; AAA, C; AAAA, D; AAAAA, E; AAAAAA, F; AAAAAAA, G; AAAAAAAA, H;

AAAAAAAAA, I; AAAAAAAAA, J;

3) AKALB; AKAKALC; AKAKAKALD; AKALB; BKALC; CKALD; DKALE; BKELG;

GLEKB; FKDLJ; JLFKD.

4) CMALB; DMALC; IMGLB.

5) CKNLC; HKNLH; DMDLN; EMELN.

6) JLAN;JKALAA;JKBLAB; AAKALAB; JKJLBN; JKJKJKJKLCN; FNKGLFG.

7) BPCLF; EPBLJ; FPJLFN.

8) FQBLC; JQBLE; FNQFLJ.

9) CRBLI; BRELCB.

10) JPJLJRBLSLANN; JPJPJLJRCLTLANNN; JPSLT; JPTLJRD.

11) AQJLU; UQJLAQSLV.

12) ULWA; UPBLWB; AWDMALWDLDPU; VLWNA; VPCLWNC; VQJLWNNA;

VQSLWNNNA; JPEWFGHLEFWGH; SPEWFGHLEFGWH.

13) GIWIHYHN; TKCYT; ZYCWADAF.
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14) DPZPWNNIBRCQC.

Mensaje interplanetario

Por Adrián Paenza

Supongamos que uno quisiera mandar un mensaje al espacio de manera tal de que en el caso de

que fuera interceptado por algún ser “inteligente”, éste pudiera leerlo e interpretarlo. ¿Cómo hacer

para escribir algo en “ningún idioma” en particular, pero lo suficientemente explícito como para que

cualquiera que pueda “razonar” lo pueda entender? Por otro lado, una vez superado el obstáculo del

“medio” o sistema de comunicación que se va a utilizar y que suponga que “el otro” va a entender,

¿qué escribirle?, ¿qué decirle?

Ahora quiero contar una historia que apareció en un diario japonés. Alicia Dickenstein, una

de las mejores matemáticas argentinas de la historia y actual profesora en Exactas (UBA), volvía

de un viaje por Oriente y me comentó lo que había leído en la revista El Correo de la Unesco,

correspondiente al mes de enero de 1966. Me tomo el atrevimiento de reproducirlo textualmente ya

que el texto circula por Internet desde hace muchísimo tiempo:

“En 1960, Ivan Bell, un profesor de inglés en Tokio, oyó hablar del ‘Project Ozma’, un plan de

escucha de los mensajes que por radio pudieran venirnos desde el espacio. Bell redactó entonces un

mensaje interplanetario de 24 símbolos, que el diario japonés Japan Times publicó en su edición del

22 de enero de 1960, pidiendo a sus lectores que lo descifraran. El diario recibió cuatro respuestas.

De las cuatro, una correspondió a una lectora norteamericana que contestó usando el mismo código

que había sido utilizado para escribir el mensaje, agregando que ella vivía en Júpiter.”

Acá usted se va a encontrar con el mensaje de Ivan Bell que, como dice el artículo original, es

“extraordinariamente fácil de descifrar y mucho más sencillo de lo que parece a simple vista”.

Es un ejemplo muy disfrutable y original de lo que puede hacer el intelecto humano, cualquiera

sea el idioma que hable: sólo se requiere tener voluntad de pensar. Acá va la lista de 14 frases. La

numeración corre por cuenta mía, pero piense que cada línea es una parte del mensaje.

Ejercicios

Producto escalar. Norma. Distancia y ángulo entre vectores

1. Calcule u⃗ · v⃗, siendo · el producto escalar, para u⃗ = (2,−5,−1) y v⃗ = (3,2,−3).
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import numpy as np

a=np.array ([2,-5,-1])

b=np.array ([3,2,-3])

print (a.dot(b))

2. Sea v⃗= (1,-2,2,0), encuentre un vector unitario u⃗ en la misma dirección que v⃗.

3. Demuestre que c⃗ es ortogonal a d⃗ siendo c⃗ = (4/3,-1, 2/3) y d⃗ = (5, 6,-1).

4. Determine el coseno del ángulo entre los vectores u⃗ = (2,−5,−1) y v⃗ = (3,2,−3), en

estadística este valor recibe el nombre de coeficiente de correlación. Si el valor esta cercano

a 1 o a −1 los datos están relacionados, de lo contrario si el valor es cercano a 0 no existe

ninguna relación entre ellos.

5. Encuentre la distancia entre x⃗ = (1,−1,2) y y⃗ = (3,4,−5).

Sistemas de ecuaciones lineales

6. Dado el sistema

 x1 + x2 + x3 = 1

x1−2x3 = 3

a) Compruebe que la terna (2t +3,−3t−2, t) es solución de dicho sistema, ∀t ∈ R .

b) Justifique por qué este sistema tiene infinitas soluciones.

c) Indique cómo se clasifican los sistemas de ecuaciones lineales.

7. Dados los sistemas

 x1− x2 = 3

2x1− x2 = 5

y

 x1− x2 = 3

x2 =−1

a) Compruebe que tienen el mismo conjunto solución.
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b) Comente la relación entre los dos sistemas.

c) Mencione cuáles son las llamadas operaciones elementales.

8. Encuentre los valores de b que hacen que el sistema


x1 +bx2−2x3 = 2

−x1 +(b−2)x2 +2x3 =−2

2x1 +2x2 +(b−4)x3 = 3

Tenga:

1) Una solución.

2) Infinitas soluciones.

3) Ninguna solución.

4) Describa el conjunto solución para a) y b)

Nota: utilice el algoritmo de eliminación Gauss prestando atención a la notación de las

operaciones.

Matrices. Matrices semejantes. Matrices elementales.

El mismo Arthur Cayley relató en 1894 que lo condujo a las matrices, el ser estas un modo

conveniente de expresar las ecuaciones x′ = ax+by

y′ = cx+dx

Simbolizando esta transformación lineal con dos variables independientes por medio de la

disposición en cuadro.

A =

 a b

c d


9. Halle las matrices X e Y sabiendo que:

X +Y =

 3 1 −4

7 1 5



2X−3Y =

 −4 −3 2

−6 2 −5


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10. Si A es una matriz de tamaño m× n y B es una matriz de tamaño n× p, el producto de las

matrices A y B es la matriz de tamaño m× p, cuyo elemento (i,k) es el producto escalar de la

fila i de la matriz A por la columna k de B, o sea:

(A.B)i,k = ∑
n
j=1 ai jb jk

Dadas las matrices:

 2 −1 1

1 0 2

,


1 2

0 1

3 4

,

 1 3

4 5


Analice en qué casos es posible calcular: A.B−B.A, a ésta diferencia se la conoce como

conmutador.

import numpy as np

a = np.array ([[1, 0],

[0, 1]])

b = np.array ([[4, 1],

[2, 2]])

a @ b

11. Dadas las matrices

A =


1 0 2 −1 3

0 1 5 1 0

0 0 1 2 −1

0 0 2 3 5

 y B =



2 3

4 5

1 1

2 −1

1 1


Es de destacar que se simplifica el producto A.B si se utilizan submatrices.

12. Calcule A6 siendo:

A =


0 1 0 0

1 0 0 0

1 2 1 −1

1 −1 −1 1


13. Dados los tres pares de datos (0,−1), (1,1) y (2,0), halle el polinomio de grado menor o

igual que 2: p(x) = a0 +a1x+a2x2, que pasa por dichos pares de datos. Evalue el valor de

p(x) si x = 2/3. Al polinomio resultante se lo denomina: Polinomio de Interpolación.



288 EJERCICIOS PRELIMINARES

Determinantes y matrices inversibles. Rango de una matriz.

14. ¿ Es invertible la siguiente matriz?:

A =


1 −2 1

2 3 5

−1 −5 −4



Justifique de varias maneras su conclusión.

15. Sea la matriz:

A =


2 −1 0

3 b 1

b 1 1


Encuentre los valores del parámetro b para que A sea invertible.

16. Piense una forma conveniente para calcular el valor del determinante de una matriz cuadrada

y úselo para calcular el determinate de:

A =


2 0 0 0

0 3 0 1

0 3 2 −2

0 −3 −1 −2



17. Encuentre el rango de la matriz en función del parámetro a:

A =


1 a −1 2

2 −1 a 5

1 10 −6 1


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18. Demuestre que si

1) D = (di j) una matriz diagonal de tamaño n×n. Entonces Det(D) = ∏
n
i dii.

2) Si A es una matriz triangular del tamaño n×n, entonces Det(A) es producto de los elementos

diagonales de A.

3) Una matriz A de tamaño n×n, el Det(tA) = tnDet(A) siendo t un escalar cualquiera.

19. Demuestre el siguiente enunciado:

Supongamos que u⃗0 es una solución particular del sistema de ecuaciones lineales A⃗x = b⃗. Si

v⃗ es una solución cualquiera del sistema homogéneo asociado A⃗x = 0⃗, entonces u⃗0 + v⃗ es

solución de A⃗x = b⃗.

Aplique lo demostrado para el siguiente sistema:


x+ z+w = 4

2x+ y−w =−2

3x+ y+ z = 7

Autoevaluación

Verdadero o Falso.

1. Si la distancia entre u⃗ y v⃗ es igual a la distancia de u⃗ y −⃗v, entonces u⃗ y v⃗ son ortogonales.

2. Sean las matrices A, B ∈ Rnxn se verifica que ABt = AtB.

3. Consideremos la matriz A ∈ R3x3, donde

A =


x 0 1

0 x 0

1 0 x


La ecuación Det(A) = 0, no tiene solución.

4. Sean A, B ∈ Rnxn, se verifica la relación (A+B)2 =A2 +2AB+B2.

5. Sea A ∈ Rnxn una matriz invertible se verifica que Det(A−1) =−Det(A) = 1.

6. Sea A⃗x= b⃗ un sistema de m ecuaciones con n incógnitas, si se verifica rango de A es n, entonces

el sistema es compatible determinado.

7. Sea A ∈ Rnxn de forma tal que A2 = A , se verifica que Det(A) = 0 o Det(A) = 1.





Glosario

C([a,b] espacio vectorial de las funciones continuas en [a,b]

ColA espacio vectorial generado por los vectores columna de la matriz A.

Det(A) o | A | determinante de la matriz A.

d(⃗x, y⃗) = ∥⃗x− y⃗∥ distancia entre los vectores x⃗ e y⃗.

dim(V ) dimensión del espacio vectorial V .

E espacio euclídeo

Ek proyecciones tales que Im(Ei) = N(T −λiI).

Eλi espacio propio correspondiente a λi.

f ∗ transformación adjunta de una transformación lineal f .

FilA espacio vectorial generado por los vectores fila de la matriz A.

A(⃗x, y⃗) forma bilineal

Im(T ) imagen de la transformación lineal T .

⟨⃗z⟩ subespacio generado por el vector z⃗

L(S) subespacio vectorial de V generado por S.

L(V ) espacio vectorial de transformaciones lineales de V en V (endomorfismos).

L(V,W ) espacio vectorial de transformaciones lineales de V en W .
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mT polinomio minimal.

N(T ) núcleo de la transformación lineal T .

Nul(A) espacio nulo de la matriz A.

PK [x] polinomios en x, con coeficientes en K.

P(n)
K [x] polinomios en x, con coeficientes en K de grado ≤ n.

PT (λ ) polinomio característico de T .

PB,B′ matriz del cambio de base de B′ a B.

PS(⃗v) proyección ortogonal de v⃗ sobre el subespacio S.

φ (⃗x, y⃗) = (⃗x, y⃗) producto interno

r(T ) rango de la matriz T .

S = ⟨⃗v⟩ subespacio generado por el vector v⃗.

S⊥ complemento ortogonal de S en un espacio vectorial (V con producto interno).

Tr(A) traza de la matriz A

V ∗ espacio dual de V .
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Respuestas a las autoevaluaciones

Apéndice: 1. V, 2. F, 3. F, 4. F, 5. F, 6. F, 7. V

1.6.2: 1. V, 2. F, 3. F, 4. V, 5. V, 6. F, 7. V, 8. V, 9. F

2.8.2: 1. F, 2. V, 3. F, 4. V, 5. F, 6. V, 7. V, 8. V, 9. V, 10. V, 11. V

3.7.2: 1. V, 2. V, 3. V, 4. F, 5. F, 6. V, 7. V, 8. F, 9. V, 10. F, 11. F,

12. V, 13.V, 14. F, 15.F, 16.V

4.7.2: 1. V, 2. V, 3. V, 4. V, 5. V, 6. V, 7. V, 8. V, 9. V, 10. V, 11. V,

12. V, 13. F, 14. V, 15. F, 16. V, 17. V, 18. V

5.2.2: 1. V, 2. F, 3. F, 4. F, 5. V

6.11.2: 1. F, 2. V, 3. V, 4. V, 5. F, 6. V, 7. V, 8. V
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