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Prólogo

 

Este libro es el resultado de enseñar durante muchos años los temas de Álgebra Lineal tanto en la Facultad de Ingeniería como en la Facultad de Ciencias Astronómicas y Geofísicas y de las contribuciones importantes que han realizado lxs estudiantes y que han servido notablemente al mejoramiento de mis clases.

En el texto, los desarrollos teóricos y las técnicas se presentan de manera equilibrada. Se describen con detalle y se complementan con numerosos ejemplos, enfatizando la importancia de la interpretación geométrica. La Licenciada en Astronomía Lucía Rizzo Buschiazzo, contribuyó con la elaboración de los problemas de aplicación y de las guías de trabajos prácticos.

Consideramos que el material redactado es adecuado como apoyo y guía de estudio para el desarrollo de la asignatura Álgebra Lineal, cursada por lxs estudiantes de segundo año de la carrera Licenciatura en Astronomía.
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Introducción

 

Introducción

 

El Álgebra Lineal es una rama de la Matemática en la que se introducen numerosos conceptos abstractos. Es una disciplina de gran utilidad en la actualidad, en la resolución de problemas complejos y de grandes dimensiones.

Este libro abarca los temas básicos de Álgebra Lineal como son: espacios vectoriales, transforma-ciones lineales, diagonalización de una matriz y espacios vectoriales con producto interno. Si bien los temas tratados son los mismos que aparecen en la mayoría de los textos introductorios al Álgebra Lineal, el punto de vista con que se enfoca la teoría y la ejercitación se aparta del enfoque tradicional, y se enfatizan las aplicaciones. En todos los temas se establece la conexión fundamental con la interpretación geométrica. Se presenta una gran variedad de ejemplos y se proponen, además de ejercicios, actividades de investigación especialmente diseñadas para estudiantes de Astronomía. El texto tiene además un capítulo de cálculo tensorial y otro capítulo que describe aplicaciones en la resolución de sistemas ecuaciones diferenciales y en la aproximación de funciones.

En cuanto al origen, la palabra Álgebra procede del título de un tratado de un matemático, geógrafo y astrónomo persa conocido como Al-Juarismi. Vivió aproximadamente entre los años 780 y 850, en un tiempo de esplendor del mundo islámico. Su tratado, el Hisab al-yabr wa’l muqabala es

un Compendio de cálculo por restauración y reducción [1]:

12

Al-yabr

 

Al-yabr, restauración, la palabra del título que ha dado origen al término álgebra, es una de

las operaciones básicas que ofrece para resolver ecuaciones y que consiste en pasar los términos negativos de un lado de la ecuación como positivos al otro. Mientras que la otra operación, la muqabala, consiste en simplificar la ecuación agrupando los términos similares.

 

La historia del Álgebra Lineal moderna se remonta a mediados del siglo XIX con los trabajos de William Hamilton, quien introdujo el uso del término vector. Sin embargo, fue recién en la segunda mitad del siglo XX, cuando se incorporó al Álgebra Lineal como una materia básica e introductoria en las matemáticas universitarias.

Por sus múltiples aplicaciones, el estudio del Álgebra Lineal cobra cada día más importancia. Su teoría es extensamente usada en el análisis funcional, en el análisis vectorial y en las ecuaciones diferenciales, entre otras áreas. Cabe señalar que sus numerosas aplicaciones no se restringen al campo de las ciencias exactas, sino que se extienden también al campo de las ciencias naturales y de las ciencias sociales.

Con la escritura de este libro he intentado hacer interesantes y accesibles los temas de Álgebra Lineal, equilibrando los desarrollos teóricos con las técnicas que se utilizan en las aplicaciones, pretendiendo proporcionar a lxs estudiantes las habilidades algebraicas necesarias para resolver problemas. He resaltado las interpretaciones geométricas de conceptos importantes, como las transformaciones lineales y el producto interno.

El texto tiene siete capítulos, con una breve introducción al comienzo de cada uno de ellos. Para

facilitar la lectura, en todos los capítulos se ha indicado con i a las observaciones importantes. Además, para una mejor comprensión de los temas, se han incluido numerosos ejemplos.

A continuación de la teoría, en cada capítulo, y fruto de la colaboración de Lucía Rizzo Buschiazzo, se proponen actividades a desarrollar por lxs estudiantes. Su tarea consistió en el diseño de un problema de aplicación, la selección de ejercicios y la elaboración de una autoevaluación en cada capítulo. Propuso, además, una serie de ejercicios para realizar como precalentamiento antes de abordar el libro que se incluye en el apéndice. Estos temas, como también los relacionados con las plantillas de edición e imágenes de este proyecto, se definieron a partir del intercambio de ideas y de un trabajo conjunto.

Por último, y para estimular al lector el interés sobre el desarrollo histórico de los temas, se incluyen varias notas históricas dispersas a lo largo del libro, y semblanzas breves sobre científicos
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que han realizado aportes muy valiosos al desarrollo del Álgebra Lineal.

 

Template : the Legrand Orange Book Template

http://www.latextemplates.com/template/the-legrand-orange-book

 

Imagen en la portada de los capítulos: Nebulosa Roseta, IC 1396B,

obtenida por el relevamiento fotométrico IPHAS/N, preparada por Nick Wright.
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1. Espacios Vectoriales

 

El concepto de espacio vectorial generaliza las propiedades que tienen las operaciones de suma y producto por escalares para los vectores de   2      3 R y R . Abordaremos en este capítulo la estructura de espacio vectorial, objeto básico de estudio del Álgebra Lineal. A sus elementos se los denomina vectores, independientemente de su naturaleza.

 

1.1   Definición de espacio vectorial. Ejemplos

El conjunto de los números reales y el conjunto de los números complejos, con los cuales ya se trabajó, tienen propiedades similares. En ambos conjuntos pueden definirse dos operaciones + y . que satisfacen ciertas propiedades y reciben el nombre de cuerpo. Trabajaremos tanto con el cuerpo

de los reales, R como con el cuerpo de los complejos C, denotándolos por K. Al estudiar vectores en el plano y en el espacio, se ha definido la suma de vectores y la multiplicación por un número real, y se vieron las propiedades que satisfacían. También para el conjunto de polinomios. Cuando en varios conjuntos distintos aparecen estructuras similares es conveniente axiomatizar éstas y darles un nombre al ente resultante, con la ventaja de que estudiando esta estructura, quedan estudiadas todas las estructuras que en ella se encuadran. Cuando en un conjunto se da una estructura similar a la de los ejemplos anteriores, se dice que se tiene un espacio vectorial.

16 Capítulo 1. Espacios Vectoriales

 

Figura 1.1: ⃗ u + ⃗ v = ⃗ v + ⃗ u

[image: ]

 

Definición 1.1.1 Un conjunto V , cuyos elementos se denotan mediante ⃗ u, ⃗ v, ⃗ w, se dice que es

un espacio vectorial sobre el cuerpo K, si en él se han definido dos operaciones: la suma, de

manera que a cada par de elementos ⃗ u y ⃗ v de V se le hace corresponder el elemento ⃗ u +⃗ v de V ,

denominado suma de ⃗ u y ⃗ v, y la multiplicación por escalares, de manera que a todo elemento ⃗ u

de V y a todo elemento a de K se le hace corresponder el elemento a⃗ u de V , y se satisfacen las

siguientes propiedades:

 

1. Conmutativa ⃗ u + ⃗ v = ⃗ v + ⃗ u   ∀ ⃗ u y ⃗ v ∈ V . 2. Asociativa ⃗ u + ( ⃗ v + ⃗ w ) = ( ⃗ u + ⃗ v ) + ⃗ w , ∀ ⃗ u, ⃗ v y ⃗ w ∈ V . 3. Existe un elemento de                 ⃗                                    ⃗ V , designado por 0 y denominado elemento neutro , tal que ⃗ u + 0 = ⃗ u

∀ ⃗ u ∈ V .

4. Para todo elemento ⃗ u ∈ V , existe un elemento designado por − ⃗ u y denominado elemento

opuesto                          ⃗ de ⃗ u , tal que ⃗ u + ( − ⃗ u ) = 0

5. 1 ⃗ u = ⃗ u ∀ ⃗ u ∈ V , donde 1 denota el elemento unidad del cuerpo K. 6. a(b ⃗ u ) = (ab) ⃗ u   ∀ ⃗ u ∈ V , y ∀ a y b ∈ K. 7. (a + b) ⃗ u = a ⃗ u + b ⃗ u ∀ ⃗ u ∈ V , y todo a y b ∈ K. 8. a ( ⃗ u + ⃗ v ) = a ⃗ u + a ⃗ v ∀ ⃗ u, ⃗ v ∈ V , y ∀ a ∈ K.

 

En la Figura 1.1 se muestra la propiedad conmutativa 1.

 

i

Los elementos del espacio vectorial reciben el nombre genérico de vectores. 1.1 Definición de espacio vectorial. Ejemplos 17

 

Las primeras cuatro propiedades se refieren a la suma en V , las dos que siguen a la multiplicación de elementos de V por escalares y las dos últimas son las propiedades distributivas de una operación con respecto a la otra.

Si K es R se dice que V es un espacio vectorial real, y si K es C se dice que es un espacio vectorial complejo.

 

■              R                                                                        2 Ejemplo 1.1 es un espacio vectorial sobre Q , C es un espacio vectorial sobre R y sobre Q . R o   3 R (vectores en el plano, o en el espacio), con las operaciones usuales son espacios vectoriales

sobre R. ■

 

■ Ejemplo 1.2

K n = {(x x     x   x ∈ K , , · · · , ) ,, j = 1, 2,· · · ,n}

1   2       n     j

con las operaciones usuales es un espacio vectorial sobre                    n K . En particular, R es un espacio vectorial real y   n C es un espacio vectorial complejo. ■

 

■                   K Ejemplo 1.3 Sea P [x] el conjunto de todos los polinomios en la variable x sobre el cuerpo K, es decir, todos los elementos de la forma

 

p                 2             n ( x ) = a x · · · a x + a x + a + + + · · ·

0     1      2             n

 

donde los coeficientes a j ∈ K con las operaciones suma de polinomios y multiplicación por escalares. P K [x] es un espacio vectorial sobre K. ■

 

■ Ejemplo 1.4 Sea C ([a,b]) el conjunto de todas las funciones continuas definidas en el intervalo

real [a, b], con valores en R, { f : [a,b] →   } R con las operaciones suma de funciones,

 

( f + g)(x) = f(x) + g(x),

y multiplicación de una función por un escalar,

 

(a f )(x) = a( f (x)).

 

Puede comprobarse fácilmente que C([a,b]) es un espacio vectorial. El elemento neutro es la función nula. ■

 

■ ⃗   ⃗            m×n  Ejemplo  1.5  El conjunto  S  (  A  )  de soluciones del sistema homogéneo  A  X  =  0, donde  A  ∈  R  y

⃗                   n                                               n X = ( x x x 1 , · · · 2 , , n ) ∈ R es un espacio vectorial sobre R . Es un subespacio de R.              ■ 18 Capítulo 1. Espacios Vectoriales

 

i Los siguientes son algunos resultados que se deducen de las propiedades que definen un espacio

vectorial y se dejan como ejercicio para el lector.

• El elemento neutro de un espacio vectorial es único. • El opuesto de cada elemento en un espacio vectorial es único. •                                        ⃗ Para todo ⃗ u de un espacio vectorial V , 0 .⃗ u = 0. • Para todo elemento ⃗ u de un espacio vectorial V , (−1) ⃗ u es su opuesto. •                            ⃗   ⃗              ⃗ En todo espacio vectorial V , a 0 = 0, donde a ∈ K y 0 es el elemento neutro de V .

 

1.2   Subespacio vectorial

Algunos subconjuntos de un espacio vectorial V son a su vez espacios vectoriales con las operaciones definidas en V ; estos subconjuntos especiales reciben el nombre de subespacios vectoriales de V .

 

Definición 1.2.1 Un subespacio vectorial de un espacio vectorial V es un subconjunto S no vacío

de V , que a su vez es un espacio vectorial con las operaciones definidas en V .

 

i Para demostrar que un subconjunto S es un subespacio vectorial no es necesario comprobar de

nuevo que satisface todas las propiedades del espacio vectorial. Es suficiente demostrar que contiene al vector nulo, que la suma de dos elementos de S es otro elemento de S, y que la multiplicación de un elemento de S por un elemento del cuerpo K, es otro elemento de S:

 

1. ⃗ 0 ∈ S

2. Si ⃗ u y ⃗ v ∈ S, ⃗ u + ⃗ v ∈ S

3. Si a ∈ K y ⃗ u ∈ S, a ⃗ u ∈ S

 

■                                                     ⃗ Ejemplo 1.6 Sea V un espacio vectorial sobre K . S = { 0} es un subespacio de V .              ■

■ ■  Ejemplo  1.7  V  es un subespacio de  V  .

 

■                                                         R Ejemplo 2 1.8 Veamos cómo caracterizar los subespacios de.

1. S = {(0,0)} es un subespacio.

2. Supongamos S un subespacio que contiene algún elemento ⃗ u no nulo. Entonces para todo a

∈ R, a ⃗ u ∈ S. Si esos son todos los elementos de S, S es un subespacio y gráficamente es una recta por el origen.

3. Si S contiene a un⃗ v que no es a ⃗ v, contiene a sus múltiplos a ⃗ v. Luego contiene a dos rectas L ⃗ u

y L ⃗ v por el origen. Por la regla del paralelogramo cualquier ⃗ w ∈ 2 R es suma de un elemento de                                   2 L L S ⃗ u            ⃗ v                          R y uno de . En consecuencia =.

1.2 Subespacio vectorial 19

 

Figura 1.2: Recta que no pasa por el origen
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Los subespacios de   2                                                                    2 R son entonces, el vector nulo, las rectas por el origen y todo R .        ■

 

■                                                        R Ejemplo 1.9 Sea H = { ( x , y ) tales que y = mx + b m , b ∈ b ̸ ,= 0} (Ver Figura 1.2). H no es un subespacio de   2 R. Ya que si (x1 y ,1 y ) (x2 y ,2 son 2 puntos sobre la recta ) y = mx + b, y1    mx =1 b  +  e

y2 = mx2 + b, se tiene que y1 + y2 = m(x1 + x2) + 2b, y entonces, y1 + y2 ∈ / H. O bien, directamente, no es subespacio de   2 R porque (0, 0) ∈ / H.

■

 

■ Ejemplo 1.10 Si ⃗ v ∈ V , S = {a ⃗ v, a ∈ K} es un subespacio de V . Este subespacio se denomina el subespacio generado por ⃗ v, y se nota S = ⟨ ⃗ v⟩. ■

 

Proposición 1.2.1 Sean ⃗ v1,⃗ v2, · · · ,⃗ vn ∈ V . Entonces S = {a1⃗ v1 + a2⃗ v2 + · · · + an⃗ vn, ai ∈ K} es

un subespacio de V .

 

Demostración:

 

⃗          ⃗ 0 ∈ S ya que 0 = 0 ⃗ v 1 + 0 ⃗ v2 + · · · + 0 ⃗ vn, 0 ∈ K.

Si ⃗ u = a1 ⃗ v1 + a2⃗ v2 + · · · + an⃗ vn, ai ∈ K y ⃗ w = b1 ⃗ v1 + b2 ⃗ v2 + · · · + bn ⃗ vn, bi ∈ K, entonces ⃗ u +⃗ w = (a1 + b1) ⃗ v1 + (a2 +b2) ⃗ v2 + · · · + (an + bn) ⃗ vn, (ai + bi) ∈ K, por lo tanto, ⃗ u + ⃗ w ∈ S. Si α ∈ K α⃗ u = (αa 1)⃗ v1 + (α a2) ⃗ v2 + · · · + (α an) ⃗ vn, (α ai) ∈ K, por lo tanto α⃗ u ∈ S

Se tiene, entonces, que S es un subespacio de V . □
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Figura 1.3: El plano x                                   3 1 x 2 , (x 3     ) es un subespacio de = 0

R

[image: ]

 

               1           x   

S         =  2    1 x x, x2   R ∈

   

                        0            

 

sí es un subconjunto y un subespacio de   3 R (Ver Figura 1.3).

 

■          1.11 P   [t] (polinomios en t de grado ≤ n, con coeficientes reales) es un subespacio Ejemplo       (n)

R

vectorial de P [t]; a su vez, P [t] es un subespacio vectorial del espacio vectorial de las funciones R R

continuas en R. ■

 

■                           1 S Ejemplo 1.12 Sea = { ⃗ u,⃗ u2,· · · ,⃗ un} un conjunto de n vectores de un espacio vectorial V .

Consideremos como en el Ejemplo 1.10 pero con más vectores. Se define el conjunto de todas las combinaciones lineales de los vectores de S,

(                ) n

L(S) = L(⃗ u1,⃗ u2,· · · ,⃗ un) =      a ⃗ u ∑ j j, a j ∈ K, j = 1,2, · · · ,n

j=1

El conjunto L(S) es un subespacio vectorial de V (ver Proposición 1.2.1), que recibe el nombre de subespacio vectorial generado por S.

En 3   v R , si ⃗   v y ⃗ son dos vectores tales que uno no es múltiplo del otro, entonces, L( ⃗ v v ,⃗ , ) es

1    2                                                                            1   2

un plano que pasa por el origen. Es un subespacio de   3 R; se muestra en la Figura 1.4.

■
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Figura 1.4: Subespacio generado por ⃗ v1 y ⃗ v2

[image: ]

 

■                     1 Ejemplo                                          n 1.13 Sean a , a 2, · · · , a n                     1 K ∈ fijos. S = { ( x , x 2 , · · · , x n          1 ) ∈ K , ax1 + a2 x2 + · · · + a x = n n

0                    n } es un subespacio de K.

■

 

■                                     R Ejemplom×n 1.14 Dada una matriz A ∈ , y de rango r, todas las soluciones del sistema de ecuaciones homogéneo

 

A⃗   ⃗      ⃗     n X = 0 , X ∈ R

 

constituyen un subespacio vectorial de   n R, conocido como espacio nulo de la matriz A. Se anota

Nul (A) y se muestra en la Figura 1.5.

 

Para el sistema homogéneo:



   2y − z + w    = 0





3x + y + 10z + 5w   = 0



   x + 3z + w    = 0



 

luego de realizar operaciones elementales sobre las filas de la matriz de coeficientes del sistema (método de eliminación gaussiana), se llega a la matriz escalonada:
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Figura 1.5: Espacio nulo de una matriz A

[image: ]

 

          

3 1    10     5

           − 1 1

           0 2

          

0 0 −1/2 1/2

 

de donde la solución es z = −w, y = −w y x = 2w. El subespacio de soluciones del sistema homogéneo es, entonces,

 

S = Nul(A) = ⟨(2,−1,−1, 1)⟩

 

■

 

Así como vimos que las rectas que no pasan por el origen no son un subespacio de   2 R (Ejemplo

i

1.9), las soluciones de un sistema no homogéneo

 

A⃗   ⃗      ⃗   ⃗ X = b , b ̸ = 0

 

son un subconjunto pero no un subespacio de   n R .
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William Rowan Hamilton (1805 - 1865)

 

Fue un matemático británico. Fue uno de los fundadores de la escuela británica moderna de

matemáticas puras e hizo importantes contribuciones al desarrollo de la óptica, la dinámica, y el álgebra. Su descubrimiento del cuaternión, junto con su sistematización de la dinámica, son sus trabajos más conocidos. Este último trabajo sería decisivo en el desarrollo de la mecánica cuántica, donde un concepto fundamental llamado hamiltoniano lleva su nombre. Hamilton fue el cuarto de los nueve hijos. Vivían en Dublín. Se dice que Hamilton demostró un inmenso talento a una edad muy temprana. Su tío observó que Hamilton, había mostrado una asombrosa habilidad para aprender idiomas. A la edad de siete años, ya había hecho un progreso considerable con el hebreo, y antes de los trece años, bajo la supervisión de su tío (un lingüista), había adquirido conocimientos casi en tantos idiomas como años de edad tenía (idiomas europeos clásicos y modernos, y persa, árabe, hindustaní, sánscrito e incluso maratí y malayo). Hamilton es reconocido como uno de los científicos más destacados de Irlanda, y a medida que la nación se vuelve más consciente de su herencia científica, cada vez se lo celebra más. Se dice que se le permitía pisar el césped de la Universidad, algo totalmente prohibido. Este hecho camina entre la realidad y la ficción. Posiblemente ocurriera que, absorto en sus meditaciones, descuidara esta prohibición y accidentalmente caminase por los jardines. Esta anécdota seguramente sirve para dar idea de la categoría de Hamilton como uno de los grandes matemáticos de su tiempo y de la historia. El Instituto Hamilton está dedicado a la investigación sobre matemáticas aplicadas en la Universidad Maynooth. Irlanda emitió dos sellos conmemorativos en 1943 para celebrar el centenario del anuncio de los cuaterniones. El Banco Central de Irlanda acuñó en 2005 una moneda de plata conmemorativa de 10 euros para conmemorar los 200 años desde su nacimiento. Los talleres de mantenimiento más nuevos del sistema de tranvías de Dublín (LUAS), llevan su nombre.

En su juventud, Hamilton tuvo un telescopio y se convirtió en un experto en el cálculo de

fenómenos celestes, como por ejemplo, la determinación de la visibilidad de los eclipses de luna. Fue elegido Astrónomo Real de Irlanda y se instaló en el Observatorio de Dunsink, donde permaneció hasta su muerte en 1865. Hoy en día, Hamilton no es reconocido como un gran astrónomo, aunque durante su vida si gozó de esta consideración. Sus conferencias de introducción a la astronomía fueron famosas; además de sus alumnos, atrajeron a muchos eruditos y poetas, e incluso a damas; en aquellos días una hazaña notable. La poetisa Felicia Hemans escribió su poema "La oración del

estudiante solitario"después de escuchar una de sus conferencias. [28]
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1.3   Base y dimensión de un espacio vectorial

 

Sea V un espacio vectorial sobre un cuerpo K; un número finito de vectores ⃗ v1,⃗ v2, , · · · ,⃗ vn se dice que son linealmente dependientes si existen n elementos de K, a1, a2, , · · · , an no todos nulos, tal que

 

a                     ⃗ 1 ⃗ v 1 + a 2 ⃗ v 2 + · · · + a n ⃗ v n = 0

 

Si los vectores ⃗ v1,⃗ v2, , · · · ,⃗ vn no son linealmente dependientes, se dice que son linealmente independientes ; por lo tanto, los vectores⃗ v 1,⃗ v2, , · · · ,⃗ vn son linealmente independientes si cualquier igualdad como la anterior implica que todos los elementos de K, a 1, a2, , · · · , an son nulos.

Si en la igualdad anterior an es no nulo, podemos escribir

a1      a1          an−1

⃗ vn = − ⃗ v 1 −   ⃗ v2 + · · · −     ⃗ vn−1

an      an            an

y decimos que ⃗ vn es una combinación lineal de los vectores ⃗ v      · · · 1 ,⃗ v 2 , , , ⃗ vn−1. En general, se dice que ⃗ v es combinación lineal de los vectores ⃗ v 1,⃗ v2, · · · ,⃗ vk , si existen a1,a2, , · · · ,ak ∈ K tal que

 

⃗ v = a1⃗ v1 + a2 ⃗ v2 + · · · + ak⃗ vk

 

Un conjunto finito de vectores { ⃗ v1,⃗ v2,· · · ,⃗ vk} de un espacio vectorial V se dice que es un sistema de generadores de V si todo elemento de V se puede escribir como una combinación lineal de los

vectores ⃗ v1,⃗ v2, · · · , ⃗ vk.

 

Proposición 1.3.1 Un conjunto finito de vectores linealmente independientes de un espacio

vectorial V no puede contener un subconjunto de vectores que sean linealmente dependientes.

 

Demostración:

 

Si { ⃗ v1,⃗ v2,· · · ,⃗ vn} son linealmente independientes y suponemos que { ⃗ v1,⃗ v2,· · · ,⃗ vk}, k ≤ n

son linealmente dependientes se tendría

 

⃗                         ⃗ v = a 1 ⃗ v 1 + a 2 ⃗ v 2 + · · · + a k ⃗ v k = 0

 

con no todos los a j nulos; basta observar que, entonces,

 

a                                     ⃗ 1 ⃗ v 1 + a 2 ⃗ v 2 + · · · + a k ⃗ v k + 0 ⃗ v k + 1 + · · · + 0 ⃗ v n = 0

 

con lo cual los originales serían linealmente dependientes. □
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Antes de exponer algunos ejemplos es conveniente realizar algunas observaciones.

 

i

Todo conjunto finito de vectores que contiene al elemento neutro (o nulo) es linealmente dependiente; basta observar que

 

a ⃗                  ⃗ 0 + 0 ⃗ v 2 + · · · + 0 ⃗ v n = 0

para cualquier a ∈ K.

Tres vectores no nulos de   2 R son siempre linealmente dependientes. En general,                    n n + 1 vectores de K son siempre linealmente dependientes.

 

■                    1 Si Ejemplo 1.15 ⃗ u = (1,0, 1), ⃗ u2 = (−1, 1,0) y ⃗ u3 = (1,1, 2), L(⃗ u1,⃗ u2,⃗ u3) es un subespacio vectorial de   3                3 R . No es todo R porque estos vectores no son linealmente independientes, ya que, se anula el determinante de la matriz que tiene esos vectores como filas:

 

                 1 0 1

                 − 1 1 0 = 0

                 1 1 2

 

Para hallar el subespacio que generan esos vectores se realizan operaciones elementales sobre las filas, y se llega a la matriz escalonada:

 

      

1 0 1

      

       0 1 1

      

0 0 0

 

La última fila de ceros indica que el vector ⃗ u3 es combinación lineal de ⃗ u1 y ⃗ u2. Entonces los vectores generados por ⃗ u1, ⃗ u2 y ⃗ u3 son de la forma α(1,0, 1) + β (0,1, 1) = (α ,β , α + β ) por lo que L(⃗ u1,⃗ u2,⃗ u3) es el plano por el origen z = x + y. Considerando la matriz que tiene los vectores ⃗ ui como filas, L(S) es el espacio generado por las filas de la matriz, conocido como espacio fila. ■

■                                0 Ejemplo                           2                 n 1.16 Las funciones p ( t ) = 1, p 1 ( t ) = t , p 2 ( t ) = t , · · · , p ( t ) = t, son linealmente n

independientes, ya que si tenemos la igualdad

 

a            2             n t 1 + a a t + + · · · + a t = 0
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para todo t ∈ R, resultan a0 = a1 = a2 = · · · an = 0.

Para demostrarlo basta tomar n puntos ti distintos y resolver el sistema. Tiene como única solución la trivial. El determinante del sistema es conocido como determinante de Vandermonde. ■

■          1.17 Las funciones f (t) = cos (t), g(t) = sen (t) y h(t) = 1 son linealmente dependientes Ejemplo                         2                2

en                    2          2 C ([ 0 , 2 π ]) ya que cos ( t ) + sen(t) = 1, y entonces es posible escribir al vector nulo con coeficientes no todos nulos

1   2            2 cos ( t ) + 1 sen(t) + (−1)1 = 0.

Por otro lado, ejemplos de funciones linealmente independientes son f           k t 1 1 ( t ) = e             k t y f 2 ( t ) = e 2 con k1 ̸= k2. ■

 

i La independencia lineal de funciones es de importancia para describir el conjunto solución de

ecuaciones diferenciales y se determina a partir del cálculo de un determinante conocido como

Wronskiano (ver [20]).

 

■                                     n, Ejemplo 1.18 S = { cos ( nx ) , sen ( mx ) }m∈ es un conjunto de funciones linealmente independiente N en C([0,2π]). ■

 

i Al desarrollo en serie de una función en términos de las funciones cos(nx) y sen(mx) con

n, m ∈ N se lo conoce como Serie de Fourier.

 

Definición 1.3.1 Un conjunto finito de vectores { ⃗ e1,⃗ e2, · · · ,⃗ en} se dice que es una base de un

espacio vectorial V si se cumplen las dos condiciones siguientes:

1. Los vectores ⃗ e 1,⃗ e2, · · · ,⃗ en son linealmente independientes. 2. Todo elemento de V es una combinación lineal de los vectores ⃗ e1,⃗ e2, · · · ,⃗ en.

 

i

La segunda condición de esta definición es equivalente al hecho de que el conjunto de vectores { ⃗ e1,⃗ e2, · · · ,⃗ e } n sea un sistema de generadores de V . Sin embargo, no todo sistema de generadores de un espacio vectorial V es una base. Se deja al lector pensar ejemplos.

 

■                   j                                                                1   2       n 1.19 Si ⃗ e = ( 0 , 0 , · · · , 1 , · · · , 0 ) ∈ K , donde 1 ocupa el lugar j , se tiene que ⃗ e e ,⃗ · · · , ,⃗ e Ejemplo                              n

son linealmente independientes y además si                       n ⃗ x = ( x 1 x , 2      x , · · · , ) ∈ K, se tiene que n

n

⃗ x =   x ∑ j⃗ e j

j=1
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Figura 1.6: Base canónica de   3

R

[image: ]

 

Por lo tanto                                  n { ⃗ e 1 e ,⃗ 2      e , · · · ,⃗ } es una base de K, que recibe el nombre de base canónica de este n

espacio. En la Figura 1.6 se muestra para el caso n = 3.

 

■

 

■ Ejemplo 1.20 Dada una matriz A de m filas y n columnas, y de rango r, todas las soluciones del sistema de ecuaciones homogéneo

 

A⃗   ⃗      ⃗     n X = 0 , X ∈ R

 

constituyen un subespacio vectorial de   n                   r R generado por n − vectores. Recordar que r es la cantidad de pivotes al realizar operaciones elementales sobre las filas de la matriz en eliminación gaussiana.

 

En el Ejemplo 1.14 se tiene que m = 3, n = 4 y el rango r = 3. S = Nul(A) = ⟨(2,−1, −1,1)⟩, es un subespacio de dimensión n − r = 4 − 3 = 1. ■

 

■                                                      K 1.21 El conjunto { 1 , t , · · · , t } es una base de P [t], ya que son polinomios linealmente Ejemplo                       n                    (n)

independientes de acuerdo con el resultado del Ejemplo 1.16 (para K = R), y todo polinomio p de grado inferior o igual a n puede escribirse de la forma

 

p                  2             n ( t ) = a 0     a 1 + 1t + a · · · 2t + + a t

n

 

Para para el caso                           2 n = 2 se tiene la base 1 , t , t   que se muestra en la Figura 1.7.             ■
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Figura 1.7: Base canónica de P(2) [t]

R

[image: ]

 

i                                  K t El conjunto           n                                                           n+1 { 1 , t , · · · , t } no es una base de P [ ] , ya que el polinomio p ( ) = t no es t

combinación lineal de estos. Se puede ver que ningún conjunto finito de polinomios genera a

P K [t] (ver [20]) .

 

Coordenadas de un vector

Si { ⃗ e1,⃗ e2, · · · ,⃗ en} es una base de un espacio vectorial V y ⃗ v es cualquier elemento de V podemos escribir a ⃗ v como combinación lineal de ⃗ e1,⃗ e2, · · · ,⃗ en, de la forma

 

⃗ v = a1⃗ e1 + a2⃗ e2 + · · · + an ⃗ en

 

con a j ∈ K. Los números a 1, a2,· · · ,an se denominan coordenadas de ⃗ v con respecto a la base ⃗ e1,⃗ e2, · · · ,⃗ en.

 

Proposición 1.3.2 Las coordenadas de un vector ⃗ v con respecto a una base son únicas.

 

Demostración:

 

Si suponemos se tienen coordenadas ai y bi , i = 1, · · · n para un mismo vector ⃗ v, 1.3 Base y dimensión de un espacio vectorial 29

 

⃗ v = a1⃗ e1 + a2⃗ e2 + · · · + an ⃗ en

y

⃗ v = b1⃗ e1 + b2⃗ e2 + · · · + bn ⃗ en

se tiene que

⃗ 0 = (b1 − a1)⃗ e1 + (b2 − a2)⃗ e2 + · · · + (bn − an) ⃗ en

 

Como ⃗ e1,⃗ e2, · · · ,⃗ en son linealmente independientes, b1 = a1, b2 = a2, · · · , bn = an. □

 

■                        R Ejemplo3 1.22 Sea V = y sea E la base canónica. Las coordenadas de un vector ⃗ v se anotan (x,y,z)E = (x, y, z).

Si en lugar de la base canónica la base es B = {(1,1,1),(1,1, 0), (1,0,0)}, las coordenadas de un vector (x,y,z) son (z, y − z,x −y)B y se escribe la igualdad (x,y, z) = (z, y − z, x − y)B.

Esto se obtiene escribiendo (x,y,z) como combinación lineal de los vectores de B,

 

(x,y, z) = a(1, 1,1) + b(1,1,0) + c(1,0,0),

 

y resolviendo el sistema lineal:

 



 a + b + c   = x





a + b + 0c   = y



 a + 0b + 0c = z



■

 

Un mismo espacio vectorial puede poseer varias bases; nuestro próximo objetivo es demostrar que todas ellas han de poseer el mismo número de elementos.

 

Proposición 1.3.3 Si V es un espacio vectorial que posee una base con n elementos, cualesquiera

n + 1 vectores de V son linealmente dependientes.

 

Demostración:

 

Sea { ⃗ e 1,⃗ e2,· · · ,⃗ en} una base de V y sean ⃗ x1,⃗ x2,· · · ,⃗ xn,⃗ xn+1, n + 1 vectores de V ,

 

que pueden escribirse como combinación lineal de la base dada:
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⃗      n                       n                       n                            n x x 1    ∑ = ⃗ e , ⃗ x = x e = j =1   j1 j          2     ∑        ⃗ , ⃗ x j=1 j2 j          n     ∑     x j=1 jn j            n+ ⃗ e , y ⃗ x   1 = ∑ x   ⃗ j                  e = 1 jn +1 j

 

Se quiere ver si son linealmente independientes. Nos preguntamos si existen ai no todos nulos

tales que

 

a                               ⃗ x a 1 ⃗ 1 + x 2 ⃗ · · · 2 + + a n ⃗ x n + a n + 1 ⃗ x n + 1 = 0

 

Reemplazando, se tiene

 

a    n                  n                  n                     n               ⃗ 1 ∑ ( x e j =1   j1 j       2 ∑ ⃗ ) + a ( j      x = 1 j2 j       n ∑ ⃗ e ) + a ( j       x        a          x ⃗ e                      ) = =1 jn j      n+ ) + 1 ∑ ( j =1   jn + ⃗ e     0 1 j

 

Al desarrollar las sumas anteriores y reordenar sacando factor común los vectores ⃗ e j, se

obtiene

 

⃗ e         x a 1 ( x a               x 11 1 + · · · a    a 12 2 + + x 1 n n + 1 n + 1n+1) = 0

 

⃗ e2(x21a1 + x22a2 + · · · + x2nan + x2n+1an+1) = 0

 

· · ·

 

⃗ en(xn1a1 + xn2a2 + · · · + xnnan + xnn+1an+1) = 0

 

Los términos entre paréntesis constituyen un sistema homogéneo de n ecuaciones con n + 1

incógnitas, a1, a2, · · · , an+1 por lo que existe una solución no trivial (ai no todos nulos).

 

Se concluye, entonces, que los vectores ⃗ x1,⃗ x2, · · · ,⃗ xn,⃗ xn+1 son linealmente dependientes.

□

 

i De la proposición anterior se deduce un resultado un poco más general: en un espacio vectorial

V que posee una base con n elementos, cualesquiera m vectores de V , con m > n son linealmente dependientes. Basta observar que n + 1 de los m vectores dados han de ser linealmente dependientes, debido a la proposición anterior, y por lo tanto, todos ellos han de formar un conjunto de vectores linealmente dependiente. Este resultado se aplica en la demostración del teorema que sigue.
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Jean-Baptiste Joseph Fourier (1768 - 1830)

 

Fue un matemático y físico francés conocido por sus trabajos sobre la descomposición de

funciones periódicas en series trigonométricas convergentes llamadas Series de Fourier, método con el cual consiguió resolver la ecuación del calor. La transformada de Fourier recibe su nombre en su honor. Fue el primero en dar una explicación científica al efecto invernadero en un tratado. Inició sus estudios en la Escuela Superior Benedictina de Auxerre, orientándose inicialmente a la carrera religiosa, hasta que el monarca Luis XV la convirtió en academia militar. Jean-Baptiste fue seleccionado como estudiante en la institución ya reformada, donde permanecería hasta los 14 años de edad, y empezó a ser instruido en idiomas, música, álgebra y matemáticas, materia en la que destacó, lo que le encaminó a dedicarse al estudio de las ciencias. Posteriormente, participó en la Revolución francesa y, gracias a la caída del poder de Robespierre, se salvó de ser guillotinado. Se incorporó a la Escuela Normal Superior de París en donde tuvo entre sus profesores a los matemáticos Joseph Louis Lagrange y Pierre Simon Laplace. Posteriormente, ocupó una cátedra como docente en la prestigiosa École polytechnique. Fourier participó en la expedición de Napoleón Bonaparte a Egipto en 1798. Entró a la Academia de Ciencias Francesa en 1817 y al cabo de cinco años se convirtió en el secretario perpetuo de las secciones de matemáticas y física. Fue en Grenoble donde condujo sus experimentos sobre la propagación del calor que le permitieron modelar la evolución de la temperatura a través de series trigonométricas. Estos trabajos mejoraron el modelado matemático de fenómenos físicos y contribuyeron a los fundamentos de la termodinámica. Sin embargo, la simplificación excesiva que proponen estas herramientas fue muy debatida, principalmente por sus maestros Laplace y Lagrange. Publicó en 1822 su Théorie analytique de la chaleur (Teoría analítica del calor), tratado en el cual estableció la ecuación diferencial parcial que gobierna la difusión del calor solucionándola mediante el uso de series infinitas de funciones trigonométricas, lo que establece la representación de cualquier función como series de senos y cosenos, ahora conocidas como las series de Fourier. El trabajo de Fourier provee el impulso para trabajar más tarde en las series trigonométricas y la teoría de las funciones de variables reales. Fourier en esta obra dedujo la ecuación en derivadas parciales que rige tal fenómeno, la cual es conocida como la ecuación del

calor. [12]
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Proposición 1.3.4 Todas las bases de un mismo espacio vectorial V poseen el mismo número de

elementos.

 

Demostración:

 

Sean                  ′      ′               ′ { ⃗ e 1 ,⃗ e 2, · · · ,⃗ e } y { ⃗ e ,⃗ e , · · · ,⃗ e } dos bases de un espacio vectorial V ; por lo anterior

n        1   2       m

m ≤ n, ya que en caso contrario los vectores de la segunda base serían linealmente dependientes.

Similarmente n ≤ m ya que en caso contrario los vectores de la primera base serían linealmente

dependientes. Se tiene, por lo tanto, que n = m.

□

 

El número de elementos que posee una base cualquiera de un espacio vectorial V recibe el nombre de dimensión de V ; este número será designado mediante dim(V ). Si el espacio vectorial sólo contiene un elemento, es decir      n o ⃗ V = 0 tiene dimensión cero.

 

De los ejemplos anteriores podemos deducir los siguientes resultados:

 

1. La dimensión de   n K es n.

2. La dimensión de (n) P [t ]    n + es 1.

K

3. En el Ejemplo 1.15 se puede ver que L(⃗ u1,⃗ u2,⃗ u3), donde ⃗ u1 = (1, 0,1), ⃗ u2 = (−1, 1,0) y

⃗                                     3 u 3                                              R = ( 1 , 1 , 2 ) , es un subespacio vectorial de de dimensión 2 (un plano por el origen).

 

En n un                                               de dimensión −1. O sea R   hiperplano que contiene al vector nulo es un subespacio H n

i

H = {(x1, x2,· · · , xn) : a1x1 + a2x2 + · · ·anxn = 0

 

donde a , 1 a , 2 · · · an son números reales fijos, no todos nulos. Es decir, un hiperplano generaliza la noción de plano en   3.

R

 

i   Se llama nulidad de una matriz a la dimensión del espacio nulo.

 

Proposición 1.3.5 Sea V un espacio vectorial de dimensión n. Todo conjunto de n vectores de V

que sean linealmente independientes son una base de V .
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Demostración:

 

Sean ⃗ x1,⃗ x2, · · · ,⃗ xn, n vectores linealmente independientes. Si ⃗ v es otro vector de V , por la

Proposición 1.3.3, ⃗ v,⃗ x1,⃗ x2, · · · ,⃗ xn son linealmente dependientes.

 

Entonces, ∃   a0,a1, · · · ,an tales que

 

a                        ⃗ 0 ⃗ v + a 1 ⃗ x 1 + a 2 ⃗ x 2 + · · · a n ⃗ x n = 0,   con algún a j no nulo.

 

En realidad a0 debe ser no nulo, ya que si fuera 0, los vectores ⃗ x1,⃗ x2, · · · ,⃗ xn serían linealmente

dependientes. Se tiene, entonces,

 

−a1    −a2        −an

⃗ v =    ⃗ x1 +    ⃗ x2 · · · an +     ⃗ xn

a 0       a0            a0

 

y por lo tanto ⃗ x1,⃗ x2, · · · ,⃗ xn generan V .

□

 

i Una forma sencilla de encontrar una base de un espacio vectorial V es agregar vectores a un

conjunto de vectores linealmente independientes de V . En la demostración de la proposición que sigue se explica la forma de agregarlos.

 

Proposición 1.3.6 Sea V un espacio de dimensión finita n; todo conjunto de vectores linealmente

independientes de V puede completarse para obtener una base, es decir, dados k vectores

⃗ e1,⃗ e2, · · · ,⃗ ek , con k < n, de V , linealmente independientes, existen n − k vectores⃗ ek+1,⃗ ek+2, · · · ,⃗ en

de V tal que el conjunto {⃗ e1,⃗ e2,· · · ,⃗ ek,⃗ ek+1,⃗ ek+2, · · · ,⃗ en} es una base de V .

 

Demostración:

 

Como k < n, puedo encontrar un elemento de V linealmente independiente con⃗ e 1,⃗ e2, · · · ,⃗ ek

(sino, { ⃗ e 1,⃗ e2,· · · ,⃗ ek} serían base de V ). Lo llamo ⃗ ek+1. Se repite con { ⃗ e                 } 1 ,⃗ e 2 , · · · ,⃗ e k ,⃗ e k + 1 hasta

encontrar n vectores linealmente independientes, que necesariamente serán base de V . □

 

Si V es un espacio vectorial de dimensión finita n en la Proposición 1.3.6 probamos que k vectores linealmente independientes de V pueden completarse para obtener una base. Puede demostrarse 34 Capítulo 1. Espacios Vectoriales

 

también que si S es un sistema de generadores de V , de él puede extraerse un subconjunto S 1 que sea una base de V .

 

Ahora unos comentarios acerca de la dependencia o independencia lineal de subconjuntos infinitos de un espacio vectorial.

 

i

Un conjunto infinito S de elementos de un espacio vectorial V se dice linealmente independiente si cualquier subconjunto finito de S es linealmente independiente. En caso contrario, S se dice linealmente dependiente; es decir S es linealmente dependiente si existe un subconjunto finito de él que es linealmente dependiente.

Un espacio vectorial V en el que se puede encontrar un subconjunto S linealmente independiente y con infinitos elementos, se dice que tiene dimensión infinita . Los espacios vectoriales P K [t], y C([0, 2π ]), introducidos en la secciones anteriores, son espacios vectoriales de dimensión infinita.

El conjunto       n S = { t, n ∈ N} es un conjunto linealmente independiente de P [t] mientras

K

que el conjunto S = {cos(nx), sen(mx)} es un conjunto linealmente independiente  n  ,  m  ∈  N

en el espacio vectorial de las funciones continuas C ([0, 2π ]).

 

1.4   Intersección y suma de subespacios vectoriales

 

Una pregunta que surge es si al considerar las operaciones de unión e intersección entre subespacios de un espacio vectorial V (que son subconjuntos de V ) se preserva la estructura de subespacio. Veremos que se preserva en la intersección pero no en la unión.

Dados dos subespacios V 1 y V2 de un espacio vectorial V podemos definir su intersección

 

V 1 ∩V2 = {⃗ u,⃗ u ∈ V1 ∧⃗ u ∈ V2}

 

y se demuestra fácilmente que V 1 ∩ V2 es un subespacio.

Por otro lado, con un ejemplo se puede ver que con la unión de dos subespacios V 1 y V2, no ocurre lo mismo. Si V 1 y V2 son los subespacios generados por los vectores (1,0) y (0,1) (los ejes x e y respectivamente) la unión de V 1 y V2 son los vectores que están sobre un eje o el otro. V1 ∪ V2 no es un subespacio, ya que la suma no es cerrada: la suma de los vectores (1, 0) + (0,1) = (1, 1) ∈ / V ∪V 12 pues (1,1) ∈ / V 1 y (1,1) ∈ / V2 siendo que (1,0) ∈ V1 y (0,1) ∈ V2.

Se define, entonces, para sí obtener un subespacio, la suma de dos subespacios V 1 y V2 de la forma siguiente 1.4 Intersección y suma de subespacios vectoriales 35

 

V                   u 1 + V     } 2 = { u ⃗ u ∈ 1 + ⃗ u 2 , ⃗ ∈ V ∧ V 1 1 ⃗ 2 2

 

y se puede demostrar que V    V                             V              V   V 1 + 2 es un subespacio vectorial de (y contiene a ∪ 12).

 

La relación que existe entre las dimensiones de estos subespacios vectoriales y las dimensiones de los subespacios V 1 y V2 queda plasmada en el siguiente resultado:

 

Proposición 1.4.1

 

dim(V 1 +V2) = dim(V1) + dim(V2) − dim(V1 ∩ V2)

 

para cualesquiera subespacios vectoriales V1 y V2 de un espacio vectorial V de dimensión finita.

Demostración:

 

Sea { ⃗ e1,⃗ e2, · · · ,⃗ el } una base de V1 ∩V2. Es posible completarla:

n                  o

por un lado hasta obtener una base de V 1, ⃗ e1,⃗ e2, · · · ,⃗ el, ⃗ fl                             − + 1 , ⃗ f l + 2 , · · · , ⃗ f k (de l + ( kl) vectores)

 

y por otro, hasta obtener una base de V 2, { ⃗ e1,⃗ e2,· · · ,⃗ el,⃗ gl+1,⃗ gl+2, · · · ,⃗ gm} (de l + (m −l) vectores).

 

Veremos que

n                             o

⃗ e 1,⃗ e2, · · · ,⃗ el, ⃗ fl+1, ⃗ fl+2,· · · , ⃗ fk,⃗ gl+1,⃗ gl+2,· · · ,⃗ gm   es base de V1 +V2.

 

Está claro que es un sistema de generadores de V 1 +V2. Veamos que es un conjunto linealmente

independiente. Se considera una combinación lineal igual al vector nulo:

 

a ⃗        ⃗           ⃗                                ⃗  1  ⃗  e  1  +  a  2  ⃗  e  2  +  · · ·  +  a  l  ⃗  e  l  +  b  l  +  1  f  l  +  1  +  b  l  +  2  f  l  +  2  +  · · ·  +  b  k  f  k  +  c  l  +  1  ⃗  g  l  +  1  +  c  l  +  2  ⃗  g  l  +  2  +  · · ·  +  c  m  ⃗  g  m  =  0

 

que puede escribirse en forma equivalente

 

a                        ⃗         ⃗           ⃗ 1 ⃗ e 1 + a 2 ⃗ e 2 + · · · + a l ⃗ e l + b l · · · + 1 f l + 1 + b l + 2 f l + 2 + + b k fk = −cl+1⃗ gl   − + 1 cl       − · · · − + 2 ⃗ g l + 2 cm ⃗ gm

 

El término del lado izquierdo ∈ V 1, mientras que el lado derecho ∈ V2. Es decir que está en

V ∩V                   {e        } 1 2 cuya base son los vectores ⃗ e e 1 ,⃗ · · · 2 , ,⃗ l. Entonces es posible escribir el término de la

derecha como combinación lineal de la base { ⃗ e1,⃗ e2, · · · ,⃗ el } con coordenadas δi. Es decir, se tiene
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−c l      − c + 1 ⃗ g l               g + 1 l g − · · · − c      e + 2 ⃗ l + 2 m ⃗ m = δ 1 ⃗1 + δ2⃗ e2 + · · · + δl⃗ el

 

que puede reescribirse,

 

δ                                                 ⃗ 1 ⃗ e 1 + δ 2 ⃗ e 2 + · · · + δ l ⃗ e l + c l + 1 ⃗ g l + 1 + c l + 2 ⃗ g l + 2 + · · · + c m ⃗ g m = 0

 

Por ser { ⃗ e1,⃗ e2,· · · ,⃗ el ,⃗ gl+1,⃗ gl+2,· · · ,⃗ gm} una base de V2, se tiene que

 

cl +1 = cl+2 = · · · = cm = δ1 = δ2 = · · · + δl = 0

 

y, entonces, el término de la izquierda,

 

a                        ⃗        ⃗           ⃗   ⃗ 1 ⃗ e 1 + a 2 ⃗ e 2 + · · · + a l ⃗ e l + b l + 1 f l + 1 + b l + 2 f l · · · + 2 + + b k f k = 0

n                  o

y como ⃗ e 1,⃗ e2,· · · ,⃗ el, ⃗ fl+1, ⃗ fl+2,· · · , ⃗ fk   son base de V1, son linealmente independientes,

 

a1 = a        a 2 = · · · +l = bl+1 = bl+2 = · · · = bk = 0

 

Luego,

 

dim(V1 +V2) = l + (k − l) + (m − l) = k + m − l = dim(V1) + dim(V2) − dim(V1 ∩ V2) □

 

i

Si V 1 y V2 son los subespacios generados por los vectores (1, 0) y (0, 1) respectivamente, la suma de                  2 V 1    2         R y V da todo, ya que (x, y) = (x, 0) + (0, y), (x, 0) ∈ V y (0, y) ∈ V . 1            2

Es importante notar que V 1 +V2 es el menor subespacio (con respecto a la inclusión) que contiene a V1 ∪V2.

 

■ Ejemplo 1.23 El subespacio S de las soluciones del sistema homogéneo,



            n 11 1 12 2 1 n  a x · · · a + a x x + + = 0 

S                    n = { ( x , x , · · · , x ) ∈ K                          · · ·

1   2        n



 a 1x1 + a 2x2 + · · · + a x   = 0  m    m       mn n

es un subespacio de   n                                           Tm K . Es intersección de m subespacios, S = S              { i         i , donde S =(x =         i 1      1 ,x2 ,· · · , x ) ∈ n

K n                                                                                   n , a x a + x · · · a + + x = 0 , } , 1 ≤ i ≤ m . Cada S es un subespacio de K (correspondiente a

i1 1      i2 2             in n                                   i

las soluciones de cada una de las m ecuaciones, como se vió en el Ejemplo 1.13, Sección 1.2). ■

■                                                     R Ejemplo                                       2 1.24 Dos subespacios vectoriales distintos de, V1 y V2, ambos de dimensión 1, tienen una suma que coincide con todo   2 R , ya que 1.4 Intersección y suma de subespacios vectoriales 37

 

dim (V 1 + V2) = dim(V                    V 1 ) + dim ( V 2 ) − dim ( V ∩ 12) = 1 + 1 − 0 = 2

■

Definición 1.4.1 Un espacio vectorial V es suma directa de dos subespacios V 1 y V2 si

1. V 1 +V2 = V

2.            ⃗ V ∩ 1 V 2 = 0

 

Utilizaremos la notación V = V 1 ⊕V2 para indicar que V es suma directa de los subespacios V1 y V2.

 

i

El plano   2 puede escribirse como suma directa de dos rectas no coincidentes que pasan

R

por el origen.

El espacio   3 R puede escribirse como suma directa de un plano que pasa por el origen y una recta que le corta en ese punto.

De acuerdo a la Proposición 1.4.1 anterior si V = V 1 ⊕V2, se tiene que

 

dim(V ) = dim(V1 ⊕V2) = dim(V1) + dim(V2)

ya que el subespacio           ⃗ V 1 ∩ V 2 = 0 tiene dimensión 0. Además, si B1 es base de V1 y B2 es base de V 2, B = B1 ∪ B2 es una base de V .

 

■                                       R Ejemplo3              3 1.25 Sean los subespacios de , S = { ⃗ x ∈ x               }       ⟨ R , T + x x + = 0 , y =(1,1,1)⟩. Se 1     2     3

tiene que ⃗ 3  dim  (  S  ) =  2,  dim  (  T  ) =  1 y  S  ∩  T  =  0. Entonces,  dim  (  S  +  T  ) =  3, de donde,  S  +  T  =  R. ■

 

i   Si V = V1 +V2 todo elemento ⃗ v ∈ V puede escribirse de la forma ⃗ v = ⃗ v1 +⃗ v2 con ⃗ v1 ∈ V1 y

⃗ v2 ∈ V2. Si la suma es directa, esta descomposición es única.

 

Proposición 1.4.2 Sean V 1 y V2 subespacios vectoriales de un espacio vectorial V . Las siguientes

afirmaciones son equivalentes:

1. V = V ⊕ 1V2

2. Para todo ⃗ v ∈ V existe una descomposición única de la forma

⃗ v =⃗ v                v ∈ V 1 + ⃗ v ∈ 2 con ⃗ v V 1 1 y ⃗ 2 .

Demostración:

 

Veamos que 1 → 2
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Supongamos ⃗ v =⃗ v           ∈ V                         ∈ 1 + ⃗ v v 2 con ⃗ v ∈ V 1 1 y ⃗ v u 2 2 y ⃗ = ⃗ u V 1 + ⃗ 2 con ⃗ u 1 y ⃗ u ∈ V 2 .

 

Se tiene que,

⃗ v1 +⃗ v2 = ⃗ u1 +⃗ u2,

igualdad que puede reescribirse

 

⃗ v1 −⃗ u1 =⃗ u2 −⃗ v2

 

De donde                                        ⃗ ⃗ v − u ∈ V ∩ V V V v 1 ⃗ 1 1 2 , como por hipótesis, ∩ 1 2 = 0, ⃗1 = ⃗ u1 y de la misma forma,

⃗ v2 =⃗ u2.

Para ver que 2                                          ⃗ → 1 alcanza con demostrar que V 1 ∩ V 2 = 0.

Si              ⃗                       ⃗      ⃗ ⃗ v ∈ V ∩ 1 V 2 = 0, ⃗ v se puede escribir ⃗ v = ⃗ v + 0 y ⃗ v = 0 +⃗ v, como la descomposición es única,

⃗   ⃗ v = 0.

□

 

En general, dados n subespacios vectoriales V 1,V2, · · · ,Vn de un espacio vectorial V , definimos

n

\   V = ⃗ u ∈ V,⃗ u ∈ V , j = 1,· · · , n j                                     j

j=1

y

 

n        (              ) n

∑ V       u j = ⃗ , ⃗ ∑ j u j ∈ Vj , j = 1,· · · ,n j =1          j=1

 

que reciben el nombre de intersección y suma, respectivamente, de los subespacios vectoriales V j dados. Estos dos nuevos subespacios son también subespacios vectoriales de V .

La definición de suma directa de varios subespacios vectoriales es un poco más complicada en general, que si solamente hay dos. Se dice que V es suma directa de los subespacios vectoriales V 1,V2, · · · ,Vn y se escribe

V = V ⊕V ⊕ ⊕ · · · ⊕ 1 2 V 3 Vn

si todo vector                                                            n ⃗ v ∈ V tiene una descomposición única de la forma ⃗ v = ∑ ⃗ v con ⃗ v ∈ V      1 · · · , n i =    i         i      i i , = ,.

1

 

i

Si n = 2, esta última definición y la dada anteriormente son equivalentes. Para n ≥ 3 se puede demostrar que las siguientes afirmaciones son equivalentes:

• V = V 1 ⊕V2 ⊕V3 ⊕ · · · ⊕Vn •          n              n        ⃗ V = ∑ V y V ∩ ( V ) = 0 i = 1 i i ∑ k ̸ = i k 1.5 Cambio de base 39

 

Figura 1.8: Coordenadas de un vector                ⃗ ⃗ x, en las bases { b1,⃗ b } 2 (a) y { ⃗ c1,⃗ c } 2 (b)

[image: ]

 

1.5   Cambio de base

Para visualizar el problema de cambio de base, considere los dos sistemas de coordenadas que se

muestran en la Figura 1.8. En           ⃗     ⃗ ( a ) , ⃗ x = 3 b 1 + 1 b2, mientras que en (b), el mismo vector ⃗ x se expresa como ⃗ x = 6 ⃗ c1 + 4 ⃗ c2. El problema consiste en encontrar la relación que hay entre las coordenadas de un mismo vector                  ⃗ ⃗ x en las dos bases { b        { 1 ,⃗ b } 2 y ⃗ c1,⃗ c } 2 .

Para el caso general, supongamos que se tienen dos bases       ′ B y B de un espacio vectorial V de dimensión finita. Se verá que con la ayuda de una matriz se pueden obtener las coordenadas de un vector con respecto a una base de V a partir de las coordenadas del vector en la otra base. Llamaremos base antigua a la base                          ′ B y base nueva a la base B.

Si                         ′              ′      ′                ′ B = { ⃗ e 1 e , ⃗ 2      e , · · · , ⃗ n                          n y } B = { ⃗ e ,⃗ e , · · · ,⃗ e } son dos bases de un espacio vectorial V de

1   2

dimensión                          ′ n , todo elemento de la base B puede escribirse como combinación lineal de los elementos de la base B :

 

               n 11 ⃗  ′ e = a ⃗ e 1 + a 21 ⃗ e 2 + · · · + a1 ⃗ e                 n 1



 ′ ⃗ e   = a e + a ⃗ ⃗ e + · · · + a ⃗ e 

 2     12 1   22 2       n2 n                                  (1.1)  · · ·





 ′ ⃗ e      a = e ⃗ + a e ⃗   · · · + + a ⃗ e 

 n     1n 1   2n 2       nn n

 

que en forma abreviada puede escribirse

n

⃗ ′ e       a e             · · · j                 i j = ⃗ , j = 1 ∑        n i                          ,

i=1
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i Puede escribirse en forma más concisa usando convenio de Einstein (índice repetido indica

suma)

⃗ ′ e = a e ,      j = 1 · · ·n j         i j ⃗ i                        ,

 

La nueva base ′ B se obtiene de la base B mediante la siguiente matriz

          

a11   a     · · · 12   a1n

                      a 21 a 22 · · · a

A =             2n                       · · · · · · · · · · · ·                      

an1   an2   · · ·   ann

donde la                                                     ′ j-ésima columna de A son las coordenadas del vector ⃗ e                              e j j  con respecto a la base antigua  ⃗,

 

j = 1,2, · · · , n.

 

La matriz                                             ′                                             ′ A se denomina matriz del cambio de base de B a B y se denota P B , B .

 

i

A la matriz del cambio de base de   ′ B a B también se la denomina matriz de transición de la base   ′ B a la base B.

Cuando sea necesario hacer constar las bases      ′ B y B escribiremos P    para denotar la

B′,B

matriz de cambio de base de      ′ B a B. Si       ′ B y B coinciden se tiene que P B ′                     × , = B   Inn.

 

Proposición 1.5.1                                   ′ La matriz A del cambio de base de B a B es invertible y su inversa es la matriz

de cambio de base de      ′ B a B. Podemos, por lo tanto, escribir

 

A−1     −1      ′ = P ′ = P B B B , , B

Demostración:

 

El determinante de la matriz es no nulo, ya que sus columnas son las coordenadas de los vectores

⃗ e j que por ser una base son linealmente independientes.

 

Si ′                                                                                        ′ A es la matriz de cambio de base de B a B, entonces se tiene

n

⃗        ′     ′ e j                 i j a = ⃗ e ,        j = 1,· · · ∑        n i

i=1
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y por la definición de la matriz A,

n

⃗ ′ e       a          i =        n ∑

i                  ki   k ⃗ e ,            = 1, · · ·   .

k=1

por lo tanto,

 

⃗      n    ′     n                n       n        ′ e j        ∑ = a ( a i                             ki e ⃗ ) = ( a a ) ⃗ e ,        j 1 i j ∑ k         k = 1      ∑k=1 ∑i     ki      k         = 1,· · · n.

=                    =1    i j

 

Como el término dentro de la sumatoria en     n        ′ k , ∑ a a                                       j ( k) , es el elemento que ocupa el lugar ,

k=1 ki i j

del producto de las matrices       ′ A y A, de acuerdo a la igualdad, ese término vale 1 si k = j, y 0 si no.

Es decir que se tiene que el producto de las matrices       ′                ′ A y A , es AA = In×n.

□

 

i

Las expresiones anteriores pueden reescribirse en forma sintética considerando que el índice repetido se suma de 1 a          ′    ′ n : ⃗ e j          i j = a ⃗ e i

 

Usando la delta de Kronecker, δ               = k j (definida δ k j 1 si k = j y δ   = k j 0 si k ̸= j), la expresión se escribe          ′ ⃗ e j          ki                δ = a a ⃗ e i j    k = ⃗ e

k j   k

 

■                                  R 1.26 Ejemplo                       3                                          ′ Dadas las bases de , B = { ( 1 , 1 , 1 ) , ( 1 , 1 , 0 ) , ( 1 , 0 , 0 ) } y B = { ⃗ e1,⃗ e    } 2 ,⃗ e 3 (base

canónica), la matriz de cambio de base de      ′ B a B, de acuerdo a las Ecs.(1.1), es

      

1 1 1

P           B′                  , B = 1 1 0 

      

1 0 0

■

 

Si la base nueva, ′                                                                                                                            ′ B es la base la canónica, la matriz de cambio de base de B a B se obtiene

i

directamente poniendo las coordenadas de los vectores de la base B en cada columna (ver

Ejemplo 1.26).

 

Relación entre las coordenadas en la base            ′ B y en la B

 

Tratemos ahora de relacionar entre sí las coordenadas de un mismo vector en las bases nueva ′  B  y
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⃗ x = x 1 ⃗ e1 + x2 ⃗ e2 + · · · + xn ⃗ en (1.2)

 

y además

 

⃗    ′    ′          ′    ′                      ′    ′ x = x ⃗ e + x ⃗ e + · · · + x ⃗ e                                                                                           (1.3)

1                    n 1 2 2 n

 

Sustituyendo Ec.(1.1) en la segunda expresión, Ec.(1.3), obtenemos

 

n               n                     n

⃗    ′                               ′                                          ′ x = x ( a ⃗ e ) + x ( ⃗ e ) + · · · 1      i ∑ 1 i       2 ∑ ai2   ∑ i                       n            in   i + x ( a) ⃗ e

i =1               i=1                     i=1

 

= (    ′                 ′                            ′                          ′                 ′ a 11 x + a 1     12 x + · · · + a x ⃗ 2            n 1    e n   1 ) + ( a 21 x + a x    · · · 1     22   +

2

 

+   ′                                     ′                 ′                            ′ a 2n x x · · · a x n   2 ) ⃗ e + · · · + ( an 1 x + an + 1      2   + ) ⃗ 2           nn    e nn

 

Comparando esta última igualdad con la primera expresión Ec.(1.2) podemos escribir

 

               n  x        ′    ′       ′ 1         a = 11 x + a x + · · · 1     12         + 2         a x 1 n



       ′    ′       ′ x = a x + a x · · · a + + x 

 2     21             n 1 22 2 2 n                                 (1.4)  · · ·





       ′    ′       ′ x = a x + a x + · · · + a x 

 n     n1    n2        nn 1 2 n

          

x                 ′ 1                 x

1

           ′            x 2 x            2

Si convenimos en escribir                 ′ ′ X = x y X = x

           3 3                       · · · · · ·                      

x                 ′ x

n                  n

a las coordenadas del vector                                            ′ ⃗ x en la antigua base B y en la nueva base B , respectivamente, las

Ecs.(1.4) se escribe de la forma

 

X     ′ = AX                                                       (1.5)

 

Esto permite obtener las coordenadas del vector ⃗ x en la base antigua conociendo las coordenadas del mismo vector en la base nueva.

1.5 Cambio de base 43

 

■ Ejemplo 1.27 Dadas las mismas bases del Ejemplo 1.26, B = {(1,1,1),(1,1, 0), (1, 0,0)} y

B′                                                                                                                                                                      ′ = { ⃗ e e 1 ,⃗ 2 ,⃗ e } x 3 , se quieren encontrar las coordenadas del vector ⃗ = ( 3 , 2 , 3 ) B en la base B, para lo cual se necesita la matriz de cambio de base, P   ′ B , B .

De acuerdo a las Ecs. (1.1), la matriz de cambio de base, P   ′ B , B se obtiene a partir de encontrar las coordenadas de los vectores de la base   ′ B en la base B y colocarlos como columnas. Después de resolver el sistema de ecuaciones se obtuvo

 



 (1,0,0)   = 0(1, 1,1) + 0(1,1, 0) + 1(1,0,0) 



(0,1,0)   =   0(1, 1,1) + 1(1,1, 0) + (−1)(1,0,0)                                (1.6)



 (0,0,1)   = 1(1, 1,1) + (−1)(1,1,0) + 0(1,0,0) 

 

y entonces,

 

       

0   0    1

P            B ′             , B = 0 1 − 1 

       

1 −1   0

 

Otra alternativa para hallar la matriz P   ′                                                                                                                                                                  − 1 B , B es usar la Proposición 1.5.1 y entonces P ′ B , B = P ′   dado B , B

 

que P ′ B ,B se encontró en el Ejemplo 1.26.

 

Luego, usando (1.5), las coordenadas son

 

               

0   0    1       3           3

X = P ′       ′                                                       B X , B =  0 1 − 1   2  =  − 1 

               

1 −1   0      3         1 ′ B    B

 

Así se obtuvieron las coordenadas del vector ⃗ x en la base B conociendo las coordenadas del mismo vector en la base   ′ B.

■

 

■                      1    2                                          R Ejemplo2 1.28 Sean ⃗ e y ⃗ e dos vectores perpendiculares unitarios en en la dirección de los ejes de coordenadas cartesianas. Girando los ejes de coordenadas un ángulo φ en sentido positivo, contrario a las agujas del reloj, se obtiene una nueva base   ′             ′       ′ B = { ⃗ e , ⃗ e }.

1   2
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Figura 1.9: Cambio de base. Rotación de ejes en un ángulo φ

[image: ]

 

De acuerdo a la Figura 1.9, se observa que

 



 ′ ⃗ e   = cos(φ ) ⃗ e      ( )⃗ e 1                 1 + sen φ 2

′ (1.7)

 ⃗ e   = −sen(φ) ⃗ e1 +cos(φ) ⃗ e 2                                2

 

por lo cual, teniendo en cuenta el sistema (1.1), la matriz del cambio de base A es

 

          

cos(φ)   −sen(φ )

A =                                              (1.8)

sen(φ)    cos(φ)

 

Así, si                                                          ′       ′ φ = π / 4, las coordenadas respecto a la base B = { ⃗ e , ⃗ e } del vector (2,3)

1                        B 2

 

                      − 1

cos(π /4)   −sen(π /4)         2          3.53

                      ≈

sen(π /4)   cos(π/4)          3          0.71     ′ B B

■
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■                                    (2)                      2       ′              2 Ejemplo 1.29 Dadas las bases de P [ x ] , B = 3 , 1 + x , x y B = 1 , x + 3 , x + x , se quiere R

hallar la matriz de cambio de base de   ′ B a B.

Teniendo en cuenta la Observación i, luego del Ejemplo 1.26 resulta más simple hallar P E ,B y P               2 , donde E = 1 , x , x es la base canónica. Como

E ′ , B

 

1                    2 = 1 · 1 + 0 · x + 0 · x

x                          2 + 3 = 3 · 1 + 1 · x + 0 · x

x2                              2 + x = 0 · 1 + 1 · x + 1 · x

 

Se tiene que

      

1 3 0

P           E ′             , B = 0 1 1 

      

0 0 1

y de la misma forma,

 

     

3 1 0

P          E ,B = 0 1 0            

0 0 1

 

Luego, la matriz de cambio de base de   ′ B a B sale de multiplicar las matrices de cambio de base de            ′ E a B y de B a E, es decir,

 

          

1/3 2/3 −1/3

P ′                                                                      −1                         B , B = P ′ ′ B , E P E , B = ( P E , B ) P E , B =  0 1 1 

          

0    0     1

 

                   

1/3 2/3 −1/3      0         −1/3

                      2 0 1 1 0 = 1 = x + x                    

                   

0    0     1        1    ′        1 B     B

■
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algo, creo que es entender eso, sería alucinante. [4]

1.6 Actividades propuestas 47

 

Figura 1.10

[image: ]

 

1.6   Actividades propuestas

Problema de Aplicación 1 Para realizar un cambio de coordenadas celestes a coordenadas horizontales, es necesario hacer dos rotaciones:

 

⃗ r el = Rz(T SL) ∗⃗ rec

 

⃗ rh = Ry(90 − ϕ) ∗⃗ rel

 

Esto se debe a que entre el sistema ecuatorial celeste y el ecuatorial local, el polo celeste (eje z) permanece fijo para ambos, pero el origen desde donde medimos uno y otro sistema en el ecuador celeste, cambia en una cantidad TSL. Usaremos T SL como tiempo siderio local, T SL= 18:31:31, Recuerde pasar de horas a grados para poder operar. Luego para realizar el cambio de coordenadas de celeste locales a horizontales, se mantiene en común el eje y, la línea este-oeste, y el ángulo en que se rotan el plano x, z es 90 − ϕ. Para el problema actual usaremos la ϕ= −34º 50’ que corresponde a la ciudad de La Plata.

 

El vector de las coordenadas ecuatoriales celestes se escribe como:

 

        

cos(δ )cos(α )

⃗              r ec     cos = ( δ ) sen ( α ) 

        

sen (δ )
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Figura 1.11: Coordenadas (x 1, y1,z1) y (x2, y2,z2) en el sistema cartesiano horizontal y en el cartesiano ecuatorial

[image: ]

 

y el vector de las coordenadas horizontales:

         

cos(h)cos(A)

⃗              r h       cos = − ( h ) sen ( A ) 

         

sen(h)

 

donde       −1            −1 h = sen ( z ) y A = tan(−y/x).

 

Amplíe la Tabla 1.1 con las coordenadas horizontales para cada cúmulo. Recuerde pasar de horas a grados para poder operar. Nota: No tenga en cuenta la precesión. Recomendación: Realice un programa computacional para hacer los cálculos.

 

1.6.1   Ejercicios

Ejercicio 1.1

 

Analice si los siguientes conjuntos son espacios vectoriales sobre R.

a) El conjunto                              2 S = { ( x , y ) : y = 2 x + 1 } ⊆

R
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Tabla 1.1: Coordenadas celestes de 13 cúmulos abiertos

 

Cúmulo         RA(J2000)     Dec(J2000)

NGC6192       16:40:16.40    −43:30:31.0 NGC6242       16:55:32.38    −39:28:02.0 NGC6322       17:18:25.13    −42:56:03.3 NGC6704       18:50:42.00    −05:12:42.5 NGC6737       19:02:16.30    −18:32:56.5 Rup 102          12:13:32.95     −62:43:18.7 Rup 166          13:25:38.14     −63:27:54.6 SLS4565         18:01:59.55    −23:41:06.3 Lynga 14          16:55:03.40     −45:14:09.1 Trumpler 22       14:31:03.33     −61:09:57.0 Trumpler 24       16:56:11.14     −40:40:01.1 Dominici 11       18:57:36.31     −10:23:39.9 Dominici 12       18:51:24.93     −13:18:50.2

 

b) El semiplano en   2 R, S = {(x,y) : y ≥ 0},

c) Los polinomios de grado menor o igual que 2,   (2) P [x].

R

Ejercicio 1.2

 

Dé al menos 5 ejemplos de espacios vectoriales y escriba, según su opinión, qué utilidad tendría saber que su estructura es de espacio vectorial.

Ejercicio 1.3

 

De acuerdo con la definición, S es un subespacio de un espacio vectorial V sí y sólo sí, se cumplen las siguientes condiciones:

i) S contiene al vector ⃗ 0 de V .

ii) Si ⃗ u y ⃗ v están en S, entonces ⃗ u + ⃗ v está en S.

iii) Si ⃗ u está en S y α es un escalar, entonces α⃗ u está en S.

Compruebe si valen las siguientes afirmaciones:

a) S = {                                3 ( x , y , z ) : z = 0 } , es un subespacio de R. b) El conjunto de polinomios   (2) P [x], de grado menor o igual que 2, es subespacio vectorial del

R

espacio vectorial   (n) P [x] de todos los polinomios con coeficientes reales.

R
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Ejercicio 1.4

 

Dados los subespacios de   3                   3                                     3 R , S = { ( x , y , z ) ∈ R : x = y = 0 } y T = { ( x , y , z ) ∈ R : x + y + z = 0} calcule: a) Una base y la dimensión de ambos subespacios. b) S + T y S ∩ T , dando las bases de dichos subespacios. c) ¿La suma S + T es directa?

Ejercicio 1.5

Encuentre en cada uno de los ejemplos siguientes la suma y la intersección del par de subespacios dados, y compruebe que se verifica la ecuación:

 

dim (V1) + dim(V2) = dim(V1 +V2) + dim(V ∩ 1V2)

 

a) Los subespacios que corresponden al conmutador para cada una de las matrices siguientes.

              

2 1                2 0

A1 =       ,    A2 =      

0 2                1 2

 

(El conmutador de una matriz                                 2×2 A , se define como C ( A ) = { B ∈            B R   tal que laA . = B.A}).

 

b) Los subespacios formados por las bases                     it      −it { sen ( t ) , cos ( t ) } y { e , e } considerados en el

espacio de las funciones complejas continuas en el intervalo [0,1] con escalares en R.

Ejercicio 1.6

1. Demuestre que el conjunto de soluciones de la ecuación diferencial de primer orden homogénea,

con coeficientes constantes: ′ y + ky = 0 es un espacio vectorial de dimensión uno, siendo { −kx e} una base. A su vez el conjunto de soluciones de esta ecuación es un subespacio vectorial del espacio de las funciones derivables cuya dimensión es infinita.

 

2. Luego resuelva la ecuación diferencial homogénea de segundo orden:

y′′        ′                                                                                                   ′ − y − 6 y = 0, con las condiciones iniciales y ( 0 ) = 3 y y(0) = −1. Este tipo de ecuaciones se resuelve proponiendo la solución      λ x y = e y resolviendo la ecuación característica, que para éste caso sería:   2 λ − λ − 6 = 0.

a λ x λ  x  1  ) Encuentre las raíces  λ  1  y  λ  2  y reemplace en la solución general:  y  (  x  ) =  C  1  e  +  C  2  e  2.

b) Escriba la base del conjunto solución, y especifique que dimensión tiene.

c) Halle la solución particular definiendo los coeficientes C 1 y C2, con ayuda de las

condiciones iniciales.

3. Investigue que pasaría si las soluciones de la ecuación característica de una ecuación diferencial

homogénea fueran raíces dobles. Escriba su base.
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4. Cite al menos un ejemplo de física donde se necesita usar ecuaciones diferenciales.

 

Ejercicio 1.7

¿Son los vectores                                     3 ⃗ u = ( 4 , − 2 , 5 ) y ⃗ v = ( 1 , − 1 , − 1 ) de R combinación lineal de ⃗ x       − = ( 1 ,1,2) y

1

x ⃗                                                               3 2     2 = ( , 0 , 1 ) ? Interprete geométricamente y conecte con los subespacios de R.

Ejercicio 1.8

Los primeros cuatro polinomios de Laguerre son                   2               2    3 { 1 , 1 − x , 2 − 4 x + x , 6 − 18 x + 9 x − x}. Demuestre que estos polinomios forman una base de   (3) P [x].

R

Ejercicio 1.9

 

Compruebe que B 2 ( )  2  )  (  2  =  {  1  ,  x  ,  x  }  es una base del espacio vectorial  P  [  x  ]  . En consecuencia,  dim  (  P[x]) = R  R

3. ¿Es correcta la afirmación        (n) dim( P [x]) = n + 1?

R

Ejercicio 1.10

Sea la matriz,

      

x   a   b

A        = a x b              

a b x

 

Encuentre los valores de x para los que el Det(A) = 0. Lo cual es equivalente a decir que columnas o filas son linealmente dependientes. ¿Cuáles son las dimensiones posibles del espacio generado por las filas?

Ejercicio 1.11

Encuentre las coordenadas del vector                                          ⃗ ⃗ x = ( 1 , 3 , − 2 ) con respecto a la base B = { b 1, ⃗ b2, ⃗ b3} donde b ⃗           ⃗           ⃗ 1 = ( 1 , 0 , 0 ) , b 2 = ( 1 , 1 , 0 ) , b3 = (1,1,1).

 

Ejercicio 1.12

 

Calcule las coordenadas del vector ⃗ w relativas a la base B = {⃗ u   u 1 ,⃗ } 2.

a) ⃗ u1 = (1,0), ⃗ u2 = (0, 1); ⃗ w = (3,7)

b) ⃗ u1 = (2, −4), ⃗ u2 = (3,8); ⃗ w = (1,1)

c) ⃗ u1 = (1,1), ⃗ u2 = (0, 2); ⃗ w = (a,b)
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Ejercicio 1.13

 

Encuentre las coordenadas del vector ⃗ v relativas a la base B = { ⃗ v1,⃗ v2,⃗ v } 3.

⃗ v 1 = (1,0,0), ⃗ v2 = (2,2,0), ⃗ v3 = (3, 3,3);⃗ v = (2, −1, 3).

 

Ejercicio 1.14

Calcule las coordenadas del vector       (2) p ∈ P [x ] relativas a la base B = { p1(x), p2(x ), p3(x)}.

R

p                      2                 2                     2 x ( ) = 1 + x , p p ( x ) = 1 + x , x x p x ( ) = x + ; ( ) = 4 − 3 x + x

1                2                 3

 

Ejercicio 1.15

     

En 2                                                         2   0 × 2 R , encuentre las coordenadas de la matriz A =   relativas a la base

−1 3

                                              − 1 1 1 1 0 0 0 0

B =        ,      ,      ,     

                        0 0 0 0 1 0 0 1

 

Ejercicio 1.16

Considere las bases                 ′                                        2 B = { ⃗ u } { 1 u ,⃗ } 2     B y = ⃗ v 1 v ,⃗ 2        R para, donde ⃗ u1           u = ( 1 , 0 ) , ⃗2           v = ( 0 , 1 ) , ⃗ = (2,1), 1

⃗ v2 = ( −3, 4).

a) Halle la matriz de cambio de base de       ′         ′ B a B , P B ,B.

b) Utilice la matriz anterior para obtener las coordenadas en la base   ′ B de ⃗ w = (3,−5) . B

c) Verifique lo obtenido en b) haciéndolo directamente.

d) Calcule la matriz de transición P   ′                                                                                    −1 ′ B , B y verifique que P B , B = P ′ . B , B

Ejercicio 1.17

 

Considere las bases                    ′                                                  3 B = { ⃗ u u { 1   2   3              1   2   3         R ,⃗ ,⃗ u } y         v B = ⃗ v ,⃗ ,⃗ v } para            u , donde ⃗   = (−3, 0,−3), ⃗   = 1 2  u

(− 3,2, 1), ⃗ u3 = (1,6, −1), ⃗ v1 = (−6, −6, 0), ⃗ v2 = (−2,−6,4) y ⃗ v3 = (−2, −3,7).

 

a) Halle la matriz de cambio de base de       ′ B a B.

b) Utilice la matriz anterior para obtener las coordenadas en la base   ′ B de ⃗ w = (−5,8,−5) .

B

Ejercicio 1.18

 

Considere las bases B = {               ′                                                       (1) p 1 ( x ) , p 2 ( x ) } y B = { q 1 ( x ) , q } 2 ( x ) para P[x], donde p1(x) = 6 + 3x, R p2(x) = 10 + 2x, q1(x) = 2, q2(x) = 3 + 2x.
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a) Halle la matriz de transición de       ′ B a B.

b) Utilice la matriz anterior para obtener las coordenadas de                             ′ p ( x ) = − 4 + x en la base B.

 

Ejercicio 1.19

Si se quiere obtener un sistema de coordenadas rectangulares ′   ′ x y haciendo girar un sistema de coordenadas rectangulares                                    3 xy hasta describir un ángulo de θ = π .

4

a) Halle las coordenadas ′    ′ x y del punto cuyas coordenadas xy son (−2,6).

b) Calcule las coordenadas                                 ′   ′ xy del punto cuyas coordenadas x y son (5,2).

Ejercicio 1.20

Si se quiere obtener un sistema de coordenadas rectangulares ′   ′   ′ x y z haciendo girar un sistema de coordenadas rectangulares xyz en sentido contrario a las agujas del reloj alrededor del eje z, cuando se observa hacia abajo a lo largo del eje                                      π z hasta describir un ángulo de θ = .

4

a) Halle las coordenadas ′    ′   ′ x y z del punto cuyas coordenadas xyz son (−1,2, 5).

b) Calcule las coordenadas                                  ′    ′   ′ xyz del punto cuyas coordenadas x y z son (1,6, −3).

Ejercicio 1.21

Sea V un espacio vectorial de dimensión n. Demuestre que todo conjunto linealmente independiente de n elementos es una base de V .

Ejercicio 1.22

 

Sean                                           (n) p x 0 ( ), p1 (x), .., pn (x) polinomios cualesquiera de P   [x] de grado 0,1, · · · R ,n respectivamente:

demuestre que                                     (n) { p0 ( x) , p1 ( x ) , .., pn ( x ) } es una base de P [x]. ¿Podría encontrar alguna relación

R

entre este teorema y el teorema del resto? ¿Y con la fórmula de Taylor?

Ejercicio 1.23

En el supuesto que V=V ⊕ 1 V2 donde V1 y V2 son dos subespacios de V de dimensiones n y m respectivamente y sean B1 = { ⃗ u1,⃗ u2, · · · ,⃗ un} y B2 = { ⃗ v1,⃗ v2,· · · ,⃗ vn} sus bases, compruebe que B = B ∪ 1 B2 es una base de V ⊕ 1V2.

 

Ejercicio 1.24

Sea A = LU , donde L es una matriz triangular inferior invertible y U es triangular superior. Explique por qué la primera columna de A es un múltiplo de la primera columna de L. ¿Cómo se relaciona la segunda columna de A con las columnas de L?
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Ejercicio 1.25

 

Sea                                 n { ⃗ e 1 , ⃗ e 2, · · · , ⃗ e n                          R } la base canónica de, y sean u ⃗1 = ⃗ e2    ⃗ − e1 , ⃗ u2 = ⃗ e3    ⃗ − e2 ,· · · , u⃗ n− 1 = ⃗ e − n

e                                                            n n− ⃗ 1   n     n                      1   2        n                    R , ⃗ u = ⃗ e . Demuestre que { u ⃗ , ⃗ u · · · }                              e , , ⃗ u es una base de v . Exprese el vector ⃗ = ⃗ e + ⃗ + 1 2

· · · + ⃗ e n como una combinación lineal de los vectores ⃗ u1, ⃗ u2,· · · , ⃗ un.

 

1.6.2   Autoevaluación

Verdadero o Falso

 

1. Si una matriz tiene dos filas iguales, su determinante vale 0.

2. Si F = F ⊕ F ⊕ ⊕ 1 2 .. Fp entonces dimF ̸= dimF1 + dimF1 + .. + dimFp.

3. Si                             − 1 P B,A es invertible, entonces P=P   .

B     B A , A ,

4. Siendo A, B y C bases de un espacio vectorial, se cumple que P C,B.P B,A=P C,A.

5. Sea S un conjunto de un espacio vectorial V de dimensión n y además S contiene menos de n

vectores, entonces S no puede generar V .

6. Un plano en   3                                           3 R es un subespacio de dimensión 2 de R .

7. Si un conjunto {⃗ v 1, ⃗ v2, · · · , ⃗ vp} genera un espacio vectorial V de dimensión finita y si U es un

conjunto de más de p vectores de V , entonces U es linealmente dependiente.

8. La suma del subespacio de las matrices simétricas de   n×n R con las matrices antisimétricas de

R   es directa generando el espacio vectorial de las matrices de n×n                                                          n×n R .

9. La suma del subespacio de las funciones pares con el subespacio de las funciones impares no

es directa.
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2. Transformaciones Lineales

 

En este capítulo nos interesamos por aquellas aplicaciones entre espacios vectoriales que preservan las operaciones de suma y producto por escalares. Son las aplicaciones o transformaciones lineales. Son las funciones con las que se trabaja en Álgebra Lineal y tienen una amplia variedad de aplicaciones. Se verá que, en el caso de dimensión finita, es posible asociarles una matriz. Se estudian los espacios asociados; el espacio nulo y el espacio que generan las columnas de la matriz. Un resultado útil e importante es que las sumas de las dimensiones de esos subespacios dan la dimensión del espacio de partida. Mostramos la interpretación geométrica tanto de las aplicaciones lineales en el plano como en el espacio. Se presentan una gran variedad de ejemplos. Se estudia, además, el espacio dual de un espacio vectorial. Es el conjunto de todas las transformaciones lineales entre un espacio vectorial y el cuerpo de los escalares, conocidas como funcionales lineales.

 

2.1   Definición de transformación lineal. Ejemplos

 

Definición 2.1.1 Sean V y W dos espacios vectoriales, una transformación lineal T de V en W

es una aplicación T : V → W tal que:

 

1. T ( ⃗ v + ⃗ w) = T ( ⃗ v) + T (⃗ w) para todo ⃗ v, ⃗ w ∈ V . 2. T (a ⃗ v) = a T ( ⃗ v) para todo a ∈ K y todo ⃗ v ∈ V .

 

Entre las transformaciones lineales más utilizadas están las proyecciones. En la Figura 2.1 se muestra la proyección ortogonal de un vector ⃗ v = (x,y,z) sobre el plano xy.
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Se tiene       3       3 → T : R R, donde T ((x, y,z)) = (x,y,0). Es una transformación lineal ya que se cumplen para                    ′      ′     ′ ∀ ⃗ v = ( x , y , z ) , ⃗ w = ( x , y , z) y ∀ a ∈ K:

 

1.                        ′              ′             ′                        ′              ′                                        ′     ′ T ( ⃗ v + ⃗ w ) = T (( x + x , y + y , z + z )) = ( x + x , y + y , 0 ) = ( x , y , 0 ) + ( x , y, 0) = T ( ⃗ v) + T (⃗ w).

 

2. T (a ⃗ v) = T (a(x,y, z)) = T ((ax, ay,az)) = (ax,ay, 0) = a(x, y,0) = a T ( ⃗ v).

 

Figura 2.1: Proyección ortogonal de un vector ⃗ v sobre el plano xy
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i

En una transformación lineal V y W deben ser espacios vectoriales sobre el mismo cuerpo K.

Las aplicaciones                    ⃗ O : V → W , O ( ⃗ u ) = 0W para todo ⃗ u ∈ V y I :       ,          son d V → V I ( ⃗ ) = ⃗ d u u transformaciones lineales.

La traza de una matriz,

Tr   n×n                       n → : K K dada por Tr ( A ) = ∑ a , es una transformación lineal. i = 1 ii T                       2 : R → R dada por T ( x ) = x es un ejemplo de transformación no lineal. Se tiene que                                           2     2    2 T ( x + y ) ̸ = T ( x ) + T ( y ) , ya que T ( x + y ) = ( x + y ) = x + y + 2xy, mientras que T            2    2 ( x ) + T ( y ) = x + y.

Otro ejemplo de transformación no lineal es el determinante de una matriz, ya que, en general Det(A + B) ̸= Det(A) + Det(B).

 

■ Ejemplo 2.1 Dado un número real a, la aplicación que asocia a cada polinomio p del conjunto

P [t] su valor en x = a, p(a), es una transformación lineal. Está definida mediante las siguientes R

expresiones:
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T : P [t] → R R

 

T ( p(t)) = p(a)

El hecho que T es una transformación lineal se deduce de las igualdades T (p + q) = T (p) + T (q) y T (cp) = cT (p) que se prueban a continuación:

 

T ( p + q)(t) = (p + q)(a) = p(a) + q(a) = T (p)(t) + T (q)(t)

y

T (cp)(t) = (cp)(a) = c( p(a)) = cT (p)(t)

para todo número real c. ■

 

Aplicando repetidas veces las propiedades 1 y 2 de la definición de transformación lineal entre espacios vectoriales V y W se puede ver que la imagen de una combinación lineal de vectores del espacio vectorial inicial V es una combinación lineal de vectores del espacio vectorial final W , es decir

n            n

T (   c ∑ j⃗ v j ) =    c   (v ) ∑ j T ⃗ j

j =1           j=1

 

donde c j ∈ K y ⃗ v j ∈ V para todo j = 1,2, · · · ,n.

 

Otras propiedades de las transformaciones lineales que se deducen de la definición se enuncian en las proposiciones a continuación.

 

Proposición 2.1.1 Sea T una aplicación lineal entre dos espacios vectoriales V y W. Se tienen

los siguientes resultados:

1. La imagen del elemento neutro de ⃗ ⃗  V  mediante  T  es el neutro de  W  , es decir,  T  (  0  V  ) =  0W

2. La imagen mediante T del opuesto de un elemento ⃗ v ∈ V es el opuesto de T (⃗ v), es decir,

T (− ⃗ v) = −T ( ⃗ v)

 

Demostración:

 

1.    ⃗       ⃗    ⃗       ⃗       ⃗ T ( 0 V ) = T ( 0 V + 0 V ) = T ( 0 V ) + T ( 0V )

58 Capítulo 2. Transformaciones Lineales

 

Restando   ⃗ T ( 0V ) en ambos miembros de la igualdad, se tiene

 

T ⃗       ⃗       ⃗           ⃗       ⃗ ( 0 V ) − T ( 0 V ) = T ( 0 V ) de donde, 0 W = T ( 0V ).

 

2. T ( − ⃗ v) = T ((−1) ⃗ v) = (−1)T (⃗ v) = −T ( ⃗ v), ∀ ⃗ v ∈ V .

□

 

Proposición 2.1.2 Sea T : V → W una transformación lineal entre espacios vectoriales. La imagen

mediante T de cualquier subespacio vectorial V 1 de V , W1 = T (V1) es un subespacio vectorial de W .

 

Demostración:

 

0W ∈ T (V 1), ya que T (0V ) = 0W .

Sean ⃗ w 1 y ⃗ w ∈ T (V1). Existen ⃗ v1,⃗ v ∈ V          T v                 w 2 2 1 tales que ( ⃗ w 1 ) = ⃗ 1 y T ( ⃗ v 2 ) = ⃗2. Para ver que ⃗ w1 + ⃗ w2 ∈ T (V1) basta ver que, por ser V1 subespacio, ⃗ v1 +⃗ v2 ∈ V1 y T ( ⃗ v1 +⃗ v2) = T ( ⃗ v1) + T (⃗ v2) = ⃗ w1 + ⃗ w2.

Y también α ⃗ w ∈ 1 T (V1), ya que α⃗ v ∈ 1 V1, por ser V1 subespacio, y T (α⃗ v1) = αT ( ⃗ v1) = α⃗ w1 .

□

 

Proposición 2.1.3 Sea T : V → W una transformación lineal entre espacios vectoriales. Si U es

un subespacio de               −1 W , entonces T(U) = { ⃗ v/⃗ v ∈ V,T (⃗ v) ∈ U} es un subespacio de V .

 

Demostración:

 

0     −1             −1 ∈ T ( U ) , ya que T(0 ) = 0 .

V                         W      V

Sean ⃗ v1 y ⃗ v ∈ −1 2 T(U ). Existen   ⃗ u1 y ⃗ u ∈ 2 W tales que T ( ⃗ v1) = ⃗ u1 y T ( ⃗ v2) =⃗ u2. Como T                                − 1 ( ⃗ v 1 + ⃗ v 2 ) = T ( ⃗ v 1 ) + T ( ⃗ v 2 ) ∈ U , ⃗ v 1 + ⃗ v 2    T ∈(U). De la misma forma, si       −1            −1 ⃗ v ∈ 1    T ( U ) , α⃗ v ∈ 1    T(U ) pues T (α ⃗ v1     α ) =T ( ⃗ v1     α ) =⃗ u .

1

□
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Proposición 2.1.4 La imagen mediante una transformación lineal de un subespacio vectorial de

dimensión k es un subespacio vectorial de dimensión no superior a k.

 

Demostración:

 

Por la Proposición 2.1.2, si el subespacio V 1 de V tiene { ⃗ v1,⃗ v2, · · · ,⃗ vk} como base, todo

elemento w de la imagen de W 1 = T (V1) puede escribirse como combinación lineal de los vectores

T (⃗ v1),T ( ⃗ v2), · · · , T ( ⃗ vk). Esto es cierto ya que tomando ⃗ v ∈ V1 tal que T ( ⃗ v) = ⃗ w se tiene que

k              k

⃗ w = T ( ⃗ v) = T (   c ∑ j⃗ v j) =    c   ⃗ ). ∑ j T ( v j

j=1          j=1

Por lo tanto, W                                                             T 1 coincide con el subespacio generado por los vectores T ( ⃗ v v 1 ) , ( ⃗        T 2 ) , · · · , ( ⃗ vk ),

 

⟨T ( ⃗ v1), T ( ⃗ v2),· · · ,T (⃗ vk)⟩

 

Es decir W 1 = L(T ( ⃗ v1),T ( ⃗ v2), · · · ,T ( ⃗ vk)). T preserva las combinaciones lineales. En consecuencia, la dimensión de W 1 no puede superar k.

□

 

Demostraremos con el teorema que sigue que una transformación queda determinada cuando se conocen las imágenes de los elementos de una base del espacio vectorial inicial.

 

Proposición 2.1.5 Sea B = { ⃗ e1,⃗ e2, · · · ,⃗ en} una base de un espacio vectorial V y sean ⃗ w1, ⃗ w2, · · · , ⃗ wn

n vectores cualesquiera de otro espacio vectorial W. En estas condiciones, existe una única

transformación lineal T de V en W tal que

 

T ( ⃗ e j ) = ⃗ w j, j = 1,2, · · · ,n

 

Demostración:

 

Existencia. Dado             n                                            n ⃗ v ∈ V , ⃗ v = ∑ α ⃗ e con α ∈ . Se define ( v   α ⃗ w . j=1   j j         j                               ∑ K T ⃗ ) = j =1   j   j

T es lineal

Sean     ′                                    n                       ′           n          ′ ⃗ v y ⃗ v tales que ⃗ v = ∑ j   α = 1   j j          ∑ ⃗ e y ⃗ v = j      α ⃗ e . Entonces, =1 j j

n           n            n

⃗    ′                                          ′                                    ′ v + ⃗ v = + = ∑ α j⃗ e j   ∑ α j ⃗ e j        ( ∑ α j + α j) ⃗ e j

j=1         j=1          j=1
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y

n                    n            n

T     ′                                  ′                                                    ′                                      ′ ( ⃗ v + ⃗ v ) = ( ∑ α j + α )⃗ w =     ⃗ w + j j               α ∑ j     j              α ⃗ w          (v       T ⃗ j ∑ j = T ⃗) + (v )

j =1                    j=1           j=1

De la misma forma,

n                 n

T (c ⃗ v) =    (c ∑α j )⃗ w j = c ∑ α j⃗ w j = cT ( ⃗ v)

j=1               j=1

T es única

Si   ′                        ′                                        n T cumple T ( ⃗ e j              j                ∑ ) = ⃗ w y ⃗ v =     α ⃗ e , se tiene que

j=1   j j

n                n

T ′                               ′ ( ⃗ v ) = ∑ α j T ( ⃗ e j) =      T (⃗ ∑ α j   e j) = T ( ⃗ v).

j=1              j=1

 

Luego        ′                                                                ′ T ( ⃗ v ) = T ( ⃗ v ) , ∀ ⃗ v ∈ V , de donde T = T.

□

 

Se presentan a continuación ejemplos de transformaciones lineales conocidas como la derivada, la integral definida (entre espacios vectoriales de funciones) y la multiplicación de una matriz por un vector. Se deja al lector la verificación de que son transformaciones lineales.

 

■          2.2 D : P   [x] → P     [x] (derivada) Ejemplo         (n)          (n−1)

R       R

 

D          2             n                             n−1 ( a 0 1 + a 1 x + a 2 x + · · · + a n         1 x ) = a + 2 a2 x + · · · + nan x

 

■

 

■                             R Ejemplo 2.3 J : C ([ 0 , 1 ]) → (integral definida)

 

Z 1

J ( f ) =     f (x)dx

0

■

 

■ Ejemplo 2.4 Dada la matriz,

      

i    1   0

A =        

1   i   0

es posible definir la transformación que multiplica la matriz por un vector ⃗ v = (z1,z2, z3) ∈ 2 C, es decir,       3      2                                               t A : → A z z z C   C , está dada por (( z z A , , z )) = ( , , ) .

1   2   3          1   2   3
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Es una transformación lineal, ya que se cumple

 

A    ′                           ′ ( ⃗ v + ⃗ v ) = A ⃗ v + A ⃗ v

 

y

A(c⃗ v) = cA ⃗ v

■

 

i

Dada una matriz       m×n                    n     m A ∈ K , la transformación A : K → K, dada por

A                        T (( z 1 z , 2      z , · · · , n      A )) = ( z 1 z , 2      z , · · · , ) ,

n

es la transformación lineal asociada con la matriz A. Se verá que, recíprocamente, dada una transformación lineal es posible hallar la matriz que la representa.

 

2.2   Matriz de una transformación lineal

 

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Sea B = { ⃗ e e · · · e 1 ,⃗ 2 , ,⃗n} una base de V y ¯ B = f1, ⃗ f 2, · · · n        o ⃗

, ⃗ fm   una base de W . El elemento T ( ⃗ e1) es un vector de W, y por lo tanto

puede escribirse como combinación lineal de los vectores de la base ¯ B:

 

T        ⃗      ⃗           ⃗ ( ⃗ e 1 ) = a 11 f 1 + a 21 f 2 + · · · + a m 1 fm

Análogamente,

 

T        ⃗      ⃗           ⃗ ( ⃗ e 2 ) = a 12 f 1 + a 22 f 2 + · · · + a m 2 fm

· · · · · · · · ·

 

T        ⃗      ⃗           ⃗ ( ⃗ e n ) = a 1 n f 1 + a 2 n f 2 + · · · + a mn fm.

 

Estas igualdades se escriben de la forma

 

m

T          ⃗ ( ⃗ e j ) = a            n                                             (2.1) ∑ i j f i , j = 1 , 2 · · · ,

i =1
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O en forma más abreviada, usando notación indicial, es decir, sumando sobre el índice repetido i de 1 a m,

 

T        ⃗ ( ⃗ e j ) = a i j fi, j = 1,2 · · · , n

 

En estas condiciones diremos que

 

                

a       a     a   · · ·   a 11 12 131n

                

T =               2n                  a 21 a 22 a 23 · · · a 

                 · · · · · ·                                  

a m 1     am2   am · · · 3   amn

 

es                                                       ¯ la matriz de la aplicación T con respecto a las bases B y B.

 

i

En la j-ésima columna de la matriz de la aplicación lineal T están las coordenadas de

T ( ⃗ e ) j con respecto a la base ¯ B de W . Ver Sección 1.5

El cambio de base para obtener las coordenadas de un vector visto en la Sección 1.5 es una transformación lineal. Las nuevas coordenadas del vector se obtienen al multiplicar por la matriz de cambio de base. La matriz de una transformación lineal, se construye, entonces, de la misma forma que lo hicimos con la matriz de cambio de base. A veces se agregan en la notación las bases B y ¯ B, para indicar las bases consideradas en los espacios V y W .

Para el caso dimensión finita, y si están especificadas las bases B y ¯ B, es posible denominar a la matriz de la transformación lineal con la misma letra que la transformación lineal.

 

Dado ⃗ x ∈ V , se puede escribir

n

⃗ x =   x ∑ j⃗ e j     e

j=1

m

⃗              ⃗ y = T ( ⃗ x ) = y ∑ i fi ,

i =1

 

la relación entre las coordenadas yi y x j de ⃗ y y ⃗ x viene dada por la matriz T . 2.2 Matriz de una transformación lineal 63

 

En efecto, teniendo en cuenta la expresión para T (⃗ e j), Ec.(2.1),

 

∑ y m                n          n            n      m          m    n ⃗ ⃗       ⃗ f = T ( x ) = T i=   i i                  ∑ ⃗ ( x j ⃗ e j ) = ∑ x T ( ⃗ e ) = 1                      j =1            j=    j     j     ∑    x 1                     ( j = j ∑   a i j    i           ∑ f 1 ) =     (     a x )  i  = 1         i= ∑       j f

1    j =   i j      i 1

 

del primer y del último término de la igualdad anterior, se tiene que

n

yi =    ai j x j, i = 1, 2 · · · ,m ∑

j =1

es decir que la relación entre las coordenadas y i y x j viene dada por los elementos ai j (ver Sección

1.5).

 

■ Ejemplo 2.5 Sea P la proyección ortogonal sobre el plano xy, (representada en la Figura 2.1). P   3      3 : R → R. P es una transformación lineal que verifica

 

P                        ⃗ ( ⃗ e 1 ) = ⃗ e 1 , P ( ⃗ e 2 ) = ⃗ e 2 , P ( ⃗ e 3 ) = 0

por lo tanto, su matriz con respecto a la base canónica es:

      

1 0 0

P        = 0 1 0              

0 0 0

■

 

■                    φ Sea Ejemplo 2.6 R la transformación que corresponde a una rotación en un ángulo φ en sentido

positivo (antihorario) alrededor del origen (Ver Figura (2.2)).        2      2 R → φ   R : R . Su matriz en la base canónica es:

 

          

cos(φ )   −sen(φ)

Rφ =                .                                     (2.2)

sen(φ )   cos(φ )

 

De acuerdo a la Figura 2.2, se tiene que

     

x′                  x

    φ   = R

y′                  y

 

Esta matriz es la matriz de cambio de base del Ejemplo 1.28.

■
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Figura 2.2: Transformación de rotación

[image: ]

 

■                 R Ejemplo3 2.7 En                                                           { , consideramos el subespacio V 1                            xy correspondiente al plano . Si B = ⃗ e       } 1 e ,⃗ 2 e ,⃗ 3

es la base canónica, y S la transformación lineal que para cada vector ⃗ v da el vector simétrico con

respecto al plano xy, como se muestra en la Figura 2.3, se tiene que

 

S ( ⃗ e1) =⃗ e1,   S( ⃗ e2) =⃗ e2,   S( ⃗ e3) = − ⃗ e3.

 

Por lo tanto, su matriz con respecto a la base canónica es

      

1 0   0

S          = 0 1 0              

0 0 −1

■

 

i

Si se quiere hallar la matriz que corresponde a la transformación lineal que a cada vector le hace corresponder el vector simétrico con respecto a un plano cualquiera, es conveniente hallar una base del plano ⃗ u ,⃗ 1 u2 y un vector⃗ u                                  ,⃗ 3 perpendicular. Así, en la base { ⃗ u ,⃗ 1 u 2 u3}, la matriz de

la simetría con respecto al plano es la misma que la matriz del Ejemplo 2.7. Una vez obtenida la matriz, se realiza el cambio de base a la base deseada.

 

■ Ejemplo 2.8 De acuerdo al corolario anterior, para hallar la matriz correspondiente a la simetría

con respecto al plano x + y + z = 0 (Figura 2.4). se busca una base del plano (como x = −y − z, los vectores en el plano son de la forma (−y − z,y,z) = y(−1,1,0) + z(−1,0, 1), es decir que los

vectores ⃗ u1 = (−1, 1,0) y ⃗ u2 = (−1,0, 1) son una base del mismo ). Y un vector perpendicular es 2.2 Matriz de una transformación lineal 65

 

Figura 2.3: Simetría con respecto al plano xy

[image: ]

 

⃗ u3 = (1, 1,1). En esa base {⃗ u                                                    x   y 1 ,⃗ u 2 ,⃗ u } 3 la matriz de la simetría con respecto al plano + + z = 0 es, entonces,

      

1 0   0

              0 1 0       

0 0 −1

■

 

Si en los espacios vectoriales V y W , de dimensiones finitas n y m, respectivamente, se fijan bases, existe una correspondencia biunívoca entre las transformaciones lineales de V en W y el conjunto de las matrices m×n m×n  K  (de orden  m  ×  n  ) sobre el cuerpo  K  . Puesto que el conjunto  K

posee una estructura de espacio vectorial, también tiene esa estructura el conjunto de todas las transformaciones lineales entre dos espacios vectoriales sobre el mismo cuerpo K. A ese espacio vectorial se lo denomina L(V,W ).
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Figura 2.4: Simetría respecto al plano x + y + z = 0
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Teorema 2.2.1 Sean V y W dos espacios vectoriales sobre un mismo cuerpo K; el conjunto

L(V,W) de las aplicaciones lineales entre V y W es un espacio vectorial sobre el cuerpo K.

 

Demostración:

 

Suma.

Dadas T     ∈ 1 y T 2 L(V,W), se define T1 + T 2, T1 + T     → 2 : V W como

 

(T 1 + T2)( ⃗ v) = T 1( ⃗ v) + T2( ⃗ v)     ∀ ⃗ v ∈ V

 

Veamos que T 1 + T2 es una transformación lineal

• (T 1 + T 2)( ⃗ v + ⃗ w) = T1(⃗ v + ⃗ w) + T2(⃗ v + ⃗ w)

= T 1(⃗ v) + T 1(⃗ w) + T2( ⃗ v) + T2(⃗ w) = (T 1 + T2)( ⃗ v) + (T1 + T2)(⃗ w)

 

• (T 1 + T 2)(α⃗ v) = T1(α⃗ v) + T2(α⃗ v)

= αT 1( ⃗ v) + α T2( ⃗ v)

= α(T 1(⃗ v) + T 2( ⃗ v)) = α(T 1 + T2)( ⃗ v)
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Producto por escalares.

Dada T ∈ L(V,W) y α ∈ K, se define (α T ), (αT ) : V → W como

 

(αT )( ⃗ v) = αT ( ⃗ v)

 

Veamos que (αT ) es una transformación lineal

 

• (αT )( ⃗ v + ⃗ w) = α (T (⃗ v + ⃗ w))

= α(T ( ⃗ v) + T (⃗ w)) = α T ( ⃗ v) + α T (⃗ w) = (α T )( ⃗ v) + (α T )(⃗ w)

 

• (αT )(β⃗ v) = α (T (β⃗ v))

= α(β T ( ⃗ v)) = (α β)T ( ⃗ v)

= β (α T ( ⃗ v)) = β (αT )( ⃗ v)

□

 

Como toda transformación lineal puede representarse mediante una matriz y recíprocamente, se tiene el siguiente resultado:

 

Teorema 2.2.2 Sean V y W espacios vectoriales de dimensiones n y m, respectivamente, entonces,

el espacio vectorial de las transformaciones lineales del espacio vectorial V al espacio vectorial

W , L(V,W), tiene dimensión m × n.

 

Demostración:

 

Se puede ver en el libro de E. Hernández [21]. En él se construye una base de L(V,W ).

También puede demostrarse a partir de la correspondencia biyectiva entre el espacio vectorial de

las matrices   m×n K (de dimensión m × n) y L(V,W ).

□

 

i

Si V y W coinciden escribimos L(V ) en lugar de L(V,V ). La matriz de la aplicación lineal suma coincide con la suma de las matrices de cada una de las aplicaciones y la matriz de la aplicación lineal cT coincide con el producto de la matriz T por el escalar c. Si llamamos M(T ) a la matriz de la aplicación lineal T , esto se escribe 68 Capítulo 2. Transformaciones Lineales

 

M    ′                                   ′ ( T + T ) = M ( T ) + M ( T)   y   M(cT ) = cM(T ), c ∈ K

 

Se verá a continuación que la composición de funciones usual puede realizarse entre dos transformaciones lineales y el resultado es otra transformación lineal.

 

Proposición 2.2.3 Sean V , W y X espacios vectoriales sobre el cuerpo K. Sean T ∈ L(V,W ) y

T ′ ∈ L(W, X). Entonces

 

T ′ ◦ T ∈ L(V,X )

 

Demostración:

 

Sean ⃗ v 1,⃗ v ∈ 2 V , entonces

 

( ′                                        ′                                            ′                           ′ T ◦ T )( ⃗ v 1 + ⃗ v 2 ) = T ( T ( ⃗ v 1 + T ( ⃗ v 2 )) = T ( T ( ⃗ v 1 )) + T(T ( ⃗ v2 ))

 

= ( ′                                ′ T ◦ T )( ⃗ v ) + ( T ◦ T )( ⃗ v )

1                2

Análogamente,

 

( ′                                ′                              ′                                    ′ T ◦ T )( α ⃗ v ) = T ( T ( α⃗ v )) = T ( α T ( ⃗ v )) = α ( T ◦ T )(α⃗ v)                                                □

 

Proposición 2.2.4 Si los espacios V , W y X tienen dimensión finita y si denotamos por M(T ),

M ′                    ′                                                         ′           ′ ( T ) y M ( T oT ) las matrices de T , T y ToT , respectivamente, con respecto a las bases de

antemano fijadas, se tiene el siguiente resultado:

 

M ′                          ′ ( T oT ) = M ( T)M(T )

 

Demostración:

 

m

T          ⃗ ( ⃗ e j ) = a ,   = , · · · n ∑ i j f i j 1 2 ,                                                 (2.3)

i =1

donde ai j son los elementos de la matriz M(T ).
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Sean {             n        o ⃗ ⃗ e1,⃗ e2, · · · ,⃗ en } ,     f1, ⃗ f2, · · · , ⃗ f m   y {⃗ g1,⃗ g2, · · · ,⃗ g p } bases de V , W y X , respectivamente.

En la                                  ′                                                                                           ′ i-ésima columna de la matriz M ( T oT ) están las coordenadas del vector ( ToT )( ⃗ e ) con

i

respecto a la base gk .

 

m

T ′                                   ′                ⃗ ( T ( ⃗ e i )) = T ( a f ) ∑ ji j

j =1

m

=      ′   ⃗ a T f ) ∑ ji ( j

j=1

m    p

=   a ∑ ji   b ∑k j⃗ gk

j=1    k=1

p   m

=     b a ⃗ g ∑ ∑ k j jik

k=1 j=1

 

donde                                 ′ b son los elementos de la matriz M ( T).

i j

 

Esto prueba que   m                                                ′ ∑ b es el elemento que ocupa el lugar ( k , i ) de la matriz M ( ToT ) y j =    k ja

1      ji

este valor coincide con el elemento                                        ′ ( k , i ) del producto de las matrices M ( T) y M(T ).

□

 

i El resultado anterior se generaliza para el caso de una sucesión de tranformaciones lineales, T i,

i = 1, · · ·k aplicadas a un vector ⃗ v. Se tendrá entonces que resulta equivalente a aplicar a ⃗ v una única matriz T tal que

M (T ) = M(Tk)M(Tk−1) · · ·M(T2)M(T1).

 

2.3   Transformaciones lineales inyectivas y suryectivas

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K y T una aplicación lineal de de V en W . Recordamos que T es inyectiva si T ( ⃗ x) = T ( ⃗ y) implica ⃗ x =⃗ y y T es suryectiva si para todo ⃗ y ∈ W existe ⃗ x ∈ V tal que T (⃗ x) =⃗ y (o equivalentemente T (V ) = W, donde T (V ) denota la imagen de V mediante T ). Finalmente recordamos que T es biyectiva si es a la vez inyectiva y suryectiva.

 

i // En el caso de transformaciones lineales cada uno de los tipos anteriores recibe un nombre

especial: una aplicación lineal inyectiva recibe el nombre de monomorfismo; si es suryectiva se le da el nombre de epimorfismo; finalmente si la aplicación es biyectiva se dice que es un isomorfismo.

70 Capítulo 2. Transformaciones Lineales

 

Encontraremos ahora condiciones sencillas que sirvan para determinar si una aplicación lineal es de cualquiera de los tipos anteriores. Comenzaremos con las aplicaciones inyectivas, y para ello necesitamos definir el concepto de núcleo de una aplicación lineal.

 

2.4   Núcleo e imagen de una transformación lineal

 

Definición 2.4.1 Dada una aplicación lineal T : V → W , definimos el núcleo de T , que se denota

por N(T ) (o Ker(T ), del inglés kernel significa núcleo), como el conjunto de todos los ⃗ v ∈ V

tales que         ⃗ T ( ⃗ v ) = 0, es decir

 

N (T ) = ⃗ v ∈ n           o ⃗ V, /T ( ⃗ v) = 0

 

El subconjunto                            ⃗                              ⃗    ⃗ N ( T ) nunca es vacío, ya que 0 ∈ N ( T ) y esto se deduce de que T ( 0 ) = 0 como ya fue demostrado. Se tiene además, el siguiente resultado:

 

Proposición 2.4.1 Si T : V → W es una aplicación lineal entre espacios vectoriales, N(T ) es un

subespacio vectorial de V .

 

Demostración:

 

Esta propiedad es consecuencia de la Proposición 2.1.3. Por definición N (T ) es la preimagen

de ⃗ 0 W que es un subespacio de W . □

 

Proposición 2.4.2                                                               ⃗ n o Una aplicación lineal T : V → W es inyectiva si y solo si N ( T ) = 0.

 

Demostración:

 

Si                                       ′                                             ′ T es inyectiva se tiene que T ( ⃗ v ) = T ( ⃗ v ) implica que ⃗ v = ⃗ v. Si ∃ ⃗ v ∈ N(T ) tal que T     ⃗        ⃗    ⃗          ⃗ ( ⃗ v ) = 0 como T ( 0 ) = 0 resulta ⃗ v = 0. Para ver que                                  ′                                                    ′ T es inyectiva suponemos ∃ ⃗ v y ⃗ v , tales que T ( ⃗ v ) = T ( ⃗ v). Por ser T una transformación lineal             ′                         ′                              ′        ⃗                                   ′ T ( ⃗ v ) = T ( ⃗ v ) = T ( ⃗ v − ⃗ v ) , y si T ( ⃗ v − ⃗ v ) = 0, entonces, ⃗ v − ⃗ v ∈ N(T ). Como                      ′ N T ) = 0 , se tiene que ⃗ v = ⃗ v y por lo tanto T es inyectiva. (       n o ⃗

□
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■ Ejemplo 2.9 Para la proyección ortogonal P de la Figura 2.1 (Ejemplo 2.5),

 

N            3 ( P ) = { ( x , y , z ) ∈                             } R tales que P ( x , y , z ) = ( x , y , 0 ) = ( 0 , 0 , 0 ).

 

O sea N(P) = {(0,0,z), z ∈   }           z R , todo el eje. Por la Proposición 2.4.2, se tiene que P no es inyectiva (intuitivamente se ve que muchos vectores de   3 R dan el mismo vector al proyectar los sobre el plano xy). Además, se tiene que las dimensiones de N(P) y de la Im(P) son 1 y 2, respectivamente, suman 3, que es la dimensión de   3 R .

■

 

i Si bien las soluciones de un sistema   ⃗   ⃗      ⃗ A X = b , ⃗ b ̸ = 0 son un subconjunto pero no un subespacio

de   n                                                                        ⃗    ⃗      ⃗ R (ver Observación i en 1.2), toda solución puede expresarse de la forma X = X + NH XH , donde ⃗                  ⃗    ⃗              ⃗                              ⃗ X NH es solución de A X = b mientras que X H ∈ Nul ( A ) . Esto sale porque si XNH es solución de   ⃗    ⃗    ⃗      ⃗       ⃗       ⃗     ⃗   ⃗   ⃗      ⃗ A X = b , A ( X NH + X H ) = A X NH + A X H = b + 0 = b y si X es otra solución de A⃗   ⃗            ⃗   ⃗        ⃗     ⃗      ⃗   ⃗   ⃗          ⃗   ⃗ X = b , entonces A ( X − X NH ) = A X − A X NH = b − b = 0, de donde X − XNH ∈ Nul(A) y por lo tanto ⃗    ⃗      ⃗ X = X + NH XH.

 

Como ejemplo se deja al lector verificar que la solución del sistema no homogéneo

(

x +y + w     = 1

2x + 3y + z+ 2w   = 1

 

es ⃗    ⃗      ⃗ X = X NH + XH = (2, −1, 0, 0) + α (1, −1, 1, 0) + β (−1, 0, 0,1) con α y β ∈ . R         ▲

 

Como se demostró en la Proposición 2.1.2, la imagen de una transformación lineal T es un subespacio. En el teorema que sigue se enuncia la relación que existe entre las dimensiones del núcleo de T , de la imagen de T y la dimensión de V :

 

Teorema 2.4.3 Sean V y W dos espacios vectoriales de los cuales V es de dimensión finita y

T : V → W es una aplicación lineal. Entonces

 

dim (N(T )) + dim(Im(T )) = dim(V ).

 

Demostración:

 

Sea n = dim(V ) y k = dim(N(T )),

 

si k = n, entonces T es la aplicación nula y la dim(Im(T )) = 0. Por lo tanto el teorema vale. 72 Capítulo 2. Transformaciones Lineales

Si k = 0, entonces T es un monomorfismo. Si B es una base de V , T (V ) es base de la Im(T ).

Luego la dim(Im(T )) = dim(V ) y el teorema vale.

 

Supongamos que 0 < k < n y sea { ⃗ v1,⃗ v2, · · · ,⃗ vk } una base de N(T ). Sean ⃗ vk+1,⃗ vk+2,· · · ,⃗ vn

tales que { ⃗ v 1,⃗ v2,· · · ,⃗ vk,⃗ vk+1,⃗ vk+2, · · · ,⃗ vn} es una base de V .

 

Veamos que {T ( ⃗ vk+1), T ( ⃗ vk+2), · · · ,T ( ⃗ vn)} es una base de Im(T ).

 

En ese caso se tendrá que dim(N(T )) + dim(Im(T )) = k + (n − k) = n = dim(V ).

 

Si ⃗ w ∈ Im(T ),   ∃ ⃗ v ∈ V tal que T (⃗ v) = ⃗ w.

Como     n                         n                 n ⃗ v = ∑ c j          j⃗ v , ⃗ w = T ( ⃗ v ) = c T ( v ) = =    j                                              j          j 1 ∑ j ⃗      c jT (⃗ v j), ya que { ⃗ =                            v 1 ∑ j=k 1                1 ,⃗ v2, · · · ,⃗ vk} +

es una base de N(T ).

Entonces, {T ( ⃗ v k+1), T ( ⃗ vk+2), · · · ,T ( ⃗ vn)} es un sistema de generadores de Im(T ).

 

Para ser si en un conjunto linealmente independiente, supongamos

∑    c n                           n                        n ⃗ T ( ⃗ v j              j          j         0 ) = = T ( =k+                ∑     c ⃗ v        ⃗ j                   j   , entonces c =                     j    j k j ) 1                         +1                 ∑         v ∈ N (T ) j=k+                        1 . Como { ⃗ v ,⃗ v2,· · · ,⃗ vk} 1

es una base de N(T ), existen escalares c1,c2, · · · , ck tales que

 

∑    c n                k ⃗   c v j              j v =        ∑   j k j = ⃗

+             j 1 j = 1

 

que puede reescribirse

 

∑ ( k                    n − c ) ⃗ v + j =1      j    j    ∑        c ⃗ v = 0

j=k+   j j 1

 

Se tiene que ci = 0, ∀ 1 ≤ i ≤ n, por ser { ⃗ v 1,⃗ v · · · 2 , ,⃗ vk,⃗ vk+1,⃗ vk+2,· · · ,⃗ vn} una base de V . En particular ci = 0, ∀ k + 1 ≤ i ≤ n. Luego {T ( ⃗ vk+1),T ( ⃗ vk+2),· · · , T ( ⃗ vn)} es un conjunto linealmente independiente.

□

 

■                                                                              R Ejemplo5      3 2.10 Se verificará el teorema anterior para la transformación lineal T : → R , dada por                                  T T (( z 1 , z 2 , · · · , z 5 )) = A ( z 1 , z 2 , · · · , z 5) , donde A es la matriz (ver Observación i al final de la

Sección 2.1).

 

          

1 1 1   1   1

A            = 0 1 0 − 1 1                      

1 0 1   2   0
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En primer lugar, se resuelve el sistema homogéneo utilizando eliminación gaussiana (con la matriz ampliada):

 

                                     

1 1 1   1   1 0         1   1   1   1    1   0         1 1 1   1   1 0

                                      → 0 1 0 − 1 1 0 → 0 1 0 − 1 1 0 0 1 0 − 1 1 0                                      

                                     

1 0 1   2   0 0         0 −1 0   1   −1 0         0 0 0   0   0 0

 

Al quedar solo dos pivotes, hay 2 variables dependientes y n − 2 = 3 variables independientes. Se tiene que dim(N(T))=3.

 

Para estudiar cuál es el subespacio que corresponde a la imagen de T , se debe hallar el subespacio de   3 R que generan las columnas. Puede repetirse la eliminación anterior con término independiente (x,y,z).

 

                                           

1 1 1   1   1 x         1   1   1   1    1     x          1 1 1   1   1     x                                             − 1 1 y → 0 1 0 − 1 1 y → 0 1 0 − 1 1 y                                             0 1 0

                                           

1 0 1   2   0 z         0 −1 0   1   −1 z − x         0 0 0   0   0 z − x + y

 

Se tiene, entonces, que Im(T ) = {(x,y,z) = (x, y,x − y)}, es el plano por el origen z = x − y, y

 

dim(N(T )) + dim(Im(T )) = 3 + 2 = 5 = dim(V ),

 

ya que       5 V = R.

■

Para deducir algunas consecuencias del Teorema 2.4.3 es necesario hacer uso del concepto de rango.

 

Sea T una aplicación entre los espacios vectoriales V y W, ambos de dimensión finita, m y n respectivamente. Sea A la matriz de la aplicación lineal en dos bases cualesquiera de V y W. Para encontrar el núcleo de                                                            ⃗ T , N ( T ) , es necesario resolver el sistema homogéneo A ⃗ x = 0 (como se hizo en el ejemplo anterior).

Si r (A) es el rango de la matriz A, se obtienen, r(A) soluciones dependientes y n − r(A) soluciones linealmente independientes. Es decir que 74 Capítulo 2. Transformaciones Lineales

 

dim(N(T )) = dim(V ) − r(A)

y comparando con el Teorema 2.4.3, se tiene que

 

dim (Im(T )) = r(A)

 

Puesto que la dimensión de la Im(T ) no depende de las bases que se elijan en V y W , de la igualdad anterior se deduce que las matrices de la aplicación T en cualquier base tienen el mismo rango.

 

Como consecuencia de lo anterior, es posible definir el rango de una transformación lineal T , que escribiremos r (T ) como el rango de cualquiera de sus representaciones matriciales, y resumir los resultados anteriores en el Corolario que sigue:

 

Corolario Sean V y W dos espacios vectoriales de los cuales V es de dimensión finita y T una transformación lineal, T : V → W. Entonces

1. T es inyectiva sí y sólo sí r(T ) = dim(V ).

2. T es suryectiva sí y sólo sí r(T ) = dim(W).

 

Por último, se estudian las aplicaciones lineales entre espacios vectoriales de igual dimensión que son biyectivas. Se conocen como isomorfismos. Supongamos que V y W son espacios vectoriales de dimensión finita, y que T es un isomorfismo entre ellos. Del Corolario anterior deducimos que

 

dim(V ) = r(T ) = dim(W )

 

Otras consecuencias de resultados anteriores se resumen en el teorema que sigue.

 

Teorema 2.4.4 Sean V y W espacios vectoriales de dimensión finita n y sea T : V → W es una

aplicación lineal. Las siguientes condiciones son equivalentes:

 

1. T es biyectiva

2. T es inyectiva

3. N (      n o ⃗ T ) =

0

4. T es suryectiva
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Demostración:

 

Entre 2, 3, 4 y 5 se tienen las equivalencias siguientes:

 

2        ⇐⇒ Prop.2.4.2

3

⇕ Corolario

5       Corolario ⇐⇒   4

 

Además, 1 → 2 porque toda transformación biyectiva es inyectiva. Como 2 y 4 son equivalentes

en este contexto y ambas implican 1, se tiene que también 2 → 1, y queda demostrado. □

 

Decimos que dos espacios vectoriales cualesquiera son isomorfos si podemos encontrar un isomorfismo entre ellos. Para que esto ocurra entre espacios vectoriales de dimensión finita ya vimos que ambos han de tener la misma dimensión. El recíproco también es cierto.

 

Teorema 2.4.5 Dado cualquier número natural n, todos los espacios vectoriales de dimensión n

sobre un mismo cuerpo son isomorfos.

 

Demostración:

 

Sean ′      ′               ′  V  y  W  dos espacios vectoriales de dimensión  n  con bases  {  ⃗  e  e  · · ·  }  1   2        n       1 ,⃗  e e  ,  · · ·  ,⃗ e }  y {  ⃗ e ,⃗ , ,⃗  2

n

respectivamente. Existe una transformación lineal                n T 1 , T 1 : V → K definida de la forma siguiente:

 

Si       n ⃗ v = ∑i   α ⃗ e ,

=1 i i

T 1(⃗ v) = (α1,α · · · 2 , , αn)

 

Es decir que la transformación da el vector con las coordenadas de⃗ v. Se demuestra fácilmente

(y se deja al lector) que esta transformación es lineal, inyectiva y suryectiva. Al ser biyectiva,

existe también su transformación inversa (Proposición 2.4.4). Utilizando este isomorfismo de un

espacio vectorial         n V con K, se tiene que dos espacios cualesquiera de la misma dimensión son

isomorfos. Para encontrar la transformación entre V y W hay que componer la transformación

T          n                                      n                                    n 1 entre V y K con la transformación T 2 entre K y el espacio vectorial W , T 2 : K → W. Esta
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n

T                    ′ 2 α ( 1 α , 2      α , · · · , n        α ) = ⃗ e. ∑ i   i

i=1

 

El isomorfismo entre V y W está dado por la transformación

n

(                                         ′ T ◦ T 2    1          2   1                 α )( ⃗ v ) = T ( T ( ⃗ v )) = ⃗ w = ⃗ e. ∑ i   i

i =1

□

 

■                                                                  (2)         3 Ejemplo 2.11 Aplicando el Teorema anterior, el isomorfismo entre P [ t ] y R está dado por R

 

T            2                t ( a a 1 + t a a a + t ) = ( , a , ) ,

0      1      2         0   1   2

 

mientras que el isomorfismo entre   3                                  2×2 R y las matrices simétricas de R   está dado por:

    

x   y

T (x,y,z) =        .

y   z

 

Se consideraron las bases canónicas de 3        (2)                                           2×2 P  R  , de  [  t  ]  y de las matrices simétricas de  R, R

espacios vectoriales de dimensión 3. Se deja al lector la verificación de estos resultados. ■

 

i Si T es un isomorfismo entre dos espacios vectoriales V y W de dimensión n, por el Teorema

2.4.4, su rango es n, y por lo tanto la matriz M(T ) de T en cualesquiera bases de V y W es invertible. Además, la inversa de M (T ) es la matriz de la aplicación inversa de T .

 

■ Ejemplo 2.12 Sean V y W dos espacios vectoriales de funciones, de dimensión infinita:

 

V       1 = { f ∈ C[0, 1]/ f (0) = 0} y W = C[0,1].

 

Sea la transformación

 

D                ′ : V → W dada por D ( f ) = f. D es una transformación lineal (En el Ejemplo 2.2 se vió para polinomios en (n) P [x]) .

R

D es monomorfismo

Supongamos                    ′          ′                                                                        ′ D ( f ) = D ( g ) , entonces f = g o, en forma equivalente ( f − g ) = 0. Entonces f (x) − g(x) = cte. Como f (0) = g(0) = 0, se tiene que la cte = 0, por lo tanto f = g. 2.5 Geometría de las transformaciones lineales de   2        2 R en R 77

 

D es epimorfismo

Sea g ∈ W y sea

 

Z x

f (x) =    g(t)dt.

0

Entonces, por el Teorema Fundamental del cálculo,       1          ′ f ∈ C [ 0 , 1 ] y f = g(x), ∀x ∈ [0,1]. Más aún, como

Z 0

g(t)dt = 0,

0

se tiene que f (0) = 0. Por lo tanto, ∀g ∈ W, ∃ f ∈ V tal que D f = g. O sea D es epimorfismo.

Resulta, entonces, que V y W son espacios isomorfos. ■

 

Gabriela González

 

Gabriela González es una física, investigadora y profesora argentina. Nació en 1965. Fue portavoz

y coordinó durante seis años un equipo de mil especialistas, que trabajó en las detecciones de ondas gravitacionales efectuadas desde el proyecto LIGO (Ondas Gravitacionales con Interferómetro Láser, por sus siglas en inglés). En febrero de 2016 fue uno de los cuatro científicos de LIGO que anunciaron la primera observación ondulatoria gravitacional, detectada en septiembre de 2015. Egresada de la Universidad Nacional de Córdoba y actual profesora en el departamento de física y astronomía de la Universidad de Louisiana, fue reconocida en 2016 como una de los diez científicos más destacados del mundo por la revista académica Nature. Además, a partir de 2018 forma parte de la Academia de

Ciencias de Estados Unidos, institución de máximo prestigio internacional. [9]

 

2.5                                                      2       2 Geometría de las transformaciones lineales de en R R

Se verán en esta sección algunas propiedades geométricas de las transformaciones lineales en el plano. Dada la matriz

    

a b

A =      

c   d 78 Capítulo 2. Transformaciones Lineales

 

Figura 2.5: Transformación de simetría (o reflexión) respecto del eje y

[image: ]

 

la transformación      2      2                               t → L : R R dada por L (( x , y )) = A ( x , y ) es

       

x          ax + by

L     =       

y          cx + dy

.

■ Ejemplo 2.13 En la Figura 2.5 se muestra la transformación que a cada vector le hace corresponder el simétrico respecto del eje y.

             

x          − 1   0      x         −x

L     =          =    

y          0    1       y          y

. ■

 

■ Ejemplo 2.14 En la Figura 2.6 se muestra la transformación que a cada vector le hace corresponder el simétrico respecto del eje x

             

x          1   0        x          x

L     =          =    

y          0   −1       y         −y

. ■

 

■ Ejemplo 2.15 En la Figura 2.7 se muestra la transformación que a cada vector le hace corresponder su proyección ortogonal sobre el eje x:

          

x          1   0       x         x

L     =         =   .

y          0   0       y         0
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Figura 2.6: Transformación de simetría respecto del eje x

[image: ]

 

■

 

■ Ejemplo 2.16 En la Figura 2.8 se muestra la transformación que a cada vector le hace su reflexión respecto de la recta y = x:

          

x          0   1       x         y

L     =        =  

y          1   0       y         x

. ■

 

i   Otras transformaciones se obtienen al multiplicar una de las coordenadas por una constante k.

Así el efecto es comprimir o dilatar en esa dirección, dependiendo si k < 1 o k > 1. También están las transformaciones llamadas de trasquillado, dadas por matrices de la forma:

!       !  !        !

x         1   k      x        x + ky

L       =               =          .

y         0   0      y           y

 

Estos casos se analizarán en los ejercicios propuestos.

 

2.6   Cambio de base para transformaciones lineales

Sean V y W dos espacios vectoriales sobre el mismo cuerpo K de dimensiones n y m, respectivamente. Sea T una transformación lineal de V en W con matriz 80 Capítulo 2. Transformaciones Lineales

 

Figura 2.7: Proyección ortogonal sobre el eje x

[image: ]

 

Figura 2.8: Transformación de reflexión respecto de la recta y = x

[image: ]
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T = (ai, j )i=1,m, j=1,n

 

con respecto a las bases B = {                    n        o ⃗ ⃗ e1,⃗ e2, · · · ,⃗ en } y ¯ B = f1, ⃗ f2, · · · , ⃗ f m   de V y W , respectivamente.

 

Si queremos conocer la matriz   ′ T = (ai, j   i, j=1,n                                          T ) de la misma aplicación respecto a dos nuevas

′                                                         n        o ′ ′ ′ ′ ⃗ { · · · } · · ·

bases                              ′      ′               ′ B = ⃗ e ,⃗ e , ,⃗ e B f f            W y ¯ = f , ⃗ , , ⃗ de V y, respectivamente, es necesario realizar

1           n 2             1   2       m

los cambios de base adecuados en los espacios vectoriales inicial y final, V y W .

 

Para seguir el razonamiento, veamos el diagrama siguiente:

 

V        y = T (x)         W

 

B = {             a              n              o i , j ⃗ e1,⃗ e                        ¯ 2                                ⃗ , · · · ,⃗ en}       = ⇒      B =   f1 , ⃗ f 2, · · · , ⃗ fm

C                            D ⇑ ⇑

a′

′                                                      i                                        n        o , j ′ ′ ′ ¯ ′           ⃗ { · · · } ⇒ · · ·

B                           ′      ′                ′ = ⃗ e ,⃗ e , ,⃗ e f = B = , ⃗ f , , ⃗ f

1           n 2                         1   2        m

 

En el diagrama

 

ai j son los elementos de la matriz de la transformación T tomando la base B en V y la base ¯ B en W

a′                                                                                                                                                                ′                                     ′ T B B son los elementos de la matriz de la transformación tomando la base en V y la base ¯

i j

en W

C                            ′                        ′ y D son las matrices del cambio de base de B a B y de ¯ B a ¯ B, respectivamente.

 

Se tiene que ⃗ x ∈ V puede escribirse de dos formas

 

x                         ′    ′          ′    ′                      ′    ′ e ⃗ x + e ⃗ + · · · + x ⃗ e = x ⃗ e + x ⃗ e + · · · + x ⃗ e

1 1     2 2          n n     1 1     2 2          n n

 

e ⃗ y = T (⃗ x) también

 

y ⃗                     ′     ′          ′     ′                     ′     ′ ⃗ ⃗ ⃗ ⃗ ⃗ f · · · 1 + y f · · · y f y y 2 2 + + y n f 1 m = + f + + f 1 1 2 2 n m 82 Capítulo 2. Transformaciones Lineales

 

En primer lugar, se tiene que,

 

         

y             x 11

         

          y x 2 2

         

          = T x                                (2.4)           y

3               3

         

          · · · · · ·

         

         

ym          xn

 

y de acuerdo a los cambios de base en un mismo espacio vectorial que se estudiaron antes,

                     

x              ′                                                               ′ 1              x y 1               1              y

1

                      ′ ′  2                               2                        x x y y                 2 2

                      ′ ′ x = C x y = D y                       3 3 3 3                                             · · · · · · · · · · · ·                                            

x              ′                                                              ′ n               n x ym ym

 

mientras que, considerando las bases   ′          ′ B y ¯ B, se tiene que,

 

         

y ′                                ′ x

1                1

          ′ ′

          y x

          2 2

          ′ ′ ′ = T                                   (2.5)           y x

 3                3   

          · · · · · ·

         

         

y′                                 ′ x

m          n

 

Sustituyendo en (2.4), se obtiene,

          

y′                                  ′ x

1                 1

           ′ ′            y x            2 2

D            ′ ′ y = TC x

           3 3                       · · · · · ·                      

y ′                                  ′ x

m           n

 

y como D es una matriz de cambio de base, tiene inversa, por lo tanto 2.6 Cambio de base para transformaciones lineales 83

 

             ′ ′ y                  x 1 1

             ′ ′              y x              2 2              ′ − 1 ′ y = D TC x              3 3                           · · · · · ·                          

y′                                            ′ x

m              n

 

Comparando esta expresión con (2.5) se obtiene, finalmente que

 

T ′           − 1 = DTC,

 

y es posible calcular la matriz   ′                                                                                                      ′          ′ T de la aplicación T con respecto a las bases B y ¯ B, conocidas la matriz                                                     ′ T de la misma aplicación con respecto a las bases ¯ B y ¯ B y las matrices C y D del cambio de base ′                         ′ B a B y de ¯ B a ¯ B, respectivamente.

 

i

Cuando entre dos matrices       ′                                               ′           −1 T y T se tiene la relación T = DTC, se dice que las matrices       ′ T y T son equivalentes ( D y C son matrices invertibles). Y si las matrices D y C                         ′ coinciden, se dice que las matrices T y T son semejantes. En muchos casos los espacios inicial V y final W de una transformación lineal coinciden, y se anota T ∈ L(V ).

Cuando                 ′          ′ B y ¯ B coinciden y B y ¯ B coinciden, la fórmula del cambio de base es más sencilla. Si T es la matriz de la aplicación T ∈ L(V ) con respecto a la base B de V , la matriz   ′                                                                                                    ′ T de la misma aplicación con respecto a una base B de V está dada por

 

T ′          −1 = CTC.

donde                                   ′ C es la matriz del cambio de base de B a B. Al tener esta relación entre las matrices, por lo anterior,       ′ T y T son semejantes.

 

Si   ′          −1                  ′ = T C TC , Det ( T) = Det(T ), ya que

 

Det   ′                     −1                          −1 ( T ) = Det ( C TC ) = Det ( C )Det(T ).Det(C) =    − 1 Det ( CC)Det(T ) = Det (I)Det(T ) = Det(T ).
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■          2.17 Si B es la base canónica, B = {(1,2),(2,3)} y Ejemplo                           ′

     

6 −2

(T )B =        

6 −1

se tiene que

                     − 1

1 2        6 −2      1 2        2 0

(T ) ′ B =                           =       

2 3        6 −1      2 3        0 3

. ■

 

2.7   Espacio dual de un espacio Vectorial

Dado un espacio vectorial V sobre un cuerpo K, podemos considerar el conjunto L(V,K) de todas las transformaciones lineales de V en el espacio vectorial K (de dimensión 1 sobre K).

 

Este espacio vectorial es un caso particular del estudiado anteriormente (L(V,W )), y el Teorema

2.2.1 de la sección nos permite concluir que L(V, K) es un espacio vectorial sobre K. Este espacio vectorial recibe el nombre de espacio dual del espacio vectorial V y para indicarlo se utiliza comúnmente el símbolo   ∗                                                ∗ V , en lugar de L ( V , K ) . En otras palabras, V es el espacio vectorial de todas las aplicaciones lineales de V en K, también llamados funcionales lineales.

 

Los elementos de   ∗ V son transformaciones lineales. Si V es un espacio vectorial de dimensión

finita                                                               ∗ n , del Teorema 2.2.2 se deduce que es espacio dual V tiene dimensión n. El teorema que sigue exhibe una base   ∗ B asociada de manera única y natural a una base B de V . La demostración del

Teorema 2.2.2, más general, fue citada. Se presenta a continuación la demostración para este caso particular.

 

Teorema 2.7.1 Sea V un espacio vectorial de dimensión finita n y B = { ⃗ e1,⃗ e2, · · · ,⃗ en} una base

de V . Existe una única base

 

B∗ = {ϕ1 ,ϕ2 ,· · · , ϕ n }

 

de ∗ V tal que ϕi ( ⃗ ei                                                                  ϕ ) = 1 para todo i = 1 , · · · , n , y ( ⃗ e ) = 0 si i ̸= j. Es decir, los elementos de la

j      i

base dual de B satisfacen

ϕ j (⃗ ei) = δi j ,      j, i = 1, 2, · · · , n 2.7 Espacio dual de un espacio Vectorial 85

La base ∗ B se denomina base dual de B.

 

Demostración:

 

Para      n ⃗ v = ∑ v   , definimos los funcionales ϕ , j = 1, 2,    ,n j=    j e ⃗ · · · de la forma siguiente,

1     j                                                                 j

 

ϕ j (⃗ v) = v j

 

es decir, da la coordenada j-ésima.

 

ϕ j     ∗ ∈ V y satisface ϕ j(⃗ ei          δ ) =i j

¿{ϕ1,ϕ2,· · · , ϕn} son linealmente independientes ?

 

Si   n           ⃗ ∑ c ϕ                  = ,    j j=    j   j                              j 1 = 0, ¿ Se cumple que c    0    ∀ ?

 

Notar que el término ⃗ 0 del miembro derecho de la igualdad es la aplicación nula (la imagen de ⃗ 0 es 0 ∈ K ∀ ⃗ v ∈ V ). Se deberá cumplir esa igualdad al evaluar las transformaciones lineales de ambos lados en cualquier vector ⃗ v. En particular, si se evaluán en los vectores de la base,

 

∑ c n               ⃗ ϕ   ) = ⃗ ) = 0,   i   1 2 · · · n j =    j   j e ( ⃗ 0 ( e ∀ = , , ,.

1        i                 i

 

Por lo tanto, ci = 0,i = 1,2, · · · , n, ya que ϕ j( ⃗ ei ) es no nulo solo cuando j = i. De ahí que B∗ es un conjunto de aplicaciones linealmente independientes.

 

Finalmente, para ver que generan, si       ∗ A ∈ V,

 

A       n              n ( ⃗ v ) = A ( ∑ v j          j ⃗ e ) =   A(v ⃗ e )

=    j                              j 1 ∑ j   j = 1

 

= n                 n                     n ∑ v A ( ⃗ e j =    j      j      ∑ ) = ϕ ( ⃗ v) A( e ) =           ( j=    j         j     ∑ ⃗ A( ⃗ e j ) ϕ j ⃗ v).

1                 1                  j=1

 

Entonces, se tiene la igualdad

n

A =   A( ⃗ e ∑ j)ϕj

j =1

 

y por lo tanto,   ∗ B = {ϕ1, ϕ2, · · · ,ϕn } es una base y queda demostrado el teorema.

□
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■                                                ϕ Ejemplo ∗ 2.18 Se quiere hallar la base dual B = {                                {        } 1 ϕ , } 2 ϕ , 3   de la base canónica B = ⃗ e 1 e ,⃗ 2 e ,⃗

3

de   3 R .

La transformación lineal ϕ1 debe satisfacer

 

ϕ1 ( ⃗ e 1) = 1, ϕ1( ⃗ e2) = 0, y ϕ1( ⃗ e3) = 0, de donde se obtiene,

 

ϕ1 (x 1, x2,x3) = ϕ1(x1 ⃗ e1 + x2 ⃗ e2 + x3⃗ e3) = x1.

 

De manera similar, ϕ2(x1,x2,x3) = x2 y ϕ3(x1,x2, x3) = x3.

■

 

■                     i                                                    i            i 2.19 Sean L , i = 1 , 2 , 3, funcionales sobre P [ t ] , definidos como L ( p ( t )) = p ( t) donde Ejemplo                                    (2)

R

los ti son distintos.

Son aplicaciones lineales y son linealmente independientes, ya que si ⃗  c  L  c  L  1  1  +  c  L  2  2  +  3  3  =  0,

para todo       (2) p ∈ P [t], entonces c1    c =2    c = = 0.

R                   3

V (2)                                                 ∗                                                      ∗  =  P [  t ]  tiene dimensión 3.  L1  ,  L2  y  L3  ∈  V y entonces,  {  L 1  ,  L2  ,  L3  }  es una base de  V .

R

(Recordar que       ∗ V y V tienen la misma dimensión).

¿Existe una base                                                ∗ B de V para la cual { L 1 , L 2, L 3   es su base dual } B?

Es decir, se quieren hallar { p1, p2, p3} ∈ V tales que

 

L j (pi) = δ ji

 

p1(t1) = 1, p1(t2) = 0, p1(t3) = 0

p2 (t1) = 0, p2(t2) = 1, p2(t3) = 0

p3(t1) = 0, p3(t2) = 0, p3(t3) = 1

 

De donde,

 

(t − t 2)(t − t3)

p1(t) =

(t − t   t − t 1 2 )( 13)

 

p2 (t) =    − (t − t 1)(t − t3)

(t 2    t1)(t − 2 t3)

 

(t − t 1)(t − t2)

p3(t) =

(t − t   t − t 3 1 )( 32)
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Entonces, para cada p ∈ V , sus coordenadas son:

 

p(t) = L1(p(t))p1(t) + L2(p(t))p2(t) + L3( p(t))p3(t) = p(t1)p1(t) + p(t2) p2(t) + p(t3) p3(t)

 

p1(t), p2(t), p3(t) son los polinomios de interpolación de Lagrange. Es importante señalar

que estos polinomios tienen muchas aplicaciones en aproximación de funciones y en integración numérica.

 

Es posible, por ejemplo, expresar el polinomio         2 p ( t ) = t + 1 como combinación lineal de los

funcionales Li si t1 = 0, t2 = 1 y t3 = −1.

 

p       (t − t    − 2 )( t t3)     (t − 1)(t + 1)        2 ( 1 t ) = = = 1 − t ( t 1 − t 2 )( t 1 − t 3 ) ( − 1 )( 1 )

 

(                                    2 t − t t − t t )( t ) ( )( + 1 ) ( t + t)

p           1       3 t ( ) =   =          =

2       (t − 2    t1   t )( − 2    t )      (1)(2)         2

3

 

(                                     2 t − t 1 )( t − t 2) ( t )( t − 1 ) ( t − t)

p t 3 () =                 =           = t ( − t t t 3 1 )( − 3 2 ) ( − 1 )( − 2 )    2

 

Como Li(p) = p(ti), se tiene que

 

L 1( p) = p(t1) = p(0) = 1, L2(p) = p(t2) = p(1) = 2, y L3(p) = p(t3) = p(−1) = 2.

 

Finalmente,

 

p(             2       t 2              2 ( + t ) ( t−t)      2 t) = ( 1 )( 1 − t ) + 2 + 2 = t + 1

2          2

 

Esta última es la expresión de p(t) en la base { p1, p2, p3}. Notar que sus coordenadas están dadas por Li( p) = p(ti ), i = 1,2, 3.

■

 

Siempre es posible hallar la base de B como se hizo en el ejemplo anterior. Así como toda base de                                                          ∗ V de dimensión finita tiene una base dual asociada, toda base de V es la base dual de una base de V . Esta propiedad importante -de la cual no incluimos la demostración- se enuncia en el teorema a continuación.
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Teorema 2.7.2                                                   ∗ Sea V un espacio vectorial de dimensión finita n y sea V su espacio dual.

Sea ′                                                                           ∗ B = { φ    · · · 1 φ , 2      φ , , n                                                      1 una base de } V . Existe una única base B = { ⃗ v      · · · ,⃗ v 2      v , ,⃗ } de V que n

satisface   ∗      ′ B = B .

 

Relación entre las coordenadas en las bases      ∗ B y B Si B es una base de un espacio vectorial V de dimensión finita y

B∗ = {ϕ        } 1 ϕ , · · · 2      ϕ , ,

n

 

es su base dual, es posible calcular fácilmente las coordenadas de un elemento de V usando la base

B∗ como se realizó al final del Ejemplo 2.19. Y recíprocamente es posible hallar las coordenadas de un elemento de   ∗ V utilizando la base B. Esto se muestra en el ejemplo que sigue:

 

■                        1 Ejemplo 2.20 Si B = { ⃗ e,⃗ e2} = {(1, 1), (1,−1)} y

 

       x + y x − y

B∗ = {ϕ1, ϕ2} =      ,

2     2

La relación entre las coordenadas en las bases       ∗ B y B es:

 

(5,5) = α (1,1) + β (1, −1)

 

ϕ1 (5,5) = α ϕ1(1, 1) + β ϕ1(1, −1) = α

 

ϕ2 (5,5) = α ϕ2(1, 1) + β ϕ2(1, −1) = β

 

ya que ϕi( ⃗ e j) = δi j.

 

Por otro lado, dado un funcional             ∗               ∗              ∗ ϕ ( x , y ) ∈ V , ϕ ( x , y ) = α ϕ   y 1         β ( x , ) +ϕ x y ( ,)

2

Así, para

 

ϕ              ∗ x + y       x − y ∗ ( x , y ) = 3 x + 5 y = α ( ) + β ( ) 2 2

 

sus coordenadas son,   ∗                ∗ α = ϕ ( 1 , 1 ) y β = ϕ (1,−1)

 

Entonces, la relación entre las coordenadas es la siguiente:

 

α = ϕ1(5,5) = 5    β = ϕ2(5,5) = 0
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α = ∗                        ∗ ϕ ( 1 , 1 ) = 8 β = ϕ (1, −1) = −2

 

■

 

Se puede generalizar lo que vimos en el ejemplo anterior.

 

Sean                                ∗                                      ∗ B = { ⃗ e e 1   2        n                            ϕ ,⃗ , · · · ,⃗ e } una base de V y B = { 1 ϕ , · · · } V 2      ϕ , , una base de.

n

 

Dado           n ⃗ v ∈ V , ⃗ v = ∑ α i          i e ⃗i    α , ∈ K

=      i 1

n            n

ϕ j ( ⃗ v) = ϕ j( ∑ αi ⃗ ei) = (∑ αiϕ j( ⃗ ei)) = α j . (2.6)

i =1            i=1

 

Luego,

 

(⃗ v)B = (ϕ1(⃗ v), ϕ2( ⃗ v), · · · , ϕn(⃗ v))

 

Dada      ∗                             n ϕ ∈ V , ∃ βi ∈ K tal que ϕ = ∑ β ϕ i =1 i i

 

Para cada j, 1 ≤ j ≤ n,

 

n                n

ϕ ( ⃗ e j) = (       )(e ) = ∑ β i ϕ i ⃗ j ∑ βiϕi( ⃗ e j ) = β j                                    (2.7)

i=1              i=1

 

Luego,

 

(ϕ) ∗ B = (ϕ( ⃗ e 1),ϕ(⃗ e2), · · · , ϕ( ⃗ en))

 

i En el Ejemplo 2.19 las coordenadas de p(t) son, de acuerdo a (2.6), Li(p(t)) = p(ti), i = 1, 2, 3.

 

Anulador de un subespacio

Existe también relación entre los subespacios de                                ∗ V con ciertos subespacios de V. En particular, dado un subespacio S de V si consideramos el conjunto de todas los funcionales lineales que se anulan en S se prueba que tiene una estructura de subespacio.
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Definición 2.7.1 Sea V un espacio vectorial y sea S un subespacio de V . Se llama anulador al

conjunto

S0             ∗ = { ϕ ∈ V,ϕ (⃗ s) = 0 ∀ ⃗ s ∈ S}

 

=     ∗ { ϕ ∈ V, S ⊆ N(ϕ )}

 

Proposición 2.7.3   0                          ∗ S es un subespacio de V.

 

Demostración:

 

⃗     0                   ⃗ 0 ∈ S (se anula en todo S y 0 ∈ S).

Si               0 ϕ 1 y ϕ2 ∈ S, entonces ϕ1( ⃗ s) = 0 y ϕ2(⃗ s) = 0 ∀ ⃗ s ∈ S, de donde (ϕ1 + ϕ2)( ⃗ s) = ϕ s                                      0 1       ϕ ( ⃗ ) + 2                                  ϕ ( ⃗ s ) = 0 ∀ ⃗ s ∈ S . Se tiene, que ∈ S 1    ϕ +.

2

Si                 0                                                             0 c ∈ K y ϕ 1 ∈ S , ( c ϕ1 )( ⃗ s ) = c ϕ1 ( ⃗ s ) = c 0 = 0 ∀ ⃗ s ∈ S . Luego, c ϕ1 ∈ S.

□

 

Proposición 2.7.4 Sea V un espacio vectorial de dimensión n y sea S un subespacio de V .

Entonces

dim          0 ( S ) + dim ( S) = n

 

Demostración:

 

Sea { ⃗ v 1,⃗ v2,· · · ,⃗ vk} una base de S, y sean⃗ vk+ 1,⃗ vk+2, · · · ,⃗ vn   ∈ V tales que

B ∗ ∗  =  {  ⃗  v  1 v  ,⃗  2      v  ,  · · ·  ,⃗  k    k+ v  ,⃗  · · ·  1      v  ,  · · ·  ,⃗  n                                   ϕ }  sea una base de  V  . Sea  B  =  {  1 ϕ ,  2      ϕ ,  ,  k ϕ ,  k+1      ϕ · · ·  ,  ,  } ⊂  V

k

la base dual de B. Entonces, para cada k + 1 ≤ i ≤ n, se tiene que ϕi( ⃗ v1) = ϕi( ⃗ v2) = · · · = ϕi( ⃗ vk) = 0,

y por lo tanto                                                          0 ϕ i se anula en todo S . Se tiene que { ϕk +1     ϕ , · · · , } ⊆ S. n

Como {ϕk+1,· · · , ϕn} es parte de una base, es un conjunto linealmente independiente. Veamos

que es un sistema de generadores de 0                           0 S y entonces es base de S.

 

Sea ψ ∈ 0           ∗                    ∗                                                n S . Como B es una base de V , existen c ∈ 1 , c · · · 2 , , c n K tales que ψ = ∑   c   . i i ϕ i = 1

Por la relación entre las coordenadas (2.7) se tiene que 0  c  i        ψ =  (  ⃗  v  i                                          ψ )  . Además, como  ∈  S  y

{ ⃗ v 1,⃗ v · · ·    }                                                 ≤ 2 , ,⃗ v k una base de S , ψ ( ⃗ v i ) = 0 para cada 1 ≤ i k. En consecuencia, ci = 0 para

1 ≤ i ≤ k, y por lo tanto ψ ∈ ⟨ϕk+1, · · · ,ϕn⟩.
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Luego,                            0 { ϕk +1     ϕ , · · · , } es una base de S y entonces, n

 

dim 0 ( S) = n − k = n − dim(S).

 

□

 

■ R  0 3  Ejemplo  2.21  Si se desea hallar el subespacio anulador  S  para  S  =  ⟨  (  1  ,  1  ,  1  )  ,  (  1  ,  2  ,  1  )  ⟩ ⊂. De

acuerdo a la demostración de la Proposición 2.7.4, 0 3  S  =  ⟨  ϕ ⟩  3 R  , se completa  S  para tener una base de,

B = { ⃗ v1,⃗ v2,⃗ v }   { 3 =(1,1, 1),(1,2, 1), (1, 0,0)} y luego, a partir de escribir (x,y, z) como combinación lineal de esa base y teniendo en cuenta que ϕi( ⃗ v j ) = δi j , se obtiene que ϕ3(x,y, z) = x − z.

■

■          2.22 De la misma forma, para hallar una base de S , donde S = ⟨(−1,−1,1)⟩: Ejemplo                                         0

Se completa la base de                           3 S para tener una base de R, B { ⃗ v1 ,⃗ v2 ,⃗ v3 , por ejemplo, } B = {(−1, −1,1),(1, 0,0),(0,01)}.

Se halla la base   ∗ B = {ϕ      } 1 ϕ , 2 ϕ , 3   tal que ϕ j ( ⃗ vi          δ ) = ,   i, j = 1,2,3. i j

La base de 0 S está dada por {ϕ       x − 2 ϕ , } x = { x     } , + x.

3        1     2   2     3

■

El ejemplo que sigue muestra que los sistemas de ecuaciones lineales pueden estudiarse desde el punto de vista de los funcionales lineales.

 

■ Ejemplo 2.23 Sea el sistema lineal homogéneo:

 



 x1 + x     = 0

3

 2x1 − x2 + x3    = 0

 

Sea                   3 S el subespacio de R generado por α1 = (1, 0,1), α 2 = (2, −1,1). Entonces el espacio solución es el espacio anulador, 0                   0 S . Es decir, ϕ ∈ S ⇔ ϕ ( αi) = 0, para i = 1,2 ■

 

Se verá a continuación cómo se comporta el anulador con la suma y la intersección de subespacios:

 

Proposición 2.7.5 Sea V un espacio vectorial de dimensión n y sean S y T subespacios de V .

Entonces,
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2.          0     0     0 ( S ∩ T ) = S + T

 

Demostración:

 

1. Sea      ∗                             0                    ⃗ ϕ ∈ V . Se tiene que ϕ ∈ ( S + T ) sí y solo sí ϕ ( ⃗ s + t) = 0 para todo ⃗ s ∈ S y para todo

⃗ t ∈ T . Y esto es equivalente a que ϕ( ⃗ s) = 0 para todo ⃗ s ∈ S y ϕ( ⃗ t) = 0 para todo⃗ t ∈ T , es

decir que       0     0 ϕ ∈ S ∩ T.

 

2. Sea ϕ ∈ 0      0                                    0            0 S + T . Entonces ϕ = ϕ S + ϕ T , ϕ S ∈ S y ϕ T ∈ T. Para cada⃗ x ∈ S ∩ T se tiene

que 0                0     0            0  ϕ (  ⃗  x  ) =  ϕS  (  ⃗  x  ) +  ϕT  (  ⃗  x  ) =  0  +  0  =  0. Luego  ϕ ∈  (  S  ∩  T  )  . Por lo tanto  S  +  T  ⊆  (  S  ∩  T  ).

Por el Teorema de la dimensión para la suma de subespacios (Proposición 1.4.1), teniendo

en cuenta que        0     0     0 ( S + T ) = S ∩ T y la Proposición 2.7.4,

 

dim 0     0                0            0           0     0 ( S + T ) = dim ( S ) + dim ( T ) − dim ( S ∩ T)

=     0            0                  0 dim ( S ) + dim ( T ) − dim (( S + T ))

= (n − dim(S)) + (n − dim(T )) − (n − dim(S + T ))

= n − (dim(S) + dim(T ) − dim(S + T ))

= n − dim(S ∩ T )

=        0 dim (( S ∩ T ))

 

En consecuencia,        0     0      0 ( S ∩ T ) = S + T.

□

 

El doble dual

 

Como ∗ ∗  ∗  V  =  L  (  V  ,  K  )  es un espacio vectorial, es posible definir su espacio dual. Entonces  (  V  )  =

L ∗                                                                          ∗            ∗∗ ( V , K ) . Por las propiedades vistas antes, se tiene que dim ( V ) = dim ( V ) = dim ( V). Si V es de dimensión finita, sabemos que los espacios       ∗ V y V, al tener la misma dimensión, son isomorfos. Para hallar el isomorfismo se debe hallar una base de V y su base dual. En forma similar, como la dimensión de ∗                                ∗∗                                                ∗     ∗∗  V  es igual a la dimensión de  V  , existe un isomorfismo entre los espacios  V  y  V.

En este segundo caso, el isomorfismo no requiere la elección de bases, y se dice que es natural.

2.7 Espacio dual de un espacio Vectorial 93

 

Proposición 2.7.6 Sea V un espacio vectorial, dim(V ) < ∞ sobre K. Para cada vector v ∈ V , se

define       ∗                               ∗ L v                 ⃗ : V → K , L v ϕ ( ) = ϕ ( ⃗ v ) , ϕ ∈ V.

 

La aplicación           ∗∗ φ : V → V que a ⃗ v hace corresponder Lv ϕ () es un isomorfismo.

 

Notar que                            ∗ L se aplica a elementos de V y debe dar un escalar. La definición indica que,


v

aplicado a ϕ ese escalar es ϕ ( ⃗ v), de ahí que el nombre de este isomorfismo es la evaluación, ya

que para cada ϕ da su evaluación en ⃗ v, ϕ( ⃗ v).

 

Demostración:

 

Se deja al lector probar que                                                ∗∗ L es una transformación lineal. Como V y V tienen la misma v

dimensión, alcanza con probar que la transformación es inyectiva.

 

Sea ∗ ∗  ⃗  v  ∈  N  (  φ )  . Entonces  L  ⃗ v ϕ (  ) =  0 para todo  ϕ en  V  , o sea  ϕ (  ⃗  v  ) =  0 para todo  ϕ en  V.

El único elemento de                                                  ∗      ⃗ V con esta propiedad (da 0 en cualquier funcional V ), es 0. Es decir que

N    ⃗ ( φ ) = 0. Así que, φ es inyectiva, y por lo tanto, es un isomorfismo.

□

 

Si                                                   ∗∗ V tiene dimensión infinita la aplicación φ : V → V sigue siendo inyectiva, pero no

i

suryectiva. Así que no todo espacio de dimensión infinita es isomorfo a su doble dual.

 

Aplicación transpuesta

Sean V y W dos espacios vectoriales de dim < ∞ sobre K. Sea T : V → W una aplicación lineal. T induce una aplicación lineal de   ∗      ∗ W en V que llamaremos transpuesta de T ,

Si ϕ : W → K,

 

T t          ∗            ∗ : W → V

 

T t (ϕ ) = ϕ ◦ T

 

T t (ϕ )( ⃗ v) = ϕ (T ( ⃗ v))

 

Se deja al lector probar que   t T (ϕ ) es una transformación lineal.
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Proposición 2.7.7 Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Sea T una

aplicación lineal de V en W, entonces

 

N t                        0 ( T ) = Im ( T )

 

Se deja la prueba al lector.

 

Relación entre las matrices que representan a una aplicación lineal y su traspuesta

 

Sean              t          ∗            ∗                             ′                                                                           ∗         ′∗ T : V → W y T : W → V . Y sean B y B bases de V y W respectivamente, y B y B bases de   ∗      ∗ V y W, respectivamente.

 

Si                    t                                                  t A = [ T ] y C = [ T ] , entonces C = A

B ′                                              ∗      ′∗ , B B , B

 

■ Ejemplo 2.24 En este ejemplo se muestra la relación entre las matrices de la transformación T                            t                                            2                    3 y la de su aplicación transpuesta T , en el caso V = W R , =     T      → R , y : V W definida por T (x,y) = ( 2x − y, 3x, x − 2y).

Sean las bases de V y W,

 

B              ′ = { ( 1 , 2 ) , ( 1 , 3 ) } y B = {(1,1,1),(1, 1,0),(1,0, 0)}, respectivamente.

 

Como

T ((1, 2)) = (0,3, −3) = −3(1,1, 1,) + 6(1, 1,0) − 3(1,0, 0,)

 

T ((1,3)) = (−1, 3,−5) = −5(1,1,1,) + 8(1,1, 0) − 4(1, 0,0, )

 

      

−3 −5

la matriz de                      ′                           T en las bases B y B es 6 8              

−3 −4

 

Veamos ahora la matriz correspondiente a la transformación transpuesta t        t          ∗            ∗  T  ,  T  :  W  →  V  ,

definida como   t                                                                                                    ′∗              ∗         ∗            ∗ T ( ϕ )( ⃗ v ) = ϕ ( T ( ⃗ v )) y considerando las bases B de W y B de V. B∗ = {ϕ1, ϕ }

2

 

(x1,x2) = α (1,2) + β (1, 3) de donde α + β = x1 y 2α + 3β = x2.
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Se resuelve el sistema y resulta

 

ϕ1 (x1,x2) = α = 3x − x 12

 

ϕ2 (x1,x2) = β = x2 − 2x1

 

B′∗         ′     ′     ′ = { ϕ , ϕ , ϕ }

1   2   3

 

Para hallar esta base se hace lo mismo que para   ∗ B, partiendo de

 

(x1,x2,x3) = α(1,1, 1) + β (1,1,0) + γ(1, 0,0)

 

se aplican   ′ ϕ , i = 1, 2,3, y se obtiene

i

 

ϕ ( ′x1 ,x2, x3 ) = α = x

1                      3

 

ϕ ( ′x1 x ,2 x ,3     β ) = = x − 2    x

2                           3

 

ϕ ( ′x x    ) = γ    x − x 3   1 , , x =

2   3           1     2

 

Para obtener la matriz de   t T se debe calcular

 

T t       ′                                    ′ ( ϕ )( x , x , x ) = ϕ (T (x ,x , x             −          − 1    1   2   3       1      1   2   3 )) = x 1     x 2 2        ϕ = 3 − 1     ϕ 5

2

 

T t       ′                                    ′ ( ϕ )( x x , x ) = ϕ (T (x ,x , x )) = 6ϕ + 8 2    1, 2   3       2      1   2   3         1     ϕ2

 

T t       ′                                    ′ ( ϕ )( x x   T   x ,    , x )) =    3     − 4 3    1, 2 x , 3     ϕ ) = ( ( 3      1 x 2   3          ϕ −

1     ϕ2

       

La matriz de   t                                                                                          −3 6 −3 ′∗ ∗ ∗ ∗ T en las bases B de W y B de V es  

−5 8 −4

 

Se verifica que la matriz correspondiente a la transformación transpuesta,   t T es la matriz transpuesta de la matriz correspondiente a la transformación T .

■
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Alicia Dickestein

 

Nació en Argentina en 1955. Es una matemática, investigadora y profesora argentina conocida

por su trabajo en geometría algebraica, particularmente geometría teórica. En 1982, obtuvo el título de Doctora en Ciencias Matemáticas en la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, con una tesis sobre geometría analítica compleja. Fue la primera directora del Departamento de Matemática de la Facultad de Ciencias Exactas y Naturales de la UBA (en el período 1996-1998), donde desde 2009 pasó a ser profesora regular titular plenaria. Allí se desempeña como investigadora superior del CONICET, organismo en el que ingresó en 1985. En la actualidad Dickenstein es Investigadora Superior del Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET). En los últimos años concentró su trabajo en las aplicaciones de la geometría algebraica en el ámbito de la biología molecular. En 2019 se incorporó como Académica Titular de la Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN). A lo largo de su vida participó de una gran cantidad de congresos y reuniones científicas. Dirigió numerosas tesis de licenciatura, maestría y doctorado. Se desempeñó también como jurado de diversas tesis doctorales y de maestría tanto en su país como en el extranjero. Publicó varios libros, entre los cuales se encuentra Mate max: la matemática en todas partes, que presenta problemas matemáticos destinados a niñas y niños de los últimos años de educación básica. Fue merecedora del Premio TWAS (de la Academia Mundial de Ciencias) en el área de Matemática, en el año 2015, por su destacada contribución a la comprensión de discriminantes. En 2017 le fue entregado el Premio Consagración en Matemática de la Academia Nacional de Ciencias Exactas, Físicas y Naturales. En 2021 recibió el premio L’Oréal-UNESCO a Mujeres en Ciencia por su trayectoria en geometría algebraica. También en 2021 le fue otorgado el reconocimiento como "Personalidad destacada de la Universidad de Buenos Aires", durante los festejos por el Bicentenario de dicha universidad, recibiendo también una medalla personalizada, una moneda acuñada por la Casa de la Moneda y un

sello postal del Correo Argentino. [3]
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Figura 2.9

[image: ]

 

2.8   Actividades propuestas

Problema de Aplicación 2 Dada una variable aleatoria discreta X con distribución de probabilidad P[X = xi ] con i = 1,2, . . . , n, la esperanza (o valor medio) de X se define como:

 

E      n [ X ] = ∑ x P X = x ] i=   i          i 1 [

 

Indique los espacios vectoriales involucrados en esta aplicación. Demuestre que la Esperanza E[ ·] es una transformación lineal, es decir que para cualquier par de variables aleatorias, X e Y y cualquier

c ∈ R se cumple que:

 

E[X +Y ] = E[X] + E[Y ]

E[cX ] = c E[X]

 

(Para una analogía física, si los xi son masas puntuales en la recta, cada una con peso P[X = xi], entonces E[X] es el centro de gravedad de estas masas.) Busque otros ejemplos e investigue el caso de una variable aleatoria continua, cómo se define su esperanza en ese caso y si también se tiene una transformación lineal.

 

2.8.1   Ejercicios

Ejercicio 2.1

 

Utilice la definición de transformación lineal para justificar por qué: T : → 1 2  R  R  tal que  T  (  ε  ) =  E  ε  3

no la cumple (E es una constante). Grafique.
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Ejercicio 2.2

 

Sea                                      2      3                         2 A la matriz de la transformación lineal T : R → R . Encuentre una ⃗ x en R cuya imagen bajo T sea ⃗                                                 ⃗ b y responda si existe más de una ⃗ x cuya imagen bajo T sea b.

             

1   −3            3

A               ⃗ = 3 5 , = 2

              b

             

−1 7           −5

 

Ejercicio 2.3

 

La transformación de trasquillado deforma un cuadrado como si este se empujara hacia la derecha manteniendo fija la base. Grafique el producto de multiplicar por A los vértices del cuadrado: (0,0), ( 0,2), (2,0) y (2, 2).

    

1 3

A =      

0 1

 

Ejercicio 2.4

 

Encuentre la expresión de la transformación proyección T (⃗ x) donde ⃗ x=(x 1, x2,x3) y describa la aplicación. Su matriz es:

      

1 0 0

A        = 0 1 0

      

      

0 0 0

 

Ejercicio 2.5

 

Dado un escalar          2       2 r , si T : →           T       rx                                    r R   R es tal que ( ⃗ x ) = ⃗ , identifique qué valores debe tomar para que T sea una contracción y cuáles para que T sea una dilatación.

 

Dadas:

                                

1   0              −1 0             0 1              0   −1

A =        , B =        , C =       , D =        

0 −1            0   1           1 0            −1   0

 

                                

−1   0           k 0           1 0           1 k

E =         , F =       , G =       , H =      

0   −1            0 1            0 k            0 1 2.8 Actividades propuestas 99

                    

1 0            1 0             0 0

I =        , J =        , K =      

k   1              0   0              0   1

 

Indique cuál de ellas es una contracción o expansión vertical y cuál una horizontal, cuál una proyección sobre el eje x 1 y cuál sobre el eje x2, cuál es un trasquillado vertical y cuál horizontal, cuál es una reflexión con respecto al origen, cuál a través del eje x 1 y cuál a través del eje x2, por último cuál representa una reflexión a través de la recta x1=x2 y cuál a través de la recta x1= −x2.

Ejercicio 2.6

Para las matrices del ejercicio anterior calcule su determinante. Con el resultado exprese de qué modo el valor del determinante determina el área que se crea entre dos vectores antes y después de la transformación. Comente cómo el signo del determinante está conectado con la quiralidad para estas transformaciones.

 

Hay objetos que vienen en dos variedades: derecha e izquierda. Por ejemplo, hay zapatos derechos y zapatos izquierdos, orejas derechas y orejas izquierdas. Estos objetos se llaman quirales (del griego, keirós= mano). Otros objetos no vienen en dos variedades derecha e izquierda, por ejemplo las pelotas de fútbol; uno nunca pide una pelota derecha o izquierda. Tales objetos son aquirales. La propiedad de ser derecho o izquierdo se llama quiralidad (los físicos la llaman paridad). Es así que, los espejos cambian la quiralidad. El área puede pensarse con quiralidad, piense en el producto cruz, implica la regla de la mano derecha. Si el Det(T)≥ 0 no hay cambio de quiralidad, pero si Det(T)≤ 0 sí lo hay y la transformación tiene el carácter de un espejo.

 

Ejercicio 2.7

Sea     2      3 T : →            T   x y      x       x R   R definida por (( , )) = ( + 2 y , −,0)

 

a) Encuentre la matriz de la transformación lineal ′  T  respecto a las bases  B  =  {  ⃗  u  1,⃗  u  2 y  }  B  =

{ ⃗ v 1,⃗ v    } 2 ,⃗ v 3, donde

           

             1       2       3

1           −2                           

⃗ u 1 =    , ⃗ u2 =     , ⃗ v1 =  1 , ⃗ v2 =  2 , ⃗ v3 =  0  .

3            4                             

1           0           0

   

     14

8             

b) Verifique utilizando la matriz anterior que T      =  −8 

3             

0
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Ejercicio 2.8

 

Una rotación de Givens es una transformación lineal de   n       n → R R que se utiliza para crear una entrada cero en un vector. Sería como generar la rotación en vez de cambiar el sistema de referencia. Para n = 2 la rotación de Givens tiene la forma general:

     

 a −b      2   2 ,  a + b = 1

b   a

      

4            5

Encuentre a y b tales que      gire a     

3            0

 

Ejercicio 2.9

 

Sea      3      2 T : R → R, dada por T ((x,y, z)) = (x + y,x + z). Determinar el núcleo y la imagen de T , y sus dimensiones. Caracterice el conjunto   −1 T(C), siendo C = {(x,y) : x = 1}.

Ejercicio 2.10

      

Sea     2                                               2   −1 2 T : R → R , la multiplicación por la matriz  

− 8 −4

 

Indique cuáles vectores están en el núcleo de T y cuáles en la imagen de T:

                 

1        5       −3       5       3       1

                  , , , , ,

−4     0      12      10      2      1

 

Ejercicio 2.11

Sea     (2)          (3) T : P [ x ] → P [x ] la transformación lineal definida por T (p(x)) = xp (x).

R       R

 

a) Indique cuáles polinomios de los siguientes están en el núcleo de T: 2 x, 0, 1 + x.

b) Y cuáles polinomios están en la imagen de         2              2 T : x + x , 1 + x , 3 − x

Ejercicio 2.12

 

Sea T   (2)          (1)                                                                         2 : P [ x ] → P [ x ] la transformación lineal definida por T ( a      a     a 0 + a x 1 + a x 2 ) = ( 0 +1) − R R

( 2a1 + 3a2)x.

Halle la matriz de                                           (2)         (1) T con respecto a las bases canónicas de P [ x ] y P[x].

R      R
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Ejercicio 2.13

En cada caso utilice la información que se da para hallar la nulidad de T .

a)      5      7 → T : R R tiene rango 3.

b) La imagen de      6      3      3 T : → R   R es R .

c)      2x2       2x2 → T : R R tiene rango 3.

Ejercicio 2.14

      

1   3 4

Sea     3      3                                        3                               T : → R   R la multiplicación de un vector de R por la matriz 3 4 7              

− 2 2 0

 

a) Demuestre que el núcleo de T es una recta por el origen y encuentre sus ecuaciones paramétricas.

b) Demuestre que la imagen de T es un plano por el origen y encuentre su ecuación.

Ejercicio 2.15

Sea     (3)          (2) D : P [ t ] → P[t] la transformación derivación. Describa el núcleo de D, N(D).

R       R

Ejercicio 2.16

Sea    (1)                                                      R 1 I : P [ t ] → R la transformación integración de p, p (x)dx. Describa el núcleo de I , N (I ).

R                                  − 1

Ejercicio 2.17

Explique de qué modo se obtiene la base dual de un espacio vectorial dado; utilice un ejemplo. Luego, de un ejemplo a la inversa, esto es, teniendo la base dual, encuentre la base del espacio vectorial.

Ejercicio 2.18

Responda:

a) ¿Qué relación hay entre las dimensiones del espacio dual con su espacio vectorial V?

b) ¿A qué se llama espacio anulador?

c) ¿Los elementos del espacio anulador pertenecen al dual?

d) ¿A qué se llama aplicación transpuesta? De un ejemplo.

e) ¿A qué se denomina doble dual?

Ejercicio 2.19

Dado un cuerpo                ′ K , sea T : V → V una transformación lineal entre dos espacios vectoriales sobre el cuerpo              ′                                                                                                                                     −1      ′ ′ K . Sean S y S subespacios de V y V respectivamente. Pruebe que T ( S ) , T ( S) y N(T ) son subespacios vectoriales.
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Ejercicio 2.20

Sea V un espacio vectorial de dimensión n sobre el cuerpo K y sea T : V → V una transformación lineal. Pruebe que                             −1 ⃗     ⃗ T es inyectiva si y solo si T ( 0 ) = { 0}.

Ejercicio 2.21

 

Sea V un espacio vectorial sobre K de dimensión n y X = { ⃗ v1, · · · ,⃗ vm} un conjunto finito de vectores de                                  m V . Considere la aplicación lineal E : K → V definida por E(k1 ,· · · ,k m    1 ) = k⃗ v1 + k2 ⃗ v2 + · · · + km ⃗ vm.

a) Pruebe que E es una transformación lineal.

b) Demuestre que E es inyectiva sí y sólo sí los vectores del conjunto X son linealmente independientes.

c) Pruebe que E es suryectiva sí y sólo sí X es un conjunto de generadores de V .

Ejercicio 2.22

Dado                                                   ∗ V un espacio vectorial sobre el cuerpo K de dimensión n , sea ϕ ∈ V. Pruebe que Im(ϕ ) = K y que dim(N(ϕ)) = n − 1.

Ejercicio 2.23

 

Sea V un C-espacio vectorial. Dados ϕ y φ funcionales lineales sobre V , suponga que la función ψ definida por ψ (v) = ϕ(v).φ (v) también es un funcional lineal sobre V . Demuestre que ϕ = 0 o φ = 0 .

Ejercicio 2.24

Sea V un K-espacio vectorial de dimensión finita (K cuerpo). Demuestre:

a) Si                                                                0      0 A y B son subconjuntos de V tales que A ⊆ B , entonces B ⊆ A.

b) Dados S y T subespacios de V ,

(        0     0     0           0     0     0 S + T ) = S ∩ T y ( S ∩ T ) = S + T

Ejercicio 2.25

Sean V y W dos espacios vectoriales sobre K y sea T : V → W una transformación lineal. La traspuesta                      t          ∗            ∗                                                                      ∗ de T es la función T : W → V que aplica a un funcional ϕ ∈ W en el funcional T t                   ∗ ( ϕ ) ∈ V definido por

 

( t T (ϕ ))(v) = ϕ (T (v)), para todo v ∈ V

 

a) Pruebe que   t T está bien definida y que es una aplicación lineal.

b) Pruebe que      t                            0 Nu ( T ) = ( Im ( T )).
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Ejercicio 2.26

 

Sea V un espacio vectorial sobre K y sea B = { ⃗ v1,⃗ v2,· · · ,⃗ vn} una base ordenada de V , se define la transformación lineal T : V → V de la siguiente forma:

 



 ⃗ vi +        n 1 ≤ i ≤ − 1

T (          1 ⃗ v i ) =

 0 i = n

 

a) Encuentre la matriz correspondiente a T en la base B.

b) Pruebe que   n              n−1 T = 0 , pero T ̸= 0.

c) Sea                                                  n              n − 1 S cualquier transformación lineal sobre V tal que S = 0, pero S ̸= 0. Demuestre que existe una base ordenada   ′                                                                                        ′ B de V tal que la matriz de S en la base B coincide con la matriz hallada en el primer inciso.

d) Demuestre que si M y N son matrices de n × n      n              n−1  n  sobre  K  tales que  M  =  N  =  0  , con  M  ̸= 0

y n−1 N ̸= 0, entonces M y N son semejantes.

 

2.8.2   Autoevaluación

 

Verdadero o Falso

 

1. El rango de T es el conjunto de todas las combinaciones lineales de las columnas de A.

2. La generalización T (c1⃗ v1 + .. + cp⃗ vp) = c1T ( ⃗ v1) + .. + cpT ( ⃗ vp) es lo que se conoce como

principio de superposición en física.

3. El conocimiento de T (⃗ e1) y T ( ⃗ e2) siendo ⃗ e1 y ⃗ e2 los vectores canónicos, no basta para

encontrar T sabiendo que T es lineal.

4. A=[T ( ⃗ e1)..T ( ⃗ en)] se llama matriz estandar de T .

5. T es suryectiva si y sólo si las filas de A generan la imagen de T .

6. T es inyectiva sí y sólo sí las columnas de A son linealmente independientes y la ecuación

T     ⃗ ( ⃗ x ) = 0 tiene únicamente la solución trivial.

7. Para que una transformación sea isomorfa el dominio y la imagen deben coincidir.

8. A es invertible si la dimensión del núcleo de A es cero.

9. Si los vectores en el dominio generan un área y después que se les aplica una transformación

lineal siguen generando un área, cuánto aumente o disminuya el área dependerá del determinante de la matriz A de la transformación lineal.

10. Una transformación lineal siempre lleva el vector nulo del dominio al vector nulo de la imagen.

11. Existe un isomorfismo T   (3)          4 : P [ x ] → R. R
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3. Autovalores y autovectores

 

En este capítulo se tratará sobre autovectores y autovalores que es una herramienta matemática muy útil a la hora de resolver diversos problemas. Nos ocuparemos de resolver el problema A ⃗ v = λ⃗ v,

donde A es una matriz cuadrada. G. Strang [27] lo llama el segundo problema de Álgebra lineal, considerando que el primer problema es resolver Ax = b. Notar que A ⃗ v = λ⃗ v es una ecuación no lineal, ya que λ multiplica a ⃗ v y ambos λ y ⃗ v son desconocidos. El método de eliminación gaussiana, adecuado para el problema Ax = b, no es una herramienta útil, ya que las operaciones elementales sobre las filas de una matriz pueden modificar a los autovalores λ . El problema se resuelve a partir de simplificar la matriz, y eso es haciéndola lo más diagonal posible. A partir del cálculo de un determinante se obtiene un polinomio cuyas raíces son los autovalores. La obtención de una forma casi diagonal de la matriz A tiene muchas aplicaciones, entre ellas el cálculo de las potencias de una matriz y la resolución de sistemas de ecuaciones diferenciales.

 

3.1   Introducción

 

Presentamos a modo de introducción un modelo lineal que representa la dinámica de la infección y de la propagación de una epidemia. En este modelo, la enfermedad se introduce en una población, y en cada día se cuenta la fracción de la población que se encuentra dividida en cuatro estados o compartimentos:

Susceptibles: son los individuos que pueden adquirir la enfermedad al día siguiente. Infectados: son los individuos con la enfermedad.
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Recuperados: son los individuos que tuvieron la enfermedad y se recuperaron. Ahora tienen inmunidad.

Fallecidos: son los individuos que tuvieron la enfermedad y fallecieron a causa de ella.

 

Son llamados modelos compartimentales. A este, en particular, se lo conoce como modelo SIRD (Susceptible, Infectado, Recuperado, Fallecido) y las variables que indican la cantidad de individuos en cada compartimento al día         1    2    3     4 st son X , X , X y X. En este caso, conocidos los valores al día t, se

t        t        t           t

supone que al día siguiente t + 1:

El 6 % de la población de individuos Susceptibles adquirirá la enfermedad (el 94 % restante sigue siendo Susceptible)

El 1 % de la población infectada morirá a causa de la enfermedad, el 16 % se recuperará y adquirirá inmunidad, y el 3 % se recuperará y no adquirirá inmunidad y por lo tanto pasará a ser Susceptible. El 80 % restante seguirá Infectado.

Los individuos Recuperados con inmunidad y los Fallecidos permanecen esos estados

 

Si   1                                                                                1 X es la proporción de individuos Susceptibles al día t , al día siguiente, X   está dada por

t                                                                                                                                                                t +1

los Susceptibles de hoy que no se infectaron, 0       1 . 94 ∗ X, más los infectados que se recuperaron

t

sin inmunidad 0       2                                     2 . 03 ∗ X . La proporción de Infectados, X   estará dada por los Susceptibles que

t                                                                           t +1

adquieren la enfermedad 0       1                                                          2 . 06 ∗ X . , más los infectados que siguen infectados 0 80 ∗ X. De igual

t                                                                                                                    t

forma, la cantidad de Recuperados,   3 X   estará dada por los infectados que se recuperen con

t +1

inmunidad 0.16 ∗ 2                                              3                       4 X t más los que permanecen Recuperados, X X t . Y los Fallecidos, t   comprenden + 1 el 1 % de los Infectados   2                         4 X más los Fallecidos, X.

t                                                  t

 

Es decir que la modelización tiene la expresión

 

X t +1 = AXt

donde

          

0.94   0.03   0   0

                      0 . 06 0 . 80 0 0

A =               

           0 0 . 16 1 0           

0    0.01 0 1

 

Si se desea saber la evolución de la cantidad de individuos en cada estado después de 6 meses, se debe calcular ¡ 180 A!
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Si A fuera una matriz diagonal esto llevaría un bajo costo computacional, ya que quedarían elevados al exponente 180 los elementos de la diagonal.

 

El programa en lenguaje de programación GNU Octave que sigue diagonaliza la matriz A del modelo.

 

1 % MODELO SIRD ( SUSCEPTIBLES , INFECTADOS , RECUPERADOS, FALLECIDOS ) 2   c l e a r   a l l

3   c l o s e   a l l

4 A= [ . 9 4 . 0 3 0 0 ; 0 . 0 6 . 8 0 0 ; 0 0 . 1 6 1 0 ; 0 0 . 0 1 0 1 ] ; 5 X= [ 1 0 0 0 ] ’ ;

6   t = 0 : 2 0 0 ;

7   f o r   k= 1 : 2 0 0

8       X ( : , k + 1 ) =A*X ( : , k ) ;

9   end

10   f o r   k = 1 : 4

11   %p l o t ( t , X( k , : ) , ’ l i n e w i d t h ’ , 1 . 5 )

12   h o l d on

13   a x i s   t i g h t

14   end

15   XF=A^180

16   [ U , D] = e i g (A) ;

17   XFD=U*D^180* i n v (U)
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i Este ejemplo estuvo inspirado en la pandemia del COVID-19 del año 2020 y en estudios

realizados en el tema, como el del trabajo [19]. Los modelos matemáticos de epidemia que se utilizaron para su análisis y para hacer predicciones son modelos de última generación, representados mediante un sistema de ecuaciones diferenciales con muchas variables y poblaciones y que, entre otros parámetros, contemplan los que miden el comportamiento social.

 

En la Sección 2.6 vimos, en el Ejemplo 2.17, que dada una aplicación lineal T cuya matriz en la base canónica es

     

6 −2

T =       

6 −1

 

es posible hallar una base tal que la matriz sea diagonal.

    

′               2 0

T =      

0 3

 

La matriz ′                                                                                                                                                             ′          − 1  T  en esa nueva base es mucho más sencilla que la matriz  T  y se tiene que  T  =  CTC

donde C es la matriz de cambio de base. Nos surge la pregunta si esto siempre es posible.

 

Un ejemplo sencillo que nos permite responder que no siempre es posible es la matriz

    

1 1

T =      

0 1

 

Supongamos que existe una matriz C de cambio de base tal que

 

    

C−            α 0 1 ′ TC = T =  

0 β

 

o en forma equivalente,

    

T       α 0    − 1 = C   C

0 β

 

                     

1 1        a b      α   0       d   −b      1

                      =

0                                          Det (C) 1 c d 0 β − c a 3.1 Introducción 109

 

                  

1 1        aα   bβ       d   −b      1

                   =

0                                  Det (C) 1 c α d β − c a

 

                   

1 1        aαd − bβ c −aα b + bβ a      1

                    =

0                                    Det (C) 1 c α d − cd β − c α b + d β a

 

Igualando los elementos de ambas matrices, se tiene un sistema de ecuaciones:

 

Det (C) = aα d − bβ c (3.1)

Det (C) = ba( −α + β ) (3.2)

0 = cd( −α + β ) (3.3)

Det (C) = −cα b + dβ a (3.4)

 

De la igualdad (3.3) se tiene que c = 0 o d = 0 o α = β . Si c = 0, de (3.1) y (3.4), queda Det (C) = aα d = dβ a, de donde α = β y en (3.3) se tiene 1 = 0. Si d = 0, de (3.1) y 3.4, Det (C) = −bβ c = −cα b, de donde también resulta α = β y en (3.2) se tiene 1 = 0. Lo mismo si α = β .

Se llega a una contradicción. Concluimos que no siempre es posible diagonalizar una matriz.

 

i

No todas las matrices son diagonalizables.

Si es digonalizable, A es semejante a una matriz diagonal y tendremos ventaja al calcular su potencia. En otros casos será semejante a una matriz casi diagonal. Siempre es posible encontrar una forma más sencilla de una matriz dada mediante un cambio de base. Se denomina matriz de Jordan de la matriz dada y el nombre se debe al matemático Camille Jordan (1838-1922).

 

Si se desea calcular

 

     6

6        6 −2

T =       

6 −1
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como       ′    −1     2          ′   −1      ′   −1          ′    ′   −1           ′ 2   −1 T = CT C , T = CT C CT C = CT IT C = C ( T ) C, y en general,

 

T n         ′ n −1 = C ( T ) C,   n ∈

Z

 

de donde se tiene que

 

                 

1          6 2 2   0       −3   2

T 6 =

                 

2              6 3 0 3       2   −1

 

3.2   Subespacios invariantes. Valores y vectores propios

Dado un espacio vectorial V y una aplicación lineal T : V → V , es decir T ∈ L(V ), un subespacio vectorial W de V se dice invariante respecto a T si T (W ) ⊂ W , es decir, si la imagen T ( ⃗ x) de todo vector⃗ x ∈ W es un elemento de W.

 

■                          2                              2 Ejemplo 3.1 Sea T ∈ L ( R ) una aplicación lineal en R cuya matriz respecto de la base canónica {          2 ⃗ e 1, ⃗ e 2   de } R está dada por

    

2 0

T =      

0 1

 

Entonces W 1 = {x1⃗ e1, x1 ∈ R} y W 2 = {x2⃗ e2, x2 ∈ R} son invariantes respecto de T .

 

En efecto, de la definición de matriz de una transformación lineal se tiene que T (⃗ e 1) = 2⃗ e1 + 0⃗ e2 y T (⃗ e2) = 0⃗ e1 + 1⃗ e2.

 

Luego,

 

T (x 1⃗ e       T 1 ) = x 1 (⃗ e1) = x1(2⃗ e1) = (2x     ∈ W 1 ) ⃗ e 1

 

y

 

T (x 2⃗ e2) = x2T (⃗ e2) = x2⃗ e2 ∈ W2

■
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■                    α Sea Ejemplo                                      3 3.2 R una rotación de ángulo α ̸ = 0 en R con respecto al eje z. Geométricamente se observa que el plano xy y el eje z son invariantes con respecto a esta aplicación. Para comprobar

algebraicamente que el plano xy es invariante se observa, en primer lugar, que la matriz de Rα con respecto a la base canónica de   3 R es

          

cosα −senα 0

R            = sen cos 0 .            α α           

0      0     1

 

Si ⃗ x = x1e ⃗1 + x2⃗ e2 es un elemento del plano xy, se tiene que su rotación da el vector

                         

cosα   −senα   0      x               − 1 x 1 cos α x2senα

                          = x sen + x cos                           sen α cos α 0 x 2 1 α 2 α                          

0      0     1       0               0

 

y, por lo tanto, Rα ( ⃗ x) = (x1cosα − x2senα)⃗ e1 + (x1senα + x2cosα)⃗ e2 y es nuevamente un elemento del plano xy.

■

 

Figura 3.1: Todo plano que contiene al eje z es invariante por P

[image: ]
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■                                                                    R Ejemplo                                                   3 3.3 En la Figura 3.1 se muestra la proyección ortogonal P de sobre el plano xy. (Ver

Ejemplo 2.5). La matriz de P es

      

1 0 0

P        = 0 1 0              

0 0 0

con respecto a la base canónica. Se puede ver que todo plano π que contiene al eje z es invariante: el plano π tiene ecuación x1x + x2y + x3z = 0, donde x3 = 0 ya que (0, 0,1) ∈ π. Los vectores de ese plano son de la forma ⃗ x = x 1⃗ e1 + λ x1⃗ e2 + x3⃗ e3, λ ∈ R, y se tiene que su imagen, P( ⃗ x), es de nuevo un elemento del plano π:

             

1 0 0       x           x 11

P               = 0 1 0 x = x

              λ 1 λ 1              

0 0 0       x3           0

 

Otros subespacios invariantes de esta proyección ortogonal son el plano xy, el eje z y cualquier recta del plano xy que pase por el origen de coordenadas. ■

 

i L(V ) (o endomorfismo), el subespacio S = 0 ,  Para cualquier transformación lineal T ∈ n o ⃗

formado sólo por el elemento nulo, es invariante ya que    ⃗    ⃗ T ( 0 ) = 0 y el propio espacio vectorial V es también invariante ya que T ( ⃗ x) para todo vector ⃗ x ∈ V es un elemento de V .

 

Proposición 3.2.1 La intersección y la suma de subespacios invariantes respecto de una aplicación

lineal T ∈ L(V ) son subespacios invariantes respecto de T .

Se deja la demostración al lector.

 

Definición 3.2.1               ⃗ Un vector ⃗ v ̸ = 0 de un espacio vectorial V sobre K se llama autovector o vector

propio de una aplicación lineal T ∈ L(V ) si existe un escalar λ ∈ K tal que T ( ⃗ v) = λ⃗ v. Este

número λ se denomina autovalor o valor propio de la aplicación T correspondiente al vector ⃗ v.

 

i Si ⃗ v es un vector propio de T con autovalor λ , todo elemento no nulo del subespacio

unidimensional generado por ⃗ v es un autovector de T con el mismo autovalor λ . Esto es porque T (c ⃗ v) = cT ( ⃗ v) = cλ⃗ v = λ (c ⃗ v).
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Figura 3.2: El vector ⃗ v es autovector de A, mientras que el vector ⃗ u no es autovector, A ⃗ u no es múltiplo de ⃗ u
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Proposición 3.2.2 Una aplicación lineal T ∈ L(V ) es diagonalizable si y sólo si existe una base

de V formada por vectores propios.

 

Demostración:

 

Supongamos que una aplicación lineal T en un espacio V de dimensión n tiene n vectores

propios linealmente independientes, ⃗ e1,⃗ e2, · · · ,⃗ en con valores propios λ1,λ2,· · · ,λn respectivamente,

tomando {⃗ e1,⃗ e2,· · · ,⃗ en} como una base de V se tiene que

 

T ( ⃗ e 1) = λ1 ⃗ e1, T ( ⃗ e2) = λ2⃗ e2, · · · , T ( ⃗ en) = λn ⃗ en

 

y, por lo tanto, la matriz de T con respecto a esta base es la matriz diagonal

 

            

λ1   0    0    0    0

             0 0 0 0              λ 2

             . .. 0 0

T                = 0 0                                        . .. 0              0 0 0             

0   0   0    0   λn

 

Recíprocamente, toda aplicación lineal que tiene una matriz diagonal en una cierta base, tiene

a los elementos de esta base como vectores propios.
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□

 

i Una aplicación lineal T ∈ L(V ) es diagonalizable sí y solo sí existe una base de V en la cual la

matriz de T es diagonal.

 

Definición 3.2.2                   n×n Una matriz T ∈ K se dice diagonalizable en K si la aplicación lineal

T   n       n : K → K que la matriz que la representa es diagonalizable.

 

De esta definición se deduce que una matriz es diagonalizable en n×n  K  si existe una matriz  C  ∈  K

con determinante no nulo, tal que   ′           −1 T = CTC es una matriz diagonal.

 

En el ejemplo del inicio de la sección, para

     

6 −2

T =       

6 −1

se tiene que

             

6 −2     1        2         1

              = = 2

6 −1     2        4         2

 

             

6 −2     2        6         2

              = = 3

6 −1     3        9         3

 

Se tiene que T ( ⃗ v1) = 2 ⃗ v1 y T (⃗ v2) = 3 ⃗ v2, siendo ⃗ v1 = (1, 2) y ⃗ v2 = (2, 3), con lo que ⃗ v1 y ⃗ v2 son vectores propios de T con sus correspondientes valores propios 2 y 3 respectivamente. Como ⃗ v1 y ⃗ v2 forman una base de   2                                                 T R (son linealmente independientes y son 2), la matriz es diagonalizable en

R

y su matriz diagonal asociada es

    

2 0

    

0 3

 

Cálculo de autovalores y autovectores de una transformación lineal.

 

Supongamos que ⃗ v es un vector propio de una aplicación lineal T en un espacio vectorial V y

que λ es su autovalor, es decir T ( ⃗ v) = λ⃗ v. Sea { ⃗ e   e 1 ,⃗ · · · 2 , ,⃗ en} una base de V y sean v j , j = 1, · · · n 3.2 Subespacios invariantes. Valores y vectores propios 115

 

las coordenadas de                             n ⃗ v en esa base, es decir, ⃗ v = ∑ v ⃗ e j          j    j . Si (a ) es la matriz de T con respecto a la

=         i j 1

base tenemos que

n               n                             n

∑   = λ v j ⃗ e j λ   v e ∑ j ⃗ j = λ⃗ v = T (⃗ v) = T (   v ⃗ e ∑ j j) j =1               j=1                              j=1

 

n               n      n            n    n

= v   e ) = ∑ j T ( ⃗ j   v (   a ∑ ji j⃗ ei) =   (   a v )e ∑ ∑ i j j ⃗ ∑i

j =1               j=1     i=1           i=1 j=1

 

Como { ⃗ e         } 1 ,⃗ e · · · 2 , ,⃗ e n es una base de V , del primer y del último término de la igualdad anterior se tiene que:

 



                n λ v 1 = a 11 v 1 + a 12 v 2 + · · · + a 1vn 



            · · · + a v  λ v2 = a v + a v +

      21 1   22 2      2n n                              (3.5)  · · ·







 v = a v   a v   · · · a v + + +

 λ n     n1 1   n2 2       nn n

 

o en forma equivalente,

 



              n 11 ( a − λ ) v 1 + a 12 v 2 + · · · + a 1vn = 0 





 a v   a −     · · · a v + ( λ ) v + + = 0  21 1    22     2       2n n                                        (3.6)         · · ·







 a v   a v         − v + · · · + + ( a λ ) = 0  n1 1   n2 2        nn      n

 

Como es un sistema homogéneo, para que exista una solución no nula debe ocurrir que

 

                       

a11 − λ    a12    a13   · · ·    · · ·       a1n

                                                a a − · · · · · · · · · a λ

                        21 22 2 n                         . ..                         · · · · · · · · · · · ·

Det                                   ( A − λ I ) = = 0          (3.7) . ..                                                 · · · · · · · · · · · · · · ·                                                 . ..                         · · · · · · · · · · · · · · ·                                                

a n       a 1n           · · ·   a 2nn−    a 1nn − λ
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donde I denota la matriz identidad. Esto es una ecuación de grado n en λ y sus soluciones en K (R o C) son los autovalores de T . Si V es un espacio vectorial complejo, por el teorema fundamental del álgebra la ecuación anterior tiene n soluciones complejas contando cada una con su multiplicidad. Si V es un espacio vectorial real, no podemos asegurar que la ecuación anterior tenga n soluciones reales.

 

Pasos para resolver A ⃗ v = λ⃗ v

 

1. Se calcula Det(A − λ I) (se anota en forma equivalente como |A − λ I |) , restando λ de los

elementos de la diagonal de la matriz n  A  . Es un polinomio de grado  n  , con coeficiente  (  −  λ  ).

 

2. Se hallan las raíces de este polinomio. Las n raíces son los autovalores de la matriz A.

 

3. Para cada autovalor                                           ⃗ λ , se resuelve el sistema lineal ( A − λ I ) ⃗ v = 0. Como el determinante es

cero, tendrá soluciones no nulas. Esos son los autovectores.

 

■ Ejemplo 3.4 Se desea determinar los valores y vectores propios de la aplicación lineal de T : V → V , V    2 = R , que tiene como matriz,

 

    

1 2

T =      

5 4

1.

 

                     1 − λ 2

0                                                                   2 = | T − λ I | = = ( 1 − )( 4 − ) − 10 = − 5   − 6                               λ        λ           λ       λ                     5 4 − λ

 

2. Las raíces son λ             − 1 = 6 y λ 2 =1

 

3. Para λ1 = 6 se resuelve el sistema

     

x 1          0

(T − 6I)      =    

x 2          0

 

2

Los vectores propios correspondientes a λ1 = 6 son de la forma α     .

5

 

Para λ    − 2 =1 se resuelve el sistema 3.2 Subespacios invariantes. Valores y vectores propios 117

 

     

x1          0

(T − (− 1)I)      =    

x2          0

   

1

Los vectores propios correspondientes a λ2 = 6 son de la forma β       .

−1

     

 

Como   2         1                      2 y     forman una base de R, por la Proposición 3.2.2, T es diagonalizable, − 5 1

 

con matriz diagonal

     

6   0

     

0 −1

 

y la matriz de cambio de base (de la base de autovectores a la base canónica) está dada por la matriz

     

2   1

C =      

5 −1

■

 

William Gilbert Strang (1934)

 

Es un matemático estadounidense, actualmente Professor Mathworks de Matemáticas del

Department of Mathematics del Massachusetts Institute of Technology (MIT). Ha contribuido a la teoría de elementos finitos, al cálculo de variaciones, al análisis wavelet y al álgebra lineal. Ha contribuido enormemente a la educación en matemáticas, en forma de libros técnicos y cursos online. En MIT enseña Álgebra Lineal, Ciencia Computacional e Ingeniería, Aprendiendo de los Datos. Sus clases están disponibles en la plataforma MIT OpenCourseWare (en inglés). Gilbert Strang nació en Chicago, Illinois. Cursó estudios en el propio MIT y en el Balliol College, en la Universidad de Oxford. Se doctoró en la Universidad de California, Los Ángeles (UCLA) y desde ese momento ha llevado a cabo su actividad docente en el MIT. Entre las publicaciones más notables del Professor Strang se destaca An Analysis of the Finite Element Method, conjuntamente con 118 Capítulo 3. Autovalores y autovectores

 

George Fix, así como seis manuales: Introduction to Linear Algebra (1993, 1998, 2003), Linear Algebra and Its Applications (1976, 1980, 1988, 2005), Introduction to Applied Mathematics (1986), Calculus (1991), Wavelets and Filter Banks, con Truong Nguyen (1996), Linear Algebra, Geodesy, and GPS, con Kai Borre (1997).

Gilbert Strang fue Presidente de la SIAM (Society for Industrial and Applied Mathematics)

durante los años 1999-2000. También ha sido Chairman of the US National Committee on Mathematics durante los años 2003-2004. Es Honorary Fellow, en el Balliol College de Oxford. También es Chairman, en la National Science Foundation (NSF) del Advisory Panel del área de Matemáticas.

Fue pionero al abrir sus clases y permitir que fueran grabadas en vídeo mientras explicaba

matemáticas a sus alumnos del MIT para su difusión abierta y gratuita en Internet. [10]

 

3.2.1   Localización de autovalores

 

Teorema 3.2.3 Teorema de Gershgorin.

Los autovalores de una matriz A están en la unión de los discos D1, D2, · · · , Dn (del plano

complejo) donde Di es el disco centrado en el elemento de la diagonal aii:

 

|λ − aii| ≤ ri

 

Su radio ri = ∑   |a j ̸ =i j | i es igual a la suma de los valores absolutos de los elementos del resto

de la fila.

 

Demostración:

 

Supongamos vi es la mayor componente en valor absoluto del autovector⃗ v, A ⃗ v = λ⃗ v. Entonces,

 

(λ − aii)vi = ∑ j̸=i ai j v j, de donde,

 

|                          |v j| λ − aii | ≤ ∑j̸=i | ai j | ≤ ∑ j̸ i |ai j | = ri

|vi|             =

□
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Figura 3.3: Los autovalores de A se encuentran en la unión de los cuatro discos, D1 ,D2, D3 y D4

[image: ]

 

■ Ejemplo 3.5 Dada la matriz,

 

             

3     0    −1   1/2

                            0 5 1 / 2 1

A =                  

              − 1 / 2 0 − 3 5 / 4              

0    1/2 1/2   4

 

Se muestra en la Figura 3.3 la localización de sus autovalores de acuerdo al Teorema 3.2.3.

Los discos están centrados en los elementos de la diagonal de la matriz A y tienen radios r 1 = 3/2, r2 = 3/2, r3 = 7/4 y r4 = 1. Están en el intervalo [−19/4,7], en el caso que sean números reales.

 

■

 

Para la matriz del Ejemplo 3.4 se tienen los discos D 1 = |λ − 1| ≤ 2 y D2 = |λ − 4| ≤ 5. Sin calcular los autovalores, se sabe que si son números reales, estarán en el intervalo [−1, 9].

 

3.3   Polinomio característico

Al polinomio                (n) Det ( T − λ I ) ∈ P [λ ] (Ec. (3.7)) se lo denomina polinomio característico de la

K

aplicación                        n×n T (o de la matriz A ∈ K). Lo anotaremos PT λ ( ).

 

Proposición 3.3.1            n×n Sea T ∈ K y sea λ ∈ K. Entonces λ es autovalor de T sí y sólo sí λ es raíz

del polinomio característico de T .
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■ Ejemplo 3.6 La matriz

     

0   1

     

−1 0

 

es diagonalizable en   n×n                               n×n        n×n C , pero no es diagonalizable en Q ni en R . Sus autovalores son las raíces del polinomio

        

Det    0 − λ    1        2 =   λ + 1 = 0

−1   0 − λ

 

Se tiene, entonces, que los autovalores son λ1−2 = ∓i ■

 

Proposición 3.3.2 El polinomio característico no depende de la base elegida en V para representar

la aplicación lineal T .

 

Demostración:

 

Para demostrar esto, sea PT ,B(λ ) = Det(T − λ I ) el polinomio característico de la aplicación T

en la base B = { ⃗ e1,⃗ e2, · · · ,⃗ en} como una base de V y sea P   ′                                            ′ T , B ( λ ) = Det ( T − λ I ) el polinomio

característico de                 ′        n         o ⃗ ′        ′                 ′ · · · T en la base B = e 1,⃗ e 2 , ,⃗ e m ; si C es la matriz del cambio de base, se

sabe que        ′    − 1 T = CT C, y se tiene

 

PT,B(λ ) = P   ′ T , B (λ )

Se deja al lector completar esta demostración.

□

 

■                                                      x Ejemplo 3.7 La matriz de la proyección sobre el eje x , P, (Ver Ejemplo 2.15) en la base canónica B = { ⃗ e1,⃗ e2} es

    

1 0

    

0 0

 

Los autovalores son λ x  1  =  1 y  λ  2  =  0, ya que para los vectores  ⃗  v  1  que están sobre el eje  se

verifica P x ( ⃗ v1) = 1 ⃗ v1, mientras que para los los vectores ⃗ v2 que están sobre el eje y se verifica P     ⃗ x ( ⃗ v 2 ) = 0.
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Si cambio de base, por ejemplo a la base   ′             ′      ′ B = { ⃗ e ,⃗ e } (rotando en φ = π /4 los vectores de la

1   2

base canónica                          ′ B ), donde los vectores de B son las columnas de la matriz A del Ejemplo 1.28, se tendrá que

 

P ′             √                          ′              ′ ( x ⃗ e ) = ( 2 / 2 , 0 ) = 1 / 2 ⃗ e − 1 / 2 ⃗ e 1 1 2

y

 

P ′                 √                               ′               ′ ( x ⃗ e ) = ( − 2 / 2 , 0 ) = − 1 / 2 ⃗ e + 1 / 2 ⃗ e 2 1 2

entonces la matriz en esta nueva base es

        

1/2   −1/2

        

−1/2   1/2

 

Ahora el polinomio característico es P ′                                                        2 B = ( λ )( 1 / 2 − λ ) − 1/4, con las mismas raíces, λ1 = 1 y λ2 = 0, y los mismos autovectores que se obtuvieron con la base B, ya que

′                                        √   √      √   √

⃗ v = (1, −1) ′ B = 1( 2/2, 2/2) − 1(− 2/2, 2/2) = (1, 0) y 1

′                                    √   √      √   √

⃗ v = (1,1) ′ B = 1( 2/2,   2/2) + 1(− 2/2,   2/2) = (0,1). 2

 

Se verifica, entonces, como se mencionó en la Observación i en 2.6 que las matrices de una misma transformación lineal en distintas bases son semejantes. Se tiene la relación,

 

                

1 0             1/2   −1/2

        ′  P = B , B          P ′ B,B

0 0            −1/2   1/2

 

donde P ′                                                                                                                                                                ′                                 ′ ′ B , B y P B , B son las matrices del cambio de base de B a B y de B a B, respectivamente.        ■

 

■ Ejemplo 3.8 Se quieren determinar los valores y vectores propios de la aplicación lineal que

corresponde a la rotación de ángulo α que tiene como matriz: (ver la matriz 1.8, Ejemplo 1.28 )

 

          

cos (α)   −sen(α)

R    α =             

sen (α)   cos(α )

con respecto a la base canónica de   2 R .
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                                    cos ( α ) − λ − sen ( α )

0                                                                      2        2           2 = | R − I | α        λ = = ( ( ) − ) + ( ) = − 2    ( )   + 1      cos α    λ     sen α    λ     cos α λ

                                    sen ( α ) cos ( α ) − λ

 

Las raíces son λ1 = cos(α ) + isen(α ) y λ2 = cos(α ) − isen(α ), que son números complejos a no ser que α = 2kπ o α = (2k + 1)π, con k ∈ Z.

 

Si                                                       2 α = 2 k π , se tiene la matriz identidad y todo vector de R es autovector, y corresponden a λ = 1.

 

Mientras que si α = (2k + 1)π, la matriz es −I y también resulta autovector cualquier vector de R2                          − , y corresponden a λ =1. En este caso, la transformación es una simetría respecto al origen de coordenadas. ■

 

■                                                              α Ejemplo      3 3.9 La matriz correspondiente a una rotación de ángulo en R con respecto al eje z, es,

            

cos(α)   −sen(α ) 0

R              = sen ( ) cos ( ) 0              α α             

0        0      1

 

Su polinomio característico es    2 ( λ − 2cos(α )λ + 1)(1 − λ ), cuyas raíces son λ1 = cos(α ) + isen(α), λ2 = cos(α ) − isen(α ) y λ3 = 1.

 

Los vectores propios correspondientes a λ3 = 1 son las soluciones del sistema:

 

                     

cos(α ) − 1   −sen(α)   0      x1         0

                      ( ) cos ( ) − 1 0 x = 0                  (3.8)                       sen α α 2                      

0          0      0      x3         0

 

Dado que

 

                                   cos ( α ) − 1 − sen ( α )

                                                       2        2                                 2 = ( cos ( ) − 1 ) + sen ( ) = 2 − 2 cos ( ) = 4 sen(   /2)                                              α                   α                 α             α                                   sen ( α ) cos ( α ) − 1

 

El sistema (3.8) tiene únicamente la solución x 1 = x2 = 0 si α ̸= 2kπ, con k ∈ Z. En este caso los autovectores correspondientes a λ3 = 1, son los vectores sobre el eje z, de la forma (0, 0,x3). 3.4 Diagonalización 123

 

Si                                                        3 α = 2 k π , se trata de la identidad y todos los vectores de R son autovectores.

 

Si α = (2k + 1)π, λ1 = λ2 = −1, y los autovectores son las soluciones del sistema

 

            

0 0 0      x1         0

             = 0              0 0 0 x 2             

0 0 2      x3         0

 

y son los vectores (x1,x2, 0) o sea del plano xy, y la transformación es una simetría respecto al eje z.

■

 

3.4   Diagonalización

La Proposición 3.2.2 nos da una condición necesaria y suficiente para saber cuándo una aplicación lineal es diagonalizable, a saber, que exista una base del espacio vectorial V formada por vectores propios. En algunos casos puede resultar laborioso encontrar esta base. Una condición que es suficiente para poder asegurar la diagonalización de una matriz está contenida en la proposición siguiente:

 

Proposición 3.4.1 Los vectores propios de una aplicación T correspondientes a valores propios

distintos dos a dos, son linealmente independientes.

 

Demostración:

 

Por inducción sobre la cantidad de vectores.

Para k = 2. Supongamos se tienen⃗ v1 correspondiente a λ1 y ⃗ v2 correspondiente a λ2, con λ ̸ 1= λ2.

Si se tiene

α           ⃗ 1 ⃗ v 1 + α v 2 ⃗ 2 = 0                                      (3.9)

T                 ⃗    ⃗ ( α 1 ⃗ v 1 + α 2 ⃗ v 2 ) = T ( 0 ) = 0

α                ⃗ 1 T ( ⃗ v 1 ) + α 1 T ( ⃗ v 2 ) = 0

α               ⃗ 1 λ 1 ⃗ v 1 + α 1 λ 2 ⃗ v 2 = 0
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De (3.9) se tiene que α2⃗ v2 = −α1⃗ v1. Si se reemplaza en la última ecuación, se tiene que

α              ⃗ − 1 λ 1 ⃗ v 1 α 1 λ 2 ⃗ v 1 = 0

α             ⃗ 1 ⃗ v 1 ( λ − 1 λ 2 ) = 0                                       (3.10)

 

Como    ⃗                                                 ⃗ ⃗ v 1 ̸ = 0 y λ 1 − λ 2 ̸ = 0, resulta α 1 = 0, de donde α 2 = 0, pues ⃗ v 2 ̸ = 0.

 

Por lo tanto, ⃗ v1 y ⃗ v2 son linealmente independientes.

 

Supongamos ahora el resultado es válido para k − 1 autovalores distintos. Si

α                         ⃗ 1 ⃗ v 1 + α 2 ⃗ v 2 + · · · + α k − 1 ⃗ v k − 1 + α k ⃗ v k = 0,

 

como en el caso k = 2, aplicamos T , despejamos de la igualdad anterior el término αk⃗ vk. Entonces,

 

α                                 ⃗ 1 λ 1 ⃗ v 1 + α 2 λ 2 ⃗ v 2 + · · · + α k − 1 λ k − 1 ⃗ v k − 1 + α k λ k ⃗ v k = 0

 

α                                                    ⃗ 1 λ 1 ⃗ v 1 + α 2 λ 2 ⃗ v 2 + · · · + α k − 1 λ k − 1 ⃗ v k − 1 + ( − α 1 ⃗ v 1 − α 2 ⃗ v 2 − · · · − α k − 1 ⃗ v k − 1 ) λ k = 0

 

α                                        ⃗ 1 ( λ − 1 λ k ) ⃗ v 1 + α 2 ( λ − − 2 λ k ) ⃗ v 2 + · · · + α k − 1 ( λ k − 1 λ k ) ⃗ v k − 1 = 0

 

Como ⃗ v1,⃗ v2, · · · ,⃗ vk−1 son linealmente independientes y además, como

 

(λ −    ̸ 1 λ k )= 0, (λ −    ̸ 2 λ k )= 0, · · · , (λk− −    ̸ 1 λ k )= 0,

 

se tiene que                                                            ⃗ α · · · 1 = α 2 = = α k − 1 = 0, y también α k = 0, ya que ⃗ v k ̸ = 0.

 

Por lo tanto ⃗ v1,⃗ v2, · · · ,⃗ vk−1,⃗ vk son linealmente independientes.

□

 


i

Una matriz T puede ser diagonalizable y tener autovalores múltiples. Un ejemplo es la matriz identidad, que tiene único autovalor 1 y es diagonalizable.

 

Si una matriz       n×n A ∈ K tiene sus n autovalores distintos, sus autovectores son linealmente independientes y forman una base, por lo tanto, A es diagonalizable. 3.4 Diagonalización 125

 

A ⃗ v = λ⃗ v es una ecuación no lineal (λ multiplica ⃗ v). Si hallamos λ , sí la ecuación es lineal. Como             ⃗ ( A − λ I ) ⃗ v = 0, ⃗ v está en el espacio nulo de (A − λ I), (⃗ v ∈ Nul(A − λ I)).

 

La condición Det(A − λ I) = 0 (donde A es la matriz que representa la aplicación T en alguna base) es equivalente a que la aplicación T −λ I no es inyectiva, o sea N(T − λ I) ̸= { ⃗ 0}. O equivalentemente el núcleo de T −λ I contiene no solo al vector nulo y es un subespacio de dimensión es mayor que 0.

 

Si                                                          1                   −1 λ es autovalor con autovector ⃗ v de una matriz A no singular, es autovalor de A,

λ

con el mismo autovector. Ya que, si A ⃗                                     −1 v = λ ⃗ v , multiplicando por la inversa, ⃗ v = Aλ⃗ v, se tiene que

−1    1

A ⃗ v = ⃗ v.

λ

 

Si                            −1 A es diagonalizable, A = CDC, de donde, aplicando recursivamente, se tiene

 

A n     −1 n = C DC ∀n ∈ Z.

 

Dos matrices diagonalizables A y B comparten la matriz de autovectores S sí y solo sí AB                             −1          −1 = BA . Para ver esto, supongamos A = SD S y B = SD S. Si comparten la matriz

1              2

de autovectores S, se tiene que

 

AB      −1     −1          −1 = SD S SD S = SD D S

1        2          1 2

y

 

BA      −1     −1          −1 = SD S SD S = SD D S,

2        1          2 1

 

como D1D2 = D2D1 (las matrices diagonales siempre conmutan), entonces AB = BA. Y recíprocamente, si AB = BA, se puede demostrar que A y B comparten autovectores.

 

Se puede demostrar que la suma de los n autovalores de una matriz A es igual a la traza de la matriz (suma de los elementos de la diagonal), es decir que

 

Tr(A) = λ1 + λ2 + · · · +λn

y que el producto de los n autovalores es el determinante de A.

 

Det (A) =   ∏ λi
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■ Ejemplo 3.10 Se deja al lector estudiar si las matrices

      

6 −2 1                 

             0 1

A =             T 6 − 1 1  =       

             −1 0

0   0   1

son diagonalizables.

Notar que la matriz A, por el Teorema 3.2.3, tiene un autovalor λ1 = 1. Verifique que A es diagonalizable y los autovalores restantes son λ2 = 2 y λ3 = 3. Puede utilizar las sentencias Octave

del programa presentado en la Introducción, Sección 3.1 [ U, D] = eig(A). Obtiene así la matriz U de autovectores y la matriz diagonal D con los autovalores. O bien, puede usar las sentencias en Python que están en recuadro.

 

En cuanto a la matriz T , ya fue estudiada en el Ejemplo 3.8. Es la matriz de una rotación en π /2 en sentido horario.

■

 

i   Sentencias en Python para diagonalizar una matriz

 

import numpy as np

A = np. array ([[6 , -2 ,1] ,[6 , -1 ,1] ,[0 ,0 ,1]]) print ( mat )

print ()

D, U   = np. linalg . eig (A)

% print ( ' autovalores ' ,D)

print (D)

% print ( ' autovectores ' ,U)

print (U)

 

      

0   0   0

■                                     α Ejemplo        3.11 Sea la matriz A = 0 0 . 

      

α 0 0

 

Si se desea analizar para qué valores de α ∈ R la matriz es diagonalizable, se tiene, en primer lugar que con solo observar los elementos de la matriz se sabe que tiene un autovalor 0 y otro α (Por 3.4 Diagonalización 127

 

Teorema 3.2.3). A partir de esa información, hay que ver para qué valores de α ∈ R existe una base de autovectores.

Se deja al lector verificar que solo es diagonalizable si 3  α =  0 y en ese caso todo vector de  R es

autovector. ■

 

Veamos a continuación una propiedad especial y muy útil de los autovectores de una matriz simétrica.

 

Teorema 3.4.2 Los autovectores de una matriz real simétrica, asociados a autovalores diferentes,

son ortogonales.

 

Demostración:

 

Sea A una matriz simétrica y λ ̸ 1= λ2 autovalores con autovectores correspondientes ⃗ v1 y ⃗ v2,

es decir                                                       t A ⃗ v 1    λ = 1 v ⃗ 1 y A ⃗ v 2    λ = · 2 v ⃗ 2 . Se verá que ⃗ v 1 v ⃗ 2     v = ( ⃗ 1 v ) ⃗2    0 =

 

λ    ·             t 1 v ( ⃗ 1 v ⃗ 2         λ ) = 1 v ( ⃗ 1 v ) ⃗

2

=    t ( A ⃗ v 1 v ) ⃗

2

=    t    t ( ⃗ v A v ) ⃗

1      2

=    t ( ⃗ v A ) ⃗ v

1     2

=     t λ     v ( ⃗ v ) ⃗

2   1    2

= λ   · v 2 ( ⃗ v 1 ⃗2)

 

de donde

λ1 ( ⃗ v1 ·⃗ v2) − λ2(⃗ v1 ·⃗ v2) = (λ1 − λ2)( ⃗ v1 ·⃗ v2) = 0,

 

y al ser λ1 ̸= λ2, se tiene que ⃗ v1 ·⃗ v2 = 0 y los vectores son ortogonales. □

 

■                                                            λ Ejemplo 3.12 Si las matrices A y B de n × n tienen autovalores y µ , podemos preguntarnos si la matriz producto                                                                  ⃗ AB tiene como autovalor a λ µ . Es decir si se verifica para algún ⃗ x ̸ = 0 tal que,

 

AB ⃗ x = Aµ⃗ x = µ A ⃗ x = µ λ⃗ x.
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Se deja al lector analizar este ejemplo:

    

0 1

A =     

0 0

    

0 0

B =     

1 0

y

    

1 0

AB =      

0 0

■

 

3.4.1   Espacios propios

Sea T ∈ L(V ). El conjunto de los autovectores correspondientes a un autovalor λ no es un subespacio de   n              ⃗ K , puesto que 0 no es autovector de T . Sin embargo, podemos considerar el siguiente subespacio:

 

Definición 3.4.1            n×n Sea T ∈ K y sea λ un autovalor de T . Se define el espacio propio asociado

a λ y se lo anota Eλ a

 

E                n N T − = ( I ) = { ⃗ v ∈ K/T⃗ v = ⃗ v}                              (3.11) λ          λ                   λ

 

E                n es un subespacio de K, puesto que es el conjunto de soluciones de un sistema lineal

λ

homogéneo. Contiene todos los vectores propios correspondientes a                     ⃗ λ junto con el vector 0 .

 

De los resultados ya vistos en el Teorema 2.4.3, se tiene que

 

dim(E ) = dim(V ) − dim(Im(T − λ I)) = dim(V ) − r(T − λ I) λ

 

Teorema 3.4.3 Sea T ∈ L(V ), V de dim < ∞. Sean λ1,λ2,· · · , λk los k, (k ≤ n ) autovalores

distintos de T . Entonces E ,E   · · · ,E   están en suma directa. λ 1 λ 2 λ k

Demostración:

 

Lo probaremos por inducción sobre la cantidad k de vectores considerados.

Para k = 2, sean λ1 y λ2 autovalores distintos de T . Si ⃗ v ∈ E   ∩                         v λ E v = λ 1 λ , se tiene que T ⃗ y 2 1 ⃗ 3.4 Diagonalización 129

 

T ⃗ ⃗  ⃗  v  =  λ  −  2  ⃗  v  , de donde  (  λ  1  λ  2  )  ⃗  v  =  0. Como  λ  −  ̸  1  λ  2  =  0, resulta que  ⃗  v  =  0. Luego  E  ∩  E  =  λ  1  λ  0 y  2

la suma es directa.

 

Supongamos ahora que el resultado vale para el caso de k − 1 autovalores distintos, y sean

λ 1 , λ2, · · · , λk autovalores distintos de T .

Debemos probar que para cada 1                k             ⃗ ≤ i ≤ k , E ∩ ( E 0 (ver Observación λi         j ∑        ) = i al final de

̸=i    λj

la Sección 1.4).

 

Supongamos que                     k −1 i = k , y sea ⃗ v ∈ E ∩ λ    ∑ ( E ). Entonces, existen⃗ v ∈ E , (1 ≤ j ≤ −1) k          j                                              j =                            k

1   λj                                λj

tales que

 

⃗ v = ⃗ v1 +⃗ v2 + · · ·⃗ vk−1. (3.12)

 

Multiplicando la igualdad (3.12) por la matriz T , como⃗ v ∈ E , se tiene λ k

 

λk⃗ v = λ v 1 ⃗1 + λ2 ⃗ v2 + · · · + λk−1⃗ vk−1 (3.13)

 

y multiplicando ahora la igualdad Ec.(3.12) por λk, se tiene,

 

λk⃗ v = λk⃗ v1 + λk⃗ v2 + · · · λk⃗ vk−1

 

Restando las igualdades miembro a miembro,

 

⃗ 0 = (λ1 − λk) ⃗ v1 + (λ2 − λk)⃗ v2 + · · · (λk− − 1 λk)⃗ vk−1

 

Como por hipótesis inductiva, los subespacios E   (1 ≤ j ≤ k − 1) están en suma directa, el λ j

vector nulo se escribe de forma única como suma de vectores nulos, de donde ⃗  (  λ  j  −  λ  k  )  ⃗  v  j  =  0

para cada 1                               ⃗                                  ⃗ ≤ j ≤ k − 1 y por lo tanto ⃗ v j = 0 para cada 1 ≤ j ≤ k − 1, con lo cual ⃗ v = 0.      □

 

Proposición 3.4.4           n×n Sea T ∈ K y sea λ ∈ K un autovalor de T . Sea r la multiplicidad de λ

como raíz del polinomio característico PT y sea Eλ su espacio propio. Entonces

 

dim (E ) ≤ r λ
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Proposición 3.4.5           n×n Sea T ∈ K y sean λ    · · · 1 λ , 2    λk ∈ K los k autovalores distintos de T (λi ̸=

λ j

si i ̸= j). Son equivalentes:

1. T es diagonalizable

2.    n K = E ⊕ E · · · ⊕ E

λ1      λ2         λk

3. El polinomio característico de T es

 

P           α        α           α 2 1k T λ ( ) = ( λ − λ 1 ) ( λ − λ 2 ) · · · ( λ − λ )

k

 

y se tiene que αi = dim(E )        ≤ i ≤ k λ , para 1. i

 

■ Ejemplo 3.13 Se quiere estudiar si la matriz

        

0    3    1

T            = 2 − 1 − 1                  

−2 −1 −1

 

es diagonalizable. Sus autovalores son: λ1 = 2, que es una raíz simple (multiplicidad algebraica 1) y λ2 = λ3 = −2 que es una raíz doble (multiplicidad algebraica 2).

 

E                n                           t T − = N ( 2 I ) = { ⃗ v ∈ K / T ⃗ v = 2 ⃗ v } = ⟨ ( 1 , 1 , − 1 ) ⟩

λ1

 

E                n                             t = N ( T + ) = { v ∈ K T ⃗ = − ⃗ v } = ( 2 I ⃗ / v 2 ⟨ 1 , − 1 , 1 ) ⟩

λ2

 

La dim(E ) = 1 coincide con la multiplicidad algebraica mientras que dim(E ) = 1 es menor λ 1 λ 2

que 2, que es la multiplicidad algebraica. Por el Teorema 3.4.5, T no es diagonalizable. ■

 

Proposición 3.4.6 Sea T ∈ L(V ), V de dim < ∞. Si T es diagonalizable y λ1,λ2,· · · ,λk son los

autovalores distintos de T , entonces existen E1,E2, · · · ,Ek aplicaciones lineales tales que

 

1. E1 + E2 + · · · + Ek = I

 

2. T = λ1E1 + λ2E2 + · · · + λkEk

 

3.            ⃗ E i ◦ E j = 0 i ̸= j

 

4.    2                 · · · E = E i i i , = 1 , 2 , ,k 3.4 Diagonalización 131

 

5. Im(Ei ) = Eλ i

Demostración:

 

1. Por ser T diagonalizable, de la Proposición 3.4.5 se tiene que

 

V = E ⊕ E · · · ⊕ E λ 1 λ 2λk

 

Para ver 1, se consideran las proyecciones Ei sobre cada espacio propio, E , asociadas a la λ i descomposición anterior y ⃗ v = ⃗ w         · · ·             ∈ 1 + ⃗ w 2 + + ⃗ w k , con ⃗ w i Eλ . i Entonces,

(E1 + E2 + · · · + Ek )( ⃗ v) = (E1 + E2 + · · · + Ek)(⃗ w1 + ⃗ w2 + · · · + ⃗ wk ) = E1(⃗ w1 + ⃗ w2 + · · · + ⃗ wk) + E2(⃗ w1 +⃗ w2 + · · · + ⃗ wk) · · · + Ek(⃗ w1 +⃗ w2 + · · · + ⃗ wk) = ⃗ w1 + ⃗ w2 + · · · +⃗ wk =⃗ v.

 

De donde se tiene, que E1 + E2 + · · · + Ek = I

2. Para ver 2, se usa 1 y se toma la composición T ◦ I = T = T (E1 + E2 + · · · + Ek ). Luego, si

⃗ v ∈ V , T (E1 + E2 + · · · + Ek)( ⃗ v) = T (E1( ⃗ v)) + T (E2( ⃗ v)) · · · T (Ek(⃗ v)) Como

T (Ei( ⃗ v)) = T (⃗ wi) = λi⃗ wi = λiEi(⃗ v)

 

se tiene, T (E1( ⃗ v)) + T (E2( ⃗ v)) · · · T (Ek( ⃗ v)) = λ E1(⃗ v) + λ E v           E v 1 2 2 ( ⃗ ) + · · · + λ k k ( ⃗) = (λ E 11 + λ     · · · 2 E 2 + λkEk)( ⃗ v), y por lo tanto,

 

T = λ1E        · · · 1 + λ 2 E 2 + + λkEk

 

La demostración de 3, 4 y 5 se dejan como ejercicio para el lector.

□

 

3.4.2   Polinomios minimales

Sea P ∈                  2             r P K [ x ] , P ( x ) = α · · · 0 + α 1 x + α 2 x + + α r x

 

Dada      n×n T ∈ K se define

 

P                 2              r      n×n ( T ) = α 0I n    α + 1T + α2 T + · · · + αr T ∈ K

 

Recordar que   r T es la composición de la aplicación lineal T r veces, y además, que si P, Q ∈          n×n P [ x ] , y T ∈ K, entonces (P + Q)(T ) = P(T ) + Q(T ) y (P .Q)(T ) = P(T ).Q(T ).

K
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Dada T una aplicación lineal cualquiera de un espacio vectorial V sobre K, interesa considerar polinomios que anulen a T , es decir

 

n            o ⃗ P ∈

P K [x] P(T ) = 0 .

 

(Se pueden ver en [23] más detalles sobre este tema). El resultado que sigue asegura que para cualquier matriz existe un polinomio no nulo con esta propiedad.

 

Proposición 3.4.7           n×n                                                    ⃗ Sea T ∈ K . Existe un polinomio P ∈ P K [ x ] , P ̸ = 0, tal que P ( T ) = 0

 

Demostración:

 

Consideremos el conjunto        2         2 n        n×n       2 { I , T , T , · · · , T } ⊆ K son n + 1 transformaciones lineales de

L n    n                                                                                      n×n     2 ( K , K ) . Son linealmente dependientes porque ya vimos que la dimensión es la de K = n.

Luego existe una combinación lineal con escalares no todos nulos tales que

 

α0 I             2                2 n    ⃗ + α 1T + α2 T + · · · + α 2 T = 0

n

Sea

P              2               2 n    ⃗ ( x ) = α0 + α1 x + α2 x + · · · + α 2 n x = 0

 

P         ⃗         ⃗ ∈ P K [ x ] , P ̸ = 0 y P ( T ) = 0

 

□

 

Es decir, para toda matriz, distinguimos un polinomio particular entre todos los polinomios que la anulan: el de grado mínimo y mónico. Siempre existe un polinomio con esas propiedades y además, es único.

 

Definición 3.4.2            n×n Sea T ∈ K. Se llama polinomio minimal de T al polinomio mónico de grado

mínimo que anula a T . Lo simbolizamos mT.

 

i   m se caracteriza por T

1.            ⃗ m ( ) = T T 0

2. mT es mónico y es el de menor grado que anula a T 3. mT /PT (divide al polinomio característico)
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        

5   −6 −6

■                                                    3.14 Dada la matriz, T = − 1 4 2 , Ejemplo                              

        

3   −6 −4

 

el lector puede verificar que {I, T } son linealmente independientes, es decir, no existe P ∈ P [x] de R grado 1 y tal que         ⃗ P ( T ) = 0.

 

En cambio, {      2 I , T , T} es un conjunto linealmente dependiente, ya que

 

                          2

5   −6 −6          5   −6 −6        1 0 0

                          − 1 4 2 − 3 ⃗ − 1 4 2 + 2 0 1 0 = 0         (3.14)                                                    

3   −6 −4          3   −6 −4        0 0 1

 

Se tiene que   2                                     ⃗ T − 3 T + 2 I = ( T − 2 I )( T − 1 I ) = 0, luego el polinomio minimal es

 

m      2 T λ ( ) = λ − 3λ + 2 = (λ − 2)(λ − 1).

 

mT divide a PT ya que PT = (λ − 2 2 )(λ − 1) es el polinomio característico.

■

 

i

En la Proposición 3.3.1 de la Sección 3.3 vimos que las raíces del polinomio característico de una matriz son sus autovalores. Lo mismo vale para el polinomio minimal. Dos matrices semejantes tienen el mismo polinomio minimal (y el mismo polinomio

característico como se vio en la Proposición 3.3.2).

 

Proposición 3.4.8           n×n Sea T ∈ K, sea λ ∈ K y mT λ  el polinomio minimal de  T  . Entonces  es

autovalor de T sí y sólo sí λ es raíz de mT .

 

Criterio de diagonalización usando el polinomio minimal

Si el polinomio característico de       n×n T ∈ K, PT λ ( ) se factoriza linealmente en P [x], con todas

K

sus raíces λ · · · 1 λn simples (raíces distintas), entonces T es diagonalizable.

Esto sale de la Proposición 3.4.5 de la sección 3.4.1, ya que existe una base de   n K formada por

autovectores y los espacios propios E ,E   · · · ,E   están en suma directa. La recíproca no es cierta, λ 1 λ 2 λ n es decir, PT (λ ) puede tener raíces múltiples y ser diagonalizable.
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Proposición 3.4.9            n×n                                  n×n Sea T ∈ K . Entonces T es diagonalizable en K sí y sólo sí el polinomio

minimal mT tiene todas sus raíces en K y son simples. O en forma equivalente, sean λ1 ,λ2, · · · , λk

los autovalores distintos de T . T es diagonalizable sí y sólo sí

 

m T (λ ) = (λ − λ1)(λ − λ2) · · · (λ − λk)

 

Proposición 3.4.10 Sea T una aplicación lineal sobre un espacio vectorial de V de dim < ∞.

El polinomio característico y el polinomio minimal tienen las mismas raíces.

 

El Teorema que sigue fue enunciado por Arthur Cayley (1821-1895) en 1858. Lo demostró inicialmente para matrices de 2 × 2.

 

Teorema 3.4.11 Teorema de Cayley-Hamilton:

Sea T una aplicación lineal sobre un espacio vectorial de V de dim < ∞. Si PT es el polinomio

característico de                       ⃗ T , entonces P T ( T ) = 0.

 

Demostración:

 

Sea { ⃗ v1,⃗ v2,· · · ,⃗ vn} una base de V y sea A la matriz que representa a T en la base dada.

Entonces

 

n

T ⃗ v i =    a       ≤ ≤ n ∑ ji ⃗ v j , 1 i

j=1

 

Estas ecuaciones, que son las mismas que las desarrolladas en 3.5, pueden escribirse en forma

equivalente

n

∑ (                    ⃗ δ i j T − a ji I ) ⃗ v j = 0, 1 ≤ i ≤ n j=1

 

Sea      n×n B ∈ K con elementos Bi j        δ = T − a I i j                   ji
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            

T − a 11I    −a21I

B =               

−a I    T − a I 12 22

 

y

det (B) = (T − a       − 11 I )( T a22T ) − a21a12I

 

det         2 ( B ) = T − (a   + a )T + (a a   − a a   I )

11     22         11 22     12 21

 

det (B) = PT (T )

 

donde PT es el polinomio característico correspondiente a T .

 

P       2 T λ ( ) = λ − traza(A)λ + det (A)

 

Para n > 2, también se tiene det (B) = f (T ), ya que PT es el determinante de la matriz

(λ I − A) cuyos elementos son los polinomios

 

(λ I − A)i j = δi jλ − a ji

 

Se quiere demostrar que          ⃗ P T ( T ) = 0, y para eso es necesario y suficiente ver que (det (B)) ⃗ vk =

⃗ 0 para 1 ≤ k ≤ n. Por la definición de B, los vectores ⃗ v1,⃗ v2, · · · ,⃗ vn satisfacen las ecuaciones

 

n

∑ B    ⃗ i j ⃗ v j = 0, 1 ≤ i ≤ n j =1

 

Cuando n = 2,

                  

T − a     − 11 Ia21I       ⃗ v1        0

                   =

−a12I    T − a22I       ⃗ v2         0
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            

∗        T − a22I     a21I

B =               

a I      T − a I 12 11

 

y se tiene

         

∗         det (B)     0

B B =            

0     det(B)

 

Luego,

            

(               ⃗ v 1             ⃗ v ∗1         0 det ( B )) I   = B B   =  

⃗ v 2             ⃗ v2         0

 

Para el caso general, como

 

n

∑ B    ⃗ , 1 ≤ ≤ n i j ⃗ v j = 0 i j =1

 

n

∑ B∗          ⃗ B ki i j ⃗ v j = 0 j =1

para todo par                                   n     n     ∗          ⃗ k , i , y sumando sobre i , se tiene ∑ B B ⃗ v = 0, y entonces, i = 1 ∑ j = 1 ki i j j

 

n    n

∑ (      ∗          ⃗ B B ) ⃗ v 0 ∑ ki i j j = j=1 i=1

 

Como ∗                               n     ∗ B B = det ( B ) I , se tiene que ∑ B B =    det (B) i =        i j     δ

1   ki         k j

 

y, por lo tanto,

n

∑    ⃗             ⃗ v = det ( ) ⃗ v = 0 δ k j det ( B ) j B j j =1

 

□
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i

Una utilidad de este teorema es que reduce la búsqueda del polinomio minimal. Si se conoce la matriz A que representa a T en cierta base, se calcula el polinomio característico, y se sabe que el polinomio minimal lo divide y que los dos tienen las mismas raíces.

 

En algunos casos el teorema resulta útil para calcular la inversa de una matriz. Si existe T − 1         ⃗           −1       ⃗ ‘y P T ( T ) = 0, entonces, T P T ( T ) = 0. Si

P                 2             n T λ ( ) = α0 + α 1 λ + α2 λ + · · · + α n λ

 

P                  2          n     n×n T        α ( T ) = 0    α I + 1     α T + T + · · · + T ∈ K,

2

entonces,

 

T − 1           −1                  n−1   ⃗ P T ( T ) = α 0 T + α 1 I + α 2 T + · · · + T = 0

de donde, despejando,

 

T −    1 1                  n−1 = ( − α 1 I − α 2 T − · · · − T)

α 0

 

α                ⃗                      n 0 ̸ = 0, ya que α 0 = P T ( 0 ) = Det ( 0 I − T ) = ( − 1 )Det (T ) y T es invertible.

 

Arthur Cayley (1821-1895)

 

Fue un matemático británico. Fue uno de los fundadores de la escuela británica moderna de

matemáticas puras. Además de su predilección por las matemáticas, también era un ávido lector de novelas, le gustaba pintar, sentía pasión por la botánica y por la naturaleza en general, y era aficionado al alpinismo. Se educó en el Trinity College de Cambridge. Estudió durante algún tiempo la carrera de leyes con lo que trabajó de abogado durante 14 años, a la vez que publicaba un gran número de artículos. Luego pasó a ser profesor en Cambridge. Fue el primero que introdujo la multiplicación de las matrices. Es el autor del teorema de Cayley-Hamilton que dice que cualquier matriz cuadrada es solución de su polinomio característico. Dio la primera definición moderna de la noción de grupo. En combinatoria, su nombre está unido a la fórmula que cuenta los posibles árboles generadores con nodos etiquetados de orden n. Se llama a veces octavas de Cayley o números de Cayley a los octoniones. Es el tercer matemático más prolífico de la historia, sobrepasado tan solo por 138 Capítulo 3. Autovalores y autovectores

 

Euler y Cauchy, con aportaciones a amplias áreas de la matemática. En 1889, Cambridge University Press le pidió que preparara sus artículos matemáticos en forma de colección. Siete volúmenes aparecieron con Cayley como editor, pero tras su fallecimiento, el resto de artículos fue editado por Andrew Forsyth, su sucesor en la cátedra de Cambridge. En total los Collected Mathematical Papers

comprenden trece grandes volúmenes que contienen 967 artículos. [5]

 

3.5   Teorema de la descomposición prima

 

Es de interés, dada T una aplicación lineal sobre un espacio vectorial de V de dim < ∞, la descomposición de V como suma directa de subespacios invariantes por T ,

 

V = W ⊕W · · · ⊕ W W                W 1 2 k , i subespacio de V y T (i) ⊆ Wi

 

es decir, generalizar la Proposición 3.4.5 de la sección 3.4.1 para el caso que T no es diagonalizable. Esto lo muestra el Teorema que sigue.

 

Teorema 3.5.1 Teorema de la descomposición prima:

 

Sea T una aplicación lineal sobre un espacio vectorial de V de dim < ∞. Sea mT (λ ) el

polinomio minimal de T cuya factorización prima es

 

m      r    r2       rk                 r             r 1 1 T ( λ ) = p p · · · p = (               r λ − λ λ ) ( −k k k 1 ) ( λ − 2 · · · 2 λ λ ) 1 2

 

los pi son los polinomios primos (mónicos e irreducibles) en P K [λ ], todos distintos y ri son

enteros positivos.

 

Sea         r                        r ii W i = N ( p ( T )) = N ( T − λ ) . Entonces i i

 

1. V = W 1 ⊕W2 · · · ⊕ Wk

 

2. Cada W i es invariante por T , o sea, T (Wi) ⊆ Wi 3.5 Teorema de la descomposición prima 139

3. Si                                                    ri T = T | W ( T restringido a W ), entonces T tiene a p como polinomio minimal

i                   i                                          i                            i                     i

 

■ Ejemplo 3.15 Dada la matriz

      

3 1 −1

T          = 2 2 − 1              

2 2   0

 

Las raíces del polinomio característico son λ1 = λ2 = 2 raíz doble y λ3 = 1, raíz simple.

 

Hay dos opciones para el polinomio minimal,

 

m                        2 T λ ( ) = ( λ − 2 )( λ − 1 ) o m T λ ( ) = ( λ − 2 )(λ − 1).

 

Puede verificarse que                   ⃗                            2 ( T − 2 I )( T − I ) ̸ = 0, así que resulta m T ( λ ) = ( λ − 2 )(λ − 1) y T no es

diagonalizable (por la Proposición 3.4.9).

 

Por el Teorema de la descomposición prima ,

 

p          2 1 = ( λ − 2 ) y p2 = (λ − 1), (r1 = 2 y r2 = 1)

 

Teniendo en cuenta que

 

W    r                        r                                r i i i = N ( p ( T )) = N ( T −1                    2 λ i ) , se tiene que W 1 = N ( p ( T )) = N ( T − 2 I ). i 1

 

Para hallar W                       − 1 se calcula la matriz ( T 2I ),

      

1 1 −1

T             − 2 I = 2 0 − 1              

2 2 −2

luego         2                                                                 2 ( T − 2 I ) y se resuelve el sistema homogéneo con la matriz ( T − 2 I ):

 

            

1 −1 0     x 1        0

             = 0              0 0 0 x

2

            

2 −2 0     x 3        0

 

Se obtiene que {(1,1, 2)} y {(1, 1,2),(1,1,0)} son bases de N(T − 2I) y de W 1, respectivamente. 140 Capítulo 3. Autovalores y autovectores

 

Por otro lado,           r2 W 2    N = ( p (T )) = N(T − 1I) = E .

2                          λ3

 

Al resolver este sistema homogéneo,

            

2 1 −1      x 1        0

             − 1 x = 0              2 1 2             

2 2 −1      x 3        0

 

se tiene que una base de W 2 es {(1,0,2)}.

 

Es posible hallar la matriz de T en la base B = {(1,1,2),(1,1, 0)(1,0, 2)}.

 

Utilizando la matriz en la base canónica, se tiene que

 

          

3 1 −1      1        2

           − 1 1 = 2            2 2           

2 2   0       2        4

 

de donde

T ((1,1,2)) = 2(1, 1,2) + 0(1,1, 0) + 0(1, 0,2).

 

(1,1, 2) es un autovector correspondiente a λ1 = λ2 = 2.

 

          

3 1 −1      1        4

           − 1 1 = 4            2 2           

2 2   0       0        4

 

T ((1,1,0)) = (4, 4,4) = 2(1, 1,2) + 2(1,1, 0) + 0(1, 0,2)

 

De la misma forma,

 

T ((1,0,2)) = (1, 0,2) = 0(1, 1,2) + 0(1,1, 0) + 1(1, 0,2),

 

La matriz de T en la nueva base es casi diagonal,

 

     

2 2 0

(              T ) = 0 2 0 . B             

     

0 0 1
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Para verificar que

 

V    3 = R = W1    W ⊕2, se toma un vector (x1 x ,2 x ,3 y se buscan sus proyecciones sobre los  )

subespacios W 1 y W 2.

 

A partir de la igualdad (x x 1 , x 2 ,3) = α (1,1,2) + β (1,1,0) + γ(1,0,2) se resuelve el sistema y se obtiene que α = −x1 + x2 + x3/2, β = x1 − x3/2 y γ = x1 − x2. Los dos primeros términos del lado derecho corresponden a la proyección sobre W 1, que llamaremos E1 y el tercero a la proyección sobre W 2, E2. Es decir que

 

E1 ((x1,x2, x3)) = (x2,x2,x − 3 2x1 + 2x2)

 

y

 

E2 ((x1,x2,x3)) = (x1 − x2,0, 2x1 − 2x2)

 

Como ejemplo, las proyecciones del vector (2, 1,2) sobre W 1 y W2, son E1((2,1,2)) = (1,1,0) y E2((2,1, 2)) = (1,0, 2), respectivamente ya que (2,1, 2) = (1,1, 0) + (1,0,2).

■

 

■                               R Ejemplo5                         2              2 3.16 T : V → V , V = y m T λ ( ) = ( λ − 1 )( λ + 1 )( λ + 1 )

 

Los autovalores reales son λ1 = 1, λ2 = λ    − 3 =1

 

W    r 1 N 1         1 = ( p (T )) = N(T − 1I) = Eλ

1

 

W    r                  2 2 T 2         2 = N ( p ( T )) = N ( + I )

 

W    r                        2 3 3    N = ( p ( T )) = N ( T + I )

3

 

V    5       ⊕ = R = W   ⊕ 1 W 2W3

 

Se deja al lector verificar esta descomposición de V en suma directa de subespacios .

■
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i

Si aplicamos el teorema anterior en el caso que T sea un operador diagonalizable se tiene que

 

m ( ) = ( T λλ −λ )(      ) 1 λ − λ   ( 2 · · ·λ −λ ) k

 

donde λ1, λ2, · · · , λk son los autovalores distintos de T y entonces, Wi = N(T −λiI) = E   y λ i

 

V = Eλ ⊕E     E 1 λ · · · ⊕ 2λk

 

(ver Proposición 3.4.5).

 

Definición 3.5.1 Sea N una aplicación lineal sobre un espacio vectorial V . Se dice que N es

nilpotente                                           r si existe algún entero positivo r tal que N = 0 (matriz nula).

 

Se tiene el siguiente resultado:

 

Teorema 3.5.2 Sea T una transformación lineal sobre un espacio vectorial de V de dim < ∞.

Supongamos que m ( Tλ ) = (λ − r 1             r2                 r λ − 1 ) ( λ − λ · · · 2 ) (k λ λ k ). Entonces existe una transformación

lineal D diagonalizable y un operador lineal N nilpotente tal que

 

1. T = D + N

2. DN = ND

 

A la transformación lineal D se la llama parte diagonal de la transformación lineal T .

 

Demostración:

 

1. Supongamos que                                            r1   r2        rk T es una transformación lineal tal que m T λ ( ) = p p · · · p =

1   2      k

(λ − r             r 12                 r λ −k 1 ) ( λ − λ · · · 2 ) ( λ λ k ) .

Sean E                                         r i 1 , E 2 , · · · , E k las proyecciones tales que Im ( E i ) = N ( T − λ i I ) y D = λ1E1 + λ2E2 +

· · · + λkEk .

 

Consideremos N = T − D. De la Proposición 3.4.6 se tiene que E1 + E2 + · · · + Ek = I y 3.5 Teorema de la descomposición prima 143

 

T = T E1 + T E2 + · · · +T Ek.

 

N = (T E1 + T E2 + · · · + T Ek) − (λ1E1 + λ2E2 + · · · + λkEk )

N = (T − λ1I)E1 + · · · (T − λkI)Ek

N 2 = ((T − λ1I )E1 + · · · (T − λk I)Ek          λ )(( T −1I )E1 + · · · (T − λk I)E )

k

N 2                  2                    2 = ( T − λ1 I ) E 1 + · · · ( T − λk I )E

k

· · ·     =    · · ·

N r                      r                        r = ( T − λ1 I ) E 1        T + · · · ( − λk I )Ek

 

Si r ≥ r ri  ⃗  r  i  , se tiene que  N  =  0, ya que, dado  ⃗  v  ∈  V  ,  ⃗  v  =  ⃗  v  1  +  ⃗  v  2  +  · · ·  ⃗  v  k  , con  ⃗  v  i  ∈  N  (  T  −  λ  i  I  )

 

N r                   r                         r ⃗ v = ( T − λ1 I ) E 1 ⃗ v + · · · ( T − λk I )E ⃗ v k

 

N r                   r                       r ⃗ v = ( T − λ I · · · 1     1            λ ) ⃗ v T −v + ( I ) ⃗

k      k

 

y como             r i                                                     ⃗ ⃗ v i ∈ N ( T − λ i I ) cada término da el vector nulo, 0.

2. ver en ([23]) □

 

■ Ejemplo 3.17 Del Ejemplo 3.15

      

2 2 0

(               T ) = 0 2 0 B             

      

0 0 1

 

D(x x x 1 , 2 ,3) = λ E x x x 1 1 ( 1 ,       E 2 , 3 ) + λ 22(x1,x2, x3)

 

y de acuerdo a lo obtenido antes, si se reemplazan E1 y E2, se tiene que la transformación D es

 

D((x1,x2, x3)) = λ1(x2, x2,x3 − 2x1 + 2x2) + λ2(x1 − x2,0, 2x1 − 2x2)

 

Su matriz asociada, en la base B es

 

      

2 0 0

(               D ) = 0 2 0 B             

      

0 0 1
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mientras que

 

     

0 2 0

N                  = ( T ) − ( D ) = 0 0 0 B       B              

     

0 0 0

 

es nilpotente de orden 2 ( 2 N = 0, es la matriz nula). Se cumple además que D N = N D.

■

 

3.6   Forma canónica de Jordan

Como ya vimos, existen transformaciones lineales (o matrices       n×n A ∈ K) que no son diagonalizables, es decir, no existe una base de autovectores. En ese caso, aún es posible demostrar que la matriz es semejante a otra, una matriz más sencilla aunque no es diagonal. La matriz de la transformación es un poco más difícil de obtener que en el caso diagonalizable. Veremos a continuación el procedimiento para matrices de 2 × 2.

 

Forma de Jordan de matrices de orden 2

Sea T ∈ L(V ), V espacio vectorial de dimensión 2, y supongamos su matriz, en cierta base es

    

a b

T =      

c   d

 

Su polinomio característico es PT (λ ) = (a − λ )(d − λ ) − cb con lo que PT (λ ) = 0 es una ecuación de grado 2 en la variable λ y se tendrán dos casos diferentes según las dos soluciones sean iguales o distintas.

 

1. Caso I. Las raíces del polinomio característico son distintas λ1 ̸= λ2.

En este caso la matriz T es diagonalizable (consecuencia de la Proposición 3.4.1). Su forma de Jordan es la matriz diagonal

     

λ1   0

J =        

0   λ2

 

y        − 1 T = CJC, donde la matriz C del cambio de base tiene en sus columnas las coordenadas de

vectores ⃗ v        N T − 1 e ⃗ v ∈   I 2 ( λ i),   i = 1,2, respectivamente.
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2. Caso II. Las raíces del polinomio característico coinciden λ1 = λ2

En este caso, si N(T −λ I 1) tiene dimensión 1, no podremos encontrar una base de autovectores en V .

 

Se tiene el siguiente resultado:

 

Lema: Suponga T es una matriz de 2 × 2 que tiene dos autovalores iguales λ . Sea ⃗ v1 un autovector correspondiente a λ . Existe un vector ⃗ v2 que satisface la ecuación

 

(T − λ I)⃗ v2 = ⃗ v1

 

Definición 3.6.1 Se denomina autovector generalizado al vector ⃗ v 2 de la ecuación anterior.

 

Como ⃗ v 1 y ⃗ v2 son linealmente independientes, forman una base de V . En esta base tenemos,

 

(              ⃗ T − λ I ) ⃗ v 1 = 0 ⇔ T⃗ v1 = λ⃗ v1

 

(T − λ I)⃗ v 2 = ⃗ v1 ⇔ T v ⃗2 = ⃗ v1 + λ ⃗ v2

con lo que la matriz de la transformación lineal en esta base es

    

λ 1

    

0 λ

 

y la matriz de cambio de base C tiene en sus columnas a los vectores ⃗ v 1 y ⃗ v2.

 

i   A partir de (T − λ I)⃗ v2 = ⃗ v1, se tiene que

 

(                                    ⃗ T − λ I )( T − λ I ) ⃗ v 2 = ( T − λ I ) ⃗ v 1 = 0

y, entonces,

v ⃗              2 2            λ ∈ N (( T − I ))

 

Se pueden resumir estos resultados en la siguiente proposición, en donde K designa el cuerpo de los números reales o el de los complejos.

146 Capítulo 3. Autovalores y autovectores

 

Proposición 3.6.1 2×2                                          2×2  Dada una matriz  T  ∈  K  siempre puede encontrarse una matriz  J  ∈  K  de

una cualquiera de las formas

 

          

λ1   0         λ   1

           o

0   λ2        0   λ

 

con                          2×2                 −1 λ1 , λ2 ∈ K y una matriz C ∈ K tal que T = CJC.

 

La matriz J se denomina matriz de Jordan de T .

 

■ Ejemplo 3.18 Dada la matriz,

     

3 −2

T =       

8 −5

 

al tener el polinomio característico una raíz doble (Caso II), su forma de Jordan es:

                  

T      −      1 1/4      −1   1       0 1/2 1 = CJC =      

2   0        0   −1      4   −2

■

 

Forma de Jordan de matrices de orden 3

 

Ahora veremos para aplicaciones lineales entre espacios vectoriales de dimensión 3. Servirá para comprender los resultados teóricos necesarios para obtener la forma de Jordan en espacios vectoriales de cualquier dimensión.

 

■ Ejemplo 3.19 Se quiere reducir la matriz

        

0    3    1

T            = 2 − 1 − 1                  

−2 −1 −1

 

a su forma de Jordan. Sus autovalores son λ 1 = 2 (simple) y λ          − 2 = λ 3 =2 (doble), y los espacios propios correspondientes, 3.6 Forma canónica de Jordan 147

                  1

                   

E                  = N ( T − 2 I ) = λ                   α      1 1 α ∈ K

   

                    − 1

         

y

                  1

                   

E                  N λ                      α = ( T + 2 I ) = − 1 ∈

 α K

2

   

                    1

         

 

          

1              1

v ⃗               1       1 = y ⃗ v = − 1

        2

          

−1          1

 

son dos autovectores linealmente independientes pero no forman una base. Se debe realizar un trabajo análogo al realizado en el caso de raíces iguales para matrices de orden 2.

Se halla ⃗  ⃗  v  3  tal que  (  T  −  λ  I  )  ⃗  v  3  =  ⃗  v  −  2  , o, equivalentemente,  (  T  λ  I  )(  T  −  λ  I  )  ⃗  v  −  3  = (  T  λ  I  )  ⃗  v  2  =  0,

es decir,

v ⃗              2                 2 ∈ − 3    N (( T λ2 I ) ) = N (( T + 2 I ))

 

0

Sea                    2 ⃗ v 3     0 = , se tiene que ⃗ v ∈ N (( T + 2 I ))        3

 

1

   

0        0

pues                    ( T + 2 I )( T + 2 I ) 0 = 0

       

1        0

y

                              1 0                                

N      2                          (( T + 2 I ) ) = α  − 1 + 0 , ∈ K      β α β

       

                                1 1                

 

Ahora es posible elegir una base de V con estos vectores, {⃗ v1, ⃗ v2, ⃗ v } 3 de manera que la matriz de T en esta base sea sencilla.

 

T ⃗ v                  T v 1 = 2 ⃗ v − 1 , T ⃗ v v    v − 2 = 2 ⃗ 2 , ⃗ 3 = ⃗ 2 2⃗ v3

           

0         1          1          0

T             0 = − 1 = − 1 − 2 0            

           

1        −1         1          1
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       

2   0    0

J            = 0 − 2 1                

0   0   −2

y la matriz del cambio de base es

       

1    1   0

C         = 1 − 1 0                

−1 1   1

■

 

Lema: Suponga T es una matriz de 3 × 3 que tiene 3 autovalores iguales a λ y la dimensión de

su espacio propio es 1. Sea v ⃗ 1 un autovector correspondiente a λ .

 

Existe un vector ⃗ v 2 que satisface la ecuación

 

(T − λ I)⃗ v2 = ⃗ v1,

 

tal que ⃗ v 1 y v ⃗2 son linealmente independientes.

 

Con el ⃗ v2 hallado en el punto anterior, existe un vector ⃗ v3 solución del sistema

 

(T − λ I)⃗ v 3 = ⃗ v2

 

tal que ⃗ v 1, ⃗ v2 y ⃗ v3 son linealmente independientes.

 

■ Ejemplo 3.20 Dada la matriz,

        

−2 1   −1

T            = − 1 − 1 0                  

0    1   −3

 

λ = −2 es raíz triple del polinomio característico. Se deja al lector verificar que su forma de Jordan es          − 1 T = CJC donde

      

1 0 −1

C        = 1 1 0              

1 0   0
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Las columnas de C son vectores ⃗ v 1, ⃗ v2 y ⃗ v3 que cumplen el lema anterior, y

        

− 2 1   0

J             = 0 − 2 1                  

0    0   −2

■

 

Marie Ennemond Camille Jordan (1838 - 1922)

 

Fue un matemático francés, conocido tanto por su trabajo sobre la teoría de grupos, como por

su influyente Curso de análisis (Cours d’analyse). Estudió en la Escuela Politécnica (promoción de 1855). Fue ingeniero de minas y, más tarde, ejerció como examinador en la misma escuela. En 1876 entró como profesor en el Colegio de Francia, sustituyendo a Joseph Liouville. Su nombre se asocia a un determinado número de resultados fundamentales: El teorema de la curva de Jordan: un resultado topológico recogido en análisis complejo. La forma canónica de Jordan en álgebra lineal. El teorema de Jordan-Holder, que es el resultado básico de unas series de composiciones. El trabajo de Jordan incidió de manera sustancial en la introducción de la teoría de Galois en la corriente del pensamiento mayoritario. Investigó también los grupos de Mathieu, los primeros ejemplos de grupos esporádicos. Su Tratado de las sustituciones (Traité des substitutions) sobre las permutaciones de grupos fue publicado en 1870. El 4 de abril de 1881 fue elegido miembro de la Academia de la Ciencia. De 1885 a 1921 dirige la «Revista de matemáticas puras y aplicadas» (Journal de mathèmatiques pures

et apliqués), fundado por Liouville. [7]

 

Teorema de clasificación de Jordan

 

Se denomina matriz elemental de Jordan de orden k y autovalor λ ∈ C a la matriz de orden k cuyos elementos son todos nulos, excepto los de la diagonal principal, que valen λ y los situados inmediatamente encima de la diagonal principal que son unos. Por ejemplo:

      

           λ 1 0

λ 1                    

J1 (λ ) = (λ )   J2(λ ) =          J3(λ ) =  0   λ   1  y así sucesivamente.

0                           λ

0   0 λ

Se llama matriz de Jordan a cualquier matriz cuadrada formada por yuxtaposición de matrices elementales de Jordan a lo largo de la diagonal, de la forma 150 Capítulo 3. Autovalores y autovectores

 

          

J1 j    0     0     0

                      0 J 2 0 0 j

                      · · · · · · · · · · · ·                      

0    0   · · ·   Jn j

       

λi    1    0

donde, en el caso de orden 3,               J i j                  λ = 0 i              1

       

0   0   λi

 

Una transformación lineal T puede expresarse en la forma canónica de Jordan si sus polinomios característico y minimal se factorizan en polinomios lineales. Esto siempre es verdadero si el cuerpo

K es C. Análogamente toda matriz es semejante a una matriz en forma canónica de Jordan.

 

Teorema 3.6.2 Teorema de Jordan:

Sea T ∈ L(V ) cuyos polinomios característico y minimal son respectivamente,

 

PT (λ ) = (λ − n                          n 1 n 2 λ − 1 ) ( λ λ · · · 2 ) ( λ −k λ k )

 

m          m1 (      m2        m λ ) = ( λ − λ − 1 ) ( λ − λ · · · 2 ) (k T λ λ k ) donde los λi son distintos.

 

Entonces T tiene una representación matricial J que es diagonal por bloques. Para cada λi los bloques correspondientes Ji j tienen las siguientes propiedades:

 

1. Existe al menos un Ji j de orden mi, los demás Ji j son de orden ≤ mi.

 

2. La suma de los órdenes de los Ji j es ni.

 

3. La cantidad de Ji j es igual a la multiplicidad geométrica de λi (dimensión de Eλi).

 

4. La cantidad de Ji j de cada orden posible está determinado únicamente por T .

 

i La matriz J se llama forma canónica de Jordan de la transformación lineal T . A J se lo llama  i j

bloque de Jordan correspondiente al valor propio λi.Observar que Ji j = λiI + N, donde N es una matriz nilpotente. ▲
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■ Ejemplo 3.21 Supongamos

 

P           4         3                      2         2 T λ ( ) = ( λ − 2 ) ( λ − 3 ) y m T λ ( ) = ( λ − 2 ) ( λ − 3 ).

 

Se quiere hallar su matriz de Jordan aplicando el teorema anterior:

 

Como m 1 = m2 = 2 existe al menos un bloque de orden 2 para cada λ , λ1 = 2 y λ2 = 3.

 

La suma de los órdenes de los bloques para λ1 = 2 es n1 = 4 y para λ2 = 3 es n2 = 3.

 

La cantidad de bloques es la dimensión del espacio propio correspondiente. Para λ2 = 3, hay un bloque de orden 2 y uno de orden 1.

 

Para λ1 = 2 hay 2 posibilidades, dependiendo de su multiplicidad geométrica:

 

                         

2 1 0 0 0 0 0        2 1 0 0 0 0 0

                          0 2 0 0 0 0 0 0 2 0 0 0 0 0                                                                               0 0 2 1 0 0 0 0 0 2 0 0 0 0                                                                               0 0 0 2 0 0 0 0 0 0 2 0 0 0                                                                               0 0 0 0 3 1 0 0 0 0 0 3 1 0                                                                               0 0 0 0 0 3 0 0 0 0 0 0 3 0                          

0 0 0 0 0 0 3        0 0 0 0 0 0 3

 

En el primer caso, la dimensión del espacio propio es 2, hay 2 bloques de orden 2. En el segundo, como hay 3 autovectores, hay 3 bloques, 1 de orden 2 y 2 de orden 1.

 

Se puede observar que la cantidad de 1 en la matriz de Jordan corresponde a la resta: multiplicidades algebraicas - multiplicidades geométricas, 3 = 7 − 2 − 2 en el primer caso y 2 = 7 − 3 − 2 en el segundo.

■
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Figura 3.4

[image: ]

 

3.7   Actividades propuestas

Problema de Aplicación 3 Un circuito eléctico que describe el valor del voltaje de dos capacitores

en función del tiempo, y en paralelo como se aprecia en la Figura 3.5 se resuelve con el siguiente sistema de ecuaciones diferenciales de primer orden:

                           

x ′ (t)           −(1/R + / 1                     1    1R2   C ) /1    1/(R2C1          x )1 t ()

                            =

x ′ (t)                 1/(R2 C2 )         −1/(R2C2)       x 2                                                           2 (t)

 

donde x1(t) y x2(t) son los voltajes en los dos capacitores al tiempo t. El voltaje es la magnitud que da cuenta de la diferencia en el potencial eléctrico entre dos puntos determinados. Aclaremos que un capacitor es un dispositivo capaz de almacenar energía a través de campos eléctricos. Los capacitores se utilizan principalmente como filtros de corriente continua, ya que evitan cambios bruscos y ruidos en las señales debido a su funcionamiento.

En la matriz puede observarse que esta corriente dependerá de las resistencias (R) del circuito en cuestión. Una resistencia es un dispositivo eléctrico que tiene la particularidad de oponerse al

flujo de la corriente. Suponga que las resistencias valen para nuestro problema: R1 = 1, R2 = 2, las capacitancias involucradas tendrán el valor de C1 = 1 y C2 = 0.5. Con todos esos datos es posible obtener la matriz del problema, a la que deberá encontrarle sus autovectores y autovalores. De esa manera, haciendo uso de la matriz diagonal pertinente podrá desacoplar el sistema. Podrá construir una familia de soluciones. Para hallar la solución particular del problema necesita conocer los voltajes iniciales que se miden en los capacitares a un tiempo t = 0. Para este problema supondremos

que las cargas iniciales han sido x 1(0)=5 y x2(0)=4.
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Su tarea consiste en encontrar las soluciones x 1(t) y x2(t) que describan cómo los voltajes evolucionan en el tiempo. Tenga en cuenta que en general dado ′ ⃗ y = A ⃗ y un sistema de ecuaciones diferenciales de primer orden donde la matriz A, de dimensión n × n es diagonalizable (los vectores ⃗ u1, ⃗ u2, ..., ⃗ un asociados a los valores propios distintos λ1, λ2, ..., λn de A, respectivamente, son linealmente independientes). Entonces el conjunto { λ e1 x⃗    λ u2x 1 , e⃗ u2, ...,   λ x e n⃗ un} es una base del espacio de soluciones de ′ ⃗ y = A ⃗ y.

 

Figura 3.5: Circuito

[image: ]

 

3.7.1   Ejercicios

 

Ejercicio 3.1

Halle el polinomio característico, autovalores y autovectores de las Matrices de Pauli:

                     

0   1            0 −i            1   0

σx )        ,   σy)        ,   σz)         

1 0            i   0             0   −1

 

Las sentencias Python a continuación dan los autovalores de la matriz. Investigue cómo puede hallar los autovectores en Python.

 

import numpy as np

a = np. array ([[0 , 1] ,

[1 , 0]])

LA. eigvals (a)
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Ejercicio 3.2

 

Sea        2 T ∈ L ( R), dado por T ((x, y)) = (y,x). Halle el polinomio característico, autovalores y autovectores. Interprete geométricamente.

 

Ejercicio 3.3

Demuestre que si 0 < θ < π , la matriz

          

cos(θ)   −sen(θ)

R    θ =              no tiene autovalores ni autovectores reales. Interprete geométricamente.

sen(θ)    cos(θ )

Ejercicio 3.4

Sea     3      3 T : → R   R la transformación lineal definida por:

T ((x,y, z)) = (−x − 2y + 2z,−y,−x − 3y − 4z).

Encuentre una base        3 B de R tal que (T ) sea diagonal.

B

Ejercicio 3.5

        

1/2 1/2 0

Sea              A = 1 / 2 1 / 2 0

        

        

0    0    0

 

la matriz que representa la transformación lineal que proyecta cualquier vector       3 v ∈ R sobre la recta de vector director (1,1, 0):

a ) Analice si A es semejante sobre el cuerpo R a una matriz diagonal. En caso afirmativo, halle la matriz diagonal correspondiente.

b ) Interprete geométricamente lo hallado en a.

Ejercicio 3.6

       

α   β   0

Sea             A = 0 − 1 0

       

       

0    0   1

 

Indique para qué valores de α y β la matriz es diagonalizable.
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Ejercicio 3.7

 

Sea

       

6 −3 −2

A         = 0 − 1 2

       

       

0 −5 −3

 

Analice si A es semejante sobre el cuerpo R a una matriz diagonal. Idem sobre el cuerpo C. En caso afirmativo, hallar la matriz diagonal correspondiente.

 

Ejercicio 3.8

      

10                   1    3

Halle A , donde A =           

−3 −1

 

Deberá encontrar una matriz P que diagonalice a A.

Ejercicio 3.9

Conforme a que       −1 A = TBT con

                                     

−3   −4   0   −2          1 0   0   0           1 0 4 1

                                                                            8 13 4 8 0 1 0 0 1 1 2 1

A =                , B =            , T =          .      

                                      4 6 3 4 0 0 − 1 0 2 3 1 2                                      

−12 −20 −8 −13           0 0   0   −1           0 1 1 1

 

Calcule   6 A.

Ejercicio 3.10

Encuentre la solución del sistema

 

         ′ 2 y + 2 y + y = y

 1   2   3   1





y                ′ y 1      2     3     2 +

3   + y = y

         ′ y + 2 y + 2 y = y



 1   2   3   3

 

con las condiciones iniciales y1(0) = 0, y2(0) = 1 y y3(0) = 1.
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Ejercicio 3.11

Resuelva la ecuación diferencial homogénea de tercer orden

y ′′′        ′ − y = 0, con las condiciones iniciales

y(0)=1, ′                          ′′ y ( 0 ) = 0, e y(0) = 1

Realizando el cambio

z                 ′                      ′′ 1 = y , z 2 = y , z 3 = y.

Ejercicio 3.12

Sea        3 T ∈ L (                x             y z R ), definida por T (( , y , z )) = ( x , x + ,)

 

a) Halle el polinomio característico, y el polinomio minimal.

 

b) Halle autovalores y una base para cada espacio propio de T .

 

c) Determine si T es o no diagonalizable.

 

Ejercicio 3.13

     

0 1 1

Dada          A = 1 0 0

     

     

0 1 0

 

utilice el teorema de Cayley-Hamilton para hallar   − 1    3 A y A.

Ejercicio 3.14

Utilice las propiedades del polinomio minimal para determinar si las matrices siguientes son

diagonalizables o no (considerar sobre el cuerpo R y sobre el cuerpo C).

     

2 −1

a) A =        

3   1

 

b) A es una matriz cuadrada tal que A ̸y A − A    +   A    =     I

 

Ejercicio 3.15

Encuentre la forma de Jordan de la matriz

      

−10 −7

      

7    4

3.7 Actividades propuestas 157

Ejercicio 3.16

 

Escriba todas las matrices de Jordan de 4 × 4 posibles.

Ejercicio 3.17

Determine las formas de Jordan posibles de una matriz de 4 × 4 cuyo polinomio característico es (        3 λ + 2 ).(λ − 3).

Ejercicio 3.18

Determine las formas de Jordan posibles de una matriz de 5 × 2  5 cuyo polinomio minimal es  (  λ  −  2  ).

Ejercicio 3.19

 

Sea        4                                                    2 T ∈ L ( R ), tal que su polinomio característico es ( λ + 1 )(λ −2)λ :

 

a) Indique los polinomios minimales de T y describa en qué casos es diagonalizable.

 

b) Si T no es diagonalizable, encuentre su forma de Jordan.

 

Ejercicio 3.20

Dada

          

0 1 0 0 0 0

          

           0 0 1 0 0 0

          

          

           0 0 0 1 0 0

N                6 =  

           0 0 0 0 1 0

          

           0 0 0 0 0 1

          

          

0 0 0 0 0 0

 

Demuestre que es nilpotente con índice de nilpotencia 6.

Ejercicio 3.21

La matriz

 

         

1   0    0   2

         

          2 − 1 0 2

A =              

          2 0 − 1 2

         

0   0    0   1
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tiene polinomio característico         2         2                                          2 − ( λ + 1 ) ( λ 1 ) , y polinomio minimal ( λ + 1 )( λ − 1 ), por lo que no es diagonalizable. Encuentre su forma de Jordan y utilícela para encontrar   10 A.

 

Nota: para hallar las potencias de los bloques de Jordan que son de la forma           k ( λ I + N ) utilice el

m

binomio de Newton y el hecho que N es una matriz nilpotente.

 

Ejercicio 3.22

 

Pruebe la proposición 3.2.1: La intersección y la suma de subespacios invariantes respecto de una aplicación lineal T ∈ L(V ) son subespacios invariantes respecto de T .

Ejercicio 3.23

Dado un cuerpo K, sea A ∈ n×n                                          −1 K inversible. Pruebe que los autovalores de A son los inversos de los autovalores de A, y que los autovectores correspondientes a autovalores inversos coinciden.

Ejercicio 3.24

Demuestre que dos matrices semejantes      ′ B y B tienen el mismo polinomio característico PT ,B λ ( ) =

P ′ T , B (λ )

Ejercicio 3.25

    

a b

Sea A =      

c   d

 

a) Demuestre que                            2 A es diagonalizable si ( a − d ) + 4bc > 0.

 

b) Analice el caso que A sea simétrica (b = c).

Ejercicio 3.26

 

Sea D el operador derivación sobre el R-espacio vectorial de las funciones derivables de R en R. Si k                                                                            2 ∈ Z , k ̸ = 0, demuestre que las funciones sen ( kx ) y cos ( kx ) son autovectores de D. Indique cuáles son los autovalores correspondientes.

Ejercicio 3.27

 

Sea      n      n T : → R R una transformación lineal con matriz asociada A respecto a la base canónica, ⃗ u y ⃗ v ∈ n R autovectores asociados a los autovalores λ y µ . Indique justificando cuáles de las siguientes afirmaciones son verdaderas

a ) Para todo α ∈ R el vector α⃗ u es un autovector asociado a λ .

b ) Todo vector del núcleo es autovector.
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c ) El vector ⃗ w =⃗ v +⃗ u es autovector de T .

d   n                    n ) λ es autovalor de T con autovector asociado ⃗ u.

e ) Una matriz diagonalizable es invertible.

Ejercicio 3.28

Dado un cuerpo K, sean A y P ∈ n×n                                  − 1    2     −1 2 K , P inversible. Demuestre que ( P AP ) = P AP y ( −1    k     −1 k P AP ) = P A P para k un entero positivo.

Ejercicio 3.29

 

2                                                                             1 −1

Sea T ∈ L( R ) la transformación lineal cuya matriz en la base canónica es : A =  

2   2

a) Demuestre que los únicos subespacios de   2                           2 R invariantes por T son R y 0.

b) Si                                           2 U es la misma transformación pero en C, cuya matriz en la base canónica es A, demuestre que U tiene algún subespacio unidimensional invariante.

Ejercicio 3.30

 

Sea T ∈   2 L ( R) la transformación lineal cuya matriz en la base canónica es :

 

    

2 1

A =      

0 2

 

y sea                       2                      t W 1 el subespacio de R generado por ( 1 , 0 ) :

 

a) Pruebe que W 1 es T-invariante.

b) Demuestre que no existe un subespacio                               2 W 2 que sea invariante tal que R = W 1    W + 2 .

 

3.7.2   Autoevaluación

 

Verdadero o Falso

 

1. Si A es invertible entonces cero no es un valor propio de A.

2. Los valores propios de una matriz triangular son los elementos en la diagonal de la matriz.

3. Si la matriz real       3×3 A ∈ R tiene tres valores propios distintos, entonces los vectores propios

correspondientes a esos valores propios constituyen una base para   3 R .

4. Si la matriz A ∈ 3×3 R tiene dos valores propios distintos, entonces A tiene a lo sumo dos

vectores propios linealmente independientes.
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5. Si A tiene elementos reales, entonces A puede tener exactamente un valor propio complejo.

6. Si Det(A) = 0, entonces 0 es un valor propio de A.

7. Si una matriz de n × n tiene n valores propios diferentes, se puede diagonalizar.

8. Si la matriz A de 5 × 5 tiene 3 valores propios diferentes, entonces A no puede ser semejante a

la matriz diagonal.

9. El subespacio propio contiene todos los vectores propios asociados a λ y además al vector

nulo.

10. El determinante de una matriz y el de su transpuesta son iguales, por lo tanto tienen el mismo

polinomio característico, los mismos valores y vectores propios.

11. La matriz λ I - A es invertible entonces λ es un valor propio de A.

12. Dos matrices semejantes tienen el mismo polinomio característico y los mismos valores

propios con las mismas multiplicidades algebraicas.

13. Una matriz es diagonalizable si la multiplicidad algebraica de cada valor propio de la matriz,

coincide con la dimensión del espacio propio correspondiente.

14. El determinante de una matriz es igual a la suma de todos sus autovalores (reales y complejos,

y elevados a sus respectivas multiplicidades).

15. La traza de una matriz es igual al producto de todos sus autovalores (reales y complejos, y

elevados a sus respectivas multiplicidades).

16. Las variables ángulo-acción están relacionadas con la diagonalización de matrices simétricas

en la mecánica analítica, y corresponden a las coordenadas en el espacio de los autovectores de la matriz Hessiana.
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4. Espacios vectoriales con producto interno

 

Los conceptos geométricos de longitud, distancia y perpendicularidad, que son bien conocidos para   2     3 R y                                                              V R , se definen en este capítulo para cualquier espacio vectorial euclídeo . Estos conceptos proporcionan herramientas geométricas potentes para resolver muchos problemas aplicados, incluidos los problemas de mínimos cuadrados. Los tres conceptos se definen en términos del producto escalar o producto interior de dos vectores.

 

4.1   Producto interno. Ejemplos

 

Definición 4.1.1 Producto interno

 

Sea V un espacio vectorial sobre R o C. Un producto interno sobre V es una función

φ : V ×V → R (o C) que cumple:

 

1. φ ( ⃗ x,⃗ y) = φ ( ⃗ y,⃗ x) para todo ⃗ x, ⃗ y ∈ V

 

2. φ ( ⃗ x +⃗ z,⃗ y) = φ(⃗ x,⃗ y) + φ ( ⃗ z,⃗ y), para todos ⃗ x, ⃗ y, ⃗ z ∈ V

 

3. φ (α⃗ x,⃗ y) = α φ ( ⃗ x,⃗ y) para todo ⃗ x, ⃗ y ∈ V y todo α ∈ R o C

 

4. φ ( ⃗ x,⃗ x) > 0 para todo ⃗ x ̸= 0
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i

Consecuencias de 1, 2 y 3:

De 1. y 2. se deduce

 

φ ( ⃗ x,⃗ y +⃗ z) = φ ( ⃗ x,⃗ y) + φ ( ⃗ x,⃗ z), para todos ⃗ x, ⃗ y, ⃗ z ∈ V .

 

De 3. y de 1. se deduce que

 

φ ( ⃗ x, α⃗ y) = α φ ( ⃗ x,⃗ y) para todo ⃗ x, ⃗ y ∈ V y todo α ∈ R.

 

De 2. se deduce que

 

φ ⃗                    ⃗                        ⃗ ( 0 + ⃗ y ,⃗ x ) = φ ( ⃗ y ,⃗ x ) = φ ( 0 ,⃗ x ) + φ ( ⃗ y ,⃗ x ) , sí y sólo sí φ ( 0,⃗ x) = 0.

 

Por la propiedad simétrica                                              ⃗ φ ( ⃗ x ,⃗ 0 ) = 0 y, en particular, φ ( ⃗ x ,⃗ x ) = 0 si ⃗ x = 0.

 

■                                       Rn     n Ejemplo 4.1 Los productos internos en y C son, respectivamente:

 

φ (                                                              n ⃗ x ,⃗ y ) = φ (( x 1 x , 2      x , · · · , n     1 y ) , ( , y 2      y , · · · , n       1 x )) = y 1    x + 2 y 2         x + · · · + n n       R y ()

 

φ (                                                              n ⃗ x ,⃗ y ) = φ (( x 1 x , 2      x , · · · , n     1 y ) , ( , y 2      y , · · · , n       1 x )) = y + x 2 y + · · · + x y () 1       2          n n       C

 

Son los productos internos canónicos. Se deja al lector la verificación de las propiedades 1 − 4

de la Definición 4.1.1 en cada caso. ■

 

i

A un espacio vectorial real (o complejo) V provisto de un producto interno se lo llama espacio euclídeo, E, (respectivamente, espacio unitario). El producto interno generaliza el producto escalar de los vectores           n ⃗ x e ⃗ y ∈ R a un espacio vectorial V cualquiera.

Si se tiene un producto interno, se anotará φ( ⃗ x,⃗ y) = ( ⃗ x,⃗ y)
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■ Ejemplo 4.2 En el espacio vectorial de las funciones continuas en [a, b], C([a,b]), a valores reales, se define

 

φ : C([a, b]) ×C([a,b]) → R

 

Z b

φ ( f ,g) =    f (t)g(t)dt .

a

 

En el caso de funciones a valores complejos, se define R b 2  φ (  f  ,  g  ) =  f  (  t  )  g  (  t  )  dt  (similar a  a C  ).

■

 

i

El producto interno anterior es el que se utiliza para hallar los coeficientes de la serie de Fourier de una función f (x) en [0, 2π]. Se calculan con el producto interno entre la función                          inx f ( x ) y la base ortogonal { e}n∈Z o {1, cos(nx), sen(nx)}n ∈N . La serie de Fourier tiene importantes aplicaciones, por ejemplo, en el procesamiento de señales. Permite la descomposición de la señal en una base ortonormal y obtener sus componentes frecuenciales. En señales de música, por ejemplo, posibilita separar los instrumentos.

 

Una vez fijada una base de V , si V es un espacio vectorial de dimensión finita con un producto interno, es posible construir una matriz asociada al producto interno y a dicha base.

 

4.2   Matriz de un producto Interno

 

Sea V un espacio vectorial sobre R o C de dimensión finita con producto interno y sea B = { ⃗ v 1,⃗ v2,· · · ,⃗ vn} una base de V . Se define la matriz del producto interno (·, ·) en la base B como la matriz     n×n           n×n ∈ R   (resp. ∈ C ) tal que

 

P i j = ( ⃗ vi,⃗ v j )   1 ≤ i, j ≤ n

 

Esta matriz nos permite calcular el producto interno entre cualquier par de vectores. Si ⃗ x =

∑ x n                 n i         i   i                  ∑ ⃗ v e ⃗ y =    y j⃗ =               v 1

j =       j 1

 

n        n            n   n

( ⃗ x,⃗ y) = (    x ∑i⃗ vi,    y ⃗ v ) = ∑ j j       x y   ⃗ ,⃗ v ) ∑ ∑ i j ( v i j

i=1      j=1          i=1 j=1
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En particular, para n = 3, se tiene

                  

( ⃗ v1,⃗ v1)   ( ⃗ v1,⃗ v2)   ( ⃗ v1,⃗ v3)        y1

(                                       ⃗ x ,⃗ y ) = ( x 1   2   3  ( , x , x ) ⃗ v 2 v ,⃗ 1     v ) ( ⃗ 2 v ,⃗ 2     v ) ( ⃗ 2 v ,⃗ 3     y )

2 

                  

( ⃗ v3,⃗ v1)   ( ⃗ v3,⃗ v2)   ( ⃗ v3,⃗ v3)        y3

 

i Si P es la matriz de un producto interno, entonces P     P              = . Sin embargo, esa  i j  =  ji  para todo  i  ̸  j

condición no es suficiente para que P sea la matriz de un producto interno. Por ejemplo, la matriz

!

0   1

A =

1   1

 

no puede ser la matriz de un producto interno en una base, ya que si ⃗ v es el primer vector de la base, se tendría ( ⃗ v,⃗ v) = 0 y sería el vector nulo.

 

4.3   Longitud, ángulos, distancia y ortogonalidad

 

A partir de la definición de un producto interno, es posible generalizar las nociones de longitud,

ángulos, distancia y ortogonalidad ya vistas para vectores de   2     3 R y R.

 

Definición 4.3.1 Longitud o norma de un vector⃗ x en un espacio con producto interno se define

como

 

∥     p ⃗ x ∥ =(⃗ x,⃗ x),    ⃗ x ∈ E (4.1)

 

■                 R Ejemplo2 4.3 En, si ⃗ v = (a,b), ∥ ⃗ v∥ es la longitud del segmento que va desde el origen hasta ⃗ v,

y es consecuencia del Teorema de Pitágoras (ver Figura 4.1).

■

 

■                                             2        2         2       2 Ejemplo 4.4 Sea ⃗ x = ( 1 , − 2 , 2 , 0 ) . Como ∥ ⃗ x ∥ = ( 1 ) + ( − 2 ) + ( 2 ) = 9, su longitud o norma

√

euclídea es ∥ ⃗ x∥ =   9 = 3.                                                                ■ 4.3 Longitud, ángulos, distancia y ortogonalidad 165

 

Figura 4.1: La norma es la longitud del vector
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i

La definición de longitud tiene sentido por la propiedad 4. del producto interno (Definición

4.1.1).

Se tiene la propiedad siguiente:

q

∥       p            p 2 α⃗ x ∥ = ( α⃗ x , α⃗ x ) = α ( ⃗ x ,⃗ x ) = | α |( ⃗ x,⃗ x) = |α | ∥ ⃗ x∥

Todo vector de longitud 1 se dice unitario; todo vector ⃗ x no nulo de un espacio euclídeo puede                                                    1 normalizarse , es decir, hacerlo unitario multiplicándolo por .

∥ ⃗ x∥

 

■                                   R4 Ejemplo 4.5 El vector unitario ⃗ u ∈ que tiene la misma dirección que el vector⃗ x del Ejemplo

4.4 es

 

⃗ x      1   2 2

⃗ u =    = ( , − , , 0)                                                   (4.2)

∥ ⃗ x∥    3   3 3

■

 

Ángulo entre dos vectores.

 

En 2 R el producto escalar verifica la expresión que sigue:

 

( ⃗ x,⃗ y) = ∥ ⃗ x∥ ∥ ⃗ y∥ cosθ (4.3)

 

La verificación para   3 R es similar. Cuando n > 3, puede usarse la Ec.(4.3) para definir el ángulo entre dos vectores de   n R , o en espacios vectoriales cualesquiera.
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Dados dos vectores ⃗ x e ⃗ y de un espacio euclídeo, definimos el coseno del ángulo entre ellos como

 

(⃗ x,⃗ y)

cos(θ ) = (4.4)

∥ ⃗ x∥ ∥ ⃗ y∥

 

Para que tenga sentido la definición anterior, es necesario demostrar que el valor absoluto del cociente

( ⃗ x,⃗ y)

∥ ⃗ x∥ ∥ ⃗ y∥

 

sea menor que o igual que 1.

 

i   En Estadística, el valor de cos(θ) definido mediante la Ec.(4.4) para los vectores ⃗ x e ⃗ y es

llamado coeficiente de correlación entre los vectores ⃗ x e⃗ y, y mide de alguna forma la similitud entre ambos.

 

Augustin Louis Cauchy (1789 - 1857)

 

Fue un matemático francés, miembro de la Academia de Ciencias de Francia y profesor en la

Escuela politécnica. Cauchy ha sido uno de los matemáticos más prolíficos de todos los tiempos, solo superado por Leonhard Euler, Paul Erd˝os y Arthur Cayley con cerca de 800 publicaciones y siete trabajos; su investigación cubre el conjunto de áreas matemáticas de la época. Fue pionero en análisis donde se le debe la introducción de las funciones holomorfas, los criterios de convergencia de series y las series de potencias. Sus trabajos sobre permutaciones fueron precursores de la teoría de grupos, contribuyendo de manera medular a su desarrollo. En óptica se le atribuyen trabajos sobre

la propagación de ondas electromagnéticas. [6]

 

Proposición 4.3.1 Desigualdad de Cauchy-Schwartz:

En todo espacio vectorial con producto interno,

 

|( ⃗ x,⃗ y)| ≤ ∥ ⃗ x∥ ∥ ⃗ y∥

 

para todo ⃗ x, ⃗ y ∈ E.
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Demostración:

 

Si    ⃗ ⃗ y = 0 vale, pues (⃗ x,⃗ 0) = 0 ≤ ∥ ⃗ x∥ 0 = 0. 

Si    ⃗                ( ⃗ x,⃗ y)                2 ⃗ y ̸ = 0, y llamamos a = ∥ 2 donde ⃗ y ∥ = ( ⃗ y,⃗ y), se tiene que ∥ ⃗ y ∥

 

0 ≤ ( ⃗ x − a ⃗ y,⃗ x − a ⃗ y)

 

0 ≤ ( ⃗ x,⃗ x − a ⃗ y) − a( ⃗ y,⃗ x − a ⃗ y)

 

0 ≤ ( ⃗ x,⃗ x) − a(⃗ x,⃗ y) − a(⃗ y,⃗ x) + aa( ⃗ y,⃗ y)

 

como

 

a( ⃗ x,⃗ y) =      ( ⃗ x,⃗ y) 2 ∥ ( ⃗ y,⃗ x)

⃗ y ∥

 

a( ⃗ y,⃗ x) =      ( ⃗ y,⃗ x) 2 ∥ ( ⃗ x,⃗ y)

⃗ y ∥

y

 

aa(⃗ y,⃗ y) =           (⃗ y,⃗ y) =      ( ⃗ y,⃗ x) 2 2 2 ∥ ( ⃗ x,⃗ y) ( ⃗ y,⃗ x)         ( ⃗ x,⃗ y) ⃗ y∥ ∥ ⃗ y∥         ∥ ⃗ y∥

se cancelan el segundo y el cuarto término de la desigualdad y queda

 

0 ≤ ( ⃗ x,⃗ x) − a(⃗ y,⃗ x)

 

0 ≤ ( ⃗ x,⃗ x) − a(⃗ x,⃗ y)

 

0 ≤ ( ⃗ x,⃗ x) −     (⃗ x,⃗ y) 2 ( ⃗ x,⃗ y)

∥ ⃗ y∥

Entonces,

|        2 ( ⃗ x ,⃗ y ) |

0      2 ≤ ∥ ⃗ x ∥ −

∥ 2 ⃗ y ∥

que equivale a

 

∥ 2     2           2 ⃗ x ∥ ∥ ⃗ y ∥ − | ( ⃗ x ,⃗ y ) |

0 ≤         2 ∥ ⃗ y ∥

En el numerador se tiene la desigualdad que se quería demostrar.

□

 

i Se acredita a Cauchy la desigualdad para vectores y a Schwarz para los productos escalares
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con integrales. Sin embargo, fue Bunyakovsky quien demostró y publicó la desigualdad de Schwarz en una monografía, 25 años antes que Schwarz.

 

4.4   Distancia entre vectores

 

Definición 4.4.1 Sea V un espacio vectorial sobre R o C con producto interno. Se define la

distancia d, d : V × V → R como:

 

d (⃗ x,⃗ y) = ∥ ⃗ x −⃗ y∥ .

 

Usando las propiedades de la norma, se puede verificar que d satisface:

 

1. d( ⃗ x,⃗ y) ≥ 0 para todo⃗ x, ⃗ y ∈ E

 

2. d( ⃗ x,⃗ y) = 0 sí y sólo sí⃗ x = ⃗ y

 

3. d( ⃗ x,⃗ y) = d( ⃗ y,⃗ x) para todo ⃗ x, ⃗ y ∈ E

 

4. d( ⃗ x,⃗ z) ≤ d( ⃗ x,⃗ y) + d( ⃗ y,⃗ z) para todo ⃗ x, ⃗ y, ⃗ z ∈ E.

 

Karl Herman Amandus Schwarz (1843 - 1921)

 

Fue un matemático alemán conocido por su trabajo en análisis complejo. Schwarz inicialmente

estudio química en Berlín pero Kummer y Weierstrass lo persuadieron para que se hiciera matemático. Entre 1867 y 1869 trabajó en Halle, después en Zürich. Desde 1875 trabajó en el universidad de Gotinga, tratando los temas de teoría de funciones, geometría diferencial y cálculo de variaciones. Su memoria en ocasión del 70 aniversario de Weierstrass contiene, entre otros temas importantes, la

desigualdad para integrales que hoy se conoce como desigualdad de Schwarz. [14]
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Figura 4.2: Distancia entre los vectores ⃗ u y ⃗ v

[image: ]

 

Viktor Yakovlevich Bunyakovsky (1804 - 1889)

 

Nació en Ucrania. Estudió matemáticas en la Sorbona, en la que se doctoró en 1825 bajo la

tutoría de Augustin Cauchy. En 1826 volvió a San Petersburgo donde ejerció como profesor de la Escuela de Cadetes de la Academia Naval y del Instituto de Comunicaciones. De 1846 a 1880 fue profesor en la Universidad de San Petersburgo.

Entre otros campos de las matemáticas, Buniakovski trabajó sobre todo en teoría de

números, análisis matemático y en teoría de la probabilidad. Son relevantes las aportaciones que llevan su nombre como la conjetura de Buniakovski (nunca demostrada) y la desigualdad de Cauchy-Buniakovski-Schwarz. Sus aportaciones más originales son en teoría de la probabilidad, acerca de la cual publicó numerosos artículos sobre el estudio de problemas estadísticos de la

población de Rusia. [17]

 

■ Ejemplo 4.6 En la Figura 4.2 se muestran los vectores ⃗ u, ⃗ v y ⃗ u −⃗ v,

       

7        3         4

⃗ u −⃗ v =     −     =     

1        2        −1

 

q      √

∥           4       2 ⃗ u − ⃗ v ∥ = 4 + ( − 1 ) =   17.
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Puede observarse que la distancia de                                   ⃗ ⃗ v a ⃗ u es la misma que la de ⃗ u − ⃗ v a 0, y también que si se suma el vector ⃗ u −⃗ v a ⃗ v se obtiene el vector ⃗ u.                                                 ■

 

i

Dados dos vectores ⃗ x e ⃗ y, se dice que d( ⃗ x,⃗ y) es la distancia entre ⃗ x e ⃗ y. Una distancia es una función que verifica las 4 propiedades anteriores. Puede no provenir de ninguna norma.

 

Con la definición que sigue se generaliza la noción de perpendicularidad entre vectores de un espacio vectorial.

 

Definición 4.4.2 Sea V un espacio vectorial sobre R o C con producto interno. Dos vectores ⃗ x, ⃗ y

se dicen ortogonales (o perpendiculares), si

 

(⃗ x,⃗ y) = 0                                                                      (4.5)

 

i   Por las propiedades vistas en las observaciones i en la Sección 4.1, el vector nulo, es ortogonal

a todo vector de V .

 

Teorema 4.4.1 Teorema de Pitágoras

Dos vectores ⃗ x e ⃗ y son ortogonales, sii

 

∥      2        2        2 ⃗ x + ⃗ y ∥ = ∥ ⃗ x ∥ + ∥ ⃗ y ∥

 

La demostración se deja al lector.

 

Definición 4.4.3 Sea V un espacio vectorial sobre R o C de dimensión finita con producto

interno. Se dice que { ⃗ v1,⃗ v2,· · · ,⃗ vr} ⊂ V es un conjunto ortogonal si (⃗ vi,⃗ v j) = 0 para todo i ̸= j.

 

■                               1 Ejemplo                          T               T                       T 4.7 El conjunto S = { ⃗ u , ⃗ u 2 , ⃗ u 3 , donde } ⃗ u 1 = ( 3 , 1 , 1 ) , ⃗ u 2 = ( − 1 , 2 , 1 ) y u ⃗ 3 = ( − 1 / 2 , − 2 , 7 / 2 ) , es un conjunto ortogonal, ya que al considerar los tres pares posibles de vectores,

 

{ ⃗ u u   {   u         u } 1 , ⃗ } 2 , u ⃗ } u 1 , ⃗ 3 , y { ⃗ 2 , ⃗ 3, se tiene 4.4 Distancia entre vectores 171

 

Figura 4.3:                                          3 { ⃗ u } 1 u , ⃗ 2 u , ⃗ 3   es un conjunto ortogonal de

R

[image: ]

 

⃗ u ·       − 1 ⃗ u 2 = 3 (1) + 1(2) + 1(1) = 0

 

⃗ u 1 ·⃗ u3 = 3(−1/2) + 1(−2) + 1(7/2) = 0

 

⃗ u ·u 2 ⃗3 = −1(−1/2) + 2(−2) + 1(7/2) = 0

 

Cada par de vectores distintos es ortogonal, así que S = {⃗ u1, ⃗ u2, ⃗ u } 3, es un conjunto ortogonal

como se muestra en la Figura 4.3. ■

 

i   Un conjunto de r vectores se dice ortonormal si es ortogonal y ∥⃗ ui∥ = 1 para cada 1 ≤ i ≤ r.

 

Proposición 4.4.2 Sea V un espacio vectorial sobre R o C de dimensión finita con producto

interno y sea { ⃗ v1,⃗ v2, · · · ,⃗ vr} ⊂ V un conjunto ortogonal de V con ⃗ vi ̸= 0 para 1 ≤ i ≤ r. Entonces

{ ⃗ v 1,⃗ v2,· · · ,⃗ vr} es un conjunto de vectores linealmente independiente.

Demostración:

 

Supongamos que r            ⃗ ∑ α ⃗ v = i          i   i        0. Entonces, para cada j, 1 ≤ j ≤ r,

=1
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r                  r

0   ⃗                                  2 = ( 0 ,⃗ v j ) = ( ) = ∑ α i ⃗ v i ,⃗ v j ∑ α i ( ⃗ v i ,⃗ v j ) = α j ⃗ v j ,

i=1             i=1

y como     ⃗ ⃗ v j ̸ = 0, se tiene que α j = 0 para 1 ≤ j ≤ r y entonces, { ⃗ v           } 1 ,⃗ v 2 , · · · ,⃗ v r es un conjunto de

vectores linealmente independiente.

□

 

En el teorema siguiente se muestra por qué una base ortogonal es más conveniente que otras bases ya que las coordenadas de un vector en esa base pueden calcularse muy fácilmente.

 

Proposición 4.4.3 Sea V un espacio vectorial sobre R o C de dimensión finita con producto

interno y sea {⃗ v1,⃗ v2,· · · ,⃗ vr} ⊂ V es un conjunto ortogonal de V con ⃗ vi ̸= 0 para 1 ≤ i ≤ r. Sea

⃗ v ∈ ⟨ ⃗ v1,⃗ v2, · · · ,⃗ vr⟩. Entonces

 

r   ( ⃗ v,⃗ v )

⃗          j v = ⃗ ∑   v     j                                                (4.6) 

j =1 ⃗   2 v j



 

Demostración:

 

Si      r ⃗ v = ∑ α ⃗ v i          i   i , para cada j, 1 ≤ j ≤ r, se tiene que

=1

r                  r

(                                                            2 ⃗ v,⃗ v j ) = ( ) = ∑ αi ⃗ vi ,⃗ v j      ∑ αi ( ⃗ v i,⃗ v j) = α j(⃗ v j,⃗ v j ) = α j ⃗ v j ,

i=1             i=1

y como     ⃗ ⃗ v j ̸ = 0, se tiene entonces que

(⃗ v,⃗ v j )

α j = 2

 j ⃗ v

□

 

■                            1   2   3                                            R Ejemplo3 4.8 El conjunto { u ⃗ , ⃗ u } , ⃗ u del Ejemplo 4.7 es una base ortogonal para. Si se desea expresar el vector               T ⃗ y = ( 6 , 1 , − 8 ) como una combinación lineal de los vectores en S, de acuerdo a la

Ec.(4.6) se tiene que,

 

3 ( ⃗ y,⃗ u )

⃗          j y = ⃗ u ∑

     j 2

j =1 ⃗ u j 

 

Para hallar las coordenadas de ⃗ y en la base ortogonal, se calculan los productos escalares 4.4 Distancia entre vectores 173

 

⃗ y.⃗ u 1 = 11, ⃗ y.⃗ u2 = −12, ⃗ y.⃗ u3 = −33

 

y ⃗ u1.⃗ u1 = 11, ⃗ u2.⃗ u2 = 6, u ⃗3.⃗ u3 = 33/2

 

( ⃗ y,⃗ u1)      11 u ⃗ 1 = (3,1,1) = (3,1,1) 2 ∥ ⃗ u 1 ∥ 11

 

( ⃗ y,⃗ u2)      −12

2 ⃗ u2 =     ( −1,2,1) = 2(−1, 2,1)

∥ ⃗ u2∥        6

 

( ⃗ y,⃗ u3)       −33

2 ⃗ u3 =     (−1/2,−2,7/2) = 2(−1/2,−2,7/2)

∥ ⃗ u ∥      33/2 3

Y se obtiene,

 

⃗ y = 1⃗ u − 1 2 ⃗ u − 2 2 ⃗ u3

 

que puede verificarse fácilmente,

⃗ y = (6, 1, −8) = (3,1, 1) − 2(−1,2,1) − 2(−1/2, −2,7/2). ■

 

i

Como se vio en el Ejemplo 4.8, es muy fácil calcular las coordenadas de un vector ⃗ y en una base ortogonal. En otro caso, se debe que resolver un sistema de ecuaciones lineales para hallarlas.

Si el conjunto además, es ortonormal, se tiene

r

⃗ v =   ( ⃗ v,⃗ v ⃗ ∑ j ) v j

j=1

 

La proposición que sigue asegura que en todo espacio vectorial de dimensión finita con producto interno tiene bases ortonormales. Más aún, en la demostración se da un procedimiento recursivo conocido como Gram-Schmidt que permite obtener una base ortonormal del espacio vectorial a partir de una base cualquiera del mismo.
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Proposición 4.4.4 Método de ortonormalización de Gram-Schmidt

 

Sea V un espacio vectorial sobre R o C de dimensión finita con producto interno y sea

{ ⃗ v 1,⃗ v2,· · · ,⃗ vn} una base de V . Existe una base ortonormal B = {⃗ w1, ⃗ w2,· · · , ⃗ wn} de V tal que

 

⟨ ⃗ v1,⃗ v2,· · · ,⃗ vk⟩ = ⟨⃗ w1, ⃗ w2, · · · , ⃗ wk⟩

para todo 1 ≤ k ≤ n

 

Demostración:

 

Se construyen los vectores { ⃗ z1,⃗ z2,· · · ,⃗ zn} de una base ortogonal, recursivamente

1. Se toma⃗ z 1 =⃗ v1

 

2. Se busca⃗ z ∈ V tal que ( ⃗ z2,⃗ z                     ⟩   ⟨v 1 ) = 0 y tal que ⟨ ⃗ z    ⟩ 1 ,⃗ z 2 2 = ⃗ 1 ,⃗ v 2

 

La segunda condición vale sí y sólo sí ⃗ z2 = a ⃗ v1 + b ⃗ v2 con b ̸= 0. Es posible considerar b = 1

y buscar a para que se cumpla la primera condición:

 

0 = ( ⃗ z2,⃗ z1) = (a ⃗ v1 + b ⃗ v2,⃗ z1) = a( ⃗ v1,⃗ v1) + ( ⃗ v2,⃗ v1),

lo que implica

 

a =       . 2 ∥ −( ⃗ v2,⃗ v1)

⃗ v ∥ 1

Luego, el vector,

 

⃗ z2 =⃗ v2         ⃗ v1 =⃗ v − 2       ⃗ z1 2 − ( ⃗ v2,⃗ v1)           ( ⃗ v2,⃗ v1) 2 ∥ ⃗ v ∥ ∥ 1 ⃗ v ∥ 1

satisface las condiciones.

 

Supongamos construídos⃗ z           ∈ V 1 ,⃗ z · · · 2 , ,⃗ z r tales que

 

1. ( ⃗ z i,⃗ z j ) = 0 cuando i ̸= j

 

2. ⟨ ⃗ z 1,⃗ z2,· · · ,⃗ zr⟩ = ⟨ ⃗ v1,⃗ v2,· · · ,⃗ vr⟩ con 1 ≤ k ≤ r 4.4 Distancia entre vectores 175

consideramos el vector

 

r   ( ⃗ vr+1,⃗ z )

⃗                    i z r+1 = ⃗ v r+1               ⃗ − z ∑

i =1      i z 2    i ∥ ∥ ⃗

 

Se tiene que

 

⟨ ⃗ z 1,⃗ z2,· · · ,⃗ zr,⃗ zr+ ⟩    ⟨                v 1 = ⃗ v v v 1 ,⃗ 2 , · · · ,⃗ r ,⃗r+ ⟩        ≤ k ≤ r 1 con 1

 

para cada j ≤ r, reemplazando⃗ zr+1 y teniendo en cuenta 1.,

 

r (⃗ v     z ,⃗ )

(                           r+1   i ⃗ z r+1 z − ,⃗ j              r+ v ) = ( ⃗ 1                 z ⃗ ,⃗ ) ∑ i      j z

i=1      i z ⃗ ∥ ∥   2

 

( ⃗ zr+1,⃗ z j) = ( ⃗ vr+1, ,⃗ z j) −           ( ⃗ z j,⃗ z j) = 0 2 ⃗ ( ⃗ vr+1,⃗ z j)

 j z

 

Luego⃗ z r+1 satisface las condiciones requeridas.

 

De esta manera, al concluir el n-ésimo paso, se obtiene una base ortogonal { ⃗ z1,⃗ z2,· · · ,⃗ zn} de

V que además satisface

 

⟨ ⃗ v1,⃗ v2,· · · ,⃗ vk⟩ = ⟨ ⃗ z1,⃗ z2, · · · ,⃗ zk⟩

para todo 1 ≤ k ≤ n.

 

Finalmente, para cada 1                                     ⃗ z ) i ≤ i ≤ n consideramos el vector ⃗ w = . Luego, el conjunto B =

i        ∥ ⃗ z i ∥

{⃗ w1, ⃗ w2,· · · , ⃗ wn} resulta una base de V que cumple lo pedido.

□

 

Corolario Sea V un espacio vectorial sobre R o C de dimensión finita con producto interno y sea                          ⃗ S un subespacio de V , S ̸ = 0. Entonces existe una base ortonormal de V que contiene una base ortonormal de S. Se demuestra tomando una base de S, completando a una base de V y aplicando a esta base el procedimiento de Gram-Schmidt. ■

 

■ Ejemplo 4.9 Aplicación del Método de Gram-Schmidt

 

Dada la base B = {                            3 ( 1 , 0 , i ) , ( 1 , 1 , 2 + i ) , ( 0 , 0 , 1 ) } de C se desea hallar una base ortonormal con G-S.
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⃗ v 1 = (1,0,i), ⃗ v2 = (1, 1,2 + i) y ⃗ v3 = (0,0,1)

 

⃗ z 1 =⃗ v1

 

⃗ z2 =⃗ v2 −       ⃗ z1 2 ∥ ( ⃗ v 2,⃗ z1)

⃗ z ∥ 1

 

⃗ z2 = (1,1,2 + i) −                   (1, 0,i) 2 ((1,1, 2 + i),(1,0, i))

∥(1, 0,i)∥

 

⃗ z2 = (1,1,2 + i) − (1 − i)(1, 0,i) = (i,1, 1)

y luego,

 

⃗ z3 =⃗ v3 −       ⃗ z1 −       ⃗ z2 2 ( ⃗ v 3,⃗ z1)      ( ⃗ v3,⃗ z2)

∥             2 ⃗ z ∥ ∥ 1            z ⃗ ∥

2

 

⃗ z 3 = (i/6, −1/3, 1/6)

 

{                                     3 ⃗ z } 1 ,⃗ z 2 ,⃗ z 3 resulta una base de ortogonal de C

 

Diviendo por su norma queda una base ortonormal {⃗ w        } 1 , ⃗ w 2 , ⃗ w 3

√   √

donde ⃗ w 1 = (1/ 2,0, i/ 2)

√   √   √

⃗ w2 = (i/ 3,1/ 3,1/ 3)

√    √   √

⃗ w3 = ( 6i/6, − 6/3, 6/6)

■

 

La existencia de bases ortogonales para subespacios de dimensión finita de un espacio con

producto interior puede establecerse por medio del proceso Gram-Schmidt, de igual forma que en n  R.

Al aplicar este proceso, es posible plantear ciertas bases ortogonales que surgen con frecuencia en las aplicaciones y construir la proyección ortogonal de un vector sobre un subespacio S. La proyección no depende de la selección de la base ortogonal y tiene muy buenas propiedades que se describirán más adelante. En el teorema que sigue se ve cómo es posible escribir la matriz de una transformación lineal usando producto interno para escribir las coordenadas de la imagen de cada vector de la base ortogonal.
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Teorema 4.4.5 Si T es una transformación lineal sobre V donde V es un espacio vectorial con

producto interno y de dimensión finita, entonces

 

(T )B = (T (u ⃗j ),⃗ ui)i j

 

siendo B = {⃗ u u · · · u 1 , ⃗ 2 , ⃗n} cualquier base ortonormal de V .

Demostración:

 

T (⃗ u 1) = k1⃗ u1 + k2⃗ u2 + · · · +kn⃗ un.

 

En la primera columna de la matriz deben ir las coordenadas de T (⃗ u 1), o sea k1, · · · kn.

 

y resulta que las coordenadas son

 

(T (⃗ u1),⃗ ui) = (k1⃗ u1 +k2⃗ u · · · 2 + kn⃗ un,⃗ ui)

 

= k 1(⃗ u1,⃗ ui) + k2( ⃗ u1,⃗ ui) + · · · kn(⃗ u1,⃗ ui) = ki

□

 

4.4.1   Complemento Ortogonal

Definición 4.4.4 Sea V un espacio vectorial sobre R o C con producto interno y sea S un

subespacio de V . Se define el complemento ortogonal de S como

 

S⊥ = { ⃗ v ∈ V (⃗ v,⃗ s) = 0   ∀ ⃗ s ∈ S}

 

S ⊥ es un subespacio de V .

i

 

■                                      2 Ejemplo 4.10 Para el subespacio de R generado por el vector (1,1), su complemento ortogonal es ⟨        ⊥         2                    2 ( 1 , 1 ) ⟩ = ( x , y ) ∈ R , (( x , y ) , ( 1 , 1 )) = 0 = ( x , y ) ∈ R,   x + y = 0 = ⟨(1,−1)⟩.       ■

 

■                                                      R Ejemplo3 4.11 Sea W un plano que pasa por el origen en       L , y sea la recta que pasa por el origen y es perpendicular a                                ⃗ W . Si ⃗ u 1 y ⃗ u 2 son diferentes de 0, ⃗ u1 está sobre L, y ⃗ u2 está en W , ⃗ u1 ·⃗ u2 = 0,

como se muestra en la Figura 4.4. Así que cada vector sobre L es ortogonal a cada vector ⃗ w en W . De hecho, L consiste en todos los vectores que son ortogonales a los ⃗ w en W , y W consiste en todos los vectores ortogonales a los vectores en                    ⊥       ⊥ L . Es decir, L = W y W = L. ■
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Figura 4.4: Complemento ortogonal

[image: ]

 

■                  C Ejemplo          3 4.12 En hallar el complemento ortogonal de ⟨(1,i,1 + i)⟩.

 

⟨             t                                            3 ( 1 , i , 1 + i ) ⟩ = ( x 1 x , 2 x , 3     C ) ∈,(x1 x ,2 x ,3    α ) · (, α i,α (1 + i)) = 0    ∀α ∈ C

=          3 ( x 1 x , 2 x , 3     C ) ∈,x1 α + x2 α i+ x3α (1 + i) = 0 ∀α ∈ C

 

De donde

x1α − x2α i + x3α (1 − i) = 0

o

α (x1 − x2i + x3(1 − i)) = 0.

Se tiene, entonces, x       i 1 = x − x 23(1 − i) y resulta

⟨             t ( 1 , i , 1 + i ) ⟩ = {(x i − x (1 − i), x ,x ) = x (i, 1,0) + x (i − 1, 0,1)}

2      3          2   3      2            3

■

 

Teorema 4.4.6 Sea A una matriz de m × n. El complemento ortogonal del espacio fila de A,

FilA                n , (subespacio de R que generan los vectores filas de A) es el espacio nulo de A, Nul(A) y

el complemento ortogonal del espacio columna de                          m A , ColA , (subespacio de R que generan los

vectores columnas de                                  T A ) es el espacio nulo de la matriz A . Es decir, 4.4 Distancia entre vectores 179

(       ⊥               ⊥        T FilA ) = Nul ( A ) y ( ColA ) = Nul ( A )

 

■ Ejemplo 4.13 Dada la matriz

 

      

1 0 2

A =         ,                                       (4.7)

1 1 4

■

 

se describen los espacios FilA, Nul (A) y ColA:

Nul                    3 ( A ) son los vectores de R soluciones del sistema homogéneo. Esos vectores son perpendiculares a las filas de la matriz                                                    ⊥ A , y pertenecen entonces a subespacio ( FilA ).

Si ahora se resuelve el sistema homogéneo con la matriz   T                         2 A , da el vector nulo de R. El subespacio que generan las columnas de                  2 A , ColA es todo R , pues hay en las columnas 2 vectores linealmente independientes. De ahí que el subespacio ortogonal,        ⊥        T   ⃗ ( ColA ) = Nul ( A ) = 0.

 

Proposición 4.4.7 Sea V un espacio vectorial de dimensión finita con producto interno y sea

S ⊆ V un subespacio. Entonces

 

1.       ⊥ ⃗ S ∩ S = 0

 

2.                   ⊥ dim ( S ) + dim ( S) = dim(V )

 

En consecuencia,      ⊥ S ⊕ S.

 

Demostración:

 

Sea         ⊥          ⊥ ⃗ v ∈ S ∩ S . Como ⃗ v ∈ S, (⃗ v,⃗ s) = 0, ∀ ⃗ s ∈ S. En particular para ⃗ s =⃗ v, entonces ( ⃗ v,⃗ v) = ∥ 2                     ⃗ ⃗ v ∥ = 0, de donde ⃗ v = 0.

 

Sea { ⃗ s1,⃗ s2, · · · ,⃗ sr} una base de S. Existen ⃗ vr+1,· · · ,⃗ vn tales que B = { ⃗ s 1,⃗ s2,· · · ,⃗ sr,⃗ vr+1,· · · ,⃗ vn} es una base de V . Aplicando Gram-Schmidt se obtiene una base ortonormal de     ′ V , B = {⃗ w1    2        r    r+ , ⃗ w , · · · , ⃗ w , ⃗ w 1, · · ·⃗ wn} tal que

 

⟨⃗ w1, ⃗ w2, · · · , ⃗ wr⟩ = ⟨ ⃗ s1,⃗ s2,· · · ,⃗ sr⟩ = S.
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Sea                       ⊥ j > r . Veamos que ⃗ w j                                                                                    α ∈ S . Dado ⃗ s ∈ S , existen escalares   · · ·                    s 1      α , , , tales que ⃗ =

r

∑ α r i          i w ⃗ , entonces

=    i 1

r               r

(⃗ w j ,⃗ s) = (⃗ w j,      ⃗ w ) = ∑ α i i ∑ α i(⃗ w j, ⃗ wi) = 0.

i=1          i=1

como la base es ortonormal y                                                  ⊥ j > r , ( ⃗ w , ⃗ w ) = 0 para 1 ≤ i ≤ r . De donde, ⃗ w ∈ S, y se

j       i                                                                            j

tiene que,

 

{              ⊥ ⃗ w r+1, · · · ⃗ w } ∈ S, n

 

y, por lo tanto,

⟨                   ⊥ ⃗ w r+1    w · · · , ⃗ ⟩ ⊆ S,

n

 

por ser ⊥ S un subespacio.

 

dim ⊥                                              ⊥ ( S ) ≥ dim ( ⟨ ⃗ w r+1, · · · ⃗ w ⟩ ) = n − r = n − dim ( S ) . Entonces, dim ( S) + dim(S) ≥ n. n

 

Por otro lado como      ⊥   ⃗ S ∩ S = { 0}

 

dim ⊥               ⊥ ( S ) + dim ( S ) = dim ( S + S) ≤ dim(V ) = n.

 

Entonces      ⊥ dim ( S) + dim(S) = dim(V )

□

 

Del teorema sale cómo generar el subespacio ⊥ S, a partir de la base ortonormal de V .

i

S⊥ = ⟨⃗ w   , · · ·⃗ w ⟩

r+1      n

 

Proposición 4.4.8 Sea V un espacio vectorial de dimensión finita con producto interno y sea S

un subespacio de               ⊥ ⊥ V . Entonces ( S ) = S
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Figura 4.5: El vector ⃗ y es la proyección del vector ˆ ⃗ y sobre la recta L

[image: ]

 

Demostración:

 

Por definición,   ⊥ ⊥                         ⊥                ⊥ ⊥ ( S ) = { ⃗ v ∈ V / ( ⃗ v , ⃗ w ) = 0 ∀ ⃗ w ∈ S } . Veamos que S ⊆ ( S ). Sea ⃗ s ∈ S.

Para cada      ⊥                                              ⊥ ⊥ ⃗ w ∈ S se tiene que ( ⃗ s , ⃗ w ) = ( ⃗ w ,⃗ s ) = 0, de donde se deduce que ⃗ s ∈ ( S ).        □

 

4.5   Proyección ortogonal

Dado un subespacio S de un espacio vectorial V de dimensión finita con producto interno . Como S ⊥ ⊥  ⊕  S  =  V  se puede considerar el proyector  P  :  V  →  V  cuya imagen es  S  y cuyo núcleo es  S.

S

 

Definición 4.5.1 Sea V un espacio vectorial de dimensión finita con producto interno y sea

S ⊆ V un subespacio. Se define la proyección ortogonal sobre S como la transformación lineal

P S : V → V que satisface

 

1. P S( ⃗ s) =⃗ s ∀ ⃗ s ∈ S

 

2.          ⃗        ⊥ P S ( ⃗ t ) = 0 ∀ ⃗ t ∈ S

 

■                    2                                                            ⃗ Ejemplo 4.14 En R se desea hallar la proyección ortogonal de un vector ⃗ y , y ˆ sobre el subespacio 182 Capítulo 4. Espacios vectoriales con producto interno

 

S generado por otro vector ⃗ u, o sea sobre la recta L generada por ⃗ u que pasa por el origen. Esto se

muestra en la Figura 4.5.

 

P     ⃗ S ( ⃗ y ) = y ˆ = c⃗ u,

y se debe cumplir que                            ⃗ ⃗ u sea ortogonal al vector ⃗ y − y ˆ, es decir, ( ⃗ y − c ⃗ u) ·⃗ u = 0, entonces,

 

⃗ y ·⃗ u − c⃗ u ·⃗ u = 0

 

de donde

⃗ y ·⃗ u

c =

⃗ u ·⃗ u

y entonces, la proyección sobre L es ,

⃗   ⃗ y ·⃗ u

y ˆ =     ⃗ u                                                                   (4.8)

⃗ u ·⃗ u

      

7            4

En el caso de la Figura 4.5, se tiene que ⃗ y =      y ⃗ u =      .

6            2

 

Usando Ec.(4.8), como ⃗ y ·⃗ u = 40 y ⃗ u ·⃗ u = 20, se obtiene,

 

 

⃗   ⃗ y ·⃗ u     40            8 y ˆ =     ⃗ u =   ⃗ u = 2 ⃗ u =    

⃗ u ·⃗ u     20            4

   

− 1

y la componente ortogonal a         ⃗ ⃗ u es ⃗ y − y ˆ =       .

2

 

La descomposición de                                            ⊥ ⃗ y , como suma de proyecciones sobre S y sobre S, es

       

7        8        −1

        = +

6        4         2

■

 

i

Si B = {⃗ v 1,⃗ v2, · · · ,⃗ vr,⃗ vr+1,· · ·⃗ vn} una base ortonormal de V tal que { ⃗ v1,⃗ v2,· · · ,⃗ vr} es una base de                               ⊥ S y { ⃗ v r + , · · · ⃗ v } una base de S, la proyección ortogonal sobre S es la única

1      n

transformación lineal P S : V → V que satisface 4.5 Proyección ortogonal 183

 

1. P ( ⃗ S v ) =⃗ i vi ∀ 1 ≤ i ≤ r

 

2.           ⃗ P ( ⃗ ) =      + S v i 0 ∀ r 1 ≤ i ≤ n

 

En consecuencia, para                            n ⃗ v ∈ V , recordando que ⃗ v = ∑ ( ⃗ v,⃗ v ) ⃗ j=      j v 1        j resulta,

 

n               n                  r

P S( ⃗ v) = PS(   ( ⃗ v,⃗ v ) ⃗ v ∑ j j) =    ( ⃗ v,⃗ v )P ∑ jS( ⃗ vj) =    ( ⃗ v,⃗ v ∑j) ⃗ vj,                (4.9)

j=1             j=1                j=1

que es una expresión para P S( ⃗ v) en términos de los vectores de la base ortonormal de S. Sea V un espacio vectorial de dimensión finita con producto interno y sea S ⊆ V un subespacio. Entonces P +    = S P ⊥ id , S V

 

donde,          r                                      n P ( ⃗ S      ∑ v ) = ( ⃗ v ,⃗ v ) ⃗ ( ) =      ⃗,⃗ )   . j=1     j                 ⊥ v ( ⃗ j                          ∑ y P ⃗ v v v v

S          j=r+1     j   j

 

■                      R Ejemplo4 4.15 Si V =   W y es el subespacio

 

W    4 = ⃗ x ∈ R , x − x      x    x 2 − + x   x = 3 + = 0 ,

1      2     3     1      2     4

se desea hallar la proyección ortogonal del vector ⃗ v = (4,8,−4, 12) sobre el subespacio W .

Para usar la expresión de la Ec.(4.9) debemos hallar una base ortonormal de W . En primer lugar calculamos una base de W resolviendo el sistema por eliminación de Gauss:

 

                  

1 −2 1 0        1 −2   1   0

                   →                   (4.10)

1 −3 0 1        0 −1 −1 1

 

A partir de la matriz escalonada, al resolver el sistema homogéneo, quedan como variables

independientes x                         { − 3 y x 4 y una base de W es (3,−1,1, 0), (2,1,0, 1)}. Una base ortogonal de W a partir de aplicar Gram-Schmidt es,

                 1 4 7

(−3,−1, 1,0),(   ,    ,   ,1)   .

11 11 11

 

Si llamamos                           1   4   7 ⃗ w − − 1                      w = ( 3 , 1 , 1 , 0 ) y ⃗ 2 v  = (  ,  ,  ,  1  )  , los vectores de la base ortonormal  ⃗  se

11 i  11  11

obtienen dividiéndolos por su norma,       ⃗ wi ⃗ v = .

i        ∥⃗ wi∥

 

Entonces, como          2 P W     ∑ ( ⃗ v ) = ( ⃗ v,⃗ v ⃗ v                                    ) j                j      j , se calculan los productos escalares ) ( ⃗ v ,⃗ v, y se obtiene

=                                     j 1
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124 88 52 140

P W ((4,8, −4, 12)) = (    ,   ,   ,    )

17 17 17 17

 

es el vector del subespacio W más cercano a ⃗ v = (4,8, −4,12).

■

 

Teorema 4.5.1 Teorema de la proyección ortogonal.

Sea S un subespacio de un espacio vectorial con producto interno, V . Entonces, para cada

⃗ v ∈ V , el vector de S a menor distancia de ⃗ v es P S( ⃗ v).

 

Demostración:

 

Si B = { ⃗ v1,⃗ v2,· · · ,⃗ vr,⃗ vr+1,· · ·⃗ vn} una base ortonormal de V tal que { ⃗ v1,⃗ v2, · · · ,⃗ vr} es una

base de S.

Sea                       n                           r ⃗ v ∈ V . Se tiene que ⃗ v = ∑ j ( ⃗ v ,⃗ v ) ⃗ v y P ( ⃗ v ) =   (v,⃗ v ) ⃗ v . Por otro lado, si ⃗ s   S, =    j      j           S 1          ∑ j     ⃗ ∈

=    j      j 1

⃗     r s = ∑ ( ⃗ s,⃗ v j =1      j v ) ⃗ .

j

Entonces

n               r               r                    n

⃗ v −⃗ s =   ( ⃗ v,⃗ v ) ⃗ ∑ j v j −   ( ⃗ s,⃗ v )⃗ ∑ j v j =    ( ⃗ v −⃗ s,⃗ v ) ∑ j ⃗ v j +     ( ⃗ v,⃗ v ) ⃗ v ∑ j j

j=1            j=1             j=1                j=r+1

de donde,

r                         n                      n

∥      2                  2               2               2              2 ⃗ v − ⃗ s∥ = ∑ ( ⃗ v −⃗ s,⃗ v j) + ∑ ( ⃗ v,⃗ v j ) ≥ ∑ ( ⃗ v,⃗ v j ) = ∥ ⃗ v − P S( ⃗ v)∥

j =1                    j=r+1               j=r+1

(el primer término de la desigualdad se anula cuando ⃗ s = P S(⃗ v)) □

 

i

El teorema anterior es conocido también como el teorema de la mejor aproximación.

En la Figura 4.5, ⃗ y ˆ es el punto de L más cercano a⃗ y, en el sentido que

    ⃗    ⃗ y − y ˆ ≤ ∥ ⃗ y −⃗ v∥ ,    

 

para todo                  ⃗ ⃗ v en L distinto de y ˆ.
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4.5.1   Problema de cuadrados mínimos

El problema de hallar la proyección de un vector b sobre un subespacio surge cuando se tiene el problema Ax = b, con A una matriz de m × n, donde m es la cantidad de observaciones y es mucho mayor que la cantidad de incógnitas n, de forma tal que se espera que el sistema Ax = b sea incompatible. En otras palabras, el vector b no es combinación lineal de los vectores columna de A (no está en el espacio columna de A). Se trata entonces de hallar ˆ x que minimice el error, y esto se realizará en el sentido de los cuadrados mínimos. El error es E = ∥Ax − b∥, y es la distancia de b al vector Ax en el espacio columna. El vector p del espacio columna más próximo a b que cualquier otro es la proyección de b sobre el espacio columna. El error Vece = b − Ax ˆ es perpendicular al

espacio columna. Recordando que el espacio nulo de la matriz n  A  es el conjunto de vectores de  R

que son perpendiculares a todas las filas de T  A  , el error  e  pertenecerá al espacio nulo de la matriz  A

(es perpendicular al espacio columna). Es decir que el error ⃗ e es perpendicular a cada columna de A

(ver Figura 4.6). Entonces se tiene que,

 

AT                         T        T ( b − A x ˆ ) = 0 o A A x ˆ = A b                                         (4.11)

 

Las ecuaciones (4.11) se conocen como ecuaciones normales. Pueden obtenerse a partir de buscar                  2                                        2             T x que minimiza E , tomando derivadas parciales de E = ( Ax − b ) (Ax − b). Al igualar a cero, se tiene 2 T        T A A x − 2 A b = 0.

Si   T A A tiene inversa (esto ocurre cuando las columnas de A son linealmente independientes), entonces

 

x     T   −1 T ˆ = ( A A ) A b                                                           (4.12)

 

y la proyección p de b sobre el espacio columna, es el vector Ax ˆ

 

p          T   −1 T = A x ˆ = A ( A A ) A b                                                (4.13)

 

Un ejemplo de ajuste de datos por cuadrados mínimos

Supongamos realizamos un experimento en el que se espera que la salida b sea una función lineal de la entrada t. Se buscará la recta b = α + β t. Por ejemplo, si a diferentes tiempos medimos la distancia a un satélite en su recorrido a Marte. En este caso t es el tiempo y b la distancia y el

satélite se moverá con una velocidad casi constante (b = b    v 0 +t). ¿Es posible calcular α y β ? Si 186 Capítulo 4. Espacios vectoriales con producto interno

 

Figura 4.6: Proyección sobre el espacio columna

[image: ]

 

no hay errores experimentales dos mediciones determinan la recta b = α + β t. Pero si hay error se deberá promediar los experimentos y hallar la mejor recta. Al realizar m mediciones,

 

α + βt1 = b1

α + βt2 = b2

· · ·

α + β t m = bm

 

Se tendrá un sistema sobredeterminado, con m ecuaciones y solo 2 incógnitas. Si las mediciones tienen error, el sistema no tiene solución. En este caso la matriz T  A  tiene dos columnas y  x  = (  α ,  β )  :

 

             

1 t1                   b1

             

   2                      2             1 t b               = b                          (4.14) α        

           1 t 3 3

              β

              · · · · · ·

             

             

1 tm                 bm

 

o                                       ˆ A x = b . La mejor recta se tendrá con ˆ x = ( α ˆ , β ) que minimizan

 

E 2              2                    2                    2                        2 = ∥ A x − b ∥ = ( b − − − − t − t 1    α   β t 1        2    α ) + ( b · · · b β 2 ) + ( m α − β m ) 4.5 Proyección ortogonal 187

 

.

El vector p = Ax ˆ es el más cercano a b. De todas las rectas b = α + β t estamos eligiendo la que mejor ajusta los datos. Los errores son las distancias verticales b − α − β t (no perpendiculares). Estas distancias verticales se elevan al cuadrado, se suman y se minimizan.

 

■ ■  Ejemplo  4.16

 

Si se considera como ejemplo, que se tienen tres mediciones: b1 = 1 en t1 = −1, b2 = 1 en t2 = 1 y b3 = 3 en t3 = 2 se tiene el sistema Ax = b

 

            

1 −1           1

             α

          1 1 = 1                           (4.15)              β

1   2                3

 

El sistema es incompatible porque los puntos no están sobre una misma recta. Se resuelve entonces, por cuadrados mínimos,   T        T A A x ˆ = A b

 

        

3 2      α ˆ         5

         =                           (4.16)

2          ˆ 6 β         6

 

La solución es ˆ    9        4                      9    4 α = , ˆ β = y la mejor recta es +t.

7        7                      7    7

 

Como se muestra en la Figura 4.7, el vector T  b  no es combinación lineal de las columnas  (  1  ,  1  ,  1  )

y         T ( − 1 , 1 , 2 ) . Con mínimos cuadrados se reemplaza b que no está en la recta por el vector p = Ax ˆ que sí está, al no poder resolver                                                5 13 17 A x = b , se resuelve A x ˆ = p . El vector p = ( , , ) está en el espacio

7   7   7

columna, es la proyección en ese subespacio. Restando 2 6  4  p  de  b  , los errores son  e  =  b  −  p  = (  ,  −  ,).

7 7  7

Son los errores verticales en la Figura 4.8. Ese vector e, como se muestra en la Figura 4.7, es ortogonal a las columnas de                              T A (está en el espacio nulo de A ).

Para el caso de m mediciones b1 ,b2, · · · ,bm en puntos distintos t1,t2, · · · ,tm, la recta α + β t que minimiza 2 E, surge de resolver el sistema lineal

 

 

 

AT      α ˆ        T A   = A b                                                    (4.17) ˆ β
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Figura 4.7: Proyección del vector b en el espacio columna

[image: ]

 

Figura 4.8: Recta que ajusta por mínimos cuadrados los datos del ejemplo

[image: ]
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                 

m    m                  m ∑ t α ˆ i =1 i                           ∑     b

                                   (4.18) ∑ m      m 2      ˆ          m =    i=1 i

i      ti               t = 1 ∑ i              β                 ∑      t = 1 i i bi = 1

 

i   Es importante notar que el método de cuadrados mínimos no está limitado a ajustar datos con

una recta. En muchos casos interesan otros ajustes, con polinomios de grado más alto o con otras funciones como es el caso de ajuste exponencial o el ajuste con senos y cosenos. Pueden conducir a problemas lineales o a problemas no lineales de cuadrados mínimos, siendo estos últimos más complejos de abordar.

 

i   El método por mínimos cuadrados fue inventado por Karl Friedrich Gauss, y lo usó para

resolver un problema de astronomía. En 1801 el asteroide Ceres se había observado mucho más brillante durante más de un mes antes de desaparecer cuando se acercó al Sol. Con base en las observaciones disponibles, los astrónomos deseaban aproximar la órbita de Ceres para observarlo de nuevo cuando se alejara del sol. Gauss empleó los mínimos cuadrados e impactó a la comunidad científica al predecir la hora y el lugar correctos (unos 10 meses después) para localizar el asteroide.

 

Karl Friedrich Gauss (1777 - 1855)

 

Fue un matemático, astrónomo y físico alemán que contribuyó significativamente en muchos

ámbitos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la estadística, el álgebra, la geodesia, el magnetismo y la óptica.

Gauss pronto fue reconocido como un niño prodigio, pese a provenir de una familia campesina

de padres con poca cultura: su madre sabía leer, aunque no escribir; su padre sí, pero en cuanto a las matemáticas, no pasaba de la aritmética más elemental. De Carl Friedrich Gauss existen muchas anécdotas acerca de su asombrosa precocidad. Completó su magnum opus, Disquisitiones arithmeticae, a los veintiún años (1798), aunque la obra no se publicó hasta 1801. Constituye un trabajo fundamental como consolidación de la teoría de los números y ha moldeado esta área hasta

los días presentes. [8]
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4.6   Endomorfismos de espacios vectoriales con producto interno

Vamos a asociar ahora a cada endomorfismo f de un espacio vectorial V de dimensión finita y con producto interno otra transformación lineal   ∗    ∗ f , f : V → V .

 

Definición 4.6.1 Sea V un espacio vectorial con producto interno y sea f una transformación

lineal. Se llama                           ∗                                 ∗ adjunta de f y se anota f a una transformación lineal f : V → V tal que

 

(                  ∗ f ( ⃗ v ) , ⃗ w ) = ( ⃗ v , f(⃗ w))      ∀ ⃗ v, ⃗ w ∈ V                                                (4.19)

 

■                      C Ejemplo2      2 4.17 Sea f : →                                        f C con el producto interno canónico, dada por (x,y) = ((x +iy, 2x − ( 1 + i)y)

 

Se tiene que

 

( f (x,y),(z,w)) = ((x + iy, 2x − (1 + i)y), (z,w)) = ((x, y), (z + 2w,−iz + (−1 + i)w))

 

de donde, ∗    2      2                ∗ → f : C C definida por f(z,w) = (z + 2w,−iz+ (−1+ i)w) satisface ( f (x, y), (z, w)) = ((       ∗                                                       2 x , y ) , f ( z , w )) para todo par de vectores ( x , y ) , ( z , w ) en C . ■

 

El resultado que sigue prueba que en espacios vectoriales con producto interno de dimensión finita, la transformación lineal adjunta existe y es única.

 

Proposición 4.6.1 Sea V un espacio vectorial de dimensión finita con producto interno y sea f

una transformación lineal,                                                              ∗ f : V → V . Entonces existe una única transformación lineal f : V → V

tal que

(                  ∗ f ( ⃗ v ) , ⃗ w ) = ( ⃗ v , f(⃗ w))

 

Demostración:

 

Unicidad

Para ver la unicidad supongamos existen transformaciones lineales ∗              ∗ g : V → V y h : V → V

tales que, para ⃗ w fijo y para cada ⃗ v

 

( f ( ⃗ v), ⃗ w) = ( ⃗ v,g(⃗ w))     ( f ( ⃗ v), ⃗ w) = ( ⃗ v, h(⃗ w))
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(                                                                    ⃗ ⃗ v , g ( ⃗ w )) = ( ⃗ v , h ( ⃗ w )) o equivalentemente, ( ⃗ v , g ( ⃗ w ) − h ( ⃗ w )) = 0, para todo ⃗ v ∈ V ; tomando

⃗ v = g(⃗ w) − h(⃗ w), se tiene (g(⃗ w) − h(⃗ w),g(⃗ w) − h(⃗ w)) = 0 y por la propiedad del producto escalar

g(⃗ w) − h(⃗ w) = 0, entonces g(⃗ w) = h(⃗ w), para cada ⃗ w ∈ V , con lo cual g y h coinciden.

 

Existencia

Sea                                             ∗ { ⃗ v ,⃗ v , · · · ⃗ v } una base ortonormal de V . Si existe f : V → V con las condiciones del

1   2      n

enunciado, debe cumplirse, para cada ⃗ w ∈ V

n

f ∗              ∗ ( ⃗ w ) = ( f(⃗ w),⃗ v ∑i      i ) ⃗ v

i=1

n

= ( ⃗ v   ∗ ,(w)) ⃗ ∑ i f vi

i =1

n                   n

= ( f ( ⃗ v )     = ∑ i , ⃗ w ) ⃗ v i   (⃗ w, f ( ⃗ v ⃗ v ∑ i ))i

i= 1                i=1

Se define entonces, ∗ f : V → V

 

n

f ∗ (⃗ w) =    (⃗ w, f (⃗ v )) ∑

i        i ⃗ v                                                                                                             (4.20)

i=1

 

f ∗ es una transformación lineal

Usando la definición Ec.(4.20 ),

n

f ∗(w ⃗1    w + ⃗2         w ) = ( ⃗ +w ⃗ , f ( ⃗ v ∑ 1     2      i   v )) ⃗ i

i=1

n

= (w ⃗ ,   )) + (w , (v ))v ∑ 1 f ( ⃗ v i ⃗ 2 f ⃗ i ⃗i

i= 1

n                   n

= (w ⃗ , f (v ∑ 1 ⃗i)) ⃗ vi +   (w ⃗ f ⃗ )) ⃗ ∑ 2 , ( v i vi

i=1                 i=1

 

= ∗          ∗ f ( w ⃗ 1 ) + f(w ⃗2)

 

Para λ ∈        w ∈ V C (o R ) ⃗

n

f ∗ (λ ⃗ w) =    ( ∑λ ⃗ w, f ( ⃗ vi)) ⃗ vi

i=1
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n

=            ∗ λ   ( ⃗ w , f ( ⃗ v w ∑ i        i        λ )) ⃗ v = f (⃗ )

i=1

 

Veamos que para todo                            ∗ ⃗ v , ⃗ w ∈ V vale ( f ( ⃗ v ) , ⃗ w ) = ( ⃗ v , f(⃗ w))

 

Sean                        n                                   n ⃗ v , ⃗ w ∈ V . Se tiene que ⃗ v = ∑    v   v i               i ( ⃗ v ,⃗ ) ⃗ v y entonces, f ( ⃗ v ) = ( ⃗ =      i 1                 ∑i    ,⃗ v ) f ( ⃗ v )

=    i           i 1

n

( f (⃗ v), ⃗ w) = (    ( ⃗ v,⃗ v )   v ), ⃗ w ∑ i f ( ⃗ i)

i =1

n

= ( ⃗ v,⃗ v ∑i)( f (⃗ vi), ⃗ w)

i =1

Por otro lado

n             n

(    ∗ ⃗ v , f(⃗ w)) = (   ( ⃗ v,⃗ v     , ∑ ∑ i      i                            j        j ) ⃗ v ) ( ⃗ w , f ( ⃗ v )) ⃗ v)

i=1           j=1

n             n

∑(⃗ v,⃗ v   ⃗ v ,                ) i )( i ( ⃗ w , f ( ⃗ v )) ⃗ v ∑ j j i=1           j=1

n         n

∑ ( ⃗ v,⃗ vi)    (⃗ w, f ( ⃗ v ∑ j))( ⃗ vi,⃗ v j ) i=1       j=1

n                       n

∑ ( ⃗ v,⃗ v )(⃗ , f ( ⃗ vi)) =    ( ⃗ v,⃗ v         w ∑ i )( f ( ⃗ v i w i ) , ⃗) i =1                        i=1

 

Concluimos entonces que se cumple                ∗ ( f ( ⃗ v ) , ⃗ w ) = ( ⃗ v , f(⃗ w))

□

 

A partir de la matriz de una transformación lineal f : V → V en una base ortonormal de V , puede obtenerse fácilmente la matriz de su adjunta en la misma base.

 

Proposición 4.6.2 Sea V un espacio vectorial de dimensión finita con producto interno y sea f

una transformación lineal, f : V → V . Sea B una base ortonormal de V . Entonces, la matriz que

representa la transformación adjunta es la conjugada y transpuesta de la matriz de la transformación

f , es decir,

 

( ∗              ∗ f ) = (( f ) )                                                                         (4.21)

B        B
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Demostración:

 

Supongamos que B = { ⃗ v1,⃗ v2,· · ·⃗ vn} es una base ortonormal de V . Entonces para cada 1 ≤

i, j ≤ n,

 

(( ∗            ∗ f ) ) = ( f( ⃗ v ),⃗ v ) B i j              j     i

 

como en cada columna                         ∗ j van las coordenadas de f( ⃗ v ) en la base B,

j

 

= ( ⃗ v   ∗                                            ∗ i , f ( ⃗ v j )) = ( f ( ⃗ v i ) ,⃗ v j ) = (( f ) B )) ji = (( f ) B ) i j

 

□

 

■ Ejemplo 4.18 En el caso de la transformación lineal adjunta del Ejemplo 4.17, si B es la base canónica de   2 C , se tiene, de acuerdo a la proposición anterior, que la matriz que la representa es:

                     

(            1     i                       1     2 ∗ f ) B =   y ( f ) B =     

2 −1 − i                 −i −1 + i

 

( ∗ f)   es la matriz transpuesta y conjugada de ( f ) .

B                                          B

 

■

 

Existe el caso particular de transformaciones lineales                            ∗ f : V → V cuya adjunta f coincide con f .

 

Definición 4.6.2 Sea V un espacio vectorial con producto interno y sea f :V → V una transformación

lineal. Se dice que                            ∗ f es autoadjunta si f = f o sea, tal que

 

( f ( ⃗ v), ⃗ w) = ( ⃗ v, f (⃗ w))      ∀ ⃗ v, ⃗ w ∈ V                                               (4.22)

 

Definición 4.6.3                  n×n Una matriz A ∈ R   se dice simétrica si A = A ∀1 ≤ i, j ≤ n, o equivalentemente,

i j            ji

si        T                  n×n A = A . Una matriz A ∈ C   se dice hermitiana si A = A ∀1 ≤ i, j ≤ n, o equivalentemente,

i j             ji

si        ∗ A = A.

 

Si                                                                                 ∗ A es la matriz de una transformación lineal f en una base ortonormal, sabemos que A es la matriz de la transformación adjunta en la misma base. Si                                ∗ f es autoadjunta se tiene A = A, por lo tanto la matriz de una transformación lineal autoadjunta es simétrica (hermítica).
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Si f es autoadjunta, entonces, es una transformación lineal diagonalizable. Más aún, existe una base ortonormal de V formada por autovectores de f y todos sus autovalores son reales.

 

Proposición 4.6.3 Sea V un espacio vectorial de dimensión finita con producto interno. Sea f

una transformación lineal autoadjunta. Entonces el polinomio característico de f tiene todas sus

raíces reales.

 

i Si       n ×n A ∈ es una matriz hermitiana, entonces todas las raíces del polinomio característico de C

A son reales.

 

El que sigue es un resultado importante sobre diagonalización de transformaciones lineales autoadjuntas.

 

Proposición 4.6.4 Sea V un espacio vectorial de dimensión finita con producto interno. Sea

f : V → V una transformación lineal autoadjunta. Entonces existe una base ortonormal B de V tal

que la matriz ( f )B es diagonal real.

 

i

Sea A ∈ n×n R es una matriz simétrica. Si se considera el producto interno canónico en   n                                 n      n R , la transformación lineal f A R : → R definida por f ( ⃗ x) = A ⃗ x es autoadjunta. A

Por la Proposición 4.6.4 existe una base ortonormal        n B de R tal que ( f ) = D, donde

A B

D                                     n es una diagonal real. En este caso, si E es la base canónica de ( R , f ) = A, D =

A E

(      − 1             −1       t P B , E ) A ( P B , E ) , y ( P B , E ) = ( P B , E ) . Análogamente, si       n×n                                     n A ∈ C   es una matriz hermitiana. Si se considera C con el producto interno canónico, la transformación lineal       n      n f A C : → C , definida por f ( ⃗ x) = A ⃗ x es A

autoadjunta, y si                             n E es la base canónica de C , ( f ) = A. Por la proposición anterior

A E

existe una base ortonormal        n B de C tal que ( f ) = D, donde D es una diagonal real. A B

Entonces      − 1                             −1        ∗ ( P ) A ( P ) , donde, por lo anterior ( P ) = ( P ).

E,B        E,B                             E,B          E,B

 

Esto anterior nos lleva a la siguiente definición

 

Definición 4.6.4                                                    −1     t Una matriz O se dice ortogonal si es invertible y O = O . Una matriz

U ∈ n×n                                   −1     ∗ C se dice unitaria si es invertible y U = U.
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■ Ejemplo 4.19 Dada la matriz A,

 

       

1    1 − i

A =          ,                                     (4.23)

1 + i   0

 

se desea hallar una matriz unitaria             ∗ U tal que UAU sea diagonal                                  ■

Si en el programa Octave escribimos [U,D] = eig(A) nos devuelve las matrices U y D (con edición de 4 dígitos):

 

                              

0.4082 − 0.4082i 0.5774 − 0.5774i               −1 0

U =                       ,   D =              (4.24)

− 0.8165         0.5774                   0   2

 

Se verifican   ∗            ∗ U U = I y UAU = D

 

Resumiendo

1. Sea      n ×n                                                                  n×n A ∈ una matriz simétrica. Entonces existe una matriz ortogonal O ∈ R                                      R   tal que

O t AO es diagonal real.

2. Sea      n×n                                                                n×n A ∈ C ∈ C   una matriz hermitiana. Entonces existe una matriz unitaria C tal que

C∗AC es diagonal real.

 

i   Toda transformación lineal autoadjunta en un espacio euclídeo de dimensión finita tiene sus

autovalores reales

 

■ Ejemplo 4.20 Se quiere diagonalizar ortogonalmente la matriz

 

      

1   −2

A =         ,                                      (4.25)

− 2 3

 

                     1 − λ − 2

La ecuación característica de                                                2 A es det ( a − λ I ) = = λ − 4λ − 1 = 0.

                     − 2 3 − λ

√       √

Tiene dos raíces, λ1 = 2 −   5 y λ2 = 2 +   5
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                √

2                1 − 5

y los vectores propios correspondientes son ⃗ v 1 =        √    y ⃗ v2 =          .

−1 + 5           2

 

Para obtener vectores ortonormales los dividimos por su longitud, entonces,

                     √

 

⃗    √ 1             2                       1 − 5 1 u 1 = √  √  y ⃗ u √ 2 = √   − 10 2 5 − 10 − 2 5 1 + 5 2

           √

1            2      1 − 5

O =         p √    √        ,                      (4.26)

10 − 2 5   −1 + 5    2

 

          √

T          2 − 5    0

y O AO =           √ 

0     2 + 5

■

 

■ Ejemplo 4.21 Sea

 

        

2    3 − 3i

A =            ,                                   (4.27)

3 + 3i    5

 

una matriz hermitiana     2×2 ∈ C .

 

Es posible diagonalizarla con la matriz unitaria

 

        

1    −1 + i   1

U = √           ,                              (4.28)

3      1    1 + i

 

     

∗           −1 0

y se tiene que U AU =          es una matriz diagonal real.

0   8

■

 

Transformaciones ortogonales

Veremos ahora endomorfismos de un espacio vectorial con producto interno que preservan el producto interno y, en particular, las distancias entre vectores.
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Definición 4.6.5 Sea V un espacio Euclídeo. Una transformación lineal f se llama ortogonal si

( f ( ⃗ v), f (⃗ w)) = ( ⃗ v, ⃗ w) ∀ ⃗ v, ⃗ w ∈ V . Es decir, cuando f conserva el producto escalar.

 

Proposición 4.6.5 Toda transformación lineal f en un espacio euclídeo que conserve la longitud

de los vectores es una transformación ortogonal.

 

Demostración:

 

∥         2 f ( ⃗ v + ⃗ w ) ∥ = ( f ( ⃗ v + ⃗ w), f ( ⃗ v +⃗ w))

 

=    2                              2 ∥ f ( ⃗ v ) ∥ + 2 ( f ( ⃗ v ) , f ( ⃗ w )) + ∥ f ( ⃗ w ) ∥

 

y, por otro lado,

 

∥      2        2                  2 ⃗ v + ⃗ w ∥ = ∥ ⃗ v ∥ + 2 ( ⃗ v , ⃗ w ) + ∥ ⃗ w ∥

 

Como f conserva la longitud de los vectores, ∥ f ( ⃗ v + ⃗ w)∥ = ∥ ⃗ v +⃗ w∥, ∥ f ( ⃗ v)∥ = ∥ ⃗ v∥, ∥ f (⃗ w)∥ =

∥⃗ w∥, entonces, igualando términos en las expresiones anteriores, se tiene que,

 

( f ( ⃗ v), f (⃗ w)) = ( ⃗ v, ⃗ w),

 

y se prueba que f es ortogonal.

□

 

■                     V                                                                     ■ Ejemplo 4.22 f = id es una transformación lineal ortogonal

 

■                              R Ejemplo2 4.23 Una rotación en (con centro en el origen de coordenadas) es una transformación lineal ortogonal.

Ya vimos en la Sección 2.2, (Ec.(2.2)) que la matriz de una rotación en un ángulo θ en sentido antihorario, respecto de una base ortonormal es

 

          

cos(θ )   −sen(θ)

R                 θ = ,                                  (4.29)

sen(θ )   cos(θ )
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Se verifica que ∀     2        2        2 ⃗ v ∈ ∥ ∥ R , R ⃗ v ∥ = ∥ ⃗ v                                                    ■

 

■                  R Ejemplo2 4.24 En cualquier simetría con respecto a un subespacio vectorial unidimensional es una transformación lineal ortogonal.

En el caso de simetría respecto del eje x, en la base canónica, la matriz es

 

     

1   0

S =        ,                                           (4.30)

0 −1

■

 

i

En 2 R las únicas transformaciones ortogonales son las rotaciones y las simetrías, mientras que en   3 hay más posibilidades de tener transformaciones lineales ortogonales que en

R

R . 2

Para estudiar todas las posibles transformaciones lineales ortogonales se deben analizar los autovalores.

Puede demostrarse que toda transformación lineal f que transforma al menos una base ortonormal en una base ortonormal, es ortogonal.

 

■                   R Ejemplo3 4.25 En la simetría con respecto a una recta, como se muestra en la Figura 4.9. La matriz de la transformación en la base {⃗ u 1,⃗ u2,⃗ u3} es

 

       

1   0    0

        0 − 1 0                

0   0   −1

■

 

Proposición 4.6.6 Los autovalores reales de una transformación lineal ortogonal son iguales a 1

o a −1.

 

Demostración:

 

Si λ es un autovalor real de una transformación ortogonal, con autovector ⃗ v, se tiene 4.6 Endomorfismos de espacios vectoriales con producto interno 199

 

Figura 4.9: Simetría con respecto a una recta

[image: ]

 

(                                       2 ⃗ v ,⃗ v ) = ( f ( ⃗ v ) , f ( ⃗ v )) = ( λ ⃗ v , λ⃗ v ) = λ ( ⃗ v,⃗ v)

 

Por lo tanto   2 λ = 1 y λ = + − 1.

□

 

i

Una transformación lineal que cumple las condiciones anteriores se dice unitaria si V es un C espacio vectorial y ortogonal si V es un R espacio vectorial.

 

f es unitaria (ortogonal) ←→ ( f )B es unitaria (ortogonal)

 

Cuando A es simétrica y no demasiado grande, los algoritmos de computadora modernos que se usan actualmente calculan con gran precisión vectores y valores propios. Esos algoritmos aplican a A una sucesión de transformaciones de semejanza en las que intervienen matrices ortogonales. El uso de matrices ortogonales evita que los errores numéricos se acumulen durante el proceso. Cuando A es simétrica, la sucesión de matrices ortogonales se combina para formar una matriz ortogonal cuyas columnas son vectores propios de A. Una matriz no simétrica no puede tener un conjunto completo de vectores propios ortogonales, por lo que se necesitan técnicas no ortogonales para calcular los vectores propios.
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Cuando una matriz A tiene n vectores propios ortogonales se llama descomposición espectral de A a la expresión

 

A     t                   t                             t = λ1 ⃗ u ⃗ u λ   ⃗ 1 1 + 2             λ ⃗ u u + · · · + 2 2          n ⃗ u ⃗ u . n n

La matriz A queda dividida en partes determinadas por el espectro, y cada término es una matriz de rango 1. Entre las aplicaciones de esta descomposición está la compresión de imágenes, que se realiza considerando k términos en lugar de n, con k < n.
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Figura 4.10
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4.7   Actividades propuestas

 

Problema de Aplicación 4 De acuerdo con la segunda ley de Kepler, un cometa debería tener una órbita elíptica, parábolica o hiperbólica (despreciando las atracciones gravitacionales de los planetas). En convenientes coordenadas polares, la posición (r,ϑ ) de un cometa satisface una ecuación de la forma:

 

r = β + e(r.cos(ϑ ))

 

donde β es una constante y e es la excentricidad de la órbita (con 0 ≤ e ≤ 1 para una elipse, e=1 para una parábola, y e ≥ 1 para una hipérbola). Suponga que los siguientes datos corresponden a las observaciones de un cometa recién descubierto.

 

ϑ   0.88 1.10   1.42   1.77   2.14 r      3.00   2.30   1.65   1.25   1.01

 

Determine el tipo de órbita mediante un ajuste por cuadrados mínimos. Describa el sistema

de ecuaciones normales (Ecs.(4.11)). Realice un gráfico e indique dónde estará el cometa cuando ϑ = 4.6 radianes.
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4.7.1   Ejercicios

 

Ejercicio 4.1

Sea E un espacio Euclídeo, si ⃗ x,⃗ y y⃗ z son vectores de E, desarrolle la siguiente expresión: ( ⃗ x +⃗ z,⃗ x −

⃗ z +⃗ y)

Ejercicio 4.2

Calcule la distancia entre los vectores                                       3 ⃗ u = ( 2 , i , 1 − i ) y ⃗ v = ( − i , 0 , 4 i ) en C con el producto interno canónico.

Ejercicio 4.3

Pruebe que las siguientes funciones definen productos internos sobre los espacios vectoriales considerados:

a) ( ·, ·): C [0,1]×                             R 1 C [ 0 , 1 ] → R , ( f ( x ) , g ( x )) = f (x)g(x)dx. 0

b)        n×n     n×n                      ∗                         ∗ ( · , · ) : K × K → K , ( A , B ) = tr ( A . B ) , con K = R y K = C ( B es la matriz traspuesta conjugada de B).

Ejercicio 4.4

Determine para qué valores de α ∈ R:

 

φ ((x x    y             −   y 1 , 2 ) , ( x 1 , y x 2 )) = y − x y 1 1 1 2 21 + α x y 22

 

es un producto interno en   2 R.

Ejercicio 4.5

Sean ⃗ u1 = (−2, −1,1),⃗ u2 = (0, −1,0) y ⃗ u3 = (1,−1, 0) tres vectores linealmente independientes de R . Si definimos el producto escalar en 3                                          3 R afirmando que {⃗ u1 u ,⃗2 u ,⃗ } es una base ortonormal. ¿Cuál

3

sería la expresión analítica de este producto escalar en la base canónica de   3 R?

 

Ejercicio 4.6

Demuestre que       2×2 Q ∈ R   es una matriz de rotación puesto que Q es ortogonal y además su

          

cos(φ)   − sin(φ )

determinante vale 1. Q =                   

sin(φ )    cos(φ )

 

Ejercicio 4.7

 

En (2)                                                             R 1 P [ x] se define el producto escalar: φ ( p( x) , q( x)) = p(x )q(x ) R                                      −        dx 1 Pruebe que el conjunto   1   2 1 , x , ( 3 x − 1) es ortogonal.

3
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Ejercicio 4.8

      

Dada la matriz simétrica 1   −2                                     − 1  A  =      construya una matriz ortogonal  T  tal que  (  TAT )

− 2 1

sea una matriz diagonal. Verifique también que   −1     t T = T y que el determinante de T es igual a 1. Obtenga asímismo la matriz diagonal    −1 ( TAT ).

Ejercicio 4.9

Halle una base ortogonal de   3                                                          u R-con el producto interno canónico- que contenga al vector ⃗ = ( 1, −1, 2).

Ejercicio 4.10

Sea

        

1   −2   0

A          = − 2 2 − 2

        

        

0   −2   3

 

a) Halle una base ortonormal de autovectores de A.

b) Halle una matriz                      t P ortogonal tal que P AP sea diagonal.

Ejercicio 4.11

Sea                                        3 B = { ( 1 , 0 , 1 ) , ( 2 , 0 , 1 ) , ( 1 , 1 , 0 ) } una base de R . Considere el producto interno canónico y utilice Gram-Schmidt para hallar a partir de              ′ B una base B que sea ortonormal. Calcule las coordenadas de ⃗                      ′ v = ( 2 , − 1 , 3 ) en la base B. Utilice sus resultados para encontrar la factorización A = QR. Puede chequear sus resultados utilizando el siguiente programa Python:

 

import numpy as np

# Definimos la matriz

A = np. array ([[4 , 3, 1] ,

[2 , 1, 3] ,

[1 , 1, 1]])

# Realizamos la descomposici ón QR

Q, R = np. linalg .qr(A)

# Imprimimos las matrices Q y R

print ( " Matriz Q:")

print (Q)

print ( " Matriz R:")
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print (R)

 

Ejercicio 4.12

 

Demuestre que S={⃗ u1,⃗ u2,⃗ u3} es un conjunto ortogonal donde

 

                         1 3 − 1 − 6

2

⃗                             u 1     1 = , ⃗ u = 2 , ⃗ u = − 2 , ⃗ y = 1                         2 3

                        

1                              7 1              −8

2

Exprese el vector ⃗ y como combinación lineal del conjunto S. Recuerde que las coordenadas se calculan como      ⃗ y.⃗ u j c j = con j = 1, 2,3 por ser una base ortogonal.

u ⃗ j.⃗ uj

 

Ejercicio 4.13

Calcule la distancia de un punto        3 ⃗ y en                                  { R a un subespacio W generado poru ⃗1 u , ⃗ } sabiendo que el

2

punto más cercano se calcula como ∥⃗ y − y ˆ∥, donde ˆ y = proyw⃗ y.

                   

− 1          5           1

⃗                       y = − 5 , ⃗ u = − 2 , ⃗ u = 2                     1 2

                   

10              −1             −1

Ejercicio 4.14

Halle el complemento ortogonal para el subespacio de V :

V    3                        3 = R , S = { ( x 1 x , 2 x , 3     R ) ∈,2x1    x −2    0 =} con el producto interno canónico.

Ejercicio 4.15

 

Demuestre que el conjunto S = {cos(nx),sen(mx)}n,m∈ es linealmente independiente en C([0,2π]). N Sugerencia: observar que

 

Z                   Z 2 π 2π

cos2                         2 ( nx ) dx ̸ = 0 , sen(mx)dx ̸= 0,   n,m ∈

N

0                         0

y

 

Z                       Z                       Z 2 π 2 π 2π

cos(nx)cos(mx)dx =       cos(nx)sen(mx)dx =       sen(nx)sen(mx)dx = 0

0                               0                               0

si n ̸= m, n,m ∈ N
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Ejercicio 4.16

Halle   ∗ T para cada una de las transformaciones lineales siguientes:

a)      2      2 T : R → R, T ((x1 ,x2)) = (3x1 + x2 ,−x1 + x2 ).

      

1 0   1

b)      3      3                                 T : R → R , tal que [ T ] = 2 0 − 1, donde B = {(1, 2,−1), (1, 0,0),(0,1,1)}.

B          

      

0 1   0

 

Ejercicio 4.17

Determine si los siguientes endomorfismos definidos sobre   3 R son autoadjuntos:

a) T ((x, y, z)) = (x + y,x, −z)

b) S ((x,y, z)) = (−2x + 2z,y,2x)

Ejercicio 4.18

Encuentre en cada caso una matriz       n×n                        t O ∈ ortogonal tal que O . A . O R                sea diagonal

     

1   3

a) A =        

3 −1

        

5    0   −2

b)              A = 0 7 − 2

        

        

−2 −2 6

 

Ejercicio 4.19

          

4    1    i   0

          

           1 3 2 i 0

Dada A =                

           − i − 2 i 3 i

          

0    1    −i 2

 

encuentre una matriz       n×n                      ∗ U ∈ C   ortogonal tal que UAU sea diagonal.

Ejercicio 4.20

Halle la matriz en la base canónica de las siguientes transformaciones ortogonales

a)      2      2                              π T : → R   R , rotación de un ángulo de .

4

b)      2      2 → T : R R, simetría respecto de la recta x1 = x2.
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Ejercicio 4.21

 

Sea V un espacio vectorial y sea (·,·) un producto interno sobre V . Pruebe

a) (⃗ x,⃗ y +⃗ z) = ( ⃗ x,⃗ y) + ( ⃗ x,⃗ z)

b) ( ⃗ x,c ⃗ y) = c(⃗ x,⃗ y)

c) (⃗ x,⃗ y) = ( ⃗ x,⃗ z)   ∀ ⃗ x ∈ V ⇒ ⃗ y =⃗ z

Ejercicio 4.22

 

Sea V un espacio vectorial con producto interno (·,·). Pruebe que |( ⃗ x,⃗ y)| = ∥ ⃗ x∥ ∥ ⃗ y∥ sí y sólo sí { ⃗ x,⃗ y} es un conjunto linealmente dependiente.

Ejercicio 4.23

 

Pruebe que dos vectores ⃗ x e ⃗ y son ortogonales, si

∥      2        2        2 ⃗ x + ⃗ y ∥ = ∥ ⃗ x ∥ + ∥ ⃗ y ∥

Ejercicio 4.24

Sea V un espacio vectorial sobre K de dimensión finita con producto interno (·, ·). Sea T ∈ L(V ) biyectiva. Considerar la aplicación (·, ·)T : V ×V → K, ( ⃗ x,⃗ y)T = (T ( ⃗ x),T (⃗ y)), ∀ ⃗ x,⃗ y ∈ V Pruebe que ( ·, ·)T también es un producto interno sobre V .

Ejercicio 4.25

Sea      2×2           2     2                              t A ∈ R . Sea φ : × → x y y A x R   R   R definida por φ ( , ) = . .. Pruebe que φ es un producto

interno sobre   2                    t      ≥ R sí y sólo sí A = A , a 11 0 y Det (A) ≥ 0.

Ejercicio 4.26

 

Sea V un C-espacio vectorial con producto interno (·,·) y sea T ∈ L(V ) sobre C. Pruebe que si λ es autovalor de                                   ∗ T , entonces λ es un autovalor de T.

Ejercicio 4.27

 

Sea V un                                   · · C-espacio vectorial con producto interno ( ,) y sea T ∈ L(V ) sobre C autoadjunta. Pruebe que:

a) si λ es autovalor de T , entonces λ ∈ R.

b) Si ⃗ v i es autovector asociado al autovalor λi de T (para i = 1,2) y λ ̸                 v 1 = λ 2 , entonces ( ⃗1, ⃗ v 2) = 0.

Ejercicio 4.28

 

Sea V un espacio vectorial de dimensión finita con producto interno y sean S y T ∈ L(V ). Si k ∈ K, pruebe:

a)         ∗     ∗     ∗ ( S + T ) = S + T
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b)      ∗       ∗ ( kT ) = kT

c)      ∗      ∗ ∗ ( ST ) = T S

 

4.7.2   Autoevaluación

 

Verdadero o Falso

 

1. El subespacio imagen de una transformación lineal es ortogonal a su núcleo.

2. El vector nulo es ortogonal a todo vector en   n R .

3. Sean W un plano a través del origen en   3 R y L la recta que pasa por el origen y es perpendicular

a W. Entonces ⊥        ⊥ L = W y W = L.

4.            ⃗ x · ⃗ v T ( ⃗ x ) = ( ) ⃗ v es una transformación de proyección.

⃗ v · ⃗ v

5. Una matriz cuadrada            −1     t U tal que U = U se denomina ortogonal.

6. Si U es ortonormal tanto las filas como las columnas de U son ortonormales.

7. En la factorización QR el hecho de que R sea invertible es consecuencia directa de que las

columnas de A sean linealmente independientes.

8. Si { ⃗ v1,⃗ v2,⃗ v } 3 es una base ortogonal para W, entonces la multiplicación de ⃗ v3 por un escalar,

da una nueva base ortogonal { ⃗ v1,⃗ v2,3 ⃗ v3}.

9. Si                                                             t A = QR , donde Q tiene columnas ortonormales, entonces R= Q A.

10. Si ⃗ x no esta en un subespacio W , entonces ⃗ x − P w ⃗ x no es el vector nulo.

11. Un espacio vectorial con un producto escalar se dice que es un espacio vectorial euclídeo.

12. Si Q es ortogonal se cumple que la norma de ⃗ x es igual a la norma de Q ⃗ x.

13. Todo conjunto ortogonal de un espacio euclídeo es linealmente dependiente.

14. El determinante de una matriz ortogonal es 1 ó −1.

15. El producto de dos matrices ortogonales es la matriz identidad.

16. Descomponer un vector ⃗ y en una suma de proyecciones ortogonales sobre espacios unidimensionales

es la esencia del proceso de Gram-Smith.

17.                         ⊥ dimV = dimW + dimW ( W un subespacio de V ).

18. d      2           2        2       2 ( ⃗ u , − ⃗ v ) = ∥ ⃗ u + ⃗ v ∥ = ∥ ⃗ u ∥ + ∥ ⃗ v ∥ + 2(⃗ u,⃗ v).




[image: ]

5. Formas bilineales y cuadráticas

 

En este capítulo se dará una breve introducción al tema enfocada a mostrar aplicaciones de la diagonalización de las matrices de las formas bilineales y cuadráticas en el estudio de secciones cónicas y superficies cuádricas.

 

5.1   Formas bilineales y cuadráticas

La ecuación general de una cónica está dada por una ecuación de segundo grado de la forma

 

a   2                   2 11 x + a x + a 1     12 1 x 2     22 x + a 2     1x1 + a2 x2 + a = 0,                                        (5.1)

 

donde ai j , ai (i, j = 1, 2) y a son números reales y al menos uno de los números ai j no es cero. La parte principal es:

 

a   2                 2 11 x + a 12 xy + a 22 y                                                                 (5.2)

 

y puede escribirse

 

 

P         2                                 x 2 ( x , y ) = a 11 x + a 12 xy + a 22 y = ( x , y ) A   ,                                   (5.3)

y

 

donde A es la matriz simétrica,

        

a11    a12 /2

A =            .                                    (5.4)

a       a 12 / 222

210 Capítulo 5. Formas bilineales y cuadráticas

 

Y su generalización a   n                                     n R , dado ⃗ x = ( x 1 x , 2 x , · · · ∈ 3      x , , n     R ), es

 

   

x1

        x 2

   

P                     ( ⃗ x ) = ( x 1 x , 2 x , 3      x , · · · , n     x ) A                                          (5.5)

3 

        · · ·

       

xn

 

donde                          n×n A es una matriz simétrica ∈ R .

Análogamente al caso n = 2, para n = 3 se obtienen superficies de segundo grado.

 

Los dos ejemplos anteriores corresponden a                          2         n formas cuadráticas (en R y en R ), y son casos particulares de formas bilineales, las que se definen a continuación.

 

Definición 5.1.1 Forma bilineal

Sea V un espacio vectorial sobre R o C. Una aplicación A : V × V → R (o C) se dice que es

una forma bilineal si y solo si satisface:

 

1. A( ⃗ x +⃗ z,⃗ y) = A(⃗ x,⃗ y) + A( ⃗ z,⃗ y), ∀ ⃗ x, ⃗ y,⃗ z ∈ V

 

2. A(α⃗ x,⃗ y) = αA( ⃗ x,⃗ y) ∀ ⃗ x, ⃗ y ∈ V y ∀ α ∈ R o C

 

3. A( ⃗ x,⃗ y +⃗ z) = A(⃗ x,⃗ y) + A( ⃗ x,⃗ z), ∀ ⃗ x, ⃗ y,⃗ z ∈ V

 

4. A( ⃗ x,β⃗ y) = β A( ⃗ x,⃗ y) ∀ ⃗ x, ⃗ y y ∀ β ∈ R o C

 

i   Los productos internos reales son formas bilineales.

 

■               E Ejemplo 5.1 un espacio euclídeo de dimensión finita, y T una aplicación lineal de E en E. Puede demostrarse que A( ⃗ x,⃗ y) = ( ⃗ x,T⃗ y) es una forma bilineal. ■
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■ Ejemplo 5.2 Dados

⃗                                         n x = ( x 1   2   3        n           1   2   3       n     R , x , x , · · · , x ) e ⃗ y = ( y , y , y , · · · , y ) ∈, el producto

   

y 1

        y 2    

(                         x 1 , x 2 , x 3, · · · , x n     y ) A

3 

        · · ·        

y n

donde                          n×n A es una matriz simétrica ∈ R , es una forma bilineal.

 

La forma cuadrática en   n R de la Ec.(5.5) presentada antes sale de tomar para este caso ⃗ x =⃗ y. ■

 

i

Una forma bilineal se dice simétrica si A( ⃗ x,⃗ y) = A( ⃗ y,⃗ x) Una forma bilineal se dice antisimétrica si A( ⃗ x,⃗ y) = −A( ⃗ y,⃗ x)

 

Definición 5.1.2 Matriz de una forma bilineal

 

Sea A una forma bilineal en un espacio V y sea B = { ⃗ e1,⃗ e2,· · · ,⃗ en} una base de V .

 

Si       n                n ⃗ x = ∑ x i         i e ⃗ , e ⃗ y =      e =    i 1       ∑   y j          j    j , ⃗

=1

 

n        n

A( ⃗ x,⃗ y) = A(   x ⃗ e ∑ ii,    y ⃗ e ) ∑ j j

i=1      j=1

n   n

=     x y     ) ∑ ∑ i j A ( ⃗ e i ,⃗ e j

i =1 j=1

 

Se define la matriz de la forma bilineal                                       n×n A en la base B como la matriz A ∈ R tal que

Ai j = A( ⃗ ei,⃗ e j) para 1 ≤ i, j ≤ n

 

i

Si A( ⃗ x,⃗ y) = A( ⃗ y,⃗ x) (es decir A es una forma bilineal simétrica), entonces A( ⃗ e ,⃗ i e ) = j A( ⃗ e j ,⃗ ei) para cualquier base { ⃗ e1,⃗ e2, · · · ,⃗ en} de V , es decir la matriz de una forma bilineal A simétrica en cualquier base es simétrica. Vale también la recíproca: si la matriz de 212 Capítulo 5. Formas bilineales y cuadráticas

 

una forma bilineal es simétrica en alguna base {⃗ e 1,⃗ e2, · · · ,⃗ e } n de V , entonces la forma bilineal es simétrica, pues

 

n

A( ⃗ y,⃗ x)   =      A( ⃗ e ∑i,⃗ ej)yixj

i, j=1

n

=    a ∑i jyixj

i, j=1

n

=    a ∑ ji xjyi

i, j=1

n

=    A( ⃗ e ∑j,⃗ ei)x jyi

i, j=1

= A( ⃗ x,⃗ y)

 

Si A es una forma bilineal antisimétrica, A( ⃗ x,⃗ y) = −A( ⃗ y,⃗ x) para cualquier base {⃗ e1,⃗ e2,· · · ,⃗ en} de V . La matriz satisface a i j = −a ji, de donde aii = 0, i = 1, · · · , n.

 

Si A es la matriz de una forma bilineal respecto a la base B = { ⃗ e1,⃗ e2,· · · ,⃗ en} y ˜ A con respecto a la base ˜                                    T ˜ B = { ⃗ u 1 ,⃗ u 2 , · · · ,⃗ u n } , entonces A = C AC, donde C es la matriz de cambio de base de B a ˜ B. Tienen el mismo rango ˜ A y A, ya que det(C) ̸= 0.

 

El rango de una forma bilineal es el rango que tiene la matriz de la forma bilineal en cualquier base.

 

Proposición 5.1.1 Toda forma bilineal puede ser representada como la suma de una forma bilineal

simétrica y una forma bilineal antisimétrica.

 

Demostración:

 

Sea A una forma bilineal definida en V y sea B : V × V → K definida así

 

B( ⃗ x,⃗ y) = A( ⃗ x,⃗ y) + A( ⃗ y,⃗ x)

 

y sea C : V ×V → K

C( ⃗ x,⃗ y) = A(⃗ x,⃗ y) − A( ⃗ y,⃗ x)

 

2A( ⃗ x,⃗ y) = B( ⃗ x,⃗ y) + C( ⃗ x,⃗ y)
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B( ⃗ x,⃗ y)   C( ⃗ x,⃗ y)

A( ⃗ x,⃗ y) =       +

2        2

donde

 

B(⃗ y,⃗ x) = A( ⃗ y,⃗ x) + A(⃗ x,⃗ y) = B( ⃗ x,⃗ y)

 

C( ⃗ y,⃗ x) = A(⃗ y,⃗ x) − A( ⃗ x,⃗ y) = −C( ⃗ x,⃗ y)

 

Esto es similar a lo que ocurre con una matriz A, que puede expresarse,

A   T         T + A A − A

A =      +

2        2

donde A   T                          T + A A − A es simétrica y antisimétrica.

2                      2

□

 

Definición 5.1.3 Forma cuadrática

 

Dada A : V ×V →                         forma cuadrática R una forma bilineal, se define una Q : V → R, Q( ⃗ x) = A( ⃗ x,⃗ x).

 

■ Ejemplo 5.3

Q        2                   2 ( x 1 x , 2     a ) = 11 x + a 1     12x 1x 2    a + 22x

2

■

Usando la matriz P definida antes, Ec.(5.3) una forma cuadrática se escribe,

 

Q                      T ( ⃗ x ) = ( x 1 , x 2, x 3 , · · · , x n      1 ) P ( x , x 2, x 3 , · · · , x ). n

 

En general, toda expresión de la forma

n   n

Q( ⃗ x) =      a x x ∑ ∑ i j i j

j=1i ≤ j

 

en un espacio vectorial define una forma cuadrática, ya que alcanza con tomar la forma bilineal

 

n            n   n              n   n a a

A                i j                                     i j ( ⃗ x ,⃗ y ) = a ∑ ∑ ∑ ∑ ∑ ii   i   i                           i   j                            j   i x y + x y + x y
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con      n                n ⃗ x = ∑ x y i         i e ⃗ e ⃗ =   y ⃗ e .

=    i                              j 1 ∑ j   j = 1

 

i Un ejemplo de forma bilineal es el tensor de inercia, I( ⃗ x,⃗ y). Gran parte de su interés radica en

que I(ω , ω) da la energía de rotación cuando la velocidad angular es ω.

 

5.1.1   Formas cuadráticas. Aplicación a las secciones cónicas

La Ec.(5.1) se reescribe,

 

Q        2                   2 ( x 1 , x 2 ) = a 11 x + a x + a x 1     12 1x

2     22 2

y también en forma matricial,

                       

                           a a x / 2 x

x1   x2                         + 11      12            1                          1 a                  =             (5.6) 1 a2        + a   0

a12 /2    a22        x2                     x2

 

xTAx + Kx + a = 0 (5.7)

 

donde

 

x                      

x =     ,    K = a1 a                                    (5.8) 2

y

 

Con esta notación, la forma cuadrática asociada a la Ec.(5.7) es T xAx. La matriz simétrica A se

denomina                           T matriz de la forma cuadrática xAx.

 

■ Ejemplo 5.4 En la ecuación,

 

3 2               2 x + 5 x x − 7 x    x      = 0, + 2 + 7                                                   (5.9)

1      1 2      2      1

 

la matriz de la forma cuadrática es,

      

3    5/2

      .

5/2   7
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mientras que para la ecuación

 

8 2      2 x − 4 x = 0,                                                                  (5.10)

1      2

la matriz de la forma cuadrática es,

     

8   0

     .

0 −4

■

 

Para una cónica C con ecuación (5.7) es posible hacer girar los ejes de coordenadas x1x2 de modo que la ecuación de la cónica, en el sistema de coordenadas ′    ′ x x , no tenga término con producto

1 2

cruzado.

Se halla una matriz                                                  t O que diagonaliza ortogonalmente a A , A = ODO . Se intercambian sus columnas en el caso que el Det(O) ̸= 1 para asegurar que la transformación de coordenadas sea una rotación.

 

x      ′ = O x

Para obtener la ecuación en el sistema ′    ′ x x se sustituye la ecuación anterior en la Ec.(5.7).

1 2

 

( ′   t     t           ′                ′ x ) O AOx + KOx + a = 0                                                                   (5.11)

     

t                      λ1   0

Como O diagonaliza ortogonalmente a la matriz A, O AO =          , donde λ1 y λ2 son

0   λ2

los autovalores de A. Por lo tanto, la ecuación (5.11) reescribir como

 

                          

 

                    ′                                                                                      ′ λ 1 0 x o o x ′ ′ 1 11 12 1 x x     + a a  + 1 2 1 2   a = 0 (5.12) ′ ′ 0 λ 2 x o 21 o 22 x 2 2

o bien

 

λ1( ′    2              ′    2        ′    ′         ′    ′ x ) + λ ( x ) + a x + a x + a = 0

1       2   2       1 1     2 2

 

donde ′                                              ′ a = a 1 o 11 + a 2 o 21 y a = a1 o12 + a2 o22 .

1                       2

 

El análisis anterior se resume en el Teorema siguiente:
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Figura 5.1: Elipse
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Teorema 5.1.2                                    2 Teorema de los ejes principales para R..

Sea

 

a   2                   2 11x + a x + a x + a 1     12 1x 2     22           + a 2     1 x 1     2 x2 + a = 0,                                    (5.13)

 

la ecuación de una cónica C, y supongamos que

 

xT         2               2 Ax = a x + a a x x x +

11 1     12 1 2     22 2

es la forma cuadrática asociada. Entonces, es posible girar los ejes de coordenadas de modo que

la ecuación para                                        ′   ′ C en el nuevo sistema de coordenadas x y tenga la forma

 

λ1 x′2          ′2      ′   ′      ′   ′ + λ x x a y 1      2    + a + + a = 0

2      1       2

donde λ1 y λ2 son los autovalores de A. Se puede llevar a cabo la rotación por medio de la

sustitución         ′ x = O x, donde O diagonaliza a A y Det(O) = 1.

 

Si A es una matriz no diagonal, la gráfica está girada hasta salirse de la posición estándar, como 5.1 Formas bilineales y cuadráticas 217

 

Figura 5.2: Hipérbola
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en las Figuras 5.1 y 5.2. Encontrar los ejes principales (determinados por los vectores propios de A) equivale a encontrar un nuevo sistema de coordenadas con respecto al cual la gráfica está en posición estándar.

 

5.1.2   Formas cuadráticas: aplicación a las superficies cuádricas

Sea

 

a   2                              2                   2 x x a x + a x a x x + a x x a x      x + a x +   x + a + + + + a a = 0      (5.14)

11 1     12 1 2     13 1 3     22 2     23 2 3     33 3     1 1     2 2     3 3

 

donde ai j , ai (i , j = 1, 3) y a son números reales y al menos uno de los números ai j no es cero. La parte principal

 

a   2                              2                   2 11 x + a x 1     12 1x 2 + a 13x 1x 3 + a 22x + a x + 2     23 2 x 3    a 33 x

3

 

es la forma cuadrática asociada.
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Figura 5.3: Formas cuadráticas. a) Definida Positiva. b) Definida Negativa. c) Indefinida

[image: ]

 

                         

a11    a12/2   a13/2       x                         x

x   y   z    a12 /                           2 a22 a23 / 2 + + = 0 (5.15)               y a 1 a 2 a 3 y a

                         

a13/2   a23/2    a33        z                         z

 

Se tiene el Teorema siguiente:

 

Teorema 5.1.3                                    3 Teorema de los ejes principales para R .

Sea

 

a   2                              2                   2 11x + a x x x x 1     12 1 2    a + 13 1 3    a + 22 x + a x + a x   a x +   x + a x +   =    (5.16) 2     23 x 2 3     33                             a + 0 3     1 1   a

2 2     3 3

 

la ecuación de una cónica C, y supongamos que

 

xT         2                        2               2 Ax = a x + a x + x + x x x + a x x a a + a x

11 1     12 1 2     13 1 3     22 2     23 2 3     33 3

es la forma cuadrática asociada. Entonces se puede hacer girar los ejes de coordenadas de modo

que la ecuación para                                        ′    ′    ′ C en el nuevo sistema de coordenadas x x x tenga la forma

1 2 3

 

λ1x ′2          ′             ′2      ′   ′       ′   ′           ′ + 1    λ2 x 2 2    λ + 3 x + a x + a x + a x + a = 0

3      1 1     2 2     3 3

donde                                                  2 λ1 , λ2 y λ 3 son los autovalores de A . Como en el caso de R se puede llevar a cabo la

rotación por medio de la sustitución        ′ x = O x, donde O diagonaliza a A y Det (O) = 1.

 

Este teorema sugiere el procedimiento para eleminar los términos de productos cruzados de una

ecuación cuadrática en x1, x2 y x3. Y lo veremos con un ejemplo.
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■ Ejemplo 5.5 Se desea describir la superficie cuádrica cuya ecuación es

 

4 2                        2               2 x + 4 x + 4 x x 4 − =                                        (5.17) 1      1 x 2      1 3 + 4 x + 4 x x x 3 0 2      2 3 +

3

 

La forma matricial de la ecuación cuadrática anterior es

 

xTAx − 3 = 0 (5.18)

 

donde

 

      

4 2 2

A        = 2 4 2                                    (5.19)       

      

2 2 4

 

Los autovalores de A son λ1 = λ2 = 2 y λ3 = 8, y A es diagonalizada ortogonalmente por la matriz

 

               √ √ √

−1/ 2 −1/ 6 1/ 3

               √ √ √

O =  1/ 2 −1/ 6 1/ 3  (5.20)

               √ √

0      2/ 6   1/ 3

 

donde las dos primeras columnas de O son los autovectores correspondientes a λ1 = λ2 = 2 mientras que la tercer columna es un autovector correspondiente a λ3 = 8. Se puede verificar que Det (O) = 1 por lo que la transformación de coordenadas        ′ x = O x es una rotación.

Al sustituir en la Ec.(5.18) se obtiene

 

xT     T        ′   ′ ODO x − 3 = x Dx − 3 = 0                                          (5.21)

 

Y como

 

      

2 0 0

D   t                            = O AO = 0 2 0                                                        (5.22)       

      

0 0 8
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         ′ 2 0 0

x

x ′                                 ′ ′ ′ y z 0 2 0 y − 3 = 0                                       (5.23)                  

0             ′ 0 8 z

 

o bien

 

2 ′    2            ′   2            ′   2 ( x ) + 2 ( x ) + 8 ( x ) − 3 = 0                                                                        (5.24)

1         2         3

 

que puede reescribirse

 

( ′    2           ′   2          ′   2 x ) ( x ) ( x )

1         2        3 + +   = 1                                                          (5.25)

3/2    3/2    3/8

 

y es la ecuación de un elipsoide. ■

 

i Las superficies cuádricas han sido representadas en varios edificios contemporáneos. Algunos

de ellos son: Puente Juscelino Kubitschek, Brasilia (Brasil), Centro Nacional de las Artes Escénicas, Pekín (China), L’Oceanogràfic, Valencia (España).

 

Formas cuadráticas y valores propios

Cuando                                           T A es una matriz de n × n , la forma cuadrática Q ( x ) = xAx es una función de valores

reales con dominio   n R. Se distinguen varias clases importantes de formas cuadráticas por el tipo de valores que asumen para diversos x.

En la Figura 5.3 se muestran las gráficas de tres formas cuadráticas. Para cada punto x = (x1,x2) del dominio de una forma cuadrática Q, se traza un punto (x 1, x2,z), donde z = Q(x). Observe que

excepto en x = 0, todos los valores de Q(x) son positivos en la Figura 5.3(a) y negativos en la

Figura 5.3(b). En la Figura 5.3(c), en cambio, toma valores positivos y negativos. De acuerdo a los autovalores de A se tiene lo siguiente:

Sea                                                      T A una matriz simétrica de n × n . Entonces una forma cuadrática xAx es:

definida positiva si, y sólo si, todos los valores propios de A son positivos, definida negativa si, y sólo si, todos los valores propios de A son negativos, o

indefinida si, y sólo si, A tiene valores propios tanto positivos como negativos 5.1 Formas bilineales y cuadráticas 221

 

i Una de las aplicaciones más conocidas es el estudio de extremos relativos de funciones de

varias variables. En ese caso se calculan los autovalores de la matriz Hessiana en los puntos estacionarios. Corresponde a un mínimo local en caso de ser definida positiva, a un máximo local en caso de definida negativa y a un punto silla si es indefinida.
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Figura 5.4

[image: ]

 

5.2   Actividades propuestas

Problema de Aplicación 5 Realice un cuadro conceptual donde describa las diferentes superficies cuádricas a partir de la diagonalización de las matrices de las formas bilineales y cuadráticas correspondientes. Indique cuáles de ellas tienen centro, cuáles no, cuáles son degeneradas, y qué significa ese término. Investigue además, qué característica de los paraboloides hace que los radiotelescopios usen esa forma para sus antenas. Complemente con imágenes de antenas de algún radiotelescopio y sus características físicas. Se propone la presentación oral del trabajo con el fin de contribuir al desarrollo de habilidades y capacidades del estudiante (15 minutos máximo).

 

5.2.1   Ejercicios

 

Ejercicio 5.1

 

Encuentre la matriz asociada a la forma bilineal A( ⃗ x,⃗ y) = x 1y1 − x1y2 +2x2y1 + 6x2y2 −3x1y3 + x3y3 y calcule su rango.

Ejercicio 5.2

Convierta la forma bilineal del ejercicio anterior en una forma cuadrática reemplazando ( ⃗ x = ⃗ y). Calcule su nueva matriz asociada.

Ejercicio 5.3

Dado que la matriz asociada a una forma cuadrática es simétrica, haga una lista de todas las propiedades de las matrices simétricas.
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Figura 5.5: Beletsky alma. https://www.eso.org/public/images/beletsky alma 15-cc2/
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Ejercicio 5.4

 

Encuentre la forma canónica de la siguiente forma cuadrática:          2      2 − Q ( ⃗ x ) = x 3 x + 2x x + x 2 3 1 21x3

Ejercicio 5.5

 

Para la elipse 5 2      2 x + 5 x − 4x x     48, encuentre un cambio de variables por medio de calcular sus 1      2      1 2 =

valores y vectores propios unitarios tal que se elimine el producto cruzado de la ecuación.

 

Ejercicio 5.6

 

Especifique a qué cónica corresponden las siguientes ecuaciones y especifique su centro.

 

a) (x − 2            2     2 x 0 ) + ( y − y 0 ) = r

b)        2           2 ( x − 2 ) − ( y − 3 ) = 1

c) 2     2 x + y + 4x = 1

 

Ejercicio 5.7

 

Dada la ecuación de una cónica:    2               2 Ax + 2 Bxy + Cy + 2Dx + 2Ey + F = 0, encuentre su forma

matricial. Ayuda: si el elemento a11 es F, ¿cómo están relacionados los otros elementos de la matriz con la ecuación de la cónica?
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          

a11   a12   a13       1

1 x   y    a    a    a     x  =            0

21    22    23

          

a31   a32   a33       y

Datos extras: piense que las cónicas describen las órbitas. Ejemplo de órbitas elípticas pueden ser el asteroide numerado 433 conocido con el nombre de Eros, en la página de NEODyS (objetos cercanos al planeta Tierra) podrá encontrar muchos más. Como ejemplo de órbita hiperbólica podría ser el cometa C/2002 E2 Snyder-Murakami, y como ejemplo de órbita parabólica (excentricidad = 1) la del cometa C/2002 B2 LINEAR.

 

Ejercicio 5.8

Usando la matriz del ejercicio anterior, encuentre la forma de sus invariantes y especifique de qué tipo de cónica estamos hablando si   2 B − 4AC = 0

Ejercicio 5.9

Responda cómo están los ejes de las cónicas con respecto a los ejes coordenados según:

a) B = 0

b) B ̸= 0

Ejercicio 5.10

¿          2      2     2 Q ( ⃗ x ) = 3 x + 2 x + x + 4x x + 4x x es definida positiva?

1      2     3      1 2      2 3

 

5.2.2   Autoevaluación

 

Verdadero o Falso

 

Dada una matriz simétrica:

1. A es definida positiva si y solo si todos los valores propios de A son positivos.

2. A es definida negativa si y solo si los valores propios van alternando entre positivos y negativos.

3. A es indefinida si y solo si alguno de los valores propios es 0.

4. Es posible clasificar A por medio de su determinante.

5. Siempre existe un cambio ortogonal de la variable                         t            t x = P y tal que Q ( X ) = x A x = yDy =

λ1 2       2            2 x + λ2 x + ... + λn x, con λ1, λ2, .., λn los autovalores de A.

1       2            n

[image: ]

6. Cálculo tensorial

 

 

Este capítulo trata de una introducción al estudio de tensores (escalar, vector, tensor de segundo orden y de orden superior). Se expone la notación indicial por su simplicidad y facilidad de uso en las expresiones matemáticas. Se hace una revisión de las operaciones entre vectores, y de los sistemas de coordenadas rectangulares. Luego se plantean los sistemas de coordenadas curvilíneas, y la construcción de bases adecuadas. Para facilitar la comprensión de los temas se presentan ejemplos y aplicaciones. El objetivo de incorporar el cálculo tensorial es brindar al estudiante de Astronomía herramientas matemáticas que le resulten de utilidad para los cursos superiores de la carrera.

 

6.1   Invariancia y representación

Dado un espacio vectorial, la elección de la base es arbitraria. Una vez elegida la base, lo que se tiene es una representación del vector en una determinada base y por lo tanto, se tienen sus coordenadas.

Así para el vector                                                    ′ x = ( 1 , 2 , 3 ) , con las bases canónica, B y la base B = {(1/2, 0,0),(0,0, −2),(0,−1,0)} se tendrán dos representaciones,

 

x = 1 e1 + 2 e2 + 3 e3

y

 

x      ′                    ′              ′ = 2 e + 3 / 2 e − 1 e

1          2       3
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.

En general, en un espacio vectorial de dimensión N, una vez elegida la base B = {e1,e2, · · · , en}, cada vector                                                                           j x estará representado por un conjunto de n coordenadas representadas con λ

n

∑ j λ e j

j =1

pero el vector x es un invariante, ya que no depende de la base. De esta forma, dadas dos bases B               ′            ′      ′                ′ = { e 1 e , 2      e , · · · , } y B = { e , e , · · · , e } de un espacio vectorial V de dimensión n, para un vector

n             1   2        n

x se satisface la igualdad

n             n

∑ j                          i    ′ e λ   j = β e ∑ i

j=1          i=1

 

i A diferencia de los capítulos anteriores, en este capítulo los vectores se indicarán con trazo

resaltado.

 

6.2   Convenio de suma de Einstein

Albert Einstein, en 1916, propuso un criterio que permite escribir las sumas sin escribir los símbolos de sumatoria, dando origen a la notación indicial. Introdujo los dos convenios siguientes:

 

1. Para un espacio vectorial de dimensión N, los índices usados, ya sea como subíndices o como

supraíndices pueden tomar todos los valores de 1 a N, a no ser que se especifique lo contrario.

2. Si se repite un índice en un término, esto implica una suma con respecto a aquel índice desde

1 a N. El índice repetido se llama índice mudo.

 

Usando los convenios anteriores, un vector x puede expresarse, entonces,

 

x     j                  i     ′ = λ e j         β = e

i

 

En las expresiones anteriores i y j son índices mudos.

Así,

 

ai             1           2           3                     n a a · · · a = a + + + +

i             1           2           3                     n

 

Si los elementos i                                                                n×n a ∈ son los de una matriz A R, (el supraíndice i corresponde a la fila y el

j

subíndice                  i j a la columna), a es la traza de la matriz.
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■ Ejemplo 6.1 En la expresión

Ai jxi x j        i, j = 1, 2,3

no hay índice libre, tanto i como j son índices mudos, por lo que al sumar en i y en j, el resultado da un escalar. ■

 

i   Una de las ventajas de la notación indicial es que se tiene una expresión muy concisa. Así, un

sistema lineal de 3 ecuaciones con 3 incógnitas usando el convenio de suma se escribe:

 

ai jxj = bi       i, j = 1, 2,3.

 

6.3   Notación indicial

El sistema de coordenadas cartesianas rectangulares está definido por tres vectores, i, j, k que constituyen una base ortonormal. Es decir que se satisfacen dos propiedades: son vectores unitarios (longitud 1) y son ortogonales entre sí. El producto vectorial cumple la regla de la mano derecha: i × j = k, j × k = i y k × i = j.

 

La representación de un vector P en un sistema de coordenadas rectangulares es:

 

P = P xi + P yj + P zk (6.1)

 

que puede reescribirse de la forma

 

P = P 1e1 + P 2e2 + P 3e3 (6.2)

 

donde hemos considerado que P ≡ P x, P ≡      ≡ 1 2 P y , P 3 P z, e ≡ 1 i, e ≡ 2 j, e ≡ 3 k, como se indica en la

Figura 6.1.

La representación del vector P de la Ec.(6.2) se expresa con la notación indicial de la forma

siguiente ([18]):

 

P = P iei    (i = 1,2,3)                                                    (6.3)

 

6.3.1   Delta de Kronecker

El símbolo delta de Kronecker, está definido por

 



 1 si i = j,

δi j = (6.4)

 0 si i ̸= j.
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Figura 6.1: Vector en el sistema de coordenadas cartesianas

[image: ]

 

y coincide con el resultado de hacer el producto escalar entre los vectores de la base ortonormal ei, es decir que e i · e j = δi j . Exponiendo esto en forma explícita se tiene:

 

                   

e ·        · 1 e 1 e 1 e       · 2 e 1 e3           1   0   0

e                          i      j             2 e . e = · e 1   e 2 e · 2   e 2 e · = 3     0 1 0  i j δ =                       (6.5)

                   

e ·                · 3 e · 1 e 3 e 2 e 3 e3           0   0   1

 

Este símbolo δi j es llamado operador de sustitución , por la propiedad interesante que mostramos con un ejemplo.

Sea v un vector de componentes vi, entonces

 

δi j v i = δ1j v1 + δ2 jv2 + δ3j v3,

como j es un índice libre, se tiene:

 

Si j = 1, δi v 1i = δ v       v       v    v 11 1 + δ 21 2 + δ 31 3 =1
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Si j = 2, δi2vi = δ12v1 + δ22v2 +δ32v3 = v2

Si j = 3, δi3vi = δ11v1 + δ21v2 +δ31v3 = v3 de donde

δi j v i = v j

 

es decir, por la presencia de δi j se reemplaza en la componente vi, el índice i por el j. De ahí el nombre de operador de sustitución.

 

6.3.2   Símbolo de Levi-Civita

El símbolo de permutación es llamado también de Levi-Civita y está definido por:

 



···                N 1 1 índices distintos e i i 2 · · · i es una permutación par de 1, 2,3,· · · ,N  

e          i1 i2    iN i 1i2 ···iN = e =     − 1   índices distintos e i i · · · i                                              · · · N es una permutación impar de 1 , 2 , 3 , ,

1 2     N



 0   en otro caso



(6.6)

 

Este símbolo es utilizado en la definición de determinante de una matriz de N × N:

 

| A| =      e               · · · ∑ i 1 i 2 ··· i a a N 1 i a 1 2 i 2NiN

i1i2 ···iN

El determinante de una matriz N × N consiste en la suma de todos los productos posibles de N elementos que pertenecen a distintas filas y columnas multiplicados por 1 o −1 de acuerdo a si la permutación de los segundos índices es par o impar .

 

En el caso N = 3 se tiene lo siguiente:

 

e      i jk = e = [ e e e ]

i jk                       i     j    k

 



 1   si i jk es una permutación par de 123 



e      i jk = e =    −1   si i jk es una permutación impar de 123                          (6.7) i jk



 0   en otro caso



 

Y al calcular el determinante utilizando la definición anterior, se tiene la suma de seis términos, que son todos los posibles productos de a tres elementos de la matriz 230 Capítulo 6. Cálculo tensorial

 

    11    12    13                       a a a

                      = a a

                      a 21 22 23

                      a a a

                      31 32 33

 

= e a a a   e   a a a    e   a a a    e 123 11 22 33 +   a 231 12 23 31 + 312 13 21 32 + a a    e   a a a    e   a a a 321 13 22 31 + 132 11 23 32 + 213 12 2133

 

Luego, reemplazando los símbolos de permutación ei jk de acuerdo a (6.7), resulta

 

|A| = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

 

Por otro lado, si se expresa el símbolo de permutación en función de la delta de Kronecker (u operador de sustitución), obtenemos

 

ei jk = elmn δliδm jδnk (6.8)

 

que es igual al resultado del determinante

 

                     δ 1 i δ 1 j δ 1 k

e                           i jk      δ =

2i    δ2 j    δ2   k

     i δ 3   δ3 j   δ3k 

 

■ Ejemplo 6.2

 

                                       δ 13 δ 12 δ 11 0 0 1

e                                             321    δ = = 0 1 0 = −1

23                            δ 22 δ 21

                                       1 0 0                                       δ 33 δ 32 δ 31

■
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6.4   Operaciones con vectores

Producto escalar

Dados      i                          j u = β e i                 λ y v = e   con i, j = 1,2, · · · n el producto escalar es

j

 

u      1 1     2 2           n n      l   l . v = β λ + β λ + · · · + β λ = β λ

 

Esto se obtiene al reemplazar los vectores ⃗ u y ⃗ v,

 

u      i                  j                      i     j . v = ( β e i        λ ) . ( e j             β ) = ( λ ) (e .e )                                                                        (6.9)

i     j

 

Usando (6.4), como ei.e j = δi j, la Ec.( 6.9) queda

 

u      i     j                    i    i . v = ( β λ ) δi j = β λ (6.10)

 

La longitud de u puede escribirse

 

∥     p u ∥ =β i      i β

 

La multiplicación de dos matrices m×k        k×n                               m×n  A  ∈  R  y  B  ∈  R  da por resultado una matriz  C  ∈  R.

Si indicamos con el supraíndice la fila y con subíndice la columna, los elementos de la matriz C son

 

k

ci                    i     l = a b ∑ j                   l      j

l= 1

 

que se simplifica usando el convenio de Einstein a

 

c i            i     l = a b .

j            l      j

 

Note que i c tiene dos índices libres. No es un escalar, porque no todos los índices están

i           j

afectados a sumatorias.
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Producto vectorial

Si         j                                              3 u   i i         β = e ,      1,                                            u son vectores de R = 3, el producto vectorial de   y u   da como resultado un

i      j                                                                                                                      1         2

vector:

 

u            j      k × e 1     2     i jk β u = β e                                                              (6.11)

1       i 2

 

donde ei jk es el símbolo de permutación. Esa expresión se obtiene a partir de calcular el determinante

 

    1     2     3                     e e e

u                           1 3 × 1     2    β = u          2 β   β = c1 1    c e +2 2    c e + e ,

    1                                  3 3 1 1 

                    1 2 3

                    β β β 2 2 2

 

donde

 

c      2 3     2 3                       1 3     1 3                     1 2     1 2 1    β = β − β β          c = − β β + β β          c = β β − 1 2     2 1               2                                                β 1                                           β 2 2 1               3     1 2     2 1

 

Teniendo en cuenta la definición de los símbolos de permutación (6.7), pueden reescribirse

 

c 2 3          2 3                 1 3          1 3                 1 2          1 2  1    e  =  123 β β +  e  1           β 2  132    β      c =  e        +  β β      =  e   β    +  2 β β  1  2     231 β β     e                         β    e 1  2     213           c 2

1       3     312 1 2     321 2 1

 

luego, en forma reducida, usando la notación de Einstein,

 

c         j     k i          i jk β = e

1 β2

y de ahí se obtiene la expresión (6.11).

 

■                                          i     i jk 6.3 Si se desarrolla la expresión c = eA B para i = 1, se tiene: Ejemplo                                   j    k

 

c             j    k 1        e = 1 jkA B

=    1 k          2 k          3 k e 11k A B + e 12k A B + e 13k A B

=    1 1          1 2          1 3         2 1          2 2 e 111 A B + e 112 A B + e 113 A B + e 121A B + e 122 A B

+    2 3          3 1          3 2          3 3 e A B e A + A B B + e A B e +

123          131          132          133

 

De acuerdo a la definición de los símbolos de permutación (6.7) son nulos los términos con índices repetidos, entonces resulta 6.4 Operaciones con vectores 233

 

c          2 3          3 2      2 3     3 2 1    e = 123 A B + e − 132 A B = A B A B

 

■

Producto mixto

Si        i u l        β = e y anotamos como [u u     al producto mixto, l     i                                               1    2u ]

3

 

[u                × 1 u 2 u 3 ] = u 1 . ( u 2 u3)

se tiene que

 

[               h               i i j k u 1 2 3       β u u ] =     ei β e j β ek

1     2      3

 

= i       j      k β β β [ e e e ]

1           i      j    k 2 3

 

= i      j      k β β β e

1   2   3   i jk

 

o sea, es el determinante de la matriz de las coordenadas   i β j,

 

[                  i u 1 2 3     β u u ] =

j 

 

Producto tensorial

El producto tensorial o diádico entre dos vectores u y v está definido de la forma siguiente:

 

                    

u1        v1         u1v1   u1v2   u1v3

u                           ⊗ v = u ⊗ v = u                     (6.12) v u v u v

                     2 2 2 1 2 2 2 3                     

u3        v3         u3v1   u3v2   u3v3

 

Se obtiene una matriz A, A = u ⊗ v, donde, por ejemplo, u v 32 es la componente de la fila 3, y columna 2. En este caso particular, el producto tensorial es el producto matricial usual de los vectores u           t (de n × 1) y v, (de 1 × n).
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Una matriz A puede escribirse en términos de los productos tensoriales de los vectores de la base

e1, e2, y e3, de la forma siguiente:

 

                                    

1 0 0            0 1 0            0 0 1              0 0 0

A                                       =  u  ⊗  v  =  u  1 v  1  0  0  0  +  u  v  0  0  0  +  u  v  0  0  0  · · ·  +  u  v  0  0  0

                                1 2 1 3 3 3

                                    

0 0 0            0 0 0            0 0 0              0 0 1

(6.13)

 

A = u ⊗ v = u1v1 e1 ⊗ e1 + u1v2 e1 ⊗ e2 + · · · u3v3 e3 ⊗ e3 (6.14)

 

que, utilizando el convenio de Einstein, puede reescribirse

 

A = u ⊗ v = ui v j ei ⊗ e j (6.15)

 

6.5   Transformaciones lineales

Sea T : V → W una transformación lineal entre dos espacios vectoriales V y W (ver Definición

2.1.1). Sean B = {v 1, v2, · · · ,vN } una base de V y ¯ B = {w1,w2,· · · ,wm} una base de W . Si aplicamos T a un vector arbitrario v ∈ V ,

 

v     j = α v

j

 

T         j                      j ( v ) = T ( α v j           α ) = T (v )

j

 

Como T (v) es un elemento de W , se puede escribir como combinación lineal de los vectores de la base de W ,

 

T       i ( v ) = β wi

 

Por otro lado, si se aplica T a los vectores de la base de V , se obtiene la expresión

 

T       i ( v ) = a w
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donde los escalares   j a                      T (v ) i                                                         j son las coordenadas en la base de W .

En la expresión anterior el término i a tiene dos índices: j está asociado al espacio V e i al espacio

j

W . T es la matriz de la transformación lineal, en cada columna j están las coordenadas de T (v j) en la base de W .

 

T       j                          j    i ( v ) = α T ( v j          α ) = a j      i w

 

T       i                 i      j ( v ) = β w i            α = a w

j            i

 

de donde,

 

(   i          i      j β − a j α ) w = 0

i

 

y por ser los wi linealmente independientes (forman una base de W ), resulta

 

β = i            i      j a j α

 

que da la relación entre las coordenadas de v y de T (v). Corresponde al producto matricial

 

                   

β 1                                        1 α

              n 1 2     2 a            1 1 1 a   · · ·    a

                    β α 2

           2 2 2 a a · · · a

                     3  β               n            =  1 2                       3             α                      (6.16) 

                    · · · · · · · · · · · ·

          

                    · · · · · ·           

                    n n n · · ·

                    a a a

n             1     2          n          n

β                          α

 

En los elementos de la matriz el supraíndice                                  i i y el subíndice j del elemento a corresponden a la

j

fila y a la columna respectivamente. Es la matriz asociada a la transformación lineal T definida en la

Sección 2.2).

 

■ 1  Ejemplo  6.4  Si la transformación lineal es la identidad, usamos dos bases distintas,  B  =  {  e, e2}

y ′                                                                                                                                  j                    j B = { u 1   2                                                    β , u , } , y las coordenadas en cada base son v = e j          α = u , la relación entre las

j

coordenadas es

β = i            i      j a j α .
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             

β         a 1             1     1          1 a 1              α 2

              =

β        a 2            2     2          2 a 1              α 2

 

Estas expresiones se corresponden con las Ecs.(1.4) y (1.5), donde se vio la relación entre las coordenadas del vector ′                                             i         ′i  ⃗  x  en la antigua base  B  y en la nueva base  B  , respectivamente,  x  y  x, con

i                                                ′ = 1 , 2. En forma matricial, X = AX, o

 



 1          1 ′1     1 ′2 x = a x + a x

1        2                                                                      (6.17)

   = a x + a x

x2          2 ′1     2 ′2

1        2

 

Si u1 = (2,3) y u2 = (1,4) usando lo anterior, para el vector

 

                

7         2 1      3              3

               ′  P = = B , B 

7         3 4      1              1 ′    ′ B B B

 

La relación está dada por la matriz de cambio de base de   ′                    ′ B a B , P B , B vista en la Sección 1.5.

 

Por otro lado, La relación entre los vectores de las bases   ′ B y B está dada por la matriz transpuesta

(Ver Ec.(1.1) en la Sección (1.5)):

 



      1       2 u 1        a = e   = 2 + 3 1 1 + a ee 1 2     e

1      2

 2 = a e + a        4 2 1 e = 1 e 2 2 1 +e

u       1       2

2

 

Usando el convenio dee suma, la relación entre los vectores de las bases tiene la expresión

 

u     l = a e

j            j    l

 

■
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6.6   Definición de tensor

 

El concepto de tensor tiene su origen en la evolución de la geometría diferencial de Gauss, Riemann y Christoffel. La necesidad del cálculo tensorial, como rama sistemática de la matemática, se debe a Ricci y a su discípulo Levi-Civita, que publicaron en colaboración el primer trabajo sobre esta materia: Métodos del cálculo diferencial absoluto y sus aplicaciones, en Mathematische Annalen, vol. 54 (1901).

El objeto principal del cálculo tensorial es la investigación de las relaciones que permanecen invariantes cuando se cambia de un sistema de coordenadas a otro. Las leyes de la física no pueden depender del sistema de referencia que elija el físico con fines descriptivos. Por eso es, estéticamente deseable y muchas veces conveniente, utilizar el cálculo tensorial como fundamento matemático en que se puedan formular tales leyes. Einstein, en particular, lo consideró un excelente instrumento para la presentación de su teoría general de la relatividad. El cálculo tensorial alcanzó gran importancia y es hoy en día inapreciable en sus aplicaciones en la mayoría de las ramas de la física teórica; es también indispensable en geometría diferencial.

 

6.6.1   Cambio de coordenadas

Si se considera un espacio vectorial 1   2   3       n  V  de dimensión  N  con el sistema de coordenadas  x  ,  x  ,  x  ,  · · ·  ,  x,

las N ecuaciones

 

x′i          ′i      1     2     3             n            i     1     2     3             n = x ( x , x , x , · · · , x ) = ϕ ( x , x , x , · · · , x),         i = 1,· · · N                                  (6.18)

 

donde i ϕ son funciones continuas y diferenciables de las coordenadas definen un nuevo sistema de coordenadas ′ 1    ′2           ′N · · · x , x , , x .

 

La condición necesaria y suficiente para que las Ec.(6.18) definan una transformación de coordenadas es que el Jacobiano formado por las derivadas parciales ∂ x ′i no se anule. En ese

∂ x j

caso se pueden resolver para las i                                               ′i x como funciones de x y se obtiene,

 

xi            i      ′1     ′2             ′N = ψ ( x , x , · · · , x),         i = 1,· · · N                                                                      (6.19) 238 Capítulo 6. Cálculo tensorial

 

■                                                          R Ejemplo                                          3 6.5 En el caso particular de un cambio de base en la relación entre las coordenadas

está dada por el sistema lineal (1.4) para n = 3

 

 1     1 ′1   1 ′2   1 ′3 x = a x + a x + a x

      1    2    3





x2          2 ′1     2 ′2     2 ′3                                                               (6.20) = a x + a x + a x 1 2 3

 3     3 ′1   3 ′2   3 ′3 x = a x + a x + a x





1        2        3

Corresponde a relaciones como las de la Ec.(6.19). El determinante de la matriz Jacobiana (cuyos elementos son ∂ i x       i = a ) no se anula, porque la matriz de cambio de base A tiene inversa. Con su

∂ ′                  j x j

matriz inversa pueden escribirse las ecuaciones (6.18) y así tener las coordenadas ′i x como funciones de las i x.

■

 

6.6.2   Tensores de orden 0, 1 y 2

Es importante tener presente la expresión (1.5) de la relación ya vista entre las coordenadas x′i         i y x ante un cambio de base. Porque los tensores se definen en función de sus propiedades de

transformación ante un cambio de coordenadas ([26]).:

 

xi           ′i → x        i = 1,· · · , N                                                                                        (6.21)

 

dado por las relaciones de las Ecs.(6.18) y (6.19).

 

Se tiene lo siguiente:

 

Tensor de orden cero o escalar es una cantidad φ que permanece invariante al cambiar al sistema primado,

 

φ = ′ φ

 

Ejemplos La masa, la energía, la temperatura.

 

Tensor de orden uno o vector son N cantidades

 

• Vectores contravariantes

Las funciones j                                                     i v de las N coordenadas x se dice que son las componentes de un vector contravariante si se transforman según la ecuación:

 

n     ′i              ′i x x

v =        v =      v     i = 1, · · · ′i               ∂              j        ∂              j ∑ ,n (6.22)

∂ j                          j x ∂ x

i =1
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en un cambio de coordenadas de i        ′i x a x.

 

Ejemplo                  ′i Los diferenciales dx ,

∂ x ′i

dx′i                            j = dx

∂ j x

forman las componentes de un vector contravariante, ya que se transforman de la misma

forma que la expresión (6.22).

 

• Vectores covariantes

Las funciones                         i v de las N coordenadas x se dice que son las componentes de un vector

j

covariante si se transforman según la ecuación:

 

∂ x j

v′ i                          j = v (6.23)

∂ x′i

en un cambio de coordendas de i        ′i x a x. Ejemplo. El vector gradiente de una función f

 

∂ f           j                j ∂ f ∂ x ∂ x ∂ f ∂ ′ =     =                             (6.24)  i  j  ′  i  ′  i  j  x  ∂  x  ∂  x  ∂  x  ∂  x

De acuerdo a la Ec.(6.23) las magnitudes ∂ f son las componentes de un vector covariante

∂ x j

(el índice j es considerado un subíndice).

 

Ejemplos de tensores de orden 1: r, vector posición y v vector velocidad.

 

Tensor de segundo orden: son   2 N cantidades:

 

•   i j t (i, j = 1,· · · , N) son las componentes de un tensor dos veces contravariante si se

transforman según

 

∂ x′i        ′ j ∂ x

t ′i j                                      lm = t                                                                                                              (6.25)

∂ l         m x ∂ x

 

• ti j (i, j = 1,· · · ,N) son las componentes de un tensor dos veces covariante si se transforman

según

∂ l        m x ∂ x

t ′   =              t i j                                      lm                                                                                                                                (6.26)
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•   i t   i, j =   ,· · · , ( 1N) son las componentes de un tensor una vez contravariante y otra

j

covariante si se transforman según

 

′i        ∂       ∂ x x ′i        m

t                      l t j               l        ′ j        m ∂ =

(6.27)

x ∂ x

 

o,

′ j         ∂ xl        ′ j ∂ x

t                       m = t                                                                    (6.28)

i                ′i        m        l ∂ x ∂ x

 

Los tensores de segundo orden están asociados a matrices:

 

                               

t                                                           1    1               1 11   t 12              t · · · 15                         t t · · · t

1    2               5

                                2 2  21    22                                               t t t t             1 2

t                        i             3 i j =  t , t 31  j =  t  1    

                                4 t t                                 41 1                                

t            · · ·                                                                5                   5 51 t t · · · 55 t 1 5

 

Como ejemplo, en (6.12) se obtuvo un tensor de segundo orden A, a partir del producto tensorial de dos vectores.

 

6.6.3   Suma. Contracción de índices

La suma de tensores de igual orden es un tensor del mismo orden, y el producto de un escalar por un tensor de orden q da un tensor de orden q. El producto de componentes de un tensor por las componentes de otro da las componentes de un tensor de orden suma de los órdenes originales.

 

■                  i                                      i j Ejemplo 6.6 Si u son las componentes de un vector y t son las componentes de un tensor de orden 2,

uitlm

 

son las componentes de un tensor de orden 3, ya que tiene 3 índices libres. ■

Una operación importante entre tensores es la llamada contracción de índices. Es la operación de multiplicar 2 tensores de orden n y m y hacer la suma sobre uno de los índices (de 1 a N). Se obtiene un tensor de orden n + m − 2.
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También puede realizarse incluso sobre el mismo tensor:

 

T i

i

 

obteniéndose un nuevo tensor de rango n − 2 (es un escalar o tensor de orden 0 para n = 2, como se

vió en el ejemplo de la traza en la Sección 6.2).

■                                                            i jk Ejemplo 6.7 Si se tiene un tensor de orden 3, de componentes t, contrayendo el segundo y tercer índice se obtiene un tensor de orden 1:

 

vi = ti j j

■

■ Ejemplo 6.8 Dados 2 tensores de orden 2, en este caso n = m = 2, al sumar sobre el índice j:

 

T i j                       i1                     i2                                i H jm         1 T = H m      2 T + H m        m S + · · · =                                                                   (6.29)

 

se tiene como resultado un tensor de rango n + m − 2 = 2 + 2 − 2 = 2.

■

 

i

El producto escalar de 2 vectores (n = m = 1) es un caso particular y el resultado es un escalar o tensor de orden 0.

 

■ Ejemplo 6.9 Aparece con frecuencia la contracción de uno de los índices de un tensor de orden 2 con el índice de un vector (corresponde al producto escalar del tensor por el vector) y da como resultado un vector:

v i = ti ju j

■

Un tensor es simétrico respecto a dos de sus índices si al permutarlos se obtiene el mismo valor, por ejemplo

 

ti j = tji
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hi jkl = hilk j

 

(respecto al segundo y cuarto índice). Será antisimétrico si cambia de signo:

 

t i j = −tji

 

o

 

hi jkl = −hilk j

 

Se dice que es totalmente simétrico o totalmente antisimétrico cuando se cumple lo anterior respecto de cualquier par de índices.

 

i   Se llama tensor isotrópico a un tensor cuyas componentes son las mismas en cualquier sistema

de coordenadas. Todo escalar es un tensor isotrópico pero no hay vector no nulo que sea isotrópico. Se puede mostrar que todo tensor isotrópico de orden 2 es un escalar por la delta de Kronecker δi j y todo tensor isotrópico de orden 3 es un escalar por los símbolos de Levi-Civita.

 

Tullio Levi-Civita (1873 - 1941)

 

Fue un matemático italiano, famoso por su trabajo sobre cálculo tensorial, pero que también

hizo contribuciones significativas en otras áreas de las matemáticas. Era discípulo de Gregorio Ricci-Curbastro, el inventor (algunos dicen co-inventor con Levi-Civita) del cálculo tensorial. Su trabajo incluye artículos fundamentales en matemáticas puras y aplicadas, la mecánica celeste (notable en el problema de los tres cuerpos) e hidrodinámica. Levi-Civita personalmente ayudó a Albert Einstein a aprender el cálculo tensorial, en el cual Einstein basaría su relatividad general, y que había luchado por dominar. Su libro de texto en cálculo tensorial El Cálculo Diferencial Absoluto (originalmente un conjunto de notas de la conferencia en italiano de coautoría con Ricci-Curbastro) sigue siendo uno de los textos estándares más de un siglo después de su primera publicación, con

varias traducciones disponibles. [16]
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6.6.4   Transformaciones ortogonales

Si se aplica una transformación lineal la relación entre las coordenadas en distintas bases está

dada por la expresión, (ver Sección 1.5 y el Ejemplo 6.4)

 

x j           j    ′i = a x                                                                                                                            (6.30)

i

 

donde j a son los elementos de la matriz cambio de base.

i

 

A partir de la Ec.(6.30), si        − 1 B = A se tiene que

 

x′i          i    j = b x                                                                                                                               (6.31)

j

 

entonces las coordenadas se transforman mediante una ley contravariante .

′

En la Ec.(6.22), las cantidades ∂ i x son,

∂ x j

 

∂ x′i

= i b (6.32)

∂ j            j x

 

así que, se tiene

∂ x′i

x′i                    j          i      j = x = b x          i = 1,· · · ,n.                                                                                 (6.33)

∂ x j                j

De la misma manera, un tensor de segundo rango dos veces contravariante se transforma de la forma siguiente:

 

T ′i j           i     j      lm = a a T                                                                                                                    (6.34)

l    m

 

Las transformaciones ortogonales son un caso particular de transformaciones lineales, son aquellas que transforman un sistema de coordenadas cartesianas ortogonales en otro similar también ortogonal y son tales que la inversa de la matriz que la representa es igual a su transpuesta.

Corresponden a rotaciones o reflexiones (ver matriz ortogonal Definición 4.6.4, y el Ejemplo

2.6 de la Sección 2.2). Es decir

 

A−1    t = A

o bien

ai        t    j            i a j                   δ ( ) =

l            l

o

ai      l             il a j      j        δ =
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■                                                                           φ Ejemplo 6.10 Las ecuaciones que corresponden a una rotación de un ángulo alredor del eje z

son (ver Ec.(6.18) y el Ejemplo 6.5).

 

x′ 1                        1                  2 = cos ( φ ) x + sen ( φ ) x                                                                         (6.35)

x′ 2                            1                  2 = − sen ( φ ) x + cos ( φ ) x                                                                      (6.36)

x′ 3             3 = x                                                                                                       (6.37)

 

Es una transformación ortogonal ya que la inversa de la matriz que la representa es igual a su

transpuesta, o sea   t A .A = I (ver Sección 4.6).

Como se vió en la Proposición 4.6.6, si el determinante es 1 corresponde a una rotación y si es −1 corresponde a una reflexión (o a una composición de una simetría y una rotación). ■

 

■ Ejemplo 6.11 Una transformación no ortogonal

Las transformaciones de Lorentz relacionan las coordenadas en dos sistemas de referencia inerciales   0   1   2   3       ′0   ′1   ′2   ′3 ( x , x , x , x ) y ( x , x , x , x).

Son las que dejan invariante 2      ′0 2      ′1 2      ′2 2      ′3   2 s = ( x ) − ( x ) − ( x ) − ( x )). y su relación en forma matricial es la siguiente:

 

                    ′ 0 0 x          γ − β γ   0 0 x

                    ′ 1 1 x − 0 0 x                     β γ γ                                         ′ 2 2 x 0 0 1 0 x                                        

x′3                                                  3 0 0 0 1 x

 

donde       1                                     V γ = es el factor de Lorentz y = es la velocidad relativa respecto de la luz (V

q                 β 1   2 c − V 2                                             c

es la velocidad del movimiento uniforme y c es la velocidad de la luz en el vacío).

La matriz inversa se obtiene cambiando                                      −1     t β por − β , y por lo tanto se tiene que A ̸ = A . No es una transformación ortogonal. ■

 

6.7   Tensores cartesianos

Como se mencionó en la Sección 6.6.2 los tensores están definidos por las propiedades de transformación de sus componentes ante cambios de coordenadas.

Se llaman tensores cartesianos a los tensores que están definidos por sus propiedades ante

transformaciones entre sistemas de coordenadas cartesianos ortogonales (ver [25]). Esto los diferencia de los tensores en general, en los que se consideran transformaciones más generales de coordenadas.
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En los tensores cartesianos no es necesario diferenciar entre componentes covariantes y contravariantes ya que se transforman igual:

En este caso, la Ec.(6.30) puede escribirse

′

x    a x i = i j j                                                                                  (6.38)

 

donde ai j son los elementos de la matriz cambio de base.

Los tensores de orden 1 se transforman con la ley

 

′

vi = ai j v j (6.39)

 

Ya que si se utilizan las relaciones (6.22) y (6.23), como   t A .A = I , se obtiene:

 

v′ i             i      j = a v                                                                                                                                                           (6.40)

j

 

v′                               j −                              j 1 T                   i = ( a ) v = ( a ) i                    i    j                    v = v                                                                                                                        (6.41) i    j        a

j    j

 

Análogamente, en el caso de tensores de orden 2, la expresión de la Ec.(6.34) se reescribe

 

′

t      a      t i j = il a jmlm                                                                                         (6.42)

 

Si se asocian las componentes ti j a una matriz T , esta ley de transformación de (6.42) corresponde a la transformación

 

T ′                          t = ATA                                                                                                                                                  (6.43)

 

Ejemplos de tensores cartesianos: el vector posición r, el vector velocidad v, el tensor de inercia Ii j , y el tensor de tensiones τi j.

 

6.8   Sistema de coordenadas curvilíneas

Las transformaciones de coordenadas se presentaron en las Ecs. (6.18) y (6.19) de la Sección

6.6.1. Consideremos ahora, en particular, una región del espacio de tres dimensiones referida a un sistema de ejes cartesianos ortogonales, caracterizados con supraíndices 1   2     3 x , x , y x.
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Figura 6.2: Bases en coordenadas cartesianas

[image: ]

 

xi          i     1     2     3 = x ( x , x , x),         i = 1,2,3                                                                              (6.44)

 

funciones continuas con derivadas parciales primeras continuas y tal que el jacobiano formado por las derivadas parciales ∂ i x no se anule.

∂ j x

 

Entonces las ecuaciones anteriores pueden resolverse en las i x, esto es

 

x j           j      1     2     3 = x ( x , x , x),         j = 1,2,3                                                                             (6.45)

 

Las variables i x introducidas son tales que a cada punto P le corresponde una única terna de valores de ellas y recíprocamente: las denominamos coordenadas curvilíneas de P.

Uno de los sistemas de coordenadas curvilíneas más usados en el espacio son las coordenadas cilíndricas                   1        2          3 ( r , ϕ , z ) , donde, x = r , x = ϕ y x = z. y tales que las relaciones con las cartesianas ( 1   2   3 x , x , x) son 6.8 Sistema de coordenadas curvilíneas 247

 

q

r         1 2      2 2 = ( x ) + ( x )

 

 2 x

ϕ = arctan   1 x

z     3 = x

 

Es decir que la Ec.(6.44) expresa la transformación entre coordenadas cartesianas y coordenadas cilíndricas. En otro caso, puede expresar la transformación entre coordenadas cartesianas y coordenadas esféricas, otro sistema que también es utilizado con frecuencia.

Es importante notar que cuando se pasa de un sistema de coordenadas cartesianas a otras cartesianas, la transformación es lineal, y la relación entre las coordenadas de un mismo punto en los dos sistemas diferentes se obtiene multiplicando por una matriz.

 

Igualando a una constante la Ec.(6.44)

 

x i          i      1     2     3 = x ( x , x , x) = C = constante,

i

 

obtenemos la ecuación de una superficie para cada valor de la constante: es decir, la última ecuación representa para cada i = 1,2, 3 tres familias de superficies, que se denominan superficies coordenadas y la condición de que el jacobiano no se anule, significa geométricamente que tres de ellas (una de cada familia) se intersecan en uno y sólo un punto P.

 

La intersección de las tres superficies que pasan por P determina tres líneas, a lo largo de las cuales sólo una coordenada i x es variable: se denominan líneas coordenadas.

 

6.8.1   Tensor fundamental (o Tensor Métrico)

Supongamos que se requiere calcular la longitud de un vector             3 v dado de R, por ejemplo v = (7, 4, −1). Entonces:

Al estar dadas sus coordenadas en la base canónica B = {e1,e2, e } 3, (sino se hubiera anotado v 2       2       2  = (  7  ,  4  ,  −  1  )  ∥  ∥  para hallar la longitud del vector  v  = (  7  ,  4  ,  −  1  )  se calcula  v  = (  7  )  + (  4  )  +

B                                               √

(     2 − 1 ) = 49 + 16 + 1 = 66. Se obtiene que su longitud es ∥v∥ =   66. Si se tienen las coordenadas de               ′ v en la base B = {(1,1, 0), (4, 2,1),(2,1,−2)}, v = (1,1,1) , B

se deben transformar sus coordenadas a la base canónica para calcular la longitud.
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Figura 6.3: Bases en coordenadas curvilíneas

[image: ]

 

Es deseable, entonces, una definición de longitud de un vector invariante ante un cambio de base. Con el llamado tensor métrico se redefine la longitud de un vector según la expresión:

 

              

e1 · e1   e1 · e2   e1 · e3        x

x   y   z    e ·                · 2   1    2   2    2       e e e e · e                             (6.46)   y

3

              

e3 · e1   e3 · e2   e3 · e3        z

 

donde                            ′ e son los elementos de la base B, y (x,y, z) sus coordenadas en esa base. i

 

Las componentes del tensor métrico (representado por los elementos i j de la matriz) son los productos escalares de los vectores de la base   ′ B, es decir, e · e . i       j

 

Así, para el vector v = (1,1,1)B, se tiene 6.8 Sistema de coordenadas curvilíneas 249

 

                    

2   6   3      1                        1

1 1 1     6 21 8   1  =                      11 35 20 1 = 66       (6.47)  

B                                

3   8   9      1                        1 B

 

Con esta definición nueva, (que da la longitud del vector elevada al cuadrado), el tensor métrico da la matriz identidad (si la base es la canónica) y se tiene el resultado presentado al inicio:

 

                      

1 0 0       7                       7

7 4 −                           1 0 1 0 4 = 7 4 − 1 4 = 66       (6.48)                                              

0 0 1      −1                    −1

 

De lo anterior surge que es posible introducir el concepto de distancia en un espacio V de dimensión i        i            i  N  cualquiera, y que la distancia  ds  entre dos puntos próximos de coordenadas  x  y  x  +  dx,

está dada por la expresión:

 

ds2          i    j            1 2          1    2                 1    N                  N 2 = g i j                            11 dx dx = g ( dx ) + g · · · · · · 12 dx dx + + g 1N dx dx + + g ( dx )         (6.49) NN

donde                   i                                                                   g son funciones de x , con la restricción que g = g ̸= 0.

i j                                                                                                                          i j

 

Cuando se cumple esta definición de longitud se dice que el espacio es un espacio de Riemann.

 

i

Se postula que la distancia entre dos puntos próximos es independiente del sistema de coordenadas, es decir que ds es un invariante. A la forma cuadrática      i      j g dx dx se la llama métrica. g   es un tensor simétrico covariante

i j                                                                i j

de segundo orden llamado tensor fundamental. Sus componentes contravariantes están dadas por los elementos de la matriz inversa.

 

g i j                  i g jk     δ =                                                                                                      (6.50)

k

 

Los coeficientes gi j son funciones de las coordenadas, y se obtienen a partir de los vectores de la base, e i, ya que

 

g i j = ei · ej (6.51)
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g             i      j = g . g dx dx es una forma cuadrática. Se llama métrica, y es el cuadrado del

i j           ji       i j

elemento de línea ds.

La longitud de los vectores de la base viene dada por:

√

|e | = i   gii                                                                     (6.52)

donde i no se suma en la última expresión. Además, si el sistema es ortogonal, gi j = 0 para i ̸= j.

En un espacio euclídeo de tres dimensiones, referido a un sistema de ejes cartesianos

rectangulares se tiene que la expresión de la Ec.(6.49) para tensores cartesianos para N = 3, es

 

ds2       1 2      2 2      3 2 = ( dx ) + ( dx ) + ( dx )                                         (6.53)

 

Teniendo en cuenta que,

(

j             1   cuando i = j,

δ i j = δ = i

0   cuando i ̸= j

 

y desarrollando las sumas,

δ i j x i    j                       1   j              2   j              3   j x = δ1 j x x + δ2j x x + δ3j x x

= 1 1        1 2        1 3       2 1        2 2        2 3             3 3  δ11 x  x  +  δ12 x  x  +  δ13 x  x  +  δ21 x  x  +  δ 22 x  x  +  δ 23 x  x  +  · · ·  +  δ33 x  x

 

δ i j x i    j           1 2         2 2         3 2         2 x = ( x ) + ( x ) + ( x ) = ds

 

i               i j x Las expresiones     i    j                m   l                β   α δ x δ x x δ = ml = β α x x son equivalentes por ser

los índices mudos.

 

El tensor métrico en este caso es

      

1   0   0

g           i j           0 = 1 0 

      

0   0   1

 

Las componentes del tensor fundamental son cero, excepto g   =          = 11 g = 22 g 33 1. La métrica en un espacio euclídeo es positiva. Será cero solo cuando    1      2      3 dx = dx = dx = 0. En la teoría especial de la relatividad la métrica no siempre es positiva. Su expresión está dada por

 

ds2         1 2       2 2       3 2    2    4 2 = − ( dx ) − ( dx ) − ( dx ) + c ( dx )                           (6.54) 6.8 Sistema de coordenadas curvilíneas 251

 

Otro ejemplo de métrica en un espacio euclídeo es la referida a coordenadas polares esféricas 1       2         3 x = r , x = θ y x = ψ . La métrica está dada por

 

ds2      2    2    2    2    2     2 = dr + r d θ + r sen θ d ψ (6.55)

 

Otras métricas:

 

De acuerdo con la teória de la relatividad general en presencia de materia, la geometría del espacio-tiempo no es plana. La métrica de Schwarzchild describe como se curva el espacio-tiempo a causa de un cuerpo esférico, aislado y estático que no gira sobre si mismo (r: distancia, G: constante gravitatoria, M: Masa, c: velocidad de la luz y θ= ángulo):

 

                        2 2 − ( 1 − ) 0 0 0 c       GM

c2 r

                        2 GM − 1 0 ( 1 − ) 0 0

Métrica de Schwarzchild: gi j =                         r                         c2 

                        2 0 0 r 0                                                

0                        2    2 0 0 r sen(θ )

 

Por otro lado la métrica de Friedman-Lamaitre-Roberson-Waller nos describe la expansión de universo en términos del parámetro k. Si k > 0 el universo es cerrado y volverá a plegarse sobre sí mismo generando un nuevo bigbang (teoría del bigcrush), mientras que si k ≤ 0 el universo se expande sin límites. (a(t) representa la aceleración del universo):

 

                            2 − c        0 0 0                             1 0 ( )( ) 0 0

Métrica de FLRW: gi j =       1− 2 kr                             a t 

               2              1 0                             1 0      a(t)(     )            0 −               kr              

0                              2    2        1 0 0 a ( t ) r sen ( θ )( )

1    2 − kr

 

6.8.2   Bases en coordenadas curvilíneas

 

De acuerdo a la Figura 6.3,

 

r    1       2       3 = x e 1 + x e 2 + xe3 (6.56)

 

donde

 

e j =    j ∂ ∂ r
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Para cada punto                                               i P del espacio se tienen tres líneas coordenadas x; es posible definir tres vectores base para P como:

 

ei = (6.57)  i  ∂  ∂ r

x

 

que se llaman vectores tangentes a las lineas coordenadas ([22]) i x.

 

La base ei, representada en la Figura 6.3 es, en general, variable punto a punto y sus versores no necesariamente tienen longitud unitaria. Se trata de una base local ; cada punto P del espacio tiene su propia base.

En un sistema de coordenadas curvilíneas se tiene, en cada punto P, una base local dada por los

vectores ei de la Ec.(6.57) como se muestra en la Figura 6.3. De ahora en adelante a los vectores de esta base los denotaremos gi.

 

■ Ejemplo 6.12 Coordenadas cilíndricas

 

⃗    1       2       3 r = x e x + e x +e                                                             (6.58)

1       2       3

 

donde 1               2                 3 x = rcos ( ϕ ) , x = rsen ( ϕ ) y x = z

 

Es una transformación entre las coordenadas i          i x y, x

 

x 1        2          3 = r , x = ϕ y x = z

 

Los vectores tangentes (o base covariante, Ec.(6.57)), son

 

g          cos 1 = =(ϕ)e1 + sen(ϕ)e2 + 0.e3                                       (6.59) 1 ∂ ∂ r

x

 

g2 =    = −rsen(ϕ)e1 + rcos(ϕ)e2 + 0.e3                                   (6.60) 2 ∂ r

∂ x

 

g3 =    = 0e1 + 0e2 + 1e3                                             (6.61) 3 ∂ ∂ r

x

 

■
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Existe además, para cada punto P, otro conjunto de tres direcciones que puede ser adoptado para definir otra base local de vectores que denotaremos por i g.

 

Estos vectores   i g constituyen la denominada base recíproca o dual de la g , en virtud de las i

relaciones:

 

gi                   i · g j        δ =                                                                                                                                      (6.62)

j

 

Pueden obtenerse de la forma siguiente

 

g1     g × g           × 2 3 g 2 3 g1          g × 3 1 g2 = g = g =                            (6.63) [ g 1 g 2 g 3 ] [ g 1 g 2 g 3 ] [ g 1 g 2 g 3 ]

 

donde [g1g2g3] = g1 × g2 · g3 = E

 

En la Figura 6.4 se muestra un ejemplo en un sistema cartesiano.

Se tiene que,

 

g1 =           g2 =           g3 =                                  (6.64) 1 2 3 1 2 3 1 2 3 [ g2     3               3     1               1     2 × g g × g g × g g g g ]          [g g g ]          [g g g ]

 

y       1 2 3 g g g = E

R

 

De la misma forma que en Ec.(6.51), se tiene

 

gi j            i        j = g · g                                                                                                                                          (6.65)

 

y naturalmente, i j            ji g = g

 

Decimos que estas dos bases, que son mutuamente recíprocas, y se pueden demostrar las siguientes propiedades

 

[                  1 2 3              −1 g 1g 2g 3 ] g g g = 1 E = E

R

2           √

det(g i j) = g = E       E =   g 254 Capítulo 6. Cálculo tensorial

 

Figura 6.4: Ejemplo de una base                        j g y su base recíproca g

i

[image: ]

 

gik            i g k j      δ =

j

 

e j × e = 0

j

 

En un sistema cartesiano ortogonal, la base recíproca coincide con aquella que la genera, es decir, i g = g .

i

 

■ Ejemplo 6.13 Coordenadas cilíndricas.

La base recíproca, usando ec.(6.63)

 

1     g × 2 g3

g = (6.66)

[g1g2g3]

 

g1 = (rcos(ϕ )e1 + rsen(ϕ )e2 + 0e3 )/r (6.67)

 

g2 = (−sen(ϕ )e    cos 1        ϕ + ()e + 0e   r ) /                                           (6.68)

2      3
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g3          2              2 = ( rcos ( ϕ ) e 1    rsen +(ϕ )e2      3   r + 0 e ) /                                              (6.69)

 

En la Figura 6.5 se muestran las coordenadas cilíndricas en el espacio   3 R y los vectores g .

i

 

Como por la Ec.(6.51), gi j = gi ·g j

 

g 11 = g ·            2           2 1 g 1 = cos ( ϕ ) + sen(ϕ) = 1

 

g 12 = g ·     − 1 g 2 =rcos(ϕ)sen(ϕ) + rcos(ϕ)sen(ϕ) = 0

 

g 13 = g · 1g3 = 0

 

g 22 = g ·         2    2         2    2         2 2 g 2 = r sen ( ϕ ) + r cos ( ϕ ) = r

 

g 23 = g · 2g3 = 0

 

g 33 = g · 3g3 = 1

 

      

1   0   0

g           2 i j                 r = 0 0 

      

0   0   1

 

y su inversa

 

      

1   0   0

gi j                                  − 2 =  0 r 0 

      

0   0   1

■

Relaciones entre versores de base

 

Dados dos sistemas de coordenadas curvilíneas i      i x , x, y considerando para cada uno de ellos las bases anteriormente introducidas, existen entre sus versores las relaciones:

 

∂ xi

g j   =       gi, j ∂ x

∂ x j

gi   =       g j                                                                       (6.70) i ∂ x 256 Capítulo 6. Cálculo tensorial

 

g       j                          i          i j = g g g = g g                                                                                     (6.71) i          i j                                                 j

 

Si

∂ k                             k x ∂ x

gk            j                 k            j = g , g = g                                                                 (6.72)

∂ j                                                 j x ∂ x

 

∂ x i

g            j m       mi j =

g g , (6.73)

∂ x

se tiene que esta expresión se demuestra de la forma siguiente:

 

usando Ec.(6.70)

 

∂ xi

gm =    gi m ∂ x

 

∂ x i         j ∂ x

gm =       g j m i ∂ x ∂ x

Reemplazando la Ec.(6.71)

 

∂ i         j x ∂ x

g               k m          jk m = i g g

∂ x ∂ x

Teniendo en cuenta la Ec.(6.72)

 

∂ x j         i                k ∂ x ∂ x

g                  j m          jk = g g

∂ i        m            j x ∂ x ∂ x

 

y como ∂ j          i                   j x ∂ x i          m              m δ =,

∂ x ∂ x

 

se tiene que

∂ k x

g      j                    j m   δ = g m jk    j g

∂ x

 

∂ xk

g            j m       mk j = g g ,

∂ x

 

que coincide con Ec.(6.73) ya que k es un índice mudo.
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Figura 6.5: Coordenadas cilíndricas
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Componentes contravariantes y covariantes de un tensor

De lo anterior surge que dado un tensor A se dispone de dos bases aptas para su expresión: la gi y su recíproca j i  g  . Las componentes de  A  en  g  las denominamos  contravariantes  y las indicaremos  A,

i

mientras que las componentes en   j g las llamaremos covariantes, designándolas A [24]. Entonces:

j

 

A   i                    j = A g = A g                                                                                     (6.74)

i            j

 

Como se mencionó antes, si el sistema es cartesiano ortogonal, ambas componentes son indistinguibles:   i                                                                                      i A = A . Cuando A esté dado mediante A, diremos vector contravariante; o vector i

covariante Ak si se nos presenta mediante esas componentes. Entre ellas se cumple: 258 Capítulo 6. Cálculo tensorial

 

A      i                j          i j = g A A = gA                                                                               (6.75) j          i j                                       i

 

así,         i j g y g bajan y suben índices, respectivamente. i j

 

Para demostrar la primera igualdad, partimos de la expresión

 

A    k       l = A g = A g

k              l

 

Multiplicando escalarmente por g j a ambos lados,

 

A k            l g · g = A g · g

k        j           l     j

 

y teniendo en cuenta la relación entre los vectores de la base y de su base recíproca, Ec.(6.62),

 

A   k       i k δ = A g g

j                 i      j

y se obtiene

 

A      i = g A j          i j

 

Entre las componentes contravariantes (o duales) de                     i      i A en dos sistemas x , x se verifica:

 

∂ i                                     j x j                j        ∂ x

A = i                                                         i A    A = A (6.76)

∂ j                                     i x ∂ x

 

y entre las covariantes

 

∂ x j                                     j ∂ x

Ai =    A j     Ak =    Aj                                                (6.77) i k ∂ x ∂ x

 

y además,

 

A j                  j = A · g        A = A · g                                                                               (6.78)
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De lo anterior sale que una vez definido el tensor métrico, las componentes covariantes y contravariantes de un tensor están relacionadas por el tensor métrico, así por ejemplo,

 

vi          i j = g v

j

v        m = g v

l          lm

T i j            il      j           il    jm = g T = g gT

l                         lm

Es importante notar que bases definidas (                   i g y su recíproca g) cumplen la relación de la Ec.( 6.62) i

y que esta relación se mantiene al realizar una transformación de coordenadas. Para demostrarlo, se

utilizan los vectores contravariantes y covariantes, i i  g  y  g  j j  , y sus relaciones con los vectores  g  y  g,

respectivamente (Ecs.(6.22) y (6.23)). Se verá que i                   i g · g j        δ = .

j

 

i                        ∂        l x i               k x

g ·                ∂ g            · j                                           k = l g      g j

∂ x     ∂ x

∂ x i        k ∂ x

=      l g · g ∂ l                     k j x ∂

x

∂ x i        k ∂ x

=      l l           δ j

∂ x      k ∂ x

 

=   l   j ∂ ∂ i        l x ∂ x

x ∂ x

= i δ j

 

Componentes físicas de un vector En ciertos contextos son importantes las componentes físicas de un vector. Si        l A = Ag , están dadas por

l

 

 l       l √    l           j j A | g | = A g

 

6.9   Diagonalización de tensores de segundo orden. Invariantes

Dado un tensor de segundo orden simétrico y real siempre existe un sistema de coordenadas en el cual las únicas componentes no nulas del tensor son las que tienen los dos índices iguales, ti j = 0 si i ̸= j. Si T es la matriz de los ti j, T es una matriz diagonal:

       

t11    0     0

T           = 0 t 0

        22        

0   0   t 33
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(para N=3). El sistema de coordenadas en el que el tensor es diagonal se llama de ejes principales.

Para demostrar que todo tensor simétrico y real es diagonalizable, se hace el producto escalar del tensor de componentes ti j por un vector vi, con lo que se obtiene otro vector wi:

 

wi = ti jv j .

 

Se trata de hallar los vectores vi tales que el vector resultante sea un múltiplo, o sea

 

wi = λ vi     i = 1,2, · · · N.

 

donde λ es un escalar. En ese caso a vi se lo llama autovector y a λ autovalor.

Para que esto suceda los vectores vi deben satisfacer

 

ti j v j = λ vi

 

o

(                 ⃗ t i j − λ δ i j ) v j = 0

 

Para el caso que N = 3, se tiene un sistema de ecuaciones algebraicas:

 



 (t − 11    λ )v1    t +12 2    t v + v = 0

          13 3



t 21v1 + (t22 − λ )v2 + t (6.79)  23  v  3  =  0



 t v + t v + (t − λ )v = 0

 31 1   32 2    33      3

 

Como es un sistema homogéneo, para que tenga solución no trivial el determinante del sistema debe ser nulo. A la ecuación

 

Det (T − λ I) = 0 (6.80)

 

se la llama ecuación característica del tensor T.

El determinante de la Ec.(6.80) es un polinomio de grado 3 con respecto a las potencias de λ :

 

P       3     2 T λ ( ) = λ + λ IT   λ + II − III = 0

T     T

 

llamado polinomio característico del tensor T. IT, IIT, IIIT son los invariantes principales del tensor

T , definidos en función de sus componentes ti j por (ver [18]):

 

IT = tr(T) = tii 6.10 Tensores de mayor orden 261

 

II     1      2       2 = T [ tr ( T ) − tr ( T)] 2

 

IIIT = Det(T)

 

Si T es un tensor simétrico, los invariantes principales se resumen de la forma:

 

I T = t11 +t22 +t33

II                             2     2     2 T = t 11t 22 + t 11t 33 + t 22t 33   t − − t − t

12    13    23

III                                      2        2        2 T = t 11 t 22 t 33 + t 12t 13t 23 + t 13t 12t 23   t − t 33   t − t 11   t − t

12                  22 23 13

 

i

Encontrar los autovalores o valores principales es equivalente a encontrar unas direcciones principales (autovectores) tales que ti j = 0 para i ̸= j. Una vez obtenidos los autovalores, los autovectores se obtiene resolviendo las ecuaciones (             (1)                          (2)                           (3) ⃗ ⃗    ⃗ t i j       λ − 1δ i j ) n = 0, ( t λ       = j                    i j         2δ − i j                                i j       λ ) n 0 y ( t − j                                 3δ i j )n    = 0. j Si T es un tensor simétrico el espacio de los autovectores está definido por una base ortonormal y los autovalores son todos reales.

Cuando un tensor presenta los tres autovalores iguales, λ1 = λ2 = λ3 se denomina tensor esférico.

 

6.10   Tensores de mayor orden

 

Hemos visto tensores de órdenes 0, 1 y 2. De la misma forma es posible definir tensores de orden mayor.

Un conjunto de   s+p            t t ···t 1 N funciones A 2s                          i N x q 1 q se dice que son las componentes 2 ··· q de las coordenadas p de un tensor mixto de orden (s + p) contravariante de orden s y covariante de orden p si se transforman según la ecuación

 

Au             u1         u      q u 1 2 ··· u s ∂ x ∂ x s ∂ x1         q ∂ xp   t t · · · A 12···t r = · · ·s 1 r 2 ··· r p r 1 r q t t ∂ x 1 s ∂ x 1 q ···q ∂ x 2p ∂ x p

 

con el cambio de coordenadas i           i x en x.

Aunque esta expresión parece complicada es simplemente una combinación de la Ec.(6.22 ) con

respecto a los índices contravariantes y de la Ec.( 6.23) en cuanto a los índices covariantes.
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Un ejemplo de orden 4 es el tensor constitutivo C que relaciona las componentes de dos tensores de orden 2, el tensor de deformaciones, ε con el tensor de tensiones, τ .

 

τi j = C i jklεkl

 

El tensor constitutivo Ci jkl es de orden 4 y sus componentes, considerando dos bases ortogonales ei y e j del sistema cartesiano, se transforman de la forma siguiente

 

Ci jkl = pim p jnpkr plsCmnrsεkl

 

i   En las ecuaciones de elasticidad para el estudio de tensiones y deformaciones en cáscaras y

láminas es muy útil expresar el tensor constitutivo en las componentes de una base local no ortogonal. Se utilizan las bases de vectores covariantes y contravariantes.

 

Juan Martín Maldacena

 

Nacido en Buenos Aires, 10 de septiembre de 1968. Entre sus muchos aportes al campo de la

teoría de supercuerdas —o Teoría M—, se encuentra la denominada «conjetura de Maldacena», «dualidad de Maldacena» o correspondencia AdS/CFT, que propone la equivalencia entre ciertas teorías de gravedad cuántica y cualquier teoría conforme de campos bajo determinadas condiciones que satisfacen el principio holográfico. En 1997 se unió a la Universidad de Harvard como profesor asociado —entonces el profesor asociado vitalicio más joven de la historia de Harvard—. Ahí en 1999 ascendió a profesor titular. En 2012 fue honrado con el nuevo Premio Yuri Milner a la física fundamental. La distinción le dotó con tres millones de dólares. En ese momento sus investigaciones estaban orientadas a la relación entre espacio y tiempo cuánticos y a las teorías de partículas. En 2018 recibió la Medalla Lorentz siendo así el único científico de habla hispana y de Iberoamérica en

haberla recibido. [13]
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Figura 6.6
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6.11   Actividades propuestas

Problema de Aplicación 6 Para el sistema de coordenadas esféricas

 

⃗ r(ϕ,φ, r) = rsen(ϕ)sen(φ )e1 + rcos(φ)e2 + rcos(ϕ)sen(φ)e3

halle:

 

a) Los vectores base covariantes.

 

b) Los vectores base contravariantes.

 

c) La métrica del sistema del coordenadas.

 

d) La matriz Jacobiana de la transformación de coordenadas.

 

e) Calcule el    2 ds del sistema de coordenadas (ϕ ,φ , r).

 

6.11.1   Ejercicios

 

Ejercicio 6.1

Responda:

a) ¿Qué información dan los subíndices libres?

b) ¿Cómo se identifican los subíndices mudos?
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c) ¿Por qué se llama frecuentemente a la delta de Kronecker operador de sustitución?

d) ¿Qué valor toma la terna 132 para el símbolo de permutación?

Ejercicio 6.2

Reescriba usando notación indicial las siguientes expresiones:

1. a1x1x3 + a2x2x3 + a3x3x3

2. x x    x x 1 1 + 22

3.



            x 11 a x + a 12 y + a 13 z = b 



a21x + a22y + a23z = by



 a31x + a32y + a33z = b

            z

 

Ejercicio 6.3

 

Desarrolle las expresiones siguientes para n = 3:

1.    i      j δ a ,

j

2.       i     j δi j x x ,

3.    i δi,

4. ∂ fi      j dx

∂ x j

Ejercicio 6.4

 

Verifique en   3 R las siguientes igualdades:

1.    i j δ e    = 0

i jk

2.   ikm              i e e jkm      δ = 2

j

3.   i jk e e    = 3!

i jk

4.   i jm               i    j         i    j e e klm    δ = δ −

k         δ δ l lk

 

Ejercicio 6.5

 

Utilice el convenio de la suma de Einstein para escribir de forma tensorial:

 

1. Multiplicación de dos matrices n×m         m×k                          j  A  ∈  R   y  B  ∈  R   ,  C  =  A  .  B  con elementos  c  (el

i

supraíndice indica fila y el subíndice indica columna).

2. La traza de una matriz       n×n A ∈ R .

3. El determinante de una matriz       n×n A ∈ R .

4. El polinomio característico en función de los invariantes de un tensor.
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Ejercicio 6.6

 

Calcule el producto tensorial de los versores en   3 R, dos a dos y entre ellos mismos.

Ejercicio 6.7

¿Cuál es el orden de los tensores representados por sus componentes:

 

v i, ϕi jk, F i j j, εi j, Ci jkl, σi j?

 

¿Cuántas componentes tiene cada uno si los índices toman los valores 1,2, 3 ?

Ejercicio 6.8

Dada la transformación,

 

x 1      1 = 6 x

 

x 2    −3   1 = √     2 / x + 3 x 3

 

x 3     3 = x

 

y su inversa,

 

x 1     1 = x

 

x 2      1   1         2 √ = x + 1 / 3 x 6 3

 

x 3     3 = x

 

verifique, luego de determinar los versores,                          j g , y la base recíproca g, que

i

 

                           1 1 1 18 + √                     √ 0 36 − 0

36    36 ·3    18 3                                     3

g                               1 1 i j 18 i j                  √ = 0 g = − 12 0                 √

                           18 3 9 3

0       0    1                0     0    1

Ejercicio 6.9

Responda:

 

1) ¿A qué se denomina tensor esférico?

2) ¿Qué expresión toman los invariantes de una matriz que está en su espacio principal?

3) ¿Qué expresión toman los invariantes de un tensor esférico?

4) ¿Cómo queda la ecuación característica de un tensor antisimétrico?
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5) ¿Cualquier combinación de los invariantes principales será un invariante?

6) ¿A qué se llama representación espectral de una matriz?

7) ¿Cómo se calcula la matriz inversa usando el teorema de Cayley-Hamilton y los invariantes de un tensor?

8) ¿La norma de un tensor es también un invariante?

 

6.11.2   Autoevaluación

 

Verdadero o Falso

1. Si V es de dimensión finita n, entonces los hiperplanos vectoriales de V son de dimensión

n + 1.

2. Un hiperplano de V es el núcleo de un funcional lineal no nulo sobre el espacio V .

3. Si un espacio vectorial es suma directa de dos espacios vectoriales, la suma directa de los

espacios duales de esos espacios conforman el espacio dual del espacio vectorial original.

4. La distancia de un punto depende de la forma o métrica donde se mide.

5. El teorema de Pitágoras se cumple por igual en un plano o sobre una esfera.

6. El valor de Curvatura Gaussiana o Función K en el Espacio Euclídeo habitual es igual a 1.

7. La distancia más corta entre dos puntos sobre una esfera, se llama geodésica y no es una línea

recta.

8. En Radioastronomía se suele utilizar el término cubo de datos para nombrar la imagen de una

región del espacio pero a diferentes velocidades.




[image: ]

7. Aplicaciones

 

En este capítulo se abordan aplicaciones del Álgebra Lineal en dos temas considerados de mucho interés, como son la resolución de ecuaciones diferenciales y la aproximación de funciones. Los sistemas de ecuaciones diferenciales surgieron para analizar cuantitativamente determinados sistemas físicos. En el campo de la astronomía, y contemplando los principios físicos como las leyes del movimiento de Newton y la ley de gravitación, el problema matemático al estudiar el movimiento de dos o más cuerpos, (moviéndose cada uno bajo la acción gravitatoria de los otros) es el de resolver un sistema de ecuaciones diferenciales ordinarias. Por otro lado, el estudio de la teoría de aproximación de funciones también es de importancia fundamental. Comprende dos tipos generales de problemas: uno se refiere a la búsqueda de la función óptima que pueda utilizarse para representar un conjunto de datos y fue tratado en el Capítulo 4, en la aproximación por mínimos cuadrados. En este capítulo nos ocuparemos del problema que se presenta cuando una función se da de manera explícita, pero se quiere encontrar un tipo más simple de ella, por ejemplo un polinomio, que sirva para determinar valores aproximados de la función dada.

 

7.1   Ecuaciones diferenciales

Muchas leyes de la física, química, biología y economía se expresan en términos de ecuaciones diferenciales, es decir, en ecuaciones que comprenden funciones y sus derivadas. En esta sección veremos que es posible aplicar el álgebra lineal para resolver ciertos sistemas de ecuaciones diferenciales. Una de las ecuaciones diferenciales más simples es

 

y′ = ay (7.1)
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donde                                                    ′        dy y = f ( x ) es una función desconocida que se debe determinar, y = es su derivada y a es

dx

una constante. La Ec.(7.1) tiene infinitas soluciones, las cuales son funciones de la forma

 

y      ax = ce                                                                        (7.2)

 

donde                                                      ′ c es una constante arbitraria. Estas funciones son soluciones de y = ay, dado que

 

y′               ax = cae = ay                                                                                                  (7.3)

 

A la Ec.(7.2) se le da el nombre de                       ′ solución general de y = ay

Con frecuencia el problema físico que genera una ecuación diferencial impone alguna condición que permite hallar una solución única a partir de la solución general. Por ejemplo, si se requiere que la solución de ′ y = ay satisfaga que y = 3 cuando x = 0, entonces al sustituir en la solución general

Ec.(7.3), se obtiene un valor para c:

 

3     0 = ce = c                                                            (7.4)

 

Por lo tanto,        ax                               ′ y = 3 e es la única solución de y = ay que satisface la condición agregada, que se conoce como condición inicial. Al problema de resolver una ecuación diferencial sujeta a una condición inicial se denomina problema de valor inicial.

Dado ahora un sistema de ecuaciones diferenciales, por ejemplo,

y′    =   3y

1          1

y′    =   −2y

2            2

y′    =   5y

3          3

(7.5)

se desea hallar la solución del sistema que satisface las condiciones iniciales y1(0) = 1, y2(0) = 4 y y       − 3 ( 0 ) =2. En forma matricial, se tiene

      

3   0   0

Y ′                              = 0 − 2 0                                                                                 (7.6)        Y

      

0   0   5

donde             T Y = ( y 1 y , 2 y , 3 . Debido a que cada ecuación comprende sólo una función desconocida, se  )

puede resolver cada una de las ecuaciones por separado. De la Ec.(7.2) se obtiene

y           3x = c e

1         1

y           −2x c = e

2         2

y           5x c = e

3         3
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A partir de las condiciones iniciales dadas, se obtiene

 

1               0 = y 1           c ( 0 ) = 1e = c

1

4               0 = y e   c ( 0 ) = c =

2            2        2

−          0 2 = y ( 0 ) = c e c =

3            3        3

(7.7)

 

de modo que la solución que satisface las condiciones iniciales es

 

y     3x              −2x                5x e = , y e = 4 , y − = 2 e.

1            2               3

 

El sistema de este ejemplo fue fácil de resolver porque cada ecuación comprendía solo una función

desconocida, y fue ese el caso porque la matriz de coeficientes (7.6) es diagonal. Para resolver el caso cuando la matriz no es diagonal es posible hacer una sustitución para Y , Y = SU que conduzca a un nuevo sistema con una matriz diagonal de los coeficientes; y una vez resuelto este sistema más sencillo, se usa esa solución para determinar la del sistema original. Si se hacen las sustituciones Y        ′               ′ = PU e Y = PU en el sistema original

 

Y ′ = AY

 

y se supone que S tiene inversa, se obtiene

 

SU ′ = A(SU )

 

o bien,

 

U ′            −1 = ( SAS)U

 

o bien,

 

Y ′ = DY

 

donde      −1 D = SAS. Está claro cómo elegir S si se desea que la nueva mtriz de los coeficientes D sea diagonal. Se debe elegir S como la matriz que diagonalice a A. El procedimiento para resolver un sistema

 

Y ′ = AY

 

con una matriz A diagonalizable lo veremos con un ejemplo.
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Suponga que una partícula se mueve en un campo de fuerzas plano y que su vector de posición X        ′ satisface X = AX y X (0) = X , donde

0

      

′                 4   −5

Y =         Y

−2 1

 

las condiciones iniciales x1(0) = 2.9, x2(0) = 2.6 Se desea resolver este problema de valor inicial, y trazar la trayectoria de la partícula para t ≥ 0. La matriz A de los coeficientes del sistema es

      

4   −5

       .

− 2 1

 

Como se analizó en la Sección 3.2 a partir de Det (A − λ I ) = 0, se obtienen los autovalores de la matriz, T T  λ1  =  6 y  λ2  =  −  1. Los autovectores correspondientes son  ⃗  v  1 = (  −  5  ,  2  )  y  ⃗  v  2 = (  1  ,  1  ).

De ahí que la matriz

     

−5 1

S =       

2   1

 

diagonaliza a A y

     

D   −        6   0 1 = S AS =   .

0 −1

 

Por lo tanto, la sustitución              ′              ′ X = SU y X = SU conduce al nuevo sistema diagonal

     

′                              6   0

U = DU =      U.

0 −1

 

De acuerdo a (7.2), si              t U = ( u 1 , u 2 ) , la solución de este sistema es

 

u         6t = c e

1         1

u         −t = c e

2         2

 

y la ecuación X = SU proporciona la solución para X

              

 

X =     =             − t x c 2 x           −        6t 1 5 1 c 1 e 2   1        e 2

7.1 Ecuaciones diferenciales 271

 

Figura 7.1: El origen es un punto silla

[image: ]

 

o bien

 

x              6t          −t 1   = − 5 c 1e + c 2 e

x            6t         −t 2   = 2 c 1 e + c 2 e

 

Si se sustituyen las condiciones iniciales, se obtiene c     −        c 1 = 3 / 70 y2 = 188/70, de modo que la solución que satisface las condiciones iniciales es

 

x              6t                 −t 1              e = 15 / 70 + 188 / 70 e

x               6t                 −t − e = 6 / 70 + 188 / 70 e

2

 

Las trayectorias de X se muestran en la Figura 7.1. Al origen se le llama punto silla del sistema dinámico porque algunas trayectorias se aproximan primero al origen y luego cambian de dirección y se alejan de él. Se presenta un punto silla siempre que la matriz A tiene valores propios tanto positivos

como negativos. La dirección de mayor repulsión es la línea que pasa por     ⃗ ⃗ v 1 y 0 correspondiente al valor propio positivo. La dirección de mayor atracción es la línea que pasa por     ⃗ ⃗ v 2 y 0, correspondiente al valor propio negativo.
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Luis Ángel Caffarelli

 

Nacido el 8 de diciembre de 1948 en Buenos Aires. Es el principal experto mundial en problemas

de frontera libre para ecuaciones diferenciales en derivadas parciales no lineales. También es famoso por sus contribuciones a la ecuación Monge-Ampere y más en general ecuaciones completamente no lineales. Recientemente se ha interesado por los problemas de homogeneización. En 2023,la Academia Noruega de Ciencias le concedió el Premio Abel, el cual es semejante al Nobel en matemáticas, puesto que este último no cuenta con distinciones para esta rama del conocimiento.

[15]

 

7.2   Problemas de aproximación de funciones

En muchas aplicaciones se tiene interés en encontrar la mejor aproximación posible sobre un intervalo, para una función f , por medio de otra función que pertenece a alguna clase especificada; por ejemplo:

la mejor aproximación posible para x e en [0, 1] por medio de un polinomio de la forma a           2 0    a + 1 x + a 2 x.

la mejor aproximación posible para sen(πx) en [ −1,1] por medio de una función de la forma a      x         2x        3x + a e + a e a + e.

0     1       2        3

la mejor aproximación posible para |x| en [0,2π ] por medio de una función de la forma

a             a sen 0 + a sen x 1 ( ) +      b           cos 2 ( 2 x ) + cos x b x 1 ( ) + 2 ( 2).

 

En cada uno de esos ejemplos las funciones de aproximación pertenecen a un subespacio del espacio vectorial C[a, b] (funciones continuas en [a,b]), es decir que se está buscando la mejor aproximación utilizando funciones de un subespacio W de C[a,b]. Intuitivamente, la mejor aproximación posible en [a, b] será aquella que produzca el menor error. Si se desea aproximar en un

solo punto x0, el error al aproximar f (x) con g(x) estaría dado por | f (x0) − g(x0)| (desviación entre

f y g en x0). Si se desea la mejor aproximación en un intervalo, se necesita medir el error global de

la aproximación g(x). Una medida posible se obtiene integrando la desviación | f (x) − g(x)| sobre todo el intervalo; es decir,

Z b

| f (x) − g(x)|dx (7.8)

a

Geométricamente (7.8) es el área entre las gráficas de f (x) y g(x) sobre el intervalo [a,b]; mayor el área, mayor será el error global. Aunque es natural, y geométricamente atractiva, la presencia del 7.2 Problemas de aproximación de funciones 273

 

valor absoluto hace que se utilice más frecuentemente otra medida del error, conocida como error cuadrático medio , definido por

Z b

ECM           2 = | f ( x ) − g ( x ) | dx                                        (7.9)

a

La ventaja adicional del ECM es que puede escribirse a partir de la teoría de espacios vectoriales

con producto interno (ver Ejemplo 4.2).

Considerando el producto interior

Z b

( f ,g) =     f (x)g(x)dx                                                               (7.10)

a

sobre el espacio vectorial C[a,b], el error cuadrático medio

Z b

ECM       2                                        2 = ∥ f − g ∥ = ( f − g , f − g ) = | f ( x ) − g ( x ) | dx                           (7.11)

a

es el cuadrado de la distancia entre f y g. La aproximación g en W que minimiza el error cuadrático

medio es el vector g en W más próximo a f con el producto interno (7.10). Por lo que vimos en

el Teorema 4.5.1, g es la proyección ortogonal de f sobre el subespacio W . Entonces, si f es una función continua sobre [a,b] y W es un espacio con dimensión finita de C[a, b], la función g en W

que minimiza el error cuadrático medio Ec.(7.9) es g = P W f , que se conoce como aproximación de los mínimos cuadrados para f en W .

 

7.2.1   Series de Fourier

Una función de la forma

 

f (x) = c 0 + c1cos(x) + c2cos(2x) + · · · + cncos(nx)

+d1sen(x) + d2sen(2x) · · · + cnsen(nx) (7.12)

 

se conoce como polinomio trigonométrico; si cn y dn no son ambos nulos, entonces se dice que f (x) tiene orden n.

 

■ Ejemplo 7.1

 

f (x) = 5 + cos(x) − 3cos(2x) + 7sen(4x)

 

es un polinomio trigonométrico. c0 = 5, c1 = 1, c2 = −3, d1 = d2 = d3 = 0 y d4 = 7 de orden 4. ■

 

Por la expresión (7.12) los polinomios trigonométricos de orden n o menos son combinaciones lineales de

 

1,   cos(x)   cos(2x),   cos(nx)   sen(x),   sen(2x) · · ·   sen(nx)                     (7.13) 274 Capítulo 7. Aplicaciones

 

y forman un subespacio W del espacio vectorial de funciones continuas; generado por las 2n + 1

funciones de (7.13). Se puede demostrar que estas funciones son linealmente independientes y, como consecuencia, forman una base para W .

Si se desea hallar una aproximación para una función continua f (x) sobre el intervalo [−π ,π] o [0,2π] por medio de un polinomio trigonométrico de orden n o menor se deberá calcular la

proyección ortogonal de f sobre W . Para hallar esa proyección ortogonal (Teorema 4.5.1), se deberá

encontrar una base ortonormal g0, g1, g2, · · · , g2n para W y luego utilizar la fórmula

 

P W ( f ) = ( f , g0)g0 + ( f ,g1)g1 + · · · ( f ,g2n)g2n (7.14)

 

Es posible obtener una base ortonormal para W aplicando el método de Gram-Schmidt a la base

(7.13) usando el producto interno (7.8). Esto conduce a la base ortonormal.

1           1               1

g0 = √   , g1 = √ cos(x), g    √ 1 = cos(2x),

2π          π              π

· · · ,     g        √ n =   cos(nx),    g         √ n +   sen 1 1                  1 =     (x),

π                π

1

· · ·      g n          √   sen nx + 1 = ()

π

(7.15)

 

Si se introduce la notación

2                1                   2

a                               · · ·   a 0 = √ ( f , g 0 ) , a √ 1 = ( f , g 1 )) ,n = √   ( f, gn),

2π               π                  2π

1                    2

b    √ 1 = ( f, gn             √ + 1 ) , · · · b n =   ( f , g2n),                     (7.16)

π                  2π

Reemplazando en la Ec.(7.14), se obtiene

a 0

P W ( f ) =   + [a1cos(x) + · · · + ancos(nx)] + [b1sen(x) + · · · + bnsen(nx)]             (7.17)

2

Los números a     · · · 0 , a 1 , , an, b1, · · · , bn se denominan coeficientes de Fourier de f .

 

■ Ejemplo 7.2 Se desea hallar la aproximación de mínimos cuadrados de f (x),



 −1 cuando −π ≤ x ≤ 0,

f (x) =

 1   cuando 0 < x ≤ π

 

en [−π ,π] por medio de un polinomio trigonométrico de orden 2 o menor.

 

1 Z π           1 Z 0         Z π          1

a0 =       f (x)dx =    (    −1dx +    −1dx) =   (−π + π) = 0

2π −π         2π   −π        0          2π
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Figura 7.2: Aproximación mediante un polinomio trigonométrico
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1 Z                     0 π 1 Z             Z π           4

b1 =      f (x)sen(x)dx =   (    −sen(x)dx +    sen(x)dx =

π −π              π   −π            0           π

 

El resto de los coeficientes son nulos, así que la mejor aproximación a f (x) (por medio de un polinomio trigonométrico de orden 2 o menor) es,

4

f (x) ≈   sen(x)

π

La función y su aproximación se muestran en la figura 7.2. ■

 

■ π  Ejemplo  7.3  Se desea hallar la aproximación de mínimos cuadrados de  f  (  x  ) =  x  en  [  0  ,  2] por

medio de un polinomio trigonométrico de orden 2 o menor.

1 Z 2π          1 Z 2π

a0 =       f (x)dx =       xdx = 2π                                      (7.18)

π 0           π 0

Para k = 1,2, · · · n se puede verificar que, realizando integración por partes, se obtiene

1 Z 2π                 1 Z 2π

ak =       f (x)cos(kx)dx =       xcos(kx)dx = 0

π 0                 π 0

 

1 Z 2π                 1 Z 2π              −2

bk =       f (x)sen(kx)dx =       xsen(kx)dx =
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Por lo tanto, la aproximación de mínimos cuadrados por medio de un polinomio trigonométrico de orden 2 o menor es

 

x ≈ π − 2sen(x) − sen(2x)

 

■

De lo anterior se desprende que la aproximación de mínimos cuadrados de f (x) = x en [0,2π] por medio de un polinomio trigonométrico de orden n o menor, teniendo en cuenta (7.19), es

sen(2x)    sen(3x)      sen(nx)

x ≈ π − 2(sen(x) +        +       + · · ·

2        3           n

y resulta obvio esperar que el error cuadrático medio disminuya a medida que se aumenta el número de términos en la aproximación de mínimos cuadrados

 

a     n

f           0 ( x ) ≈ +    (a cos(kx) + b        )) ∑

k                k sen(kx

2   k =1

Se puede probar que el error cuadrático medio tiende a 0 cuando n → ∞, esto se denota escribiendo

a    ∞

f           0 ( x ) = +    (a ∑

k                k cos ( kx ) + b sen(kx))                                                   (7.19)

2   k=1

El segundo miembro de esta ecuación se denomina serie de Fourier para f . Las series de este tipo tienen importancia primordial en ingeniería, ciencias y matemáticas.

 

7.2.2   Series de Haar. Bases de wavelets ortogonales

En la sección anterior se describió el sistema trigonométrico.

 

{1, cos(nx),sen(nx)}n∈N (7.20)

 

de período 2π a partir del cual se halla la serie de Fourier de una función f (x). Puede reescribirse con exponenciales complejas

 

{ inx e}n∈Z (7.21)

 

ya que por la fórmula de Euler, ix e = cos(x) + isen(x).

Los sistemas (7.20) y (7.21) pueden obtenerse uno del otro mediante combinaciones lineales simples. En particular, para n ∈ Z,



 cos (nx) + isen(nx) si n ̸= 0,

einx =

 1           si n = 0
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y para n ∈ N

 

einx      −inx + e

cos(nx) =

2

y

einx      −inx − e

sen(nx) =           .

2i

La serie de Fourier (7.19) puede escribirse, entonces,

 

f                    inx ( x ) = c ( k ) e                                                                                 (7.22) ∑

k ∈Z

con ciertos coeficientes c(k). Vamos a presentar en esta sección un ejemplo de sistema ortogonal en [0,1] conocido como el sistema de Haar. Es la más simple e históricamente el primer ejemplo de una base wavelet ortogonal. Muchas de sus propiedades contrastan con las propiedades del sistema

trigonométrico (7.21):

tienen soporte en pequeños subintervalos de [0,1], mientras que las funciones base de Fourier son no nulas en todo el intervalo [0,1]. son escalonadas, con discontinuidades, mientras que las funciones base de Fourier con ∞  C  en

[0,1].

las bases de Haar tienen un índice que indica la escala j que reemplaza a la frecuencia n de las bases de Fourier.

las bases de Haar proveen una representación eficiente para funciones que son suaves en algunos segmentos y con picos y discontinuidades en otros, mientras que las bases de Fourier dan buenas representaciones para funciones con comportamiento oscilatorio en intervalos largos.

 

Alfréd Haar (1885 - 1933)

 

Matemático húngaro de origen judío, nacido en 1885. En 1904 comenzó a estudiar en la

Universidad de Gotinga. Su doctorado fue supervisado por David Hilbert. La medida de Haar, la ondícula de Haar y la transformación de Haar reciben su nombre. Entre 1912 y 1919 enseñó en la Universidad Francisco José de Kolozsvár. Junto con Frigyes Riesz, hizo de la Universidad de Szeged un centro de las matemáticas. También fundó la revista Acta Scientiarum Mathematicarum junto con

Riesz. [2]
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Figura 7.3: Bases de Haar. Escala j = 2 a la izquierda y j = 4 a la derecha

[image: ]

 

Para cada par de enteros j, k ∈ Z, se definen

el intervalo diádico I j,k :

 

I          − j    − j j,k = [ 2 k , 2 (k + 1))                                                                    (7.23)

 

y la función de Haar:

 

h         j /2                   r j , k ( x ) = 2 ( χ l ( x ) − χ I I (x))                                                              (7.24) j , k j , k

 

De esta forma, h j ,k(x) está soportada en el intervalo I j,k (no se anula en ese intervalo). Decimos que la función de Haar h j,k(x) está asociada a ese intervalo.

La longitud del intervalo         − j I j,k es 2 . Si j es grande, la longitud es pequeña. Se dice, entonces, que la función h j,k(x) está bien localizada en el tiempo. Esta propiedad contrasta con las bases de Fourier que tienen todas módulo 1 para todo x ∈ [0,1) y por lo tanto no se anulan para ningún x de ese intervalo.

En la Figura 7.3 se muestra un ejemplo de aproximación de una función mediante bases de Haar, para dos escalas o niveles de resolución diferentes.

 

Las bases de Haar, creadas por Alfred Haar en 1909, fueron el primer registro histórico de lo que hoy se denomina familias de funciones ondículas o wavelets desarrolladas en los últimos 40 años 7.2 Problemas de aproximación de funciones 279

 

para poder analizar señales que no se comportan en forma estacionaria o que presentan cambios bruscos en intervalos pequeños. Esas señales de interés provienen de distintas áreas como la medicina, sismología, geología, electrónica y también astronomía. Así, la Teoría Wavelet, caracterizada por una base matemática compleja, constituye una potente herramienta en el procesamiento de señales y de imágenes digitales. Permite la reducción de ruido, la compresión de señales ( muy importante tanto para la transmisión de grandes cantidades de datos como en su almacenamiento) o la detección de determinados objetos en imágenes o en irregularidades locales, por ejemplo en un electrocardiograma (ECG).

El concepto de wavelets como lo conocemos fue propuesto por Jean Morlet y el equipo del Centro de Física Teórica de Marsella, Francia. Con el fin de descomponer y estudiar ciertas señales

sísmicas, diseñaron la wavelet que se muestra en la Figura 7.4. Cabe señalar que los métodos del análisis wavelet fueron desarrollados principalmente por Yves Meyer y sus colegas y que recién en 1988 apareció el primer algoritmo de cálculo y su autor fue Stéphane Mallat. Desde entonces la investigación acerca del análisis Wavelet captó mucho interés y se destacan científicos como Ingrid Daubechies, quien en 1988 creó una familia de ondículas o wavelets ortogonales con soporte

compacto. En la Figura 7.5 se muestra la wavelet de Daubechies de orden 6, utilizada con frecuencia, por su similitud, para analizar electrocardiogramas.

Su aplicación se extiende a campos muy diversos. En cuanto a las aplicaciones en medicina, el análisis con Wavelets permite interpretar los resultados de exámenes médicos, facilitando el diagnóstico de enfermedades.

 

En Astronomía, algunos ejemplos del uso de Wavelets son:

para el procesado de imágenes planetarias.

en el estudio de la actividad solar.

para la detección de períodos en curvas de luz.

 

Ingrid Daubechies

 

Es una matemática y física belga. Nació en 1954. Estudió física en la Vrije Universiteit Brussel (la

universidad de Bruselas en lengua flamenca), en la que también se doctoró en física teórica en 1980 y estuvo investigando hasta 1987. Ese año se trasladó a Estados Unidos con su marido, el también matemático Robert Calderbank, recién casados. Daubechies trabajó en los Laboratorios Bell de Nueva 280 Capítulo 7. Aplicaciones

 

Figura 7.4: Wavelet Morlet
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Figura 7.5: Wavelet de Daubechies y latido de un ECG

[image: ]

7.2 Problemas de aproximación de funciones 281

 

Jersey y en varias universidades estadounidenses. En 1993 se convirtió en profesora de matemática computacional en la Universidad de Princeton hasta 2011, cuando trasladó a la Universidad Duke como catedrática de matemáticas. En 2012, el rey Alberto II de Bélgica la concedió el título de Baronesa en reconocimiento de su trayectoria profesional. Es miembro de numerosas instituciones. Fue la primera mujer matemática en presidir la Unión Matemática Internacional (desde 2011). En 1993 fue admitida en la Academia Estadounidense de las Artes y las Ciencias, en 1998 en la Academia Nacional de Ciencias de Estados Unidos y en 2012 en la Sociedad Estadounidense de Matemática. Además, ha sido invitada a participar en numerosas ocasiones en el Congreso Internacional de Matemáticas. Daubechies ha recibido numerosos premios, entre ellos destacan el Premio Nemmers en Matemáticas de 2012 y el Premio Fundación BBVA Fronteras del Conocimiento en Ciencias Básicas 2012 junto a David Mumford. En 2020 fue reconocida, junto a Emmanuel Candès, Yves Meyer y Terence Tao, con el Premio Princesa de Asturias de Investigación Científica y Técnica por «haber realizado contribuciones pioneras y trascendentales a las teorías y técnicas modernas del procesamiento matemático de datos y señales». En 2023 recibió el Premio Wolf en Matemáticas, por sus investigaciones sobre ondículas y análisis armónico aplicado. Daubechies es la primera mujer que ha recibido este reconocimiento.

Ingrid Daubechies ha trabajado en el campo de las ondículas, herramientas que permiten el

análisis de señales para entregar información temporal y frecuencial de manera casi simultánea. En 1988, Daubechies propuso la ondícula ortogonal con soporte compacto (conocida como ondícula Daubechies), y en 1992 la ondícula biortogonal, también conocida como ondícula CDF (Cohen-Daubechies-Feauveau), empleada para el formato de compresión de imágenes JPEG 2000. Estas herramientas matemáticas permiten el avance e investigación tanto en matemática teórica como aplicada, pues sirve en la demostración tanto de teoremas como en el desarrollo de las telecomunicaciones, tanto en audio como vídeo, y hasta el ámbito biosanitario, con transmisión de

datos de imágenes sanitarias. [11]
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Apéndice: Ejercicios preliminares

 

¿Puede un escalar no ser un número?

 

1) A.B.C.D.E.F.G.H.I.J.K.L.M.N.P.Q.R.S. T.U.V.W.Y.Z

2) AA, B; AAA, C; AAAA, D; AAAAA, E; AAAAAA, F; AAAAAAA, G; AAAAAAAA, H; AAAAAAAAA, I; AAAAAAAAA, J;

3) AKALB; AKAKALC; AKAKAKALD; AKALB; BKALC; CKALD; DKALE; BKELG; GLEKB; FKDLJ; JLFKD.

4) CMALB; DMALC; IMGLB.

5) CKNLC; HKNLH; DMDLN; EMELN.

6) JLAN;JKALAA;JKBLAB; AAKALAB; JKJLBN; JKJKJKJKLCN; FNKGLFG. 7) BPCLF; EPBLJ; FPJLFN.

8) FQBLC; JQBLE; FNQFLJ.

9) CRBLI; BRELCB.

10) JPJLJRBLSLANN; JPJPJLJRCLTLANNN; JPSLT; JPTLJRD. 11) AQJLU; UQJLAQSLV.

12)   ULWA;   UPBLWB; AWDMALWDLDPU; VLWNA; VPCLWNC; VQJLWNNA; VQSLWNNNA; JPEWFGHLEFWGH; SPEWFGHLEFGWH.

13) GIWIHYHN; TKCYT; ZYCWADAF.
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14) DPZPWNNIBRCQC.

Mensaje interplanetario

Por Adrián Paenza

 

Supongamos que uno quisiera mandar un mensaje al espacio de manera tal de que en el caso de

que fuera interceptado por algún ser “inteligente”, éste pudiera leerlo e interpretarlo. ¿Cómo hacer para escribir algo en “ningún idioma” en particular, pero lo suficientemente explícito como para que cualquiera que pueda “razonar” lo pueda entender? Por otro lado, una vez superado el obstáculo del “medio” o sistema de comunicación que se va a utilizar y que suponga que “el otro” va a entender, ¿qué escribirle?, ¿qué decirle?

Ahora quiero contar una historia que apareció en un diario japonés. Alicia Dickenstein, una

de las mejores matemáticas argentinas de la historia y actual profesora en Exactas (UBA), volvía de un viaje por Oriente y me comentó lo que había leído en la revista El Correo de la Unesco, correspondiente al mes de enero de 1966. Me tomo el atrevimiento de reproducirlo textualmente ya que el texto circula por Internet desde hace muchísimo tiempo:

“En 1960, Ivan Bell, un profesor de inglés en Tokio, oyó hablar del ‘Project Ozma’, un plan de

escucha de los mensajes que por radio pudieran venirnos desde el espacio. Bell redactó entonces un mensaje interplanetario de 24 símbolos, que el diario japonés Japan Times publicó en su edición del 22 de enero de 1960, pidiendo a sus lectores que lo descifraran. El diario recibió cuatro respuestas. De las cuatro, una correspondió a una lectora norteamericana que contestó usando el mismo código que había sido utilizado para escribir el mensaje, agregando que ella vivía en Júpiter.”

Acá usted se va a encontrar con el mensaje de Ivan Bell que, como dice el artículo original, es

“extraordinariamente fácil de descifrar y mucho más sencillo de lo que parece a simple vista”.

Es un ejemplo muy disfrutable y original de lo que puede hacer el intelecto humano, cualquiera

sea el idioma que hable: sólo se requiere tener voluntad de pensar. Acá va la lista de 14 frases. La numeración corre por cuenta mía, pero piense que cada línea es una parte del mensaje.

 

Ejercicios

 

Producto escalar. Norma. Distancia y ángulo entre vectores

 

1. Calcule ⃗ u ·⃗ v, siendo · el producto escalar, para ⃗ u = (2, −5,−1) y ⃗ v = (3, 2,−3). EJERCICIOS PRELIMINARES 285

 

import numpy as np

a=np. array ([2 , -5 , -1])

b=np. array ([3 ,2 , -3])

print (a. dot (b))

 

2. Sea ⃗ v= (1,-2,2,0), encuentre un vector unitario ⃗ u en la misma dirección que ⃗ v.

3. Demuestre que                ⃗                      ⃗ ⃗ c es ortogonal a d siendo ⃗ c = (4/3,-1, 2/3) y d = (5, 6,-1).

4. Determine el coseno del ángulo entre los vectores ⃗ u = (2, −5,−1) y ⃗ v = (3,2,−3), en

estadística este valor recibe el nombre de coeficiente de correlación. Si el valor esta cercano a 1 o a −1 los datos están relacionados, de lo contrario si el valor es cercano a 0 no existe ninguna relación entre ellos.

5. Encuentre la distancia entre⃗ x = (1, −1, 2) y ⃗ y = (3, 4,−5).

 

Sistemas de ecuaciones lineales

 

6. Dado el sistema

 



 x1 + x2 + x3 = 1

 x − 1     x 2 = 3

3

 

a) Compruebe que la terna (2t + 3, −3t − 2,t) es solución de dicho sistema, ∀t ∈ R . b) Justifique por qué este sistema tiene infinitas soluciones.

c) Indique cómo se clasifican los sistemas de ecuaciones lineales.

7. Dados los sistemas

 



 x − 1    x2    3 =

 2x1 − x2 = 5

y

 



 x1 − x2 = 3

 x   − =1

2

 

a) Compruebe que tienen el mismo conjunto solución.
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b) Comente la relación entre los dos sistemas.

c) Mencione cuáles son las llamadas operaciones elementales.

 

8. Encuentre los valores de b que hacen que el sistema

 



 x      x + bx − 2 = 2

 1      2      3



−x1 + (b − 2)x2 + 2x3 = −2



 2x1 + 2x2 + (b − 4)x = 3

          3

Tenga:

 

1) Una solución.

2) Infinitas soluciones.

3) Ninguna solución.

4) Describa el conjunto solución para a) y b)

 

Nota: utilice el algoritmo de eliminación Gauss prestando atención a la notación de las operaciones.

 

Matrices. Matrices semejantes. Matrices elementales.

 

El mismo Arthur Cayley relató en 1894 que lo condujo a las matrices, el ser estas un modo conveniente de expresar las ecuaciones



 ′ x = ax + by

 = cx + dx

y′

Simbolizando esta transformación lineal con dos variables independientes por medio de la disposición en cuadro.

    

a b

A =      

c   d

9. Halle las matrices X e Y sabiendo que:

 

      

3 1 −4

X +Y =         

7 1   5

 

        

−4 −3 2

2X − 3Y =            

−6 2   −5
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10. Si A es una matriz de tamaño m × n y B es una matriz de tamaño n × p, el producto de las

matrices A y B es la matriz de tamaño m × p, cuyo elemento (i,k) es el producto escalar de la fila i de la matriz A por la columna k de B, o sea:

 

(             n A . B ) i,k      ∑ =   a b

j =    i j   jk 1

    

                   1 2

2 −1 1             1 3

Dadas las matrices:             ,  0   1 ,        

1   0   2               4 5

3 4

Analice en qué casos es posible calcular: A.B − B.A, a ésta diferencia se la conoce como conmutador.

import numpy as np

a = np. array ([[1 , 0] ,

[0 , 1]])

b = np. array ([[4 , 1] ,

[2 , 2]])

a @ b

 

11. Dadas las matrices

     

                 2 3

1 0 2 −1   3                 

      4 5

           

            1 5 1 0

0                              

A                               = y B = 1 1            

     

            0 0 1 2 − 1

           

            2 − 1

           

     

0 0 2   3    5                   

1   1

Es de destacar que se simplifica el producto A.B si se utilizan submatrices.

 

12. Calcule 6 A siendo:

 

          

0   1    0    0

          

           1 0 0 0

A =               

           1 2 1 − 1

          

1 −1 −1   1

 

13. Dados los tres pares de datos (0, −1), (1,1) y (2, 0), halle el polinomio de grado menor o

igual que 2:                       2 p ( x ) = a + a x + a x, que pasa por dichos pares de datos. Evalue el valor de

0     1      2

p(x) si x = 2/3. Al polinomio resultante se lo denomina: Polinomio de Interpolación. 288 EJERCICIOS PRELIMINARES

Determinantes y matrices inversibles. Rango de una matriz.

 

14. ¿ Es invertible la siguiente matriz?:

 

        

1   −2   1

A          = 2 3 5

        

        

− 1 −5 −4

 

Justifique de varias maneras su conclusión.

15. Sea la matriz:

      

2 −1 0

A        = 3 b 1

      

      

b   1   1

 

Encuentre los valores del parámetro b para que A sea invertible.

 

16. Piense una forma conveniente para calcular el valor del determinante de una matriz cuadrada

y úselo para calcular el determinate de:

 

          

2   0    0    0

          

           0 3 0 1

A =               

           0 3 2 − 2

          

0 −3 −1 −2

 

17. Encuentre el rango de la matriz en función del parámetro a:

 

         

1   a   −1 2

A           = 2 − 1 a 5

         

         

1   10   −6 1
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18. Demuestre que si

1)                                                                   n D = ( d i j                                                                                                                                                    ∏ ) una matriz diagonal de tamaño n × n . Entonces Det ( D ) = d .

i     ii

2) Si A es una matriz triangular del tamaño n ×n, entonces Det(A) es producto de los elementos diagonales de A.

3) Una matriz                                 n A de tamaño n × n , el Det ( tA ) = tDet(A) siendo t un escalar cualquiera.

19. Demuestre el siguiente enunciado:

Supongamos que ⃗  u  ⃗  x  0  es una solución particular del sistema de ecuaciones lineales  A  ⃗  =  b. Si

⃗                                                         ⃗ v es una solución cualquiera del sistema homogéneo asociado A ⃗ x = 0, entonces ⃗ u0 + ⃗ v es solución de      ⃗ A ⃗ x = b.

 

Aplique lo demostrado para el siguiente sistema:

 



 x + z + w = 4





2x + y − w = −2



 3x + y + z = 7



 

Autoevaluación

 

Verdadero o Falso.

 

1. Si la distancia entre ⃗ u y ⃗ v es igual a la distancia de ⃗ u y − ⃗ v, entonces ⃗ u y ⃗ v son ortogonales.

2. Sean las matrices          nxn                      t      t A , B ∈ R se verifica que AB = A B.

3. Consideremos la matriz       3x3 A ∈ R, donde

      

x   0   1

A        = 0 x 0

      

      

1 0 x

 

La ecuación Det(A) = 0, no tiene solución.

4. Sean         nxn                                    2     2             2 A , B ∈ R , se verifica la relación ( A + B ) = A + 2 AB + B.

5. Sea       nxn                                                  −1 A ∈ R una matriz invertible se verifica que Det ( A) = −Det (A) = 1.

6. Sea     ⃗ A ⃗ x = b un sistema de m ecuaciones con n incógnitas, si se verifica rango de A es n, entonces

el sistema es compatible determinado.

7. Sea      nxn                       2 A ∈ R de forma tal que A = A , se verifica que Det (A) = 0 o Det(A) = 1.

[image: ]

Glosario

 

C([a,b] espacio vectorial de las funciones continuas en [a,b]

 

ColA espacio vectorial generado por los vectores columna de la matriz A.

Det (A) o | A | determinante de la matriz A.

d ( ⃗ x,⃗ y) = ∥ ⃗ x −⃗ y∥ distancia entre los vectores ⃗ x e ⃗ y.

dim (V ) dimensión del espacio vectorial V .

 

E espacio euclídeo

 

Ek proyecciones tales que Im(Ei) = N(T − λiI ).

 

E espacio propio correspondiente a λ λi. i

f ∗ transformación adjunta de una transformación lineal f .

FilA espacio vectorial generado por los vectores fila de la matriz A.

A(⃗ x,⃗ y) forma bilineal

 

Im (T ) imagen de la transformación lineal T .

⟨ ⃗ z⟩ subespacio generado por el vector⃗ z

L(S) subespacio vectorial de V generado por S.

 

L (V ) espacio vectorial de transformaciones lineales de V en V (endomorfismos).

L (V,W) espacio vectorial de transformaciones lineales de V en W . 292 GLOSARIO

 

mT polinomio minimal.

N (T ) núcleo de la transformación lineal T .

Nul (A) espacio nulo de la matriz A.

P K [x] polinomios en x, con coeficientes en K.

P(n) [x] polinomios en x, con coeficientes en K de grado ≤ n.

K

PT (λ ) polinomio característico de T .

 

P ′                                                                                                          ′ B B , B matriz del cambio de base de a B.

P S( ⃗ v) proyección ortogonal de ⃗ v sobre el subespacio S.

φ ( ⃗ x,⃗ y) = ( ⃗ x,⃗ y) producto interno

r (T ) rango de la matriz T .

S = ⟨ ⃗ v⟩ subespacio generado por el vector ⃗ v.

S ⊥ complemento ortogonal de S en un espacio vectorial (V con producto interno).

Tr(A) traza de la matriz A

V ∗ espacio dual de V .
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Respuestas a las autoevaluaciones

 

Apéndice: 1. V, 2. F, 3. F, 4. F, 5. F, 6. F, 7. V

 

1.6.2: 1. V, 2. F, 3. F, 4. V, 5. V, 6. F, 7. V, 8. V, 9. F

 

2.8.2: 1. F, 2. V, 3. F, 4. V, 5. F, 6. V, 7. V, 8. V, 9. V, 10. V, 11. V

 

3.7.2: 1. V, 2. V, 3. V, 4. F, 5. F, 6. V, 7. V, 8. F, 9. V, 10. F, 11. F,

12. V, 13.V, 14. F, 15.F, 16.V

 

4.7.2: 1. V, 2. V, 3. V, 4. V, 5. V, 6. V, 7. V, 8. V, 9. V, 10. V, 11. V,

12. V, 13. F, 14. V, 15. F, 16. V, 17. V, 18. V

 

5.2.2: 1. V, 2. F, 3. F, 4. F, 5. V

 

6.11.2: 1. F, 2. V, 3. V, 4. V, 5. F, 6. V, 7. V, 8. V
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