Horacio L. Barragán
(editor principal)

Desarrollo, salud humana y amenazas ambientales

LA CRISIS DE LA SUSTENTABILIDAD

Adriana Pascual
Marcelo Javier Bourgeois
Oscar Alfredo Ojea
(editores)
DESARROLLO, SALUD HUMANA
Y AMENAZAS AMBIENTALES

LA CRISIS DE LA SUSTENTABILIDAD
DESARROLLO, SALUD HUMANA
Y AMENAZAS AMBIENTALES
LA CRISIS DE LA SUSTENTABILIDAD

Adriana Pascual
Marcelo Javier Bourgeois
Oscar Alfredo Ojea
(editor es)

La Plata
2010
Barragán, Horacio Luis
Desarrollo, salud humana y amenazas ambientales: la crisis de la sustentabilidad.
524 p.; 30x21 cm.

ISBN 978-950-34-0698-4

1. Salud Humana. 2. Desarrollo. 3. Medicina. I. Título
CDD 614

Fecha de catalogación: 18/11/2010
Horacio Luis Barragán

Adriana Pascual

Marcelo Javier Bourgeois

Oscar Alfredo Ojea
Juan Andrieu

Adriana Aprea

Daniel Arias

Estela Bonzo

José Luis De Echave

Oscar Antonio Di Marco Rodríguez

Graciela Etchegoyen
Doctora en Medicina. Posgrado en Salud Reproductiva. Investigadora Adjunta del CONICET. Profesora Titular de la Cátedra de Epidemiología y Jefa del Departamento

**Ana María Girardelli**
Jefe del Servicio de Toxicología del H.I.A.E.P. «Sor María Ludovica» de La Plata. Profesora Titular de la Cátedra de Toxicología (Fac. de Cs. Médicas, UNLP). Master Universitario en Toxicología (Universidad de Sevilla). Master en Protección Ambiental. Asesora de Programas y miembro de comisiones específicas en la Secretaría de Política Ambiental y del Ministerio de Salud de la prov. de Bs. As., del Ministerio de Salud de la Nación y de la comisión Interjurisdiccional de la Cuenca Matanza-Riachuelo. Conferencias académicas en el país y el extranjero.

**Carlos Santiago Grisolía**

**Arnaldo Maciá**
Doctor en Ciencias Naturales (UNLP). Formado en el Centro de Estudios Parasitológicos y de Vectores (UNLP - CONICET). Becario en el Departamento de Biología de la Universidad de Oregon (EE.UU.). Coordinador de Postgrado (Fac. de Cs. Naturales y Museo, UNLP). Docente de las cátedras de Zoología General y Entomología (Fac. de Cs. Naturales y Museo, UNLP), y de Biología Humana (Fac. de Psicología). Profesional de Apoyo de la Comisión de Investigaciones Científicas de la prov. de Bs. As. Se desempeña en la División de Entomología del Museo de La Plata.–Docente de Artrópodos de Interés Médico y Veterinario (Fac. de Cs. Naturales y Museo).

**Ana María Marino**

**Susana Beatriz Padín**
Ingeniera Agrónoma (Fac. de Cs. Agrarias y Forestales, UNLP). Docente Investigador en el área Protección Vegetal: Control de Plagas. Profesora Adjunta Ordinaria de la Cátedra Terapéutica Vegetal (Fac. de Cs. Agrarias y Forestales, UNLP).

**Héctor Emilio Ralli**
Médico Infectólogo Universitario (UBA). Jefe de Unidad de Pediatría del Hospital Francisco Javier Muñiz. Docente Adscripto de la Cátedra de Enfermedades Infecciosas (Fac. de Cs. Médicas, UBA).

**Mónica Elizabet Ricci**

**Osvaldo Enrique Ricci**
Ingeniero Químico (UTN, FRLP). Especialista en Ingeniería Ambiental (UTN, FRLP). Post título de Formación de docente en el Área de Salud (Dirección Prov. de Capacitación para la Salud, Ministerio de Salud, prov. de Bs. As.).
**Colaboradores**

**Mariana Barragán**  

**Santiago Luis Barragán**  

**Alejandro Horacio Basta**  

**María Gabriela Bisceglia**  

**Karina Paola Gómez Aguirre**  

**Pablo Iacoi**  
Médico (Fac. de Cs. Médicas, UNLP). Master en Higiene Industrial (Instituto Argentino de Seguridad). Master en Protección Ambiental. Especialista Consultor en Medicina del Trabajo (Colegio de Médicos de la prov. de Bs. As., Distrito IX). Ex Secretario General de la Federación Argentina de Medicina del Trabajo,
FAMETRA. Miembro Fundador y ex Presidente de la «Sociedad de Medicina Ocupacional de La Plata». Director de los cursos de «Medicina del Trabajo» (Colegio de Médicos, prov. de Bs. As., Distrito I y IX). Docente de la Cátedra de Salud Pública (Fac. de Cs. Médicas, UNLP). Docente de Medicina Laboral en la «Tecnecática en Higiene y Seguridad en el Trabajo» (Universidad FASTA, Mar del Plata).

**Gustavo Carlos Jaluf**
Médico Pediatra. Intensivista pediatra. Sanitarista. Ex médico del Servicio de Terapia Intensiva y del Servicio de Recuperación Cardiovascular del Hospital de Niños «Sor María Ludovica» de La Plata. Integrante del equipo técnico del Programa de Garantía de Calidad del Ministerio de Salud de la prov. de Bs. As. Equipo Técnico del Área de Calidad del Hospital «El Cruce» (Florencio Varela). Auditor del CENAS. Docente de la Cátedra de Salud Pública (Fac. de Cs. Médicas, UNLP).

**Eduardo Ángel Martínez**

**Carolina Sgarbi**
Ingeniera Agrónoma (Fac. de Cs. Agrarias y Forestales, UNLP). Ayudante Diplomado de Genética, de Protección Vegetal y Jefe de Trabajos Prácticos de Zoológica Agrícola (Fac. de Cs. Agrarias Naturales y Ambientales, Universidad Nacional del Noroeste, prov. de Bs. As.). Integrante de proyectos de investigación (Fac. de Cs. Agrarias y Forestales, UNLP, y Fac. de Cs. Agrarias Naturales y Ambientales Universidad Nacional del Noroeste, prov. de Bs. As.). Directora Técnica del Laboratorio de calidad de semilla de El Triunfo (Lincoln).

**Beatriz Marcela Walker**
Agradecimientos

Al sólido asesoramiento de:
- Prof. Dr. José María Paganini, ilustrando siempre con su valiosa experiencia.
- Prof. Dr. José Raúl Grigera, Físico, Profesor Emérito de la UNLP.
- Prof. Dr. Gustavo Rinaldi, Médico, Profesor Titular de Fisiología (Fac. de Cs. Exactas, UNLP).
- Prof. Roberto Oscar Mirabelli, Matemática y Física.
- Ing. Quím. Pedro Oscar Serrano, Jefe (retirado) del Laboratorio de Agua del Instituto Biológico (prov. de Bs. As.).
- Lic. Celina Colli, Química.

No todas sus enseñanzas han podido plasmarse en el texto y los defectos del mismo les son ajenos.

A la fotografía del capítulo «Vectores» del Dr. Ernesto Campos, Investigador del CONICET, Especialista en ecología de mosquitos.

A las autoridades de la Editorial de la Universidad de La Plata (Edulp),
- Dra. Florencia Saintout, su anterior directora y actual Decana de la Facultad de Periodismo y Comunicación Social.
- Lic. Leonardo González, su actual director.
- María Eugenia López, minuciosa correctora y distinguida en joven sabiduría.
- Andrea López Osorio, diseñadora, creativa y noble en los gestos de la comunicación humana.

Al trabajo incansable de jóvenes amigos:
Juan Francisco y Pedro Tomás Maurino

Al apoyo generoso de Lorena Cambeiro, Silvia Melo, Sebastián Urías, Benjamín Illarreguy y Gonzalo Basualdo.
A Germán Kippes y Christian Pablo Christensen, hijos por el amor de nuestras hijas y padres generosos de nuestros nuevos nietos.
A Mercedes Barragán, José Kippes y un Christensen en formación, que alcancen modestamente, con Joaquín, Malena y Ernestina, a aportar a una patria floreciente y digna de su vieja historia.
A las comunidades sin acceso a la salud, afligidas por las injusticias y las desviaciones, con las que nuestra generación queda en deuda insalvable y de las que somos –al menos– testigos balbuceantes.

Horacio y Mary Barragán

A mis padres, quienes sentirían un gran orgullo por la tarea cumplida.
A Juan, por el apoyo incondicional a todos mis emprendimientos.
A Fermín, para estimularlo a seguir adelante y comprender que el esfuerzo vale la pena.
A Graciela y Horacio, que me abrieron el camino profesional que siempre quise transitar.

Adriana Pascual

A mis padres, que están siempre.

Marcelo Javier Bourgeois

A mi esposa Mónica, a mis hijos Cintia, Sebastián y Coralía, cada cual con su cada cual.
A mis nietos Catalina, Oscar Francisco y Santiago, solcitos que alumbran mi vida.
A quienes aún luchan por utopías e ideales por una vida mejor.

Oscar Alfredo Ojea

A las familias de nuestros invitados y colaboradores.

Los editores
ÍNDICE

| Prefacio | 17 |
| Capítulo 1 | ECOLOGÍA, AMBIENTE Y SALUD | 19 |
| Adriana Pascual |
| Capítulo 2 | URBANIZACIÓN, AMBIENTE Y CALIDAD DE VIDA | 47 |
| Marcelo Javier Bourgeois |
| Capítulo 3 | CONTAMINACIÓN Y RIESGO AMBIENTAL | 75 |
| Adriana Pascual |
| Capítulo 4 | EL MEDIO AMBIENTE Y LA SALUD DE LAS COMUNIDADES | 95 |
| Horacio Luis Barragán, Adriana Pascual, Santiago Luis Barragán |
| Capítulo 5 | FACTORES MICROAMBIENTALES QUE PRODUCEN ACCIDENTES | 137 |
| Horacio Luis Barragán, B. Marcela Walker, Gustavo Jaluf |
| Capítulo 6 | PROVISIÓN DE AGUA | 157 |
| Horacio Luis Barragán, Karina Gómez Aguirre, Adriana Pascual |
| Capítulo 7 | EFLUENTES DOMICILIARIOS E INDUSTRIALES | 185 |
| Osvaldo E. Ricci |
| Capítulo 8 | CONTAMINACIÓN DE CURSOS DE AGUA DULCE | 199 |
| Marcelo J. Bourgeois, Horacio L. Barragán |
| Capítulo 9 | LOS RESIDUOS SÓLIDOS URBANOS Y SU RELACIÓN CON LA SALUD | 217 |
| Adriana Pascual, Graciela Etchegoyen, Marcelo Bourgeois |
| Capítulo 10 | TRATAMIENTO DE RESIDUOS SÓLIDOS Y PELIGROSOS | 229 |
| Karina Gómez Aguirre, Horacio Luis Barragán |
| Capítulo 11 | RESIDUOS PATOGÉNICOS | 245 |
| Hector Ralli (Contribución especial) |
| Capítulo 12 | TEMPERATURA AMBIENTAL Y SALUD | 267 |
| Santiago Luis Barragán, Adriana Pascual |
CAPÍTULO 13
RADIACIONES IONIZANTES................................................................. 285
Juan Andrieu, Horacio L. Barragán

CAPÍTULO 14
ONDAS ELECTROMAGNÉTICAS............................................................ 309
Horacio Luis Barragán, Graciela Etchegoyen, Adriana Pascual

CAPÍTULO 15
FUEGO E INCENDIOS........................................................................... 319
Oscar Antonio Di Marco, Horacio Luis Barragán

CAPÍTULO 16
RUIDOS Y VIBRACIONES........................................................................ 347
Horacio Luis Barragán, Aldo Pablo Iacoi

CAPÍTULO 17
VECTORES DE ENFERMEDAD............................................................. 359
Ana María Marino, Arnaldo Maciá, Horacio Luis Barragán

CAPÍTULO 18
ROEDORES............................................................................................ 373
Susana Beatriz Padín, Mónica Ricci, Horacio Luis Barragán

CAPÍTULO 19
SOCIEDAD, ANIMALES DE COMPAÑÍA Y ZOONOSIS........................... 385
Adriana Aprea, Estela Bonzo, Daniel Arias

CAPÍTULO 20
ANIMALES VENENOSOS....................................................................... 399
Carlos Santiago Grisolía

CAPÍTULO 21
PESTICIDAS Y SALUD............................................................................ 421
Ana María Girardelli, Mariana Barragán, Carolina Sgarbi

CAPÍTULO 22
INFECCIONES E INTOXICACIONES ALIMENTARIAS............................ 447
María Gabriela Bisceglia, Horacio Luis Barragán

CAPÍTULO 23
ACCIDENTES DE TRÁNSITO................................................................. 467
Horacio Luis Barragán, Oscar Alfredo Ojea, Eduardo Ángel Martínez

CAPÍTULO 24
ATENCIÓN SANITARIA EN CATÁSTROFES............................................. 505
José Luis de Echave, Horacio Luis Barragán, Oscar Alfredo Ojea
Las dimensiones del tiempo y del espacio encuadran la vida terrenal del hombre y de la Humanidad. La dinámica del tiempo es la que expresa con mayor claridad los cambios en la convivencia social, el crecimiento del tamaño de las poblaciones y el perfil de sus problemas de salud, las causas de muerte y de enfermedad. Así, la historia de las epidermis muestra no sólo sus consecuencias inmediatas, sino también los progresos con que las culturas intentaron y lograron contenerlas.

Insertados en el tiempo y distribuidos en el espacio en forma simultánea, los seres humanos conviven en un mundo exuberante de cosas inanimadas y formas de vida. De ellas se sirvieron para sobrevivir y, con mayores aspiraciones, para vivir en bienestar. Fueron contradictoriamente respetuosos y agresivos con su entorno. El progreso de las ciencias y las técnicas les dio instrumentos para vivir mejor, pero también para ser más agresivos con él. La naturaleza afrontada respondió con nuevas amenazas que afligen la salud y aún la sobrevivencia de la especie.

La capacidad adaptativa del hombre a las diversas circunstancias, en virtud de la cultura, lo hizo casi ubicuo en el globo, extendiendo el ecónome, como diría Maximilian Sorge al referirse al espacio terrestre ocupado por comunidades humanas.

La relación del hombre con su entorno se hizo, a lo largo de milenios, cada vez más rica y más compleja. En la complejidad se agazaparon los riesgos que acechan su vida y su salud.

No se puede alegar inocencia. La naturaleza genera sus propias amenazas, pero la humanidad le ha provocado agresiones acumuladas, dejando un «planeta malherido», como decía Toffler, y ha despertado en el seno de su entorno amenazas nuevas.

La presión demográfica, el desarrollo tecnológico y las crecientes pautas de consumo deterioraron aceleradamente un medio vulnerable.

Pero se puede promover en etapas progresivas una suerte de pacto nuevo con la naturaleza, asegurándonos de respetar sus formas espontáneas y convirtiéndonos a un consumo más austero. Es preciso aceptar que el ambiente es la variable independiente que sustenta el árbol de la vida y, como sostendía Teilhard de Chardin, «percibir las voces de la Tierra».

El aporte de este libro, nacido del ámbito de la Medicina, es presentar un panorama de las confrontaciones que generan riesgos a la salud humana desde su entorno. Muchos fenómenos que la afectan nacen del propio proceso evolutivo de la naturaleza, otros, de nuevos y numerosos ingenios antrópicos.

Entre estos fenómenos, los hay cotidianos y episódicos, de repercusión individual y masiva, de presentación manifiesta o encubierta, de expresión inmediata o progresiva.

La Medicina intenta diagnosticar y tratar sus consecuencias humanas. Con cierta frecuencia no alcanza a entrever la red que los liga al entorno, otras veces ve ciertos fenómenos que afectan la salud como marginales o exóticos. Sin embargo, su marco teórico los involucra a todos, al menos los conocidos, aunque sea en breves capítulos o apartados de los libros que lo contienen y actualizan.

La Medicina no puede, por otra parte, entenderlos si no es con el concurso de otras profesiones y ciencias. Para componer este libro se han convocado especialistas provenientes de ramas diversas, todos ellos sólidos en sus trayectorias, algunos —más jóvenes— serios en sus profesiones. Respondieron generosamente, unos por trabajar o haber trabajado juntos, otros por cercanía y afecto, otros más por generosidad pura.

La Cátedra de Salud Pública de la Facultad de Ciencias Médicas de la Universidad Nacional de La Plata, que los convocó, tuvo en su tiempo precursores distinguidos: el Doctor Galván, Médico...
Veterinario, el Ingeniero Carlos Alberto Canedo Peró, especialista en Salubridad de trayectoria internacional y el Licenciado Renzo Conrado Favaretto, de rica experiencia en terreno, que aun retirado acompaña y asesora con frecuencia.

El ambiente humano es un sistema complejo en el que interaccionan infinidad de factores naturales y sociales, e influyen de diversas formas en la vida del hombre y la Humanidad, así como su salud y los fenómenos que la afectan positiva o negativamente. En este caso, se ha limitado la consideración a los factores naturales físicos, químicos y biológicos principales.

Así, una primera parte intenta describir las relaciones ecológicas en el ambiente, con énfasis en el ambiente urbano, donde intervienen constitutivamente los factores sociales. Se presenta el concepto de riesgo ambiental para la salud.

En tres sucesivos capítulos, se distribuyen, con cierta arbitrariedad, aquellos fenómenos macro, meso y microambientales que pueden amenazar la salud.

Siguen capítulos sobre los factores que exigen el saneamiento y el control del ambiente, comenzando por el agua, ese escaso y precioso elemento; se continúa con los efluentes domiciliarios e industriales que contaminan la atmósfera, el suelo y los cursos acuáticos, los residuos domiciliarios, los peligrosos y los patogénicos.

Se presentan las diversas formas de energía que generan riesgos para la salud, desde las extremas temperaturas ambientales, los distintos tipos de radiación y hasta el fuego, el ruido y las vibraciones. Continúan capítulos sobre los vectores de enfermedad, ya sean insectos o roedores, como sobre animales de compañía y venenosos que generan lesiones, zoonosis o envenenamientos.

Los últimos capítulos se refieren al riesgo de los pesticidas, al de las infecciones e intoxicaciones alimentarias y a un tema de alta prioridad: los accidentes de tránsito. Se tratan, estos últimos, en el contexto de fondo del sistema de transporte.

Finalmente, se consideran los aspectos sanitarios de las catástrofes, ya sean naturales o antrópicas. Los textos concluyen con una amplia bibliografía general y especializada. No están dirigidos a especialistas, cuyos conocimientos y experiencias van más allá de estos contenidos, sino a cursantes de postgrado, médicos, profesionales y técnicos sanitarios, así como a personas y grupos interesados en tener un panorama general del ambiente humano y los riesgos que, por sí o por descuidos antrópicos, desde él, acechan la salud.

Como se menciona precedentemente, este enfoque no pasa por alto la responsabilidad humana sobre el respeto a la naturaleza, por ella misma, por nosotros y por las generaciones futuras.

City Bell, agosto de 2010

Horacio Luis Barragán
ECOLOGÍA, AMBIENTE Y SALUD

Adriana Pascual

1. La ecología tiene su historia

La investigación histórica confirma evidencias de un conocimiento ecológico por parte de las civilizaciones del pasado, aunque muchas de ellas han tenido un carácter vandálico, ya que, con escasos medios tecnológicos, producían grandes deterioros ambientales (sobrepastoreo, fuegos forestales).

Es justo recordar el aporte considerable de los griegos clásicos, como Aristóteles, quien además de filósofo fue un biólogo y naturalista de gran talla.

En el siglo XVIII, con el advenimiento de las ciencias modernas, se reconoce el carácter ecológico del trabajo de los naturalistas en su progresivo descubrimiento de las relaciones entre la vida vegetal y animal con los factores abióticos tales como la luz, el agua o el carbono.

A fines del siglo XVIII se inicia el gran debate sobre la población mundial, con la obra de Thomas R. Malthus “Ensayo sobre el principio de la población” (1798), quien recomendaba la necesidad del control de la natalidad contra la progresión demográfica que amenazaba, según su criterio, la supervivencia de la humanidad.

En el siglo XIX, la polémica entre deterministas y evolucionistas enfrentó a hombres como Cuvier, Owen y Agassiz con los nuevos “transformistas” como Spencer, Lamarck, Haeckel y Darwin. La polémica fue muy fecunda, porque exigía a los transformistas que multiplicaran sus observaciones para justificar las nuevas teorías del evolucionismo. Darwin, con sus meticulosos estudios, hizo un auténtico trabajo ecológico.

Dentro del evolucionismo del siglo XIX, el biólogo E. Haeckel (1834-1919), considerado el padre de la Ecología, fue quien propuso un neologismo creando el término Oekologie (1866) para significar “el conjunto de conocimientos referentes a la economía de la naturaleza: la investigación de todas las relaciones de los seres vivos con su medio inorgánico y orgánico”.

Pero el inicio de la Ecología como nueva ciencia surge como fruto de los trabajos interdisciplinarios de la segunda mitad del siglo XIX, por la labor en equipo de los científicos en un momento de gran riqueza creativa.

---

1 George Cuvier (Francia, 1769-1832) fundó con sus estudios la Anatomía Comparada y la Paleontología, reconstruyó proporcionalmente, con restos animales, modelos fósiles y amplió la clasificación de especies de Linneo a la Zoología centrado en los vertebrados. Elaboró la Teoría de las Catástrofes para explicar los cambios en las especies. Su discípulo Richard Owen (Inglaterra, 1804-1892), también experto en reconstrucción de fósiles, se opuso a la casualidad implícita en las primeras teorías de la evolución, aunque no las negó. Jean Louis Agassiz (Suecia, 1807-1873) estudió peces fósiles, pero su principal aporte fue el estudio y difusión de las eras glaciales que relacionó con la Teoría de las Catástrofes de Cuvier. Jean B de Monet de Lamarck (Francia, 1744-1829), sobre la base de la clasificación de Linneo, hizo nuevas agrupaciones y sostuvo –en los inicios del evolucionismo– que los órganos con actividad intensa se desarrollaban más, y en caso contrario degeneraban; asimismo, que esas modificaciones se transmitan a la herencia, “la herencia de los caracter adquiridos”. Herbert Spencer (Inglaterra, 1820-1903) aplicó la evolución y la “supervivencia del más apto” en la lucha por la vida a la sociología como explicación de los resultados en la competencia entre los grupos humanos (Asimov, 1971).
Por ejemplo, Louis Pasteur (1822-1895) investigó sobre la descomposición de la materia orgánica, desarrollando una auténtica labor ecológica con su explicación bacteriológica del fenómeno de la fermentación.

Durante el siglo XIX se multiplicaron los estudios demográficos, con un progresivo perfeccionamiento de las técnicas estadísticas. Aunque el objetivo de los demógrafos fuese la población humana, sus métodos de estudio resultaron de utilidad para los ecólogos, que se enfrentaban a los problemas de las poblaciones en los ecosistemas naturales.

### Grandes hitos hacia la Ecología

| Hombre prehistórico | – Conocimiento del medio.  
|                     | – Acción vandálica localizada. |
| Pensamiento griego del siglo IV a.C. | – Aristóteles inicia la biología naturalista llamada entonces “Historia natural”. |
| Ciencias del siglo XVIII | – Los naturalistas relacionan la vida y los factores abióticos.  
|                     | – Se inicia el debate sobre el aumento de la población con la obra de T.R. Malthus (1798). |
| Ciencias del siglo XIX | – Se enciende la polémica entre el determinismo y el evolucionismo.  
|                    | – Se realizan estudios interdisciplinarios.  
|                     | – Pasteur da una explicación bacteriológica al fenómeno de la fermentación.  
|                     | – Haeckel, “padre de la ecología”, acuña el nombre de la nueva ciencia. |

Por otro lado, el siglo XIX vio el impulso de la Revolución Industrial, con sus continuos atentados contra el medio ambiente, al tiempo que se constituían grupos y sociedades para salvaguardar la naturaleza salvaje.

A finales del siglo XIX, la Ecología se desarrolló por la convergencia de otras ciencias interesadas en la problemática de los seres vivos y su entorno. Definida como “la nueva ciencia”, progresó gracias a la acumulación de estudios y experimentos y a la búsqueda de un nuevo vocabulario. Las primeras publicaciones de Ecología general, en la década de 1950, fueron posteriores a la publicación del primer glosario ecológico de J. R. Carpenter, en 1938.

En la década de 1950 queda establecido que la Ecología es una ciencia diferenciada dentro de la Biología. G. L. Clarke la definió como “el estudio de la fisiología externa de los organismos, los cuales necesitan un continuo aporte de energía y de materia para poder conservar la vida, al mismo tiempo que deben eliminar sus propios residuos”.

El hombre ocupa un lugar destacado entre los seres vivos, y la “Ecología humana” pudo aprovechar la información acumulada en los trabajos de geógrafos, etnólogos y sociólogos que investigaban las comunidades humanas rurales y urbanas.

En el siglo XX, el deseo de salvaguardar los espacios naturales y sus especies estimuló la creación de organizaciones para proteger la naturaleza. El suizo Paul Sarazin convocó una primera Conferencia Internacional (Berna, 1913), dando comienzo a lo que más tarde sería la Unión Internacional para la Conservación de la Naturaleza y de sus Recursos (UICN).

Por otro lado, el impacto tecnológico sobre el ambiente sentó las bases para el desarrollo de la Ecología política.
Durante mucho tiempo, los científicos, preocupados por la creciente contaminación derivada del desarrollo industrial, sólo eran comprendidos por grupos sensibles al tema. Para entonces, la tónica general era de un optimismo desmesurado en favor del “desarrollo”, entendido como un constante crecimiento económico de todas las naciones, y los países del Tercer Mundo no querían quedar excluidos de un mundo cada vez más rico.

<table>
<thead>
<tr>
<th>Protagonistas de los grandes problemas ecológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Revolución Industrial (a partir del siglo XVIII)</strong></td>
</tr>
<tr>
<td>- Industrialización acelerada.</td>
</tr>
<tr>
<td>- Sobreutilización de recursos naturales.</td>
</tr>
<tr>
<td>- Contaminación del medio.</td>
</tr>
<tr>
<td>- Sobrepoblación urbana.</td>
</tr>
<tr>
<td>- Afectación de la salud colectiva.</td>
</tr>
<tr>
<td><strong>Defensa del medio</strong></td>
</tr>
<tr>
<td>- Grupos y asociaciones (a partir del Romanticismo) en defensa de la naturaleza salvaje.</td>
</tr>
<tr>
<td>- Unión Internacional para la Conservación de la Naturaleza y sus Recursos (UICN, Berna, 1913).</td>
</tr>
<tr>
<td>- Bases de la Ecología política.</td>
</tr>
<tr>
<td><strong>Planteo de la responsabilidad de la civilización industrial</strong></td>
</tr>
<tr>
<td><strong>Crítica a las concepciones del Desarrollo ilimitado</strong></td>
</tr>
</tbody>
</table>

Sin embargo, las primeras catástrofes ecológicas pronto acapararon la atención mundial, en virtud de que se repetían y provocaban sensación de impotencia. La historia de la “enfermedad de Minamata”, considerada una epidemia entre los pescadores de la aldea de Minamata (Japón, 1953), fue un ejemplo esclarecedor. El equipo médico del hospital de Kunamoto diagnosticó la causa de la enfermedad: envenenamiento del sistema nervioso central causado por mercurio orgánico, comprobándose la presencia de dicho metal en las cloacas de una planta química instalada cerca del pueblo. Doce años tardó la empresa en tomar medidas concretas y otros tres para reconocer la utilización de metilmercurio.

Otro caso resonante fue la contaminación del Rhin por endosulfán (1969), que envenenó millones de peces y dificultó el suministro de agua potable en muchas ciudades ribereñas.

El progresivo desencanto de la población de países industrializados frente al “desarrollismo” hizo que la voz de los científicos que predicaban respeto a los principios ecológicos fuera cada día más escuchada en temas como la superpoblación, el agotamiento de los recursos naturales, la contaminación, la destrucción de los ecosistemas vírgenes y la opción nuclear.
Primeras catástrofes ecológicas
(ejemplos seleccionados)

- Naufragio del superpetrolero Terrey Canyon (Gran Bretaña, 1948).
- Enfermedad de Minamata por contaminación industrial de mercurio orgánico (Japón, 1953).
- Contaminación del río Rhin con endosulfán (Alemania, 1969).

En respuesta a la preocupación poblacional, durante la década de 1960, se crearon organizaciones en favor del medio ambiente, dando origen al “ecologismo”, entendido como una actitud militante en favor del entorno, continuamente agredido por la civilización industrial. Esta corriente tiene por objetivo sensibilizar a la opinión pública acerca de las leyes de la ecología que condicionan la propia supervivencia de la humanidad. Las campañas antinucleares llevadas a cabo por ecologistas abrieron el debate para replantear el modelo de civilización al que se aspira.

2. Frente a los efectos adversos del crecimiento económico se propuso “crecimiento cero”

Si bien la prosperidad de la humanidad se basó en la Revolución Industrial, en términos de crecimiento económico, desde hace varias décadas ha comenzado el debate sobre sus consecuencias, como el progresivo agotamiento de los recursos naturales.

Los primeros en percatarse que el crecimiento económico indiscriminado implica la reducción de los recursos no renovables fueron los economistas. La expresión “La Tierra es como una ‘nave espacial’ con unos recursos limitados que deben ser utilizados de modo racional y moderado para asegurar la supervivencia de la humanidad” (Boulding, 1966) reafirmó el convencimiento sobre un mundo finito.

En 1972 se publicaron el informe del Club de Roma, “Los límites al crecimiento” del Instituto de Tecnología de Massachusetts (MIT) y la Carta Mansholt, que fueron cruciales para iniciar el debate sobre el “crecimiento cero”.

El primero, vinculando cinco variables fundamentales –población, producción agrícola, recursos naturales, producción industrial y contaminación–, demostraba que la actual tendencia del mundo llevaba inevitablemente a un colapso por el agotamiento de los recursos naturales, que se produciría antes de un siglo. Para remediarlo, proponía medidas correctoras a iniciar desde 1975, como la reducción de la producción industrial, la reorientación de las actividades humanas hacia los servicios educativos y sanitarios, la mejora en la producción de alimentos básicos y el fomento del reciclado de los residuos.

La Carta Mansholt es el primer comentario autorizado del informe del Club de Roma. En ella se incluyen variables “políticas” (democratización de la sociedad, relaciones entre los países más o menos desarrollados, igualdad de oportunidades y sentido humano del trabajo). Las estrategias de Mansholt incluyen acciones políticas que el MIT elude deliberadamente, tales como instaurar una reforma aduanera en favor de productos no contaminantes y reciclables, la necesidad de un parlamento supranacional con plenos poderes y la atención a las disparidades regionales existentes en el mundo.
El primer informe del Club de Roma provocó numerosas críticas, debido al criterio de selección de las variables escogidas y porque se adivinaba una intencionalidad política que convertía dicho estudio en un instrumento al servicio de los poderosos. A pesar de las críticas recibidas, los informes del Club de Roma han aportado algunos datos importantes sobre el progresivo deterioro ecológico.

<table>
<thead>
<tr>
<th>Crecimiento económico y salvaguardo ecológico</th>
</tr>
</thead>
</table>

3. Las Naciones Unidas tomaron iniciativas ecológicas

Desde su creación, al finalizar la Segunda Guerra Mundial, las Naciones Unidas han vivido la contradicción de ser la plataforma donde se debaten los grandes problemas de la humanidad, al tiempo que se muestran como un instrumento ineficaz debido a los intereses contradictorios de los gobiernos integrantes, principalmente las grandes potencias. Aun con esas limitaciones, las Naciones Unidas han sido el punto de cita obligado de los científicos y políticos mundiales interesados por los problemas ambientales.

En relación con temas del ambiente, la UNESCO y la citada UICN, fueron precursoras de las Conferencias de Estocolmo y de Río de Janeiro, convocadas por la Organización de Naciones Unidas.

El primer gran debate ecológico a nivel internacional fue la Conferencia Internacional sobre la Utilización Racional y la Conservación de los Recursos de la Biosfera, celebrada en París en 1968, organizada por la UNESCO en colaboración con otros organismos. Dicha conferencia popularizó la imagen de la Tierra concebida como una nave espacial de 3.500 millones de pasajeros con recursos limitados que deben ser racionalmente utilizados si queremos asegurar la supervivencia de la humanidad, imagen revolucionaria en un contexto “desarrollista” que ignora el grave problema del agotamiento de los recursos naturales y acepta como mal menor necesario la contaminación del desarrollo industrial.

Uno de los frutos de la Conferencia de la Biosfera que se inició en 1971 fue la propuesta de organizar un programa ecológico interdisciplinar, aprobado por la UNESCO en 1970 bajo el título de “Hombre y Biosfera”, conocido como Programa MAB. Se incluyen en él cuatro fases de estudio y trece proyectos científicos. Los trece proyectos científicos incluyen el estudio de los principales ecosistemas mundiales (selvas, praderas, desiertos, lagos), la conservación de zonas naturales y recursos genéticos, la investigación sobre las consecuencias del uso de pesticidas y abonos, la incidencia de las obras públicas en el entorno, los aspectos ecológicos de la utilización de la energía, las consecuencias de la evolución demográfica y genética, y la percepción de la calidad del entorno.

Las fases de estudio son las siguientes:

- Análisis de los sistemas ecológicos.
- Influencia del hombre sobre el medio ambiente y del medio ambiente sobre el hombre.
- Nivel de integración en el espacio.
- Previsión de las acciones a emprender.

2 Los trece proyectos científicos incluyen el estudio de los principales ecosistemas mundiales (selvas, praderas, desiertos, lagos), la conservación de zonas naturales y recursos genéticos, la investigación sobre las consecuencias del uso de pesticidas y abonos, la incidencia de las obras públicas en el entorno, los aspectos ecológicos de la utilización de la energía, las consecuencias de la evolución demográfica y genética, y la percepción de la calidad del entorno.
4. La Conferencia sobre el Medio Humano abrió la colaboración internacional

Mientras se preparaba en París la Conferencia de la Biosfera, se solicitaba que la protección del medio fuera tema de agenda de la XXIII Asamblea General de Naciones Unidas, para culminar en una conferencia mundial al respecto.

Durante las sesiones preparatorias de la Conferencia, se puso de manifiesto el enfrentamiento entre los distintos Estados, según su mayor o menor nivel de industrialización, para finalmente lograr un texto conciliador, el Informe Founex llamado “Una sola Tierra: El cuidado y conservación de un pequeño planeta”.

La Conferencia de Naciones Unidas sobre el Medio Humano se celebró en Estocolmo en 1972 con la participación de 110 países.

El mayor logro fue que todos los participantes aceptaran una visión ecológica del mundo, en la que se reconocían, entre otras cosas, “los grandes trastornos del equilibrio ecológico de la biosfera; la destrucción y agotamiento de recursos insustituibles y las graves deficiencias, nocivas para la salud física, mental y social del hombre, en el medio por él creado, en que vive y trabaja, y la necesidad [...] de una amplia colaboración entre las naciones y la adopción de medidas por parte de las organizaciones internacionales, en interés de todos”. La Declaración final incluyó cierto número de contrasentidos, al preconizar simultáneamente medidas de reducción de la contaminación ambiental e industrialización acelerada del Tercer Mundo.

Una conclusión clave surgió a partir de los países más pobres, bajo la tesis de que “la peor de las contaminaciones es la pobreza”. De esta manera, enraizaba el concepto sobre el “principio de la calidad de vida”.

Consecuente con la Declaración final, la Asamblea General aprobó la creación de un programa internacional que se denominó Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).

5. La Cumbre de la Tierra sentó los principios del desarrollo sustentable

A partir de la reunión de Estocolmo, muchos países comenzaron a incorporar el medio ambiente en sus estructuras gubernamentales, creando ministerios o agencias específicas. El tema ganó espacio en los medios de comunicación, se crearon miles de organizaciones y se impulsaron estudios e investigaciones ambientales.


De este modo, en el 20° aniversario de la Conferencia de Estocolmo, se organizó la Conferencia de Naciones Unidas sobre Medio Ambiente y Desarrollo (CNUMAD) en Río de Janeiro (Brasil, 1992), conocida como “Cumbre de la Tierra” (ECO 92).

La Cumbre fue convocada con el objeto de buscar estrategias para prevenir el proceso de degradación ambiental y empobrecimiento creciente del planeta, colocando el medio ambiente y el desarrollo como centro del debate internacional.

Las Organizaciones No Gubernamentales (ONGs) asumieron un compromiso para atender las necesidades prioritarias de las mujeres, de los pueblos indígenas, de los jóvenes, de las ONGs y de los movimientos sociales, como así también atender los puntos del siguiente cuadro:
**Cumbre de la Tierra. Río de Janeiro, 1982. Compromisos de las ONGs**

- **Cambio climático**: alcanzar una disminución sustancial de las emisiones de gases de efecto invernadero.

- **Patrones de consumo**: disminuir el consumo en el Norte y lograr una transformación tecnológica que permita alcanzar la sustentabilidad ecológica.

- **Desechos peligrosos**: prohibir las exportaciones de desechos tóxicos e industrias contaminantes.

- **Bosques**: evitar la desaparición de bosques en todas las regiones y reconocer los derechos culturales y la tierra de los pueblos indígenas y de los pobladores locales.

- **Armas y energía nuclear**: suspender las armas nucleares, desmantelar las plantas nucleares y evolucionar hacia formas de energía renovable.

- **Biotecnología**: adoptar un código internacional de conducta sobre seguridad biotecnológica.

- **Comercio**: reconciliar las prácticas comerciales con la protección ambiental, rechazando el principio de que el libre comercio es la base de un desarrollo sustentable.

El legado de la ECO 92 marca los deberes y las responsabilidades de los países respecto al manejo ambiental del planeta, **respetando pautas hacia un desarrollo sustentable**. El documento llamado “Declaración de Río sobre el Medio Ambiente y el Desarrollo” no tiene carácter jurídico obligatorio, por lo tanto, sus principios sólo significan un compromiso moral y ético.

La Agenda 21 es el **Plan de Acción** para poder llevar a cabo los principios enunciados en la Carta de la Tierra, marcando la **transformación del concepto de desarrollo sustentable en planes específicos**. Estos planes están descriptos en términos de objetivos, actividades y medios de ejecución, aspectos financieros, recursos científicos y tecnologías necesarias.\(^3\)

6. **Sucesivos encuentros internacionales profundizaron la discusión sobre los temas ambientales**

La primera Convención Internacional sobre Medio Ambiente y Desarrollo (La Habana, Cuba, 1997), denominada “A 5 años de Río”, evaluó el cumplimiento internacional de la Agenda 21.

Revalorizó los **compromisos éticos y políticos que la comunidad internacional asumiera en Río, con las generaciones actuales y futuras**, en función de un desarrollo sostenible.

En Johannesburgo (Sudáfrica, 2002), diez años después de la Cumbre de la Tierra, se establecieron vínculos entre el desarrollo socioeconómico y la protección del ambiente, con énfasis en el **desarrollo humano**. Las discusiones no fueron sólo entre funcionarios gubernamentales, sino entre representantes de la sociedad civil, y fue vista como la **Primera Cumbre Multisectorial**.

---

\(^3\) Preámbulo y Sección I: “Dimensiones ecológicas y sociales”. La pobreza, la transformación de los patrones de consumo, dinámicas demográficas, promoción de la salud y de asentamientos humanos sustentables. Sección II: “Conservación y manejo de recursos para el desarrollo”. La protección de la atmósfera, los océanos, la calidad del agua potable, combatir la deforestación, la desertificación y las sequías, promover el desarrollo rural y la conservación de la diversidad ecológica. También se refiere a la administración de la biotecnología, a los residuos tóxicos y radiaciones, incluyendo la prevención de su tráfico internacional. Sección III: “Delineando el rumbo de los grupos”. El rol de las mujeres, los niños, los indígenas, las ONGs y las asociaciones de trabajadores en la búsqueda de un desarrollo sustentable. Sección IV: “Formas de implementación”. La búsqueda de recursos y mecanismos financieros y de cooperación internacional, acuerdos institucionales legales. Presenta el rol de la ciencia y de la educación en el logro del desarrollo sustentable.
Las discusiones previas identificaron los siguientes ejes:

- Globalización.
- Reducción de la pobreza.
- Cambio de los patrones de consumo.

De la **Cumbre de Johannesburgo** se esperaba mucho más de lo que en realidad se consiguió. Algunos de los resultados esperados fueron:

- Renovado espíritu de cooperación, equidad y co-responsabilidad entre el Norte y el Sur.
- Soluciones prácticas a las limitaciones de la pobreza y a los patrones inequitativos de consumo.
- Cooperación internacional respecto del medio ambiente y el cambio climático.
- Ejecución y financiación de los tratados ambientales multilaterales existentes.
- Políticas macroeconómicas a favor del crecimiento y desarrollo sostenible.
- Recomendaciones sobre acciones medibles para el uso sostenible de recursos y servicios ambientales.

7. **En la naturaleza hay diversos niveles de organización**

La **ecología puede interpretar los vínculos del hombre con su entorno**. Para comprender los fundamentos del complejo mundo en el que vivimos es útil pensar en **términos de niveles de jerarquías organizacionales** (Simón, 1973; Allen y Starr, 1982; OVeill et al., 1986). Una jerarquía se define como un arreglo en una serie graduada de compartimientos (Odum, 1998).

Se incluyen algunos ejemplos en los que las jerarquías se disponen de mayor a menor, pero el orden podría invertirse:

<table>
<thead>
<tr>
<th>Niveles de Jerarquías Organizacionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gran escala (supraorgánica)</td>
</tr>
<tr>
<td>Geográfica y Política</td>
</tr>
<tr>
<td>Mundo</td>
</tr>
<tr>
<td>Continente</td>
</tr>
<tr>
<td>Región</td>
</tr>
<tr>
<td>Estado o País</td>
</tr>
<tr>
<td>Provincia o Condado</td>
</tr>
<tr>
<td>Municipio</td>
</tr>
<tr>
<td>Ciudad</td>
</tr>
<tr>
<td>Individuo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor escala (infraorgánica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxonómica</td>
</tr>
<tr>
<td>Reino</td>
</tr>
<tr>
<td>Phylum</td>
</tr>
<tr>
<td>Clase</td>
</tr>
<tr>
<td>Orden</td>
</tr>
<tr>
<td>Familia</td>
</tr>
<tr>
<td>Género</td>
</tr>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>Subespecie</td>
</tr>
</tbody>
</table>

Dentro de las jerarquías ecológicas, una población se define como un grupo de organismos de la misma especie que se reproducen entre sí libremente y que habitan en un área determinada.

Una comunidad es un conglomerado biológico que incluye todas las poblaciones que viven en un área dada (en el sentido de comunidad biótica), utilizando los recursos de acuerdo con las funciones que cumple cada una de ellas.

La comunidad y el ambiente no vivo funcionan juntos como un sistema ecológico o ecosistema.

Cada jerarquía ecológica representa un nivel de organización que intercambia materia y energía con el ambiente, constituyendo un sistema biológico.

Cada uno de los niveles de organización se caracteriza por tener propiedades únicas. Así, por ejemplo, la formación genética, las funciones vitales y el comportamiento son propiedades del nivel de organización del individuo, mientras que el crecimiento poblacional, las tasas de natalidad y mortalidad, las relaciones sociales y la competencia intraespecífica caracterizan una población, y las relaciones interespecíficas, alimentarias y los aspectos bióticos de la sucesión son características de las comunidades.

Algunos términos sinónimos de ecosistema pueden definirse de acuerdo con distintas escuelas ecológicas, por ejemplo:

- **Biogeocenosis** (utilizado por las ex repúblicas rusas), que significa “vida y tierra funcionando juntos”.
- **Ecotopo** (utilizada por la bibliografía alemana), que puede ser identificado como una célula del mosaico del paisaje que junto a otras crean una verdadera heterogeneidad espacial (González Bernaldes, 1985).

La Ecosfera se define como el conjunto de todos los ecosistemas del planeta, que funcionan juntos a una escala global, y se divide en componentes:

<table>
<thead>
<tr>
<th>Componentes de la Ecosfera</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Biósfera</td>
</tr>
<tr>
<td>- Hidrósfera</td>
</tr>
<tr>
<td>- Atmosfера</td>
</tr>
<tr>
<td>- Litósfera</td>
</tr>
</tbody>
</table>

Las diferencias de escala (espacial y temporal) y las características restrictivas propias de cada jerarquía o nivel organizativo dan lugar a complejas interacciones que generan lo que en ecología se denomina “caos”. Este caos puede expresarse con una frase característica: “el batir de las alas de una mariposa en China podría generar fuertes tormentas y tornados en México”.

Cada nivel jerárquico influye en los niveles adyacentes. Sin embargo, los procesos en los niveles inferiores están siempre circunscriptos a los que se verifican en niveles más altos.

Si bien los distintos niveles de organización poseen diferentes atributos, se encuentran ligados entre sí (Barret et al., 1997). Así, lo que ocurre a un nivel puede afectar lo que sucede a otro. Esto lleva al principio ecológico de la propiedad emergente: los conjuntos menores (individuo, 4 Muchos autores utilizan el término biosfera como sinónimo de ecosfera, otros los distinguen designando a la biosfera como el conjunto vivo de la Tierra (todas las comunidades) y ecosfera como el conjunto de vida más los materiales inertes que interactúan con ella (todos los ecosistemas). De acuerdo con esta acepción, la ecosfera es un conjunto que incluye a la biosfera (organismos vivos), litosfera (rocas, sedimentos, manto y núcleo de la tierra), hidrosfera (agua superficial y subterránea) y atmósfera (aire y procesos meteorológicos).
población, comunidad) se combinan formando unidades funcionales mayores, emergiendo nuevas propiedades que no estaban presentes en el nivel inferior.

Es decir, de la integración surgen propiedades que no estaban contenidas en las partes aisladas. Algo diferente surge cuando las partes se adaptan para realizar una nueva función.

La propiedad emergente de un nivel ecológico surge por una interacción funcional de los componentes, y no puede ser predicha a partir del estudio de los componentes aislados de la unidad total. Equivale a los dichos populares, tales como “es más que la suma de las partes” o “el bosque es más que un montón de árboles”.

**El todo no es, pues, la suma de sus partes, pero sí una síntesis de un sistema integrado.**

Algunos ejemplos demuestran lo expuesto:

- El hidrógeno y el oxígeno se combinan en cierta configuración molecular formando agua, líquido con nuevas propiedades distintas de las de sus componentes gaseosos.
- Ciertas algas y celenterados se reúnen para formar corales, resultando un eficiente mecanismo de recirculación de nutrientes que le permite a un arrecife coralino autosustentarse con una elevada productividad en aguas con bajo contenido de nutrientes.

Estas relaciones benéficas para sus integrantes, muy comunes en la naturaleza, también se producen en una sociedad humana bien ordenada.

Para la ecología, “el todo es mayor que la suma de las partes”, aunque para la ciencia y la tecnología actuales el énfasis esté puesto en el estudio de unidades cada vez más pequeñas (reduccionismo). Estas se basan en la especialización para el abordaje de temas complejos.

En la realidad, si bien las propiedades encontradas en cualquier nivel dado ayudan en el estudio de otro nivel, no pueden explicar los fenómenos que ocurren a ese nivel, sino que además deben ser abordadas desde un panorama general (holismo).5

Algunos atributos jerárquicos se hacen más complejos y variables a medida que se avanzan desde unidades pequeñas a mayores, pero sucede lo contrario con el ritmo de funcionamiento, que presenta una menor variabilidad a medida que se avanza hacia jerarquías superiores. Ello sucede por la acción de mecanismos homeostáticos (fuerzas y contrafuerzas que amortiguan las oscilaciones), que operan en todo el sistema.

Los **mecanismos homeostáticos** en el ser humano operan regulando el equilibrio global del organismo (por ejemplo, el mantenimiento de la temperatura corporal). En forma similar, existen mecanismos regulatorios que operan a niveles jerárquicos superiores, como por ejemplo, los procesos homeostáticos biológicos y físicos a nivel de la biosfera que mantienen relativamente constante la cantidad de componentes en el aire (CO₂, O₂, N₂), a pesar de los grandes volúmenes de gases que entran y salen de la atmósfera.

Cada nivel o jerarquía, además de tener diferentes propiedades, responde a los efectos de un disturbio exterior de manera distinta. Por ejemplo, determinado tipo de vegetación (bosque chaquéno en Argentina, o chaparral en N. de México y S. de EE.UU.) está adaptada a incendios periódicos para mantener su estructura, y no existiría sin ellos, pero para los organismos individuales que pueden ser muertos o lesionados por el fuego, o las personas que construyen su casa en la zona, los incendios son ciertamente perjudiciales. A nivel de la comunidad vegetal, lo nocivo es la falta de fuego, puesto que la vegetación sería sustituida por otra.

De modo similar, la **inundación de una planicie aluvial** puede ser nociva para algún animal que queda atrapado por la crecida o para personas que construyen sus casas en el terreno de inundación, pero es necesaria para la vegetación adaptada a ella.

5 Por ejemplo, para entender y manejar correctamente un bosque, se debe tener un amplio conocimiento de los árboles (comunidad) que lo integran, pero además se necesita conocer las características funcionales que integran a esos árboles con el resto de las especies y con el ambiente en donde se desarrollan sus flujos materiales y energéticos.
Los esfuerzos que realiza el hombre para suprimir las “quemas de matorrales” reducen la frecuencia de los incendios, pero cuando estos ocurren son de mayor intensidad debido a que se evitan los fuegos pequeños y se favorece la acumulación de material combustible (madera y hojas secas; Minnich, 1983). De igual modo, algunas bien intencionadas acciones para controlar inundaciones hacen que se eviten crecidas pequeñas, pero luego resultan grandes y más dañosas inundaciones (Belt, 1975).

8. En un ecosistema se estudian cinco procesos fundamentales

Un ecosistema se estudia describiendo sólo las propiedades o funciones más importantes, ya que no pueden ser consideradas todas y cada una de ellas. Es por ello que se aborda en base a modelos.

Un modelo es una formulación simplificada que imita un fenómeno del mundo real, de modo que pueden abarcarse situaciones complejas y hacerse predicciones (Odum y Sarmiento, 1998).

Para entender un sistema ecológico dado, primero deben ser consideradas las interacciones con otros ecosistemas, luego sus relaciones dentro del sistema en estudio y por último se analizan cada una de sus partes.

Desde el punto de vista de su funcionamiento, un ecosistema comprende cinco procesos característicos:

1. Fotosíntesis y 2. Respiración. Ambas son fundamentales para el flujo de energía por las cadenas alimentarias del ecosistema. La energía solar se captura inicialmente por medio de los productores (plantas, algas azulverdosas), que realizan la fotosíntesis. Esta energía capturada se utiliza para realizar trabajo a través de la respiración de los integrantes del sistema. La función de las cadenas alimentarias es la de transferir energía de un tipo de organismos a otro, de tal modo que la energía va pasando de productores a diferentes niveles de consumidores (herbívoros, carnívoros, descomponedores). Además, la energía puede transportarse de un sistema a otro en forma de detrito o de materia orgánica disuelta en las aguas de escurrimiento.

2. Circulación de minerales, que tiene lugar entre las comunidades o a escala global a través de la gran variedad de sistemas ecológicos del planeta. Los movimientos de la materia se denominan ciclos biogeoquímicos. Gracias a estos procesos circula la materia por los ecosistemas.

3. Sucesión, que se refiere a los cambios que se producen dentro de los ecosistemas y que determinan modificaciones a través del tiempo en su estructura y funcionamiento.

4. Procesos internos de regulación, que permiten al sistema funcionar como un todo y en armonía con su ambiente biótico y físico.

9. Los sistemas naturales intercambian energía y materia

Desde el aspecto espacial, los límites de un ecosistema no son bien definidos. Por ello se habla de áreas de transición o ecotonos, en donde las características propias de cada ecosistema se pierden parcialmente.

Cuando se desea estudiar un ecosistema se deben precisar los objetivos que se persiguen, para delimitar el espacio ocupado por el mismo. De esta manera, una pecera o un charco, un tronco de árbol caído, un arroyo, una zona marina, un barrio, una ciudad, el planeta entero pueden considerarse sistemas ecológicos.
Después de establecer los límites espaciales del ecosistema, se estudian todos los organismos, así como los posibles intercambios de materia y energía que puedan ocurrir dentro de esos límites.

Algunos sistemas intercambian energía radiante con sus alrededores, pero no intercambian materia (por ejemplo, Sol y planeta Tierra); otros intercambian materia y energía (los estuarios); y existen los no intercambiam energía pero sí materia (una cueva). Los diferentes sistemas, de acuerdo con su funcionamiento con respecto a los intercambios mencionados, se denominan abiertos o cerrados a la materia y/o a la energía.6

La estructura de un sistema natural incluye la riqueza de especies, su distribución horizontal y vertical, la complejidad de la red alimentaria, lo que podría llamarse su “arquitectura”.7

La diversidad de especies, así como la biomasa (conjunto de materiales orgánicos generados a partir de la fotosíntesis o bien evolucionados en la cadena biológica), aumentan hacia las zonas de vida húmedas y cálidas. Ello determina que cada sistema tenga ciertas características estructurales que sirven de indicadores de las condiciones físicas de su ambiente. Mientras más particular es la condición ambiental, más estricta es la adaptación estructural.

En cuanto a los flujos energéticos, nuestro planeta se mantiene activo gracias a la energía solar, la que llega a la atmósfera en forma de radiación electromagnética y es transformada en otros tipos de energía por diferentes mecanismos, hasta que finalmente retorna al espacio en forma de calor. Parte de esta energía que llega a la Tierra se convierte en energía cinética, que se utiliza para realizar trabajo. Ejemplo de ello es la absorción de radiación electromagnética que calienta la atmósfera y como resultado ocurren cambios en la presión atmosférica que, a su vez, causan los vientos. Estos se disipan al poner en movimiento las corrientes marinas y las nubes o al provocar la erosión de la tierra. En cada transformación de energía se genera calor, que permite la disipación de la energía recibida.

Las leyes de la Termodinámica explican el comportamiento de la energía en sus transformaciones:

1º ley de conservación de la materia y energía: la energía que entra en un sistema es igual a la que sale, más la que se encuentra almacenada en él.

2º ley de la disipación de la energía: toda transformación de energía y todo proceso que implique trabajo involucran una pérdida de energía en forma de calor o entropía. Esa pérdida se considera como un “impuesto natural” a todas las transformaciones energéticas, ya que la energía que se transforma en calor no es capaz de hacer trabajar al sistema y por ello la eficacia en el uso de la energía en todo sistema es menor a 100%. Este impuesto que debe pagar la naturaleza es obligatorio, sin él la energía no puede pasar de un sistema a otro.

10. La capacidad del trabajo depende de la concentración de energía

La capacidad de realizar trabajo útil de un ecosistema está directamente relacionada con la concentración de energía que es capaz de captar ese sistema, la calidad de energía. A medida que se avanza en la cadena alimentaria o trófica (conjunto de organismos relacionados por el pasaje de materia y energía) la concentración de energía aumenta, como también su calidad y, por lo tanto, la capacidad de realizar trabajo.

---

6 La absorción y concentración de agua y minerales y la regulación de los ciclos de materia y energía entre los componentes del sistema ecológico dependen de su organización estructural. Dichos procesos contribuyen al flujo óptimo de los distintos elementos (materia y energía) dentro del sistema, o sea que la organización estructural contribuye al propio funcionamiento.

7 Un sistema de gran complejidad estructural solamente puede existir si el ambiente físico es lo suficientemente benévolo para mantener su organización. Por ejemplo, los ecosistemas adaptados al fuego, como ya se ha mencionado, presentan gran complejidad en sus componentes subterráneos (más sistemas radiculares y tallos subterráneos), mientras que sus componentes aéreos son de muy baja complejidad.
El nivel trófico se refiere a la posición de los organismos en la cadena alimentaria, estando los autótrofos en la base. Un organismo que se alimente de autótrofos es llamado herbívoro o consumidor primario; uno que coma herbívoros es un carnívoro o consumidor secundario. Un carnívoro que coma carnívoros que se alimentan de herbívoros es un consumidor terciario, y así sucesivamente. Es importante observar que muchos animales no tienen dietas especializadas. Los omnívoros (como los humanos) comen tanto animales como plantas.

En función de la segunda ley de la termodinámica, la energía absoluta disminuye a medida que esta fluye a través de la cadena alimentaria, en tanto que la calidad de la misma aumenta. Ello determina que cada nivel trófico contenga una cantidad diferente de energía respecto de los niveles inferiores y superiores, y, por lo tanto, también será diferente su capacidad para realizar trabajo útil. Como resultado, las especies de los niveles tróficos más altos son generalmente reguladoras de sistemas especializados, puesto que utilizan una pequeña cantidad de energía de alta calidad para controlar y regular flujos de energía de menor calidad pero de mayor cantidad de los niveles tróficos inferiores.

11. La conversión de la energía lleva al concepto de productividad

Profundizando en los conceptos de fotosíntesis y respiración ya mencionados, surge un nuevo concepto: “productividad” del sistema.

La conversión total de energía radiante a energía química por unidad de superficie del sistema, en un tiempo dado, se define como su productividad primaria. Sin embargo, como todos los tejidos vivos respiran continuamente, parte de la energía capturada a través de la fotosíntesis es utilizada en la respiración, reacción que se orienta en sentido contrario a la primera. La productividad se utiliza para el crecimiento neto de la vegetación, para el sostenimiento de los consumidores del sistema (herbívoros, carnívoros) y/o para exportaciones a otros sistemas.

La productividad de un sistema determinado puede ser positiva, neutra o negativa, de acuerdo con el balance existente en el sistema entre la fotosíntesis y la respiración. Por ejemplo, un ecosistema cuya productividad primaria neta es mayor que la respiración de sus consumidores está en crecimiento activo o quizás exporta materia orgánica a otros ecosistemas. Si el balance es negativo, el sistema está en decadencia o depende de otros sistemas para sostener su respiración total. Un sistema con balance cero se encuentra en estado estable, tal es el caso de las selvas y bosques vírgenes.
En la naturaleza son frecuentes los sistemas abiertos, en los que, por efecto de factores naturales (flujos de aire, agua y organismos), se exhibe un balance desigual entre su productividad y su respiración. Como resultado de ello, los sistemas naturales, y en particular los más afectados por lo seres humanos, importan o exportan materia. Por ejemplo, los sistemas agrícolas que exhiben una productividad superior a su respiración presentan un excedente de materia orgánica que pueden exportar (salen del sistema como producto de la cosecha), en cambio, otros, como las ciudades, exhiben mayor respiración que productividad, dependiendo de importaciones de energía potencial (electricidad, combustibles) de otros sistemas.

12. Los ciclos biogeoquímicos permiten el pasaje de materia

El intercambio de sustancias químicas entre formas bióticas y abióticas, de manera cíclica, dentro y fuera de los ecosistemas lleva a otro concepto en ecología: los ciclos biogeoquímicos. La circulación de diferentes elementos se activa a través del sol, como sucede con las corrientes marinas, los sistemas atmosféricos y otros fenómenos naturales que describen el movimiento de todos los elementos, permitiendo el pasaje de materia para el mantenimiento de la vida del planeta.

Los ciclos biogeoquímicos presentan diferentes fases: geológica, hidrológica y biológica. El flujo entre ellas determina la naturaleza cíclica de los movimientos de la materia en la Tierra, siendo de importancia vital las fases biológicas, ya que a través de ellas se regula la velocidad de los ciclos.

En el ecosistema, los compartimentos de mayor importancia en la circulación de la materia son la biomasa vegetal (la biomasa es la energía solar convertida por la vegetación en materia orgánica), los suelos y rocas y los insumos atmosféricos.

La biomasa vegetal absorbe nutrientes y minerales del suelo en proporción a sus necesidades productivas y los almacena temporalmente. Estos nutrientes y minerales retornan al suelo por medio de la lixiviación, la caída de las estructuras vegetales muertas y la erosión del suelo. También las especies consumidoras contribuyen a la recirculación de minerales y nutrientes, de igual modo que los vegetales, por descomposición después de muertos o por su pasaje a través de los eslabones de la cadena alimentaria.

La humanidad obtiene beneficios directos de estos ciclos, ya que el mantenimiento de la civilización se hace a expensas de la energía potencial almacenada en el petróleo y en los minerales que sirven de materia prima para la manufactura. Estos productos ya han sido concentrados por los ciclos biogeoquímicos en depósitos, con frecuencia accesibles a la tecnología. Ahora bien, de igual modo que los movimientos de agua y de minerales permiten mantener la vida en el planeta, también las sustancias tóxicas circulan por los sistemas naturales afectando la vida de los seres humanos.

Se debe destacar la magnitud de estos ciclos biogeoquímicos para el mantenimiento del planeta y señalar que los sistemas naturales son beneficiosos por sus funciones concentradoras y disipadoras de la materia y la energía.

La alteración y/o interrupción temporaria de alguno de estos ciclos biogeoquímicos debido a la aceleración o desaceleración de los flujos de materia, así como la transformación de

---

8 En el caso de sistemas estables, estas pérdidas se compensan con la erosión de las rocas y la formación de suelos, por medio de insumos atmosféricos que llegan al sistema (polvo y/o lluvia).
9 Las estrategias de los diferentes sistemas para conservar y circular sus materiales (agua, minerales y nutrientes) tienen implicancias importantes en el manejo de los mismos. Por tal motivo, es necesario conocer el funcionamiento del ecosistema en estos aspectos, ya que los sistemas que se desarrollan en zonas con escasez de minerales y nutrientes se adaptan para conservar dichos elementos, mientras que, cuando existe abundancia de nutrientes y minerales, los ecosistemas no tienen mecanismos de conservación especializados.
materiales (agua, nutrientes, minerales) en compuestos tóxicos, son ejemplos de los graves daños que el hombre realiza sobre la naturaleza y con amenaza de su propia existencia. El accionar del hombre puede verse reflejado en lugares muy distantes y aún a nivel global, como ha sucedido con el DDT y las sustancias radioactivas, que han aparecido en regiones alejadas de la civilización.

Los efectos globales constituyen una amenaza para el bienestar humano, puesto que una pequeña alteración en un ciclo global puede resultar en grandes cambios para muchas especies dentro de los ecosistemas. Por ejemplo, la devastación de bosques tropicales puede alterar los ciclos hidrológicos y sedimentarios de zonas mucho más extensas que las intervenidas, modificando muchas formas de vida originales. Otro ejemplo conocido es el aumento del CO₂ (dióxido de carbono) como producto de la actividad industrial y de transporte, que genera un cambio climático en todo el planeta debido a la alteración del ciclo del carbono.

Existen diferentes tipos de ciclos biogeoquímicos:

- **Ciclos sedimentarios**: en los cuales los nutrientes circulan principalmente por la corteza terrestre (suelo, rocas, sedimentos), la hidrosfera y los organismos vivos. Los elementos en estos ciclos son reciclados mucho más lentamente que en los ciclos gaseosos. Son retenidos en las rocas sedimentarias durante largos periodos de tiempo con frecuencias de miles a millones de años. Ejemplos de este tipo de ciclo son el azufre y fósforo.
• **Ciclos gaseosos**: en ellos los nutrientes circulan entre la atmósfera y los organismos vivos. En la mayoría de estos ciclos, los elementos son reciclados rápidamente, con frecuencia de horas o días. La transformación de la sustancia involucrada cambia de ubicación geográfica y se fija a partir de una materia prima gaseosa. Ejemplos de ciclos gaseosos son el nitrógeno y el carbono.

![Diagrama del ciclo del nitrógeno](image)

![Diagrama del ciclo del carbono](image)

• **Ciclo hidrológico**: el agua es vehículo de materiales, sujeta a un ciclo natural. Este ciclo es un proceso continuo de transferencia de agua a través de diferentes fases (atmosférica, terrestre, oceánica, biológica) que involucra una cantidad única de la misma. El ciclo hidrológico comienza con la evaporación del agua desde la superficie del océano. A medida que se eleva, el aire humedecido se enfria y el vapor se transforma en agua: es la condensación. Las gotas se juntan y forman nubes. Luego, caen por su propio peso: es la precipitación. Una parte del agua que llega a la tierra sera aprovechada por los seres vivos, otra escurrirá por el terreno hasta llegar a un rio, un lago o al océano. Otro poco del agua se filtrará a través del suelo, formando capas de agua subterránea. Más tarde o más temprano, toda esta agua volverá nuevamente a la atmósfera, debido principalmente a la evaporación y transpiración de las plantas.
Este ciclo es clave para la vida humana y para el equilibrio ecológico del planeta. Sin embargo, en la actualidad, el consumo excesivo de agua dulce para uso agrícola, industrial y doméstico, junto con la gestión inadecuada de las aguas residuales, amenaza la viabilidad. Esta alteración afecta negativamente a los organismos vivos, en algunos casos hasta el punto de la extinción. Por otro lado, las perturbaciones de este ciclo perjudican en mayor medida a las poblaciones más pobres, en función de que su sustento depende del mismo para obtener los alimentos que les permiten vivir dignamente.

13. Los ecosistemas cambian a lo largo del tiempo

Otro proceso que se lleva a cabo dentro de los ecosistemas es la sucesión, definido anteriormente como los cambios estructurales y funcionales que ocurren en un ecosistema en el transcurso del tiempo.

Este proceso permite a los sistemas naturales ajustarse a las condiciones físicas que los rodean y maximizar los flujos de energía en sus compartimentos biológicos y abióticos. Cuando un ecosistema alcanza su máximo desarrollo y deja de cambiar, se dice que llegó a su estado estable o climax. La rapidez de desarrollo y la complejidad que alcanza en este estado climax depende de la energía potencial accesible al sistema y de otras condiciones ambientales. Cuando algunas de estas condiciones no están presentes en el desarrollo del ecosistema, se dice que existen factores limitantes, la velocidad de desarrollo se hace más lenta y la complejidad que alcanza el sistema es inferior.

La limitación de la constante solar\textsuperscript{10} y otros factores físicos obliga a los organismos, las poblaciones y comunidades de especies a competir por esa fuente de energía. Los sistemas o combinaciones de especies capaces de llevar a cabo más trabajo útil por unidad de superficie de ecosistema estarán en una situación ventajosa con respecto a los que no puedan hacerlo bajo esas mismas condiciones; los primeros maximizan el uso de la energía.

La combinación de las estrategias de sucesión\textsuperscript{11} han dado como resultado los distintos sistemas que existen en la Tierra y las variedades de seres vivos presentes en ellos, limitados por

\textsuperscript{10} La medida de la cantidad absoluta de energía solar que llega al tope de la atmósfera terrestre es de 2 cal/cm²/min.

\textsuperscript{11} Las estrategias de sucesión de distintos ecosistemas son producto de la evolución y contribuyen a mantener a ciertas especies en comparación con otros grupos menos adaptados, porque durante el proceso de sucesión está en acción la selección natural. Por ejemplo, cuando las condiciones ambientales son óptimas en cantidad de agua, minerales, energía y el espacio es suficiente, en un principio, una gran variedad de especies de animales y

\[\text{Ciclo del agua}\]

- Agua atmosférica
- Transpiración
- Ingestión
- Agua en los organismos vivos
- Ingestión
- Agua superficial
- Evaporación
- Filtración, percolación
- Retorno superficial
- Agua subterránea
las condiciones de cada región, que hacen imposible el crecimiento indefinido o el desarrollo de un supersistema que anule a todos los demás. Es así como la naturaleza ha impuesto los límites al desarrollo y funcionamiento de cada uno de los sistemas ecológicos de nuestro planeta.

14. La retroalimentación regula el equilibrio

Por último, los mecanismos de regulación y mantenimiento de los equilibrios dentro de los sistemas naturales brindan una visión sobre la administración de materia y energía dentro de ellos.

El funcionamiento de los ecosistemas no se ciñe únicamente al empleo del flujo de la energía solar y a los ciclos de los materiales de la vida, sino que existe una propiedad que los supera: la regulación del buen funcionamiento del conjunto. Toda actividad dentro del ecosistema tiene una respuesta como contrapartida, que representa un mecanismo de regulación: el conjunto de tales mecanismos mantiene la vida en un "equilibrio dinámico".

¿Cómo se realiza esta regulación? Los elementos minerales (energía y materia) que pasan de un grupo a otro (de un nivel trófico a otro) actúan como activadores o inhibidores sobre el funcionamiento de la máquina de producir o de consumir. Si uno de los ciclos se frena (a causa, por ejemplo, de la desaparición de un cierto número de agentes consumidores), las cantidades acopiadas crecen rápidamente. Dado que la velocidad de los flujos de materia y energía que se desplazan en los ciclos es proporcional a las cantidades almacenadas, el sistema se autoequilibra eliminando más deprisa el exceso.

Las actividades propias de los organismos vivos permiten el mantenimiento de la regulación sistémica. Por ejemplo, la evaporación y transpiración de las plantas y animales juegan un papel esencial en la regulación térmica de los organismos y en el control del contenido de la atmósfera en vapor de agua. En cuanto a los animales, la demanda constante de alimento, por la que buscan y consumen otros organismos, contribuye a devolver a las plantas un flujo regular de sustancias minerales a cambio de ese alimento, resultando que unos (productores) y otros (consumidores) se vean recompensados por los minerales o los alimentos que el otro grupo proporciona. Es así como, si la población de un determinado tipo de consumidores crece aceleradamente, se desajusta el equilibrio y el alimento llega a faltar, muere un cierto número de individuos y esto restablece el nivel de población óptimo en relación con el medio en el que vive esa comunidad.

El tiempo de las reacciones que cada sistema tiene para reajustar dichos desequilibrios puede ser muy variable: algunas suceden rápidamente y otras son extraordinariamente lentas.

planta (estrategas "r") invaden el espacio que brinda condiciones favorables para el crecimiento vertiginoso, acaparando todos los recursos disponibles. Cuando existe uno o varios factores de tensión o limitantes (falta de agua o minerales, insuficiente cantidad de energía, bajas temperaturas, elementos tóxicos), se dificulta el crecimiento rápido y, por lo tanto, prevalece otro tipo de estrategia sucesional de crecimiento más lento y eficaz en el uso de los recursos y la energía (estrategas "k"). La estrategia "r" se observa, por ejemplo, en situación de abandono de un campo agrícola en un terreno fértil, en el cual desaparecen los subsidios constantes efectuados por el agricultor y consecuentemente se acelera el crecimiento vegetal de otras especies, las que con el tiempo constituyen un nuevo ecosistema. La estrategia "k" se observa en una sucesión primaria sobre zonas rocosas o vírgenes sin suelo o durante las últimas etapas de la sucesión ecológica natural, en donde las especies pioneras van siendo reemplazadas por otras que poseen un mejor manejo de la materia y la energía.

A lo largo de cada cadena alimentaria, red o ciclo se establecen flujos de energía y de materia, dando como resultado que todos los individuos pertenecientes a cualquier cadena, red o ciclo estén interconectados, coordinados y sincronizados en el conjunto superior, es decir, a nivel ecosistémico.

12 A lo largo de cada cadena alimentaria, red o ciclo se establecen flujos de energía y de materia, dando como resultado que todos los individuos pertenecientes a cualquier cadena, red o ciclo estén interconectados, coordinados y sincronizados en el conjunto superior, es decir, a nivel ecosistémico. Por ejemplo, se ha medido con elementos radioactivos la velocidad a la que un elemento mineral, como el fósforo, atraviesa el ciclo orgánico, desde su ingreso a la cadena trófica hasta su retorno al mundo mineral. Este ciclo completo de reciclaje (turnover) ha podido ser evaluado, en el caso de un lago, en diez minutos en verano y en más de diez horas en invierno. Por el contrario, en la fase sedimentaria la duración del almacenamiento y de liberación del fósforo puede ascender a los doscientos años. En relación con esto, ya se ha mencionado la
Lo expuesto hasta aquí intenta explicar la estructura y el funcionamiento de un nivel de organización (ecosistema) que actúa como base en la cual los seres vivos, incluyendo la especie humana, obtienen los elementos que satisfacen sus necesidades elementales. El hombre, como el resto de los seres vivos, integra otro nivel de organización (organismo).

Tanto un nivel jerárquico como el otro son sistemas, es decir, se desenvuelven como conjuntos de funciones interrelacionadas, algunas de las cuales tienen un margen muy estrecho de variación y una gran influencia sobre el resto del conjunto. De este modo, las funciones ambientales dependen de elementos exógenos al propio sistema y los seres vivos dependen, para su regulación, de factores externos al propio organismo.

Es por ello que se puede hablar de una fisiología de la naturaleza, externa a los organismos, vinculada con la fisiología interna (la del propio organismo). Ambas, en conjunto, configuran el metabolismo integral que, en el caso de la especie humana, condiciona al ser social, constituyendo la fisiología del comportamiento humano.

Las alteraciones de los ecosistemas o la afectación de cualquiera de sus componentes bióticos o abióticos pueden ocasionar perturbaciones de las funciones metabólicas de los organismos, dando como resultado la presencia de afecciones de distinta índole y gravedad.

Por ello, resulta importante comprender tanto los patrones de la evolución (estado de sucesión) como la estructura y función de los ecosistemas (almacenamiento y flujo de la energía y la materia), para intervenir sobre ellos en el momento adecuado y evitar desequilibrios irreversibles al sistema general (ecosistema) que podrían provocar riesgos y daños a los organismos y al medio físico.

Los efectos no deseados que resultan de intervenciones humanas iracionales pueden observarse, en muchos casos, a grandes distancias del lugar de ocurrencia y con diferencias de tiempo variable entre el evento y la aparición de signos o síntomas en el ecosistema intervenido. Estos desplazamientos témpraro-espaciales suelen dificultar la detección y el origen del problema y complicar o demorar la solución. Además, cuando se evidencian cambios dentro del seno del ecosistema, es probable que ya se hayan afectado también otros aspectos relacionados con él, como la salud humana, sin que puedan ser previstos oportunamente.

Por ejemplo, los llamados “desastres ecológicos” no siempre presentan relaciones de causa y efecto evidentes. Conocer profundamente las relaciones dentro de los ecosistemas es de suma importancia antes de establecer cualquier acción modificatoria sobre ellos.

15. La naturaleza y la cultura crean el ambiente para la vida humana

La Ecología, constituida por un cuerpo teórico y metodología específica, tiene por objetivo estudiar las relaciones de los seres vivos con el entorno que los contiene.

El estudio del comportamiento individual de los seres en el medio natural, buscando el reconocimiento de las necesidades de cada uno, se hace a través de la autoecología. Ese estudio paciente constituye la fuente de informaciones que han formado la base de la llamada sinecología, o sea, el estudio de las poblaciones de seres vivos en relación con el medio ambiente. Si bien el primer enfoque reduccionista ha sido indispensable, no alcanzó para explicar las propiedades que resultan de la organización e integración de la materia, los organismos y sus ambientes. Para la sinecología, la organización e integración constituyen los elementos claves para entender cómo se desenvuelven los organismos y su entorno como verdaderos sistemas. La simple reunión de elementos no es suficiente para componer un sistema.

importancia que presentan los grandes depósitos (atmósfera, hidrósfera y sedimentos) como reguladores de los materiales sobre el conjunto del ecosistema.
Es indispensable que esos elementos sean integrados en una organización que transformará el conjunto en un sistema funcional.

Dentro del sistema natural, el hombre es un ser vivo que satisface sus necesidades vitales y obtiene beneficios de ese sistema, aunque se distingue del resto de los organismos por logros evolutivos que han generado capacidades diferenciales.

Resulta entonces que la Ecología es la ciencia capaz de analizar los vínculos del hombre con su entorno biótico y abiótico y con el espacio donde se desarrolla la existencia humana. Ese espacio es nuestro planeta, un sistema complejo que funciona con recursos finitos, noción que frecuentemente el hombre olvida.

El ambiente es el “conjunto de factores externos” que actúan sobre un organismo, población o comunidad, incidiendo directamente en la supervivencia, crecimiento, desarrollo y reproducción de los seres vivos, en la estructura y dinámica de las poblaciones y de las comunidades bióticas. En otras palabras, sin ambiente no hay vida” (Frangi, 2000).

El ambiente humano es un conjunto complejo de factores y elementos de variada naturaleza (físicos, químicos, biológicos, sociales, culturales, económicos y políticos) que actúan favorable o desfavorablemente sobre los individuos. Estos factores y elementos condicionan todos los aspectos de su existencia (colectiva e individual) y determinan su calidad de vida.14

Es la especie humana la “que articula los diferentes procesos de orden físico, biológico, cultural, ideológico, político y económico que definen la problemática de las relaciones sociedad-naturaleza” (Leff, 1994). Los problemas ambientales más importantes surgen del desajuste de las “culturas” con el ambiente, generalmente compartido con otras culturas, mientras que las circulaciones planetarias hacen que esos problemas ambientales ocurridos en distintas regiones tengan efectos temporales y espaciales diferentes.

Sin perjuicio de lo expresado, el término “ambiente” o “medio ambiente” se asocia vulgarmente a cuestiones particulares de las ciencias ambientales, tales como la degradación o contaminación, preocupantes para el hombre, pero difícilmente se relaciona con actividades de conservación de la biodiversidad, con la planificación del territorio y del uso de la tierra o con cuestiones toxicológicas y epidemiológicas. En cierta forma, estos conceptos equivalen a suponer que la medicina es sólo curativa y que no existe ninguna acción en ella de prevención prepatogénica.

16. El hombre contribuye a generar la crisis ambiental

Después de la Segunda Guerra Mundial y en coincidencia con el inicio de la Edad del Espacio (Garret Hardin, 1982) y de la Edad de la Ansiedad (Marston Bates, 1961), cuando las cuestiones ecológicas pasaron a ser una preocupación ciudadana, los seres humanos comenzaron a considerar el agotamiento o la pérdida de recursos y la degradación ambiental, la calidad de vida y de la salud, como resultado de su intervención en el entorno.

Los individuos o sociedades pueden tener visiones diferentes respecto del significado de bienestar o calidad de vida. En algunos casos, los ingresos económicos significan el mayor logro para alcanzar objetivos de poder. Sin embargo, para otros, los aspectos económicos sólo significan un medio para alcanzar valores más profundos, como la justicia y la equidad.

Las crisis ecológicas siempre se han conectado con las actividades económicas a lo largo de la historia. En esa perspectiva se observa que la primera de esas crisis aflora con la invención...
**de la agricultura**, hace alrededor de 10.000 años. Tal transformación revolucionó no sólo las relaciones del hombre primitivo con la naturaleza que lo circundaba, dejando su huella sobre los sistemas biológicos y alterando los ecosistemas de los cuales formaba parte, sino que además produjo profundas modificaciones en las relaciones de los hombres mismos, al punto de que la sociedad igualitaria, hasta entonces existente, dio paso a un nuevo tipo de sociedad: la sociedad dividida en clases. Con la **Revolución Industrial** y el subsiguiente aumento del consumo energético, los recursos naturales adquirieron cada vez más la condición de mercancías. El incipiente capitalismo revela así su esencia, la sustitución de la subsistencia colectiva por el predominio de intereses de carácter individual.

Actualmente, la llamada “**Globalización**” actúa sobre la sociedad contemporánea socavando economías, derribando tradiciones, imponiendo la cultura de lo desechable y del lucro a toda costa, lo que ha agravado la situación, generando los peores desastres ambientales hasta ahora registrados.

<table>
<thead>
<tr>
<th><strong>Advertencia sobre la crisis ambiental</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>“La crisis ambiental a la que nos enfrentamos hoy representa, además del colapso de los ciclos bioquímicos a nivel planetario, una crisis de conocimiento y de formas de conocimiento. Es una crisis civilizadora, ya que cuestiona los mitos del progreso indefinido y del crecimiento económico sin límites [...] En ese sentido afecta principalmente a la cultura occidental, incapaz de escapar a los valores del consumo y del hedonismo utilitarista y antropocéntrico...”</td>
</tr>
<tr>
<td>UNESCO</td>
</tr>
</tbody>
</table>

Esta crisis ambiental refleja una **crisis del modelo de desarrollo** imperante en el mundo moderno exacerbado por la avidez del capital, que culmina ejerciendo presiones sobre la naturaleza como fuente de recursos y depósito de desechos.

Producto de la “Globalización” de la cultura del consumismo, se han aumentado las desigualdades sociales, se han arrasado culturas que no han compartido este criterio, se han aniquilado muchas economías locales y se han aumentado los problemas ambientales de dimensión planetaria.

La salud es uno de los aspectos más destacados que se ven afectados, directa o indirectamente, por los diferentes conflictos del medio ambiente que el hombre desencadena, acelera o potencia.

En las complejas relaciones del medio ambiente y la salud, son protagonistas especiales las actividades sociales y económicas, que actúan como fuerzas motrices ejerciendo presiones en dichas relaciones.

Dentro de este complejo (ambiente-salud) se pueden generar distintas amenazas ambientales, las que actualmente se dividen en:

- **Peligros tradicionales**, ligados a la pobreza y al desarrollo insuficiente.
- **Peligros modernos**, dependientes de un desarrollo insostenible. Guardan relación con un desarrollo rápido que no tiene en cuenta mecanismos de protección del medio ambiente y la salud y con un consumo abusivo de los recursos naturales.

De este modo, los peligros para la salud derivados del ambiente y sus riesgos asociados van cambiando con el tiempo y/o el desarrollo, pasando de tradicionales a modernos. Este patrón de cambios se denomina “**transición del riesgo**”.

**DESARROLLO, SALUD HUMANA Y AMENAZAS AMBIENTALES**
Los peligros tradicionales suelen manifestarse en las poblaciones a través de enfermedades de aparición rápida. Por ejemplo, beber agua contaminada por bacterias producirá en pocas horas diarrea y otros síntomas relacionados.

Contrariamente, los peligros modernos pueden expresarse en determinadas sintomatologías muchos años después que ha sucedido una modificación en el medio. Es común que los efectos aparezcan en la salud después de haberse mantenido por decenios en el ambiente físico o en las cadenas alimentarias. En muchos casos, los peligros modernos pueden socavar las propias estructuras de sostén de la vida sobre la Tierra, como sucede con la desaparición del ozono estratosférico por la presencia de clorofluorocarbonos.

<table>
<thead>
<tr>
<th>Transición del riesgo ambiental-salud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peligros tradicionales</td>
</tr>
<tr>
<td>Falta de acceso al agua potable.</td>
</tr>
<tr>
<td>Saneamiento básico insuficiente, tanto en el hogar como en la comunidad.</td>
</tr>
<tr>
<td>Contaminación microbiana de los alimentos.</td>
</tr>
<tr>
<td>Contaminación interior por quema de combustibles fósiles (cocina y/o calefacción).</td>
</tr>
<tr>
<td>Sistemas de eliminación de residuos sólidos inadecuados.</td>
</tr>
<tr>
<td>Catástrofes naturales (inundaciones, terremotos, sequías).</td>
</tr>
<tr>
<td>Enfermedades producidas por vectores, como insectos y roedores.</td>
</tr>
<tr>
<td>Riesgos en el trabajo por inseguridad laboral.</td>
</tr>
<tr>
<td>Peligros modernos</td>
</tr>
<tr>
<td>Contaminación del agua por actividades urbanas, industriales y agrícolas.</td>
</tr>
<tr>
<td>Contaminación del aire por emisiones de los motores de vehículos, industrias y centrales energéticas.</td>
</tr>
<tr>
<td>Acumulación de residuos peligrosos e industriales.</td>
</tr>
<tr>
<td>Riesgos químicos y por radiación debidos a la utilización de tecnologías industriales y agrícolas.</td>
</tr>
<tr>
<td>Aparición de enfermedades nuevas o reemergentes.</td>
</tr>
<tr>
<td>Cambios locales y regionales: deforestación, degradación del suelo y otros cambios ecológicos.</td>
</tr>
<tr>
<td>Cambios globales: cambio climático, agotamiento de la capa de ozono, efecto invernadero.</td>
</tr>
<tr>
<td>Riesgos derivados de ambientes de trabajo hostiles (problemas físicos, emocionales, psicológicos, stress).</td>
</tr>
</tbody>
</table>


Como se dijo, la complejidad de las relaciones entre el ambiente y la salud humana se debe comprender en base a la asociación entre los distintos aspectos del desarrollo social y económico. No existe una única manera de explicar estas relaciones, se debe hacer desde varias perspectivas para comprender lo que está sucediendo en el ambiente, que culmina con la producción de efectos en la salud.

Por ejemplo, la Organización de Cooperación de Desarrollo Económico (OCDE, 1993) y la Comisión sobre Desarrollo Sostenible, Naciones Unidas (CDS, 1996) analizan y entienden los hechos a través de un marco causa-efecto entre la salud y el medio ambiente.

En este marco, se visualiza que, a pesar de que la exposición a un contaminante puede ser la causa inmediata de una enfermedad, subyacen por debajo de ella una serie de presiones que provocan el desequilibrio ambiental. A su vez, el estado del ambiente conforma la base sobre la que se produce la exposición. Todos (presiones, estado ambiental, exposición) son los factores a controlar para reducir los riesgos.

El modo en que un estado alterado del medio ambiente ejerce un impacto en la salud humana depende de múltiples factores, entre ellos, al grado de exposición al que se someta. La exposición significa interacción del hombre con el peligro ambiental.
El marco causa-efecto destaca los vínculos más importantes para identificar estrategias de acción destinadas a controlar y prevenir los efectos nocivos a la salud derivados del ambiente.

17. Algunos problemas ambientales tienen efectos globales

Los problemas del medio ambiente no reconocen fronteras preestablecidas, son transfronterizos y afectan objetivamente intereses de todos los países. Las diferencias se establecen a partir de las características que cada región presenta.

La contaminación es un problema generalizado en el planeta. Se define como “toda alteración en el equilibrio existente, genérica y globalmente, en el medio ambiente, en la composición, características y propiedades de cada uno de los sectores que lo integran, y de sus interacciones recíprocas, cualquiera sea la causa u origen de la misma y del sector afectado” (Catoggio, 1992). Tal amplitud involucra agentes de diferente naturaleza (físicos, químicos y biológicos) y acciones que pueden producirse espontáneamente o ser provocadas por la actividad del hombre, en especial cuando se concentra en grandes comunidades que consumen recursos y transforman materias primas a través de procesos industriales.

Todos los agentes nocivos presentan ciertos comportamientos dentro de los ecosistemas. La dinámica o cinética de los contaminantes en el ambiente analiza su movilidad, interacciones y degradaciones en él. Habitualmente, una sustancia que ingresa al ambiente se dispersa en el medio e interactúa con los elementos propios de este, se distribuye hasta cierto grado y puede ser transferida a otros componentes ambientales.

Otros conflictos globales conocidos relacionados con la contaminación son el efecto invernadero, el cambio climático y la lluvia ácida.
El efecto invernadero es un fenómeno que se define como el aumento de la temperatura por la presencia de determinados gases (CO₂, CH₄, NOₓ) en las capas atmosféricas que impiden que la radiación infrarroja (de longitud de onda larga) escape hacia el espacio exterior, lo que favorece el calentamiento de la atmósfera. Los efectos en la salud son condicionados por la evolución del aumento de la temperatura media del aire, que determina el grado de alteración de los ecosistemas, la pérdida de biodiversidad y disponibilidad de recursos alimentarios, así como la destrucción de hábitats naturales. El derretimiento de los casquetes polares y consecuentemente la subida del nivel del mar podrían promover migraciones humanas y aumento de enfermedades transmitidas por vectores, por la elevación de los índices de humedad.¹⁵

Otro problema global es la disminución y/o agotamiento de la capa de ozono (O₃) estratosférico, causado por la presencia de sustancias clorofluorocarbonadas (CFC). El adelgazamiento de esta capa se produce por la acción de los CFC, gases muy volátiles y químicamente estables utilizados en aparatos de refrigeración, de aire acondicionado, pesticidas, aerosoles y espumas, y que al llegar a la estratosfera se descomponen por la acción de los rayos ultravioletas y liberan moléculas de cloro y flúor que destruyen el ozono.

El O₃ es un gas vital para los seres vivos, ya que sirve de protección contra las radiaciones ultravioletas procedentes del Sol. La disminución del ozono estratosférico se relaciona con el aumento de incidencia de carcinomas de piel, melanomas, cataratas e inhibición del sistema inmunológico.

La lluvia ácida es otro fenómeno de carácter global y/o regional que provoca la acidificación de los componentes del ecosistema, afectando además la infraestructura edilicia y la salud de las personas expuestas. Se produce por la emisión de gases de carácter ácido que contienen azufre y nitrógeno. Esta lluvia se produce en áreas industriales, pero fenómenos meteorológicos como el viento la transportan a grandes distancias. En salud humana, este fenómeno irrita las vías respiratorias, la piel y los ojos. Sobre los materiales, genera pérdida de patrimonio arquitectónico y artístico, así como costos en restauración y mantenimiento de las estructuras estropeadas.

La deforestación puede afectar directa o indirectamente la salud. Se define como la destrucción a gran escala de los bosques por la acción humana. Esta práctica reduce drásticamente la biodiversidad y consecuentemente los valores genéticos que podrían proveer medicamentos y alimentos de variada calidad en el futuro, además de modificar las características meteorológicas y climáticas a nivel local y regional, las redes de drenaje y las cuencas hidrográficas, perturbando las condiciones de salud de las poblaciones.

La deforestación avanza a un ritmo de unos 17 millones de hectáreas al año en todo el mundo. Entre 1980 y 1990, las tasas anuales de deforestación fueron de un 1,2% en Asia y el Pacífico, un 0,8% en Latinoamérica y un 0,7% en África.

18. La crisis ambiental se manifiesta en América Latina

Los problemas ambientales cubren las distintas regiones del planeta sin distinguir fronteras, sin embargo, la intensidad de afectación es diferente en función de las características socioculturales y de las estructuras económicas de cada nación.

Los países desarrollados fueron los primeros en sufrir una serie de accidentes, desastres y alteraciones ambientales, pero también supieron aprovechar esas circunstancias para

---

¹⁵ En la actualidad, se están llevando a cabo estudios científicos que permiten hacer predicciones en función de los diferentes escenarios posibles (población, radiación, humedad, precipitación, erosión, agricultura, bosques, mecanismos de absorción de las plantas y océanos) y valorar los impactos sobre diferentes poblaciones.
experimentar soluciones acordes, basándose en estructuras científico-tecnológicas y económico-sociales potentes.

Contrariamente, los países menos desarrollados, como los de América Latina, fueron adoptando los modelos productivos y los estilos de crecimiento del mundo desarrollado sin estudiar las causas y soluciones de los problemas ambientales generados en sus países, donde las situaciones sociales y culturales fueron y son diferentes.

A causa de ello, diversos factores condujeron a un deterioro creciente de la base de sustentabilidad ecológica y de la calidad de vida de muchas poblaciones en países americanos.

La descontrolada urbanización, la utilización de tecnologías industriales y agropecuarias inadecuadas, la migración de grandes masas de población rural hacia las ciudades y la explotación irracional de los recursos naturales son algunos de los principales factores que favorecieron tal degradación social y ambiental. Dentro de ese cuadro de situación, las poblaciones mostraron diferencias en su vulnerabilidad.

Las desigualdades estructurales que afectan a América Latina siguen vigentes en la actualidad. La región se ha integrado a la nueva economía global manteniendo grandes disparidades con respecto a los países desarrollados, acentuando los costos sociales, económicos y ambientales y manteniendo amplios sectores (sociales y territoriales) excluidos del proceso de modernización e integración económica (Castells, 1998).

Los sectores más postergados de la economía son los que sufren las peores situaciones medioambientales y de calidad de vida. La inequidad en la distribución de los ingresos y la existencia de bolsones de pobreza han ido generando un círculo vicioso que incorpora bajos niveles de remuneración familiar, escasa calidad en salud y educación, un entorno urbano insalubre, carencia de servicios básicos y precariedad y promiscuidad familiar. Estos aspectos caracterizan la situación ambiental actual de América Latina, de la que no es ajena la Argentina. Más de la mitad de la población de América Latina vive en estado de pobreza, lo que representa el problema social más importante. Ello se suma a una creciente degradación ambiental que sufre la región desde hace varias décadas.

Los principales conflictos que afectan la región son:

- Mal uso del recurso tierra, con sus consecuencias tales como erosión, pérdida de fertilidad (desertización).
- Degradación ambiental en los centros urbanos y sus consecuencias, tales como altos niveles de contaminación en los diferentes recursos naturales (aire, suelo, agua) y precariedad en las condiciones de vida humana.
- Deterioro de los recursos hídricos con sus consecuencias en el agotamiento y/o contaminación de las fuentes de abastecimiento de agua potable y ecosistemas acuáticos.
- Deforestación y pérdida de biodiversidad, tráfico de fauna y otros.

La pobreza afecta la salud por derecho propio. Sólo el hecho de ser pobre aumenta los riesgos, contribuye a la enfermedad y a la muerte, pues ubica a las familias en ambientes insalubres. La interacción de los agentes patógenos, la susceptibilidad individual, el nivel de instrucción y las condiciones ambientales locales determinan los resultados sanitarios.

Entender cómo la pobreza afecta la salud y el medio ambiente posibilita a los cuadros profesionales y políticos identificar las estrategias para dar soluciones a las necesidades locales y regionales.

La degradación del medio ambiente afecta negativamente la salud general. Para los habitantes de las ciudades, la contaminación del aire y las aguas se ha vuelto un lugar común. La falta de servicios básicos, como agua potable, redes cloacales y pluviales y recolección de basura, se ha tornado grave para los pobres que habitan las áreas urbanas marginales, donde la degradación afecta la salud, nutrición y vivienda.
El desarrollo sustentable debe ser entendido como un proceso de mejoramiento sostenido y equitativo de la calidad de vida de las personas, fundado en un proceso económico con equidad social y desarrollo de medidas de conservación y protección del medio ambiente y de la población, de manera que se logren satisfacer las necesidades actuales sin comprometer a las generaciones futuras, las cuales merecen una mejor calidad de vida.

No es fácil resolver los problemas particulares sin solucionar los globales. El problema ambiental establece nexos de causa y efecto con otros problemas globales, y estos requieren de una solución holística.

Lo que está en juego es la superación de los paradigmas de modernidad que han estado definiendo la orientación del proceso de desarrollo. Posiblemente, la modernidad emergente que se deberá plantear en el Tercer Milenio sea la modernidad de la sustentabilidad, donde el ser humano vuelva a ser parte de la naturaleza.

Las cuestiones ambientales tienen carácter, concepción y enfoque múltiple, incluyendo el estatal, social, familiar, comunitario y personal. La protección del ambiente es una tarea del Estado, pero también es una responsabilidad de cada individuo.
Bibliografía


Royero, J., *La ciencia y la tecnología en el contexto del siglo XX*, Universidad Central de Venezuela, 2002.


CAPÍTULO 2

URBANIZACIÓN, AMBIENTE Y CALIDAD DE VIDA

Marcelo Javier Bourgeois

1.1. El espacio urbano tiene diversos significados

La interrelación sociedad-ambiente-territorio condiciona la calidad de vida de un grupo humano. En la ciudad, es “[como] el grado de bienestar individual y en grupo, producto de la satisfacción de necesidades fundamentales de la población urbana, con los recursos disponibles en el ambiente natural, transformado, y social de la ciudad” (Delgado de Bravo, 1996: 5).

La armonía que da base a la calidad de vida

Sociedad

Calidad de vida

Ambiente

Territorio

Se estudiará una problemática testigo de las articulaciones entre Salud, Medio Ambiente, Políticas Sociales Públicas y Ordenamiento Territorial: los equipamientos asistenciales en áreas metropolitanas.

Las definiciones del hecho urbano han sido de dos tipos. Unas de carácter estadístico: ciudades por encima de cierto umbral de población (2.000 en Argentina, 5.000 o 10.000 habitantes según el país). Otras han puesto énfasis en diferentes aspectos de la urbanización: morfología, densidad y presencia de actividades no agrarias o alto potencial de información e interacción. Cada conceptualización conduce a determinaciones distintas del espacio urbano.

La palabra “ciudad” engloba tres sentidos clásicos diferentes: “el de urbe, con un sentido material de urb (lat.: ciudad); el de civitas, como comunidad humana, complejo de grupos sociales e instituciones; y el de polis, en sentido político y administrativo” (Curtit, 2003: 23).
Las raíces funcionales de la ciudad

La conexión entre el desarrollo económico y la mutación de las pautas culturales urbanas a todo el espacio industrializado ha permitido acuñar el concepto de ciudad-región. La antigua dicotomía campo-ciudad se diluye ahora en un continuo que integra periferias. De este modo, la “ciudad difusa”, la “ciudad región”, se extiende por un espacio que la rodea entre los cincuenta y cien kilómetros de radio.

La ciudad-región resulta “una de las áreas más críticas del globo porque en pocas partes de la superficie terrestre existen espacios que […] tengan tal diversidad y mezcla de usos del suelo; y donde el medio natural esté sometido a tan intensas presiones” (Capel, 1994: 139). Lefebvre dice: “las relaciones sociales son abstracciones concretas y no tienen existencia real excepto en el espacio y a través de él. Sus pilares son espaciales” (1995: 104).

A partir de la Revolución Agrícola en el Neolítico, que originó el surgimiento de los primeros asentamientos urbanos, se diferenció el espacio en campo y ciudad. Esa dualidad se considera como “una diferenciación social que precede a la diferenciación ecológica, es decir, las condiciones para las formaciones de una ciudad, presupone la existencia de una estructura de clases, y además, de una clase dominante que ha resuelto aislarse especialmente del resto de la sociedad, el campo” (Chueca Goitia, 1984: 34). Las relaciones entre campo y ciudad recobraron impulso a partir del siglo XIX, con la Revolución Industrial. La accesibilidad generada por el ferrocarril y el automóvil, las migraciones del campo a la ciudad, el establecimiento del telégrafo y el teléfono (las industrias se instalan en los suburbios y concentran sus oficinas en las áreas centrales) y el desplazamiento de usos urbanos a las afueras de la ciudad marcan nuevas fisonomías en los espacios intersticiales de lo urbano y lo rural.

Los primeros estudios sobre el espacio periférico le daban nombres jurídicos de reminiscencia medieval (“alfoz”), otros expresaban inferioridad (“suburbanos”), más tarde se acuñaban denominaciones neutras, (“peri-urbano”), hasta llegar finalmente a “ciudad difusa” y “ciudad-región”. La heterogeneidad y mezcla de usos del suelo es significativo de la periferia.
Aparentemente, su distribución sería azarosa, pero el análisis descubre una lógica que va desde las estructuras de la propiedad y las estrategias de los propietarios del suelo, las barreras naturales, los ciclos de expansión y estancamiento económicos hasta las decisiones del poder público (Sanchez, 1991: 54). Cualquier espacio puede convertirse para cualquier uso, pero una vez adquirido uno no puede tener al mismo tiempo más funciones: “el espacio tiene polifuncionalidad potencial pero monofuncionalidad efectiva” (Sanchez, 1991: 56).

El mercado del suelo es muy poco transparente. La intervención de los organismos públicos se aplica por intereses y estrategias contradictorias (nivel municipal, provincial y vecinal) y por determinaciones derivadas de la estructura de la propiedad y de sus agentes. Hay determinaciones previas: el contexto histórico, la localización de la infraestructura y una percepción del espacio que le asigna valores.

Así, se deduce que el planificador ambiental ha de abordar su trabajo consciente de que existen múltiples determinaciones hasta en su contribución intelectual.

### Factores de distribución del espacio periférico

<table>
<thead>
<tr>
<th>Estructura de propiedad</th>
<th>Ciclos económicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrategias de propietarios</td>
<td>Decisiones del Estado</td>
</tr>
<tr>
<td>Barreras naturales</td>
<td></td>
</tr>
</tbody>
</table>

1.2. Las ciudades globales son metrópolis en recomposición y fragmentación urbana

¿Es el hombre realmente sujeto u objeto de la moderna ciudad? ¿La ciudad ha sido construida a imagen del hombre; o más bien el hombre está sujeto a través de las condiciones urbanas a una sutil transformación cuyas consecuencias ni siquiera prevé? Eduardo Subirats, *El final de las vanguardias*

La actual *globalización* económica y social, caracterizada por la concentración del capital financiero, la desregulación de los mercados y de los grandes servicios, la flexibilización laboral y el redimensionamiento del Estado, tiene como una de sus condiciones principales la *emergencia de “ciudades globales”* con desigualdades socioespaciales que implican un equipamiento selectivo del territorio.

De esta manera, por una parte, la ciudad global concentra actividades y, por otra, produce una mayor dispersión de esas actividades en el entorno regional, configurándose un modelo de producción descentralizado en periferías lejanas y gestión centralizada que privilegia nuevos espacios estratégicos para las funciones de coordinación y control (De Mattos, 1997).
Las ciudades se categorizan como metrópolis, macrópolis y megalópolis.\(^1\)

La primera indica el rol y el grado de primacía y concentración de actividades en una ciudad en relación con el sistema urbano nacional. Una **metrópolis** es una comunidad madre (gr. “mêtèropolis”) y una ciudad matriz (gr. “metra-polis”). Puede ser el centro de relaciones entre diferentes estados, la ciudad primaria de un país o de una región. Al mismo tiempo, puede ser una metrópolis en términos políticos (sede de gobierno), económicos (ciudad industrial y financiera), institucionales (presencia de organismos internacionales) o reunir varias de estas características a la vez. Brasilia, San Pablo y Nueva York respectivamente son ejemplos de estas tres condiciones.

Una megapolización es una gran ciudad, en el sentido físico (gr. “megas-polis”), y resulta de la expansión territorial de un centro urbano mayor que incorpora progresivamente los espacios poblados de su entorno por “efecto de aglomeración”.

Una megalópolis también se genera en el contacto y/o superposición entre las áreas urbanas de diferentes ciudades interdependientes por “efecto de conurbación”. Gottmann creó el término megalópolis (1975: 76) en 1961 para redefinir el conjunto urbano del noreste de Estados Unidos. En América Latina, la conurbación que se aproxima a ese concepto es la formada por Río de Janeiro y San Pablo.

Bajo el concepto de megalópolis se identifica también una subcategoría de ciudad llamada macrópolis. Son las aglomeraciones más grandes del mundo, que por sus actividades no constituyen todavía una megalópolis. En América Latina pueden considerarse así la ciudad de México, Gran Buenos Aires, Bogotá, Lima y Santiago-Valparaíso.

---

1.3. **La fragmentación urbana es un proceso social, físico y simbólico**

La **fragmentación** designa “un proceso territorial mayor que se construye a través de tres subprocessos fundamentales: fragmentación social (nivel infraestructural), fragmentación física (nivel estructural) y fragmentación simbólica (nivel supraestructural)” (Vidal Rojas, 1997: 33).

Toda **metropolización tiende a la fragmentación urbana**. En la ciudad metropolizada coexisten al menos dos tipos de poblaciones: una cuyo sistema de relaciones se vuelca hacia el exterior y otra cuyo sistema es local, según el grado de identificación entre la acción individual y el ser urbano. “Mientras más la ciudad es el fruto de sus habitantes, la representación urbana de

---

\(^1\) Todo un debate teórico acerca de la cantidad y localización de las ciudades globales tiene lugar en la literatura. El urbanista Perulli cita ejemplos: “en los países centrales las ciudades primarias están encabezadas por Nueva York, Londres, París y Tokio y las secundarias están representadas por ciudades como Milán, Madrid, Toronto o Sydney; en los países semiperiféricos las ciudades primarias son centros como San Pablo o Singapur y las secundarias ciudades como Buenos Aires, Caracas, Seul, Manila y otras” (Perulli, 1995: 13). En este esquema, San Pablo sería una metrópolis primaria de un espacio económico semiperiférico y Madrid una metrópolis secundaria de un espacio económico central. **Buenos Aires sería una metrópolis secundaria de un espacio económico semiperiférico.** Ciertas millonarias concentraciones de población del Tercer Mundo quedarían fuera del esquema.
estos tenderá menos hacia la divergencia. Mientras más la ciudad es el resultado de decisiones y de acciones exógenas, menos será unificadora de representaciones” (Vidal Rojas, 1997: 36).

Los centros financieros volcados hacia actividades extraurbanas y extranacionales llevan a la construcción de hoteles de lujo, aeropuertos, autopistas, barrios internacionales. Testimonian una demanda urbana ajena a las necesidades de la colectividad local.

Una ciudad metropolizada, internacionalizada y, en consecuencia, megopolizada es cada vez menos el producto de sus habitantes y cada vez más el punto de combinaciones aleatorias y no planificadas. “Una ciudad metropolizada es una ciudad [...] dislocada desde el punto de vista de ‘antropos urbis’, pues es una ciudad social física y simbólicamente fragmentada” (Vidal Rojas, 1997: 36). La fragmentación urbana expresa, en términos sociológicos, la existencia de otras ciudades en la misma ciudad y la desaparición de la unidad por la dislocación social. La desagregación física es la tendencia de la estructura urbana hacia una disociación de sus partes. Esta tendencia se acompaña de un aumento de la entropía urbana, vale decir, de incertidumbre y caos creciente de los códigos de composición urbana y de la capacidad de aprehensión de la ciudad por sus ciudadanos.

1.4. Las aglomeraciones latinoamericanas sufren transformaciones socioterritoriales

El rápido crecimiento de las ciudades latinoamericanas desde la década de 1970 ha desbordado los límites expresados por los planificadores urbanos. Todos aquellos servicios proyectados y construidos para un futuro de mayor calidad de vida quedaron subestimados.

Desde la formación de las economías nacionales latinoamericanas, a fines del siglo XIX, bajo el Modelo Primario Exportador, las ciudades primarias asumieron el comando tanto de la integración económica-territorial de sus espacios nacionales, como de la articulación con la economía-mundo. Estas posiciones se acentuaron con el Proceso de Industrialización Sustitutiva desde mediados del siglo XX, pues en torno a ellas se intensificó la concentración productiva y demográfica. En ese momento, la mayoría –en especial, Ciudad de México, San Pablo, Buenos Aires, Santiago, Bogotá, Caracas y Lima– ya había comenzado a transformarse en las Áreas Metropolitanas Principales (AMP’s) de cada país.
Con el agotamiento del modelo sustitutivo de importación y de industrialización basado en el mercado interno, comenzaron a generalizarse las estrategias de apertura externa. En la década de 1980, las AMP’s se constituyeron en cabeceras para acceder tanto a los mercados externos, como al interno. En estas aglomeraciones se desarrollaron dos procesos simultáneos:

• Una relativa desindustrialización y una creciente tercerización productiva y de su demanda urbana.
• Una progresiva globalización, conformando una red de ciudades estructuradas jerárquicamente a escala global.

En el interior de las AMP’s se produce una fuerte concentración de inversiones de capital en espacios estratégicos, a nivel urbano, y un relativo abandono de amplias zonas residuales, que no son de interés para el modelo. Los espacios estratégicos reestructurados son:

• **Centros urbanos** dominados por el terciario avanzado con grandes edificios de diseño innovador y emblemático, aplicación de tecnologías constructivas de punta, con el aporte del Estado en la forma de equipamientos que confieren valores simbólicos “atraídos” para el terciario avanzado.
• **Nuevos ámbitos de comercialización de bienes y servicios** que localizan puntualmente un espectro variado de productos, de servicios y de esparcimiento (supermercados, hipermercados, shoppings), imponen cambios en las estructuras de comercialización, en los patrones de consumo y en la vida cotidiana.
• **Cambios de la estructura socio-espacial urbana**: a) “los procesos de ‘gentryficación’ que permiten a sectores de altos ingresos ‘colonizar’ zonas centrales anteriormente deterioradas (‘lofts’) desplazando a los grupos –generalmente de muy bajos ingresos– que previamente ocupaban esas áreas”; y b) también para grupos de más altos ingresos y como contrapartida de lo anterior, “el surgimiento de nuevas localizaciones residenciales en la extrema periferia urbana que valorizan la seguridad, el entorno paisajístico, el contacto con la naturaleza, un menor costo de la tierra que en las zonas centrales y la accesibilidad del transporte privado” (vía construcción de autopistas). Un ejemplo del primer caso son las repercusiones espaciales que generó la epidemia de fiebre amarilla que azotó a Buenos Aires en 1871 y que significó el desplazamiento de los sectores pudientes desde el sur de la ciudad a la Zona Norte. Para el segundo tipo, la construcción de los countries privados en la periferia externa de la Región Metropolitana de Buenos Aires desde la década de 1990.

Sumadas las ocupaciones de la tercerización, en estas AMP’s coexiste un número elevado de ocupaciones marginales, empleos precarios con remuneraciones paupérrimas. ¿Cómo se materializan territorialmente estos procesos de concentración metropolitana? Quizás el rasgo más relevante para caracterizar a las AMP’s de la globalización sea una tendencia a la suburbanización y/o periurbanización a partir de los ciclos urbanos originales: la mancha metropolitana se expande en forma incesante, dando paso a una metropoliregión de fronteras difusas.

¿Qué factores permiten explicar estas tendencias en la expansión metropolitana? La liberalización económica ha logrado despejar el comercio para la afirmación de una lógica estrictamente capitalista y la reproducción de dos tipos de estrategias sociales:

• **Las estrategias empresariales**, que utilizan el espacio metropolitano para actividades nucleadas en la construcción civil y los negocios inmobiliarios.
• **Las estrategias individuales o familiares** que, en función de preferencias por la vivienda unifamiliar, infringen las disposiciones de regulación urbana. Por otra parte, los sectores
bajos, en lucha permanente por lugares de residencia, tienden a ocupar tierras marginales y fiscales, muchas veces en forma ilegal, a través de viviendas precarias y con necesidades básicas insatisfechas (NBI).

“La confluencia de estas estrategias tiene como resultado una metrópoli-región que se construye y reconstruye, que se configura y reconfigura cotidianamente y caóticamente, por lo que, lejos de ser un proyecto diseñado y controlado por el hombre, se ha convertido en una realidad que escapa a su control” (Naredo, 1994: 89). Cualquier intento por regular el funcionamiento de estas ciudades y atenuar su expansión exigiría un esfuerzo deliberado orientado a controlar un sin número de actores y a restringir infinidad de negocios, lo cual requiere un enorme poder político e ideológico y un gran consenso democrático.

2. Ordenamiento territorial, política social y de salud pública

2.1. Las Políticas Sociales Públicas y el Ordenamiento Territorial se interrelacionan

Se sustenta en este acápite la interdependencia entre políticas sociales públicas, la planificación y el territorio.

En Argentina, las Políticas Sociales Públicas (PSP) involucran formas de intervención estatal en política previsional, educativa, de salud, de asignaciones familiares, de vivienda, de desempleo, saneamiento, asistencia y promoción social. Entendemos PSP según la definición de Cohen:

[son] respuestas estatales a problemas sociales y tienen como objetivo satisfacer necesidades que afectan a un número importante de individuos, mantener el orden y la armonía social; y lograr de este modo el apoyo y legitimidad política. Para lograrlo, el Estado puede recurrir a dos tipos de mecanismos no excluyentes entre sí: a) provisión de satisfactores directos ofrecidos por instituciones tradicionales encargados de administrar y gestionar la salud, la educación, etc., y b) provisión de medios para alcanzar los satisfactores de las necesidades, políticas de empleo e ingresos. (Cohen, 2001: 12)

El Ordenamiento Territorial (OT) supone una estrategia social y estatal para gestionar y organizar un espacio geográfico particular en un contexto histórico determinado en función de:

- Las características culturales y sociales de cada sociedad.
- Los cambios y tendencias de sus procesos históricos y políticos.

Para Mendez, el OT es “una política voluntaria que intenta ejercer una reacción sobre la organización del territorio, es decir, sobre las relaciones existentes en el funcionamiento de la economía y la estructuración del espacio en el cual se desarrolla un sistema económico social” (Mendez, 1997: 3).

El OT se relaciona con el Manejo Integral de los Recursos Naturales, la Sustentabilidad Ecológica y los Desarrollos locales.
**Ordenamiento Territorial**

"es una estrategia para orientar la distribución espacial del Desarrollo en razón de los recursos disponibles, mediante un uso que racionalice su explotación en términos sociales, económicos y ambientales, con el objeto de generar mejores condiciones en la calidad de vida de la población."  
(Mantobani, 1997: 24)

Destacaremos una articulación entre las PSP y OT, ya que, si las primeras se distinguen por brindar prestaciones, el segundo se caracteriza por:

- Ser una forma de intervención social del Estado.
- Dependbe del Estado, sus limitaciones en política social y gasto público.
- Involucra acciones reparadoras “a posteriori”.
- Intenta resolver desequilibrios y desigualdades sociales.
- Se inspira en un consenso político y de la opinión pública.
- Tiene como escenario el territorio, ya sea afectando a su población o los servicios y la calidad ambiental.
- Se encuentra determinado por el modelo de desarrollo vigente.

La Planificación y el Ordenamiento Territorial constituyen **formas de intervención social del Estado**, en un intento por armonizar la política económica (crear relaciones para la acumulación) y la política social (reducir las desigualdades sociales), es decir, solucionar los antagonismos entre eficiencia y equidad que se derivan del Modelo de Desarrollo adoptado, “el qué producir, el cómo producir, y el para quién producir” (Bustelo y Isuani, 2000: 11).

### 2.2. **La planificación urbana involucra la sanitaria**

El planificador urbano debe ser el punto de enlace entre los distintos entes que actúan sobre la ciudad. La **participación de la sociedad civil** y de sus instituciones hace efectivos esos procesos. Planificar involucra políticas definidas para alcanzar resultados. La planificación de los servicios de salud en nuestras ciudades, elaborados por organismos específicos, debe establecer los niveles de atención deseados y los posibles, así como los establecimientos y redes necesarias para cubrir una población.

La planificación de estos **establecimientos y redes** en la ciudad es, por ley, responsabilidad de los organismos encargados de *lo urbano*. Ello no pareciera cumplirse cuando en los planes se promueven obras civiles sin que se definan:

- Los vínculos con la ciudad.
- Las normas reguladoras de ubicación, acceso y aislamiento de centros asistenciales.
- Las previsiones sobre las incidencias del entorno y las alteraciones de las relaciones físico-espaciales funcionales existentes.
- La gestión de su funcionamiento eficaz y eficiente.

Al final, todo se traduce en un programa de actuación urbanística, que no es más que un listado de acciones previstas, sin fuerza para ser defendido por la autoridad local y susceptible de rechazo por parte de los vecinos del sector.
Un Plan de Ordenación Urbanística en el aspecto sanitario debe establecer grandes dotaciones asistenciales en función de: a) un Plan Nacional de Salud; b) un Plan de Desarrollo Urbano Local, que prevea sus efectos socioespaciales; y c) un Plan Espacial destinado al apoyo logístico y programático del sector Salud.

Sin embargo, la realidad nacional presente desdice el papel que debería estar cumpliendo la planificación. Si esto no se cumple en la práctica, una pregunta es: ¿a qué nivel debe contemplarse la incidencia urbana en la implantación de los servicios de salud?

Los centros médicos, estatales y privados, son localizados en puntos de la ciudad y posteriormente imponen, sin planificación, que el entorno se reacomode para su convivencia. La atención médica-hospitalaria es una actividad urbana y debe ser normalizada a fin de reducir posibles puntos de conflicto. Es preciso volver, pues, a una visión global de planeamiento integrado y a largo plazo que tenga en cuenta:

- El reparto equitativo de las externalidades negativas (por ejemplo, contaminación ambiental).
- Los efectos de la aplicación de ciertas tecnologías, las cuales están produciendo cambios en la localización de otros usos del espacio.
- Los límites tolerables de la aplicación de técnicas duras de modificación del medio ambiente natural y, por lo tanto, de la salud.

En definitiva, que ordene y desarrolle el espacio geográfico al servicio de la comunidad, sin confiar únicamente en la mano invisible del mercado smithiano y en las decisiones individuales de la autoorganización espontánea.

“Toda la Tierra estará construida por el hombre, también la Naturaleza, ¿para bien o para mal?” (citado por Capel, 1994: 141).

2.3. La asistencia hospitalaria en áreas metropolitanas requiere planificación

Planificamos una ciudad cuyos límites espaciales de funcionamiento fueron rebasados, y como resultado más de un 40% de nuestra población urbana vive en la llamada “ciudad informal”, cuyos territorios no fueron propuestos para ocupación urbana. Allí habita con severas carencias en infraestructuras y equipamiento colectivo, por lo cual debe trasladarse a la ciudad “formal” en su búsqueda. El crecimiento acelerado de la ciudad ha comprometido la disponibilidad de tierras urbanas para implantar los equipamientos requeridos.

De los equipamientos urbanos colectivos, los servicios de atención hospitalaria tienen requerimientos esenciales y un carácter referencial dentro de la ciudad.

Los servicios hospitalarios generan vínculos permanentes con su entorno por la movilización de usuarios, visitantes y empleados, y atención de urgencias y situaciones de emergencia, lo que altera la dinámica urbana y puede generar conflictos con los residentes. Los vecindarios rechazan las clínicas psiquiátricas o los centros de detención permanente. El carácter de sus edificaciones requiere redes de infraestructura, servicios y accesibilidad vial. Sus espacios son diseñados para el funcionamiento de equipos para tratamiento y diagnóstico que no son de fácil remoción. El hospital debe constituirse, en sentido espacial, en punto nodal de una red geográfica de centros de Atención Médica de variada complejidad (González, 1997).

Ahora bien, la situación económica argentina desde la implementación del Modelo de Apertura y Desregulación Económica de la década de 1990 (Lo Vuolo, 1995) coloca los servicios de Salud en fase crítica. Ello es así por el costo del mantenimiento de su infraestructura y planta física ya construida, por el costo del mantenimiento de equipos, de su renovación y los costos del material de consumo y descartable, por la carga laboral que representa su personal y por el...
número cada vez mayor de pacientes que buscan asistencia a menor costo, tal como lo reseña a
diario la prensa nacional.

Tantos son los conflictos de los servicios de Salud, que los gobiernos buscan resolver los
problemas urgentes postergando los de fondo.

Los resultados en nuestras ciudades son desalentadores, y la planificación urbana debe dejar de ser
exclusiva de especialistas. Esa ciudad informal que no fue planificada rebasa sus propios límites y ha
entrado en una fase en la cual la comunidad debe ser partícipe de las decisiones que se toman sobre sus
espacios y también asumir las responsabilidades y compromisos que ello representa.

3. La urbanización en Argentina

3.1. La cuestión urbana en la Argentina se relaciona con su inserción en el mundo

Los procesos de urbanización relacionan la configuración de los asentamientos urbanos con los
modelos de desarrollo económico que cada país adopta (De Mattos, 1997: 24-27).

En la mayoría de los países de América Latina, la concentración urbana y el fenómeno de la
“primacía urbana”, surgida en el siglo XIX, están relacionados con el éxito del modelo exportador
primario. En Argentina, el país más urbanizado de América Latina, el conglomerado formado por la
Ciudad Autónoma de Buenos Aires presenta un tamaño diez veces superior a las ciudades que le siguen
en importancia (Córdoba/Rosario).

La inserción de estas economías en el comercio internacional gestó sistemas urbanos con tendencia a
la concentración. El caso de Buenos Aires es arquetípico a partir de la incorporación de los campos de la
Pampa húmeda al comercio mundial y la apertura de su puerto al tráfico de ultramar.

Esta primacía se profundizó a pesar de la federalización de la ciudad y su puerto, del influjo de la
construcción de los ferrocarriles, la inmigración masiva, fundamentalmente urbana,2 y la concentración
del excedente económico y las actividades conexas del modelo en las áreas urbanas hegemónicas. La
inserción de la Argentina en el mercado mundial como exportador de productos agropecuarios
subordinado a los países centrales de la época, en especial Gran Bretaña, se tradujo en inversiones para
crear capacidad operativa exportadora y en la apropiación y asignación de la renta agraria.

El resultado fue una organización interna dependiente de los mercados internacionales, pero con
grandes oportunidades de ascenso social. La organización basada en el modelo agroexportador
determinó un tipo de sociedad y de sistema urbano característico de la Argentina, que no tuvo
modificaciones hasta mediados del siglo xx (Balbo, 1993: 65).

Desde mediados del siglo xx, un fenómeno urbano nuevo en Argentina fue el rápido crecimiento
de las Aglomeraciones de Tamaño Intermedio (ATI) respecto de la población total del país.

Los cambios en los modelos económicos aplicados (hasta mediados de la década de 1970, el
modelo sustitutivo de importaciones, y desde allí el “ajuste estructural de la economía”)
convirtieron a las ATI’s en las principales beneficiarias de la redistribución de la población argentina

Desde mediados del siglo xx, el aumento de la población del país tiende a concentrarse en las
aglomeraciones de mayor tamaño por la demanda de mano de obra industrial. La inmigración
proveniente de los países limítrofes (que pasa a ocupar el lugar que antes le correspondía a la
inmigración de ultramar) también tiende a concentrarse en las Aglomeraciones de Tamaño
Intermedio y en Buenos Aires.

La reestructuración económica por el quiebre del modelo sustitutivo de importaciones modificó
el perfil industrial argentino en favor de tecnologías capital-intensivas y en desmedro de prácticas
mano de obra intensivas. Esto, unido a la caída en la actividad del sector industrial, empujó al

---

2 Hardoy consigna que, en 1895, el 52% de la población de Buenos Aires era extranjera.
cuentapropismo y al sector terciario como porción importante de la Población Económicamente Activa (PEA) y retardó el crecimiento de las aglomeraciones urbanas más importantes, comparado con las ciudades y pueblos menores: el sistema urbano argentino en 1980 ya no se correspondía con el “granero del mundo”.

Vapñarsky (1995) afirma que el protagonismo de las ATI’s no provino de políticas deliberadas, sino de procesos demográficos entre los que pueden citarse: 3

- El proceso de disminución de la población dispersa.
- La reestructuración industrial bajo la forma del cierre de plantas en lugares tradicionales y la apertura en lugares nuevos.
- Las políticas de promoción industrial y regional.
- La explotación del turismo como actividad económica.
- El papel de las capitales de provincias jóvenes que ejercen, en su escala, un papel parecido a lo que es Buenos Aires a escala nacional.
- Las migraciones desde los pueblos más pequeños, aunque no sea en búsqueda de empleo.
- Las deseconomías de aglomeración.

No obstante, es de esperar que la profundización de la globalización de la economía mundial, la reforma del Estado y la reestructuración de la economía en el plano interno planteen nuevas posibilidades en la expansión futura del asentamiento urbano en el país.

4. La metropolización de Buenos Aires tiene sus raíces

La Región Metropolitana de Buenos Aires responde a lo que se atribuye a las ciudades centrales, aunque sus características derivan de procesos socioterritoriales propios.

Buenos Aires se consolidó como metrópolis periférica, cuyo crecimiento acelerado se basó en el flujo migratorio externo durante el auge del período agroexportador (1870-1930).

Entre 1940 y 1960, se reactivó el crecimiento metropolitano por las migraciones internas. Un proceso de industrialización sustitutiva de importaciones y de políticas tendientes a la redistribución del ingreso produjo una expansión de la periferia, que superó no sólo el núcleo central de la aglomeración, sino también la primera corona ya consolidada a su alrededor.

Por otra parte, generó un proceso de densificación central (edificios de vivienda en altura). Por ambos procesos, vastos sectores sociales accedieron a la propiedad de la vivienda: los trabajadores urbanos por medio de los “loteos económicos” periféricos (y la autoconstrucción de viviendas) y los estratos medios por la adquisición de departamentos en edificios en “propiedad horizontal” centrales.

Los edificios en “propiedad horizontal” aparecieron en Buenos Aires en 1948 por una modificación del Código Civil que permitió la copropiedad de departamentos en edificios de altura sobre terreno común.

En los dos casos, las ventas se realizaron en cuotas sin indexar (a pesar del proceso inflacionario del período) y al amparo del crédito bancario oficial subsidiado.

Así, el porcentaje de propietarios en el área metropolitana se incrementó de un 26,8% en 1947 al 58,1% en 1960. Los “loteos económicos” de localización periférica fueron favorecidos por reducción relativa del precio del viaje en los ferrocarriles suburbanos (recientemente nacionalizados).

Las “villas miseria”, en tanto sectores fuera del mercado inmobiliario, encontraron su localización en terrenos vacantes, algunos centrales, pero sobre todo en el vasto anillo que sigue las cuencas inundables de los ríos Matanza-Riachuelo y Reconquista.

En la ocupación del nuevo espacio urbano –la segunda corona alrededor de la Capital Federal– intervino también la nueva industria sustitutiva con predominio de la industria liviana. La vieja industria estaba constituida por establecimientos de mayor tamaño, concentrados a lo largo del Riachuelo.

En las décadas de 1960 y 1970, la tasa de crecimiento metropolitano disminuyó por la reducción de las migraciones y por varias de las políticas del Estado que cambiaron de sentido o desaparecieron (subsidios a la vivienda y al transporte, ley de alquileres).

5. La aglomeración del Gran Buenos Aires (AGBA) tiene su definición y límites

Existe cierta ambigüedad cuando nos referimos a Buenos Aires: podemos hablar de una entidad urbana en términos político-administrativos (la jurisdicción de la Ciudad Autónoma de Buenos Aires y Capital Federal) o en términos de localidad y aglomeración, que delimita la “ciudad real”, lo que los censos denominan la “aglomeración Gran Buenos Aires”. En este sentido, Buenos Aires metropolitanana es una entidad urbana de hecho, sin un referente institucional establecido. A diferencia de otras ciudades metropolitanas en el mundo, no tiene un sistema gestionario y decisional de alcance metropolitano. Esta situación genera una realidad compleja y conflictiva.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Jurisdicción</strong></td>
</tr>
<tr>
<td>a. Ciudad Autónoma de Buenos Aires (Capital Federal).</td>
</tr>
<tr>
<td>b. Partidos cuya superficie integra totalmente el aglomerado: General Sarmiento, Morón, Lomas de Zamora, Quilmes, Lanús, General San Martín, Tres de Febrero, Avellaneda, San Isidro, Vicente López.</td>
</tr>
<tr>
<td>c. Partidos cuya superficie integra parcialmente el aglomerado: La Matanza, Almirante Brown, Merlo, Moreno, Esteban Echeverría, Tigre, Florencio Varela, Berazategui, San Fernando.</td>
</tr>
<tr>
<td>d. Partidos no comprendidos en lo que tradicionalmente se denomina Gran Buenos Aires, cuya superficie integra parcialmente el aglomerado: Escobar, Pilar, San Vicente, General Rodríguez, Marcos Paz, Cañuelas, La Plata, Pte. Perón, Ensenada y Berisso.</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del Censo Nacional, INDEC (2001); variación s/ partidos incluidos.

6. La AGBA en la década de 1980 varió su estructura socioespacial

6.1.1. Cambios demográficos

Buenos Aires metropolitanana disminuye su tasa de crecimiento hasta llegar a ser la más baja, considerando los periodos intercensales de los últimos treinta años: 2,1% durante el periodo 1960-1970 a 1,0% durante 1980-1991. Por primera vez en la serie estadística 1960-1991, la tasa
de crecimiento de los partidos del Gran Buenos Aires (1,4%) es inferior a la del resto urbano del país (2,3%), concentrándose su crecimiento en la llamada “segunda corona”.

6.1.2. Cambios en la desigualdad centro-periferia

En la estructura de la aglomeración se revierte, durante el último período intercensal, la tendencia de los índices sociohabitacionales que surge de comparar dicotómicamente centro (la “ciudad central”, es decir, Capital Federal) y periferia (partidos del GBA).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppc 1960</td>
<td>ppc 1980</td>
</tr>
<tr>
<td>Centro (Capital Federal)</td>
<td>1,22</td>
<td>0,98</td>
</tr>
<tr>
<td>Periferia (partidos del GBA)</td>
<td>1,40</td>
<td>1,37</td>
</tr>
</tbody>
</table>

Nota: ppc: personas por cuarto.


Del análisis del cuadro surge:

- Durante el período 1960-1980, el centro experimenta una mejora sociohabitacional (disminución del 19,45% del índice de personas por cuarto), mientras la periferia se mantiene estacionaria (disminución de un 2,32%).
- Esto se explica por la actividad en el mercado residencial de edificios de departamentos en altura (“propiedad horizontal”). Durante la década de 1950, este submercado residencial experimenta un “boom”, beneficiándose con políticas estatales de préstamos no indexados en bancos oficiales y con la permisividad de las políticas urbanísticas (escasas restricciones edilicias en cuanto a alturas y densidades). Durante la década de 1950, la “propiedad horizontal” se hace accesible a los sectores medios. En las décadas subsiguientes, este tipo edilicio tiende a concentrarse en grandes emprendimientos de lujo (Torres, 1996).
- Surge también que, por el empeoramiento de los índices sociohabitacionales para toda la aglomeración en el período 1980-1991, el centro sufre más que la periferia (aumento del 16,39% del índice de personas por cuarto en el centro y del 10,38% en la periferia), lo que contrasta con la tendencia anterior.
- El “mapa social” (ver a continuación) muestra, a nivel de fracción censal para 1991, la distribución espacial de un “índice de hacinamiento en el hogar” construido a partir de las seis categorías de esa variable consideradas por el censo.

---

4 Está basado en los resultados de la investigación llevada a cabo por el geógrafo Horacio Torres sobre los “Cambios en la estructura socioespacial del Área Metropolitana de Buenos Aires (1980.1991)”.

HORACIO LUIS BARRAGÁN
La ilustración evidencia tres características básicas: una preeminencia del norte sobre el sur, una preeminencia del centro sobre la periferia y, finalmente, una clara dominancia de los ejes principales sobre los espacios intersticiales, poco accesibles y mal servidos. Esos ejes principales, servidos por la red de líneas ferroviarias suburbanas, son los factores estructurantes de ese espacio. En relación con la ciudad de Buenos Aires en sí misma, a pesar de las tendencias de la última década en el sentido del mayor deterioro central, aún constituye un espacio privilegiado en cuanto al nivel socioeconómico. Esto no obsta que también sea esta la zona donde los contrastes aparezcan más claros, ya que durante la década de 1980 reaparecen tendencias de deterioro de ciertas áreas centrales (aumento de la población en “villas” de la Capital, en “conventillos” y en “hoteles y pensiones”).

Por otra parte, aparecen en la extrema periferia (más afuera de los diecinueve partidos del Gran Buenos Aires, en zonas accesibles por las dos autopistas principales) desarrollos residenciales que señalan una tendencia a la suburbanización de los grupos de más altos ingresos (country clubs y barrios privados).

6.2. El análisis cartográfico muestra los cambios entre los 1980 y 1991

Una síntesis de las conclusiones preliminares a las que se ha arribado es presentada cartográficamente en el siguiente mapa. En él se hace una doble distinción: entre zonas “buenas” y zonas “malas” (aquellas con índices superiores e inferiores a la media de la aglomeración) y
entre zonas que “mejoran” y zonas que “empeoran” (aquellas que muestran tasas de variación del índice superior e inferior a la media de variación del AGBA en su conjunto).

Los patrones espaciales del mapa presentan interés para el análisis de los cambios socioespaciales del período considerado:

- En primer lugar, entre las zonas que empeoran, aparecen tanto zonas “buenas” como “malas”.
- Las zonas “buenas” que empeoran, con gran cantidad de población involucrada, tienden a ser centrales y se concentran en la Capital Federal (son indicadas con un gris lleno claro en el mapa). El aumento durante la última década del hacinamiento, mayor que la media de la AGBA en zonas de la Capital consideradas como “buenas”, refuerza la hipótesis del empeoramiento sociohabitacional de los sectores medios.
- Las zonas “malas” que empeoran (negro en el mapa) se presentan como concentraciones puntuales en su gran mayoría en los sectores sud y sudoeste (incluyendo el sudoeste de la Capital); se interpreta que indican la población en “villas”.
- Las áreas que en el mapa aparecen como zonas “malas” –en algunos casos con muy altos índices de hacinamiento– en mejoría (indicadas con un grafismo cuadriculado gris oscuro en el mapa) coinciden en gran medida con las zonas tradicionales de los “loteos económicos”, expansión que tuvo su “boom” durante las décadas de 1950 y 1960.
El mapa indica zonas que en décadas anteriores ejemplificaban el incremento creciente del deterioro periférico, pero que hoy –aun con características deficitarias– están en proceso de integración al tejido urbano, facilitado por la propiedad del lote (muchas veces con títulos precarios) y la ampliación de construcciones, la pavimentación de calles y la extensión de las líneas de transporte público (colectivos) y, en algunos casos, provisión de servicios. Los procesos de regularización dominial que se vienen realizando desde la década de 1980 pueden haber contribuido a esta mejoría.

6.3. El AGBA presenta cambios comunes y diferenciales con otras macrópolis

Los cambios de tendencia en procesos urbanos que se presentaron en la aglomeración del Gran Buenos Aires durante la década de 1980 tienen aspectos comunes con los observados en otras macrópolis. Sin embargo, su evolución socioespacial –en particular por los procesos de los últimos cincuenta años– hace que sus características y la magnitud de su impacto sean diferentes.

En relación con los cambios en la tensión entre centro y periferia urbanos, puede remarcarse lo siguiente:

- Buenos Aires, como otras metrópolis, experimenta un importante proceso de suburbanización durante el período posterior a la Segunda Guerra Mundial (1947-1960), pero sus características e impacto son diferentes.

- El proceso de suburbanización de ese período fue posibilitado por cambios en la gestión del transporte (precios subsidiados en el transporte público nacionalizado en 1948). Las clases medias y altas, por su parte, no sólo no se suburbanizaron, sino que, si bien abandonaron la parte externa del centro tradicional (desplazadas por la expansión del terciario), consolidaron con edificios en altura (en “propiedad horizontal”) las características residenciales y los valores “urbanos” de otras zonas centrales y subcentrales a lo largo de los ejes que conducen a los subcentros principales dentro de la Capital (Belgrano y Flores). Estas características la diferencian de otros países. En EE.UU., la suburbanización fue protagonizada por los trabajadores urbanos que consolidaron los “barrios de loteo económico” en la segunda corona de la aglomeración, lo cual permitió la formación de suburbios de clase media y alta, posibilitados por la difusión del automóvil y la construcción de autopistas.

- El proceso de gentrificación de la década de 1980 (reocupación de los centros deteriorados por parte de grupos de altos ingresos) tuvo lugar en Buenos Aires de manera limitada y su impacto fue marginal, debido a que aquí los grupos medios y altos nunca abandonaron totalmente las zonas centrales y subcentrales ni se produjeron de manera masiva los procesos de “sucesión” que históricamente habían conducido en otras metrópolis a la formación de guetos.

- Recientemente se forman en la AGBA enclaves residenciales de alto nivel en la extrema periferia, acompañados por la expansión de actividades terciarias (shopping centers, hipermercadados, cementerios parque, sedes de empresas) y por procesos de deterioro central conducentes a formas de “guetización” y marginación socioespacial.

La situación deja planteados interrogantes respecto de la evolución futura de la estructura socioespacial de la AGBA, cuyos cambios periódicos han sido paralelos al contexto socioeconómico y político. Sintéticamente, la situación actual es una fase inédita de la evolución de la ciudad, donde se conjugan, en primer lugar, los efectos de una situación mundial que afecta la estructura de las áreas metropolitanas; en segundo lugar, la finalización de tendencias en el desarrollo socioespacial del Gran Buenos Aires que se habían mantenido durante cincuenta años.
y, finalmente, cambios en el estatuto jurídico de la ciudad central: autonomía de la ciudad de Buenos Aires sancionada por la Constitución de 1994.

7. La situación de la región metropolitana de Buenos Aires (RMBA) tiene características propias

7.1. Evolución

La difícil situación de la aglomeración de Buenos Aires emerge de transformaciones en la realidad argentina desde el período 1976-1983, bajo el llamado “Proceso de Reorganización Nacional”, hasta la actualidad, con la reinstauración de la democracia. Las políticas aplicadas durante este período trascienden lo económico para constituir un intento de refundar estructuralmente la sociedad argentina, tanto en lo económico y social, como en lo político, a través del proyecto neoliberal.

Sus efectos sobre el Área Metropolitana de Buenos Aires (AMBA) se expresan por un proceso de desindustrialización que deteriora la calidad de vida de la población. A la luz de los hechos, los problemas fundamentales del AMBA no resultan, creemos, de tipo funcional, sino de naturaleza política, ya que están expresando el estado de las relaciones sociales.

Frente a la nación, la ciudad de Buenos Aires apareció históricamente como un ámbito de acumulación de poder económico y político. Un primer modelo de desarrollo agroexportador, desde fines del siglo xix, transformó el puerto en articulación de la economía nacional con la internacional. Luego, consolidó esta hegemonía bajo el modelo sustitutivo de importaciones de la década de 1930, y la ciudad fue polo de localización industrial y comercial.

La sumatoria originó la macrocefalización a que se refieren los diagnósticos desde la década de 1940 hasta la del 1970. Sin desmerecerlos, la mayoría de ellos acentuaron el efecto (la ciudad, la localización industrial) y no las causas. El clásico libro de Ezequiel Martínez Estrada, La cabeza de Goliat, escapa a esta crítica. En la actualidad, las políticas se producen por un efectivo desmantelamiento de la estructura económica.

Hoy, que asistimos a una reestructuración mundial del conjunto de las regiones metropolitanas y que la localización industrial ha cambiado sus parámetros geográficos desconfiando de los grandes aglomerados urbanos (el caso de la “deseconomía de escalas”), puede afirmarse que Buenos Aires ha perdido su rol de puerto, de plataforma industrial de gran escala y de Capital Federal. Por lo cual, y de cara al siglo xxi, su vocación y destino como megaciudad es incierta.

Para la provincia de Buenos Aires, que goberna la mayor parte de este territorio, la Región es un problema nacional que se refuerza por ser la Capital Federal parte de la aglomeración. Esto involucra en su solución al Gobierno nacional, pero, a la vez, al conjunto de las provincias representado por los miles de provincianos que viven en el área. Con más de 12.970.000 de habitantes (Censo 2001), la Región Metropolitana de Buenos Aires es uno de los aglomerados más grandes del mundo. Sin embargo, en los últimos años, su crecimiento es tendencialmente inferior al de otras metrópolis. Esta pérdida de dinámica puede explicarse como efecto de una urbanización temprana, con disminución de los índices de natalidad, fenómeno de los países desarrollados.

Una segunda explicación relaciona esta pérdida de dinámica con la pérdida de un proyecto de desarrollo de las fuerzas productivas, límite que se expresa en las últimas décadas por el rezago de la economía argentina. La tercermundización de la sociedad que se consideraba “en vías de desarrollo” es uno de los signos más elocuentes de la nueva coyuntura.
La ciudad-puerto tiene futuro incierto

La ciudad que nació como puerto, creció como Capital Federal y se consolidó como gigantesca plataforma productiva del país, ve hoy desdibujarse estos tres puntales de su desarrollo, afrontando un futuro incierto.

7.2. Estructura Física

La Región Metropolitana de Buenos Aires (RMBA) abarca una superficie de 6.250 Km², lo que representa un 2% de la superficie provincial, pero su influencia se extiende sobre más de diez millones (alrededor de 30.000 Km²).

Está conformada por veinticinco partidos, que albergan aproximadamente nueve millones de habitantes, lo que representa un 69% de la población provincial, con una densidad de 1.370 hab/Km².

El espacio geográfico de la RMBA está constituido por dos elementos destacados: una declinación natural de la llanura pampeana y el Río de la Plata. Daus lo caracteriza así: “El Río es la puerta de un enorme territorio a juzgar por su enorme caudal y el alto contenido de sólido en suspensión continental” (Daus, 1985: 25).

Predomina el relieve llano, con algunas zonas de colinas. La zona del Delta, en cambio, es resultado de un proceso aluvional, verificándose un avance del frente isleño de alrededor de un metro por año. La Región se encuentra atravesada de Oeste a Este por tres ríos (Luján, Reconquista y La Matanza) y una serie de arroyos, cuyas cuencas se diluyen en la trama urbana.

La ocupación de este espacio ha obviado las cuencas, verificándose la urbanización de gran parte de ellas y de lagunas naturales. Esta transgresión, sumada al incremento de los niveles y tiempo de escurrimiento (impermeabilización del suelo construido) y la alteración del recorrido de los cauces naturales, es la causa fundamental de las frecuentes inundaciones.

7.3. Estructura económica

La Región Metropolitana es el principal centro de actividades productivas del país, ámbito privilegiado del intercambio y de servicios terciarios: concentra el 70% de las empresas.

Del análisis de PBI de la Región surge su neto perfil industrial (62% del total), seguido por el sector terciario (36%), el que se incrementó tendencialmente durante el período 1974-1985. La actividad primaria (por ejemplo, agrícola intensiva) retrocede frente a la urbanización, contribuyendo con sólo el 2% del PBI del AMBA (Laurelli, Bono y Ravella, 1995).

Fundamentos de la centralidad de la Ciudad de Buenos Aires

La importancia estratégica del puerto, como punto de articulación de las economías regionales con el mercado internacional, definió durante la etapa agroexportadora su preeminencia como centro de intercambio y ámbito de acumulación a nivel nacional. El asiento de los tres poderes de la nación, financiado a través de la recaudación aduanera, fortaleció hacia fines del siglo pasado esta tendencia.

El desarrollo industrial, consolidado por la etapa sustitutiva de importaciones, define su carácter de gran plataforma productiva a escala internacional. Durante la década de 1960, en el
marco de los planes del CONADE (Consejo Nacional de Desarrollo) y de los convenios de la ALALC (Acuerdo Latinoamericano Libre Comercio), se verificó una nueva expansión industrial sustitutiva con predominio de empresas de capital extranjero.

La producción industrial tendió a localizarse en Capital Federal y en los municipios de la periferia inmediata (Avellaneda, Lanús) durante la primera fase sustitutiva. Así, la primera corona, a orillas de los ríos y arroyos, fue el principal asentamiento de la flamante actividad industrial. La segunda etapa del desarrollo lineal, que fusionaba en una única aglomeración las ciudades de Buenos Aires, La Plata y Rosario, definó una nueva lógica de localización sobre el eje fluvial industrial (esquema director año 2000-CONADE) (Rofman, 1995).

Las tendencias de localización industrial promueven el proceso de urbanización, dinamizando el crecimiento de barriadas obreras en torno a las fábricas, fundiendo, en torno a un primer anillo periférico, industria y vivienda en un marco determinado por la producción.

Las políticas del gobierno militar produjeron profundas transformaciones desde 1976. La apertura de las importaciones favorecidas por el tipo de cambio definió un proceso de “modernización compulsiva”. Para el Ministerio de Economía de entonces, debían sobrevivir aquellas industrias capaces de volverse competitivas en el mercado internacional. El recambio tecnológico se apoyó en el financiamiento externo. Con un incremento de la deuda externa de 4.000 a 40.000 millones de dólares, se instaló en el país un nuevo modelo de acumulación (Isuani y Tenti Fanfani, 1987).

Bajo este nuevo marco económico, sólo podrían adaptarse los sectores más concentrados, empresas transnacionales y aquellas que se agruparon diversificando su producción e integrándose verticalmente dentro de grupos económicos.

La segunda variable de ajuste fue el salario. El incremento del desempleo hizo competir en el mercado de trabajo a los operarios de fábricas cerradas y a los desplazados de los procesos de modernización. El “empleo industrial decreció” en 1969. Un ejército de desempleados tuvo efectos económicos (modificación del valor del trabajo) y políticos en tanto disminuyó el poder del movimiento obrero, produciendo un “disciplinamiento” de los sectores del trabajo.

Los efectos de estas políticas modificaron las tendencias de desarrollo económico del área, tanto en términos de localización productiva como de deterioro de la calidad de vida.

La competitividad achicó el aparato productivo

El proceso de modernización-competitividad determina un notable achicamiento del aparato productivo (sólo quedan en pie las empresas competitivas), desactivando un porcentaje muy significativo de las empresas localizadas en Capital Federal y en el primer cinturón del Conurbano.

Hoy, la Región está en proceso de desindustrialización, y es dudosa la vigencia de diagnósticos de la década de 1960. Bajo las actuales condiciones, la Región Metropolitana no es ventajosa para la localización industrial. Sólo quedan algunos atractivos de la aglomeración (nivel de servicios, mercado y comunicaciones) y la masa de capital cristalizado en fábricas, infraestructuras y máquinas.

El sector terciario contribuye con el 36% al PBI de la Región (Bono, Laurelli y Ravella, 1995). Esta actividad caracterizó desde sus orígenes la economía de la ciudad, se consolidó con la Independencia y después con el desarrollo del puerto. El “centro” de la ciudad sigue siendo su punto principal de localización. La gran expansión urbana de los últimos cien años determinó un desfasaje entre la localización de estas actividades y las áreas de residencia.
La complejización urbana y la tercerización

“el crecimiento del sector terciario generado por el cambio económico guarda relación con la complejización del fenómeno urbano, visualizado a través del pasaje de un esquema concentrado sobre el centro de la ciudad, desarrollando el suburbio como ‘ciudad dormitorio’, a un esquema de subcentros periféricos y corredores con distintas escalas de complejidad.” (Bono, Laurelli y Ravella, 1995: 24).

El desarrollo del transporte (primero el tranvía, luego el tren y el colectivo) fue definiendo un modelo radial a través de sus ejes de expansión. La forma tentacular del crecimiento del segundo anillo suburbano originó un desarrollo lineal del comercio y los servicios a lo largo de “corredores urbanos”. Las estaciones, como articulaciones entre diferentes medios de transporte, adquieren fuerte vocación comercial, que, al coincidir en las cabeceras municipales con unidades descentralizadas de gobierno y administración, conforman subcentros urbanos.

Hubo un corrimiento del sector secundario al terciario, una “tercerización del empleo”, tendencia a la transformación de obreros en pequeños comerciantes o prestadores de servicios. En ese sector, amplios sectores desplazados de la producción encuentran diversas formas de subempleo.

7.4. Estructura ocupacional

Desde mediados de la década de 1970 hasta la actualidad, la estrategia de subsistencia de los sectores desplazados de la estructura productiva “formal” generó un sinnúmero de unidades productivas que, operando sobre cualquiera de las posibles variables de ajuste (formas precapitalistas de producción y sobreexplotación de la mano de obra, autoexplotación, niveles mínimos de ganancia, no pago de impuestos, trabajo precario), compiten con sectores formales, muchas veces en términos ventajosos.

Esta nueva realidad logra incluso articularse con la producción formal, dando origen a circuitos de “Maquila”, a través de los cuales las empresas rediseñan sus cadenas productivas, conectando un sinnúmero de pequeños talleres.

Los patrones actuales de asentamiento indican que la localización de las industrias de punta privilegia la zona norte, tendiendo a desplazarse hacia la región paralela al eje fluvial del río Paraná, que registra los mayores crecimientos del PBI industrial. La excepción es Ensenada, único partido de la zona sur con un esquema productivo dinámico, pero expulsor de mano de obra. La presencia del puerto y de un clima industrial consolidado generó allí el asentamiento de nuevas empresas concentradas y tecnificadas.

Atrapados por la crisis, quedan en la Capital Federal y en el primer cordón periférico grandes establecimientos con la modalidad industrial de las décadas sustitutivas (1950-1960). El valor de las instalaciones, la pérdida de competitividad o de eficiencia, definen el área como obsoleta. Paralelamente, la densificación de las viejas barriadas obreras y el incremento del poder adquisitivo de estas áreas consolidadas (residencialización) vuelven la coexistencia de vivienda e industria cada vez más conflictiva (Bozzano, 2003).

El avance de la urbanización ha sido hasta el presente inversamente proporcional al desarrollo del sector primario. Así, sólo en los municipios periféricos predomina esta actividad, con las menores tasas de urbanización de la región.

La valorización de la tierra por la urbanización induce al abandono de la producción en los lindes del ejido urbano, abriendo un “hinterland” especulativo entre el área urbana y las áreas de
producción intensiva. Así, ladrilleras y tosqueras constituyen la producción típica de estas áreas de transición.

7.5. Estructura social


Las políticas implementadas durante los últimos veinte años implicarán una retracción del ritmo de crecimiento de la Región. Así, puede constatarse un ritmo más dinámico en otras ciudades del interior del país (Trelew crece un 116%, Neuquén un 109%, Resistencia y Santa Rosa un 54%).

A partir de 1947, la población capitalina no ha crecido, siendo más intenso el incremento en los municipios periféricos.

Los municipios de la primera corona periurbana atraviesan una etapa de densificación con desaceleración del crecimiento. Los de la segunda corona, en cambio, experimentan desarrollos explosivos. Por ejemplo, la Capital Federal no crece, el municipio de Morón (primera corona) crece un 17%, mientras Moreno y Florencio Varela (segunda corona) duplican su población.

Una estimación del desarrollo futuro, que consolidaría la distribución social del espacio, involucraría los siguientes fenómenos:

- El crecimiento global de la aglomeración tiende a desacelerarse.
- La expansión de la periferia guarda ligazón con el desarrollo de las líneas de tren. La saturación de las líneas Mitre, Sarmiento y Urquiza tienden a desalentar el crecimiento de las líneas Norte y Oeste. La electrificación del Roca dinamiza el incremento poblacional sobre la zona sur.
- Las políticas privatistas, al adjudicar a los servicios públicos valores de mercado, aumentan los costos del transporte. Este valor favorece el repoblamiento de la Capital Federal, siendo los conventillos y los inquilinatos una forma de hábitat popular.
- El incremento poblacional de los sectores con mayor poder adquisitivo evita el problema de seguridad trasladándose a zonas más densas y seguras de la Capital Federal, creando una clara demarcación entre las zonas norte y sur de la ciudad.
- La ruta Panamericana enhebra un sector industrial-moderno, a cuyos lados se localizan áreas residenciales de sectores medios y altos (sobre el río) y sectores populares.
- La zona sur, en cambio, verifica los mayores porcentajes de cierre de fábricas y los mayores incrementos poblacionales; en este contexto, la situación de los municipios de la segunda corona en el sector sur es la más crítica.

La superposición de la estructura social y de la económica caracteriza la problemática de la primera y segunda corona, del sector norte y sur, y el caso particular de La Matanza. El sector norte de la primera corona presenta la contradicción de la recuperación de las zonas habitacionales (viejas barriadas obreras) por sectores medios y altos. Las industrias, aunque dinámicas, no alcanzan integración con el medio social circundante. El camino de cintura marca sobre esta faja el área de producción más dinámica y la posibilidad de un esquema de asentamientos industriales viables.

En la zona sur, la primera cintura industrial está totalmente en crisis. Avellaneda y Lanús presentan la infraestructura industrial más vetusta y conflictiva para su integración con el medio
urbano. La localización de industrias con alta contaminación (destilerías, curtiembres) hace vulnerable la estructura urbana (Bozzano, 2003).

La segunda cintura en el lado norte fue más dinámica en los últimos años, con el impacto de la electrificación de sus principales líneas ferroviarias y el asentamiento de la modernización industrial. La imposibilidad de prolongar las vías férreas orienta el crecimiento a completar los espacios intersticiales entre grandes vías, la oferta de suelo se vuelve más escasa, debiendo competir el crecimiento de las áreas populares con el incremento de las zonas de uso residuo-recreativo (quintas de fin de semana).

El crecimiento de la segunda corona en el sector sur condensa los efectos de degradación medioambiental y pobreza.

7.6. Calidad de vida

La preocupación por las dimensiones de la pobreza ha llevado a elaborar indicadores para su estudio. En Argentina se utilizan dos métodos para medirla: el de la línea de pobreza (LP), que brinda datos acerca de las tendencias del fenómeno, y el que estima la cantidad de personas que habitan en hogares con necesidades básicas insatisfechas (NBI).

<table>
<thead>
<tr>
<th>Características de hogares NBI. Censo 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tengan más de tres personas por cuarto (hacinamiento).</td>
</tr>
<tr>
<td>• Habiten una vivienda de tipo inconveniente (vivienda).</td>
</tr>
<tr>
<td>• No tengan ningún tipo de retrete (condiciones sanitarias).</td>
</tr>
<tr>
<td>• Tengan algún niño en edad escolar (seis a doce años) que no asista a la escuela (asistencia escolar).</td>
</tr>
<tr>
<td>• Tengan cuatro o más personas por miembro ocupado y, además, cuyo jefe posea baja instrucción (capacidad de subsistencia).</td>
</tr>
</tbody>
</table>

Las tres primeras condiciones expresan carencias habitacionales. La cuarta muestra las dificultades de acceso a la educación. La quinta es un indicador de las dificultades del hogar para obtener ingresos suficientes para la subsistencia.

En la Región Metropolitana, el 27% de los habitantes se encuentra afectado con NBI (INDEC, 2001). El valor más alto corresponde a Florencio Varela. Dieciséis partidos presentan valores por encima del promedio (primera corona), y de estos, nueve presentan niveles superiores al 34%.

Las NBI de la Región explican casi la cuarta parte de las NBI bonaerenses, es decir que el 2% del territorio provincial contiene a casi la quinta parte de la población en esa situación crítica.

Otros indicadores sociales muestran que el déficit habitacional (DH) alcanza aproximadamente el 37% de la Región. Así, cerca de 3.200.000 habitantes del Gran Buenos Aires tienen problemas habitacionales agudos (Bertoncello y otros, 1997).

La tasa de mortalidad infantil (TMI) de la AM BA es de 18,3 por mil (1997), levemente inferior a la media provincial. De los niños nacidos vivos que mueren antes de cumplir doce meses, al Gran Buenos Aires le corresponde el 66% del total provincial. A pesar del promedio, conviven áreas con tasas desiguales. Dieciséis partidos presentan cifras que están por encima del valor medio regional; de estos, siete tienen TMI superiores al 36 por mil y nueve poseen TMI comprendidas entre la media y el 36 por mil (Bono et al., 1995).
7.7. Problemas ambientales

La relación entre el hombre y la naturaleza cambia de acuerdo con el modelo de desarrollo. La mayoría de las sociedades ha pasado de un impacto mínimo sobre el ambiente natural a impactos negativos que perjudican los ecosistemas y el nivel de vida de la población.

La RMBA es un ejemplo de relación negativa población-ambiente. Sus habitantes requieren energía, agua, alimentos y materiales de construcción. Todas estas necesidades se satisfacen con la apropiación y explotación de distintos recursos naturales, lo que produce impactos ambientales.

El rápido crecimiento del área deterioró el ambiente, al incorporar tierras sin poder proveer infraestructura ni servicios urbanos (desagües pluviales y cloacales, agua potable, luz, gas, pavimento, alcantarillado, unidades sanitarias, escuelas, seguridad) en zonas periféricas.

Entre los principales problemas ambientales cuentan: la contaminación de las aguas del Río de la Plata, del Reconquista y del Matanza-Riachuelo; las altas cantidades de sustancias tóxicas emitidas a la atmósfera, la recolección y el tratamiento de los desechos sólidos (Bertoncello, 1998; Daguerre, 1999).

El consumo de agua se triplicó en los últimos treinta años, provocando el descenso de los mantos acuíferos y requiriendo mayores inversiones para plantas depuradoras y redes de distribución. La contaminación hídrica está generada por la descarga directa de aguas servidas de origen doméstico e industrial. La producción de energía, la deposición de efluentes industriales y de residuos lleva a los ríos sustancias orgánicas e inorgánicas contaminantes.

La contaminación hídrica lleva a que más de 1.300.000 habitantes de la RMBA (17% de la población) carezcan de agua potable y red cloacal. La población toma agua de pozo, proveniente de la napa freática que está contaminada bacteriológicamente y causa diarreas del lactante, hepatitis y parasitosis.

El Área Metropolitana de Buenos Aires se abastece de agua de consumo de la faja costera del Río de la Plata, que también está contaminada. En consecuencia, a pesar de que el agua que se consume es de buena calidad, el costo de los procesos de potabilización es cada vez mayor. También se obtiene agua del acuífero subterráneo Puelche, aunque en algunos tramos está contaminado.

La contaminación atmosférica depende de las fuentes contaminantes, la densidad de población, las condiciones geográficas y la circulación atmosférica. Un factor propicio en el área metropolitana es su geomorfología de llanura, sin barreras para los vientos, lo cual favorece la dispersión de los contaminantes.

Las principales fuentes contaminantes en el área son: el creciente número de vehículos, las emisiones industriales y las de las centrales termoeléctricas (Braislovsky, 1988; Di Pace, 1992; Daguerre, 1999).

| Contaminación atmosférica |

Para la Organización Mundial de la Salud, “el aire está contaminado cuando en su composición aparecen una o varias sustancias extrañas en cantidades considerables y permanecen durante un período de tiempo determinado, pudiendo resultar nocivas para el hombre, los animales, las plantas o la tierra [...] el valor máximo tolerable de contaminación por monóxido de carbono es nueve partes por millón (ppm), cuyo valor ideal es de 0,1 ppm” (OMS, 2001: 8).

La contaminación ambiental afecta a toda la población, aunque los grupos de riesgo son aquellos que se ubican en zonas vecinas a las emanaciones industriales. Los efectos sobre la salud pueden ser:
• Agudos: irritaciones de las mucosas, aumento de infecciones en las vías respiratorias, crisis asmáticas y otras.
• Crónicos: asma y EPOC (Enfermedad Pulmonar Obstructiva Crónica).
• Diferidos: modificaciones del material genético y efectos cancerígenos.

Además de los vertidos líquidos, la RMBA produce gran cantidad de desperdicios sólidos. El principal problema se plantea con la basura doméstica, por su volumen, transporte y disposición final.

En la recolección y eliminación de los desechos sólidos opera el CEAMSE (Coordinación Ecológica del Área Metropolitana). Creado en 1977, constituye el organismo encargado de la disposición de los residuos en el Cinturón Ecológico. Asimismo, se ocupa del tratamiento, reciclaje y disposición final de residuos sólidos, como el tratamiento de líquidos residuales y domésticos. Acciona en la Ciudad de Buenos Aires y en veinticinco partidos bonaerenses. No comprende –como se advierte– toda la RMBA con sus 34 jurisdicciones. Algunos municipios eluden las disposiciones del CEAMSE y llevan los residuos a basurales no habilitados. En 1994 se realizó un estudio sobre basurales no habilitados, con superficies mayores a una hectárea, en Capital Federal y once partidos integrantes del Gran Buenos Aires. Se detectaron 31, con un volumen de 1.542.000 m³ de desperdicios sólidos que ocupaban una superficie de 190 hectáreas (Pescuna, 1991). El CEAMSE inició un plan de saneamiento, pero nueve de esos basurales fueron excluidos por la alta proporción de residuos industriales y por la carencia de una planta de tratamiento y de rellenos de seguridad.

La recolección de basura no tiene las mismas características en todos los municipios. En la periferia y en los barrios más pobres, en algunos casos, grupos carenciados recuperan parte de los desechos para reutilizarlos a través de la economía informal (Di Pace, 1992).

La acumulación de basura en depósitos dispuestos en contacto directo con mantos freáticos sobre suelos permeables o por desplazamiento de corrientes de agua por bombeo produce contaminación de las aguas subterráneas. En los rellenos sanitarios se juntan algunos residuos sólidos urbanos que mantienen intacta por largos períodos su capacidad contaminante. Cuando llueve, el agua arrastra los lixiviados por vía de infiltraciones superficiales hacia las napas subterráneas, de las que parte de la población extrae el agua de consumo. La acumulación de desechos no controlados modifica las condiciones ecológicas y genera vectores de enfermedad.

En el mundo, para resolver el tema de los residuos se concluyó que se debe “reducir, reutilizar y reciclar”. El primer paso para resolver el problema de la basura es cambiar nuestros hábitos para producir menos, separarla y permitir su reutilización y reciclaje (Braslovsky, 1988; Di Pace, 1992).

7.8. Estructura urbana

La ciudad de Buenos Aires, en el modelo agroexportador, siguió un esquema concéntrico, avanzando en todas las direcciones. Abarcó la totalidad de la Capital Federal y los bordes de la avenida General Paz. La nacionalización del ferrocarril y la implementación de un pasaje subsidiado convirtió las líneas (sobre todo las electrificadas) en ejes de urbanización, originando un crecimiento tentacular durante todo el período sustitutivo. Los ritmos de extensión y completamiento de los espacios intersticiales llegan hasta el presente.

El CONADE consignó pautas de selección de obra pública, pero la ciudad lineal propuesta se contradijo con el crecimiento de La Matanza, prevaleciendo la pauta de avance en todas direcciones.

El modelo, sin embargo, reprodujo el esquema radial convergente que existe a escala nacional. El microcentro y el sistema de centros de Capital Federal tendieron a concentrar ciertas
ramas de actividad que determinan grandes movimientos cotidianos entre los lugares de residencia y los de trabajo.

La sobrecarga de los medios de transporte pone en crisis este esquema. La urbanización acompañando las líneas de trenes determinó un protagonismo particular de las estaciones como intercambiadores de medios de transporte, ligándolos al desarrollo del comercio. Ese alineamiento de medios de transporte masivo (tren y colectivo) convierte estos “corredores urbanos” en el esqueleto de la ciudad.

La coincidencia espacial de las actividades comerciales con los organismos de gestión (municipios, bancos, tribunales, obispados, sindicatos) define la presencia de subcentros urbanos. El conjunto se articula por medio del camino de cintura. Esta vialidad altera el esquema radial convergente sobre el centro de la ciudad, afirmando la vigencia de una estructura subyacente que tiende a un esquema descentralizado (Vidal Rojas, 1996).

La ausencia de políticas serias de planeamiento urbano determinó el crecimiento del área sobre las pautas de mercado. La lógica del mercado, dirigida a sectores con bajo poder adquisitivo, carga sobre el Estado todos los aspectos no rentables pero indispensables para la consolidación del tejido. Consecuentemente, un porcentaje muy bajo de la población cuenta con las cuatro infraestructuras consideradas básicas (Di Pace, 1992).

Esta modalidad de urbanización queda acotada con la sanción de la Ley 8.912, que impone a los loteadores la construcción previa de la infraestructura indispensable. Situando la accesibilidad a la tierra a los niveles salariales, esta ley trajo como consecuencia la retracción del mercado inmobiliario y la no habilitación de nuevos espacios destinados a los sectores populares. La penuria de tierras y la retracción de la oferta derivó en las ocupaciones de lotes fiscales (y privados) en toda la aglomeración.

La precaria tenencia de la tierra determina la precaria inversión en vivienda, originando una nueva modalidad de urbanización, “el asentamiento”. Los conflictos en torno a la tierra e infraestructuras indican la presencia de nuevos protagonismos.

Las reivindicaciones que, partiendo de la tierra, involucran otras innovaciones de la vida urbana indican la necesidad de una profunda reforma. Los servicios (alimentación, salud, educación, vivienda) prioritarios para los sectores con trabajo precario tienden a localizarse territorialmente, asignándole al municipio la responsabilidad social de las carencias. El protagonismo político de los intendentes es un rasgo característico de este proceso, como lo es el desarrollo de un sinnúmero de organizaciones reivindicando la participación en la problemática urbana.

Estos nuevos actores de la coyuntura política, su articulación con conflictos mayores, la implementación de una metodología que supere el clientelismo y desarrolle la potencialidad transformadora de estos protagonismos, son temas centrales en una política para el área.
Bibliografía


Duran, R. (comp.), *La Argentina Ambiental*, Buenos Aires, Lugar, 1995


CONTAMINACIÓN Y RIESGO AMBIENTAL

Adriana Pascual

1. Introducción
Desde que el género humano habita la Tierra, no ha habido cataclismo que cambiara sustancialmente el equilibrio del planeta ni modificara en forma espontánea el medio. Esa situación se mantuvo mientras no se produjeron grandes concentraciones de población y mientras el hombre se circunscribió a actividades extractivas artesanales o manufactureras. Las cosas cambiaron en forma exponencial con la llegada de la era industrial, en la que el hombre, por el uso de la máquina a vapor y la energía eléctrica, sustituyó y/o redujo la intervención de la mano de obra en la creación de bienes, los produjo a granel, creó nuevas necesidades, muchas de ellas artificiales, y se unió en conglomerados cada vez más grandes, en un proceso acelerado de urbanización. Ello produjo la demanda no sólo de abastecimiento de alimentos, sino de servicios como agua potable, desagües cloacales, transportes, disposición de residuos domiciliarios, atención médico-hospitalaria, educación, medios de comunicación social y otros.

Por otro lado, gracias a medidas sanitarias, al control de muchas enfermedades, a constantes progresos en la medicina curativa y preventiva y a una mayor expectativa de vida, adquieren significado las crecientes exigencias y las legítimas aspiraciones para acceder a una mejor calidad de vida. Sabido es que el estado de salud de la población es el reflejo de la realidad social, económica y ambiental en la cual vive. Por eso, es importante entender el ecosistema y las realidades de los grupos a él vinculados, ubicando las políticas de salud en el centro de las relaciones entre el ambiente y las actividades económicas.

2. Relación salud-enfermedad: su evolución histórica
Tradicionalmente, la salud se ha definido en contraposición a la enfermedad. Así, salud es “el estado del ser orgánico que ejerce normalmente todas las funciones”, mientras la enfermedad es la “alteración más o menos grave de la salud”.

Con el arribo de la medicina científica se generalizó la visión fisiologista, dominada por criterios negativos, considerando a la salud como “la ausencia de enfermedad”. De este modo, el estado de salud se define como ausencia de una “entidad morbosa”.

La Organización Mundial de la Salud (OMS) ha proclamado que su objetivo principal es “que todos los pueblos de la tierra puedan gozar del grado máximo de salud que se pueda lograr” y definió la salud como “un estado de completo bienestar físico, mental y social, y no solamente como la ausencia de afecciones o enfermedades” (1946). Así, explica la salud en términos positivos. Sin embargo, equipara bienestar con salud, y el concepto se expresa como un deseo o una definición utópica. En 1992 se completa la definición de salud de la OMS, incorporándose la importancia del ambiente: “y en armonía con el medio ambiente”.

Desarrollo, Salud Humana y Amenazas Ambientales
La visión actual del proceso salud-enfermedad y sus determinantes como “el equilibrio que se da entre el agente, el huésped y el medio ambiente” da base a la **Triada Ecológica**: el ser humano como huésped, ubicado en el ambiente y sujeto a las acciones de diferentes agentes, y por eso susceptible de sufrir enfermedad.

Marc Lalonde, Ministro de Sanidad canadiense, presentó en 1974 el informe sobre un nuevo modelo de Salud Pública en el que se describían un número de **determinantes de la salud**, definidos como las condiciones propias y del entorno.

<table>
<thead>
<tr>
<th>Modelo de determinantes de salud de Lalonde</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo de determinante</strong></td>
</tr>
<tr>
<td>Biología humana</td>
</tr>
<tr>
<td>Medio ambiente</td>
</tr>
<tr>
<td>Estilos de vida</td>
</tr>
<tr>
<td>Sistema de asistencia sanitaria</td>
</tr>
</tbody>
</table>

Lalonde pudo representar el efecto relativo que cada uno de los determinantes tenía sobre los niveles de salud pública. Este Modelo de los Campos de la Salud puso de manifiesto la necesidad de considerar una visión holística o integral de la Salud Pública.

Queda de este modo establecido que la concepción actual sobre el origen de la enfermedad gira en torno a la presencia de múltiples factores (multifactorialidad).

Por otro lado, se introducen conceptos básicos para la promoción de la salud, como la acción intersectorial, la participación y el desarrollo comunitario.

Asimismo, la OMS y la UNICEF plantean el inicio de la estrategia global de **Salud para Todos** (Alma Ata, 1978), basada en el concepto de equidad en salud. Se comienza a hablar de promoción de la salud como un modelo de intervención más amplio que incluye el ambiente.

En la Conferencia de la OMS de 1986, en Ottawa (Carta de Ottawa), se afianza la **Salud Pública** como la ciencia y el arte de promover la salud, prevenir la enfermedad y prolongar la vida mediante esfuerzos organizados de la sociedad.

La Conferencia de las Naciones Unidas sobre el Ambiente y el Desarrollo (Río de Janeiro, 1992), adelantó el concepto de “desarrollo sostenible”, especificando que “los seres humanos están en el centro de los intereses de esa concepción del desarrollo.

La **salud pública ecológica** aparece como respuesta a la naturaleza cambiante de los problemas sanitarios y su conexión con los problemas ambientales mundiales emergentes (destrucción de la capa de ozono, contaminación del aire y del agua, calentamiento global y cambio climático), que ejercen un impacto sobre la salud y escapan a los modelos simples de causalidad e intervención. La salud pública ecológica enfatiza los puntos comunes entre la salud y el desarrollo sostenible en el logro de mejores resultados sanitarios para la población, de una mayor equidad y de un uso sostenible de los recursos.

La OMS define la **Salud Ambiental** como “la parte de la salud pública que se ocupa de las formas de vida, las sustancias, las fuerzas y las condiciones del entorno del hombre, que pueden ejercer una influencia sobre su salud y su bienestar”. Este efecto compromete no sólo a médicos y personal de salud, sino también a biólogos, ecólogos, planificadores, arquitectos, ingenieros,
educadores y otros, como a individuos y comunidades. La salud humana no puede considerarse aisladamente, sino dependiendo de la calidad del ambiente en que la gente vive: “para que la gente esté sana se necesita un ambiente sano”. Este Enfoque Ecosistémico en Salud Humana –el enfoque de Ecosalud– reconoce que hay nexos inextricables entre los humanos y su ambiente, que se reflejan en la salud del individuo.

3. Problemas ambientales tradicionales y modernos y su relación con la salud

Frente a la realidad de una población mundial de más de 6.700 millones de habitantes, que puede llegar a 9.000 o 10.000 millones en los próximos cincuenta años, es imposible excluir a los humanos de la ecuación ecológica.

Los sistemas ecológicos se sustentan a lo largo del tiempo, evolucionando de acuerdo con las condiciones naturales en las cuales se desarrollan. Cuando el hombre ingresa en los escenarios naturales, estos sistemas deben sostenerse para que puedan proveer materias y energía a las poblaciones y a sus civilizaciones.

Cuando se habla de ambiente humano, se debe considerar un conjunto complejo de factores y elementos de variada naturaleza que actúan favorable o desfavorablemente sobre los individuos, condicionando el mayor o menor riesgo de enfermar (Last, 2000). Entre otros factores, el lugar geográfico, la infraestructura, la estación del año y la actividad desarrollada son condicionantes de la calidad de vida y de la salud.

El ambiente bio-químico-físico puede afectar la salud directa o indirectamente, a corto y/o largo plazo. En el corto plazo, buenas condiciones de salud requieren acceso a buena calidad de agua, aire y alimentos. En el largo plazo, en tanto la economía crece degradando los sistemas naturales y/o sobreexplotando sus recursos, la salud humana se va deteriorando en mayor o menor medida.

Muchas enfermedades que afectan al hombre poseen un sustrato causal, condicionante o desencadenante de carácter ambiental, no obedeciendo a causas genéticas o biológicas.

Varias agencias internacionales, hacia 1990, determinaron que el 11% de los años perdidos por muerte o discapacidad evitables en América Latina y el Caribe (ALC) podían atribuirse a problemas ambientales. Se atribuye al ambiente una carga de enfermedad del 18% en los países subdesarrollados, en comparación con un 4,5% en los desarrollados (OMS-OPS, 2000). Los impactos ambientales representan una de las causas más importantes de morbilidad y mortalidad vinculadas a enfermedades trasmisibles e infecciosas para los países en vías de desarrollo.

En Argentina, por ejemplo, si se comparan las Necesidades Básicas Insatisfechas (NBI) y la tasa de mortalidad perinatal por mil nacidos vivos (TMPN), se puede visualizar la íntima relación que existe entre desarrollo y condiciones sanitarias en cada región.
El patrón de ocurrencia de las enfermedades o perfil epidemiológico ha evolucionado en grado variable, observándose a grandes rasgos tres etapas que tienen carácter secuencial:

- **Primera etapa**: con predominio de enfermedades infecciosas y parasitarias, con altas tasas de mortalidad infantil asociadas a la pobreza, desnutrición, higiene ambiental y personal deficientes.
- **Segunda etapa**: con predominio de enfermedades de carácter crónico, acompañadas por un mejoramiento relativo de las condiciones generales de vida.
- **Tercera etapa**: más reciente, que concentra una serie de problemas de salud asociados a la exposición a agentes ambientales nocivos de naturaleza química y física, en su mayoría producto del desarrollo industrial y tecnológico.

Si se comparan los países desarrollados con los países en desarrollo, se advierte que la evolución no ha sido igual para todos. Mientras en los primeros se ha controlado, a fuerza de prevención y tecnología, la aparición de enfermedades correspondientes a las tres etapas, en los países en desarrollo suelen convivir las enfermedades de las dos primeras etapas con las de la tercera, debido al insuficiente y/o ineficaz control preventivo y al déficit o ausencia de tecnologías limpias o sustentables, respectivamente.

Se presentan a continuación algunas enfermedades o fenómenos de salud con las mayores contribuciones de carga ambiental, pudiendo distinguirse entre las que son consecuencia de las amenazas o peligros tradicionales y las de origen moderno.
Carga Global de Enfermedad en AVADs (%)
según factores ambientales o no ambientales

<table>
<thead>
<tr>
<th>Enfermedad</th>
<th>Ambiente</th>
<th>No ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infecciones Respiratorias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embarazo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidentes de Tránsito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condiciones Perinatales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfermedad Quemática Cardíaca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmunoprevenibles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratas y Lepra (Pléoma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Añegamiento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota:  
Ambiental; No ambiental


No obstante lo expuesto, se han acuñado falsos conceptos respecto de la relación ambiente-salud que requieren aclaración.

Falsos conceptos y aclaración en cuanto a la relación salud-ambiente

- **El medioambiente es un lujo, es para países desarrollados:** la importancia del ambiente es una necesidad más alta en los países subdesarrollados, puesto que la carga de enfermedad es superior debida a este.
- **El medioambiente afecta principalmente a los adultos, después de muchos años de exposición:** sin embargo, la fracción atribuible al ambiente en el grupo de edad de 0-4 años es del 37%.
- **Solamente aumentando el PBN se reducirán las enfermedades ambientales:** un ambiente favorecedor de la salud puede ser alcanzado a través de educación, tecnología y un manejo adecuado.
- **Las intervenciones ambientales son caras:** pueden ser altas al inicio, pero tienen un retorno de siete veces para las inversiones en agua y saneamiento y de tres veces para el mejoramiento de la energía de las viviendas.

4. Enfoque metodológico para el estudio del ambiente y la salud

Para analizar y entender los hechos que se suceden dentro de la intrincada trama de relaciones entre el ambiente y la salud, la Organización Mundial de la Salud utilizó un modelo que plantea un marco causa-efecto explicativo (FPEEEA: Fuerza motriz – Presión – Estado – Exposición – Efectos – Acción) de dichas relaciones.

En la actualidad, para América Latina y el Caribe se presenta un enfoque metodológico de evaluación de problemas de salud y ambiente estructurado a partir de otras propuestas ya
aplicadas en países de la región, como los proyectos Headlamp de la OMS (Global Environmental Outlook de GEO-PNUMA y Ecohealth de IDRC), donde se amplía la propuesta de FPEEEA agregando los criterios de impacto y vulnerabilidad (FPEIVEEA).

En este cuadro de situación, la exposición a un agente ambiental puede ser la causa inmediata de una enfermedad, aunque subyacen una serie de fuerzas motrices y presiones que provocarían los desequilibrios del medio y actuarían como factores importantes en la generación de riesgos.

Las fuerzas motrices son resultantes de las condiciones sociales, económicas y ecológicas que actúan en forma directa o indirecta. Son fuerzas motrices: el crecimiento poblacional, la modalidad de ocupación del territorio, el desarrollo económico y la base tecnológica en el que éste se apoya, la estructura político institucional, entre otras. Estas fuerzas ejercen distintas presiones sobre el entorno, produciendo cambios en su estado natural, en la disponibilidad de recursos o en la aparición de contaminación.

Las presiones son alteraciones socioambientales generadas por todos los sectores de la actividad económica, de acuerdo con el tipo de ocupación y/o explotación de los ecosistemas o los niveles de alteración de sus componentes. Pueden afectar parcial o totalmente la estructura y funciones de los sistemas naturales, modificando sus atributos y repercutiendo en la salud y en la calidad de vida. También pueden considerarse presiones muchos procesos geológicos y climáticos.

El estado ambiental es el resultado de las presiones antrópicas sobre el ecosistema, pudiendo verse afectado y/o modificado por acciones de deforestación, cambios en el drenaje natural, vertido de sustancias tóxicas u otros residuos. Este estado indica la calidad de los compartimientos ambientales y las alteraciones del ecosistema.

Los impactos representan las alteraciones sobre el sistema socioambiental. Dependen de la exposición y la vulnerabilidad¹ de los individuos. Uno de los impactos más importantes para ALC es la destrucción de hábitats por la deforestación, que favorece la aparición de vectores y patógenos produciendo la emergencia y reemergencia de enfermedades infectocontagiosas.

La vulnerabilidad socioambiental se refiere a las condiciones del ambiente que determinan la aparición de enfermedades, como sucede en Argentina, en la cuenca del Río Matanza-Riachuelo o en la del Río Reconquista. Dichas áreas presentan situaciones sanitarias deficientes por ausencia y/o falta de agua potable y desagües cloacales, además de contaminación industrial por emisiones sin tratamientos adecuados al cuerpo de agua y disposición de residuos urbanos en sus cuencas.

La vulnerabilidad específica se refiere a las condiciones propias de cada individuo o sector poblacional que los hace más o menos sensibles a dichos impactos, concepto asociado al de riesgo que se verá más adelante.

Los efectos que pueden producirse sobre la salud de las personas o poblaciones dependen de la vulnerabilidad socioambiental y/o específica de las mismas y expresan la cuantificación de la exposición.

Al ser la vulnerabilidad diferente para los individuos y poblaciones, también es diferente la posibilidad de sufrir efectos adversos en la salud, lo cual determina diversos grados de riesgo dentro de una misma población.

Los efectos pueden ser clínicos o subclínicos. Los primeros son claramente evidentes o expresan una enfermedad definida, secuelas o defunciones. Los segundos, por el contrario, se manifiestan en alteraciones funcionales, metabólicas o bioquímicas, más difíciles de detectar.

Los efectos de impacto transgeneracional son los que pueden dañar a la descendencia de quienes los padecen.

Los efectos son resultado, entre otras cosas, de las dosis que ingresan efectivamente en las personas. Estas pueden estar expresadas en curvas de dosis-respuesta o dosis-efecto, en tanto se

¹ Vulnerabilidad es la precondición que permite que las alteraciones ambientales produzcan un daño en la salud.
5. Naturaleza de los agentes responsables de problemas de salud

Diversos factores son los responsables del deterioro creciente de la sustentabilidad ecológica, de la calidad de vida y la salud de muchas poblaciones, fundamentalmente en países no desarrollados: la descontrolada urbanización, la utilización de tecnologías industriales y agropecuarias inadecuadas, la migración de grandes masas de población rural hacia las ciudades y la explotación irracional de los recursos naturales son algunos de ellos.

Toda alteración del equilibrio existente, genérica y globalmente, en el medio ambiente, en la composición, características y propiedades de cada uno de los...
sectores que lo integran, y de sus interacciones recíprocas, cualquiera sea la causa u origen de la misma y el sector afectado, puede considerarse como una forma de contaminación. Tal amplitud de factores y efectos involucran agentes de diferente naturaleza y acciones, continuas o discontinuas, espontáneas o provocadas. (Cattogio, 1993)

La contaminación ambiental, una de las principales causas de la degradación de los diferentes componentes ambientales y del deterioro actual de la calidad de vida y la salud, está causada por agentes biológicos, químicos y físicos.

Los agentes biológicos pueden ser causantes de diferentes enfermedades por estar presentes en un sustrato al que no pertenecen o en uno al que sí pertenecen, pero en concentraciones que exceden los niveles naturales. Comprenden a los microorganismos, con inclusión de los genéticamente modificados, los cultivos celulares y los parásitos humanos.

La contaminación biológica contempla dos categorías: agentes biológicos vivos y productos derivados de los mismos.

La contaminación biológica se puede evitar porque, en general, es viable identificar el origen, así como ponerle remedio en un plazo razonable.

A diferencia de lo anterior, el crecimiento de las ciudades y de las actividades industriales y agropecuarias ha puesto en primer plano los agentes químicos y físicos como responsables de problemas de salud pública, ya sea por el modo inadecuado de producción, de almacenamiento y/o disposición final de los residuos.

Los agentes químicos incluyen, elementos y compuestos inorgánicos y orgánicos.

Los elementos y compuestos inorgánicos, están representados por los metales y sus compuestos, que, según sus propiedades y estados físicos (gases, vapores, líquidos o sólidos) y dependiendo de su reactividad, su estabilidad ambiental y su toxicidad, pueden afectar la salud individual y/o colectiva.

Entre los primeros agentes inorgánicos utilizados por el ser humano, desde hace siglos, se encuentran el arsénico, el mercurio y el plomo, para distintas actividades productivas.

Ciertos elementos o iones, aparentemente inocuos, han demostrado ser partícipes en afecciones graves, ya sea por predisposición o susceptibilidad de las personas, o por sobredosis en ciertas etapas del desarrollo. Tal es el caso del aluminio, que se lo consideró inerte pero hoy se sabe que bloquea ciertos grupos funcionales proteicos que caracterizan enfermedades neurodegenerativas. Otro caso son los nitratos en agua de consumo, que, al oxidar el hierro de la hemoglobina, la vuelve incapaz de transportar el oxígeno, produciendo metahemoglobinemia, especialmente grave en lactantes (síndrome del niño azul).

Los compuestos orgánicos son los de mayor abundancia y variedad como consecuencia del crecimiento inmenso del número de mezclas sintéticas y de sus múltiples aplicaciones. De acuerdo con su estructura, propiedades generales y usos potenciales, existe una amplia gama que va desde los hidrocarburos (asociaciones de C y H con todas sus variantes: cadenas abiertas, lineales, ramificadas o anillos, ciclos con un heteroátomo o más –N, O, S–), hasta las moléculas más complejas, pluriatómicas, con distintos tipos de enlaces, configurando distribuciones espaciales longitudinales y/o en retículos o armando macroanillos.

Los compuestos orgánicos son los que tienen mayores posibilidades de interferir con los procesos biológicos normales por diferentes motivos, entre ellos:

- Su mayor facilidad para trasponer las membranas celulares y modificar su permeabilidad.
- Su efecto sobre enzimas y/o recombinación con funciones activas.
- Su acción sobre sistemas de defensa e inhibición de procesos vitales (respiración, fotosíntesis).
Dentro de esta categoría se ubican los solven tes (hidrocarburos, derivados clorados, éteres, ésteres, compuestos heterocíclicos) y los biocidas (organoclorados, organofosforados, carbamatos, piretroïdes), que inhiben procesos enzimáticos esenciales e impiden la formación de individuos adultos de especies indeseables.

Es por demás extensa la lista de compuestos orgánicos que tienen acción tóxica, mutagénica, teratógena o carcinogénica conocida. Además de los hidrocarburos, revisten importancia sus derivados halogenados, usados como plaguicidas o solven tes en pinturas o en la limpieza a seco.

Lo cierto es que la gran mayoría de los compuestos, tanto orgánicos como inorgánicos, tienen alguna contraindicación o son, en mayor o menor medida, tóxicos.

Tanto en unos como en otros, se debe dejar claro que el criterio de toxicidad es función de las circunstancias y que en general tiene umbrales mínimo y máximo, es decir que hay una cantidad del elemento que en bajas concentraciones es esencial y que por sobre ciertos valores, a veces dentro de márgenes estrechos, actúa desfavorablemente sobre el mismo organismo. Un caso típico es el flúor, necesario para preservar el esmalte dental y evitar las caries, pero que en exceso produce fluorosis y manchas en los dientes.

Entre los agentes físicos se encuentran las muy bajas y muy altas temperaturas y sus cambios bruscos, como lo es entrar y salir de una cámara frigorífica o una acería. Por ello, se recomienda el uso de protección personal con equipos especiales.

Otros agentes son: el ruido, las radiaciones luminosas potentes, como las que se generan en los arcos de soldadura con soplete, las vibraciones, que producen trastornos más generalizados, pero que repercuten de manera especial en el sistema osteoarticular o nervioso, y las radiaciones ionizantes y no ionizantes.

Los tipos de radiaciones mencionados se diferencian por la energía contenida en ellas, capaz o no de dañar las membranas celulares y el interior celular. Si bien existen muchas controversias, hasta hoy no hay comprobación científica suficiente que asegure que las no ionizantes sean perjudiciales para la salud, en las concentraciones o niveles permitidos para su exposición.

6. Los agentes en el ambiente

Los agentes ambientales, especialmente los químicos, presentan ciertos comportamientos más o menos definidos dentro de los ecosistemas que permiten estimar cuál es su destino final y de qué modo pueden afectar a la salud humana. Habitualmente, el agente que ingresa a un componente ambiental (aire, suelo, agua, alimentos) se dispersa en el medio e interactúa con sus componentes bajo diversas modalidades físicas (líquidos, gases, vapores, humos, aerosoles o polvos y sólidos).

Sólo para unos pocos contaminantes se conocen sus ciclos completos de vida en los ecosistemas. Ello implica que no se pueden advertir los cambios que la mayoría de ellos sufren desde su generación hasta su disposición final y las posibles consecuencias que pudieran tener para los organismos, incluyendo al hombre.

Los principales factores que influyen en la dinámica de las sustancias en el medio son:

- Cantidad de la sustancia.
- Frecuencia en la emisión.
- Características físico-químicas de las sustancias y del medio en el que ingresan.
- Presencia y naturaleza de los organismos vivos dentro de los ecosistemas.
- Grado y tipo de interacción entre los organismos vivos y las sustancias.

Entre los procesos que más influyen sobre el destino y transporte de las sustancias químicas en el ambiente, respecto de los riesgos para la salud, se encuentran la adsorción a las partículas del
suelo y sedimentos, que impiden su movilización y la degradación química, microbiológica o por radiación solar. La capacidad nociva de un agente puede reducirse o eliminarse por rotura de enlaces moleculares por la acción de la luz (fotólisis), descomponerse por la acción del agua (hidrólisis) y transformarse por la acción del oxígeno (oxidación), entre otros mecanismos.

En los organismos ocurre algo semejante, ya que existen distintos procesos de detoxificación y/o de eliminación de agentes ambientales, reduciendo sus efectos negativos. Sin embargo, en algunas oportunidades esos procesos, lejos de reducir un impacto o efecto, lo aumentan. Como ejemplo, las sustancias capaces de penetrar en las membranas celulares pueden ser metabolizadas por enzimas que las activan o inactivan, pueden ser transportadas al tejido adiposo o a los huesos en donde quedan “retenidas”, pueden llegar a alterar órganos críticos y traducirse en manifestaciones patológicas.

Las sustancias u otros agentes ambientales pueden penetrar en los organismos a través de diferentes vías de ingreso: dérmica, inhalatoria, digestiva, ocular. La vía de ingreso dependerá de las características propias del agente y del medio, permitiendo o impidiendo la biodisponibilidad hacia los individuos.

También la ausencia total o relativa de algún agente ambiental es causante de una serie de afecciones que perjudican la salud. Existe una variedad de agentes que juegan un papel fisiológico importante, como por ejemplo las vitaminas, el flúor, el hierro, el yodo, cuya carencia en el agua, suelo o alimentos impide el ingreso normal al organismo. Estos también son considerados problemas de salud ambiental.

7. Exposición y riesgo

Es necesario profundizar en el tema de la exposición a un agente ambiental para entender los mecanismos que intervienen en la aparición de efectos en los individuos.

La exposición se define como el contacto directo o indirecto con el agente ambiental. Un individuo está expuesto cuando los límites externos de su organismo están en contacto con un agente que se encuentra en la vecindad inmediata de las vías de ingreso a su medio interno.

La exposición también se define como la concentración, cantidad o intensidad de un determinado agente ambiental que incide en una población, organismo, órgano, tejido o célula diana, usualmente expresada en concentración de la sustancia, duración y frecuencia (para agentes químicos y microbiológicos) o de intensidad (para agentes físicos como la radiación).

Cuando la exposición ocurre en una misma persona a través de diversas vías, se considera exposición total, y cuando un individuo está expuesto a varios contaminantes simultáneamente, se denomina exposición múltiple.

Por otro lado, es necesario distinguir entre la exposición crónica, aquella que en bajas dosis es continua durante un largo período, y la exposición aguda, que es aquella de corta duración pero a altas dosis, aunque no necesariamente superiores a niveles permitidos. Esta última suele producirse en ambientes ocupacionales y/o en ocasiones accidentales.

En las exposiciones por tiempos prolongados de bajas dosis suele haber una limitación de los sistemas de monitoreo, ya que no pueden medirse en forma constante a lo largo de todo el período de exposición, sino solamente por períodos de tiempo que no representan la totalidad de la información requerida para determinar la dosis real del tóxico que recibe la población expuesta. De este modo, es difícil evaluar el verdadero riesgo en la salud.

Asimismo, los problemas ambientales, como la degradación y contaminación, pueden darse en diferentes tipos de ambiente –urbano o rural, ocupacional o general– y en diferentes componentes del medio, como agua, suelo, aire y/o alimentos. De este modo, existen aspectos que condicionan la exposición y los riesgos para la salud en los distintos ambientes.

Algunas de las principales diferencias entre ambientes laborales y generales, que por sus
características condicionan la exposición y los riesgos que se producen, se enumeran a continuación.

<p>| Diferencias de exposición y riesgos entre ambientes laborales y generales |</p>
<table>
<thead>
<tr>
<th>Ambiente laboral</th>
<th>Ambiente general</th>
</tr>
</thead>
<tbody>
<tr>
<td>En general, corresponde a grupos constituidos por individuos sanos.</td>
<td>Poblaciones constituidas por individuos de todo espectro de edad, diferente estado socioeconómico y de salud-enfermedad.</td>
</tr>
<tr>
<td>Poblaciones o grupos expuestos fácilmente identificables y accesibles.</td>
<td>Poblaciones heterogéneas, dispersas y móviles o migrantes.</td>
</tr>
<tr>
<td>Grupos más dispuestos a colaborar.</td>
<td>Grupos que requieren de un tiempo de convencimiento.</td>
</tr>
<tr>
<td>Facilidad para identificar el tipo de sustancia y la vía de exposición.</td>
<td>En general, dificultad en la identificación de sustancias y vías de exposición.</td>
</tr>
<tr>
<td>Exposición a un número limitado de agentes, los cuales se conocen de antemano. Fácil identificación de fuentes contaminantes.</td>
<td>Exposición a números variables de contaminantes, en general no conocidos con anterioridad. Compleja identificación y caracterización de fuentes de contaminación.</td>
</tr>
<tr>
<td>Habitualmente expuestos a altas dosis y accidentalmente a muy altas.</td>
<td>Poblaciones expuestas a agentes tóxicos a bajas dosis y en forma prolongada.</td>
</tr>
<tr>
<td>Áreas con mayores detalles disponibles sobre límites e indicadores biológicos de exposición.</td>
<td>Áreas con escaso desarrollo sobre límites e indicadores biológicos de exposición.</td>
</tr>
<tr>
<td>Facilidad para implementar estudios epidemiológicos de tipo prospectivo y retrospectivo.</td>
<td>Dificultad para implementar estudios prospectivos. Estudios retrospectivos dependientes del desarrollo y cobertura de los servicios de atención médica.</td>
</tr>
<tr>
<td>Cobertura y seguimiento por los servicios de salud.</td>
<td>Disparidad en la cobertura y seguimiento por los servicios de salud.</td>
</tr>
</tbody>
</table>

En el lenguaje cotidiano, las palabras “peligro” y “riesgo” se confunden. Sin embargo, estos términos tienen significados diferentes: “peligro” significa exclusivamente la descripción cualitativa de los efectos dañinos de una sustancia o agente ambiental, mientras que “riesgo” se refiere a una medida cuantitativa de la probabilidad de que ciertos efectos dañinos se manifiesten en un grupo de personas como resultado de una exposición.

La determinación de lo que es un riesgo acceptable es una decisión que depende de la sociedad en general, de la administración o del individuo, según sea el caso.

Por ejemplo, para la OPS/OMS, una sustancia es peligrosa cuando por sus características puede causar un aumento de la mortalidad o un incremento de enfermedades graves, o puede contribuir significativamente a ello. También se considera peligrosa cuando su tratamiento, almacenamiento, transporte, eliminación y/o manejo inadecuado plantea un riesgo sustancial real o potencial a la salud humana o al medio ambiente. Alguna o varias propiedades pueden proporcionar distintos grados de peligrosidad a un agente ambiental, como su carácter tóxico, irritante, corrosivo, inflamable, explosivo, mutágeno, carcinogénico, etcétera.

El riesgo para la salud humana asociado a agentes ambientales es la posibilidad de que una exposición o una serie de exposiciones a un agente o a una mezcla sea capaz de dañar la salud de los individuos expuestos.

En términos epidemiológicos, el riesgo se define como “la probabilidad de que ocurra un fenómeno indeseado o daño”. El daño puede ser la aparición o existencia de un proceso.
patológico o de complicaciones de ese proceso. Esta probabilidad en la práctica se la estima a través de tasas de **incidencia y prevalencia** si el daño es una enfermedad y en términos de tasas de **mortalidad** si el daño es la muerte.

El riesgo es un concepto estadístico que representa la frecuencia esperada de efectos indeseables derivados de la exposición a un contaminante, en el que intervienen, aparte de la toxicidad intrínseca del mismo, la cantidad y las condiciones de su uso, más la susceptibilidad del organismo afectado.

El término **“factor de riesgo”** engloba toda característica o circunstancia que va acompañada de un aumento de la probabilidad de que un daño determinado ocurra, sin prejuzgar si el factor en cuestión es o no causa del mismo, aun cuando su identificación haya sido motivada por una sospecha de causalidad. El riesgo es alto cuando se combinan condiciones ambientales peligrosas, exposición y susceptibilidad del organismo.

El tratamiento de los problemas ambientales incluye la identificación de subgrupos poblacionales susceptibles en mayor medida de enfermar o morir de acuerdo con ciertos factores de riesgo.

Los factores de riesgo tienen diversos orígenes:

- Propios del organismo.
- Propios del ambiente físico y/o socioeconómico, cultural y político.

Algunos, **propios de los individuos o grupos** de la comunidad, pueden incluir los siguientes:

- Procesos propios de desarrollo y maduración del organismo.
- Alteraciones genéticas, enzimáticas, homeostáticas, inmunitarias.
- Deficiencias nutricionales.
- Enfermedades preexistentes.
- Hábitos como el tabaquismo, abuso de fármacos o drogas.

Entre los factores de riesgo de origen socioeconómico, además del nivel educacional, el estatus social y las condiciones económicas, se incluyen las características de los servicios de salud, a los que acceden o no los individuos y que condicionan sus riesgos y sus posibilidades de recuperación.

### 8. Estudios para la evaluación del riesgo en la salud por problemas ambientales

Existen diferentes técnicas que miden los riesgos de enfermar y/o morir de los grupos humanos, así como sus causas e interdependencias.

#### 8.1. Evaluación de Riesgos Humanos

En el área de los efectos de la contaminación química y física, los riesgos pueden ser abordados bajo la modalidad de la **evaluación de riesgo**.

La evaluación del riesgo corresponde a un grupo de actividades metodológicas orientadas a identificar, estimar y cuantificar los riesgos a los cuales están sometidas las personas. Es un criterio científico para evaluar el grado de peligro y de riesgo derivado de la exposición a agentes ambientales. Su objetividad permite una aplicación uniforme en distintos países o instituciones, ya que se sustenta en información científica y en el análisis de la misma.

Los estudios de evaluación de riesgos normalmente incluyen cuatro etapas:
• **Identificación del peligro**: se identifican los agentes o procesos que puedan provocar un efecto adverso tanto en los trabajadores como en el público, haciendo énfasis en la población potencialmente expuesta.

• **Evaluación de la dosis-respuesta (concentración-efecto)**: se determina la relación entre la concentración de un agente ambiental y la aparición del efecto, expresado por su gravedad o frecuencia, en un organismo o población. La dosis puede estar definida por la cantidad de un agente ambiental o sustancia que ha entrado en el cuerpo o por la cantidad presente en el ambiente.

Dos medidas son importantes en la consideración de las dosis, en especial para determinar niveles admisibles o permitidos para las personas.

- **NOAEL** (*Non Observed Adverse Effects Level*): la mayor dosis en la cual no se ha observado efecto adverso alguno para el padecimiento seleccionado.

- **LOAEL** (*Lowest Observed Adverse Effects Level*): mínima dosis en la cual ya se observó algún efecto adverso.

• **Evaluación de la exposición**: se debe tener en cuenta la intensidad, vías y condiciones de la exposición, como así también las poblaciones expuestas, el transporte y transformación de los agentes en el ambiente.

Cuando se concluye que la exposición externa (concentración del contaminante en el medio ambiental seleccionado) es “relevante”, puede ser necesario determinar la exposición interna, es decir, la cantidad que ingresa a los tejidos del cuerpo o su biodisponibilidad, por medio de indicadores biológicos (exposición, efecto o susceptibilidad) o nutricionales.

• **Caracterización del riesgo**: es la comparación de los niveles de exposición de una población con los niveles a los cuales no se espera que ocurran efectos tóxicos.

La evaluación de riesgos lleva a uno o varios resultados para cada población expuesta y para cada efecto:

- Se necesita más información o pruebas.

- La información es suficiente y las medidas que se aplican para reducir el riesgo son satisfactorias.

- Se requieren medidas adicionales para reducir los riesgos y efectuar análisis posteriores.

Si bien es reconocida la utilidad de la técnica de evaluación de riesgo, es importante advertir que presenta limitaciones de índole metodológica y otras que derivan de la naturaleza propia del sujeto, lo que hace necesario un cúmulo de información adicional, muchas veces imposible de lograr en estudios reales.

### 8.2. Epidemiología ambiental

Se reconoce que las poblaciones humanas proporcionan la información más relevante sobre los efectos de la contaminación en la salud. Es por ello que el desarrollo de estudios epidemiológicos brinda las evidencias necesarias en poblaciones humanas bajo condiciones del mundo real.

De esta manera, surge el concepto de Epidemiología Ambiental, el cual refleja la aplicación de criterios y metodologías epidemiológicas al estudio y evaluación de las enfermedades con énfasis en el análisis del ambiente como elemento causal o condicionante. Las enfermedades que afectan al hombre son, en su mayoría, resultado de una participación del componente ambiental, de modo que el agregado “ambiental” al término epidemiología sería conceptualmente innecesario. Actualmente, el término “epidemiología ambiental” se restringe al estudio de las enfermedades causadas por agentes químicos y físicos naturales o producidos por el hombre.
presentes en el ambiente, y es la disciplina que estudia el efecto de la contaminación ambiental sobre la salud.

Dentro de la metodología de la Epidemiología Ambiental, el monitoreo y el control cumplen un papel fundamental. Sus objetivos son:

- Conocer las causas y frecuencias de las afecciones.
- Programar y realizar acciones de salud sobre:
  - **El individuo**: prevención por educación sanitaria y cambio de hábitos.
  - **El ambiente**: saneamiento del medio y control ambiental.
  - **La atención médica**: evaluación de los servicios de salud.
- Comprender los resultados por extrapolación de estudios obtenidos en sistemas biológicos distintos del hombre.

Desde el punto de vista epidemiológico, la existencia o no de una asociación y la cuantificación del grado de asociación existente se efectúan por medio de la comparación del riesgo de daño de los que tienen el factor sospechoso con el riesgo de los que no lo tienen. Las dos medidas de asociación más usadas son el "riesgo relativo" y el "riesgo atribuible".

Los estudios epidemiológicos evitan, en gran medida, la extrapolación entre especies y niveles de exposición, algo necesario cuando se usan datos provenientes de experimentos con animales, que generan grandes incertidumbres. Además, la epidemiología, con frecuencia, ha contribuido al reconocimiento de nuevos riesgos, lo que ha estimulado nuevas investigaciones e identificado nuevas áreas para las acciones de Salud Pública.

La validez de los estudios epidemiológicos, como enfatizara Hill (1965), está basada en la búsqueda de respuestas a preguntas como: ¿existe alguna otra manera de explicar el conjunto de hechos que tenemos ante nosotros (los resultados de los estudios)?, ¿existe alguna otra respuesta igualmente probable o más, que la de causa y efecto?

Todo estudio epidemiológico, que pueda o no determinar la asociación causa-efecto entre el agente en cuestión y los efectos encontrados en la población en riesgo, debe considerar las incertidumbres para clarificar las condiciones en la que fue llevado a cabo.

En general, en los estudios epidemiológicos, la estimación de la morbilidad o mortalidad esperada en la población requiere de tres elementos básicos:

- La distribución de la exposición en la población.
- La estimación de la función exposición-efecto basado en evidencias epidemiológicas.
- La estimación de la frecuencia de la línea de base de las mediciones (prevalencia histórica) de salud.

La necesidad de accionar sobre la salud poblacional, reduciendo la exposición de la comunidad a un peligro o eliminando este del ambiente humano, aun cuando la evidencia científica sea insuficiente, está planteada en el "Principio de Precaución" (Horton, 1998), que desempeña un papel importante en las acciones de Salud Pública cuando existe incertidumbre.

### 8.3. Vigilancia Epidemiológica Ambiental

Los programas de vigilancia epidemiológico-ambiental son conjuntos de acciones que llevan a la determinación de un diagnóstico para facilitar la prevención de las enfermedades relacionadas con el ambiente. Constituyen una etapa previa al desarrollo de programas de prevención y control.
La vigilancia comprende un proceso de recolección, análisis e interpretación de la información generada por actividades de observación ambiental, biológica y social sistematizada, a fin de determinar las acciones de protección de la salud más adecuadas.

<table>
<thead>
<tr>
<th>Factores que influyen en los Programas de Vigilancia Epidemiológica Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Decisión política para resolver el problema y recursos necesarios disponibles.</td>
</tr>
<tr>
<td>- Conocimiento previo sobre la magnitud y características del problema de Salud Pública.</td>
</tr>
<tr>
<td>- Conocimiento acerca de los agentes ambientales implicados.</td>
</tr>
<tr>
<td>- Definición sobre el tipo de ambiente, poblaciones, efectos en salud y número de agentes (químicos y físicos) a vigilar.</td>
</tr>
</tbody>
</table>

Los sistemas de vigilancia epidemiológica, tal como se conocen normalmente, son de tipo prospectivo. En el caso que se estime conveniente disponer de un diagnóstico inicial de la situación que interesa, los estudios de corte transversal tienen especial indicación como una acción previa a la puesta en marcha de un sistema de vigilancia.

Los pasos en la implementación de un Programa de Vigilancia Epidemiológica Ambiental contemplan: la vigilancia ambiental y de los agentes involucrados, la vigilancia biológica y de los factores de riesgo y la vigilancia de los efectos en la salud.

En un sentido más puntual, la vigilancia relacionada con los problemas de salud asociados a agentes ambientales está orientada a:

- Identificar y evaluar los agentes patógenos ambientales.
- Identificar y evaluar las condiciones y factores ambientales que representan riesgo para las personas.
- Identificar y evaluar las fuentes de contaminación.
- Identificar los factores de riesgo propios de las personas que las hacen susceptibles a los agentes ambientales patógenos.
- Identificar los grupos de alto riesgo.
- Identificar la magnitud de la exposición de las personas a un contaminante determinado.
- Identificar y evaluar los efectos adversos en la salud causados por agentes tóxicos o patógenos.
- Conocer la distribución y prevalencia de los efectos adversos.
- Evaluar las asociaciones y las correlaciones entre agentes ambientales, situaciones de riesgo y efectos adversos en la salud.
- Deducir las medidas y las recomendaciones adecuadas para prevenir y controlar las afecciones asociadas a los agentes ambientales.

8.4. Limitaciones en la práctica de la Epidemiología y Vigilancia Ambiental

Se mencionan a continuación sólo algunas de las limitaciones y/o dificultades que se presentan ante la práctica de Epidemiología Ambiental o de Vigilancia Epidemiológica Ambiental. Dichas restricciones no significan que los trabajos no se puedan ejecutar, pero sí que se deben tomar en cuenta para tratar de corregir errores antes de comenzar acciones sobre el problema.

- Información toxicológica previa insuficiente o incompleta.
- Dificultad en la identificación del agente de interés en una exposición simultánea y en la
evaluación de la participación relativa de un mismo agente a través de diversas vías de exposición.
- Déficit de parámetros biológicos adecuados para muchas sustancias.
- Dificultad para interpretar las dosis efectivas del agente en el órgano blanco.
- Intervención de varios factores de riesgo, tanto individuales como del ambiente.
- Períodos de latencia prolongados entre las exposiciones y la aparición de un cuadro clínico.
- Deficiencia tecnológica en la realización de monitoreos ambientales y biológicos.
- Existencia de un desarrollo deficiente o insuficiente de antecedentes históricos.
- Escaso desarrollo de registros institucionales.
- Limitaciones en la coordinación entre sectores y entre instituciones.

8.4. Metodología de evaluación de la Ecosalud

Esta metodología parte de la concepción del “Enfoque Ecosistémico en Salud Humana”. Se plantea que para conseguir un equilibrio entre la salud de los ecosistemas y la de la gente que los habita se requiere un método nuevo de investigación que incluya no sólo a los científicos, sino también a los miembros de la comunidad, representantes del gobierno y otros interesados.

Además de la necesidad de la participación de estos grupos, el enfoque de Ecosalud se basa en tres pilares metodológicos: transdisciplinariedad, participación y equidad.

Para que el enfoque transdisciplinario tenga éxito se requiere definir un protocolo de investigación precisando maneras de integrar a la comunidad en la definición del problema y asignándole la importancia adecuada a los diferentes componentes del ecosistema.

<table>
<thead>
<tr>
<th>Protocolo de investigación transdisciplinaria. Los grupos de protagonistas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Científicos con el deseo de trabajar por el bienestar de la comunidad.</td>
</tr>
<tr>
<td>Una comunidad decidida a colaborar en un proceso de desarrollo que use la investigación como herramienta.</td>
</tr>
<tr>
<td>Tomadores de decisiones que puedan dedicar tiempo, conocimientos y experiencia durante el proceso de consenso de las partes.</td>
</tr>
</tbody>
</table>

**Las etapas:**
Establecer un diálogo entre los protagonistas por medio de reuniones informales e intercambio de correspondencia escrita y electrónica.
Solicitar el soporte económico requerido para financiar la definición del problema en un taller preproyecto que reúna a los protagonistas.
Organizar un taller preproyecto para:
- Definir el problema basado en la perspectiva y el conocimiento de cada grupo (grupo base, mapas, interacción, datos).
- Identificar las áreas comunes de interés.
- Acuerdo sobre los objetivos comunes.
- Especificar la metodología de cada grupo o participante.
- Definir los papeles y responsabilidades.
- Establecer el calendario para las reuniones de los equipos.
- Repetir los protocolos con base en los resultados obtenidos.
- Traducir los resultados de la investigación en programas concretos de acción.
Asegurar la continuidad del programa a largo plazo y el seguimiento del progreso.
El enfoque de Ecosalud se ensayó en tres sectores ambientales principales que, especialmente en los países en desarrollo, constituyen una seria amenaza para la salud tanto de los ecosistemas como de la gente: la minería, la agricultura y el ambiente urbano. En cada uno de estos sectores, el Enfoque Ecosistémico en Salud Humana comprobó su utilidad.

8.5. Indicadores de salud ambiental (GEO)

El desarrollo de indicadores es una de las herramientas que permite llevar a cabo evaluaciones integrales de ambiente y salud.

Uno de los principales objetivos de los indicadores es contribuir a evaluar la evolución de los riesgos ambientales que más afectan a la salud humana y su distribución espacial, así como promover intervenciones que permitan reducir esos riesgos. Pero no es posible comprender cabalmente la situación si no se incorporan e integran las condiciones sociales y económicas. En este sentido, el enfoque de ecosistemas para la salud humana, ya visto, otorga similar importancia al manejo ambiental, a los factores económicos y a las aspiraciones de la comunidad.

La selección de indicadores para estudiar la salud ambiental adaptados a la realidad de América Latina se fundamenta en el enfoque Ecosalud, por tanto, para su elección se toman en cuenta la riqueza y diversidad natural, cultural, climática y territorial, como así también los grandes contrastes sociales de la región causados por la pobreza estructural de sus sociedades y su extrema inequidad.

Estos indicadores pueden ser de dos tipos: centrales y secundarios. Los primeros deben cumplir ciertas condiciones, como ser viables y comparables en toda la región de acuerdo con la información disponible y, por tanto, diseñados para monitorear cambios en la evolución de los problemas a nivel regional, así como para orientar las políticas que se llevan a cabo para solucionarlos, mientras que los segundos deben responder a realidades y visiones locales y, por tanto, sólo pueden definirse en referencia a esas realidades.

Ambos tipos de indicadores permiten:

- Ayudar a fijar prioridades en acciones urgentes.
- Establecer prioridades de investigación.
- Identificar vulnerabilidades para enfocar medidas proactivas.
- Ofrecer una medida comparable del producto para evaluar y planificar intervenciones y programas.
- Orientar las inversiones y las negociaciones intersectoriales.

Los indicadores de salud ambiental deben diseñarse en número limitado, basarse en medidas estandarizables y ser el resultado de métodos accesibles a los interesados en la problemática específica. Los criterios clave para la identificación de buenos indicadores deben ser: validez, confiabilidad, especificidad, sensibilidad, mensurabilidad, relevancia y coste-efectividad.

Es importante resaltar que la definición de los indicadores básicos (centrales y secundarios) depende de la información y bases de datos existentes en cada región, como así también se debe tener en cuenta que dicha información debe agregarse de tal modo que se optimice su calidad habiendo pasado por todas las etapas de la participación necesaria de los actores interesados.

Finalmente, cuando se realiza la selección de indicadores, se deben expresar los impedimentos en su construcción y uso, explicando las dificultades técnicas y/o por conflictos institucionales que influyen en dicha selección.
9. Atención Primaria Ambiental

La OPS ha desarrollado un instrumento de gestión para el abordaje de la problemática de Salud Ambiental conocido como Atención Primaria Ambiental (APA).

El objetivo fundamental de APA es la protección y el mejoramiento de la Salud y el Ambiente para la obtención de entornos saludables a través de la promoción y realización de acciones preventivas a nivel local, con participación comunitaria.

Los objetivos principales de la Atención Primaria Ambiental se dirigen a lograr un cambio de la conducta individual que respete su entorno y promueva y participe en la protección de la salud ambiental.

Como participantes fundamentales, los centros de salud permitirán emprender localmente la ejecución de iniciativas de atención a la salud ambiental, actuando como unidades operativas de nivel local que coordinen actividades relacionadas con la protección o recuperación de la salud, definiendo las prioridades y las acciones (diagnósticos, capacitación, educación, etcétera) en relación con la realidad del ambiente circundante.

Los Centros de Atención Primaria Ambiental podrán colaborar para fortalecer la capacidad organizativa de la comunidad, su sensibilización, educación y capacitación.
Bibliografía

Argentina, Dirección de Promoción y Protección de la Salud Ministerio de Salud y Medio Ambiente de la Nación, Por su Salud: Informe Periódico, Buenos Aires,
Dever, A., Epidemiología y administración de servicios de salud, Maryland, OPS, 1991.
OMS-Oficina Regional para Europa Evaluación y uso de evidencia epidemiológica para la evaluación de riesgos ambientales para la salud, Ginebra, Centro Europeo para el Ambiente y la Salud, 2001.
1. Hay fenómenos ambientales que afectan globalmente la salud

Hipócrates, en el siglo V a.C., escribía sobre “Aires, aguas y lugares”, señalando las condiciones diversas que favorecían la salud o provocaban la enfermedad.

Von Pettenkoffer, en el siglo XIX, sostenía la doctrina miasmática, según la cual efluvios del ambiente provocaban las epidemias.

Gregg, en el siglo XX, afirmaba que “El mundo tiene cáncer y el cáncer es el hombre”. Sartori dice: “La tierra está enferma por superconsumo” (2003: 73).

Los fenómenos ambientales a los que se hace referencia en este capítulo tienen un origen natural de difícil control o uno artificial, en el que la intervención humana juega un rol importante.

Se los considerará según sean de macro, meso o micronivel. En virtud de que toda clasificación sirve a los fines de un ordenamiento, en este caso particular se hace hincapié en la división de los fenómenos ambientales en tres grupos, según la extensión de sus efectos y consecuencias geográficas. Sin embargo, los fenómenos mencionados en el capítulo pueden encontrarse en otras categorías de acuerdo con diferentes clasificaciones.

Los problemas ambientales de macronivel, también llamados globales, son aquellos que, aunque se produzcan localmente, constituyen fenómenos de dimensión planetaria, afectando el medio ambiente de toda la Tierra. Los grandes problemas ambientales mundiales han alcanzado tal dimensión que constituyen parte de lo que ya se denomina “cambio global”. Ese cambio global estaría representado por varios componentes: el cambio climático global, la crisis del agua y sus derivaciones internacionales y la reducción y/o pérdida de la biodiversidad, entre los más importantes.

Entre las causas de los problemas ambientales globales se destacan la acumulación de pequeños efectos ambientales locales, la sinergia o multiplicación de unos problemas sobre otros, la irreversibilidad de algunas consecuencias ambientales, la gravedad y extensión de efectos ambientales, entre otros.

Los fenómenos ambientales regionales, considerados en este capítulo como fenómenos de mesonivel o nivel medio, son aquellos cuyas manifestaciones pueden afectar amplios espacios y/o áreas de diferentes países o distritos o regiones de un país o de una provincia, sin llegar a ser necesariamente generalizados o globales. La contaminación ambiental del aire, agua o suelo, los impactos de las grandes obras de infraestructura, el desplazamiento de las fronteras agrícolas o urbanas, la deforestación, entre otros, constituyen verdaderos problemas ambientales regionales. Asimismo, son fenómenos regionales las inundaciones, huracanes, tornados, terremotos, etcétera, que se presentan como catástrofes naturales.
En cuanto a los fenómenos ambientales locales, este capítulo se restringirá al tratamiento de fenómenos localizados cuyas consecuencias generan daños periféricos y a cierta distancia y que para algunos autores se encuadran dentro de los desastres tecnológicos, provocados por actividades del hombre, tales como los accidentes nucleares, las fugas de sustancias químicas, etcétera.

2. Los fenómenos de macronivel comprometen a toda la Tierra

La superficie de la Tierra debe considerarse como un ecosistema que depende de la energía solar filtrada por la atmósfera, que es un “gigantesco sistema de trasporte de energía” (Atlas Clarín, 1992: 4).

La atmósfera está formada por una mezcla de gases y estratificada en cuatro capas concéntricas que varían según tres principales variables: la presión, la temperatura y la distancia a la superficie.

![Diagrama de capas y variables de la atmósfera terrestre](image)

La capa inferior es la **tropósfera** con una altura de alrededor de diez kilómetros. La temperatura atmosférica disminuye proporcionalmente a la altura.

Hacia el espacio continúa la **estratósfera**, que tiene un espesor de alrededor de cincuenta kilómetros. Su temperatura comienza siendo –50ºC y desde los veinte kilómetros sube a –30ºC. Este calentamiento se debe a la capa de ozono que es más densa en el límite superior de la estratósfera. La tercera capa es la **mesósfera**, entre los cincuenta y los ochenta kilómetros, con bajas temperaturas que vuelven a invertirse en la **termósfera**, que, a los ochenta kilómetros de la superficie, está expuesta sin protección a los rayos solares (Curtis y Barnes, 2001: 1434).

La energía solar se refleja hacia el espacio por las nubes y el polvo de la tropósfera (30%). La misma atmósfera absorbe otra porción (20%), en parte a través de la capa de ozono y la mesósfera que retienen la mayoría de los rayos ultravioletas dañosos para la vida, y otra parte es captada por el vapor de agua, el polvo y las gotas que calientan la tropósfera. Finalmente, del 50% que llega a la superficie de la Tierra, una fracción es reflejada y otra absorbida por la misma. Los océanos captan una cantidad de energía capaz de producir la evaporación de alrededor de un metro anual de sus aguas, lo cual impulsa el ciclo de esta. Lo absorbido por la tierra se irradia en forma de rayos infrarrojos que calientan la superficie del planeta, retenidos por el CO₂ y el vapor de agua. La **atmósfera es una masa de aire en movimiento** en cuyo seno se producen los fenómenos meteorológicos. Su equilibrio puede afectarse, entre otros factores, por la concentración de CO₂ y de partículas.

Su composición tiene una relativa estabilidad.

<table>
<thead>
<tr>
<th>Concentración relativa de los principales gases que componen la atmósfera</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Componente</strong></td>
</tr>
<tr>
<td>Nitrógeno</td>
</tr>
<tr>
<td>Oxígeno</td>
</tr>
<tr>
<td>Argón</td>
</tr>
<tr>
<td>Neón</td>
</tr>
<tr>
<td>Helio</td>
</tr>
<tr>
<td>Metano</td>
</tr>
<tr>
<td>Criptón</td>
</tr>
<tr>
<td>Hidrógeno</td>
</tr>
</tbody>
</table>


El hombre descubrió la forma de hacer fuego y usó la madera durante milenios. El uso extendido del carbón durante la primera revolución industrial y, posteriormente, el uso de hidrocarburos fósiles desencadenaron el aumento de la concentración de CO₂ y de otros poluentes que convierten el aire limpio en aire contaminado.

---

1 Siguen hacia el espacio la ionósfera, la metásfera y la protósfera, hasta los novecientos kilómetros (Atlas Clarín, 1992: 4).
2.1. Efecto invernadero

El efecto invernadero es un fenómeno natural producido por ciertos gases de la atmósfera (vapor de agua, CO₂, CH₄, NO₂, O₃) que retienen parte de la energía que el suelo emite luego de haber sido calentado por la radiación solar.

Es un factor esencial del clima de la Tierra. Bajo condiciones de equilibrio, la cantidad total de energía que entra en el sistema por la radiación solar se compensará exactamente con la cantidad de energía radiada al espacio, permitiendo a la Tierra mantener una temperatura media constante en el tiempo.

De la radiación que llega al planeta, principalmente en forma de luz visible, una parte es reflejada inmediatamente. Esta fracción de energía que es devuelta al espacio se llama albedo. Otra porción es primero absorbida y luego emitida hacia el exterior, lo cual constituye el efecto invernadero. Si esto no ocurriera, la temperatura de la Tierra sería de −18°C. Este efecto natural hace que la temperatura media sea entre 13,5 y 15°C. Al retener buena parte de las ondas infrarrojas, permite que la temperatura en la superficie del planeta se equilibre y sostenga la vida. El rango de longitudes de onda que la atmósfera deja pasar hacia el espacio se denomina “ventana de radiación”; ella permite que el calentamiento de la superficie se modere.

Desde hace varias décadas, el hombre está produciendo un aumento de los gases de efecto invernadero, haciendo que la atmósfera retenga más calor y devuelva a la Tierra aún más energía. Ello causa un desequilibrio del balance radiativo y un calentamiento global.

La actividad industrial desde 1850 viene descargando CO₂ a la atmósfera. El siglo xx ha sido el más caluroso de los últimos seiscentos años por el uso de combustibles fósiles (Banco Mundial, 2000: 41). Los motores, los incendios forestales y la ganadería intensiva, que produce metano (CH₄), aumentan la energía rebotada sobre la Tierra. Además, existe el agravante de que otras actividades humanas, como la deforestación, han limitado la capacidad regenerativa de la atmósfera para eliminar el dióxido de carbono, uno de los principales responsables del efecto invernadero.

Los gases de efecto invernadero (GEI) absorben y retienen las radiaciones comprendidas en la “ventana de radiación” y consecuentemente aumentan el efecto invernadero. Son algunos GEI: vapor de agua que forma las nubes, dióxido de carbono (CO₂), ozono (O₃), metano (CH₄), óxidos de nitrógeno y azufre (NOₓ y SOₓ), compuestos clorofluorocarbonados y el fluoruro de azufre.

---

2 El CO₂ es transparente a la energía solar visible, pero, al igual que el vidrio, absorbe el calor infrarrojo reflejado en la superficie de la Tierra (Odum, 1972: 34).
Algunos gases de efecto invernadero

<table>
<thead>
<tr>
<th>Gas</th>
<th>Fuente emisora</th>
<th>Potencial de calentamiento global (pcg CO₂: 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dióxido de carbono (CO₂)</td>
<td>Quema de combustibles, cambios del uso del suelo, producción de cemento.</td>
<td>1</td>
</tr>
<tr>
<td>Metano (CH₄)</td>
<td>Producción y quema de combustibles fósiles, agricultura, ganadería, manejo de residuos.</td>
<td>21-23</td>
</tr>
<tr>
<td>Óxido nitroso (N₂O)</td>
<td>Quema de combustibles fósiles, agricultura, cambios de uso del suelo.</td>
<td>230-310</td>
</tr>
<tr>
<td>Clorofluorocarbonados (CFC)</td>
<td>Refrigerantes, aerosoles, espumas plásticas.</td>
<td>6.200-7.100</td>
</tr>
<tr>
<td>Hidrofluorocarbonados (HFC)</td>
<td>Refrigerantes líquidos.</td>
<td>1.300-1.400</td>
</tr>
<tr>
<td>Hexafluoruro de azufre (SF₆)</td>
<td>Aislantes eléctricos.</td>
<td>23.900</td>
</tr>
</tbody>
</table>


Todos los GEI aumentan sus concentraciones atmosféricas con el incremento de las actividades humanas. La quema de combustibles fósiles y la quema intencional de bosques aumentan la liberación de CO₂. La explotación agraria y/o la ganadería intensiva, como los rellenos sanitarios de residuos o su acumulación a cielo abierto, producen excesos de CH₄. La fertilización de suelos y los desechos de la agricultura y la ganadería también liberan NO₂.

Los clorofluorocarbonados (CFC) son considerados GEI muy potentes. Han sido muy utilizados en refrigeración, como espumas sólidas y aerosoles, aunque ya han comenzado a ser reemplazados por otros compuestos con propiedades semejantes, para reducir el efecto invernadero. Estas sustancias, además de ser GEI, atacan la capa de ozono de la estratosfera, aumentando la radiación ultravioleta sobre la superficie terráquea (Barros, 2004).

Las advertencias de la comunidad científica impulsaron acuerdos internacionales como el Protocolo de Montreal (Canadá, 1987) para el reemplazo de los CFC, en relación con la protección de la capa de ozono, que se ha ido cumpliendo progresivamente.

Por otra parte, son muy fuertes los intereses en torno al uso de procesos que aumentan los GEI, como por ejemplo el predominio de los combustibles fósiles en la producción creciente de energía. Estos intereses involucran aspectos científicos y tecnológicos, por un lado, así como políticos y económicos, por el otro.

El calentamiento de la superficie de la Tierra por el efecto invernadero artificial ya se ha constatado: 1995 fue el año más caluroso desde 1850, mientras que en 1998 el promedio de la temperatura fue el superior de 118 años.³

³ En el siglo XX, la temperatura sobre la superficie terráquea aumentó entre 0,6 y ± 0,2°C. Según los modelos de cálculo, en el siglo XXI aumentaría entre 1,4 y 5,8°C y el nivel del mar subiría de 0,09 a 0,88 metros (IPCC, 2001: II.3)
La hipótesis de máxima estima que para 2100 la temperatura media de la Tierra aumentará a 20°C, la de mínima la ubica en 15,5°C. Ello podría ocasionar la elevación del nivel del mar en un metro, con lo cual se inundarían regiones enteras, incluyendo ciudades populosas, y exigiría el éxodo de alrededor de 150 millones de personas progresivamente hasta 2050.

La prevención de la aceleración del proceso “invernadero” tiene diversos mecanismos posibles (Martino, 2000: 19):

- Estabilización del consumo de combustibles fósiles. Es el primero y más resistido, en especial por los países más desarrollados.
- Sustitución de petróleo y derivados por gas natural, que, por unidad de energía, produce un tercio menos de emisión carbonada.
- Reducción de la emisión de metano por kilogramo de carne producida, mediante innovaciones tecnológicas.
- Difusión de sumideros, que son sistemas de secuestro o mantención del carbono en la biomasa vegetal mediante extensión de pasturas, introducción de bosques nuevos (aforestación), conservación de los bosques nativos, reducción de la deforestación y ampliación de la agricultura de siembra directa (sin rotulación).
- Desarrollo de fuentes de energía renovables e innovadoras.

---

4 Desde principios del siglo XIX se acumularon en la atmósfera, en adición a la producción natural, alrededor de 400 Pg (1 Pg es igual a 1.000 millones de toneladas) de dióxido de carbono, generando un excedente de 170 Pg. Se estima que 270 Pg provinieron de la quema de combustibles fósiles y 136 Pg por cambios en el uso de la tierra. La actividad humana genera entre 2 y 3 Pg por año, cifra pequeña comparada con los 60 Pg que circulan en el ciclo de la respiración (que libera carbono)/fotosíntesis (que fija carbono). Si el excedente atmosférico es de 170 Pg y el uso de la tierra genera 136 Pg/año, una forma eficiente de reducir el exceso sería secuestrar o mantener el carbono en sumideros (Martino, 2000: 19).
2.2. Cambio climático

El tiempo meteorológico es el estado de la atmósfera en un lugar y momento determinados, cambiando en períodos de días y horas. El clima es el conjunto de condiciones atmosféricas medias o normales que se presentan en un lugar y perduran a lo largo del tiempo, variando de acuerdo con las diferentes estaciones.

Las variables interdependientes que determinan ambos fenómenos son la temperatura, la presión atmosférica, la humedad, la altura y velocidad de las nubes, las precipitaciones en forma de lluvia, nevadas o heladas, la dirección y fuerza de los vientos y de las corrientes marinas, las trayectorias y los frentes de masas de aire, las descargas eléctricas y otros fenómenos habituales o extremos (Candel Vila, 1971). La dinámica de estas variables se produce entre los distintos subsistemas que soportan el clima (la atmósfera, la hidrósfera, la criósfera, la litósfera y la biosfera), y se relaciona con la radiación electromagnética proveniente del sol. El subsistema de mayor variabilidad, por su baja densidad y reducida capacidad calorífica, es la atmósfera.

La Tierra inició su conformación hace alrededor de 5.000 millones de años y a lo largo de su evolución las variables que constituyen el clima cambiaron en límites extremos. Si nos ceñimos al periodo cuaternario, que comprende el último millón y medio de años, cuando ya la atmósfera tenía las características actuales, los cambios se produjeron dentro de límites más estrechos que se relacionan con los periodos glaciares. Estos cambios modificaron la biota y produjeron grandes migraciones de los reducidos grupos humanos. En los últimos 10.000 años se produjeron cambios climáticos menos drásticos.

### Cambio climático

Contrariamente a los modelos de climas intercambiables antiguos, que observaban variaciones de a largos plazos, en los últimos 100 años ha comenzado a llamarse la atención de científicos mundiales sobre la relación entre los cambios climáticos y los procesos naturales de origen antrópico. El cambio climático que alerta a la humanidad ha comenzado a llamar la atención de científicos mundiales desde la segunda mitad del siglo pasado. Se tienden a descartar como causales algunos factores provenientes de la naturaleza, mientras que son los factores antrópicos los que actúan con mayor severidad acelerando o potenciando los procesos naturales, lo cual permite visualizar dichos cambios en períodos cortos de tiempo, de sólo pocas décadas.

Como ya se especificó en la sección anterior, la atmósfera se comporta como un objeto casi transparente a la radiación de onda corta, pero absorbe la mayor parte de la radiación de onda larga (rayos infrarrojos) que se irradia desde la superficie terrestre. Los gases de invernadero absorben y reemiten la radiación de onda larga, devolviéndola a la superficie terrestre y causando el aumento de temperatura, lo cual produce el fenómeno del efecto invernadero.

Es así como el cambio climático actual se acelera en cortos períodos históricos y por acción antrópica se generan mayores y más graves riesgos ecológicos, que repercuten en toda la...
humanidad. Los efectos son diversos y dispersos en el planeta, de compleja interpretación y difícil comprensión. Muchos fenómenos externos, como las olas de calor y frío, las grandes inundaciones y huracanes, se presentan con mayor frecuencia e intensidad, aunque no siempre se alcanza a comprender el posible factor común a todos ellos: el cambio climático acelerado.

Frente al problema de la generación excesiva de GEI por emisiones de combustibles fósiles, las Naciones Unidas firmaron la Convención Marco sobre el Cambio Climático, en vigor desde 1994. La propuesta fue apoyada por una gran cantidad de países que acordaron la disminución de los gases invernadero para el año 2000, llevando dichos valores a los del año 1990. Estados Unidos se opuso fuertemente a la propuesta, quedando finalmente librada a la adhesión voluntaria de las partes. Tres años después, se firmó el protocolo de Kyoto (Japón, 1997), que establece obligaciones vinculantes para que los países del mundo reduzcan progresivamente esa grave contaminación.

Este protocolo creó conflictos internacionales. Aun firmado por el vicepresidente de los EE.UU., Al Gore, bajo la presidencia de Clinton, el senado de su país invalidó la adhesión. Más adelante, el presidente Bush (h) manifestó que “Kyoto está muerto”, con el argumento de que no había certeza del efecto anunciado. Esta oposición de una de las potencias más contaminantes, llevó a limitar la reducción de emisores de CO₂ del 5,2%, prevista en Kyoto, al 1,8% respecto de las emisiones de 1990 para el año 2012 (Sartori, 2003: 34).

El calentamiento terráqueo exacerbaría los fenómenos meteorológicos, como parece estar ocurriendo, y generaría inundaciones en unas áreas y sequías en otras con reducción general del rendimiento de las cosechas (IPCC, 2001: II-6). En el año 2000, la lluvia y tres ciclones inundaron regiones de Mozambique (África oriental) por seis semanas, y la incidencia del paludismo se quintuplicó (Epstein, 2005: 1433-36).

La extensión del clima tropical expandiría enfermedades como el paludismo, el cólera, la leishmaniasis y el dengue (Achcar, 2003: 60). La proliferación de mosquitos y roedores ha expandido los brotes de hantavirus y fiebre del Nilo Occidental (Epstein, 2005: 1433-1436). En Chile y Brasil se han detectado brotes de ehrlichiosis, cuyo agente es la bacteria del género Ehrlichia, su reservorio los ciervos, mamíferos y roedores pequeños y su vector varias especies de garrapatas presentes en nuestro medio y con posibilidades de aumentar su población por el mismo factor climático. En Jujuy se produjo un brote en seis niños con un cuadro de fiebre con exantema, dos de los cuales murieron. Se atribuyó el contagio a garrapatas de perros y caballos (Barcat, 2006: 489). El aumento de la incidencia del asma, cuadruplicada en EE.UU., se ha relacionado con cambios climáticos, incluyendo el aumento del polen y de los hongos (Epstein, 2005: 1433-1436).

Las olas de calor, de 38°C y hasta 43°C, en ciudades europeas llevaron a la muerte a 21.000 a 35.000 personas (2003). En Chicago (EE.UU., 1995), produjo la muerte de 750 habitantes (ibidem). Los contrastes del tiempo generan olas de frío: 2.500 personas murieron en Gran Bretaña por una de ellas en 2003 (El Día, 24 de diciembre de 2003: 2).

---

7 Las muertes por paludismo en el mundo, actualmente de dos a tres millones de personas, podrían aumentar a 3,5-5 millones.
9 La enfermedad era conocida para los veterinarios. Para la medicina humana recién se detectó entre 1987 y 1994. Estas bacterias Gram negativas son de desarrollo intracelular obligado y tienen por blanco los monocitos y los granulocitos (anaplasmosis) circulares o tisulares. Las garrapatas (Rhipicephalus, Amblyom, Ixodes) parasitan, entre otros, al perro y pueden vectorizar la enfermedad al ser humano (ibidem).
2.3. Reducción de la capa de ozono

El ozono (O₃) es un estado alotrópico del oxígeno, de color azul pálido, olor algo picante y de fuerte capacidad oxidante, continuamente formándose y destruyéndose en la estratosfera, en una serie de reacciones llamadas “reacciones de Chapman”. Este proceso impide la llegada a la superficie de un exceso de rayos ultravioletas, que afectarían la vida y la salud (Duval, 1965: 56).

Las reacciones de Chapman se pueden simplificar de la siguiente manera:

1. O₂ + hv (< 240 nm) ----> O + O  
   Formación del ozono
2. O + O₂ ------------> O₃
3. O₃ + hv (< 320 nm) ----> O + O₂  
   Destrucción del ozono
4. O + O₃ ------------> O₂ + O₂
   (hv: fotón de radiación ultravioleta)

Como se observa en la reacción 1, los enlaces de la molécula de oxígeno se pueden romper al absorber la energía de un fotón de radiación ultravioleta de longitud de onda menor de 240 nm, formando dos átomos de oxígeno libre. En la reacción 2, un átomo de oxígeno libre reacciona con una molécula de oxígeno formando una de ozono. En la reacción 3 se observa que las moléculas de ozono absorben radiaciones ultravioletas de menores de 320 nm, rompiéndose en moléculas de oxígeno y átomos de oxígeno libre. Los átomos de oxígeno libre reaccionan con más moléculas de ozono, formándose oxígeno molecular. La reacción 4 es bastante lenta en sí misma, pero diversas sustancias como los óxidos de nitrógeno (NO y NO₂), el hidrógeno y sus óxidos (H, OH y HO₂) y el cloro y sus óxidos (Cl, ClO y ClO₂) actúan como catalizadores acelerando la destrucción del ozono. En esta reacción es donde inciden en forma relevante las sustancias de origen humano que destruyen la capa de ozono.

En conjunto, en condiciones normales, se forma un sistema en equilibrio en el que tantas moléculas de ozono se forman por unidad de tiempo como las que se destruyen, por lo que su concentración permanece constante.

En la tropósfera, el O₃ está presente de forma natural. Una parte proviene de la estratosfera y es transportado hacia las capas de aire próximas a la superficie terrestre, y otra parte resulta de procesos naturales de la biosfera que dan lugar a la formación de ozono a partir de emisiones de óxidos de nitrógeno, que tienen su origen en procesos biológicos y en la emisión de compuestos orgánicos volátiles procedentes de la vegetación, así como también de procesos de fermentación o de los volcanes.

En la tropósfera, constituye sólo alrededor de 0,02 mg/m³ del aire (Duval, 1965: 33). Muchas actividades de las que realiza el hombre en la actualidad emiten contaminantes a la atmósfera que son precursores del ozono. Por acción de la luz solar, estas sustancias químicas reaccionan y provocan la formación de este. Esto suele ocurrir, principalmente, en las grandes ciudades, sitios de altas concentraciones de contaminantes en el aire. El uso a gran escala de motores eléctricos, automotores, fotocopiadoras, purificadores de aire, quemadores iónicos y otros equipos, aumentan los niveles de O₃ en el aire de las ciudades, especialmente por la tarde, después de muchas horas de luz solar intensa, hacia finales de primavera y principios de otoño.

Las altas concentraciones de O₃ troposférico suelen producir reducción de la función pulmonar en las personas sanas, fácilmente recuperable en veinticuatro horas. Pueden asimismo generar irritación nasal y episodios de disnea, dolor torácico, tos y sibilancias transitorias. Los episodios agudos de asma tienden a aumentar. Se han planteado hipótesis, no corroboradas, sobre enfisema y fibrosis pulmonares provocadas por la exposición crónica a este elemento en la tropósfera (La Dou, 1999: 793).
En la década de 1980 se detectó una reducción de la capa de ozono estratosférico que se relacionó con la contaminación atmosférica producida por los compuestos clorofluorocarbonados (CFCs), de extendido uso como propelentes de aerosoles en spray, como el freón (diclорофluорометан), un CFC también muy utilizado en refrigeración.

Estas sustancias presentan un comportamiento principalmente derivado de su estabilidad y persistencia, que las hace inocuas en la tropósfera, pero en la estratósfera, por acción de los rayos ultravioletas liberan átomos de cloro que reaccionan con el O$_3$ transformándolo en O$_2$.

Dichos procesos pueden resumirse en las siguientes reacciones:

\[
\begin{align*}
X + O_3 & \rightarrow XO + O_2 \quad [e] \\
O_3 + hv & \rightarrow O + O_2 \quad [f] \\
XO + O & \rightarrow X + O_2 \quad [g] \\
2 O_3 + hv & \rightarrow 3 O_2 \quad [\text{reacción neta}]
\end{align*}
\]

(X: especies químicas, fundamentalmente radicales libres)

Las especies químicas mencionadas son capaces de catalizar la destrucción del ozono. Entre ellas podemos encontrar algunas que proceden de fenómenos naturales, como el óxido nítrico (NO) o los radicales hidroxi (HO$^-$), pero otras tienen un origen claramente antropogénico, como el bromuro de metilo (BrCH$_3$), el tetracloruro de carbono (CCl$_4$), los halones y los ya mencionados CFCs.

Para comprender la magnitud del problema, este último grupo de sustancias alcanza la tropósfera y, por acción de la radiación ultravioleta más energética, sus moléculas sufren procesos fotolíticos de ruptura radicalaria, liberándose átomos de cloro altamente reactivos que inician el ciclo de destrucción de ozono de acuerdo con las reacciones mencionadas. Un solo átomo de cloro puede llegar a destruir más de 100.000 moléculas de ozono.

Asimismo, algunos autores alertan sobre una nueva amenaza: el óxido nitroso (N$_2$O). Este gas se forma de manera natural en los procesos de desnitrificación bacteriana de los nitratos. Sin embargo, el exceso de abonos en suelos agrícolas está contribuyendo a un acelerado crecimiento de las emisiones a la atmósfera de NO$_2$, que, debido a su estabilidad química, puede alcanzar la estratósfera y en presencia de luz ultravioleta formar moléculas de NO que destruyen el ozono siguiendo el proceso de reacciones ya mencionado, lo que produciría un desequilibrio perjudicial para todos los seres vivos.

El Protocolo de Montreal (Canadá, 1987) entró en vigor el 1 de enero de 1989. En el mismo, se asume el compromiso de las partes firmantes respecto de la progresiva reducción de los niveles de emisión de sustancias que agotan la capa de ozono. Dichas sustancias se enumeran en anexo al Protocolo, a fin de poder llevar a cabo la evaluación y el control de emisión de las mismas. En ese protocolo se aplicó el llamado “Principio de Precaución”, según el cual “la falta de certeza científica no debe demorar la respuesta normativa internacional si la demora puede tener como resultado un daño irreversible” (Banco Mundial, 2000: 95). El consenso sobre la eliminación progresiva del CFC involucró en primera instancia ocho productos, luego se extendió hasta alcanzar noventa y siete. Esto fue posible porque ya se estaban estudiando sustancias sucedáneas no cloradas y con alto costo-beneficio.

Los perjuicios y riesgos para la salud han aumentado significativamente en las últimas décadas debido a la disminución de la capa de ozono. Según un informe de la OMS, se presentan entre dos y tres millones de casos nuevos de cáncer de piel no melanocíticos y alrededor de 130.000 de melanocíticos por año en todo el mundo (OMS, 2005).

El principal factor de riesgo para esta dolencia se estima que es la radiación ultravioleta (UV), que el sol emite de tres tipos: UVA, UVB y UVC. La primera penetra profundamente en la piel y
produce arrugas y decoloraciones. Los UBV causan las quemaduras del sol con inflamación, dolor, enrojecimiento, pérdida de líquidos y pueden dejar lesiones permanentes.

Los rayos UV en dosis normales tienen una influencia benéfica sobre la salud, ejerciendo un rol importante en la formación de la vitamina D\(^{10}\). Sin embargo, la exposición acumulativa a estas radiaciones, en especial durante la infancia, aumenta el riesgo de padecer cáncer de piel, también cataratas y podría reducir la respuesta inmune.

La exposición es máxima cuando el sol está en el cenit, mayor en las regiones ecuatoriales y en las zonas de mayor altura sobre el nivel del mar. La reflexión de radiación UV es menor del 10% desde el suelo, pasto y agua, de 15% desde la arena, de 25% desde la espuma del mar y de 80% desde la nieve fresca. Las nubes la reducen, pero hay exposición aun debajo de ellas (WHO, 2002).

La capa protectora de ozono, al reducirse, aumenta la exposición (WHO, 2002). Se estima que la reducción del 10% de la capa de ozono produciría 300.000 cánceres de piel y 4.500 melanomas adicionales (WHO, 2002).

Sin embargo, la exposición no se percibe correctamente. De allí que los servicios meteorológicos elaboren diariamente un pronóstico de la intensidad de la radiación ultravioleta: es el UV Índice (UVI). Toma en consideración distintas variantes, haciendo una estimación de la intensidad máxima a mediodía y asumiendo un cielo libre de nubes; luego se corrigen los valores a través de la aplicación de un factor relacionado con estas últimas.

<table>
<thead>
<tr>
<th>Índice de radiación solar de UV*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>0-2</td>
</tr>
<tr>
<td>Moderada</td>
<td>3-5</td>
</tr>
<tr>
<td>Alta</td>
<td>6-7</td>
</tr>
<tr>
<td>Muy alta</td>
<td>8-10</td>
</tr>
<tr>
<td>Extrema</td>
<td>≥11</td>
</tr>
</tbody>
</table>

Nota: * Cada punto equivale a 25 mW/m\(^2\) de radiación UV sobre la superficie de la tierra, de longitud de onda de entre 290 y 400 nm (Australian Goverment, 2006).


Como prevención primaria, se hacen las siguientes recomendaciones:

- Limitar la exposición solar al mediodía.
- Buscar la sombra.
- Usar ropas y gorras anchas protectoras (que cubran la cabeza, cara, cuello y ojos).
- Usar anteojos de sol, con protectores laterales.
- Usar y reaplicar (cada dos horas), en zonas expuestas del cuerpo, cremas de protección solar (Sun Protection Factor –SPF–) mayores de 30 y resistentes al agua (WHO, 2002).
- No prolongar la exposición solar confiando en las cremas.
- Proteger a los bebés y niños pequeños.

\(^{10}\) El colecalciferol (vitamina D\(_3\)) se forma en la piel humana por exposición a la luz solar a partir del 7-dehidrocolesterol. Se encuentra también en la yema de huevo y en el aceite de hígado de bacalao. La principal acción de la vitamina hidroxilada es aumentar la absorción de calcio en el intestino y estimular la formación y mineralización del hueso. Su carencia produce raquitismo en los niños y osteomalacia en los adultos (Beers y Berkow, 1999: 36).
A su vez, se señalan ciertos errores habituales tales como creer que el tostado de la piel es protector, que no se sufre la radiación en días nublados, estando en el agua o en invierno y que tomar descansos a la sombra es preventivo (la exposición es acumulativa).

2.4. La crisis del agua

El agua es un recurso natural que apareció en este mundo hace más de 3.000 millones de años, y desde entonces ha desempeñado un papel sumamente importante en la evolución. Es un elemento esencial para el crecimiento y desarrollo de los seres vivos y de las civilizaciones.

Sin embargo, hace mucho tiempo que viene gestándose una seria crisis que está generando enfrentamientos en varias regiones del planeta. Esta crisis amenaza no sólo el acceso y abastecimiento igualitarios para los habitantes, sino que también ha puesto en riesgo la calidad y ha mostrado una inadecuada gestión del recurso. La Declaración del Milenio de Naciones Unidas (2000) ha hecho un llamado respecto a esta problemática para detener la explotación no sostenible de los recursos hídricos y que se promuevan el acceso equitativo y el abastecimiento adecuado.

Hoy día se sabe que la tercera parte de la población mundial vive en zonas donde la disponibilidad de agua no satisface la demanda, y más de mil millones de habitantes del planeta carecen de acceso al agua potable.

El agua cubre el 71% de la superficie de la corteza terrestre. El 96,5% se localiza principalmente en los océanos, mientras que los glaciares y casquetes polares concentran el 1,74%; los depósitos subterráneos y los glaciares continentales suponen el 1,72% y el resto (0,04%) se reparte en orden decreciente entre lagos, la humedad del suelo, la atmósfera, embalses, ríos y seres vivos.

<table>
<thead>
<tr>
<th>Distribución del agua de la Tierra (en %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Salada</td>
</tr>
<tr>
<td>Dulce</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Nota: se calcula que hay 8.000 km³ de agua dulce almacenada en embalses.


Es imprescindible considerar que el agua que bebemos no es agua nueva, sino que ha sido muchas veces reciclada gracias al ciclo hidrológico. Dicho ciclo consiste en un proceso continuo de transferencia de agua a través de diferentes fases (atmosférica, terrestre, oceánica, biológica),

106  

HORACIO LUIS BARRAGÁN
que involucra una cantidad única de agua. Comienza con la evaporación desde la superficie del océano. El vapor se eleva y enfría, luego se condensa y precipita hacia la tierra. Una parte será aprovechada por los seres vivos, otra escurrirá por el terreno hasta llegar a un río, un lago o el océano, y otra filtrará a través del suelo, formando capas de agua subterránea. Más tarde o más temprano, toda esta agua volverá nuevamente a la atmósfera, debido principalmente a la evaporación y transpiración de las plantas.

El viejo conflicto entre pastores y agricultores por el acceso al agua se ha internacionalizado. Las confrontaciones que las civilizaciones han tenido y tienen por el acceso y utilización del petróleo han comenzado a registrarse y repetirse respecto del agua, y probablemente se conviertan en luchas de mayor gravedad.¹¹

Con respecto a la calidad para utilización humana, se estima que las aguas dulces superficiales reciben, según estimaciones (WWAP, 2003: 22), dos millones de Tn diarias de desechos industriales, agrícolas y cloacales.

El agua es imprescindible para la producción de alimentos, calculándose que para alcanzar 2.800 calorías por persona se requieren, en promedio, 1.000 m³ de agua. Estimaciones calculan que el riego a nivel mundial consume alrededor del 70% del agua dulce,¹² aunque la eficiencia en el uso sólo alcanza el 38% (Montaigne, 2002: 18).

Como se muestra en el siguiente cuadro, los principales alimentos requieren para su producción grandes cantidades de ese fluido.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Unidad</th>
<th>Agua equiv. (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovino</td>
<td>Cabeza</td>
<td>4.000</td>
</tr>
<tr>
<td>Ovejas y cabras</td>
<td>Cabeza</td>
<td>500</td>
</tr>
<tr>
<td>Carne fresca bovina</td>
<td>Kg</td>
<td>15</td>
</tr>
<tr>
<td>Carne fresca de pollo</td>
<td>Kg</td>
<td>6</td>
</tr>
<tr>
<td>Cereales</td>
<td>Kg</td>
<td>1,5</td>
</tr>
<tr>
<td>Cítricos</td>
<td>Kg</td>
<td>1</td>
</tr>
<tr>
<td>Legumbres y tubérculos</td>
<td>Kg</td>
<td>1</td>
</tr>
</tbody>
</table>


Por su parte, la industria utiliza alrededor del 22% del agua disponible mundial, pero también elimina sus efluentes en ella, con el agravante de contaminarla, ya sea en forma habitual o accidental.

Lo expuesto muestra la trascendencia del conflicto y expone la seriedad de los desafíos a los que se está enfrentando la humanidad en el siglo XXI. Entre los retos más apremiantes se encuentran:

¹¹ La mesopotamia que forman el Tigris, al Norte, y el Éufrates, al Sur, tiene una cuenca que comprende tres países: Turquía, Siria e Irak. El nacimiento de ambos ríos está en las montañas turcas. El Éufrates recorre 1.000 de sus 2.800 kilómetros en territorio de Turquía, que erigió la gran represa Ataturk, la cual puede regular el caudal aguas abajo. Esto llevó al borde de la guerra a Turquía con Siria. Los países involucrados tienen más de treinta presas sobre estos dos ríos. Irak, mayor consumidor y más desfavorecido por su posición aguas abajo, amenazó bombardear represas (Banco Mundial, 1994, suplemento).

La regulación de las aguas de la cuenca del Paraná depende de las presas brasileñas y de la brasileño-paraguaya de Itaipú, lo que genera una dependencia potencial para Argentina. Las cuencas internacionales se prestan a conflictos entre países por la provisión de agua. Se requieren acuerdos cumplibles para evitarlos.

¹² Todavía en grandes zonas de países subdesarrollados se usan aguas residuales para el riego, con la amenaza de contagio de infecciones e infestaciones hídricas. Sólo podría hacerse sin esa amenaza si fueran previamente tratadas, lo que ahorraría agua (Montaigne, 2002: 18).
• Evitar la contaminación de los recursos naturales.
• Buscar fuentes nuevas de agua.
• Mejorar las condiciones sanitarias del agua en los hogares y en las comunidades.
• Aprender a vivir con la escasez del agua.
• Evitar los conflictos por el agua entre comunidades, regiones y países.
• Mejorar la eficiencia en el uso del agua en la agricultura, manteniendo el crecimiento de la productividad y permitiendo la redistribución del recurso entre todas las actividades productivas y urbanas.

<table>
<thead>
<tr>
<th>Uso (U) del agua por grandes sectores en el mundo. En porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. domés. 8%</td>
</tr>
<tr>
<td>U. agrícola 70%</td>
</tr>
<tr>
<td>U. industrial 22%</td>
</tr>
</tbody>
</table>


Como se aprecia en el gráfico, resta sólo el 8% para el uso doméstico. Va de suyo la necesidad de invertir agua en la agricultura y la industria, ya que de ellas surge la producción de alimentos, de bienes y servicios imprescindibles para la población.

Es por ello que la **gestión racional de un agua escasa**, requerida por estos sectores, exige una **política** que involucre los diversos niveles de educación, consensuada nacional e internacionalmente, que considere su utilización según prioridades y prevenga o mitigue los desastres que puede producir, como las inundaciones y las sequías (WWAP, 2003: 26). Una política de esa naturaleza se funda en la doctrina de las ciencias relacionadas con el agua y el estudio de las cuencas. Existe alrededor de 260 cuencas y acuíferos internacionales, compartidos por dos o varios países, se aprecia la necesidad de tratados que eviten los conflictos y permitan el aprovechamiento global del recurso hídrico (WWAP, 2003: 25).

El umbral de estrés y el de escasez de agua se considera en 1.000 y 1.700 m³/agua/habitante/año respectivamente (Achcar, 2003: 171), mientras que existen poblaciones con oferta de agua menor de 500 m³/agua/habitante/año. Se estima que 166 millones de personas en dieciocho países sufren escasez y 270 millones más, en once países, sufren estrés por falta de recursos hídricos (Banco Mundial, 2000: 29).13

Hay amplias áreas del mundo que aún obtienen agua a distancia de los hogares con la consecuente ocupación de tiempo y esfuerzo para el acarreo y almacenamiento. Estudios realizados en ciudades –muestra de Paquistán, Turquía e India– marcan la inequidad en la disponibilidad de agua. En Estambul (1991), se calculó que los sectores más pobres gastan el 1%

---

13 Una tercera parte de la población mundial, alrededor de 1.700 millones de habitantes, vive en regiones con escasez de agua (IPCC, 2001: II.9).
de sus ingresos anuales en obtener agua suplementaria, y los más acomodados utilizan hasta el 5%. En India (1991), se estimó que el costo de conexión a agua corriente oscilaba entre los 1,66 y 16,66 dólares, mientras que la inversión para instalar pozos entubados variaba entre 150 y 300 dólares (Banco Mundial, 1994: 31).

<table>
<thead>
<tr>
<th>País</th>
<th>Costo dólares/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemania</td>
<td>1,91</td>
</tr>
<tr>
<td>Francia</td>
<td>1,23</td>
</tr>
<tr>
<td>R. Unido</td>
<td>1,18</td>
</tr>
<tr>
<td>Italia</td>
<td>0,76</td>
</tr>
<tr>
<td>España</td>
<td>0,57</td>
</tr>
<tr>
<td>EE.UU.</td>
<td>0,51</td>
</tr>
<tr>
<td>Canadá</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Nota: las tarifas en los países desarrollados involucran la explotación y la inversión total.


Hay países, como Kuwait, que obtienen el 100% del agua por desalinización de tomas del mar. Lo mismo hacen Arabia Saudita, Bahrein, Qatar, los Emiratos Árabes Unidos e Israel para lograr una parte del agua que necesitan en sus ciudades costeras. Este es un proceso costoso y genera emisiones carbonadas.

2.5. Pérdida de biodiversidad

La biodiversidad hace referencia a la inmensa variedad de seres vivos que existen en el planeta. La vida es intrínsecamente diversa, desde los niveles más simples de organización hasta los más complejos. Se define como la capacidad de los organismos de autoperpetuarse en el tiempo, y esa propiedad está basada en una molécula fundamental: el ácido desoxirribonucleico (ADN). Todos los seres vivos presentan esta molécula que es la clave de la inmensa diversidad de formas que existen en los organismos.

La diversidad en los seres vivos está basada en los cambios que ocurren en el ADN, tanto en el espacio como en el tiempo. Por ejemplo, si un organismo está adaptado a un determinado tipo de clima y ese clima se torna más frío o más caliente, tendrá la capacidad de adaptarse a las nuevas condiciones ambientales si ha experimentado cambios a priori que le permitan responder a las nuevas temperaturas.

De esta manera, las especies han sobrevivido a cambios tremendo como glaciaciones, incendios, erupciones volcánicas y calentamientos del planeta.
### Número de especies vivientes conocidas y número estimado de especies totales

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Número de especies conocidas (en miles)</th>
<th>Estimación del total de especies (en miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoos</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Algas</td>
<td>40</td>
<td>300</td>
</tr>
<tr>
<td>Plantas</td>
<td>270</td>
<td>320</td>
</tr>
<tr>
<td>Hongos</td>
<td>70</td>
<td>500</td>
</tr>
<tr>
<td>Vertebrados</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Nematodos</td>
<td>15</td>
<td>500</td>
</tr>
<tr>
<td>Moluscos</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>Artrópodos totales</td>
<td>835</td>
<td>4.650</td>
</tr>
<tr>
<td>Crustáceos</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>Arácnidos</td>
<td>75</td>
<td>500</td>
</tr>
<tr>
<td>Insectos</td>
<td>720</td>
<td>4.000</td>
</tr>
<tr>
<td>Otros animales</td>
<td>95</td>
<td>250</td>
</tr>
<tr>
<td>Total</td>
<td>1.500</td>
<td>6.800</td>
</tr>
</tbody>
</table>


El rico mosaico de vida sobre nuestro planeta cuenta con más de 3.500 millones de años de evolución biológica. Ha sido configurado por fuerzas tales como el cambio de la corteza terrestre, las edades glaciales, el fuego y la interacción entre las especies, pero desde hace un tiempo está siendo alterado por los seres humanos. Desde el comienzo de la agricultura, hace unos 10.000 años, y hasta la revolución industrial de los últimos tres siglos, hemos modificado nuestros paisajes en una escala cada vez más grande e irreversible. Desde talar árboles con herramientas de piedra hemos llegado a mover montañas para extraer recursos de la Tierra.

Al consumir una proporción mayor de recursos naturales, se ha conseguido una alimentación más abundante y mejores condiciones de vivienda, saneamiento y atención de salud, pero estos logros han sido acompañados por una creciente degradación del medio ambiente, que se traduce en la degradación de las economías locales y las sociedades a las que sustenta.

La demanda sobre los recursos naturales del planeta crece con rapidez. Está comprobado que desde 1950 la población se ha duplicado, pero la economía global se ha quintuplicado, sin que los beneficios sean distribuidos equitativamente entre los países industrializados y los que todavía no han podido serlo.

Asimismo, los patrones de asentamiento han cambiando las relaciones con el ambiente. Casi la mitad de la población mundial vive en ciudades, en las que se percibe la naturaleza como algo distante de la vida cotidiana.

Los recursos biológicos son los pilares que sustentan las civilizaciones. Por ello, la pérdida de diversidad biológica amenaza nuestros suministros alimentarios, nuestras posibilidades de recreación y turismo y nuestras fuentes de madera, medicamentos y energía. También interfieren con las funciones ecológicas esenciales, como el control de las plagas por medio de los genes resistentes presentes en la naturaleza, la purificación del aire a través de los grandes pulmones verdes o el enfrentamiento de los desastres naturales (inundaciones, sequías, huracanes, etcétera) y otras presiones como la contaminación y el cambio climático. Nuestra salud individual y la de la sociedad humana dependen del continuo suministro de los diversos servicios que brinda la naturaleza, y que serían imposibles de reemplazar.

Si bien la extinción de especies es una de las causas más importantes, la amenaza más grave a la diversidad biológica es la fragmentación, degradación y merma directa de los bosques,
humedales, arrecifes de coral y otros ecosistemas. Los bosques albergan gran parte de la diversidad biológica conocida en la Tierra, pero **cerca del 45% de los bosques originales han desaparecido**, como resultado de las talas emprendidas principalmente durante el último siglo, especialmente en los trópicos.

Además, los cambios atmosféricos mundiales, como el agotamiento de la capa de ozono y el cambio climático, agregan nuevas fuentes de presión.

La reducción de la diversidad biológica también afecta la identidad cultural, que está arraigada en el entorno biológico. Las plantas y los animales son símbolos que definen y caracterizan las sociedades. La inspiración muchas veces se logra mirando la belleza y el poder de la naturaleza.

La pérdida de biodiversidad se ha acelerado como resultado de la actividad humana. Desde hace décadas se está forjando la mayor crisis de extinción desde el desastre natural que hizo desaparecer a los dinosaurios hace 65 millones de años. Esta extinción de especies es irreversible y, habida cuenta de nuestra dependencia en los cultivos alimentarios, los medicamentos y otros recursos biológicos, representa una amenaza trascendental para el bienestar del planeta.

Entre las actividades humanas que causan una mayor pérdida de biodiversidad, se citan:

- Alteración y destrucción de ecosistemas.
- Prácticas agrícolas modernas e inadecuadas.
- Contaminación de aguas y atmósfera.
- Caza, exterminio y explotación de animales.
- Introducción de especies nuevas.

<table>
<thead>
<tr>
<th>Grupos de animales</th>
<th>N° de especies</th>
<th>Extinciones pasadas</th>
<th>Tiempo de extinción en años</th>
<th>Estimación de extinciones futuras</th>
<th>Tiempo de extinción en años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aves</td>
<td>9.600</td>
<td>75</td>
<td>200</td>
<td>1.100</td>
<td>100</td>
</tr>
<tr>
<td>Mamíferos</td>
<td>4.300</td>
<td>60</td>
<td>200</td>
<td>650</td>
<td>100</td>
</tr>
<tr>
<td>Reptiles</td>
<td>4.700</td>
<td>20</td>
<td>200</td>
<td>210</td>
<td>100</td>
</tr>
<tr>
<td>Anfibios</td>
<td>4.000</td>
<td>5</td>
<td>25</td>
<td>89</td>
<td>100</td>
</tr>
</tbody>
</table>


La **Convención sobre Diversidad Biológica**, establecida en Río de Janeiro en junio de 1992, ha permitido que los países conscientes del valor intrínseco de dicha diversidad asuman el compromiso de cumplir con el objetivo de conservarla, emprender la utilización sostenible de sus componentes y la participación justa y equitativa en los beneficios que se deriven de la utilización de los recursos genéticos, mediante un acceso adecuado a ellos y una transferencia apropiada de las tecnologías pertinentes, teniendo en cuenta los derechos sobre esos recursos y esas tecnologías, así como mediante una financiación apropiada.

Además, los países han apoyado el mantenimiento de los sistemas naturales necesarios para la vida y han reafirmado que los estados tienen derechos soberanos sobre su biodiversidad y son responsables de la conservación y de la utilización sostenible de sus recursos.

La aplicación de esta convención quedó establecida en una Conferencia de las Partes (Riocentro, 1992), suscrita por 157 países incluida la Comunidad Económica Europea, mientras que Estados Unidos mantuvo su posición negativa de no suscripción.

A pesar de los compromisos asumidos, los recursos biológicos desaparecen continuamente como consecuencia de las actividades del hombre moderno en un panorama global que no respeta fronteras ni culturas.
En nuestro país, la sobreexplotación forestal, el avance de la frontera agropecuaria y la instalación de grandes obras hidroeléctricas (Yaciretá y Uruguaí) han causado una drástica disminución de la biodiversidad de especies animales. La diversidad animal se ve afectada por la contaminación generada por el abuso de plaguicidas y fertilizantes, la introducción de especies exóticas, la transmisión de enfermedades por el ganado doméstico y la explotación minera.

La reducción de la biodiversidad propicia la aparición de especies reservorios o transmisores de zoonosis y otras enfermedades.

3. Los fenómenos de meso nivel afectan regiones extendidas

3.1. Contaminación atmosférica

Desde tiempos remotos, el hombre ha sido conciente del peligro que representaba una atmósfera contaminada de modo natural, por ejemplo, a causa de las erupciones volcánicas, los efectos del polen, los incendios de bosques. Con el advenimiento de la era industrial, el problema de la contaminación atmosférica adquiere gran magnitud.

La contaminación del aire es la presencia de sustancias extrañas o la variación de sus constituyentes que pueden producir daños al hombre y al ambiente.

Las sustancias extrañas son los agentes contaminantes, líquidos, gases y sólidos, o combinaciones de ellos, que provienen de distintas fuentes (móviles y fijas), concentrándose en la atmósfera.

La contaminación aérea adquiere magnitudes diversas dependiendo de la concentración y la calidad de los agentes contaminantes que se emiten y de las condiciones meteorológicas a escala regional y local que influyen sobre las mismas. Puede tener carácter local o regional cuando los efectos ligados al foco se sufren en las inmediaciones del mismo o a cierta distancia de él, pero puede llegar a ser planetaria cuando, por las características del contaminante, se ve afectado el equilibrio general del planeta y zonas alejadas a las que contienen los focos emisores, como sucede con el “cambio climático” ya mencionado.

En principio, los contaminantes aéreos se pueden clasificar en primarios y secundarios.

Los primarios son aquellos agentes que permanecen en la atmósfera tal como se los emitió desde la fuente. Entre ellos se citan: óxidos de azufre, monóxido de carbono, óxidos de nitrógeno, hidrocarburos, partículas.

Los secundarios son producto de la reacción de dos o más agentes primarios presentes en la atmósfera. Entre ellos se destacan los oxidantes fotoquímicos y algunos radicales de vida corta como el ozono (O₃).

Existen muchas sustancias contaminantes de la atmósfera, aunque son un número limitado las que afectan de manera significativa la calidad de vida de las poblaciones. Entre ellas adquieren importancia el dióxido de azufre (SO₂), monóxido de carbono (CO), óxidos de nitrógeno (NOₓ), hidrocarburos gaseosos liberados tras una combustión incompleta de hidrocarburos líquidos, plomo, fluoruros y otros.

3.2. Contaminantes primarios

a. Monóxido de carbono (CO)

Entre las fuentes naturales de monóxido de carbono en la atmósfera, se pueden mencionar volcanes e incendios forestales, así como la oxidación atmosférica del metano. Los gases volcánicos contienen entre 0,01 y 2% de monóxido de carbono. Es el gas contaminante más abundante en lo que a masa se refiere. Las principales fuentes de CO producidas por el hombre son ciertos procesos industriales, la quema de combustibles fósiles y de biomasa.
Los niveles que alcanza en una zona urbana típica son de alrededor de 10 ppm (partes por millón), cerca de cien veces más que en toda la atmósfera terrestre. En zonas con demasiado tráfico, los niveles de CO pueden llegar hasta 70 ppm (Meruane y Naranjo, 1994: 40). El monóxido de carbono es el producto de una combustión incompleta ante la falta de oxígeno o exceso de carbono. La combustión completa produce dióxido de carbono (CO₂). El CO se origina por la combustión de los motores a explosión, en especial los diesel, por la combustión incompleta de carbón, por la quema de basuras y/o residuos y por los procesos a elevadas temperaturas (por ejemplo, altos hornos). También lo generan emanaciones del humo del tabaco y del disparo de armas de fuego (Duval, 1965: 28).

El CO tiende a oxidarse a CO₂ con la interacción de bacterias del suelo, de tal forma que su concentración tiende a mantenerse constante. Sin embargo, debe dosarse en lugares propicios a su concentración, como túneles carreteros o de minería y aun en aviones (Duval, 1965).

El CO es un contaminante ubicuo, ya que se lo encuentra tanto en ambientes exteriores como interiores. En concentraciones altas e insuficiente ventilación, produce intoxicaciones agudas. Estufas, calefones y calderos de carbón o braseros son las fuentes más frecuentes de accidentes en interiores.

El efecto del CO más importante es fruto de su combinación con la hemoglobina, la carboxihemoglobina (COHb),14 interfiriendo el transporte de oxígeno. No produce lesión en las vías aéreas. Sin embargo, la exposición a niveles bajos puede agravar la enfermedad coronaria y reducir la capacidad para realizar ejercicios en los sanos (La Dou, 1999: 797).

b. Otros compuestos del carbono

El carbono es el elemento básico de la química orgánica, conociéndose cerca de diez millones de sus compuestos. Además, forma parte de todos los seres vivos conocidos. Con hidrógeno forma hidrocarburos, esenciales para la industria y el transporte.

Los hidrocarburos (HC) usados en los motores de combustión interna pueden contaminar ciudades y carreteras. Se utilizan en mayor medida la nafta y el diesel, los cuales pueden generar emisiones y residuos que contengan HC cancerígenos y CO.

El metano es el hidrocarburo alcano más sencillo, presentándose en estado gaseoso. Puede constituir hasta el 97% del gas natural. Es muy peligroso por su facilidad para inflamarse. En la naturaleza es producto final de la putrefacción anaeróbica de organismos muertos (gas de los pantanos), proceso que se aprovecha para producir biogás, y de la acción bacteriana en el tubo digestivo de algunos rumiantes (Hart, 1997: 66). También se genera en regiones petrolíferas y en las destilerías de hidrocarburos.

Asimismo, hay emisiones de metano, por las concentraciones de basura sin control (basurales a cielo abierto), donde los residuos orgánicos sufren el proceso de putrefacción anaeróbica, liberando elevadas concentraciones de este gas que deben ser venteadas para evitar accidentes y explosiones.

Existen otros compuestos del carbono, como los compuestos orgánicos volátiles (COV), que se convierten fácilmente en vapores o gases. Son liberados por la quema de combustibles fósiles, madera, carbón o gas natural, así como también por disolventes, pinturas, pegamentos y otros productos empleados y almacenados en la casa y el lugar de trabajo. Contienen, además de carbono, otros elementos como hidrógeno, oxígeno, flúor, cloro, bромo, azufre o nitrógeno.

Se encuentran dentro de este grupo compuestos tales como el benceno, tolueno, nitrobenceno, muchos de los cuales son peligrosos contaminantes del aire.

14 La afinidad del CO con la hemoglobina es 250 veces mayor a la del O₂. La concentración de COHb en sangre de no fumadores es de alrededor de 0,5% y en fumadores, de 5%. En los primeros no se presentan síntomas sino con concentraciones de 2%. A más del 40% se produce coma y muerte (Moreno Grau, 2003: 329).
Los COV, junto a los óxidos de nitrógeno y al ozono, son precursores del smog fotoquímico, que se forma en presencia de luz solar y altas temperaturas.

Los hidrocarburos suelen estar asociados a elementos metálicos como el plomo\textsuperscript{15}, cromo, mercurio, generando compuestos que, al liberarse, desprenden estos elementos en la atmósfera y ocasionan problemas de salud a las comunidades o inducen al agravamiento de afecciones preexistentes.

c. Compuestos del azufre
El azufre está sujeto a un ciclo regulado natural, incorporándose a los ecosistemas en forma de sulfatos a través de las plantas. Una vez incorporado, pasa a formar parte de aminoácidos y proteínas disponibles para los distintos niveles tróficos. Además, puede ser parte de emisiones naturales, por ejemplo, de las erupciones volcánicas.

El azufre se usa en multitud de procesos industriales, como la producción de ácido sulfúrico para baterías, la fabricación de pólvora y el vulcanizado del caucho. Se utiliza como fungicida y/o fertilizante. Los sulfitos se usan para blanquear el papel y el tiosulfato de sodio se emplea en la industria fotográfica como fijador.

Se encuentra, en diferentes proporciones, en los combustibles fósiles, siendo las centrales eléctricas alimentadas a carbón o derivados del petróleo las fuentes principales de dióxido de azufre (SO\textsubscript{2}). Este afecta la fotosíntesis y la respiración de los animales y el hombre (Odum, 1972: 101). La radiación ultravioleta tiende a transformar el SO\textsubscript{2} en trióxido de azufre (SO\textsubscript{3}), y este, a su vez, en presencia de vapor de agua, genera ácido sulfúrico (SO\textsubscript{4}H\textsubscript{2}).

El sulfuro de hidrógeno o ácido sulfhídrico (SH\textsubscript{2}) puede presentarse en fuentes naturales como el petróleo crudo, gas natural, gases volcánicos y manantiales de aguas termales, como así también por la degradación anaeróbica de la materia orgánica.

d. Compuestos del nitrógeno
El nitrógeno es un elemento químico que, en condiciones normales, forma un gas diatómico (N\textsubscript{2}) que constituye el 78\% del aire atmosférico. El ciclo de este elemento es bastante complejo, dado que está presente en la atmósfera no sólo como N\textsubscript{2}, sino también en una gran diversidad de compuestos. Se puede encontrar principalmente como N\textsubscript{2}O, NO y NO\textsubscript{2}, llamados en forma genérica NO\textsubscript{x}. También forma otras combinaciones con oxígeno tales como N\textsubscript{2}O\textsubscript{3} y N\textsubscript{2}O\textsubscript{5} (anhídridos), precursores de los ácidos nitroso y nítrico (HNO\textsubscript{3}). Con hidrógeno forma amoniaco (NH\textsubscript{3}), gaseoso en condiciones normales y con un olor picante.

Los compuestos más importantes desde el punto de vista industrial son justamente el NH\textsubscript{3} y el HNO\textsubscript{3}. Por sus implicaciones medioambientales, también adquieren importancia los óxidos de nitrógeno.

Estos últimos se producen en forma natural por la acción bacteriana del suelo, erupciones volcánicas, relámpagos y por la actividad humana durante los procesos de combustión.

Las fuentes móviles (automóviles, camiones, ómnibus, etcétera) generan dióxido de nitrógeno (NO\textsubscript{2}), aumentando su concentración con el incremento de la densidad del tránsito. Su coloración amarillenta reduce significativamente la visibilidad. Entre las fuentes fijas, las plantas

\textsuperscript{15} El tetraetilo de plomo se usó como antidetonante en las naftas para mejorar su octanaje. Es un líquido incoloro, de carácter oleoso, muy volátil y liposoluble. La absorción respiratoria era favorecida por su volatilidad y a través de la piel por su liposolubilidad. Produce dermatosis tendientes a la cronicidad y puede afectar el Sistema Nervioso Central provocando cefaleas, insomnio y excitación (Quer-Brossa, 1983: 37). En los niños se describe una encefalopatía que se inicia con letargo e irritabilidad, evoluciona a la ataxia, trastornos de conciencia, incluso coma y muerte. Deja casos con secuelas de retraso mental, convulsiones y atrofia óptica (Moreno Grau, 2003: 226). Con acierto, su agregado a las naftas está actualmente prohibido. El plomo en una cierta dosis interfiere con la fijación del hierro en la hemoglobina (cambio bioquímico), al elevarse la dosis produce anemia (cambio fisiológico) y de seguir incrementándose la exposición puede causar nefropatía o encefalopatía.
de energía y las industrias son las que producen mayor cantidad de estos compuestos de nitrógeno como consecuencia de la utilización de combustibles derivados del petróleo. En el interior de las casas, los genera el uso de hornos y estufas a gas. El compuesto es un oxidante menos potente que el ozono, pero tiende a formar sustancias ácidas en la mucosa respiratoria y, en exposiciones crónicas, a exacerbar trastornos preexistentes como el asma y el EPOC (La Dou, 1999: 794). En sinergia con los hidrocarburos genera el smog fotoquímico.

e. Material particulado

El material particulado (PM) es el único contaminante atmosférico que no tiene una constitución química única, dependiendo de la fuente emisora: en términos generales, está formado por una mezcla de partículas sólidas y líquidas presentes en el aire y es especialmente sensible a combinarse con gases y con hidrocarburos, produciendo una mezcla que puede ser tóxica. Consta en general de una fracción soluble en agua y una fracción insoluble que contiene minerales derivados del suelo, carbón, gases absorbidos, dioxinas, HAPs, y otros.

Las partículas se estudian en base a su tamaño, relacionado directamente con la superficie expuesta para combinarse con otras sustancias y la capacidad de sedimentación, ambos aspectos asociados con la potencialidad para generar daños.

Las que afectan directamente la salud son las partículas cuyo diámetro es ≤10 μm (PM10), ya que pueden llegar por su característica aerodínámica a la vía respiratoria inferior. Las partículas ≤0,2 μm, ultrafinas, se han detectado en el intersticio pulmonar.

Estos contaminantes tienden a aumentar la incidencia de episodios de asma, de reagudizaciones en pacientes con EPOC, así como de bronquitis y tos crónica en personas sanas. Algunos de los grandes episodios colectivos de contaminación, que se mencionarán más adelante, se han relacionado con aumentos puntuales en la concentración del grupo de partículas a que se hace referencia (La Dou, 1999: 794-795).

3.3. Contaminantes secundarios

a. Smog fotoquímico

Se denomina smog fotoquímico a la contaminación del aire, principalmente en áreas urbanas, por ozono originado por reacciones fotoquímicas (ya explicadas en el apartado correspondiente a capa de ozono) y otros compuestos. Como resultado, se observa una atmósfera de color marrón rojiza.

El smog se describió por primera vez en Los Ángeles en la década de 1940, y suele producirse en ciudades con abundante tránsito, clima cálido y con bajo movimiento de masas de aire.
Los principales contaminantes primarios que le dan origen son los óxidos de nitrógeno y los compuestos orgánicos volátiles (VOCs), mientras que los secundarios, formados a partir de los anteriores a través de una serie compleja de reacciones propiciadas por la radiación solar, son el ozono, el HNO₃, el nitrato de peroxiacilo (PAN) y otros compuestos.

Para reducir la formación de smog fotoquímico es necesario disminuir la emisión de los NOₓ y los COVs. Por ejemplo, la disminución de las emisiones de óxidos de nitrógeno en los motores por medio de catalizadores de tres vías los reducen a nitrógeno y oxígeno moleculares. También se pueden disminuir los NOₓ mediante procesos de reducción, o llevando a cabo la combustión en varias etapas.

b. Lluvia ácida
Las actividades humanas han causado un fuerte aumento de la acidez de las precipitaciones locales y regionales por la emisión de gases de óxidos de azufre y nitrógeno producidos en la utilización abusiva de combustibles fósiles, que se transforman en ácidos fuertes en la atmósfera. Esta acidificación afecta los ecosistemas acuáticos y terrestres, la salud humana y los bienes materiales (por corrosión de los metales y erosión de piedras), aun a grandes distancias del origen de las emisiones, al ser trasladadas por corrientes atmosféricas y acuáticas.

Normalmente, la lluvia tiene un pH ligeramente ácido (5.6) debido a la presencia del CO₂ atmosférico que forma ácido carbónico (H₂CO₃), pero desde 1920 se han detectado lluvias con pH menores, llegando a valores de pH 4 a mitad del siglo XX. Las tormentas pueden reducirlo a pH 2.

La industria petroquímica y las refinerías de petróleo aumentan notoriamente sus concentraciones, superando las 15 ppm, que se consideran tóxicas en aire (Díaz Dorado, 1993: 41).
La lluvia ácida se forma cuando la humedad en el aire se combina con el óxido de nitrógeno y de azufre emitidos por fábricas, centrales eléctricas y vehículos. En interacción con el vapor de agua, estos gases forman ácidos sulfhídrico y nítrico, que precipitan en forma de rocío, lluvia, lluvizna, granizo, nieve o niebla.

Esta lluvia produce la acidificación de las aguas de lagos, ríos y mares, dificultando el desarrollo de la vida acuática, lo que aumenta en gran medida la mortandad de peces. Igualmente, afecta la vegetación, por lo que produce daños importantes en las zonas forestales, y acaba con microorganismos fijadores de N.

Un efecto indirecto importante sucede cuando los protones (H⁺) procedentes de la lluvia ácida arrastran ciertos iones del suelo (hierro, calcio, aluminio, plomo o zinc) y como consecuencia se produce un empobrecimiento en ciertos nutrientes esenciales y el denominado “estrés en las plantas”, que las hace más vulnerables a las plagas. Los nitratos y sulfatos, sumados a los cationes lixiviados de los suelos, contribuyen a la eutrofización de ríos y lagos, embalses y regiones costeras, deteriorando sus condiciones ambientales naturales y afectando negativamente su aprovechamiento.

Asimismo, su acidez facilita la corrosión de las construcciones y las infraestructuras. Puede disolver, por ejemplo, el carbonato de calcio (CaCO₃) y afectar de esta forma los monumentos y edificaciones construidas con mármol o caliza.

Se han registrado grandes episodios puntuales de contaminación atmosférica general con repercusión en la salud de las poblaciones.

<table>
<thead>
<tr>
<th>Año</th>
<th>Localidad</th>
<th>Característica</th>
<th>Fenómeno</th>
<th>Efectos</th>
<th>Víctimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>Valle del Mosa</td>
<td>Zona de altos hornos, plantas de</td>
<td>Techo de 25 km</td>
<td>Tos, rinconera, opresión</td>
<td>63 muertos, varios</td>
</tr>
<tr>
<td></td>
<td>Lieja (Bélgica)</td>
<td>acero, ácido sulfúrico y abonos.</td>
<td>cubierto de neblina, humos y</td>
<td>torácica, disnea y cefaleas.</td>
<td>miles de enfermos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vapores industriales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948</td>
<td>Donora Pennsylvania</td>
<td>Ciudad industrial, plantas de acero</td>
<td>En octubre, una espesa neblina</td>
<td>Irritación de conjuntivas y</td>
<td>20 muertos, 6.000</td>
</tr>
<tr>
<td></td>
<td>(EEUU)</td>
<td>y zinc ubicadas en un valle.</td>
<td>(SO₂ y otros tóxicos sinérgicos)</td>
<td>mucosas.</td>
<td>enfermos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>duró 5 días.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>Poza Rica (México)</td>
<td>Cerca de una refinería de petróleo.</td>
<td>Descarga de SO₂, SO₃H, inversión</td>
<td></td>
<td>22 muertos, 320 hospitalizados (en pocos minutos).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>térmica.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>Londres (UK)</td>
<td>Neblina contaminada con tóxicos.</td>
<td>Neblina</td>
<td></td>
<td>400 muertos, especialmente niños y ancianos por bronquitis y neumonías.</td>
</tr>
</tbody>
</table>

|                      |                      | Neblina contaminada con tóxicos. Invierno, sin vientos. | Neblina                           |                            | 400 muertos, especialmente niños y ancianos por bronquitis y neumonías. |


3.4. Fenómenos climáticos relacionados con la contaminación

a. Inversión térmica

La contaminación ambiental, dentro de ciertos límites, es corregida por la lluvia y los vientos. El gradiente normal de temperatura de la atmósfera permite visualizar que el aire inferior y contaminado es más caliente y menos denso que el de las capas superiores. De esta forma, el primero tiende a ascender y desplaza el aire frío hacia abajo (Villee, 1996: 851). Así, durante el
día, el aire que está sobre el suelo se calienta y se eleva, más tarde, el aire frío y denso de alta presión desciende por sobre la zona de baja presión que queda por el ascenso del aire caliente. 

Este movimiento eleva también los contaminantes y los dispersa en la atmósfera.

Bajo determinadas condiciones ambientales, se puede atrapar una capa de aire frío debajo de una capa intermedia de aire caliente, menos denso. Esto hace cesar la circulación ascendente, produciendo el fenómeno de inversión térmica. Cuando el mismo perdura durante períodos de tiempo considerables, se acumulan contaminantes que tienen efectos negativos sobre el ambiente y la salud (Villee, 1996: 850).

Generalmente, la inversión térmica se termina (rompe) cuando, por calentamiento del aire que está en contacto con el suelo, se restablece la circulación normal en la tropósfera. Esto puede ser cuestión de horas, pero en condiciones meteorológicas desfavorables la inversión puede persistir durante días.

La inversión térmica es un fenómeno peligroso para la vida cuando se produce en áreas con contaminación, ya que se comprimen los contaminantes contra el suelo por la capa de aire frío, aumentando su concentración por sobre los niveles permitidos.

Son conocidos muchos centros urbanos en los cuales se produce este fenómeno bajo determinadas condiciones atmosféricas: Atenas, Tokio, Houston, Sao Paulo, Nueva York, París, Bombay, Beijing, Singapur, Kuala Lumpur, Los Ángeles, Londres, Santiago de Chile y la Ciudad de México son las más representativas. La mala calidad del aire a que están sometidas estas ciudades da lugar al aumento de la tasa de incidencia de asma y otras afecciones respiratorias, e incluso eleva la mortalidad.

<table>
<thead>
<tr>
<th>Movimiento vertical del aire</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Situación normal</strong></td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>10°C</td>
</tr>
<tr>
<td>15°C</td>
</tr>
<tr>
<td>25°C</td>
</tr>
<tr>
<td><strong>Inversión térmica</strong></td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>5°C</td>
</tr>
<tr>
<td>5°C</td>
</tr>
<tr>
<td>5°C</td>
</tr>
<tr>
<td>25°C</td>
</tr>
</tbody>
</table>

Ref: → aire caliente; ← aire frío; Alt: altitud; Ta: temperatura en °C.


Este fenómeno es más frecuente en invierno, permitiendo que una capa de aire frío pueda ubicarse por debajo de capas más calientes. El aire caliente y contaminado atraviesa la capa fría, pero rebota en la superior y se estanca. Se producen así episodios de contaminación atmosférica en grandes ciudades industriales, sobre todo si se ubican en valles o áreas poco influidas por el viento.
3.5. Procesos de degradación del suelo: erosión, deforestación y desertificación

El suelo es un recurso natural escaso y no renovable. Sólo la cuarta parte de la superficie terrestre está constituida por masas continentales, y de ellas una gran proporción está ocupada por desiertos y/o montañas, por lo tanto, los suelos aprovechables constituyen una reducida superficie.

El suelo es la base que sustenta la vida en la Tierra. En los ecosistemas terrestres, es el soporte en el que las plantas extraen el agua y los nutrientes minerales y donde se producen los procesos de reciclaje de la materia. Además, representa el medio natural en el cual el hombre se asienta, realiza actividades y obtiene la mayor parte de los alimentos y fibras para su indumentaria.

La pérdida o disminución de alguna de las funciones del suelo permiten inferir su degradación.

La erosión es la pérdida parcial o total de su capa superficial, la más fértil, por el desgaste generado por agentes bióticos o abióticos.

La erosión natural del suelo se produce por causas geológicas y por la acción del agua y del viento. La erosión antrópica se debe al sobrepastoreo, el desmonte de bosques, la quema de vegetación o rastrojos y la labranza.


El sobrepastoreo, pisoteo de animales, cuando se supera la capacidad de carga del suelo, provoca su empobrecimiento y desgaste (Panigatti, 1996: 47).

La deforestación es la pérdida neta de superficie de bosques nativos, con la intención de destinar esas tierras a la agricultura u otros fines. Lleva a la erosión del suelo y, a largo plazo, a la desertificación (Adámoli, 1993). Se estima que se deforestan 142.000 km² por año, el equivalente a una cancha de fútbol por segundo (Crisci, Posadas y Marrone, 1999: 38).

La pérdida de la capa superficial del suelo y su biodiversidad provoca el aumento de las cantidades de CO₂ en el aire, contribuyendo al cambio climático.

La desertización es un fenómeno que provoca un agravamiento de las condiciones de aridez de una zona o región. El aniquilamiento de la vegetación, la tala y quema de árboles, el pastoreo excesivo, la erosión a causa del agua y del viento, la salinización y encharcamiento de los campos de regadío y la compactación del suelo debido al ganado, a los tractores, a la desecación y al impacto de las gotas de lluvia sobre la superficie desnuda de la tierra pueden ser generadoras de este proceso. La desertización en su estadio terminal convierte los suelos en ecosistemas degradados, hasta el punto de no proporcionar servicio alguno al hombre.

En 1977 se celebró en Nairobi (Kenia) la Conferencia de las Naciones Unidas sobre Desertificación, en la que se aprobó un Plan de Acción para la Lucha contra la Desertificación. Tras el fracaso de dicho Plan, y después de duras negociaciones, se acordó renovar esta lucha (París, 1994) con el consenso de más de un centenar de países.

Todas las prácticas irracionalles acarrean la pérdida de biodiversidad y productividad de los ecosistemas y generan problemas sociales, como las olas de migración por la pérdida de la tierra y del trabajo y, en consecuencia, el deterioro de la calidad de vida y el desarraigo.

Asimismo, al faltar los mecanismos de autorregulación de los sistemas naturales, aparecen especies de vectores y plagas que producen la emergencia y reemergencia de enfermedades trasmisibles.

16 Aridez es el conjunto de fenómenos de distinto tipo e intensidad provocado por deficiencias hídricas y que influye adversamente sobre el crecimiento de las plantas y la disponibilidad de agua.
3.6. Desastres naturales

Se incluyen en los fenómenos de mesonivel o regionales las catástrofes naturales, en muchas de las cuales puede intervenir la actividad humana como potenciadora o aceleradora. En esta categoría están incluidos, entre otros, las inundaciones, los terremotos, los maremotos y los huracanes.

a. Inundaciones

La inundación es la ocupación temporaria del terreno por una capa de agua proveniente de la lluvia excesiva, por desborde del cauce de los ríos o corrientes superficiales o por el avance de una masa líquida sobre una superficie llana. El anegamiento es el desalojo del aire de la tierra y el afloramiento de la capa freática (Prego, 1996: 273).

La inundación es un fenómeno natural en el que las aguas salen de “un curso históricamente definido por parámetros normales” hacia un área ocupada por población o por su actividad, quedando afectada en su seguridad y sus bienes (Roze, 2003: 15).\(^{17}\)

Las inundaciones pueden alternarse con sequías y consecuentes tormentas de polvo (Ameghino, s/f: 26). Bialet Massé, en su célebre informe de 1904, describió los ríos de Jujuy como “rápidos, de grandes velocidades, apenas tienen ripio entre los cantos rodados; en estos momentos llevan agua”, y sus consecuencias: “no son pocos los obreros que han perdido la vida allí, cruzándolos a caballo...”. Relata entonces la inundación repentina de un campamento que arrasó las carpas de un equipo de ingenieros y sus ayudantes produciendo más de veinte muertos (Bialet Masse, 2003: 50).

Variadas pueden ser las causas que provocan las inundaciones: abundantes lluvias, la fusión de masas de nieve, el derrumbe de diques o represas, el deslizamiento de tierras y las corrientes de fango que producen obstrucciones en el trayecto de las aguas, entre otras.

El desborde del cauce de los ríos, el oleaje de las mareas, los vientos sobre la costa de los estuarios y, más devastadores, los ciclones que abaten una zona, también son causantes de inundaciones (Naciones Unidas, 1977: 32). La deforestación y la erosión del suelo agravan el problema, porque impiden la neutralización natural de parte de las inundaciones (Naciones Unidas, 1977: 12).

Las inundaciones se producen en los valles y llanuras aluviales de las cuencas de los ríos y en las costas marítimas. Son las áreas donde se asientan y desarrollan las actividades de la mayoría de la población mundial.

Las inundaciones fluviales, en general, son procesos naturales que se producen periódicamente y proporcionan nutrientes, convirtiendo en tierras fértiles las planicies (llanuras) aluvionales, tradicionalmente utilizadas para la agricultura. Se conoce sobre la existencia de crecidas regulares y lentas de carácter estacional, cuyos caudales tienden a mantenerse (por ejemplo, el Nilo en Egipto y el Mekong en Vietnam) y no provocan las catástrofes de las inundaciones fulminantes.

En zonas costeras, los embates del mar han servido para modelar las costas y crear zonas pantanosas como albuferas y lagunas, que, tras su ocupación antrópica, se han convertido en zonas de gran vulnerabilidad.

La ingeniería hidráulica viene desarrollando cálculos de las vías fluviales así como procedimientos de prevención de inundaciones: embalses, depósitos controlados, diques de defensa, canales aliviadores y reencauzamiento de vías de agua. Esas mismas obras llevan a la mayor ocupación y densidad del área protegida sobre la base de una mayor percepción, falsa, de seguridad (Naciones Unidas, 1977: 36).

---

\(^{17}\) Roze (2003) la enmarca en una percepción social del fenómeno, completando su definición: “se da cuando los sujetos afectados están comprendidos en la dinámica de un conjunto social”.
En las grandes concentraciones urbanas, la limitada disponibilidad de terreno seguro favorece la ocupación de áreas inundables. Sin embargo, existen a nivel mundial (Naciones Unidas, 1977: 131) y nacional información y avisos para prevenir desastres por inundación:

- **Prohibición** en el cauce y área de desagüe de un río.
- **Restricción** en la extensión máxima de la inundación posible de cálculo.
- **Advertencia** en la de la inundación máxima probable.

El estudio, la **predicción meteorológica y los mapas hidrológicos** son elementos que se deben elaborar en los niveles nacionales y regionales en relación con el Programa Mundial del Clima de la Organización Meteorológica Mundial (Hoffmann, 1996: 290). En nuestro medio, una institución que debe ser promovida es la Oficina de Censores Remotos del INTE, que opera con imágenes satelitales sin perjuicio de la labor de la Prefectura Marítima (Bellati, 1996: 303). La georreferencia tiende a usar, en la actualidad, una **red geodésica llamada Sistema de Posicionamiento Global (GPS)** que permite definir en tres dimensiones, con alta precisión, elementos o fenómenos naturales. En Argentina, la Facultad de Ciencias Astronómicas y Geodésicas de la Universidad Nacional de La Plata apoyó al Instituto Geográfico Militar en el establecimiento de un instrumento de ese tipo llamado POSTGAR9419. La Dirección de Geodesia de la provincia de Buenos Aires lo adoptó para su territorio (Perdomo y Del Cogliano, 2003: 191).

---

**La inundación de Santa Fe en abril de 2003**

El Ministerio de Salud y Ambiente de la Nación resumió las circunstancias de la **inundación de la ciudad de Santa Fe en abril de 2003**, así como la respuesta organizada para mitigar sus efectos. Se siguieron los pasos teóricos a través de cinco fases (interdesastre, alerta, impacto, emergencia y reconstrucción) (R. Argentina, Ministerio de Salud y Ambiente, 2003). Las inundaciones del norte santafesino, producidas por precipitaciones superiores a la media histórica20 y por el desborde del Río Salado, llegaron a la capital provincial, de 500.000 habitantes, a fines de abril de 2003. Sus defensas fueron desbordadas y el agua afectó a más de 140.000 personas, 20.000 viviendas y 148 escuelas, la mayoría de barrios pobres y marginales. La respuesta fue inmediata por la constitución del Centro de Operaciones de Emergencias, nacional y local, y el Centro de Operaciones de Salud. Se logró una información panorámica, sin las frecuentes contradicciones que suelen producirse en estos casos, oportuna y actualizada diariamente. Se estableció una sala de situación para concentrar los datos, planificar acciones y tomar decisiones. Se evacuaron más de 75.000 personas a 453 centros de refugio, en los que se

18 En Argentina, las ciudades de la Mesopotamia, las de la margen occidental del río Paraná y del Río de la Plata, sufren periódicas inundaciones relacionadas con la compleja trama fluvial en la que están emplazadas, entre ellas Resistencia y Barranqueras (Chaco, entre las cuencas del río Paraná y el Bermejo); Santa Fe, entre la cuenca del río Paraná y el Salado del Norte, a su vez relacionados con el exceso del talado de bosques en todos los países de la primera cuenca y el sistema de embalses del Brasil (Fuschini Mejía, 1996: 311); las ciudades y campos del nordeste y centro-este (pampa deprimida) de la provincia de Buenos Aires (ubicadas en la cuenca del Río Salado y relacionadas con los desbordes del Río Quinto) y el área metropolitana de Tucumán (en la cuenca del río Salí), así como áreas de las provincias de Jujuy, Salta, aluviones en Córdoba, La Rioja, Catamarca y Mendoza (Domínguez y Carballo, 1996: 326).

19 Medido con receptores satelitales y similar al sistema internacional W6584.

realizó la provisión de abrigo, alimentos, material y equipos de higiene, control sanitario en rondas diarias y actividades de recreación. Se implementó una vigilancia epidemiológica de emergencia, detectándose brotes de hepatitis A, leptospirosis\textsuperscript{21} y enfermedad tipo influenza. Se vacunó contra la hepatitis A a la población de uno a catorce años, se aplicó la Triple bacteriana entre los uno y seis años y la Doble adulto a mayores de seis años. Se hicieron 165 investigaciones epidemiológicas. Se indicó quimioprophylaxis con doxicilina\textsuperscript{22}. Se atendió la demanda médica y odontológica, se detectaron embarazadas y enfermedades crónicas. Se apoyó con el programa Medicar y el de Planificación Familiar. Se dio apoyo psicológico y psiquiátrico a las situaciones de estrés y de pánico. Se hizo control veterinario de carnes y animales domésticos con guarderías, vacunaciones (contra la rabia y leptospirosis), quimioprophylaxis (contra la leptospirosis), desparasitaciones. Se implementó la desratización.

Se indicó a la empresa de provisión de agua aumentar la presión de la red, para evitar introducción de sustancias, y la cloración. Se distribuyeron alimentos, materiales de higiene y pastillas de cloración, se limpiaron las calles de residuos y remanentes de la inundación. Finalmente, se apoyó sanitariamente el operativo “Volviendo a casa”.

La enumeración precedente, resumida de la publicación ministerial, se presenta para mostrar la diversidad de problemas que deben enfrentarse en situaciones de desastre, las que sólo son eficaces bajo unidad de mando, apoyada en comités de coordinación y asesoramiento y en cartografía, información panorámica y oportuna, con buena distribución de responsabilidades y equipos de acción, con registros y evaluaciones sistemáticas y buen apoyo logístico en la provisión de recursos.

Por otra parte, el operativo se vio dificultado por la inundación del hospital de Niños “Dr. Orlando Alassia” y el de Rehabilitación “Vera Candioti”, de la Estación Transformadora de Electricidad, así como del Instituto de Educación Física y el Centro de Alto Rendimiento Deportivo que podrían haber contribuido al albergue de evacuados. El hospital Iturraspe quedó al borde de la zona inundable. Estas instituciones claves en la emergencia probablemente quedaron inoperantes en función de antiguos errores en el planeamiento urbano.

\textbf{b. Terremotos}

Los terremotos son \textit{temblores del terreno que se producen por choques de las placas tectónicas} y por la liberación de energía, en respuesta a una reorganización brusca de materiales de la corteza terrestre, cuando se supera el estado de equilibrio mecánico. Con frecuencia, se producen por liberación de energía potencial elástica, acumulada en las rocas contiguas al plano de una falla activa, pero también pueden ocurrir por otras causas, por ejemplo, por hundimiento de cavemras o por movimientos de laderas (Tarbuck y Lutgens, 1999: 358 y ss.).

Aproximadamente, se registran 80.000 sismos por año, siendo tres veces más frecuentes en el mar, desde donde pueden generarse grandes olas que llegan a la costa a velocidades

\textsuperscript{21} En marzo-abril de 1998 se detectó en un barrio de Santa Fe, en una de las cotas más bajas y donde desembocan colectores pluviales del centro de la ciudad, un brote de leptospirosis. A partir del caso índice, personal del CAP local visitó los hogares de once manzanas realizándose una encuesta epidemiológica y tomas para serología. Se confirmaron doce casos positivos para \textit{Leptospira interrogans}, la mayoría de ellos subclínicos. Solamente el caso índice presentó insuficiencia renal aguda y requirió diálisis. Se detectaron perros seropositivos, se constató un aumento de roedores (que migran desde el campo a la ciudad en las inundaciones) y se encontraron espiroquetas tipo leptospiras en las aguas de la inundación producida por un aumento de precipitaciones pluviales que afectó el área de baja cota. Los casos se presentaron entre nueve y diecisiete días después de la inundación y todos los encuestados manifestaron haber tenido contacto con el agua de la inundación. La leptospirosis puede pasar por alto por la existencia de casos subclínicos, pero debe ser siempre investigada en casos de inundación (Vanasco, 2000: 35-40).

\textsuperscript{22} Doxicilina: de cinco a once años: un comprimido de 100 mg/semana, y de doce años y más: un comprimido de 200 mg/semana.
considerables. Estas, al chocar contra la tierra, pueden producir Tsunamis (como el de la isla de Ishigaki, Japón, 1971).

La intensidad de los terremotos se mide con sismógrafo. En la actualidad, existen dos escalas sismológicas de medición: Richter y Mercalli.

Según la escala de Richter, también conocida como escala de magnitud local (Mc), se asigna un valor arbitrario o un número para cuantificar la envergadura de un terremoto, de 0 a 9. Es la escala utilizada para evaluar y comparar la intensidad de los sismos. Esta mide la energía del terremoto en el foco y sigue una escala de intensidades que aumenta exponencialmente de un valor al siguiente.

La escala de Mercalli consta de doce unidades y evalúa la intensidad de los sismos a través de los daños causados a distintas estructuras y por la observación de los efectos en las personas (por ejemplo, 6: despertar de las personas dormidas, oscilación de objetos pendientes, sacudida de árboles; 9: destrucción de edificios).

Las escalas no consideran los muertos. El terremoto de Shensi (China, 1556) produjo el mayor número: 830.000 muertos. El terremoto de Lisboa (1755, 60.000 víctimas) puso en crisis el pensamiento de la Ilustración europea. El “Big One” arrasó San Francisco (EE.UU., 1906), que, como una gran zona sur de la costa oeste, está asentada sobre la Falla de San Andrés, con riesgo de permanentes terremotos.

Chile, Perú, Ecuador, Colombia, América Central, México, Hawai, Japón, China, Paquistán, India, Irán, Afganistán, Turkmenistán, Marruecos, Yugoslavia, Alaska, Filipinas, Rumania, Yemen, Armenia, Turquía, Italia —en especial Sicilia—, son países y regiones que han sufrido terremotos de gran intensidad.

En Argentina, el más grave del siglo xx fue el terremoto de San Juan, el 15 de enero de 1944 (9º Mercalli), que produjo 10.000 muertos (Cecchini, 2000: 34).

La mortalidad y la morbilidad producidas por terremotos dependen de su intensidad y duración (las ondas más potentes duran segundos), del tipo de construcción, de la densidad poblacional y del momento respecto de la vida cotidiana en que se presentan. El suelo firme de asiento disminuye el daño.

La mayoría de las muertes se producen por el colapso de los edificios y las viviendas. Son más afectadas las construcciones mixtas con adobe o ladrillo con componentes de piedra y vigas de madera o metal, en general las viviendas tradicionales más viejas de áreas pobres. Hay culturas pobres, asentadas sobre zonas sísmicas, que construyen chozas seguras (por ejemplo, Etiopía, Papúa-Nueva Guinea, Bali). Esto determina la vulnerabilidad de la población.

### Comparación de los efectos de los sismos en Managua, Nicaragua (1972), y San Fernando, California (1971)

<table>
<thead>
<tr>
<th>Características y efectos de los sismos</th>
<th>Managua, 1972</th>
<th>San Fernando, 1971</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitud (escala de Richter)</td>
<td>5.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Duración de las ondas más potentes, en seg.</td>
<td>5-10</td>
<td>10</td>
</tr>
<tr>
<td>Área de intensidad Mercalli*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII-XI, Km²</td>
<td>66,5</td>
<td>500</td>
</tr>
<tr>
<td>VII-VIII, Km²</td>
<td>100</td>
<td>1.500</td>
</tr>
<tr>
<td>Estimaciones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Población del área afectada</td>
<td>420.000</td>
<td>7.000.000</td>
</tr>
</tbody>
</table>

23 Por ejemplo, terremotos en Saidi (Irán, 1972, 12.000 muertos) y Gediz (Turquía, 1970, 10.000 muertos) (Seaman, 1989). El terremoto de Caracas (1965) afectó zonas asentadas sobre suelo de aluvión. En el sismo de Managua (1972), que se percibió muchas horas antes con pequeños temblores, muchas personas durmieron a la intemperie y no sufrieron lesiones. Por el contrario, el peligro es mayor cuando salen de sus casas a calles muy estrechas (Seaman, 1989: 9).

Las lesiones detectadas en pacientes asistidos varían según los casos.

<table>
<thead>
<tr>
<th>Lesiones más frecuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona afectada</td>
</tr>
<tr>
<td>Extremidades</td>
</tr>
<tr>
<td>Superiores e inferiores</td>
</tr>
<tr>
<td>Vértebra</td>
</tr>
<tr>
<td>Pelvis</td>
</tr>
<tr>
<td>Lesiones en cara y cabeza</td>
</tr>
</tbody>
</table>


Entre las lesiones internas, se destaca el estallido de la vejiga y la lesión de las vías urinarias en los sismos nocturnos, cuando la primera está ocupada (Seaman, 1989: 13).

El síndrome de aplastamiento es uno de los más graves, pero su frecuencia no parece alta, quizá por faltas de observación.

Las tareas de rescate y la asistencia precoz permiten salvar numerosas vidas. Las primeras se dificultan con la magnitud del sismo y con las horas de oscuridad. Dependen de una buena organización bajo conducción única.

En Santa María de Cauque, aun con servicio rápido de rescate, el 7% de los atrapados (seis personas murieron) se comunicaron hasta tres horas después, pero no pudieron rescatarse hasta el amanecer (Glass, 1997: 638-643).

Un terremoto suele tener complicaciones, como desprendimientos de tierra y roca que provocan el enterramiento de poblaciones al pie de alturas (Perú, 1970).

c. Tsunamis

Los tsunamis se producen por terremotos subacuáticos que generan desplazamientos bruscos de placas tectónicas en el lecho marino. Ellos, a su vez, ponen en movimiento masas de agua en ondas que pueden viajar a cientos de kilómetros por hora (Seaman, 1989: 29). Pueden generarse por erupciones volcánicas y desprendimientos de tierras.24

Desde 1997, se detectaron dieciséis tsunamis de grandes proporciones, de los cuales once se produjeron en zonas del océano Pacífico.

---

24 La erupción del volcán Krakatoa (al sur de Sumatra) en 1883 generó olas de cuarenta metros de altura y alrededor de 36.000 muertos.
En diciembre de 2004, un tsunami de gran magnitud asoló las costas de Tailandia y de Sumatra a 800 Km/h, con olas de gran altura. Sus efectos se espacieron en forma concéntrica y llegaron en alrededor de ocho horas a la costa nororiental de África, a 4.800 kilómetros de distancia (Somalia), con olas de envergadura.

En América del Sur, la zona potencial de tsunamis se ubica en la costa del Pacífico limítrofe entre Perú y Chile (National Geographic, 2005).

Hay una red de sensores submarinos para detectar terremotos subacuáticos en el Pacífico Oriental en plan de extensión.25 Se ha recomendado la siembra de manglares para reducir el oleaje en zonas amenazadas.

d. Erupciones volcánicas

La erupción volcánica es la **expulsión de magma, roca fundida con gases y cristales disueltos**, con un alto contenido en sílice y más o menos viscoso, según sus restantes componentes y la temperatura. Antes de la erupción suele haber temblores de tierra y dilatación de los volcanes por temperaturas de 1.000°C, que después impulsan el magma hacia la “chimenea” y las fisuras, súbitamente. **El magma se transforma en lava** cuando alcanza la superficie terrestre. Esta baja en torrentes a 100-300 metros por hora; a veces, y según la menor viscosidad, a mucha mayor velocidad.

Es sabido que los suelos de origen volcánico son fértiles y atractivos para el asentamiento humano. Por ello se ocupan fácilmente, y, si bien la actividad volcánica es intermitente, con prolongados períodos de inactividad, lo que genera es una falsa seguridad, especialmente en las generaciones que no han tenido experiencia de erupción (OPS, 2000: 9).

La expulsión de la lava hirviendo puede generar derretimiento de hielos y glaciares, derrumbes y aluviones, o puede suceder la emisión de grandes concentraciones de gases y material particulado representado por las cenizas volcánicas.

Las víctimas se producen por el intenso calor, asfixia por cenizas y gases, heridas por explosión o ahogamiento en corriente de barro26 (Tarbuck y Lutgens, 1999: 82), traumatismos y aplastamientos por caídas de piedras o derrumbamiento de techos, o al ser quemadas por lava. La alta proporción de óxido de silicio en el magma y la lava puede producir a largo plazo mayor incidencia de silicosis (OPS, 2000: 9). Si bien los gases disueltos son vapor de agua (70%), dióxido de carbono (15%) y nitrógeno (5%), suele haber alrededor de 5% de dióxido de azufre, contaminante de la atmósfera (Tarbuck y Lutgens, 1999: 87).27

e. Huracanes

Los huracanes son **sistemas meteorológicos en espiral que contienen vientos de gran intensidad** y bancos de nubes tormentosas que producen fuertes lluvias. En su centro, el ojo del huracán, los vientos son ligeros, el cielo claro y la temperatura del aire cálida. En el océano

---

25 En Japón, Hawai y la costa oeste de EE.UU.
26 La erupción del volcán Venado de Ruiz (Colombia, 1985) inundó con una calada de barro al pueblo de Armero, en su ladera, provocando 23.000 muertos (OPS, 2000: 9).
27 Hay alrededor de ochocientos volcanes activos conocidos distribuidos en la Tierra. Sin embargo, la mayor concentración está en el “anillo de fuego” del Pacífico, que se inicia en el lado oriental de la península de Indochina, atraviesa los archipiélagos de Indonesia, Filipinas, Japón y Hawai, cruza el Atlántico y bordea la mayor parte del borde oriental de las Américas, incluyendo la cordillera de Los Andes. También hay volcanes activos en la periferia de Mar Mediterráneo, en el Cáucaso y en las islas de los distintos océanos. Hay mayor actividad volcánica bajo los mares que sobre la tierra, y se ubica a lo largo de los dorsales centro-oceánicos.

Las erupciones más conocidas en la historia fueron la del Vesuvio (Nápoles, Italia) que sepultó, en el año 79 d.C., las ciudades de Pompeya y Herculano; la del monte Fuji (Japón) en 1707; el de Lisboa (1755); la de Tambora (Indonesia) en 1815; la de Krakatoa (Indonesia) en 1883; la del Pelée (Martinica) en 1902; la del Katmai (Alaska) en 1912; la del Santa Elena (Washington, EE.UU.) en 1980; y la del Pinatubo (Filipinas) en 1991 (Tarbuck y Lutgens, 1999: 107).
HORACIO LUIS BARRAGÁN 126

Se desarrollan en la franja entre las latitudes 5° N y 20° S del Ecuador y en áreas donde la temperatura del mar es superior a los 27°C. Tienden a moverse hacia el oeste alejándose del Ecuador. Pueden llegar a tierra o extinguirse en el mar con temperaturas más frías. Los meses de verano y otoño son los más propicios para su formación.

Estas tormentas pueden alcanzar los seiscientos kilómetros de diámetro con vientos girando hacia el centro a velocidades de cincuenta metros por segundo, y se mueven a 15-30 Km/h. El ojo suele tener entre seis y cuarenta kilómetros de diámetro, con una corriente de aire cálido que desciende. Las lluvias que siguen alcanzan entre 80 y 150 milímetros y han llegado al orden de los 1.200 mm en cuatro días (Islas Mauricio, 1969). Surgen del vapor de la tormenta, que libera calor latente con desprendimiento de energía del orden de los 10^{12} kilovatios/hora/día (Hardy, 1983).

La mayor cantidad de víctimas se produce por las lluvias torrenciales e inundaciones que siguen a los fuertes vientos (OPS, 2000: 8).

f. Tornados
Los tornados son masas de aire inestable que giran velozmente alrededor de un área de baja presión atmosférica. A diferencia del huracán, su diámetro oscila entre los cincuenta y quinientos metros. Sus velocidades, difíciles de medir, se ubican entre los cincuenta y cien metros por segundo, mayor que los huracanes. El centro, de baja presión, puede hacer “explotar” edificios con presión interna superior. Se generan corrientes de aire ascendente que pueden impulsar personas, ganado o vehículos a grandes distancias (Candel Vila, 1971: 64). En la periferia se producen remolinos secundarios. Pequeñas piedras pueden despedirse como balas, y otros objetos que llegan a incrustarse en vehículos y edificios. Su cono negro y el ruido ensordecedor despiertan pánico.28

La prevención, como en el caso de los huracanes, depende de un eficaz y oportuno aviso meteorológico, cuya precisión es relativa a causa de la rápida velocidad de giro de estos fenómenos. La presencia de nubes en forma de embudo en las zonas propicias sirve de advertencia ante la posible existencia de un tornado. La defensa clásica es la disponibilidad de sótanos bien preparados como refugio (Hardy, 1983).

Se miden con la escala de Fujita, de 0 a 5, según la velocidad del viento (por ejemplo, 4: 335 Km/h) (Seaman, 1989: 21).

4. Los fenómenos localizados generan daños periféricos y a distancia

4.1. Desastres tecnológicos

Como se expresó al comienzo del capítulo, se tratarán en este apartado algunos desastres tecnológicos que son considerados como catástrofes localizadas, provocadas por las actividades realizadas por el hombre, tales como los accidentes nucleares y las fugas de sustancias químicas, que pueden afectar el ambiente y la salud de la población alejada y a cierta distancia de la ocurrencia del fenómeno.

28 En EE.UU. hay una zona, “el callejón del tornado”, que se extiende a lo largo del valle del Mississippi. Allí se concentran casi setecientos tornados anuales que llegan a producir cien muertos por año (Hardy, 1983). Se registran tornados en Japón, Rusia, Bangladesh, Australia, islas Fiji, Gran Bretaña y algunos países de Europa continental, islas Bermudas (Seaman, 1989: 19).
### Principales accidentes ambientales en el mundo

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Lugar</th>
<th>Actividad</th>
<th>Producto</th>
<th>Causa</th>
<th>Consecuencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 abril 1947</td>
<td>Texas City, Estados Unidos</td>
<td>Transporte marítimo</td>
<td>Nitrato de amonio</td>
<td>Explosión</td>
<td>552 muertos 3.000 heridos</td>
</tr>
<tr>
<td>4 enero 1966</td>
<td>Feyzin, Francia</td>
<td>Almacenamiento</td>
<td>Propano</td>
<td>BLEVE&lt;sup&gt;29&lt;/sup&gt;</td>
<td>18 muertos, 81 heridos Pérdidas de 68 millones de dólares</td>
</tr>
<tr>
<td>13 julio 1973</td>
<td>Potchefstroom, África del Sur</td>
<td>Almacenamiento</td>
<td>Amoníaco</td>
<td>Fuga</td>
<td>18 muertos 65 intoxicados</td>
</tr>
<tr>
<td>1 junio 1974</td>
<td>Flixborough, Reino Unido</td>
<td>Planta de Caprolactama</td>
<td>Ciclohexano</td>
<td>Explosión</td>
<td>28 muertos, 104 heridos Pérdidas de 412 millones de dólares</td>
</tr>
<tr>
<td>10 julio 1976</td>
<td>Seveso, Italia</td>
<td>Procesamiento en planta</td>
<td>TCDD&lt;sup&gt;30&lt;/sup&gt;</td>
<td>Explosión</td>
<td>Contaminación de un área extensa debido a la emisión de dioxina</td>
</tr>
<tr>
<td>6 marzo 1978</td>
<td>Portsall, Reino Unido</td>
<td>Transporte marítimo</td>
<td>Petróleo</td>
<td>Encalladura</td>
<td>230.000 ton Pérdidas de 85,2 millones de dólares</td>
</tr>
<tr>
<td>19 noviembre 1984</td>
<td>Ciudad de México</td>
<td>Almacenamiento</td>
<td>GLP&lt;sup&gt;31&lt;/sup&gt;</td>
<td>BLEVE Incendio</td>
<td>650 muertos, 6.400 heridos Pérdidas de 22,5 millones de dólares</td>
</tr>
<tr>
<td>3 diciembre 1984</td>
<td>Bhopal, India</td>
<td>Almacenamiento</td>
<td>Isocianato de metilo</td>
<td>Emisión tóxica</td>
<td>4.000 muertos 200.000 intoxicados</td>
</tr>
<tr>
<td>28 abril 1986</td>
<td>Chernobyl, Rusia</td>
<td>Fábrica nuclear</td>
<td>Uranio</td>
<td>Explosión</td>
<td>135.000 personas evacuadas</td>
</tr>
<tr>
<td>24 marzo 1989</td>
<td>Alaska, Estados Unidos</td>
<td>Transporte marítimo</td>
<td>Petróleo</td>
<td>Encalladura</td>
<td>40.000 ton 100.000 aves muertas</td>
</tr>
<tr>
<td>11 marzo 1991</td>
<td>Catzacoala</td>
<td>Procesamiento en planta</td>
<td>Cloro</td>
<td>Fuga</td>
<td>Pérdidas de 150 millones de dólares</td>
</tr>
<tr>
<td>22 abril 1991</td>
<td>Guadalajara, México</td>
<td>Conducción por ducto</td>
<td>Gasolina</td>
<td>Explosión</td>
<td>300 muertos</td>
</tr>
<tr>
<td>15 febrero 1996</td>
<td>Mill Bay, Reino Unido</td>
<td>Transporte marítimo</td>
<td>Petróleo</td>
<td>Falla operacional</td>
<td>70.000 ton 2.300 aves muertas</td>
</tr>
</tbody>
</table>


<sup>29</sup> *Boiling liquid expanding vapour explosion*. Explosión que ocurre en tanques de almacenamiento de gases licuados a presión, en los que, por ruptura o fuga, el líquido entra en ebullición, incorporándose masivamente al vapor en expansión. La causa más frecuente de este tipo de explosiones es debida a un incendio externo que envuelve al tanque presurizado, lo debilita mecánicamente y produce una fisura o ruptura del mismo.

<sup>30</sup> La TCDD o 2,3,7,8-TCDD es una de las dioxinas tóxicas más potentes y sirve como referencia para todas las demás dioxinas.

<sup>31</sup> GLP: gas licuado de petróleo. Es una mezcla gaseosa (propano y butano) presente en el gas natural o disuelta en el petróleo, fácilmente condensable.
a. El accidente de Bhopal

La ciudad de Bhopal (c. 400.000 habitantes) está ubicada en el centro de la India. En ella floreció una elevada cultura y se desarrolló una pacífica convivencia entre musulmanes, brahmanes y shiks.

La **Union Carbide** es una empresa estadounidense que produce gran variedad de productos químicos, incluyendo insecticidas. Uno de ellos, el Sevin. Se obtiene por una primera reacción de gas fosgeno con gas monometilamina, que produce **isocianato de metilo (MIC)**, y una segunda en la que este último reacciona con alfa-naftol generando Sevin. Este se usa combinado con arena o yeso para esparcir en los cultivos (Lapierre y Moro, 2001: 57).

Los isocianatos son altamente tóxicos, porque pueden generar vapores de ácido cianhídrico (ácido prúsico), que inhiben enzimas del metabolismo (entre ellas bloquea la citocromoxidasa, que interviene en la respiración celular, produciéndose la muerte por anoxia citotóxica). Sin embargo, se utilizan para **producir espumas sintéticas** (usadas en colchones y asientos de automóviles), paneles aislantes, síntesis de plásticos y otras sustancias. Entre los isocianatos orgánicos, los **poliuretanos** son de uso difundido en pinturas, barnices y lacas. Su descomposición por calor libera gas cianhídrico y monóxido de carbono (Adlauer, 1980: 280).

El MIC debe mantenerse refrigerado para evitar su vaporización, razón por la cual se prefiere producirlo a medida que se requiere, para evitar almacenarlo.

La Union Carbide estableció en Bhopal (1966) una planta de Sevin, incluyendo en ella tres cisternas de acero (2 x 13 metros) con capacidad para almacenar 120 Tn de MIC (Lapierre y Moro, 2001: 106), refrigerado con freón, una torre de descontaminación para absorber y un venteo a cuarenta metros de altura que quemaba los gases (Lapierre y Moro, 2001: 280). Además, un sistema de alarmas y sirenas advertía situaciones de riesgo.

La manga que indicaba la dirección del viento podía ser vista por los operarios y la sirena sonaba dentro de la fábrica. La primera no podía ser vista por los vecinos y la segunda apenas podían escucharla.

El 2 de diciembre de 1984, la fábrica estaba inactiva porque la demanda de Servin se había reducido. El personal era escaso y parte de él sin instrucción suficiente.

32 Los compuestos químicos que tienen en común el **radical cianico** son el ácido cianhídrico, el cianógeno y sus sales, los derivados cianohalogénados y los nitrilos. El ácido cianhídrico es un gas incoloro y volátil, con olor a almendras amargas, que se absorbe por vía respiratoria y también por la piel intacta. La inhalación de 0,3 mg/l de aire produce la muerte casi instantánea. El cianuro ingerido libera ácido cianhídrico por reacción con el ácido clorhídrico del estómago. En menor concentración, se presenta con irritación de la vía aérea superior y de las conjuntivas, pérdida de la conciencia, taquicardia y arritmias, disnea intensa y convulsiones con midriasis, hipertensión y finalmente paro respiratorio (Quer-Brossa, 1983: 211). En casos de sobrevida, pueden quedar secuelas neurológicas.

El tratamiento clásico instituido por la Escuela Toxicológica Argentina (1933; Quer-Brossa, 1983: 27) es generar metahemoglobina en la sangre, que capta el ión cianico. Se hace inhalar nitrato de amilo vigilando que la TA no se reduzca a menos de 80 mm Hg y se administra por vía endovenosa nitrato sódico al 3% (10 cc) e hiposulfito sódico al 30% (20 cc) o tiosulfato de sodio al 50% (25 cc). Se apoya con ARM y oxigenoterapia, se desnuda y lava al paciente con agua y jabón. Posteriormente se preconizó el uso de edetato cálcico de sodio (EDTA) o edetato de cobalto (Cobalto-EDTA).

33 Según el estudio periodístico de Lapierre y Moro, las abrazaderas y válvulas de las cañerías se reemplazaban cada doce meses en lugar de cada seis. En el interior de la planta había desorden y falta de limpieza (Lapierre y Moro, 2001: 196). La misma fuente señala que se había reducido la circulación de freón, con lo que la temperatura del MIC aumentaba. Se habían apagado los sistemas de seguridad y la torre de descontaminación. Los ingenieros que habían construido la fábrica eran muy estrictos en seguridad. Consideraban que quien pasaba por alto una válvula defectuosa o apretaba mal una abrazadera cometía una grave falta moral. Coincidián en que no se debía conservar en la planta nada más que un mínimo de sustancias tóxicas, tanto como para mantener el ritmo de la producción (Lapierre y Moro, 2001: 204, 208).

Sin embargo, ya habían ocurrido accidentes en la planta de Bhopal: dos intoxicaciones por fosgeno y un escape menor de MIC por ruptura de una abrazadera que obligó a evacuar la planta (1981 y 1982) (Lapierre y Moro, 2001: 182). También había habido protestas gremiales y denuncias periodísticas.

S. Kalelkar y A. D. Little presentaron una investigación en el Congreso de Ingenieros Químicos (Londres, 1988) cuyos resultados, en primer lugar, señalan las dificultades psicológicas y los sesgos por la experiencia traumática...
La catástrofe de Bhopal (Lapierre y Moro, 2001)

El 23 de diciembre de 1984 debía hacerse un lavado de las tuberías que conectaban las cisternas de MIC con otros procesadores de planta. Las instrucciones indicaban todas las válvulas que había que cerrar, pero aparentemente omitían indicar la colocación de unos discos que las comunicaban con las cisternas y las cerraban herméticamente. El agua de lavado debía salir por purgadores, pero lo hacía en baja proporción, parte de ella refluía a las cisternas y arrastraba contaminantes. En una de ellas se almacenaban 42 Tn de MIC. A las veinticuatro horas, los operarios comenzaron a percibir el olor picante del MIC, que ya gorgoteaba con desprendimiento de gases por los purgadores. Recién entonces leyeron el aumento de presión de la cisterna en los medidores, la que subió de 30 a 55 psig, altura a la que quedó bloqueada. Las válvulas que daban paso a la torre de descontaminación parecen haber estado cerradas. Al menos consiguieron aislar la conexión con una segunda cisterna, donde se almacenaban otras 20 Tn de MIC.

Pero la primera salió despedida de su armazón de hormigón en una explosión que abrió dos grandes escapes de gas. Se evacuó la fábrica en dirección Norte, ya que la manga indicaba viento hacia el Sur.

De la fábrica emergió una nube de cien metros de longitud compuesta por fosgeno, ácido cianhídrico y monometilamina. En las chabolas cercanas, al sur de la fábrica, una capa al ras del suelo comenzó a matar a los animales y al poco tiempo a las personas. Se produjo el pánico y la huida, cuanto más apresurada más mortal por rápida inhalación de los gases.

La masa gaseosa se expandió hacia la colonia ferroviaria, al pie de la explanada sobre la que estaba la fábrica, la central eléctrica y la Plaza de las Especies ocupada por un gentío festivo. Los primeros médicos que llegaron a la zona indicaron usar un pañuelo mojado sobre la boca y la nariz y aspirar lo menos posible.

Un tren cargado de pasajeros estaba por llegar a la estación, inundada de gases. Lograron impedir que se detuviera y continuara su marcha, con lo que salvaron muchas vidas.

Al parecer la empresa no había comunicado a las autoridades médicas de la comunidad el tipo de tóxicos que manejaba. El director del hospital Hamidia, el principal de la ciudad, logró la fórmula del administrador de la fábrica, organizó la atención de la catástrofe, movilizó a los estudiantes de la vecina Facultad de Medicina, a los médicos, enfermeras y farmacéuticos de la ciudad. No obstante sus cuidados, parece que no conocían la sustancia ni sus antídotos, pero aplicaron remedios sintomáticos eficaces para los menos contaminados. Reclamó muebles, vajillas y telas, con lo que se armó un hospital de campaña. El muftí de la Gran Mezquita la habilitó como hospital.

La unidad de ingenieros del Ejército Indio, de guarnición en Bhopal, evacuó en orden los barrios amenazados en segunda instancia y volvió a recoger sobrevivientes de los ya arrasados. Fueron auxiliados por la requisas de vehículos civiles. Las fuerzas armadas debieron también controlar a los saqueadores.

expuestos en las numerosas entrevistas con los testigos, así como las vallas que se opusieron a las primeras investigaciones de terreno a 48 horas del episodio. En segundo lugar, concluyen que el agua había penetrado al tanque de MIC en mayor cantidad que lo afirmado por otros informes y que sólo pudo hacerlo por conexión directa al tanque, y no a través de los sistemas de conexión que están diseñados para que no se produzca reflujo de agua, aun en ocasión de lavado. La investigación ilustra con numerosos argumentos y esquemas esta hipótesis, la cual lleva a los autores a sostener que la entrada de agua directa fue intencional y el episodio fruto de un sabotaje (Kalelkar y Little, 1988).

El informe de J. Browning, especialista en la Unión Carbide, coincide con el precedente y hace hincapié en los sistemas y normas de seguridad de la empresa y de la fábrica, así como en la asistencia inmediata y a largo plazo que la primera brindó a los afectados, las indemnizaciones del orden de los 470 millones de dólares, la construcción y el funcionamiento de un hospital (Browning, 1993).
Los servicios sanitarios debieron continuar la asistencia de los sobrevivientes. Los forenses, después de las primeras autopsias, debían identificar a los muertos por sus etnias, castas, religión, tatuajes, signos particulares, ropas u objetos de adorno y registrarlos. Después debían fotografiarlos para el reconocimiento de los familiares.
Finalmente, la comunidad tenía que dar destino a los cadáveres diferenciando sus religiones: los brahmanes se incineran en piras, los musulmanes y los shiks se entierran. El balance oficial fue de 3.800 muertos y 200.000 afectados.

b. El accidente de Séveso (1976) se produjo por una fuga de dioxina

Séveso es una ciudad ubicada a quince kilómetros al norte de Milán (Italia) que, con la zona vecina, reúne alrededor de 40.000 habitantes.
La empresa Hoffman La Roche, a través de su filial Givaudan, compró la industria Química Meda (ICMESA), ubicada en un municipio limítrofe de Séveso, y a partir de 1969 comenzó a producir 2,4,5-triclorofenol (TCP) (Aparicio Florido, 1976).
El 10 de julio de 1976, al finalizar el proceso de preparación de TCP, se produjo una reacción exotérmica en el tanque, se rompió una válvula y produjo un escape de gases tóxicos, comprendiendo la dioxina 2,3,7,8-tetraclorodibenceno-p-dioxina (TCDD),34 que formaron una nube impulsada por los vientos hacia el Sudeste a 18 Km/hora que afectó un espacio de 1.800 hectáreas.35
El control de la fuga se logró en poco más de una hora, pero ya se habían escapado a la atmósfera alrededor de 3.000 Kg de tóxicos, destacándose las dioxinas, cuya cantidad emitida no ha podido estimarse (entre 10 gr y 20 Kg). Se prohibió de inmediato que la población consumiera vegetales y frutos del área. Se recogieron, analizaron y conservaron muestras del suelo, 1 kg de TCDD se había depositado en el área sur de la fábrica (Aparicio Florido, 1976). Sin embargo, no se evacuó la población.
A los cinco días, se presentaron los primeros casos de dermatitis aguda en personas que los médicos atribuyeron a sustancias cáusticas, aunque la empresa recomendó considerar el TCDD. Ya habían muerto más de 3.000 animales pequeños (conejos, pájaros y aves de corral). El viento había evitado la contaminación en la cercanía de la fuga.
A los siete días se obtuvo información sobre la toxicidad de la dioxina y un mapa zonificando el grado de contaminación.
El TCP es la base para producir el desinfectante (fungicida y bactericida) hexaclorofeno, 2,2-Metilen-bis (3,4,6-triclorofenol)/ bis (3,5,6-tricloro-2-hidroxifenilmetano), componente de los jabones Gibandau.
Para evitar la concentración de dioxina, se ordenó el sacrificio de casi 80.000 animales pequeños, incluso por cacería de los silvestres. Se dispuso la evacuación de la zona más afectada. El gran número de instituciones que intervinieron dificultó una organización eficiente (Aparicio Florido, 1976: 543).

34 También llamado Tetra-cloro-dibenzo-para-dioxina, tiene gran estabilidad química y es liposoluble. Con él se preparó el agente o gas naranja usado en la guerra de Vietnam. Son fuente de dioxina los procesos de producción de cloro, PVE, plaguicidas y herbicidas, disolventes, blanqueadores de pasta de papel, incineración de residuos, erupciones volcanicas e incendios forestales.
35 El hecho era difícil de prevenir. Sin embargo, no había un análisis de riesgos en el interior de la fábrica, su personal los desconocía, los controles eran manuales y la alarma del tanque no incluía el aumento de temperatura. Por otra parte, el reactor había sido cargado y el proceso se interrumpió hasta el día siguiente. El método de destilación habitual había sido modificado y el sistema de venteo, para casos de alta presión, era directo a la atmósfera, cuando debía tener interpuesto un sistema de neutralización (por ejemplo, torre de lavado) (Aparicio Florido, 1976). Además, no se había establecido un plan de seguridad con la autoridad local. Todo se complicó porque era un fin de semana.
Ya se habían presentado 447 casos con quemaduras químicas y 193 casos de cloracné\textsuperscript{36} sobre 370.000 personas expuestas. Los efectos tardíos se manifestaron con el aumento de incidencia de enfermedades coronarias, de tumores de escasa manifestación y, a la inversa, con reducción de los habituales. Si bien no se detectaron malformaciones, siete años después se notó un significativo aumento proporcional de recién nacidos femeninos (feminización de la natalidad). Se refirieron afecciones del SNC y del sistema inmunológico.

La fábrica fue cerrada y la descontaminación del área obligó a un costoso tratamiento del suelo de casi 1.800 Ha, consistente en la mutilación de una capa superficial con palas excavadoras de entre veinticinco y cuarenta centímetros de profundidad. Esa tierra se depositó junto con los escombros de los edificios más contaminados y los restos de los animales sacrificados en dos depósitos subterráneos de 225.000 m\(^3\), lo que demoró cuatro años. Las casas fueron sometidas a succión de polvo y agua. La vegetación y el agua contaminadas encerradas en contenedores. La Roche tuvo que compensar al Estado italiano con más de 300 millones de francos suizos (Aparicio Florido, 1976).

c. Los reactores nucleares tienen riesgo de accidentes y catástrofes

Si bien los reactores nucleares se construyen con mecanismos y circuitos de seguridad, los accidentes y fugas de material radioactivo han sido numerosos.

<table>
<thead>
<tr>
<th>Año</th>
<th>Central</th>
<th>Región</th>
<th>País</th>
<th>Descarga</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>Windscale*</td>
<td>R. Unido</td>
<td>I(^{131})</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>Three Mile Island</td>
<td>Harrisburg (Pensylvania)</td>
<td>EE.UU.</td>
<td>I(^{131}), Sr(^{90}) y Cs(^{137})</td>
</tr>
<tr>
<td>1986</td>
<td>Chernobyl</td>
<td>Ucrania</td>
<td>I(^{131}), Sr(^{90}) y Cs(^{137})</td>
<td></td>
</tr>
</tbody>
</table>

Nota: * En esa central, el reactor de Calder Hall fue el primero en producir energía en cantidad (50 Mv). La instalación recibió posteriormente el nombre de Sellafield en reemplazo de Windscale.


Una de las fugas más frecuentes es la de Yodo radioactivo (I\(^{131}\)), que además de producir efectos nocivos en las personas directamente expuestas se deposita en el pasto y contamina la leche de las vacas (Hawkes, 1986: 35).

Se relacionaron con el episodio de Windscale brotes en racimo de leucemias infantiles en un pueblo a dos kilómetros de la planta (Glass, 1997).

En 1956, el Laboratorio Nacional de Brookhaven (EE.UU.) calculó los efectos potenciales del peor accidente posible y en las condiciones meteorológicas menos favorables en un reactor de 2.000 Wv (1/5 de la potencia del de Chernobyl), ubicado a 4,8 Km de una ciudad. El modelo de

\textsuperscript{36} Enfermedad de piel similar al acné producida por sustancias químicas halogenadas (fungicidas y herbicidas) y las dioxinas. Se desarrolla unos meses después de la ingestión, inhalación o contacto. La mayor parte de las veces se trata de una enfermedad ocupacional, pero también puede producirse después de una intoxicación accidental. La enfermedad se caracteriza por espinillas, quistes y pústulas cerradas y abiertas con un componente inflamatorio que, en el caso de los productos yodados, puede ser muy marcado. Las lesiones se desarrollan con mayor frecuencia en las mejillas, detrás de las orejas, en las axilas y en las ingles. Aunque las lesiones se parecen mucho a las del acné, la piel no es oleosa y, de hecho, las glándulas sebáceas son menores de lo normal.

\textsuperscript{37} La bomba atómica descargada en agosto de 1945 sobre Hiroshima era de uranio 235, y la de Nagasaki era de plutonio 239. En Hiroshima hubo 68.000 muertos y en Nagasaki 38.000 en el momento de la explosión, y a lo largo de los años 70.000 y 55.000, respectivamente. La Fundación para la investigación de los Efectos de las Radiaciones en Hiroshima, dirigida por el Dr. Itsuzo Shigematsu, se encarga de vigilar la salud de los sobrevivientes de la bomba.
máxima, estimando la liberación del 50% de sus isótopos radiactivo, ocasionaría (Hawkes, 1986: 37):

- 3.400 muertos rápidos (otros informes calcularon hasta 30.000).
- 43.000 heridos.
- 70.000 millones de dólares de daños a la propiedad.
- Mortalidad hasta veinticuatro kilómetros.
- Morbilidad hasta 72 kilómetros de diámetro.

Hubo numerosos estudios de este tipo y diversos conflictos con las Comisiones de Energía Atómica y las compañías de seguros en todo el mundo.

La condición peor reúne el daño de un reactor, la fundición del combustible, fallas en todos los sistemas de seguridad y una brecha en la carcasa (Hawkes, 1986: 40). Las condiciones meteorológicas comprenden los vientos y las lluvias; las demográficas, la distancia y densidad de población. Las condiciones de respuesta involucran, además, las acciones sobre el reactor, la velocidad y ampliación de la evacuación, al menos a cuarenta kilómetros de diámetro del lugar de la catástrofe, con prioridad en el radio de dieciséis kilómetros.38

**d. La explosión del reactor atómico de Chernobyl afectó parte de Europa**

La ciudad de Chernobyl (Ucrania) está aproximadamente a 150 Km de Kiev, la capital, y a seiscientos Km de Moscú (Rusia). Se ubica sobre las márgenes del Río Prypiat y cerca de los pantanos de Pripyat. La central nuclear, con cuatro reactores, se construyó a catorce kilómetros río arriba, al lado de una laguna, a partir de 1970 (Hawkes, 1986: 10).39

Las pilas nucleares estaban enterradas y cada reactor ubicado en un silo de cemento. El uranio en varillas, que era la fuente de energía, sumaba 200 Tm ubicadas en tambores de grafito y rodeadas de rodillos de acero al boro, reguladores de la reacción. Cada reactor se refrigeraba con agua purificada, cuyo vapor se utilizaba para generar electricidad.

Se afirmó que también producía plutonio 239 para armamento, lo que habría impulsado la puesta en marcha del reactor sin el diseño y la protección estructural más indicados (Frot, s/f).

El manejo era computarizado y con robots y el conjunto tenía tres barreras de seguridad.

Sin embargo, el 25 de abril de 1984, durante la guardia nocturna, hubo un escape de vapor y el reactor N° 4 explotó proyectando a la atmósfera una bola de fuego. El reactor era un RBMK40 y fue mejorado después del accidente.41

Hubo 31 muertos por efectos agudos entre el personal de la planta y 28 bomberos fallecieron tres meses después, de entre 134 irradiados del equipo de recuperación.

Entre los evacuados y el personal de recuperación del siniestro hubo un aumento de incidencia de suicidios y violencias, lo que se relacionó con la tensión psicológica.

El organismo especializado de Naciones Unidas, UNSCEAR (Comité Científico de Naciones Unidas sobre efectos de las radiaciones atómicas), informó que hasta el año 2000 se habían

---

38 Se ha calculado que se puede producir un accidente cada 10.000 o 100.000 por reactor (Frot: 41).
39 El río Prypiat es afluente del Dnieper. La planta se ubicó en la pequeña ciudad de Pripyat.
40 No tiene estructura de contención (por ejemplo, cúpula).
41 Los reactores soviéticos de agua presurizada UVER tienen estructura de contención. El reactor de Windscale era UNGG, no tenía estructura de contención, pero el plan de emergencia funcionó eficazmente. El de Three Mile Island, con estructura de protección y agua presurizada (PWR), y los de agua hirviente (BWR) no contienen grafito.

El tipo de reactor siniestrado tiene un diseño defectuoso: carece de sistema de filtración de gases y de contención estructural (como la cúpula de la central argentina de Atucha). Las barras de control de la reacción se insertan lentamente y el grafito muy caliente en contacto con el aire produce llamas. A baja potencia, el reactor es inestable. El accidente ocurrió con motivo de una prueba en esa condición que se hizo sin tener barras de control insertadas en el núcleo. El personal sin entrenamiento preciso pasó por alto los procedimientos de seguridad.
presentado 1.800 casos de cáncer de tiroides entre personas que eran menores de dieciocho años al momento del accidente, y se registraron diez muertes por esa causa (Frot, s/f).

El cáncer de tiroides tratado precozmente, como se hizo, tiene baja letalidad. No obstante, si se hubiera aplicado a los expuestos yodo estable (cápsulas de yoduro de potasio) en una sola dosis oral para saturar la tiroides, como se hizo en Polonia, se hubiera impedido la captación de Yodo 131 radioactivo. Tampoco se prohibió de inmediato, sino sólo después de siete días, el consumo de leche, verduras y frutas frescas del área afectada durante ocho días, que es la vida media del Yodo 131 (Frot, s/f). Hay también procedimientos para contrarrestar los efectos del cesio y el estroncio radioactivo.

No se registraron casos de leucemia, la primera enfermedad que aparece en episodios de radiación como en Hiroshima y Nagasaki, ni de otras formas de cáncer, así como tampoco de anomalías congénitas.

La falta de información precisa a la población postergó por 36 horas la norma de encerrarse en las casas con puertas y ventanas cerradas. No se trasladó el ganado a áreas libres de contaminación. No se proveyó de ropa de protección y respiradores al personal de recuperación. La población del pueblo más cercano fue evacuada recién 36 horas más tarde.

La radiación extendida fue detectada por mediciones ambientales de organismos suecos, ya que no se dio aviso oportuno a los países vecinos.

Años después, el accidente fue estudiado con cooperación internacional y se adoptaron medidas de prevención y planes de emergencia.
Bibliografía

Ameghino, F., Las secas y las inundaciones en la provincia de Buenos Aires. Obras de retención y no obras de desagües, La Plata, Secretaría de Política Ambiental, s/f.
Bialet Masse, J., Informe sobre el estado de las clases obreras argentinas a comienzos del siglo, Buenos Aires, Centro Editor de América Latina, Tomo 1, 1985.
Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), Cuidar el clima: guía de la convención sobre el cambio climático y el Protocolo de Kyoto, Prefacio de J. Waller-Hunter, Bonn, 2004.
Fuschini Mejía, M. C., “Las inundaciones provocadas por el Río Paraná”, en Centro para la Promoción del Suelo y el Agua (PROSA), El deterioro del medio ambiente en la Argentina, Buenos Aires, FECIC, 3ª edición, 1996.


Haddad, E., Curso de Autoinstrucción en prevención, preparación y respuestas para desastres por productos químicos, San Pablo, CEPIS/OPS/OMS, cap. 1, anexo 2, 2004.


Hardy, R. y otros, El libro del clima, Barcelona, Hyspamérica, 1983.


http://www.unizar.es/guiar/1/accident/seveso.html


Martino, D., Los sumideros de carbono en el Mecanismo de Desarrollo Limpio del Protocolo de Kyoto: Taller sobre el Protocolo de Kyoto, Ministerio de Vivienda Orden, Territorio y Medio ambiente, Montevideo, agosto de 2000, resumen.


DESARROLLO, SALUD HUMANA Y AMENAZAS AMBIENTALES 135
FACTORES MICROAMBIENTALES QUE PRODUCEN ACCIDENTES

Horacio Luis Barragán
B. Marcela Walker
Gustavo Jaluf

1. Capital Social. Cultura y desarrollo

Antes de entrar directamente en el tema que nos ocupa en este capítulo, es decir, los factores de micronivel como productores de accidentes y otros perjuicios para la salud, es necesario reforzar la historia de producción de los condicionantes que llevan a que determinados microniveles sociales se construyan de manera tal que los propios individuos vean amenazadas sus vidas, transcurriendo estas en riesgos constantes y buscando luego en el “afuera” las responsabilidades del caso o simplemente pensando que “se tiene un Dios aparte”.

El crecimiento económico sostenido y equitativo y el progreso social van de la mano y se potencian para que en un marco de pluralismo los individuos y sus familias progresen en igualdad de oportunidades. La manera que tienen las personas de “vivir juntos”, sus valores y sus costumbres compartidas, es decir, su cultura, son un factor decisivo de cohesión social, es un capital social que se presenta como un factor esencial y sustentable a los fines del desarrollo (Klisberg, 1999).

Así, Klisberg confronta cultura y desarrollo, aun reconociendo la brecha que existe entre ambos. Esa confrontación la expone en la realidad con argumentos contundentes acerca de su mutua potencialidad. Políticas que integren estos dos aspectos, “cultura” y “capital social”, a los ya conocidos tendrán más posibilidades de alcanzar resultados exitosos toda vez que replantea el desarrollo sobre la base de las potencialidades, habilidades y saberes aprendidos que son esencia de la realidad. Reditar estos determinantes no sólo como meros instrumentos, sino como valores positivos en sí mismos, cultura y salud, debe tener una incorporación efectiva en acciones concertadas entre el Estado y la sociedad civil.

La vida cotidiana de amplios sectores se ve afectada por necesidades agudas que asientan sobre carencias crónicas, impidiendo respuestas más profundas y estructurales. Se han indagado experiencias concretas redescubriendo cómo en la vida cotidiana, en el medio microsocial, constituyen potentes instrumentos de construcción histórica de la salud. Continuando con esta línea de construcción, la idea está puesta en el respeto que merece la complejidad de la realidad misma. Se trata entonces de buscar perspectivas integradoras de variables múltiples. Como dice Klisberg:

los objetivos finales del desarrollo tienen que ver con la ampliación de las oportunidades reales de los seres humanos de desenvolver sus potencialidades. Una sociedad progresa efectivamente cuando los indicadores clave como años que la gente vive, calidad de su vida y desarrollo de su potencial avanzan. Las metas
técnicas son respetables y relevantes, pero son medios al servicio de esos objetivos finalistas... La elevación del PBI (Producto Bruto Interno) per cápita, por ejemplo, aparece en la nueva perspectiva como un objeto importante y deseable, pero sin dejar de tener nunca en cuenta que es un medio al servicio de fines mayores, como los índices de nutrición, salud, educación, libertad y otros...

Para otros autores, el capital social se presenta tanto en el plano individual como en el colectivo. En el primero tiene que ver con el grado de integración social de un individuo. Su red de contactos sociales implica relaciones, expectativas de reciprocidad, comportamientos confiables. Pero también es un bien colectivo. Por ejemplo, si todo un vecindario sigue normas tácticas de cuidar al otro y no de agresión, los niños podrán caminar a la escuela y cruzar una calle con seguridad y el capital social estará produciendo orden público. La familia es un componente central del capital social con una gran influencia positiva potenciando la participación.

De este modo, la salud no se puede valorar aisladamente. Depende de la calidad del ambiente en que la gente desarrolla su vida cotidiana. Para que la gente esté sana se necesita un ambiente sano. Pero una cosa es tan cierta como esto último, y es el papel protagónico de una comunidad y su gente a la hora de valorar y preservarlo. Las prácticas de Salud Pública y Salud Comunitaria deben ubicar a los grupos humanos en el centro. La idea es trabajar juntos, tanto por el medio ambiente como por la gente.

En ese marco, hay posibilidades de prevenir la diversidad de accidentes de micronivel que pueden producir pocas víctimas o centenares de ellas.

2. Incendios

2.1. Los incendios de casillas precarias, de madera, iluminadas por farol a querosén o calefaccionadas con braseros son noticias frecuentes en los diarios.

Dos mellizos de 16 meses murieron ayer carbonizados al incendiarse una humilde casilla en la zona rural de Villa Esther, 15 km al sur de Rosario. La hermanita de 6 años se salvó porque una vecina logró abrir la puerta (al oír los gritos) que la madre había dejado cerrada con candado. (Clarín, 27 de mayo de 1996)

Breve historia social: la madre embarazada debe salir a hacer compras, el padre peón de huerta trabaja todo el día; casa a quince kilómetros del pueblo, con dos compartimientos, piso de tierra, techo de paja, pared de madera; sin electricidad ni gas ni agua (la obtienen de un bombeador a diez metros). A esas condiciones se agregan el farol o el brasero y la puerta con candado. Una sumatoria de factores de riesgo en red.

2.2. Si bien menos frecuentes, en edificios de mampostería los incendios sin control suelen cobrar muchas víctimas.

Aproximadamente 80 muertos y más de cien heridos de diversa consideración fue el saldo de un incendio registrado en un instituto ubicado en el barrio de Saavedra en la ciudad de Buenos Aires. (La Nación, 27 de abril de 1985)

Se trataba de un establecimiento de cuatrocientas camas distribuidas en seis pisos para internación de pacientes psiquiátricos y geriáticos. Según los relatos periodísticos, el fuego
comenzó en el tercer piso a las 21:15 hs y se extendió velozmente por la gran cantidad de elementos combustibles. Los internados estaban ya acostados. Con la alarma, algunos consiguieron salir por sus propios medios. El personal de todas las jerarquías se comportó con heroísmo, sacando a los incapacitados que pudieron. Los extintores estaban en buenas condiciones, pero no fueron usados. Se discutió si había o no rejas en algunas ventanas (algunos establecimientos psiquiátricos las tienen), pero, según los relatos periodísticos, no había salida de emergencia. Si se abrían las ventanas, la corriente de aire avivaría las llamas, pero si no se abrían el humo inundaría los locales. La mayoría de las víctimas murió asfixiada por humo.

Los bomberos, la Policía Federal, el Centro de Emergencias Municipal y el personal del establecimiento actuaron con rapidez y eficacia. Consiguieron evacuar a la mayoría de los internados y finalmente controlar el fuego. Las víctimas fueron trasladadas al Complejo Hospitalario Churruca-Visca (Policía Federal Argentina), a varios hospitales municipales y privados y los más graves al Instituto del Quemado (Municipalidad de la Ciudad Autónoma de Buenos Aires). Los familiares se agolpaban en las esquinas.

El edificio era viejo pero conservado, aunque con muchos compartimientos, no había plan de evacuación y no se había presentado en Bomberos el plano de prevención de incendios (La Prensa, 20 de abril de 1985).

En los EE.UU., los incendios son frecuentes. En 1988 se registraron más de 550.000 episodios con 5.000 muertos y más de 22.000 lesionados. Aunque sólo el 23% de los incendios se genera en hogares, en ellos se produce el 80% de las muertes y el 78% de los lesionados. Son más frecuentes en áreas aisladas, barrios marginales y casas móviles1. Las muertes inciden más en menores de cinco años, mayores de 64 y en individuos alcoholizados (Runyan, 1992). Los incendios de domicilios se relacionan, en EE.UU., primero, con cigarrillos mal apagados y olvidados, segundo, con fuego intencional y, tercero, con equipos de calefacción.

2.3. Los conflictos internos en las cárceles generan violentas riñas, toma de rehenes de personal y a veces incendios.

Un total de 33 reclusos del penal de Olmos, perdieron la vida anoche, durante un trágico incendio desatado en esa unidad carcelaria distante a 8 km de nuestra ciudad (La Plata, Prov. Bs As), en tanto los heridos, con quemaduras de distinta consideración, sumaron doce... (El Día, 6 de mayo de 1990)2

Descartada la hipótesis de un motín, se supo que en una pelea entre dos internos, uno de ellos arrojó al otro un calentador de querosén que inició el fuego entre mantas y colchones. Las llamas se extendieron a todo un pabellón en veinte minutos. Pudo ser controlado por personal del penal, pero las víctimas del pabellón no pudieron salvarse.

Los bomberos y el personal sanitario concluyeron el operativo y trasladaron a los sobrevivientes lesionados a cuatro hospitales provinciales. Los familiares y amigos se agolparon en la puerta del penal (El Día, 7 de mayo de 1990).

Uno de los guardias, en crisis de angustia, dijo: “Nunca podré olvidar los alaridos de los hombres que se estaban quemando vivos” (El Día, 6 de mayo de 90).

---

1 En las casas móviles de EE.UU., desde 1976, es obligatorio tener detectores de humo y materiales poco combustibles, divisores con barreras de fuego y al menos dos salidas. Su aplicación redujo las muertes de 23 a 6 por cada 1.000 incendios (1987) (Baker, 1992).

2 En 1978, en la penitenciaria de Villa Devoto (ciudad de Buenos Aires), un incendio mayor causó la muerte de 74 internos.
2.4. Los centros comerciales con gran aglomeración de gente constituyen ámbitos donde también se producen incendios.

Perú vivió este fin de semana una de las peores tragedias de su historia cuando un incendio en el centro comercial de Lima mató al menos 289 personas e hirió a otras 160. Un artefacto pirotécnico provocó llamas que devoraron cuatro cuadras en cuestión de minutos. (La Nación, 31 de diciembre de 2001)

Más de cuatrocientos bomberos lucharon contra setenta focos de incendio. Tuvieron dificultades para llegar por la densidad del tránsito en el centro de Lima a las 19 hs y por la multitud en vísperas de año nuevo. Sin embargo, controlaron el siniestro en seis horas. Muchas víctimas murieron asfixiadas por humo, otras calcinadas. Héroes anónimos salvaron, con riesgo, a muchas personas.

Terminados los rescates, la policía debió controlar los saqueos de los comercios que no habían sido afectados.

A la madrugada, familiares y amigos recorrían los hospitales y la morgue buscando a sus seres queridos.

2.5. Las fábricas acumulan cantidad de factores de riesgo que pueden producir incendios.

Minutos antes de la madrugada del 22 de diciembre último, el fuego comenzó en un galpón [del parque industrial de Pilar, Prov. Bs As] por el fuerte viento las llamas se expandieron a dos galpones [...] la rápida intervención de los socorristas evitó que las llamas se propagaran a un tercer depósito. En esa oportunidad fallecieron dos bomberos voluntarios [...] cuando el autobomba [...] chocó de frente contra un camión... (El Diario, 4 de enero de 2005)

Los materiales depositados en los galpones eran altamente inflamables. Es probable que no se haya delimitado un camino de entrada y salida vehicular de emergencia, lo que pudo facilitar el choque.

2.6. Los centros de recreación juveniles, para escuchar música o bailar, corren asimismo riesgo de incendios.

192 personas murieron la agobiante madrugada del pasado 30 de diciembre [de 2004]. Ese día, un fanático del grupo de rock Callejeros expresó su fidelidad a la banda encendiendo una bengala que desató la tragedia de República Cromagnon, una discoteca de la ciudad de Buenos Aires. (National Geographic, abril de 2005)³

Según el informe periodístico, varios factores, frecuentes en ese tipo de recitales, se conjugaron para generar la tragedia: el espacio central (35 x 30 metros) con capacidad para 1.100 personas estaba ocupado por más del doble; había una sola puerta de entrada y salida; las salidas de emergencia estaban anuladas; los techos eran de tela y espuma inflamable; los participantes encendían bengalas mientras los músicos pedían que no lo hicieran. Una de ellas alcanzó el...
techo y se inició el incendio, el pánico y el escape. Los auxilios llegaron rápido, oficiales y voluntarios, pero no pudieron ser bien coordinados.

3. Intoxicaciones por aire

3.1. Hay tóxicos potentes que, por falta de precauciones y por irresponsabilidad civil, producen tragedias puntuales.

hasta el momento son seis los muertos a causa de la inhalación de gases con residuos de cianuro emanados de una cloaca en una vivienda de la ciudad de Avellaneda (Prov. Bs As); alrededor de 200 personas debieron ser hospitalizadas con distritos grados de intoxicación... (La Razón, 28 de septiembre de 1993)

Los cuatro habitantes de la vivienda afectada, así como la médica y el camillero que acudieron a atenderlos, murieron intoxicados por ácido cianhídrico. Hubo tres casos graves que sobrevivieron, entre ellos, uno de los cuatrocientos alumnos de una escuela sita a cincuenta metros de la vivienda referida.

La policía provincial evacuó doscientas personas de dos cuadras a la redonda, otras ya se habían autoevacuado. Hubo quienes se quedaron por temor a los saqueos.

Se tomaron muestras de aguas cloacales de la vivienda que, en coincidencia con los resultados de las necropsias, corroboraron la presencia de ácido cianhídrico. Tres casos graves y más de doscientos afectados fueron atendidos en el hospital Pedro Fiorito y en el Presidente Perón (ex Finocchieto), ambos de Avellaneda.

Se incautó un camión de un depósito fabril, ubicado a doscientos metros de la vivienda, en el que se detectaron indicios de cianuro. Se comprobó que el desagüe cloacal de la casa era antiguo, estaba unificado con el pluvial (lo que está prohibido) y no tenía el sifón con sello de agua para impedir la subida de gases (La Razón, 28 de septiembre de 1993).

Los vecinos reclamaron al intendente aduciendo que hacía ya meses que habían denunciado muertes instantáneas de perros y gatos domésticos junto con la percepción de un olor extraño (Diario Popular, 29 de septiembre de 1993).

Las autoridades políticas de la Intendencia, el Concejo Deliberante, la Secretaría de Recursos Naturales y Ambiente Humano nacional y el organismo provincial así como los directivos de Aguas Argentinas comenzaron a inculparse mutuamente por la falta de controles (El Sol, Quilmes, 28 de septiembre de 1993). Las conexas clandestinas de efluentes industriales a desagües pluviales son frecuentes en el Gran Buenos Aires (Clarín, 29 de septiembre de 1993; Crónica, 29 de septiembre de 1993).

3.2. El monóxido de carbono (CO) es el gas tóxico que más muertes origina, ya sea por el uso de artefactos precarios (por ejemplo, calefones) y por la mala ventilación.

Diez y seis personas murieron asfixiadas con monóxido de carbono en los últimos 38 días en Capital Federal. Las autoridades temen que este año, por la intensa ola de frío, se supere el récord de 1993, cuando casi 50 personas murieron en la Capital por accidentes de este tipo... (Clarín, 21 de julio de 1995)

Doce chicos y dos mujeres murieron ayer asfixiados por respirar el monóxido de carbono que emanaba de braseros utilizados como calefacción. Las víctimas fueron
cinco hermanitos y siete chiquitos de la comunidad wichí, que murieron en Formosa junto a su madre. (Clarín, de julio de 1996)

Las casillas precarias en la que se utilizan braseros generan incendios e intoxicaciones por monóxido de carbono. Este último, paradójicamente, sería más frecuente si la misma precariedad no ofreciera innumerables resquicios por donde puede escapar el gas (El Día, 28 de enero de 1986).

En invierno, dentro de automóviles con todo cerrado, con mala combustión del motor, más aún si se fuma, puede haber intoxicaciones por CO.

En la ciudad de Buenos Aires se producen entre cuarenta y cincuenta muertes al año por CO, relacionadas con las emisiones de calefones, estufas o termotanques. En 1996 se estudiaron las causas:

<table>
<thead>
<tr>
<th>Causa</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta de conducto</td>
<td>39</td>
</tr>
<tr>
<td>Déficit de instalación</td>
<td>17</td>
</tr>
<tr>
<td>Desplazamiento del conducto</td>
<td>11</td>
</tr>
<tr>
<td>Obstrucción del conducto</td>
<td>4</td>
</tr>
<tr>
<td>Otras</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Ámbito Financiero, 18 de julio de 1997.

Los departamentos pequeños con instalación de gas son propicios a la misma intoxicación cuando los calefones o estufas están ubicados en los baños o dormitorios y no tienen ventilación o ella está obstruida o desplazada. No es suficiente la válvula de seguridad, y la observación de una combustión anormal del gas indica alguna anomalía que debe motivar la ventilación inmediata y la consulta a un técnico.

En el Reino Unido se registraban cincuenta muertos y doscientos con intoxicación subletal por año, lo que motivó un operativo de 250.000 clausuras de equipos de gas en un año. En Chesterfield hubo un brote con cinco muertos de una familia por reflujo desde una chimenea tapada (Clarín, 21 de junio de 1995 y 01 de junio de 1996; British Medical Journal, 1999).

En Corea se utilizan chimeneas horizontales bajo el suelo, y en 1982 se registraron 3.000 muertos y casi un millón de admisiones hospitalarias por esta intoxicación, doscientos de los cuales se recuperaron aplicándoles cámara hiperbática (British Medical Journal, 1999).

Se estima que por cada muerto hay 77 casos subdiagnosticados por cuadros imprecisos (cefaleas de invierno, niños con trastornos gastrointestinales). Debe pensarse en el monóxido cuando consultan dos o más personas de una misma casa (ibidem).

Las intoxicaciones agudas domiciliarias afectan a grupos pequeños, en general tanto como a los ocupacionales. Sin embargo, las catástrofes naturales o industriales suelen generar intoxicaciones masivas (cfr. Bhopal). A ellas se agregan la guerra y el terrorismo químico. Ello obliga a la planificación para afrontar estos fenómenos.

En las intoxicaciones agudas por vía aérea se ha preconizado un tratamiento empírico toda vez que este debe iniciarse inmediatamente a la exposición, al mismo tiempo que la evacuación y descontaminación. A tal efecto, Kales y Christiani (2004) recomiendan:
• Quienes están fuera, alejarse en sentido contrario al viento.
• Quienes están dentro de otro recinto que el invadido, cerrar puertas y ventanas y apagar sistemas de calefacción o ventilación que ingresan aire del exterior.
• A quienes están contaminados o sospechosos de estarlo se les debe quitar la ropa y bañarlos con agua y jabón, lo que puede remover hasta un 85-90% del tóxico. Se irrigan los ojos con agua.
• Si hay personal de protección con equipo de protección, y preferentemente con detectores de radiación, son ellos quienes deben realizar las maniobras; quienes quieren hacerlo sin entrenamiento y protección pueden intoxicarse ellos mismos.
• En accidentes masivos, deben clasificarse los afectados, teniendo en cuenta que los que han sufrido exposición mínima pueden descontaminarse en forma ambulatoria e ir por sí mismos al hospital.
• En esos accidentes, los afectados por estrés están en el rango de 5/1 y 16/1 respecto de los afectados físicamente. Los primeros deben recibir apoyo psicológico.
• Los hospitales locales en áreas de riego deben tener stock de diazepán, atropina, pralidoxime, naloxona y kits de antídotos para ácido cianhídrico\(^4\) y derivados.

Los agentes se clasifican desde el mismo punto de vista empírico (Kales y Christiani 2004: 802):

<table>
<thead>
<tr>
<th>Características</th>
<th>Asfixiantes químicos*</th>
<th>Inhibidores de la colinesterasa</th>
<th>Irritantes del tracto respiratorio</th>
<th>Vesicantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuentes en pérdidas accidentales</td>
<td>Monóxido de carbono</td>
<td>Pesticidas órgano-tosforados</td>
<td>Cloro y derivados</td>
<td>Cloro y fósgeno</td>
</tr>
<tr>
<td>Frecuentes en actos de terrorismo</td>
<td>Ácido cianhídrico y cianuros</td>
<td>Sarin VX, Soman, Tabum</td>
<td>Cloro y fósgeno</td>
<td>Mostaza sulfurada</td>
</tr>
<tr>
<td>Efectos</td>
<td>Hipoxia tisular sin irritación ni secreciones. No cae necesariamente la PpO₂. La anaerobiosis lleva a la acidosis láctica</td>
<td>Miosis, hipersecreciones, fasciculaciones (estimulación colinérgica)</td>
<td>Irritación de vías respiratorias, ojos y piel</td>
<td>Lesiones oculares y dérmicas vesiculadas e irritación respiratoria</td>
</tr>
<tr>
<td>Síntomas moderados</td>
<td>Cefaleas, fatiga, ansiedad, irritabilidad, vértigo</td>
<td>Miosis, visión borrosa, dolor ocular, rinorrea, sudoración, opresión precordial, cefalea, irritación</td>
<td>Irritación de nariz, garganta y ojos, tos, opresión precordial</td>
<td>Conjuntivitis, eritema, epistaxis, dolor de garganta, tos</td>
</tr>
</tbody>
</table>

\(^4\) Hay un kit de Laboratorios Lilly para intoxicación por cianuros.
<table>
<thead>
<tr>
<th>Síntomas moderados a severos</th>
<th>Disnea, alteración mental, isquemia cardíaca, coma, convulsión. Hipotensión con CN₃</th>
<th>Salivación, lagrimación, delecación, cólicos y vómitos, quiniera, debilidad muscular, fasciculaciones, debilitación cognitiva, incontinencia, coma, convulsiones</th>
<th>Laringitis, ronquera, estridor, edema laringeo, lesión pulmonar aguda.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cuadro hiperagudo (colapso súbito)</th>
<th>Alta concentración de ácido cianhídrico o hidrógeno sulfurado y reducción de oxígeno en espacio confinado</th>
<th>Alta exposición a los tóxicos</th>
<th>Lesión corneal, vesículas y bullas, quemaduras, náuseas, ronquera, estridor, edema laringeo, lesión pulmonar aguda</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cuadro agudo (minutos u horas de exposición)</th>
<th>Varias exposiciones o reducción de oxígeno</th>
<th>Exposición a vapores, ingesta líquida o exposición dérmica prolongada</th>
<th>Concentración alta de irritantes solubles en agua (amonio, ácido clorhídrico, cloro)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cuadro subagudo (cuatro a seis horas de exposición)</th>
<th>Concentración baja o moderada de metabolitos</th>
<th>Exposición dérmica limitada a gotas pero no a vapores</th>
<th>Gases poco solubles (fósigeno, dióxido de nitrógeno)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tratamiento (en todos los casos, según cuadro, sostén cardiorespiratorio)</th>
<th>- CO: oxígeno al 100%  - Ácido cianhídrico: oxígeno 100%, nitrato de sodio y thiosulfato  - Sulfuro de hidrógeno: oxígeno 100%, nitrato de sodio (no thiosulfato)  - En todas, si es posible, cámara hiperbárica</th>
<th>Atropina, pralidoxime y diazepina (se aplica en la intoxicación cianhídrica si hay convulsiones)</th>
<th>No hay medicación específica</th>
</tr>
</thead>
</table>

*Se consideran asfixiantes simples el nitrógeno y el metano, que sólo desplazan el oxígeno.*

4. Electrificación

4.1. Los accidentes eléctricos no laborales se pueden producir en los domicilios y en los lugares más inesperados.

el papá [...] que había llevado a Dion (de casi dos años) a la plaza a una cuadra de su casa y vio cómo el nene se caía sobre un cable [...] El nene estuvo dos días internado [...] aunque la única secuela visible son las graves quemaduras en las manos. Hace dos meses sacaron un poste del centro de la plaza que se había caído pero dejaron un cable sin aislar en medio del parque... (Clarín, 26 de febrero de 1996)

A fines de la semana pasada [un niño de 4 años] murió al pisar un cable mientras jugaba al fútbol [una mujer de 58 años] sufrió una descarga [...] al apoyarse en una pared electrizada [...] Una nena de diez años [...] fue víctima de la descarga de un pilar de luz ubicado en un predio municipal [...] tres trabajadores [...] murieron mientras realizaban tareas de mantenimiento en un cable de teléfono [...] un nene de cinco años recibió una descarga de un juego electrónico [...] que le produjo un paro respiratorio... (ibidem)

El adolescente de 14 años se encontraba cortando el pasto con una máquina eléctrica, hasta que en un momento determinado el aparato habría sufrido un desperfecto y electrocutó al menor [...] Se encontraba con el torso desnudo y descalzo cuando realizaba el corte de pasto y habría cortado en forma involuntaria el cable con la cuchilla de la cortadora. (Paraná, 24 de enero de 2007)

Un joven vecino de la ciudad de San Javier perdió la vida al momento de recibir una fuerte descarga eléctrica cuando la víctima [...] de 18 años de edad, trabajaba en el jardín de su casa con una cortadora de césped, artefacto que habría entrado en cortocircuito. (El Litoral, 14 de enero de 2007)

El contacto con un circuito eléctrico produce la transmisión de la corriente al cuerpo humano hacia tierra. No ocurre si la persona está aislada de ella y protegida. Pero si no lo está, la humedad de la piel y del piso aumentan la conductividad, más aún si tiene una herida en la mano con discontinuidad en la piel.

La corriente alterna es más peligrosa que la continua porque, en general, produce tetanización muscular, aumento del sudor y la víctima queda “pegada al contacto”.

La mayoría de los accidentes domésticos se producen por contactos con circuitos alternos de bajo voltaje (menor de mil voltios), entre 120 y 240 voltios y frecuencia de entre 50 y 60 hertzios. En esos parámetros, el riesgo mayor inmediato es la fibrilación ventricular.

La lesión tisular y el edema pueden evolucionar a la necrosis, a los síndromes musculares compartimentales con compresión vascular y nerviosa, a la hipovolemia, hipervolemia, oliguria, microhemoglobinuría con su eventual complicación de insuficiencia renal aguda. Se previene con hidratación que mantenga una diuresis de 50 a 75 ml/hora o más.

Las contracciones o las caídas del electrocutado pueden producir fracturas y luxaciones. Toda persona electrocutada debe considerarse con fractura de columna cervical y moverla o transportarla con las precauciones inherentes.

A mediano plazo, los sobrevivientes pueden sufrir infecciones a anaeróbicos en las lesiones hipovascularizadas, lesiones de nervios periféricos, de médula espinal, cataratas y síndromes psiquiátricos (Lee, 2001: 3024).
Con los altos voltajes (mayores de mil voltios) el riesgo inmediato más frecuente es la asistolia, por lo que la reanimación cardiopulmonar inmediata y prolongada puede ser efectiva.

4.1.1. Accidente eléctrico: el paso directo o indirecto\(^5\) de una corriente eléctrica externa a través del cuerpo produce un choque eléctrico y el individuo sufre electrización, que, si es seguida de muerte, se llama electrocución. Las tasas de muerte por electrocución se ubican en un rango de entre 3 y 0,5 fallecidos por millón de habitantes, estimándose que la mitad de ellos se accidenta en el trabajo y la otra mitad en el hogar o la recreación (Cutuli et al., 1978).

Para que circule corriente por el cuerpo, considerando que los organismos vivos son conductores de electricidad, debe haber: a) diferencia de potencial entre dos puntos del mismo; b) un circuito cerrado; c) unión de ambos puntos por un conductor.

Los efectos de la electricidad sobre el organismo dependen de:

- **La intensidad de la corriente** (expresada en miliamperes: mA): tiene distintos umbrales según el tipo de corriente y de acuerdo con la edad, el sexo y otros factores individuales, así como con el área y la presión de contacto:
  - Entre 1 y 3 mA: umbral de percepción con cosquilleo pero sin dolor (1,1 mA para corriente alterna y 5,2 para continua).
  - Entre 3 y 15 mA: imposibilidad de soltarse y posibilidad de ser proyectado con violencia (15 mA para corriente alterna y 76 mA para continua), valores que son inferiores para la mujer y casi nulos para los niños; a 30 mA la posibilidad de separarse es nula\(^6\).
  - Entre 10 y 15 mA: tetanización de músculos de mano y brazo.
  - A 25 mA se tetanizan el diafragma y los músculos torácicos con la consecuente dificultad respiratoria.
  - Desde 25 mA en adelante: riesgo de fibrilación ventricular (200 mA en corriente continua); con 45 mA se produce en 5 segundos. La fase crítica de la fibrilación en tiempos inferiores a un ciclo cardíaco (750 milisegundos) es la onda T del electrocardiograma (150 milisegundos). No se produce esta arritmia si el tiempo es inferior a 20 milisegundos.

- **La tensión o diferencia de potencial** (expresada en voltios: V)\(^7\): la tensión de seguridad se establece en 24V (Cutuli et al., 1978: 88); las superiores a los 40V ya son peligrosas (Estrada Cuxart y Tudela Hita, 2000: 2663); la fibrilación ventricular es más frecuente en el rango entre 300 y 800V; considerando que, según la ley de Ohm,\(^8\) la tensión es directamente proporcional a la resistencia y a la corriente, así, con 2.000V y una resistencia casi nula, la corriente que circula es aproximadamente de 2.000A; a su vez, si la resistencia es muy reducida y se expone a una tensión de 60V, la corriente asociada puede producir fibrilación (Cutuli et al., 1978: 90).

- **El tipo de corriente**: la continua (CC), de frecuencia cero, requiere intensidades aproximadamente cuatro veces mayores que la alterna para producir accidentes y puede producir convulsiones que aparten a la víctima del contacto, sin embargo, tiende a generar electrólisis; la corriente alterna (CA) tiene ciclos de frecuencia variable (expresada en

\(^5\) Directos son cuando el contacto es con un componente activo e indirecto cuando los contactos tienen derivación a tierra; arco eléctrico es el que se genera desde un componente activo sometido a alta tensión y una persona que se acerca demasiado a él; el riesgo de choque no emerge sólo del contacto con un componente activo, sino del simultáneo entre ese componente y otro cuerpo a potencial diferente.

\(^6\) La corriente de escape, que permite a la víctima apartarse del contacto, es de alrededor de 75 mA para corriente continua y sólo de 15 mA para la corriente alterna, en un hombre adulto de setenta kilogramos de peso (Beers-Berkow, 1999: 2446).

\(^7\) La tensión de distribución de electricidad se ubica en un rango de 220 a 380V; hasta 1.000V se considera Baja tensión (BT), entre 1.000 y 33.000V Media tensión (MT), y por sobre los 33.000V Alta tensión (AT).

\(^8\) Recuérdese que la ley de Ohm se expresa en la fórmula: \(I = \frac{V}{R}\), donde \(I\) es la intensidad (en amperes), \(V\) es la tensión o diferencia de potencial (en voltios) y \(R\) la resistencia (en ohmios).
hertzios: Hz); la de baja frecuencia (50-60Hz) es más utilizada y a la vez más peligrosa que las de alta frecuencia (a más de 60Hz el riesgo se reduce); la CA tiende a producir contracción tetánica, lo que deja a la víctima “pegada” al contacto (Estrada Cuxart y Tudela Hita, 2000: 2653).

- **La resistencia** del organismo se concentra en la piel y varía según su condición:

<table>
<thead>
<tr>
<th>Tejido y condición</th>
<th>Resistencia (ohm/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piel intacta y seca (bien queratinizada)</td>
<td>20.000 a 30.000</td>
</tr>
<tr>
<td>Palmas y plantas (gruesas e hiperqueratizada)</td>
<td>2 a 3 millones</td>
</tr>
<tr>
<td>Piel fina y húmeda</td>
<td>500</td>
</tr>
<tr>
<td>Mucosas</td>
<td>200 a 300</td>
</tr>
</tbody>
</table>


La resistencia de la piel se reduce si está húmeda, más si está mojada, y la disminución es máxima cuando el cuerpo está sumergido en agua. Las heridas y soluciones de continuidad dérmica la desmoronan, por lo cual una persona con herida en la mano no debe trabajar con tensión. La resistencia interior del cuerpo es extremadamente menor a la de la piel y decrece según el tejido en el siguiente orden: huesos, grasa, tendones, músculos, vasos, sangre y tejido nervioso.

- **El trayecto de la corriente:** el más habitual es la mano y le sigue la cabeza; las salidas son, por lo general, por los pies; si la corriente va de la mano a otro brazo o a un pié es muy probable que atraviese el corazón con riesgo de fibrilación ventricular; en cambio, si transcurre de una pierna al suelo la probabilidad es muy baja; el contacto con la cabeza genera riesgo de convulsiones, hemorragias intraventriculares, paro respiratorio y también fibrilación ventricular; un efecto secueral son las cataratas.

- **La duración del paso de la corriente:** es directamente proporcional a las lesiones por efecto Joule⁹, es decir, por la transformación de la energía eléctrica en calor; la duración inferior a 0,20 segundos no suele producir fibrilación ventricular, ya que esta arritmia requiere alrededor de un segundo; los disyuntores de alta sensibilidad reducen el contacto a 200 milésimas de segundo, que es un nivel de seguridad. Las anguilas y rayas eléctricas dan descargas que pueden producir pérdida de la conciencia, ya que llegan a los 500V y hasta 1A, pero en decenas de microsegundos, por esa razón no producen fibrilación (Folliot, 1998: 40-42).

4.2. **El alcance de rayos** durante las tormentas es causa de accidentes en áreas rurales y en algunas regiones geográficas en particular.

---

⁹ Recuérdese que la Ley de Joule se expresa en la fórmula \( Q = 0.24 \times W \times t \), donde \( Q \) es la cantidad de calor (en calorías gramo), 0,24 una constante, \( W \) la potencia (en watts) y \( t \) el tiempo (en segundos).
Un hombre de 32 años y dos chicos de 11 y 16 años murieron calcinados ayer cuando un rayo cayó sobre un eucalipto bajo el que se habían refugiado, en medio de una fuerte tormenta. (Clarín, 11 de marzo de 1996)

El rayo se produce por cargas eléctricas contrarias en nubes tormentosas, ya sea entre ellas o entre ellas y el suelo. Es un arco eléctrico de gas caliente ionizado muy conductor, que se genera cuando el gradiente de voltaje del aire supera los dos millones de voltios por metro. Las intensidades eléctricas se ubican entre los 30.000 y 50.000 amperios y una diferencia de potencial desde 10.000 a millones de voltios; duran entre cinco y diez milisegundos; generan temperaturas de 3.000 a 30.000ºC y aumento de presión local de hasta cinco atmósferas.

Según las características del rayo, la ubicación y posición de las persona, puede producir desde quemaduras superficiales hasta necrosis musculares, lesiones nerviosas, barotrauma, paro cardiorrespiratorio con más incidencia que fibrilación ventricular y calcinación.

En los pacientes sin grandes quemaduras, la muerte se produce por el paro, por lo que la reanimación debe iniciarse de inmediato. No hay carga eléctrica residual en el cuerpo después de pocos milisegundos, salvo que la víctima esté sobre una superficie aislante.

Los accidentes por rayos son más frecuentes en áreas rurales, aún más si se va montado a caballo, se refugia bajo un árbol o si se apoya en objetos metálicos de gran tamaño (Lee, 201: 3024).

5. Explosiones

Las explosiones de tanques de gases comprimidos producen accidentes por lo general delimitados.

Cuatro personas resultaron heridas ayer tras explotar la válvula de un tubo de hidrógeno de la planta envasadora [...] El siniestro obligó a la evacuación de más de 3000 trabajadores de unas cuarenta empresas cercanas ante el riesgo de una explosión en cadena, que sólo pudo evitarse gracias a la rápida intervención de los bomberos [...] Poco [...] antes operarios [...] traspasaban el hidrógeno que contenían los 126 tubos de 45 kilos [...] hacia un tanque mayor. (El Diario regional, Pilar, 4 de enero de 2005)

Las explosiones, entre las que hay que considerar actualmente las producidas por bombas de atentados terroristas, causan efectos inmediatos que han sido clasificados en:

• Primarios o directos (por la onda de presión): ruptura de la membrana del timpano, lesión pulmonar y ruptura de órganos huecos.
• Secundarios (por fragmentos): traumatismos penetrantes y lesiones de fragmentación.
• Terciarios, por colapso estructural o arrastre por la onda explosiva: aplastamiento, traumatismos por contusión o penetrantes, fracturas, amputaciones y lesiones abiertas o cerradas de cráneo.
• Cuaternarios: quemadura, asfixia, exposición a la inhalación de tóxicos (Di Palma, 2005: 1335).

6. Armas

El uso de armas, además de sus efectos bélicos, produce episodios y accidentes en circunstancias de paz.
El hecho pudo haber sido una tragedia aunque igualmente terminó con un hombre internado en el hospital San Roque de Gonnet con un tiro en la cabeza. Su ahijada, de apenas siete años, encontró una pistola Browning calibre 6,35 (en una repisa) y luego de preguntarle si tenía balas, apretó accidentalmente el gatillo. El proyectil [...] se incrustó en la nuca del padrino [...] su estado de salud es reservado. (El Día, 28 de julio de 2006)

Un informe del Instituto de Estudios Internacionales [...] señala que cada año se producen unas 300.000 muertes por armas de fuego en conflictos y otras 200.000 personas mueren (por ellas) en treinta países calificados de “pacíficos”. (Ámbito Financiero, 05 de julio de 2001)

<table>
<thead>
<tr>
<th>Tenencia de armas de fuego en el mundo.</th>
<th>En porcentaje, según sectores. C. 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
<td>Porcentaje</td>
</tr>
<tr>
<td>Población Civil*</td>
<td>55</td>
</tr>
<tr>
<td>Fuerzas Armadas</td>
<td>41</td>
</tr>
<tr>
<td>Policía</td>
<td>3</td>
</tr>
<tr>
<td>Grupos Insurgentes</td>
<td>0,2</td>
</tr>
<tr>
<td>Otros</td>
<td>0,8</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

* Posesión legal. Se estima que 550 millones de armas ligeras y de pequeño calibre circulan en el mundo.

Fuente: Instituto de Estudios Internacionales de Ginebra (Ámbito Financiero, 05 de julio de 2001).

Las normas para evitar accidentes con armas de fuego son (RENAR, 1999, adaptado):

- Tratarlas siempre como si estuvieran cargadas.
- No apuntar la boca del arma hacia una persona.
- Mantenerlas descargadas, con el cerrojo abierto o el tambor volcado, mientras no se usen.
- Nunca poner el dedo sobre la cola del disparador (gatillo).
- Nunca disparar al aire, ya que los proyectiles describen trayectorias curvas a velocidades entre 280 a 1.000 metros/segundo (accidentes por bala perdida).

En el hogar, además de lo dicho:

- Los mayores deben conocer los rudimentos de seguridad indicados.
- Se debe enseñar a los niños que las armas no son juguetes y son muy riesgosas.
- De tener armas en la casa, y considerando la curiosidad que generan las cosas prohibidas, deben estar absolutamente fuera del alcance de los niños.
- Si se advierte que estos han encontrado un arma, se debe decir: “¡No la toques ni dejes que la toqueen!”.
- Deben ser guardadas descargadas y separadas de la munición, bajo llave.
En el traslado:

- Deben transportarse en funda, caja o portafolio, descargadas con el cargador separado y sin cartuchos en él.
- No deben llevarse adosadas al cuerpo.
- Deben ir acompañadas con documento de identidad, credencial de legítimo usuario y de tenencia.
- Al entrar a instituciones y viajar en avión o buque debe consultarse y, en su caso, entregarlas en resguardo bajo recibo sellado y firmado, para recuperarlas al retirarse o terminar el viaje.

7. Ahogamiento

En noviembre de 1998 un niño de 4 años fue encontrado sin vida en el fondo de una pileta familiar ubicada en un country. A raíz de esa penosa muerte se entabló un juicio de responsabilidad civil. (*El Día*, 23 de noviembre de 1999)

Un joven de unos 20 años que era buscado intensamente por buzos de la Policía en una cantera de Ringuélet, de donde había desaparecido cuando se arrojó a nadar el domingo, apareció sin vida ayer, según informaron fuentes policiales [...] Según pudo saberse, la víctima fatal se habría internado en la cantera para combatir el sofocante calor de la jornada, a pesar de la advertencia de un vecino que se encontraba en el lugar. El muchacho desapareció de la superficie de las aguas siendo hallado ayer sin vida por buzos tácticos a unos 15 metros de profundidad. (*El Día*, 17 de enero de 2003)

Un adolescente de 14 años se ahogó ayer en una tosquera de Ringuélet al intentar desenganchar la línea con la que estaba pescando, según informaron fuentes policiales. El menor había concurrido al lugar con dos amigos del barrio y, presuntamente, se tiró al agua para recuperar la caña. Pero a los pocos minutos se hundió y nadie pudo salvarlo. (*El Día*, 20 de marzo de 2004)

Un menor de 16 años falleció ayer ahogado cuando nadaba en la cava de una cantera al oeste de la ciudad de Mar del Plata [...] Se encontraba nadando junto con otros dos menores cuando en forma imprevista desapareció de la superficie, indicaron fuentes policiales. Los dos chicos que están junto a él avisaron a los bomberos, que cuando llegaron al lugar rescataron el cuerpo sin vida del adolescente. (*El Día*, 12 de diciembre de 2004)

Una pequeña de dos años seguía internada ayer en grave estado y conectada a un respirador artificial tras haber caído a una pileta de su propia casa, y permanecer bajo el agua durante varios minutos.

El episodio, que sucedió anteayer en una vivienda de la zona sudoeste de la ciudad de Rosario, se convirtió en el sexto caso que se da sólo en la última semana y que tuvieron como protagonistas a menores de edad que cayeron al agua y sufrieron diversas consecuencias. (*El Día*, 14 de enero de 2006)
En sumersión sin entrenamiento se soporta alrededor de un minuto sin tragar agua. Después, la persona se agita, hace inspiraciones frecuentes y pierde el conocimiento (Guillen, 1969: 261).

La insuficiencia respiratoria por sumersión se inicia con la aspiración de líquido o el laringoespasmo agudo. El cuadro progresa hacia la derivación de sangre intrapulmonar, que aumenta la hipoxia, la pérdida de surfactante y la extensión de las atelectasias. Tiende a generarse una acidosis respiratoria con hipercapnia. Puede producirse edema pulmonar, coexistiendo con las atelectasias, y edema cerebral. Asimismo, la asfixia puede producir fibrilación ventricular y paro cardíaco (Beers y Berkow, 1999: 2465).

El agua de mar tiende a aumentar la concentración de sodio y cloro en sangre e hipovolemia con paso de agua a alvéolos pulmonares.

El agua dulce tiende a generar hipervolemia bruscamente, producir hemólisis e hipopotasemia (Beers y Berkow, 1999: 2465).

La prevención tiene un principio general que es la vigilancia en los lugares abiertos de baño y nado así como en piscinas públicas con guardavidas entrenados y organizados. La vigilancia está a cargo de un adulto responsable (de uno sólo, no de todos) cuando los niños se bañan o merodean las piscinas familiares. También deben ser vigilados los niños y los ancianos en las bañeras.

La vigilancia requiere:
- Delineación del perímetro de vigilancia con boyas flotantes.
- Guardavidas entrenados y organizados en grupos.
- Botes de vigilancia y, en playas muy concurridas, acceso a helicópteros.
- Material de salvamento: cuerdas de 15-20 y de 20-30 metros, pértigas de madera, boyas y planchas de madera para remolque.

A la vigilancia, se agregan (Guillen, 1969: 215):
- No bañarse en lugares desconocidos o inseguros, los que deben ser señalados con prohibición (como las cavas).
- Respetar las consignas establecidas en las playas según las banderas y señales.
- En aguas desconocidas, consultar con las personas del lugar.
- No bañarse sólo, sino en grupo.
- No sumergirse en aguas muy frías, con temperatura menor de 18°.
- No bañarse si se está cansado por deportes o caminatas o después de haber permanecido mucho tiempo al sol.
- Esperar dos o tres horas después de las comidas y bebidas alcohólicas así como algunos minutos después de la ingesta de bebidas heladas.
- Conocer y respetar la propia resistencia, evitar los baños prolongados que pueden producir hipotermia y no alejarse en exceso de la costa, ya que al regreso pueden producirse calambres.
- Si no se sabe nadar, no sobrepasar el límite donde se hace pie.
- Entrenarse para el salvamento y la reanimación de un ahogado.

8. Pirotecnia

En las dos primeras horas de 2007, más de 100 personas se atendieron en los hospitales oftalmológicos Santa Lucía y Lagleyze (Ciudad de Buenos Aires) y el del Quemado debido a accidentes por pirotecnia, golpes con corchos y peleas, producto de los festejos del Año Nuevo. A lo largo del día, la cantidad de heridos superó los 150, una cifra similar a la de Navidad y mayor a los 103 de 2006.
La cantidad de heridos aumentó entre un 20% y un 30% con respecto a 2006 –dijo el jefe de guardia, Juan Roque–. El motivo es que aumentó el uso de pirotecnia ilegal. (Clarín.com, 2 de enero de 2007)

Ayer a la madrugada la pirotecnia provocó varios incendios. En Castelar, hubo dos focos de fuego en un aserradero y en San Fernando, se quemó una fábrica de piletas de natación. En San Miguel hubo un incendio en una casa de sanitarios y en Malvinas Argentinas, en una casa. (ibidem)

Uno de los casos por uso de pirotecnia al comenzar 2007 “es grave”, pues el paciente presenta “una herida penetrante con lesión de párpados, globo ocular y probable fractura de la pared orbital interna, que linda con la nariz”, señaló. “Explotó un petardo y un fragmento de roca le pegó en el ojo”, detalló González Valdéz...

Los especialistas han comprobado que muchos problemas auditivos en los niños derivan de lesiones causadas por la pirotecnia, resaltó Barrionuevo y agregó que de los primeros 25 pacientes del año sólo cinco eran chicos. (Clarín.com, 1 de enero de 2007)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Región corporal</td>
</tr>
<tr>
<td>Miembros superiores y manos</td>
</tr>
<tr>
<td>Abdomen y tórax</td>
</tr>
<tr>
<td>Cara</td>
</tr>
<tr>
<td>Miembros inferiores</td>
</tr>
</tbody>
</table>


Los elementos de pirotecnia deben estar controlados y autorizados con una leyenda por Fabricaciones Militares, y el comerciante debe asimismo estar autorizado por la Municipalidad del lugar. No deben utilizarse elementos sin esas condiciones ni aquellos que se vean dañados. Deben seguirse las instrucciones que se indican en cada elemento, encenderse uno sólo por vez, exclusivamente en ambientes abiertos, sin apuntarlos a personas, materiales combustibles, árboles ni construcciones. No debe exponerse la cara al encenderlos y es preciso retirarse unos pasos un vez prendidos.

En cuanto a la guarda, no es conveniente acumular mucha cantidad de elementos juntos, mucho menos guardarlos en bolsillos –por el calor o la fricción pueden arder y lesionar los genitales (Latin-Salud, 2007)–, ropas o carteras, ni ubicarlos cerca de fuentes de calor. Se recomienda no entrar a un comercio donde hay mucho material de pirotecnia reunido.

La pirotecnia debe ser manejada y encendida sólo por adultos responsables, nunca por niños ni por personas alcoholizadas. La prevención ideal es no usar ningún tipo de pirotecnia.

9. Ascensores

En mayo de 1995, una niña de seis años murió al caer por el hueco [de un ascensor] Doce meses más tarde, el elevador [de una facultad] se desplomó pesadamente hacia
el subsuelo [...] en 2003, se trabó uno de los ascensores del hospital [...] con un paciente y uno de los camilleros dentro... (Diariohoy.net, 16 de febrero de 2007)

Los accidentes más frecuentes se producen cuando se abre la puerta y el ascensor no está en el piso o cuando se detiene a mitad del camino.

Los ascensores unifamiliares requieren capacidad máxima para tres personas (225 Kg), lo que debe estar asentado en una placa visible, un recorrido de hasta cuatro paradas y doce metros y una velocidad de 0,2 m/s (Secretaría de Industria, Comercio y Minería, 1999). El límite no se debe sobrepasar.

El diseño y resistencia de la cabina deben ajustarse a esas características.

La suspensión debe tener un mínimo de tres cables de tracción sin empalmes.

Las puertas de piso y cabina deben cerrar toda su apertura con deslizamiento horizontal, tener pantalla guardapiés y ser de superficie llena y accionamiento automático con mandos señalados con claridad, incluyendo números Braile. Las puertas deben tener un dispositivo de enclavamiento en el piso.

Entre ambas puertas debe haber un espacio mínimo de pocos centímetros. De ser mayor debe ocuparse con un cajón de madera o chapa que impida que un niño se esconda en el lugar. Si las puertas son de tipo tijera, deben cubrirse al menos con una lona para impedir que un niño saque manos o pies fuera de la cabina.

Toda la cabina debe ser de superficie llena, excepto las áreas de ventilación. Estas serán amplias como para ser efectivas en paradas prolongadas. No se debe fumar en los ascensores (ni en ningún otro lado).

Los contrapesos y sus lingotes deben asegurarse para que no se desprendan y estar diseñados como para que no choquen con la cabina.

Las regulaciones deben impedir su funcionamiento cuando se supere el peso establecido, disponer de un control de velocidad, con mando cuando la velocidad sea mayor a 1 m/s, así como de amortiguadores de acumulación y disipación de energía.

El hueco de deslizamiento debe ser inaccesible salvo para reparaciones, oportunidad en que debe trabarse su funcionamiento. No obstante, debe haber espacios libres en los extremos superior e inferior de la columna para que oficien de refugios frente a eventuales aplastamientos. En el inferior debe haber dispositivos amortiguadores.

El interbloqueo asegura que no se mueva la cabina si todas las puertas, de todos los pisos, no están cerradas y bloqueadas, así como que ellas se destraben sólo en el piso al que llegue la cabina una vez que ella esté detenida.

Los ascensores deben contar con un dispositivo que evite la caída libre de la cabina: además de los frenos mecánicos, con uno de tipo “paracaidas”.

Asimismo, deben contar con un sistema de timbre o teléfono para que desde el interior se puedan enviar alertas, así como también con puerta en el techo o mecanismo que permita rescatar personas retenidas. Los ascensores deben tener un mecanismo supletorio de manivela a mano o motor independiente para poder ser nivelado.

Los lugares comunes de los edificios de altura públicos o de propiedad horizontal deben mantenerse ordenados y limpios. La basura, diarios y trapos alimentan la carga de fuego.

Finalmente, deben satisfacer las normas nacionales (IRAM), regionales (MERCOSUR; Europeas) e internacionales (ISO) y ser instalados y mantenidos mensualmente por instaladores autorizados y responsables.
Anexo

Niños accidentados en sus casas

Los niños tienen posibilidad de accidentarse en cualquier parte de la casa, aunque la cocina y el baño son los ámbitos más riesgosos.

La base de la prevención es vigilarlos permanentemente y educarlos sobre riesgos cuando son mayores.

Recomendaciones de la Sociedad Argentina de Pediatría (resumen)

- Vigilar continuamente y educar sobre riesgos cuando maduran.
- Cocinar en hornallas posteriores.
- Orientar mangos y manijas de recipientes al fuego hacia atrás o lados.
- Poner fósforos y encendedores fuera del alcance de niños.
- Guardar en alacenas altas recipientes de vidrio, elementos cortantes y punzantes.
- Impedir que jueguen o estén en el recinto cuando se cocina.
- Mantener botellas y envases con los rótulos correspondientes.
- Nunca guardar líquidos peligrosos en botellas de gaseosas.
- Ubicar calefones y calefactores fuera del baño o dormitorios (salvo que sean de tiro balanceado).
- Mantener cerrada la puerta del baño y la tapa del inodoro.
- Mantener seco y libre de objetos el piso del baño.
- Guardar en botiquines altos y con traba medicamentos, materiales de curación, artículos de limpieza, pinturas y tóxicos.
- Dejar las puertas del baño cerradas, y asegurarse que puedan ser abiertas desde afuera para que no queden encerrados y sufran pánico.
- Proteger la tapa del inodoro cuando hay varones pequeños para evitar traumatismos de pene.
- Asegurar una temperatura del agua menor de 50°C, abrir la canilla y constatar antes de exponer al niño.
- No dejar ni un instante sólo a un niño pequeño mientras se baña, ni dejar agua al concluir, ya que puede ahogarse en pocos centímetros.
- Poner superficies antideslizantes y barras de sujeción en las bañeras y duchas.
- Colocar disyuntores y llaves termomagnéticas en el sistema eléctrico y controlarlo mensualmente.
- Guardar fuera del alcance equipos eléctricos de mano (afeitadoras, secadores de pelo).
- Poner conexión a tierra de los artefactos eléctricos, nunca a caños de agua, sino con jabalina.
- Evitar el uso de adaptadores, triples, “zapatillas” y cables prolongadores donde tengan acceso los niños.
- Impedir que se toquen artefactos eléctricos estando descalzos o con los pies mojados.
- Ubicar los tomacorrientes a más de 1,20 metros del piso y/o taparlos cuando no están enchufados a aparatos.
- Asegurarse que no haya al alcance de niños objetos pequeños, de menos de cinco centímetros, que puedan ponerse en la boca, ni rompibles que puedan lastimarlos.
- Reducir al mínimo los desniveles en las dependencias de la casa, y en su caso marcarlos con pintura de color llamativo, evitar alfombras con bordes y esquinas levantadas o pisos excesivamente encerados para evitar caídas.
• Cerrar y sacar las llaves de aparadores y vitrinas con objetos que puedan romperse.
• Evitar los cristales sobre mesas de luz y de baja altura que puedan deslizarse o los muebles con puntas o filos que, en su caso, deben ser protegidos.
• Las puertas de los dormitorios deben estar sin llave y poder abrirse desde afuera; por el contrario, los placares deben cerrarse y guardar las llaves; las camas no deben ubicarse bajo las ventanas.
• Utilizar cunas que no tengan ni filos ni puntas y no poner sobre ellas juguetes colgantes que puedan lastimarse y hasta estrangular.
• Asegurar que los barrotes de las cunas no estén separados más de seis centímetros y hacer que el colchón ocupe todo el espacio de la base para evitar atrapamientos.
• Asegurar que la altura de la baranda tenga al menos sesenta centímetros de alto, y si no es fija, cuidar que el movimiento sólo pueda ser operado por adultos.
• Nunca dejar en las cunas o al alcance de niños bolsas plásticas vacías que puedan provocar sofocamientos.
• Poner escalera segura y baranda en las camas cuchetas e instruir al niño.
• Cuidar que los equipos de ventilación y calefacción no fijos tengan buena base y protección de paletas, radiadores u otros y que los cables y enchufes estén en buenas condiciones y, dentro de lo posible, fuera del alcance del niño.
• No usar repelentes o insecticidas en espiral o spray en dormitorios de niños pequeños mientras duermen; se deben aplicar antes y ventilar la habitación.
• No permitir acceso de niños a balcones o terrazas, sus accesos deben estar bloqueados y sus bordes protegidos con tela metálica o similar.
• Limpiar, secar y ordenar los patios, evitar las plantas con hojas filosas, frutos pequeños, ramas bajas o venenosas, no dejar en ellos herramientas de jardín ni cortadoras de césped.
• Impedir que trepen árboles que no sean bajos o que lo hagan sin el control de un adulto.
• Tapar bien los pozos de patios y jardines.
• Vigilar las brasas de las parrillas e impedir que los niños se acerquen.
• Ubicar a dos metros las sogas de colgar ropa.
• Impedir que los niños jueguen en los garajes con automotores o motos, nunca dejar las llaves puestas.
• Poner seguros en la puerta de los automotores, mantenerlos hasta su completa detención y abrir y cerrar las puertas observando a los niños.
• Controlar que no haya niños alrededor cuando se arranca un vehículo.
Bibliografía

Ámbito Financiero, 5 de julio de 2001.
Clarín, 21 de julio de 1995 y 1 de julio de 1996.
Clarín, 29 de septiembre de 1993.
Crónica, 29 de septiembre de 1993.
Diario Popular, 29 de septiembre de 1993.
El Día, 6 de mayo de 1990; 7 de mayo de 1990; 28 de enero de 1986.
El Litoral (Santa Fe), 10 de enero de 2007.
Guillen, E., Juegos y ejercicios de seguridad, Barcelona, Suces, 1969.
La Prensa, 20 de abril de 1985.
Nation Geographic (esp.), abril de 2005.
Registro Nacional de Armas (RENAR), Elementales medidas de seguridad a observar sobre armas de fuego, 17 de febrero de 2007, adaptado.
Registro Nacional de Armas (RENAR), Las Armas y los niños, un tema muy serio para atender, 19 de febrero de 2007.
CAPÍTULO 6

PROVISIÓN DE AGUA

Horacio Luis Barragán
Karina Gómez Aguirre
Adriana Pascual

1. El Agua es fuente de vida y protagonista de la historia

La fuente de las aguas evoca algo vivo. El agua misma. Los mitos y los ritos han usado el agua y la han honrado (Furon, 1967: 8). Signo de fecundidad de tierras y de hombres, el agua fue invocada para atraer lluvias y tener hijos. Hay fuentes y ríos sagrados, “la madre Ganges” de los indios, “la madre Volga” de los rusos. Hay abluciones sagradas entre los judíos y los musulmanes, bautismos con agua entre los cristianos.

El desierto es imagen de vacío por su carencia de agua.

La vida urbana requiere mil litros de agua por persona y día.

La historia humana sigue su pista. Bernard Frank dice: “podría escribirse la historia del crecimiento del hombre en función de sus épicas preocupaciones por el agua” (Davis, 1962: 9). Recuérdese, como ejemplo, las confrontaciones entre pastores y agricultores por el acceso a las aguadas.

Entre los judíos, el pozo de Jacob perforaba treinta metros de roca. El rey Salomón mandó hacer acueductos, entre los hebreos. Sucesivas civilizaciones, en la Antigua Mesopotamia, hicieron canales y jardines. Los egipcios, hace cinco milenios, construyeron una represa para regular las aguas. Para el historiador Heródoto, Egipto era un regalo del Nilo. Los romanos tendieron acueductos para su civilización urbana.

La obra del agua transforma a la tribu errante en aldea, en ciudad, hasta en civilización.

Los antiguos la creían una sustancia simple. 1 En el siglo XVII se descubrió el ciclo del agua y, a fines de siglo XVIII, su fórmula.

2. El agua tiene características “poco comunes”

El agua pura es mezcla de los tres isótopos de sus respectivos componentes y sus constantes son anormales. Por eso, Davis y Day dijeron: “El agua es una sustancia poco común” (Davis, 1962: 7).

Por su capacidad de disolver sustancias, se dijo que “es un edificio macromolecular lacunar que tiene la facultad de añadirse sustancias extrañas” (Furon, 1967: 12).

1 Tales de Mileto la concebía como única esencia del todo y suponía que la tierra y el cielo flotaban sobre un agua infinita. El inglés Cavendish experimentó con oxígeno e hidrógeno, que, sometidos a una chispa eléctrica, generaban agua, lo que repitieron Lavoisier y Laplace. Los experimentadores calcularon que 16 gramos de oxígeno (1 volumen) se combinaban con 2 gramos de hidrógeno (2 volúmenes) y daban agua. Nació su fórmula: H₂O y su peso molecular 18 (Furon, 1963: 10-11).
Por el tamaño de su molécula, a temperatura ambiente “debiera ser un gas y sin embargo es líquida”. Es sabido que su punto de ebullición es 100ºC y su punto de congelación es 0ºC.

Toda sustancia se contrae, disminuye su volumen, y aumenta su densidad a medida que se enfía. Así ocurre con el agua, pero hasta llegar a los 4ºC. A partir de esa temperatura comienza a dilatarse y disminuir su densidad. El agua congelada a 0ºC tiene mayor volumen y menor densidad que a 4ºC, lo que permite que el hielo flote sobre la superficie del agua líquida. Si la situación fuera contraria, el hielo se “hundiría” en los mares y estos se congelarían desde la profundidad hacia la superficie, y con el tiempo estarían transformados en hielo. Por el contrario, la flotación del hielo permite su evaporación; los mares no se congelan y el clima se mantiene. La gran capacidad de absorción calórica del agua le permite almacenar calor sin aumentar relativamente su temperatura (Davis, 1962: 25 y ss.).

El agua es capaz de romper enlaces de moléculas a través de un proceso llamado electrólisis, y por hidrólisis, ayudada por enzimas, también puede romper grandes moléculas orgánicas, como sucede en todo el proceso digestivo, que comienza con la hidrólisis de los alimentos.

Su pérdida en los procesos orgánicos biosintetiza nuevas moléculas, como el glucógeno y las proteínas.

Así, el agua es el líquido biológico por excelencia y el de mayor capacidad para regular la temperatura del organismo y del ambiente.

3. La demanda biológica de agua se expresa por la sed

La sed es un mecanismo esencial de defensa. Un adulto de peso medio debe ingerir 2,5 litros/día por ingesta directa, por alimentos o combustión interna.

El agua circula en la sangre, se pierde y se reabsorbe en el tubo digestivo y los riñones.

El hombre, como todos los seres vivos, es muy sensible a la deshidratación, tanto más en los dos extremos de la vida.2

4. El agua se distribuye en toda la Tierra

Los océanos cubren el 72% de la Tierra con un contenido de 1.000 millones de Km³ (14.000 geogramos) de agua.3 El 98% del agua está en los mares: charcos en la escala planetaria. El agua de mar es una disolución de electrolitos disociados y sales: 35 gramos/litro (Furon, 1967: 24)

Las aguas dulces representan el 2,5% de la masa acuática. Gran parte está fijada en el hielo de Groenlandia y la Antártida: 35 millones de km³ (167 geogramos). Si se fundieran, podrían subir hasta cincuenta metros el nivel de los mares. Esta es la amenaza del efecto invernadero (Furon, 1967: 34). El resto está en la atmósfera y en las lluvias, en las corrientes superficiales y en los mantos subterráneos. La distribución del agua dulce fuera de los hielos se estima en 500.000 km³ como máximo (Furon, 1967: 35). El promedio de lluvia sobre la Tierra es de 811 milímetros anuales (Furon, 1967: 38).

---

2 Monad calculó la sed de un hombre en un desierto sin puntos de agua; requiere un mínimo de 4 litros por día para beber y cocinar. El mismo soportó con 2 litros/día 3 a 5 días y en el Sahara, en 1955, logró sobrevivir con 1 litro/día (Furon R., 1963: 20).

3 Con su profundidad media de 3.800 metros (1/1600 radio de la Tierra), representan 1/4.500 partes de la masa del planeta.
5. El agua tiene su ciclo en la naturaleza

La Ecología ha definido relaciones de las distintas sustancias en “ciclos”. Así, el “ciclo del agua” es uno de los más importantes. Odum presenta las cifras en geogramos, unidad equivalente a diez gramos elevados a la vigésima potencia. Hay tres compartimentos principales: la Litósfera (es decir, la Tierra), la Hidrosfera y la Atmósfera. Los movimientos claves del agua son la evaporación y la precipitación. Asimismo, se han descripto el escurrimiento superficial, la filtración, la percolación y la percolación profunda (Odum, 1972: 106).

La proporción de “reserva” de agua en sus distintos estados es diferente en los tres grandes compartimentos (Odum, 1972: 106)

- **Atmósfera**: 0,13 geogramos.
- **Hidrosfera**: 13.800 geogramos.
- **Litósfera**: 250.000 geogramos distribuidos de la siguiente forma:
  - Nieves perpetuas: 167 geogramos.
  - Aguas subterráneas circulantes: 2,5 geogramos.
  - Aguas interiores: 0,25 geogramos.
  - Resto: 249.830 geogramos.

Entre la Hidrosfera, la Litósfera y la Atmósfera, el agua se relaciona por evaporación y precipitación de la siguiente forma:

- Evaporación de los océanos: 3,8 geogramos.
- Precipitación sobre ellos: 3,4 geogramos (como lluvia, nieve o granizo).
- Evaporación desde Litósfera: 0,6 geogramos.
- Precipitación a Litósfera: 1,0 geogramos (como lluvia, nieve o granizo).
- Escurrimiento desde Litósfera a océanos: 0,2 geogramos.

**El ciclo del agua en la naturaleza**

Notas: las cifras entre paréntesis son geogramos ($10^{20}$gr) de agua en los principales compartimentos, y las flechas indican la circulación entre ellos.

Como puede apreciarse, la cantidad de agua atmosférica (0,13 geogramos) es insignificante, pero su dinámica es la clave de la provisión a la Biósfera. Se evapora más agua de mar\(^4\) que la que precipita sobre él (3,8 y 3,4). La diferencia precipita sobre la tierra (0,4 geogramos), y una parte de ella, a su vez, se escurre nuevamente hacia el mar (0,2 geogramos). La diferencia entre la precipitación y el escurrimiento recarga las napas subterráneas. Las obras de la civilización, a la vez que exigen mayores cantidades de agua, provocan un mayor escurrimiento hacia los mares. De ello surge el deterioro en la recarga de los acuíferos subterráneos, con riesgos en las reservas.

La distribución en porcentaje se aprecia en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Compartimiento</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Océanos</td>
<td>97,5</td>
</tr>
<tr>
<td>Hielo y glaciares</td>
<td>1,81</td>
</tr>
<tr>
<td>Agua subterránea</td>
<td>0,63</td>
</tr>
<tr>
<td>Lagos y corrientes</td>
<td>0,016</td>
</tr>
<tr>
<td>Humedad del suelo</td>
<td>0,005</td>
</tr>
<tr>
<td>Atmosfera</td>
<td>0,001</td>
</tr>
<tr>
<td>Total</td>
<td>99,962</td>
</tr>
</tbody>
</table>

Fuente: Davis y Masten, 2004: 200, modificado.

El agua que se precipita sobre la Litósfera, además de escurrirse a los mares, queda retenida en aguas interiores (0,25 geogramos del total), pudiendo infiltrarse en capas superiores (filtración) o en capas profundas (percolación). Estos procesos recargan los acuíferos subterráneos. De estos acuíferos hay dos tipos principales:

- **El libre o freático**, ubicado bajo la tierra, entre un estrato impermeable por abajo y una superficie libre líquida superior que linda con un espacio de tierra con intersticios ocupados por agua y aire hasta llegar al nivel de la superficie.
- **El confinado**, artesiano o a presión, bajo tierra, se desarrolla entre dos capas impermeables. Esta capa más profunda se recarga desde fuentes más alejadas. De esa capa profunda son los pozos surgentes o artesianos –a través de los cuales el agua sube a presión– y los semisurgentes.

6. **El agua tiene su ciclo en el organismo**

Nosotros hemos nacido del agua: nueve meses prenatales sumergidos en una bolsa de agua, líquido amniótico (Davis, 1962: 8). El organismo está constituido en 60% de su peso por agua. En individuos muy delgados, hasta 75%, y en los muy obesos, sólo un 45% (Katz, 1980: 49).

Ese 60% de agua del organismo, en una persona de 70 Kg, se distribuye en tres compartimentos, aproximadamente de la siguiente forma (González y otros, en Cingolani y Houssay, 2000: 477):

- Intracelular: 40%.
- Extracelular intersticial: 13%.
- Extracelular (plasma y de intercambio lento\(^5\)): 7%.

Las pérdidas patológicas pueden llevar a la deshidratación, que puede clasificarse en (Rotellar, 1970: 56):

---

\(^4\) También se evapora de las aguas interiores (0,6 geogramos) y de la transpiración de las plantas en el proceso de fotosíntesis.

\(^5\) Este último comprende el líquido transcelular, el agua del tejido conectivo y la del hueso (Katz, 1980).
• Moderada: pérdida entre 5 y 10% del agua corporal (en peso).
• Mediana: pérdida entre 10 y 20%.
• Grave: pérdida de más del 20%.

En el caso de los lactantes, una diarrea con deshidratación se considera (Morano, 1992: 252; cfr. Igo, en Smith y Marshall, 1974: 250):
• Leve: menos del 5% de pérdida de peso.
• Moderada: entre 6 y 10%.
• Grave: más del 10%.

Estas referencias a temas clínicos marcan la significación del agua en la nutrición.6 La ingestión mínima de agua de un adulto es de 700 a 1.000 ml, regulada por la sed. Hay necesidades extremas que llevan al tormento de la sed.7

7. La demanda del agua va en aumento

La demanda de agua potable, excluyendo la que se necesita para producción de energía, refrigeración y regadío, oscila entre los 350 y 450 litros por persona y día (Davis, 1962: 191). En la antigüedad, el individuo medio utilizaba entre 12 y 20 litros diarios, y en el siglo XIX alcanzaba a 40 a 60 litros. El consumo en las distintas latitudes del mundo variaría en un rango entre los 100 y los 6.000 litros por persona por día, incluyendo en este último extremo todos los rubros individuales y colectivos. La variación de uso según los ámbitos de vida y trabajo es también muy grande.

<table>
<thead>
<tr>
<th>Ámbitos</th>
<th>Cantidad de agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso doméstico</td>
<td></td>
</tr>
<tr>
<td>Fuente pública</td>
<td>140-1.000 litros por persona por día.</td>
</tr>
<tr>
<td>Fuente privada</td>
<td>140-200 litros por persona por día.</td>
</tr>
<tr>
<td>Hoteles</td>
<td>300-400 litros por persona por día.</td>
</tr>
<tr>
<td>Escuelas</td>
<td>60-80 litros por persona por día.</td>
</tr>
<tr>
<td>Hospitales</td>
<td>600-1.000 por cama.</td>
</tr>
<tr>
<td>Establos</td>
<td>30-80 litros diarios por cabeza.</td>
</tr>
<tr>
<td>Sitios de concentración de leche</td>
<td>600-700 litros por 50 Kg de leche.</td>
</tr>
<tr>
<td>Restaurantes</td>
<td>20 litros por alimento servido.</td>
</tr>
</tbody>
</table>


---

6 Los ingresos y egresos diarios de agua son base del conocimiento del Medio Interno. Un esquema indica (Rotellar, 1970: 55):
• Ingresos diarios: 2.500 ml; 2.000 ml de bebida y alimentos, 500 ml de agua de combustión.
• Egresos diarios: 2.500 ml; 1.000 a 1.500 por vía renal, 150 por vía intestinal, 400 por vía pulmonar, 600 por vía dérmica. Con un aumento de la temperatura ambiente, la sudoración puede llegar a 1.500 ml por día.

7 Lo describen dos autores que merecen leerse: Antoine de Saint Exupery, el aviador y literato francés que relata el padecimiento de dos pilotos perdidos en el desierto, y Alain Bombard, un joven médico francés que relató su aventura de “Náufrago voluntario”. Bombard dice: “Naufragio: esta palabra es, para mí, la expresión misma de la miseria humana. Y era sinónimo de desesperación; de hambre, de sed [...] Ahora bien, había que vencer un factor importante: había que matar esa desesperación que mata. Esto no entraba en el marco de la alimentación; pero, si beber es más importante que comer, inspirar confianza es más importante que beber. Si la sed mata más pronto que el hambre, la desesperación es todavía más rápida que la sed” (citado por Moeller, 1960).
Demanda de agua en la vida doméstica

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Gasto (en litros)</th>
<th>Actividad</th>
<th>Gasto (en litros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavado de manos</td>
<td>5</td>
<td>Lavado de un automóvil</td>
<td>90</td>
</tr>
<tr>
<td>Ducha</td>
<td>20 a 50</td>
<td>Descarga de inodoro</td>
<td>10 a 12</td>
</tr>
<tr>
<td>Baño de inmersión</td>
<td>80</td>
<td>Descarga de inodoros</td>
<td></td>
</tr>
<tr>
<td>Lavado de platos manual</td>
<td>20</td>
<td>(modelos nuevos)</td>
<td></td>
</tr>
<tr>
<td>Lavado de platos automático</td>
<td>20 a 40</td>
<td>Canilla que gotea,</td>
<td>7</td>
</tr>
<tr>
<td>Lavado de ropa eléctrico</td>
<td>50 a 120</td>
<td>desperdicio (m³/año)</td>
<td>30 a 40</td>
</tr>
<tr>
<td>Riego de 1 m² de jardín</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: R. Argentina OSN, s/f.

8. El agua de bebida se obtiene de diversas fuentes

En virtud del creciente uso del agua, deben considerarse falsas dos premisas antiguas, a saber: que el recurso agua es inagotable y que el agua se autodepura.

En efecto, cuando los requerimientos de agua para diversos usos van in crescendo, se perforan más y más profundos pozos, pero también se contamina más el agua y se desaprovecha. De los recursos de la naturaleza, el agua es uno de los que generalmente se gestiona de un modo inadecuado.

Se ha visto el ciclo del agua en la naturaleza, en el que el agua se precipita desde la atmósfera, parte se evapora, parte penetra a través del suelo y otra se desliza sobre él hacia cursos superficiales. Así, las fuentes principales de abastecimiento humano son el agua de lluvia, el agua subterránea y la que forma cursos en la superficie del terreno.

La recolección de agua de lluvia, en cisternas, aljibes o en toneles, es un procedimiento aún utilizado en zonas rurales, donde su obtención se hace muy difícil por otros medios. Esta agua se filtra con reja, arena, carbón y grava y se clora con hipoclorito de sodio. Las aguas de lluvia son blandas, tienen menos de 50 ppm de Dureza Total, medida en carbonato de calcio. Es insípida y con gases disueltos. Su contaminación por partículas provenientes del aire es mayor en las ciudades y en el campo después del tiempo de sequía (Hilleboe y Larimore, 1966: 91).

Aljibe o cisterna

Referencias:

A. Boca de registro.
B. Robinete (para descartar primeras aguas por B’).
C. Filtro.
D. Válvula de control de caudal.
E. Desborde cisterna.
F. Caño a bomba.

Notas:

- Para zonas de lluvias.
- Sacar c/ bomba, no con balde.
- Poner tapa y filtro.
- Descartar las primeras aguas.
- Agregar cinco litros de agua lavandina o un litro de hipoclorito de sodio.

La obtención de **aguas subterráneas** se relaciona con la zona geográfica en la cual se encuentran. Puede surgir espontáneamente en manantiales, lo que exige dispositivos para su conservación e incluso su cloración según las circunstancias.

Sin embargo, lo habitual es la obtención de aguas ubicadas a diferentes profundidades por medio de pozos de extracción que alcanzan los **acuíferos** subterráneos libres o freáticos, **semiconfinados y confinados** por materiales geológicos impermeables.

Los **pozos** son “construcciones” verticales que penetran el terreno y se los clasifica en **excavados** y **perforados**, según la forma de construirlos y la profundidad a la que llegan. Una vez preparados, el agua es llevada a la superficie por bombas manuales, baldes o procedimientos mecánicos. Los primeros se utilizan en las zonas rurales y en algunas áreas periféricas de las grandes ciudades, en este último caso con gran riesgo sanitario. Los pozos deben estar preferentemente en cotas altas del terreno, alejados entre treinta y cien metros de fuentes de contaminación subterránea (letrinas, pozos sépticos, perforaciones abandonadas), encamisados y sellados en su superficie. En general, las aguas de las capas freáticas en las zonas suburbanas están contaminadas orgánicamente, mientras que las capas profundas son puras, aunque con mayor contenido de sales debido a que su recarga se produce luego de atravesar espesores variables de sedimentos.

---

8 Acuífero es la formación geológica por la cual el agua fluye horizontalmente y de donde se la extrae. Un acuífero confinado está sometido a presión; se denomina acuífero artesiano al que por aumento de esa presión puede atravesar las capas superiores y fluir a la superficie (Davis y Masten, 2004: 219). Los estratos impermeables que no permiten esa circulación se denominan acuícluidos. La circulación en los acuíferos es lenta y se estima en centímetros por día (entre 4 y 60 cm/d) o metros por año (15 a 125 m/a) (Tarbuck y Lutgens, 1999: 248).
Las aguas superficiales están representadas por cuerpos léticos (lagos y lagunas) y cuerpos lóticos (ríos, arroyos, cascadas, etcétera) que configuran cuencas⁹. Estas aguas proveen por lo general a las ciudades, luego de un complicado proceso de tratamiento. Tienen muy variados componentes y diferencias estacionales. Por ejemplo, los ríos de montaña, que en tiempo de deshielo pueden tener 10 NTU de turbiedad (Unidades Nefelométricas o Jackson: normal hasta 2 NTU), pasan a 1.500 NTU en épocas de lluvia con gran arrastre de sólidos. Los ríos de llanura tienen un régimen más estable, con 100 a 300 NTU de turbidez, por referir un solo parámetro. El agua de mar con gran contenido salino y extraordinaria dureza (hasta 12.000 ppm de Dureza Total medida en carbonato de calcio: normal 40 a 100 mg/l) exige tratamientos muy complicados para potabilizarla, tales como la Osmosis Inversa. Los pasos para potabilizar agua superficial dulce son:

- **Coagulación** o floculación del agua con el agregado de sulfato de aluminio y de carbonato de sodio para compensar la disminución de pH que produce el primero.
- **Sedimentación** en piletas o tanques para que se depositen las partículas en el fondo.
- **Filtración** a través de arena y grava.
- **Cloración** para desinfectarla, con cloro gaseoso o hipoclorito de sodio en solución (con hasta 14% de cloro disponible), hipoclorito de alta prueba (HAP, 50 a 70% de cloro disponible), hipoclorito de calcio sólido en polvo (30% de cloro disponible), o gas cloro licuado a cinco atmósferas (su manejo es peligroso) (OMS, 1995: 127 [3er tomo]). También se utiliza ozono.

---

⁹ Cuenca es la topografía circundante de un curso ramificado, siendo su límite la divisoria de aguas o puntos más altos que la rodean (Davis y Masten, 2004: 203).
Nota: coagulación con sulfato de aluminio. Sedimentación rectangular o circular y profundidad hasta tres metros. Alcalinización con hidróxido de calcio. Cloración con cloro gaseoso, cloruro de calcio (sodio, 30% de cloro activo), hipoclorito de sodio (líquido, 10 a 15% de cloro activo). Tanque de distribución elevado para lograr presión de agua.
8.1. Obtención y desinfección de emergencia del agua potable

Si se corta el suministro de agua en una casa o un barrio, se podrá conseguir alguna cantidad limitada vaciando el tanque de agua caliente o derritiendo cubitos de hielo.

En la desinfección de emergencia hay que filtrar con paños limpios el agua si es turbia, ya que los desinfectantes son menos eficaces. Se deja reposar para que los sedimentos se depositen en recipientes limpios, cerrados y no corrosivos. Se extrae el agua limpia para desinfectarla.

Los métodos para desinfectar pequeñas cantidades de agua son la ebullición y el tratamiento químico.

- **Ebullición**: hirviendo el agua durante un minuto se matan los microorganismos patógenos. El sabor del agua hervida puede mejorarse aireándola mediante el transvasado repetido de uno a otro recipiente y dejándolo reposar varias horas. También se le puede agregar una pizca de sal por cada litro de agua hervida.

- **Tratamiento químico**: los productos químicos que se utilizan son el cloro y el yodo, que son algo eficaces para proteger contra la *Giardia*, pero no para controlar el *Cryptosporidium*. Por consiguiente, se utilizan para desinfectar el agua de pozo profundo y no agua de cursos de superficie, ya que la primera, por lo general, no contiene esos organismos. El cloro es más eficaz que el yodo en el control de la *Giardia*, y ambos desinfectantes tienen mejor efecto en agua templada.

<table>
<thead>
<tr>
<th>Desinfección domiciliaria o de urgencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ebullición: a partir de la subida de grandes burbujas durante un minuto, pasarla de un recipiente a otro, batirla para airearla con un utensilio desinfectado y dejarla en reposo varias horas en recipiente ancho y de poca profundidad que facilite el contacto con el aire. Como hiere a temperatura más baja a mayor altitud sobre el nivel del mar, por cada 1.000 metros de altura hay que agregar un minuto de ebullición.</td>
</tr>
<tr>
<td>2. Cloración: dos o tres gotas de agua lavandina o solución de cloro activo al 2% por litro de agua (la lejía líquida es hipoclorito de sodio al 1%), se mezcla y se deja actuar veinte minutos. Se recomienda beber esta agua después de veinticuatro horas. Hay pastillas clorógenas en el mercado.</td>
</tr>
<tr>
<td>3. Iodación: dos gotas de tintura de lodo al 10% cada cinco litros de agua.</td>
</tr>
</tbody>
</table>

Si las aguas son turbias, se las deja sedimentar dos horas o se las filtra por arena apoyada en gravilla, antes de la desinfección.


8.2. Obtención domiciliaria sistemática

Donde no se sabe o sospecha que el agua de bebida está contaminada, se puede mejorar con ebullición o con filtros caseros, de los que hay varios tipos, ya sea en el comercio o que se pueden armar fácilmente.
Los filtros de candela están formados por dos recipientes superpuestos y encajados entre sí. En el superior, que contiene el agua a mejorar, se ubica también una o varias candelas que desembocan en el inferior. Las candelas son cilíndricas de material cerámico poroso por el que se filtra el agua y se canaliza hacia un tubo central que desemboca en el recipiente inferior.

<table>
<thead>
<tr>
<th>Filtro de Candela</th>
</tr>
</thead>
<tbody>
<tr>
<td>tapa</td>
</tr>
<tr>
<td>candela</td>
</tr>
<tr>
<td>conexión hermética</td>
</tr>
<tr>
<td>grifo</td>
</tr>
</tbody>
</table>


Este tipo de filtros elimina parásitos, quistes y la mayoría de las bacterias, no así los virus.

Los filtros de arena caseros están compuestos también por dos recipientes superpuestos encajados y comunicados entre sí. En el superior se pone el agua a mejorar, la que debe filtrarse por una capa de arena y otra de grava. Tiene resultados similares al anterior.

En ambos casos, después de la filtración, se puede clorar el agua para eliminar bacterias remanentes y virus.

El almacenamiento del agua obtenida y su extracción deben mantenerse en buenas condiciones de higiene para evitar su recontaminación (OMS, 1995: 132-140 [3er tomo]).

9. La contaminación del agua

La contaminación antrópica de las aguas superficiales (lagos, lagunas, ríos, etcétera) se relaciona con la densidad de la población y de las industrias ubicadas en áreas adyacentes y “aguas arriba” de sus cuencas de drenaje.

Los factores meteorológicos contribuyen a la contaminación a través de las lluvias, las inundaciones y los impedimentos de desagües por efecto eólico (por ejemplo, sudestadas en la
corta occidental del Río de la Plata). Esta contaminación debe considerarse en función de cada cuenca y de sus drenajes a los cursos mayores y al mar.

Muchas veces, las lluvias intensas exceden la capacidad de los cauces superficiales y tienden a producir inundaciones en sus márgenes. La urbanización, al aumentar las superficies impermeables del suelo, reduce la infiltración del agua, aumenta la escorrentía superficial y reduce el tiempo de demora entre la precipitación y el comienzo de la inundación (Tarbuck y Lutgens, 1999: 219).

El agua precipitada que no forma escorrentía ni se evapora se infiltra en el suelo permeable, formando primero un cinturón de humedad que es utilizado por la vegetación y, hacia abajo, hasta una zona en que los espacios libres de sedimento y roca se llenan de agua subterránea, la zona de saturación, cuyo límite superior es el nivel freático. Entre el cinturón de humedad superficial y el nivel freático está la llamada franja capilar, que ocupa una zona de aireación que mantiene, entre los granos de tierra y sedimentos, agua por tensión superficial.

El nivel freático es dinámico, baja en la sequía y sube con las lluvias, y su perfil sigue aproximadamente la topografía del terreno. Los pantanos coinciden con el nivel freático, mientras que los lagos y cursos fluviales están debajo de él (Tarbuck y Lutgens, 1999: 219).

Un caso paradigmático, aunque no el único, es el de la cuenca del Río Matanza-Riachuelo, estudiado por calificados investigadores como Alejandro Malpartida de la Universidad Tecnológica Nacional, su cuerpo receptor el Río de la Plata y su Frente Marítimo, estudiado por Juan Carlos Colombo y su grupo del Laboratorio de Química Ambiental y Biogeooquímica (Fac. de Ciencias Naturales y Museo, UNLP), conjuntamente con los Servicios Hidrográficos argentino y uruguayo, el Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP, Argentina), la
Comisión Nacional de Energía Atómica y el apoyo de la Prefectura Nacional Argentina (Colombo, 2003; Carsen, 2002).

El curso Matanza-Riachuelo recorre varios partidos de la provincia de Buenos Aires (Almirante Brown, Avellaneda, Cañuelas, Esteban Echeverría, Gral. Las Heras, La Matanza, Lanús, Lomas de Zamora, Marcos Paz, Merlo, Presidente Perón, San Vicente y Ezeiza) y la Ciudad Autónoma de Buenos Aires, a lo largo de 80 km, e involucra una cuenca de más de 2.000 km². Habita en ella el 15% de la población argentina (alrededor de cinco millones de personas), de la cual sólo el 45% dispone de cloacas y el 65% de agua potable (Malpartida, 2000: 5).

Los cursos de la cuenca recogen alrededor de 370.000 m³ de aguas residuales domésticas, de las que sólo el 5% recibe tratamiento, 89.000 m³ de aguas residuales industriales procedentes de más de 3.000 establecimientos, aproximadamente cien considerados de gran envergadura, y líquidos lixiviados y residuos sólidos de más de cien basurales a cielo abierto.

Los estratos de tosca o sedimento que son permeables a la circulación de agua subterránea se denominan acuíferos.

Los acuíferos productivos en el área del Gran Buenos Aires son los siguientes (De Felippi y col, 1991, citado por Malpartida, 2000: 35):

- **Epipuelche**: constituido por la capa freática ubicada a pocos metros del suelo, hasta 9 a 12 metros, altamente contaminada, y el *Pampeano*, ubicado entre 12 a 18 y 21 a 25 metros de profundidad, vulnerable a la contaminación por inexistencia o insuficiencia de protección sanitaria.
- **Puelche**: entre 35 a 48 y 45 a 65 metros de profundidad, vulnerable por las perforaciones insuficientemente protegidas. Puede contaminarse con nitratos, agroquímicos y salinizarse por infiltración en zonas ribereñas.
- **Hipopuelche**: ubicado a profundidades mayores sobre el basamento cristalino, explotado en mayor medida en la cuenca inferior.

El acuífero Puelche es el que ofrece la mejor calidad y cantidad de agua. Sin embargo, su sobreexplotación ha producido su depresión y la intrusión de aguas salinas. Por otra parte, el exceso de residuos y efluentes, aun por fugas de fallas en los sistemas cloacales y conductos de hidrocarburos y pozos mal encamisados, lo exponen a la contaminación.

10. El agua debe reunir condiciones para ser potable

De acuerdo con sus características, las aguas de lluvia y subterráneas se consideran potables si se recogen y depositan bajo normas higiénicas. Las aguas superficiales, excepto las de torrentes de la montaña o fuentes emergentes, requieren un complejo proceso de potabilización.

A fines del siglo XIX se corroboró que el uso de agua filtrada reducía la mortalidad por fiebre tifoidea. En 1904, el norteamericano Hazen definió estadísticamente un teorema según el cual “por cada muerte por fiebre tifoidea u otra enfermedad hídrica que se evita con instalaciones sanitarias, se previenen entre 2 y 3 muertes por otras causas en la población infantil” (Lepera, 1966: 149).

Las afectaciones del agua de bebida pueden surgir de sus características organolépticas, químicas, microbiológicas y por eutrofización.

---

10 Para un estudio exhaustivo de contaminación microbiológica, química inorgánica u orgánica y por pesticidas del agua, consultar OMS, 1995, vol. I.
El agua potable debe ser incolora y límpida, inodora y de gusto agradable. Su temperatura debe estar entre 8 y 11°C. No debe contener sales en exceso ni tóxicos más allá de límites establecidos y debe estar libre de gérmenes patógenos.

Las normas legales vigentes en Argentina sobre agua potable son:

- Decreto ley nacional 19.587 (1972) y su Decreto reglamentario N° 351/1979, sobre Higiene y Seguridad en el trabajo. En su capítulo 6, los artículos 57 y ss. se ocupan de la provisión de agua potable en todo establecimiento en donde se trabaja. El artículo 58 lleva un cuadro con las especificaciones aconsejables, aceptables y los límites tolerables para el agua potable.

Existen, además, legislaciones nacionales (Ley 25.688: Régimen de Gestión Ambiental de las Aguas. Ley de Presupuestos Mínimos) y provinciales (Ley 12.257: Código de Aguas. Régimen de protección, conservación y manejo del recurso hídrico de la provincia de Buenos Aires) que protegen y controlan los cuerpos de aguas superficiales y subterráneas, de los cuales se extraen las aguas para su potabilización.

La aplicación de las leyes exige la existencia de organismos dinámicos de control con suficiente número de inspectores y una red de laboratorios de diversa complejidad para el análisis de los posibles contaminantes. Estos organismos supervisan los análisis que hacen las empresas en sus propios laboratorios. Deben escuchar y analizar las inquietudes de la comunidad. Debe recordarse que, conocidas las fuentes potenciales de contaminación de las aguas superficiales y subterráneas, el paso previo al tratamiento es la protección de esas fuentes mediante legislación, organismos y laboratorios de control.

La potabilidad se mide según tres tipos de características: organolépticas, químicas y microbiológicas.

- Características organolépticas:
  - La presencia de materia inorgánica u orgánica genera turbiedad. La turbiedad se mide por comparación con un patrón de agua con sílice (1 mg/1 litro de agua) equivalente a una unidad. El límite normal es hasta dos unidades, aunque hay lugares que lo sobrepasan sin ser perjudicial para la salud. Las aguas de los ríos de llanura suelen tener entre treinta y quinientas unidades.\(^{11}\)
  - El color se mide por una solución química cuya unidad es mg/l de platino, admitiéndose entre cero a cinco y, excepcionalmente, hasta doce.
  - El agua potable debe ser inodora o de olor inobjetable, lo que se mide diluyéndola con volúmenes iguales de agua inodora hasta que el eventual olor desaparece. Cada dilución indica una unidad y se considera normal hasta dos, aunque, según las circunstancias, se admite hasta diez unidades.
  - El sabor debe ser agradable. La presencia de sales en exceso lo hacen salado por el cloruro de sodio, amargo por sulfatos o ácido por hierro o manganeso.
  - La temperatura (normal entre 8 y 11°C) tiende a subir por la contaminación orgánica o refrigeración de plantas industriales. Si es mayor de 12°C, tiende a disminuir el contenido

\(^{11}\) Se las mide también en unidades Jackson Nefelométricas (NTU). Es normal menos de 0,2 NTU, aceptable 1 NTU y máximo 2 NTU.
de oxígeno disuelto, aumenta la velocidad de las reacciones químicas y disminuye la vida de organismos vivos presentes, como los peces

- Características químicas:
  - **pH**: en el agua potable debe ser neutro (pH 7) o ligeramente alcalino y no menor de 6,8. El proceso de coagulación con sulfato de aluminio tiende a reducirlo, razón por la cual se agrega como alcalinizante hidróxido de calcio. El ácido no afecta directamente al organismo humano, pero sí a las cañerías antiguas de plomo, generando carbonato de plomo (CO₃Pb₆), que es tóxico.
  - **Residuo a 105°C**: una vez evaporada el agua a 105°C, queda un residuo de sales minerales cuyo máximo es de 500 mg/litro. Hay zonas en que llega a niveles de 2.000 mg/litro por las características hidrogeológicas.
  - **Dureza**: es función de las sales de magnesio y de calcio. Se consideran varias categorías.

<table>
<thead>
<tr>
<th>Agua. Grados de Dureza</th>
<th>Contenido (en mg/l de carbonato de calcio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blandos</td>
<td>&lt; 50</td>
</tr>
<tr>
<td>Moderadamente blandos</td>
<td>50 a 99</td>
</tr>
<tr>
<td>Ligeramente blandos</td>
<td>100 a 149</td>
</tr>
<tr>
<td>Moderadamente duras</td>
<td>150 a 249</td>
</tr>
<tr>
<td>Duras</td>
<td>250 a 349</td>
</tr>
<tr>
<td>Muy Duras</td>
<td>&gt; 350</td>
</tr>
</tbody>
</table>


a. Las **aguas blandas** producen corrosión en las cañerías, por lo que se requiere un mínimo de 40 mg/l.

b. Las **aguas duras** (más de 250-300 mg/l) impiden que el jabón forme espuma, por eso lo consumen y deterioran la ropa. Producen incrustaciones en las cañerías, utensilios de cocina y en las calderas, con reducción de la transmisión de calor, por lo que se consume más combustible. Por otra parte, son no aptas para algunas industrias.

- **Cloruros**: el valor óptimo es de 100 mg/l, admitiéndose hasta 700 mg/l. Hay lugares con niveles mayores. Un contenido de cloruros superior a 1 gr/l produce gusto salado y desagradable.
  El aumento progresivo de cloruros en aguas subterráneas indica que la fuente está demasiado exigida. Un aumento brusco, más si aumenta el amoníaco, indica posible contaminación con aguas negras.

- **Sulfatos**: el exceso de sulfatos, frecuente en aguas subterráneas de algunas cuencas, produce sabor desagradable y efecto laxante. En la construcción, este exceso afecta las estructuras de hormigón.

- **Nitratos y nitritos**: el exceso natural de nitratos es propio de aguas subterráneas de la región pampásica. Fuera de esas napas, tanto nitritos como nitratos sugieren contaminación orgánica, que debe corroborarse con análisis bacteriológico. En las últimas décadas del siglo XX aumentaron en el conglomerado bonaerense de 30 mg/l (NO₃⁻) a 80 mg/l (NO₃⁻) (Staff. Protección 2000).
  Los nitratos están presentes en aguas superficiales y subterráneas por la descomposición natural de proteínas y oxidación de amoníaco o por su uso en agricultura. Junto con otros...
nutrientes, producen eutrofización, que reduce el oxígeno disuelto, compromete la vida acuática por la proliferación de algas (explosiones algales), convirtiendo los cuerpos de agua superficial, especialmente los lenticos, en pantanos. Se han señalado regiones en Canadá, República Checa y Argentina con niveles muy altos. 

El ion nitrato ingerido se reduce en el tubo digestivo, por acción bacteriana y por el pH del estómago, en ion nitrito. Ambos se absorben a lo largo del tracto digestivo. En el estómago de los lactantes (pH 3-4) se encuentran más nitritos que en los adultos. Los nitritos pueden generar metahemoglobina en lactantes y, además, formar nitrosaminas cancerígenas.

El 1 a 2% de la hemoglobina de la sangre normal se presenta como metahemoglobina. Alrededor del 10% configura una metahemoglobinemia. Hay una acción enzimática que mantiene la metahemoglobinemia por debajo del 2%. Algunas poblaciones son más sensibles por menor actividad de la enzima de origen genético. En los lactantes, cuando la metahemoglobinemia alcanza 5 a 10%, se presenta cianosis, disnea, rubicundez facial, somnolencia y finalmente shock.

- **Hierro y manganeso**: son minerales que se presentan juntos en el agua. No afectan la salud, pero dan gusto ácido, manchan la ropa y los artefactos sanitarios. Afectan también las cafeterías de hierro y no pueden usarse en ciertas industrias. El hielo hecho con estas aguas presenta manchas en el interior. En Argentina, las aguas subterráneas del norte de Santa Fe y Entre Ríos y de Corrientes tienen alto contenido en hierro y manganeso.

- **Arsénico**: es tóxico, aunque en las aguas subterráneas se admiten cantidades pequeñas, que son inocuas, de hasta 0,05 mg/l. En Argentina suele sobrepasar ese nivel en zonas del oeste de Buenos Aires, en Córdoba, Santa Fe y La Pampa. Fue en Bell Ville (Córdoba), con niveles de hasta 4,5 mg/l, donde Mario Goycoechea en 1913 y Abel Ayerza en 1917 describieron los primeros casos de Hidroarsenicismo Crónico Regional Endémico (HACRE). Se estima que en Argentina hay 1.500.000 expuestos, por las regiones donde viven.

La enfermedad se caracteriza por presentar diferentes etapas:

- a. Hiperhidrosis palmoplantar con prurito y descamación de la piel (Astolfi, 1982).
- b. Queratodermia palmoplantar difusa o punteada.
- c. Onicógrafosis.
- d. Melanodermia de dorso y pecho (“piel goteada”) que no afecta mucosas.
- e. Depósitos en hígado que pueden producir insuficiencia hepática.
- g. El tóxico puede afectar las mucosas respiratoria o digestiva.12
- h. En niños, afecta el desarrollo cognitivo (OMS-CE, 2006).

El problema afecta amplias zonas de Latinoamérica y de Asia,13 en poblaciones que tienen agua con tenores de 0,6 a 0,8 miligramos de arsénico por litro provenientes de pozos profundos.14 Las manifestaciones clínicas aparecen entre los cinco y veinte años de exposición continua.

La zona más afectada de Argentina es la provincia de Santiago del Estero, con localidades como Monte Quemado y Urataú que tienen agua con altos tenores del tóxico. En la

---

12 Se lo ha considerado factor de riesgo para cáncer de vejiga, riñón y pulmón.
13 Los países que han detectado el problema como serio son, entre otros, Argentina, Chile, México, Bolivia, Perú, Nicaragua, El Salvador, EE.UU., Hungría, Polonia, Rumania, China, Bangladesh, Camboya, Tailandia y Vietnam (OMS-CE, 2006; Balsa, 1998).
14 Se ha estimado que, de cada cien personas que beben agua con tenores superiores a 0,5 mg/l, una tiene riesgo de cáncer asociado; si el tenor es mayor a 0,5 mg/l, diez de cada cien tienen ese riesgo (OMS-CE, 2006).
primera de ellas, Obras Sanitarias de la Nación instaló una planta de potabilización que apenas alcanza a reducir el tóxico de una concentración de 1,10 mg/litro a 0,30.\textsuperscript{15}

La intoxicación depende de la susceptibilidad del huésped, la concentración del tóxico en el agua y medio ambiente y la duración de la residencia en áreas afectadas, así como de hábitos culturales con mucha ingesta de agua (como el mate).

- **Vanadio**: las normas establecen un máximo de 0,5 mg/l. Suele acompañar al arsénico y al flúor. Por mucho tiempo se planteó su eventual toxicidad, pero en las últimas décadas se le atribuyó un efecto inhibitor de la síntesis de colesterol y protector contra la arterioesclerosis. En Argentina, la concentración tiende a subir en aguas subterráneas del oeste de Buenos Aires, norte de La Pampa y sur de Córdoba y Santa Fe. En General Pico (La Pampa) se han detectado niveles de 10 mg/l de vanadio y 2 mg/l de arsénico.

- **Flúor**: las normas establecen un valor medio de 1 mg/l. Hay localidades en el norte de La Pampa, noroeste de Buenos Aires y sur de Córdoba cuyas aguas subterráneas tienen alto contenido, desde 6 a 8mg/l hasta 12 mg/l de flúor.

La ingesta desde la infancia de aguas con más de 2 mg/l produce manchas amarillo-marrones y picado en el esmalte dentario (“dientes veteados”). El exceso puede producir toxicidad, que se manifiesta en el sistema esquelético, la osteopetrosis u osteoesclerosis flúorica, estudiada en Argentina en 1940 (Pasqualini y Celli) en más de 1.000 conscriptos procedentes de la zona de Santa Rosa de Toay (La Pampa) y descripta con las alteraciones dentales ya mencionadas, buen estado general, imágenes espondilolíticas, con aumento de la densidad y borramiento de la estructura ósea, exostosis y calcificación de ligamentos y un aumento del contenido de flúor en el hueso. Gravano (1962) dedica un capítulo a la diferenciación de esta entidad con otras osteoesclerosis generalizadas, entre las que menciona la congénita o enfermedad de Albers-Schonberg, las metástasis osteoblasticas y la intoxicación por plomo, que, como el calcio, se deposita en los huesos.

Existen zonas en el mundo con niveles muy altos de flúor: Andhra Pradesh en India (más de 6 mg/l) y Nuevo México en EE.UU. (más de 12 mg/l).

La disminución excesiva de flúor en el agua de bebida aumenta la incidencia de caries dentales. El flúor es protector en la patogenia de las caries, por lo que se han agregado fluoruros (1 ppm) cuando no los hay en el agua de bebida. Se hacen aplicaciones tópicas de fluoruro de estaño dos a cuatro veces al año y se usan dentífricos fluorados.

- **Silice**: no afecta la salud, pero sí el uso industrial. Produce trastornos en la circulación de las calderas. En Argentina tiende a ser superior que en las aguas europeas.

- **Otros componentes disueltos**: en el proceso de tratamiento de aguas superficiales (floculación) se usan sales de aluminio, y pueden quedar restos en el agua de bebida que, si sobrepasan un límite (0,2 mg/l), pueden producir flóculos en el sistema de distribución y cambios de coloración. Hay estudios que relacionan el exceso de ingesta de aluminio con lesiones cerebrales del tipo de la enfermedad de Alzheimer (OMS, 1995: 41 y 130).

Uno de los grandes progresos en el tratamiento de la Insuficiencia Renal Crónica Terminal ha sido la purificación extrema del agua para la diálisis (procesos sucesivos de purificación, descalcificación, desionización y ósmosis inversa). Uno de los elementos que se deben eliminar para este uso es el aluminio, ya que contribuye al desarrollo de la osteodistrofia (Braunwald et al., 2002: 1829 y 1899). Los materiales del sistema de distribución y el utilizado en el soldado de los tramos pueden generar algunas

\textsuperscript{15} En los países afectados se utilizan diversos métodos: intercambio iónico con resinas sintéticas, filtrado con alúmina activada, filtrado de arena. A nivel domiciliario se preconiza filtrar el agua a través de tres vasijas de arena o utilizar filtros de bioarena. Su aplicación exige campañas de concientización y capacitación familiar. En regiones como la de Bangladesh, con altas precipitaciones, se suele utilizar como fuente el agua de lluvia (OMS-CE, 2002).
contaminaciones poco frecuentes del agua de red. Por ejemplo: amianto en tuberías de cemento con ese compuesto; antimonio utilizado en soldaduras con estaño; el cobre, el hierro y el zinc de cafeteras; el níquel de grifos y accesorios. El plomo procede de fuentes naturales, pero aumenta en los sistemas de tuberías de ese metal, en especial cuando el agua es ácida y blanda. El exceso (el límite sanitario es de 0,01 mg/l) puede transferirse por la placenta a partir de la 12ª semana, durante todo el embarazo, es absorbido en el intestino cuatro a cinco veces más en niños pequeños que en adultos y se deposita en el esqueleto, afecta la biosíntesis del hueso y es tóxico para el sistema nervioso central y periférico (OMS, 1995: 56).

- **Gases disueltos**: el principal es el anhídrido carbónico (CO₂). Su medición se relaciona con el pH y con la alcalinidad a través de un cálculo matemático (gráfico de Tillman). Del oxígeno se hará mención aparte.

En las aguas de efluentes cloacales o industriales se tienen en cuenta otros parámetros, como la Demanda Bioquímica de Oxígeno (DQO), Oxígeno al permanganato de potasio, contenido en sulfuros, cromo (especialmente cromo 6, más tóxico que el cromo 3), cianuros, detergentes, mercurio, fenoles y sólidos solubles al éter etílico (grasas y aceites). Estos parámetros indican contaminación de aguas superficiales o profundas e influyen en el procesamiento para la producción de agua potable.

- **Características microbiológicas:**
  El Código Alimentario prohíbe la presencia de bacterias patógenas: *Escherichia Coli*, *Enterococcus faecalis* y *Psedomonas aeruginosa* fecal. La presencia de la primera indica contaminación fecal, la de la segunda contaminación reciente y la de *Clostridium Sulfito Reductor*, contaminación fecal lejana. El Código admite hasta dos bacterias coliformes (en conjunto) por cada 100 ml de agua en pozos semisurgentes, y hasta 2,2 a 3 en aguas superficiales tratadas, como NMP (Número Más Probable), a 37ºC por 48 horas, en caldo de Mc Conkey o Lauril Sulfato. Esta admisión se debe a la existencia de variedad de gérmenes dentro de la familia *Enterobacteriaceae*, tribu *Escherichae*, dividida en tres especies:

1. *Escherichae coli* (su presencia es signo de contaminación fecal)\(^{16}\)
2. *Citrobacter freundii*
   - *Enterobacter aerogenes*
   - *Enterobacter cloacae*
   Grupo “IAC” o intermedio
3. *Klebsiella*
   Coliformes termorresistentes

El NMP (número más probable) de bacterias coliformes por cien mililitros de agua se mide con diluciones en tubos sucesivos con medios de cultivo. Así, un NMP de **2,2 bacterias coliformes por cien mililitros de agua** indica que no hay bacterias patógenas.\(^ {17}\)

En lo que hace a bacterias aerobias –las coliformes se consideran aerobias y anaerobias facultativas–, se admite hasta un número máximo de cien colonias por cien mililitros de agua, aunque lo ideal es menos de diez colonias.

Estos son los únicos organismos que se buscan sistemáticamente. Su ausencia, en principio, afirma la eficacia del tratamiento del agua y supone la ausencia de otros que suelen generar cuadros más graves. En algunas circunstancias, se buscan también bacterias como *Enterococo*,

\(^{16}\) La *E. coli* habita el intestino de humanos y mamíferos y se expulsa en mayor cantidad que los microorganismos patógenos, por lo que es más fácil de cultivar; sobreviven períodos largos en el agua sin reproducirse en ella, por lo que su presencia indica contaminación y no crecimiento por condiciones favorables. Por todo ello, la ausencia de *E. coli* en una muestra es indicador favorable de que no hay patógenos (Davis y Masten, 2004: 345).

\(^{17}\) Para cultivos en cápsula de Petri se expresa en UFC c/100 ml (UFC = Unidades Formadoras de Colonias).
**Clostridiium welchii** (que indica contaminación lejana), **Campylobacter jejuni** y **Salmonella, Shigellas, Vibrio cholerae, Yersinia enterocolítica**.

Los virus principales que se transmiten por el agua son **Adenovirus**, **Enterovirus**, virus de la **hepatitis A y E**, virus de Norwalk y Rotavirus.

Los parásitos principales son la **Giardia**, el **Cryptosporidium** y la **Entamoeba hystolítica**, que infectan con bajas dosis y tienen alta resistencia al cloro (OMS, 1995: 10-11). Tanto los virus como los parásitos requieren métodos complejos para su detección, por lo que no se aplican en forma sistemática (OMS, 1995: 24-26).

Aguas bien potabilizadas en planta pueden contaminarse en la red de distribución por diversas vías. Ante este riesgo, se recomienda muestrear dicha red por doce meses, y se admite que hasta un 5% de las muestras contengan ocasionalmente coliformes, siempre que no haya **E. coli** (OMS, 1995: 23).

- **Eutrofización:**

La eutrofización es el enriquecimiento de nutrientes de las aguas superficiales, en particular de los lagos, las lagunas, los reservorios de diques y las zonas estancas de los cursos hídricos.18 Este fenómeno se puede generar espontáneamente a lo largo de décadas: es la eutrofización natural. Por ejemplo, en un cuerpo de agua cerrado (laguna), el proceso de eutrofización puede terminar por convertirlo en tierra firme. Eso ocurre porque los nutrientes que ingresan masivamente al sistema generan una gran biomasa de organismos de vida efímera que, al morir, se acumulan sobre el fondo y no son totalmente consumidos por organismos degradadores (especialmente bacterias).

Sin embargo, la descarga de efluentes cloacales, agrícolas e industriales puede apresurar el proceso de eutrofización, que en este caso se califica como cultural o antrópico.

Cuando esto ocurre, la vegetación litoral se hace más abundante, suelen presentarse floraciones de algas y reducirse la población ictícola, sobre todo de aguas frías, por el bajo nivel de oxígeno de la profundidad.

La eutrofización afecta la vida piscícola, la pesca comercial y el uso recreativo de las aguas. Esto, en función de que las floraciones de algas filamentosas, más aún después de las tormentas, dejan en las riberas materia en descomposición y espuma con mal olor y aspecto (Glynn y Heinke, 1999: 326 y ss.).

Si se utilizan estas aguas como fuente de potabilización, se presentan tres tipos de problemas:

- Producción de obstrucciones en las tomas y en los filtros y consecuentes cortes de provisión.
- Agua coloreada con olor y sabor desagradable según el tipo de eutrofización.
- Agua potencialmente tóxica para la fauna, el ganado e incluso el ser humano.

Los agentes eutróficos son:

- Las algas verde-azules (microscópicas) o cianobacterias que forman colonias filamentosas o globosas y pátinas verdes sobre la superficie del agua. Algunas especies producen neurotoxinas y/o hepatotoxinas que pueden generar intoxicaciones agudas o crónicas. En Argentina se han descripto episodios (por ejemplo, lago del parque Gral. Belgrano, Santa Fe, 1973) con mortalidad de peces, fauna y ganado y trastornos gastrointestinal y dérmicos en bañistas.
- Los dinoflagelados son más excepcionales.

---

18 Los cuerpos de agua con bajo nivel de nutrientes se llaman oligotróficos, mientras que los que contienen mediano contenido de nutrientes se denominan mesotróficos.
Por otra parte, se ha detectado eutrofización intensa en numerosas fuentes de agua superficial utilizadas en pesca, recreación, riego y para potabilización.\textsuperscript{19}
El fenómeno tiende a incrementarse por la sobrecarga de detritos procedentes de los desagües cloacales e industriales y de la actividad agrícola ganadera. Se relaciona, en especial, con la concentración de compuestos del fósforo y del nitrógeno que estos desagües generan.
Se requiere el tratamiento completo de las descargas cloacales e industriales (por ejemplo, zafra y procesamiento en Tucumán) y la dosificación reducida de fertilizantes. Se ha usado sulfato de cobre como alguicida, recolección de hierbas en las riberas y aireación mecánica de las aguas, procedimientos que tienen cortos efectos (\textit{ibid.}).

11. La toma de muestras esta normada

La \textit{toma de muestras de agua} es un procedimiento clave para poder determinar sus características. Las muestras deben ser homogéneas y representativas y, por sobre todo, no deben modificarse sus propiedades en la extracción.

El tipo de frasco a utilizar dependerá del parámetro a determinar. Deberán estar enjuagados y/o esterilizados y podrán ser de boca amplia y cierre hermético de acuerdo con el tipo de compuesto que se desee medir.

La toma se debe hacer con cuidados especiales para no contaminar el frasco o agregar eventual contaminación al agua. Las manos del operador deben estar higienizadas y la boca del frasco no debe acercarse a su boca o cuerpo.

En la siguiente tabla se muestran los requisitos para la toma de muestras de agua para análisis químico y microbiológico (Cepis/OPS-OMS). Se han seleccionado los principales parámetros de estudio.

\begin{tabular}{|c|c|c|c|c|}
\hline
Parámetro & Tipo de frasco & Cantidad mínima de muestra & Preservación & Tiempo máximo de almacenaje \\
\hline
Turbiedad & P o V & 100 ml & refrigerar a 10°C & 48 horas \\
\hline
Alcalinidad & P o V & 50 ml & refrigerar a 4°C & 48 horas \\
\hline
Cloro residual & P o V & 500 ml & analizar inmediatamente & \\
\hline
Color & P o V & 500 ml & refrigerar a 4°C & 48 horas \\
\hline
Conductividad & P o V & 500 ml & refrigerar a 4°C & 28 días \\
\hline
Dureza & P o V & 100 ml & Agregar HNO₃ hasta pH < 2 & 6 meses \\
\hline
\end{tabular}

\textsuperscript{19} Algunos ejemplos son: arroyo y embalse Uruguay (Misiones), embalse Cnel. Moldes (Salta), embalse El Cadillal (Tucumán; provee el 70% del agua potable a la capital); embalse Río Hondo (Tucumán-Santiago del Estero; en 1995 se detectó una sustancia verde brillante con olor a Gamexane y casos de alergia, diarreas y enfermedades respiratorias agudas), embalse Cruz de Piedra (San Luis; abastecía la capital; después de una floración mayor en 1996, se recurrió a otra fuente), embalse San Roque (Córdoba; abastece gran parte de la capital y Carlos Paz), embalse de Río Tercero (Córdoba; abastece cuatro ciudades), Río Cuarto, Laguna Portman (Santa Fe; en 1997 produjo muerte de peces, fauna y algunos bovinos), embalse de Salto Grande (Argentina-Uruguay), embalse Paso de las Piedras (Buenos Aires; abastece las ciudades de Bahía blanca y Punta Alta; se producen taponamientos de filtros, cortes y agua con olor y sabor desagradable), Lago Carlos Pelegrini (Río Negro), Laguna Willimanco, embalse Florentino Ameghino y Río Chubut (Chubut) (Glynn y Heinke, 1999).
| Proceso                              | P o V  | Volumen | Temperatura | Tiempo
|-------------------------------------|--------|---------|-------------|--------
| Sólidos                             |        | 1.000 ml| Refrigerar a 4°C | 2 a 7 días
| Cloruros                            | P o V  | 100 ml  | Refrigerar a 4°C | 7 días
| Fluoruros                           | P      | 10 ml   | Refrigerar a 4°C | 7 días
| Sulfatos                            | P o V  | 100 ml  | Refrigerar a 4°C | 25 días
| Cianuros                            | P o V  | 500 ml  | Refrigerar, agregar NaOH hasta pH = 12 | 14 días, 24 horas en presencia de sulfuros
| Demanda de cloro                    | P o V  | 3.000 ml| Refrigerar a 4°C |        
| Nitrógeno                           | P o V  | 250 ml  | Refrigerar, agregar H₂SO₄ hasta pH < 2 | 23 días
| Nitratos                            | P o V  | 100 ml  | Refrigerar a 4°C | 28 días
| Nitritos                            | P o V  | 100 ml  | Refrigerar a 4°C | 48 horas
| Fósforo total                       | P o V  | 100 ml  | Refrigerar a 4°C | 24 horas
| Oxígeno disuelto                    | V      | 300 ml  | Analizar inmediatamente | 30 minutos
| DBO                                 | P o V  | 1000 ml | Refrigerar a 4°C | 24 horas
| DQO                                 | P o V  | 10 ml   | Refrigerar, agregar H₂SO₄ hasta pH < 2 | 28 días
| Arsénico                            | P o V  | 50 ml   | Refrigerar, agregar HNO₃ hasta pH < 2 | 6 meses
| Coliformes totales (NMP)            | V/P    | 200 ml  | Refrigerar a 4°C | 24 horas
| Coliformes fecales (NMP)            | V      | 200 ml  | Refrigerar a 4°C | 24 horas
| Salmonella (NMP)                    | V      | 200 ml  | Refrigerar a 4°C | 24 horas
| Escherichia (NMP)                   | V      | 200 ml  | Refrigerar a 4°C | 24 horas
| Estreptococos fecales              | V      | 200 ml  | Refrigerar a 4°C | 24 horas
| Agua de río                         | P      | 5 l     | Refrigerar en hielo | 24 horas
| Agua potable                        | P      | 10 l    | Refrigerar en hielo | 24 horas
| Lodos                               | B      | 200 g   | Refrigerar en hielo | 3 días

Notas: P = plástico; V = vidrio; B = bolsa de plástico sellado
Fuente: resumen de Cepis/OPS-OMS.

Habitualmente se utilizan frascos de vidrio neutro de tapa esmerilada y boca mediana. Deben estar lavados con agua, detergente o mezcla sulfocrómica, enjuagados y esterilizados en autoclave con trozo de papel atado al cuello recubriendo la tapa. Deben tener una capacidad media de 250 ml. Si el agua a analizar ha sido tratada con cloro, es preciso impedir que este mate
las bacterias remanentes en el tiempo entre la toma y el análisis, para lo que se ponen algunos miligramos de tiosulfato de sodio. Si no han sido tratadas con cloro, este agregado no se realiza.

El procedimiento varía según la fuente de la muestra:

- **De un grifo o canilla:** debe limpiarse su exterior e interior, dejar salir un chorro de agua durante dos o tres minutos y esterilizar la salida con llama de alcohol. Para esto, antes se han sacado eventuales aditamentos del grifo, tales como gomas u otros. Una vez esterilizado, se enfriá dejando salir otro chorro de agua y recién después se llena el frasco. Los pasos referentes al grifo son previos a destapar el frasco. Una vez lleno, se tapa de inmediato.
- **De pozos semisurgentes:** se extrae la muestra de la bomba, de mano o mecánica, con las mismas precauciones que en el caso del grifo, pero dejando escurrir agua durante treinta minutos antes de la esterilización de la boca. Si el pozo no estuvo en uso, se deja escurrir durante cinco horas.
- **De cursos de agua (ríos, lagunas, arroyos), tanques de reserva o natatorios:** se procede de manera similar, pero sosteniendo el frasco de muestra con pinzas largas flameadas. Se lo introduce rápidamente a unos veinte centímetros de la superficie, con la abertura en sentido contrario a la corriente de agua si la hubiere, de lo contrario, se da al frasco un movimiento circular. Se retira rápidamente y se tapa. En aguas superficiales se hace la toma lejos de la orilla. En los tanques de reserva, cerca del conducto de salida; y en las piletas o natatorios, cerca del borde en el área más profunda.
- **En aljibes:** se procede con un balde limpio, rociado y flameado previamente con alcohol, que se sumerge, y con el contenido obtenido se llena el frasco de muestra con similares precauciones.

En todos los casos, las muestras se **rotulan** sobre el frasco, marcando sitio de extracción, fecha y hora, numerándose si se extraen varias. En general, deben conservarse a 2-6°C hasta su llegada al laboratorio, que debe hacer el análisis entre las seis y veinticuatro horas de la toma. Se registran las características de la fuente, sus condiciones higiénicas a la vista, relaciones con cañerías y artefactos y, de ser el caso, trastornos producidos por el agua en estudio.
Anexo I

Desinfección de instalaciones de agua corriente

a. Conservación y desinfección de tanques de reserva

- Verificar periódicamente que la tapa esté sana y tenga cierre hermético.
- Asegurar una ventilación adecuada protegida con tejido resistente de malla fina.
- Ubicar la cañería de desagüe debajo del nivel del piso para que arrastre impurezas y material en el momento del desagüe.
- Limpiar periódicamente con cepillo de cerda dura todo el interior, paredes, piso y tapa.
- Una vez limpio, pintar con lechada de cal concentrada con agregado de sulfato de cobre (disuelto por separado) en solución de un kilogramo cada cien litros de lechada de cal concentrada.
- Una vez seco, llenar de agua hasta un tercio de su capacidad y agregar hipoclorito de sodio (agua lavandina) en concentración de sesenta gramos por litro, 0,5 litros cada mil litros de agua.
- Se deja salir agua por todos los grifos de alimentación hasta percibir olor a cloro, momento en que se cierran y se llena el tanque, se tapa y se sella.
- Se deja un mínimo de doce horas cerrado y, posteriormente, se drena por todos los grifos y cañerías hasta no percibir más olor a cloro.

b. Desinfección de pozos

- El pozo debe conservarse en estado de higiene, para lo que es conveniente una base de baldosas o cemento que rodee el lugar de perforación y el equipo de bombeo.
- El equipo de bombeo debe estar cubierto por una casilla de madera o chapa.
- Limpiar periódicamente agregando veinte litros de hipoclorito de sodio (concentración de 60gr/l) en la boca del pozo.
- Bombear para que el agua de la cañería alcance la boca del grifo, la que se cierra en ese momento y se deja de bombear. Así, el hipoclorito toma contacto con el pozo y con el agua de la cañería.
- Dejar un mínimo de doce horas cerrado y drenar después hasta no percibir más olor a cloro.

Fuente: Municipalidad de La Plata, Dirección de Controlador Sanitario, Laboratorio de Microbiología, Desinfección de Tanques, Cañerías y pozos de agua, La Plata, s/f.
Anexo II

Normas de calidad para aguas de bebidas envasadas, agua corriente y pozo

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Código Alimentario Argentino</th>
<th>O.S.B.A.</th>
<th>Ley 11.820</th>
<th>OMS</th>
<th>Decreto 351/79</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Art. 982</td>
<td>Art. 983</td>
<td>Dto. 6553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6,5-8,5</td>
<td>6-9</td>
<td>4-9</td>
<td>6,5-8,5</td>
<td>6,5-8,5</td>
</tr>
<tr>
<td>Alcalinidad (CO₃Ca)</td>
<td>400</td>
<td>400</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Dureza (CO₃Ca)</td>
<td>350</td>
<td>350</td>
<td>900</td>
<td>250</td>
<td>250 h/350</td>
</tr>
<tr>
<td>Nitrito**</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>3</td>
<td>3 0,10</td>
</tr>
<tr>
<td>Amonio</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Sulfato</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>250</td>
<td>250 400</td>
</tr>
<tr>
<td>Fluoruro</td>
<td>0,60-1,7</td>
<td>2</td>
<td>2</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Mat. Orgánica</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol. Disueltos</td>
<td>1,500</td>
<td>1,500</td>
<td>50-2,000</td>
<td>2,800</td>
<td>2,000</td>
</tr>
<tr>
<td>Cloro Residual</td>
<td>&gt;0,2</td>
<td>0,5</td>
<td>0</td>
<td>5</td>
<td>5 Minimo 0,2</td>
</tr>
<tr>
<td>Turbiedad</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2 UNT</td>
</tr>
<tr>
<td>Cobre</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2 h/1</td>
</tr>
<tr>
<td>Hierro</td>
<td>0,30</td>
<td>2</td>
<td>5</td>
<td>0,2</td>
<td>0,3 0,3 0,30</td>
</tr>
<tr>
<td>Zinc</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3 h/5</td>
</tr>
<tr>
<td>Fósforo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0,1</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Plomo</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Cromo</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05 (VI)</td>
<td>0,05</td>
<td>0,05 h/0,05</td>
</tr>
<tr>
<td>Plata</td>
<td>0,05</td>
<td>0,05</td>
<td></td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Arsénico</td>
<td>0,05</td>
<td>0,05</td>
<td>0,20</td>
<td>0,10</td>
<td>0,05 h/0,05</td>
</tr>
<tr>
<td>Cianuro</td>
<td>0,10</td>
<td>0,10</td>
<td>0,01</td>
<td>0,07</td>
<td>0,07 h/0,10</td>
</tr>
<tr>
<td>Sulfuro</td>
<td>0,05</td>
<td></td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmio</td>
<td>0,005</td>
<td>0,01</td>
<td>0,01</td>
<td>0,003</td>
<td>0,003 h/0,005</td>
</tr>
<tr>
<td>Aluminio (residual)</td>
<td>0,20</td>
<td>0,20</td>
<td></td>
<td>0,2</td>
<td>0,2 h/0,20</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001(Tot.)</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>Selenio</td>
<td>0,01</td>
<td></td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Bario</td>
<td>1</td>
<td></td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boro</td>
<td>30</td>
<td></td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromo</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yodo</td>
<td>8,5</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Comp. Fenólicos</td>
<td>Ausencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrocarburos</td>
<td>Ausencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benceno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,01 0,01</td>
</tr>
<tr>
<td>Aceites</td>
<td>Ausencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasas</td>
<td>Ausencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensioactivos</td>
<td>Ausencia</td>
<td></td>
<td></td>
<td></td>
<td>0,2 0,2</td>
</tr>
<tr>
<td>Pesticidas y derivados</td>
<td>Ausencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: el cálculo de los límites máximos de sustancias inorgánicas, orgánicas y pesticidas según la OMS se hace sobre la base de la Ingesta Diaria Tolerable (IDT), cuya fórmula es NSENO o NICENO / FI. Siendo NSENO = Nivel sin efectos negativos observados, NICENO = Nivel inferior con efectos negativos observados y FI = Factor de incertidumbre, que se fija según parámetros por consenso de expertos (OMS, 1995: 32-25). Los casilleros vacíos significan valores no especificados.

* Modificado por Res. (1238) 28.298/95 Ministerio de Trabajo y Seguridad Social.
** Más de 45mg/l NO APTA PARA CONSUMO DE LACTANTES.

<table>
<thead>
<tr>
<th>Contaminantes Organicos</th>
<th>máx.</th>
<th>ug/l</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THM</td>
<td>máx.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Aldrin + Dieldrin</td>
<td>máx.</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Clordano</td>
<td>máx.</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>DDT (Total + Isómeros)</td>
<td>máx.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Detergentes</td>
<td>máx.</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Heptocloro + Heptacloroepóxido</td>
<td>máx.</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>Lindano</td>
<td>máx.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Metoxicloro</td>
<td>máx.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2,4 D</td>
<td>máx.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Benceno</td>
<td>máx.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Hexacloro benceno</td>
<td>máx.</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Monocloro benceno</td>
<td>máx.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1,2 Dicloro benceno</td>
<td>máx.</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>1,4 Dicloro benceno</td>
<td>máx.</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Pentaclorofenol</td>
<td>máx.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2,4,6 Triclorofenol</td>
<td>máx.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tetracloruro de carbono</td>
<td>máx.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1,1 Dicloroeteno</td>
<td>máx.</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>Tricloro etileno</td>
<td>máx.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1,2 Dicloro etano</td>
<td>máx.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cloruro de vinilo</td>
<td>máx.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Benzopireno</td>
<td>máx.</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Tetra cloro eteno</td>
<td>máx.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Metil Paratión</td>
<td>máx.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Paratión</td>
<td>máx.</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Malatión</td>
<td>máx.</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Leyes y Organismos en encabezamiento de cuadro anterior.
Anexo III
Parámetros para evaluación del agua

<table>
<thead>
<tr>
<th>Parámetros bacteriológicos</th>
<th>Valor Guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterias Aerobias Heterotrofas</td>
<td>&lt; 100 UFO en 1 ml</td>
</tr>
<tr>
<td>Pseudomona aeruginosa</td>
<td>Ausencia en 100 ml</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>Ausencia</td>
</tr>
<tr>
<td>Fitoplancton y Zooplancton</td>
<td>Ausencia</td>
</tr>
</tbody>
</table>

Frecuencia de extracción

El Concesionario deberá utilizar los monitoreos y análisis con la periodicidad que se detalle para los siguientes parámetros:

1. Agua cruda de toma superficial
   – Componentes microbiológicos.
   – Datos básicos, pH, alcalinidad, turbiedad, cada seis horas.
   – Componentes que afectan directamente la salud
     Tabla II (cada tres meses)
   – Componentes que afectan la aceptabilidad del agua
     Tabla III. Metales pesados
   DBO, DQO, Fenoles, Hidrocarburos, detergentes (mensualmente)
   – Parámetros biológicos complementarios. Tabla IV.
   Su determinación es supeditada a circunstancias o necesidades puntuales
Bibliografía

Agencia Ambiental de los EE.UU. de Protección Oficina de Agua, 4606, EPA 815-F-00-006, abril de 2000.
Carsen, A., Perdomo, A. y Arriola, M., Contaminación de sedimentos del Río de La Plata y su frente marítimo, Montevideo, FREPLATA, 2002.
Cepis/OPS-OMS, Requisitos para la toma de muestras de agua para análisis químicos y microbiológicos, Área Servicios Laboratorio, s/f.
Morano, J., Rentería, M. S., Silber, R. y Spizzirri, F. D., Tratado de Pediatría, Buenos Aires, Atlanta, 2ª edición, 1992.
Obras Sanitarias de la Nación, Uso doméstico del agua, Buenos Aires, Folleto, s/f.
OMS, CE, Organización Mundial de la Salud, Consejo Ejecutivo, Mitigación de los efectos del arsénico presente en las aguas subterráneas, EB 118/14, 2006.
OMS, Organización Mundial de la Salud, Guías para la calidad del agua potable, Ginebra, OMS, 2ª edición, 1995, Tomos 1 y 2.
Obras Sanitarias de la Nación, Uso doméstico del agua, Buenos Aires, Folleto, s/f.
Rotellar, E., ABC de los trastornos electrolíticos, Barcelona, JlMS, 2ª edición, 1970.
Staff protección 2000, Nitratos en el agua de consumo humano.
CAPÍTULO 7

EFLUENTES DOMICILIARIOS E INDUSTRIALES

Osvaldo E. Ricci

1. Introducción

El problema de los efluentes domiciliarios e industriales está íntimamente relacionado con la contaminación ambiental, ya que constituye una de sus causas. La denominación de efluentes se aplica a un conjunto muy variado de residuos que se obtienen como consecuencia de la actividad humana e industrial. Con el aumento de la población y las necesidades creadas, se fueron multiplicando los problemas que ocasionan los residuos generales, que lógicamente van en aumento con aquella. No sólo se incrementan las aguas cloacales, sino también los residuos industriales, que son la consecuencia de la civilización y su demanda por un alto estándar de vida.

La OMS, en la primera sesión celebrada en 1950, por el Comité de Expertos en Saneamiento Ambiental, entendió que este incluye el control de los sistemas de abastecimiento público de aguas, la eliminación de excretas, aguas negras y basuras, los vectores de enfermedad, las condiciones de la vivienda, el suministro y manipulación de alimentos, las condiciones atmosféricas y la seguridad del entorno laboral.

En una sociedad moderna, el saneamiento es un sector de los servicios públicos que forman parte de la “infraestructura social”. Es de primordial importancia para la Salud Pública disponer de abastecimiento de agua por tubería, alcantarillado para aguas cloacales y de lluvia y tratamiento de desechos sólidos.

La ausencia de redes de desagüe cloacal y la falta de tratamiento de los efluentes constituyen dos factores determinantes en el estado de la población urbana, si bien inciden en escalas diferentes. El primero impacta sobre la calidad de vida a escala de vivienda o barrio. Por su parte, la no determinación de un sitio correcto de disposición final (o técnicas de tratamiento) de los efluentes tiene consecuencias sobre la población urbana a un nivel más general.

En la mayoría de los casos, esta deficiencia ha ocasionado graves problemas de contaminación de las aguas subterráneas y los cursos de agua receptores, que constituyen la fuente de agua para consumo de la población.

Esta situación se presenta en casi todos los grandes centros urbanos de la Argentina.

Aunque existe una diferencia importante entre las aguas cloacales y los efluentes líquidos de la industria, el enfoque del problema es similar, ya que es necesario en ambos casos reducir a límites bien determinados el contenido de materia orgánica e inorgánica de los mismos antes de que esos líquidos puedan ser arrojados a una corriente de agua.
2. Características de los efluentes domiciliarios e industriales

Los residuos cloacales sin tratamiento contaminan el suelo, las aguas subterráneas y las superficiales. Transmiten infecciones e infestaciones directamente por el suelo (por ejemplo, anquilostomiasis) e indirectamente por el agua y alimentos tratados con ellas o por las moscas (Lepera, 1966).

El volcado de aguas contaminadas en cauces superficiales será más o menos peligroso según el caudal del curso de agua receptor, pero en todos los casos, si estas aguas se infiltran en napas subterráneas, pasan a ser un factor de alto riesgo, ya que la gran mayoría de las aguas para consumo se extraen de aguas superficiales o pozos de aguas subterráneas.

El principal componente de estas aguas residuales es la materia orgánica, en parte de origen biológico, pero también de productos industrializados, existiendo en formas de partículas, algunas de tamaño grosero (telas, ramas, condones, papel, restos de alimentos, etcétera), otras microscópicas, suspendidas, formando coloides.

Los efluentes industriales difieren de las aguas cloacales en volumen y composición, dependiendo de la industria que los genere. Una clasificación primaria podría agruparlos de la siguiente manera:

<table>
<thead>
<tr>
<th>Clasificación de los efluentes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Orgánicos</td>
<td>Frigoríficos</td>
</tr>
<tr>
<td></td>
<td>Industrias alimenticias</td>
</tr>
<tr>
<td></td>
<td>Industria lechera</td>
</tr>
<tr>
<td>Inorgánicos</td>
<td>Industrias metalúrgicas</td>
</tr>
<tr>
<td></td>
<td>Industria de la construcción</td>
</tr>
<tr>
<td>Orgánicos/inorgánicos</td>
<td>Curtiembres</td>
</tr>
<tr>
<td></td>
<td>Papeleras</td>
</tr>
</tbody>
</table>

Las industrias alimenticias producen efluentes con una fuerte carga orgánica, ya que pueden contener restos de sangre, leche, materias grasas, microorganismos, restos de vegetales, etcétera. En cambio, otras industrias presentan en sus efluentes compuestos químicos orgánicos e inorgánicos, en muchos casos difíciles de eliminar.

En los líquidos cloacales encontramos las bacterias patógenas causantes de las enfermedades clásicas provocadas por el agua (enfermedades hídricas), así como virus y parásitos. El contacto de estos líquidos con el ser humano causa la transmisión de agentes infecciosos, sea por ingestión de agua contaminada, por alimentos preparados con ella o por vectores que hayan tenido contacto con la misma.

En otros casos, la ruta de transmisión puede ser menos directa. Diversas sustancias químicas presentes en el agua en bajas concentraciones pueden acumularse en organismos acuáticos, magnificando su concentración mediante cadenas alimenticias (bioacumulación) y alcanzando concentraciones dañinas en peces u otros animales o vegetales acuáticos que pueden ser ingeridos por el hombre. En la década de 1950, en el pueblo pesquero de Minamata, Japón, una planta química vertía al mar efluentes que contenían restos de mercurio orgánico, el cual se bioacumuló en los peces que constituían la base de la dieta de los habitantes del pueblo. Esto provocó que miles de personas fueran afectadas por envenenamiento por mercurio y cientos murieran. Este seguramente ha sido uno de los mayores desastres ambientales de los tiempos modernos.
3. Tratamiento de los efluentes domiciliarios e industriales

Muchos de los efluentes industriales, especialmente aquellos originados por la industria de la alimentación, pueden compararse con los desagües cloacales. Esto es así por variadas razones: en primer término, porque en cierta forma el comportamiento de ambos es similar, poseen materia orgánica y no contienen productos tóxicos o inhibidores del desarrollo biológico que ocurre durante el tratamiento de los mismos o en los procesos de auto depuración que se da naturalmente en ciertos cursos de agua; además el desagüe cloacal es universalmente conocido y puede servir de base de comparación. A la vez, es habitual que una planta industrial de las características mencionadas tenga servicios sanitarios para el personal, cuyos desagües deben descargarse en conjunto con los industriales.

Los desagües urbanos son de dos tipos: cloacales y pluviales. Hay sistemas que conducen a ambos juntos (unitarios) y otros que lo hacen por separado. Los unitarios son menos costosos en su construcción, pero no en el tratamiento, ya que el pluvial sobrecarga el caudal final.

En la zona céntrica de la ciudad de Buenos Aires, el desagüe es unitario, las aguas de lluvia recogidas en las bocas de tormenta se unen por un conducto común a los líquidos cloacales. Para lluvias intensas, en el trayecto del conducto común se intercalan cámaras reguladoras en las que los conductos se transforman en canalones y permiten que rebalse el agua de lluvia para caer al fondo de las cámaras desde donde son transportadas por canales a varias galerías semicirculares de 7,5 metros de diámetro. Estas llevan el agua de lluvia al Río de la Plata.

Desde las cámaras continúan los líquidos cloacales a cloacas máximas que se unen para formar una última, que llega a la planta de Wilde. Allí son tratados sólo por pasaje a través de rejas y desarenadores. Se los lleva para que caigan por gravitación en el Río de La Plata frente a Berazategui, a quinientos metros de la costa.

En las zonas periféricas de la ciudad de Buenos Aires, el sistema es separado y las aguas de lluvia se encauzan a arroyos que atraviesan la ciudad “intubados” y las llevan al río. Los líquidos cloacales van a las cloacas máximas. Estos reúnen los líquidos provenientes de la Capital y del primer cinturón del Conurbano.

La composición de los líquidos domiciliarios se indica en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Composición de aguas residuales domésticas (tipo)</th>
<th>Concentración media (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólidos disueltos totales</td>
<td>500</td>
</tr>
<tr>
<td>Sólidos en suspensión totales</td>
<td>220</td>
</tr>
<tr>
<td>Sedimentos sedimentables (ml/l)</td>
<td>10</td>
</tr>
<tr>
<td>DBO a cinco días (20ºC)</td>
<td>220</td>
</tr>
<tr>
<td>Carbono orgánico total (COT)</td>
<td>160</td>
</tr>
<tr>
<td>DQO</td>
<td>500</td>
</tr>
<tr>
<td>Nitrógeno orgánico</td>
<td>15</td>
</tr>
<tr>
<td>Amoníaco libre</td>
<td>25</td>
</tr>
<tr>
<td>Nitritos y nitratos</td>
<td>0</td>
</tr>
<tr>
<td>Fósforo orgánico</td>
<td>3</td>
</tr>
<tr>
<td>Fósforo inorgánico</td>
<td>5</td>
</tr>
<tr>
<td>Cloruros</td>
<td>50</td>
</tr>
<tr>
<td>Alcalinidad (como CO₃·Ca)</td>
<td>100</td>
</tr>
<tr>
<td>Grasas</td>
<td>100</td>
</tr>
</tbody>
</table>

El tratamiento “natural” de los líquidos cloacales es volcarlos crudos para que el cuerpo receptor (agua o suelo) los autodepure, lo que conlleva la contaminación. En el Conurbano bonaerense y el Gran La Plata, donde habitan 13,5 millones de personas, cerca del 70% de la población carece de servicio cloacal, y los desechos de los 3,5 millones que sí poseen conexiones domiciliarias son vertidos crudos al Río de la Plata (cloacas de Berazategui y Palo Blanco) en un volumen equivalente a un río mediano: 38 m³/seg (De Felippi et al., 1991).

El oxígeno disuelto en el líquido cloacal fresco es consumido rápidamente por los microorganismos que lleva. A la capacidad de la materia orgánica en una muestra de este líquido para consumir oxígeno se la denomina demanda bioquímica de oxígeno (DBO). Esta capacidad será mayor cuanto más materia orgánica haya. Estamos entonces en condiciones de definir la DBO: es la cantidad de oxígeno en mg/l necesaria para estabilizar la materia orgánica contenida en un líquido cloacal o efluente industrial por acción bacteriana aeróbica (Lepera, 1966).

La DBO representa, en consecuencia, una medida de la contaminación del efluente considerado. A mayor valor, mayor será la contaminación del mismo.

Al considerar la DBO, es útil hacer referencia a una expresión que se menciona con cierta frecuencia y que se denomina Población equivalente, de aplicación cuando interesa apreciar la carga contaminante de un efluente industrial, vinculado con lo que significa la carga contaminante de una determinada población. Esta Población Equivalente queda determinada por la siguiente expresión:

\[
Población\ Equivalente = \frac{V \times DBO \text{ (efluente industrial)}}{DBO \text{ (per cápita)}}
\]

V: volumen diario del efluente expresado en m³.
DBO (efluente industrial): expresado en mg/l o g/m³.
DBO (per cápita): contribución diaria por habitante al desagüe cloacal.

Por ejemplo, un matadero arroja a un curso de agua 500 m³ de efluentes diariamente con una DBO de 1.500 mg/l (o 1.500 g/m³). Si la DBO diaria de un habitante es del orden de 50 g/habitante x día, la Población Equivalente será de:

\[
\frac{500 \text{ m}^3/\text{día} \times 1.500 \text{ g/m}^3}{50 \text{ g/Habitante} \times \text{día}} = 15.000 \text{ habitantes}
\]

Esto es, un matadero que trabaje en estas condiciones contamina tanto como una población de 15.000 personas.

En la actualidad, el tratamiento de los efluentes líquidos está constituido de etapas físicas, biológicas y químicas según el siguiente cuadro:
<table>
<thead>
<tr>
<th>Etapa</th>
<th>Procedimiento</th>
<th>Producto obtenido</th>
<th>Tratamiento final</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rejas separadas por espacios de 2,5 a 5 cm.</td>
<td>Elementos y materiales de mayor tamaño.</td>
<td>Incineración o enterramiento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desarenadores por gravedad, circulación lenta (2,5 a 5 cm/seg).</td>
<td>Material de tamaño mediano (arenas y limo).</td>
<td>Relleno.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedimentación y/o flotación (por gravedad o flotación con aire disuelto).</td>
<td>Material sólido de menor tamaño (barro) y grasas o aceites y/o material menos denso que el agua.</td>
<td>Barro a digestor. Grasas, aceites y otros a relleno o incineración.</td>
<td>Alrededor del 30% de la DBO del agua residual se elimina por medio de este tratamiento primario.</td>
</tr>
<tr>
<td>Física</td>
<td>Digestión de los sedimentos en cámaras anaeróbicas.</td>
<td>Humus, gases diversos (CH₄, CO₂, SH₂ y otros), líquido sobrenadante.</td>
<td>El humus a playa de secado, los gases se queman o se aprovechan y el líquido vuelve al sedimentador.</td>
<td>En realidad, este proceso es biológico, pero por una cuestión de ordenamiento se incluye aquí.</td>
</tr>
<tr>
<td></td>
<td>Otros métodos físicos pueden ser la filtración (filtros lentos de arena) o tratamientos electrolíticos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secado, en playas de piedra partida y arena por evaporación y escurrimiento.</td>
<td>Humedad a la atmósfera, líquido de escurrimiento.</td>
<td>Líquido vuelve al sedimentador.</td>
<td></td>
</tr>
<tr>
<td>Biológica</td>
<td>Percolación en lechos para oxidación por gel de bacterias aerobias que cubren las piedras (filtro de piedras partidas de 1 a 2 metros de espesor con regador superficial del líquido que se recoge en la parte inferior).</td>
<td>Humus, CO₂ y nitratos.</td>
<td>Humus a sedimentador secundario que vuelve al primario.</td>
<td>Se lava con agua a presión, si hay moscas se inunda con líquido cloacal a intervalos menores del ciclo del insecto.</td>
</tr>
<tr>
<td></td>
<td>Barros activados biológicamente por mezcla de líquido cloacal (20%).</td>
<td></td>
<td></td>
<td>El barro activado se obtiene por aireación.</td>
</tr>
<tr>
<td>Química</td>
<td>Tratamiento terciario:</td>
<td>Eliminación de fosfatos y nitratos.</td>
<td>Relleno.</td>
<td>Eliminación de nutrientes para evitar la eutrofización de los cursos de agua.</td>
</tr>
<tr>
<td></td>
<td>– Coagulación.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Adsorción con carbón activado.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Intercambio iónico.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Procesos de oxidación.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desinfección.</td>
<td>Eliminación de microorganismos patógenos</td>
<td></td>
<td>Generalmente se usa cloro o solución de hipocloritos.</td>
</tr>
</tbody>
</table>
Un esquema de este tratamiento está representado en el siguiente cuadro.

### TRATAMIENTO DE EFLUENTES CLOACALES. Esquema de planta completa

<table>
<thead>
<tr>
<th>1º Incineración o entierro</th>
<th>2º Relievo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deshidratación 1º</td>
<td></td>
</tr>
<tr>
<td>Mat. metálico</td>
<td></td>
</tr>
<tr>
<td>1º REJAS vs mat. mayor tam. vs arena y limo</td>
<td>0,30 m/s</td>
</tr>
<tr>
<td>2º DESARENADOR</td>
<td></td>
</tr>
<tr>
<td>Mat. mayor tam.</td>
<td></td>
</tr>
<tr>
<td>Evaporación y escorrimiento</td>
<td></td>
</tr>
<tr>
<td>3º PLAYAS DE SECADO</td>
<td></td>
</tr>
<tr>
<td>Grava y arena de no + 6,6 m espesor</td>
<td></td>
</tr>
<tr>
<td>Relievo</td>
<td></td>
</tr>
<tr>
<td>Barro digerido</td>
<td></td>
</tr>
<tr>
<td>3º DIGESTOR (ANAEROB)</td>
<td></td>
</tr>
<tr>
<td>4º LECHOS* BARROS ACTIV (tratamiento biológico)</td>
<td></td>
</tr>
<tr>
<td>5º SEDIMENTO 1º</td>
<td></td>
</tr>
<tr>
<td>5º SEDIMENTO 2º</td>
<td></td>
</tr>
<tr>
<td>6º CLORACIÓN</td>
<td></td>
</tr>
<tr>
<td>Bomba</td>
<td></td>
</tr>
<tr>
<td>Tratamiento eficiente si sale no &gt; 20 mg/l DBO</td>
<td>no &gt; 15 mg/l DBO</td>
</tr>
</tbody>
</table>

### Autodepuración:

Capacidad de un curso de agua de transformar la materia orgánica hasta su completa estabilización por acción microbiana aeróbica en presencia de oxígeno.

<table>
<thead>
<tr>
<th>Agua</th>
<th>C</th>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>con O₂</td>
<td>CO₂-CO₃²⁻</td>
<td>NO₂⁻ y NO₃⁻</td>
<td>SO₂ y SO₄²⁻</td>
</tr>
<tr>
<td>sin O₂</td>
<td>CH₄</td>
<td>NH₃</td>
<td>SH₂</td>
</tr>
</tbody>
</table>

### Factor Temperatura

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0°C</td>
<td>14 mg O₂/l de agua pura</td>
</tr>
<tr>
<td>A 30°C</td>
<td>7 mg O₂/l</td>
</tr>
</tbody>
</table>


Este tipo de tratamiento es adecuado además a ciertos efluentes industriales, siempre que contengan los nutrientes necesarios y no incluyan sustancias tóxicas o capaces de inhibir o afectar los procesos biológicos que se desarrollan. Esto debe tenerse en cuenta al enviar junto a los líquidos cloacales los efluentes industriales de la comunidad.

También se pueden crear zonas pantanosas artificiales que contengan plantas como juncos, cañas y totorales. La descontaminación del agua se consigue por medio de bacterias y otros microbios que
viven entre las raíces y rizomas. Las mismas plantas absorben los metales y concentran los contaminantes en sus células. Investigadores del Instituto Max Planck de Munich descubrieron la gran capacidad de absorción de las impurezas por las totoras, y afirmaron que esta planta es capaz de absorber fenoles, que en parte favorecen su crecimiento y el resto es descompuesto dando oxígeno. Además, los colibacilos desaparecen a los pocos días (Callegaro et al., 1968).

En comunidades de hasta 10.000 habitantes, se utilizan fosas sépticas, tales como los pozos Imhoff. Aquí, se recibe el agua en tanques subterráneos o sobre el suelo. Los sólidos sedimentan, mientras grasas y aceites flotan y son retirados periódicamente. Las bacterias del agua residual se alimentan del lodo que hay en el fondo, reduciéndolo. Una parte del agua purificada fluye fuera de este equipo, volcándose a un pozo negro o absorbente que la infiltra en el subsuelo. En otros casos, se envía a lagunas de estabilización donde termina de descontaminarse.

### 4. Parámetros de vuelco establecidos

Para el tratamiento de un efluente, deben considerarse varios factores:

- Su fuente de origen.
- Sus características.
- El cuerpo receptor.

Definido el origen y el cuerpo receptor, deben medirse las características del efluente: caudal, composición y fluctuaciones. Para ello, se extraen muestras compensadas o compuestas que se obtienen extrayendo volúmenes de agua residual proporcionales al caudal circulante en el momento de su extracción. Esta operación se realiza cada hora durante todo un día. Luego, las muestras extraídas se mezclan formando una sola y sobre esta se realizan los análisis para establecer si cumplen con los parámetros de vuelco establecidos.

---

**Referencias:**

- A= Nivel líquido
- B= Cámara de sedimentación
- C= Cámara de digestión
- D= Ventilación del gas
- E= Calb. Extracción barro
- * si/población h. 10.000 h.

**Fuente:** Lepera, 1966.
Los parámetros que se usan en Argentina son los establecidos por la ex Obras Sanitarias de la Nación (OSN), que luego fueron adoptados por otras administraciones provinciales. Así, en la provincia de Buenos Aires, la Autoridad del Agua establece:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Código de Técnica Analítica empleada</th>
<th>Límites para descargar a:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A: Colector cloacal</td>
</tr>
<tr>
<td>Parámetro de calidad de las descargas límites admisibles</td>
<td></td>
<td></td>
<td>≤45</td>
</tr>
<tr>
<td>Temperatura</td>
<td>ºC</td>
<td>2550 B</td>
<td>≤45</td>
</tr>
<tr>
<td>pH</td>
<td>upH</td>
<td>4500 H + B</td>
<td>7,0-10</td>
</tr>
<tr>
<td>Sólidos sedimentables 10 minutos</td>
<td>ml/l</td>
<td>Cono Imhoff</td>
<td>≤5,0</td>
</tr>
<tr>
<td>Sólidos sedimentables 2 horas</td>
<td>ml/l</td>
<td>Cono Imhoff</td>
<td>≤5,0</td>
</tr>
<tr>
<td>Sulfuros</td>
<td>mg/l</td>
<td>4500 S=D</td>
<td>≤2,0</td>
</tr>
<tr>
<td>S.S.E.E.</td>
<td>mg/l</td>
<td>5520 B (1)</td>
<td>≤100</td>
</tr>
<tr>
<td>Cianuros</td>
<td>mg/l</td>
<td>4500 CN C y E</td>
<td>≤0,1</td>
</tr>
<tr>
<td>Hidrocarburos totales</td>
<td>mg/l</td>
<td>EPA418,1 o ASTM 392 1-85</td>
<td>≤30</td>
</tr>
<tr>
<td>Cloro libre</td>
<td>mg/l</td>
<td>4500 Cl G (DPD)</td>
<td>NE</td>
</tr>
<tr>
<td>Coliformes fecales</td>
<td>NMP/100 ml</td>
<td>9223 A</td>
<td>≤20000</td>
</tr>
<tr>
<td>D.B.O.</td>
<td>mg/l</td>
<td>5210 B</td>
<td>≤200</td>
</tr>
<tr>
<td>D.Q.O.</td>
<td>mg/l</td>
<td>5220 D</td>
<td>≤700</td>
</tr>
<tr>
<td>Sustancias fenólicas</td>
<td>mg/l</td>
<td>5530 C</td>
<td>≤2,0</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>mg/l</td>
<td>4500 SO4 E</td>
<td>≤1000</td>
</tr>
<tr>
<td>Carbono orgánico total</td>
<td>mg/l</td>
<td>5310 B</td>
<td>NE</td>
</tr>
<tr>
<td>Hierro (soluble)</td>
<td>mg/l</td>
<td>3500 Fe D</td>
<td>≤10</td>
</tr>
<tr>
<td>Manganeso (soluble)</td>
<td>mg/l</td>
<td>3500 Mn D</td>
<td>≤10</td>
</tr>
<tr>
<td>Nitrógeno total</td>
<td>mg/l</td>
<td>4500 N org B(NTK)</td>
<td>≤105</td>
</tr>
<tr>
<td>Nitrógeno amoniacal</td>
<td>mg/l</td>
<td>4500 NH3 + F</td>
<td>≤75</td>
</tr>
<tr>
<td>Nitrógeno orgánico</td>
<td>mg/l</td>
<td>4500 N org B</td>
<td>≤30</td>
</tr>
<tr>
<td>Fosforo total</td>
<td>mg/l</td>
<td>4500 PC</td>
<td>≤10</td>
</tr>
</tbody>
</table>

Nota: NE significa que por el momento no se establecen límites permisibles.

Fuente: Anexo II – Resolución de la Autoridad del Agua N° 336/03.
Las razones por las cuales se controlan estos parámetros son las siguientes:

- **Temperatura**: al aumentar la temperatura, disminuye la solubilidad del oxígeno en el agua. Aunque el efluente no tenga otro contaminante que su elevada temperatura, produce la llamada contaminación térmica, responsable de la disminución del oxígeno disuelto en un curso de agua. Para mantener sus vidas, los peces necesitan agua que posea por lo menos 5 mg/litro de oxígeno disuelto. Este problema ocurre como consecuencia del funcionamiento de centrales eléctricas, ya que extraen agua fría de un río o lago, la usan como refrigerante y luego la devuelven su origen, pero caliente.

- **pH**: es la medida de la acidez o alcalinidad del medio. Las variaciones de pH afectan los microorganismos y, consecuentemente, la autodepuración de los residuos y el material de las instalaciones. El pH ácido las corroe y el pH alcalino produce incrustaciones en ellas. Cuando el efluente tiene derivados cianurados (por ejemplo, galvanoplastias), un pH ácido puede producir desprendimiento de ácido cianhídrico, gas muy tóxico. El pH de los efluentes industriales varía. En cervecerías es de 4 a 6, en plantas de hidrocarburos, de 2 a 6, y en la preparación del papel, de 5 a 7. Es alcalino en las textiles (pH 8 a 12), curtientes (pH 11 a 12), y tiende a neutro en metalúrgicas.

- **Sólidos sedimentables en diez minutos**: son sólidos compactos cuya sedimentación es función directa del tiempo. Dan una idea del contenido de arena, tierra, polvos, etcétera. Su presencia puede provocar atascamientos en las cañerías o sedimentos en los cuerpos receptores (arroyos, ríos, lagunas, lagos, etcétera), creándose condiciones sépticas en sus inmediaciones.

- **Sólidos sedimentables en dos horas**: son sólidos no compactos, que forman flóculos. Su velocidad de sedimentación es función inversa del tiempo. Ambos tipos de sólidos constituyen los sólidos sedimentables totales, y son aquellos contenidos en un litro de líquido cloacal o industrial. Se miden con un cono graduado (cono Imhoff) y cronómetro.

- **Sulfuros (límite menor de 1 mg/l)**: los efluentes de curtientes utilizan mucha agua (5 m³ por cada 100 kg de pieles secas tratadas). Tienen tóxicos como los sulfuros, procedentes del encalado, y cromo, del curtido químico. La DBO₅ de estos efluentes es de 700 a 900 mg/l. En medio alcalino, el cromo precipita como Cr³⁺. Para eliminar los sulfuros hay una oxidación natural que puede acelerarse con el uso de sales de cobalto o de manganeso, un arrastre gaseoso en medio ácido (stripping) o precipitarlos como sulfuros insolubles mediante sulfato ferroso o de alúmina. Tales procedimientos disminuyen la DBO en un 70% (Degremont, 1979: 824). También hay sulfuros en efluentes de mataderos o fábricas de chacinados.

- **Sólidos solubles en éter etílico (S.S.E.E.):** son sustancias lipídicas sólidas (grasas) a 20°C o líquidas (aceites). Producen en el agua, por su menor densidad, una película superficial que dificulta la autodepuración al impedir la mezcla de aire-agua. Afectan el sabor y el color del agua y dejan una película de suciedad donde se utilizan. Flotan en las cañerías y disminuyen su sección real.

- **Cianuros (límite menor de 0,1 mg/l para ABC)**: los cianuros son efluentes de galvanoplastias donde se realizan procesos de cobreado alcalino (tratamiento con Zn, Cd, Ag, Au y otros). El contacto con ácidos puede producir ácido cianhídrico:

\[
2 \text{KCN} + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + 2 \text{HCN} \uparrow
\]

La oxidación de los cianuros se realiza en tanques con agitación, sin necesidad de sedimentador, porque no produce barros. Se someten las sales a la acción del cloro en
medio alcalino (NaOH), oxidándose el carbono del cianuro de C\(^2+\) a C\(^4+\) y el Nitrógeno de N\(^3–\) a N\(^0\).

\[
2\text{CN}^- + 5\text{Cl}_2 + 8\text{OH}^- \rightarrow 2\text{CO}_2 + \text{N}_2 + 10\text{Cl}^- + 4\text{H}_2\text{O}
\]

Los efluentes de las galvanoplastias también contienen Cr\(^6+\), el cual debe ser reducido a Cr\(^3+\). Esto se realiza con SO\(_4\)Fe en medio sulfúrico dentro de un tanque con agitador. La reacción de óxido reducción es la siguiente:

\[
\text{Cr}^{6+} + 3\text{e}^- \rightarrow \text{Cr}^{3+}
\]

\[
3(\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^-)
\]

Posteriormente, se precipita al Cr\(^3+\) agregando lechada de cal (solución de (OH)\(_2\)Ca). Como se forman barros, esta operación necesita un sedimentador.

- **Demanda Bioquímica de Oxígeno (DBO):** es la cantidad de oxígeno que se precisa proveer a un grupo heterogéneo de bacterias aeróbicas para que degraden la materia orgánica contenida en el efluente\(^1\) (cfr. Díaz Dorado, 1993:152). Se evalúa experimentalmente, determinando la concentración de oxígeno disuelto al comienzo y al final de un período en el que la muestra, contenida en un frasco completamente lleno de agua, se mantiene en la oscuridad, a una temperatura constante de 20 o 25ºC, durante cinco días. Por esta razón, se designa como DBO\(_5\).

El consumo de oxígeno de la muestra en estos cinco días corresponde a un 67% del que se requeriría si el experimento hubiera ocurrido durante un tiempo largo, lo cual no sería muy práctico de llevar a cabo, dado que la estabilización completa requiere cien días o, al menos, treinta.

En el siguiente cuadro se observa la representación gráfica del contenido de oxígeno disuelto en un curso de agua en función del tiempo o de la distancia de la fuente de contaminación, y refleja el efecto de los contaminantes oxidables vertidos sobre el contenido de oxígeno de los cursos de agua, cuyo principal determinante es la temperatura.

---

\(^1\) Una persona origina en desagües de 50 a 60 g/día de DBO.
El agua superficial natural tiene una DBO promedio de 0,7 mg de O\textsubscript{2} por litro, que es considerablemente menor que la solubilidad máxima de O\textsubscript{2} en agua (8,7 mg/l a 25°C). En cambio, la DBO de los líquidos cloacales o de los efluentes industriales, ambos sin tratar, puede estimarse en cientos a miles de mg de O\textsubscript{2} por litro.

- **Demanda química de oxígeno (DQO):** se mide con un poderoso oxidante, la solución de dicromato de potasio (K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7}) en ácido sulfúrico. El ensayo se realiza en tres horas, midiendo el dicromato gastado. En Argentina, las técnicas analíticas desarrolladas por la ex OSN usa un oxidante más débil que el dicromato de potasio, el permanganato (MnO\textsubscript{4}K). Se expresan como mg/l de (MnO\textsubscript{4}–)\textsuperscript{2}. También puede utilizarse una solución de hipoclorito de sodio (NaClO). La demanda química de oxígeno es más alta que la DBO. Esto es porque la disolución ácida de dicromato es tan oxidante que oxida sustancias que en el agua consumen oxígeno muy lentamente y, por lo tanto, no representan una amenaza real. En estas condiciones, la celulosa se oxida a CO\textsubscript{2}, los Cl\textsuperscript{–} a Cl\textsubscript{2}, por ejemplo. Sin embargo, algunos hidrocarburos alifáticos de cadena abierta y algunos aromáticos no son oxidados por este reactivo. La relación DQO/DBO\textsubscript{5}, en general, es 1,5 a 3.

\footnote{La equivalencia es de 1 mg/l O\textsubscript{2} = 3,95 mg/l de MnO\textsubscript{4}– (Dégremont, 1979:919).}
El Carbono Orgánico Total (COT): se analiza mediante una combustión catalítica a 900 a 1.000ºC, por lo que el carbono orgánico se transforma en CO₂. El ensayo tarda minutos. Antes de la calcinación se somete la muestra a una temperatura menor para eliminar la alcalinidad.

Nitratos y nitritos: la descomposición de la materia orgánica, con la ayuda de la aireación y la humedad, facilita la oxidación del nitrógeno a nitritos y nitratos. También son importantes fuentes de estos compuestos los fertilizantes nitrogenados, los líquidos cloacales y ciertos efluentes industriales.

El exceso de nitratos en el agua de bebida representa un peligro para la salud, pues puede dar lugar a metahemoglobinemia en bebés recién nacidos, así como en adultos con deficiencia enzimática. El nitrato, por acción bacteriana, es reducido en el estómago del bebé a nitritos, los cuales se combinan con la hemoglobina de la sangre y la oxidan, dificultando la absorción adecuada de oxígeno y su transferencia a las células (síndrome del bebé azul).

Fenoles: son sustancias que resultan del reemplazo del hidrógeno del núcleo bencénico por grupos hidroxilos (hidroxibenceno). Forman clorofenoles en presencia de cloro.

Demanda de Cloro: es la cantidad de cloro que hay que añadir al agua para que después de diez minutos haya un exceso de 0,3 mg/l. La desinfección con cloro exige un tiempo de contacto entre el cloro y el agua que oscila entre veinte y treinta minutos como mínimo. El ideal es una a dos horas, quedando concentraciones de cloro residual (en cloro o dióxido de cloro) entre 0,05 y 0,2 mg/litro. A concentraciones de 0,35 mg/l, el cloro es eficaz en cuatro minutos. Para algunos parásitos se precisa una concentración mayor (por ejemplo, para bilharziosis): supercloración (0,9 mg/l).

Potencial REDOX: se usa en efluentes, expresándose en escala logarítmica, que va de 0 a 42 unidades. Los valores inferiores a 15 corresponden a un ambiente reductor (por ejemplo, digestor, donde las reacciones biológicas son anaeróbicas) y los superiores a 25 a un ambiente de oxidación (por ejemplo, fango activado).

Cromo (Cr⁶⁺: límite menor de 0,2 mg/l y Cr³⁺: menor de 2mg/l): efluye de las galvanoplastias (Cr⁶⁺) y de las curtiembres (Cr³⁺). El Cr⁶⁺ debe ser oxidado con bisulfito y sulfato ferroso y posteriormente alcalinizado para su precipitación.

Detergentes: son compuestos tensioactivos sintéticos, utilizados para lavado o blanqueado de distintos productos, y tienen la ventaja de que pueden utilizarse en aguas duras. Se los puede clasificar de diversas maneras:

− Detergentes aniónicos: los duros o no biodegradables se utilizaron durante mucho tiempo (alquilbenceno sulfonatos o ABS, de cadena ramificada) y los biodegradables al menos en un 80% (cadena lineal, como LAS).
− Detergentes no iónicos (por ejemplo, alquilfenoles).
− Detergentes catiónicos (sales de amonio cuaternario), que no son de uso general.

Además de los agentes de superficie, los detergentes tienen “coadyuvantes”, como los polifosfatos, que forman complejos solubles con los iones Ca y Mg de las aguas, evitando que estos formen complejos con los detergentes y disminuyan su acción limpiadora. Además, vuelven algo alcalina el agua de lavado, lo que facilita la limpieza de ciertos tejidos.

El uso de detergentes comenzó alrededor de 1945 y en 1950 superó el consumo de jabones, que, por su estructura simple, eran degradados por las bacterias, pero no podían ser usados en aguas duras. Los detergentes (primero de cadena ramificada, como los alquilbenceno sulfonatos) producían espuma y tenían una muy lenta degradación, afectando la posibilidad de autodepuración de los cursos de agua. En la década de 1960, los surfactantes se
transformaron de cadena ramificada en lineal, con lo que se los hizo más susceptibles a la acción de las bacterias.

Resta el problema de los secuestrantes como los polifosfatos (por ejemplo, tripolifosfato de sodio). Los ortofosfatos (productos de su degradación) no son tóxicos, pero favorecen la eutrofización, que es el crecimiento desmesurado de las algas en los cursos de agua. En EE.UU. se estima que más del 50% de los fosfatos proviene de los detergentes y afectan entre el 10 y el 21% de las aguas superficiales. Las aguas residuales domésticas tienen entre un 3,5 y un 9 ppm de fósforo.

La alternativa de la vuelta al jabón no es posible. En cambio, se estudia el reemplazo de los polifosfatos por otros secuestrantes o el uso de surfactantes que no necesitan secuestrantes. Una alternativa es una sal sódica del ácido nitriloacético (NTA).

Las cantidades admisibles para detergentes varían: menos de 2 mg/litro; entre 1 y 2 mg/litro; y menos de 1 mg/litro dentro del radio de cinco kilómetros de una toma para agua potable, y menos de 2 mg/l fuera de ese radio.

- **Cadmio**: se produce como un subproducto de la fundición de zinc y también se lo encuentra en pigmentos utilizados en la fabricación de pinturas (amarillo de cadmio). La quema de carbón también produce el ingreso de cadmio en el ambiente. Otra fuente de contaminación proviene del uso de baterías de niquel-cadmio. Afecta la vida acuática y en el ser humano se danan principalmente las articulaciones, estructura ósea y riñones. Se admite menos de 0,005 mg/l en aguas para consumo humano, actividades recreativas o actividades agropecuarias, y en protección de la vida acuática menos de 0,002 mg/l.

- **Plomo**: también está ampliamente difundido, tiene efecto tóxico y acumulativo. Se admite menos de 0,05 mg/l en aguas para consumo humano y actividades agropecuarias, y en protección de la vida acuática menos de 0,001 mg/l.

- **Mercurio**: es utilizado en industrias de aparatos eléctricos, en la producción del cloro y álcalis (cátodo de Hg en cuba electrolítica), pinturas, instrumentación, preparaciones dentales, agricultura, catalizadores, industrias farmacéuticas. Sus compuestos orgánicos se usan como fungicidas (en pinturas y aderezos de semillas).

  En 1953 se definió la enfermedad de Minamata (Japón) producida por metilmercurio acumulado en la cadena alimentaria (peces-hombre) de la bahía de ese nombre.

  En EE.UU. se estableció que, en pescado, las concentraciones de mercurio no deben superar los 0,5 ppm.

  En 1960, en Suecia, se relacionó la muerte de aves con el aderezo de granos con fungicidas mercuriales. Posteriormente, se detectó en peces, lo que se atribuyó a fábricas de pulpa de papel que usaban compuestos organomercuriales.

  En agua para consumo se admiten hasta 0,2 microgramos por litro y para protección de la vida acuática no mas de 0,1 microgramo por litro.

- **Arsénico**: se asocia a la fabricación de herbicidas y plaguicidas y a la minería. En zonas patagónicas se ha detectado la contaminación de napas y se ha relacionado con los garrapaticidas arsenicales que se utilizan en las ovejas. Hay napas con alto contenido en arsenico no antrópico, como en San José y Anchico (La Rioja, Argentina), donde la concentración en el agua es de 5 mg/l. Es responsable de la aparición de cáncer de piel (mal de Ayerza o enfermedad de Bell-Ville).

  En efluentes se admite menos de 0,5 mg/litro.
Bibliografía

Gobierno de la Provincia de Buenos Aires, Secretaría de Política Ambiental, *Digesto Normativo*.
CAPÍTULO 8

CONTAMINACIÓN DE CURSOS DE AGUA DULCE

*Marcelo J. Bourgeois*

*Horacio L. Barragán*

1. Los hábitats de la Biosfera

Los hábitats principales de la biosfera suelen dividirse en cuatro: de estuario, de agua dulce, marino y terrestre. Aun siendo los dos primeros los más reducidos respecto de los otros dos, resultan esenciales, en primer lugar, por ser las vías de integración del ciclo hidrológico y, en segundo lugar, por ser la fuente más accesible de agua de uso humano. También son los receptores más accesibles de eliminación de residuos antrópicos, que han ido creciendo desde la Revolución Industrial y amenazan seriamente la condición de fuentes de agua de estos hábitats (Odum, 1972: 323).

El hábitat de agua dulce y de estuario está definido por la *cuenca*, una unidad territorial configurada por la vía de agua colectora y los cursos que la alimentan o derivan, así como los terrenos aledaños a ellos. La cuenca determina el caudal y su composición así como sus variaciones. Por ser, habitualmente, el lecho de los cursos de agua superficiales al área más baja de la cuenca, su contaminación se produce no sólo por los vertidos directos en ellos, sino por los generados con el arrastre de los suelos por efecto de las lluvias. Las actividades agrícolas tienden a aumentar la carga de nitrógeno, de fósforo, materia orgánica y bacterias de un curso de agua. Las minerías reducen el pH y las industrias la cargan de residuos orgánicos e inorgánicos (Glynn Henry, 1999: 321). Salvo las cuencas cerradas, los cursos de agua superficiales trasladan su contaminación al mar.

Los *cursos de agua superficiales* tienen su propia capacidad de recuperación en la medida que no se reduzcan sus caudales y no se sobrecarguen de contaminantes (claro está que esa capacidad no alcanza a los contaminantes no biodegradables).

La contaminación de las aguas superficiales es un problema de todo el mundo. Los cinco grandes lagos ubicados en el noreste de los Estados Unidos, en la frontera con Canadá, mostraron signos de eutrofización y contaminación graves en la década de 1960. No obstante un costoso emprendimiento binacional para el tratamiento de aguas residuales, contaminantes industriales y la prohibición del uso de detergentes y sustancias con fosfatos, sólo se pudo recuperar alrededor del 3% de sus costas para suministro de agua potable y uso recreativo (Tyler Millar, 2002: 355).

2. El agua dulce

Hablar del agua es comentar una paradoja. Es el elemento más abundante de la Tierra y, a su vez, escasea en muchos lugares. Da la vida y, en ocasiones, la quita. Une y separa. No le concedemos valor y su falta paralizaría nuestra vida. No figura en las grandes cifras macroeconómicas y es el principal activo de la Biosfera. A pesar de todo, cualquier cosa que tiene que ver con el agua ejerce una atracción irresistible. Los ríos, la expresión más recurrente
del agua dulce, han tenido y tienen un papel esencial en la vida del globo. Han sido inspiradores de muchas obras de arte, motores de la civilización de los pueblos, dinamizadores de las economías, motivadores de enfriamientos.

No se debe olvidar que el agua dulce potable supone solamente el 0,008% del agua terrestre, lo que hace que en ocasiones su uso plante con complejos problemas. Todos se podrían resumir en una frase: “existe un desajuste entre la demanda, en cantidad y en calidad, y las disponibilidades en un momento dado y en un lugar concreto”.

Es conocido que el agua dulce está distribuida de forma muy irregular en la superficie terrestre. Los grandes depósitos naturales se encuentran en los glaciares de Groenlandia y la Antártida y en los Lagos de América del Norte o de Rusia. Las zonas húmedas tropicales contienen porcentajes elevados del total de la reserva mundial. El resto de las zonas terrestres se abastece como puede, ya que a la carencia de agua se une la estacionalidad de la escorrentía.

Los distintos pueblos, las diferentes civilizaciones, han dedicado múltiples esfuerzos a proveerse de agua en cantidad y calidad para su vida cotidiana y para sus economías. En ocasiones, le dedican un esfuerzo personal diario, como sucede en ciertos países en donde la sequía es endémica. En otros lugares han construido ingenios técnicos y mecánicos para recoger un recurso imprescindible. El agua potable domiciliaria es una conquista reciente en muchos lugares. Hoy día nos parece un servicio irrenunciable, pero, desgraciadamente, no lo es en muchos lugares del planeta. En las áreas urbanas del tercer mundo, 170 millones de personas carecen de agua limpia para satisfacer sus mínimas necesidades: beber, cocinar o lavarse. En las áreas rurales de estos países, el panorama es más sombrío, ya que alcanza a casi 885 millones.

Pero no todos los recursos pueden ser utilizados en todo su potencial. Existe un límite al que progresivamente nos vamos acercando. La sucesiva construcción de diques y presas ocasiona múltiples afecciones y no garantiza, por sí sola, la satisfacción de las demandas futuras. Se habla de que globalmente hay un exceso de agua, pero, debido a los límites operativos y a la contaminación, las cifras totales de este momento sólo se pueden llegar a duplicar, y eso se puede alcanzar de aquí a unos veinte o treinta años. Urgen, por tanto, otras acciones correctoras de la desviación de los consumos.
De antiguo, los ejes fluviales han ofrecido a los grupos sociales unas condiciones apropiadas para el establecimiento de focos de civilización. Cualquier mapa histórico del país o del mundo, de épocas pasadas o recientes, ilustra la potencialidad de los ejes fluviales. La agricultura hidráulica, la hidroelectricidad, la posibilidad de comunicaciones o de transporte han sido siempre opciones para el desarrollo en las diferentes culturas.

El papel fecundante de las vías de agua todavía es perceptible en la actualidad si se atiende a la localización de los mayores asentamientos urbanos e industriales. Sin caer en el determinismo del agua, pues los medios técnicos de transporte lo cuestionarían, este elemento ha tenido y tiene un papel relevante en la organización del espacio. Los conflictos internacionales y las polémicas regionales por el uso del agua de cuencas compartidas evidencian su papel como vertebradora del territorio.

No cabe duda de que también ha originado constreñimientos al desarrollo, lo mismo en épocas antiguas que en la actualidad, ya que todos los problemas no se resuelven con la técnica, sobre todo los que afectan a la calidad de las aguas. Solamente por estos motivos habría que intentar desarrollar nuevas actitudes, hábitos diferentes de cara a preservar los ríos, los acuíferos y garantizar el futuro.

Los seres humanos se concentran en las proximidades de los cursos de agua y provocan que los sistemas de agua dulce sean los primeros hábitats en degradarse. Usan el agua, consumen sus especies animales, utilizan sus cauces para desplazarse y como colectores de sus vertidos.

Hay que considerar también que los ecosistemas de agua dulce son muy vulnerables. Por un lado, los cauces soportan los flujos de materiales constantes y con cambios rápidos; por otro, los lagos y estanques tienen ciclos naturales muy lentos, con lo que tardan mucho en expeler los agentes contaminantes.

No debe extrañarnos, por tanto, la afirmación de que la contaminación del agua es uno de los problemas más graves con los que se enfrenta la civilización actual. Lluvias ácidas, vertidos de aguas residuales, productos químicos agrícolas, metales pesados, etcétera, se incorporan al caudal de los ríos. Este problema es particularmente grave en todos los países: en los industrializados, por la cantidad y la diversidad de agentes contaminantes, y en los países en desarrollo, debido a la imposibilidad de hacer frente al coste económico que suponen las tecnologías para la depuración y la regeneración de las aguas residuales. Por otra parte, muchos de estos contaminantes son difíciles de eliminar por los métodos convencionales de depuración. Su recuperación será muy costosa.

El agua dulce no es solamente agua. La biodiversidad de ríos, lagos, torrentes y zonas húmedas es el conjunto de ecosistemas más amenazados de la Tierra. Casi el 20% de los peces de agua dulce han desaparecido o están en peligro de hacerlo. Esta cifra es mucho mayor en algunos países industrializados, como sucede en Europa Oriental. Pero no son sólo los peces. Anfibios, moluscos y otras muchas especies peligran también, aunque no se conoce suficientemente la biodiversidad en el agua dulce.

3. La contaminación de aguas dulces

Se entiende así a toda incorporación al agua de materias extrañas, como microorganismos, productos químicos, residuos industriales y de otros tipos o aguas residuales. Estas materias deterioran la calidad del agua y la hacen inútil para los usos pretendidos. La actividad humana multiplica y necesita cada vez más comida, más agua, vestimenta, transporte, remedios, entretenimientos. La carga sobre la biosfera va aumentando y se producen:

- Emisión de gases tóxicos.
- Contaminación por pesticidas, metales, desechos cloacales.
• Accidentes, como los derrames de petróleo.
• Descarga de desechos químicos y material radiactivo.
• Descenso de las napas de agua dulce y zonas más profundas

Toda el agua pura procede de la lluvia, a veces antes de llegar al suelo recibe su primera carga contaminante, ya que se disuelven sustancias como óxidos de azufre y de nitrógeno que la convierten en lluvia ácida. Una vez en el suelo, el agua discurre por la superficie e infiltra hacia capas subterráneas. Es el agua de escorrentía, que en las capas y las granjas se carga de pesticidas, del exceso de nutrientes, y en las ciudades arrastra productos como aceites, metales pesados y nafta. La contaminación puntual es la que procede de fuentes localizadas y es controlable mediante plantas depuradoras. Pero ninguna medida de control sería efectiva si no fuera acompañada de disposiciones destinadas a reducir los residuos y reciclar todo lo que se puede, por que las aguas de infiltración que atraviesan los vertederos urbanos e industriales contaminan los acuíferos que suministran agua potable a millones de personas.

El agua dulce que utilizamos proviene de dos fuentes: agua superficial y agua subterránea. Se le llama aguas negras a aquellas que al llover no se filtra a la tierra, ya sea porque forma un charco, lago, laguna, etcétera, o porque regresa a la atmósfera. Las aguas subterráneas son las que se encuentran por debajo de la corteza terrestre.

4. La contaminación de aguas superficiales

La contaminación de los mantos de aguas superficiales puede ocurrir por fuentes no puntuales y por fuentes puntuales. La principal fuente no puntual de contaminación del agua es la agricultura. Muchos agricultores desechan los productos químicos y fertilizantes en los ríos y caudales cercanos. Una fácil solución para este problema sería disminuir casi completamente el uso de estos productos en tierras planas o cerca de laderas. Los ganaderos también pueden reducir la contaminación de los mantos acuíferos al controlar el escurrimiento e infiltración de desechos animales en las granjas, así como evitando utilizar terrenos inclinados hacia las aguas superficiales cercanas.

Las aguas negras y los desechos industriales arrastrados por el agua de fuentes puntuales generalmente no son tratados. La mayoría de estos desechos son descargados en las corrientes de agua más cercanas o en lagunas de desechos donde el aire, la luz solar y los microorganismos los degradan, matan algunas bacterias patógenas (causantes de enfermedades) y permiten que los sólidos se sedimenten, contaminando así no el ambiente, sino el cuerpo de agua que los contiene.

5. La contaminación de aguas subterráneas

El agua freática es la subterránea y constituye una fuente muy importante para beber y para riego agrícola, pero como su proceso de renovación es muy lento, resulta fácil de agotar. Por otra parte, la contaminación del agua subterránea puede considerarse permanente.

Algunas bacterias y la mayoría de los contaminantes sólidos son removidos o eliminados cuando el agua superficial contaminada se filtra en el suelo a los mantos acuíferos. Pero este proceso puede llegar a ser sobrecargado por grandes volúmenes de desechos domésticos e industriales. A pesar de que el suelo retiene algunas sustancias contaminantes, no puede retener virus ni muchas sustancias químicas orgánicas, las cuales se disuelven en las aguas subterráneas.

Las aguas subterráneas no pueden depurarse por sí mismas, ya que sus corrientes son lentas y no turbulentas, y los contaminantes no se diluyen ni se dispersan fácilmente. Es difícil, también,
que se lleve a cabo el proceso de descomposición aeróbica, ya que es muy reducido el oxígeno debajo de la tierra y las colonias de bacterias anaeróbicas están muy dispersas y no son suficientes para descomponer la materia. Para que las aguas subterráneas contaminadas puedan liberarse por sí mismas de los desechos contaminantes tienen que pasar cientos de miles de años.

6. Principales contaminantes de los lagos y ríos

- **Aguas residuales** y otros residuos que demandan oxígeno (en su mayor parte, materia orgánica, cuya descomposición produce la desoxigenación del agua).
- **Agentes infecciosos** (cólera, disentería) causan trastornos gastrointestinales.
- **Nutrientes vegetales** que pueden estimular el crecimiento de las plantas acuáticas. Estas, a su vez, interfieren con los usos a los que se destina el agua y, al descomponerse, agotan el oxígeno disuelto y producen olores desagradables.
- **Productos químicos**, incluyendo los pesticidas, diversos productos industriales, las sustancias tensioactivas contenidas en los detergentes, jabones y los productos de la descomposición de otros compuestos orgánicos.
- **Minerales inorgánicos y compuestos químicos**.
- **Sedimentos formados** por partículas del suelo y minerales arrastrados por las tormentas y escorrentías desde las tierras de cultivo, los suelos sin protección, las explotaciones mineras, las carreteras y los residuos urbanos.
- **Sustancias radiactivas** procedentes de los residuos producidos por la minería y el refinado del uranio y el torio, las centrales nucleares y el uso industrial, médico y científico de materiales radiactivos.
- **El calor** también puede ser considerado un contaminante cuando el vertido de agua empleada para la refrigeración de las fábricas y las centrales energéticas hace subir la temperatura del agua de la que se abastecen.
- **El mercurio**, un metal líquido muy tóxico, se acumula en el fitoplancton. En él las concentraciones son mil veces mayores que en el agua. Los peces pequeños lo concentran aún más, y en el pez grande puede llegar a límites peligrosos para la salud humana.
- **La contaminación cloacal** es habitual y se produce por bacterias fecales. Eso se debe a que muchas ciudades vuelcan sus líquidos cloacales sin purificar, o con purificación deficiente, a los ríos y al mar. Algunas ciudades no tienen plantas depuradoras, otras las tienen demasiado pequeñas o fuera de funcionamiento. Algunas veces aparecen restos cloacales en las playas. Este problema puede surgir por fallas en los sistemas de bombeo.
- **El plástico** es un material estable, útil y barato. Habitualmente se usa una vez y se tira. Es estable o se degrada muy lentamente. Se calcula que muchos de los plásticos pueden durar cientos de años. Son trampas mortales para la fauna marina. Al tragarlo, muchos animales ya no pueden bucear normalmente y se mueren de hambre.
- **Las represas**. El parásito transmisor de la esquistosomiasis se puede desarrollar en la vegetación de aguas calmas. Según la Organización Mundial de la Salud (OMS), existen seiscientos millones de personas que corren peligro de contraer el “mal de las represas” o esquistosomiasis. Es la gente de setenta y cuatro países tropicales y subtropicales de Asia, África, América Latina y el Caribe que vive en malas condiciones sanitarias. En la cuenca del río Paraná, en la década del cincuenta, la llamada “era de construcción de las represas” produjo un gran aumento de esta enfermedad. Los portadores del parásito trabajaron en la construcción de las mismas.

---

1 El agente de la enfermedad es el *Schistosoma*, un parásito (trematódeo) del que se describen tres especies principales: *S. mansoni*, *S. japonicum* y *S. haematobium*. Los humanos son el principal reservorio, quienes se infectan por contacto corporal con agua contaminada por larvas del parásito. Este tiene por huéspedes intermediarios caracoles del género *Biomphalaria* en América del Sur (Benenson, 1997: 180). Este caracol tiende a proliferar en las represas.
7. Consecuencias de la contaminación de los lagos y ríos

Los efectos de la contaminación de los lagos y ríos incluyen los que afectan a la salud humana. La presencia de nitratos (sales del ácido nítrico) en el agua potable puede producir una enfermedad infantil, la metahemoglobinemia, que en ocasiones es mortal. El presente en los fertilizantes derivados del cieno o lodo puede ser absorbido por las cosechas. De ser ingerido en cantidad suficiente, puede producir trastornos diarreicos agudos, así como lesiones en el hígado y los riñones. Hace tiempo que se conoce de la peligrosidad de sustancias inorgánicas como el mercurio, el arsénico y el plomo.

Los lagos son especialmente vulnerables a la contaminación. Hay un problema, la eutrofización, que se produce cuando el agua se enriquece de modo artificial con nutrientes, lo que produce un crecimiento anormal de las plantas. Los fertilizantes químicos arrastrados por el agua de los campos de cultivo pueden ser los responsables. El proceso de eutrofización puede ocasionar problemas estéticos, como mal sabor y olor, y un acumulamiento de algas o verdín desagradable a la vista. También un crecimiento denso de las plantas con raíces, el agotamiento del oxígeno en las aguas más profundas y la acumulación de sedimentos en el fondo de los lagos, así como otros cambios químicos, tales como la precipitación del carbonato de calcio en las aguas duras. Otro problema cada vez más preocupante es la lluvia ácida, que ha dejado muchos lagos del Norte y del Este de Europa y del Noroeste de Norteamérica totalmente desprovistos de vida.

Debido a su escasa entrada y salida de agua, los lagos sufren graves problemas de contaminación. Los ríos, por su capacidad de arrastre y el movimiento de las aguas, son capaces de soportar mayor cantidad de contaminantes. Sin embargo, la presencia de tantos residuos domésticos, fertilizantes, pesticidas y desechos industriales altera la flora y fauna acuáticas. En las aguas no contaminadas existe cierto equilibrio entre los animales y los vegetales, que se rompe por la presencia de materiales extraños. Así, algunas especies desaparecen, mientras que otras se reproducen en exceso. Además, las aguas adquieren una apariencia y olor desagradables. Los ríos constituyen la principal fuente de abastecimiento de agua potable de las poblaciones humanas. Su contaminación limita la disponibilidad de este recurso imprescindible para la vida.

Una manera de reducir la contaminación consiste en depurar los desechos, tanto industriales como cloacales, antes de arrojarlos a los ríos, a fin de eliminar las sustancias tóxicas. Para tratar las aguas residuales, se emplean microorganismos capaces de destruir contaminantes. Las industrias deben utilizar tecnologías que les permitan reciclar el agua y disminuir el consumo. También es necesario reducir el uso de fertilizantes y plaguicidas químicos e impedir el desperdicio de aguas destinadas al riego mediante técnicas adecuadas.

Los efectos de la contaminación en algunos casos se pueden aliviar, pero es costoso y requiere tiempo. Muchas veces no hay oportunidad de solucionar los problemas, ya que el medio ambiente se deteriora de una manera irreversible.

Algunos contaminantes se descomponen debido a procesos químicos y biológicos que se efectúan en el agua, y se conocen como contaminantes degradables o biodegradables. La degradación se refiere a la separación en sustancias más simples. Casi todos los contaminantes orgánicos son degradables.

La descomposición de materiales orgánicos en el agua se produce sobre todo por la acción de bacterias y otros organismos. Las bacterias utilizan los compuestos orgánicos como alimento y los usan como fuente de energía para los procesos de oxidación biológica. En esta descomposición bacteriana se consume el oxígeno disuelto y se produce dióxido de carbono, agua y varios iones no degradables. A continuación se exponen algunas reacciones generales que indican la descomposición bacteriana de los compuestos orgánicos en presencia del oxígeno. Este tipo de descomposición se denomina aeróbica (del griego aire + vida):
• CH (hidrocarburos) + O CO + H O
• CH O (carbohidratos) + O CO + H O
• Compuestos orgánicos que contienen azufre + O CO + H O + SO
• Compuestos orgánicos que contienen nitrógeno + O CO + H O + NO
• Compuestos orgánicos que contienen fósforo + O CO + H O + PO²

Todas las reacciones señaladas consumen el oxígeno disuelto en el agua. Los compuestos orgánicos que sufren la descomposición aeróbica se denominan contaminantes reductores de oxígeno. Cuando hay volumen insuficiente de oxígeno en el agua, se puede seguir produciendo la desintegración bacteriana de casi todos los compuestos orgánicos; no obstante, en ausencia de oxígeno ya no produce las mismas substancias. Esta descomposición anaeróbica (sin oxígeno) se ilustra mediante la ecuación general:

Compuestos orgánicos que contienen azufre y nitrógeno +H O CO + H S + CH + NH

La descomposición anaeróbica produce gases que forman burbujas en el agua y que contribuyen a que haya malos olores. De hecho, esta descomposición es fuente principal del metano y del sulfuro de hidrogeno que se encuentran presentes en la atmósfera. Una vez que están en la atmósfera, el metano se convierte en dióxido de carbono y el sulfuro de hidrogeno en sulfato debido a reacciones químicas atmosféricas.

Las reservas de agua potable de la Tierra se encuentran amenazadas por el consumo excesivo y por la presencia de contaminantes.

8. Proceso de eutrofización
Un río, un lago o una presa sufren de eutrofización cuando sus aguas se enriquecen en nutrientes. Si hay exceso de nutrientes, crecen en abundancia las plantas y otros organismos. Más tarde, cuando mueren, se pudren, llenan el agua de malos olores y le dan un aspecto nauseabundo, disminuyendo drásticamente su calidad. El proceso de putrefacción consume una gran cantidad del oxígeno disuelto y las aguas dejan de ser aptas para la mayor parte de los seres vivos. El resultado final es un ecosistema casi destruido.

Cuando un lago o embalse es pobre en nutrientes (oligotrófico), tiene las aguas claras, la luz penetra bien, el crecimiento de las algas es pequeño y mantiene pocos animales. Las plantas y animales que se encuentran son característicos de aguas bien oxigenadas, como las truchas. Al ir cargándose de nutrientes, el lago se convierte en eutrófico. Crecen las algas en gran cantidad, con lo que el agua se enturbia. Las algas y otros organismos, cuando mueren, son descompuestos por la actividad de las bacterias, con lo que se gasta el oxígeno.

Los nutrientes que más influyen en este proceso son los fosfatos y los nitratos. En algunos ecosistemas, el factor limitante es el fosfato, como sucede en la mayoría de los lagos de agua dulce, pero en muchos mares el factor limitante es el nitrógeno para la mayoría de las especies de plantas. En los últimos veinte o treinta años, las concentraciones de nitrógeno y fósforo en muchos mares y lagos casi se han duplicado. La mayor parte les llega por los ríos. En el caso del nitrógeno, una elevada proporción (alrededor del 30%) llega a través de la contaminación atmosférica. El nitrógeno es más móvil que el fósforo y puede ser lavado a través del suelo o pasar al aire por evaporación del amoníaco o por desnitrificación. El fósforo es absorbido con más facilidad por las partículas del suelo y es arrastrado por la erosión o disuelto por las aguas de escorrentía superficiales.

Las fuentes de eutrofización pueden ser de dos orígenes:

- **Eutrofización natural.** La eutrofización es un proceso que se va produciendo lentamente de forma natural en todos los lagos del mundo, porque todos van recibiendo nutrientes.

- **Eutrofización de origen humano.** Los vertidos humanos aceleran el proceso hasta convertirlo, muchas veces, en un grave problema de contaminación. Las principales fuentes de eutrofización son los desechos humanos echados a las aguas que llevan detergentes, los desechos agrícolas y ganaderos que aportan fertilizantes, residuos orgánicos y otros ricos en fosfatos y nitratos.

Para conocer el nivel de eutrofización de un agua determinada, se suele medir el contenido de clorofila de algas en la columna de agua y este valor se combina con otros parámetros, como el contenido de fósforo y de nitrógeno y el valor de penetración de la luz.

### 9. Medidas para evitar la eutrofización

Lo más eficaz para luchar contra este tipo de contaminación es disminuir la cantidad de fosfatos y nitratos en los desechos, usando detergentes con baja proporción de fosfatos, empleando menor cantidad de estos, no abonando en exceso los campos, usando los desechos agrícolas y ganaderos como fertilizantes en lugar de echarlos al agua, entre otras maneras. En concreto:

- Tratar las aguas residuales en estaciones depuradoras que incluyan tratamientos biológicos y químicos que eliminan el fósforo y el nitrógeno.
- Almacenar adecuadamente el estiércol que se usa en agricultura.
- Usar los fertilizantes más eficientemente.
- Cambiar las prácticas de cultivo a otras menos contaminantes. Así, por ejemplo, retrasar el arado y la preparación de los campos para el cultivo hasta la primavera y plantar el cereal en...
otoño asegura tener cubiertas las tierras con vegetación durante el invierno, con lo que se reduce la erosión.
- Reducir las emisiones de amoníaco.

10. Contaminación de aguas superficiales en Argentina

10.1. El Río de la Plata

El Río de la Plata recibe las aguas de los ríos Paraná y Uruguay (el primero más caudaloso), con los que forma la Cuenca del Río de la Plata, la segunda en importancia en América Latina, que representa el 80% de la disponibilidad del agua dulce superficial de la República Argentina. Sobre la base de su profundidad y el grado de influencia marina en sus aguas, el Río de la Plata puede ser dividido en tres sectores: Superior, Medio y Exterior.

El Río de la Plata Superior se extiende desde el nacimiento (Delta del Paraná) hasta la línea imaginaria Buenos Aires-Colonia. Sus afluentes son el Paraná Guazú y el Paraná de las Palmas; sus fondos son de baja profundidad (de dos a cinco metros) y sus aguas tienen una baja salinidad (0,3 o/oo).

El Río de la Plata Medio se extiende hasta la línea imaginaria Punta Piedras-Punta Brava. Sus fondos alcanzan una profundidad de seis a siete metros y su salinidad va de 0,3 a 5 o/oo; el ancho máximo de la zona media del río es de 120 Km.

El Río de la Plata Exterior se extiende hasta la línea Punta Rasa-Punta del Este; su ancho en la desembocadura es de 220 Km.; su profundidad va de los seis a los dieciseis metros y su salinidad tiene un rango de 5 a 25 o/oo.

La Franja Costera Sur se encuentra localizada en las partes superior y media del río y, aunque existen influencias de mareas oceánicas, sus aguas pueden ser tipificadas como continentales dulces.

En cuanto a los factores meteorológicos, tienen una notable influencia sobre las mareas; los vientos del sudeste incrementan el nivel hasta un metro, mientras que los del oeste (Pampero) y los del norte provocan importantes bajantes.

La Franja Costera Sur, comprendida entre los partidos de San Fernando y Magdalena, cuyo ancho se define arbitrariamente entre la costa y los 10.000 metros, constituye la principal fuente de agua cruda de las ciudades de Buenos Aires, La Plata y partidos circundantes, con una población estimada en diez millones de habitantes. El área respectiva es de aproximadamente 1.300 Km2. Esta zona sustenta usos múltiples, como los que a continuación se detallan:

- **Productivos**: destilerías, puertos, plantas productoras de energía.
- **Recreativos**: náuticas, deportivos, zonas de balnearios.
- **Agrícolas**: quintas (aguas abajo).

El río constituye la principal fuente de agua potable de la región. La obtención de la misma se realiza a través de tres tomas:

- **Planta Potabilizadora de Palermo**: pertenece a Aguas Argentinas; es la más grande de las tres, con un caudal máximo de 35 metros cúbicos/segundo y una toma situada a una distancia de 1.050 metros de la costa.
- **Planta Potabilizadora de Bernal**: pertenece a Aguas Argentinas, tiene un caudal máximo de 17 metros cúbicos/segundo y la toma se encuentra a una distancia de la costa de 2.400 metros.
• **Planta Potabilizadora de Punta Lara:** perteneciente a la Administración General de Obras Sanitarias de la provincia de Buenos Aires (AGOSBA), situada en la localidad de Ensenada, posee un caudal máximo de 2,5 metros cúbicos/segundo y la toma se encuentra a una distancia de la costa de 714 metros.

Posteriormente, veremos que la **distancia de la costa resulta un parámetro indispensable**, ya que la zona más afectada por los contaminantes corresponde a la franja próxima a la costa.

Sin duda, uno de los principales problemas que padece nuestro río y una de las mayores deudas sociales, aún sin solución, es que a diario se generan importantes focos de contaminación producto del vuelco de los residuos sin ningún tipo de tratamiento. Las zonas que se pueden mencionar como más problemáticas por ser focos generadores de contaminación por **residuos cloacales** son:

- **Un emisario de Berazategui** de cinco metros de diámetro que vierte a 2.500 metros de la costa; el mismo vuelca efluentes provenientes de la Capital y el Conurbano (aproximadamente, cinco millones de habitantes).
- **El colector mayor de Berisso**, que vuelca sus efluentes sin ningún tratamiento al Río de la Plata.
- **Vuelcos puntuales** del los ríos Reconquista y Riachuelo y de los arroyos Santo Domingo y Sarandí, producto de la falta de redes cloacales y de plantas de tratamiento en zonas densamente pobladas.

Los métodos indirectos para determinar la contaminación producto de los residuos cloacales son:

- La demanda biológica de oxígeno o DBO5.
- La demanda bioquímica de oxígeno o DQO.
- El oxígeno disuelto u OD.

En promedio, la Franja Costera Sur mantiene concentraciones de oxígeno que resultan apropiadas con valores que van de los cinco a los siete miligramos/litro, aunque en la zona cercana a la costa de los partidos de Avellaneda, Quilmes y parte de Berazategui muestran tenores muy bajos como producto de la degradación de aguas cargadas con materia orgánica, pudiendo alcanzar valores críticos para la vida de los peces en períodos de bajantes. Se han registrado valores que llegan a 0,7 y 0,4 miligramos/litro en la desembocadura del Sarandí.

Por otra parte, el DQO (demanda bioquímica de oxígeno), tal como se mencionó, es un parámetro importante de estimación de la cantidad de O2 necesario para oxidar toda la materia orgánica e inorgánica oxidable. El DBO5 o demanda biológica de oxígeno resulta también un buen parámetro para la determinación de la calidad de agua y se define como la cantidad de oxígeno que requiere en una muestra de bacterias aeróbicas para oxidar el contenido de materia orgánica existente. Los valores de estos dos parámetros, DBO5 y DQO, no resultan satisfactorios en zonas cercanas a la costa, más precisamente en la desembocadura del emisario de Berazategui y el colector mayor de Berisso.

De los metales pesados, el cromo es el que más se manifiesta. Le sigue el plomo. Es importante destacar que la mayor concentración de **plomo y cromo** se cree que se encuentra adherida a las partículas en suspensión. Con este dato, se intenta conjeturar que los metales pesados del río no constituirían un riesgo para la salud humana. Los aportes de estos metales provendrían:

- Del Paraná (aporte natural y de la minería en su cuenca).
- Aporte de la industria (curtiembres y galvanoplastías).
Estos metales pesados en aguas costeras de los partidos de Avellaneda y Quilmes superan los estándares de calidad (50 miligramos/litros). Se ha comprobado que existe una tendencia al aumento de la concentración de estos metales pesados con el correr de los años.

En relación con la turbidez, la franja costera tiene un promedio de 100 miligramos/litros, aunque las concentraciones son irregulares. Los dragados constantes que se realizan sobre el lecho del río tienden a aumentar los valores hasta alcanzar los 350 miligramos/litros (valor registrado en el cruce entre el canal Mitre y el acceso al puerto).

Las sustancias que pertenecen al grupo de los hidrocarburos clorados contienen carbono y cloro químicamente combinados en sus moléculas. Es difícil el trabajo con muestras sobre estos compuestos, porque son muy hidrófugos. Si bien los valores no sobrepasan los estándares de calidad, es importante destacar que se han registrado concentraciones altas en la desembocadura del Riachuelo y en la descarga de Berazategui. También en relación con la desembocadura de los canales Sarandí y Santo Domingo (que acarrean contaminantes de origen industrial). En el río Santiago también se han registrado concentraciones que se pueden considerar altas.

Realizando una evaluación global de lo que denominamos Franja Costera, encontramos que:

- La franja más comprometida se encuentra entre la línea de la costa y los quinientos metros, con concentraciones que en algunas oportunidades exceden los parámetros de calidad de agua en relación con: cromo total, coliformes totales, Demanda Biológica de Oxígeno, Demanda Bioquímica de Oxígeno.
- El grado de alteración de calidad de agua más pronunciado y alejado de la costa (entre 2.000 y 3.000 metros) se encuentra entre el Riachuelo y la mitad del camino entre Punta Colorada y Punta Lara (partidos de Berazategui y Ensenada, respectivamente).
- El grado de calidad de agua desciende en los alrededores de la desembocadura del Sarandí y el Santo Domingo, con los parámetros vinculados a DBO5, cromo, oxidabilidad (parámetros característicos de efluentes industriales).
- En la zona del emisario de Berazategui se visualiza una masa de agua de menor calidad (Pluma). Los parámetros se vinculan con concentraciones de NH₄, NO₃ y bacteriológicos (coliformes fecales).
- La franja más comprometida es la comprendida entre la línea de la costa y los quinientos metros, con concentraciones que exceden los valores establecidos en los niveles guías de la Cuenca del Plata.
- Los vientos del Oeste producen bajantes que limitan la capacidad de dilución de los contaminantes, mientras que vientos del Sur o del Este favorecen la capacidad de dilución.
- La gran cantidad de sedimentos finos (recordemos que la nuestra es una costa de sedimentación) cumpliría la función de filtro fijando metales pesados y otros compuestos perjudiciales para la salud humana.
- La dilución de los contaminantes resulta muy importante dado el gran volumen del cuerpo receptor. De lo expuesto se desprende el irracional manejo que se está realizando del Río de La Plata. Hoy, el río está siendo utilizado como bebedero y cloaca al mismo tiempo.
- No existe una política global científica para el manejo de este importante recurso.
- No se tiene en cuenta el riesgo en salud que la contaminación de las aguas puede provocar (afectando a diez millones de personas).

El Río de la Plata, tal como se dijo, constituye el mayor recurso de agua dulce de la República Argentina y se tendrán que definir las políticas a seguir en materia de:

- **Monitoreos**: ya sea para la determinación de concentraciones de contaminantes como así también para la determinación del desplazamiento de los mismos.
- **Controles de Efluentes**: 

**DESARROLLO, SALUD HUMANA Y AMENAZAS AMBIENTALES**

209
- **Cloacales**: resulta indispensable la construcción de plantas de tratamiento de efluentes cloacales.
- **Industriales**: determinación de cuáles son las industrias que hoy arrojan a los canales y ríos efluentes sin ningún tratamiento. Es necesario una política eficiente de control.
- **Agua potable**: según estudios realizados por la UNLP, las plantas potabilizadoras no están garantizando que las aguas tratadas no afecten la salud humana.

### 10.2. El río Matanza-Riachuelo

Los ríos y arroyos que atraviesan las regiones de alta concentración poblacional y productiva llevan décadas de un proceso de contaminación creciente paralelo al aumento demográfico y su densidad (habitantes/Km²) y a las actividades primarias y secundarias de la economía.

Así, la región Área Metropolitana de Buenos Aires y el corredor geográfico desde Rosario hasta La Plata es la más contaminada en este aspecto. El fenómeno se repite en los grandes conurbanos, las ciudades del interior del país y en áreas puntuales por localizaciones industriales específicas.

El río Matanza-Riachuelo tiene sus fuentes en el partido de Navarro, una longitud de ochenta kilómetros hasta su desembocadura en el Río de la Plata y una cuenca de aproximadamente 2.200 km² (Malpartida, 2000: 4), colectora de **sesenta afluentes** (Maciel, Groisman, 2000: 1).

Desde su origen hasta el puente de La Noria se denomina río Matanza, y desde allí se lo llama Riachuelo. Se trata de un río de llanura con escasa pendiente² y poca velocidad de sus aguas. La historia de su contaminación se remonta a la época colonial, con los desechos de los mataderos y saladeros.

Actualmente viven en su cuenca casi tres millones de personas –de los que sólo el 45% tiene servicios cloacales y el 65% agua potable (Maciel, Groisman, 2000: 2)– y, a fines de la década de 1970, se registraban más de 19.000 establecimientos industriales, teniéndose entonces control de sólo el 2,5% de sus efluentes (Brailovsky y Foguelman, 1977: 276). Alrededor del año 2000 se relevaban 3.076 industrias, de las que casi el 90% se concentraba en el tramo medio e inferior de la cuenca. Se volcaban a ella alrededor de 370.000 m³ de desechos domiciliarios y 88.000 m³ de residuos industriales por día, teniendo la corriente un caudal de 250.000 m³/día (Maciel, Groisman, 2000: 5).

Los planes de saneamiento propuestos, con apoyo financiero del Banco Interamericano de Desarrollo (BID), han chocado, entre otros escollos, con la diversidad de jurisdicciones y normas (nación, provincia y quince municipios) y la multiplicidad de organismos intervinientes (Maciel, Groisman, 2000: 5: 11).

El puerto del complejo petroquímico ubicado del lado provincial de la desembocadura del Riachuelo es una fuente contaminante y un peligro potencial de incendios y explosiones.

### 10.3. El río Reconquista

El río Reconquista tiene su origen en la convergencia de los arroyos La Choza, desde el Norte, y Durazno, desde el Sur. Tiene una dirección Sudoste-Noreste y una longitud de 82 Km hasta su desembocadura en el Río de la Plata, a través del Río Luján. Tiene **más de 130 cursos de agua tributarios** y una cuenca de 167.000 hectáreas, con una población de alrededor de tres millones de habitantes. Tiene mayor pendiente que el Matanza-Riachuelo. En su tramo inferior hay numerosos entubamientos y canalizaciones, así como la presa reguladora de inundaciones “Iº Roggero” (La Reja), con un lago artificial, y otras tres presas menores.

---

2 Su pendiente media es de 3,5 metros por kilómetro.
En el tramo superior, la extracción de tierra generó numerosas cava\s que inutilizaron zonas recreativas.

Desde el embalse de La Reja, las aguas comienzan a sufrir una mayor contaminación, que se maximiza al desembocar en ellas el arroyo Morón. La densidad urbana e industrial ha llevado a que el margen derecho del río esté más contaminado que el izquierdo. Sin embargo, los partidos del margen derecho están más protegidos que los del izquierdo por disponer de mayor equipamiento sanitario (Saltiel, 1997: 31-46).

La contaminación se debe a descargas cloacales e industriales y basurales, lo que ha agotado su capacidad de autodepuración. En las inundaciones de la cuenca, la contaminación de la superficie del agua llega a desprender gases de hidrógeno sulfúrico, con olores nauseabundos.

Las vías férreas y caminos que se abren en abanico desde la Ciudad Autónoma de Buenos Aires (CABA), atravesando el área de la cuenca hacia el interior del país, han favorecido la instalación de industrias, pero también han generado interferencias en el flujo de las aguas del suelo hacia los cursos. Por otra parte, el parcelamiento de tierras de agricultura, impulsado por la especulación inmobiliaria, ha reducido las superficies de absorción y promovido asentamientos en terrenos marginales e inundables (Saltiel, 1997: 31-46).

Las descargas cloacales de la cuenca se diversifican, ya sea por redes troncales al Río de la Plata, por colectoras con tratamiento al Reconquista o afluentes, por descargas de camiones atmosféricos a través de digestores municipales –que no siempre funcionan– o por vuelcos ilegales a los cursos o a los desagües pluviales.

Según distintas fuentes, entre 1985 y 1995, se asentaban en la cuenca entre 12.000 y 15.000 emprendimientos (Saltiel, 1997: 31-49). El censo económico de 1985 los distribuía según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Rubro</th>
<th>Asentamientos (%)</th>
<th>Carga contam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavaderos (autos, ropa) y estaciones de servicio</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Industria metalúrgica</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Centros comunitarios*</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Industria química</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Industria alimenticia y textil</td>
<td>6</td>
<td>13***</td>
</tr>
<tr>
<td>Industria de bebidas varias</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Frigoríficos</td>
<td>5</td>
<td>49**</td>
</tr>
<tr>
<td>Industria del cuero</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Industria láctea</td>
<td>0,4</td>
<td>15</td>
</tr>
<tr>
<td>Otros</td>
<td>17,6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Nota: *Barrios, hoteles, hospitales, mercados y otros; ** Industria de la carne en general; *** Sólo industria textil.


La industria del cuero contamina con cromo (Pdo. Moreno). Los químicos y metalmecánicos con fenoles, tóxicos orgánicos y metales pesados (Pdo. Morón, donde también hay empresas de cuero; Pdos. San Fernando, San Isidro, San Martín, Tres de Febrero y Vicente López). A su vez, la industria del papel, petroquímica, metalúrgica y tintorera contaminan con zinc, cromo y cadmio.
Las concentraciones de zinc\(^3\) en las aguas del río fueron las más altas detectadas, seguidas de cromo y cadmio (Topalián, Loez, Salibian, 1990: 173), así como de hidrocarburos aromáticos policíclicos (PHAs) (Saltiel, 1997: 32-34).

Los residuos sólidos municipales, en buena parte, se acumulan en basurales.

Al haber baja cobertura de cloacas –en 1997 se estimaba que el área tenía el 16% de cobertura con sistemas cloacales y el 37% con agua potable–, las descargas se hacen frecuentemente en las banquinas de las calles o conductos pluviales. Los camiones atmosféricos, a su vez, suelen descargar en baldíos, bocas de registro y en los mismos cursos de agua.

Los mataderos dejan escapar vísceras que llegan a flotar en la superficie de los cursos impidiendo la penetración del oxígeno.

Las inundaciones de 1985 afectaron a 300.000 habitantes de la cuenca, de los cuales 70.000 tuvieron que ser evacuados (Saltiel, 1997: 31-52). En esas circunstancias, se desbordan también las fosas sépticas.

Hay un proyecto en curso que traza un sistema de canalizaciones y terraplenamientos para proteger la población (Saltiel, Romano, 1997: 29).

10.4. El río Paraná

El río Paraná nace en Brasil, de la confluencia de los ríos Paranaiba y Grande. Corre sucesivamente en dirección SO, O, S y SE hasta desaguar formando un delta en el Río de la Plata, después de un trayecto de más de 6.100 Km. Su cuenca es de alrededor de 3.000.000 de Km\(^2\). En la frontera de la provincia de Misiones con Brasil recibe su afluente el río Iguazú, y al doblar de O a S, su principal, el río Paraguay.

La contaminación comienza, entonces, en su trayecto Norte a través de Brasil. El río Iguazú recibe afluentes de la refinería Sao Mateus do Sul (Petrobras).

Las fábricas de pasta y de papel asentadas en las riberas del Paraná, en territorio argentino, contaminan con cloro, que se usa para el blanqueo, y sus derivados.\(^4\)

Las petroquímicas agregan fenoles y diversos hidrocarburos, incluyendo los aromáticos policíclicos (HAPs), a la carga contaminante de las aguas.

A la altura de Rosario, los arroyos afluentes Ludueña y Saladillo llevan sus aguas con agregados de zinc, cobre, plomo y mercurio.\(^5\)

El dragado del río, para sostener su navegabilidad, aumenta la turbiedad del agua, lo que afecta la respiración de la fauna fluvial y remueve metales y tóxicos depositados en el sedimento (ibid.).

La contaminación cloacal se maximiza aguas abajo de las ciudades. En la zona de Posadas (Misiones) se han detectado desde 1.100 a 9.300 coliformes fecales por mm\(^3\).\(^6\)

Sobre el río Uruguay se ha generado el conflicto de las plantas de celulosa Botnia (finlandesa) y ENCE (Empresa Nacional de Celulosa de España), emplazada a pocos kilómetros de Fray Bentos (República Oriental del Uruguay), que planean procesar con ese destino plantaciones de eucaliptos que llegan a una superficie de 600.000 hectáreas. La última empresa tiene tres plantas en su país de origen, España, y tuvo condenas por incumplimiento de la legislación ambiental y por contaminar la ría de Pontevedra, en cuya ribera asienta una de esas plantas. Por tal motivo,

---

\(^3\) El zinc tiene baja toxicidad en humanos, no es mutagénico. Si bien no tiene acción carcinogénica directa, su capacidad para ligarse al ADN puede afectar a la biotransformación de carcinógenos en procarcinógenos orgánicos. De esta forma, sería promotor de la proliferación celular en tumores preexistentes (Topalián, Loez, Salibian, 1990: 174).


según informes ecologistas, tuvo que cambiar el proceso ECF, con dióxido de cloro, que además libera furanos y dioxina7, por el TCF (totalmente libre de cloro). Las plantas sobre el río Uruguay utilizan el primero de los procesos, el ECF, más contaminante.8

El río Baradero, de 49 Km de longitud, desemboca en el Paraná de las Palmas al Sur de la ciudad de San Pedro. Su margen derecho es barrancoso y afluyen el arroyo El Tala y el río Arrecifes. Su margen izquierdo es bajo, con islas bajas e inundables. Por convenio entre la municipalidad local y el Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP, Mar del Plata), se realizó un estudio de tejido muscular de peces capturados y se detectaron valores excedidos de biocidas organoclorados para grupos de riesgo por alto consumo de pescado. Sin embargo, los niveles de metales pesados fueron inferiores a los valores de referencia y no se encontraron biocidas organofosforados. La contaminación bacteriológica del agua se verificó por exceso en niveles de coliformes fecales, Escherichia coli, Vibrio cholerae no 01 y Aeromonas spp. Se recomendó analizar PCBs (bifenilos-policlorados) y controlar las zonas costeras de uso recreacional con estreptococos fecales como indicadores. Cabe destacar que en el margen derecho del río se emplaza una papelera celulosa, una refinería de maíz y una fábrica de productos cárneos, y la ciudad de San Pedro dispone en ese margen de una planta depuradora cloacal (Costagliola et al., 2002: 9).

10.5. Otros ríos

El embalse de las Termas del Río Hondo tiene como principal afluente el Río Salí, que atraviesa de Noroeste a Sudeste la provincia de Tucumán. Se ha detectado en las aguas del embalse contaminación con altos tenores de cobre y cromo, presuntamente derivados por la cuenca desde la empresa mina Bajo de la Alumbre (Catamarca).9

El río Dulce es el afluente del embalse y, a raíz de la detección de mortandad en peces, se registró un aumento de la DBO y de la eutroficiación en su cauce provocado por desechos de industrias tucumanas volcadas a los ríos Salí y Dulce.10

El alto río Pilcomayo recibe alrededor de 50.000 Tm de residuos mineros de Bolivia y de la explotación de petróleo en la zona de Tarija.

En agosto de 1996 se produjo la ruptura de un dique de la mina Porco (Potosí, Bolivia), de plata, zinc y cobre. A pesar de las medidas tomadas por la empresa, 400.000 Tm de lodos tóxicos alcanzaron por un afluente el río Pilcomayo, conteniendo cianuros, arsénico, plomo y mercurio. Los países limítrofes supieron del accidente con más de un mes de demora. Se suscitó gran mortandad de peces y la muerte de tres personas de etnias que viven dispersas en la zona Sur de Bolivia (San Lorencito), quedando expuestas las poblaciones de Boquerón (Paraguay) y otras aguas abajo, incluyendo Formosa (Argentina). Se alertó a esas poblaciones que no ingirieran agua ni peces del río Pilcomayo, así como tampoco productos agropecuarios irrigados o abrevados con aguas de ese curso. Se les proveyó de agua potable y, desde Paraguay, se dispuso el reconocimiento aéreo y terrestre del área y el monitoreo de la contaminación de aguas de la cuenca.11

---

7 La dioxina se genera al reaccionar el cloro con la lignina de la madera. Ambos son persistentes y bioacumulables y el ser humano se contamina con la ingesta de productos cárneos, lácteos, pescados y de animales en zonas expuestas a las emisiones o por inhalación en la cercanía o interior de la planta. La dioxina es considerada fetotóxica, altera funciones endócrinas e inmunológicas y es probable cancerígeno humano (Clase B) para la Agencia de Protección Ambiental de Estados Unidos (EPA, Environmental Protection Agency), mientras que la Agencia Internacional para la Investigación en Cáncer (IARC, Lyon, Francia) considera la dioxina TCDD como cancerígena (ibid.).
El río Negro del Chaco cruza la ciudad de Resistencia y desagua en el Paraná a la altura de Barranqueras y Puerto Vilelas. En su cauce inferior está contaminado por residuos de industrias del tanino, curtiembres y mataderos. No hay peces y está invadido por camalotes (Tolcachier, 2004).

11. Comentario final

La escasez de agua a unos suena a realidad, a otros a exageración y para algunos es sólo el resultado de una mala gestión. Se argumenta que la evaluación de necesidades comporta un margen de imprecisión considerable, por lo que es difícil prever el futuro, aunque también se dice que cualquier proyección tiene el valor de puesta en guardia. De cualquier manera, no es necesario esperar a que la escasez de agua global sea una realidad para experimentar los problemas que surgen cuando una sociedad sobrepasa sus límites hidrológicos, pues sobran ejemplos de lo que ocurre en los sitios donde ya se han superado esos límites. Es preciso actuar ya de cara a realizar los ajustes necesarios para evitar problemas futuros.

A primera vista, en el conjunto global, quedan pocas dudas de que es necesaria una reconsideración de las tendencias actuales. Entre las medidas que se apuntan sobresalen dos: el ahorro de los recursos y el incremento de los mismos. Estas acciones, aun necesarias, no son suficientes. Se deben consolidar, pero también intentar superarlas: configurar una nueva dialéctica que vaya desde la economía del agua a la cultura del agua para llevar a cabo su adecuada gestión.

En primer lugar, se debe recuperar el valor primitivo del agua, su valor social y personal. El agua, como antaño, sigue siendo un tesoro. Un tesoro dinámico que se acrecienta con los criterios del uso en los que participa toda la sociedad. Criterios del uso que se fundamenta en dos pilares: el ahorro y la progresiva disminución de la contaminación. En fin, una sociedad que se implica también gestionando adecuadamente el recurso para repartirlo con parámetros de solidaridad.

Para reconstruir ese valor es necesario un debate social que estimule una nueva cultura de grupo basada en una información veraz, en un diálogo continuado que vaya más allá de las leyes. Que despoje el agua de presiones demasiado mercantilistas que nos impiden comprender su relevancia social. Una cultura que contemple una alternativa olvidada, como el multiuso, el uso selectivo del agua, antes que su utilización indiscriminada. Una cultura que sepa que reducir el desperdicio del presente es una de las más valiosas opciones de futuro.

En definitiva, una gestión social que demande una adecuada gestión administrativa por parte de los poderes públicos. Sólo de esta manera contribuiremos a mejorar el presente y empezaremos a construir el futuro.
Bibliografía

Bethemon, J., Geografía de la utilización de las aguas continentales, Barcelona, Oikos-Tau, 1980.
Margalef, R., Ecología, Omega, Barcelona, 1999.
Tolcachier, A. J., “Contaminación del agua”, en Libro Virtual Intramed, Roemmers, s/f
Miller, T. G., Ciencia Ambiental. Preservemos la Tierra, México, Ciencias e ingenierías, 5ª edición, 2002.
1. Introducción

La calidad de vida es una medida de logro respecto de un nivel establecido como óptimo, teniendo en cuenta dimensiones socioeconómicas y ambientales dependientes de la escala de valores prevalecientes en la sociedad, y que varían en función de las expectativas de progreso histórico (Velázquez, 2001).

Desde un punto de vista integral, la salud, el bienestar y la enfermedad son consecuencias de la interacción del hombre con su medio. En este sentido, las enfermedades que mayor peso tienen sobre la mortalidad no provienen de causas aisladas, sino de un fenómeno desencadenado por un conjunto de causas biológicas, ambientales y sociales.

Desde hace varias décadas, la sociedad ha intervenido en el ambiente generando verdaderos problemas: contaminación y residuos son ahora conflictos difíciles de resolver.

La importancia de los efectos de los residuos sólidos urbanos (RSU) en la salud colectiva y en el medio ambiente es una temática que no ha sido objeto de investigaciones que permitan tomar acciones efectivas para mejorar la calidad del manejo de los RSU en América Latina y en nuestro país, siendo los factores que más contribuyen a esta situación la poca atracción y el descuido que las autoridades públicas tienen en cuestiones de salud relacionados con los residuos, la ausencia de capacitación sobre ambiente y salud de los profesionales y de la comunidad en general.

El manejo de los residuos sólidos está relacionado con los niveles de educación de la población. Aún cuando existe una gran variedad de programas y campañas de carácter ecológico en muchos países de América Latina, la población en general no ha asimilado aún el concepto de la responsabilidad que le corresponde en el manejo de residuos sólidos y se muestra indiferente en cuanto a sus modalidades de consumo.

Las implicaciones del manejo inadecuado de los residuos sólidos son amplias, y afectan la morbilidad y mortalidad de las comunidades involucradas en las distintas etapas del proceso, desde la generación hasta la disposición final de los mismos.

Es sabido que los residuos sólidos urbanos, debido a su composición heterogénea, presentan riesgos para el ambiente y la salud humana, tanto en la población expuesta en los sitios de disposición final de los mismos.

La disposición final constituye el aspecto más grave del manejo de los residuos sólidos, ya que la basura que no se recolecta en general se deposita sin ningún tipo de control en el ambiente, como calles o terrenos baldíos de ciudades, bordes de caminos o rutas y orillas de arroyos y ríos.

La amenaza de la inadecuada disposición de residuos es diferente de acuerdo con las condiciones climáticas, en lo que se refiere a temperatura y humedad, siendo más pronunciada...
en áreas tropicales que en regiones templadas debido a que la degradación biológica y las condiciones de crecimiento de los organismos patógenos son mayores. Este es otro aspecto a tener en cuenta en virtud de los cambios climáticos y la tropicalización de nuestro país en las últimas décadas.

Los residuos peligrosos suelen ser frecuentes en la basura domiciliaria. Los mismos deberían recibir, al igual que los patogénicos, tratamientos especiales para cada caso. Por ejemplo, muchos metales se disponen con la basura domiciliaria, a veces desconociendo el perjuicio que producen al ambiente y a la salud.

Asimismo, el manejo inadecuado de estos residuos contribuye no sólo al aumento de la incidencia de enfermedades infecciosas y afecciones a la piel, sino al aumento del riesgo de incidencia de cáncer, trastornos neurotóxicos y malformaciones congénitas. Los metales pesados presentes en los residuos peligrosos que son dispuestos en los vertederos de residuos desarrollan una mayor capacidad de solubilidad, por el ambiente ácido que prevalece en estos sitios, potenciándose así el daño que pueden causar.

El problema de la disposición de los residuos peligrosos es crítico en toda América Latina, y Argentina no está ajena a ello. Pese a que la legislación prohíbe su disposición sin tratamiento especial, es común que se realice conjuntamente con los residuos municipales.

También están presentes en los RSU los residuos patogénicos punzocortantes (clínicas, hospitales, laboratorios de análisis químicos, farmacias, veterinarias), que deberían ser tratados a través de procesos especiales para reducir sus riesgos.

2. Enfermedades y patologías derivadas de los RSU: aspectos epidemiológicos

Los efectos en la salud derivados de la inadecuada gestión de los RSU se producen por dos modalidades: directa o indirecta.

Los efectos directos se producen por el contacto inmediato, temporario o permanente, con los residuos, mientras que los indirectos se generan por modificaciones del entorno natural, causadas por su disposición sin control que actúa como fuente de dispersión y transmisión de enfermedades.

Así, los impactos directos son sufridos por trabajadores formales e informales, a su vez relacionados con sus condiciones de vida. Los riesgos más frecuentes son los cortes con vidrios y/o perforaciones con objetos puntiagudos (agujas, jeringas, clavos, espinas). Si bien no existen estudios en nuestro país para evaluar estos accidentes, la falta de Información y educación de la población en general que no separa estos elementos de los otros residuos y la ausencia de protecciones personales por parte de quienes maniapan los residuos podrían ser algunas de las explicaciones probables.

Las caídas de los vehículos y los atropellamientos, principalmente en la recolección domiciliaria, también representan un alto porcentaje dentro de los accidentes que se producen. También ocurren accidentes por aplastamiento o presión de equipos de compactación y otras máquinas, como así también por mordeduras de animales (perros, ratas) y picadura de insectos.

En nuestro país, los residuos están constituidos por una alta proporción de residuos orgánicos, que sufren un proceso de descomposición o putrefacción y constituyen un medio apropiado para la proliferación de bacterias y huevos de parásitos, como también de virus y hongos que pueden ser el origen de trastornos infecciosos.

Cada una de las etapas que recorren los residuos orgánicos o inorgánicos, desde su generación hasta su disposición final, son posibles desencadenantes, condicionantes o causales de afecciones o enfermedades al hombre.

El almacenamiento o disposición inadecuada de los residuos constituyen medios propicios para la reproducción de roedores e insectos (moscas, cucarachas), muchos de los cuales actúan como vectores en la transmisión de enfermedades.
Los vectores pueden transportar, ya sea en las partes externas del cuerpo como a través de vómitos, heces o líquidos, diversos agentes patógenos.

Además, algunos animales domésticos se comportan como agentes portadores de enfermedades, especialmente cerdos y ganado vacuno, que se alimentan de los residuos sólidos en muchos sitios de almacenamiento y/o disposición final.

La alimentación de animales con residuos sólidos no está permitida por la salud pública. Sin embargo, es una práctica difundida, tanto en los sitios de disposición final como en los de almacenamiento en hogares, calles, mercados y otros sitios públicos. Esta práctica, sumada a la presencia en dichos desechos de materia fecal, acrecienta el potencial de trasmitir enfermedades como la teniasis, cisticercosis y triquinosis.

Los vectores más comunes son las moscas, agentes de propagación de enfermedades por su capacidad de transportar organismos patógenos adheridos a sus patas o expulsarlos a través de sus regurgitaciones o excrementos.

Los basurales a cielo abierto son medios propicios para la proliferación del vector del dengue en objetos que atrapan agua, como es el caso de neumáticos y vasijas o contenedores desechados.

El control vectorial es el medio más efectivo para prevenir y controlar esta enfermedad. Dicho control debe incluir un componente de educación que conlleve a un cambio de comportamiento de la población y la reducción de las fuentes. En este aspecto, es relevante que se tomen medidas para evitar la disposición indiscriminada de residuos en los vertederos a cielo abierto.

En el esquema siguiente se muestran algunas enfermedades que se pueden generar a partir de la presencia de un basural y sus posibles vías de exposición.

En la tabla contigua se presentan los diferentes vectores con sus principales enfermedades asociadas.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Enfermedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosca</td>
<td>Fiebre tifoidea</td>
</tr>
<tr>
<td></td>
<td>Salmonellosis</td>
</tr>
<tr>
<td></td>
<td>Disenterías</td>
</tr>
<tr>
<td></td>
<td>Diarrea infantil</td>
</tr>
<tr>
<td></td>
<td>Cólera</td>
</tr>
<tr>
<td>Mosquitos</td>
<td>Malaria</td>
</tr>
<tr>
<td></td>
<td>Fiebre amarilla</td>
</tr>
<tr>
<td></td>
<td>Dengue</td>
</tr>
<tr>
<td></td>
<td>Encefalitis vírica</td>
</tr>
<tr>
<td>Cucarachas</td>
<td>Fiebre tifoidea</td>
</tr>
<tr>
<td></td>
<td>Gastroenteritis</td>
</tr>
<tr>
<td></td>
<td>Infecciones intestinales</td>
</tr>
<tr>
<td></td>
<td>Disenterías</td>
</tr>
<tr>
<td></td>
<td>Diarrea</td>
</tr>
<tr>
<td>Roedores</td>
<td>Peste bubónica</td>
</tr>
<tr>
<td></td>
<td>Tifus murino</td>
</tr>
<tr>
<td></td>
<td>Leptospirosis</td>
</tr>
<tr>
<td></td>
<td>Fiebre de Haverhill</td>
</tr>
<tr>
<td></td>
<td>Rickettsiosis vesiculosa</td>
</tr>
<tr>
<td></td>
<td>Triquinosis</td>
</tr>
<tr>
<td></td>
<td>Virosis hemorrágica</td>
</tr>
<tr>
<td></td>
<td>Rabia</td>
</tr>
</tbody>
</table>

En la tabla siguiente se presentan algunas enfermedades, de las más de cuarenta, producidas por la incorrecta implementación de los pasos de la gestión de los residuos sólidos.

<table>
<thead>
<tr>
<th>Características de enfermedades seleccionadas relacionadas c/ vectores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfermedad</td>
</tr>
<tr>
<td>Amebiasis</td>
</tr>
<tr>
<td>Balantidiasis</td>
</tr>
<tr>
<td>Brucelosis</td>
</tr>
<tr>
<td>Coccidiomicosis</td>
</tr>
<tr>
<td>Cólera</td>
</tr>
<tr>
<td>Enfermedad</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Cromomicosis</td>
</tr>
<tr>
<td>Dengue</td>
</tr>
<tr>
<td>Diarrea aguda por campylobacter</td>
</tr>
<tr>
<td>Salmonelosis</td>
</tr>
<tr>
<td>Fiebre recurrente</td>
</tr>
<tr>
<td>Rabia (hidrofobia)</td>
</tr>
<tr>
<td>Fiebre del tifus</td>
</tr>
<tr>
<td>Malaria (paludismo)</td>
</tr>
<tr>
<td>Peste</td>
</tr>
<tr>
<td>Hepatitis A</td>
</tr>
<tr>
<td>Giardiasis</td>
</tr>
<tr>
<td>Tularemia</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

La causalidad de las enfermedades relacionadas con los residuos es compleja y son varios los factores que influyen en la misma. Las condiciones de pobreza y el nivel de educación tienen un papel preponderante en los niveles de morbilidad y mortalidad de la población, debido en gran parte al escaso, y a veces nulo, acceso que tienen los más pobres a los servicios básicos de salud, viviendas dignas y saneamiento básico, la dificultad para observar prácticas de higiene y el desconocimiento sobre los riesgos que enfrentan los individuos que trabajan y viven en contacto con la basura.
En varios países de América Latina y el Caribe se han realizado estudios aislados de tipo epidemiológico social sobre las condiciones de salud con el impacto del manejo inadecuado de los residuos.

Por ejemplo, en República Dominicana se realizó un estudio de corte transversal para determinar la prevalencia de infecciones por protozoos entéricos en una población de cien niños de 3 a 35 meses con enfermedad diarreica aguda. El estudio evaluó la relación entre infección protozoaria y factores de riesgo ambientales, encontrándose una prevalencia de 66%; habiendo una relación significativa (p 0.05) entre infección protozoaria y basura a la intemperie y/o ingestión de agua no potabilizada.

Otro estudio realizado en Costa Rica sobre las condiciones de salud de los trabajadores que manejan desechos sólidos estableció que los padecimientos más frecuentes en una muestra de trabajadores de microempresas de aseo son cefalea (37%), resfríos frecuentes (23,3%), problemas lumbares (22,6%), irritabilidad (20,7%), mareos (17,9%) y dolores de las extremidades (17,9%).

Estudios observacionales en Bangalore, Manohar y Nueva Delhi (India) indican que las enfermedades más comunes entre los segregadores de basura son la tuberculosis, bronquitis, asma, neumonía, disentería, parásitos, asociadas a la mal nutrición.

En 1995, un estudio de 180 segregadores de basurales en la India demostró que el 40% presentaba manifestaciones de tos crónica y el 37% exhibía rasgos de ictericia. La incidencia trimestral de diarreas fue del 85%, presentando en el 72% fiebre y en un 63% tos y resfríos. La incidencia trimestral de irritaciones oculares alcanzó un 15% y la de úlceras de piel fue del 29%.

En otro estudio comparativo realizado en 1980 entre segregadores del basural de Dhapa, en Calcuta, y agricultores de la zona que usaron residuos sólidos orgánicos como fertilizantes (Sandra Cointreau, 1999), se observó que los segregadores reportaron mayor incidencia de enfermedades respiratorias (71% contra 34%) y enfermedades diarréicas (55% contra 28%).

Otros estudios en Bombay, India, reportaron, sobre una muestra de 95 trabajadores de basurales, un 80% de problemas oculares, 73% de enfermedades respiratorias, 51% de enfermedades gastrointestinales, 40% de enfermedades de piel o alergias y 22% de dolencias ortopédicas.

Asimismo, se pudo observar en el estudio que el 27% de los trabajadores tenía lesiones cutáneas, de los cuales el 30% fueron derivados de sus actividades ocupacionales. Los exámenes clínicos revelaron que el 90% había disminuido su capacidad visual. La mayoría de los trabajadores presentaba irritaciones en los ojos y disminución de la visión, congestión, picazón y lagrimeo.

En un estudio realizado en 1981 en el principal basural de Manila, de 750 segregadores, 40% contrajo enfermedades de la piel y 70% tenía deficiencias respiratorias.

Si bien en Argentina no existen estudios epidemiológicos que permitan relacionar causalmente la morbilidad o mortalidad por enfermedades relacionadas directa o indirectamente con residuos municipales o peligrosos, en la ciudad de Resistencia, Chaco, se realizó un estudio en el que se registraron las enfermedades relacionadas con la basura en distintas unidades sanitarias de la ciudad. La mayor prevalencia fue de hepatitis vírica, toxoplasmosis y fiebre tifoidea, al igual que otras patologías broncopulmonares, asma, enfermedades de piel y diarreas agudas. Este estudio muestra la prevalencia de los trastornos más frecuentes en personas que viven en el basural municipal y en áreas muy próximas.

Con respecto a los residuos patogénicos presentes en los RSU, estudios en Canadá, Japón y Estados Unidos indican que la preocupación principal es la transmisión de VIH/SIDA y, con mayor frecuencia, del virus de la Hepatitis B ó C (VHB, VHC) a través de las lesiones causadas por agujas y otros elementos punzocortantes contaminados con sangre humana presentes en los residuos. También es notorio el aumento de accidentes de trabajo de los segregadores, siendo los de mayor incidencia las heridas, las caídas y golpes y las inhalaciones nocivas. En el caso de los recuperadores, las principales enfermedades derivadas del trabajo son las del sistema respiratorio, las visuales y las de piel.
El acondicionamiento de los residuos en origen está directamente relacionado con la transmisión de parasitosis y la presencia de enfermedades diarreicas, según se expresa en un estudio realizado en niños de cinco a catorce años, presentado en el XXVI Congreso de AIDIS realizado en Lima, Perú.

3. Fuentes de exposición y población en riesgo

Los RSU en sí mismos son fuentes de exposición de las comunidades y aumento del riesgo de morbilidad y mortalidad.

Existen, por otro lado, factores y agentes que desencadenan determinados efectos y menoscaban la salud de los trabajadores y de población expuesta a los RSU. Entre ellos, son importantes:

- **Olor** proveniente de la descomposición de materiales orgánicos y por el vertido de sustancias. Es un factor que puede causar malestar, cefaleas y náuseas.
- **Ruido** generado por las maquinarias y vehículos transportadores de residuos, que puede provocar la pérdida parcial o permanente de la audición, cefalea, tensión nerviosa, estrés e hipertensión arterial. Las vibraciones provocan a menudo lumbalgias, dolores musculares y estrés.
- **Polvo** (material particulado) procedente del volcado y manipuleo que los separadores o segregadores de residuos realizan a cielo abierto y que es responsable de molestias y pérdida momentánea de la visión y problemas respiratorios y pulmonares.
- **Otros factores**, como los estéticos, que proporcionan visión desagradable de los residuos y puede causar molestias y náuseas.

Existen dificultades para definir a las poblaciones expuestas al manejo inadecuado de RSU por ausencia de sistemas de información y monitoreo como así también de datos epidemiológicos confiables a nivel local, regional o mundial.

Un grupo poblacional en riesgo es aquel que **no dispone de recolección domiciliaria regular**. En este caso, los residuos producidos son depositados en el entorno, lo que genera un ambiente deteriorado.

Es por ello que en general en Argentina, al igual que en América Latina, la población más expuesta es la de los **asentamientos pobres de áreas marginales urbanas**. Otro grupo expuesto a los RSU es el que vive en la vecindad de los sitios de tratamiento y disposición final de desechos.

Los **segregadores de basura** (cirujas y cartoneros) y sus familias, en especial aquellos que ubican sus precarias viviendas alrededor de los vaciaderos de RSU, constituyen otro grupo expuesto, porque, además de convivir con vectores y animales domésticos y sufrir los efectos de la contaminación de los residuos descargados, no cuentan con servicios de saneamiento básico. Además, en muchos casos estas poblaciones actúan a su vez como “vectores” para la transmisión de enfermedades causadas por los residuos, en especial por falta de higiene personal y de sus viviendas.

Muchos de los **trabajadores formales y especialmente los informales** involucrados en el manejo, transporte y disposición final de RSU constituyen una población de alta exposición, porque gran parte del trabajo que realizan se hace en forma manual sin ninguna capacitación y sin utilizar ningún equipo de protección, situación que se agrava con el manejo indiscriminado de los residuos sólidos convencionales y residuos peligrosos.

Además de las enfermedades corrientemente asociadas al manejo inadecuado de los residuos sólidos, esta población está **más expuesta a lesiones**, accidentes del tránsito y caídas del equipo de recolección.
Con respecto a los trabajadores formales, aunque se cuenta con legislación laboral respecto a salubridad e higiene, que incluye tener acceso a algún tipo de sistema de atención de salud, su cumplimiento no sería total en los sistemas de manejo de RSU de nuestro país. Esto se ve claramente por la falta de medidas preventivas que incluyan controles médicos anuales y aplicación periódica de vacunas, por ejemplo, contra el tétanos y difteria.

Por otro lado, se observa en general una falta de cumplimiento de normas básicas de salud ocupacional, muchas veces por falta de adiestramiento y poca conciencia de los peligros que encierra la ocupación.

El uso de equipo protector junto a exámenes periódicos de salud ha empezado a ser parte integral de la planificación del manejo. Generalmente, el cumplimiento de estas medidas es una respuesta a los requisitos impuestos por compañías multinacionales o prerrequisito para la certificación de las normas ISO (Organización Internacional de Normalización). La implementación de la serie ISO 9000 asegura un sistema certificable de calidad básico y la ISO 14000 es una serie global de normas para la gestión ambiental.

Los impactos de los RSU en el ambiente se pueden extender a la población en general a través de la contaminación de los cuerpos de agua superficiales y subterráneos y por el consumo de carne de animales criados en basurales, los que pueden transmitir enfermedades a los seres humanos. También la incineración sin control debe ser considerada, porque afecta la salud en las cercanías de las plantas.

El riesgo que enfrenta la población general en relación con el manejo de los residuos sólidos depende de las condiciones ambientales a las que está expuesta. Factores como la calidad de la vivienda, hábitos de almacenamiento de la basura, higiene en general, cercanía de los sitios de disposición final y exposición de residuos peligrosos tienen el potencial para impactar a toda la población.

El deficiente mantenimiento de los drenajes pluviales afecta también a la salud de la población debido a la acumulación de desechos que obstruyen los canales, resultando en inundaciones en la época de lluvias y en agua estancada con artículos de desechos durante períodos secos, constituyendo un medio propicio para la proliferación de vectores.

En cuanto a los residuos peligrosos, toda la población urbana debe ser considerada susceptible de exposición, aunque se conoce el mayor riesgo en niños y mujeres.

En dicho caso, para establecer una relación de causa y efecto entre contaminación y salud, es necesario definir la ruta de exposición. Según la Agencia para las Sustancias Tóxicas y el Registro de Enfermedades del Departamento de Salud Pública de los Estados Unidos (ATSDR), ellas son cinco:

- **Fuentes de contaminación** o sitios de residuos peligrosos: basurales a cielo abierto y rellenos no controlados.
- **Medios ambientales** para el transporte de contaminantes: aire, agua, suelo, alimentos y otros.
- **Puntos de exposición** o lugares donde ocurre el contacto del hombre con el contaminante: basurales donde los segregadores recuperan residuos, camiones recolectores con trabajadores sin equipo de protección personal.
- **Vías de exposición**: para el aire es la inhalatoria, mientras que para el agua, suelo, polvo y alimento es oral. Para algunos contaminantes orgánicos y metalórganicos presentes en los residuos, la vía dermica suele ser la principal entrada al organismo. Los contaminantes radiactivos involucran a todas las vías mencionadas.
- **Población receptora**, constituida por los grupos humanos afectados: tiempo de exposición, cantidad de residuos peligrosos.

Cuando se trata de poblaciones expuestas, no puede dejarse de lado el tópico de equidad ambiental, concepto que implica que la pobreza y la marginación son factores que favorecen la exposición a las sustancias químicas y posiblemente aumenten su efecto.
Asimismo, en nuestro país, en los que existe un elevado índice de pobreza son mayores los riesgos laborales por:

- Uso intensivo de mano de obra en la recolección.
- Reciclaje a partir de residuos mixtos, en lugar de materiales separados en la fuente.
- Segregadores (formales e informales) que son niños y mujeres jóvenes.
- Disposición en basurales a cielo abierto o rellenos no controlados.
- Menor protección de los trabajadores.

4. Epidemiología social y factores de riesgo asociados a la pobreza

En años recientes se ha fortalecido el vínculo entre la Epidemiología y las Ciencias Sociales, ello inducido por la necesidad de identificar los diversos determinantes de la salud y dar nacimiento a la llamada epidemiología social. Los niveles de análisis para la documentación han ido desde el nivel micro (en el que operan los factores individuales, biológicos y sociales) hasta los niveles macro (en los que se expresan las condiciones sociales en que las personas viven).

Siguiendo a Krieger (2002), el objeto de la epidemiología social es el estudio de cómo la sociedad y sus formas de organización inciden en el estado de salud y el bienestar de los individuos y las poblaciones. Analiza la frecuencia, la distribución y los determinantes sociales y culturales de los estados de salud en la población. Es decir, contempla tanto los factores de riesgo individuales como el contexto social en el cual se produce el fenómeno salud-enfermedad. La epidemiología social, a diferencia de las demás epidemiologías, pone el énfasis en las variables sociales de la distribución del bienestar-salud-enfermedad entre y dentro de las poblaciones.

También considera la forma en que la realización de los derechos humanos promueve la salud y plantea que la violación de esos derechos puede dañarla. Asimismo, las expresiones biológicas de la inequidad social han sido tema de esta área del conocimiento. Estas se refieren a la manera como las personas encarnan y expresan biológicamente las experiencias de las desigualdades económicas y sociales, desde el periodo intrauterino hasta la muerte. Debido a esto, se producen desigualdades sociales relacionadas con la salud que se reflejan en una amplia variedad de resultados. Por último, la pobreza, y la exclusión social no se han dejado de lado, sobre todo en contextos de gran desigualdad como el argentino.

4.1. Los espacios de mayor riesgo sanitario y ambiental

En la ciudad de La Plata, las áreas de uso predominantemente residencial adquieren diferentes características urbanísticas, socioculturales y de provisión de servicios e infraestructura casi en correspondencia con el proceso de expansión que ha sufrido la urbe.

El casco céntrico mantuvo su población y densidad de ocupación relativamente estable, y en la actualidad cuenta con la infraestructura de servicios básicos y el total de sus calles

---

1 Un primer enfoque de la pobreza basado en las Necesidades Básicas Insatisfechas NBI define a una persona (u hogar) como pobre observando directamente los grados de satisfacción de las necesidades esenciales. Las necesidades básicas para definir la pobreza son relativas al entorno –específicas de cada país– y dinámicas, e incorporan aquellas necesidades cuya satisfacción responde a la noción de dignidad humana. El segundo enfoque es el denominado “de los ingresos o línea de pobreza” (LP), el más difundido a nivel internacional y el utilizado por el Banco Mundial. Los trabajos que en él se inspiran computan el monto de dinero que se requiere para adquirir el conjunto de bienes y servicios que satisfacen los umbrales mínimos de todas las necesidades consideradas como básicas. Aquellas personas (u hogares) que tienen ingresos inferiores a ese valor –o “línea de la pobreza”– son clasificados como pobres.
pavimentadas. Presenta algunos problemas de anegamientos en amplios sectores en las épocas de lluvias intensas.

Lo contrario ocurre en algunos sectores periféricos de la ciudad, donde a la acumulación constante de residuos de todo tipo se le suma la carencia de una red cloacal y la falta de agua potable, beneficios que están íntimamente relacionados con las prácticas higiénicas y con la salud de la población.

Es decir que la procedencia y abastecimiento de agua y el servicio de cloacas son dos de los principales indicadores que permiten analizar la calidad de vida de los habitantes. Determinados sectores periféricos de la ciudad, como las villas de emergencia, cuentan con más del 50 % de los hogares sin agua de red. Cabe aclarar que los mismos presentan, además, los niveles más críticos respecto a la mortalidad infantil y a las condiciones de salud a causa de algunas enfermedades infecciosas y parasitarias, muchas de ellas originadas por el contacto con los residuos en estados de descomposición.

En estos sectores de la ciudad, las aguas servidas y las excretas representan un riesgo de trascendencia para la salud pública y la supervivencia infantil. Existen otras enfermedades de importante significado que están muy relacionadas con la falta de suministro de agua, el mal saneamiento, la eliminación inapropiada de las excretas y la falta de higiene personal.

La falta de una planta de depuración de los líquidos cloacales hace que los mismos sean descargados sin el debido tratamiento sobre los cuerpos de agua, con la consiguiente contaminación y problemas de salud. Así, los efluentes y los residuos que son arrojados por quienes habitan zonas próximas a los arroyos producen sus paulatinas colmataciones, generan olores nauseabundos y proliferación de insectos y originan la contaminación de las napas subterráneas, además de un importante deterioro visual del paisaje.

El gran basural a cielo abierto en el que se realiza la disposición final de residuos expone al área a una situación de alto riesgo sanitario, máxime cuando son habituales los vientos, que afectan a casi toda el área urbana.

Si a esto le sumamos que esta montaña de desechos está próxima a algunos asentamientos marginales y barrios planificados, los riesgos a los que se exponen los habitantes son muy grandes, ya que, ante la realidad social y en un contexto donde aumentan la pobreza y la indigencia, es cada vez mayor el número de personas que viven revolviendo la basura en busca de un sustento diario.

Los grupos más empobrecidos de la población habitan en estructuras edilicias precarias y con espacios reducidos, por lo que poseen los índices más altos de hacinamiento; por lo general la alimentación es deficiente, a lo que suma la baja cobertura de servicios básicos que reciben, la contaminación de las aguas y/o acumulación de basuras. Todas estas características están íntimamente ligadas a los niveles más altos de mortalidad infantil.

---

2 El Informe sobre Desarrollo Humano (2001) introduce el llamado Índice de Pobreza Humana (IPH) en un intento por aunar en un índice compuesto las características diferentes de privación de la calidad de vida para llegar a un juicio agregado sobre el grado de pobreza de una comunidad. El IPH utilizado es una medición multidimensional de la pobreza que resume en un índice compuesto la privación en cuatro dimensiones básicas de la vida humana: una vida larga y saludable, conocimientos, aprovisionamiento económico e inclusión social. Las cuestiones relacionadas con la pobreza en los países en desarrollo incluyen el hambre, el analfabetismo, las epidemias y la falta de servicios de salud o de agua potable. Se distinguen dos enfoques básicos que han guiado los numerosos ejercicios empíricos de análisis de la pobreza.
- Tener más de tres personas por cuarto (hacinamiento).
- Habitar en una vivienda de tipo inconveniente: pieza de inquilinato, vivienda precaria u otro tipo (lo que excluye casa, departamento y rancho) (vivienda).
- No tener ningún tipo de retrete (condiciones sanitarias).
- Tener algún niño en edad escolar (seis a doce años) que no asista a la escuela (asistencia escolar).
- Tener cuatro o más personas por miembro ocupado y cuyo jefe posea baja educación (subsistencia).
Bibliografía


AIDIS (Asociación Internacional de Ingeniería Sanitaria y Ambiental), XXVI Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Lima, 1998.


Bonfanti, F. A., La incorrecta gestión de los residuos sólidos urbanos y su incidencia en la calidad de la vida de la población de resistencia, Argentina, Universidad Nacional del Noreste, Comunicaciones Ciencias y Tecnológicas, 2004.


Jaramillo, J., Residuos sólidos municipales: Guía para el diseño, Construcción y operación de rellenos sanitarios manuales, Universidad de Antioquia, OPS/CEPIS Pub/02.93, Colombia, 2002


OPS/OMS, Informe de la evaluación regional de los servicios de manejo de residuos sólidos municipales en América Latina y el Caribe, Área de desarrollo sostenible y salud ambiental, unidad de saneamiento Básico/Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, Washington D.C., 2005


1. La humanidad desde sus orígenes generó residuos cada vez más complejos

La generación de residuos en el planeta se remonta al momento en el que el hombre apareció en él. La vida misma del hombre implica la generación de residuos, producto de la alimentación, la faena de animales, la vestimenta. Cuando este se agrupa en comunidades estables, comienza también a convivir con los residuos, que el nómade dejaba atrás suyo.

Hasta hace pocas décadas, los residuos se depositaban en vertederos, ríos, mares o cualquier otro lugar que se encontrara cerca de la vivienda. Con la industrialización y el avance tecnológico, la cantidad y composición de los residuos se fue complejizando, incorporándose sustancias no biodegradables.

En Argentina, en la década de 1950, se sancionó una ley nacional que prohibía los basurales a cielo abierto como consecuencia de una gran epidemia de triquinosis, ya que se los utilizaba como comederos de cerdos. Sin embargo, esta realidad persiste en muchos lugares.

En las sociedades agrícolas y ganaderas también se producen residuos orgánicos e inorgánicos peligrosos o especiales, por ejemplo, envases de agroquímicos y residuos patológicos, producto del descarte de drogas de uso veterinario o animales muertos por agentes patógenos.

Las industrias, por su parte, no sólo generan residuos sólidos, sino también líquidos y gaseosos.

En la década de 1970 se siguió eliminando residuos por un sistema de vertido conocido como relleno sanitario. Cada vez mayor cantidad de sustancias químicas tóxicas repercutían en la salud de las personas e impactaban en forma negativa sobre el ambiente.

La cantidad de todo tipo de residuos ha ido aumentando de forma acelerada y se hace necesario tratarlos metodológicamente para disminuir sus efectos negativos.

Los distintos tipos de residuos que la sociedad genera requieren diferentes formas de gestión y tratamiento.

2. El concepto de residuos involucra distintas categorías

Se llama residuo a cualquier tipo de material indeseable generado por la actividad humana y que está destinado a ser abandonado o desechado.

Hay objetos o materiales que son residuos en determinadas situaciones, mientras que en otras se aprovechan (subproductos: insumos de otro proceso). En los países desarrollados se tiran a la basura cosas que en los países en vías de desarrollo volverían a ser utilizadas. Muchos residuos se pueden reciclar si se dispone de las tecnologías adecuadas y el proceso es económicamente
rentable. Una buena gestión de los residuos tiene también por objetivo no perder el valor económico y la utilidad que pueden tener muchos de ellos.

La disposición de residuos sólidos requiere su categorización según sus distintos tipos. Se clasificarán de la siguiente forma:

- **Residuos Sólidos Urbanos (RSU):** los que componen la basura doméstica ([Ley Nacional de Presupuestos Mínimos N° 25.916](#)).
- **Residuos de la minería y obtención de combustibles.**
- **Residuos agrarios:** proceden de la agricultura, la ganadería, la pesca, las explotaciones forestales.
- **Residuos industriales:** se diferencian en ([Ley Nacional de Presupuestos Mínimos N° 25.612](#)):
  - **Inertes:** son escombros y materiales similares, en general no peligrosos para el medio ambiente, aunque algunos procedentes de la minería pueden contener elementos tóxicos y, los de demoliciones, amianto.
  - **Similares a Residuos Sólidos Urbanos:** por ejemplo, los restos de comedores y de oficinas.
  - **Residuos especiales** que por sus características requieren tratamiento específico, por ejemplo, lodos residuales.
  - **Residuos peligrosos:** por su composición química u otras características requieren tratamiento *ad hoc*, por ejemplo, los envases de agroquímicos.
  - **Residuos Patológicos o Patogénicos:** restos del trabajo del personal de salud, humana o veterinaria, y de investigación (laboratorios).
  - **Residuos radiactivos:** materiales que emiten radiactividad.

<table>
<thead>
<tr>
<th>Origen</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minería y obtención de combustibles</td>
<td>75</td>
</tr>
<tr>
<td>Agricultura</td>
<td>13</td>
</tr>
<tr>
<td>Industria</td>
<td>9,5</td>
</tr>
<tr>
<td>Municipales</td>
<td>1,5</td>
</tr>
<tr>
<td>Lodos de aguas residuales</td>
<td>1</td>
</tr>
</tbody>
</table>


3. El aumento acelerado de residuos crea nuevos problemas

El continuo aumento de residuos generados está provocando graves problemas. Entre los bienes que se usan, cada vez hay más objetos que están fabricados para durar unos pocos años y después ser sustituidos por otros. Muchos productos, desde los pañuelos o servilletas de papel, hasta las hojas de afeitar, los pañales o las latas de bebidas, están diseñados para ser usados una vez y luego desechados. Se usan y se desechan en grandes cantidades, sin que haya conciencia clara de qué hacer luego con ellos.

La creciente actividad industrial genera también productos que son *tóxicos* o difíciles de incorporar a los ciclos naturales. En varias ocasiones, los productos químicos acumulados en
vertederos o rellenos sanitarios han sido recubiertos de tierra y utilizados para construir viviendas sobre ellos, lo cual ha dañando incluso la salud humana (ver caso del Canal Love).

No hay solución única y clara a este problema. Lo primero es intentar reducir y separar los residuos producidos. El reciclaje es la opción mejor desde el punto de vista ambiental, pero tiene sus límites. En el momento actual se combina con plantas de tratamiento, vertederos e incineradoras.

El enfoque del mínimo derroche trata de corregir este incremento de basura que afecta a todos los países e involucra su reducción al mínimo, la promoción de la reparación y reutilización de lo posible, el reciclado y la transformación en abono. Esto lleva a promover la producción de elementos más duraderos y eliminar los embalajes innecesarios, así como preconizar la compra de productos reutilizables y reciclables.

4. La vida doméstica genera residuos sólidos urbanos

Los Residuos Sólidos Urbanos (RSU) son los que se originan en la actividad doméstica y comercial urbana, así como en el barrido de las calles. En los países desarrollados se usan cada vez más envases plásticos (packaging). La Comunidad Europea exige que estos envoltorios sean de materiales biodegradables. En otros países se ha extendido la cultura de “usar y tirar” todo tipo de bienes de consumo y las cantidades de basura han ido creciendo.

Los residuos producidos por los habitantes urbanos comprenden basura, muebles y electrodomésticos viejos, embalajes y desperdicios de la actividad comercial, restos de poda, de la limpieza de las calles, escombros y otros elementos. El grupo más voluminoso es el de la basura doméstica.

La basura suele estar compuesta por:

- Materia orgánica: restos procedentes de la limpieza o la preparación de alimentos junto a comida sobrante.
- Papel y cartón: periódicos, revistas, publicidad, cajas y embalajes.
- Trapos y madera.
- Pañales, afeitadoras y otros elementos descartables de uso en el hogar.
- Plásticos: botellas, bolsas, embalajes, platos, vasos y cubiertos descartables.
- Vidrio: botellas, frascos diversos, vajilla rota.
- Hojas secas, polvo, cenizas.
- Metales: latas y otros elementos.

Los componentes principales de la basura domiciliaria procedente de la Ciudad Autónoma de Buenos Aires hacia el procesamiento del CEAMSE se aprecian en el siguiente cuadro:

<table>
<thead>
<tr>
<th>Residuos sólidos de la CABA llegados al CEAMSE. En % sobre alrededor de 160.000 Tm (2001) y 110.000 Tm (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo / Año</strong></td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Orgánicos</td>
</tr>
<tr>
<td>Plástico</td>
</tr>
<tr>
<td>Papel</td>
</tr>
<tr>
<td>Vidrio</td>
</tr>
<tr>
<td>Otros</td>
</tr>
</tbody>
</table>

Nota: la baja proporción de plástico se atribuye a la actividad de los cartoneros.

En los residuos domésticos se deslizan también elementos peligrosos, ya sea porque arden con facilidad (pinturas, disolventes), porque pueden desprender humos tóxicos o provocar pequeñas explosiones (ácidos, bases, amoníaco, compuestos del cloro), porque corroen metales (limpiadores de hornos) o porque contienen sustancias tóxicas (plaguicidas). La corrección de este problema debe orientarse en la educación familiar, ya que, una vez dispuestos con los restantes, es muy difícil y costoso separarlos.

En las zonas más desarrolladas, la cantidad de papel y cartón es más alta, constituyendo alrededor de un tercio de la basura, seguida por la materia orgánica y el resto. En cambio, en las menos desarrolladas, la cantidad de materia orgánica es mayor –hasta las tres cuartas partes en los países en vías de desarrollo– y mucho menor la de papeles, plásticos, vidrio y metales.

Por ejemplo: EE.UU. tiene un porcentaje de generación de residuos orgánicos promedio de 20% frente a un 80% de material inorgánico; en la India, estos porcentajes se invierten; en Argentina, el promedio de residuos orgánicos es de 60% y el de los residuos inorgánicos de un 40%.

En Argentina, como en España, la cantidad de RSU generada por habitante y día es de alrededor de 1 kilogramo en las ciudades grandes y medianas y algo menor en ciudades pequeñas y pueblos.

En las zonas rurales se aprovechan mejor los residuos y se tira menor cantidad, mientras que las ciudades y el mayor nivel de vida fomentan el consumo y la producción de basura. En EE.UU. la media es de más de 2 kilogramos por habitante y día.

Para diseñar la recolección y tratamiento de la basura, deben considerarse las variaciones diarias y estacionales. En los lugares turísticos, las temporadas altas suponen un aumento de los residuos producidos. Lo mismo ocurre en fiestas, feriados, acontecimientos deportivos y actos populares. En verano, la proporción de materia orgánica suele ser mayor, mientras que en invierno aumenta la proporción de cenizas.

5. Los residuos sólidos urbanos deben recolectarse y tratarse

La responsabilidad legal del tratamiento de la basura es una de las funciones claves de los municipios. La falta de cumplimiento de esa responsabilidad, su irregularidad o desaprensión, favorece su acumulación en esquinas, baldíos o lugares abandonados. Esta es una preocupación habitual de los barrios periféricos de nuestros conurbanos, ya que, además de la desfiguración estética, provee alimento y guarida a roedores e insectos.¹

Su tratamiento moderno incluye varias fases:

- **Disposición domiciliaria**: debe hacerse en recipientes plásticos con tapa que cierre bien y con bolsas plásticas de color verde que tengan una capacidad de entre veinticinco litros (seis personas) a cincuenta litros. Hay recipientes de mayor tamaño (por ejemplo, para restaurantes) y de material incorruptible (por ejemplo, para la construcción) que tienen sendas asas para su transporte.

- **Recolección**: es un servicio público de la municipalidad, por sí o contrato con terceros. Los vehículos deben ser:
  - De caja cerrada y estanca para evitar filtraciones, con boca de carga a una altura de 0,8 metros para facilitar la tarea.
  - La caja debe ser de material inalterable con superficie interna lisa y aristas redondeadas para facilitar su limpieza diaria.

¹ Lepera (1966: 227) calculaba la generación de 70.000 moscas por cada 0,027 m³ de basura.
- Tener un dispositivo de compactación para aumentar la densidad de la basura, con una capacidad de entre 8 y 15 m³. Una tonelada de basura ocupa 7 m³ (Sans Fonfría, 1989: 14).
- El personal debe usar uniforme, guantes de protección y, en la base, disponer de cambiadores, duchas y baños para su higiene posturno.
- La periodicidad de la recolección debe ser diaria cuando el contenido de desperdicios sea alto, como se da en Argentina. Donde esa composición sea menor por acumulación de desechos y cenizas, razones operativas pueden reducir la recolección a tres veces por semana, siempre que se respete la regularidad y el horario.

**Recolección selectiva**: la utilización de contenedores que recogen separadamente el papel y el vidrio está cada vez más extendida y se están incorporando otros contenedores para plásticos, metal y pilas. Las comunidades desarrolladas en cada domicilio recogen distintos residuos en diferentes bolsas. El ciudadano separa los diferentes tipos de basura. En esta fase hay que cuidar que no se produzcan roturas de las bolsas y contenedores, la colocación indebida o el derrame de basura por las calles. En Argentina, muchos municipios han adoptado este tipo de gestión, como Emprendimientos Municipales con participación comunitaria, para la correcta separación de los residuos desde el momento de su generación. Los residuos orgánicos son triturados, dispuestos en el suelo en hileras y cubiertos con pasto seco. Para acelerar su descomposición, se incorporan lombríces para formar el “compostaje”. Los residuos inorgánicos se clasifican, se compactan y se venden como materias primas.

El vidrio es muy resistente en la naturaleza, ya que su composición química (silicatos) es muy similar a la del suelo y no es contaminante. El contacto con el agua genera en su superficie expuesta una capa hidratada similar a un gel de sílice que lo protege. Su estabilidad ha permitido desarrollar un método de inmovilización de residuos radioactivos por vitrificación (vidrio al borosilicato) que se usa en países desarrollados. Los vidrios que pueden generar tóxicos son aquellos que contienen plomo (cristal de plomo, bulbos de TV y esmaltes cerámicos), pero su efecto es mínimo. Los recipientes de vidrio, como los de aluminio y no otros, pueden ser reutilizados varias veces luego de su limpieza rigurosa. Asimismo, todos los elementos de vidrio pueden ser reciclados con gran ahorro de energía y de material. Los envases de plástico no son degradables y generan contaminación por volumen (Ecology: Glass Machinery, 1995: 93-97).

**Disposición final**: deben abandonarse en absoluto los vaciaderos a cielo abierto, el uso de basuras en la alimentación porcina, el volcado en el mar o cursos de agua. Hay métodos de separación y trituración para el volcado en redes cloacales que son complejos y costosos. Los procedimientos correctos son:

1. **Compactación**: consiste en triturar la basura y mezclarla con barros de pozos negros o depuradores de sistemas cloacales que se disponen sobre terrenos impermeables.
2. **Compostación**: es un proceso más complejo que tiene las siguientes fases:
   - **Trituración gruesa**, en paralelo a un tambor magnético que extrae elementos metálicos y un separador para vidrios grandes.
   - **Pulverización**, con trituración fina.
   - **Mezcla** con barros y logro de humedad de 40 a 60% para facilitar una rápida fermentación.

---

2 El vidrio se fabrica con minerales como arena, piedra caliza, carbonato de sodio y otros. El vidrio común es silicato sódico cálcico (soda-cal). Los silicatos son los componentes principales de las rocas. Hay vidrios naturales como la obsidiana. El vidrio es inerte ante el agua, soluciones y mezclas. Sólo lo disuelve el ácido fluorhídrico, algunos otros ácidos y bases que no existen en el suelo.
- **Depósito** del producto obtenido en terreno impermeable en pilas de dos metros.
- **Remoción** periódica para aireación.

La suma de las fases hasta la obtención de un tipo de humus que pueda usarse en agricultura dura alrededor de **seis meses**.

La materia orgánica fermentada forma el compost que se usa para abonar suelos, alimentar ganado, construir carreteras y obtener combustibles. Para que se pueda utilizar la materia orgánica, no debe estar contaminada con sustancias tóxicas.

3. **Plantas de selección y reciclaje**: en los vertederos más avanzados, antes de tirar la basura general, pasa por una zona de selección en la que, en parte manualmente y en parte con máquinas, se le retiran latas (con sistemas magnéticos) o cosas voluminosas. Lo ideal sería recuperar y reutilizar la mayor parte de los RSU. Con papel, telas y cartón se hace nueva pasta de papel, lo que evita talar nuevos árboles. Con el vidrio se pueden fabricar nuevos envases sin necesidad de extraer más materias primas y con mucho menor gasto de energía. Los plásticos se separan, algunos se pueden usar para fabricar nueva materia prima y otros para construir objetos diversos.

4. **Vertido o Relleno Sanitario**: el procedimiento más usual, aunque no el mejor, de disponer de la basura suele ser depositarla en vertederos. Aunque se usen buenos sistemas de reciclaje o la incineración, al final siempre quedan restos que deben ser llevados a vertederos.

5. **Incineración**: quemar la basura tiene varias ventajas, pero también algún inconveniente. Entre las ventajas está la reducción del volumen de vertidos (queden las cenizas) y la obtención de cantidades apreciables de energía. Entre las desventajas, se producen gases contaminantes.

6. **Los vertederos deben transformarse en rellenos sanitarios controlados**

Los vertederos tradicionales eran simplemente un lugar en el que se acumulaba la basura. Al no tener ningún tipo de control sanitario, se llenaban de roedores, se incendiaban, despedían malos olores y humos, contaminaban los acuíferos subterráneos y las aguas superficiales. En Argentina, una gran parte de la basura se sigue llevando a este tipo de vertederos hoy día.

Un vertedero controlado es un pozo en el que se compacta e impermeabiliza tanto el fondo como los laterales. En estos vertederos, la basura se coloca en capas y se recubre todos los días con un delgado manto de tierra para dificultar la proliferación de roedores, pájaros y malos olores y disminuir el riesgo de incendios.

En este tipo de vertederos se instalan sofisticados sistemas de drenaje para las aguas que rezuman y para los gases (principalmente metano) que se producen. Las aguas rezuman o **lixiviados** se deben tratar en plantas depuradoras antes de ser vertidas a ríos o al mar, y los **gases** que se recogen se pueden aprovechar en pequeñas plantas generadoras de energía para abastecer la misma planta de tratamiento.

Estos vertederos deben estar vigilados con análisis frecuentes para conocer las emisiones que se están produciendo y corregir los problemas de funcionamiento.

Cuando el vertedero se completa, se debe recubrir y dejar el terreno lo más integrado posible con el paisaje, por lo que se parquiza.

Los rellenos se deben ubicar en zonas llanas, con suelo lo más impermeable posible y lejos de napanas subterráneas o cursos de agua superficiales. Los frentes de relleno se revisten de arcilla o de láminas de polietileno de alta densidad tanto en el fondo como en los laterales. A su vez, se rodean de canales para recoger y dar curso a las aguas exteriores.
Los residuos se van depositando en celdas o alvéolos dentro de trincheras excavadas de dos a tres metros de ancho por 0,75 a 1,80 metros de profundidad y longitud variable. Los residuos se esparcen y se compactan después con máquinas topadoras. Las celdas se separan y cubren con tierra. Dentro de ellas se produce la descomposición anaeróbica de los residuos y se estabilizan a partir de los tres años. Sobre las capas superficiales se siembra grama para dar mejor aspecto estético, y a los pocos años se pueden construir plazas, parques o campos de deporte (Lepera, 1966: 236).

Los rellenos deben ser controlados para detectar y reparar fisuras o hundimientos que suelen producirse en los primeros dos años.

La superficie necesaria se estima en 0,5 hectáreas por cada 100.000 habitantes (Lepera, 1966: 236).

En los rellenos sanitarios se generan, por la fermentación de residuos orgánicos y la filtración de agua de lluvia o de otra procedencia, líquidos llamados lixiviados que llevan consigo fluidos y sólidos disueltos. Al ser contaminantes, debe preverse que no alcancen las napas subterráneas o los cursos de agua superficiales (Fundación MAPFRE e ITSEMAP Ambiental, 1994: 37).

Los lixiviados se recogen por tuberías de polietileno que corren en el fondo de las celdas y que desde su ramificación se conducen hacia tuberías mayores para su extracción hacia estaciones o cisternas de transferencia, desde donde son derivados a plantas de tratamiento.

Las plantas de tratamiento de lixiviados tienen:

- Cámaras de descarga de lixiviados con reja para retención de sólidos.
- Laguna de equalización: recibe por gravedad a través de un vertedero el líquido de (a); se homogenizan las fluctuaciones del líquido.
- Laguna anaeróbica: los líquidos bombeados de (b) se biodegradan por microorganismos anaeróbicos.
- Lagunas aeróbicas con aireación forzada.
- Sedimentador final para barros activados: se clarifica el líquido con lechada de cal que hace flocular sólidos y partículas restantes.
Cámara final de regulación de pH, cloración y extracción de muestras para definir el volcado al curso de agua superficial.

7. La incineración es adecuada con buena tecnología

Como hemos dicho, incinerar los residuos sólidos tiene dos aspectos positivos. Se reduce el volumen de restos a almacenar, ya que las cenizas ocupan menos espacio que la basura que es quemada. Además, se obtiene energía aprovechable.

Es conveniente quitar algunos de los componentes de la basura antes de incinerarla. Uno de ellos es el vidrio, porque, de lo contrario, se funde y es difícil de retirar del incinerador. Otros son los restos de alimentos, que contienen demasiada humedad y hacen más difícil la incineración. Los materiales que mejor arden y más energía dan son el papel, los plásticos y los neumáticos.

Al incinerar se produce CO₂, partículas diversas, metales tóxicos y otros compuestos que salen como humo o vapor (emisiones gaseosas). Para evitar que salgan a la atmósfera, se deben limpiar los gases con filtros electrostáticos que atraen las partículas, las aglutinan y las hacen caer por gravedad a unirse con las cenizas. El humo atraviesa por una lluvia de agua con productos químicos que neutraliza y retira compuestos tóxicos (lavadora de gases). Al final salen los humos más limpios si el proceso funciona bien, lo que no siempre ocurre si no se monitorea y se pone a punto el proceso de incineración. Otro peligro lo generan algunos compuestos como el PVC (policloruro de vinilo) y algunas tintas que cuando arden producen dioxinas y otras sustancias tóxicas difíciles de eliminar de los gases. De todas formas, una incineradora de moderna tecnología, que funciona bien, produce unas emisiones perfectamente aceptables, aunque también su costo es muy alto.

Otro de los puntos a resolver cuando se instala una incineradora es el de las cenizas que contienen elementos tóxicos y se deben depositar en vertederos controlados.

![Esquema de un horno incinerador de residuos](image)

Referencias:

- b. Quemador de llama ancha con soplador de alta presión y protector de llama, con motor eléctrico.
- c. pistas de rotación del horno de acero.
- d. Horno incinerador de tambor.
- e. Sistema de precombustión: quemador y horno de acero de alta temperatura (1.000 a 1.200 °C).
8. Los residuos pueden acumular metales tóxicos en el ambiente

Metales tan utilizados como el plomo\(^3\), mercurio\(^4\), cadmio, níquel, vanadio, cromo, cobre, aluminio, arsénico o plata son tóxicos en ciertas concentraciones, lo mismo que sus iones y compuestos.

Muchos de estos elementos son micronutrientes necesarios para la vida y deben ser absorbidos por las raíces de las plantas o formar parte de la dieta de los animales. Pero cuando por motivos naturales o por la acción del hombre se acumulan en los suelos en concentraciones altas, las aguas o los seres vivos se convierten en tóxicos peligrosos.

La industrialización ha extendido este tipo de contaminación ambiental. Por ejemplo, en los países más desarrollados, la contaminación con el plomo procedente de los tubos de escape de los vehículos. Los automóviles contaminan en la franja de unas decenas de metros a los lados de las carreteras y en las ciudades. La contaminación con plomo disminuyó desde que se sustituyó el tetraetileno de plomo por otros antidetonantes (gasolinas sin plomo), aunque restos de ese metal siguen contaminando.\(^5\) También la contaminación en los alrededores de las grandes industrias metalúrgicas y siderúrgicas puede alcanzar niveles muy altos, y desechos tan frecuentes como algunos tipos de pilas pueden dejar en el ambiente cantidades dañinas de metales tóxicos si no se recogen y tratan aparte.

Algunos elementos químicos, como el cadmio, cromo, cobalto, cobre, plomo, mercurio, níquel, plata y uranio, se encuentran repartidos en pequeñas cantidades por todas partes. Todos estos elementos son potencialmente tóxicos y pueden dañar a los seres vivos en concentraciones tan pequeñas como de 1 ppm. Además de ser elementos que se encuentran en la composición normal de rocas y minerales, pueden aumentar como resultado de erupciones volcánicas o por fuentes de aguas termales. Algunos de sus compuestos pueden acumularse en la cadena trófica,  

---

\(^3\) La intoxicación con plomo causa daños en el cerebro. Un informe para el Congreso de los EE.UU. (1988) identificaba la exposición al plomo como un problema de salud pública, especialmente para los niños. Según este informe, en un país desarrollado, el plomo que afecta a las personas procede, principalmente, de las pinturas que contienen sus compuestos, de la gasolina, de las estaciones de servicio, del polvo del suelo, de los alimentos y del agua. Los niños todavía no nacidos, por el desarrollo embrionario del Sistema Nervioso Central, y hasta la edad preescolar, por sus juegos, objetos contaminados que llevan a la boca y mayor absorción digestiva, son los más vulnerables.

\(^4\) En el siglo xix era frecuente que quienes trabajaban en la fabricación de sombreros, en la que se usaban compuestos mercuriales, sufrían enfermedades neurológicas. Da una idea de la extensión de este problema el dicho “Loco como un sombrerero”.

En la década de 1960, cientos de habitantes de Irak, Irán, India y Pakistán murieron intoxicados por haber comido semillas de cereal que habían sido tratadas con un fungicida a base de mercurio. Esas semillas se repartían a los agricultores para que las sembraran, no para que las comieran, y el fungicida las protegía de su destrucción por los hongos. Esto estaba explicado en las etiquetas de los paquetes, pero muchos de esos campesinos no entendieron las repercusiones que podía tener el ingerir las semillas y se intoxicaron. En la Bahía de Minamata (Japón), una fábrica de productos químicos había estado vertiendo compuestos de mercurio de baja toxicidad al mar durante varios años (de 1932 a 1968). La actividad de los microorganismos anaeróbicos de los sedimentos convirtió esos vertidos en metilmercurio, compuesto muy tóxico que se va acumulando en la cadena trófica. Los peces concentraron dosis altas de metilmercurio y cientos de personas de la población próxima, que se alimentaban de la pesca, sufrieron la que se llama enfermedad de Minamata, que causa un síndrome neurológico y lleva a la muerte a casi la tercera parte de los pacientes.

\(^5\) Otro metal procedente de los automóviles es el zinc, que es un componente de los neumáticos.
con lo que, a pesar de encontrarse en dosis muy bajas en el ambiente, llegan a concentrarse en plantas o animales hasta llegar a provocar daños en la salud.  

La agricultura y la forestación usaban algunos pesticidas inorgánicos como arseniato de plomo, calcio y sulfato de cromo, que eran muy tóxicos hasta hace no mucho tiempo. Aunque ya no se usan, como son persistentes en el ambiente, sigue habiendo lugares con concentraciones altas de estos productos. Algo similar sucedió con el uso de alquilmercuriales, prohibidos desde 1960, para proteger semillas.

El uso de los lodos de depuradoras como abonos permite aprovechar los desechos por su elevada cantidad de materia orgánica, nutriente para las plantas. Pero si el agua que llega a la depuradora viene también de instalaciones industriales, es frecuente que contenga metales tóxicos que afectan a esas plantas y al mismo suelo si se usan como abonos.

9. Los residuos industriales se multiplican en diversidad

La industria genera una gran cantidad de residuos, muchos de los cuales son recuperables. No obstante las técnicas para aprovecharlos son caras y no siempre compensan económicamente.

- **Residuos industriales inertes y asimilables a los RSU**: los residuos inertes son escombros, gravas, arenas y materiales que no presentan riesgo para el ambiente. Hay dos tratamientos para estos materiales: reutilizarlos como relleno en construcción o depositarlos en vertederos. El principal impacto negativo que pueden producir es el visual, por lo que se deben usar lugares como canteras abandonadas o minas al aire libre y recubrir con tierra y plantas para reconstruir el paisaje.

- **Residuos peligrosos o especiales**: hay sustancias que son inflamables, corrosivas, tóxicas, reactivas, según sus concentraciones y su capacidad natural de degradación.

Los ecosistemas naturales están preparados, por millones de años de evolución, para asimilar y degradar las sustancias naturales. Pero, en la actualidad, se sintetizan miles de productos que nunca habían existido antes y algunos de ellos, como los CFC, DDT y numerosos plásticos, permanecen muchos años antes de ser eliminados.

La **bioacumulación** de algunos pesticidas del grupo del DDT genera nuevos riesgos. En otras ocasiones, los residuos se transforman en sustancias más tóxicas que ellos mismos.

<table>
<thead>
<tr>
<th>Residuos tóxicos y peligrosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Arsénico, cadmio, berilio, plomo, selenio, telurio, mercurio, antimonio, estano y sus compuestos.</td>
</tr>
<tr>
<td>• Compuestos de cobre solubles.</td>
</tr>
<tr>
<td>• Fenol, etere, solventes organicos, hidrocarburos policiclicos aromaticos (cancerigenos).</td>
</tr>
<tr>
<td>• Isocianatos, cianuros organicos e inorganicos.</td>
</tr>
<tr>
<td>• Biocidas y compuestos fitofarmacaceuticos.</td>
</tr>
<tr>
<td>• Compuestos farmacaceuticos.</td>
</tr>
<tr>
<td>• Polvo y fibras de asbesto.</td>
</tr>
<tr>
<td>• Peroxidos, cloratos y perchloratos.</td>
</tr>
<tr>
<td>• Carbonilos de metales.</td>
</tr>
<tr>
<td>• Acidos y bases usados en metalurgia.</td>
</tr>
<tr>
<td>• Compuestos de cromo hexavalente.</td>
</tr>
<tr>
<td>• Organohalogenados no inertes.</td>
</tr>
</tbody>
</table>

6 Otros elementos, especialmente aluminio y hierro, son muy abundantes en las rocas y en el suelo, y también pueden ser tóxicos, pero afortunadamente se encuentran en formas químicas no solubles y es muy difícil que los seres vivos los asimilen.
• Alquitranes.
• Compuestos de laboratorio no identificados.

En la legislación Argentina se añaden a esta lista:
• Tálio y sus compuestos.
• Residuos de la industria del dióxido de titanio.
• Aceites usados minerales o sintéticos, incluyendo las mezclas agua-aceite y las emulsiones.


La industria que contribuye más a la producción de este tipo de residuos es la química, responsable de alrededor de un tercio de todos los que se generan. Le siguen la del automóvil, la metalurgia, la papelera y la alimenticia.

Alrededor de un tercio de los residuos peligrosos son eliminados en el mismo lugar de su formación por las empresas productoras.

La primera medida que se debe considerar siempre es generar menos residuos o aprovecharlos en otros procesos de fabricación. Nuevas tecnologías limpias permiten fabricar con menor producción de residuos, disminuyendo los costes de materia prima y tratamiento, pero exigen una inversión inicial.

Con la tecnología actual, sería posible minimizar el impacto negativo de cualquier contaminante. Pero hacerlo así en todos los casos sería tan caro que paralizaría otras posibles actividades. Por eso, en la gestión de los residuos tóxicos se busca tratarlos y almacenarlos de forma que no resulten peligrosos, dentro de un costo económico proporcionado. Esto se consigue con diversos procedimientos, dependiendo de cuál sea el tipo de residuo. Así, se utilizan:

• Tratamientos físicos, químicos y biológicos: consisten en someter el residuo a procesos físicos (filtrado, centrifugado, decantado), biológicos (fermentaciones, digestiones por microorganismos) o químicos (neutralizaciones, reacciones de distinto tipo). De esta forma, se consigue transformar el producto tóxico en otros que lo son menos y se pueden llevar a vertederos o usar como materia prima para otros procesos. Las plantas de tratamiento deben diseñarse para no contaminar con sus emisiones.
• Incineración: quemar los residuos en incineradoras especiales con garantía de anular los tóxicos suele ser el mejor método. Disminuye su volumen drásticamente y en muchos casos permite obtener energía. Sin embargo, emiten gases y cenizas que suelen ser tóxicos a su vez y deben tratarse.
• Vertido o rellenos de seguridad: al final de todos los procesos hay materias que deben depositarse en un vertedero de seguridad para garantizar que no se contaminen las aguas subterráneas o superficiales, que no haya emisiones de gases o salida de productos tóxicos y que las aguas de lluvia no entren en el vertido, ya que saldrían cargadas de contaminantes.

11. Se han depositado residuos peligrosos de países industrializados en países subdesarrollados

Algunos países industrializados han mandado residuos tóxicos y peligrosos a países poco desarrollados. Hay casos en que se exportan para su legítimo tratamiento y reciclaje, pero en otros es simplemente porque es más barato que tratarlos y en el país que los recibe no existen las limitaciones que hay en el que envía.

A veces, los países receptores ni siquiera saben lo que están recibiendo. Así sucedió, por ejemplo, en la década de 1980, en que una empresa italiana llevó 8.000 barriles llenos del
peligroso tóxico PCB a Nigeria sin permiso del gobierno nigeriano. Cuando este lo supo, exigió a Italia el retiro de los barriles. El barco Karin B los cargó e intentó, sin éxito, dejarlos en cinco países europeos, hasta que tuvo que devolverlos a Italia.

El Convenio Internacional de Basilea (1992), al que se ha adherido la mayoría de los países incluida la Argentina, ha limitado estas prácticas.

El sector primario de la economía (agricultura, ganadería, pesca, actividad forestal y cinegética) y las industrias alimenticias, desde los mataderos y las empresas lácteas hasta las harineras y el tabaco, generan residuos especiales.

La mayor parte de ellos son orgánicos: ramas, paja, restos de animales, plantas y otros. Muchos de ellos se quedan en el campo y contribuyen a mantener los nutrientes del suelo.

En algunos bosques aumentan el riesgo de incendio, pero, desde el punto de vista ecológico, retirar toda la materia orgánica disminuye la productividad y retrasa la maduración del ecosistema.

Algunas granjas intensivas y muchas industrias conserveras, aceiteras o similares generan residuos mucho más contaminantes, que, por su gran volumen o su toxicidad, exigirían tratamientos especiales y caros.

En las prácticas agropecuarias tradicionales, casi todos los restos se aprovechaban, ya para obtener energía, para abonar los campos o para alimentar al ganado.

Los métodos modernos de explotación del campo han convertido en residuos muchos de estos restos antes aprovechables. Ya no hay ganado que trabaje los campos y la paja ha perdido su valor porque es más rentable alimentarlo con piensos compuestos; los abonos químicos son más baratos que los orgánicos, que exigen ser manipulados.

La dificultad para un aprovechamiento de estos residuos es la económica, y por eso se debe pensar en incentivos que faciliten su uso, como subsidios a la agricultura ecológica, considerando las explotaciones pequeñas y dispersas que usan abonos naturales, o a la utilización de la biomasa para obtener energía.

En la actualidad, en algunas regiones se obtiene gas metano por la fermentación de la biomasa. Los restos orgánicos se acumulan en un reactor en el que fermentan y producen el gas que se quema para dar energía. Si el tamaño de la explotación es suficiente, puede abastecerse de energía. En los países del Tercer Mundo está siendo la fuente principal de muchas familias que no tienen acceso a suministros comerciales de combustible o electricidad.

12. Baterías y pilas

Las baterías y pilas son artefactos electroquímicos formados por un ánodo, un cátodo y un electrolito destinados a transformar energía química en eléctrica.

Las baterías de plomo (pila húmeda), que se utilizan en automotores y ciertas herramientas, en su mayoría contienen alrededor de ocho kilogramos de ese metal y ácido sulfúrico diluido.

Las pilas secas se utilizan en numerosos equipos y aparatos de uso industrial y doméstico.7 Las pilas llamadas primarias o de un solo uso más comunes tienen los siguientes componentes:

- Alcalino-manganeso de diferentes tamaños y múltiples usos. Contienen además una pequeña proporción de mercurio (1 a 0,025% del peso) que protege de la corrosión los electrodos de cinc que forman el ánodo. El cátodo es de dióxido de manganeso.
- Carbono-cinc, similar a la anterior. Contiene alrededor del 0,01% en peso de mercurio.
- Óxido de mercurio, habitualmente en forma de botón para pequeños aparatos, contiene entre 35-50% de mercurio.

7 En EE.UU. se estima que una familia tipo tiene diez aparatos a pila y compra una media de 36 pilas por año.
• Cinc-aire se utiliza en audífonos, y el mercurio, del que contiene alrededor del 2%, se tiende a sustituir por oxígeno.
• Óxido de plata, con 1% de mercurio, se utiliza en calculadoras, relojes y cámaras fotográficas.
• Lito, en forma de botón o cilindro y para pequeños aparatos, dispone de un ánodo de ese metal y tiene larga duración. El principal riesgo consiste en que el litio es combustible en agua.

La pila secundaria o recargable más habitual es de níquel-cadmio, constituyendo el primero el ánodo y el segundo el cátodo.

Las fundas de las pilas son de plástico o metal y su corrosión permite el escape de los elementos que las constituyen. En los vertederos, el riesgo depende de la contaminación de las aguas subterráneas. En la incineración, la contaminación de mercurio sale al aire como gas, mientras que el cadmio y el plomo quedan en las cenizas, que a su vez pasan a los vertederos con el riesgo pertinente para las aguas subterráneas. Se tratan también con compostajes sin poder reducir del todo los riesgos.

La recuperación y reciclado del plomo\(^8\) de las baterías húmedas-ácidas es habitual, canjeando una usada por una nueva o entregando la primera en talleres mecánicos. La recuperación tiende a extenderse a las pilas, pero se requiere una recolección por separado de los residuos habituales. Su tratamiento involucra la obligación de que los fabricantes hagan separables las pilas de los aparatos que las utilizan e identifiquen claramente los tipos de electrodos de cada pila. El mercurio, por su parte, tiende a reducirse a no más de 25 mg en las pilas botón o no más de 0,025% en peso de las restantes.

Las potencialmente más riesgosas son las pilas botón, las de níquel-cadmio y las que utilizan mezclas de esos elementos.

La recuperación depende no sólo de la concientización comunitaria, sino del acceso a centros de recolección de recipientes \textit{ad hoc} (en comercios) y su posterior almacenamiento en contenedores, transporte y reciclado\(^9\) o disposición en rellenos para sustancias peligrosas (Lund, 1996: 1-35).

13. Residuos radiactivos

Elementos radiactivos de distinto tipo se emplean en muy variadas actividades. Las centrales de energía nuclear son las que mayor cantidad de estos productos emplean, pero también muchos procedimientos de la medicina (por lo general están en estado líquido y no encapsulados), la industria y la investigación utilizan isótopos radiactivos, y en algunos países las armas nucleares son una de las principales fuentes de residuos de este tipo.

Dos características hacen especiales los residuos radiactivos:
• Su gran peligrosidad: cantidades muy pequeñas pueden originar dosis de radiación peligrosas para la salud humana
• Su duración: algunos de estos isótopos permanecerán emitiendo radiaciones miles y decenas de miles de años.

Así, se entiende que, aunque la cantidad de este tipo de residuos que se producen en un país sea comparativamente mucho menor que la de otros tipos, sus tecnologías y métodos de tratamiento sean mucho más complicados y difíciles.

\(^8\) También se recicla el propileno y el ácido sulfúrico.
\(^9\) Las plantas de reciclado son complejas y son pocos los países que disponen de ellas. Suiza lleva la delantera a partir de una planta modelo Sumitomo, de origen japonés.
13.1. **Tipos de residuos radiactivos**

Hay dos grandes grupos de residuos radiactivos (SPR):

- **Residuos de alta actividad**: su período de desintegración es mayor de treinta años, tienen alta actividad de emisores de vida corta, concentraciones apreciables de emisores alfa de vida larga y producen calor. Están formados por restos de varillas del uranio utilizado como combustible en centrales nucleares y otras sustancias que están en el reactor y por residuos de la fabricación de armas atómicas. También algunas sustancias que quedan en el proceso minero de purificación del uranio son incluidas en este grupo. En las varillas de combustible gastado de los reactores se encuentran sustancias como el plutonio 239 (vida media de 250.000 años), el neptuno 237 (vida media de 2.130.000 años) y el plutonio 240 (vida media de 6.600 años). Aunque constituyen una baja proporción de este tipo de residuos, su almacenamiento debe ser garantizado por decenas de miles de años hasta que la radiactividad baje lo suficiente como para que dejen de ser peligrosos para miles de generaciones.

- **Residuos de media o baja actividad**: su período de desintegración es de menos de treinta años, emiten cantidades pequeñas de radiación, contienen radionucleídos emisores beta y gamma, así como limitada emisión alfa, de larga vida (inferior a 0,01 curios/Tm). Están formados por herramientas, ropas, piezas de repuesto, lodos y el grafito de las centrales nucleares y de universidades, hospitales, organismos de investigación e industrias. Los principales radionucleídos de este tipo son el estroncio 90, el cesio 137, el cobalto 60 y el hierro 55. Son mucho más voluminosos que los anteriores.

El **desmantelamiento** de las centrales nucleares produce grandes cantidades de residuos radiactivos de los dos tipos. Las centrales envejecen en treinta o cuarenta años y deben ser desmontadas. Los materiales de la zona del reactor son residuos de alta actividad en gran parte y otros muchos son de media o baja actividad.

13.2. **Gestión de los residuos radiactivos**

Algunos residuos de **baja actividad** se eliminan muy diluidos, echándolos a la atmósfera o a las aguas en concentraciones tan pequeñas que no son dañinas y la ley permite. Los índices de radiación que dan estos vertidos son menores que los que suelen dar muchas sustancias naturales o algunos objetos de uso cotidiano como la televisión.

Los residuos de **media o baja actividad** se introducen en contenedores especiales que se almacenan durante un tiempo en superficie hasta que se llevan a vertederos de seguridad. Hasta el año 1992, algunos países vertían estos barriles al mar, pero ese año se prohibió esta práctica.

Los almacenes definitivos para estos residuos son, en general, subterráneos, asegurando que no sufrirán filtraciones de agua que pudieran arrastrar isótopos radiactivos fuera del vertedero.

Los residuos de **alta actividad** son los más difíciles de tratar. El volumen de combustible gastado que queda en las centrales de energía nuclear normales se puede reducir mucho si se vuelve a utilizar en plantas especiales. Esto se hace en algunos casos, pero presenta la dificultad de que hay que transportar una sustancia muy peligrosa desde las centrales normales a las especiales.

Los residuos que quedan se suelen **vitrificar** (fundir junto a una masa vítrea) e introducir en contenedores capaces de resistir agentes muy corrosivos, el fuego, terremotos y grandes colisiones.

Estos **contenedores** se deberían almacenar en vertederos definitivos que deben estar construidos a **gran profundidad**, en lugares muy estables geológicamente (depósitos de arcilla, sales o macizos graníticos) y bien refrigerados, porque los isótopos radiactivos emiten calor.
Se están estudiando varios emplazamientos para este tipo de almacenes, pero en el mundo todavía no existe ninguno, por lo que, por ahora, la mayoría de los residuos de alta actividad se almacenan en lugares provisionales o en las piscinas de la misma central.

14. Legislación argentina sobre residuos sólidos urbanos

14.1. Legislación nacional

La Ley N° 25.916 es de orden público y establece la gestión integral de los residuos domiciliarios, ya sean de origen residencial, urbano, comercial, asistencial, sanitario, industrial o institucional. Exceptúa aquellos que sean regulados por normas especiales.

Los define como “elementos, objetos o sustancias que como consecuencia de consumo o desarrollo de actividades humanas, son desechados o abandonados”.

La gestión integral, a su vez, es “el conjunto de actividades interdependientes y complementarias entre sí” para su manejo en orden a proteger el medio ambiente y la población. Las etapas, reagrupadas, son:

- Generación general y especial.\(^{11}\)
- Disposición inicial general o selectiva.
- Recolección en vehículos recolectores, general o selectiva, que tendrá métodos y frecuencias ajustadas a la cantidad de residuos y sus características y las ambientales y geográficas. Los vehículos deberán ser habilitados y acondicionados para contener los residuos y evitar su dispersión.
- Transferencia a instalaciones de almacenamiento transitorio y acondicionamiento para el transporte.
- Transporte a estaciones.
- Tratamiento y valorización en estaciones.
- Disposición final o permanente en centros habilitados a tal fin, previa evaluación de impacto ambiental y plan de monitoreo. Estos centros deben emplazarse en zonas alejadas de la urbanización y no inundables a la luz de la planificación territorial que salvaguarde las áreas protegidas, el patrimonio natural o cultural y la expansión urbana. Deben utilizar métodos y tecnologías que prevengan y minimicen los efectos negativos, tanto en la etapa de operación como en la de clausura y postclausura.

Encomienda la coordinación y cooperación interjurisdiccional al Consejo Federal de Medio Ambiente (COFEMA). Define una autoridad de aplicación nacional y la responsabilidad de la gestión a las jurisdicciones locales, que podrán dictar normas complementarias y suscribir convenios regionales. La autoridad de aplicación tiene a su cargo un sistema de sanciones por incumplimiento de las normas.

Promueve la valorización gradual de los residuos a través del reciclaje o reutilización, así como la integración de los circuitos informales de recolección.

Promueve también acciones de educación ambiental y participación comunitaria, del comercio y la producción, tendientes a la gestión integral y a la reducción, reutilización y reciclaje de residuos, al consumo de productos con potencial de valorización.

La Ley N° 25.018 establece el régimen de Gestión de Residuos Radioactivos, siendo la Comisión Nacional de Energía Atómica su autoridad de aplicación.

---

\(^{10}\) Sancionada el 4 de agosto de 2004, promulgada y parcialmente vetada el 3 de septiembre de 2004 (Decreto 1158/2004), publicada el 7 de septiembre de 2004.

\(^{11}\) Generadores especiales son los que, por cantidad, calidad o condiciones de los residuos, requieren programas particulares.
Bibliografía

Miller, T.G., Ecología y medio ambiente: introducción a la ciencia ambiental, el desarrollo sustentable y la conciencia de conservación del planeta tierra, México, Editorial Iberoamericana, 1994.
Unión Europea. 78/319/CEE, Directiva del Consejo, de 20 de marzo de 1978, relativa a los residuos tóxicos y peligrosos.
CAPÍTULO 11

RESIDUOS PATOGÉNICOS

Hector Ralli
(Contribución especial)

1. Residuos patogénicos

En Argentina, se denomina residuo patogénico al que tiene capacidad de provocar daño o enfermedad.1 Esa capacidad se fundamenta en la secuencia necesaria para la transmisión de una infección a punto de partida de un desecho hospitalario: microorganismo patógeno viable en el material fuente de infección y en dosis inóculo suficiente para que tenga capacidad infectiva y exposición de una persona susceptible en condición tal que permita la entrada por una lesión preexistente o que ocurra en la exposición.

El residuo hospitalario de mayor riesgo demostrado y asociado con la transmisión de enfermedades es el punzocortante. El personal con riesgo de adquirir infección por este medio es el afectado al descarte de la basura sin los recaudos correspondientes. Por lo tanto, se definen como residuos patogénicos los provenientes de:

- Cultivos de laboratorio, restos de sangre y sus derivados.
- Restos orgánicos provenientes del quirófano, de servicios de hemodiálisis, hemoterapia, anatomía patológica y morgue.
- Restos, cuerpos y excrementos de animales de experimentación biomédica.
- Algodones usados, gasas usadas, vendas usadas, jeringas, objetos cortopunzantes, materiales descartables y otros elementos que hayan estado en contacto con agentes patogénicos y que no se esterilicen.
- Todos los residuos, cualesquiera sea su característica, que se generen en áreas de alto riesgo infectocontagioso.
- Restos de animales provenientes de clínicas veterinarias, centros de investigación y académicos.

Los residuos patogénicos generados en los establecimientos del cuidado de la salud tienen un lugar especial, porque representan un alto riesgo potencial, real o percibido, para la salud de los pacientes y del personal profesional, técnico y de los servicios de estos centros. En casos de mal manejo, el riesgo puede extenderse más allá de los límites del hospital y exponer a los trabajadores de los servicios de limpieza pública, a los separadores de basura y a la población en general. El riesgo proviene fundamentalmente del carácter infeccioso de algunos de sus componentes, y su manejo se dificulta por la heterogeneidad de su composición, por los elementos punzocortantes y por la presencia eventual de sustancias tóxicas, reactivas, inflamables y radioactivas de baja intensidad.

1 Ley Nacional 24.051; Ley 11.347 de la provincia de Buenos Aires; Ley 154 de la Ciudad Autónoma de Buenos Aires.
Existe un trabajo realizado por Ayliffe (1994) en el que plantea que el residuo hospitalario tiene un contenido de microorganismos similar o posiblemente menor que el residuo domiciliario, asegurando que no hay evidencia de transmisión de infecciones para el hombre a menos que se trate de accidentes con objetos cortopunzantes. En dicho artículo, el autor recuerda que, para que una infección ocurra, son requeridos los siguientes eslabones epidemiológicos:

- Presencia de un patógeno con la suficiente virulencia y cantidad para producir una infección.
- Una puerta de entrada para que el patógeno ingrese en un nuevo huésped.
- Un huésped susceptible.

Esta cadena se rompe colocando los objetos cortopunzantes en envases seguros. En el artículo mencionado se especifica que los residuos patológicos, tales como tejidos y sangre humana, son usualmente incluidos como residuos bajo control por una cuestión ética y estética concerniente al público, más que por constituir un peligro infeccioso real. No hay razón para tener que descartar un algodón con sangre de un paciente como residuo patológico, cuando diariamente se generan incalculables cantidades de apósitos femeninos en una ciudad, que los dispone como residuos domiciliarios, e igual consideración se puede aplicar a los pañales descartables.

Otro aspecto a considerar es el relacionado con la cantidad de residuos generados por cada establecimiento, que depende del tamaño, tipo (quirúrgico, clínico, pediátrico), actividades que realiza (asistenciales, docentes, investigadoras) y de la política adoptada en relación con el manejo del material desechable. Se calcula que se producen aproximadamente entre 5 y 6 Kg de desechos sólidos por paciente por día, y que sólo el 5 al 7% de esa cantidad consiste en residuos patogénicos. Sin embargo, por diferentes razones se tiende a sobrestimar esta cantidad llevándola a un 15 a 16% del total de residuos producidos por paciente y por día.

La sensibilización frente a los riesgos de los residuos patogénicos generados en los establecimientos de salud y el interés por su correcta eliminación es algo reciente, en lo que sin duda ha influido la aparición del SIDA. Los métodos de eliminación de residuos varían desde la incineración con hornos pirolíticos, muy cuestionados por organismos ecologistas mundiales, la esterilización por autoclave, los hornos microondas combinados con vapor y trituración, los camiones que esterilizan, trituran y compactan y la desinfección química. Todas las instituciones o centros de salud son responsables de los residuos que generan. Normalizar criteriosamente el descarte de los mismos es contribuir a mejorar la calidad de vida que todos necesitamos.

La implementación de programas efectivos de manejo adecuado de este tipo de residuos requiere de la colaboración intersectorial y de una interacción en todos los niveles. Las políticas se deben generar y coordinar globalmente, pero la implementación de las mismas tiene un carácter local. Es imprescindible contar con un marco regulatorio, con la participación ciudadana y con personal capacitado, así como con una campaña permanente de motivación. Cada establecimiento debe desarrollar:

- Un equipo de responsables del manejo de residuos.
- Un encargado general del manejo de los residuos.
- Reemplazantes en caso de ausencia de algún responsable.
- Suficientes y adecuados recursos materiales.
- Capacitación y entrenamiento adecuado.
- Monitoreo de la salud y seguridad del personal.
- Supervisión continua.
2. Clasificación

Existen diferentes posiciones en cuanto al nombre, la definición y la categorización de los residuos. Tales son las de:

- U.S. Environmental Protection Agency (EPA) (USA-1996).
- Grupo de Trabajo en Residuos de Servicios de Salud de la Asociación Internacional de Residuos Sólidos (ISWA-1993).
- La Ley Nacional 24.051/91 sobre residuos peligrosos –generación, manipulación, transporte y tratamiento (Art. 19)– los categoriza en:
  - Residuos provenientes de cultivos de laboratorios.
  - Residuos de sangre y derivados.
  - Residuos orgánicos provenientes del quirófano.
  - Restos de animales producto de la investigación médica.
  - Algodones, gasas, vendas usadas, ampollas, jeringas, objetos cortantes o punzantes, materiales descartables, elementos impregnados en sangre u otras putrescibles que no se esterilizan.
  - Agentes quimioterápicos.
- La Reglamentación de la Ley Provincial bonaerense 11.347/92 sobre tratamiento, manipulación y disposición final de residuos patogénicos los categoriza en:
  - Residuos patogénicos tipo A.
  - Residuos patogénicos tipo B.
  - Residuos patogénicos tipo C.
- La Ordenanza Municipal 5.846/94 sobre Recolección y disposición final de residuos patológicos (Ciudad de Rosario, 1994).

El enorme avance de las especialidades medicinales y de los tratamientos médicos también contribuyó al avance de la reglamentación.

La norma que rigió el proceso de disposición de residuos es la siguiente: **a mayor complejidad social, mayores riesgos y mayor regulación**.

Dicha regulación tiene en la actualidad varias dimensiones: públicas y privadas, nacional, provincial y local, generadores de residuos patogénicos como hospitales, clínicas, laboratorios, farmacias, centros de diagnóstico, veterinarias, consultorios médicos y odontológicos, morgues, maternidades, salas de primeros auxilios y otros.

La **variedad y sofisticación de las normas que reglamentan** la generación, el transporte, la manipulación, el tratamiento y la disposición final de los residuos patogénicos en el mundo y en Argentina son el resultado de una sociedad cada vez más compleja y tecnificada, con exigencias, peligros y desafíos que cobran una escala sin precedentes.


Estas legislaciones se basaban en una interpretación rigurosa de las “precauciones universales”, lo que condujo a una elevada generación de residuos que pronto sobrepasaron las posibilidades de eliminación mediante las incineradoras con las que, en la década de 1960, se habían dotado la mayoría de los hospitales para deshacerse de los restos anatómicos y una pequeña cantidad de residuos infecciosos. En aquel momento, la utilización de material descartable, de un solo uso, estaba poco desarrollada.

A mediados de la década de 1980, los hospitales de los países más desarrollados se encuentran con dificultades para eliminar las cantidades cada vez mayores de residuos sanitarios
que se producen. Muchos de ellos clausuran sus hornos incineradores debido a la contaminación que producen.

Se buscan soluciones centralizadas, utilizando las incineradoras de las estaciones de tratamiento de los desechos o construyendo incineradoras especiales para los residuos sanitarios, y aparece gran número de empresas privadas especializadas en su gestión.

El elevado y creciente volumen de estos residuos, su envasado, transporte y eliminación suponen altos costos que hacen plantearse la necesidad de buscar soluciones realistas para este importante problema, creándose grupos de trabajo en diferentes países que estudian la repercusión real de los residuos sanitarios en la Salud Pública. Surge así un nuevo criterio de gestión basado en los riesgos reales y que ha venido a denominarse gestión avanzada, en contraposición a la gestión clásica, basada en el riesgo percibido.

Dada la importancia que adquiere rápidamente el tema, la Oficina Regional Europea de la OMS convocó en Bergen (Noruega), en 1983, a un grupo de estudio con el objetivo de revisar los desarrollos habidos hasta entonces y preparar guías para un código de uso en los países industrializados.

El grupo llegó a las siguientes conclusiones:

- La gestión de los residuos de los establecimientos sanitarios requiere un sistema mediante el cual la recogida, el almacenamiento, el transporte, el tratamiento y la eliminación de los mismos se realicen minimizando los riesgos para la salud y para el ambiente.
- Todo el personal implicado en la gestión de los residuos de los establecimientos sanitarios debe ser informado e instruido del riesgo potencial que supone el manejo de este tipo de productos.
- Se pondrá énfasis en la separación de los residuos de mayor riesgo sanitario (patológicos, infecciosos y sustancias químicas peligrosas) de los otros residuos, y se usarán embalajes y rótulos apropiados. Se adoptará un código de color para bolsas y contenedores de residuos de alto riesgo.
- La incineración es el método preferido para la eliminación de residuos patológicos e infecciosos. Las incineradoras deben ser específicamente diseñadas para la correcta eliminación de estos materiales y con capacidad para cumplir la legislación de cada país en lo que se refiere a la emisión de contaminantes.
- Todos los establecimientos productores de residuos deberán disponer de planes integrados de gestión y eliminación de los mismos. La eliminación podrá hacerse in situ o en plantas centralizadas.
- La legislación para gestión de los residuos debe restringirse a unos principios básicos, dejando libertad a los centros productores para la adopción de los sistemas que consideren más adecuados. La cooperación entre distintos centros productores deberá ser considerada en orden a minimizar los costos de eliminación.
- Se necesita recoger e intercambiar información sobre los distintos proyectos en marcha de gestión y eliminación de los residuos, especialmente en lo que refiere a los sistemas de incineración.

En América Latina, hasta antes de la década de 1990, con algunas excepciones, se prestaba poca importancia al manejo apropiado de estos residuos, que generalmente se incineraban en los propios hospitales o se entregaban sin cuidado alguno a los servicios de limpieza pública para ser llevados a los basureros a cielo abierto, donde muchas veces eran reciclados por los separadores. En ese entonces se estimaba que la generación media de residuos era de unos 3 Kg por cama por día, generación que ha venido creciendo aceleradamente por el uso cada vez mayor de
productos descartables. De estos, la fracción realmente peligrosa se estimaba en un 10 a un 30%. Generalmente, el manejo interno de los residuos en los hospitales se hacía sin separar la fracción peligrosa del resto. Los incineradores eran generalmente de una sola cámara, cuyas emisiones gaseosas se liberaban a la atmósfera sin ningún control. Durante la década de 1990 se extendió la preocupación por el manejo adecuado de los residuos peligrosos de los establecimientos de salud, lo que condujo a definir marcos jurídicos específicos. Esto permitió también que la empresa privada viera una oportunidad de participación en su recolección y tratamiento. Actualmente existen instalaciones de tratamiento de muy diversos tipos: incineración con doble cámara, autoclaves, desinfección química, radiación, microondas y otros. Sin embargo, todos estos procesos de tratamiento son caros, generalmente del orden de 10 a 20 veces más que el costo del manejo de los residuos no peligrosos.

3. Marco legal

La normativa sobre residuos patogénicos en nuestro país se desarrolló a partir de antecedentes como la Ley 17.132 del Ejercicio de la Medicina, Odontología y Actividades de colaboración, hasta llegar al complejo sistema de normas nacionales, provinciales y municipales que nos rigen actualmente, el cual no está exento de lagunas, asimetrías, vacíos e insuficiencias legales, como así tampoco de otros problemas como conflictos de jurisdicción y competencia.

Asimismo, la legislación sancionada a nivel nacional sobre residuos patogénicos se compone de dos dimensiones bien diferenciadas:

- El régimen administrativo de la Ley 24.051 consiste en requerimientos de inscripción, autorizaciones, manifiestos, información, etc., aplicables en lugares sujetos a la jurisdicción nacional o cuando existe algún componente interjurisdiccional.
- El régimen de responsabilidad civil y penal de la Ley 24.051, aplicable en todo el país por tratarse de una norma de derecho común. También son aplicables las normas reglamentarias de la Ley 24.051, así como normas complementarias surgidas del ámbito de la Secretaría de Salud del Ministerio de Salud.

Por su parte, la provincia de Buenos Aires cuenta con el mayor grado de desarrollo en materia de normativa sobre residuos patogénicos y constituye una referencia para el resto de las provincias y de la Ciudad de Buenos Aires. El esquema normativo bonaerense se estructuró a partir de la técnica de la delegación legislativa implementada por la Ley 11.347, que sentó los pilares de la política legislativa posteriormente desarrollados a través del Decreto 450/94, modificado por el Decreto 403/97.

También es notable la interacción existente entre las normas emitidas dentro del ámbito de las dos autoridades de aplicación de la normativa sobre residuos patogénicos: la Secretaría de Política Ambiental de la provincia de Buenos Aires (SPA) y la Dirección Provincial de Fiscalización y Control Sanitario (DPFCS), dependiente del Ministerio de Salud de la provincia. Este sistema de desdoblamiento de las autoridades de aplicación para los diferentes sectores involucrados en la problemática de residuos patogénicos (generadores: DPFCS; operadores y transportistas: SPA) constituye una innovación legislativa propia de la provincia de Buenos Aires.

Además, también sus dos regímenes diferenciados para el sector hospitalario-asistencial público y privado: concesión y libre contratación, respectivamente.

La normativa provincial sobre emisiones gaseosas y radicación industrial emitidas por la SPA, así como las implicancias de esta normativa en relación con el régimen del CEAMSE, también resaltan la complejidad normativa aplicada por la provincia de Buenos Aires. Completan el panorama provincial la Ley de Municipalidades y el Código de Faltas de la provincia de Buenos Aires.
4. Tipos de residuos patogénicos. Antecedentes internacionales

Se reconoce internacionalmente que el 80 al 85% de los residuos hospitalarios puede tratarse junto con el residuo domiciliario sin ningún riesgo para la población.

En España, la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica sugiere:

La sangre, líquidos orgánicos, secreciones, etc., hasta cierta cantidad, pueden eliminarse directamente por el desagüe, con abundante agua. No existen evidencias epidemiológicas que asocien las infecciones en la comunidad con los residuos hospitalarios, de la misma manera que no se ha demostrado que los desechos de los hospitales tengan más capacidad infecciosa que los residuos urbanos. (Munitis y Micucci, 2002: 83-101)

En Finlandia, para considerar infeccioso un residuo, tienen en cuenta:
- Presencia del germen en el medio ambiente.
- Cómo son excretados y ruta de infección.
- Cómo se multiplican y vía de contagio.
- Condiciones climáticas de la región.
- Microorganismos que sobreviven en las condiciones ambientales dadas.
- Severidad de la enfermedad que pudieran provocar.
- Evidencia epidemiológica en la región.

Después de esas consideraciones, han listado los microorganismos presentes en los residuos que incineran: Yersinia pestis y Bacillus anthracis.

Los residuos contaminados con bacterias del ambiente como Pseudomonas, Enterobacterias y Klebsiella no requieren tratamiento especial.

En EE.UU., de acuerdo con normas del CDC, los residuos que deben manejarse con precauciones especiales son los de laboratorio de microbiología, anatomía patológica y sangre o productos de la misma (bolsas de sangre). Cualquier elemento que haya estado en contacto con sangre, exudado o secreciones no se considera necesario ni práctico tratarlo como infeccioso (salvo los elementos punzocortantes).

La EPA agrega que el residuo capaz de producir una enfermedad infecciosa debería contener patógenos en cantidad y virulencia suficiente de tal manera que la exposición al residuo por un huésped susceptible pudiera resultar en una enfermedad infecciosa.

Posteriormente, aclara cuáles residuos parece prudente manejar como infecciosos. También, y al igual que el CDC, excluye de la lista de material infeccioso, por ejemplo, los residuos de cirugía y autopsia, considerándolos como residuos contaminados de cosas sucias o sépticos, residuos generados en la atención de casos limpios pero en contacto con tejidos, sangre, líquidos corporales, secreciones y excreciones. Cita como ejemplo de los últimos: guantes de cirugía, apósitos contaminados, tubos de lavados y de drenaje, etc.

Un experto de reconocimiento internacional, el Dr. William A. Rutala, expresa (1997):

Si los controles regulatorios se basaran en datos epidemiológicos, microbiológicos y ambientales, sólo dos tipos de residuos de origen médico [se refiere a hospitalario] requerirían manejo y tratamiento especial: PUNZOCORTANTES Y RESIDUOS DE MICROBIOLOGÍA.

Es decir que claramente excluye la sangre.
En el capítulo 28 de la misma obra, el Dr. Franz Daschner del Instituto de Medicina Ambiental y Ecología Hospitalaria de la Universidad de Freiburg (Alemania) escribe:

La mera presencia de sangre, secreciones corporales o patógenos, o sólo la sospecha de patógenos, no debería usarse para transformar los residuos comunes en infecciosos. Los residuos domiciliarios contienen más sangre y de 10 a 100.000 veces más microorganismos potencialmente patógenos que los residuos hospitalarios.

El mismo autor refiere en la página 596 del mismo capítulo:

las aproximadamente 40.000 mujeres menstruantes en la ciudad de Freiburg contaminan los residuos hospitalarios y sistema cloacal con 96.000 litros de sangre por año. Casi dos litros de sangre por año se deberían extraer a cada uno de los pacientes del Hospital Universitario, para empatar la contaminación de sangre que surge de la comunidad.

En el capítulo “Medical Waste Management” de la obra Hospital (1999), Glen Mayhall expresa claramente:

La tercera consideración para manejar los residuos médicos (infecciosos) es la falta de evidencias epidemiológicas de que estos sean riesgosos para la salud pública, lo que es un argumento en contra de medidas de control extremas. Los residuos médicos (infecciosos) no constituyen virtualmente ningún riesgo para el público o el ambiente. Los impactos públicos de la disposición de los residuos médicos están restringidos a la degradación estética del ambiente en el caso ocasional de disposición no cuidadosa.

5. Riesgos

**Riesgos ambientales**: la posibilidad de contaminación de acuíferos y de transmisión indirecta de enfermedades a través de animales (ratas, perros, aves) no ha sido documentada, y no se ha demostrado que los residuos de centros sanitarios comporten mayor riesgo ambiental que los restantes.

Fuera de los centros sanitarios, el riesgo infeccioso de la población general, asociado a los biosanitarios, es insignificante. En 1990, la Agency for Toxic Substance and Disease Registry (Departamento de Salud Pública de los EE.UU.) concluyó que la posibilidad de que la salud pública general se vea afectada por estos residuos es muy baja, y limitada a ciertas infecciones no endémicas.

Casi todas las investigaciones muestran que la mayor parte de los residuos biosanitarios no contienen mayores cantidades de agentes microbianos que las basuras urbanas, y los virus presentes en los residuos sólidos tienden a ser absorbidos por la materia orgánica y a desactivarse por efecto de la temperatura, el pH, la humedad, la concentración de oxígeno y la competencia microbiana.

Los residuos químicos y radioactivos, por el contrario, presentan riesgos para el ambiente, según diversos factores (tipo de sustancias, dosis, resistencia del organismo, etc.). Pueden concentrarse directamente en el interior de organismos vivos dando lugar a procesos de bioacumulación.

**Riesgos asociados a los residuos químicos**: los centros sanitarios son pequeños productores de residuos químicos con riesgos para la salud. Como ejemplo, los citostáticos pueden dar lugar a efectos locales irritativos, vesicantes o alérgicos y, a nivel general, producir efectos mutágenos, teratógenos y cancerígenos; el formaldehído produce trastornos respiratorios, alérgicos,
mutágenos y, posiblemente, cancerígenos; el óxido de etileno, lesiones irritativas y alérgicas, conjuntivitis, cataratas, alteraciones digestivas, respiratorias, neurológicas, abortos y partos prematuros, efectos mutágenos y cancerígenos; las sustancias ácidas o básicas, graves quemaduras cutáneas u oculares; y los disolventes, efecto a nivel del sistema nervioso.

**Riesgos asociados a los residuos radioactivos:** el peligro de irradiación asociado a los residuos radiactivos es muy bajo, ya que las personas que los manejan están informadas de los riesgos y sometidas a controles, siendo su gestión competencia de la autoridad respectiva, en Argentina, la Comisión Nacional de Energía Atómica.

**Riesgo Infeccioso:** es preciso diferenciar entre el riesgo asociado con el uso o manipulación del material propio de la actividad sanitaria (pipetas, bisturíes, gasas, algodones o materiales empañados de sangre) y el asociado con ese material cuando se ha desechado y, por lo tanto, se ha convertido en residuo. Este riesgo es mucho menor que el de las prácticas sanitarias propiamente dichas.

Los residuos biosanitarios suponen un problema de seguridad e higiene en el trabajo del personal sanitario, de limpieza y lavandería de los centros sanitarios y del personal de recogida, tratamiento y eliminación de los residuos fuera de los mismos.

**El virus del SIDA fuera del huésped se inactiva al cabo de pocas horas, en tanto el virus de la hepatitis B conserva su infecciosidad por más tiempo.** Es por tanto mayor, aun siendo muy bajo, el potencial de infección por VHB que por VIH tras un contacto percutáneo con un residuo contaminado. De hecho, en la literatura científica hay muy poca casuística de infección por VIH asociada a un residuo biosanitario. Su transmisión exige un contacto percutáneo, y la casi totalidad de los objetos punzantes de los centros de atención de la salud se eliminan en contenedores que minimizan dicho accidente. Además, hay que tener en cuenta que la mayoría de los portadores del VIH se atiende en forma ambulatoria y el material (agujas, jeringas, algodones) utilizado por ellos y manchado con secreciones se elimina sin protección alguna en los residuos domiciliarios.

La precaución de introducir los residuos punzantes o cortantes en envases ad hoc y no perforables es suficiente para reducir hasta la insignificancia el riesgo de infección. El riesgo por contacto con residuos biosanitarios no punzantes ni cortantes (batas, guantes, sábanas, etc.) es todavía mucho menor, habiéndose demostrado en varias investigaciones la improbabilidad de que puedan transmitan una infección.

6. Fases operativas del manejo de residuos patogénicos

El manejo de residuos en las instituciones de salud incluye las siguientes fases operativas.

6.1. Generación

Es la fase en que se produce un residuo.

**Unidad generadora:** es el centro de atención de salud que, como resultado de su actividad, produce residuos patogénicos. Su responsabilidad es separar los mismos según la clasificación adoptada a partir de los lugares en que se generan. Dentro de cada unidad se diferencia:

- La persona física: es todo individuo que, a través de cualquier técnica, descarte un elemento. Es responsable ante la persona jurídica.
• La persona jurídica: está constituida por los establecimientos estatales o privados que producen residuos y es en quien recae la responsabilidad legal.

**Punto de generación**: es el lugar donde se produce el residuo como resultado de una actividad. Por ejemplo: laboratorio, hemodiálisis, hemoterapia, salas de internación.

**6.2. Segregación**

Consiste en la separación de los residuos según la clasificación adoptada. Debe realizarse en el punto de generación y requiere capacitación previa de todo el personal.

**Elementos de contención**: son aquellos recipientes donde se colocan los residuos inmediatamente después de la segregación. Ellos son:

• El descartador para cortopunzantes.
• El descartador para hojas de bisturí.
• La caja para vidrios.
• Las bolsas.

Existen otros tipos de elementos de contención para residuos líquidos no biológicos o residuos radioactivos (artículo 3 de la Ley CABA 154/99 y Decreto 1881/01).

El **descartador para cortopunzantes**: los desechos cortopunzantes son todos los objetos con capacidad de penetrar y/o cortar tejido humano. Deberán ser desechados en descartadores inmediatamente después de utilizados.

**Material**: polipropileno rígido, resistente a caídas y perforaciones.
**Capacidad**: se adaptará a la demanda generada en cada sector.
**Requerimiento indispensable**: con boca ancha para descarte de mandriles o similar, ranurados para descarte de agujas, con sus correspondientes tapas de sellado. Pueden también estar ranurados para descarte de hojas de bisturí, según el área, por ejemplo, el quirófano. Aquellos que sean depositados sobre las mesadas de trabajo deberán contar con base de sujeción.
**Tamaño**: de acuerdo con las actividades que se realicen. Hay que tener en cuenta aquellos que deban ser utilizados en el mismo lugar de atención del paciente (tamaño pequeño).
**Ubicación**: mesadas de estación de enfermería, laboratorio, quirófano, mesa de anestesia, bandeja de curaciones, etc. Se colocan en **bolsas rojas**.

El **descartador para hojas de bisturí**: puede o no estar integrado al descartador para cortopunzantes.

**Material**: polipropileno, de paredes rígidas no traspasables por las hojas. Con **ranuras** que permitan el descarte de hojas de diferentes tamaños y tapa para su sellado posterior. Una vez llenos en sus ¾ partes deberán ser tapados y colocados en **bolsas rojas**.

**Descartadores**: se utilizarán para el descarte de ampollas, frascos y trozos de vidrio, y se descartarán en **bolsas rojas o negras**, según estén contaminados o no.

**Bolsas**: es la primera ubicación de los residuos sólidos. Una vez llenas deberán ser colocadas cerradas con precinto e identificadas dentro de recipientes en el lugar más próximo al origen de
los residuos, quedando establecido que las **bolsas rojas** son para residuos patogénicos y las **bolsas negras** para los comunes.

**Material:** deben ser de polipropileno resistente, impermeable y opaco.

**Tamaño:** deberán estar de acuerdo con la cantidad de residuos generados en cada lugar y el tipo de recipiente.

- **Bolsas negras:**
  - Chico: 40 x 60 cm; espesor 40 a 60 micrones.
  - Mediano: 50 x 70 cm; espesor 60 a 80 micrones.
  - Grande: 60 x 90 cm; espesor 120 micrones.

- **Bolsas rojas:**
  - Chico: 40 x 60 cm; espesor 120 micrones.
  - Mediano: 50 x 70 cm; espesor 120 micrones.
  - Grande: 60 x 90 cm; espesor 120 micrones.

### 6.3. Almacenamiento

Es la colocación de los residuos por un periodo temporal en un lugar o instalación que pueda garantizar su aislamiento, la protección personal y la seguridad ambiental.Consta de tres etapas:

**Almacenamiento primario o básico:** se realiza en los recipientes donde se encuentran las bolsas según el color y/o descartadores que correspondan a la segregación. Ellos son:

- **Cestos:** de material plástico rígido o acero inoxidable, fácilmente lavable, para ser utilizados en áreas administrativas, equipados con bolsa negra.

- **Recipientes** accionados con tapa a pedal o removable: de plástico o acero inoxidable, fácilmente lavables, para ser utilizados en salas de internación, consultorios externos y baños, de volumen adecuado a la producción de residuos estimada.

**Almacenamiento intermedio:** se realiza en el lugar donde se ubica el contenedor de mayor tamaño, donde permanecen las bolsas rojas, luego de ser retiradas de los recipientes para el almacenamiento primario y hasta ser transportados para su almacenamiento y tratamiento final. Este tipo de almacenamiento existirá en aquellas instituciones cuyo ritmo de producción de residuos haga necesaria su existencia. Los lugares de almacenamiento intermedio deberán ser de acceso restringido para evitar que el público tome contacto con ellos.

Los **recipientes** deben ser de material plástico rígido, de gran espesor, fácilmente lavable, con tapa y ruedas, con capacidad para unos 150 litros. Deben estar identificados como “contenedor de residuos patogénicos” como requisito indispensable. Deberán ser lavados con agua y detergente y desinfectados con solución de hipoclorito de sodio diluido. Esta tarea estará a cargo del personal de limpieza o mantenimiento según la modalidad de cada institución.

**Almacenamiento final:** es el espacio físico destinado al depósito de los residuos generados en los diferentes servicios del establecimiento hasta el momento en que son retirados para su tratamiento y disposición final. Las características que debe tener la planta física destinada al efecto son:
- **Accesibilidad**: el ambiente deberá estar ubicado y construido de tal forma que permita un acceso rápido y seguro de los carros de transporte interno. Deberá contar con rutas señalizadas y espacios adecuados para la movilización de los carros durante las operaciones y tener una capacidad mínima de almacenamiento de aproximadamente tres veces el volumen generado.

- **Exclusividad**: el ambiente designado deberá ser utilizado solamente para el almacenamiento de residuos patogénicos. Por ningún motivo se deberá almacenar otros materiales.

- **Seguridad**: el lugar debe reunir condiciones físicas estructurales que impidan que factores climáticos (lluvia, sol, viento) ocasionen daños o accidentes a terceros.

- **Higiene y saneamiento**: el ambiente debe estar iluminado y contar con ventilación independiente. Debe tener un sistema de abastecimiento de agua fría y caliente con presión apropiada, un lavatorio para el personal y una pileta para la limpieza del lugar y los carros de recolección con manguera y desagüe.

- **Pisos**: deben ser lisos, libres de juntas de expansión, fácilmente lavables y con un declive que permita el escurrimiento a parrillas y desagües hacia el alcantarillado sanitario.

- **Paredes**: deben ser lisas, de fácil lavado, pintadas con pintura de colores claros. Las juntas entre los pisos y las paredes y las paredes entre sí deben ser redondeadas para facilitar la limpieza (zócalos y juntas sanitarias).

- **Techo**: debe estar en buenas condiciones para impedir las filtraciones.

- **Ventanas y puertas**: deben disponer de mosquiteros. Las puertas deben ser lo suficientemente amplias para permitir el paso de los carros de transporte.

- **Señalización**: tendrá que tener letreros alusivos a la peligrosidad de los residuos que allí se depositan.

### 6.4. Transporte interno

Consiste en la recolección y traslado desde el sitio de generación o almacenamiento intermedio hasta el almacenamiento final. Las principales recomendaciones que se deben implementar y cumplir son las siguientes:

- Se deben utilizar carros de tracción manual con amortiguación apropiada y llantas de goma.
- El carro debe estar diseñado de tal forma que asegure la hermeticidad, impermeabilidad, facilidad de limpieza, drenaje y estabilidad, a fin de evitar accidentes por derrame de los residuos, choque o daño a las personas.
- Los carros deben tener preferentemente puertas laterales y estar identificados con símbolos de peligrosidad.
- Se debe señalar la ruta de recolección.
- La recolección deberá realizarse en horarios de menor tránsito interno.
- De no contar con un ascensor de uso exclusivo, será acordado un horario para esta tarea. Posteriormente a la utilización del ascensor, se procederá a su limpieza y desinfección.
- Los carros deberán lavarse y desinfectarse al finalizar la operación.
- Los operadores a cargo del transporte de residuos no podrán ingresar a las áreas de circuito cerrado.
- El personal que realice el transporte no podrá desempeñar otra función mientras se halle abocado a esta tarea.
La periodicidad del transporte deberá realizarse de acuerdo con el volumen de residuos generados por sector. En áreas administrativas, consultorios externos, medicina nuclear, hemoterapia, etcétera: una o dos veces por día. En áreas de internación (incluyendo áreas críticas), quirófanos y sala de guardia: dos a tres veces por día o según necesidad.

Es fundamental no realizar transporte de residuos en horarios de comida, visitas médicas, visitas del público y traslado de pacientes.

6.5. Contingencia

Se denomina contingencia a todo derrame o emanación de residuo patogénico, por ejemplo, por rotura de bolsas. Se deberá limitar la expansión del derrame. Los desperdicios se recogerán con elementos que garanticen la seguridad del operador, por ejemplo, palas o pinzas, y serán colocados en bolsas o descartadores, según corresponda. En caso de derrame de fluidos corporales, se colocará papel absorbente, que se descartará en bolsa roja y luego se precederá a la limpieza habitual.

Para enfrentar situaciones de emergencia se debe contar con un protocolo que debe contener y explicitar las medidas necesarias que deben tomarse durante eventualidades. Estas deben ser efectivas y de fácil y rápida ejecución.

La comunidad hospitalaria en general, y especialmente el personal a cargo del manejo de residuos (de limpieza y mantenimiento), debe estar capacitada para enfrentar la emergencia y tomar a tiempo las medidas previstas. Un plan de contingencia debe incluir, pero no limitarse a:

- Procedimientos de limpieza y desinfección.
- Protección del personal.
- Reempaque en caso de ruptura de bolsas o recipientes.
- Disposición para derrames de líquidos infecciosos o especiales.

En caso de fallas en el equipo correspondiente al almacenamiento y tratamiento de residuos, deben implementarse alternativas eficaces y rápidas. Se debe aisl el área en emergencia y notificar a la autoridad responsable. Además, se deberá realizar un informe detallado de los hechos y procedimientos adoptados.

6.6. Higiene

Todo aquello que se encuentre limpio, seco y desinfectado no desarrollará gérmenes. La suciedad y la acumulación de líquidos, la humedad y los restos orgánicos favorecen la formación de reservorios y la proliferación de gérmenes. La higiene requiere de tres tiempos diferentes:

- Lavado, fregado con agua jabonosa y/o detergente.
- Enjuagado, secado.
- Desinfección con hipoclorito de sodio diluido.

Además, se deben cumplir ciertos parámetros, tales como:

- La limpieza y la desinfección deberá ser realizada por personal exclusivamente destinado a esa tarea.
- La limpieza siempre se realiza desde las áreas más limpias hacia las más sucias.
- La técnica a emplear será la de arrastre por medios húmedos.
• No se utilizarán métodos secos (escobas, escobillones, plumeros, rejillas) que movilicen el polvo ambiental.
• Si se utilizan para la limpieza detergentes desinfectantes, no es necesario el proceso de desinfección posterior.
• El fregado es la acción más importante, ya que provoca la remoción física de los microorganismos.
• Para la desinfección, el hipoclorito de sodio deberá ser diluido al 1%.
• La lavandina se utiliza dentro de las veinticuatro horas y se conserva en envase opaco y cerrado.
• No se debe mezclar lavandina con detergente, ya que, además de inactivarlo como desinfectante, resulta tóxico para el personal que lo utiliza.
• Se elimina la solución utilizada en la limpieza de los inodoros, chateros o similares.
• Se debe disponer de un área para la limpieza de los elementos de almacenamiento.
• La higiene de los recipientes se efectúa posteriormente a la recolección de los residuos y cada vez que sea necesario.
• Al finalizar la tarea, se lava, desinfecta y coloca el equipo en el lugar destinado para tal fin.
• Los trapos deben quedar extendidos para ser secados y los baldes, invertidos.
• La limpieza de la planta de almacenamiento deberá realizarse con agua a presión, detergente y cepillo, posteriormente desinfectado las veces que sea necesario.
• Los elementos utilizados en la limpieza de los lugares de almacenamiento deberán ser exclusivos del sector.
• El uso de guantes resistentes es obligatorio para la protección del personal, a fin de evitar lesiones en las manos con los productos de limpieza y/o accidentes de trabajo.
• Al terminar la limpieza, el personal se quitará los elementos de protección, los lavará y desinfectará con hipoclorito de sodio y luego se quitará los guantes y se lavará las manos con jabón antiséptico.

7. Bioseguridad

El riesgo biológico es aquel donde el agente capaz de producir daño es un ser vivo (bacterias, virus, hongos, parásitos, etcétera). El conjunto de medidas, normas y procedimientos destinados a controlar y/o minimizar dicho riesgo biológico es la bioseguridad. Debe quedar claro que el riesgo cero no existe. Es de suma importancia poder identificar los riesgos con anterioridad a la implementación de un programa de capacitación, con la finalidad de poder determinar el uso de las barreras de protección adecuadas. Todo empleador tiene la obligación de proteger y promover la salud del personal a través de:

• Educación continua.
• Cumplimiento de normas vigentes.
• Vigilancia sanitaria.
• Inmunizaciones.
• Catastro.

Además, todo empleado tiene el derecho y la obligación de capacitarse para desempeñar las tareas pertinentes.

El objetivo general de la bioseguridad es minimizar el riesgo potencial de accidentes laborales, en este caso, en el manejo de los residuos patogénicos.
7.1. Lavado de manos

Es la técnica más sencilla y económica y la que previene gran parte de las infecciones nosocomiales, aun las relacionadas con el manejo de los residuos. Deberá realizarse siempre que el personal entre en contacto con el enfermo, cuando culmine sus tareas, antes de ingerir alimentos, antes y después de ir al baño y cuando estén visualmente sucias.

Se define el “lavado de manos” como la fricción vigorosa con jabón de toda la superficie de ambas manos, seguida del enjuague con agua. Toda persona que entra en contacto con residuos patogénicos deberá realizar este procedimiento con jabón antiséptico. Este suspende los microorganismos y permite que sean arrastrados durante el enjuague, inhibiendo asimismo su crecimiento. La técnica consiste en:

- Humedecer las manos.
- Colocar una dosis de jabón antiséptico.
- Jabonar toda la superficie de manos y muñecas.
- Friccionar entre diez y quince segundos fuera del chorro de agua corriente.
- No olvidar los espacios interdigitales.
- Enjuagar con abundante agua.
- Tomar una toalla de papel.
- Secar con la toalla ambas manos.
- Cerrar la canilla utilizando la toalla.
- Descartar la toalla en el recipiente.

7.2. Vestimenta protectora

El personal deberá comenzar su trabajo con el equipo de protección, ya que los riesgos están siempre presentes. El uso de barreras protectoras dependerá del riesgo asociado al manejo de los residuos.

Vestimenta de los generadores: según el procedimiento a realizar, utilizarán:

- Gorro.
- Antiparras.
- Barbijo descartable con doble tira de ajuste e hidrorrepelente.
- Camisolín descartable, hidrorrepelente y resistente.
- Guantes de latex.
- Botas descartables e hidrorrepelentes.

Vestimenta del personal de limpieza y/o mantenimiento: se deberá identificar la vestimenta por color de acuerdo con el área:

- Antiparras.
- Barbijo descartable con doble tira de ajuste e hidrorrepelente.
- Ambo de uso industrial y/o uniforme que lo identifique.
- Guantes de uso doméstico.
- Botas de goma media caña calzadas por encima del pantalón.
Vestimenta del personal que realiza el transporte interno:

- Antiparras.
- Barbijo descartable con doble tira de ajuste e hidrorrepelente.
- Camisa y pantalón de uso individual.
- Delantal impermeable para el lavado de recipientes contenedores.
- Guantes resistentes, reforzados en las palmas y dedos, que cubran el antebrazo.
- Botas de goma media caña calzadas por encima del pantalón.

Vestimenta del personal a cargo del pesado y entrega de los residuos:

- Idem "personal de limpieza y mantenimiento".
- Casco protector
- Gorro (mientras pesa las bolsas).

7.3. Cuidados especiales

Elementos cortopunzantes (agujas, bisturíes, lancetas u otros): debe prestarse especial atención a lo que se está haciendo. El material cortopunzante que queda expuesto significa un peligro para otra persona. Las agujas utilizadas no deberán reencapucharse, doblarse, desinsertarse manualmente de la jeringa o tirar directamente a la bolsa. No se debe forzar el ingreso de una aguja o similar en un recipiente que esté lleno. El material cortopunzante debe eliminarse en descartadores para tal fin que deben estar en lugares cercanos al operador. Para ello se deberá llevar siempre un descartador cuando se realicen procedimientos que impliquen la utilización de un elemento cortopunzante. Una vez llenos en sus tres cuartas partes, los recipientes deberán ser tapados y colocados en bolsas rojas. En caso de ruptura de vidrios, los trozos se deberán colocar en descartadores, debiendo asegurar que no atraviesen y rompan las bolsas de residuos. Las cajas, una vez llenas, deberán cerrarse y ser rotuladas con la leyenda “peligro vidrios”.

Fluidos corporales (orina, materia fecal, esputos, otros): se debe tener especial cuidado cuando se desechan estos fluidos para evitar salpicaduras en el operador, las paredes que rodean el lugar, sanitarios, mobiliarios, pisos, recipientes. Para su manipulación, se deben utilizar guantes, antiparras, barbijo y realizar lavado de manos al concluir la operación.

7.4. Bolsas de residuos patogénicos (recolección y transporte)

Toda manipulación deberá realizarse con barreras protectoras (guantes, barbijos, etc.). Las bolsas deberán doblarse hacia fuera recubriendo los bordes del recipiente en un cuarto de la superficie exterior para evitar la contaminación del mismo. Se deberán retirar cuando estén llenas en sus tres cuartas partes, cerrándolas con un precinto. Deberán llevar un rótulo identificatorio que indique lugar, fecha y hora en que fue generado el residuo. Este procedimiento será realizado por el operador dedicado a la recolección, que procederá a colocar una nueva bolsa. Estas deberán ser tomadas por el cuello sin arrastrarlas ni acercarlas al cuerpo. Luego se colocarán en los recipientes de almacenamiento intermedio o carro de transporte sin forzar su entrada. Está prohibida la reutilización de bolsas y el trasvasado de los residuos. Mientras se realiza la tarea de recolección y transporte no se debe beber, comer o fumar. Toda vez que finalice su tarea, el operador deberá lavar y desinfectar el equipo de protección. La desinfección se realizará con una solución de hipoclorito de sodio diluido durante diez minutos. Se deberá observar la integridad
de guantes y botas, y en caso de rotura se deberán desechar y cambiar por otros. Finalizada la tarea, el operador deberá lavarse las manos con jabón antiséptico y, de ser posible, ducharse antes de retirarse del establecimiento.

7.5. Controles de salud

El personal expuesto realizará exámenes preocupacionales y médicos periódicos, como mínimo una vez al año, debiendo incluir placa de tórax, PPD, análisis de sangre y orina y examen clínico, a cargo y/o supervisados por el área de Promoción y Protección de la Salud o Medicina del Trabajo.

7.6. Vacunas

El personal deberá contar con vacunas doble adultos (tétano-difteria) y vacuna para la hepatitis B según Ley 24.151, ambas con esquemas completos y chequeo posterior de seroconversión.

7.7. Heridos

Se deberá eximir de tareas que impliquen riesgo a todas aquellas personas que presenten lesiones en piel expuesta.

7.8. Accidentes laborales

En caso de lesiones cortantes, punzantes o por salpicaduras, se procederá de la siguiente manera:

- Ante corte o punción, estimular el sangrado y proceder al lavado de la zona afectada con abundante agua y jabón antiséptico.
- En caso de salpicadura de mucosa ocular, nasal o bucal se deberá lavar con abundante agua, no utilizando productos abrasivos (por ejemplo, hipoclorito de sodio).
- Dar parte al superior inmediato, a los efectos de que cada entidad empleadora haga cumplir los pasos que reglamente el accidente laboral de acuerdo con lo fijado por la Ley 24.557 (Riesgos del trabajo) y su decreto reglamentario.

8. Programa de Formación Permanente

Tiene como propósito capacitar a todo el personal de la institución afectado al manejo de los residuos patogénicos, para optimizar su gestión con el fin de proteger la salud de los pacientes, del personal y de la comunidad en general.

Sus objetivos son:

- Implementar un programa de capacitación permanente en relación con la temática.
- Comprometer al personal para la participación en su formación continua.
- Mejorar las condiciones de higiene y seguridad en el lugar de trabajo.
- Disminuir los costos institucionales.
El Programa de Formación Permanente en Bioseguridad se inscribe en el Programa de Gestión de Residuos Patogénicos, es decir que se diseña, se implementa y se evalúa en estrecha vinculación con el resto de las actividades referidas a la temática. Por eso, deberá estar coordinado por el responsable de capacitación y consensuado con los responsables del Programa y el Comité del rubro, rescatando el valor del trabajo interdisciplinario.

Como toda programación, debe partir de un diagnóstico de la situación real que permita identificar los responsables, los procedimientos habituales, los recursos disponibles y los errores más frecuentes en la tarea, así como las posibles causas de los mismos.

Se proponen los objetivos que la institución desea alcanzar a través de la capacitación y que permitan instalar y/u optimizar el Programa de Gestión de Residuos Patogénicos. El cronograma de las acciones para cada sección o área permitirá el ordenamiento en el tiempo y facilitará el monitoreo. El mismo deberá organizarse teniendo en cuenta los diferentes grupos del personal, según criterios de tipo de actividades, niveles de responsabilidad y equipos de tareas ya constituidos.

Las estrategias educativas y comunicacionales sugieren partir del enfoque de “la pedagogía de la problematización o por resolución de problemas”, ya que se trata, en palabras de M. C. Davini (1986), de una formación en profundidad. No se trata de una transmisión de conocimientos que interesa solamente a las áreas intelectuales de la personalidad, sino de una interacción de experiencias entre los sujetos [...] Esta pedagogía muestra puntos de interés para la formación de los trabajadores de los servicios de salud. Su punto de partida es la indagación sobre la práctica entendida como la acción humana y profesional dentro de un contexto social e institucional.

Para esto, se pueden implementar cursos breves con metodología de taller que permitan detectar los inconvenientes y los errores habituales para la correcta gestión de los residuos en cualquiera de sus fases y para el cumplimiento de las normas de Bioseguridad en general. A partir de allí, el cuestionamiento, la discusión, el acuerdo y la adecuación a las normas y disposiciones vigentes facilitarán el logro de los objetivos propuestos, en una ida y vuelta de la práctica diaria o la reflexión teórica.

El monitoreo permanente y las evaluaciones parciales y de resultados deberán también planificarse, de modo que sirvan de insumo para el plan permanente. Se sugiere la aplicación de herramientas tradicionales de evaluación, como cuestionarios y observación directa, así como el planteo de situaciones a resolver y la consulta al personal responsable de cada área acerca de las mejoras detectadas o los puntos a seguir trabajando en la Gestión de Residuos y en Bioseguridad.

El Programa se complementa, además, con todas las actividades que a iniciativa del comité abocado al tema y del personal en general puedan desarrollarse en el ámbito del establecimiento. Se sugiere para esto charlas con especialistas, seminarios breves de profundización de una temática o de un área en particular, actualizaciones acerca de nuevas tecnologías, procedimientos y elementos de protección.

Una mención especial merece la difusión de la Bioseguridad y el manejo de residuos en la comunidad relacionada con el establecimiento de salud, en especial los pacientes y sus acompañantes, a quienes se debe involucrar mediante la transmisión de normas mínimas para el cuidado de su salud y la higiene de la institución. Se pueden producir volantes, afiches, folletos u otros materiales comunicacionales que hagan simple la comprensión y promuevan la participación.
9. Propuestas y recomendaciones

El análisis de la legislación y de los sectores involucrados en la problemática de los residuos patogénicos en la provincia de Buenos Aires y en la Ciudad Autónoma de Buenos Aires permite formular ciertas sugerencias y recomendaciones tendientes al mejoramiento y optimización del régimen legal existente.

La primera recomendación está orientada a armonizar la legislación nacional, la de la provincia de Buenos Aires y la de la Ciudad Autónoma de Buenos Aires, en cuanto a la definición de “residuos patogénicos”, en especial en lo concerniente a sus notas de peligrosidad (la infección solamente o junto con la toxicidad). Dicha armonización tiene como objeto evitar que lo que es residuo patogénico en una jurisdicción no lo sea en otra, y lo que constituye una contravención en una jurisdicción no lo sea en otra.

Por otra parte, la segunda recomendación apunta a la necesidad de dejar clara y definitivamente establecido que la jurisdicción local debe prevalecer en lo concerniente a la normativa sobre residuos patogénicos. Esto implica que la legislación nacional sólo debe considerarse aplicable:

- Cuando exista alguna implicancia interjurisdiccional.
- En lo relativo al régimen de responsabilidad civil y penal. Esta solución es la que también debe prevalecer en relación con la Ciudad Autónoma de Buenos Aires y las provincias en su situación de jurisdicciones autónomas.

En cuanto a la tercera recomendación, esta se encuentra orientada a propiciar la eliminación definitiva y sin medias tintas de las prohibiciones de ingreso de residuos peligrosos al territorio de la provincia de Buenos Aires y al territorio de la Ciudad Autónoma de Buenos Aires, establecidas en su Constitución y su Estatuto Organizativo, respectivamente.

La cuarta recomendación consiste en promover un mayor protagonismo municipal en la aplicación de la normativa sobre residuos patogénicos. En la provincia de Buenos Aires, el régimen de autarquía municipal mantenido en su reforma constitucional de 1994 se encuentra balanceado con una significativa delegación de facultades. Sin embargo, dicha situación no se verifica en lo relativo a la gestión de residuos patogénicos. No obstante, un incremento de la participación municipal puede canalizarse a través de iniciativas zonales y comunales que pueden contribuir al mejoramiento de la aplicación de la legislación provincial.

Asimismo, la quinta recomendación apunta a una futura superación del régimen del CEAMSE, en el marco de la prevalencia de la jurisdicción provincial. Por ello, el CEAMSE debería adaptarse a los requerimientos de la legislación provincial en materia de residuos especiales dentro de un marco concertado.

En el precedente judicial “Municipalidad de La Plata contra CEAMSE”, si bien se rechazó tal pretensión, existió una importante disidencia a favor de la prevalencia de la jurisdicción provincial.

A su vez, la sexta recomendación se refiere a los métodos de tratamiento de residuos patogénicos, indicándose que es conveniente y aconsejable tender a estándares de incineración más exigentes, propiciar el uso de otras tecnologías cuando y en la medida en que ello sea posible, promover el tratamiento en centros alejados de zonas densamente pobladas y de producción agrícola-ganadera. También debe tenerse en cuenta que, desde el punto de vista de la política legislativa, el uso generalizado de unidades de incineración por parte de establecimientos generadores, con la correspondiente multiplicación de puntos de generación de emisiones gaseosas, dificulta el control estatal.

La séptima recomendación está orientada a exigir a los incineradores de residuos patogénicos su inscripción como generadores de residuos especiales, toda vez que la incineración de residuos
patogénicos (material orgánico y no orgánico) es susceptible de generar sustancias que hacen incompatible el tratamiento del material resultante como residuos sólidos domiciliarios.

La octava recomendación apunta a establecer mecanismos de cooperación con la Superintendencia de Riesgos del Trabajo de la Nación y las Aseguradoras de Riesgos del Trabajo que aseguren establecimientos generadores, a transportistas y a operadores de residuos patogénicos, dada la relación existente entre higiene y seguridad industrial y protección ambiental y salud humana.

La novena recomendación señala la conveniencia de establecer incentivos para programas de certificación ISO 14000 para establecimientos generadores y operadores, como una forma de optimizar el cumplimiento de la normativa existente y de la concientización pública y privada sobre las implicancias sobre la problemática relativa a los residuos patogénicos.

Finalmente, la décima recomendación resalta la obligatoriedad de la Evaluación Previa del Impacto Ambiental en relación con cualquier iniciativa pública o privada relacionada con residuos patogénicos que pueda tener un efecto significativo sobre la salud pública.

Nuestra propuesta es que, en los centros donde exista Servicio de Medicina Preventiva, el personal del mismo tenga la responsabilidad de evaluar periódicamente (si es posible, en forma mensual) el cumplimiento de las recomendaciones encaminadas a un adecuado manejo de los residuos hospitalarios. Si no existe este servicio, será competencia de la dirección o de quien esta delegue.

Esta evaluación atenderá a determinar si se está realizando correctamente la segregación, clasificación y manejo de los residuos sólidos, características de los líquidos y fórmulas de eliminación y manipulación de los residuos radioactivos.

Asimismo, corresponde al Servicio de Medicina Preventiva informar sobre los eventuales riesgos y formar al personal de limpieza y sanitario en la prevención de los accidentes en el puesto de trabajo, elaborar normas sobre la gestión de los residuos y proponerlas a la dirección para su ratificación, velando luego por su cumplimiento.

La Administración del Hospital establecerá las condiciones en la contratación de limpieza para que se cumplan las recomendaciones citadas anteriormente (tipo de bolsas, contenedores, periodicidad de evacuación, recogida, depósito y transporte), y llevará un libro de registro en el que se hará constar en forma diaria la cantidad y naturaleza de los residuos y cesión de los mismos a otros gestores, indicando nombre de estos.

El riesgo que pueda suponer alguno de los residuos producidos en el hospital se reduce a mínimos inapreciables si se siguen rigurosamente las recomendaciones indicadas para su manejo y manipulación.
Bibliografía


Sociedad Argentina de Infectología, Recomendaciones de higiene hospitalaria.
1. Los seres vivos y su adaptación al clima

Todas las especies que habitan nuestro planeta presentan características definidas que les permiten adaptarse a las condiciones físico-químicas de su entorno, como así también ajustarse a la presencia de otros organismos, tanto de su misma especie como de otras.

La adaptación al medio ambiente asegura la supervivencia de la especie, adecuándose a una gran variedad de hábitats (terrestre, acuático y aéreo).

La clave de la diversidad de los seres vivos en el planeta es la adaptación a los factores abióticos (no vivos) del ambiente, como la temperatura, la luz, la salinidad, la humedad, y a los factores bióticos (vivos), representados por la acción de los otros organismos.

Se denomina adaptación a las transformaciones fisiológicas, morfológicas y/o de comportamiento que sufren los organismos para sobrevivir en un determinado medio.

La existencia y prosperidad de un organismo dependen del carácter completo de un conjunto de condiciones. La ausencia o el desmedro de un organismo podrán ser debidos a la deficiencia o al exceso, cualitativo o cuantitativo, con respecto a cualquier factor que pueda acercarse a los límites de tolerancia del organismo en cuestión. Los organismos con márgenes amplios de tolerancia para todos los factores son los que tienen más probabilidades de estar extensamente distribuidos.

Uno de los factores externos a los que se han tenido que adaptar todas las especies, particularmente los seres humanos, es el clima, y dentro de este las temperaturas y sus cambios más o menos bruscos, de acuerdo con las regiones en las que habitan.

La temperatura es un factor ambiental con grandes fluctuaciones, más variable en el medio terrestre que en el acuático debido a que el agua amortigua los cambios bruscos de temperatura por poseer un calor específico elevado. Las oscilaciones de temperatura en el agua pueden ser de 2 a 3°C, mientras que en los ambientes continentales como el desierto durante el día se pueden alcanzar muy altas temperaturas y durante la noche varios grados bajo cero.

Para expresar los grados relativos de tolerancia se ha generalizado el empleo de una serie de términos que sirven para dar significado a la amplitud o estrechez de la misma. Así, los términos estenotermal y euritermal expresan cuando un organismo está adaptado a un rango estrecho o amplio de temperatura, respectivamente.

---

1 La Ley de Tolerancia de Shelford enuncia que “cada ser vivo presenta, frente a los diversos factores ecológicos, unos límites de tolerancia entre los cuales se sitúa su óptimo ecológico. Se complementa con la Ley del Mínimo de Liebig. Así, entonces, no sólo la escasez de algo puede constituir un factor limitativo, sino también el exceso de algo (luz, agua,...). De manera que los organismos tienen un máximo y un mínimo ecológico, con un margen entre uno y otro que representan los límites de tolerancia.
Muchos animales no poseen la capacidad de regular su temperatura corporal interna (invertebrados, reptiles, anfibios y peces). Son los ectodermos, poiquilotermos o de sangre fría. En ellos la temperatura interna depende del exterior. En cambio, otros tienen la capacidad de regular su temperatura corporal (aves, mamíferos) independientemente de su entorno. Son los endodermos, homeotermos o de sangre caliente.

En este último caso, la regulación se logra quemando alimento, además del desarrollo de aislantes térmicos, como una capa de grasa bajo la piel (ballenas y osos), la presencia de pelos (mamíferos) o plumas (aves).

La capacidad de hibernar es un mecanismo adaptativo que muchos organismos han desarrollado para sobrevivir a los fríos inviernos. Por ejemplo, durante la hibernación desaparece prácticamente cualquier función metabólica. En los poiquilotermos, disminuye el azúcar en sangre, aumenta el almacenamiento de glucógeno en el hígado, aumenta el tono muscular, entre otros cambios fisiológicos. Los homeotermos se comportan como heterotermos adoptando una hipotermia controlada. Tanto la respiración como la frecuencia respiratoria y cardiaca bajan notablemente, y la temperatura corporal puede caer hasta los 10°C.

Otras adaptaciones están representadas por la presencia de escamas, plumas y pelos que ayudan a formar trampas de calor, permitiendo al organismo controlar mejor la temperatura corporal. En muchas ocasiones, los organismos recurren a tiritar para producir algo de calor y mejorar sus condiciones internas. El jadeo y el sudor son mecanismos mediante los cuales los organismos disipan calor para regular su temperatura. Algunos animales utilizan las alas para abanicarse. La migración es otro mecanismo adaptativo que les permite a muchas especies encontrar lugares con mejores condiciones térmicas.

La distribución mundial de la especie humana es única entre los mamíferos, y se debe a una adaptación peculiar del Homo sapiens: la cultura. Por cultura se entiende el sistema de conocimiento, comportamiento y utensilios mediante el cual los seres humanos se comunican con el mundo externo. La cultura tiene la ventaja adicional de ser acumulativa: cada generación humana puede comunicar una suma de conocimientos a la siguiente, de modo que la siguiente no tiene que aprender de nuevo a controlar su entorno.

Se puede afirmar que la cultura es el conjunto de medios de adaptación aprendidos por la humanidad, se basa en la capacidad de comunicar por medio de símbolos y es exclusiva de la especie humana, aunque muchos de nuestros parientes cercanos, como los chimpancés y los gorilas, muestran tipos de comportamiento social semejantes, a los que se denomina protocultura.

La cultura ha permitido a la especie humana adaptarse primeramente a las regiones tropicales con abundante alimento a disposición, luego a las zonas templadas con menos disponibilidad de alimentos autóctonos, pero con climas más benignos, y finalmente a las zonas árticas. Para ello, ha desarrollado diferentes estrategias en cuanto a sus tipos de viviendas, vestimenta y utensilios, que le permitió colonizar ambientes adversos y/o inhóspitos.

Casos paradigmáticos de adaptaciones culturales a diferentes condiciones climáticas desfavorables con temperaturas extremas son las comunidades de esquimales y los beduinos.

Los esquimales2 desarrollan una vida nómade, siguiendo las migraciones de los animales que cazan (caribúes, osos, ballenas, focas, entre otros) y de los que aprovechan todas las partes posibles para alimentarse, abrigarse y construir sus viviendas y herramientas de caza. En invierno, viven en cabañas de madera o en planchas de pizarra recubiertas de turba o nieve, mientras que en verano, durante las expediciones de caza, habitan “iglús”, que constituyen una de las soluciones arquitectónicas más ingeniosas del mundo. Estos se fabrican con hielo y su interior se calienta con fuego de aceite o grasa de foca, conservando la temperatura gracias a la capacidad aislante del hielo y al túnel de acceso, que en su parte media es más bajo que el suelo del

---

2 Los esquimales actualmente son denominados inui. Viven en las tundras del norte de Canadá, Alaska, Groenlandia y Siberia, donde las temperaturas siempre se ubican muy por dejado de los 0°C.
interior. En ocasiones, construyen varios comunicados con una red de túneles para que varias familias puedan vivir juntas. Sus vestidos se basan en pieles de foca con el pelo hacia dentro y forradas de piel de oso o zorro que las mujeres mastican con sus dientes y curten con orina. Estas ropas se cosen con tendones de animales.

En el caso de los beduinos, para soportar el calor extremo del desierto, usan ropa ligera, túnicas que permiten la circulación de aire y libertad de movimiento, proporcionando protección contra el sol y la arena. Sus vestidos se diseñan para cubrir el cuerpo entero, salvo la cara, manos y pies. El vestido principal para los hombres es el thawb de algodón blanco o la túnica gris. Encima de la túnica, los hombres llevan mantos de seda larga o chaquetas de algodón llamadas kibrs. Las chaquetas están abiertas en el frente y afianzadas con cinturones de cuero. La mayoría de los beduinos viven en tiendas bajas, rectangulares, hechas con tejido de pelo de camello o de cabra. Los lados de las tiendas pueden enrollarse para dejar entrar la brisa o cerrarse herméticamente durante la lluvia o las tormentas de arena.

Sin embargo, en la actualidad, la situación a la que el hombre debe adaptarse es compleja. Debe darse un salto cualitativo que permita la adaptación a las condiciones climáticas que resultan del calentamiento global, que no sólo afecta las temperaturas, sino también los regímenes pluviales globales y todos los demás elementos del sistema atmosférico (presión, humedad, vientos, entre otros).

Se estima que uno de los problemas más importantes del aumento global de la temperatura está representado por el derretimiento de los hielos polares y de las altas montañas y un aumento en el nivel de agua de los océanos, que en su avance podrían inundar las costas y hasta cubrir vastas regiones del mundo.

Algunas de las adaptaciones que se anuncian para afrontar este fenómeno se circunscriben a la elevación de las edificaciones, el levantamiento de las represas, la reubicación de los sistemas de suministro de agua, la restricción de determinados proyectos urbanos y la modificación de las prácticas agrícolas.

Asimismo, para combatir el calentamiento global se deberá establecer una agenda institucional de gestión en salud, a nivel local y regional, para combatir los perjuicios de envergadura que se estima tendrán lugar en diferentes zonas del planeta, especialmente por la aparición y distribución de enfermedades transmitidas por vectores, de tipo parasitario e infecciosas, como así también aquellas directamente ligadas al aumento de la temperatura.

2. La regulación de la temperatura

Los mamíferos, entre ellos el ser humano, son homeotermos, es decir que mantienen una temperatura interna constante, con pequeñas variaciones en condiciones normales (36,5 ± 0,7°C; matutina < 37,2°C; vespertina 37,7°C), a pesar de los cambios de temperatura ambiental. La función celular requiere esa condición. A 0°C se forman cristales de hielo en las células vivas y a 45°C se coagulan sus proteínas. El ser humano puede soportar temperaturas intensas poco inferiores a 35°C y superiores a 41°C, pero por muy poco tiempo. Los umbrales de dolor a nivel de la piel son de 10°C para el frío y de 43°C para el calor (Kenney, 1998: 42.2).

---

3 En idioma árabe, bedau o badawis significa morador del desierto. Se da el nombre de beduinos a los árabes nómadas que viven en los desertos de Arabia Saudita, Siria, Jordania, Iraq e Israel. Son originarios de la península arábiga.

4 El calentamiento global se define como el aumento del promedio de la temperatura de la atmósfera terrestre y de los océanos con respecto a períodos anteriores. Este incremento se habría acentuado en las últimas décadas del siglo XX y la primera del siglo XXI. La quema de petróleo, carbón y gas natural ha aumentado el CO2 y otros gases de efecto invernadero en la atmósfera y ha producido el consiguiente aumento de la temperatura.

5 Los animales poiquilotermos ("de sangre fría") tienen una temperatura similar a la ambiental.
El sistema termorregulador está compuesto por termorreceptores distribuidos en la piel. Los receptores de Krause y Ruffini no son considerados ya como termorreceptores, si bien se los mencionaba así en el pasado. El corpúsculo de Ruffini es un mecanorreceptor comprobado, y al de Krause no se lo menciona más. Actualmente, se considera que las variaciones extremas de temperatura son detectadas por terminaciones libres inespecíficas.

Las variaciones ubicadas dentro del rango fisiológico son detectadas para el lado del calor por terminaciones libres de tipo C, es decir, de muy pequeño diámetro (alrededor de 1 μm) y no mielinizadas, lo cual les da una muy baja velocidad de conducción (< 2 m/seg). No tienen característica histológica que las distinga, solamente se las identifica por su reacción al calor.

En cambio, hacia el lado opuesto, se ha identificado un receptor de frío consistente en una ramificación libre pero terminada en los extremos en pequeñas encapsulaciones, y en este caso se trata de fibras mielinicas de la clase Aδ con diámetro de 1 a 5 μm y velocidad de conducción de 3 a 30 m/seg. A este receptor aún no se le ha dado un nombre específico, pero, a diferencia del caso anterior, aquí sí hay una identidad histológica. Recientemente se ha comprobado que ciertos estímulos fríos también excitan transmisión por fibras C, lo cual permite deducir que algunas terminaciones libres también se comportarían como receptores de frío en ciertos casos.

La sensación térmica se caracteriza por su pobre resolución espacial, y se transmite a centros superiores por los haces espinotalámicos, y se transmite a centros superiores por los haces espinotalámicos. Hay una escasa cantidad de axones transmitiendo señales específicas de temperatura en estas vías, en el hombre probablemente alrededor de mil axones por cada hemiméndula.

Los mecanismos voluntarios de regulación son el traslado de uno a otro lado con temperatura ambiente más favorable, vestirse con más o menos prendas y modificar la actividad física.

La alimentación produce las calorías necesarias para alcanzar el rango normal de temperatura del cuerpo y los mecanismos de eliminación evitan superarlo. El calor es un producto intermedio del metabolismo basal. La tasa basal aumenta por la actividad muscular, el efecto de la tiroxina, adrenalina, noradrenalina y otras hormonas, o de la estimulación simpática, la actividad química de las células y los procesos de digestión, absorción y almacenamiento de los alimentos. Si la temperatura de la piel es menor a la del medio, también la radiación o convección del calor ambiental son fuentes menores del calor corporal.

Los sistemas efectores principales son la vasodilatación periférica y la sudoración para la termólisis, y la vasoconstricción periférica y los escalofríos para la termogénesis.

Los principales órganos donde se genera el calor en reposo son el hígado, el cerebro y el corazón. En actividad física, la mayor proporción se genera en los músculos. Así, en reposo, el 72% del calor del cuerpo es producido por las vísceras, pero en actividad física intensa esa proporción se reduce al 25%.

Hay un gradiente térmico de alrededor de 4°C entre el interior y la superficie del cuerpo que permite eliminar el exceso a través de esta última. La temperatura rectal es aproximadamente de 37°C (36,2 a 37,6 °C), representa la que mantienen las regiones centrales del organismo y es la vía principal de retroalimentación para los centros cerebrales. La temperatura cutánea, a 25°C ambientales, es de alrededor de 33°C, algo mayor en la superficie que cubre los sectores viscerales y menor en las manos y los pies.

La piel y la grasa del tejido celular subcutáneo actúan como aislantes térmicos del interior del organismo respecto a la temperatura exterior. El tejido adiposo conduce el calor a una velocidad 33% menor que los otros tejidos. A su vez, los vasos sanguíneos de la dermis y el plexo venoso del tejido celular subcutáneo son la base estructural del mecanismo dinámico de perfusión (vasoconstricción o vasodilatación) que lleva, con la sangre, a la eliminación o conservación del calor por la piel. Este mecanismo está bajo control hipotálamico y regulado por el sistema nervioso simpático que es influido por la temperatura interna y por la del ambiente (Guyton, 2006: 891). Las variaciones de alrededor de 10°C en la superficie son toleradas normalmente.
excepto que bajen en forma duradera a 18°C, produciendo anoxia, o suban a 45°C, produciendo quemaduras.

La temperatura corporal básica surge de la actividad metabólica y aumenta con la actividad física (Tº/rectal 39-40°C en el ejercicio o trabajo enérgico), con las emociones, ya sean de placer o sufrimiento, o con la exposición duradera a temperaturas ambientales altas. Hay, asimismo, un ritmo circadiano (±0,5°C): es mínimo durante el sueño a la madrugada, sube con la vigilia y es máximo en la tarde.

Dada la producción interna de calor, si las vías de transferencia al ambiente se inhibieran, un hombre de 70 kg aumentaría su temperatura corporal a 42 o 43°C en 5 horas (Selkurt, 1986: 480).

3. Mecanismos de transferencia de calor

Los mecanismos de transferencia de calor al exterior o termólisis son cuatro: radiación, conducción, convección y evaporación.

La radiación es la transferencia seca de calor a través de radiaciones infrarrojas en todas las direcciones, hacia o desde objetos sin contacto con el cuerpo. Es independiente de la temperatura del aire ambiente. Se produce desde o hacia las superficies expuestas. Por eso, se pierde más calor con las piernas abiertas y los brazos extendidos y menos acurrucándose. El sentido de la transferencia va del objeto-cuerpo más caliente al más frío. El cuerpo en reposo, sin ropa y a temperatura ambiente media elimina el 60% del calor interno por radiación. Las ropas disminuyen la temperatura de las superficies que cubren y reflejan la radiación que reciben, si son claras, en un 70% (Seaman, 1989: 62).

La conducción es la transferencia seca por contacto del cuerpo con objetos, de sólido a sólido (Malchaire, 1998: 42.15), de diferente temperatura. En condiciones normales, el 6% del calor interno se elimina por conducción hacia los objetos materiales y el aire. Se pierde más calor por conducción al estar acostado en un piso o sumergido en agua.7 El agua, por su alto calor específico, absorbe mucho más calor que el aire (Guyton, 2006: 892).

La convección es la transferencia de calor entre la piel y el fluido circundante, aire o agua. Si la temperatura de la piel es superior a la del aire circundante, este se eleva y es reemplazado por una masa más fría (Guyton, 2006: 892). En condiciones normales, se elimina por convección espontánea un 15% del calor interno, ya que el aire más caliente se aleja del cuerpo y es reemplazado por aire más frío. Los ventiladores o acondicionadores de aire generan una convección forzada como lo hace el viento. La eliminación por corrientes forzadas es proporcional a la raíz cuadrada de la velocidad de las mismas.

La evaporación es la transferencia húmeda de calor por la transpiración o sudoración de la piel y mucosas respiratoria y bucal.9 Es el principal mecanismo de termólisis frente a altas temperaturas (32°C o mayores), aunque a medida que la humedad ambiente se acerca al 100% la

---

6 La unidad "clo" indica el grado de aislamiento que permite el paso de 1 Kcal/m²/hora con un gradiente térmico de 0,18°C entre ambos lados de las ropas (Seaman, 1989: 62). Un clo corresponde a un traje de calle con camisa, corbata, pantalones y chaqueta (Malchaire, 1998: 42.16)

7 Un varón desnudo, de peso y talla promedio, sufrirá hipotermia de 30°C sumergido en agua a 5°C y podría morir en 2 horas a 15°C. La muerte por hipotermia se produce cuando la temperatura rectal baja a alrededor de 25°C (Seaman, 1989: 60.)

8 La conductividad térmica del aire es baja, la del agua es alta. Así, el primero a 18°C se siente tibio, a diferencia del agua, que se siente fría (Seaman, 1989: 61).

9 La transferencia va de la piel a la capa de vapor de agua que cubre todas las superficies húmedas, y desde esta al aire ambiente. Las glándulas sudoriparas son apócrinas, están agrupadas y secretan a los foliculos pilosos, y écrinas que secretan directamente a la superficie de la piel. De estas últimas hay entre dos y cuatro millones distribuidas en forma heterogénea en la piel del cuerpo (Kenney, 1998: 42.4).
capacidad de evaporación disminuye (Matute Tobías et al., 2000: 2639). Depende del aumento del flujo sanguíneo periférico por vasodilatación. Este flujo es en situación normal de 200-500 ml/min (5-10% del gasto cardíaco) y puede llegar a 7,8 l/min (alrededor de 30% de ese gasto), lo que puede reducir el retorno venoso al corazón (Kenney, 1998: 42.3). El agua del sudor, al pasar al estado gaseoso, absorbe alrededor de 0,66 Kcal/gr. (Seaman, 1989: 60). La evaporación es inversamente proporcional a la humedad ambiente. La humedad elevada produce el efecto enfriamiento del sudor. La transpiración o evaporación insensible elimina por la piel y la mucosa respiratoria entre 600 y 700 ml/día de agua, contribuyendo a deshacerse del calor. Cuando la temperatura de la piel es superior a la del ambiente, el calor se elimina por radiación, conducción y evaporación insensible. Pero si esta situación se invierte, es decir, la temperatura de la piel pasa a ser menos que la del ambiente, el cuerpo dispone sólo de la evaporación insensible y la del sudor para eliminarlo.

La conservación del calor corporal en ambientes fríos opera por termogénesis a través de la reducción del flujo sanguíneo periférico y de los escalofríos. Estos son contracciones involuntarias de las fibras musculares superficiales que aumentan la producción de calor sin generar trabajo.

La ropa aumenta el espesor de una capa privada de aire que rodea a la piel y reduce la eliminación por conducción y convección alrededor del 50% respecto de la del cuerpo desnudo. Esta reducción queda anulada, en razón de la alta conductividad térmica del agua, si la ropa se humedece.
4. Exposición al calor

La exposición a altas temperaturas ambientales, sin compensación suficiente por los mecanismos de eliminación del calor corporal, puede producir diversos cuadros sistémicos (Bouchama y Knochel, 2002: 1978-88; Parsons, 1998: 42.17; Ogawa, 1998: 42.8):

- **Estrés térmico**: disconfort y tensión fisiológica.
- **Síncope por calor**: pérdida temporal de la consciencia por reducción del riego cerebral, precedido de palidez, visión borrosa, mareo y náuseas. La vasodilatación cutánea que puede generar un flujo de hasta ocho litros/minuto (Matute Tobias et al., 2000: 2640), la postura erguida y la deshidratación leve reducen el retorno venoso al corazón y este, el gasto cardíaco. Los pacientes cardiovasculares están más predispuestos. La posición supina y la ingesta de líquidos salinos producen la recuperación.
- **Calambres por sudación excesiva por esfuerzo prolongado**: son dolorosos y hay espasmos carpopedales; si afectan los músculos abdominales, pueden simular un abdomen agudo; la temperatura corporal tiene un aumento ligero; los signos vitales tienden a ser normales y la piel, según la humedad ambiente, es caliente y seca o pegajosa y fría (Beers y Berkow, 1999: 2455); están causados por depleción salina, por lo que la reposición de agua sola sin sodio no es solución. Se descansa en lugar fresco y rehidrata con sales vía oral.
- **Agotamiento por calor** (heat stress): se produce por pérdida excesiva de sudor a consecuencia de un esfuerzo prolongado en ambientes calurosos. La depleción hídrica y salina sin compensación lleva a la hipovolemia. La fisiopatogenia de este fenómeno es compleja. Se producen endotoxinas que trastornan la respuesta inflamatoria e inmunitaria así como el proceso de coagulación y llevan a la citotoxicidad. Comienza con debilidad, ansiedad, náuseas y síncope; sed y oliguria, puede asociarse a calambres y a quemaduras, la piel se presenta viscosa y pálida, las mucosas están siempre secas; hay taquicardia e hipertermia de 39ºC o mayor; la sudoración se reduce y la temperatura cutánea aumenta, disminuyen las proteínas, el sodio y el calcio en sangre, así como el hematocrito; de no tratarse, progresa al golpe de calor. Pueden producirse tetania, incoordinación motora o conducta psicótica. El paciente debe trasladarse a un ámbito fresco y colocarse en decúbito con la cabeza más baja que el cuerpo, se humedece el cuerpo con toalla o esponja, se ventila el ambiente y se procede a reponer agua y electrolitos vía oral o endovenosa. La reposición con agua sola es engañosa, porque la dilución de la sangre aplaca de inmediato la sed. No se recomiendan las tabletas de cloruro de sodio por la potencial lesión gástrica. Se previene con la ingesta de soluciones hipotónicas disponibles en el comercio (Matute Tobias et al., 2000: 2639).

---

10 Ya sea aguda (tres a cuatro horas de esfuerzo extenuante) o duradera (diez a doce días).
11 El sudor contiene entre 30 y 100 mEg/l de sodio, la sangre entre 138 y 145 mEg/l; la sudoración excesiva lleva a la hipernatremia.
12 A temperaturas internas de 49 a 50ºC se produce necrosis celular en cinco minutos. La temperatura interna crítica oscila entre los 41,6 y los 42ºC por 45 minutos a 8 horas. Hay termómetros calibrados para medir esos niveles (Merck-Beers, Berkow, 1981).
13 La velocidad de la administración de solución salina isotónica o glucosada debe ir disminuyendo la natremia a 2 mEg/l (volumen)/hora. La mayor rapidez puede desencadenar la entrada masiva de agua a las células y generar edema cerebral (Matute Tobias et al., 2000: 2640).
Golpe de calor: el agotamiento por calor sin tratamiento tiende a evolucionar al golpe de calor, que es una urgencia grave ya que puede producir la muerte por fallo multiorgánico. Una carga térmica excesiva eleva la temperatura corporal incontrolada que lesiona los tejidos, en especial el Sistema Nervioso Central (SNC), y produce el fallo de los mecanismos de termorregulación. Son más propensos los niños y los mayores de sesenta años, los obesos, diabéticos, alcohólicos y las personas sin entrenamiento que desarrollan esfuerzos prolongados en ambientes con carga térmica. Sus características clínicas son:
- Hipertermia interna (rectal) superior a 41ºC.
- Alteraciones del SNC, desde la depresión o confusión al coma.
- Mucosas secas, hipotensión y taquicardia, taquipnea y oliguria.
- Piel caliente y seca por falta de sudoración; la sudoración con piel fría no lo descarta.

Se presenta sin pródromos o con ellos. En este caso se trata de cefaleas y náuseas, ansiedad, desorientación, somnolencia, confusión, temblores, espasmos y convulsiones. Hay trastornos cerebelosos. Con frecuencia hay midriasis. En algunos casos quedan secuelas como ataxia cerebelosa, hemiplejia, afasia y trastornos emocionales.

Según los casos, hay cuadros diversos como vómitos y diarrea, hemorragias en piel, mucosas y órganos internos. Si aumenta la actividad fibrinolítica del plasma, se genera el cuadro de la Coagulación Intravascular Diseminada (CID). Son frecuentes las arritmias cardíacas.

La deshidratación, la vasodilatación periférica y la depresión temporal del miocardio pueden llevar al shock y a la insuficiencia renal aguda.

Si se demora el tratamiento, evoluciona a la rabdomiolisis y a la mioglobinuria, con cifras altas de CK, y a la insuficiencia renal aguda por necrosis tubular. La letalidad del golpe de calor promedia alrededor del 40% de los afectados.

La víctima debe ser comenzar a ser tratada en el lugar, cambiarrla a un ambiente fresco y ventilado, previo retiro de las ropas innecesarias y enfriamiento de la cara y cabeza con compresas de agua fría o bolsas de hielo en cuello, axilas e ingles y lavada constantemente con agua tibia. Tradicionalmente se recomendaba la inmersión del cuerpo en agua fría o su envoltura en sábanas frías seguido de masajes en la piel, pero estos procedimientos conllevan al riesgo de suscitar escalofríos y vasoconstricción periférica. Se ha preconizado, en cambio, pulverizar un líquido frío sobre el cuerpo y promover su evaporación con corrientes de aire. Se transfunden soluciones electrolíticas endovenosas a temperaturas de 10ºC y se aplica oxigenoterapia.

Los controles de temperatura se hacen en recto y esófago (no en axila ni boca) con termómetros que alcancen a los 45ºC, no siempre disponibles. Se coloca al paciente bajo monitoreo cardíaco y se miden electrolitos plasmáticos y gases sanguíneos venosos. Se recomienda la intubación traqueal, la medición de la presión venosa central, la colocación de tubo gástrico y catéter urinario.

La lesión local por calor típica es la miliaria (sudamina), cuya patogenia es la obstrucción de los conductos sudoríparos con la consecuente anhidrosis. La miliaria cristalina retiene el sudor bajo la capa córnea, formando ampollas pequeñas, transparentes y no inflamatorias que en pocos días se rompen y forman escamas. En la miliaria rubra el sudor se acumula en la epidermis y se

---

14 La incidencia es alta en países cálidos y desérticos (en Arabia Saudita, el golpe de calor varía según las estaciones entre 22 y 250 casos por 100.000 habitantes, y el agotamiento por calor entre 450 y 1.800 casos por cada 100.000). Las olas de calor en EE.UU. generan una incidencia de golpe de calor entre 17,6 y 25,5 casos por 100.000 habitantes. Se lo ha categorizado en clásico o epidémico, relacionado con las olas de calor y por ejercicio, en deportistas o trabajadores expuestos (Matute Tobias et al., 2000: 2640).
forman pápulas o vesículas inflamatorias con prurito. La acumulación microbiana y sus toxinas dañan las células, por lo que la recuperación demora semanas. En la miliaria profunda, el sudor se acumula en la dermis con reacción inflamatoria, formación de pápulas, nódulos y aun abscesos. Se presenta en zonas tropicales.

Son factores predisponentes la edad avanzada, la obesidad, el alcoholismo crónico, algunos fármacos (anticolinérgicos, antihistamínicos, fenotiazidas, psicofármacos) y drogas (alcohol y cocaína). Los favorece la ingesta desmedida de agua sin sales para calmar la sed.

5. Hipotermia y exposición al frío

Ambientes fríos son aquellos en que las pérdidas de calor corporal son mayores a lo normal, y se consideran tales cuando las temperaturas son menores a los 18 o 20°C. Los hay naturales y laborales. Entre estos últimos, en especial la industria de la alimentación (2 a 8°C) y cuando se requiere congelación (–25°C), así como los que se contactan con agua fría, como las labores en alta mar (Holmér, Granberg y Dahlstrom, 1998: 42.32).

La hipotermia se define por una temperatura rectal de 34ºC o menor. Para medirla hay que bajar bien la columna del termómetro o utilizar termocupla. La hipotermia accidental supone una termorregulación normal y es más frecuente en climas fríos o por sumersión en agua, pero puede ocurrir también en climas cálidos por trastornos en la termorregulación o por inmovilidad, mantenimiento de ropas húmedas, respiración intensa o descanso sobre superficies frías (Beers y Berkow, 1999: 2456). Hay enfermedades predisponentes, como la diabetes mellitus, el hipotiroidismo, la insuficiencia suprarrenal, la hipoglucemia, las grandes quemaduras, la desnutrición, las enfermedades mentales y el alcoholismo. Este último, en climas no extremos es el factor más frecuente por su prevalencia. La pérdida de calor aumenta por depresión del sensorio y la vasodilatación. Suele acompañarse de hipoglucemia (Hubli-Demling, 1996: 1516). También son factores de riesgo fármacos como los antipsicóticos, ansiolíticos e hipnóticos.

En los ancianos se describe la hipotermia con temperatura corporal menor de 35°C, por disminución en la generación de calor metabólico, del volumen mínimo cardiaco, déficit a la percepción del frío y en la respuesta fisiológica al agresor, afección que pueden sufrir a temperaturas ambientales de 18°C y cuyo riesgo aumenta por la inmovilidad. Se presenta con un cuadro de fatiga, debilidad, incoordinación, confusión aguda, bradicardia e hipotensión, respiración superficial y falta de temblor. En ellos es preciso tomar la temperatura periódicamente y con precisión bajando la columna mercurial al nivel menor para detectar no sólo hipotermia, sino también hipotermia. Los termómetros habituales miden entre 34,4 y 41,2°C. Los hay especiales que llegan hasta los 28,9°C (Hubli-Demling, 1996: 2513).

Los recién nacidos son más susceptibles a padecer hipotermia por la mayor relación de su superficie corporal respecto de su tamaño. El cuadro debe diferenciarse del coma hipotérmico por hipotiroidismo o por otras endocrinopatías como la insuficiencia hipofisaria o suprarrenal.

La exposición a bajas temperaturas ambientales y la inmersión en aguas frías pueden producir lesiones locales o sistémicas. La inmersión en aguas heladas por más de veinte o treinta minutos suele producir la muerte por paro cardíaco o fibrilación ventricular (Guyton, 2006: 900).

Las lesiones locales suelen producirse en la cara, manos, pies y dedos al formarse cristales de hielo en los tejidos superficiales. A menos de 25°C se reduce el metabolismo en las superficies corporales, a 15°C se producen isquemias y trombosis y a –3°C los tejidos se congelan. Los cuadros clínicos clásicos son (La Dou, 1999: 154; cfr. Matute Tobías et al., 2000: 2646):

---

15 Equivale a la temperatura corporal central por debajo de 35°C. Se categoriza como leve entre 32,2 y 35°C, moderada entre 28 y 32,2°C y grave menos de 28°C (Matute Tobías et al., 2000: 2643).
La perniosis o eritema pernio (sabañones), por vasoconstricción persistente en nariz, lóbulos de orejas y parte distal de dedos de manos y pies que se manifiestan con eritema pruriginoso y doloroso, de color azulado con edema que puede evolucionar a la ulceración. Es más frecuente en mujeres y en los meses fríos.

El pie de inmersión es causado por la exposición de las extremidades distales al frío húmedo y se presenta con una primera etapa de pies fríos e inflamados, color blanco o cianótico y pérdida de la sensibilidad. Una segunda etapa, a pocos días, evoluciona al enrojecimiento, edema, dolor y formación de vesículas y equimosis. Puede complicarse con infecciones, tromboflebitis, así como terminar en úlcera, gangrena o dejar secuelas de parestesias, hiperhidrosis e hipersensibilidad al frío.

La quemadura por congelación, superficial (blanqueácea y gomosa al tacto) o profunda (dura al tacto, acompañada de dolor y entumecimiento local) se trata sumergiendo la zona congelada en agua a 10ºC, cuya temperatura se va subiendo hasta 40ºC, con analgésicos, profilaxis antitetánica, elevación de la parte afectada y reposo. Se cura con antisépticos cotidianamente.

En ambientes fríos se produce vasoconstricción cutánea así como el cierre intermitente16 de las derivaciones arteriovenosas que irrigan fuertemente manos, pies, nariz y orejas en ambientes calurosos.

Más allá de un límite se produce daño vascular e hipoxia tisular. La formación de cristales de hielo comienza en el espacio extracelular que condensa el líquido y lo hace hiperosmótico. Así, atrae agua del espacio intracelular que tiende a deshidratarse y, de continuar la exposición, produce la muerte celular, especialmente en el tejido muscular, nervioso y vascular.17

El tratamiento de las lesiones comienza poniendo a la víctima a cubierto del frío y del viento, secándola y abrigándola. Los masajes y frotamientos no deben practicarse, como tampoco la descongelación ante el fuego, ya que, pudiendo estar ya la zona anestesiada, suelen producirse quemaduras. Se procede primero por la transmisión de calor de zonas calientes del mismo cuerpo a las congeladas (calentar el rostro con la mano caliente, o poner la fría entre las axilas o ingles) y, segundo, se usa agua a 40 o 42ºC para descongelar progresivamente hasta que se

16 La vasodilatación intermitente inducida por el frío (VIIF) por apertura de esas derivaciones protege las partes periféricas. Se produce cada 5 a 10 minutos y produce una sensación de comezón. Las poblaciones de regiones frías tienen una VIIF más prolongada.

17 El capítulo 42.32 (“Ambientes fríos y trabajo con frío”) de la Enciclopedia de la OIT categoriza las afecciones por frío en LFCC y LFSC. Las lesiones por frío con congelación (LFCC) son superficiales si se limitan a la piel y tejido celular subcutáneo, producen dolor agudo y punzante y palidez de la piel, se entumece la región afectada y se hunde al aplicar presión porque los tejidos profundos mantienen su flexibilidad. Las lesiones son profundas si la congelación se extiende más allá del tejido celular subcutáneo, en cuyo caso la piel pálida adquiere un aspecto marmóreo, se endurece y se adhiere al tocarla. El recalentamiento rehidrata las células. La descongelación produce una vasodilatación máxima, con edema y formación de ampollas. Si ha habido lesión endotelial, se activa la cascada de la coagulación produciendo trombosis y anoxia consecuente. Estas lesiones se producen, por ejemplo, cuando se toman metales fríos con la mano desnuda o cuando se manipulan líquidos ultra fríos como el propano.

Las lesiones locales por frío sin congelación (LFSC) se deben a una exposición prolongada al frío y la humedad, aun a temperaturas mayores a las de congelación. Aumentan el riesgo la mala alimentación, la deshidratación previa, el estrés y la fatiga. Se produce estancamiento venoso, especialmente en piernas y pies, que, junto a la vasoconstricción, genera isquemia, edema, entumecimiento y dolor.

Los músculos padecen necrosis, fibrosis y atrofia y los huesos, osteoporosis precoz. Las lesiones nerviosas generan dolor y, como secuelas, disestesias e hiperhidrosis. La fase isquémica dura horas o días y en las siguientes semanas se presenta una fase hiperérmica con calor, pulsos marcados y edema, especialmente en los pies. Pueden aparecer, entonces, ampollas, ulceraciones y gangrena. En estos casos no se indica el calentamiento activo externo con agua. Este tipo de lesión en los pies se previenen manteniéndolos secos, con cambio frecuente de medias, promoviendo el reposo con los pies levantados y dando a ingerir bebidas calientes y nutritivas. La complicación con licuefacción de los tejidos, coagulación intramuscular diseminada e fiebre exige tratamiento quirúrgico que puede llegar a la amputación (Holmér, Granberg y Dahlstrom, 1998: 42.38 y ss.)
recupere la sensibilidad y el color de la piel. Se dan a ingerir bebidas calientes y nutritivas, nunca alcohólicas, y se intenta que la víctima haga actividades musculares menores. Las ampollas, si se producen, deben mantenerse intactas. El paciente se coloca en decúbito con las partes afectadas más elevadas y se lo traslada cuanto antes al hospital.

La prevención en climas fríos se realiza por el uso de ropa abrigada y que no aprienten, calzado ancho y medias secas, guantes y cubriendo la cabeza, ya que por ella se pierde el 30% del calor. Se debe prestar atención a los síntomas iniciales de entumecimiento y hormigueo, vigilar el aspecto y color de las manos, los pies y partes expuestas del cuerpo, evitando mojaduras y secándolas en su caso para calentar si es preciso. El movimiento y las bebidas calientes azucaradas son factores de protección. Por el contrario, el alcohol y el tabaco son factores engañosos por alivio transitorio de las primeras molestias.\(^{18}\)

La primera atención se resumen en:

- Retirar al afectado de la exposición al frío.
- Detectar lesiones asociadas y asistirlo (fracturas, hemorragias).
- Quitar ropas frías o mojadas y todo elemento que comprima la parte corporal afectada.
- Promover el movimiento espontáneo.
- Evitar todo tipo de masaje o frotación.
- Proteger la parte lesionada con gasas estériles.
- Separar los dedos con gasas.
- No romper ampollas; si lo hacen, espontáneamente tratarlas como quemaduras.
- Mantener elevada la zona afectada, cubierta con material estéril y venda no compresiva.
- Proteger con ropas y mantas precalentadas todo el cuerpo.
- Administrar bebidas calientes azucaradas, en ningún caso alcohólicas.
- Descongelar en baño a 40-42°C, secar cuidadosamente y poner al paciente en ambiente cálido.
- Evitar recongelaciones que agraven la situación.
- Calmar el dolor, aplicar vacuna e inmunoglobulina antitetánica y antibióticos según el caso.\(^{19}\)

Las lesiones sistémicas son más frecuentes en las edades extremas de la vida, en politraumatizados, en alcohólicos, en quienes han estado sumergidos en aguas frías y, más aun, en indigentes sin hogar o viviendas precarias. Se producen por la reducción funcional de los sistemas cardiovascular y respiratorio, de la conducción nerviosa, del tiempo de reacción neuromuscular y nerviosa. Se presenta marcha anormal con parálisis intermitente, entorpecimiento del habla, pérdida del sensorio y alucinaciones. En algunos casos hay temblores, convulsiones y marcha atáxica. La diuresis aumenta, hay hemoconcentración, acidosis metabólica e hiperglucemia por liberación de corticoides. Suele haber ileo intestinal por reducción de la motilidad. Puede, por el contrario, presentarse hipoglucemia, alteraciones de la coagulación y coagulación intravascular diseminada.

Por sobre los 35°C corporales, los escalofríos se producen para generar calor, que se pierde por convección. Debajo de 35°C no se presentan escalofríos. La piel es pálida, pero a veces hay eritema y cianosis. Entre los 35 y 32°C hay taquicardia y elevación de la tensión arterial. Por debajo de los 28°C (o 25°C) hay bradicardia de 40 ppm y la tensión arterial baja. Estas hipotermias aumentan la irritabilidad miocárdica y se generan arritmias hasta por la manipulación


\(^{19}\) Ibidem.
brusca o las maniobras instrumentales, por lo que todo debe realizarse con extrema suavidad. El corazón hipotérmico es relativamente refractario a la atropina y la cardioversión.\textsuperscript{20}

No obstante estas presentaciones, se ha dicho que \textit{un cuerpo congelado y con rigidez, sin pulsos perceptibles, no puede ser declarado cadáver hasta que se haya calentado a 36ºC y persista sin signos vitales} (Matute Tobias et al., 2000: 2646).

En la evolución puede presentarse, con 50\% de frecuencia, pancreatitis aguda, así como también necrosis tubular, neumonías y atelectasias, rabdomiolisis y trombosis intravascular diseminada.

El tratamiento, después de sacar al paciente del ambiente dañoso y quitarle, en su caso, las ropas húmedas, sigue las siguientes pautas:

- Ubicación en ambiente cálido (25ºC) y sin corrientes de aire.
- Calentamiento con frazadas tibias (no calientes) que envuelvan todo el cuerpo, incluyendo la cabeza, o inmersión del torso y pelvis en agua tibia, aunque esta dificulta el monitoreo.
- Transfundir soluciones tibias o sangre a 37-43ºC usando serpentinas, lentamente, para evitar que la sangre tibia periférica llegue fría al corazón y produzca fibrilación ventricular.
- Aplicar oxígeno tibio a 40-45ºC.

6. Medición de parámetros ambientales

El tiempo, en sentido meteorológico, se mide en un lugar y momento determinado según los siguientes factores principales: la temperatura, la humedad, la velocidad del aire y la presión atmosférica. El \textit{clima} es el estado medio de la atmósfera en un lugar dado, pero a lo largo de los años y en forma duradera. Se registra en curvas isotermas que unen los puntos geográficos de igual temperatura.

La \textit{temperatura ambiente} depende de la radiación solar que llega a la superficie del planeta y de la fracción de ella que la Tierra refleja. Varía de acuerdo con la altitud y las estaciones.

Se mide con termómetros ambientales en ámbitos locales y con sistemas termográficos en meteorología. La unidad habitual es el grado centígrado, escala Celsius.\textsuperscript{21}

\textsuperscript{20} El tosilito de bretilio se utiliza para cardioversión clínica \textit{(ibid.)}.

\textsuperscript{21} Para convertir los grados centígrados (Celsius) en grados Fahrenheit (F) se aplica la fórmula $^\circ C = (^\circ F - 32) \times 5 / 9$. 
La presión atmosférica es la que ejerce la columna de aire sobre los cuerpos que están bajo ella. De esta manera, el factor disminuye con la altura a nivel del mar. Se mide con barómetro, o en barógrafos en meteorología, y se considera normal, al nivel del mar, 0ºC de temperatura y latitud de 45º, la cifra de 760 mmHg. La unidad actual es el bario o bar, que equivale a 750 mmHg, es decir, algo menos que la cifra indicada.

La humedad atmosférica absoluta es el peso en gramos de vapor de agua por cada metro cúbico de aire. Según la temperatura, el aire puede contener una cantidad máxima de vapor de agua, que es el valor de saturación.

<table>
<thead>
<tr>
<th>Vapor de agua (gr) para saturar el aire (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura (ºC)</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Vapor de agua (gr/m³)</td>
</tr>
</tbody>
</table>


22 La humedad atmosférica específica es el peso en gramos de vapor de agua por kilogramo de aire húmedo. Se usa en Meteorología. Otro indicador es el punto de rocío, que, para una temperatura dada, indica el estado en que el aire ya no puede contener más vapor y el agua se condensa en gotas.
Con estos valores se traza la llamada curva de rocío, al nivel de la cual, con saturación del 100%, no se evapora el sudor porque el aire no recibe más agua en disolución. Por el contrario, la evaporación será mayor cuanto menor sea la curva de humedad atmosférica (Insúa, 1980: 58).

La humedad relativa, indicador de uso habitual, es la relación porcentual entre el peso del vapor de agua, a una temperatura dada, y el que tendría si, a esa misma temperatura, estuviera saturado (si la humedad relativa es 70% a una temperatura de 28ºC, esto quiere decir que el aire tiene el 70% de la cantidad de vapor de agua que a 28ºC podría tener) (Lepera, 1966: 45).

Las mediciones se hacen con psicrómetros de diferentes tipos, como el “de voleo”, que se revolea desde un mango giratorio o de ventilación forzada a pilas. Este instrumento mide la temperatura de bulbo seco y de bulbo húmedo. El primero, a través de un termómetro con el bulbo expuesto al aire y protegido de radiaciones, mide la temperatura de ese elemento independientemente de la humedad y velocidad que se den. El segundo es un termómetro (de circulación forzada) cuyo bulbo se enunda con una tela humedecida y por lo tanto está influido por la humedad. Se cruzan ambas mediciones en una tabla psicrométrica que indica la humedad absoluta y relativa (Insúa, 1980: 61).

---

**Psicrómetro de voleo**


**Psicrómetro a circulación forzada**

El movimiento del aire favorece los mecanismos de termólisis, pero los movimientos más veloces logran un efecto proporcionalmente menor (Insúa, 1980: 58).

La superficie expuesta del cuerpo, ya sea al ambiente o en contacto con sólidos, favorece la termólisis.

Los parámetros básicos para medir los procesos de transferencia de calor y sus procedimientos más habituales son:

- Temperatura del aire: se mide, previa protección de la radiación térmica envolviendo el sensor con aluminio brillante, con termómetros de mercurio, más exactos y fáciles de calibrar, pero más lentos y no adaptables a la automatización; o con termómetros electrónicos, difíciles de calibrar pero rápidos y automatizables.
- Presión parcial del vapor de agua: se mide calculando la humedad relativa, con higrómetros o equipos electrónicos, o a la temperatura de bulbo, con psicrómetro y lectura en diagrama psicrométrico. El rango de la humedad relativa se ubica entre 0 y 100% y la temperatura de bulbo húmedo entre 0 y 50ºC.
- Temperatura radiante media: se mide con termómetro de esfera negra, que es una sonda térmica ubicada en el centro de una esfera hueca cerrada de cobre, pintada en su exterior de negro mate para mantener su coeficiente de absorción en la zona de la radiación infrarroja. El rango se ubica entre 10 y 40ºC.
- Velocidad del aire: se mide con anemómetros de aspas giratorias o termoanemómetros con un rango entre 0,3 m/seg. a 10 m/seg. Para rangos de 0 a 1 m/seg. se utilizan anemómetros de hilo caliente.

7. Olas Geotérmicas

Las olas de frío o de calor son fenómenos geotérmicos de carácter meteorológico que alteran el ritmo térmico normal de un territorio amplio por efecto de la invasión de una masa de aire

---

23 Es un bulbo termométrico envuelto en una camisa húmeda, protegido de la radiación y ventilado a más de 2 m/seg.
muy fría o muy cálida procedente de áreas polares o tropicales. Su frecuencia es variable, afecta más al hemisferio norte del planeta y tiende a coincidir con la estación correspondiente (olas de calor en julio y agosto, de frío en diciembre y enero), y su duración es de tres a cinco días, aunque pueden prolongarse más.24

Se las relaciona con el efecto invernadero previendo el aumento de la frecuencia de olas de calor y la reducción de las de frío. En la tercera etapa del siglo XX se estimó que la temperatura estival aumentaba 0,3ºC por década.

En julio y agosto de 2003, una ola de calor afectó el continente europeo de sur a norte. Francia fue el país más afectado, con un aumento del número habitual de muertes mayor de 11.000 personas. En España, la mortalidad aumentó en un 8%, lo que motivó la elaboración de un Plan Sanitario específico basado en la predicción meteorológica, la información anticipada a la población y un sistema de alerta a los servicios asistenciales ya provistos de protocolos de tratamiento.25

Estos episodios producen efectos negativos sobre el medio ambiente, como pérdida de cultivos o grandes incendios forestales, con sus consecuencias económicas.

Sobre la salud humana provocan agravamiento de enfermedades preexistentes, afecciones específicas y muertes.

Las olas de frío acompañadas de nevadas producen el aislamiento de poblaciones de montaña y el congestionamiento del tránsito, con atrapamiento de vehículos en la nieve.

Los más expuestos a sus consecuencias son los mayores de 65 años y los menores de 4, tanto más aquellos que viven en situaciones de carencia o indigencia y especialmente los que pernoctan en la calle o en refugios improvisados.

Las olas de calor afectan con más intensidad a esos grupos etáreos, a los que sufren enfermedades cardiovasculares, respiratorias crónicas, obesidad excesiva y a los medicados con neurolépticos.

### Olas de frío en el mundo

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Lugar</th>
<th>Efectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navidad, 1970</td>
<td>España</td>
<td>Zonas con –24ºC.</td>
</tr>
<tr>
<td>Enero, 1985</td>
<td>Centroeuropa</td>
<td>Daños en la agricultura en Alemania, Suiza, Austria, Francia y España.</td>
</tr>
<tr>
<td>Navidad, 1996</td>
<td>Europa Oriental</td>
<td>Casi 400 muertos en Moscú, con –30º C.</td>
</tr>
<tr>
<td>13 y 16 marzo, 1998</td>
<td>EEUU</td>
<td>112 muertos en la costa oriental y 33 desaparecidos.</td>
</tr>
<tr>
<td>Enero-febrero, 1994</td>
<td>EEUU</td>
<td>Temperaturas de –31,7º C y –37,8º C.</td>
</tr>
<tr>
<td>Diciembre, 2001</td>
<td>España</td>
<td>Zonas con –18,2º C</td>
</tr>
</tbody>
</table>

Fuente: www.proteccioncivil-andalucia.org/emergencias

### Olas de calor en el mundo

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Lugar</th>
<th>Efectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verano, 1980</td>
<td>EEUU</td>
<td>1.700 muertos.</td>
</tr>
</tbody>
</table>

24 www.proteccioncivil-andalucia.org/emergencias.
<table>
<thead>
<tr>
<th>Fecha</th>
<th>País</th>
<th>Casos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julio, 1994</td>
<td>España</td>
<td>41 muertos, zonas con temperaturas de 46,1º C y oleada de incendios.</td>
</tr>
<tr>
<td>Julio, 1995</td>
<td>EEUU</td>
<td>726 muertos en la zona de los Grandes Lagos.</td>
</tr>
<tr>
<td>Julio, 1999</td>
<td>EEUU</td>
<td>150 muertos en Chicago.</td>
</tr>
<tr>
<td>Diciembre, 2001</td>
<td>Australia</td>
<td>Un incendio causado por las fuertes temperaturas devasta 550 hectáreas de bosque y calcina 170 casas.</td>
</tr>
<tr>
<td>Mayo, 2002</td>
<td>India</td>
<td>737 muertos.</td>
</tr>
</tbody>
</table>

Fuente: www.proteccioncivil-andalucia.org/emergencias
Bibliografía


CAPÍTULO 13

RADIACIONES IONIZANTES

Juan Andrieu
Horacio L. Barragán

1. La configuración atómica

La teoría atómica moderna, aun no del todo completa, se basa en investigaciones realizadas a fines del siglo XIX que demostraron que los átomos están formados por partículas más pequeñas. Sucesivas observaciones llevaron a la conclusión de que el número y ordenamiento de estas partículas son las variables que determinan las propiedades de cada elemento. Las partículas fundamentales del átomo son electrones, protones y neutrones, que se definen según su masa y su carga eléctrica.

<table>
<thead>
<tr>
<th>Partícula</th>
<th>Masa (uma)</th>
<th>Carga (relativa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrón (e−)</td>
<td>0,0005485</td>
<td>1−</td>
</tr>
<tr>
<td>Protón (p+)</td>
<td>1,0073</td>
<td>1+</td>
</tr>
<tr>
<td>Neutrón (nº)</td>
<td>1,0087</td>
<td>0</td>
</tr>
</tbody>
</table>

Ref.: uma: unidad de masa atómica (1/12 parte de la masa de un átomo $^{12}_{6}C$).


El modelo atómico está concebido con un centro constituido por el núcleo denso y condensado rodeado de un espacio entre 10.000 y 100.000 veces más amplio, casi vacío, en el cual orbitan los electrones. El núcleo está constituido por protones, de carga positiva, y neutrones (excepto en el hidrógeno), sin carga eléctrica.

El número de protones de un átomo determina su número atómico (Z), y la suma de los protones y neutrones, su número másico (A). En estado neutro, el átomo tiene igual número de protones (+) que de electrones (−). Así:

$$A = Z + N$$

(donde N es el número de neutrones)

El número atómico (Z) identifica el elemento. Ahora bien, un mismo elemento puede tener átomos con diferentes números másicos (A), por diferencia en el número de neutrones, que se llaman isótopos. Ocupan el mismo lugar en la tabla periódica, ya que su número atómico (Z) es el mismo.

Cada elemento se registra con una o dos letras que son su símbolo. Si se anota el número atómico (Z) como subíndice en el extremo inferior izquierdo y su número másico (A) como superíndice en el extremo superior del mismo lado, se obtiene el símbolo núcldido. Por ejemplo,
el símbolo del hidrógeno es H. Su núcleo tiene un solo protón, pero se conocen tres isótopos, uno sin neutrón, otro con un neutrón (deuterio) y un tercero con dos (tritio). Así, sus símbolos núclicos son $^1\text{H}$, $^2\text{H}$, $^3\text{H}$, respectivamente.

La mayoría de los elementos existe en la naturaleza como mezclas isotópicas. Por eso el peso atómico de un elemento es el promedio del peso de las masas de los isótopos que lo constituyen. Este concepto diferencia el peso atómico, con frecuencia un número fraccionario, del número másico, que es la suma de protones y neutrones del núcleo, número entero.

2. Electrones y radiación electromagnética

La configuración electrónica de los átomos se ha estudiado sobre la base de su radiación electromagnética, que se describe como movimiento ondulatorio. Este movimiento es repetitivo y se caracteriza según las siguientes variables:

- **Longitud de onda** ($\lambda$): es la distancia entre dos puntos idénticos y adyacentes en la onda. Se mide en metros o submúltiplos.
- **Frecuencia** ($v$): es el número de ondas que pasan a través de un punto por unidad de tiempo. Se mide en ciclos por segundo o hertzios (Hz).
- **Velocidad** ($c$): es el producto de la longitud de onda por la frecuencia.

La longitud de onda y la frecuencia son, así, inversamente proporcionales.

El movimiento ondulatorio de las radiaciones electromagnéticas puede considerarse también, según la teoría de Max Planck, como formado por partículas. Estas partículas se denominan fotones y tienen una cantidad de energía (cuanto). Esta última es directamente proporcional a la frecuencia ($v$) e inversamente a la longitud de onda ($\lambda$).

<table>
<thead>
<tr>
<th>Ejemplos de radiaciones según longitud de onda ($\lambda$) y frecuencia ($v$)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modelos</strong></td>
</tr>
<tr>
<td>O. Tv</td>
</tr>
<tr>
<td>O. Radio</td>
</tr>
<tr>
<td>Luz roja</td>
</tr>
<tr>
<td>Luz violeta</td>
</tr>
<tr>
<td>Rayos Y</td>
</tr>
<tr>
<td>Rayos X</td>
</tr>
</tbody>
</table>

Los electrones se comportan como fotones y, según el modelo atómico del físico danés Niels Bohr, ocupan niveles de energía discretos en torno del núcleo del átomo. Si un electrón pasa de un nivel de energía inferior a otro mayor, absorbe una cantidad de energía. A la inversa, si vuelve del nivel superior al originario, emite la misma cantidad de energía que absorbrió. Las energías cambian por la emisión o absorción de fotones y, a su vez, emiten radiaciones.

La configuración electrónica de un átomo se estudia según una distribución probabilística. Esta configuración se distribuye en orbitales, cada uno de los cuales es la región espacial en la que hay mayor probabilidad de encontrar un electrón y depende de cuatro números cuánticos.

---

1 Los números cuánticos son cuatro: principal ($n$), describe el nivel de energía principal que ocupa el electrón; subsidiario o azimutal ($\ell$), indica la forma de la región del espacio que el mismo ocupa; magnético ($m_\ell$), marca la orientación del orbital atómico en el espacio; de giro ($m_s$), refiere la orientación del campo magnético que el giro del electrón produce (Whitten, Gailey, Davis, 1992: 108).
El conjunto de orbitales configura una especie de nube difusa de electrones en torno al núcleo. Las propiedades químicas dependen de la configuración electrónica de un átomo y, de manera más indirecta, de su núcleo.

En las reacciones químicas en que juega la configuración electrónica participan los electrones externos, se liberan o absorben cantidades pequeñas de energía (la velocidad de reacción depende de factores externos) y no se producen elementos nuevos (Whitten, Gailey, Davis, 1992: 802).

3. El núcleo atómico concentra la mayor masa del átomo

Aun siendo una parte ínfima del volumen de un átomo, el núcleo concentra casi toda su masa. Está formado por nucleones, cada uno de los cuales tiene alrededor de 2,000 veces la masa de un electrón. Los nucleones son protones y neutrones que se mantienen unidos por partículas subatómicas de vida corta que son producto de las reacciones nucleares.

Se llaman núcleidos o nucleidos las diferentes formas atómicas de los elementos y sus isótopos. Hay núcleidos estables que tienen una gran energía de enlace entre las partículas nucleares. A su vez, hay núcleidos cuyos núcleos no son estables —se denominan radionúclidos— porque sufren transformaciones y emiten radiaciones. Como consecuencia de estas transformaciones (desintegración radiactiva), los núcleos atómicos pueden variar su número mánico (A), su número atómico (Z), el número de neutrones (N) y su nivel energético al emitir partículas o radiaciones. Esas desintegraciones pueden generar nucleidos inestables (excitados), con exceso de energía y/o partículas, lo cual provoca nuevas desintegraciones hasta lograr un nucleido estable. La estabilidad se logra tras generar distintos tipos de radiaciones con energía suficiente como para producir ionizaciones (radiaciones ionizantes). Las mismas pueden ser corpusculares (alfa, beta+, beta–, protones, y otras) y las radiaciones electromagnéticas puras, como los Rayos gamma. Las partículas y radiaciones radioactivas tienen distintas configuraciones y características.

<table>
<thead>
<tr>
<th>Principales radiaciones ionizantes y sus variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Beta</td>
</tr>
<tr>
<td>Positrón</td>
</tr>
<tr>
<td>Alfa</td>
</tr>
<tr>
<td>Protón</td>
</tr>
<tr>
<td>Neutrón</td>
</tr>
<tr>
<td>Rayos Gamma</td>
</tr>
</tbody>
</table>

Nota: la velocidad se refiere en % aproximado a la velocidad de la luz. La penetración es proporcional a la energía.


---

2 Esta energía surge de una deficiencia de masa que es la diferencia entre la suma de las masas de protones, neutrones y electrones de un átomo según cálculo y la masa medida, que es ligeramente menor. Esto se relaciona con la ecuación de Einstein (E = m.c²).
Los radionúclidos varían en su estabilidad en tanto se desintegran a diferentes velocidades, desde fracciones de segundos a millones de años. Se denomina vida media la cantidad de tiempo para que la mitad del radionúclido se desintegre con emisiones propias.\(^3\)

Estas características han permitido utilizar los radionúclidos en diversos campos de aplicación. El carbono radioactivo (carbono 14), el potasio-argón y el uranio-plomo se utilizan para fechar materiales de gran antigüedad, desde 50.000 hasta miles de millones de años.\(^4\)

En medicina se usan como marcadores radiactivos para formar imágenes orgánicas. Algunos ejemplos se presentan en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Estudio</th>
<th>Radiofármacos</th>
<th>Vía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centellograma tiroideo</td>
<td>Tc 99m Pertecnatato</td>
<td>EV</td>
</tr>
<tr>
<td></td>
<td>I 131-Captación</td>
<td>Oral</td>
</tr>
<tr>
<td></td>
<td>I 131-Rastreo</td>
<td>EV</td>
</tr>
<tr>
<td>Centellograma óseo</td>
<td>Tc 99m Fosfonatos (MDP)</td>
<td>EV</td>
</tr>
<tr>
<td>Centellograma pulmonar</td>
<td>Tc 99m DTPA-Ventilación</td>
<td>Aerosol</td>
</tr>
<tr>
<td></td>
<td>Tc 99m MAA-Perfusión</td>
<td>EV</td>
</tr>
<tr>
<td>Centellograma hepatobiliar</td>
<td>Tc 99m + òanálogos IDA (Ácido iminodiacético)</td>
<td>EV</td>
</tr>
<tr>
<td>Imágenes/Galio</td>
<td>Ga 67-Tumores e infecciones</td>
<td>EV</td>
</tr>
<tr>
<td>Centellograma renal</td>
<td>Tc99 DTPA</td>
<td>EV</td>
</tr>
<tr>
<td>Perfusión Miocárdica</td>
<td>Ti 201-Cloruro</td>
<td>EV</td>
</tr>
<tr>
<td></td>
<td>Tc 99m-Sestamibi</td>
<td>EV</td>
</tr>
<tr>
<td>Ventriculograma radioisotópico</td>
<td>Tc 99m- Glóbulos rojos marcados</td>
<td>EV</td>
</tr>
</tbody>
</table>

Nota: I: Iodo; Ga: Galio; Tc: Tecnecio; Ti: Tali.


El plutonio 238 genera la energía eléctrica de los marcapasos cardíacos por el término de diez años.

Las transmutaciones artificiales de los elementos se inducen bombardeándolos con partículas.\(^5\) El bombardeo con iones positivos de alta energía se hace en los ciclotrones\(^6\) y los aceleradores lineales.

---

\(^3\) El estroncio 90, isótopo radiactivo, se esparció por la atmósfera a partir de las pruebas de armas nucleares. Su vida media es veintiocho años y sus características químicas tienen similitud con el calcio. De allí que se encuentren trazas en la leche, los huesos y los dientes. Se considera que aumenta la incidencia de leucemias y cáncer óseo (Whitten, Gailey, Davis, 1992: 812).

\(^4\) En agricultura se utilizan isótopos emisores de rayos gamma para ciertas plagas, evitando usar otros pesticidas. Así, estos rayos esterilizan las moscas macho que producen gusanos en algunos frutos. También son útiles para hacer mediciones de nutrientes, crecimiento de cosechas y para alargar el tiempo de almacenamiento. En la industria, las aplicaciones son más diversas y numerosas (Whitten, Gailey, Davis, 1992: 812).

\(^5\) El cobalto que se usa en radioterapia se obtiene bombardeando con neutrones el cobalto 59 (Z: 27). El cobalto 59 es un núcleo estable, por el contrario, el cobalto 60 es inestable. En proceso de estabilización espontánea, uno de sus neutrones se transforma en un protón y un electrón. Este último se dispone del núcleo a gran velocidad como radiación β, que, bajo dosis y control estrictos, tiene efecto radioterapéutico. El remanente es un núcleo de níquel (Z: 28; N: 32).

\(^6\) Los ciclotrones están formados por dos electrodos juntos en forma de D, ubicados en cámaras de vacío entre los polos de un electromagnetno donde las partículas se aceleran en trayectoria espiral para que choquen con los átomos blanco.
Los aceleradores lineales están formados por tubos en serie dentro de cámaras al vacío. En cada tubo hay cargas positivas o negativas. Al pasar las partículas, se invierten las cargas y son expulsadas según la polaridad, que varía a frecuencia constante.

4. La fisión y fusión nuclear liberan grandes energías

Se llama fisión a la división de núcleos atómicos con emisión de neutrones. Se produce en elementos de alto peso molecular (más de ochenta), ya sea espontánea o artificialmente.

Se llama fusión a la unión de núcleos de menor peso atómico.7

En ambos procesos, fisión y fusión, se libera gran cantidad de energía por la pérdida de masa, propia de las reacciones.

La bomba atómica está constituida por dos masas críticas capaces de producir fisión en cadena descontrolada por bombardeo de neutrones. Al dispararla mediante un explosivo convencional (por ejemplo, trinitrotolueno, TNT), las masas se juntan y la explosión libera energía calórica y radionúclidos.

Los reactores atómicos, en cambio, usan combustibles fisionables (por ejemplo, plutonio) muy por debajo de la masa crítica de una bomba y bajo control. El combustible habitual está formado por varillas de óxido de uranio (U₃O₈) enriquecido con uranio 235.8 De la fisión nuclear se aprovecha el calor cedido, calentando agua y transformándola en vapor para generar energía eléctrica (Pasquali, 1990: folleto Nº 6).

En la mayoría de los reactores se requieren neutrones lentos (técnicos), mientras que los emergentes de la fisión son rápidos. Así, a estos se los hace chocar con “moderadores” que reducen su velocidad. Son masas de átomos que se interponen a los neutrones para que choquen sin absorberlos y hagan más lenta su trayectoria. Se usan como moderadores el agua común, el gráfico, el helio o el agua pesada u óxido de deuterio (2₁H₂O), según el tipo de reactor. Además, se agregan varillas de control con sustancias que sí absorben neutrones (cadmio, hafnio o acero al borio) para regular la reacción. El enfriamiento se logra por las mismas sustancias moderadoras, que transfieren el calor a un generador que transforma el agua en vapor. Este último impulsa las turbinas que generan electricidad. Se requiere un segundo enfriador, que es agua común que condensa y recircula el vapor de las turbinas.

La detención repentina de un reactor de fisión exige continuar con un enfriamiento eficaz hasta disipar el calor y esperar que desaparezcan los isótopos de vida corta.

El sobrecalentamiento de un reactor puede producir accidentes, como fue el caso de Three Mile Island (Pennsylvania, EE.UU., 1979). La detención precoz de las bombas de agua y la falla de las de urgencia sobrecalentaron el reactor y produjeron la fisión de material. En Chernobyl (Ucrania, 1986) falló el sistema de enfriamiento con agua y se produjo una explosión química. Como no tenía cúpula de retención, la radiación se diseminó por una extensa zona de Europa.

La fusión atómica produce mayor cantidad de energía que la fisión, pero se inicia en niveles de temperatura tan altos que, hasta ahora, no se ha solucionado totalmente el problema de contenerla. La materia se transforma en plasma, un estado capaz de descomponer toda estructura de protección. Se estudia una solución, ya que el combustible para estos reactores de fusión sería el deuterio, prácticamente inagotable,9 a diferencia del uranio. Asimismo, los radionúclidos que produce la fusión son de vida muy corta y, consecuentemente, se simplifica la disposición de los

7 El sol sería un gran reactor de fusión por combinación de dos isótopos del hidrógeno, el deuterio (2₁H) y el tritio (3₁H), y, consecuentemente, produce energía de fusión. Los combustibles fósiles son también energía de fusión “excedente”.
8 Como los minerales de uranio (Z: 92; A: 238) tienen menos de 1% del isótopo 235, este debe ser obtenido en plantas ad hoc.
9 Se puede obtener del agua del océano.
residuos. A nivel experimental, se ha ensayado un arma, la llamada Bomba de Hidrógeno, que genera energía de fusión y, afortunadamente, no ha sido utilizada con fines bélicos.

5. Las radiaciones electromagnéticas

Los **campos eléctricos** y los **magnéticos** en reposo o estables se mantienen independientes, pero cuando varían en el tiempo se inducen unos a otros, generando radiaciones de ondas electromagnéticas. Estas se propagan en el espacio, aun en ausencia de materia, a diferencia de las ondas mecánicas, que la requieren para propagarse.

Las **radiaciones electromagnéticas** se propagan desde su fuente en todas direcciones y transportan energía. El calor del Sol que se propaga a la Tierra por radiación, es una energía radiante (Hewitt, 1999: 332).

Según las variables $\lambda$ y $v$, las radiaciones electromagnéticas se ordenan en un espectro o secuencia de ondas.

---

### Espectro de radiaciones electromagnéticas

<table>
<thead>
<tr>
<th>$10^{-3}$</th>
<th>$10^{-1}$</th>
<th>$10^{-1}$</th>
<th>$10^{-3}$</th>
<th>$10^{-5}$</th>
<th>$10^{-7}$</th>
<th>$10^{-9}$</th>
<th>$10^{-11}$</th>
<th>$10^{-13}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio, TV</td>
<td>Microondas</td>
<td>Infrarrojo</td>
<td>Ultravioleta</td>
<td>Rayos X</td>
<td>Rayos gamma</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Las ondas de radio son de baja frecuencia y alta longitud de onda. En el otro extremo del espectro, los Rayos gamma son de alta frecuencia y baja longitud. Las radiaciones de baja longitud de onda son las más energéticas, producen fuertes efectos sobre átomos, moléculas y células. Se las denomina por ello **radiaciones ionizantes**. La energía de estas ondas y de las partículas de los átomos inestables se mide en **electrovoltios**. En cuanto al nivel de energía, se considera un límite arbitrario que define la radiación ionizante y es de alrededor de los 10 keV (kiloelectronvoltios).
ENERGÍA DE ONDAS ELECTROMAGNÉTICAS Y PARTICULAS IONIZANTES: UNIDADES

Se mide en electronvoltios (eV) y mega electronvoltios (MeV):

- eV es la energía adquirida por un electrón al atravesar una diferencia de potencial de un voltio.
- keV es la unidad mil veces mayor que el eV.
- MeV es la unidad un millón de veces mayor que el eV que se aplica a procesos nucleares.


Se ha referido que un núclido es una especie atómica definida por su número de masa (A), su carga nuclear en protones (Z) y su estado energético. Los núclidos inestables o radioisótopos se desintegran emitiendo partículas y radiaciones, cambiando su número de masa (A), su número atómico y su estado energético (Skvarca, 1981: 32). Esta desintegración se denomina RADIOACTIVIDAD (Sears, Zemansky, Young, Freedman, 2005: 1635).

Sólo trescientos de los 2.500 núclidos conocidos son estables. La unidad de medida de la actividad de una muestra radiactiva activa es el Becquerel (Bq), que equivale a una desintegración por segundo. Antes se utilizaba el Curie (Ci), sus múltiplos o submúltiplos como milicuries (Ci–3) o microcuries (Ci–6);10 (1 Ci = 3,7 x 10¹⁰ Bq).

La radiación alfa (radiación corpuscular) está formada por cuatro partículas: dos protones y dos neutrones (equivalente al átomo de helio doblemente ionizado). Es decir, tienen la carga eléctrica dos y una gran masa (cuatro veces la de un protón). Su interacción con la materia es en una trayectoria tipo rectilínea por su gran poder de ionización, y por ello recorre pocos centímetros en el aire y sólo penetra centésimos de milímetros en los sólidos antes de detenerse. Su emisión es discreta, es decir, se produce en sucesión de partículas separadas. Lleva una energía de entre 3 y 10 MeV a una velocidad de 1/10 de la de la luz11. La radiación beta puede ser de dos tipos: beta positiva (+) o beta negativa (–). Tiene una masa equivalente a la de los electrones.12 Y se genera como producto de la desintegración de un protón o de un neutrón, ocurrida en el núcleo. Tienen masa virtualmente 1.800 veces más pequeña que los protones, que son más penetrantes y con una trayectoria tortuosa. Posee una energía de entre 0,02 y 3 MeV. Las radiaciones electromagnéticas puras son los Rayos gamma y los Rayos X, que son haces de fotones. Los gamma son emitidos por núcleos atómicos en su proceso de desexcitación y los Rayos X son generados por el frenamiento brusco de electrones de alta energía en su interacción con un medio material. Poseen una energía variable entre keV y MeV. Por ejemplo, el cobalto radioactivo (60Co) emite dos tipos de radiación gamma: una de 1,7 MeV y otra de 1,33 MeV.

Los Rayos X, como la radiación gamma, poseen propiedades similares: son penetrantes y pueden atravesar la materia sólida, pueden tener interacciones similares como los efectos fotográficos y biológicos, pero difieren en su origen según la interacción (capacidad de transferir energía) entre estas radiaciones y la materia.

La desintegración radiactiva, responsable de la emisión de radiaciones (alfa, beta), cumple con las leyes de conservación de la masa, de la carga eléctrica y de la energía. Un núcleo atómico se transforma en otro nuevo y emite radiaciones (alfa, beta, gamma, otras). No ocurre este cambio con la generación de Rayos X.

10 Un Curie es igual a 3,7 x 10¹⁰ desintegraciones o decaimientos por segundo, equivalente a la actividad de 1 gramo de radio. La unidad SI es el Becquerel, igual a una desintegración o decaimiento por segundo (Sears, Zemansky, Young, Freedman, 2005: 1644).
11 Recuérdese que la velocidad de la luz es de 300.000 Km/seg.
12 Con carga positiva (B⁺) o negativa (B⁻). Los núcleos naturales emiten sólo partículas B⁻.
Un átomo, en procesos como la fisión nuclear, emite neutrones rápidos, con energía superior a los 10 MeV, y lentos (o térmicos), por debajo de ese nivel de energía. Como no poseen carga eléctrica, ionizan el átomo blanco en forma indirecta por el choque de núcleos de átomos livianos que producen iones.

Los rayos cósmicos proceden del espacio exterior. Su choque con átomos de la alta atmósfera produce radiaciones y partículas ionizantes.

Se señaló que más del 90% de los elementos químicos son inestables o radioactivos, lo que hace que exista una radiactividad natural en el medio. Incluso en el cuerpo humano hay una pequeña radiactividad por la presencia de átomos de carbono 14 y de potasio 40.

6. La radiactividad tiene diversas fuentes y escenarios

Las sustancias radiactivas presentes en la naturaleza mantienen una radiación de fondo en todas partes, y las especies evolucionaron en la Tierra en su presencia (Cherry, OIT: cap. 48). Constituyen fuentes naturales las siguientes:

- Los rayos cósmicos procedentes del espacio exterior, que son más densos en la altura. Así, un viaje aéreo a 9.000 metros expone una dosis equivalente a 0,5 mrem/h.
- El radón (\(^{222}\text{Rn}\)) procedente del aire que cicla del uranio del suelo. Da un gas inerte e imperceptible pero radiactivo con una vida media de 3,82 días (Sears, Zemansky, Young, Freedman, 2005: 1645). Penetra en las viviendas y se ha estimado que su exposición durante toda la vida disminuiría la expectativa en cuarenta días.
- El potasio 40 y otras sustancias radiactivas del mismo organismo.

<table>
<thead>
<tr>
<th>Radiación de fondo. Exposición</th>
<th>Fuente</th>
<th>Dosis equiv. (mrem/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayos cósmicos</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Suelo y aire</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Organismo</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>


La primera fuente artificial fueron los Rayos X de Röentgen (1895), que se aplicaron casi inmediatamente al diagnóstico médico sin conocer sus riesgos. Fue así como numerosos radiólogos pioneros comenzaron a sufrir lesiones dérmicas en las manos y años después se detectaron, en algunos de ellos, casos de cáncer por los rayos. En el siglo XX comenzaron a producirse marcadores y drogas radiactivas de uso en diagnóstico y tratamiento.

El descubrimiento de la radiactividad y después de la fisión y fusión nucleares abrió una nueva fuente de energía.\(^{13}\) La fisión nuclear, trágicamente, dio lugar a la construcción de bombas atómicas, detonadas sobre Hiroshima y Nagasaki (Japón, 1945), y posteriormente a ensayos de bombas más poderosas, atómicas y de hidrógeno.

Otras fuentes artificiales permitieron la utilización de la energía nuclear, ya sea con fines civiles o bélicos.

\(^{13}\) El primer combustible utilizado por el hombre fue la madera, lo que a través de milenios produjo la deforestación de amplias zonas del globo. Le siguió el carbón, que, a su vez, fue sustituido por el petróleo y el gas, combustibles fósiles. El costo y las reservas limitadas de estos últimos llevó a la búsqueda de otras fuentes de energía: las corrientes de agua, las mareas, los vientos y el Sol (Rifkin, 2002: 87).
El uso pacífico de la energía nuclear proviene del control de la fisión nuclear y la construcción de reactores\textsuperscript{14} y centrales nucleares para producir energía eléctrica, que proveen alrededor del 7% del uso mundial de la misma (Rifkin, 2002: 87).

El manejo de las sustancias radiactivas puede producir efectos indeseados sobre el hombre, la comunidad y el medio ambiente. Crea, además, el problema del destino final de sus residuos radiactivos.

Las fuentes artificiales de irradiación son:

- La detonación de armas nucleares que dispersan sustancias radioactivas al ambiente.\textsuperscript{15}
- La detonación de explosivos nucleares para la excavación de puertos, canales, minería, que producen la misma dispersión.
- La precipitación radiactiva procedente de los anteriores. Las detonaciones de armas nucleares experimentales en la década de 1960 proyectaron material radiactivo a la estratosfera y generaron lluvias contaminadas durante muchos años.
- Los accidentes en reactores nucleares.
- El uso médico en investigación y otras actividades civiles de sustancias radiactivas (por ejemplo, Cobalto, Cesio, Iridio, Talio, Tecnecio, Yodo y otros, de uso en el diagnóstico o radioterapia, o con fines industriales como el Iridio).

Cuando la radioactividad contamina la cadena alimentaria, tanto en las biotas marinas como en las terrestres, el hombre queda protegido relativamente por su posición alta en la cadena y por la elaboración y cocción de alimentos.\textsuperscript{16}

Los desechos radioactivos y su disposición final constituyen el factor que más limita el uso de las centrales nucleares.

7. Las radiaciones se miden en distintas dimensiones

Las radiaciones ionizantes llevan su nombre porque penetran la materia, reducen su energía rompiendo enlaces químicos y generan iones.

La primera unidad utilizada fue la Exposición (X), que mide la cantidad de las cargas eléctricas generadas por la ionización en una masa de aire que fue afectada por la radiación. Se expresa en roentgen (R) o en milirroentgen (mR).\textsuperscript{17} Esta unidad se aplicaba a Rayos X y gamma en su interacción con el aire. La radiodosimetría establece las distintas magnitudes que relacionan la energía recibida por la materia y el o los efectos observados. Algunas definiciones son:

- La do\textit{sis absorbida} indica la energía absorbida por la materia o la cantidad de energía cedida a la unidad de masa de tejido. Se expresa en gray (Gy), que equivale a un joule (J) de energía por kilogramo (Kg) de masa del absorbente:

\begin{itemize}
  \item \textit{La do\textit{sis absorbida}} indica la energía absorbida por la materia o la cantidad de energía cedida a la unidad de masa de tejido. Se expresa en gray (Gy), que equivale a un joule (J) de energía por kilogramo (Kg) de masa del absorbente:
\end{itemize}

\textsuperscript{14} El primer reactor fue desarrollado en la Universidad de Chicago por el italiano Enrico Fermi (1942).
\textsuperscript{15} Los efectos inmediatos de estas armas son debidos a la onda explosiva, las calcinaciones y quemaduras por la “bola de fuego”, la ceguera temporal o definitiva por mirarla aun desde varios kilómetros. Le siguen la radiación inmediata y la residual y finalmente la lluvia radiactiva que se expande a grandes distancias. Una bomba con campo mínimo de 0,5 kilotones produce 50% de mortalidad a sesenta metros por la onda expansiva, y la “bola de fuego”, a 250 y 1.270 metros por la radiación inicial y residual (en la primera hora), respectivamente. Un dispositivo de 10 kilotones extiende esos efectos a 590, 1.800, 1.200 y 9.600 metros. La bomba detonada sobre Hiroshima (Japón, 1945) tenía un campo de 13 kilotones (Mettler, 2002: 1555).
\textsuperscript{16} Las poblaciones esquimales y laponas se contaminan más por el consumo de carne de reno y caribú, con mayor radiación interna por la ingesta de vegetación contaminada de estepa.
\textsuperscript{17} Un Roentgen corresponde a $2,58 \times 10^{-4}$ coulombios/Kg de aire seco.
1 Gy = 1 J/Kg

El rad (Radiation Absorbed Dose) es equivalente a 0,01 J/Kg:

1 rad = 0,01 J/Kg = 0,01 Gy

- La dosis equivalente es la dosis absorbida multiplicada por un factor de Eficacia Biológica Relativa (EBR) o Factores de Calidad (FQ), ya que esa eficacia varía según los tipos de radiaciones de igual energía. Se expresa en sievert (Sv):

\[
1 \text{ Sv} = \text{EBR} \times \text{dosis absorbida (Gy)}
\]

El rem responde a similar fórmula cuando la dosis absorbida se expresa en rad:

\[
1 \text{ rem} = 0,01 \text{ Sv}
\]

<table>
<thead>
<tr>
<th>Eficacia Biológica Relativa (EBR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiación</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Rayos X y γ</td>
</tr>
<tr>
<td>Electrones</td>
</tr>
<tr>
<td>Neutrones</td>
</tr>
<tr>
<td>Protones</td>
</tr>
<tr>
<td>Partículas α</td>
</tr>
<tr>
<td>Partículas β</td>
</tr>
</tbody>
</table>

Nota: se define valor 1 como el correspondiente a Rayos X de 200 keV. Los iones pesados tienen igual EBR que las partículas α.


Como puede apreciarse, 1 gray y 1 sievert son equivalentes cuando, se considera la dosis absorbida de radiación gamma, X y partículas beta. 
Una radiografía de tórax produce una dosis absorbida de 0,2-0,4 mSv a alrededor de cinco kilogramos de tejido. La radiación a nivel del mar, proveniente de los rayos cósmicos y del suelo, es de 1 mSv/año, y a 1.500 metros de altura, de 2 mSv/año.

Los efectos dependen de la dosis equivalente (5 Sv causan la muerte en días o semanas, mientras que 0,20 Sv sobre el cuerpo entero no produce efecto detectable inmediato) (Sears, Zemansky, Young, Freedman, 2005: 1647).

La exposición a las radiaciones ionizantes está normada por los límites que se presentan y las fuentes de radioactividad en los siguientes cuadros.

<table>
<thead>
<tr>
<th>Límite anual de dosis equivalentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población</td>
</tr>
<tr>
<td>General, público</td>
</tr>
<tr>
<td>Trabajadores potencialmente expuestos</td>
</tr>
</tbody>
</table>

Fuente: Sears, Zemansky, Young, Freedman, 2005: 1647.


<table>
<thead>
<tr>
<th>Fuente</th>
<th>Subtotal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Natural</strong></td>
<td>–</td>
<td>82</td>
</tr>
<tr>
<td>Radón</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Interna</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Terrestre</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cósmica</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td><strong>Artificial (actividad humana)</strong></td>
<td>–</td>
<td>18</td>
</tr>
<tr>
<td>Consumo productos</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Medicina nuclear</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Rayos X médicos</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Otros</td>
<td>&lt;1</td>
<td></td>
</tr>
<tr>
<td>Ciclo de combustibles nucleares</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Ocupacional</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Precipitación</td>
<td>&lt;0,3</td>
<td></td>
</tr>
<tr>
<td>Diversos</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Sears, Zemansky, Young, Freedman, 2005: 1648.

8. Las radiaciones producen síndromes específicos

La exposición a radiaciones ionizantes se considera en dos situaciones: controlada o descontrolada. La **controlada** es la propia del diagnóstico y tratamiento médico en circunstancias normatizadas. La **descontrolada** es la producida por detonaciones de bombas nucleares, ya sean bélicas o de ensayo, los accidentes en reactores o la liberación imprevista de radiaciones provenientes de equipos o procedimientos médicos, de investigación científica o de uso industrial. Una amenaza cierta para el mundo actual es la posibilidad de uso de armas atómicas por el terrorismo internacional.

La dispersión de radiaciones ionizantes producidas por equipos o procedimientos sin el uso de explosivos, como el cobalto (Co 60) o el cesio (Ce 37) en medicina o el mismo cesio y el iridio (Ir 192) en las industrias, afecta a pocas personas, quienes pueden sufrir lesiones dérmicas o, en dosis altas, síndrome de radiación aguda.

En cambio, la dispersión de radiaciones ionizantes por explosiones o fugas, sean intencionales o accidentales, es mucho más amplia y afecta a diferentes poblaciones según el tipo de dispersión.

La fisiopatogenia de la lesión radiactiva se inicia con un depósito de energía externa dentro de las células y continúa con la producción de radicales libres que, por su alta reactividad, se recombinan rápidamente e interactúan con las macromoléculas.

La **muerte celular** depende de la dosis de radiación absorbida y de la radiosensibilidad celular. La dosis absorbida corporal total menor de 0,05 gy (5 rads) no produce sintomatología. Con 0,15 gy (15 rads) ya se pueden presentar **aberraciones cromosómicas**. La dosis absorbida menor de 1 gy (100 rads) permite la sobrevida de la mayoría de los tipos celulares. Sin embargo, pueden producir rupturas del ADN e impedir su reparación normal, y generar, después de años de latencia, diferentes **neoplasias**. Con 1 gy (100 rads) se presentan náuseas y vómitos en el 10% de los expuestos en los días siguientes a la exposición. Las **leucemias** por radiación se manifiestan entre los dos y quince años posteriores a la exposición, los cánceres de tiroides y hueso alrededor de los cinco años y los de mama y pulmón entre los diez y quince años. En niños el riesgo es hasta tres veces superior a los adultos (Mettler, Stazzone, 2004: 2349).
En estudios de cohortes, como el desarrollado con sobrevivientes de las bombas atómicas de Hiroshima y Nagasaki, no se han observado efectos hereditarios. Tampoco se han comprobado efectos cancerígenos en niños por exposiciones previas a la concepción o durante el período prenatal (Mettler, Stazzione, 2004: 2349).

La interacción de la radiación (transferencia de energía) con la materia es una función probabilística, puede o no interaccionar, y si ocurre la interacción puede o no causar daño. Los daños producidos son inespecíficos, es decir, no se distinguen de los producidos por otros agentes físicos, químicos, biológicos. Todo cambio tiene un período de latencia antes de la manifestación clínica, que puede variar de algunos segundos a varios años, dependiendo de la dosis absorbida.

Las células, tejidos u órganos poseen distinta radiosensibilidad, dependiendo de factores propios y externos.

Los efectos biológicos producidos por las radiaciones ionizantes se clasifican en:

- **Estocásticos**: la probabilidad de ocurrencia es una función de la dosis absorbida, mientras que la severidad es independiente de la misma. **No tiene umbral**: dosis cero, riesgo cero. Se producen por el daño ocasionado a una célula o un pequeño número de células. Ejemplo: efectos somáticos, efectos carcinogénesis y cambios genéticos asociados, efectos agudos o tardíos.

- **Determinísticos o No Estocásticos**: son aquellos en los que la gravedad del efecto o su frecuencia es una función de la dosis. Su manifestación depende de una dosis lo suficientemente grande como para **superar un umbral**. Son a consecuencia de la sobreexposición externa o interna, instantánea o prolongada, sobre todo o parte del cuerpo, la cual provoca una cantidad de daños celulares que no pueden ser compensados por la proliferación de células viables.

Las **lesiones somáticas agudas** –frecuentes en los pioneros de los Rayos X y radioterapia y hoy casi superadas– se producen en situaciones accidentales y generan lesiones en tejidos normales de pacientes tratados con radioterapia. Las lesiones somáticas tardías principales son formas de cáncer. Se ha estimado que el accidente de Chernobyl puede llegar a producir alrededor de 30.000 muertes adicionales por cáncer en los próximos setenta años.

Un esquema de las lesiones agudas en los órganos más radiosensibles se presenta en el siguiente cuadro, el cual refiere la dosis recibida, tipo de lesión y tiempo promedio en manifestarse.

<table>
<thead>
<tr>
<th>Órgano</th>
<th>Tejido</th>
<th>Dosis</th>
<th>Lesión</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piel</td>
<td>Capa germinal</td>
<td>6 Sv</td>
<td>1º eritema superficial</td>
<td>24 a 40 hs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Sv</td>
<td>2º eritema profundo y depilación</td>
<td>2 a 4 sem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ampollas, necrosis, ulceración y fibrosis dérmica y vascular</td>
<td>2 a 4 sem. hasta años</td>
</tr>
<tr>
<td>Médula osea</td>
<td>Linfocitos</td>
<td>2-3 Sv (todo el cuerpo)</td>
<td>Linfopenia e inmunodepresión</td>
<td>horas</td>
</tr>
<tr>
<td></td>
<td>Células hematopoyéticas</td>
<td>Mayores dosis</td>
<td>Granulocitopenia y trombocitopenia</td>
<td>3 a 5 sem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hemorragias e inmunodepresión</td>
<td></td>
</tr>
</tbody>
</table>
8.1. Efectos de las radiaciones en células y tejidos

El ADN es blanco crítico de las radiaciones ionizantes. Una dosis absorbida de 2 Gy (gray) puede matar la célula en división u originar centenares de lesiones en sus moléculas de ADN. Estas son reparables en la radiación dispersa, pero difícilmente en la concentrada. A su vez, las lesiones no reparadas son causa de posibles mutaciones en los genes, así como en el número y estructura de los cromosomas. Estos fenómenos se han constatado en trabajadores expuestos, en supervivientes de las explosiones de bombas atómicas y en víctimas del accidente de Chernobyl.

Los efectos tempranos de la radiación involucran la inhibición de la mitosis, si bien transitoria, pero a su vez producen muerte celular en la fase de división y, en consecuencia, reducción de la población superviviente.

Las células maduras tienden a ser radioresistentes, al contrario de aquellas que están en división. La radiación intensa puede, por esto, llevar a la atrofia de tejidos y órganos. Aquellos de recambio celular lento (hígado y endotelio vascular) sufren efectos con más latencia que los de recambio rápido (médula ósea, epidermis y mucosa intestinal).

8.2. Efectos agudos de las radiaciones

Los efectos agudos que sufrieron, en el campo médico, los pioneros de la radioterapia y los pacientes irradiados son hoy excepcionales por los diseños de los equipos, las medidas de protección y la dosimetría.

Sin embargo, siguen ocurriendo accidentes, en especial en reactores nucleares. Así, entre 1945 y 1987 se notificaron 285 accidentes con 1.350 afectados y 33 fallecidos (Cherry, 2003: 48.4). También se han registrado accidentes en fuentes de radioterapia.18

En la capa germinal de la piel, las lesiones varían desde eritemas y depilación hasta necrosis, ulceración y fibrosis, por insuficiencia vascular periférica, según la dosis absorbida (de 6 a 10-20 Sv).

Los linfocitos son muy radiosensibles en bajas dosis (2-3 Sv) y en poco tiempo, pudiendo producirse un cuadro de inmunosupresión en pocas horas. Las células hematopoyéticas, también radiosensibles, se reducen y, en semanas, pueden generar hemorragias e infecciones graves.

Las células epiteliales progenitoras del intestino delgado, después de una exposición rápida a dosis altas (10 Sv), en pocos días denudan las vellosidades y pueden llegar a producir un síndrome disenterico fulminante.

Si bien los espermatozoides maduros son resistentes, no ocurre lo mismo con los espermatagonias, ya que a bajas dosis (0,15 Sv) en una sola aplicación se llega a la oligoespermia. A dosis mayores (2-4 Sv) se provoca esterilidad permanente. Los ovocitos son

---

18 En Goiana (Brasil, 1987), la gestión inapropiada de una fuente de Cesio 137 irradió numerosas víctimas, produjo cuatro muertes y contaminó grandes volúmenes de tierra.
también radiosensibles, y dosis intermedias (1,5-2 Sv) sobre ambos ovarios llevan a la esterilidad
temporal, y dosis mayores a la permanente.

En pulmón, una dosis alta (6-10 Sv) con exposición única tiende a producir, en algunos meses,
neumonía aguda. Según el volumen de pulmón irradiado, se registra en semanas insuficiencia
respiratoria y en meses o años fibrosis pulmonar.

El epitelio exterior del cristalino se divide en forma permanente y, según la dosis (1 o 2-3 Sv),
las radiaciones desarrollan en él opacidad polar posterior microscópica o cataratas.

8.3. Síndrome agudo de radiación (SAR). Efecto determinístico

La exposición rápida de una parte grande del cuerpo a dosis mayores de 1 Sv es la que
produce el Síndrome agudo de radiación, con una fase inicial de malestar, vómitos y náuseas,
una de latencia y una tercera que, según la región más irradiada, se presenta en cuatro formas
clínicas principales:

- **Síndrome cerebral**: comienza con náuseas y vómitos, apatía, somnolencia y postración, que
evoluciona a temblores y convulsiones, ataxia y muerte en horas o días.
- **Síndrome gastrointestinal (>4 Gy)**: náuseas, vómitos y diarrea por necrosis epitelial,
deshidratación, bacteriemia y shock.
- **Síndrome hematopoyético** (2-10 Gy): apatía en seis a doce horas que desaparece a las 24 a 36
horas de la exposición. En este periodo mudo se atrofian los ganglios linfáticos, bazo y médula
ósea, llevando a una pancitopenia y consecuentes infecciones oportunistas, así como
hemorragias masivas.
- **Síndrome pulmonar**: tos, disnea, fiebre, dolor torácico e insuficiencia respiratoria.

La **enfermedad por radiación aguda** la sufre una baja proporción de pacientes tratados con
radioterapia, en especial en abdomen. Produce malestar, náuseas y vómitos, diarrea, anorexia y
taquicardia. Los síntomas desaparecen en horas o días.

Los **efectos diferidos intermedios** se producen también en pacientes tratados con radioterapia
en relación con los órganos más sensibles (gónadas, médula ósea, cristalino y epidermis) o
aquellos donde se concentran dosis acumuladas (riñón, músculo, pulmón, mediastino, médula
espinal, órganos intraperitoneales), en los que generan inflamación y fibrosis.

Los **efectos somáticos y genéticos tardios** pueden ser cáncer (por ejemplo, de tiroides) y
cataratas. Los genéticos se producen por alteración de genes y mutaciones en las células
germinales.

8.4. Efectos cancerígenos. Efecto estocástico

Los efectos cancerígenos tienen varios años de latencia. Una vez más, las primeras víctimas
fueron los pioneros de la radiología y radioterapia, muchos de los cuales sufrieron cáncer de piel
y leucemias,19 los pintores de luminiscencia con soluciones de radón y los mineros del uranio20
con riesgo de cáncer de pulmón y osteosarcoma (Quer-Brossa, 1983: 101).

Los tumores causados por radiaciones ionizantes son indiferenciables del resto, se presentan
en relación con dosis absorbidas altas (0,5 Sv) y varían en cuanto a tipo, así como a edad, sexo y
susceptibilidad de los expuestos.

Las radiaciones ionizantes tienen efectos iniciadores, promotores o de progresión del proceso
canceroso. Aunque se han propuesto modelos teóricos de los riesgos atribuibles según dosis-

---

19 Lesiones de piel se autodiagnosticaron Henry Becquerel y Pierre Curie. Mme. María Sklodowska de Curie murió
de leucemia, lo mismo que su hija Irene Juliott-Curie. Todos ellos descubridores e investigadores de la
radiactividad y también merecedores del Premio Nobel (Asimov, 1971).
20 La intoxicación química produce nefrosis necrótica y lesiones en diversos sistemas orgánicos (Quer-Brossa,
efecto, son imprecisos. Se ha sostenido que con dosis de pocos milisievert (mSv) el riesgo de carcinogénesis es extremadamente bajo.

Se atribuye a la radiación de fondo, natural, el 3% de los cánceres y al radón en ambientes cerrados, el 10% de los cánceres de pulmón. Se discute un aumento de incidencia de cáncer de tiroides en niños por la lluvia radiactiva producida por ensayos nucleares en Nevada (EE.UU., 1950) –donde había aumentado la incidencia de leucemia también en niños– y por el accidente de Chernobyl. Se ha calculado el riesgo estimado de padecer cáncer por irradiación rápida a bajas dosis (0,1 Sv). Porcentualmente, los riesgos mayores son para cáncer de estómago, esófago, leucemias, hígado y tiroides.

8.5. Efectos hereditarios

Los efectos hereditarios de las radiaciones ionizantes están sólo corroborados en experimentaciones con animales. Se ha discutido el aumento de incidencia de leucemias y linfomas no Hodgkin en jóvenes con residencia cercana a la pérdida de radionúclidos en el reactor de Seafield (Seascale, Reino Unido, 1957).

8.6. Efectos prenatales

La radiación ionizante prenatal, por la alta susceptibilidad del embrión y del feto, llega a generar casos de muerte fetal temprana, malformaciones diversas y deterioro mental grave, y, con mayor latencia, leucemias y cánceres infantiles.

9. Diagnóstico de exposición

El diagnóstico es claro para los que han estado expuestos en accidentes nucleares o radioterapia. No lo es, en cambio, en quienes trabajan con sustancias radiactivas en condiciones normalizadas. Además de los controles ambientales, ellos deben portar censores para controlar la dosis corporal total y ser sometidos periódicamente a estudios hematológicos, de orina y cromosómicos. Debe controlarse la visión para detectar cataratas.

El diagnóstico de la exposición a la radioactividad es muy difícil por la naturaleza del agente, la falta de información del público y aun de los médicos y el personal sanitario. Como en otros problemas de salud de baja incidencia, es preciso saber que existe y pensararlo. Se requiere asimismo que haya disponibles monitores de radiación (Geiger, cámaras de ionización) para evaluar la radiación en el ambiente (Mettler, 2002: 1554). Sin embargo, el manejo de los afectados, en especial en actos terroristas o militares, puede ser más accesible que la exposición a tóxicos químicos o biológicos.

Los niveles de radiación varían según las dosis medidas en sievert.

| Radiaciones ionizantes. Niveles y dosis |
|----------------|----------------|----------------|
| **Nivel** | **Dosis (Sv)** | **Observaciones** |
| Bajo | 0,2-0,3 | Las dosis terapéuticas oscilan entre 0,01 y 0,05 Gy |
| Alto | > 0,3 | |
| Letal (50%) | 4,5 (corporal total) | Se denomina DL50 (dosis letal 50%) |
| Letal (100%) | > 6 | Si es recibida en corto tiempo |


21 En EE.UU., estos equipos están disponibles en más de 3.000 hospitales (Mettler, 2002, 1554). En Argentina es obligatorio su uso en todo centro de Radioterapia o Medicina Nuclear.
Los efectos varían según la sensibilidad de los diferentes órganos y tejidos.

<table>
<thead>
<tr>
<th>Radiaciones Ionizantes. Sensibilidad del tipo de tejido en orden decreciente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tejido linfoide</td>
</tr>
<tr>
<td>2. Gónadas</td>
</tr>
<tr>
<td>3. Médula ósea</td>
</tr>
<tr>
<td>4. Epitelio intestinal</td>
</tr>
<tr>
<td>5. Epidermis</td>
</tr>
<tr>
<td>6. Hepatocitos</td>
</tr>
<tr>
<td>7. Epitelio alveolar</td>
</tr>
<tr>
<td>8. Epitelio vías biliares</td>
</tr>
<tr>
<td>9. Endotelio (pleura y peritoneo)</td>
</tr>
<tr>
<td>10. Células nerviosas</td>
</tr>
<tr>
<td>11. Células óseas</td>
</tr>
<tr>
<td>12. Células musculares y conjuntivales</td>
</tr>
</tbody>
</table>

10. Protección contra radiaciones ionizantes o Protección Radiológica

**Objetivos:**
- Limitar la ocurrencia de los Efectos Estocásticos. La no existencia de umbral determina que, si justifica el uso de las radiaciones, es imposible reducir a cero el riesgo asociado. Se establece un detrimento aceptable.
- Prevenir la ocurrencia de los Efectos Determinísticos. No se justifica el uso de radiación en condiciones que se supere la dosis umbral.

**Criterios básicos:**
- Justificar el uso de las radiaciones ionizantes (análisis riesgo-beneficio): no se debe autorizar el uso de radiaciones ionizantes si no genera sobre la sociedad y los individuos un beneficio que sea superior al posible detrimento que pueda producir.
- Optimización de la protección: para cada práctica y en relación con la fuente empleada, la dosis individual, el número de población expuesta y la probabilidad de incurrir en exposiciones no deseadas deberán mantenerse tan bajos como razonablemente sea alcanzable, teniendo en cuenta factores sociales y económicos.
- Limitación de la dosis: los valores de los límites de dosis se establecen para reducir la probabilidad de ocurrencia de Efectos Estocásticos y/o impedir la ocurrencia de Efectos Determinísticos. El límite de dosis establece la relación entre el detrimento de la salud tolerable y el inaceptable.
Límites de dosis de radiaciones Ionizantes

<table>
<thead>
<tr>
<th>Exposición de cuerpo entero</th>
<th>Valor (mSv/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocupacional</td>
<td>20 como promedio de cinco años consecutivos, NO debiendo exceder en un año 50</td>
</tr>
<tr>
<td>Público</td>
<td>1</td>
</tr>
<tr>
<td>Ocupacional de mujeres</td>
<td>2 a partir del momento del embarazo declarado y durante el resto del mismo</td>
</tr>
</tbody>
</table>


¿A quien se protege?:

- Personal profesionalmente expuesto: el que trabaja y/o opera equipos o fuentes emisoras.
- Población: toda persona que no debe ser afectada.
- Pacientes: quienes deben someterse a estudios y/o tratamientos con radiaciones ionizantes.

Para el mejor desarrollo de las tareas por parte del personal profesionalmente expuesto, es necesario implementar un programa de protección radiológica que mantenga bajo control todas aquellas situaciones que inevitablemente suponen exposiciones crónicas a las radiaciones. Asimismo, se deben tener en cuenta las distintas etapas que van desde la producción de las fuentes hasta su disposición final (cuando corresponda).

Las principales consideraciones a tener en cuenta para controlar la exposición son: tiempo, distancia y blindaje. Si la distancia entre el operador, el público y la fuente y el tiempo en dicha exposición no son los necesarios y suficientes para controlarla, se deberán construir blindajes estructurales.

Toda planta (fábricas, laboratorios, salas médicas de diagnóstico o tratamiento, etcétera) debe ser diseñada y aprobada por la autoridad competente y, luego de construida y montado el equipamiento que contenga la fuente o genere la radiación, debe ser inspectacionada.

Los diseños de las instalaciones, la construcción y la operación de las mismas se realizaran siguiendo el concepto de optimización, de manera de cumplir con que la exposición de una práctica sea “reducida tanto como sea razonablemente posible”.

En el diseño se considerarán áreas controladas y áreas supervisadas:

- **Controladas**: el personal deberá cumplir con prácticas y procedimientos que permitan controlar la exposición y/o la contaminación cuando las fuentes operen en condiciones normales.
- **Supervisadas**: son áreas donde los niveles de radiación no requieran prácticas especiales.

Los trabajadores expuestos a las radiaciones deberán estar monitoreados (monitoreo ambiental e individual) con el objeto de verificar que se cumplen las condiciones de protección radiológica.

La dosimetría Personal o Individual requiere de dosímetros que conserven la dosis acumulada durante el periodo de tiempo de control y que no molesten en el trabajo. Se deberá llevar registro de los datos obtenidos de cada operador.

Son ejemplos de tipos de dosímetros personales: emulsión fotográfica, dosímetros lapiceras, termoluminiscentes o con alarmas sonoras. Si la actividad laboral puede implicar el riesgo de contaminación interna, producida por algún radionucleido, se agregarán análisis de muestras de excretas y otros análisis biológicos.
El personal que desempeña tareas que impliquen riesgo ocupacional debe ser habilitado y certificado por la autoridad correspondiente, quien le otorgará un Permiso Individual de Uso y/o Autorización Individual, según sea su trabajo o actividad.

11. Radioprotección del público

Las distintas prácticas deben analizarse según la fuente de radiación que utilizan: nucleidos emisores o equipos generadores.

Los equipos generadores de radiaciones ionizantes, como los aparatos de Rayos X de baja energía, independientemente del uso al que se asignen, deberán cumplir con las normas establecidas por la Ley Nacional 17.577, sus Decretos Reglamentarios y las Disposiciones y/o Resoluciones emitidas al respecto.

En lo referente a la protección del público, se debe realizar el diseño de las instalaciones de acuerdo con los Niveles de Dosis establecidos, que tienen en cuenta el tipo de equipo emisor, su ubicación en la sala de irradiación, la dirección e intensidad de los disparos, las distancias de muros, piso y techos circundantes, el tipo y tiempo de ocupación de los mismos.

El diseño se realizará tomando como límites de exposición el 30% de los Límites Referenciales establecidos como exposición del público. De esta manera se optimiza la radioprotección.

A las fuentes radiactivas, además de cumplir con normas equivalentes a las ya expuestas respecto de la protección del público, se le debe agregar la potencial capacidad de dispersión de materiales radiactivos, lo cual implica adicionar normas que establecen procedimientos específicos.

El emplazamiento de instalaciones deberá tener en cuenta, además, los fenómenos asociados de la dispersión atmosférica y de los efluentes líquidos. Hay que recordar que en las distintas tapas del ciclo de los combustibles nucleares se elimina material radiactivo.

Distintos modelos ambientales evalúan las dosis al público y, dentro ellos, al Grupo Crítico, que es el grupo real o hipotético de personas que pudiera estar más expuesto y pudiera emitir material radiactivo al ambiente. Asimismo, al modelo se incorporan las cadenas alimentarias terrestres y acuáticas.

12. Gestión de residuos radiactivos (RR)

Todos los materiales generados por el hombre para ser utilizados en distintos procesos generan residuos provenientes de su degradación.

Los materiales radiactivos utilizados en la medicina, la investigación, la industria y la generación de energía eléctrica también generan residuos: materiales que contienen o que están contaminados con sustancias radiactivas. La Gestión de los Residuos Radiactivos abarca su manejo, tratamiento, acondicionamiento, potencial almacenamiento, transporte y disposición final (eliminación o evacuación).

La Comisión Internacional de Protección Radiológica (ICRP) ha recomendado, al establecer los principios de protección radiológica generales, su aplicación a la gestión de los residuos radiactivos. Si se justifica una práctica que emplee sustancias radiactivas (medicina, industria, etcétera), se está justificando la gestión de los desechos generados.

Los residuos radiactivos (RR) se clasifican según su actividad: de baja actividad (RRBA), de media actividad (RRAI) y de alta actividad (RRAA), y para cada caso se establecen los acondicionamientos, disposición en trincheras, barreras físicas, matrices estables, disposición final con barreras apropiadas, emplazamientos en formaciones geológicas estables, contenedores y otros.

Las instalaciones en las que se generan sustancias radiactivas o emiten radiaciones ionizantes requieren ubicación\(^\text{22}\), diseño y construcción especial según la categorización de radiotoxicidad de las fuentes, de los niveles de dosis en miliSievert por semana (mSv/sem) o potencial contaminación radioactiva en becquerel (rango entre kBq y GBq).

En todos los casos el acceso a las instalaciones debe ser controlado con exclusividad a personal entrenado, con dosímetros, ropa y calzado protectores.

Los sistemas de ventilación, cuando se trabaja con fuentes radiactivas no selladas, requieren direccionamiento y velocidad específicos.

El blindaje de los equipos de radioterapia puede reducirse mediante el ingreso por medio de laborintos, enterramiento del servicio y uso de circuitos cerrados de televisión en lugar de ventanas de observación. El blindaje de los recintos con equipos radiológicos debe ser mayor en las paredes hacia donde se dirige la radiación directa que en aquellas que reciben sólo radiación dispersa. La orientación del haz directo debe evitar paredes lindantes con recintos habitualmente ocupados (Skvarca, 1981: 85).

Las superficies internas deben ser recubiertas con materiales lisos e inertes, de fácil reparación si es preciso descontaminarlos.

Los lavatorios, cañerías y sumideros deben ser exclusivos y marcados, así como con depósitos subterráneos de líquidos contaminados que permitan su posterior eliminación.

Los haces de radiaciones gamma y X se estrechan mediante la colimación.\(^\text{23}\) El blindaje se logra con recintos de hormigón, revestimientos de plomo o acero, según sea el uso. El blindaje necesario resulta del diseño y cálculo de cada recinto particular.

Los equipos de Rayos X tienen un blindaje de fuente, la carcasa del tubo, que provee el fabricante. A esto se agrega un blindaje estructural del conjunto y del sujeto expuesto en orden a proteger del haz útil, de la radiación de fuga y de la dispersa.\(^\text{24}\)

Los equipos de Rayos X de uso medicinal poseen un espectro de energía. Parte de ellos no tienen la suficiente energía como para formar una imagen (no impresionan la placa), pero pueden ser absorbidos por el paciente. Para reducir esta emisión inútil pero potencialmente dañosa, se colocan filtros absorbentes\(^\text{25}\) y el colimador, que la reducen, a la salida del tubo.

La protección del personal de los servicios de radiología o radioterapia se considera primero, porque su exposición es sistemática, a la inversa que el paciente o sus familiares, en quienes es circunstancial. La distancia es la primera medida: el operador debe alejarse del equipo y del examinado, que emite radiación secundaria. Lo correcto es que la consola de mandos se ubique

\(^{22}\) En un área poco frecuentada del edificio principal, con baja carga de fuego, con mínimas posibilidades de difusión contaminante por ventilación o calefacción y posibilidades de reducir el costo de blindaje (Skvarca, 1981). Debe haber una sala para cada equipo, con una sola entrada, circulación restringida y separación de la sala de espera y vestuarios.

\(^{23}\) La colimación es un mecanismo de limitación del haz a su salida del tubo que sirve para definir el campo de exposición a un tamaño y forma definidos. El colimador actúa como un diafragma y está hecho de material liviano con revestimiento radiopaco. De esta manera, protege al paciente por esa definición y por la reducción de radiación secundaria y mejora la calidad de la placa. La colimación automática se ajusta al tamaño de la placa, debiendo dejar tres milímetros sin exposición en cada borde de ella. Hay conos radiográficos para tomar placas especiales que actúan con el mismo objetivo. El Potter-Bucky es una rejilla de laminillas de plomo con material radionúclido entre ellas que se ubica debajo de la mesa del equipo y por sobre el chasis de la película. Se mueve en el sentido transversal de la mesa. Su objeto es reducir la radiación dispersa remanente para mejorar la calidad de la radiografía (Jacob y Paris, 1980: 94 y 88).

\(^{24}\) El kilovoltaje de estos equipos aumenta la exposición en forma cuadrática, mientras que el miliamperaje lo hace en forma lineal.

\(^{25}\) Los filtros absorbentes clásicos son de aluminio en aleación con cobre (0,12%) con un espesor de dos milímetros (Jacob y Paris, 1980: 59),
dentro de un recinto o biombo blindados con visor de igual condición o circuito cerrado de televisión. Si el examinado es un niño o un discapacitado que requiere ayuda, al lado del equipo debe pedirse la ayuda de un familiar, que jamás debe ser una mujer embarazada. Si los estudios se repiten, es conveniente rotar al familiar. Este debe estar protegido por delantal plomado. Esta ayuda no debe estar a cargo de personal del servicio ni enfermeros del establecimiento. El odontólogo que tome radiografías no debe sostener la placa con su propia mano, sino hacerlo sostener al paciente o usar dispositivos ad hoc. En los estudios de radioscopía, el operador debe actuar con delantal26 y guantes plomados y con anteojos de igual condición.

Las salas de radiología o radioterapia deben ser inaccesibles al público y al personal de otros servicios del establecimiento.

Los equipos portátiles tienen la protección del blindaje propio y la colimación. Durante las tomas, debe apartarse a las personas ajenas al procedimiento y el operador debe trabajar con delantal plomado.

La protección del público, de otros servicios y del vecindario se logra por el blindaje de los recintos y el direccionamiento de los equipos.

La protección del examinado depende de los mismos factores: el blindaje y la colimación de la fuente, la distancia, que en este caso puede reducirse poco, y el tiempo de exposición, factor válido para todos los expuestos, ya que la dosis absorbida es directamente proporcional al tiempo.

La vigilancia del entorno de los equipos se realiza al instalarlos y cuando se hacen cambios sustanciales. Cuando se usan radioisótopos, según sus características, se hacen monitoreos de portal, a la salida del servicio, tanto en su uso con pacientes, la preparación de las sustancias o su aplicación a la investigación y otras actividades. La vigilancia de la contaminación aérea requiere muestreadores de aire, ya sea en el ambiente o personales.

Si se trabaja con fuentes radiactivas, para evaluar la dosis ambiental en el aire de partículas Beta y Rayos gamma o X,27 se utilizan cámaras de ionización, que miden la energía que el radioisótopo cede al aire, y/o los detectores de Geiger-Müller, que indican el número de fotones independientemente de la energía que ceden. Para calibrar un equipo de radioterapia se usan dosímetros específicos con cámaras de ionización. Los contadores de centelleo de plástico o de iodo de sodio (Nal) son utilizados en medicina nuclear por ser más sensibles a los Rayos gamma.

Los detectores de monitoreo personal expresan unidades que pueden relacionarse con las dosis absorbidas por las personas en forma acumulativa. Estos dosímetros personales deben protegerse de otros factores, como temperatura y humedad, que podrían distorsionar el registro. Comprenden rangos de pocos a cientos de milisievert. Los hay de diversos tipos: de partícula radiográfica –que son tradicionales–, de ionizadores gaseosos, de radiofotoluminiscencia o termofotoluminiscencia. Estos últimos son los modernos de mayor uso. Los dosímetros deben estar identificados, ser pequeños y de peso liviano y aptos para su fácil lectura. Se fijan en el bolsillo superior de la chaqueta, como anillo en dedos, pulseras en muñeca o collares, según sea el tipo de exposición.

Los operadores de radiología industrial, si bien poseen formación equivalente en cuanto a la seguridad, suelen omitir el uso de dosímetros personales y afrontar procedimientos más inseguros.

26 El delantal es de goma con aditamento equivalente a un mínimo de 0,5 mm de plomo.
27 La contaminación por partículas alfa se monitorea con detectores de centelleo de sulfuro de zinc.
13. Asistencia en casos de exposición a radiaciones ionizantes

La asistencia de los afectados por radiación ionizante es dificultosa por el desconocimiento del público y aun del personal sanitario. Se ha sostenido, sin embargo, a propósito de eventuales dispersiones de sustancias radiactivas capaces de producir contaminación, tanto en su uso pacífico, militar o terrorista, que es más fácil detectar su presencia que la dispersión de agentes químicos o biológicos.

14. Tratamiento de las lesiones por radiación

Las lesiones locales de la piel se tratan calmando el dolor, previniendo las infecciones secundarias y con medicación vasodilatadora. Las más graves pueden requerir cirugía plástica, injertos y aun amputación.

La exposición del cuerpo entero a dosis de 2 Sv o más altas genera un síndrome hematopoyético por depresión de la médula ósea con reducción del recuento de linfocitos, y si la depresión es mayor, con leucopenia y trombocitopenia. Se utilizan factores de crecimiento hematopoyéticos\textsuperscript{28} si la depresión no es total. El transplante de médula ósea no ha resultado efectivo si la dosis fue superior a los 12 Gy.

En la contaminación radiactiva interna por inhalación, ingesta, a través de la piel intacta o lesionada, el tratamiento depende del radionúclido y su forma química. Se intenta reducir la absorción, diluir, bloquear o desplazar con sustancias no radiactivas el radionúclido. Se usan también quelantes.

<table>
<thead>
<tr>
<th>Tratamiento específico en contaminación interna por radionúclidos</th>
<th>Enfoque terapéutico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritio</td>
<td>Dilución por hidratación forzada.</td>
</tr>
</tbody>
</table>
| Iodo 125 y 131 | Bloqueo por iodouro de potasio.  
Movilización con drogas antilisoideas. |
| Cesio 134 y 137 | Reducción de la absorción intestinal con azul de Prusia. |
| Estroncio 89 y 90 | Reducción de la absorción intestinal con fosfato de aluminio o gel antiácido.  
Bloqueo con lactato de estroncio.  
Desplazamiento con fosfatos ord.  
Movilización con cloruro de amonio o extracto paratiroideo. |
| Plutonio y elementos transuránicos | Quelación con zinc o aminas de calcio (etapa de investigación). |
| Desconocido | Reducción de la absorción con eméticos, lavados gástricos, carbón vegetal o laxantes. |


Ante una explosión atómica o accidente en un reactor nuclear, las medidas principales son:

- Que la población expuesta permanezca dentro de sus casas con aberturas cerradas por dos días si la dosis posible es de menos de 1 rem, evacuación por una semana si la dosis es superior a 5 rem, o por menos días en dosis intermedias (Mettler y Voeltz, 2002: 1559).

\textsuperscript{28} En EE.UU. se aprobó el Aminofostine para pacientes sometidos a radioterapia. Se da antes de la exposición, aunque tiene efectos adversos, como la hipotensión y otros más graves.
Que se suministre ioduro de potasio a toda la población expuesta para reducir el depósito del iodo radioactivo en tiroides, antes del fenómeno o después de las primeras horas según las dosis de la siguiente tabla.

<table>
<thead>
<tr>
<th>Dosis preventivas de ioduro de potasio en detonaciones o accidentes nucleares. Diarias por varios días o semanas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupos etáreos</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Adultos</td>
</tr>
<tr>
<td>3-18 años</td>
</tr>
<tr>
<td>1 mes a 3 años</td>
</tr>
<tr>
<td>&lt; 1 mes</td>
</tr>
</tbody>
</table>


En la exposición de ropas y superficies del cuerpo sin lesiones, se procede quitando la totalidad de la vestimenta y objetos (relojes, anillos, collares) y lavando el cuerpo completo con agua y detergente, cuidando de no producir abrasiones en la piel. Las ropas y materiales se colocan en bolsas de plástico etiquetadas para su posterior disposición (Mettler y Voeltz, 2002: 1557).

Las heridas y quemaduras se limpian con suero salino y se curan convencionalmente. Se hace remoción de tejidos sólo si hay radionúclidos de larga vida (Mettler y Voeltz, 2002: 1557).

El personal de rescate de víctimas debe usar ropa y calzado protector, así como respiradores. El personal sanitario requiere sólo los dos primeros elementos.

Los efectos psicosociales deben ser atendidos, porque muchos pueden simular síntomas de radiación y un alto porcentaje de los expuestos sufre de estrés agudo y secuelas crónicas con diversos cuadros psiquiátricos.

La organización frente a un evento radiactivo, según su magnitud, sigue los lineamientos propios de las catástrofes con estricto control de entrada y salida del área afectada, personal especialmente adiestrado con protección específica, disposición de instrumentos de detección de radioactividad y triage de las víctimas según deban hospitalizarse o volver a sus casas previa descontaminación y registro. Al uso del ioduro de sodio se agrega la interdicción de ingesta de leche, alimentos y agua procedentes del área contaminada.
Bibliografía


Normas Básicas de Seguridad Radiológica, AR 10.1.1. ARN, Argentina, 1996.


CAPÍTULO 14

ONDAS ELECTROMAGNÉTICAS

Horacio Luis Barragán
Graciela Etchegoyen
Adriana Pascual

1. Las radiaciones no ionizantes

La afectación de la salud por efecto de las radiaciones ha sido corroborada en el espectro de las radiaciones ionizantes y en las ondas ultravioletas (no ionizantes).

El espectro electromagnético se categoriza según su longitud de onda, frecuencia (medida en hertzios, Hz, ciclos por segundo) y su energía (expresada en electrón voltios eV).

A mayor frecuencia (menor longitud de onda), las ondas electromagnéticas poseen más energía. Las radiaciones ionizantes involucran una energía que puede romper las uniones entre moléculas dentro de las células. Tales son los rayos gamma, la radiación cósmica y los rayos X.

Las ondas no ionizantes, por su parte, no llevan tales niveles de energía y, en principio, no producen rupturas moleculares.

La conducción de electricidad para el suministro eléctrico produce campos electromagnéticos (Electro Magnetic Fields, EMF, en español, CEM) que se irradian a su alrededor.

Los campos eléctricos se miden en voltios por metro (V/m) y los magnéticos, en amperes por metro (A/m) o, más habitualmente, según su densidad de flujo, en microtesla (µT) o militesla (mT) (0,1 µT = 1 mG; miligaussio).

Ambos campos son más intensos en su fuente y disminuyen rápidamente a medida que se distancian de ella. Los eléctricos son detenidos por barreras metálicas e incluso por los materiales de las construcciones y los árboles. Cuando transcurren en forma subterránea, son difícilmente detectables en la superficie.

Los campos magnéticos, en cambio, no son contenidos por los materiales de las construcciones.

Los campos eléctricos se generan por una diferencia de voltaje y son más intensos a mayores voltajes. Existen aún sin flujo de corriente y varían poco con el uso de energía.

Los campos magnéticos se generan por la circulación de corriente eléctrica alterna y son mayores a mayor flujo. Se presentan sólo cuando hay flujo de corriente y varían según el uso de energía. Con el flujo de corriente junto a los campos eléctricos, configuran los campos electromagnéticos (CEM).

En Argentina y en los países europeos, la corriente alterna varía en 50 ciclos por segundo (50 Hz), y en EEUU lo hace en 60 ciclos por segundo (60 Hz). Las ondas electromagnéticas generadas se ubican en el rango de las frecuencias extremadamente bajas (Extremely Low Frequency, ELF; en español, FEB).

Hay fuentes naturales de campos electromagnéticos tales como las descargas eléctricas atmosféricas y el campo magnético de la tierra.
La vida doméstica contemporánea está penetrada de campos electromagnéticos artificiales de diversas frecuencias producidos por los aparatos eléctricos (EMF-ELF; CEM-FEB), por las pantallas de computadoras y sistemas de seguridad (EMF-EF, Intermediate Frequency, entre 300 Hz y 10 MHz) y las ondas de radio, TV, antenas de teléfonos celulares y hornos de microondas (EMF-RF, campos de radiofrecuencia entre 10 MHz y 300 GHz). En radiofrecuencia, las unidades utilizadas para la medición de los campos son Watts por m² (W/m²).

Durante el siglo XX se han incrementado aceleradamente el tipo y número de fuentes artificiales de campos electromagnéticos y su uso habitual en la vida cotidiana.

2. Efectos biológicos

Los efectos biológicos son respuestas de organismos o células a estímulos o cambios en el ambiente. Estos efectos son habituales y permiten la adaptación al ambiente, tales como los que se producen ante los cambios climáticos. Dentro de los límites habituales, no son dañinos a la salud; por el contrario, esta se vería afectada si no hubiera una respuesta de adaptación.

Tanto los campos eléctricos como los magnéticos generan corrientes de energía en los organismos vivientes, especialmente calorífica. Los niveles de los campos habituales no alcanzan a producir diferencias de calor medibles en los organismos. El fenómeno es generado “ad-hoc” dentro de aparatos especiales, por ejemplo, para calentar la comida en los hornos de microondas.

El organismo biológico funciona porque genera, entre otros fenómenos, diferencias de potencial eléctrico en las membranas celulares. Estas se expresan en el impulso nervioso, el ritmo cardíaco y la mayoría de las reacciones bioquímicas.

Por otra parte, estas diferencias son las que fundamentan estudios médicos como electrocardiogramas, electroencefalogramas y electromiogramas. El organismo dispone de mecanismos de adaptación para mantener su equilibrio ante campos de su ambiente.

No se han detectado efectos biológicos dañosos en experimentos con voluntarios sanos expuestos por cortos períodos a los campos habituales del hogar y del ambiente externo. Los problemas en discusión se refieren a exposiciones de larga duración.

La preocupación respecto a estos problemas ha generado numerosos estudios, revisiones y un proyecto internacional de investigación patrocinado por la OMS: el International EMF Proyect. La OMS concluyó que, hasta el momento, “no hay evidencia de existencia de ninguna consecuencia para la salud provocada por la exposición a EMF-ELF que haya sido confirmada”. Sin embargo, se admite una falta de certeza que impulsa una mayor investigación (OMS, c. 2000).

3. Efectos patológicos posibles

Los efectos patológicos son resultantes de efectos biológicos que causan perjuicios detectables a la salud o al bienestar. Estos efectos son definidos según niveles. Son “peligros” cuando los efectos son potenciales, “riesgos” cuando miden la probabilidad de que una persona sea perjudicada por un peligro en particular. En el transcurso de la vida y en actividades y circunstancias habituales no hay peligro, ni riesgo “cero”.

Los efectos en seres humanos, tanto biológicos como patológicos –en su caso–, de los CEM-FEB deben diferenciarse en aquellos producidos sobre trabajadores de electricidad en función de su puesto de trabajo y aquellos otros producidos en el ámbito de residencia habitual (domicilio) o transitorio (oficinas, escuelas). Agrupaciones de trabajadores aludidos, en algunos países como Suecia o EE.UU., han sostenido la mayor incidencia de síntomas relacionados con la irritabilidad tisular.
En los últimos años ha surgido la preocupación sobre los posibles efectos leucemógenos de los campos electromagnéticos no ionizantes de frecuencia extremadamente baja (CEM-FEB) generados por instalaciones eléctricas.

Algunos estudios epidemiológicos sugieren que la exposición residencial de niños a EMF débiles se asocia a mayor incidencia de leucemias, como así también que la exposición doméstica se asocia al cáncer de mama y leucemia.

Uno de los primeros estudios que relacionaron un relativo incremento en la incidencia de la leucemia y tumores cerebrales en niños que vivían cerca de las líneas de transmisión eléctrica aéreas fue el de Wertheimer y Leeper en 1979 (Habash, 2003). La variable independiente se medía en la configuración del alumbrado eléctrico (WC), lo mismo que otros estudios hasta 1997, excepto el de Savitz et al. (1998), que también la media en Campo Magnético (MFM) y señalaba un incremento de incidencia a partir de exposiciones de 0,25 pT (Habash, 2003: 156-157). El estudio de las “1000 casas” encontró que el 4,7% de los domicilios, en los dormitorios, alcanzaba niveles mayores de 0,3 pT y el 2,6%, mayores de 0,4 pT (Zaffanella, 1993). En una revisión de estudios epidemiológicos (Greenland, 2000), encontraron un riesgo relativo de 1,7 (95% de intervalo de confianza, 1,2-2,3) para exposiciones superiores a 0,3 pT (Greenland, 2000).

Con el uso de esta medición de MFM, ya sea puntual o promedio de 24 hs de exposición, el NIEHS (National Institute of Environmental Health Sciences, 1999) asoció un campo de 1 pV/m en los tejidos con efectos biológicos. Este nivel de referencia tisular puede ser producido por un Campo Magnético del orden de los 5 mT, cinco veces mayor al promedio encontrado en el estudio de las “1000 casas” (Zaffanella, 1993).

La diversidad de formas de medición y niveles límites establecidos por esos estudios llevaron a los científicos a requerir evidencias que corroboraran el riesgo para la forma de leucemia prevalente en niños, la Leucemia Linfoblástica Aguda (LLA). Se conocen en su patogenia algunos factores predispuestos y se considera como un proceso de múltiples pasos, en gran parte desconocidos. Los riesgos son diversos y pueden ser concurrentes con otros a través de distintos mecanismos lesionales. En EE.UU. se verifica un aumento de la incidencia de la LLA de 10,5-13,3% entre 1973 y 1994, dependiente de los grupos etáreos.

Los racimos (clusters) de incidencia, como el reportado en la localidad de Woburn (Massachusetts), generaron inquietudes para conocer la patogenia, pero chocaron con la multiplicidad de causales posibles entre las que se destacó el agua poluida. Este y otros estudios sobre clusters poco aportaron al conocimiento de la patogenia, entre otras razones, por el pequeño número de casos (Brain, 2003).

Los estudios experimentales con animales de laboratorio expuestos a campos de hasta 1.000 pT fueron inconclusivos y aun contradictorios, lo mismo que los estudios “in vitro” con células o tejidos aislados.

Los fenómenos físicos pueden generar modificaciones biológicas a través de mecanismos bioquímicos (Weaver, 2002), como ocurre con las radiaciones ionizantes, pero no se han corroborado en el caso de los CEM de bajos niveles de frecuencia.

Estas dificultades en los estudios de laboratorio, necesarios para corroborar resultados sugeridos por los epidemiológicos, han impedido encontrar mecanismos biológicos plausibles en la patogenia de las leucemias y otros tumores, hallazgo fundamental para hacer afirmaciones científicas.

Los estudios epidemiológicos, por su parte y como se explicita más adelante, tienen, entre otras, las limitaciones de los factores de confusión que, en las áreas residenciales aleañas a procesos industriales y de servicios, son múltiples, y pudiera ser que entre ellos se encuentren factores causales o concausales en la patogenia de este tipo de enfermedades. De esta forma, una asociación entre ellas y un determinado factor podría ser por azar o por sesgo, mientras la asociación causal se liga a otro u otros factores.
Es así como no se ha encontrado, por el contrario de las radiaciones ionizantes, un fundamento biológico que sustente la hipótesis del supuesto efecto leucémico y cancerígeno de los CEM. Por otra parte, la actividad normal de los nervios y músculos genera corrientes internas más fuertes que los campos externos de 60 Hz de 1 a 10 mG.

Los EMF intensos pueden afectar eléctricamente los tejidos activos (nervios, neuromusculatura y corazón) así como los marcapasos cardíacos y pueden aumentar la temperatura corporal.

Entre los presuntos efectos adversos de los CEM-FEB (EMF-ELF) en trabajadores de electricidad o electrónica, se han informado síntomas como cefaleas, náuseas, insomnio, depresión e incluso suicidio. Hasta el momento no hay estudios fehacientes que sustenten asociación ni relación causal con ninguno de esos cuadros. Se ha estudiado una supuesta hipersensibilidad en trabajadores expuestos a los CEM-FEB (EMF-ELF) que favorecería los síntomas menores, la depresión y aun convulsiones, pero no se han corroborado ni se han encontrado mecanismos biológicos que los sustenten.

Algunos autores de países nórdicos de Europa han descrito esta hipersensibilidad con reacciones en la piel como una epidemia ambiental en trabajadores electrónicos. Sin embargo, estudios epidemiológicos analíticos no han corroborado asociación causal. No hay evidencias tampoco respecto a trastornos del embarazo y malformaciones.

Algunos estudios epidemiológicos sugieren una asociación entre mayor incidencia de leucemias en niños y la exposición a EMF-ELF dentro de sus casas. Los estudios experimentales no han corroborado esa asociación.

En 2001, la Agencia Internacional para la Investigación del Cáncer (en inglés, IARC) ubicó los CEM-FEB como “posibles carcinogénicos en humanos” basada en los estudios epidemiológicos sobre la leucemia en los niños expuestos a campos con promedios mayores a 0,3 y 0,4 pT. Estos niveles son raros en los domicilios y se estima que pueden involucrar a menos del 1 % de los ámbitos donde se usan instalaciones de 240 V, y pueden ser algo mayores en los países donde se usan equipos de 120 V. “Posibles carcinogénicos” es la categoría inferior de la clasificación de IARC respecto a carcinogénicos, y se refiere a aquellos factores con limitada evidencia del proceso en humanos y menos que suficiente evidencia en animales de experimentación, es decir, con evidencias “creíbles” pero a las cuales no se les ha podido dar otra explicación. Las categorías son:

- **Carcinogénicos humanos** (asbesto, gas de mortaza, tabaco en fumadores activos y pasivos, radiación gamma).
- **Probables carcinogénicos humanos** (escapes de motores diesel, lámparas solares, radiación ultravioleta, formaldehído).
- **Posibles carcinogénicos humanos** (café, estireno, escapes de motores de nafta, humos de soldaduras, CEM-FEB). (EMF: 263)

Puede apreciarse, a través de los otros ejemplos de factores incluidos en esa ubicación, como el café y los escapes de motores de nafta, la ubicuidad y cotidianeidad de los peligros posibles.

Así, diferentes países desarrollados han establecido umbrales y recomendaciones respecto a las exposiciones.

No obstante la débil categorización de IARC, sigue considerándose dudosa la asociación y cuánto más la asociación causal por los diseños diferentes, los sesgos de los estudios epidemiológicos y la multiplicidad de factores que interfieren en ellos (EMF: 263). Por otra parte, se insiste en el valor de los estándares para evitar eventuales efectos adversos, y en que los máximos niveles de exposición en la vida diaria están típicamente por debajo de los límites recomendados (OMS, 2005).

---

312  HORACIO LUIS BARRAGÁN
En cuanto a evidencias experimentales, una investigación colaborativa del Instituto de Biología y Genética Molecular de la Universidad de Valladolid (España), después de aplicar toda la gama de tecnologías biológicas modernas “in vitro” e “in vivo”, concluyó que los CEM no son causa directa de cáncer, no afectan –dentro de los estándares vigentes– el sistema inmunológico ni la muerte celular programada (apoptosis) en tanto proceso normal de renovación de los tejidos orgánicos. Estas últimas referencias llevaron a afirmar que tampoco tiene efectos indirectos detectados en la patogenia de los tumores. Concluye el informe: “por lo tanto con la información disponible actualmente y los datos aportados por esta investigación podemos afirmar que la relación entre los CEM de frecuencia industrial (los considerados en el caso en cuestión) y enfermedades como cáncer o malformaciones congénitas resulta altamente improbable a los niveles que se encuentran en las cercanías de las instalaciones eléctricas de alta tensión” (Represa de la Guerra, 2001).

4. Estudios epidemiológicos

Como se ha señalado, hay numerosos informes epidemiológicos que estudian los posibles efectos de los campos electromagnéticos sobre la salud de los seres humanos.

Se han reportado problemas cardiovasculares, trastornos neurodegenerativos, efectos tóxicos sobre el eje reproductivo, y relacionados con el cáncer, tanto en adultos como en niños. En este último grupo, se han estudiado intensamente los efectos de los CEM sobre el desarrollo de la leucemia. Sin embargo, no ha habido pruebas contundentes hasta la fecha que puedan establecer una relación causal entre la exposición a los CEM y esta enfermedad.

Puede afirmarse una relación causal cuando se cumplen los siguientes requisitos:

- La aparición conjunta de los fenómenos de “exposición” y “daño a la salud” en una frecuencia mayor a la esperada por azar (asociación de fenómenos).
- La constatación de que el fenómeno “exposición” precede al fenómeno “daño a la salud”.
- La verificación de la modificación del fenómeno “daño a la salud” cuando se modifica el fenómeno “exposición”.

Los estudios epidemiológicos realizados obedecieron a diseños que pueden establecer una asociación entre la exposición a los CEM y la aparición del daño a la salud. Sin embargo, esta relación no alcanza para ser considerada una relación causal. Otros estudios se realizaron bajo una estructura de tipo observacional analítica, tratando de establecer la segunda condición de la relación causal. Se realizaron estudios de cohorte y de casos y controles que sugieren con cierto grado de probabilidad la exposición previa a CEM en la aparición del daño. Pero la evidencia epidemiológica es limitada, ya que, si bien existen herramientas metodológicas para poder controlar fenómenos de confusión que atribuyen a una causa efectos multicausados, en este tipo de exposiciones es casi imposible excluir el resto de las influencias ambientales. Estas influencias en las áreas urbanas, especialmente metropolitanas con diversidad de industrias y servicios y sus distintos efluentes, son múltiples y en algunos casos indetectadas o indetectables.

El estudio de elección por excelencia es el diseño de intervención, que por sus características permite verificar la relación causal mediante la comprobación de los tres requisitos fundamentales mencionados. Este tipo de diseño requiere del control de la exposición, lo que significa que los investigadores pueden disminuir o cancelar la exposición a CEM y observar los resultados de esta modificación en los sujetos. Más allá de que resulta extremadamente difícil lograr el control de la exposición, existe además el fenómeno de la confusión (otras noxas ambientales a las que los sujetos están expuestos), que generalmente –como se señaló– es imposible de controlar.
Los estudios clínicos ofrecen la posibilidad de “manejar las condiciones experimentales” en un laboratorio, evaluando los efectos de los CEM sobre sujetos que aceptan participar voluntariamente del experimento. Sin embargo, este tipo de estudios es extremadamente costoso, a la vez que requiere de una “exposición controlada” a los CEM. Si bien la posibilidad de realizar estudios clínicos bajo este control, con voluntarios, permite cierto tipo de generación de conocimientos sobre la asociación causal, se limitan a la medición de fenómenos que no requieran métodos invasivos y por periodos de tiempo de exposición relativamente cortos. Estudios de este tipo a gran escala resultan imposibles de realizar por cuestiones éticas.

En resumen, se puede concluir que, si bien estudios epidemiológicos que abarcan distintos diseños se vienen realizando desde hace más de veinte años, no hay hasta el momento evidencias concretas de asociación causal entre CEM y daño a la salud, principalmente desarrollo de leucemia en niños. Si bien algunos estudios han señalado asociación entre ambos fenómenos, la evidencia no es suficiente.

El desarrollo de un programa de investigación focalizado a profundizar los conocimientos generados hasta el momento requerirá de un abordaje interdisciplinario que permita establecer información contundente acerca de posibles daños a la salud en los individuos expuestos a los CEM.

5. Gestión de riesgos

La regulación y el manejo de riesgos deben basarse en la evaluación mensurable, pero no pueden pasar por alto la percepción por parte de la comunidad.

La regulación en los distintos países se basa en las normas de la Comisión Internacional de Protección Contra la Radiación No Ionizante (ICNIRP), reconocida por la OMS, que establece límites de exposición basados en la información científica y los revisa periódicamente. Las guías del ICNIRP se ocupan de la radiaciones entre un rango de 0 a 300 GHz y se centran en la exposición a corto plazo toda vez que para la de largo plazo no disponen de información científica para definir límites.

El nivel umbral, que potencialmente generaría efectos biológicos adversos, se define con factores de reducción 10 en el caso de los trabajadores expuestos y de reducción 50 en el del público. Esta última es mayor que en los trabajadores, ya que estos son adultos, conscientes de los campos, se entrenan para tomar precauciones y están expuestos durante ocho horas diarias, en jornadas hábiles, de promedio. Las condiciones inversas del público exigen límites más rigurosos.

6. Percepción de riesgos

La introducción de nuevas tecnologías en el proceso de desarrollo involucra, por un lado, beneficios y confort para las comunidades y, por otro, riesgos y peligros posibles o reales.

Los focos de luz eléctrica y los alambres de postes telefónicos crearon preocupación comunitaria desde principios del siglo XX, y así la introducción de nuevas tecnologías fue generando paralelamente nuevas preocupaciones.

Por cierto que, aunque no siempre, la percepción de riesgo concomitante al uso de tecnologías impulsó su evaluación y medidas de regulación y protección.
En el caso de los CEM, los estudios iniciales, la preocupación del público y de los trabajadores eléctricos, generaron un gran número de informes y análisis y una amplia discusión de organismos nacionales e internacionales especializados. La complejidad del problema arrojó resultados sin evidencias sólidas respecto a los efectos adversos aún ambiguos. Por otra parte, la extensión de las redes y equipos, muchos de ellos de uso doméstico cotidiano, que generan CEM, confrontada con aquella ambigüedad, ha llevado a medidas de regulación —en algunos países— llamadas de “precaución pasiva” compatibles con los sistemas universalmente instalados y en funcionamiento.

Es así como, en algunos casos, se ha despertado, más allá de la preocupación de comunidades involucradas, desconfianza hacia los entes reguladores, las empresas de servicios, las autoridades políticas y los mismos científicos.

Se ha discutido, en el campo sanitario, la prioridad y aun la continuidad de estudios sobre el tema en función de problemas de mayor impacto poblacional.

Sin embargo, la comunidad debe ser informada sobre la base de fundamentos científicos. Hasta el momento, en lo que hace a los CEM, no se puede descartar con absoluta certeza la generación de efectos adversos. En su lugar, se puede afirmar que, con el cumplimiento de las normas vigentes, los eventuales riesgos se minimizarían.

La continuidad de los estudios compromete hoy a agencias especializadas de los países más desarrollados del mundo, con una reconocida participación de las mismas empresas proveedoras del servicio eléctrico, y a organismos internacionales.

Así, es preciso en nuestro medio —insuficiente en recursos de prevención y asistencia sanitaria— ceñirse a revisiones bibliográficas reconocidas y a estudios epidemiológicos y de laboratorio que, por su escala pobre de recursos y aun de reducidos tamaños poblacionales, serían positivos en un marco colaborativo internacional.

7. Conclusiones

El desarrollo científico y tecnológico generó, y continúa haciéndolo en forma acelerada, una red intrincada de campos electromagnéticos dentro de casas, oficinas, escuelas, hospitales y en el medio externo, que forma parte de la vida diaria.

Las fuentes de campos electromagnéticos en el hogar comprenden desde la instalación eléctrica básica hasta las afeitadoras, secadoras de pelo, equipos de radio, estéreos, televisores, planchas, refrigeradores, tostadoras, multiprocesadores de cocina, lavadoras, hornos de microondas, teléfonos celulares y otros aparatos cada vez más extendidos en uso.

Hay diferencias de exposiciones a esos campos según el eventual incremento de intensidad. Los campos electromagnéticos son ubicuos por el transporte y distribución de electricidad, funciones de suyo necesarias para sostener la red mencionada en el punto anterior.

Estudios epidemiológicos han sugerido la asociación de campos electromagnéticos con efectos adversos para la salud en trabajadores de la electricidad, que han sido controvertidos por otros estudios. Se ha sugerido una relación entre los mismos campos y una incidencia mayor de leucemia en niños hasta cinco años, también controvertida.

Los campos electromagnéticos por sobre los límites aludidos han sido asociados a efectos adversos sobre la salud por estudios epidemiológicos y algunos experimentales, los que han sido a su vez cuestionados por otros estudios.

La asociación no ha sido corroborada como tal en esas controversias científicas, y tanto menos como asociación causal.

El proceso patogénico de las diferentes formas de cáncer, incluyendo las leucemias, se considera multicausal. En él intervienen factores iniciadores y promotores sobre diversos niveles orgánicos y por distintos mecanismos.
Estas cadenas y redes en la patogenia del cáncer son en gran parte desconocidas y están en estudio. Son relativamente pocos los factores de riesgo indiscutibles para cáncer: el cigarrillo en fumadores activos y pasivos, un grupo de sustancias químicas no muy extenso y ciertos virus.

Los ámbitos estudiados, ya sean ocupacionales o residenciales, en países desarrollados y más aún en los conurbanos argentinos, están contaminados (en el aire, agua y suelo) con numerosas sustancias carcinogenéticas (arsénico, cromo, hidrocarburos aromáticos) que pueden ser variables de confusión en los estudios epidemiológicos.

La intervención de los campos electromagnéticos en esta patogenia es controvertida y, en general, los organismos especializados sostienen que, dentro de los límites previstos, no presenta evidencia de ser carcinogénica.

Estas afirmaciones, aun en el marco de la controversia científica, no son definitivas y quedan pendientes de revisiones bibliográficas más amplias, nuevos estudios epidemiológicos, experimentales y clínicos para concluir con las ambigüedades, si esto llega a ser posible.

En ese marco no hay conclusiones corroboradas sobre asociación ni asociación causal con carcinogénesis. No obstante, no se puede afirmar que nuevos estudios o revisiones demuestren alguna asociación que por la situación controvertial (con más de 25.000 estudios y artículos científicos sobre el tema) sería probablemente débil y asociada a su vez con otros factores.

Organismos especializados internacionales y de naciones desarrolladas han fijado límites máximos de exposición, tanto ocupacionales como residenciales, que han sido adoptados por organismos de regulación eléctrica en Argentina: “Para atender los efectos en las personas debido a la exposición a campos eléctricos y de inducción magnética, se adoptan valores de máximo límite extremo tendentes a orientar la elección de los diseños de futuras instalaciones, teniendo en cuenta valores tan bajos como sean razonablemente alcanzables y evitando que puedan producir campos de inducción magnética más intensos que los típicos para las líneas existentes”.

Eso límites son mandatorios para toda empresa relacionada con la producción, transporte y distribución de electricidad, y, de acuerdo con los informes de los organismos reguladores, son controlados y exigidos.

En los países desarrollados con límites de exposición más bajos surgen situaciones ambiguas, controversias, y se prevén altos costos en la construcción de nuevos sistemas de electricidad.

Los nuevos emprendimientos eléctricos deben asegurar con la mayor precisión que la intensidad de los campos esté por debajo de los límites establecidos, como en los ya instalados. Asimismo, ya en la competencia de la Ingeniería y de la Física, es recomendable estudiar procedimientos ya sea de efecto escudo, dificultoso para los campos magnéticos, o distancia para minimizar eventuales efectos.
Bibliografía


Consumers Research, Electromagnetic Fields: No Evidence of Threat, diciembre 1996.


Lugar de trabajo, N° 96-129, septiembre 1996.


OMS, Estableciendo un diálogo sobre los riesgos de los campos electromagnéticos, Ginebra-Suiza, 2005.


Represa De La Guerra, J. y Llanos Lecumberri, C., Cinco años de investigación sobre los efectos biológicos de los campos electromagnéticos de frecuencia industrial en los seres vivos, Valladolid, marzo 2001.


CAPÍTULO 15

FUEGO E INCENDIOS

Oscar Antonio Di Marco
Horacio Luis Barragán

1. El fuego se hunde en las leyendas

En un tiempo perdido del Paleolítico, el hombre aprendió a producir y utilizar el fuego. Su control fue de los primeros recursos para liberarse de la esclavitud del medio ambiente. Con unas maderas secas, el hombre primitivo pudo luchar contra el frío, iluminar sus cavernas, ahuyentar los animales salvajes y cocinar sus alimentos. Desde entonces, el uso del fuego contribuyó al desarrollo tecnológico.

Marucci cita un párrafo de Bachelard:

Cuando se le pregunta a las personas cultas, y aún a los sabios, como en muchas ocasiones lo he hecho: ¿qué es el fuego?, he recibido respuestas vagas y tautológicas, que repetían inconscientemente las más antiguas y quiméricas teorías filosóficas. La razón reside en que la cuestión ha sido situada en una zona objetiva impura, donde se mezclan las inquietudes personales y las experiencias científicas.

Dice más adelante: “La pedagogía del espíritu científico ganaría mucho más si se mostrasen las seducciones en donde los poemas ocultan los teoremas”.1

En la ciencia contemporánea difícilmente pueda encontrarse un capítulo sobre el fuego. Se pretende destacar los peligros y las formas de prevención de los incendios. Se ha dicho que el fuego en cualquier circunstancia demuestra mala voluntad: “es difícil de encender y difícil de apagar”. Produce incendios, intoxicaciones y quemaduras. Se trata de tenerle respeto y reseñar la manera de prevenir su iniciación o propagación indeseadas.

El principal problema con el fuego es que cuando está fuera de control, como es el caso de los incendios, la liberación violenta de energía que produce hace que las personas y los elementos cercanos cambien sus estructuras y propiedades. Así, por ejemplo, los materiales orgánicos se carbonizan, y tanto maderas como plásticos, géneros y otros se degradan completamente y pierden absolutamente su valor. También los metales sufren los efectos de estos imprevistos calentamientos, desde el oro al hierro y al acero, cambiando rápidamente su resistencia mecánica.2

---

1 Desde Prometeo, el mitológico ladrón del fuego de los dioses, y Empédocles, que para el poeta se despeñó al Etna en virtud de un “llamado de la hoguera”, el elemento ígneo tuvo un particular simbolismo. Los alquimistas medievales concebían el oro como receptáculo del fuego elemental: “La quintaesencia del oro es todo fuego”. Para ellos, el valor primordial del oro no era monetario, sino el camino hacia la piedra filosofal y la fuente de la eterna juventud. Paracelsos, en el siglo XVI, sostenía que el fuego de mercurio era fuerza vital, y Boerhaave, en el siglo XVII, que era el agente primordial. Para los Iatroquímicos del siglo XVII, el organismo humano era una gran retorta de combustiones vitales.

2 En ciertas construcciones sólo es posible utilizar las estructuras metálicas que se encuentran protegidas con una capa de material aislante de combustión muy lenta.
Otros elementos utilizados en la construcción, como el cemento y el hormigón armado, sí bien no son materiales combustibles, sufren igualmente la acción de las llamas. Como vemos, las llamas descontroladas producen graves daños. Ahora bien, ¿qué es el fuego?, ¿qué son las llamas? Podemos decir que las llamas son la manifestación sensible (luz, calor) de una reacción química de oxido-reducción entre un material combustible (puede ser de diferente naturaleza) y un comburente (por lo general el oxígeno del aire, aunque hay otros oxidantes que también producen esta reacción) que produce una gran liberación de energía (reacción exotérmica).

2. El concepto de fuego es esquivo

Se ha definido el fuego como una combustión o reacción química de oxidación de intensidad suficiente para producir calor, luz y en algunas oportunidades llama. Se produce por la combinación de tres factores: un comburente u oxidante (oxígeno u otro gas), un combustible o reductor (sustancias que contienen abundante carbono e hidrógeno) y una temperatura suficiente.

Con esos tres elementos se compuso el llamado “triángulo del fuego”, que hasta principios de la década de 1960 explicó su producción y extinción.

<table>
<thead>
<tr>
<th>Triángulo del fuego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de ignición</td>
</tr>
<tr>
<td>Fuego</td>
</tr>
<tr>
<td>Combustible (variables)</td>
</tr>
<tr>
<td>Comburente (aire-oxígeno)</td>
</tr>
</tbody>
</table>

Otra forma de expresar el fenómeno del fuego es recurrir a la metáfora del banco de tres patas:

---

3 El calentamiento hace que las moléculas de agua cristallizada que posee el cemento (y que es lo que produce la ligazón y dureza de la mezcla) se evaporen y generen una presión interna en él, que finalmente estalla y colapsa.
Es decir, la plataforma del banco, el fuego, no se mantendría si faltara alguna de las patas que lo sustentan.

Los norteamericanos Ghise y Haesler añadieron un cuarto factor denominado indistintamente “reacción en cadena” o “radicales libres en la zona de combustión”. Ghise propuso un cuadrilátero para representar el fuego. Haesler eligió un “tetraedro” o “pirámide”. Para la producción de fuego es preciso el contacto simultáneo de los cuatro factores, como los lados de esa geometría.

En los ochenta se consideraron ambas figuras, triángulo y tetraedro, para distintos casos. Se desarrollaba entonces una “ciencia” del fuego ligada a la cinética química, que describía la sucesión de innumerables reacciones en las combustiones más simples y la existencia en ellas de materia ionizada. Se progresó no sólo en la prevención y lucha contra el fuego, sino en el aprovechamiento de los combustibles y en la disminución de la contaminación que provocan.4

4 Tres ejemplos del mecanismo de producción del fuego. **Primer ejemplo**: si se experimentara quemar una manzana en un local bien ventilado, se dispondría de dos elementos imprescindibles para el fuego: un combustible (hidratos de carbono de la manzana) y un comburente (oxígeno del aire). Si agregáramos el tercer elemento, el calor de un fósforo encendido, lo más probable es que se extinga la llama. La combustión es una reacción entre combustible y comburente a una presión atmosférica dada si hay dispersión del combustible y si se agrega una temperatura o nivel térmico o energético de calor. Este nivel, para nuestro experimento, no se logra con la llama de un fósforo. Reemplacemos el fósforo por un baño de aceite de punto de ebullición de 300°C en un recipiente hermético con aliviador de presión al exterior, que sea calefaccionado por un mechero Bunsen exterior. Dentro del baño de aceite colocamos la manzana y la sometemos al calor. Observaremos que durante el calentamiento la manzana se seca y emite vapores, pero no se enciende ni ella ni sus vapores. Se produce una destilación parcial del combustible (la manzana) pero no fuego. La energía externa provista por el mechero se consume en el calentamiento del sistema hasta los 300°C, en la evaporación del aceite (calor latente de vaporización) y en la destilación de los volátiles de la manzana. Se podría continuar indefinidamente mientras haya aceite en el sistema, sin que aparezca llama en el combustible. Sin embargo, cuando se seca el aceite, la temperatura del sistema volverá a aumentar y alcanzará mayores valores por el aporte de energía del mechero.
Las metáforas anteriores tienen como finalidad visualizar o comprender los mecanismos que pueden emplearse para prevenir o extinguir un fuego o un incendio (ver punto 7), estos son:

- **Refrigeración**: Principalmente, quitar la energía (agua).
- **Sofocación**: Aislar el combustible del comburente (espumas, CO₂ y también puede ser el vapor de agua, usado de modo muy fraccionado).
- **Inhibir la reacción en cadena en su fase final**: sólo en espacios confinados o muy controlados (polvos químicos secos, halones).

El fenómeno del fuego se representa en esquema.

---

(suponiendo que pueda desarrollar temperaturas mayores de 600°C), que continuará produciendo calor. En el momento que la temperatura de la manzana o sus vapores supere los 400°C, podrá verse que una llama aparece espontáneamente. Este es el momento en que se produce la combustión entre los gases destilados combustibles y el oxígeno del aire: la llama es la manifestación visible de la energía que emite, junto con radiaciones que no alcanzan a verse (rayos infrarrojos). La reacción es exotérmica. Experiencias similares podrían realizarse con otros sólidos combustibles. **Segundo ejemplo**: si colocamos un poco de nafta común en un recipiente de boca ancha y abierta a una temperatura de –80°C y flameamos una llama sobre la superficie, no observaremos fuego. Si variamos la temperatura con un calefactor apropiado y la controlamos con un termómetro, podemos repetir el fuego y obtener llama hasta llegar a una temperatura que, según el corte de nafta, deberá llegar a –45°C. Al flamear una llama sobre el recipiente a esa temperatura, se observará deflagración sobre la superficie del combustible que se apagará instantáneamente al retirar la llama externa. Esta temperatura es denominada "flash point". Si el calentamiento del recipiente con nafta alcanza los 40°C y volvemos a flamear sobre su superficie, aparecerá nuevamente la llama y se mantendrá aún retirando la fuente externa. Esta es la "temperatura de inflamación o ignición" Desde este nivel, el fuego se mantiene y la temperatura del líquido aumenta aún suspendiendo la fuente externa de ignición. Este combustible ardiente comenzará su ebullición alrededor de los 80°C. A esta temperatura se la denomina “punto de ebullición”. El proceso seguirá hasta la completa ebullición y combustión de la nafta. Si, en cambio, se apaga la llama de la superficie del líquido y se continúa proveyendo energía calórica al recipiente, continuará la ebullición y producción de vapores, sin que ellos aumenten su temperatura ni tomen fuego por sí mismos hasta su completa evaporación. Si se cambia el recipiente y se regula la presión sobre el líquido, se observa que la producción de vapores no se enciende, aun cuando la temperatura de los mismos sobrepasa los 100, 200 y 300°C. Pero cuando la temperatura de los mismos sobrepasa los 400 o 450°C, la combustión aparecerá espontáneamente al simple contacto de los vapores con el aire exterior. Este punto, propio de cada composición molecular, es la "temperatura de autoignición o autocombustión". Los vapores no arden en el interior del recipiente aun alcanzando la referida temperatura. Los sólidos y los líquidos combustibles no "arden" en fase sólida o líquida, sino cuando pasan a fase gaseosa y bajo ciertas condiciones.

**Tercer ejemplo**: si en un ámbito cerrado a temperatura ambiente hay una garrafa de gas licuado (propano-butano) y se abre la válvula de descarga, no se produce fuego. Esta situación puede continuar hasta que, por descuido, se accione un interruptor de luces o se produzca un punto similar de ignición. En este momento se producirá una deflagración de la mezcla gaseosa con características de explosión. Tanto la explosión como el fuego son fenómenos de ignición que difieren en su velocidad de propagación y en las presiones que originan. Si la garrafa es reemplazada por cilindros del mismo gas licuado (propano- butano) y se descargan completamente en un ambiente pequeño agregándose una fuente de ignición, como en el caso anterior, no se produce deflagración. Es decir que aun teniendo el combustible (gas), el comburente (aire) y el calor (fósforo), la proporción de comburente es pequeña respecto del combustible como para producir la reacción. A la inversa, tampoco se produciría la reacción si la proporción de comburente (aire) fuera demasiado grande respecto de la de combustible (gas). Tal es lo que ocurre, con frecuencia, con pérdidas de gas de una cocina abierta, aun con fuente de ignición. Estos fenómenos dependen de los “límites de inflamabilidad” o “límites de explosividad”. Las sustancias inflamables forman con el aire mezclas que pueden o no desflagrar en presencia de un punto de ignición o de temperatura según la proporción de la mezcla. La proporción es propia de cada sustancia y se denomina “límite inferior de inflamabilidad o explosividad” (LII y LIE) y “límite superior de inflamabilidad o explosividad” (LSI y LSE), a una presión y temperatura definidas. Por ejemplo, el Hidrógeno en el aire, a presión atmosférica y expresado como porcentaje en volúmenes, tiene un LII = 4 y LSI = 75. Esto significa que cuando la concentración de Hidrógeno en aire, en esas condiciones, se encuentre entre dichos valores y tome contacto con una fuente de ignición o elemento cuya temperatura supere 400°C (temperatura de autoignición del Hidrógeno), estallará o quemará. Contrario sensu, si la mezcla está por debajo o encima de tales valores, esos fenómenos no ocurrirán. De lo expuesto surge que, aunque las figuras del triángulo o el tetraedro del fuego orientan sobre los elementos que al conjugarlos producen el fenómeno sólo se exterioriza bajo ciertas condiciones complementarias, a saber: presencia de un combustible adecuadamente disperso en el comburente (fase gaseosa-vapor) en proporción adecuada para la reacción (dentro de los límites de inflamabilidad); presencia de una fuente de energía suficiente para que el sistema alcance un “punto” a la temperatura de autoignición (Di Marco, 1882).
<table>
<thead>
<tr>
<th>Etapas</th>
<th>Componentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ª física</td>
<td>SÓLIDOS + Energía térmica de: Energi Mecánica, Energía Eléctrica, Energía Química (roce)</td>
</tr>
<tr>
<td></td>
<td>GASES + Energía Eléctrica (resist., arco), Energía Química (reacción exotérmica)</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDOS + Energía</td>
</tr>
<tr>
<td></td>
<td>Energía Mecánica + Energía Eléctrica + Energía Química</td>
</tr>
<tr>
<td>2ª física</td>
<td>Energía Térmica de: Energía Mecánica, Energía Eléctrica, Energía Química</td>
</tr>
<tr>
<td></td>
<td>Combustible en fase gaseosa-vapor</td>
</tr>
<tr>
<td>3ª química</td>
<td>Energía Térmica de: Oxígeno (O₂)</td>
</tr>
<tr>
<td></td>
<td>Combustible en fase gaseosa o temperatura de autoignición (partículas inestables)</td>
</tr>
<tr>
<td></td>
<td>productos de la combustión (CO₂ - CO - H₂O) + ENERGÍA</td>
</tr>
<tr>
<td>4ª propagación</td>
<td>(deflagración-explosión)</td>
</tr>
<tr>
<td></td>
<td>PRESIÓN</td>
</tr>
<tr>
<td></td>
<td>OXÍGENO (O₂)</td>
</tr>
<tr>
<td></td>
<td>(calor - luz)</td>
</tr>
<tr>
<td></td>
<td>CALOR</td>
</tr>
</tbody>
</table>


Hay cuatro etapas en la generación de un fuego o explosión. Las dos primeras son físicas (calentamiento del combustible para ponerlo en condiciones de reaccionar). Se diferencian en que en la primera se produce la dispersión homogénea del combustible en el comburente y requiere mayor aporte energético. La segunda lleva la temperatura de la mezcla de combustible-comburente a su nivel de reacción con el oxígeno. Llegado a este punto, el proceso toma la característica de una reacción química exotérmica de óxido-reducción, cuya liberación de energía descontrolada produce retroalimentación energética del sistema, produciéndose fuego o explosión.
3. Hay diferentes formas de fuego

Definido el fuego como un tipo de combustión o reacción química de oxidación, intervienen el combustible o reductor que gana electrones y el comburente u oxidante que los pierde. Es una combustión con intensidad suficiente para producir calor y luz. No siempre produce llama. Así, hay una primera división del fuego: con llama y sin ella.

El fuego “sin llama” se produce por la incandescencia de una superficie de contacto sólida. Puede darse conjunta o sucesivamente “con llama”. Tal es el caso del carbón encendido: primero con llama y luego sin ella (carbón incandescente). El fuego “sin llama” es propio de algunos combustibles sólidos, sin destilación pirolítica, tales como carbón, madera, azúcares, almidones, plásticos termo endurecidos (ebonita), azufre, fósforo y algunos metales de fácil oxidación (magnesio, aluminio, circonio, uranio, sodio, potasio). Estas últimas combustiones producen temperaturas del orden de los 2.500ºC. En el fuego “sin llama” no se describen los radicales libres, por lo que se aplica la figura del triángulo de fuego.

El fuego “con llama” se produce por difusión del combustible, sea gas o vapor o por destilación pirolítica de un sólido. Puede subclasificarse en tres tipos según obtenga el comburente: a) de difusión: fuegos por combustión de un material que se va mezclando en forma progresiva con el oxígeno u otro comburente; b) autónomos: fuegos en los que el mismo combustible provee el oxígeno a medida que se descompone (nitrocelulosa); c) premezclados: fuegos en los que la llama surge de un combustible adicionado del comburente (soplete oxiacetilénico, quemadores de gas).

Las normas de seguridad clasifican los fuegos con letras y colores según el siguiente esquema:

- **Tipo A** (en triángulo verde): fuego de sólidos carbonizables que dejan cenizas (madera, papel, tejidos). Se los subdivide en superficiales y profundos o de arraigo. Recuérdese que el fuego “con llama” se produce por la difusión de vapores de la destilación pirolítica del sólido. Se extingue por enfriamiento, disminuyendo el factor “calor”. Para eso se utiliza agua o soluciones acuosas, siempre que el fuego no esté bajo tensión eléctrica, en cuyo caso se clasifica “C”.
- **Tipo B** (en cuadrado rojo): incluye los de líquidos o de gases de combustión que no producen cenizas (nafta, aceites, solventes, pinturas, grasas). En realidad, los líquidos no arden, sino sus vapores. Se apagan por sofocación con espumas (productoras de burbujas que flotan en el líquido), polvos químicos secos (puede usarse anhídrido carbónico o halón) suprimiendo el factor “comburente” (oxígeno u otro gas). En algunos países europeos se llama “B” al fuego de líquidos combustibles y “C” al de gases combustibles.
- **Tipo C** (en círculo azul): fuegos sometidos a tensión eléctrica. Generan riesgo de electrocución de quien opera con el agua, soluciones o espumas. Ante la duda, se considera “C” a cualquier fuego, procediéndose a cortar la corriente eléctrica antes que nada. Se utilizan anhídrido carbónico y polvos químicos que actúan por enfriamiento y sofocación. En algunos países europeos, por el corrimiento de letras, se denomina a este fuego bajo tensión como tipo “E”.
- **Tipo D** (en estrella amarilla): fuego de metales o no metales de fácil combustión que habitualmente se presenta sin llama. Se relaciona con las tecnologías modernas (fuselaje de aluminio de aviones y naves). Es difícil de extinguir y alcanza temperaturas muy altas. El uso de agua puede producir gas de agua (explosivo). Por las grandes temperaturas, se sofoca con polvos especiales, con arena o escoria.

Las letras se marcan en blanco dentro de las figuras geométricas y colores indicados.
Clases de Fuego

La clasificación e identificación utilizada en Argentina se resume de la siguiente manera:

- “A” fuego de sólidos (A blanca en triángulo verde).
- “B” de líquidos y gases (B blanca en cuadrado rojo).
- “C” sometido a tensión eléctrica (C blanca en círculo azul).
- “D” de metales o no metales de fácil combustión (D blanca en estrella amarilla de cinco puntas).

Nota: los extintores llevan la letra del fuego en que deben usarse.


En la nomenclatura de algunos países europeos (como se dijo), A designa al mismo tipo, B corresponde a los líquidos inflamables, C a los gases de igual condición, E a fuegos bajo tensión eléctrica y D al mismo tipo.

4. Los incendios y explosiones pueden prevenirse

4.1. El incendio tiene sus etapas de prevención

Dice Quadri (1992) que el incendio es un fuego de cierta magnitud que abraza lo que no tiene que arder. Ningún ambiente está exento de riesgo de incendio, ni siquiera los edificios de hormigón armado o acero. Numerosos elementos de la tecnología actual dan pie al riesgo, pero es la desaprensión un factor decisivo.

Los niveles de prevención, como en una enfermedad, son prepatogénicos y postpatogénicos, y tienen objetivos específicos:

- Nivel prepatogénico: evitar el comienzo de un incendio considerando los factores de riesgo:
  - Según los materiales sean explosivos, inflamables, combustibles, incombustibles o refractarios (Di Marco, 1982).
  - Según velocidad de combustión: depende del estado de subdivisión del material almacenado en cuanto a densidad de la acumulación y a la superficie que ocupa.
  - Según el uso de combustibles inflamables (Di Marco, 1982).
  - Según el factor de ocupación en m² por persona (Di Marco, 1982).
  - Según el material de la construcción y las instalaciones eléctricas, de gas, de calefacción y de características industriales (calderas, hornos, chimeneas).
  - Según la estructura y distribución de los espacios, su resistencia al fuego y el aislamiento de depósitos.
  - Según los medios de evacuación.
  - Según los recursos de extinción.
  - Según la capacitación del personal y la práctica de simulacros.

- Nivel postpatogénico:
  - En etapa inicial: detección oportuna y ataque inicial. Los edificios grandes o con ocupación múltiple (por ejemplo, hoteles) deben equiparse con detectores automáticos que dan señales a una central de control y alarma. Según su diseño, estos detectan calor, humo o llama con diversos modelos que tienen indicadores según el lugar o el material. Hay también pulsadores

---

Quadri denomina “protección” y la categoriza en preventiva, pasiva o estructural y activa o de extinción.
manuales (avisadores de incendio) cubiertos por un vidrio que debe romper quién detecta el fuego y apretar el botón o mover la palanca (según el modelo) de aviso. Los sistemas de detectores automáticos pueden combinarse con instalaciones fijas de extinción (rociadores automáticos o sprinklers) de diversos modelos.
- En etapa declara do: evacuar a las personas y evitar el efecto del humo y gases tóxicos. El humo proviene de la combustión del carbono, se agrega vapor de agua y gases: CO₂, CO (tóxico), SO₂ (irritante) y otros (Di Marco, 1982). Debe mantenerse la iluminación de emergencia.
- En etapa avanzado: rescatar a personas atrapadas, atender a intoxicados, quemados, heridos y personas con pánico, extinguir el incendio

4.2. El fuego se previene en las estructuras y edificios

La primera forma de prevención de incendios es sobre las estructuras, que pueden ser o contener combustibles.⁶ En todo edificio o estructura se debe tener en cuenta: a) la separación de áreas de mayor riesgo; b) la subdivisión interior, que al reducir la capacidad ambiental contribuye a evitar la propagación del fuego; c) la eliminación de falsos techos, tabiques, decorados o coberturas que no sean imprescindibles, o su tratamiento con ignífugos; d) la previsión de escapes y la introducción de extintores⁷.

4.3. El fuego se previene en las instalaciones y procesos

Para la prevención de incendios, es preciso tomar precauciones en las instalaciones y procesos del ámbito doméstico, industrial o público. Se mencionarán algunos ejemplos.

a. Instalaciones térmicas

Las instalaciones de calefacción central o artefactos de gas, difícilmente producen riesgos de incendio. No ocurre lo mismo con los calefactores portátiles y con los artefactos de llama abierta o superficies con alta temperatura, cualquiera sea el combustible que utilicen. Su uso debe evitarse o restringirse al mínimo. En su caso, deben tomarse precauciones como las siguientes, tanto en quemadores domésticos como industriales:

- Protección que impida el contacto directo entre la llama, resistencia o superficie, con personas o objetos.
- Diseño que impida la acumulación de polvo o suciedad en pantallas y permita periódica limpieza.
- Base o apoyo incombustible y firme, que impida el fácil volcado, así como cañerías a resguardo de daños físicos.

-------

⁶ Los cálculos se precisan en base a definiciones (sector de fuego, carga de fuego, ventilación natural o artificial), tablas de riesgo (1 a 7) y de mecanismos especiales, cerramientos, puertas y telones resistentes al fuego, muros y persianas cortafuegos, revestimientos, cajas de escaler a y ascensores, depósitos de inflamables. Véase la obra especializada y accesible de Quadri (1992).
⁷ El significado del “potencial mínimo de extinción” que surge de los números litografiados en la chapa de los extintores es el siguiente: para fuego tipo A, el potencial “1” apaga un fuego A de superficie de 4 m²; para fuego B, el potencial “1” apaga el correspondiente de una superficie de 0,1 m². El indicador C no lleva número y sólo indica que puede atacar fuego bajo tensión eléctrica. Por ejemplo, un extintor que lleve la indicación “10A – 60 B-C”, indica que se pueden atacar fuegos de A de 40 m² (10x4) y B de 6 m² (60x0,1), así como que puede aplicarse a fuegos C.
• Tanque con cierre hermético, de material que no se corroa, y válvula de seguridad de corte de provisión (para combustibles líquidos con reserva autónoma).
• Buena ventilación en torno al artefacto, para no recalentar objetos cercanos.
• No acumulación de material combustible (aceite o similares) bajo los quemadores.

Las chimeneas y conductos de gases calientes deben ser lo más cortos posible. En su trayecto horizontal o vertical no deben ubicarse ni acumularse ningún material u objeto de fácil combustión. Estos deben permanecer a distancia, por lo menos a tres veces el diámetro de la cañería.
Las cañerías de vapor o agua caliente no deben transcurrir adosadas a construcciones de madera o elementos decorativos combustibles.
Cualquier superficie a más de 20ºC puede originar un incendio.8

Toda acción de prendido de horno doméstico o industrial debe estar precedida por una ventilación aérea.

b. Instalaciones eléctricas
La deficiente instalación o mantenimiento de sistemas eléctricos puede originar sobrecalentamiento, cortocircuitos o fugas a tierra y producir incendios.
La ley de Joule establece que la cantidad de calor (E, en Joules) generado en una resistencia eléctrica (R, en omhios) es directamente proporcional al cuadrado de la intensidad (I, en amperes) de la corriente, por el tiempo (t, en segundos).
En símbolos:

\[ E = R.I^2.t \]

Un calentador eléctrico es un artefacto que aprovecha esta transformación de electricidad en calor. Toda instalación puede producir calor no querido en función de la mencionada ley física.
El corte de una corriente eléctrica puede producir un Arco Voltaico, que genera temperatura por diferencia de potencial entre los dos polos, puede originar la ignición del aislante, la fusión del conductor y la iniciación de un fuego. De allí la importancia de no acumular objetos en la cercanía de tableros o cajas eléctricas.
Las lámparas para iluminación incandescente, siguiendo la ley de Joule, producen calor aun con instalaciones y protecciones.

<table>
<thead>
<tr>
<th>Temperatura de lámparas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lámpara (wattios)</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>500</td>
</tr>
</tbody>
</table>

* Sobre el vidrio y a temperatura ambiente 20°C

Las temperaturas aumentan cuando pasan de la posición vertical habitual a una posición invertida. El riesgo aumenta cuando se rompe el vidrio o cuando el culote no está bien enroscado.

8 Los tanques de inmersión de aceite siempre deben tener circulación del fluido y control de la temperatura.
Las lámparas fluorescentes producen un aumento instantáneo de su temperatura en su encendido, pero luego es menor que las incandescentes (40°C a lo largo del tubo y 120°C en los cátodos). En las lámparas de infrarrojos es a la inversa y deben tener protecciones especiales. 
Merecen destacarse las siguientes referencias:

- Los artefactos deben estar hechos con diseños y materiales no combustibles.
- Los fusibles deben ajustarse al consumo de la instalación calculada y nunca reemplazarse por otros de mayor capacidad, porque pierden su función de protección.
- No debe realizarse ninguna maniobra que disminuya la protección que provee el fusible.
- Los enchufes deben responder al amperaje del artefacto.
- Los enchufes "triples" deben restringirse al máximo y nunca utilizar más de uno.
- En los cables, debe cuidarse su flexibilidad y la resistencia de sus aislantes.
- Las grampas no deben dañar los cables por rebarbas o aplastamiento.
- Nunca debe enrollarse el cable de un artefacto portátil alrededor de sí mismo al finalizar su uso, ya que puede generar recalentamiento.
- Nunca debe desenchufarse tirando del cable.
- Los cables no deben estar bajo coberturas de madera o combustibles, ni junto a líneas telefónicas o cañerías de gas.
- No se deben utilizar placas de madera u otro material combustible como base de tableros eléctricos o tomacorrientes, debiendo ser reemplazados por mármol o material incombustible.

Los motores eléctricos pueden generar incendios por recalentamiento de cojinetes, chispas o arcos eléctricos.9

Los tableros eléctricos deben estar ubicados en lugares secos y limpios, lejos de la acumulación de materiales, fuera de los lugares de paso y a cargo de personal entrenado. Cuando este personal opera, nadie debe acercarse. Nunca deben dejarse elementos de ninguna especie (por ejemplo, herramientas), ni siquiera en forma transitoria, en los tableros o cabinas que los contienen.

La buena instalación eléctrica, la permanente limpieza, orden, cuidado y mantenimiento y la oportuna renovación –el envejecimiento deteriora los aislantes y el mismo conductor– previenen los accidentes.

c. Electricidad estática
Gilbert (1600) descubrió que el frotamiento de varillas de vidrio con telas de seda producía la electricidad estática, como toda fricción.

En la actividad industrial, todo frotamiento de poleas, correas o rodillos genera electricidad estática dependiendo de las superficies, la velocidad de contacto y la humedad del medio.10 Por eso, los equipos deben tener puesta a tierra y mantenerse húmedo o ionizado el aire para lograr la descarga continua, por ejemplo, los equipos que procesan láminas de papel, tela o caucho.

La producción de electricidad estática es relevante en el procesamiento, transporte y depósito de combustibles, especialmente líquidos, en virtud de su alta resistencia eléctrica. Las cañerías de combustible deben tener continuidad de conducción eléctrica, y si ella se interrumpe deben agregarse puentes conductores por tramos (por ejemplo, cadenas de metal).

En la carga o descarga de combustible, aún en pequeños depósitos domésticos o industriales, debe asegurarse la puesta a tierra. La persona que opera no debe tener suela aislante. Por el

---

9 Su correcta instalación, conexión y mantenimiento los previenen. En ambientes de humedad o corrosión, los motores deben ser blindados o a prueba de explosiones. Su periódica limpieza evita que el polvo o la suciedad obturen las aberturas de ventilación que permiten disipar el calor. La lubricación evita el calentamiento de las piezas. Los transformadores bañados en aceite deben ser controlados y repuesto el aceite que se evapora.

10 Pueden alcanzarse diferencias de potencial de 25.000 voltios.
contrario, debe pararse sobre pisos conductores o alfombras de metal con calzado no aislante. Los camiones cisterna que transportan combustible deben arrastrar una cadena en forma permanente. Cuando se opera la carga o descarga –por ejemplo, en las estaciones de servicio–, tanto el tanque como el conducto de descarga deben estar conectados al receptor si es metálico o a una base metálica conectada con él. Antes de descargar, debe asegurarse que juntamente con la manguera del fluido haya conductor a tierra.11

d. Combustibles, soldaduras y otros riesgos
Respecto de los combustibles es preciso:

- Tender a usar los menos peligrosos, aunque algunos resultan insustituibles.
- Aislar los depósitos y cerrarlos herméticamente, su material no debe corroerse, y se deben ubicar de tal forma que se impida su vuelco.
- Limitar las reservas respetando los topes de cantidad según normas.
- No acumular otras sustancias combustibles ni residuos de ninguna especie cerca de los depósitos. Un trapo embebido en aceite o pintura puede originar un incendio.
- Resguardar los depósitos de cualquier tipo de chispa, ya sea por fricción mecánica o por electricidad.12

e. Uso de tabaco y fósforos
Debe cumplirse la prohibición de fumar y tener o encender fósforos o encendedores en lugares donde se manipulan o depositan combustibles de cualquier tipo. A tal efecto, deben reservarse áreas y momentos con las precauciones, aislamientos y avisos debidos en los que se autorice a fumar. Es gravísimo fumar en estaciones de servicio, así como en depósitos de combustibles, fibras, polvos o residuos.

En lugares donde se procesen, depositen o manipulen materiales combustibles, inflamables o explosivos está prohibido no sólo fumar o encender fósforos, sino también llevar fósforos, encendedores o cualquier elemento que produzca llama. El personal debe llevar calzado de suela y taco de goma sin clavar para evitar chispas (Quadri, 1992).

En el hogar, un gran peligro es fumar en la cama. En todos los casos deben preverse los correspondientes ceniceros, correctamente diseñados, y disponerse con precaución sus residuos.

11 Estas precauciones deben también tomarse en las operaciones con solventes, con equipos de lavado que utilizan solventes y con solpeles de pintura. No se eximen de ellas los pequeños depósitos ni las operaciones con poca cantidad de combustible.

12 Además es consecuente: reemplazar, dentro de lo posible, las piezas de metales ferrosos de las máquinas; evitar aceleraciones en maquinarias o procesos que produzcan recalentamiento y, en su caso, tener dispositivos de control e interrupción (esto vale para todos los motores y procesos en hornos de pintura, secado de papel, textiles, goma y madera; en cada caso, debe conocerse la temperatura de ignición para ajustar los controles); depositar los productos procesados lejos de los combustibles y en estanterías con instalaciones que no sean combustibles ellas mismas; proveer los equipos, chimeneas de cubilotes o silenciadores de carretones industriales, atrapadores de chispas, rejillas y diseños adecuados y ponerlos lejos de elementos combustibles (por ejemplo, acumulación de carbones de boquillas); cuidar las soldaduras, que son riesgosas por la producción de llamas, arcos, chispas o glóbulos de metal caliente que saltan (el riesgo es mayor en los equipos portátiles que se usan en edificios en construcción; los depósitos de combustibles deben alejarse a más de doce metros de la operación o protegerse con pantallas incombustibles; deben cerrarse las aberturas hacia otros ambientes; debe haber alguien preparado para operar con extinguidor mientras se realiza el soldado; no se deben llevar cilindros adicionales de gas al ámbito donde se suelda, media a una hora después debe revisarse el ambiente, por el posible depósito de partículas incandescentes en grietas, huecos o lugares fuera del alcance de la vista); vigilar los combustibles susceptibles de ignición espontánea, tales como aceite, fibras vegetales o animales y sólidos derivados del carbón (los trapos o arpilleras embebidas en aceites, pinturas, la acumulación de carbón, papel, corcho, residuos de comida o el transporte de caucho cuentan entre ellos).
f. Explosiones

Se llama “explosión” a una combustión que se produce en un lapso muy breve con desprendimiento de gran energía calórica, mecánica y luminosa. La explosión de mayor grado de velocidad y potencia se llama detonación.

Hay sustancias explosivas compuestas por dos fracciones: oxidante o comburente y reductor o combustible, ambos en equilibrio. La acción térmica, mecánica o electrónica de un detonador genera la explosión y una onda expansiva en todas direcciones (Instituto Argentino de Seguridad, 1978). No se considerará aquí este tema.

Hay, a su vez, equipos potencialmente explosivos, de uso habitual, de dos clases:

- **Aparatos sometidos a presión con temperatura** que se utilizan para generar vapor de agua a presión mayor que la atmosférica: son las calderas. Su instalación, inspección y control son esenciales para el buen funcionamiento y la prevención de explosiones. La operación de estos equipos debe estar a cargo de personal con capacitación específica. Una causa frecuente de explosión de calderas es la desatención de estos parámetros y, peor aún, el agregado de agua sin apagar la caldera.
- **Aparatos sometidos a presión sin temperatura** que se utilizan para comprimir y acumular fluidos a presión mayor que la atmosférica: son tanques y cilindros. El personal que los manipule debe ser entrenado ad hoc. Las normas IRAM establecen las precauciones de vida y las pruebas hidráulicas de los cilindros cada cinco años.

Entre los fluidos comprimidos se destacan algunos riesgos principales:

- Oxígeno. Su utilización genera espacios sobreoxigenados de más del 23% del aire ambiente. En esa o mayor proporción facilita y acelera las combustiones. A más de 28%, los tejidos incombustibles dejan de serlo. Puede prender fuego un operario con ropa sucia de aceite o grasa. El oxígeno líquido derramado sobre grasas, aceites o asfaltos puede producir autoignición, lo que suele ocurrir por fugas de los tanques que lo contienen. La aplicación de grasa o aceite en los cilindros de oxígeno puede producir explosión, por lo que está vedada. El uso de oxígeno en concentraciones altas (80%) en el pico de las soldaduras de corte genera una sobreoxigenación localizada. Si no hay ventilación, puede producir explosión (La Oxígena SAIC, s/f).
- Oxiacetileno. Se utiliza para soldaduras bajo normas precisas. Su descuido produce quemaduras y explosiones.
- Cloro. Es altamente corrosivo.
- Hidrógeno. También es peligroso por su inflamabilidad.

<table>
<thead>
<tr>
<th>Medidas de precaución en cilindros de fluidos comprimidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llenado, transporte y pruebas según normas IRAM.</td>
</tr>
<tr>
<td>No aceptar cilindros sin identificación o tapa.</td>
</tr>
<tr>
<td>Identificación.</td>
</tr>
<tr>
<td>Tapa de protección de válvula presente, excepto en momento de uso.</td>
</tr>
<tr>
<td>Almacenamiento en áreas resistentes al fuego, bien ventiladas y secas, lejos de fuentes de ignición o calor excesivo, y no en subsuelos. Nunca deben almacenarse cilindros llenos con vacíos. Estos últimos deben</td>
</tr>
</tbody>
</table>

13 Debe conocer sus características de estructura y funcionamiento (aberturas de inspección, válvulas de seguridad, tapones fusibles, grifos de nivel, sistemas de alimentación con válvulas de cierre y de desagüe, economizadores y reguladores de tiro). Ese personal debe observar con regularidad los manómetros de presión (graduados en kg/cm²) y los indicadores de nivel de agua cuya marca más baja debe señalar un mínimo que impida peligro y a la vez accionar una alarma.
etiquetarse como “vacíos”.

Transporte interno en carretilla de mano ad hoc, siempre con tapa y amarrados con correa o cadena; nunca se debe arrastrar o rodar.

Ubicación de cilindros en uso bajo soporte que impida su movimiento, recién después de esta precaución se quita la tapa.

Conocimiento y manejo de dispositivos de seguridad.

Identificación del fluido antes de su uso y conocimiento de sus características.

Fuente: La Oxígena s/f.

<table>
<thead>
<tr>
<th>Identificación de cañerías IRAM 2507-10005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Bermellón</td>
</tr>
<tr>
<td>Azul</td>
</tr>
<tr>
<td>Naranja</td>
</tr>
<tr>
<td>Amarillo</td>
</tr>
<tr>
<td>Verde claro con franjas naranjas</td>
</tr>
<tr>
<td>Verde claro</td>
</tr>
<tr>
<td>Marrón</td>
</tr>
<tr>
<td>Negro</td>
</tr>
<tr>
<td>Gris</td>
</tr>
<tr>
<td>Gris con franjas naranjas</td>
</tr>
</tbody>
</table>


El modelo de explosión de fluidos inflamables es la de gas natural, que se provee en red, o la de gas licuado de petróleo (propano y butano) que se usa en cilindros o garrafas. Mientras la proporción del gas natural no supere el 4% en la mezcla del aire, no hay riesgo, pero a medida que supera esa proporción este aumenta.\(^{14}\)

El gas natural tiende a elevarse y disiparse en la atmósfera, pero si su salida está bloqueada escapa bajo tierra, a veces a grandes distancias, tendiendo a perder la sustancia odorante que permite percibirla, con lo que los peligros aumentan.

El gas butano y el propano tienden a descender en vez de elevarse y a acumularse en zonas bajas o sótanos donde pueden generar explosiones.

Por todo ello, los artefactos a gas, hornos y calefactores, deben ser cuidadosamente instalados, mantenidos y manipulados.

Hay suspensiones de polvos en aire que, expuestas a una fuente de ignición, también generan explosiones. Tal es el caso de los molinos de harina, elevadores de granos y silos, en los que suele haber graves accidentes (Grant, s/f).

5. La evacuación es la primera acción en un incendio

La evacuación de las personas es la prioridad en un incendio declarado, y la extinción con el menor daño posible al edificio y a los bienes la segunda, aunque se inicien simultáneamente.

\(^{14}\) Las mezclas de gases, en mayores proporciones en el aire, pueden generar explosiones y emanaciones de hidrógeno y monóxido de carbono, que a su vez producen fuegos secundarios.
Las personas habituales de un establecimiento de cualquier índole deben ser concientizadas y entrenadas para casos de incendio, y recibir consignas claras en simulacros o situaciones reales (Marucci, 1982). Las consignas no deben ser alarmantes, para evitar el pánico. Por ejemplo: en vez de anunciar “¡fuego!”, se indica “abandone inmediatamente su tarea y salga al exterior”.

### Recomendaciones de evacuación

- Decisión del Jefe de Seguridad o, si no lo hubiera, de la máxima autoridad presente. **Debe haber único mando.**
- Anuncio inmediato, evitando el efecto pánico.
- Uso de escaleras, jamás ascensores.
- El que sale no debe volver a entrar bajo ningún concepto. Lo que haya que hacer lo harán los bomberos.
- Si el recinto se llena de humo es conveniente tirarse al suelo, donde este es menor, respirar por la nariz y salir arrastrándose.
- Antes de abrir cualquier puerta en el escape, tocarla para percibir temperatura, si está muy caliente no hay que abrirla y es preciso buscar escape alternativo.
- Si se queda atrapado, conviene abrir las ventanas exteriores y esperar el rescate.


El rescate corresponde a los bomberos, así como la extinción de un incendio grande. Para ambas cosas usan equipos especiales.

Para asegurar la evacuación de personas, desde el punto de vista estructural, cada sector del edificio debe contar con:

- En los espacios ocupados por varias personas siempre debe haber dos salidas, distanciadas la una de la otra.
- Lugares de desplazamiento protegidos.
- Continuidad de esos lugares con los medios de escape hacia la salida.
- Trayecto, en edificio de altura, con tres tramos:
  - Horizontal: desde los puntos del nivel afectado hacia la escalera.
  - Vertical: desde la escalera hasta el pié de la misma.
  - Horizontal: desde el pié de la escalera hasta el exterior del edificio.
- Trayecto: **señalizado, expedito** en forma permanente, **sin muebles** o materiales que lo obstruyan, con **iluminación de emergencia**.
- Puertas con apertura en el sentido de la circulación (hacia afuera) y que no estrechen el espacio de escape.
- La puertas no deben tener en ningún momento cierre inaccesible desde adentro (llaves, candados, obstrucciones).
- Las puertas giratorias están prohibidas.
- Los sectores de mayor riesgo de incendio o mayor número de personas deben estar construidos con resistencia al fuego y protección a la entrada de humo y gases, con puertas también resistentes, de doble contacto y cierre automático.
- Los recorridos deben ser descendentes (excepto en subsuelos) y ampliarse (no reducirse) en el sentido del avance.
• El ancho mínimo de medios de escape se establece según el factor de ocupación (m²/persona), el número total de personas y el área del piso a evacuar; según el ancho, se define el número de salidas (Di Marco, 1982), y la distribución interior define líneas internas de libre trayectoria; se prevén también escaleras auxiliares exteriores en edificios de altura.

6. Hay diversos procedimientos para la extinción del fuego

La extinción del fuego es una etapa de prevención en el sentido de Leavell y Clark: prevención “postpatogénica” para impedir su expansión y limitar sus complicaciones y daños.

El procedimiento es anular al menos uno de los componentes del triángulo del fuego: combustible, comburente o temperatura. El combustible es el más difícil de anular, por ello se recurre a la sofocación (que elimina el comburente) o al enfriamiento (que reduce la temperatura de ignición).

Los agentes de extinción se pueden clasificar en físicos y químicos. Entre los primeros cuentan el agua, las espumas y el anhídrido carbónico. Entre los químicos cuentan los polvos, halones y polvos especiales. Se verán sucesivamente.

6.1. El agua

Es el más común de los agentes extintores por sus características físico-químicas, su disponibilidad y su bajo costo.

Tiene una gran capacidad de absorción de calor:

• 1 Kg de agua a 20ºC + 10Kcal. aumenta a 30ºC.
• 1 Kg de arena a 20ºC +10Kcal. aumenta a 70ºC.
• 1 Kg de hierro a 20ºC + 10Kcal. aumenta a 170ºC.

Si se arroja al fuego 1 Kg de agua líquida a 20ºC y se consigue que toda se transforme en 1 Kg de vapor a 100ºC, se habrán absorbido alrededor de 620 Kcal del sistema de ignición. Se habrá alcanzado así extinción por enfriamiento. También en este caso se logra extinción por un segundo mecanismo. Un kilogramo de agua líquida a 20ºC ocupa aproximadamente 1 litro de volumen, pero un kilogramo de vapor a 100ºC tiene un volumen de alrededor de 1.500 litros. Este volumen será ocupado en la zona del fuego con el consecuente desplazamiento de aire (comburente) y acción por sofocación.15

El agua actúa sobre los tres elementos del triángulo de fuego: enfría el calor, sofoca el oxígeno o comburente y diluye o emulsifica determinados combustibles miscibles o no miscibles, respectivamente. Cuando, por su gran tensión superficial, no puede penetrar algunos fuegos, deben agregarse sustancias tensioactivas que aumenten la posibilidad de empapamiento aunque la hagan más corrosiva y conductora de la electricidad.16

El agua es eficaz para los fuegos tipo A, ya sean superficiales o de arraigo. Es poco eficaz para los fuegos B y D. No debe usarse para los fuegos C (bajo tensión eléctrica). El agua pura es

15 En la protección activa contra incendios es preciso minimizar el tiempo de extinción. El mecanismo de enfriamiento es una transferencia de energía entre un sistema (combustible en ignición) y otro (agua de extinción). Su velocidad será directamente proporcional a la superficie de intercambio. Dado que un determinado volumen aumenta su superficie específica al dividirse en partículas, el volumen de agua calculado deberá fraccionarse al máximo mientras lo permitan la distancia de accionamiento y la presión en la línea de alimentación. De esta manera, además de lograr el tiempo mínimo de extinción, se evitará el desperdicio de agua y su acumulación dañina sobre el material aún no afectado por el fuego.

16 Se dispone de abatidores no corrosivos para extintores recubiertos internamente con epoxis.
dieléctrica, no conduce electricidad, pero la presencia de sales en dilución la transforma en conductora proporcionalmente a su contenido en ellas.\textsuperscript{17}

El alcance del chorro de agua es de aproximadamente nueve metros.\textsuperscript{18}

Las mangueras de agua se verán más adelante.

Las instalaciones fijas de agua son sistemas de caños convenientemente ubicados sobre áreas de riesgo con válvulas que abren en el momento oportuno. Pueden ser simples orificios por los que sale el fluido cuando se abre la entrada o estar obturados con soldaduras de metal que funden a determinada temperatura (punto eutéctico) o por sprinkles o rociadores automáticos.\textsuperscript{19}

En forma preventiva, el agua es útil para formar barreras o cortinas y para enfriar tanques o áreas cercanas a incendios.

El agua está contraindicada en los fuegos C, salvo en determinadas condiciones, y en fuegos de metales alcalinos o alcalino-térreos (cementos, cales o yesos, ya que pueden aumentar el peso), y carbón incandescente (puede desprender monóxido de carbono). Tampoco se debe utilizar sobre combustibles con punto de inflamación menor de 100°C (acetatos, carburos, diacetona-alcohol o mezcla sulfonítica).

\subsection*{6.2. Las espumas}

Dentro de los extintores de tipo físico se ha incluido el agua, las espumas y el anhídrido carbónico.

Las espumas se dividen en tres grupos (de baja, mediana y alta expansión) según el aumento en partes de su volumen original. Las de baja expansión aumentan entre 5 y 30 veces su volumen original; las de media, entre 30 y 250 veces; y las de alta expansión, entre 250 y 1.000 veces. Son dispersiones de gas en líquido que se obtienen de aplicar un agente espumante al agua. Son burbujas en solución acuosa rellenadas de anhídrido carbónico u otro gas. Este tipo de extintor hace que el agua “flote” sobre la superficie ignea, actuando por sofocación, es decir, suprimiendo el factor comburente (aire, oxígeno) del triángulo de fuego.

Cuando se proyecta agua en “chorro” sobre un fuego de combustible líquido, penetra y se deposita en el fondo, perdiendo eficacia para apagarlo. La espuma, por el contrario, permite que el agua flote en la superficie, siendo útil en los fuegos B, cuando se trata de sólidos licuables o líquidos no miscibles. Tiene utilidad también en los fuegos A (sólidos) y la pierde en algunos de tipo B, como en los líquidosmiscibles y en los gases. No se debe utilizar en los fuegos C (bajo tensión eléctrica) y no tiene eficacia en los D.\textsuperscript{20}

\textsuperscript{17} El agua, además de su conductibilidad eléctrica, produce daño sobre los materiales por sí misma y por la fuerza con que es proyectada. Su uso sobre recipientes con combustibles líquidos (fuegos B) no es efectivo porque se deposita en el fondo de los mismos. Ya no se debe confiar en los baldes de agua de base redonda y diez a quince litros de capacidad ni en los extintores de agua, salvo algunos de amplia capacidad.

\textsuperscript{18} Hay matalfluegos antiguos, de agua pura con tanque adicional de CO\textsubscript{2} para impulsarla, con capacidad de diez litros, que se descargan en sesenta a noventa segundos. Los hay también con gas para impulsión dentro del mismo cuerpo principal y manómetro que marca la presión. Debe controlarse periódicamente el paso del dióxido de carbono, limpiarse el recipiente y cambiar el agua.

\textsuperscript{19} Los sprinkles son cabezales que permiten la detección de temperaturas altas, aproximadamente 68°C, y pulverizan agua sobre una superficie de entre nueve y doce metros cuadrados. Se abren en base al principio del punto eutéctico o de una ampolla de cuarzo y son parte de un sistema de cañerías con alimentación y alarmas centrales. Sobre transformadores eléctricos a la intemperie, puede utilizarse un “sistema de agua fraccionada” de detección y operación automática.

\textsuperscript{20} Las espumas de baja expansión aumentan entre cinco y treinta veces su volumen original. Como tal se utilizó mucho tiempo el bicarbonato de sodio. Su acción es semejante al agua, tiene menor penetración, pero proyección desde mayor distancia media. Hay otras formulaciones. Viene en extintores que contienen la solución alcalina y un recipiente interno con la ácida. Para mezclar y operar se invierte el extintor, es el \textit{único tipo de extintor que debe invertirse}. Se prohíbe en fuegos C. Las modernas espumas de baja expansión son de cuatro tipos: las proteicas, las fluoroproteicas, las sintéticas y las especiales. Las espumas proteicas son emulsiones de...
6.3. Anhídrido Carbónico

El anhídrido carbónico (CO₂) constituye un 0,03% de la mezcla de aire ambiente. Desde hace medio siglo se lo utilizó para combatir fuego a bordo de los barcos, por la facilidad de obtener el gas a partir de las calderas. Es útil en los fuegos de tipo B y C (bajo tensión eléctrica), y sobre numerosas sustancias: éter, alcohol, gasolina, gasoil y aceites. No se lo utiliza para los de tipo A, salvo combinado con agua, y tampoco en los fuegos D.

Su uso en fuegos C lo hace imprescindible, ya que el CO₂ no conduce la electricidad. En ellos se utilizan sólo el CO₂ y los polvos químicos.

El CO₂ tiene las siguientes ventajas: es limpio, no produce los efectos destructivos del agua, no corroce el metal, la recarga es fácil de obtener. El recipiente del extintor de CO₂ se hace de acero, fuerte y consecuentemente pesado, lo que implica una dificultad para su manejo. Se agrega un disco de seguridad, fleje de lata bañada en oro u otro metal, que debe soportar la presión y no dejarse corroer, y debe tener precinto. Los extintores de anhídrido carbónico deben estar conectados por manguera a una tobera que, para facilitar la formación de una nube de gas, debe tener un tamaño equivalente al del cilindro. Es error de diseño un extintor de CO₂ con una tobera más pequeña que el tubo. El gas sale haciendo un pequeño silbido y en forma de nieve blanca. Puede depositarse parcialmente en la tobera en forma de hielo seco. Como su densidad es superior al aire, se dirige hacia abajo. Así como los extintores de agua descargan en un minuto, los de CO₂ lo hacen en treinta segundos, y una vez que se inicia la descarga no se detiene. Por eso se agotan rápidamente, lo que obliga a calcular la magnitud del fuego. La nube de CO₂ alcanza alrededor de tres metros, es decir que hay que acercarse demasiado al fuego con un elemento pesado. Por el peso del cilindro, el personal debe tener fuerza y entrenarse.

Opera por sofocación, anulación del comburente en el triángulo de fuego, como si se pusiera una campana sobre este. Al principio actúa también por dilución, lo que puede aumentar transitoriamente la llama. Tiene poca acción de enfriamiento. Si ha sido mal cargado, puede que alto peso molecular procedentes de restos orgánicos. Tienen una sal metálica “estabilizante” para lograr burbujas de tamaño uniforme y un antioxidante por la condición orgánica. Se preparan en concentraciones que varían entre 3 y 6%, y pueden utilizarse tanto con agua dulce como salada. Son biodegradables y conductoras de electricidad. Las espumas fluoroproteicas tienen un aditivo fluorado que impide su adhesión a los combustibles. Esta característica las hace útiles para cuando debe descargarse el extintor desde abajo y a través de una columna de combustible líquido. Entre las espumas sintéticas se destaca la AFFF (Aqueous Film Forming Foam), preparada con hidrocarburos fluorados con grandes propiedades tensioactivas y baja viscosidad. Esta condición permite su rápida extensión en superficie y una acción de enfriamiento conjunta con la sofocación. Se trata de un concentrado color ambar que se mezcla con agua en proporción de 3 a 6%, pudiéndose utilizar tanto dulce como salada. Es biodegradable y no tiene toxicidad. Sale como espuma blanca, formando una sábana sobre las superficies incendiadas. Se puede utilizar con otras espumas y con polvos químicos conjuntamente. Se conserva bien largo tiempo a temperaturas ambiente entre 0 y 49ºC. Viene contenido en envases plásticos o metálicos protegidos contra la corrosión. Se recomienda controlarlo anualmente. Formado el “film” que sofoca el fuego, no debe “cortarse”. Bajo la película hay combustible y calor pero no llega el comburente (aire, oxígeno). Se puede caminar dentro de la espuma AFFF, pero no hay visibilidad y, de caer, hay peligro de asfixia por la ausencia de aire. Quien camina dentro de ella debe hacerlo lentamente, cuidando de no tropezar y levantando cuidadosamente las piernas. Esta espuma tiene utilidad en los fuegos A y B, y no debe utilizarse en fuegos C. Se la usa también preventivamente sobre superficies combustibles no incendiadas en vecindad de fuegos. Las espumas especiales se usan contra la acción deshidratante de los alcohol, aceites y otros solventes polares, hidrosolubles o hidromiscibles que destruyen las espumas comunes. Para ellos se utilizan otras con formulaciones especiales. Un ejemplo de estas espumas es la AFFF-ATC para combatir incendios de alcohol (Marucci, 1982).

21 Se produce por la combustión completa de materiales orgánicos y tiene facilidad, a diferencia del nitrógeno, para licuarse. Si no tiene impurezas lo hace a 0ºC y 35 atmósferas. Su densidad es 50% mayor que el aire, por lo que tiende a bajar. Su expansión es de 1:450 su volumen inicial. Recuérdese que la expansión del vapor de agua es de 1:2.000 y que las espumas se clasifican de acuerdo con esta característica.

22 El disco se rompe entre los 180 y 200 kg/cm². Erróneamente, en zonas calurosas se utilizan dos o más discos, pudiéndose romper el cilindro antes que ellos. Estos extintores no deben estar expuestos al calor ni al sol (máximo, 40ºC), debiendo ser ubicados en lugares frescos y de sombra. Los tubos se rompen, y cuando lo hacen, alrededor de los 400 kg/cm² en forma longitudinal, raramente estallan.
salgan muchos pequeños trozos de hielo seco y haga un ruido de “metralla”, depositándose en la
tobra. En este caso, se sigue operando, ya que continúa como gas. La tobera no debe tocar el
cuerpo del operador, ya que el frío puede afectarlo. Para eso tiene mango aislante. La válvula
debes permanecer abierta hasta el agotamiento del contenido.\textsuperscript{23}

Son precauciones: recargarlo cuando ha perdido 10% del peso o ha sido utilizado, no
transportarlo semicargado. El CO\textsubscript{2} sofoca el fuego cuando alcanza el 20% de la mezcla de aire,
por lo que puede producir asfixia y no se utiliza en recintos cerrados hasta la evacuación de
personas. No debe descargarse contra superficies sólidas porque puede producir salpicaduras.

El uso de estos extintores para inflar neumáticos de automóviles no es recomendable. En su
 caso, la “tripa” del neumático debe estar en la parte superior de tal forma que el cabezal del
cilindro se enchufe para arriba. En caso contrario, “tripa” abajo y cabezal en ese mismo sentido
puede pasar CO\textsubscript{2} líquido, produciendo el estallido inmediato o demorado del neumático
por expansión a más de 300 libras.

Los equipos pueden ser portátiles de 5, 7, 10 y 45 kg de CO\textsubscript{2}. Estos últimos se colocan sobre
ruedas. Deben llevar grabado a fuego la fecha de la prueba hidráulica. Estos extintores no llevan
manómetro, ya que el CO\textsubscript{2} está en dos fases.

6.4. Polvos químicos

Se dividieron los extintores en físicos (agua, espuma y CO\textsubscript{2}) y químicos (polvo, halón y polvos
especiales). Los polvos químicos se desarrollaron después de la Segunda Guerra Mundial y
actúan sobre el cuarto componente del tetraedro del fuego, es decir, sobre los radicales libres.

Son útiles en los fuegos “con llama”, en los que se aplica el criterio del tetraedro. La mayoría
son sales de sustancias ubicadas en la columna del litio de la tabla periódica (sodio, potasio,
rubidio, cesio y francio).\textsuperscript{24}

a. Polvo BC

Estas sustancias se denominan de acuerdo con los fuegos que apagan: B (líquidos y gases) y C
(bajo tensión eléctrica). Las hay de base sódica y potásica.

Las sales sódicas son polvos color blanco y al operar sobre el fuego dan un destello amarillo.

Las sales potásicas tienen el doble de poder extintor que las sódicas. Con un extintor potásico
de 5 kg se logra lo que con dos sódicos de igual peso, necesitándose un solo operador. Estas
sustancias son polvos color celeste y dan un reflejo violeta o lila al apagar, de allí sus nombres:
Púrpura-K y Purple-K.

\textsuperscript{23} La recarga se hace con anhídrido carbónico líquido, nunca en fase gaseosa, debiendo llenarse sólo el 75% del
extintor y a una presión de 80 kg/cm\textsuperscript{2}. Cuando el peso disminuye un 10%, corresponde recargarlo, lo que no
ocurre todos los años. Esta disminución puede producirse también por “fatiga” del disco de seguridad, el cual
debe controlarse. Cuando se envía a recarga, se quita el precinto del disco para asegurarse de que se haga. Los
equipos semicargados pueden utilizarse en “simulacros” antes de su recarga, pero siempre con un extintor
completo a mano por eventualidad. Los semicargados nunca deben transportarse en esa condición. El control de
peso se realiza uno por uno. El cilindro es pesado, por ejemplo, un extintor de 5 kg de CO\textsubscript{2} pesa en total 22 kg, es
decir que el cilindro tiene 17 kg. Este se controla con prueba hidráulica cada cinco años y a 250 kg/cm\textsuperscript{2},
debiendo grabarse en el mismo: “Ph (prueba hidráulica) (año)”.

\textsuperscript{24} El bicarbonato de sodio fue una de las primeras sustancias utilizadas. El cilindro principal tiene un tubo
complementario de CO\textsubscript{2} que actúa como impulsor y cuya carga debe controlarse. Las impurezas de carbonato, al
humedecerse, se “aterronan” dentro del extintor y aumentan la presión al operarlo. El tratamiento con ácidos
grasos evita el humedecimiento. Puede saltar la tapa del culote cuando se opera con presión aumentada,
pudiendo golpear al operador en la cara. Por eso, se utilizan en posición de 45\textdegree, como “sosteniendo un niño”.

Hay que controlar que los orificios no estén tapados. La carga habitual es de 10 a 12 kg de sustancia. Hay
“bombas” de bicarbonato que, arrojadas sobre el fuego, difunden el polvo en 5 a 6 m\textsuperscript{2}.
El alcance de los polvos BC es proporcional a su granulometría y su poder extintor es alto. Si se toma como unidad “1” el poder del CO₂, el polvo sódico es “4” y el del potasio es “8”. Hay otros de base oxalato de potasio con poder “300”, pero sus partículas pueden penetrar y explotar dentro del fuego. Los extintores BC alcanzan entre cinco y seis metros y a mayor distancia tienen menor rendimiento. Recuérdese que el alcance del agua es de nueve metros y el del CO₂ es de tres.

b. Polvo ABC (triclase)
Se trata de un extintor apto para los fuegos A, B y C. Se ha logrado efecto sobre los A (sólidos) por la formación de una capa de ácido metafosfórico y amoníaco (sulfato monoamónico), que actúan por sofocación. El polvo ABC es color amarillo. El fósforo produce una nube de efecto semejante a la del CO₂ y el amoníaco enfría. Su poder extintor es de “7” respecto al CO₂. Las sustancias deben combinarse de tal forma que haya equivalencia de efecto sobre los distintos tipos de fuego.

c. Polvo organometálico (Monex)
Es una combinación de oxalato de potasio recubierto con úrea. Es un polvo blanco de gran penetración, pero muy costoso. Se utiliza en incendios de pozos de gas.

6.5. Polvos especiales

Son los productos preparados contra los fuegos D (metales o no metales de fácil combustión). Se conocen como “Dry Special Powders”. Algunos elementos que producen fuego D son: aluminio, magnesio, sodio, potasio, titanio, circonio, uranio, algunas aleaciones de hierro, afnio, litio y calcio. Son difíciles de dominar y de uso más frecuente por la tecnología. Ejemplo son los incendios de aviones que se inician como fuego A y en un minuto pasan a ser D.

Contra el fuego D se utilizaron los polvos BC en grandes cantidades. Los extintores de CO₂ no deben utilizarse en fuegos de magnesio; el nitrógeno no debe entrar en contacto con los fuegos de aluminio y de calcio. Las sustancias radioactivas bajo acción del fuego necesitan procedimientos especializados.

Los polvos especiales más conocidos son el “G-1” (coque de fundición, grafito y fosfato orgánicos) y el “Met-I-X” (cloruro de sodio, fosfato tricalció, estearatos metálicos y un plástico que une las partículas). Se puede utilizar arena bien seca.

En la práctica, cuando hay elementos ardiendo bajo fuego D, se los aisla o traslada de lugar para que se quemen sin afectar otros bienes. No es el caso de los aviones o barcos, en cuyo caso la evacuación debe hacerse dentro de los primeros minutos.

6.6. Halón (freón)

Los halones son extintores químicos preparados con sustancias halogenadas. Son de alto costo, pero de gran eficacia. Actuarían sobre los radicales libres por la presencia del bromo. Su acción es muy veloz.

25 Se indican en fuegos de sodio, potasio y magnesio, no son tóxicos y forman costras que sofocan el fuego y se adhieren a superficies irregulares. Son muy costosos, pero tienen mucha duración. No son tóxicos y habitualmente se ponen sobre el fuego con palas. Hay otras sustancias útiles para los fuegos D: polvo de talco (fuego de Mg), polvo de grafito, cloruro de sodio (fuego de metales alcalinos), sales de litio, sales de circonio, dolomita, cenizas de sosa, limaduras de hierro ácidas (fuego de Mg).

26 Tienen su precedente en el uso del tetracloruro de carbono, con el que se preparaban las clásicas “granadas antifuego”, o del bromuro de metilo. Ambos están actualmente prohibidos por su toxicidad.
Superan a los agentes físicos por la poca cantidad necesaria respecto de la magnitud de fuego y porque no deterioran los bienes. Las instalaciones fijas operan con detectores automáticos. Una de sus ventajas es que no sólo protegen el continente, sino también el contenido, por su acción inmediata y su carácter “limpio”. Evitan la extensión del fuego en sus inicios y no impiden la visibilidad (a diferencia de las espumas). La toxicidad del Halón 1301 es menor que la del CO₂ y puede usarse donde hay personas. Los halones 1211 y 2402 no tienen la misma utilidad por su toxicidad. Se han reemplazado por halones modificados, Halón clean y Halón trom, que son inocuos para el medio ambiente, ya que los originales son cuestionados por dañar la capa de ozono. Conectados con sistemas de detección automática, descargan en diez segundos, pudiendo usarse en forma intermitente.

Los principales son: Halón 1301 (bromotrifluorometano), Halón 1211 (bromodifluoroclorometano) y Halón 2402 (dibromotetrafluorometano). Los números indican la cantidad de moléculas de cada sustancia (bromo, fluor, cloro y metano).

El halón licuado y comprimido es contenido en esferas o cilindros conectados a sistemas de detección automática. Su alcance es corto: 1,20 a 1,90 metros. Los envases se controlan con frecuencia, la prueba hidráulica se hace cada doce años. No deben estar sometidos a temperaturas mayores de 49ºC y en bajas temperaturas ambientales no necesitan anticoagulantes. Hay extintores manuales de Halón 1211.

En Argentina se utiliza con alta presión de trabajo (800 libras equivalentes a 42 kg/cm²).27 Su relleno es costoso. Actualmente, el halón modificado es extintor muy útil en centros de cómputos, archivos, laboratorios complejos, unidades de Terapia Intensiva y Centros de Diálisis. Debe usarse en concentraciones no mayores de 5% por minuto, porque tiene un efecto tóxico sobre las personas.

A continuación, se resumen los extintores más frecuentes con sus principales características y las clases de fuego en los que deben o no deben aplicarse.

<table>
<thead>
<tr>
<th>Agente extintor</th>
<th>Acción</th>
<th>Clases de fuego</th>
<th>Precauciones</th>
<th>Presentación</th>
<th>Poder extintor CO₂</th>
<th>Alcance</th>
<th>Tiempo de descarga</th>
<th>Control (c) y Recarga (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua a chorro (a)</td>
<td>Enfriamiento y sofocación</td>
<td>A-superficial A-arraigo</td>
<td>Prohibido en C, en metales alcalinos y carbón incandescente (libera CO₂).</td>
<td>Extintores Sistemas con mangueras Sistemas fijos.</td>
<td>–</td>
<td>9 metros</td>
<td>1 minuto</td>
<td>–</td>
</tr>
<tr>
<td>Agua pulverizada (a)</td>
<td>A y B</td>
<td>No útil en recipientes con combustibles líquidos.</td>
<td>Sistemas con sprinkles.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Anual</td>
<td></td>
</tr>
<tr>
<td>Espumas (burbujas entre solución acuosa)</td>
<td>Sofocación</td>
<td>B</td>
<td>Prohibidas en C. No útil en líquidos miscibles o grasos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhídrido Carbónico (b)</td>
<td>Sofocación</td>
<td>B y C</td>
<td>No usar antes de evacuación de personas. No útil en A, salvo combinado con agua. No usar para inflar neumáticos.</td>
<td>Extintor con Tobera.</td>
<td>1</td>
<td>3 metros</td>
<td>30 segundos Ininterrumpidos</td>
<td>(c) cilindro cada 5 años (r) cuando reduce 10% su peso</td>
</tr>
</tbody>
</table>

27 En EE.UU. se utiliza a baja presión y válvulas mayores. En Europa se ha extendido también el uso del Halón 1211, además del más común Halón 1301.
Polvo bicarbonato de sodio vs radicales libres No usar extintor en posición vertical (sino a 45°). Extintores impulsados por CO₂, “bombas” para arrojar.

<table>
<thead>
<tr>
<th>Extintores</th>
<th>4</th>
<th>8</th>
<th>300</th>
<th>5 a 6 metros</th>
</tr>
</thead>
</table>

Polvo ABC A, B y C 7

Halones 1211 2402 Sofocación No usar antes de evacuar personas. 1,2 a 1,9 metros 10 segundos

Polvos especiales (Dry Special Powders): G1 Met-I-X Otros Arena D Se colocan con palas.

Notas: (a) También para enfriar tanques o superficies combustibles en cercanía de incendio. Su efecto adverso es el daño a lo no incendiado y la corrosión.
(b) Es “limpio”.


<table>
<thead>
<tr>
<th>Clases de fuego</th>
<th>Combustibles</th>
<th>Tipos de extintores</th>
<th>Agentes especiales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Agua</td>
<td>Espuma</td>
</tr>
<tr>
<td>A</td>
<td>Sólidos en general: madera, trapos, papeles</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>B</td>
<td>Líquidos inflamables</td>
<td>No</td>
<td>Sí</td>
</tr>
<tr>
<td>C</td>
<td>Materiales bajo tensión eléctrica</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>Metales combustibles</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>


7. Hay diversos sistemas de extinción

De acuerdo con el tipo de equipos de extinción y la naturaleza de los riesgos, hay sistemas portátiles o fijos instalados en los edificios. Los equipos portátiles pueden ser manuales o sobre ruedas, según su capacidad y peso.
**Cantidad y tipo de extintores**

Debe disponerse de un extintor cada 200 m² de superficie. Deben ubicarse a una distancia máxima a recorrer de 20 metros para el tipo A y de 15 metros para el tipo B (Di Marco, 1982). Debe disponerse de extintores de tipo C.

**a. Otros equipos**

Aún se usan baldes de agua (prohibidos en fuegos C) o de arena que, aunque con baja eficacia, pueden limitar la propagación del fuego. Ambos son metálicos, de diez litros, se pintan de rojo, con aclaración de agua o arena, son de fondo cónico y asa en el fondo para su manejo. Se cuelgan de la pared como los extintores (Di Marco, 1982).

Se discute el uso de frazadas de amianto en la sofocación de fuegos pequeños.

**b. Procedimientos**

Los extintores se orientan hacia el centro del foco y la base del fuego y a favor del viento. En una cortina en llamas, se orienta también de abajo y lentamente hacia arriba. En un tanque abierto de combustible, se orienta hacia el borde más cercano, no hacia el centro para evitar salpicaduras. En caso de derrame de combustible, se inicia sobre el líquido en el suelo y se avanza lentamente hacia el lugar del que se derramó (Quadri, 1992).

**c. Sistema fijo de agua con mangueras**

Es un complejo formado por:

- Boca de incendio o hidrante de bronce que se conecta a la cañería y está compuesta por una válvula esclusa y una boca con rosca para conectar la manguera (diámetro 45 o 64 milímetros).
- Manguera de cáñamo o lino cubierta o no de caucho o material sintético que soporta el calor (Hypalon). Se une a la boca hidrante por mandril, y en el extremo distal otro mandril para la lanza. Se arrolla en un soporte en media luna y el largo máximo es de 30 metros.
- Lanza de bronce o cobre (diámetros de 45 o 64 milímetros). El extremo proximal tiene rosca para el mandril distal de la manguera. Se estrecha hacia el extremo distal que termina en una boquilla con grifo para dirigir el chorro, cerrar y regular el paso. Se sostiene en sendos soportes.
- Nido metálico con puerta vidriada con los soportes fijos y una llave de acero de 64 milímetros de diámetro cuyo mango puede usarse de barreta.
- Cañería exclusiva para provisión de agua de incendio conectada a las bocas. Puede estar conectada a la red de agua corriente si esta tiene presión suficiente.
- Tanque de almacenamiento.

La regulación de la lanza permite proyectar agua a presión: en chorro, en lluvia fina o en niebla.

La cantidad de bocas se calcula con una fórmula. La norma de la CABA establece una cada treinta metros (largo máximo de la manguera).

La provisión de agua para bomberos se alcanza por bocas de impulsión en la calle colocadas bajo el piso, con tapa roja y referencia a bomberos.
8. Conclusiones

El control del fuego fue, en el proceso civilizatorio, un mecanismo que permitió al hombre liberarse de la esclavitud del medio ambiente. Símbolo de poder y de búsqueda, quedó aún hasta hoy hundido en un halo de misterio.

El estudio de las combustiones dio origen, con Lavoisier, al nacimiento de la química moderna.

El fuego demuestra su mala voluntad, ya que “es difícil de encender y difícil de apagar”. Sus efectos sobre las personas y los bienes, cuando se expande descontrolado, produce pérdidas irreparables y cuantiosas.

En paralelo con los niveles de prevención de Leavell y Clark, impedir que el fuego se inicie es prevención prepatogénica. La aplicación de extintores es nivel postpatogénico de prevención, impidiendo que se extienda.

El fuego indeseado es un actor de riesgo cotidiano en la vida doméstica, pública y laboral.

Las normas internacionales y la legislación argentina (Ley 19.587 y Decreto 351/79) dedican capítulos y anexos completos a la prevención de incendios y explosiones.

Tales medidas son responsabilidad de las empresas y conciencia de los operarios, competencia especializada del Servicio de Higiene y Seguridad del Trabajo. El médico general y el laboral deben conocer sus lineamientos para promoverlos.

9. Prevención secundaria en el gran quemado

Alejandro Horacio Basta

Cuando la emergencia había terminado, en la intimidad de las salas reservadas, vi a médicos curtidos llorar como chicos.

Carlos Mercan

La Organización Nacional de Protección Contra Incendios, la mayor organización privada de seguridad en EE.UU., registra en ese país cerca de 2.500.000 incendios cada año.

En ese mismo lapso, alrededor de 100.000 individuos requieren internación hospitalaria para tratamiento intensivo y especializado en quemaduras, y de ellos, aproximadamente 8.000 mueren. Estos datos muestran la gravedad que representan las lesiones por quemaduras.

La atención del quemado se inicia apenas ocurrido el accidente, y del cumplimiento de las primeras etapas de la asistencia dependerá el pronóstico y los resultados finales.

De acuerdo con la clasificación de la American Burn Association, se consideran quemaduras graves aquellas que presentan las siguientes características:

- Quemaduras de espesor parcial de piel (2do grado) que abarquen más del 25% del área corporal en adultos.
- Quemaduras de espesor total (3er grado) que abarquen más del 10% del área corporal.
- Lesión por inhalación de humos.
- Quemaduras eléctricas.
- Quemaduras de manos, pies, ojos, orejas o períné.

28 Jefe de Neonatología del Hospital Ramos Mejía, después de Cromagnón (La Nación, 5 de enero de 2005).
Se utiliza la clasificación de Benaim tomando extensión y profundidad de la quemadura para determinar distintos grupos según la gravedad:

<table>
<thead>
<tr>
<th>Profundidad</th>
<th>Grupo I (leves)</th>
<th>II (moderados)</th>
<th>III (grave)</th>
<th>IV (críticos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo A</td>
<td>Hasta 10%</td>
<td>11 a 30%</td>
<td>31 a 60%</td>
<td>+ 61%</td>
</tr>
<tr>
<td>Tipo AB</td>
<td>Hasta 5%</td>
<td>6 a 15%</td>
<td>16 a 40%</td>
<td>+ 41%</td>
</tr>
<tr>
<td>Tipo C</td>
<td>Hasta 1%</td>
<td>2 a 5%</td>
<td>6 a 20%</td>
<td>+ 21%</td>
</tr>
</tbody>
</table>

En caso de tratarse de quemaduras químicas, se debe irrigar con agua profusamente la zona quemada (el daño con productos químicos guarda relación directa con la concentración y el tiempo de contacto). En caso de quemadura eléctrica, se debe desconectar la fuente de electricidad o cortar con una pinza de mango aislante el cable que alimenta el contacto. Nunca se debe tocar a una persona electrocutada antes de tomar estas precauciones.

Debe confirmarse que haya respiración espontánea, descartando la presencia de estridor. De haberlo, se debe intubar al paciente lo antes posible.

Ningún paciente debe trasladarse a un centro especializado antes de cumplir con requisitos básicos: control de la vía aérea y una vía venosa periférica o central para facilitar la administración de grandes volúmenes de soluciones acuosas, electrolíticas y glucosadas. La reanimación y fluidoterapia son esenciales. El oxígeno al 100% se aplica también en el sitio del accidente para desplazar el monóxido de carbono.

Una vez determinados la extensión y el grado de la quemadura, se planea la hidratación del enfermo.

En las primeras veinticuatro horas se debe comenzar con solución de Ringer lactato a razón de 3 a 4 ml/Kg/% de superficie quemada.

La quemadura produce un aumento en la permeabilidad vascular, lo cual acarrea una extravasación de plasma del compartimento intravascular al intersticial. El edema consecuente se establece con mucha mayor rapidez en las primeras ocho horas postquemadura. Por ello, se debe administrar la primera mitad de la cantidad calculada para las primeras veinticuatro horas en las primeras ocho horas. La segunda mitad de la solución se administrará en las siguientes dieciséis horas.

De la hora 24 a la 32, se administrará coloide, es decir, albúmina al 25% a razón de 0,1 ml/Kg/% de la superficie quemada.

Pasadas las 32 horas, se debe agregar dextrosa 5% y solución fisiológica.

Es muy importante tener en cuenta que el cálculo y la hidratación del quemado comienzan en el momento del accidente.

Los objetivos de una buena reanimación son:

- Diuresis: 50ml/hora.
- Tensión arterial sistólica: no menor a 100 mmHg.
- Frecuencia cardíaca: 120 o menos.
- Mejoramiento progresivo del sensorio.
- Retorno de la función gastrointestinal (desaparición del íleo).

Desde el primer día de la internación se debe mantener al enfermo abrigado. Como se sabe, una de las funciones de la piel es conservar la temperatura del cuerpo dentro de los límites normales.

Al ingreso, siempre debe colocarse una máscara con oxígeno al 100%. Con esta medida, el nivel de monóxido de carbono baja en cuarenta minutos, de lo contrario, respirando aire de
ambiente, baja en diez horas aproximadamente. La hipoxia cerebral produce edema de cerebro y es proporcional al nivel de monóxido.

Es conveniente que desde el comienzo se canalice una vía central para la administración de grandes volúmenes de líquido.

El control del dolor es fundamental desde el inicio. Para esto, se usan derivados opioides por vía intravenosa. Están prohibidas las aplicaciones intramusculares, debido al edema que se establece rápidamente de acuerdo con el porcentaje de quemadura, no sólo en la zona quemada, sino extendido. La absorción de esta manera sería muy errática y variable.

10. Las grandes quemaduras son un problema de salud pública

Las quemaduras constituyen un problema de salud pública en muchos países del mundo y son motivo de consulta por accidentes de diverso origen. Tales lesiones constituyen un porcentaje importante de la totalidad de los accidentes caseros en varios países de África y Latinoamérica.

El lugar de mayor frecuencia de accidentes por quemaduras es el hogar y es adonde deben ir principalmente dirigidas las campañas de prevención.

En varios estudios se ha demostrado la predominancia masculina en accidentes por quemaduras.

A pesar de los avances logrados en el campo de las quemaduras en los últimos diez años, la lesión inhalatoria sigue siendo una causa de altísima mortalidad en las Unidades de Quemados en todo el mundo.

La epidemiología de las quemaduras permite a una sociedad determinar dónde corren mayor riesgo los habitantes y qué se debe cambiar para prevenir o reducir su gravedad. En condiciones ideales, la efectividad de una campaña de prevención exitosa se mide por la disminución en las tasas de mortalidad y morbilidad. Por desgracia, los datos acerca de quemaduras, fuego y frecuencia de lesiones son difíciles de obtener, debido a que la mayor parte de las estadísticas no se encuentran disponibles. Muchas de las campañas para prevenir las quemaduras se orientan a educar al público y aumentar el conocimiento sobre las medidas de seguridad para impedirlas, y su objetivo final es lograr una modificación de la conducta. La motivación para cambiar de conducta o realizar una acción en salud puede aumentar si aumenta la percepción del individuo sobre el riesgo de sufrir una quemadura.

Los esfuerzos efectivos para evitar las quemaduras deben incluir:

- Evaluación estadística de los peligros específicos de cada región.
- Modificaciones de productos y control ambiental a través de medidas legislativas y de educación, control de cumplimiento y sanción, en su caso.
- Una oficina de prevención de las quemaduras en cada Unidad de Quemados, con personal competente y motivado para la coordinación de los esfuerzos preventivos locales.

Lamentablemente, en nuestro medio los servicios para asistencias de quemados graves, que son de alta complejidad, no son suficientes ni distribuidos racionalmente en el territorio. Su costo de mantenimiento y operación es alto y debe compensarse, tanto en el subsector estatal como en el privado, teniendo en cuenta que pueden pasar períodos sin ocupación, pero preparados para la eventualidad de accidentes y catástrofes. El no haber considerado esta característica ha provocado el cierre de algunos servicios ubicados estratégicamente.

Los incendios, por otra parte, producen asfixias y muertes por la densidad del humo, lo que requiere el rescate al aire libre y la reanimación pertinente.
11. Lesiones por inhalación de humo

El 25% de los pacientes quemados hospitalizados tendrá alguna complicación pulmonar durante su estancia, y cerca de la mitad morirá a causa de esta patología.

En todas las lesiones por quemaduras con una extensión mayor del 20% del área corporal total hubo una incidencia del 19% de lesiones por inhalación.

El árbol traqueobronquial se ve afectado por el contenido gaseoso y particulado del aire que se inspira. La composición del humo varía con respecto al tipo de material que se quema. El cloruro de polivinilo, que es un producto plástico que se utiliza en materiales de construcción y en muebles, produce alrededor de 75 sustancias tóxicas cuando se quema, incluyendo ácido clorhídrico y cloro gaseoso.

Los componentes cáusticos del humo producen una reacción inflamatoria local, la atracción de leucocitos y su secuestro en el tejido pulmonar, con la subsecuente liberación de enzimas proteolíticas y radicales libres de oxígeno. Estos pueden ser responsables de los cambios de permeabilidad progresivos que se presentan después de la lesión por inhalación de humo. Esto genera una broncoconstricción generalizada, lo que causa un gran aumento en la resistencia de las vías respiratorias.

Los cambios en la resistencia de las vías respiratorias, más el edema en la mucosa bronquial, dan como resultado una hipoxemia.

Los hallazgos físicos de quemaduras faciales (área oronasal), la presencia de vibras nasales quemadas, la tos con esputo carbonáceo y la ronquera son todos indicadores de una probable inhalación.

La elevación de la concentración arterial de carboxihemoglobina es significativa, pero sólo si la evaluación se realiza poco después de la exposición al humo. Aunque la molécula de hemoglobina tiene una afinidad selectiva mayor, por el monóxido de carbono respecto del oxígeno, la vida media es de sólo cuatro horas. Si el paciente recibe oxígeno al 100%, esta se reduce a menos de una hora.

La intoxicación por monóxido de carbono es la causa más frecuente de muerte a causa de fuego.

Las radiografías de tórax iniciales de pacientes con lesiones por inhalación no tienen las diferencias significativas respecto de las que presentan pacientes con lesiones cutáneas no complicadas. Las radiografías permanecerán normales hasta que se desarrolle el edema pulmonar significativo e infiltrado, por lo general después de tres a trece días de la quemadura.

El método complementario que más se utiliza para la evaluación de lesiones por inhalación es la fibrobroncoscopia.

En los pacientes que sufren el síndrome inhalatorio, el material particulado y los compuestos químicos gaseosos irritan la mucosa bronquial, causando broncoespasmo, tos y traqueobronquitis. Se desarrolla edema pulmonar en 6 a 72 horas después de la lesión por inhalación. El edema no es de origen cardiogénico y es un reflejo de la acumulación de líquido intersticial, debido al aumento de la permeabilidad capilar. La etapa final del síndrome es la bronconeumonía, que complica en el 60% de los casos las lesiones por inhalación y tiene una alta mortalidad (50 a 86%).

A pesar de los avances en el tratamiento del shock después de la quemadura, la sepsis de las heridas y el soporte en la asistencia respiratoria mecánica, las lesiones por inhalación siguen siendo el determinante de una alta mortalidad en la actualidad.
Bibliografía


Dupont Co, Halon 1301 and Safety, s/f.


Haessler, W., Productos químicos extintores de fuego, Florida, State Fire College, U.S.A.

Instituto Argentino de Racionalización de Materiales (IRAM), Normas varias, Buenos Aires.

Instituto Argentino de Seguridad, Seguridad e Higiene del Trabajo, Ed. del Instituto, Buenos Aires, 1978.


La Oxígena SAIC, Atmosferas sobre-oxygenadas y sub-oxigenadas, Buenos Aires, edición de la empresa, s/f.


Rendón, D. y otros, “Lesiones por inhalación de humo”, en Bendlin, A., Linares, H. y Benaim, F., 
Travel, J. R., “Firemen”, en Encyclopedia of Occupational Health and Safety (OIT), Génève, 3ª 
edición, 1983.
Universidad Nacional de Buenos Aires, Facultad de Cs. Exactas y Naturales, Curso de Higiene y 
Seguridad del Trabajo, Clases del ciclo 1984, Buenos Aires.
Universidad Nacional de Buenos Aires, Facultad de Cs. Médicas. Cátedra de Higiene, Medicina 
Preventiva y Social, Curso de Medicina del Trabajo, Clases del ciclo 1987, Buenos Aires.
CAPÍTULO 16

RUIDOS Y VIBRACIONES

Horacio Luis Barragán
Aldo Pablo Iacoi

1. El sonido es la propagación de una ondulación de partículas

El sonido es una alteración producida por la vibración que se propaga en un medio elástico. Esta vibración es ondulatoria en un sentido longitudinal, generando compresiones y rarefacciones en las presiones del medio por el que se propaga. Medio elástico es aquel cuyo material puede cambiar de forma por la presión y recuperarla cuando ella cesa.¹

El sonido se propaga por el aire, el agua y los sólidos elásticos, pero no en el vacío. La velocidad del sonido es mayor a mayor elasticidad, en el aire ambiente alcanza alrededor de los 340 m/seg, 1.500 m/seg en el agua y 2.400 m/seg en el hormigón (Hewit, 1999: 375).

Las ondulaciones pueden graficarse como en el siguiente cuadro.

Considerado como un movimiento ondulatorio simple, las vibraciones pasan a iguales intervalos de tiempo y a igual velocidad por posiciones idénticas respecto de su nivel de equilibrio. Se caracterizan por una amplitud (A), que es su apartamiento respecto del nivel de equilibrio, por un frecuencia (f), que es la cantidad de veces por segundo que pasan por el mismo punto moviéndose en el mismo sentido, y por el tiempo (T) que tarda ese movimiento o período que separa el pasaje del ciclo completo por un mismo punto. Así, la frecuencia (f) es la inversa del período (T) y viceversa:

¹ El acero es elástico y la masilla es inelástica. El primero es rígido y la segunda es muy extensible, pero no recupera su forma, como el acero, después de ejercida la presión. Debe diferenciarse la elasticidad de la extensibilidad (Hewit, 1999: 395).
La unidad es el segundo y la frecuencia es el herzio (Hz) o el número de ciclos por segundo.

La longitud de onda \((\lambda)\) es la distancia que recorre la onda en un período, o distancia que separa dos ciclos consecutivos.\(^2\) Esta longitud es proporcional a la velocidad \((c)\) e inversa a la frecuencia \((f)\), según la siguiente relación:

\[
\lambda = \frac{c}{f}
\]

La intensidad del sonido es proporcional al cuadrado de la amplitud \((A)\) de la onda. Se expresa como potencia de energía emitida por la fuente (en Wattios) o como intensidad con que la energía llega a una superficie (Wattios/m\(^2\)).

La presión que genera el sonido en el medio por el que se propaga se mide en fuerza (dinas) por superficie (cm\(^2\)) y su unidad es el pascal (= 10 dinas/cm\(^2\)).

El volumen del sonido percibido por una persona depende de la intensidad y de factores subjetivos. El volumen se mide como nivel sonoro en escala logarítmica decimal de la intensidad en décibels (dB)\(^3\). Así, un nivel sonoro de 20 dB no es dos sino diez veces más intenso que uno de 10 dB. Consecuentemente, no se pueden sumar los niveles de dos fuentes distintas. El siguiente cuadro muestra algunos ejemplos.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Nivel sonoro (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor a reacción (a 30 metros)</td>
<td>140</td>
</tr>
<tr>
<td>Umbral de dolor</td>
<td>120</td>
</tr>
<tr>
<td>Rock ruidoso</td>
<td>115</td>
</tr>
<tr>
<td>Bocina de automóvil</td>
<td>110</td>
</tr>
<tr>
<td>Subterráneo (a 6 metros)</td>
<td>90</td>
</tr>
<tr>
<td>Tránsito pesado</td>
<td>70</td>
</tr>
<tr>
<td>Conversación normal</td>
<td>60</td>
</tr>
<tr>
<td>Oficina</td>
<td>50</td>
</tr>
<tr>
<td>Murmullo cercano</td>
<td>20</td>
</tr>
<tr>
<td>Respiración normal</td>
<td>10</td>
</tr>
<tr>
<td>Umbral auditivo</td>
<td>0</td>
</tr>
</tbody>
</table>


El umbral auditivo o nivel mínimo de percepción de sonido se calculó con múltiples mediciones \((2 \times 10^{-5}\) Pascales a 1.000 Hz). La escala de nivel de presión sonora en dB se relaciona con ese nivel y no tiene magnitudes.

El instrumento que se utiliza para medir el nivel de presión sonora es el decibelímetro (o sonómetro), que capta un rango de 20 a 140 decibeles y debe calibrarse (calibrador externo o pistófano) antes de cada medición. El decibelímetro tiene un selector que en posición lineal (lin) permite leer en una sola lectura sonidos de distinta frecuencia e igual intensidad sonora. Las redes de compensación de frecuencias del mismo selector se usan según el nivel estimado: entre 0 y 55 dB la red A, entre 55 y 85 dB la red B y superiores a los 85 dB la red C. No obstante, lo habitual es medir con la red A el Nivel Sonoro Continuo Equivalente (NSCE-A) que corresponde a un

\(^2\) O distancia que separa dos puntos sucesivos que oscilan en igual fase.

\(^3\) Los dB de presión sonora se marcan como dB SPL (Sound Pressure Level); los de umbral de audición, como dB HTL (Hearing Threshold Level)
sonido o ruido que se supone constante y continuo durante la jornada, cuya energía sonora sea igual a la del sonido o ruido variable medido estadísticamente a lo largo de la misma.

Hay normas precisas, según el aparato, que deben leerse y respetarse para hacer las mediciones.

2. El ruido es una combinación de sonidos

El ruido es una combinación de sonidos de carácter desagradable y susceptible de producir efectos nocivos en el hombre.

El oído humano normal capta los sonidos cuya frecuencia se ubica entre los 16 y 20.000 Hz (16 Hz a 20 KHz), y la inteligibilidad de la palabra hablada se ubica en el rango entre los 500 y 2.000 Hz.

<table>
<thead>
<tr>
<th>Infrasonido</th>
<th>20 Hz</th>
<th>200 Hz</th>
<th>2.000 Hz</th>
<th>20.000 Hz</th>
<th>Ultrasonido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palabra hablada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>,Límites de la audición</td>
</tr>
</tbody>
</table>

Los infrasonidos se ubican en frecuencias menores de los 16 Hz y son producidos por ciertas maquinarias (hornos de fundición, grandes generadores de energía, máquinas antiguas muy lentas) y temblores de tierra. Pueden producir en el hombre trastornos transitorios del equilibrio y náuseas.

Los ultrasonidos se ubican en las frecuencias superiores a los 20.000 Hz (20 KHz).

En cuanto al NSCE, se considera que, en un vecindario, el ruido es molesto desde los 75 dB (A). En la “noche acústica”, que permite el sueño profundo, el nivel sonoro debe permanecer entre los 30 y 45 dB. Se mide con el decibelímetro en respuesta lenta (len) y para mayor precisión se ajusta a una escala de Nivel de Ruido Corregido (N), que se compara con el ruido de fondo (Nf) una vez apagada la fuente principal o con otros procedimientos si esta no se puede detener (Behar, 1997: 54-55).

El NSCE en los ambientes de trabajo tiene un máximo aceptable de exposición que, para una jornada de 8 hs/día o 48 hs/semanales, es de 85 dB(A). Por cada 3 dB(A) en que se aumente el NSCE, se reducirá a la mitad el tiempo de exposición al ruido (ver más adelante cuadro “Límite de exposición al ruido”).

Desde los 115 dB(A) no se admite legalmente ninguna exposición sin protección, y por sobre los 135 dB(a) se prohíbe el trabajo aun con protección auditiva.

Recuérdese que el umbral de dolor es de 120 dB(A), que la exposición a un NSCE superior a los 150 dB(A) incluso provocaría la ruptura del tímpano y la desarticulación de los huesecillos del oído medio.

3. Efectos extra-auditivos producidos por el ruido

Al ruido no se le da la importancia que tiene. Los ambientes del mundo contemporáneo están inundados de ruido, que comenzó por considerarse un mal necesario y llegó a evaluarse como un fenómeno sin mayor importancia al que la población y los trabajadores expuestos terminan por acostumbrarse.

El ruido intenso no derrama sangre, ni produce fracturas y, salvo excepciones, no causa dolor. Se subestima porque no produce efectos visibles.
Sin embargo, es un agente patógeno insidioso, ya que reduce progresivamente la agudeza auditiva en un nivel en que los afectados, al principio, no perciben. No obstante, sometidos a su efecto continuo, llega a producir sordera de percepción, que es una enfermedad invalidante, incluso con estigma (“el sordo”). Los demás comienzan a pensar que la persona es lenta, incompetente, y esta tiende al aislamiento por dificultades en la comunicación social y pequeñas rencillas, porque tienen que repetirle lo que dicen, pone la televisión a gran volumen, etcétera. Los audífonos, si bien mejoran la audición, no tienen el efecto de las lentes adecuadas para los trastornos de la visión. El sordo, desde el aislamiento, puede llegar a la depresión.

En el aparato auditivo, el ruido produce también acúfenos temporales o permanentes, que suelen percibirse aun en ambientes silenciosos y por la noche.

El ruido es, asimismo, un agente de estrés biológico, dado que altera la liberación adecuada de las catecolaminas, provocando el desequilibrio consecuente del eje hipófisosuprarrenal.

La exposición continua y permanente al ruido llega a provocar diversos cuadros clínicos y alteraciones que, además de las consecuencias sobre la salud del trabajador expuesto, incidirán sobre los procesos productivos, perjudicando a terceras personas, a su familia y a la sociedad.

<table>
<thead>
<tr>
<th>Efectos extra-auditivos de la exposición al ruido</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Hipertensión arterial.</td>
</tr>
<tr>
<td>– Aumento de la frecuencia respiratoria.</td>
</tr>
<tr>
<td>– Acúfenos: sensación de oír zumbidos o silbidos inexistentes.</td>
</tr>
<tr>
<td>– Alteraciones del campo visual y visión de los colores.</td>
</tr>
<tr>
<td>– Alteraciones del sueño.</td>
</tr>
<tr>
<td>– Anorexia.</td>
</tr>
<tr>
<td>– Disminución de la actividad sexual.</td>
</tr>
<tr>
<td>– Errores en los procedimientos de trabajo.</td>
</tr>
<tr>
<td>– Disminución del rendimiento laboral.</td>
</tr>
<tr>
<td>– Estrés, nerviosismo, irritabilidad.</td>
</tr>
<tr>
<td>– Gastritis, úlcera péptica, náuseas.</td>
</tr>
<tr>
<td>– Insatisfacción laboral.</td>
</tr>
</tbody>
</table>

En la interacción social, interfiere la comunicación y produce malestar en las personas y los grupos. En el ámbito laboral, la interferencia en la comunicación dificulta la tarea conjunta, reduce la percepción de las señales de alarma y el rendimiento en las actividades. Se han reportado accidentes en los que los gritos de la víctima no fueron escuchados por sus compañeros de trabajo en un ambiente ruidoso (Suter, 1998: 47.2).

4. El ruido reduce la audición

Como se dijo, el ruido ambiental perturba la comunicación interpersonal y la concentración en el trabajo o el estudio, así como el descanso y el sueño. Tiende a aumentar los accidentes en el trabajo y el tránsito. Asimismo, favorece el estrés y genera irritación psíquica.

La lesión auditiva por ruido puede ser sinérgica con tóxicos en ambientes laborales (plomo, disolventes del tipo del tolueno y monóxido de carbono), así como con medicamentos (estreptomicina, neomicina, kanamicina, gentamicina, tobramicina y algunos citostáticos) (Suter, 1998: 47.4). La pérdida de la audición se potencia con la presbiacusia.

Por último, daña el oído por afectación de las células ciliares del órgano de Corti, es decir que puede llegar a producir una sordera de percepción. Este daño tiende a producirse en etapas, a saber:
- **Fatiga auditiva**: se manifiesta en una hiperacusia dolorosa y acúfenos con un Desplazamiento Temporal del Umbral Auditivo (DTU). Es reversible con el descanso y el apartamiento del ruido.

- **Lesión preclínica**: se manifiesta con un escotoma de 30 a 50 dB en el nivel de los 4.096 Hz del audiograma, que pasa de temporal (DTU) a Desplazamiento Definitivo de Umbral Auditivo (DDU)

- **Lesión clínica**: se profundiza el escotoma a 70 u 80 dB en el nivel de los 4.096 Hz y se amplía hacia frecuencias más bajas y más altas

- **Lesión terminal**: se expresa en la sordera social con acúfenos.

El Dr. Bernardino Ramazzini (1633-1714), considerado entre los Médicos del Trabajo el padre de la Medicina Laboral, en su publicación *Disertación acerca de las Enfermedades de los Trabajadores*, anotó detalles importantes respecto de las alteraciones producidas en la salud de los trabajadores ante la exposición a diversos riesgos ambientales. Con respecto al ruido, al que estaban expuestos los trabajadores que manipulaban el bronce, ponía de maniﬁesto, con la metodología de la clínica semiológica de la época, cuáles eran las consecuencias sobre la salud, muy sencillamente descripto en el capítulo sobre “Las Enfermedades a que están expuestos los Obreros del Bronce”:

Existen broncistas en todas las urbes y en Venecia se agrupan en un solo barrio; allí martillan el día entero para dar ductilidad al bronce y fabricar luego con él las vasijas de diversas clases; allí también ellos únicamente tienen sus tabernas y domicilios, causan tal estrépito que huye todo el mundo de un paraje tan molesto. Obsérsavelos sentados sobre pequeños colchones puestos en el suelo; trabajan constantemente encorvados, con martillos que primero son de madera y luego de hierro; golpeando el material nuevo obtienen la maleabilidad deseada. Dáñanse pues principalmente el oído del continuo fragor y toda la cabeza por consiguiente; ensordecen poco a poco y al envejecer quedan totalmente sordos; el timpano del oído pierde su tensión natural de la incesante percusión que repercute a su vez hacia los lados en el interior de la oreja debilitando y pervirtiendo todos los órganos de la audición; sucede a estos obreros lo que en Egipto a las personas que viven a orillas del Nilo y ensordecen por el estruendo de las cataratas.

La Revolución Industrial, desde fines del siglo XVIII, irremediablemente aceleró la aparición de las enfermedades por exposición al ruido, como sordera de los herreros, de los caldereros, a raíz del auge del ferrocarril a fines del siglo XIX, y de los artilleros, con el desarrollo de los armamentos. En el siglo XX se describió una reducción del rendimiento de los dactilógrafos por efecto del ruido y, en las últimas décadas de ese mismo siglo, la disminución auditiva de los jóvenes relacionada con la audiación del rock pesado. Se trata de una afección de la sociedad moderna. Se ha detectado que la agudeza auditiva de los hombres de 75 años de Mabaan (Sudán) era equivalente a la de hombres de 25 años en EE.UU.

Se estima que un tercio de la población mundial y alrededor del 75% de los habitantes de las grandes ciudades padecen algún grado de hipoacusia (Hernández Sánchez, 2006).

### 5. Protección contra el ruido

La reducción del ruido no es excesivamente costosa hasta el nivel de 85 dB (A). En cambio, sí lo es para reducir de 85 a 80 dB (A) (Suter, 1998: 47.2). Los procedimientos en su conjunto se inscriben en Programas de Protección de la Audición, en especial, en ambientes laborales ruidosos.
El orden de los mecanismos de protección auditiva, en el ámbito laboral, es (Lepera, 1966: 132):

- **Reducción del ruido**: lo ideal sería que toda máquina o herramienta producida por los fabricantes no emita ruidos por sobre los valores que puedan provocar daño a la salud. No obstante ello, existen diversas medidas que se pueden adoptar:
  - Aplicar procedimientos de ingeniería en la fuente productora de ruido (aislarla o repararla).
  - En la vía de propagación (barreras, absorción).
  - En el recinto de trabajo (aislar el recinto).
- **Protección auditiva**: tapones en el conducto auditivo que deben ser de lana de vidrio o látex de calidad y estar bien colocados; los cobertores, que semejan auriculares, en las mismas condiciones pueden aislarse hasta 35 dB; los cascos se utilizan cuando los niveles son superiores a los 130 dB y los protectores torácicos en lugares como aeródromos, en los que llegan a ser, en muy breves momentos, superiores a los 160 dB. El uso de protectores es molesto y con frecuencia se descarta su uso permanente. De allí la expresión de Glomiz: “El mejor protector es el que se usa” (Behar, 1997: 58).
- **Reducción del tiempo** de exposición.

### Límite de exposición al ruido (Resolución MTESS 295/2003)

| Duración por día | Nivel de presión acústica dBA
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>Minutos</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>97</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>103</td>
</tr>
<tr>
<td>7.50 A</td>
<td>105</td>
</tr>
<tr>
<td>3.75 A</td>
<td>106</td>
</tr>
<tr>
<td>1.88 A</td>
<td>109</td>
</tr>
<tr>
<td>0.94 A</td>
<td>112</td>
</tr>
<tr>
<td>Segundos A</td>
<td></td>
</tr>
<tr>
<td>25.12</td>
<td>115</td>
</tr>
<tr>
<td>14.06</td>
<td>118</td>
</tr>
<tr>
<td>7.03</td>
<td>121</td>
</tr>
<tr>
<td>3.52</td>
<td>124</td>
</tr>
</tbody>
</table>

### Tabla

| Duración por día | Nivel de presión acústica dBA
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>127</td>
</tr>
<tr>
<td>0.68</td>
<td>130</td>
</tr>
<tr>
<td>0.44</td>
<td>133</td>
</tr>
<tr>
<td>0.22</td>
<td>136</td>
</tr>
<tr>
<td>0.11</td>
<td>139</td>
</tr>
</tbody>
</table>

* No ha de haber exposiciones a ruido continuo, intermitente o de impacto por encima de un nivel pico ponderado de 140 dB.

* El nivel de presión acústica en decibeles (o decibelios) se mide con un sonómetro, usando el filtro de ponderación frecuencial A y respuesta lenta.

* Limitado por la fuente de ruido, no por control administrativo. También se recomienda utilizar un dosímetro o medidor de integración de nivel sonoro para sonidos por encima de 120 decibeles.

Las personas expuestas a un NSCE de 85 dB(A) o superior deben ser sometidas a audiometrías: una de base y luego cada seis meses mientras dure la exposición.

6. Los efectos del ruido deben controlarse

La **audiometría** detecta a las personas más susceptibles al ruido, permite evaluar cómo evoluciona la exposición, precisar la indicación de protectores auditivos y motivar su utilización.

En los expuestos al ruido, la audiometría debe tomarse, al menos, a 16 horas después del cese de la exposición para evitar considerar como permanente la disminución temporal (DPU). Asimismo, debe corregirse respecto de la presbiacusia que tiende a reducir la agudeza auditiva también en frecuencias altas.

Para tomar la **Audiometría Tonal Liminar** se usa el audiómetro electrónico que registra la eventual pérdida auditiva en frecuencias que se duplican desde 64,5 a 8.000 Hz. La línea del “0” dB indica la percepción normal en cada frecuencia. Las intensidades de los sonidos puros producidos varían de a 5 dB. La persona bajo estudio se ubica en una cabina sonomortiguada y responde a cada estímulo levantando el brazo homolateral al oído explorado. El gráfico resultante lleva la identificación de la persona, la fecha y el equipo utilizado. Las marcas en el gráfico son convencionales según los signos definidos por Fowler:

- Oído derecho, en rojo; O: vía aérea y < vía ósea.
- Oído izquierdo, en azul; X: vía aérea y > vía ósea.

---

Fecha: 8/04/89
Edad: 46
Domicilio: La Plata

Ambiente: CSA.
Edad: 46
Domicilio: La Plata

---

4 La frecuencia con que deben realizarse las audiometrías a los trabajadores expuestos no tiene un criterio unificado mundial. Cada país, de acuerdo con la voluntad de mejorar la calidad de vida de sus trabajadores, determina la periodicidad. En general se realizan en un examen preocupacional (examen de ingreso laboral o preingreso), luego, cada seis meses o anualmente.

5 El Herzio equivale a un ciclo por segundo (CPS).

6 Los registros de cada caso se hacen previo ajuste a una calibración biológica promedio a un grupo de jóvenes sin antecedentes otológicos (Diamante, 2004: 35).
Fecha: 20/11/79  
Edad: 34  
Domicilio: La Plata  
Ambiente: CSA  
Audiómetro: Ampliad 300

Fecha: 10/04/82  
Edad: 30  
Domicilio: Florencio Varela  
Ambiente: CSA  
Audiómetro: Ampliad 300

Fecha: 15/07/80  
Edad: 42  
Domicilio: Caleta Olivia  
Ambiente: CSA  
Audiómetro: Ampliad 300
El gráfico marcado indica la menor intensidad que la persona puede percibir (umbrales tonales). Se registran también los acúfenos si los hubiera, indicándose su ausencia en caso negativo.

Las hipoacusias se clasifican en:

- **Hipoacusias conductivas**: se encuentra afectada la percepción del sonido por la vía aérea, conservándose normal la vía ósea.
- **Hipoacusias inducidas por ruido (perceptivas o neurosensoriales)**: se encuentran afectadas ambas vías.
- **Hipoacusias mixtas**: presentan una combinación de las hipoacusias conductivas y las neurosensoriales.

Las hipoacusias se precisan con métodos como la audiometría tonal supraliminar, pruebas de reclutamiento y de fatiga auditiva, la logoaudiometría, la impedanciometría y los potenciales evocados auditivos de tallo cerebral (PEATC), los potenciales evocados auditivos de estado estable a múltiples frecuencias (PEAeeMF) y las Emisiones Otoacústicas (Hernández Sánchez, 2006).

El trauma acústico es la sordera producida por un ruido brusco, intenso y de corta duración, situación que se produce en trabajadores que manipulan explosivos en las minas o canteras o en aquellos que manipulan armas de fuego (en este caso las lesiones generalmente son unilaterales). La exposición crónica a ruidos continuos, en general de menor intensidad, provocan lesiones bilaterales y simétricas (máquinas industriales, calderas, transportes, rock ruidoso), son de un comienzo insidioso y de curso progresivo.

A las variables del ruido, intensidad y duración, debe agregarse la susceptibilidad del oído de cada persona.

El ruido lesiona las células ciliadas del órgano de Corti, comenzando por la zona de percepción de sonidos agudos (4.000 Hz) y generando hipoacusias de percepción (neurosensoriales), también llamadas hipoacusias inducidas por ruido. Se las categoriza en grados:

- **1º grado**: la percepción cae, entre 25 y 40 dB(A) a los 4.000 Hz y asciende a los 8.000 Hz. El sujeto no toma conciencia de su problema porque oye la palabra, dado que esta se ubica entre los 200 y 2.000 Hz.
- **2º grado**: la percepción cae, entre 40 y 70 dB(A), a los 2.000 Hz, y continúa a los 4.000 y 8.000 Hz. El sujeto comienza a tomar conciencia de su hipoacusia.
- **3º grado**: la percepción cae, por arriba de los 70 dB(A), a los 500 Hz, tomando el resto de las frecuencias agudas.
- **4º grado**: la percepción cae aún más tomando las frecuencias de los 250 Hz.

Las hipoacusias traumáticas suelen acompañarse de acúfenos que son transitorios al principio, desaparecen con el descanso fuera del ambiente ruidoso, y terminan siendo continuos.

El trauma agudo puede producir ruptura del tímpano, otorragia y otodinia, generando una hipoacusia mixta, así como también vértigo.

Como tratamiento y rehabilitación se ha preconizado la oxigenación hiperbárica combinada con corticoideas, la medicación con magnesio y antioxidantes como protectores cocleares (Hernández Sánchez, 2006). Los audífonos convencionales o los digitales llegan a producir alguna compensación y los implantes cocleares son alternativas costosas.
7. Vibraciones

Ciertos equipos y procesos industriales, además de producir ruido, generan vibraciones que se consideran movimientos oscilatorios de las partículas de un sólido por acción de fuerzas de inercia, elásticas y de amortiguamiento, y tienen frecuencias menores de 1.000 Hz (MAPFRE, 1991: 495).

Se originan en la interacción de las piezas de una máquina (tractores, sierras mecánicas, martillos neumáticos, máquinas de coser, telares, vehículos de transporte), de los materiales en proceso, del uso de herramientas (en especial de percusión), fallas o desgastes en las maquinarias, irregularidades en las superficies por las que circulan los vehículos o en fenómenos naturales generados por el viento, las tormentas y los terremotos.

Las vibraciones deterministas se pueden definir por una fórmula matemática, las aleatorias por procedimientos estadísticos.

Las primeras pueden dividirse en periódicas y no periódicas según se reproduzcan las oscilaciones en periodos repetidos e iguales o sean fenómenos transitorios breves como choques o golpes, respectivamente.

Mientras el ruido afecta el oído, en forma directa y principal, las vibraciones, que se trasmiten al cuerpo humano en los tres ejes del espacio, afectan sectores más amplios y órganos más numerosos.

La absorción de las vibraciones por el organismo es inversamente proporcional a sus frecuencias. Los efectos globales se producen entre los 3 y 14 Hz, según la posición del cuerpo, los que afectan al conjunto cabeza-hombros entre los 20 y 30 Hz y al conjunto craneo-mandíbula entre los 100 y 300 Hz. Según las mismas frecuencias producen síntomas o síndromes variables.

<table>
<thead>
<tr>
<th>Vibraciones, Síntomas y Síndromes según el rango de frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Síntomas-Síndromes</td>
</tr>
<tr>
<td>Sensación de incomodidad</td>
</tr>
<tr>
<td>Dolor de cabeza</td>
</tr>
<tr>
<td>Síntomas en la mandíbula inferior</td>
</tr>
<tr>
<td>Influencia sobre la palabra</td>
</tr>
<tr>
<td>Nudo en la garganta</td>
</tr>
<tr>
<td>Dolor de tórax</td>
</tr>
<tr>
<td>Dolor de abdomen</td>
</tr>
<tr>
<td>Incitación a orinar</td>
</tr>
<tr>
<td>Contracciones musculares</td>
</tr>
</tbody>
</table>


La exposición prolongada a las vibraciones afecta en especial el conjunto brazo-mano y el columna-musculatura lumbar. La exposición breve afecta el sistema nervioso con síntomas de cefalea, mareos, fatiga e insomnio.
Bibliografía

Ramazzini, B., *Disertación acerca de las enfermedades de los trabajadores (1700)*, La Plata, Sociedad Platense de Medicina del Trabajo, 1998.
VECTORES DE ENFERMEDAD

Ana María Marino
Arnaldo Maciá
Horacio Luis Barragán

Los vectores son seres vivos que por sus hábitos de vida tienen capacidad de llevar un agente infectante desde la fuente de infección hasta el huésped susceptible. Los hay que actúan simplemente como transportadores mecánicos y los que sirven de intermediarios para la evolución o multiplicación del agente (Atias, 1991: 483).

1. Insectos y arácnidos

Los artrópodos constituyen el Phylum con mayor diversidad específica del reino animal, habiéndose reconocido alrededor de un millón de especies, de las cuales muy pocas son nocivas para la salud. Tienen cuerpo simétrico y segmentado, exoesqueleto quitinoso, apéndices articulados. Poseen un medio interno que, mediante mecanismos de distinto grado de complejidad, les permite colonizar eficientemente todos los biotopos del planeta. Merece destacarse el sistema de transporte del oxígeno, que desde el medio externo puede difundirlo a la sangre a través de la pared corporal (respiración cutánea) o poseer una compleja red traqueal que vehiculiza el O2 atmosférico hacia las distintas células que conforman los órganos (respiración traqueal). El mecanismo alimentario también exhibe distintos patrones, desde la simple organización que permite incorporar el alimento por difusión (endoparásitos), hasta las más complejas estructuras, de origen apendicular o no, que posibilitan la consecución, ingestión y posterior digestión del alimento.

Entre los artrópodos terrestres, los Arácnidos y los Insectos reúnen a especies de importancia médica. Entre los primeros, solamente se considerará la Subclase Acarina, por contener especies causales de diversos tipos de sarnas y por la transmisión de diversos patógenos.

Los Insectos son artrópodos de cuerpo dividido en cabeza, tórax y abdomen, un par de antenas sensoriales, tres pares de patas y dos pares de alas. Constituyen alrededor del 70% de los animales de la Tierra. Son los únicos invertebrados que, por su capacidad de volar, se movilizan y dispersan de acuerdo con sus requerimientos nutricionales y reproductivos. Otros Insectos carecen de alas por mantener la condición áptera de sus ancestros, como los Anopluros (piojos), o por la posible acción del parasitismo, como los Hemípteros Cimicidos (chinche de cama), Siphonaptera (pulgas), entre otros. Son generalmente de sexos separados y se reproducen a partir de huevos fecundados, aunque hay casos de partenogénesis. Durante su desarrollo, desde la formación del huevo hasta llegar al estado adulto, sufren transformaciones morfológicas y fisiológicas (metamorfosis) más o menos graduales. Se suceden 3 etapas: la preembrional y embrional (dentro del huevo), que son las transformaciones del óvulo hasta la formación del

1 Gr. Arthros, articulación + podos, pie. Reúne a los Crustáceos (cangrejos, langostinos, percebes), Quelicerados (escorpiones, arañas, garrapatas, etc.), Miriápodos (ciempiés, milpiés), Hexápodos (insectos) y diversas formas fósiles.
embrión (embriogénesis), y la etapa postembrional o larval, en donde los cambios se evidencian externamente. Esta metamorfosis se manifiesta después de cada muda o ecdisis, la cual representa el momento en el cual el artrópodo remueve la cutícula de su tegumento reemplazándola por otra nueva, permitiendo así el crecimiento del individuo hasta alcanzar la conformación final del estado adulto. Sólo en los Insectos, el estado adulto representa la finalización de la etapa de crecimiento y, por consiguiente, del proceso de muda.

Tienen una gran capacidad de reproducirse y su tiempo de desarrollo es variable (de horas a varios meses), por lo general depende de la longevidad de la especie y las condiciones ambientales reinantes.

Viven en todas las áreas geográficas y condiciones ambientales: bosques, pastizales, desiertos, áreas cultivadas, áreas urbanas, cuerpos de agua dulce, marinos, aguas intersticiales, en el medio aéreo pero también en espacios reducidos en suelo y grietas. En cuanto a su alimentación, hay herbívoros, carnívoros y omnívoros, obteniendo el alimento de plantas vivas y muertas, madera, hongos, jugo de plantas, animales superiores e inferiores, sangre y prácticamente cualquier tipo de materia orgánica. Un elevado número de ellos se comportan como parásitos de plantas o animales, causando efectos de distinto grado de severidad. Entre ellos, también merecen destacarse las especies que son beneficiosas para el hombre, por proveerle alimento y confort en forma directa (miel, seda, tinturas), por intervenir en la polinización de los cultivos (polinizadores) o como enemigos naturales, predadores o parasitoides, que exterminan a otras especies dañinas.

Causan perjuicios al hombre y a los animales domésticos al alimentarse causando severas molestias o afecciones al picar o comer sobre el huésped. Merecen destacarse también los perjuicios económicos y sociales que causan por disminuir la producción de una amplia variedad de cultivos que son su fuente de alimento, atacar productos almacenados, dañar construcciones, viviendas, entre otros. Cuando los efectos inciden en términos de producción, se consideran plagas. No obstante, para la mayoría de las plagas, existen organismos (patógenos e insectos predadores, entre otros animales) que ejercen un control biológico natural al impedir su proliferación desmedida (Curtis y Barnes, 2001: 888). La mayor o menor eficiencia de este “control natural” se ve alterada por la cotidiana intervención del hombre, que, persiguiendo objetivos superadores, modifica la naturaleza del paisaje, la atmósfera, el medio acuático, etcétera.

1.1. Los acarinos

Son arácnidos de tamaño variado, desde microscópicos hasta grandes (un centímetro). Tienen cuerpo globuloso y continuo. En el extremo anterior, gnatosoma o capítulo, están implantados los dos pares de apéndices y otras estructuras bucales, que sufren fusión, modificación o degeneración de acuerdo con los distintos hábitos que exhiben (predación, succión, punición, laceración, fijación, entre otros). En el resto del cuerpo, idiosoma, se implantan las patas locomotoras (seis en larvas y ocho en juveniles y adultos), que también sufren modificaciones. Hay gran cantidad de formas libres y predatoras, como también parasítas de vegetales y animales (hematófagas o no). Algunas especies producen daños directos, como los causales de la escabiosis (sarna), otros trasmiten diversos agentes de enfermedades (garrapatas, piojo de los roedores). La saliva inoculada durante la alimentación puede producir accidentes (por ejemplo, fiebre y parálisis por picadura de garrapatas).

En Argentina, son de interés médico: las formas picadoras, capaces de inyectar con su saliva distintos tipos de patógenos, y las que infestan penetrando en la piel (garrapatas) o produciendo lesiones cavitarias (escabiosis).
• **Echinolaelaps echidninus**: tiene cuerpo ovoide con color castaño-rojizo claro; con un aparato bucal o rostro adaptado a la punción y la succión; con estigmas traqueales visibles en la región anterior del idiosoma. Vive en nidos de roedores de campo, especialmente en plantaciones de maíz del noroeste de la provincia de Buenos Aires. Se le atribuye la vectoría del virus Junín, de la fiebre hemorrágica argentina. Parasita a los roedores de campo, especialmente al *Calomys musculinus*, que son huéspedes de ese virus.

• **Sarcoptes scabiei** (escabiosis): tiene cuerpo globuloso gris o rojizo, con pliegues transversales que en su cara dorsal se interrumpen por un plastrón con escamas, y diez pares de espinas o púas. Vive en el espesor de la capa córnea de la piel, donde la hembra ovígera cava un túnel sinuoso, pone sus huevos y se ubica en el fondo, en el que forma una eminencia perlácea. El ciclo dura cinco semanas. Produce la escabiosis (sarna), que se contagia por el uso de camas o ropas infestadas. Entre los ocho y diez días del contagio se presenta la dermatosis pruriginosa, más intensa de noche.

• **Tetranychus urticae** (bicho colorado): la larva es ovalada, color rojo anaranjado, cubierta de pelos. Vive en la cara inferior de las hojas y plantas rastreras. El hombre se infesta al acostarse en la hierba o exponer sus miembros inferiores y sufre una lesión pápulo-vesicular pruriginosa que puede infectarse por arañazos (Niño, 1965: 213).

• **Amblyomma cajenense** (*Ixodidae*, “garrapatas”): posee el dorso total o parcialmente cubierto por quitina. Es hematófago. El gnatosoma está altamente modificado para la fijación y laceración. Las hembras depositan los huevos en la hierba o restos vegetales; las larvas al nacer buscan prenderse a la piel de animales de sangre caliente, incluyendo al hombre. Algunas especies inoculan saliva tóxica que puede producir síndromes febriles y, en niños, cuadros paralíticos tipo Landry. Es muy abundante y peligrosa por la dermatitis que provoca y que puede evolucionar a ulceraciones rebeldes, así como por ser vectores de leishmaniasis tegumentarias. Representa una de las especies de mayor peligrosidad en ambientes silvestres del norte Argentino y zonas subtropicales de América. Otros Ixodidos transmiten diversas rickettsiosis, espiroquetosis (borrelias) y tularemia.

1.2. **Los anopluros (piojos chupadores)**

Son insectos pequeños (dos a cinco milímetros), sin alas, con el cuerpo aplanado, fuertemente modificado por el ectoparasitismo sobre vertebrados, especialmente mamíferos placentarios; cabeza romboidal, ojos reducidos o ausentes, antenas de cinco segmentos, aparato bucal estiliforme, altamente modificado para picar y succionar sangre; tórax con los segmentos fusionados, patas cortas, robustas que terminan en una unión que acciona contra el segmento anterior en forma de candado, lo que les permite aferrarse y movilizarse fácilmente entre pelos o ropas; el abdomen es segmentado, terminando en forma redondeada en los machos y bifida o medialmente partida en las hembras. Son ovíparos y los huevos o “liendres” son cementados a los pelos o fibras de las ropas, mediante secreciones producidas al momento de oviponer. Todo el ciclo vital transcurre sobre el huésped; alrededor de ocho días nacen individuos que, en apariencia y hábitos, son muy similares a los adultos y llegan a su madurez sexual en pocos días (cinco a diez días, dependiendo de condiciones ambientales). Las crías se suceden ininterrumpidamente durante todo el año. Son hematófagos obligados desde su nacimiento.

Las especies importantes desde el punto de vista médico son (Niño, 1965: 536):

• **Pediculus humanus** var. *capitis* (piojo de la cabeza): color gris con bordes oscuros y festoneados. El macho mide 1,6 mm de largo y la hembra 2,7 mm. El aparato bucal o rostro tiene dientes para fijar y picar. Una hembra produce aproximadamente ochenta liendres que mudan a adultos en tres o cuatro semanas. Produce una dermatosis con erupción pápulo-
eritematosa y pruriginosa. El rascado genera lesiones que, por su secreción espesa, aglutina el cabello y deja costras, en especial en el pelo de la nuca y laterales del cuello. Se contagia en forma directa o indirecta por objetos infestados, en especial en pequeñas comunidades cerradas.

- **Pediculus humanus** var. *corporis* (piojo del cuerpo y ropa): color gris amarillento, es más grande que el anterior (3 mm y 3,3 mm), vive en los pliegues y costuras de la ropa interior. Es hematofago. La hembra produce hasta trescientas liendres. Es más frecuente en países fríos, en los que se usan ropas interiores gruesas y el aseo es menos frecuente. Produce lesiones papulosas y pruriginosas que por el rascado pueden infectarse. Son más visibles en la espalda, abdomen inferior y cara externa de los muslos. La infestación crónica se presenta con engrosamiento, descamación y melanodermia. Este parásito es vector de Rickettsias y Borrelia.

- **Phthirus pubis** (ladilla): color amarillento, cuerpo corto y ovalado, de menor tamaño que los anteriores (1 mm el macho y 1,5 mm la hembra). Esta última, fecundada, produce aproximadamente cuarenta liendres que fija en la base de los pelos y su ciclo tarda alrededor de dos semanas. Infesta las partes vellosas del cuerpo, especialmente la región del pubis; ocasionalmente se halla en la cabeza, aunque puede llegar a la barba y las pestañas. Produce pequeñas pápulas pruriginosas, con mayor prurito por la noche, así como pequeñas máculas azuladas. Se contagia en forma directa por contacto sexual o a través de ropas infestadas.

### Pediculus humanus var. capitis y var. corporis; Phthirus pubis (ladilla)

<table>
<thead>
<tr>
<th>Pediculus humanus var. capitis y var. corporis</th>
<th>Phthirus pubis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pediculus humanus</strong></td>
<td><strong>Phthirus pubis</strong></td>
</tr>
<tr>
<td>Todas las patas de similar largo</td>
<td>Dos pares de patas más chicas que las anteriores</td>
</tr>
<tr>
<td>Abdómen aplanado sin pelos laterales</td>
<td>Abdómen más corto y procesos patosos laterales</td>
</tr>
</tbody>
</table>


### 1.2. Los hemípteros

Son insectos de tamaño pequeño a grande, caracterizados principalmente por tener un aparato bucal picador-suctor que consta de dos pares de apéndices estiliformes dispuestos dentro de un rostro articulado que, en reposo, está situado por debajo de la cabeza, aunque su base se proyecta por delante de ella y es visible dorsalmente; antenas de cuatro a cinco segmentos; por lo general, dos pares de alas, el par anterior (hemíélitros) con dos áreas bien manifiestas: la basal, dura y gruesa (*corium*) y la distal, delgada y transparente (*membrana*), y el par posterior...
membranoso homogéneo; desarrollo gradual, estados inmaduros con aspecto y hábitos similares al adulto.

Son de mayor interés médico:

- **Cimicidos** (*Cimex lectularius*, “chinche de cama”): de cuatro a cinco milímetros; cuerpo aplanado dorso-ventralmente con vello corto, color pardo amarillento. Alas anteriores o “hemiélitros” reducidos en forma de escama, alas posteriores atrofiadas. Hematófagos, se alimentan de sangre de aves y mamíferos. Viven en los intersticios de las camas, dobleces del colchón y superficies de madera. Pican al hombre, en especial de noche, y producen púpulas pruriginosas.

- **Triatominos** (Filia. *Reduviidae*): tamaño de 1,5 y 3 centímetros. Tienen cuerpo aplanado dorso-ventralmente, color pardo, un par de ojos salientes y rostro con tres segmentos, dos pares de alas plegadas sobre el abdomen, el cual es ensanchado con los márgenes laterales, conexivo, aplanado y coloreado. El abdomen termina en forma roma en el macho y en punta en la hembra. Los huevos son ovoideos y blanco nacarados, en un extremo de los cuales hay una especie de tapa (opérculo). Las larvas se desarrollan durante un período de entre doscientos a trescientos días; al igual que los adultos, son hematófagos. Viven en los domicilios y peridomicilios y tienen hábitos nocturnos. La repleción de sangre puede durar media hora, absorbieniendo hasta 1 cm$^3$ del fluido y transformando el abdomen en un globo rojizo. Inmediatamente después de ingerirla, eliminan heces negras o ambarinas. La picadura deja una púpula poco molesta. Si están infestados con Trypanosomas, eliminan gran cantidad de flagelados que tienden a penetrar en la circulación por las escoriaciones. Hay numerosos géneros, entre los que se destacan:

  - **Género Panstrongylus**, de cabeza corta (*P. megistus* o barbeiro), de 3 a 3,5 centímetros de largo, con manchas rojas en el tórax y el conexivo. Ampliamente distribuido, desde el Sur de México al Norte de Argentina.
- Género *Triatoma*, de cabeza larga (*T. infestans* o vinchuca), de 2 a 3 centímetros de largo, con manchas amarillas en el cuello y el conexivo. Es la especie más peligrosa en la Argentina, Chile, Uruguay y Sur de Brasil por su capacidad de infestación y sus hábitos intensamente domésticos.

- Género *Rhodnius*, de cabeza larga y estrecha (*R. prolixus* o pito), de 2 centímetros de largo, amarillento con manchas rojas en tórax y conexivo. Distribución restringida a Venezuela.

<table>
<thead>
<tr>
<th>Triatomíneos Frecuentes en América</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. — <em>Triatoma infestans</em></td>
</tr>
<tr>
<td>B. — <em>Panstrongylus megistus</em></td>
</tr>
<tr>
<td>C. — <em>Triatoma rubrovaria</em></td>
</tr>
<tr>
<td>D. — <em>Rhodnius prolixus</em></td>
</tr>
</tbody>
</table>


### 1.3. Los Sifonápteros (“pulgas”)

Son insectos de cabeza pequeña y angulosa con ojos simples y visibles, detrás de los cuales se ubican antenas cortas y segmentadas, con un aparato bucal picador-suctor. Delante y detrás de los ojos presentan sedas gruesas que permiten determinar la especie. El cuerpo es ovoideo,
aplanado lateralmente, color pardo amarillento. El tórax es amplio y segmentado y de él salen tres pares de patas largas y desiguales, adaptadas al salto, que terminan en tarsos con uñas. El abdomen es segmentado y más aplanado lateralmente, en el séptimo segmento las hembras presentan la espermateca, que también diferencia las especies. Ponen huevos blancos, de menos de un milímetro, que depositan en el suelo, vestidos, polvo de habitaciones o alfombras. A lo largo de su desarrollo sufren una metamorfosis completa en la cual las larvas, masticadoras y que viven en el suelo, pasan por sucesivos estados alimentándose de excretas y otras sustancias orgánicas. Luego de una etapa de quiescencia (estado pupal) emerge el adulto que ya es hematófago. Según la especie, su longevidad es de 100 a 2.000 días (Niño, 1965: 560).

Las principales especies de interés médico pertenecen a la familia Pulicidae:

- **Pulex irritans** (pulga del hombre): mide dos milímetros el macho y hasta cuatro milímetros la hembra. Tiene una seda preocular y otra retrocular en la cabeza. Su saliva produce una equimosis puntiforme rodeada de un área eritematosa a veces edematizada. En personas sensibles, puede dar un brote de urticaria.

- **Xenopsylla cheopis** (pulga de la rata): más pequeña que la anterior. Tiene una seda preocular y varias retrociliares formando una V. Vive en el pelo de las ratas, en especial en el cuello, donde deposita sus huevos. Cuando la rata muere, cambia de huésped, ya sea a rata o al hombre, con una capacidad de salto de hasta treinta centímetros. Transmite la *Yersinia pestis*, agente de la Peste, de la que es el principal vector. En la India juega el mismo papel la *Xenopsylla astia*.

---

**Pulícidos. Esquema de Pulex irritans**


---

1.5. **Los Dípteros (mosquitos, tábanos, moscas, jejenes)**

Son insectos de tamaño variado, desde pequeños (un milímetro en los jejenes) hasta grandes (cinco centímetros en las moscas cazadoras). En ellos es característico poseer el primer par de alas
membranosas y el segundo transformado en pequeños órganos en forma de clava, llamados “balancines”, que sirven para mantener el equilibrio durante el vuelo. El aparato bucal puede estar modificado para chupar (moscas) o para picar el tegumento de otros animales y succionar sangre (mosquitos, tábanos, jejenes). Tienen una metamorfosis completa, con una etapa de larva (acuática en mosquitos, tábanos y jejenes) sucedida por un estado de quiescencia o “pupa”, en el que se reconstituyen algunos tejidos y se generan otros nuevos, previo a la aparición del estado adulto.

Los culicidos (mosquitos) son una familia de dípteros que tienen el cuerpo delgado y cubierto de pelos modificados en escamas y una cabeza globulosa con dos ojos grandes. Las antenas son plumosas en los machos y pilosas, con menos pelos y más cortos, en las hembras, lo que permite diferenciar los sexos a simple vista. La trompa o proboscis es larga, delgada y compuesta por varios estiletes muy delgados y envueltos en una vaina que se flexiona sobre la piel durante la picada, de modo que sólo los estiletes penetran. En el tórax, prominente, se insertan los dos primeros pares de patas y, entre ellos, el par de alas. Más cerca del abdomen se ubican el par de pequeños balancines y el tercer par de patas. Las alas son lanceoladas, membranosas y largas. El abdomen es segmentado y en el extremo presenta el aparato genital. Las hembras de casi todas las especies son hematófagas obligadas. Los machos son fitófagos (extraen líquidos azucarados de flores y frutos). La picadura es molesta y la repleción con sangre tarda entre uno y dos minutos. La sangre es utilizada para formar los huevos, ya que las proteínas que se encuentran en aquella son transformadas en vitelo que nutrirá al embrión. Los mosquitos pueden tomar más de una alimentación con sangre a lo largo de su vida y, por lo tanto, cumplir varios ciclos ováricos. Pueden vivir varias semanas. Dentro de la familia se diferencian dos grupos de importancia médica: los anofelinos y los culicinos. En Argentina se han citado alrededor de 220 especies (Mitchell y Darsie, 1985; Rossi, 1996, 1997, Rossi et al., 1999), pero la importancia desde el punto de vista epidemiológico de muchas de ellas es poco conocida. Los mosquitos más importantes de Argentina, ya sea por ser vectores de enfermedades o por el perjuicio que ocasionan al invadir el ambiente humano, se mencionan a continuación, junto con sus características diferenciales.

Los mosquitos anofelinos, al picar, apoyan sólo cuatro patas, dejando las otras dos y el abdomen en posición oblicua (a 45º) con respecto a la piel. Tanto los machos como las hembras tienen palpos tan largos como la proboscis. Los huevos elipsoideos quedan sueltos en el agua y tienen flotadores laterales para permanecer en la superficie. Las larvas, que poseen estígmas respiratorios en el extremo del abdomen, se ubican en forma horizontal tomando la superficie del agua. Las hembras adultas transmiten el paludismo o malaria, cuyo agente etiológico es el protozoo Plasmodium, del cual hay distintas especies.

Hay más de sesenta especies de Anopheles en el mundo capaces de actuar como vectores de malaria. El Anopheles gambiae, una especie de África, alcanza a infectarse en el 100% de los especímenes. En Argentina existen dos especies de insectos transmisores de malaria: Anopheles darlingi y A. pseudopunctipennis; las infecciones son producidas sólo por Plasmodium vivax, de morbilidad moderada (Zaidenberg, 2002).

El Anopheles pseudopunctipennis es el transmisor principal del paludismo en América y en el Noroeste de Argentina; habitualmente se infecta en un 3% (Niño, 1965: 621). Tiene hábitos domésticos y antropofilia, lo cual refuerza su importancia como vector. Su cuerpo y patas son negras y posee tres manchas amplias de ese color en la parte anterior de las alas, que alternan con manchas blancas estrechas. Puede vivir hasta los 2.500 metros de altitud y volar hasta 6 km (Niño, 1965: 623). Deposita sus huevos en el margen de espejos de agua dulce, clara y tranquila, preferentemente con vegetación acuática. El adulto se desarrolla, en Argentina, entre los meses de mayo y noviembre, máximo período de transmisión palúdica. El Anopheles darlingi se diferencia de la especie anterior por tener el extremo de las patas posteriores blanco, y es el vector de la malaria en el Noreste de Argentina (Lepera, 1966: 278). Una tercera especie, A. albitarsis,
transmite la malaria en Brasil, pero su rol como vector en Argentina aún no está suficientemente elucidado.

Entre los mosquitos culicinos, merecen destacarse, por estar implicadas en la transmisión de enfermedades al hombre, las especies Culex pipiens, Aedes aegypti y Haemagogus spegazzini.

- **Culex pipiens**: es un mosquito cosmopolita y el que más frecuentemente se encuentra en el interior de las viviendas humanas, ya que posee marcada endofilia (afinidad por el interior de las casas). Es de hábitos nocturnos y chupa sangre durante la noche. Al picar apoya sus seis patas y se coloca en paralelo a la superficie de la piel. Los huevos se agrupan en forma de “balsas” flotantes sobre el agua; cada balsa puede tener más de cien huevos y es la postura de una sola hembra luego de un ciclo ovárico completo. Las larvas, que poseen sifón respiratorio caudal, se ubican con la cabeza hacia abajo en el agua, en forma oblicua, y adhieren la punta del sifón a la superficie. Se desarrollan en gran variedad de ambientes acuáticos, preferentemente en aquellos lugares donde el agua permanece estancada por varias semanas. Los adultos producen agudas molestias con su picadura, y en las zonas tropicales infestadas son vectores de algunos virus de encefalitis y de filariasis, aunque el vector habitual de esta enfermedad es *Simulium*, otro díptero conocido como jején.

- **Aedes aegypti**: es un insecto de coloración negra, con manchas blancas en el abdomen y en las patas, lo cual le da a estas un aspecto anillado. En el dorso del tórax es característico de la especie la presencia de dos líneas blancas en forma de lira. El radio de vuelo es corto y no suele desplazarse más que unas decenas de metros de los lugares de cría. Tanto las hembras como los machos suelen acercarse a las personas, si bien las hembras lo hacen buscando sangre y los machos intentando aparearse con aquellas. La hembra pica en posición paralela a la piel. Los huevos son oscuros y adheridos a las paredes de recipientes, sobre la línea de la superficie del agua. Son puestos en pequeños depósitos de agua domiciliaria o peridomiciliaria que no se renuevan por más de una semana (floreros, vasijas, latas, neumáticos abandonados). Pueden ser dispersados inadvertidamente a otras áreas cuando esos recipientes se transportan por vía terrestre, marítima o aérea. Las larvas tienen sifón respiratorio (más corto que en *Culex*), se ubican también cabeza abajo en el agua y se desplazan con movimientos serpenteanentes cerca del fondo. La especie tiene hábitos domésticos y marcada antropofilia, picando de día, con picos de actividad crepuscular. Es el vector del virus de la fiebre amarilla urbana y del dengue. Vive en regiones tropicales y templadas de todo el mundo.

---

2 El *Aedes aegypti* se distribuía originalmente en África y criaba en los huecos de los árboles. Su plasticidad evolutiva llevó a su adaptación al ámbito domiciliario. La capacidad de los huevos del mosquito a resistir en seco permitió su distribución por barcos a vela con depósitos de agua descubiertos en los siglos XV y XVI, asociado al transporte de esclavos desde África. En el siglo XIX se distribuyó por ferrocarril y después por otros medios de transporte. La infestación de un área por vuelo directo es sólo por contigüidad. En América, la especie fue erradicada de muchos países luego de campañas con uso de insecticidas durante el siglo XX, pero en casi todos ellos se produjo la reinfestación. La temperatura alta y las lluvias favorecen el aumento de la densidad de las larvas en los criaderos de zonas tropicales. En las templadas, el tamaño de las poblaciones se reduce al mínimo en invierno, dado que el mosquito pasa la temporada fría como huevo, y comienza a aumentar en primavera y verano.
Mosquitos. Características diferenciales: Anopheles, Aedes, Culex

Fuente: U.S. Department of Health, s/f (Kent, Linig, Chester, Stojanovich).

• **Haemagogus spegazzini**: distribuido en el Norte y centro del país; a diferencia de las especies anteriores, vive en ambientes selváticos frecuentando la copa de los árboles a cuatro o cinco metros de altura, y vehiculiza la fiebre amarilla selvática entre monos. Accidentalmente, los mosquitos infectados con el virus lo transmiten al hombre, estableciendo el nexo con la fiebre amarilla urbana (Niño, 1965: 632; Lepera, 1966: 279).

• Finalmente, es importante mencionar al mosquito **Ochlerotatus albifasciatus**, que ha sido señalado como vector de varias arbovirosis, aunque su importancia epidemiológica todavía no está del todo conocida. Sus larvas se desarrollan en charcas efímeras luego de lluvias intensas, y los adultos provocan intensos ataques en zonas rurales y semiurbanas, en densidades muy altas en primavera y otoño. Se distribuye por toda la Argentina y Sur de Sudamérica.

Los **Jejenes** (*Simuliidae*): son insectos con aspecto de moscas muy pequeñas, de colores oscuros, con el tórax convexo, lo cual les da aspecto de “jorobados”. Las hembras son hematófagas. Las larvas viven en arroyos y ríos, adheridas por una ventosa a hojas, ramas o piedras. Viven en ambientes variados, desde tropicales hasta muy fríos. Tienen reconocida importancia sanitaria porque los adultos atacan en gran número. Algunas especies son transmitoras de filarias, como la que provoca la oncocercosis, que no ha sido detectada en Argentina pero sí en otros países de Sudamérica. Los simúlidos también pueden transmitir algunos virus y protozoos patógenos (Coscarón y Coscarón-Arias, 1998).

Los **Psychodidae** incluyen a las mosquitas de las letrinas y a los **flebótomos**. Las primeras son universalmente conocidas por encontrarse en forma frecuente en los baños de los hogares y se reconocen con facilidad por tener el cuerpo y alas “velludas” que en reposo son redondeadas y extendidas a los lados del cuerpo; los vuelos son escasos y muy cortos. No revisten importancia médica.

En cambio, sí resultan epidemiológicamente relevantes los **flebótomos**, que son de anatomía similar. Son pequeños, de color oscuro, patas largas y cuando no vuelan llevan las alas levantadas sobre el cuerpo. Diversas especies de **flebótomos** transmiten los agentes causantes de leishmaniasis, bartonellosis (enfermedad de Carrión o verruga peruana) y la fiebre papatasi, distribuidas en varios países de Sudamérica y que alcanza el Norte de Argentina (Atías, 1991: 492).

Los **tábanos** (*Tabanidae*) son dípteros hematófagos cuyas picaduras resultan muy dolorosas; sólo las hembras pican y lo hacen durante el día. Son de tamaño mediano (alrededor de 1,5 cm), con alas grandes y el cuerpo robusto, y se reconocen fácilmente por la cabeza más ancha que larga y por sus grandes ojos de colores iridiscentes. Poseen un aparato bucal de tipo picador, con un rostro o proboscis corta y piezas bucales fuertes y rígidas (por ello, la picadura es dolorosa). Depositan los huevos en grupos, en lugares sombríos, sobre el barro, sobre vegetación o materia orgánica decadente, o sobre el agua. Las larvas se alimentan de deshechos vegetales o de pequeños animales blandos. La vida de las larvas es bastante prolongada, pueden pasar el período invernal aletargadas hasta la estación propicia para que emerjan los adultos. Las hembras son hematófagas, mientras que los machos se alimentan de jugos vegetales. Se encuentran distribuidos en todo el territorio argentino, especialmente en áreas cálidas, y son abundantes durante los períodos en donde el régimen de lluvias y el clima es favorable para su desarrollo (a lo largo de la precordillera, el centro y el litoral del país). La voracidad que exhiben las hembras y la cantidad de saliva inoculada al alimentarse explican la capacidad de transmitir enfermedades infecciosas debidas a bacterias o protozoarios (carbunclo, tripanosomiasis, tularemia). Es frecuente que las picaduras desarrollen un edema papuliforme y pruriginoso.

Entre los dípteros de la familia **Muscidae**, sólo la **mosca doméstica** es de interés sanitario por su frecuencia en viviendas humanas y basurales, aunque no es hematófaga ni punzante, es capaz de contaminar los alimentos del hombre. Es de coloración grisácea y mide alrededor de seis milímetros de largo. Deposa más de cien huevos elípticos y blancos, dispuestos en grupos,
sobre excrementos o residuos orgánicos de diverso tipo, sobre los que se alimentan las larvas al nacer. Después de cinco a seis días de desarrollo, las larvas, blanquecinas y ápodas, dejan de alimentarse y se transforman en pupa, emergiendo el adulto al cabo de tres días. Dependiendo de las condiciones ambientales, el ciclo de vida puede variar de diez días a varias semanas. Los adultos, de hábitos diurnos, viven dos a cuatro semanas en verano y un poco más en invierno. Se desplazan entre 300 y 1.000 metros de su criadero, aunque pueden volar varios kilómetros (Lepera, 1966: 271). Por sus hábitos de buscar su alimento en cualquier sustancia y al mismo tiempo ser atraída por sustancias dulces, pueden contaminar los alimentos y transportar pasivamente quistes de protozoarios, huevos de helmintos y algunas bacterias (por ejemplo, Salmonella), así como también diseminar diversos patógenos y difundir enfermedades como amebiasis y disentería. Larvas de familias afines se alimentan de carne viva o muerta y pueden ocasionar lesiones en la piel y tejidos subcutáneos de diversos grados de severidad, denominadas miasis epiteliales o cavitarias (Niño, 1965: 273).

Las moscas Tse Tse (Glossinidae) poseen similitudes morfológicas con las moscas domésticas, aunque son de menor tamaño. Tienen un aparato bucal picador-suctor, y tanto machos como hembras son hematófagas. Las hembras son vivíparas, ya que la larva se desarrolla completamente en el útero de la mosca madre. Por lo tanto, las hembras no ponen huevos, sino una larva madura que inmediatamente se transforma en pupa, de la que emergirá el insecto alado. Los adultos son trasmisores de la enfermedad del sueño (tripanosomiasis africana) al vehiculizar los protozoos Trypanosoma brucei gambiense y T. brucei rhodesiense. Se encuentran en África tropical (Kettle, 1984).

1.6. Control de mosquitos vectores

Durante la segunda mitad del siglo XX se realizaron grandes campañas de erradicación de mosquitos con DDT, que resultaron muy efectivas, tanto por el poder de volteo como por el efecto residual del insecticida. Lamentablemente, se desconocía el efecto de bioamplificación de este tóxico a través de la cadena alimenticia, consecuencia que impulsó que se dejara de usar masivamente en el mundo. Por otra parte, los mosquitos pronto desarrollaron resistencia al producto. Otra consecuencia directa y negativa del uso de DDT es la mortalidad en especies no blanco, dado el amplio espectro de acción de ese agente químico. Este riesgo se extiende a crustáceos, insectos benéficos, peces, aves, pequeños mamíferos y hasta el ser humano.

Varios factores dificultan las acciones de control contra mosquitos. El control de adultos se debe realizar en el domicilio y peridomicilio. De no operar sobre este último, se producen reinfestaciones dentro de la casa. Los ocupantes de la vivienda, por su parte, en ocasiones anulan el rociado pintando o empapelando las superficies a poco de efectuadas las tareas de aplicación.

Existen procedimientos caseros, sencillos y económicos que contribuyen a disminuir el contacto mosquito-hombre. Se trata entonces de medidas preventivas. Ventanas y otras aberturas en las casas deben estar protegidas con mallas metálicas o plásticas. Las mallas deben ser reparadas cuando se rompen. Los marcos deben mantenerse cerrados. Se recomiendan telas de mosquiteros de tejido de algodón o plástico con abertura estrecha para usar en camas y cunas, que deben quedar cubiertas y con un sobrante para doblar bajo el colchón al acostarse. Un procedimiento recientemente desarrollado y que resulta muy eficiente es impregnar los mosquiteros con piretroides. La OMS recomienda permetrina3 en aquellas zonas donde existe alto riesgo de transmisión de malaria.

---

3 La permetrina se usa en emulsión al 50% disuelta en agua y en dosis de 0,2g/m². Para un mosquitero de 15 m² se requieren 3 gramos de permetrina. Se lo trata con 90 ml de permetrina al 50% en 10 litros de agua, sumergido durante diez minutos, y se seca a la sombra, ya que el producto es fotosensible. No se lavan durante algunos
Otra medida preventiva para evitar la picadura de mosquitos es no exponerse en los horarios de máxima actividad de los insectos, que generalmente coincide con la salida y la puesta del sol. Es recomendable usar ropas de manga larga en áreas donde existe transmisión.

Para el control de las larvas, existen diversos métodos que tienen distinto grado de eficacia, pero ninguno es efectivo en todas las situaciones. Un método muy difundido es la aplicación de Bti, abreviación de Bacillus thuringiensis var. israelensis, una bacteria tóxica para larvas de mosquitos que se comercializa como un insecticida sintético. Tiene la ventaja de ser inocua para el resto de la flora y fauna macro y microscópica. Otro método disponible de relativamente reciente desarrollo son moléculas que mimetizan hormonas de crecimiento de los insectos y que interfieren en su normal desarrollo, siendo también de acción específica por no alterar la biología de otros organismos.

El control biológico es un campo de investigación muy valioso para combatir vectores. Posee las ventajas de ser seguro para las especies no blanco, no contaminar el ambiente y no generar resistencia, entre otras. Los peces larvívoros son eficaces en estanques y piletas caseras. Otros agentes biológicos estudiados incluyen virus, protozoos, bacterias, nematodos y otros artrópodos depredadores.

Existen medidas de saneamiento ambiental que, si bien no garantizan el control de un vector, contribuyen en gran medida a la disminución de su densidad. La eliminación de larvas de mosquitos domiciliarios y peridomiciliarios (Culex y Aedes) exige la limpieza y renovación cada semana de todos los depósitos de agua, desde piletas o floreros, fuentes ornamentales de las plazas, depósitos de agua de cementerios y de basurales, incluyendo las gomas de automóviles depositadas a la intemperie.

Actualmente, un enfoque moderno de control de vectores se denomina bioracional, y comprende aquellas estrategias que emplean patógenos, parásitos y depredadores de mosquitos que actúan naturalmente, así como sustancias químicas de origen biológico o sus análogos, de modo que el control es obtenido con el mínimo impacto en organismos no blanco y el ambiente (Becnel y Floore, 2007).

Bibliografía


1. Roedores sinantrópicos

1.1. Características

Los roedores (Rodentia), dentro de los mamíferos placentarios, constituyen el orden más numeroso con aproximadamente 2,280 especies. Dentro de los representantes del grupo se encuentran los ratones, ratas, ardillas, puercoespinos, castores, hámsteres y conejillos de indias, entre otros. Se caracterizan por poseer incisivos en crecimiento permanente. Algunos miembros, fundamentalmente ratas y ratones, transmiten enfermedades y producen pérdidas económicas por lo que comen, ensucian y deterioran en granos, vegetales, huevos, aves de corral, telas y archivos de papel.¹ En edificios, por la necesidad de desgastar sus dientes incisivos, roen maderas, paredes, cimientos, caños y cables eléctricos (generando riesgo de incendio); resisten sólo las chapas galvanizadas y los tejidos de hierro (Ricci-Padín, 2004: 5).

Estos mamíferos tienen una gran capacidad reproductiva, con más de cuatro preñeces al año. El período de gestación es de aproximadamente veinte días, con cinco a doce crías por preñez.² Sin embargo, su mortalidad es alta, del 10% por mes, debido a enfermedades, falta de alimento y canibalismo de los individuos viejos, enfermos o heridos, o por predadores (zorros, hurones, aves rapaces, comadrejas, víboras). Su longevidad es de alrededor de un año, pudiendo la rata parda vivir más tiempo (Ricci-Padín, 2004).

Ratas y ratones tienen poca agudeza visual y perciben el color como gama de grises. Son sensibles a la luminosidad, por lo que evitan los ámbitos iluminados. El gusto, el olfato y el tacto son los sentidos que en ellos están más desarrollados.³ Estos últimos les permiten definir sus espacios y recorridos así como detectar los alimentos, la pareja, el grupo propio, los intrusos y los predadores (Ricci-Padín, 2004: 4). Son desconfiados a todo cambio de medio ambiente sobre la base de una buena memoria del espacio y sus componentes.

Aunque son omnívoros, seleccionan los alimentos y prueban con cuidado los nuevos,⁴ ya que, por la configuración gástrica, no pueden vomitar. Esto reduce la eficacia de los cebos tóxicos, porque si producen reacción en un individuo los demás se abstienen de consumirlos.

Sus incisivos inferiores dejan un surco típico en lo que muerden, lo que permite identificar su actividad.

¹ Una rata consume alrededor del 10% de su peso por día, por ejemplo treinta gramos de cereal diario. El ratón adulto consume aproximadamente tres gramos de alimento diario, pero desecha y arruina el doble (Rowe, 1972: 113).
² Se ha calculado que una pareja y sus descendientes podrían dar origen a veinte billones de ratas por año en condiciones ideales. Esta catástrofe no se produce por la alta mortalidad (ibidem).
³ Perciben sonidos del rango del oído humano e infrasonidos. El olfato los guía por los rastros de orina, heces y secreciones genitales de sus congéneres (ibidem).
⁴ No rechazan alimentos previamente manipulados por seres humanos.
Son animales de hábitos nocturnos que permanecen en sus guaridas durante el día, salen al atardecer y tienen mayor actividad durante la noche, hasta horas antes del amanecer. Por tal motivo, su presencia en el día debe hacer pensar en una alta densidad poblacional.

Por ser animales desconfiados, siguen siempre los mismos recorridos, salvo en situaciones de acoso. Pueden saltar hasta un metro de altura y caer desde altos niveles sin morir.

Las principales especies urbanas que habitan cerca de los seres humanos (roedores antrófilos o sinantrópicos) son tres: *Rattus norvegicus*, *Rattus rattus* y *Mus musculus*. Son cosmopolitas y sus características diferenciales se indican en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Especies principales de roedores urbanos</th>
<th>Caracteres diferenciales</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Especies</strong></td>
<td><strong>Rattus norvegicus</strong> (parda)</td>
</tr>
<tr>
<td>Hábitos</td>
<td>Nadadora y cavadora.</td>
</tr>
<tr>
<td>Hábitat preferente</td>
<td>Semiacuático: orillas de cursos de agua, desagües y cloacas.</td>
</tr>
<tr>
<td>Peso</td>
<td>300-500 gr.</td>
</tr>
<tr>
<td>Largo</td>
<td>18-25 cm.</td>
</tr>
<tr>
<td>Largo con cola</td>
<td>37-47 cm.</td>
</tr>
<tr>
<td>Orejas</td>
<td>Pequeñas con pelos finos, plegadas a la cabeza.</td>
</tr>
<tr>
<td>Cola</td>
<td>Gruesa, más corta que el cuerpo, anillado poco marcado, oscura arriba y clara abajo.</td>
</tr>
<tr>
<td>Excrementos</td>
<td>Fusiformes, de extremos romos, agrupados, oscuros y grandes (h. 2 cm).</td>
</tr>
</tbody>
</table>


La rata *R. norvegicus* hace nidos excavados a poca profundidad (hasta cincuenta centímetros) con más de un acceso y túneles de interconexión. Los construye entre malezas, materiales abandonados, basurales, albañiles y entrepisos, paredes o sótanos. Tiene poca capacidad de trepar, pero mucha para nadar, por las membranas interdigitales. Es omnívora.

La rata *R. rattus* prefiere anidar en los techos, ya que es muy buena trepadora y saltadora (hasta 0,77 metros en vertical y 2,4 metros en horizontal). Puede establecerse también entre materiales y basurales o en nidos abandonados de *R. norvegicus*, de la cual huye. Penetra en las viviendas por cualquier abertura y trepando por árboles, caños, o cables. Esta especie predomina en las bodegas de los barcos a los que llega por las cuerdas de amarre o las planchadas. Nada sólo si es acosada. Es omnívora, pero prefiere los vegetales.
El ratón *M. musculus* tiene hábitats variados, pero prefiere los domicilios. Sus salidas no son tan nocturnas como en las ratas y recorre pocos metros a través de caminos regulares. Su pequeño tamaño le permite penetrar por aberturas o grietas de más de seis milímetros. Huye de las ratas y su población puede aumentar cuando ellas son eliminadas. En los domicilios viven en grupos y son agresivos entre sí por el dominio de su hábitat y de los alimentos (Rowe, 1972: 115 y 119). Es buen trepador y corredor y es capaz de ascender por superficies verticales. Prefiere alimentos secos como granos, quesos, papeles y cartones. Necesita poca agua.

Nota: una pulgada equivale a 25,4 milímetros.


Todas estas especies migran ante condiciones climáticas excesivas, inundaciones o sequías, o ante la mortalidad por epizootias (Lepera, 1966: 242 y ss.).

1.2. Fenómenos que afectan la salud humana

La mordedura de rata afecta a niños, ancianos o enfermos, de noche y cuando están descuidados. Provoca diversas lesiones y hasta mutilaciones en nariz, orejas y dedos. Estas heridas se infectan y dejan cicatrices. En grupos, pueden herir y aún matar gatos, perros y aves domésticas. En ocasiones dan muestras de ferocidad.

Hay dos enfermedades específicas de la mordedura, orina o secreciones de rata infectada: la fiebre de Haverhill, producida por un estreptobacilo, y el Sodoku, producido por una espiroqueta. Son problemas raros en Occidente. Debe tenerse en cuenta que pueden contagiarse por ratas de laboratorio o roedores mascotas.
Las principales enfermedades que transmiten estos roedores son: la peste bubónica (agente: *Yersinia pestis*) y el tifus murino (agente: *Rickettsia typhi*), a través de sus pulgas; la triquinosis, de la cual son el reservorio habitual, que infecta a los cerdos, cuya carne produce brotes en humanos; la toxoplasmosis, siendo la fuente de infección de los gatos, huéspedes definitivos del *Toxoplasma gondii*, y cuyas deposiciones con ooquistes contagian al ser humano; la rickettsiosis vesiculosa benigna que transmiten al humano a través de la picadura de los ácaros que los parasitan.

2. Roedores rurales

2.1. Características

En Argentina se registran las siguientes especies de roedores de hábitats rurales:

<table>
<thead>
<tr>
<th>Especies Silvestres&lt;sup&gt;5&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Región Norte</strong></td>
</tr>
<tr>
<td>Oligoryzomys longicaudatus</td>
</tr>
<tr>
<td>Oligoryzomys chacoensis</td>
</tr>
<tr>
<td>Akodon varius simulator</td>
</tr>
<tr>
<td>Calomys musculus</td>
</tr>
<tr>
<td><strong>Región Central</strong></td>
</tr>
<tr>
<td>Oligoryzomys flavescens</td>
</tr>
<tr>
<td>Akodon azarae</td>
</tr>
<tr>
<td>Bolomys obscurus</td>
</tr>
<tr>
<td>Calomys laucha y musculus</td>
</tr>
<tr>
<td>Holochilus brasilensis</td>
</tr>
<tr>
<td><strong>Región Sur</strong></td>
</tr>
<tr>
<td>Abrotix longipilis</td>
</tr>
<tr>
<td>Oligoryzomys longicaudatus</td>
</tr>
<tr>
<td>Auliscomys micropus.</td>
</tr>
</tbody>
</table>


El *Calomys musculus* pesa entre 17 y 26 gramos, su largo total (con cola) es de 16 a 20 centímetros, la cola es más larga que el cuerpo y este es color gris con vientre crema, el hocico es en punta, los ojos y orejas son grandes, y estas poseen pelo. En la región retroauricular tienen mechos blancos. El *C. musculus* es el roedor silvestre más implicado en la Fiebre Hemorrágica Argentina. Se han encontrado roedores del género *Akodon* sp y también el *M. musculus* infectados (Johnson, 1969: 99).

La laucha de campo, *C. musculus*, es más pequeña: 9 a 15 gramos de peso y 12 a 14 centímetros de largo, con cola más corta que el cuerpo. Este último es marrón con vientre gris. Las orejas son pequeñas y en ellas y en las patas tiene pelos blancos.

El ratón *Oligoryzomys flavescens* tiene patas largas, orejas pequeñas con pelos, es de color pardo amarillo en el dorso y blanco amarillento en el vientre, en los flancos el matiz amarillo es más intenso. Su cola mide entre 10 y 13 centímetros, lo que le da el nombre de colilargo. El *Oligoryzomys longicaudatus* tiene el dorso más oscuro y el vientre más claro que el anterior, orejas más grandes y con menos pelos. El color es marrón ocre con matices rojizos. La cola tiene una longitud de 11 a 15 centímetros (Ricci-Padín, 2004: 7-8).

Los ratones silvestres hacen sus nidos en cavidades naturales del suelo, tanto en campos de cultivo y sus borduras como en los terraplenes del ferrocarril (Ricci-Padín, 2004: 7-8).

---

<sup>5</sup> Se han identificado otras especies, como el *Scapteromys aquaticus* y el *Oxymycterus rufus* (Bilenca y otros, 2001-2003: 18).
2.2. Fenómenos que afectan a la salud humana

La leptospirosis es una antropozoonosis cosmopolita cuyo agente es una espiroqueta (familia Spirochaetaceae) con dos flagelos axiales, aerobiosis obligada, de la que hay dos géneros y más de doscientas serovariedades que se correlacionan con el animal hospedador. Infectan a animales domésticos (perros, ratas) y silvestres, y eventualmente al ser humano. Este se contagia por contacto con aguas dulces o suelos húmedos contaminados con orina animal infectada, donde el agente sobrevive semanas y hasta meses, o directo con el animal. Los cuadros clínicos comprenden síndrome febril, síndrome abdominal agudo, lesiones hepáticas y renales, miocarditis, meningitis, neumonitis hemorrágica, así como uveítis y meningitis a líquido claro por complejos inmunes.

El contagio se hace a través de heridas o piel macerada por agua, mucosas, conjuntivas, facilitado por la movilidad que dan los flagelos a las leptospiras (Seijo, en Cecchini-González Ayala, 2008: 668), y eventualmente por inhalación de partículas. Raramente por ingestión.

Los brotes se producen en épocas de lluvias, tormentas e inundaciones y casos aislados se dan por bañarse en lagunas o cavas. Las comunidades humanas más expuestas son las que se asientan en zonas inundables y marginales.

Los casos ocupacionales se presentan en agrónomos, veterinarios, horticultores, agricultores, tamboreros, matorrales, cazadores, mineros, cultivadores de arroz, trabajadores de hornos de ladrillos, de cloacas, desagües o basuras. También se presentan en actividades recreativas o deportivas en agua dulce. Los perros y los roedores síntrópicos o silvestres suelen ser portadores de leptospiras.


El diagnóstico serológico se hace con pruebas de Aglutinación microscópica (MAT), Aglutinación macroscópica, ELISA, aunque no detecten los anticuerpos para toda las serovariedades o por hemocultivos. La leptospira se observa en microscopio con campo oscuro. Hay técnicas inmunohistoquímicas y métodos de PCR en aplicación.

La letalidad general es de 1%, pero en sus formas graves (por ejemplo, neumonitis hemorrágica) puede llegar al 50%.

La prevención se hace por la eliminación de basurales y roedores, la higiene en corrales y mataderos de ganado y la protección con ropa, guantes, botas altas, barbijos y anteojos para los expuestos. Hay vacuna para el ganado y animales domésticos (los perros deben vacunarse). Se ha ensayado en humanos con las limitaciones de la serovariación. La quimioprofilaxis con doxicilina (via oral, 200 mg, una vez por semana) ha resultado eficaz (Tappero et al., en Mandell et al., 2002: 3029 y ss.).

La hantavirosis se presenta como síndrome pulmonar (SPH). Es una enfermedad producida por un género de hantavirus, descripta en 1993. Los ratones campestres son reservorios del virus, suelen producir una infección crónica en algunas especies, y lo eliminan por orina, heces y saliva.

La enfermedad se inicia con fiebre y mialgias, a veces con dolores abdominales y trastornos gastrointestinales. En alrededor de cinco días se presenta tos y disnea moderada. El hematocrito elevado, la leucocitosis y la trombocitopenia pueden orientar el diagnóstico. Hay un aumento de la permeabilidad vascular pulmonar e hipoxia que pueden progresar al shock o al edema

---

6 Las leptospiras se localizan en los túbulos renales del animal infectado.
7 Hasta la descripción de la leptospira, esta enfermedad fue confundida con la fiebre amarilla o la hepatitis.
8 De características negativas, ayudan al diagnóstico diferencial. En general, no se afectan las vías aéreas superiores, no se presenta esplenomegalia palpable y tampoco trombocitopenia muy baja (Seijo, en Cecchini-González Ayala, 2008: 668: 671).
9 Pertenece a la familia Bunyaviridae, que incluye más de doscientas especies que forman ciclos naturales entre artrópodos y vertebrados en un marco ecológico y que alcanzan a los humanos en brotes epidémicos de encefalitis, neumonitis y fiebres hemorrágicas según la especie.
10 El ratón ciervo, reservorio de este hantavirus en Norteamérica, penetra con frecuencia a las casas.
pulmonar con distrés e insuficiencia respiratoria en pocas horas. La trombocitopenia es un indicador evolutivo. Los métodos de ELISA, Inmunofluorescencia Indirecta y cadena de la polimerasa (PCR) precisan el diagnóstico y se deben realizar en laboratorios con extremas medidas de bioseguridad.


Las primeras descripciones clínicas comprendían una fiebre trombocitopénica, signos urinarios (células redondas de Milán en sedimento), hemorrágicos y nerviosos (Argentina, SESP, 1966: 7).

Durante las epidemias de 1966 y 1967 se precisó el cuadro clínico con indicadores significativos como fiebre, astenia marcada, diversas formas de algias, mareos, constipación, dolor retro-ocular, adenopatías, inyección conjuntival, petequias en paladar y piel y otros indicadores de menor frecuencia, incluyendo algunos neurológicos. En autopsias se encontró congestión visceral generalizada, adenopatías y hemorragias en pulmón, retroperitoneo y luz digestiva. En los resultados de laboratorio se destacaron: leucopenia, trombocitopenia, albuminuria, cilindruria y las llamadas “células redondas” en el sedimento urinario. El tratamiento es sintomático. Se ha utilizado plasma de convalecientes con efectos positivos, ya que han reducido la letalidad al 1% (Crivelli, Briggilier y Enría, en Cecchini-González Ayala, 2008: 642).

La letalidad en los primeros brotes osciló entre el 5 y el 7%, y hasta un 30% en Pergamino en el brote de 1965 (Vilches, 1966: 79).

Los animales infectados más frecuentes son los roedores pequeños de campo (Akodon azarae, Akodon obscurus, Calomys musculinus, Oligoryzomys flavescens)\(^{13}\) y el Mus musculus. Se ha sospechado de infección en liebres (Lupus sp) –con riesgo para los cazadores– y de la Rattus rattus de los graneros. Eliminan el virus por orina y sangre, así como cuando son despedazados por las máquinas agrícolas. El contagio se produce por inhalación de aerosoles contaminados a través de escoriaciones de la piel y de las mucosas, en especial en épocas de cosecha y labranza. Se ha sospechado del contagio por ácaros de esos animales. Se ha descripto por contacto sexual, lactancia y transfusiones de sangre (Crivelli, Briggilier y Enría, en Cecchini-González Ayala).

Los expuestos son los cosechadores de maíz a mano y los que tienen contacto con el rastrojo. De allí que la enfermedad sea de zona rural, se presente en varones jóvenes y sea menos frecuente en mujeres. Su incidencia aumenta en otoño e invierno por la mayor población de roedores. El riesgo aumenta en los trabajadores migrantes que viven en campamentos.

El maíz cosechado y almacenado no genera riesgos por la precoz muerte del virus, pero debe cuidarse que no tengan acceso a él roedores vivos.

\(^{11}\) Pertenece al complejo Tacaribe de la familia Arenaviridae, que comprende al Machupo de la FH Boliviana, al Guaranito de la Venezolana y al Sabia de la Brasileña (Benenson, 1995: 210).


\(^{13}\) Las campañas de control realizada por profesionales del INTA (Instituto Nacional de Tecnología Agropecuaria) en 1963 fueron intensivas, capturando más de 1.000 individuos para su clasificación con 2.600 trampas/noche (Cedro V.C.F. et al., 1966: 11).
3. Control y eliminación de roedores

El *control* de roedores comprende las siguientes acciones:

- **Evitar su penetración en los domicilios procediendo a:**
  - Construir los cimientos de las viviendas con cemento.
  - Cerrar los orificios de diámetro mayor a los 0,5 centímetros (aberturas de caños de luz, gas, teléfono).
  - Reducir los espacios libres debajo de puertas y ventanas y colocar mosquiteros.
  -Guardar los restos de comida y desperdicios en recipientes con cierre seguro.
  -Resguardar los alimentos en alacenas o heladeras con igual cierre.
  -Resguardar cerrados los alimentos para animales domésticos.

- **Evitar su acercamiento al peridomicilio procediendo a:**
  - Cortar el pasto en un radio de treinta metros alrededor de la vivienda.
  - Apilar la leña sobre tarimas separadas del suelo al menos treinta centímetros y alejadas a treinta metros de la casa, de ser posible.
  - Eliminar materiales, residuos, gomas abandonadas o artefactos viejos, que puedan servir de alimento o refugio.
  - Eliminar los vehículos viejos o depósitos abandonados, que suelen ser ideales para su refugio.

- **Mantener sus enemigos naturales como perros y gatos y no eliminar lechuzas, búhos, chimangos, halcones, según el medio ecológico.**

- **En áreas endémicas de enfermedades transmitidas por roedores:**
  - Rellenar con grava o arena los espacios libres debajo de pisos de madera.
  - Utilizar guantes, barbijos y anteojos en las tareas de limpieza.
  - Evitar levantar polvo en la limpieza al constatar presencia de excrementos de roedores, ventilando previamente el lugar durante treinta minutos y pulverizando el mismo con hipoclorito de sodio (lavandina) antes de proceder.

En la *eliminación* de roedores se procede con el diseño de estrategias combinadas y compatibles con el medio ecológico. El lugar y la zona deben ser inspeccionados previamente buscando madrigueras, roedores vivos o muertos –preferentemente en las primeras horas de la mañana y al atardecer–, deyecciones, manchas de orina, huellas o daños por roída, olores de orina o secreciones glandulares.

Los métodos directos de eliminación de roedores son:

- **Físicos:**
  - *Trampas tipo resorte*: limitadas a casos puntuales por ser muy laboriosas, usan como cebo pan, queso, granos, panceta, pescado, etcétera. Deben eliminarse otros alimentos para direccionar los roedores hacia ellas. No se deben tocar previamente mascotas o tabaco, cuyos olores pueden ahuyentarlos. Se colocan en el sendero de los roedores disimuladas con papeles o bolsas durante la noche. Conviene cebarlas sin armar durante tres jornadas para favorecer la confianza de los roedores. Una vez observado el consumo, armarlas. En caso de no registrar atrape, se cambia el cebo cada tres días, lo mismo que la ubicación de la trampa. Si el consumo fue parcial, se cambia en su totalidad. En caso de atrape, la trampa debe ser exhaustivamente higienizada y aún hervida o ahumada para eliminar olores. El armado de las trampas, más aun el retiro de animales atrapados, debe
hacerse con guantes y, en zonas de enfermedades endémicas, con barbijo y anteojos. Se desinfecta con lavandina y el roedor muerto se entierra. Estas precauciones hacen laborioso y aun costoso el uso de trampas (deben ponerse al menos doce en un edificio), con la complicación de que los animales se acostumbran y las evitan. De todas formas, son útiles para presencias puntuales y para determinar índices de infestación. Un índice de atrape mayor del 5% estaría indicando la necesidad de una desratización más amplia (Lepera, 1966: 247-48).

Los ultrasonidos de alta frecuencia que perciben los oídos de los roedores y otros animales los ahuyenta. Se utilizan cambiando la frecuencia para evitar el acostumbramiento.

- **Biológicos:**
  - Uso de animales domésticos: el gato es eficaz en la captura de ratones; al igual que el perro –tipo fox terrier– es eficaz contra las ratas; en depósitos y sótanos se han utilizado hurones.

- **Químicos (Ricci-Padín, 2004:12):**
  - Rodenticidas de acción rápida (aguda): son los que eliminan al roedor inmediatamente después de la ingesta, como los fosfuros de zinc o aluminio y la estricnina. Se usan cuando los roedores han desarrollado resistencia a los anticoagulantes y con mucha precaución por su toxicidad en humanos. Esta es una de las razones por las que se evita en zonas urbanas. Además, la iniciación rápida de los síntomas puede inducir a que el roedor cese de comer el cebo antes de la dosis letal y desarrolle “recelo por el cebo”. En este caso, hay que poner cebos sin tóxico unos días para después agregarlo (precebado). Asimismo, la alta capacidad reproductiva de los roedores obliga a repetir el procedimiento.
  - Rodenticidas anticoagulantes (de acción crónica): las hemorragias demoran algunos días en producir su efecto letal, el roedor tiende a buscar refugio y muere sin quedar a la vista. Por esas características no desarrollan “recelo por el cebo”. Se clasifican en:
    a. De primera generación o dosis múltiples, que actúan en forma acumulativa, por lo que los roedores deben ingerirlos varias veces (warfarina, coumatetralyl, clorofacinona, difacinona).
    b. De segunda generación o dosis única (brodifacoum, bromadiolone, flocoumafen, difethialone).

Los principios activos rodenticidas habituales son:

- **Brodifacoum** (NC Klerat Bloques 20G, Klerat Bloques 5G, Klerat granos): es una hidroxicumarina que pertenece a la segunda generación, de dosis única y aplicación directa. Actúa por ingestión y la mortalidad comienza a los tres días y hasta los catorce días posteriores a la colocación del cebo. Es resistente al agua y a la humedad y no requiere un periodo de precebadura; tampoco provoca desconfianza o recelo del cebo en los roedores, contiene Bitrex (benzoato de denatonio), sustancia amarga que actúa como agente aversivo, previniendo la ingesta accidental humana.

Se recomienda para el control de *Rattus norvegicus*, *R. rattus*, *Mus musculus* y roedores silvestres como el *Calomys* sp (laucha gris), *Holochilus brasiliensis* (laucha colorada) y *Akodon* sp (ratones).

Formulación en granos: para áreas cultivadas colocar montones de cebo de diez a veinte gramos cada uno, en lugares donde se detectan roedores activos, siendo la dosis total de dos a tres Kg/ha. Se revisan y reponen los montones consumidos.
Se formula también en bloques: uno de veinte gramos o cuatro de cinco gramos en cada cueva con actividad y cada cinco a diez metros a lo largo de los senderos. El número de lugares con cebo dependerá de la severidad de la infestación.

- **Bromadiolone** (NC Super Asecho Bloques y Super Asecho Pellets; Rastop Cebo en bloques parafinados, Glex Rat Cebo en granos): es una cumarina que pertenece también a la segunda generación, de dosis única. Actúa por ingestión y la mortalidad comienza al segundo día. La muerte es similar a la producida por debilidad o vejez, por lo que los otros roedores no recelan. Se le agrega la misma sustancia amarga que el anterior (benzoato de denatonio) para evitar accidentes.

Se recomienda para el control de los mismos roedores que el anterior, aunque –entre los silvestres– es eficaz en *Apodemus sylvaticus* (ratón de campo) y *Holochylus* sp (rata nutria o de los cañaverales) en campos, granjas avícolas, galpones, silos y frigoríficos.

Se formula en bloques: para ratas (dos a ocho bloques cada cuatro a nueve metros) o ratones (medio a un bloque cada dos a cuatro metros) según el grado de infestación. También se usan pellets: para ratas (cien a cuatrocientos gramos cada cuatro a nueve metros) y para ratones (siete a catorce gramos cada dos a cuatro metros).

- **Coumatetralyl** (NC Racumín polvo): es un derivado de la warfarina, pertenece a la primera generación de rodenticidas, polidosis. Actúa por ingestión repetida y por el hábito de los roedores de lamerse el pelaje y las patas, en lo que transcurren el 20% de su tiempo. El efecto es progresivo con inapetencia, astenia, apatía y movimientos tambaleantes que se producen después de cinco a ocho días hasta la muerte. La preparación contiene también benzoato de denatonio pero los roedores no perciben ni el olor ni el gusto.

Se recomienda para el control de las mismas especies, así como para las silvestres de *Holochilus* sp y *Oligoryzomys* sp (ratón de campo).

Se formula en polvo azul insípido e inodoro, listo para su uso, que se esparce, una parte de Coumatetralyl en diecinueve partes de cebo, a las salidas de las madrigueras y en los senderos de tal forma que el polvo quede adherido a las patas del animal.

- **Flocoumafen** (NC Storm, cebo en bloques y pellets). Es un cumarínico de segunda generación. Actúa por ingestión. Una sola dosis hace efecto letal varios días después del consumo, evitando la desconfianza. Contiene en su formulación Bitrex, sustancia amarga para evitar una posible ingesta humana.

Se recomienda para *Rattus norvegicus*, *R. rattus* y *Mus musculus*.

Se formula como cebo en bloques –siete a diez para las ratas y uno a dos para los ratones cada cinco a diez metros– colocados en cuevas, senderos, rincones oscuros, tirantes, fuentes de agua.

- **Difethialone** (NC Rodilon Bloque y Rodilon Pellets). Es un cumarínico de segunda generación. Actúa por ingestión y produce la muerte con síntomas de debilidad o vejez, evitando el recelo de los congéneres. También se le agrega benzoato de denatonio.

Se recomienda para las distintas especies de ratas, el *Mus musculus y, entre los silvestres, para el Apodemus sylvaticus y el Holochylus sp.*

Se formula en bloques –dos a ocho cada cuatro a nueve metros para las ratas y entre medio y un bloque para ratones cada dos a cuatro metros– según el grado de infestación. En pellets se usan cien a cuatrocientos gramos para las ratas y siete a catorce gramos para ratones, colocados a las mismas distancias. Es útil en cultivos, granjas avícolas, galpones y silos.

- **Fosfuro de aluminio** (NC Phosgas y Sinfume): es un producto inorgánico que sirve como rodenticida e insecticida. Actúa por inhalación. El formulado es un sólido que en contacto con la humedad y la temperatura libera fosfamina gaseosa en una a dos horas. Es muy tóxico para el ser humano, por lo que se autoriza sólo en zonas rurales bajo precauciones estrictas.
Se recomienda para la *Rattus rattus*, para *Akodon* sp y otras plagas. Se colocan una a dos pastillas o cinco a diez comprimidos en cada cueva envueltos en diarios, lo más profundo posible, y se tapan con tierra.

El Fosfuro de aluminio posee categoría toxicológica de producto sumamente peligroso (OMS).

La disposición 3144/2009 de ANMAT sobre Productos Domisanitarios establece: “Prohibese la venta libre al consumidor de los raticidas/rodenticidas en pellets y granos”. Deben ser recetados por Ingenieros Agrónomos.
Bibliografía


SOCIEDAD, ANIMALES DE COMPAÑÍA Y ZOONOSIS

Adriana Aprea  
Estela Bonzo  
Daniel Arias

1. Introducción

La interacción entre las poblaciones de animales y la especie humana ha sido permanente a lo largo de la historia. Esa relación ha proporcionado grandes beneficios al hombre (alimento, bienestar, beneficios económicos), si bien en algunos casos también ha supuesto algún problema, especialmente por las enfermedades compartidas. Estas enfermedades se centran en dos grupos: por un lado, las trasmitibles al hombre a partir de los alimentos de origen animal y, por otro, las trasmitidas directamente por el contacto con los animales. La necesidad de garantizar la salud humana en su relación con las poblaciones animales o sus productos (alimentos, productos biológicos, cueros, etc.) exige que se pongan en marcha mecanismos que permitan prevenir la presentación de enfermedades o, en caso de aparecer, que garanticen una rápida actuación para controlarlas o erradicarlas. Es evidente la necesidad de interacción entre la sanidad humana y la animal.

La Salud Pública es una disciplina dinámica definida por Milton Terris en 1990 como:

la ciencia y el arte de prevenir las dolencias y las discapacidades, prolongar la vida y fomentar la salud y la eficiencia física y mental, mediante esfuerzos organizados de la comunidad para sanear el medioambiente, controlar las enfermedades infecciosas y no infecciosas, así como las lesiones; educar al individuo en los principios de la higiene personal, organizar los servicios para el diagnóstico y tratamiento de las enfermedades y para la rehabilitación, así como desarrollar la estructura social que le asegure a cada miembro de la comunidad un nivel de vida adecuado para el mantenimiento de la salud.

Es decir, “todas las actividades relacionadas con la salud y enfermedad de una población, el estado sanitario y ecológico del ambiente de vida, la organización y funcionamiento de los servicios de salud y enfermedad, la planificación y gestión de los mismos y la educación para la salud”.

Íntimamente ligada a esta disciplina se encuentra la Salud Pública Veterinaria, que supone la utilización de las técnicas, los conocimientos y los recursos de la ciencia veterinaria para la protección y la mejora de la salud humana. La definición de Salud Pública Veterinaria emitida por la OMS en 2002 hace referencia claramente al papel de las poblaciones animales, a través de la intervención del veterinario en la salud humana: “the sum of all contributions to the physical, mental and social well-being of humans through an understanding and application of veterinary science”.¹

¹ http://www.who.int/es/index.html.
La idea de que la Salud Pública debe ser un ámbito de acción interdisciplinaria e intersectorial es un concepto relativamente reciente. Son muy pocas las experiencias mundiales de aplicación de esta nueva concepción que considera a la salud como un producto social, resultante del accionar del conjunto de la sociedad (Pracilio, 2000).

El desafío, entonces, es el desarrollo de una Salud Pública multi e interdisciplinaria, donde la Medicina Veterinaria es una parte esencial del equipo, para alcanzar el último postulado de la OIE, “Un mundo, una salud” (OIE, Boletín Nº 2009-2).

La propia naturaleza de las Ciencias de la Salud, constituidas por distintas disciplinas provenientes de las Ciencias Naturales y de las Sociales, conlleva una gran diversidad en los problemas que aborda, así como la necesidad de utilizar distintos enfoques y metodologías de investigación (PEM, 2000). Es en este contexto que cobra importancia el accionar de diversas profesiones.

En el caso específico del médico veterinario, su contribución a la Salud Pública está implícita en los objetivos planteados en la currícula de su formación:

- El estudio de la vida animal en estado de salud y enfermedad.
- El mejoramiento de la producción animal.
- El control de las condiciones higiénico-sanitarias de los productos y subproductos de origen animal.
- La preservación y mejora de la calidad de vida de las distintas especies.
- La contribución a la salud y bienestar de la población humana y del medioambiente.

La enfermedad es compaña indivisible de la vida. Donde hay vida hay posibilidad y concreción de enfermedad (Barragán, 2000).

El hombre, como ser racional, reconoce las dolencias que afectan su estado, concibe al hombre sano y al hombre enfermo. El mismo lo observa en los animales y en todos los seres vivos que conviven con él, relaciona ambos sucesos, y busca conocer las causas que lo provocan y en qué medida puede dañar la salud de uno al otro.

2. Enfermedades emergentes y reemergentes

En 1992, el Instituto de Medicina de los Estados Unidos definió las enfermedades infecciosas emergentes como aquellas que han aparecido por vez primera en una población o que, existiendo en la misma, están incrementando rápidamente su incidencia y rango geográfico. Las enfermedades infecciosas reemergentes son aquellas conocidas que habían descendido a niveles muy bajos y que se incrementan o reaparecen (Guzmán, 2001; Mesa Ridel, 2004; Rodríguez Milord, 2001).

En la actualidad, a medida que aumentan las comunicaciones, el mundo se va haciendo más pequeño y la globalización afecta todos los aspectos de la vida. Hasta hace treinta años, el impacto de las enfermedades transmisibles parecía controlado; sin embargo, con ello disminuyó el interés y las inversiones en dicho campo y esto trajo como consecuencia su resurgimiento.

Es difícil predecir el impacto que tendrá la destrucción del hábitat, la deforestación y los cambios de clima sobre el vasto reservorio de virus que seguramente persisten en regiones remotas, o sobre el pool zoonótico, que aún no se ha agotado, y, consecuentemente, sobre la aparición de nuevas enfermedades. En este escenario, el abordaje requiere de una estrecha colaboración entre veterinarios, biólogos, médicos, ecólogos, sociólogos y climatólogos a nivel mundial, para enfrentar los riesgos que nos presentan las infecciones emergentes y reemergentes.

Asimismo, se requiere de una vigilancia que dé cuenta en forma oportuna de las situaciones anómalas y sea capaz de generar rápida respuesta (Olea).

Los agentes emergentes o reemergentes son bacterias, virus, parásitos y, últimamente, priones. Los términos zoonosis o reemergentes son empleados para las enfermedades que se transmiten de forma natural entre los animales vertebrados y el hombre. Pueden ser enzoóticas o epizoóticas (Acha, 1989; García Nieto, 2001).

Más de doscientas zoonosis emergentes han sido descriptas, involucrando todo tipo de agentes (WHO, 2006), y se calcula que el 50% de la población de América Latina padecerá al menos una de ella. Son zoonóticos el 60% de los agentes patógenos de seres humanos, el 80% de los agentes patógenos de animales tienen huéspedes múltiples, el 75% de las enfermedades emergentes son zoonóticas y el 80% de los agentes de uso potencial en bioterrorismo son agentes patógenos zoonóticos (Vallat, 2005).

Las tres cuartas partes de los patógenos emergentes humanos son zoonóticos y tienen mayor posibilidad de estar asociados con enfermedades nuevas de agentes causales no zoonóticos (Cecchini, 1992).

Las zoonosis y las enfermedades transmisibles comunes al hombre y a los animales representan una importante amenaza para la salud y el bienestar de la población en todo el mundo. A pesar de los grandes progresos logrados en años recientes en las medidas de control de enfermedades y en la extensión de la cobertura de los servicios de salud, estas enfermedades siguen registrando altas tasas de incidencia en zonas urbanas, periurbanas y rurales de los países en desarrollo en todas las regiones. Son prevalentes en numerosas especies de animales de las que depende el hombre para su alimentación. Tienen un gran impacto potencial en muchas economías nacionales cuyo comercio con el exterior y estabilidad dependen directamente de la confiabilidad de los alimentos exentos de enfermedades para la exportación. Por lo tanto, estas enfermedades, quizás más que ningún otro problema similar, ilustran la estrecha relación que existe entre la salud pública, el ambiente y el bienestar socioeconómico. Es por eso que constituyen una preocupación prioritaria para la Organización Panamericana de la Salud (OPS, 1992).

Por otro lado, si bien las zoonosis son patologías con una amplia distribución y cuya repercusión sanitaria está reconocida por los organismos internacionales de salud, es escaso el conocimiento que se tiene de las mismas a nivel masivo. En una encuesta realizada en la ciudad de Buenos Aires, el 72% de los encuestados manifestó conocer que la rabia es transmisible del animal al hombre (Sommerfelt, 2002). En encuestas realizadas en la ciudad de La Plata en el año 2005, sólo el 51% de los encuestados manifestó lo mismo (FCV-UNLP, s/f).

Esto colabora en la falta de adopción de prácticas preventivas y favorece de manera indirecta la presentación de casos. Todas las alternativas tendientes a buscar soluciones confluyen en la necesidad de difundir conocimientos acerca de cómo controlar y prevenir estas patologías. No se debe olvidar que este marco implica que el proceso salud-enfermedad tiene carácter social, ya que los procesos sociales condicionan y transforman a los biológicos. Entonces, las alternativas que surgen para la prevención o control tienen relación con procesos educativos.

La Nueva Salud Pública va más allá de la comprensión de la biología humana y reconoce la importancia de aquellos aspectos socioculturales de los problemas de salud que son causados por los estilos de vida. Muchos problemas de salud son, por lo tanto, vistos como algo social más que como problemas solamente individuales (Ashton, 1988). En este marco, la presencia de animales domésticos en el ámbito familiar entraña un riesgo para los convivientes, pues facilita el intercambio de microorganismos; por ello, en ocasiones surgen enfermedades relacionadas con animales de compañía como perros, gatos y pájaros, bien aisladamente o en el seno de una misma familia (Martínez Navarro, 1998). En este capítulo se aborda la problemática del perro doméstico en relación con la salud.
3. El perro doméstico

El perro doméstico (Canis domesticus) convive con el hombre hace unos 100.000 años. Es un animal gregario, que define su territorio y parece reconocer niveles jerárquicos de organización social (Zanini et al., 2008: 1). Las teorías acerca de su origen y sobre cómo y por qué se asocia al hombre son diversas. No hay aún datos concluyentes que permitan responder con certeza a estas cuestiones.

Más allá de esto, **el perro y el hombre han compartido su vida**. Dependiendo del contexto, ha sido una asociación asimétrica, donde la relación fue más estrecha con lo ligado a la caza, la seguridad y posteriormente al cuidado del ganado. Con el tiempo, el hombre comenzó a asignar al perro otras funciones con relevancia social e institucional. Tal fue el caso de los perros que distribuían el correo y los de guerra.

Es a partir de la segunda mitad del siglo XX cuando la relación del hombre con el perro da un salto cuali-cuantitativo de jerarquía social y económica. Sus cualidades de fidelidad, inteligencia, memoria, valentía, resistencia física, su exquisito sentido del olfato y audición son los motores de la **masificación de la tenencia del perro**. Así, pasa a formar parte del entorno personal y familiar del hombre. Su utilidad se diversifica, comienza a ser utilizado para cuidar enfermos y discapacitados, en rescates de accidentados, en catástrofes naturales, pasa a formar parte de todas las fuerzas de seguridad institucionales.

Pero, por sobre todas las cosas, **entra al hogar del hombre**, forma parte de la “familia”. En muchos países desarrollados, los sistemas de seguridad vecinal promueven y facilitan la tenencia de mascotas para mejorar la calidad de vida de las personas en general, y de los grupos humanos más vulnerables en particular (ancianos, discapacitados). Según la OMS, “una mascota es compañía, es algo para cuidar, algo para tocar, algo que a uno lo mantenga ocupado, un foco de atención”.

Comienza, además, a desarrollarse un **importante mercado** alrededor del perro de utilidad y el perro como mascota. Poderosos laboratorios de especialidades medicinales humanas desarrollan sus divisiones veterinarias, grandes empresas alimenticias comienzan a producir alimentos balanceados para mascotas, la medicina veterinaria especializada en Pequeños Animales adquiere un desarrollo técnico y científico insospechado algunas décadas atrás.

Este desarrollo explosivo superó las más ambiciosas proyecciones. El **número de perros aumentó geométricamente** y, de la mano de los vaivenes sociales y económicos, así como de la falta de educación y en algunos casos por la irresponsabilidad estatal, el perro pasó a convertirse en un **problema**.

Lo prolífico de la especie, así como su altísima adaptabilidad al ámbito rural y urbano, hizo que nacieran más perros de los que podían ser absorbidos por la sociedad. Comenzaron a ser **abandonados**, se adaptaron rápidamente a esta situación y pasaron a formar parte del paisaje urbano y rural. Sin resguardo ni control, y en una relación con el hombre lejana y conflictiva, el **perro callejero (PC)** se transformó en un problema social que impactó con fuerza en la Salud Pública.

Del análisis de los indicadores iniciales obtenidos a través de distintas encuestas efectuadas en la ciudad de La Plata, se estima que hay **un perro cada cuatro personas**, que el 48% de los encuestados saca a pasear a sus perros sin ninguna sujeción, por lo tanto, se calcula que por día podrían circular libremente por la ciudad 34.000 caninos (Facultad de Cs. Veterinarias, 2005).

Del total de personas encuestadas, el 2,78% fue mordido (81% mayores de 19 años). Se podría estimar que, en el casco urbano, **5.300 personas habrían sido mordidas** ese año.

De ese mismo estudio, se concluye que, en 2005 hasta el momento de la encuesta (junio), el 56% de los caninos estaba vacunado contra la rabia.

Además, teniendo en cuenta el número de caninos que durante algún momento del día recorren la ciudad, y considerando un promedio de 200 gramos de materia fecal por día/perro,
significaría 6.800 kg de materia fecal depositados en las calles; y a un promedio de orina de 500 cm³ por día/perro, 17.000 litros depositados en las calles.

Un estudio en las ciudades de Tierra del Fuego (2005-2006) llegó a estimar una población canina de 32.000 individuos y una relación perro/domicilio de 1.1/1, y que casi el 50% circulaba en el espacio público sin control de sus dueños. El estudio diferencia “perros en la calle” de “perros de la calle”: los primeros tienen dueño. En otro estudio en la ciudad de Neuquén (2005), estos últimos alcanzaban a ser el 78% (Zanini et al., 2008: 2).

Se ve con claridad que el problema es el PC, pero que se articula fuertemente con la irresponsabilidad social e institucional, determinando el conjunto, una dilogía que en última instancia impacta negativamente sobre la Salud Pública (SP).

4. Los animales callejeros

La abundancia de perros callejeros en las ciudades es un riesgo para la sociedad toda. Son cotidianas las denuncias de personas atacadas por estos animales en las más variadas situaciones. Los informes acerca del aumento de las zoonosis urbanas alertan sobre la problemática, siendo la población infantil la más vulnerable. El perro callejero, en su necesidad de procurarse de alimento, lo hace por lo general accediendo a la basura, sea a través de la ruptura de bolsas de residuos o desde improvisados pero permanentes basureros urbanos y suburbanos. Esto produce un diseminado de la basura que promueve la polución de insectos (moscas, cucarachas, etc.) y otros animales como los roedores, que multiplican los riesgos a la Salud Pública y deterioran sensiblemente la calidad de vida de la población.

La tenencia responsable es la clave de la convivencia entre los humanos y los animales de compañía, y, por ende, de los humanos entre sí. Debido a ello, los dueños son lo únicos responsables del comportamiento de sus animales. Están por esto obligados a “responder” moralmente y en algunos casos legalmente por los actos de sus mascotas. Pero es la sociedad en su conjunto quien está implicada en la problemática del perro callejero, que, en principio, no tiene propietario.

En última instancia, es el Estado el encargado y el responsable de implementar políticas ambientales, de organizar estrategias educativas así como de legislar normativas que hagan frente
a la situación, además de promover la toma de conciencia acerca de la importancia de la tenencia responsable.

<table>
<thead>
<tr>
<th>Algunas noticias publicadas en los medios, relacionadas con animales callejeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>• “Peligro en el centro por los perros callejeros” (<em>El Día</em>, 12 de agosto de 2005).</td>
</tr>
<tr>
<td>• “Otro ataque de perros a pacientes y trabajadores, crece la preocupación en hospital de Romero” (<em>El Plata</em>, 28 de julio de 2005).</td>
</tr>
<tr>
<td>• “El problema de los perros mordedores crece en verano” (<em>El Día</em>, 21 de enero de 2005).</td>
</tr>
<tr>
<td>• “Nuevo caso de perros mordedores: ahora fue en Plaza Moreno” (<em>El Día</em>, 16 de febrero de 2004).</td>
</tr>
<tr>
<td>• “Caracterización de las exposiciones por mordeduras de animales en la ciudad de La Plata y alrededores” (<em>Analecta Veterinaria</em>, 1998, 18, 1/2: 21-28).</td>
</tr>
</tbody>
</table>

El problema es complejo y multifacético. Si bien el PC es el actor principal de esta trama, toda la responsabilidad del control y de la solución del problema recae sobre el hombre, a través de sus instituciones y con un fuerte compromiso de la sociedad civil.

5. Fenómenos que afectan la salud humana

5.1. Mordeduras

La *mordedura canina* es la más frecuente en los países desarrollados y en Argentina (60-95% de los casos). La mayoría la producen, en el ámbito hogareño, las mascotas o animales domésticos. En este ámbito también se encuentran las mordeduras humanas.³

Su efecto es el trauma, que varía con la edad de la víctima, la especie y el entrenamiento del animal (Greco, 2008).

Entre el 5 y el 20% de las mordeduras caninas se infectan, con más frecuencia las localizadas en las extremidades que las de la cabeza y cuello. Los agentes son múltiples, ya que se combina la flora de la piel con la de las fauces del animal. El género Pasteurella (canis, séptica) produce inflamación en veinticuatro horas con evolución posible a celulitis, abscesos e infección sistémica. El género Capnocytophaga (canimorsus, cynodegmi) proveniente de las fauces, se asocia a infecciones graves e incluso a sepsis fulminante (Greco, 2008).

En Argentina, en 2000, se registraron 651 egresos hospitalarios en provincias que notifican; de esos egresos, 507 eran de menores de 15 años. En 2002 se notificaron 5 defunciones por mordeduras (Zanini et al., 2008: 2).

La *mordedura felina*, aunque menos frecuente, suele producir lesiones más profundas por los dientes filosos del animal, que no siempre se evalúan en su magnitud, y se infectan con más frecuencia, entre otros agentes, con el mismo género Pasteurella. Los rasguños felinos también tienden a infectarse. La Bartonella henselae es el agente más frecuente de la enfermedad por arañazo de gato. La mordedura felina, en zonas endémicas, puede infectarse con la Yersinia pestis.

El tratamiento es el lavado y desinfección de la herida, así como la exploración de las lesiones y los posibles cuerpos extraños. No se recomienda suturar, salvo con puntos de aproximación (Greco, 2008: 282 y ss.).⁴

³ La mordedura humana no es excepcional y puede producir trauma grave. La infección suele ser múltiple, ubicándose en los primeros lugares la producida por Staphilococcus aureus y S. coagulasa negativa. Además, puede dejar cuerpos extraños. Debe tenerse en cuenta la posibilidad de infecciones por VHB, VHC y VIH.

⁴
Se hace profilaxis antitetánica y eventualmente antibiótica. La quimioprofilaxis en casos de alto riesgo de infección se hace con amoxicilina-clavulánico o con cotrimoxazol para los alérgicos a la penicilina.

5.2. Rabia

La rabia es una encefalomielitis aguda producida por un Lyssavirus\(^5\) (familia Rhabdoviridae, RNA) que se replica en el núcleo de la célula. Se han descrito ocho genotipos, siendo el “1” el que afecta distintos continentes y a los carnívoros. El resto afecta a los quirópteros (murciélagos), que son sus reservorios y pueden sobrevivir la infección.

En el ser humano y otros mamíferos, produce dos formas clínicas: una furiosa (cerebral) y otra paralítica (medular), ambas letales. Se ha descrito, asimismo, una miocarditis. El virus puede permanecer en los macrófagos y emerger después de una incubación prolongada.

La rabia es endémica en más de cien países del mundo, y produce 50.000 muertes notificadas por año,\(^6\) un 54% por mordedura de perro, un 42% por animales salvajes y un 4% por murciélagos (Bleck y Rupprecht, 2002: 2008).

Entre los carnívoros, hay un ciclo silvestre y otro urbano. Dentro del silvestre se han diferenciado el de mamíferos terrestres, el de murciélagos y vampiros y el del ganado (Salido Renguell, 1971: 191). La enfermedad se transmite por la saliva infectada, que puede contener el virus tres o cuatro días antes de la presentación clínica, mediante mordeduras sobre la piel desnuda. También lo hace por contaminación salival sobre heridas o por aerosoles que contienen el virus, a través de las mucosas. La incubación habitual en humanos oscila de treinta a noventa días, aunque excepcionalmente puede durar un año.\(^7\)

En el ciclo urbano, es el perro, seguido del gato, la fuente de contagio. En los países desarrollados se ubican en primer término las mascotas como las ardillas. Entre los perros se transmiten la enfermedad por mordedura de unos a otros. El ciclo puede iniciarse por mordedura de un animal silvestre, y, a su vez, el perro rabioso puede morder y contagiar al ganado (Salido Renguell, 1971: 191).

Los animales silvestres (lobos, zorros, ratones silvestres, ratas) son los más susceptibles, siguiéndoles, entre otros, los gatos, los conejos, los hamsters, los murciélagos, el ganado y luego los perros y los primates (Bleck, Rupprecht, 2002: 2211). Por regiones, el lobo es el animal más infectado en Rusia, el chacal en África del Norte y Medio Oriente y la mangosta en Puerto Rico y Cuba (Bleck, Rupprecht, 2002: 93). Entre ellos se producen enzootias y epizootias. El periodo variable de incubación entre las diferentes especies silvestres tiende a prolongar la presencia de la enfermedad en determinadas regiones.

La rabia transmitida por vampiros y murciélagos no hematófagos es extendida en América y ataca al ganado, excepcionalmente al hombre. Es la llamada rabia desmodina o derriegue.

La clave del diagnóstico temprano es la noción epidemiológica de mordedura de un animal potencialmente rabioso, ya que el cuadro clínico va precedido de pródromos inespecíficos, como parestesias, modificaciones en la personalidad y en la capacidad cognoscitiva, y las pruebas de laboratorio responden tardíamente. El diagnóstico estándar se establece con inmunofluorescencia directa con anticuerpos en biopsia o necropsia. La reacción en cadena de la polimerasa-transcriptasa inversa (PCR) en Líquido Céfalo Raquídeo, saliva o tejidos es la más precisa.

\(^4\) Se recomienda suturar si la herida es en la cara y dentro de las ocho horas de producida.

\(^5\) Lyssa en griego significa “locura”.

\(^6\) La India suele notificar la mitad de los casos.

\(^7\) La incubación depende del tiempo que tarde el virus en llegar desde el músculo lesionado a la placa motora y los axones hasta los centros nerviosos, proceso cuya velocidad oscila entre ocho y veinte milímetros diarios.
La prevención primaria se hace por la vacunación de animales domésticos e incluso silvestres, con refuerzos entre uno a tres años, supervisada por veterinarios. Se indica la inmunización del ganado en zonas endémicas de rabia desmodina.

Las personas con alto riesgo, como veterinarios, trabajadores de laboratorios de vacunas antirrábicas y quienes practican turismo aventura, deben inmunizarse preexposición con tres dosis (días 0, 7 y 21 o 28) intramusculares o intradérmicas y refuerzos cada dos o tres años.

El ciclo a través de quirópteros hematófagos (vampiros) contagia al ganado en las zonas tropicales y subtropicales de América y, excepcionalmente, al ser humano, como ya hemos mencionado.

El contagio por mordedura de perro rabioso no tratada oscila entre 38 y 57%, dependiendo del inóculo de la mordedura sobre piel herida, desnuda o a través de la ropa, del lugar de la lesión (ya que si se sitúa en la cara es más probable el contagio que si lo hace en las extremidades) y del número de mordeduras (las múltiples conllevan más riesgo). Una vez iniciados los síntomas, la letalidad alcanza el 100% en alrededor de dieciocho días.

En los expuestos se procede a la limpieza (con agua y jabón al 20% o compuestos de amonio cuaternario) de la herida e irrigación con iodopovidona, que es virucida y reduce el riesgo de infección. El animal mordedor debe observarse durante diez días y, si no se enferma, puede evitarse la vacunación. En caso contrario, se vacuna.

La vacuna original de Pasteur (1885) fue modificada. La tipo Semple (cultivo en Sistema Nervioso Central ovino) conlleva el riesgo de una encefalitis por afectación de la mielina en una proporción que varía entre 1/200 a 1/1600 vacunados. La preparada en cerebro de ratón lactante es trivalente (contra tres cepas del virus CVS, 51 y 91), reduce el riesgo a 1/8000 vacunados; se utiliza también la de cultivo en células Vero (ríñón de mono verde africano) en célula de embrión de pollo purificado (VCEPP), antirrábica absorbida (VRA) (González Ayala, 2008: 1029). Las más seguras y eficaces son las vacunas de células diploides humanas (VCDH, en cultivo de células diploides de mono rhesus o "absorbida", y en embrión de pollo purificado), que sólo pueden dar molestias locales y malestar general. Las vacunas VCDH, VRA o VCEPP se administran vía intramuscular en el deltoides, 1 ml los días 0, 3, 7, 14 y 28 si no hubo vacunación anterior y cada uno de los días 0 y 3 si la hubo (Bleck y Rupprecht, 2002: 2213).

La vacuna postexposición se combina, si no ha sido vacunado con anterioridad y según el caso, con gammaglobulina antirrábica. Se administra 20 UI/Kg de peso corporal alrededor de la herida y, si hay remanente, intramuscular, lejos de ella.

5.3. Los vampiros y murciélagos

Los murciélagos no hematófagos son potenciales transmisores de rabia. Se han encontrado individuos infectados de las especies Tadárida mexicana, Tadárida brasilensis, Lasynicotteris noctivagans y Lasyurus cinereus (Salido Renguell, 1971: 193). Como tienen hábitos nocturnos, un murciélago que vuelva de día debe despertar sospechas de estar afectado de rabia.

Los murciélagos hematófagos, conocidos con el nombre de vampiros, son los que más padecen y contagian la rabia. Las leyendas y la imaginación los rodean de un aura de misterio y terror.
Son mamíferos del orden Chiroptera dotados de alas –sus extremidades anteriores modificadas: el segundo al quinto dedo están alargados para soportarlas, con pulgar en general corto y provisto de una uña (Hickman et al., 1990: 638)– que les permiten dominar el vuelo. Se han descripto alrededor de 950 especies. Los hay de gran tamaño, como los zorros voladores (Pteropus) de las zonas tropicales del viejo mundo, con envergaduras de entre 1,2 y 1,5 metros (Hickman et al., 1990: 638). Viven en colonias en lugares oscuros y húmedos, duermen de día cabeza abajo tomados de las garras y tienen hábitos nocturnos. En sus grandes orejas y a la entrada del oído, las especies pequeñas poseen un trago con un órgano capaz de generar ondas de muy alta frecuencia (100.000 a 30.000 Hz), inaudibles para el oído humano (hasta 20.000 Hz), cuyo eco, a manera de sonar, les sirve de guía para el vuelo.

Los quirópteros se suelen dividir en dos subórdenes: los de mayor tamaño, que tienen mejor vista y hábitos no exclusivamente nocturnos, y los pequeños, con un sentido de la visión escasamente desarrollado –su retina tiene sólo bastones, como los búhos, que requieren 50 a 100 veces menos intensidad de luz que los conos que captan el color (Hickman et al., 1990: 626; 775)–, por lo que deben guisarse por los ecos que ellos mismos producen. Este último grupo, si bien vive en diversas regiones del mundo, es más propio de América.

La mayoría de los quirópteros son insectívoros y ocupan en ese sentido el nicho vacante que dejan las aves (Hickman et al., 1990), o se alimentan de jugos vegetales hacia los cuales se orientan también por la vista y el olfato. Los nectívoros polinizan plantas cuyas flores se abren de noche (Hickman et al., 1990). Las especies hematófagas son pocas.

Los quirópteros de la familia Desmodontidae son vampiros de hábitos nocturnos, de tamaño entre 66 y 90 milímetros, con pelaje de color chocolate, corto y tupido, cabeza redondeada y hocico truncado con protuberancias y placas, orejas cortas y anchas y sin cola. Tienen entre 20 y 26 dientes, entre los que se destacan los incisivos superiores grandes, filosos y cortantes. En reposo, se apoyan perpendicularmente sobre las paredes de sus escondites, cuevas, cavernas, huecos de árboles o entretechos de casas.

La característica de sus incisivos superiores los diferencia de los quirópteros no hematófagos, en los cuales son más pequeños que los caninos. En los primeros, la membrana posterior entre ambos huesos femorales es reducida, mientras que en los segundos es bien desarrollada. Los hematófagos no tienen cola, mientras que los restantes pueden tenerla.

El hematófago más extendido es el Desmodus rotundus, quiróptero robusto de entre 75 y 95 milímetros, con hocico corto y cónico, labio inferior hendido y rodeado de papilas, orejas pequeñas y anchas, pelaje corto, abundante y rígido, en el dorso de base clara y en el extremo oscuro. La coloración varía de chocolate rojizo con tonalidades amarillentas a grisáceo en la parte dorsal y plateado en la ventral. El pulgar es muy desarrollado y con callosidades que le ofrecen apoyo. Tiene veinte dientes con bordes cortantes e incisivos superiores grandes y filosos.

Su hábitat es silvestre en zonas tropicales y semiárticas. Se refugia en huecos de árboles, grutas, túneles, minas y casas abandonadas. Vive en colonias de entre veinte y cien individuos subagrupados y conviviendo con quirópteros insectívoros o frugívoros. Se excitan y ocultan o vuelan al percibir intrusos. Sus refugios tienen fuerte olor amoniacal por la acumulación de heces sanguinolentas. Son hematófagos obligados: de no acceder a animales para obtener sangre, mueren en pocos días. Por el contrario, cuando disponen de ellos alcanzan a vivir mucho.
El **Diatemus youngii** es semejante al anterior, pero su pulgar es más corto y no tiene callosidades, en la punta de las alas tiene una mancha blanca (vampiro overo), los miembros posteriores son pequeños y están cubiertos de pelos cortos, el pelaje es suave y no muy tupido, su coloración es canela, más oscura en el dorso y más clara en la zona ventral. Tiende a establecer su hábitat en los árboles y prefiere la sangre de aves a la de mamíferos. Posee a los lados de la cara una glándula que, como defensa, regresa un líquido nauseabundo.

El **Diphylla ecaudata** tiene cuerpo y orejas más pequeños que los anteriores, ojos prominentes, pulgares y patas pequeños pero con garras desarrolladas, su pelaje es denso y extendido a las patas, su coloración es chocolate-rojizo, incluyendo la membrana del ala, que no tiene manchas blancas, la parte ventral del cuerpo es gris o blanco amarillento. Vive en colonias más pequeñas, a veces con Desmodus. En sus refugios no acumula heces sanguinolentas y no tiende a excitarse por la presencia de intrusos. Como el anterior, prefiere la sangre de ave a la de mamíferos.

El radio de acción del Desmodus es de alrededor de catorce kilómetros, perímetro dentro del cual localiza a sus víctimas y se apoya en ellas eligiendo zonas más vascularizadas para morderlas. En el bovino, las regiones preferidas son la base de las orejas y de la cola y el lomo; en los equinodos, las patas, el cuello y la cruz; en los porcinos, las orejas, el hocico, la corona del casco y las tetillas; en las aves, el cuello y las patas. En los seres humanos elija la nariz, las orejas o los dedos de manos y pies.

Sus incisivos producen un corte circular de tres a cuatro milímetros en la piel e inyectan una sustancia anticoagulante, generando una hemorragia que el vampiro no succiona, sino que lame con la cara ventral de la lengua, que forma una especie de tubo con el labio inferior. El animal atacado no suele percibir la mordedura, salvo el perro, que nota la aproximación del atacante (Hickman et al., 1990: 630). Transcurre hasta treinta minutos lamiendo y es capaz de ingerir un alrededor de 30 cm³ de sangre, después de lo cual le cuesta volver a volar.

Es frecuente que vuelva a atacar sobre la misma mordida dejando heridas susceptibles de infección o miasis secundaria. Si un mismo animal es atacado por varios vampiros puede sufrir anemia (Méndez, 1972).

Son señales de alerta la observación de murciélagos volando de día, o moribundos en el suelo.

### 6. Rabia en Argentina

#### 6.1. Situación epidemiológica


En lo que hace a acciones de control, anualmente en la Argentina se atiende a un promedio de 17.000 personas agredidas por animales. En el periodo de 2001 a 2003, el porcentaje general de tratamientos fue de 26,8%, muy cerca del valor regional, pero hubo una importante variación entre provincias. Se **utiliza la vacuna Fuenzalida-Palacios**, que se produce en el país mediante
procedimientos que aseguran una potencia adecuada y un riesgo mínimo de reacciones adversas. El suero utilizado es el homólogo. Durante el periodo analizado había un promedio de 488 puestos de salud con tratamiento antirrábico, es decir, un puesto por cada 77.754 personas, bastante más alto que el promedio regional de un puesto por cada 34.000 personas. En áreas donde no hay circulación del virus en la población canina, hay varias provincias que tienen solamente un puesto de salud con tratamiento disponible.

La **vacunación antirrábica animal es obligatoria en todo el país**. Se ha implementado un sistema de vigilancia activo mediante el muestreo sistemático y permanente, lo que ha permitido clasificar las **áreas en silenciosas y no silenciosas**, además de establecer **criterios de riesgo** considerando los aspectos de vulnerabilidad y receptividad. En las provincias en que se ha registrado el reingreso de la rabia canina, el gobierno promueve campañas de vacunación cuando son necesarias. Las coberturas vacunales estimadas en las provincias donde no se registran casos de rabia canina son bajas (60% según datos de la Encuesta demográfica canina, Facultad de Cs. Veterinarias, UNLP, año 2005). En aquellas provincias que presentaron circulación viral causada por la **reemergencia de la enfermedad**, la cobertura vacunal se considera adecuada.

En general para el país, la **vigilancia epidemiológica es buena**, con un porcentaje que supera el 0,1% de muestras enviadas para diagnóstico en relación con la población canina estimada. Sin embargo, el número de muestras analizadas por las distintas provincias es muy variado. En las áreas de riesgo y en la capital del país, la vigilancia es excelente, pero en las demás provincias es casi inexistente. En las estrategias de acción futura se contempla eliminar la rabia transmitida por el perro en aquellas localidades en las que aún persiste. Igualmente, se menciona la intención de incrementar las actividades de promoción y educación para la salud con objeto de prevenir los casos de rabia silvestre. La capacitación técnica sistemática de los agentes de salud se considera muy importante. Asimismo, se debería dar especial énfasis a las iniciativas de cooperación internacional con los gobiernos de países limítrofes para establecer acuerdos que busquen eliminar la rabia del perro en zonas fronterizas.

**6.2. Legislación argentina**

La **Ley de Profilaxis contra la Rabia**, Ley Nº 8.056/73 (provincia de Buenos Aires), establece que la observación del animal es obligatoria.

La Ley Nº 22.953 (sancionada por el Congreso de la Nación el 19 de octubre de 1983) declara **La Lucha Antirrábica de interés en toda la República**.

Ley Nº 5.220 (sancionada por la Legislatura de la provincia de Buenos Aires el 15 de noviembre de 1947). Declara obligatoria la vacunación antirrábica y el tratamiento antihelmíntico en la especie canina.

La **Ley Nacional 14.346 es la norma argentina vigente que se ocupa de la protección a los animales** (sancionada por el Congreso de la Nación el 27 de septiembre de 1954).
Bibliografía

Barragán, H., Introducción a la historia de la medicina y la enfermedad, La Plata, UNLP, 2000.
Facultad de Ciencias Veterinarias, UNLP, Encuesta de demografía animal en el casco urbano de la ciudad de La Plata (p.cia. de Buenos Aires, 2005), realizada por la Cátedra de Higiene, Epidemiología y Salud Pública, Alumnos de quinto año, La Plata, 2005.
Méndez, E., Murciélagos hematofágos y su importancia médica en Panamá, Ramos Mejía, Centro Panamericano de Zoonosis, OPS, 1972.
OIE (Organización Internacional de Epizootías), Un mundo, una Salud, Boletín Nº 2009-2.
Reader’s Digest Selecciones, El gran libro de lo asombroso e inaudito, México, Reader’s Digest, 1977.
ANIMALES VENENOSOS

Carlos Santiago Grisolia

1. Introducción

Se hace difícil dar una definición exacta de animales venenosos o ponzoñosos, pues los mismos términos “veneno” o “ponzoña” no la poseen. No es posible establecer a priori el poder tóxico de una sustancia, ya que, en la mayoría de los casos, esta depende de factores como la cantidad, la vía de absorción, la época del año, el peso y el estado de la víctima, la susceptibilidad individual, y otros.

No hay dudas de que el veneno de una víbora Yarará o Cascabel puede provocar la muerte en el hombre si es inyectado, pero resulta inocuo si va por vía digestiva. El veneno que segregan los sapos a través de la piel es altamente venenoso si es ingerido por la mayoría de los animales, a excepción de aquellos que se alimentan de estos batracios. Muchas personas manifiestan alivio de sus dolores reumáticos cuando son picados por abejas, mientras que otras fallecen por hipersensibilidad. En los medicamentos que a diario ingerimos para curarnos de alguna dolencia, observamos que la mayoría tiene la advertencia de lo peligroso que puede resultar si cambiamos la vía, dosis, sexo, edad y otras variables.

Técnicamente, en la mayoría de los trabajos sobre ofidismo y el araneísmo se denominan “animales venenosos” a los que genética y permanentemente poseen una sustancia tóxica relacionada con un dispositivo que permite, por distintos medios, introducir dicha sustancia en el hombre y provocarle alteraciones en su organismo.

Entre los vertebrados, los peces tienen varios representantes que poseen sustancias tóxicas. Los más conocidos son los bagres, con glándulas venenosas en su aleta dorsal, y las rayas, con secreción tóxica en los espolones de su cola. Los anfibios como los sapos y algunas ranas (rana Coralina y rana arborícola) poseen un veneno que segregan a través de la piel.

Pero es dentro de los reptiles donde encontramos numerosas especies de ofidios con un perfeccionado dispositivo venenoso, como también un género de lagartos (*Heloderma*) con dos especies: el monstruo de gila y el lagarto de cuentas, en EE.UU., México y Guatemala. La clase de los mamíferos está representada por el ornitorrinco australiano, con glándulas venenosas ubicadas en la cara interna de las patas traseras de los machos. En América, un representante de esta clase, el zorrino, posee dos glándulas perianales mediante las cuales emite su producto tóxico ante la presencia de un potencial enemigo.

Dentro de los invertebrados también existen especies venenosas. La mayor cantidad se encuentra entre los artrópodos, siendo los arácnidos los más importantes.

Del grupo de los celenterados, de menor importancia sanitaria, cabe destacar a las aguas vivas o medusas, que esporádicamente y en época estival se acercan a las aguas poco profundas. El roce de sus tentáculos provoca la descarga de la ponzoña.

Entre los accidentes humanos provocados por animales venenosos, los de mayor importancia médica toxicológica son los ocasionados por ofídios y arañas. Sin embargo, tanto el ofidismo como el araneísmo, en relación con otras patologías y accidentes, provocan pocos casos de gravedad, y resultan excepcionales las muertes. Esta falta de frecuencia da lugar al escaso interés que la Medicina
dedica a la información actualizada, generando, en muchas oportunidades, vacilación en el profesional actuante.

2. Los ofidios

Con los términos “ofidio” y “serpiente” (del gr. ophidion, del lat. serpens, respectivamente), en zoología se hace referencia al mismo animal, sin hacer diferencia de su peligrosidad, tamaño o hábito. Sin embargo, la terminología corriente emplea otros nombres que le permiten una clasificación casera, que, si bien está lejos del conocimiento técnico, resulta cómoda para su entendimiento. Por ejemplo: “culebras” para las que considera inofensivas, “víboras” para las peligrosas por su ponzoña y “boas” para las grandes constrictoras. Además, a las Corales las ubica entre las “culebras”, pero tienen un veneno capaz de matar al hombre en pocos minutos. Debemos agregar la designación de “Yarará”, “de la cruz”, “Cascabel”, “crucera”, “Coral”, etcétera, nombres vernáculos, folklóricos y regionales que reciben estos animales.

2.1. Descripción del dispositivo ponzoñoso en ofidios

Todas las serpientes poseen una fuerte dentadura que les permite retener la presa hasta provocarle la muerte o prepararla para engullirla.

Dado que no todas las serpientes tienen la misma conformación dentaria, se las ha agrupado en cuatro series principales. Esta clasificación se basa en la presencia de un diente más largo (colmillo), con un canal o conducto que lo recorre en forma longitudinal.

Aquellas especies que no poseen dicho diente se denominan aglífas. A este grupo pertenecen numerosas especies inofensivas para el hombre, las que vulgarmente se las conoce como “culebras” (géneros más abundantes: Liophis, Leimadophis, Helicops, Lystrophis, Boa).

En el siguiente grupo, se agrega a cada lado de la parte posterior del maxilar superior un diente más largo con un canal que lo recorre en forma longitudinal por su parte delantera. En la base de este se vierte la secreción de una glándula venenosa, con la que el ofidio paraliza y mata a sus presas. Esta característica dentaria se denomina opistoglífica (géneros: Clelia, Tomodon, Elapomorphus, Philodryas).

El grupo estructural que le sigue en evolución, denominado proteroglífica, presenta en la parte anterior del maxilar superior un diente más largo con un canal longitudinal por donde se desliza la ponzoña segregada por una glándula dispuesta detrás de la base del colmillo. En Argentina, solamente se encuentra la conocida con el nombre vulgar de “Coral” (género: Micrurus).

Por último, en el grupo de las solenoglifas, el hueso maxilar se encuentra reducido, dando lugar solamente a la implantación del colmillo, que es largo, curvo y con un conducto interno, similar a una aguja hipodérmica. Dada la longitud de este (en algunos ejemplares llega a tres centímetros), cuando el ofidio cierra la boca el maxilar gira sobre el hueso prefrontal en su parte superior y con el palatino por debajo, haciendo que el colmillo se coloque paralelo al paladar. Este grupo posee una voluminosa glándula de veneno a cada lado de la cabeza, detrás de los ojos, que por medio de un conducto y en forma indirecta descarga el veneno en una cavidad del maxilar. Cuando el ofidio clava, bate, pica a su víctima, abre la boca, despliega sus colmillos hacia afuera, comprime las glándulas y el veneno penetra por el orificio ubicado en la base de dicho colmillo, recorre su interior y sale por el orificio del extremo, que esta cortado en bisel. A esta serie pertenecen los géneros Crotalus y Bothrops (Cascabel y Yararás).
3. Especies venenosas de la República Argentina


4. Características de los venenos ofídicos

Los venenos están constituidos por un conjunto de proteínas, en su mayoría enzimas, que afectan diversos sistemas. Los venenos ofídicos son sustancias compuestas listas para actuar, es decir que no necesitan un periodo de incubación. Su acción es inmediata, provocando alteraciones de acuerdo con sus principales componentes farmacológicos. La diversidad y complejidad de estos componentes hace que, hasta ahora, su composición sea conocida sólo en parte. También, de los componentes conocidos, existen variables entre ejemplares de la misma especie que dependen de factores tales como la zona geográfica, el sexo, la época del año y la alimentación. Incluso, algunas de estas variables se dan en el mismo ejemplar. Por ejemplo, la edad hace que algunas fracciones aumenten sus proporciones, haciendo que su acción sobre el accidentado también varíe. Por causa de estas variables, cuando se observa un caso de ofidismo se hace difícil establecer un criterio exacto de la fisiopatología que este producirá, más aún desconociendo la cantidad de veneno inyectado.

4.1. Veneno bothropico (Yarará, De la cruz, Cruzada, Hurutu)

Las principales acciones patógenas del veneno bothropico son: coagulante, proteolítica y hemorrágica.

**Acción Coagulante**: esta dada por enzimas “tipo trombina”, que actúan directamente sobre el fibrinógeno produciendo microtrombos de fibrina. También sobre la protrombina, el factor X y las plaquetas, provocando una alteración en la coagulación sanguínea de tal forma que, inmediatamente después del accidente (aproximadamente en quince minutos), el tiempo de coagulación puede presentarse disminuido (tres a cuatro minutos), y posteriormente se va prolongando hasta llegar a la incoagulabilidad total.

**Acción Proteolítica**: la signología y sintomatología local, siempre presente en estos accidentes, está dada por la presencia de proteasas, fosfolipasas, hidrolasas y otras enzimas que afectan directamente el endotelio, provocando edema, daño capilar, isquemia, hemorragia y posterior necrosis tisular.

**Acción Hemorrágica**: la combinación entre el efecto sobre la coagulación, la necrosis tisular y las hemorragias que degradan los capilares y vénulas originan un estado hemorragíparo que se manifiesta tanto local como sistémico.

4.2. Veneno de Crotalus durissus (Cascabel)

Posee enzimas que provocan alteraciones en la coagulación de la sangre, similares a las especies de Yarará antes mencionadas, pero en menor proporción. Son las fracciones neurotóxicas las de mayor importancia en este envenenamiento. Entre los componentes más conocidos se citan la
crotamina, crotoxina, giroxina. La crotoxina es la responsable del bloqueo neuromuscular, provocando una parálisis flácida que puede llevar a la muerte por paro respiratorio. También posee una fuerte acción sobre los músculos esqueléticos, provocando liberación de mioglobulina con mioglobulinuria muy acentuada.

4.3. Veneno de Micrurus spp. (Coral)

Es uno de los venenos más estudiados y de mayor importancia en la investigación de sus componentes. Sin embargo, son ínfimos los casos documentados de ofidismo por este género. Con una acción netamente neurotóxica, prácticamente no presenta acción local. Sus componentes actúan, como en las Cascabeles, en la placa neuromuscular, pero con una doble acción: presináptica, inhibiendo la liberación de acetilcolina, y post-sináptica, compitiendo con los receptores musculares (muscarínicos, nicotínicos). De allí que el bloqueo sería total y en corto tiempo, provocando la muerte entre dos y tres horas. Sus hábitos criptozoicos, su poca agresividad y sus colores tan llamativos, juntamente con el reducido tamaño de su cabeza y pequeño colmillo (2 mm), son algunos de los motivos por los cuales se registran muy pocos casos, tanto en nuestro país como en el resto de Sudamérica.

5. Accidente ofídico

Las serpientes venenosas “pican” al hombre solamente cuando son molestadas. Cuando el individuo está lo suficientemente cerca de la víbora (aproximadamente a 50 cm), esta se enrosca y, en forma de resorte (sin saltar), se proyecta hacia la víctima, abre la boca, saca los colmillos y los clava, inyecta el veneno y vuelve a su posición, todo eso en segundos. En esta acción defensiva, las víboras generalmente inyectan poca cantidad de veneno, ya que el motivo de su ataque es persuadir al posible agresor para que la deje seguir su camino. Pero si el involucrado insiste en molestar, cazar o matar al ofidio, es seguro que en un segundo ataque esta descargue una dosis mayor de veneno, suficiente como para determinar un accidente de gravedad.

Esta maniobra es propia de los géneros Bothrops y Crotalus. Las Micrurus tienen una actitud diferente, son menos agresivas y deben morder para inocular su veneno.

5.1. Accidente provocado por Bothrops (Yarará, De la cruz, Cruzada, Hurutu)

Los síntomas y signos locales son los que denuncian como causante a una de las especies del género Bothrops, ya que, con poca cantidad de veneno inyectado, tales síntomas y signos están siempre presentes, y se manifiestan por dolor inmediato y edema equimótico localizado en el sitio de inoculación. Seguidamente, y si la cantidad de veneno es mayor, el edema suele extenderse hacia la raíz del miembro lesionado, asociado con adenopatía regional y algunas veces acompañado con linfangitis. En el sitio de la picadura se observa un edema purpúreo, con uno o varios puntos o pequeñas laceraciones de la piel, como rasguños, pocas veces hemorrágicos. En la piel de la zona afectada pueden aparecer vesículas con contenido serohemorrágico y necrosis.

En los casos graves aparecen vómitos alimenticios o acuosos, luego biliosos y hasta sanguinolentos, acompañados de sudores y lipotimia, disnea, taquicardia, hipotensión y luego estado de shock.

La acción hemotóxica origina, en los casos graves, un verdadero estado hemorrágico que, si bien es poco frecuente, revela la gravedad del caso. Inicialmente se manifiesta con gingivorrágia, luego hematemesis, enterorrágias y hematuria.
En los días siguientes, la necrosis tegumentaria puede hacerse profunda y extensiva, con esfácles de las partes blandas que llegan a la denudación ósea y, en casos mal tratados o dejados al azar, hasta la amputación espontánea segmentaria distal del miembro lesionado (a más de treinta días).

La muerte puede ocurrir por hemorragia cerebral o lesión glomerular e intersticial renal producida por la acción proteolítica del veneno sobre los tejidos.

Para que la mencionada sintomatología se manifieste, es importante conocer que depende de varios factores, como por ejemplo la cantidad de veneno inoculado, el sitio de inoculación y el estado orgánico del accidentado, fundamentalmente su peso.

5.2. Accidente provocado por Crotalus (Cascabel)

El dolor en el sitio de la inoculación es poco frecuente y, si existe, aunque inmediato, no alcanza intensidad salvo que ocurra en zonas muy sensibles (extremo de los dedos). Las lesiones locales se reducen a un pequeño edema acompañado con parestesías, seguido más tarde de dolores musculares generalizados, disnea progresiva, taquicardia, diploía, anisocoria, obnubilación. Como signo de mayor interés, en casos graves, se observa la “facies neurotóxica” (como lo expresan los autores brasileños) con o sin ptosis palpebral bilateral, exteriorizada en un gesto fisonómico que nosotros calificamos de “incredulidad o escepticismo” (Soria, Grisolia) muy significativo. Puede haber, al comienzo, ligero aumento de la tensión arterial. En general, la termometría corporal es normal, pero puede descender progresivamente hasta la hipotermia acentuada.

Los signos y síntomas guardan relación con la intensidad de envenenamiento, y entre ellos la ptosis palpebral y la hipotermia revisten mucho valor como índice de agravación, lo que les da valor pronóstico.

La muerte sobreviene por paro respiratorio o tardiamente por insuficiencia renal.

5.3. Accidente provocado por Micrurus (Coral)

Dado la escasa documentación sobre el desarrollo sintomático humano provocado por esta intoxicación ofídica, como asimismo los pocos datos epidemiológicos, transcribimos la sintomatología de acuerdo con diversos autores (Martino, Rosenfeld, Vital Brazil).

El envenenamiento está señalado por síntomas neurológicos, que se manifiestan en menos de treinta minutos, sin presentar otra lesión local que las punturas de la mordida. Decaimiento intenso, trastornos visuales, sialorreas, vómitos, parálisis de los músculos faciales, labios, lengua y laringe. Hipotensión, ptosis palpebral bilateral, parálisis respiratoria y muerte, que puede ocurrir entre tres y cinco horas del accidente por insuficiencia respiratoria curariforme.

6. Tratamiento

6.1. Enfoque

Un buen tratamiento es consecuencia de un diagnóstico bien fundamentado y este sucede a una evaluación ponderada de los síntomas y signos que tiene el accidentado.

Suele ocurrir que, con el pretexto de que “como no trajo el animal... y ¡ante la duda!”, se aplique el suero específico a todos los accidentados sin un correcto diagnóstico.
Según estadísticas de la provincia de Buenos Aires (Centros Antiponzoñosos, Ministerio de Salud, 1975/90), el 73% de los accidentados procura atención médica dentro de las primeras tres horas, tiempo suficiente para que la signología local ya se manifieste. También se registra que el 79% no trae consigo el animal agresor, razón por la cual el médico debe diagnosticar por las manifestaciones del paciente.

Como ya se mencionó, el veneno de los ofidios es una sustancia que no necesita tiempo de incubación, su acción es inmediata. Si el accidentado no presenta signos locales y/o generales luego de una hora del accidente, es probable que se trate de la mordedura de un ofidio no ponzoñoso o que haya habido algún motivo que le impidió a la víbora descargar su veneno (por poca cantidad que inyecte una Yarará, su acción local se advierte antes de los diez minutos, y en el caso de una Cascabel, en 15 minutos se evidencian las alteraciones neurológicas).

Ante un caso real de ofidismo, el tratamiento inicial e inmediato se orienta hacia la neutralización del veneno circulante para detener su acción y no demorarse en atender los fenómenos locales, tan comunes en los casos por el género *Bothrops* (Yarará, De la cruz). La neutralización del veneno se logra únicamente con el suero antiofídico específico.

La utilización del suero antiofídico requiere una práctica médica especializada e infraestructura hospitalaria adecuada. La especificidad, presteza, dosis suficiente y dosis única son los principios de la sueroterapia, y actuar correctamente sobre cada uno de estos puntos hace que su aplicación en el lugar del accidente (“a campo”) deba dejarse para casos excepcionales, donde el médico justifique tal urgencia y asuma la responsabilidad del riesgo que ello conlleve.

Es indispensable neutralizar la acción directa del veneno con el suero. La acción subsiguiente, provocada por la liberación de histamina, la citólisis tóxica tegumentaria y muscular, y la de los elementos formes sanguíneos, requiere tratamiento coadyuvante por vía parenteral mediante antihistamínicos, corticoides e hidratación. También es recomendable la sedación del paciente con ansiolíticos corrientes y de buena tolerancia. Como en toda herida con posibilidad de infección, es aconsejable la prevención del tétanos. Los demás controles clínicos y de laboratorio dependerán de la evolución de la afección.

Los tratamientos quirúrgicos locales con la finalidad de extraer el tejido necrosado y restaurar la función mecánica y fisiológica de la zona afectada se deben efectuar una vez que el accidentado se encuentra fuera del estado de intoxicación y normalizado su medio interno. Normalmente, esto es después de diez días de ocurrido el accidente.

Cada accidentado recibirá el tratamiento adecuado a su caso, ya que hay que tener en cuenta el estado clínico que presenta, el tiempo transcurrido desde el accidente hasta la intervención del médico, la edad, el peso y el estado de salud previo del individuo.

Consideramos que la primera medida a ejecutar, antes de cualquier acción y/o medicación, es la toma de sangre con el fin de efectuar los estudios hematológicos.

El Tiempo de Coagulación (T.C.) brinda datos importantes mediante una técnica simple. La primera muestra del T.C., tomada antes de cualquier intervención o medicación, relacionada con el tiempo transcurrido del accidente y la signología que este presenta, sirve para evaluar la gravedad del caso. Esto permitirá determinar la cantidad de suero a suministrar. La segunda muestra, luego de cinco horas de aplicado el suero por vena, permite evaluar el resultado del tratamiento.

### 6.2. Principios de la sueroterapia

**Especificidad**: aunque se disponga de suero POLIVALENTE, para utilizar tanto en un accidente por *Bothrops* o *Crotalus*, el equipo de salud debe tener la certeza de cuál de estos dos géneros produjo el accidente, ya que el tratamiento coadyuvante también requiere especificidad y difiere del accidente por Yarará o Cascabel.
**Presteza:** si bien es importante que el suero se suministre lo antes posible, en este caso la presteza se refiere a la vía de aplicación, siendo la endovenosa la indicada para que en forma inmediata comience la neutralización del veneno circulante. En la Evaluación mencionada (Centros Antipozonosos, Ministerio de Salud, 1975/90), se ha observado que sólo un 20% ha tomado esta vía; el 19% lo suministró subcutáneo, efectuando un bloqueo perifocal, acción que está contraindicada pues, además de aumentar el edema y dolor local, el suero demorará mucho más tiempo en tomar contacto con el veneno en la circulación general; el resto (59%) optó por la vía intramuscular.

**Dosis suficiente:** es aquella en la que se excede la cantidad estimada. Por ejemplo, si luego de evaluar un caso, diagnosticarlo “accidente leve” y resolver suministrar dos frasco-ampollas (total 20 ml), se aplican tres (30 ml), o si en un caso grave en que se opta por cinco frascos, aplicar uno más (total 60 ml). El pasarse de la dosis adecuada (lo que nunca se podrá saber con exactitud) no genera ningún peligro ni se puede tomar como impericia. Sí se hace sumamente peligroso e implica impericia médica el suministrar dosis por debajo de lo recomendado por los Institutos y Entidades Médicas especializados.

**Dosis única:** el veneno entró de una sola vez, por lo tanto, el suero también debe ingresar de una sola vez. No se justifica efectuar aplicaciones fraccionadas (10 + 10 + 10 ml), ya que esto da tiempo al veneno no neutralizado a continuar su acción.

Dado que el suero es una solución de globulinas purificadas de origen equino, cuya aplicación puede provocar reacciones adversas, es necesario efectuar una prevención farmacológica a través de la inyección intravenosa de drogas antihistamínicas y corticoides, con antelación a la aplicación del suero.

A continuación, por vía venosa, hay que pasar por goteo el suero antiofídico preferentemente diluido como máximo al 50% en solución fisiológica.

La protección farmacológica se continuará hasta una semana después de la aplicación del suero, por vía oral.

Manuales, normas e indicaciones que acompañan los distintos tipos de sueros antiofídicos, dado su origen equino, recomiendan testear la posible sensibilidad antes de su aplicación.

Al respecto, es importante destacar que la realización de un test de sensibilidad alérgica confiable consiste en la inyección de cantidades progresivas de la sustancia a investigar, desde diluciones mayores a 1:10.000 en forma intradérmica hasta el concentrado puro aplicado por vía venosa. Todo esto en lapsos de quince minutos entre cada aplicación y con control de signos vitales, lo cual comporta en términos generales aproximadamente un tiempo de tres horas.

Como aun ante la suposición de aparición de manifestaciones alérgicas el riesgo de muerte ante una mordedura puede ser mayor, es lógico descartar el test de sensibilidad, porque ante cualquier resultado no cambiará la conducta a seguir.

Tampoco existen fundamentos científicos para realizar una desensibilización, ya que sería equivalente a administrar una dosis terapéutica del mismo suero antiofídico.

Por lo tanto, la conducta racional en todos los casos de mordedura será la prevención farmacológica a través de la inyección intravenosa de drogas antihistamínicas y corticoides, con antelación a la aplicación del suero y continuándola ininterrumpidamente hasta una semana después de la misma, por vía oral.

7. **Especies de dudosa importancia médica**

Además de las mencionadas víboras (*Bothrops*, *Crotalus* y *Micrurus*), existen en Argentina ofidios que por su estructura dentaria pertenecen al grupo de las *opistoglifas*. Los géneros más comunes de estas *culebras son: Philodryas, Tomodon, Elapomorphus* y *Clelia*, entre otros. Si bien estas serpientes poseen veneno y han provocados algunos accidentes, no han manifestado una afección de
importancia toxicológica, al menos en nuestro medio. Los pocos accidentes registrados han ocurrido en cautiverio, en tareas de mantenimiento y/o investigación, donde al animal no le quedó otra salida que clavar sus colmillos posteriores. Pero en ambiente natural es raro que una persona sea mordida por estos ofidios, pues estas especies son muy asustadizas y su máxima defensa es el rápido escape, lo que hace difícil su captura aún para los especialistas.

El problema en estos excepcionales accidentes se origina cuando el paciente, a pesar de tener signología local competente con un caso por Bothrops sp. (Yarará), asegura que fue una culebra inofensiva la responsable del caso. Más aún, si se observa al animal agresor, se advierte una morfología externa que generalmente se tiene en cuenta para diferenciarlo de las consideradas peligrosas víboras.

En este caso el equipo de salud debe tomar las precauciones como si fuera un accidente por Bothrops sp. (Yarará), en lo que se refiere al tratamiento sintomático: antihistamínicos, antiinflamatorios, analgésicos y reposo. Se aconseja no aplicar suero antiofídico, ya que en los sueros a disposición en nuestro país no se ha demostrado su acción neutralizante para los accidentes provocados por los géneros mencionados.

Referente a este grupo de ofidios, el investigador brasileño Thales de Lema, que ha efectuado su tesis (1976) sobre el género Elapomorphus, sufrió una mordedura por una Elapomorphus bilineatus. Este accidente fue considerado de suma gravedad, presentando un cuadro muy similar a un ofidismo por el género Bothrops (edema equimótico, gingivorrágia, hemoglobinuria, enterorrágias). En el tratamiento, además del intensivo sintomático que requirió transfusión sanguínea, se utilizó suero antiofídico polivalente (50 ml). Como sintomatología más importante se destacan las complicaciones renales, que se normalizaron luego del sexto día del accidente, y la gingivorrágia, que se mantuvo hasta el octavo día.

También del género Philodryas se registran varios casos. Uno de ellos, si bien no de la gravedad del anterior, tuvo su repercusión en el Museo del Instituto Butantan (da Silva, Buononato, Brasil, 1983), donde otro prestigioso herpetólogo fue víctima de la mordedura de una Philodryas olfersii en el antebrazo. A la hora del accidente presentaba edema, equimosis local y adenopatía regional. Síntomas que se agravaron luego de cuatro horas con extensión del edema y equimosis, tomando mano y brazo. Los estudios sanguíneos no dieron alteraciones. Recién al cuarto día comenzó gradualmente la normalización del miembro afectado, con total recuperación a los catorce días después del accidente. El tratamiento consistió en antihistamínicos, antiinflamatorios, analgésicos y reposo.

En Argentina, por relatos verbales tenemos conocimiento de casos ocurridos a técnicos y biólogos dedicados al manejo de ofidios. Como documento, Martino y Orduna (V Reunión de la Sociedad Herpetológica Argentina, Misiones, 1988) presentan un caso por Philodryas olfersii con alteración sanguínea manifestada por la prolongación del tiempo de coagulación.

8. Araneísmo

El araneísmo presenta dificultades distintas al ofidismo en cuanto a su diagnóstico etiológico, pues el accidentado en la mayoría de los casos no advierte qué lo picó ni cuándo.

Luego del accidente, tanto para el paciente como para el equipo asistencial, todas las arañas son iguales, como también los síntomas que manifiesta: “pinchazo” doloroso, taquicardia y generalmente mareos. Normalmente, la araña agresora desaparece luego de picar, y, si es capturada, por la forma como se la golpea para asegurar su muerte se hace difícil determinar su especie. Además, la picadura de muchos insectos y lesiones inflamatorias de la piel de otro origen son interpretadas como araneísmo necrótico.

Por ello, el médico debe conocer algo más que la acción del veneno y su tratamiento, pues con el conocimiento biológico de las especies más peligrosas y una buena anamnesis es posible adelantarse
a la evolución de una intoxicación generalizada o, por el contrario, asegurarse la inocuidad del accidente. Sin embargo, hay que tener en cuenta que, al igual que en ofidismo, un buen tratamiento es consecuencia de un diagnóstico bien fundamentado, y este sucede a una evaluación ponderada de los síntomas y signos que tiene el accidentado. Existen observaciones de accidentes provocados por especies consideradas de importancia toxicológica y que, por distintas causas, no inocularon su veneno. Por tal motivo, hay que recordar que el tratamiento se debe hacer sobre la base de los síntomas y signos que presenta el accidentado y no por la determinación zoológica del animal.

8.1. Generalidades

Las arañas son animales que conviven con el hombre, como las moscas, las hormigas, las cucarachas. No es posible eliminarlas completamente, ya que, luego de fumigar un parque o vivienda, mueren algunas, se ahuyentan otras, pero pasado el efecto del tóxico usado habrá nuevos ejemplares traídos por el viento desde áreas no tratadas.

En la actualidad se conocen más de 50.000 especies de arañas, de las cuales cerca de ochocientas se encuentran en Argentina. La gran mayoría pasa desapercibida por el hombre por su reducido tamaño y costumbres. Son escasas en las regiones frías, aumenta el número de especies e individuos en áreas templadas y en los trópicos alcanzan su mayor densidad.

Las arañas, de cualquier tamaño, color, forma o hábito, tienen glándulas de veneno y aparato inoculador, por lo tanto, todas son consideradas animales venenosos o ponzoñosos.

Sin embargo, el grado de peligrosidad en un accidente humano depende fundamentalmente de los componentes farmacológicos del veneno y del aparato inyector, ya que cada especie tiene características propias.

Como el propósito de este capítulo es suministrar la información más práctica posible, no omitiremos lo que se considera el primer peldaño: ubicar correctamente a las arañas en el lugar que la Zoología Sistemática les dio, ya que para la mayoría de las personas equivocadamente es un insecto y para otros sólo un “bicho”.

Las arañas, junto con los escorpiones, ácaros y opiliones, forman la Clase de los Arácnidos, que con los Miriápodos, Insectos y Crustáceos integran el Phylum de los Artrópodos, que es uno de los veintidós Phyla del Reino Animal.
8.2. Morfología externa de las arañas

Sin entrar en detalle sobre su constitución anatómica, el cuerpo de las arañas está formado por un cefalotórax (prosoma) y un abdomen (opistosoma), que se unen por una delgada cintura (pedúnculo). En el cefalotórax se encuentran los ojos simples, entre seis u ocho, que por su distribución, forma y número son elementos fundamentales para clasificar las Familias. También en el cefalotórax se articulan cuatro pares de patas (los insectos solamente tienen tres pares), un par de apéndices anteriores denominados palpos y los queliceros, que son los injectores del veneno provisto por dos glándulas alojadas en el interior del cefalotórax. Carecen de alas y antenas.

Al tener todas las arañas glándulas de veneno y aparato inoculador, cualquier especie puede provocar un accidente en el hombre.

En la República Argentina, las especies que provocan accidentes con mayor frecuencia corresponden a los géneros *Latrodectus*, *Polybetes*, *Loxosceles*, *Dysdera*, *Lycosa* y *Segestria*. Los restantes géneros, si bien pueden provocar accidentes, lo hacen en menor escala debido a que sus hábitats y costumbres no coinciden con la actividad del hombre. Sin embargo, existen algunas excepciones, como la *Kukulcania hibernalis* y la *Achearanea tepidariorum*, arañas que cohabitan con el hombre y prácticamente no ocasionan accidentes.

En Argentina, las especies que han ocasionado accidentes de importancia médico-toxicológica corresponden a los géneros *Latrodectus* y *Loxosceles*.

8.3. Género *Latrodectus* (Walckenaer, 1805)

8.3.1. Especies y características

Para Argentina se han descrito siete especies:

- *Latrodectus geometricus* (Koch, 1841).
- *Latrodectus variegatus* (Nicolet, 1849).
- *Latrodectus mirabilis* (Holmberg, 1876).

La especie mencionada en primer término (*L. geometricus*) no tiene importancia médico-toxicológica, al menos en nuestro medio, y sus características siempre permitieron diferenciarlas del resto.

Las seis especies restantes, hasta el año 1980, eran confundidas entre sí por las pocas diferencias morfológicas y denominadas equivocadamente *Latrodectus mactans*, especie que no se ha encontrado en Argentina.


La *Latrodectus mirabilis* tiene la más amplia distribución en Argentina.

- *Latrodectus mirabilis*: las características que a continuación se mencionan corresponden solamente a la hembra, que es la causante de los accidentes por su picadura. El macho, por ser muy pequeño (mide aproximadamente dos milímetros), tiene queliceros de poco porte como para poder...
atravesar la piel e inyectar veneno. Por otro lado, vive escasamente tres meses debido a que, alcanzando el estado adulto, no come más. Asimismo, muere dos o tres días después de realizar la cópula. Hay autores que sugieren que la muerte ocurrida es causada por la amputación del extremo apical del émbolo copulador, que queda fijado en la genitalia de la hembra.

La hembra es de pequeñas dimensiones (sin contar las patas, no excede los 8 a 12 milímetros), de abdomen globuloso y aterciopelado. En su coloración predomina el negro satinado, con manchas anaranjadas o rojas, de forma y extensión variables.

Realizan una tela que se caracteriza por su irregularidad, sin formas geométricas, de pocos hilos, fuertes y en distintas direcciones, que se extienden hasta dos metros de su refugio.

Tienen hábitos rurales, viven al aire libre, a nivel del suelo, debajo de piedras, bolsas de cereales, dentro de cráneos y huesos secos, entre hierbas, en el rastrojo, plantaciones de ajo, papas, cebollas, etcétera. También en galpones, depósitos y viviendas rurales.

Es tranquila, no agresiva. Sólo reacciona si se la molesta o cuando se la aprieta. En Argentina, es posible encontrarla aproximadamente por debajo del paralelo 28° (Córdoba) y hasta el 46° (Comodoro Rivadavia), y desarrolla su máxima actividad entre los meses de diciembre y marzo, época en que se encuentran los ejemplares adultos. En las provincias del norte, es factible hallar especies como *L. antheratus* y *L. corallinus* durante todo el año.

Para la provincia de Buenos Aires, varios autores (Cerruti, 1910; Sampayo, 1942) mencionan gran cantidad de accidentes provocados por esta araña, en los partidos de Pergamino, Junín y Pehuajó, zona donde hoy no se registran con la magnitud de entonces. Posiblemente esto se deba a la mecanización rural, la cual prácticamente ha eliminado la tarea de *braceros* en las cosechas. Situación contraria presenta el sur de la provincia, en los partidos de Médanos y Patagones, donde el levantamiento a mano de las cosechas, especialmente el ajo y la cebollín, coincide con la actividad máxima de esta araña, provocando endemia de latrodectismo.

### 8.3.2. Latrodectismo

En las distintas patologías humanas, hay enfermedades que tienen una signología tan particular que las hace inconfundibles. El latrodectismo es una de ellas. Esto permite considerarlo como una verdadera entidad en el campo de la medicina.

El veneno, de acción difusa sobre el sistema nervioso central, se transmite a los efectores periféricos actuando en la pre-sinapsis, provocando liberación descontrolada de acetilcolina. Al actuar esta sustancia en las placas musculares, estas se contraen. En glándulas (sudoríparas, salivares), provoca transpiración e hipersecreción, y la acción central produce estado alucinatorio y confusión mental.

A pesar de la variación que pueda haber en la cantidad de veneno inyectado, la región del cuerpo picada, la susceptibilidad del individuo, la edad, el peso y el estado general, el cuadro clínico que se presenta es siempre dramático y de rápida evolución.

La acción comienza generalmente después de los treinta minutos. Se observa excitación y angustia del enfermo, quien dice haber “sentido un pinchazo” en un punto determinado. Los casos registrados en la provincia de Buenos Aires no presentan reacciones o signos locales, salvo los dos pequeños puntos de inoculación, pocas veces visibles a simple vista.

Cuando la picadura se produce en los miembros, los dolores al comienzo son irradiados y progresivos desde el lugar de la picadura hacia la raíz de estos, concentrándose en las articulaciones. Luego, se localizan casi constantemente en la región lumbar, con contracturas de los músculos abdominales (“abdomen en tabla”), dolores viscerales y convulsiones tetánicas. Siguen contracturas de los miembros inferiores, con calambres en los pies y dedos. Puede haber ascenso de la temperatura en un comienzo, pero luego se presenta hipotermia, con abundantes sudores fríos. Palpitaciones cardíacas, aumento de la tensión arterial (T.A. 200-125 mmHg), retención de orina y, en casos graves, suele observarse priapismo y opistótono. Como signología infaltable, el cuadro se acompaña de transpiración fría con hipersecreción salival y nasal.
Los dolores hacen que el enfermo se “queje a gritos”, con llanto angustioso y sensación de muerte próxima. En este estado puede pasar de dos a tres días, luego irán cediendo los síntomas hasta desaparecer en cuatro o cinco días más, quedando, durante la convalecencia, astenia por más de treinta días, con fatiga física y mental. La muerte, aunque muy rara, puede sobrevenir por paro respiratorio.

Conclusión: la ausencia de signos locales y el cuadro general, con predominio de manifestaciones neurológicas, determinan el latrodectismo.

Tratamiento: ante la sintomatología descripta, el suministro de sedantes, analgésicos y relajantes musculares, disminuye los síntomas particularmente dolorosos (meprobamatos, diazepan, clorpromacina o sales de calcio). Pero este tratamiento sintomático no siempre brinda un total éxito terapéutico, ya que, luego de un período de relajación, pueden reaparecer los síntomas con mayor intensidad. La cura definitiva consiste en la eliminación total del veneno. La neutralización rápida y total se logra únicamente con la aplicación del antiveneno específico antilatrodectus.

8.4. Género Loxosceles (Heineken y Lowe, 1832)

8.4.1. Especies y características

Del género Loxosceles se han descripto para América aproximadamente cincuenta especies. De ellas, la Loxosceles laeta (Nicolet, 1849) tiene una amplia distribución en Sudamérica. Se encuentra en Chile, Argentina, Uruguay, Brasil, Perú y Venezuela.

En realidad, esta araña no tiene nombres vulgares bien definidos, siendo para nosotros la “araña de los rincones” o “la de atrás de los cuadros”, para los norteamericanos, “brown spider” y para Brasil, “aranhas marrons”. También se denominó (en Argentina y en la década del cuarenta) “araña homicida”, pues en los accidentes mortales por arañas no se podía hallar el ejemplar agresor.

Es una araña pequeña, débil y muy escurridiza. Mide entre 8 y 15 milímetros (sin contar las patas). El cefalotórax y las patas son del mismo color, castaño rojizo o acaramelado. El abdomen es más oscuro y grisáceo, pero cuando está dilatado por la alimentación y/o por desovar se observa más claro.

Realiza una tela blanca, de aspecto suave y algodonoso que tapiza la entrada de la cueva.

Sus hábitos son tanto caseros como rurales, pero siempre sedentarios, cavernícolas y de actividad nocturna. Vive en rincones, grietas de paredes, detrás de muebles, cuadros y en lugares oscuros y de poca higiene. Se encuentra en galpones de almacenamiento de pasto, cereales y arneses rurales de poco uso. Un gran porcentaje de los accidentes que ocasiona se relaciona con el manipuleo de ropa en desuso o abandonada, donde también habita.

Una de las características propias de este género es la disposición de sus ojos: seis, dispuestos en tres pares. Un par anterior (delante del cefalotórax) y, un poco más atrás, un par a cada lado, formando un triángulo. Son nocturnos, brillantes y visibles al reflejo de una luz.

• Loxosceles laeta: fue clasificada por Nicolet en año 1849, pero su poder ponzoñoso recién se conoce a partir de 1937, gracias a Machiavello (Chile), que la menciona en su Historia del Araneísmo. Este investigador completa sus observaciones diez años después: en su primera observación descubre que del efecto de “quemadura” con necrosis local, “placa marmórea” y/o “mancha gangrenosa” provocado por picaduras de arañas y atribuido a distintas especies sólo era responsable la Loxosceles; y más tarde, en 1947, que también correspondía a esta especie el cuadro hemolítico, con hemoglobinuria, ictericia y muchas veces muerte por insuficiencia renal.
Este descubrimiento tardío del Loxoscelismo ha hecho que la mayoría de los trabajos publicados sobre araneísmo con anterioridad a las fechas mencionadas incurrieran en errores al confundir los efectos de los venenos de las arañas, llegando a conclusiones desacertadas al mencionar como responsables de la sintomatología descripta a la *Latrodectus*, la *Lycosa*, la *Segestria*, la *Polybetes* y la *Filistata*.

8.4.2. Loxoscelismo

El veneno es de acción mayormente necrosante local sobre el tejido cutáneo, denominándose a esta forma de araneísmo “necrótico cutáneo simple” o “loxoscelismo cutáneo”. En pequeño porcentaje, también puede provocar un cuadro grave y generalizado, llamado “necrótico cutáneo hemolítico”, “cutáneo visceral”, “víscero-hemolítico” o “loxoscelismo sistémico”, entre otros.

En la forma benigna, de presentación más común, el accidentado refiere haber sentido un “pinchazo” y tener un dolor “quemante” en un lugar determinado. El dolor es constante y bien localizado. Después de una a tres horas, la acción necrótica del veneno comienza a actuar sobre los capilares dérmicos, produciendo destrucción endotelial, coagulación, trombosis y necrosis de los vasos. Esta acción da una signología local que varía mucho de un accidente a otro. En general, los síntomas y signos son: pápula dolorosa, edema duro periférico, flictenas con contenido seroso o serohemático, mancha violácea con halo isquémico, “placa marmórea”, precursora de la “mancha gangrenosa” de los autores chilenos, que en días siguientes va convirtiéndose en una escara oscura y seca, semejante a una gangrena vascular, que varía de uno a treinta centímetros o más. Aproximadamente entre dos a tres semanas después de la picadura, la escara se contrae, se desprende y cae, dejando una ulceración que demora hasta varios meses en curar y deja una cicatriz viciosa.

Estos signos locales suelen estar acompañados con malestar general, estado febril leve e insomnio provocado por el dolor local, suave, pero constante.

Si a estas manifestaciones locales se suman, además, síntomas generales con complicaciones sanguíneas, hepáticas y renales (observado en pocas oportunidades), el cuadro se hace de extrema gravedad y puede llegar a provocar la muerte.

No hay relación entre los síntomas locales y generales, ya que una pequeña ampolla rojiza o punto oscuro rodeado de una zona morada puede ser acompañado, horas más tarde, por síntomas generales; o, por el contrario, una gran mancha gangrenosa, de aproximadamente treinta centímetros, puede no ser acompañada por manifestaciones generales de relevancia.

Cuando la sintomatología es grave, el cuadro se instala entre seis, quince o veinte horas, con malestar general, escalofríos, cefaleas, postración, estado nauseoso, acompañado de hemólisis intravascular severa, hemoglobulinuria, hipertermia, ictericia, anemia hemolítica, oliguria o anuria que se mantiene hasta la muerte, entre el segundo y el décimo día, por el grave compromiso renal.

8.4.3. Tratamiento

En principio, se debe aclarar que es probable que una persona adulta dormida no sienta la picadura en forma inmediata, pero luego de un período de descanso de aproximadamente dos horas se despierte con un dolor punzante y quemante en un lugar determinado. En caso de niños, se despiertan con fuerte llanto. Lo más común es que el accidentado se dé cuenta en el momento de recibir el “pinchazo”, le reste importancia al animal agresor, lo destruya y no lo conserve para su determinación.

Contrariamente a lo que sucede con las picaduras de *Latrodectus*, muy dolorosas en la primera hora, en el loxoscelismo el afectado no le da trascendencia al accidente, más si es un adulto, pues el dolor es soportable. De esta manera deja pasar aproximadamente seis horas. Luego de este período, el dolor “quemante” suave, pero constante, lo preocupa y recién recurre al auxilio médico.

Hasta hoy no hay tratamientos que impidan la diseminación venenosa ni el desarrollo de la necrosis local. Por lo tanto, debemos destacar que no se deben abrir las ampollas o flictenas, desprender las escaras ni inyectar medicación alguna sobre la herida, ni siquiera el suero específico.
Las afecciones locales se pueden tratar sin métodos ni sustancias que trastoren la evolución, ayudando a que el tejido se regenere progresivamente, como en el caso de una quemadura. Las compresas húmedas alcalinas, pomadas antisépticas y antiinflamatorias, polvos vulnerarios, bien usados, son eficaces. Pero esta signología local, importante para el diagnóstico, no debe ser tratada en forma inmediata, pues no es influyente en el estado de envenenamiento general que pudiera tener el accidentado.

Si en las primeras tres a seis horas el accidentado solamente presenta síntomas y signos locales (ampollas, sensación quemante, pequeña sufección), no hay que dejar de controlar la evolución en las próximas veinticuatro horas, ya que una forma aparentemente benigna puede complicarse horas más tarde por la aparición de un cuadro hemolítico más o menos importante. En este periodo expectante, de observación, se debe vigilar y proteger la función hepática y, sobre todo, la renal, manteniendo un buen equilibrio hidro-salino e iónico. Pasado el periodo de veinticuatro horas, y si no hay sintomatología general, se define como un “loxoscelismo cutáneo simple”, lo que significa que la vida del accidentado no está en peligro.

Por el contrario, si se manifiestan síntomas generales como subictericia, hipotermia, cefaleas, náuseas, vómitos, escalofríos, insomnio, y/o hemoglobinuria, se debe actuar con un tratamiento intensivo propio de la gravedad que presente, hasta ser necesaria la exanguinotransfusión y diálisis peritoneal, para conseguir la completa desaparición de los síntomas generales. El suministro de corticoesteroides inyectables ha dado buenos resultados terapéuticos.

Lógicamente, lo decisivo que asegura la evolución favorable del accidentado está en la posibilidad de obtener y suministrar suero específico antiarácnido del Instituto Butantan del Brasil, o anti-Loxosceles del Instituto Nacional de Salud de Perú, únicos productores en Sudamérica de este importante elemento terapéutico. Lamentablemente, este suero pocas veces está disponible en Argentina. La dosis y vía de aplicación son bien precisas en las indicaciones que acompañan las ampollas de suero, que serán de cinco a diez ampollas por vía endovenosa como mínimo.

8.5. Arañas que originan mayores consultas

Además de las arañas de interés médico toxicológico, como la *Latrodectus* y la *Loxosceles* antes descriptas, a continuación se suministran datos de arañas que suelen encontrarse en convivencia con el hombre. En la mayoría de los casos, no han producido accidentes y sólo han sido llevadas a distintos servicios con la preocupación de su posible peligrosidad.

8.5.1. De hábitos domiciliarios

- *Pholcus phalangioides* (Fuesslin, 1775): a esta especie, si bien la consulta es permanente, difícilmente se la conserve para su determinación, ya su descripción no deja dudas de quién se trata. Es la “Araña de patas largas”, infaltable en todas las casas. En una esquina, entre las paredes y el techo blanco del techo raso, resalta con una tela muy suave e irregular. También pueden hallarse en sótanos, depósitos y bibliotecas. El cuerpo, que mide entre cinco y diez milímetros aproximadamente, es de color rosa claro amarillento con una mancha oscura en el centro del cefalotórax. Sus patas son largas y finas, con manchas oscuras en las articulaciones. La araña se sitúa en el centro de la tela con el dorso hacia abajo. Cuando se la molesta, se mueve rápidamente en forma de vaivén. Es una especie totalmente inofensiva para el hombre.

- *Kukulcania hibernalis* (Hentz, 1842). Anteriormente, *Filistata hibernalis* (en el año 2000 pasó a sinonimia): es una de las arañas más comunes en el interior de las casas. Difícilmente sobrepasen los veinte milímetros de envergadura (sin incluir las patas). El color de la hembra es pardo oscuro a negro y el del macho es marrón claro, a excepción de los trocánteres, que son muy claros, casi blancos, lo que resulta una característica fundamental de identificación, pues forma una
“corona” clara alrededor del cefalotórax. En grietas de las paredes, marcos de puertas y ventanas, realizan una tela de caza plana y pegada a la superficie, con un tubo cercano que denuncia su presencia interior. Cuando se toca suavemente la tela, la araña sale rápidamente en busca de su alimento. En los pocos casos que se ha podido certificar un accidente provocado por esta especie, resultó ser inofensiva para el hombre.

- **Scytodes globula** (Nicolet, 1849). Anteriormente, **Scytodes maculata** (Holmberg, 1876), en el año 2000 pasó a sinonimia: especie de aproximadamente cinco a ocho milímetros, el color de base del cuerpo es amarillo claro, casi cubierto por manchas oscuras de marrón a negro. La característica más conspicua para su determinación es el color de sus largas y delgadas patas: poseen manchas oscuras anilladas sobre el fondo claro. Con preferencia, habita lugares oscuros y húmedos como sótanos, depósitos y bodegas. Como todas las arañas, posee glándulas de veneno, pero en esta especie las glándulas están algo modificadas, pues, además del veneno, producen una tela especial pegajosa para la caza, que la “escupen” sobre la víctima y así la capturan para su alimentación. Esta característica hace que no se considere peligrosa para el hombre. Existe otra especie cosmopolita, **Scytodes thoracica** (Latreille, 1802), con el mismo estilo y características, pero algo más pequeña (de tres a cinco milímetros).

- **Achearanea tepididorium** (Koch, 1841): esta araña, con diez a quince milímetros de envergadura, vive debajo de mesadas de cocina y piletas, detrás de muebles, preferentemente en ambientes húmedos. Reposa en su tela irregular, con su parte dorsal hacia abajo, con una posición y silueta que se asemeja a la “Viuda negra” (**Latrodectus**). Se diferencia por su colorido gris claro veteado de marrón y negro. Cuando se la molesta, se deja caer al suelo como una pelotita y simula estar muerta. No se registraron accidentes por esta especie. Es considerada inofensiva para el hombre.

### 8.5.2. De hábitos peridomiciliarios

- **Lycosa poliostoma** (Koch, 1847): “Corredora de jardín” es el nombre vulgar más común. Vive entre el pasto, debajo de piedras y troncos. Es la especie que más abunda en parques y jardines de las casas. Con las lluvias o cuando se inunda un parque, es frecuente que entre en las casas. Hay ejemplares de más de veinticinco milímetros (sin contar las patas). El color general es variable, pudiendo ser de pardo claro a oscuro, con dos bandas gris oscuro o negras longitudinales sobre los costados del cefalotórax, y una del mismo color central sobre el abdomen. El vientre es negro. La ooteca o “bolsita” con los huevos la transporta pegada en el extremo del abdomen, y cuando las crías nacen se trepan sobre la madre. Si alguien la golpea, las crías se expanden rápidamente asustando aún más a la persona que quiso terminar con “una” araña.

Su picadura es muy rara. De producirse el accidente, el dolor ardiente es inmediato y se irradia hacia la articulación correspondiente de la zona picada. Localmente se forma una púpula blanquecina, rodeada de un área congestionada e inflamada. Puede haber inflamación y dolor de los ganglios regionales. No es raro que en el mismo sitio de la picadura se forme una pequeña necrosis cutánea. Hasta la década de 1950, en la bibliografía sudamericana, se le asignaron accidentes de suma gravedad e incluso casos mortales. Posteriormente se consideró un error en la determinación etiológica. Actualmente se estima de regular importancia médica, sin influencia toxicológica.

- **Polybetes pythagoricus** (Holmberg, 1875): conocida como “Arañón”, “Araña cangrejo”, “Araña del monte”, “de los eucaliptos”, etcétera. Su longitud puede llegar hasta los cuarenta milímetros. Las patas se alargan hacia los costados como las de los cangrejos. El cuerpo es aplanado, con abdomen de color leonado con manchas negras en el dorso y en el vientre, donde se forma un triángulo oscuro.
Prefiere lugares altos, árboles, enredaderas, debajo de la corteza de los árboles, preferentemente eucaliptos. De costumbres vagabundas, no construye nido. Es frecuente en las habitaciones con los cambios bruscos de temperatura (tormentas de verano). Es muy agresiva y pica cada vez que se le ofrece, pero su gran tamaño y el dolor inmediato que provoca hace que el accidentado le dé caza y la conserve para su determinación.

Casi inmediatamente luego del accidente, en el sitio de la picadura, se puede formar un edema doloroso de uno a seis centímetros de diámetro, con ligera parestesia cutánea. En algunos casos, entre los primeros treinta minutos se forma una papula blanquecina. La anestesia puede abarcar el miembro afectado con sensación de “adormecido y pesado”, acompañado de malestar general. Generalmente, a las tres horas cede el edema y desaparece la parestesia, quedando el miembro “pesado y flojo”. En ese período, puede haber debilidad, mareos, escalofríos, cefaleas y astenia. Estos síntomas desaparecen sin ningún tratamiento luego de cinco a diez horas.

Hecho el diagnóstico de araneísmo por Polybetes, dado por la determinación del animal y los síntomas descriptos, sería conveniente no dar ninguna medicación, salvo sedantes para tranquilizar al accidentado si fuera necesario. Si el dolor local es intenso y persistente, excepcionalmente puede ser útil efectuar infiltración local con Xilocaína al 2%. Pero, en general, como se mencionó anteriormente, los síntomas locales desaparecen en tres horas aproximadamente y los neurotóxicos (debilidad, mareos y cefaleas), entre seis y ocho horas.

No existe suero específico para esta especie, y los disponibles no tienen ninguna acción curativa sobre el accidentado.

- **Argiope argentata** (Fabricius, 1775): araña típica de jardín. Entre las plantas realiza una tela en espiral, simétrica y perfecta, con un diámetro que va desde los treinta centímetros hasta más de dos metros. El animal se instala en el centro de la tela con sus patas unidas de a dos, formando una “X”. El dorso del abdomen es escarpado, rugoso y de color blanco plata brillante en su porción máxima. El resto, la parte ventral y el cefalotórax, es gris oscuro a negro, con bandas y puntos amarillo claro. Las patas poseen anillos de colores que alternan el negro con amarillo. No es común que produzca accidentes en el hombre. Aunque su picadura es dolorosa con inflamación local, se disipa en una o dos horas aproximadamente sin tratamientos especiales.

- **Dysdera magna** (Keyserling, 1877): esta araña se caracteriza por sus largos quelíceros que se cruzan en la parte ventral del cefalotórax. Vive debajo de las piedras y troncos, lugares húmedos. En su colorido predomina el rojo o naranja, sobre todo en la parte anterior del cuerpo, y el abdomen es pardo claro. Su tamaño no excede los veinte milímetros. Si bien es raro que pique, cuando esto sucede provoca una pequeña pápula local acompañada por dolor urente, síntomas que ceden aproximadamente en treinta minutos. Pero el aspecto de la araña con sus largos quelíceros hace que el accidentado procure atención médica.

- **Segestria ruficeps** (Guérin, 1832): esta ágil araña de aproximadamente quince milímetros tiene el cefalotórax de color gris oscuro, casi negro, y el abdomen un poco más claro. Se distingue fácilmente por el color de los quelíceros: verde esmeralda en las hembras y reflejos dorados en el macho. Construye una tela en forma de tubo entre ladrillos de las paredes o entre las corteza de los árboles donde suele vivir. A esta especie, desde el inicio de los estudios sobre araneísmo, se le ha atribuido accidentes graves y algunos casos mortales. Imputaciones vagas y sin confirmación, ya que las observaciones actuales de sus picaduras no revelan la importancia toxicológica que se les dio entonces. Sin embargo, dado los pocos casos documentados, con signología local leve y poco dolorosa, pero con compromiso general con cefalea y a veces vómitos e hipertermia, es recomendable que el equipo de salud tome las precauciones del caso, con tratamiento sintomático expectante por veinticuatro horas.
Grammostola burzaquensis (Ibarra Grasso, 1946): esta araña, llamada vulgarmente “Araña pollito”, tiene un tamaño que puede superar los ochenta milímetros. Es de color marrón oscuro con reflejos pardo rojizo. Algunas especies tienen en sus patas unas bandas claras amarillentas. Vive en cuevas que cava en la tierra, por debajo de piedras o troncos. Cuando es molestada, actúa con un curioso método de defensa: con sus patas traseras se roza la parte posterior del abdomen y desprende unos finos pelos urticantes, los que flotan en el aire y, en contacto con la piel, producen irritación y ardor, y si son inhalados producen crisis de estornudos. Se puede considerar inofensiva para el hombre, pues por su temperamento manso difícilmente se decida a clavar sus quelíceros.

9. Escorpiones o alacranes (experiencia en la provincia de Buenos Aires)

En los últimos años, la preocupación de la comunidad por el hallazgo de numerosos escorpiones cercanos a sus viviendas, e incluso dentro de ellas, ha hecho que la Facultad de Ciencias Médicas de La Plata, juntamente con la Coordinación de Centros Antiponzoñosos de la provincia de Buenos Aires, habilitara un servicio a la comunidad, informando y determinando numerosos ejemplares enviados de la provincia, así como de provincias vecinas.

9.1. Morfología

Para una descripción práctica de la morfología externa de estos arácnidos, observamos tres partes principales: la cabeza (prosoma), donde se observan los pedipalpos o "pinzas", que no poseen veneno y sirven para sujetar su alimento, los quelíceros, los ojos y sus cuatro pares de patas; el abdomen (mesosoma), segmentado en siete partes; y la cola (metasoma), de cinco segmentos y que termina en el telson, donde se encuentra el dispositivo venenoso. El telson tiene forma bulbosa, terminado en una punta o “aguijón”, y contiene en su interior las glándulas productoras de veneno que utiliza para matar a sus presas o defenderse.

Los escorpiones, que pertenecen a la clase de los arácnidos, están entre los primeros habitantes de tierra firme y pueblan nuestro suelo desde hace más de 300 millones de años. Viven bajo el suelo, en profundas cuevas y túneles que ellos realizan. También se los encuentra en pilas de madera, bajo piedras, troncos, bosta seca. Algunas especies se adaptan bien al ambiente doméstico, pudiendo ser encontrados en leñeros y materiales de construcción, como asimismo en las cloacas y tuberías de agua y electricidad. Muestran mayor actividad en primavera y verano, y un semi letargo en invierno. Se alimentan de insectos y arañas. Dado sus hábitos nocturnos, no es común verlos durante el día.

Para la provincia de Buenos Aires, se ha citado la mayor cantidad de variedades: siete géneros de escorpiones con dieciséis especies.

En cuanto a la importancia médico toxicológica que pudieran ocasionar estas especies, se conoce la peligrosidad del Tityus trivittatus, como también la casi inocuidad del Botrhiurus bonariensis. En otras especies, como el Vachonia martinezis, hasta la actualidad y dado el reducido número de ejemplares capturados, no ha sido posible evaluar la potencia de su veneno o consecuencias en un accidente.

Respecto a la distribución del Tityus trivittatus en la provincia de Buenos Aires, Ringuelet en 1953 comunica la presencia de esta especie en la costa noreste de la provincia (desde San Nicolás hasta Magdalena). Maury, en 1974, desplaza la distribución más al sudoeste. Es una novedad reciente la presencia del Tityus trivittatus en el centro de la provincia (ciudad de Pehuajó).

De los trabajos consultados, anteriores a 1975, no se ha encontrado ningún caso de escorpionismo grave en la provincia de Buenos Aires. A partir del año 1975 y con la creación de los
Centros Antiavénosos, se ha trabajado con mayor insistencia en la recolección de datos sobre los accidentes provocados por animales venenosos. Si bien se obtuvo mayor conocimiento sobre los escorpiones y sus consecuencias, aun así no tenemos registrado ningún caso grave ni utilización de suero específico en los últimos veinticinco años. El Centro de Asesoramiento Toxicológico del Hospital de Niños de La Plata, hasta fines del año 1999, ha sido consultado por numerosos casos de picaduras por escorpiones, sin embargo, no se pudo observar la sintomatología clásica de estos accidentes ni efectuar tratamiento sintomático a pacientes que solamente presentaban leve dolor local.

9.2. Accidente

Ocurre cuando inadvertidamente se lo pisa o se lo toca con alguna zona del cuerpo. El animal levanta la cola, clava su extremo y por el telson inyecta el veneno, provocando dolor local inmediato, muy intenso e irradiado. Se observa un punto por donde penetró el veneno. El género Tityus, en casos graves y especialmente en niños, puede llevar a fenómenos sistémicos como arritmia cardíaca y edema agudo de pulmón.

9.3. Tratamiento

El Instituto Butantan de Brasil elabora un suero específico para estos accidentes, aunque en la mayoría de los casos opta por un tratamiento sintomático, dejando el específico para los accidentes de extrema gravedad. También en Argentina este suero ha sido utilizado en pocos casos, dado lo dificultoso de conseguir para una cobertura sanitaria. El tratamiento sintomático resulta muy efectivo, al menos para las especies de nuestro medio. Se basa en infiltraciones locales con anestésicos del tipo Xilocaina (sin adrenalina) en dosis de 4 ml, repetidas a intervalos de una a dos horas. Aplicaciones locales de compresas húmedas tibias alivian el dolor y facilitan la circulación.

9.4. Material enviado para su determinación

En el transcurso de ocho años (1992/99), del interior de la provincia y de los alrededores de la Capital Federal se enviaron al Laboratorio de Animales Venenosos (Facultad de Ciencias Médicas, UNLP) para su determinación aproximadamente 450 escorpiones, siendo la mayoría Bothriurus bonariensis, especie de una amplia distribución provincial.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bothriurus bonariensis</td>
<td>Toda la provincia.</td>
</tr>
<tr>
<td>Bothriurus flavidus</td>
<td>Azul.</td>
</tr>
<tr>
<td>Bothriurus prospicuus</td>
<td>Centro, oeste y sur de la provincia.</td>
</tr>
<tr>
<td>Brachistosternus sp.</td>
<td>La Matanza (transporte accidental).</td>
</tr>
<tr>
<td>Timogenes elegans</td>
<td>Carmen de Patagones.</td>
</tr>
<tr>
<td>Urophoniuis iheringi</td>
<td>Chivilcoy.</td>
</tr>
<tr>
<td>Tityus trivittatus</td>
<td>San Pedro, Ramallo y La Plata.</td>
</tr>
<tr>
<td>Vachonia martinezi</td>
<td>Monte Hermoso.</td>
</tr>
</tbody>
</table>
Varios autores (Sacón, 1928; Maury, 1970; Martino, 1979; Tomassone, 1994; Maury, 1997; Del Valle Luna, 1997) suministran datos epidemiológicos de escorpionismo y reúnen solamente ocho muertes en setenta años (hasta 1997) por estos artrópodos en todo el país. No registrando ningún caso en la provincia de Buenos Aires (Corrientes: 1 caso; Santa Fe: 1 caso; Santiago del Estero: 4 casos; Tucumán: 1 caso; Córdoba: 1 caso).

En el centro y sur de nuestro país, el escorpionismo no representa hasta el presente un problema sanitario, pero no ocurre lo mismo en las provincias del norte, sobre todo en Santiago del Estero, donde en los últimos cuatro años (1998-2001), el Instituto de Animales Venenosos “Dr. J.W. Ábalos” registra cuatrocientos accidentes con un un caso mortal. Tucumán es otra provincia con una considerable información epidemiológica que revela la importancia toxicológica que tienen estos accidentes. El resto de las provincias del norte, con la misma problemática, no ha brindado información como para hacer una evaluación consciente.

No son las víboras, las arañas o los escorpiones los que asustan a la gente, es el desconocimiento y la mala información que la lleva al pánico. Tal es el caso de los “escorpiones venenosos” aparecidos en la ciudad de La Plata (junio-julio de 1997). Distintos periódicos dedicaron grandes espacios con extraños comentarios de supuestos especialistas en el tema. Entre los errores que la población recibió en forma impulsiva, se pudo leer que “los escorpiones pertenecen a la clase de los insectos”, “ponen sus huevos en una bolsita de tela que luego esconden entre las maderas”, “llegaron a La Plata en cargamentos desde Brasil”, “una persona picada muere, si no es tratada antes de los 45 minutos”, y otras incoherencias más que hacían que, si en ese momento hubiese habido un accidente por escorpión, el accidentado estuviera más expuesto a recibir una asistencia irracional cercana al curanderismo que a un tratamiento consciente y sintomático de acuerdo con su importancia.

Sobre este tema existe una falencia técnica y formativa de los involucrados en el tema que compromete seriamente a la comunidad expuesta, ya que en la mayoría de los casos se exagera el poder ponzoñoso de estos arácnidos, mientras que en zonas con posibilidad de escorpionismo grave no se efectúa ninguna prevención hasta no presentarse un caso fatal. Se hace necesario recomendar una restauración y actualización terapéutica del equipo de salud.

10. Aguas vivas

10.1. Especies

Los accidentes por “aguas vivas” ocurren durante la temporada de verano en la costa atlántica de la provincia de Buenos Aires. Dada las consultas y el interés del equipo de salud por este grupo zoológico, se suministra una breve información.

Es común ubicar y/o confundir a las “aguas vivas” con los vegetales marinos. Si bien estuvieron durante largo tiempo incluidas en los Zoolitos (intermedio animal-vegetal), desde el siglo XVIII se las clasificó en el Reino Animal como pertenecientes a los Celenterados. Se observan dos tipos morfológicos: uno fijo al suelo, adherido por uno de sus extremos, conocido como pólipos, y otro que nada libremente y recibe el nombre de medusa. Estos últimos son celenterados de valor médico toxicológico y a los que pertenecen las “aguas vivas”. Estas tienen el cuerpo gelatinoso, transparente, a veces azulado, rosado o violáceo, en forma de campana con la parte convexa hacia arriba, y del borde inferior (cóncavo) se desprenden numerosos y finos filamentos en forma de cabellera denominados tentáculos. Su tamaño puede pasar los treinta centímetros de diámetro, aunque por lo general no exceden de quince centímetros. En los tentáculos se encuentran células especiales que contienen en su interior una cápsula con líquido urticante y un filamento enrollado que cuando es
tocado, sometido a presión o al cambio del líquido que lo rodea, rompe la cápsula, se dispara y se clava en la persona que tomó contacto.

Las “aguas vivas” se mueven libremente y pueden hallarse aisladas o en grandes grupos, presentándose en las costas gracias a las corrientes marinas, vientos y mareas, siendo muy abundantes entre los meses de diciembre a marzo, época en la que ocurren los accidentes.

Los síntomas de estos accidentes son: dolor inmediato con sensación de quemadura en la parte afectada, que luego se irradia con calambres y dolores articulares. Pueden presentarse problemas respiratorios similares al ataque asmático de aproximadamente treinta minutos. El accidentado tiene escalofríos, nerviosidad, debilidad, palidez y a veces náuseas y vómitos.

En general, a mayor tiempo de contacto con el animal y cantidad de pinchazos, más grave resulta el accidente. Aquellas personas que ya han sufrido este accidente en reiteradas oportunidades pueden llegar a manifestar una fuerte reacción alérgica.

Luego de una tormenta, cambios de marea y/o vientos, es normal encontrar “aguas vivas” muertas en la playa. A pesar de ello, los filamentos dispersos por la arena aún tienen su dispositivo venenoso expuesto y las personas pueden llegar a pisarlos o recostarse sobre ellos. Este contacto provoca la misma sensación quemante que si el encuentro hubiera sido en el agua y con el celenterado vivo.

Como todas las recomendaciones sobre el tratamiento de accidentes por animales venenosos, se aconseja recurrir al médico lo antes posible. No obstante, se sugieren medidas de primeros auxilios con el fin de aliviar la sintomatología descripta.

No se debe lavar la herida con agua dulce ni con bebidas gaseosas, tampoco frotar la zona afectada con arena ni secar con toalla. El área de dolor se debe lavar primero con agua de mar, luego con alcohol o vinagre. Para quitar las células que aún quedan intactas sobre la piel, hay que utilizar algún polvo seco (harina, talco) y luego quitarlo pasando suavemente un cuchillo o cartulina sin dañar la piel.

Los accidentes pueden ser de variada gravedad, y si bien han ocurrido casos severos, en la provincia de Buenos Aires, donde los accidentes son muy frecuentes, no se han registrado casos mortales.

10.2. Tratamiento

La acción local es aliviada con corticoides de uso local (pomadas, cremas). Para los síntomas generales se utiliza medicación sintomática que mantenga la normal transmisión neural, gluconato de calcio para contrarrestar los calambres y dolores articulares y broncodilatadores y oxígeno para la dificultad respiratoria tipo asmática. En los casos con manifestaciones alérgicas más severas, se recurre a corticoterapia por vía parenteral.
Bibliografía

Abalos, J. W., Las arañas del género Latrodectus en la República Argentina, La Plata Tomo VI, Centenario Museo, 1980.
Capocasale, R. M., Breviario de Araneología, Motevideo, 1999.
Laín Entralgo, P., Historia de la Medicina, Salvat, 1979.
Instituto Butantan, Manual para atendimiento dos accidentes humanos por Animais Peçonhentos, Sao Paulo, 1982.
Orrego Aravena, R., Reptiles de La Pampa, Bib. Pempeana N° 14, 1971
Ringuelet, R. A., Geonemia de los escorpiones en la Argentina (distribución), Museo de la UNLP, Tomo VI, Sec. Zoo, 1953.
1. Introducción

Los pesticidas o plaguicidas son sustancias químicas y agentes físicos o biológicos que se utilizan para la destrucción o control selectivo de especies animales o vegetales consideradas dañinas para los seres humanos, sus cultivos, ganados o criaderos. Suele clasificárselos según las plagas sobre las que tienen efecto (Vallejo Rosero, 2006: 121):

- Insecticidas: actúan sobre los artrópodos, sus diversas clases.
- Fungicidas: actúan sobre los hongos.
- Herbicidas: actúan sobre hierbas y otras especies vegetales (por ejemplo, desfoliantes y arboricidas).
- Rodendicidas: actúan sobre ratas y otros roedores.

Desde hace centurias se han aplicado pesticidas para la protección de cultivos, aunque no se conociera aún la transmisión de enfermedades humanas por vectores.

El concepto moderno de plaguicida surgió en el siglo XIX, cuando se inició la aplicación programada de productos químicos en la agricultura. Los primeros compuestos, a excepción del formaldehído, eran de naturaleza inorgánica. Se redescubrió la utilidad del azufre (polisulfuros de calcio y sulfatos básicos de cobre). El estudio de compuestos arsenicales originó el empleo del arséniato de cobre para controlar un tipo de escarabajo en EE.UU., y su difusión promovió la primera legislación conocida sobre pesticidas en el año 1900. En la primera mitad del siglo XX se aplicaban el piretro, las sales de arsénico y otros compuestos inorgánicos (cobre, plomo, boro).

El descubrimiento del DDT (dicloro-difenil-tricloroetano) como agente insecticida fue un hito en la lucha contra los vectores de enfermedad. Se trataba de una sustancia conocida1 a la que el suizo Paul Müller, investigador en los laboratorios Geigy de Basilea, perfeccionó y aplicó a esa función en 1939. En 1942 se utilizó para contener una epidemia de tífus exantemático en Nápoles, y posteriormente en las campañas de la Segunda Guerra Mundial. Müller obtuvo el Premio Nobel de Medicina y Fisiología en 1948.2

El uso del DDT, después de la guerra, se extendió a plagas agrarias y vectores de enfermedades humanas, y fue una de las claves en la erradicación del paludismo en Europa y otras regiones del mundo, incluyendo Argentina.

Las intoxicaciones agudas por DDT, aun en los casos de aplicación directa sobre las personas (por ejemplo, tífus exantemático), no siempre son fatales, pero su persistencia y efectos residuales y magnificación en la cadena alimentaria fue causando preocupación desde finales de la década de 1960 (Astolfi, 1982: 156).

__NOTAS__

1 La primera síntesis del DDT fue hecha por el químico alemán Zeidler en 1874, por lo que el producto se llamó originalmente Zeidine. En 1939 se comenzó a usar contra la polilla.

2 En 1947 lo había merecido el argentino Bernardo Houssay por investigaciones en el campo de la endocrinología.
Otros descubrimientos importantes fueron el hexaclorocicloexano (HCH), utilizado desde mediados de la década de 1940 como insecticida. Ya a partir de la segunda mitad del siglo xx se aceleró la síntesis de productos organofosforados (malation, 1950) y carbamatos (carbaryl, 1956).

Para fines del siglo xx, la OIT estimaba que se utilizaban alrededor de 750.000 productos en la agricultura y que cada año se agregaban miles más.

La mayoría de ellos son productos de síntesis y al principio activo se agregan solventes y aditivos con potencial toxicidad. Se calculan veinticinco millones de intoxicados anuales sólo en los países subdesarrollados por estas sustancias (Rodríguez, 2005: 100).

En un estudio realizado en el Departamento de Sevilla del Instituto de Toxicología se señala que los plaguicidas más frecuentemente encontrados en casos de intoxicaciones fatales son: organofosforados (40,16%), carbamatos (33,02%) y organoclorados (12,75%). En la mayoría de los casos se pudo relacionar la muerte con una ingesta voluntaria del plaguicida, y en un número menor se trató de una ingestión accidental (Repetto y cols., 1997).

2. Clasificación

La clasificación de los pesticidas resulta compleja, ya que tienen gran cantidad de estructuras químicas diferentes. Una forma accesible es clasificarlos en base a las plagas que controlan; otra en función a la familia química a la que pertenecen, proporcionando también información acerca de su toxicidad.

La clasificación en orden cronológico es la siguiente:

- **De 1ª Generación:**
  - Inorgánicos (arsénico, polisulfuros, cúpricos).
  - Orgánicos Vegetales (piretrinas naturales, nicotina).
  - Orgánicos Minerales (aceites minerales).

- **De 2ª Generación:**
  - Orgánicos Sintéticos.
  - Clorados (DDT, HCH, heptacloro).
  - Fosforados (Parathión, Malathión).
  - Carbamatos (Carbofuram, Carbaryl).
  - Piretroides (Permetrinas, Deltametrinas, Cipermetrinas).

- **De 3ª Generación:**
  - Microbianos:
    a. Ferormonas.

- **De 4ª Generación:**
  - Hormonas juveniles (Diflubenzurom).

- **De 5ª Generación:**
  - Antihormonas:
    a. Vegetal (Precocenos).
    b. Microorganismos (Avermectin).

Dentro de los pesticidas mencionados, los de segunda generación son los más utilizados.
3. Insecticidas

La mayoría de los insecticidas que se utilizan actualmente son organosintéticos y se agrupan según su composición química.

3.1. Compuestos organoclorados

Los organoclorados fueron los primeros plaguicidas utilizados en gran escala, en especial el DDT, y por cierto permitieron controlar los vectores de enfermedades endémicas como el paludismo\(^3\), la filariasis\(^4\) y la oncocercosis\(^5\).

El DDT es el compuesto prototipo del grupo y su estructura química es \(2,2\)-bis-(\(p\)=clorofenil)1,1,1, tricloroetano (DDT). Su fórmula es la siguiente.

<table>
<thead>
<tr>
<th>Estructura química del DDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Cl} \quad \text{C} \quad \text{H} \quad \text{Cl} \quad \text{CCl}_3)</td>
</tr>
</tbody>
</table>

Los organoclorados son hidrocarburos cíclicos sintéticos, sustancias estables, solubles en lípidos y poco solubles en agua.\(^6\) Su resistencia a factores ambientales, lenta biotransformación y gran movilidad al adherirse a partículas de polvo y al agua en evaporación, los transportan a grandes distancias, los convierten en persistentes en el medio ambiente y agresores ecológicos. Tienen un amplio espectro tóxico en las especies animales. Los insecticidas DDT, aldrín y eldén están incorporados a los tejidos de la mayoría de los seres vivos (Córdoba, 2006: 134).

La amplia aplicación de DDT para controlar vectores y la posterior extensión a la agricultura intensiva, su dispersión por corrientes de aire y de agua, el rociado aéreo de regiones enteras, han producido una acumulación del tóxico en la biosfera con pocas probabilidades de ser eliminado a lo largo de muchas décadas (Odum, 1972: 81, 491).

\(^3\) En Ceilán (actual Sri Lanka) se registraban 2,6 millones anuales de paludismo. La aplicación de DDT los redujo a dieciséis casos anuales en 1963.

\(^4\) La filariasis es producida por nematodos del género *wuchereria* o *brugia* y vectorizada por mosquitos de los géneros *aedes*, *anopheles*, *culex* y *mansonia*. Es endémica en el Pacífico meridional y Asia sudoriental, con focos en zonas cálidas y húmedas de América Latina, Caribe y África. Hay infecciones latentes y sus cuadros principales son la fiebre recurrente, adenitis y linfangitis –en la *W. bancrofti* con quiluria y elefantiasis–, asma paroxística nocturna, neuropatías intersticiales crónicas e intensa eosinofilia.

\(^5\) La oncocercosis es producida por un nematodo, la filaria *Onchocerca volvulus*, y vectorizada por el mosquito hembra *Simulium*. Es endémica en América tropical y en África. Produce nórdulos fibrosos en el TCS, lesiones en piel con prurito intenso, así como alteraciones visuales y ceguera (ceguera de los ríos).

\(^6\) La estabilidad se debe a la poca reactividad del átomo de cloro, y el enlace C-Cl, no polar, los hace lipofílicos (Córdoba, 2006: 122).
Sus efectos en regiones más saturadas han sido la destrucción de larvas, de fauna acuática y la reducción de la fotosíntesis del fitoplancton marino, así como la debilitación de la cáscara de huevos de numerosas aves.\(^7\)

Como se sabe, la transferencia de energía alimenticia en diversas etapas se denomina “cadena de los alimentos”, a lo largo de la cual se va perdiendo energía potencial.\(^8\) Sin embargo, algunas sustancias se concentran en cada eslabón de la cadena, y a esto se lo llama “magnificación biológica”. Tal es el caso de determinados radionucleidos y pesticidas persistentes. Sin duda, el caso del DDT ha sido el más estudiado por la antigüedad de su uso en el rocío de pantanos como insecticida. Sus residuos se absorben en los detritus, se concentran en los peces que los consumen y aun más en las aves rapaces que se alimentan de ellos. Son poco volátiles y la intoxicación por vapores es poco posible, no así la que puede producir el polvo y los aerosoles (Quer-Brossa, 1983: 249).

La **clasificación de los organoclorados**, según su estructura química, se presenta en el siguiente cuadro. Estructuralmente, pueden ser agrupados en cinco clases.

<table>
<thead>
<tr>
<th>Organoclorados. Clasificación según estructura química</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Diclorodifeniletanos</strong></td>
</tr>
<tr>
<td>DDT</td>
</tr>
<tr>
<td>DDD</td>
</tr>
<tr>
<td>DMC</td>
</tr>
<tr>
<td>Dicofol</td>
</tr>
<tr>
<td>Metoxiclor</td>
</tr>
<tr>
<td><strong>Ciclodienos</strong></td>
</tr>
<tr>
<td>Endrín</td>
</tr>
<tr>
<td>Aldrín</td>
</tr>
<tr>
<td>Endosulfán</td>
</tr>
<tr>
<td>Heptacloro</td>
</tr>
<tr>
<td>Clordane</td>
</tr>
<tr>
<td>Dieldrin</td>
</tr>
<tr>
<td><strong>Hexaclorociclohexanos</strong></td>
</tr>
<tr>
<td>Lindano</td>
</tr>
<tr>
<td><strong>Toxafenos</strong></td>
</tr>
<tr>
<td>Toxafenos y derivados</td>
</tr>
<tr>
<td><strong>Miscelanea</strong></td>
</tr>
<tr>
<td>Mirex</td>
</tr>
<tr>
<td>Clordecone</td>
</tr>
</tbody>
</table>


La mayoría tiene prohibido su uso en Argentina.

Los productos que producen mayor número de consultas toxicológicas son:

---

\(^7\) Estos fenómenos alcanzaron repercusión pública desde la publicación del célebre libro de la bióloga Rachel Carson *La primavera silenciosa* (1962). A partir de entonces, se extendió el concepto de la acumulación y magnificación de los pesticidas en la cadena alimentaria. Se adjudicó a los organoclorados su acumulación en el tejido adiposo animal, lo que fue corroborado, y la afectación en la reproducción de las aves. El DDT se prohibió, en EE.UU., en 1972.

\(^8\) Cada traspaso de energía va acompañado de dispersión de parte de ella en forma de calor (por ejemplo, respiración) como lo indica la segunda ley de Termodinámica (Odum, 1972: 68).
El **mecanismo de acción** no es exactamente el mismo para todas las categorías. Si bien todos producen hiperexcitabilidad neuronal, el **DDT y análogos** actúan reduciendo el transporte de K⁺ y favoreciendo el ingreso de Na⁺. También inhibe la adenosin trifosfata (ATPasa) de Na⁺, K⁺ y Ca⁺⁺, impidiendo la repolarización total. Por lo tanto, ocurre un incremento de la sensibilidad neuronal que responde con descargas reiteradas a pequeños estímulos.

Los **ciclodienos** también son inhibidores de la ATPasa de Na⁺, K⁺ y Ca⁺⁺. Asimismo, actúan como la picrotoxina, antagonizando la acción del GABA.

Se absorben bien por vía oral e inhalatoria y en forma variable por la piel sana. Se distribuyen en todos los tejidos, con preferencia por el sistema nervioso, el hígado y el tejido adiposo donde se depositan. Se metabolizan en el hígado y se eliminan por orina lentamente. Una sola dosis tarda treinta días en desaparecer.

Entre treinta minutos y seis horas después de la exposición se presenta ansiedad, malestar gastrointestinal con náuseas, vómitos, ardor orofaringeo y dolor epigástrico si fue ingerido, palidez, mareos, cefalea, temblor y convulsiones. Algunos pacientes debutan directamente con convulsiones. La muerte se produce por fallo respiratorio.

Síntomas respiratorios asociados, como tos, disnea, rales, cianosis, hablan de aspiración del hidrocarburo presente en la fórmula.

Con dosis moderadas se ha observado elevación transitoria de enzimas hepáticas, mientras que con dosis fatales la anatomía patológica demostró necrosis centrolobular.

Los organoclorados producen irritabilidad miocárdica, predisponiendo a arritmias cardíacas.

**No se dispone de tratamiento específico.** Se aplican métodos de eliminación adecuados al tiempo de contacto y dosis. El fenobarbital como inductor enzimático se aplica durante treinta días (dosis: 5 mg/Kg/día/IM).

La **exposición reiterada** de orden ambiental, laboral o alimentaria, aun en pequeñas cantidades, puede derivar en intoxicación crónica, donde el paciente desarrolla: anorexia, adelgazamiento, cefalea, desórdenes psicológicos (ansiedad, irritabilidad, insomnio), debilidad, fatiga, pérdida de fuerza muscular, dolor, parestesías, calambres más frecuentemente en miembros inferiores como representación de neuropatía periférica. El electromiograma muestra disminución de la velocidad de conducción. El daño hepático y la alteración de la espermatogénesis (disminución del número y vitalidad de los espermatozoides) suelen estar presentes.

El depósito de grandes cantidades de clorados en tejido adiposo expone al riesgo de intoxicación aguda ante el adelgazamiento rápido, acidosis o cualquier proceso que determine la destrucción del tejido y liberación del plaguicida al torrente sanguíneo.

Se han utilizado gangliósidos para la neuropatía, pero no se demostró mejor resultado que en aquellos pacientes tratados con fenobarbital como inductor enzimático y altas dosis de complejo B.

A esta descripción clínica general se le agregan manifestaciones específicas que dependen de las características químicas de cada compuesto.
<table>
<thead>
<tr>
<th>Principio activo</th>
<th>Características clínicas</th>
<th>Concentraciones</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lindano</strong></td>
<td>Necrosis hepática, renal, pancreática y muscular&lt;br&gt;Polineuritis sensitivo-motriz&lt;br&gt;Anemia aplásica?</td>
<td>Concentración tóxica: 100 μg/l de sangre total&lt;br&gt;BTL. 20 μg/l (sangre)&lt;br&gt;TVL aire: 0,5 mg/m³</td>
</tr>
<tr>
<td><strong>Clordano</strong></td>
<td>Anemia aplásica?&lt;br&gt;Neuroblastosomas en niños</td>
<td>TVL aire: 0,5 mg/m³</td>
</tr>
<tr>
<td><strong>Diclorodifeniltricloroetano (DDT)</strong></td>
<td>Eritrodermia vesiculoedematosa&lt;br&gt;Inmunosupresión?&lt;br&gt;Trastornos reproductivos?</td>
<td>TVL aire: 1 mg/m³&lt;br&gt;No expuestos: 2 μg/100 ml (sangre)</td>
</tr>
<tr>
<td><strong>Diédrín</strong></td>
<td>Manifestaciones epileptógenas tardías&lt;br&gt;Mutágeno</td>
<td>No expuestos: 0,48 μg/l (sangre)&lt;br&gt;No expuestos: 0,3 ppm (adiposo)&lt;br&gt;TVL aire: 0,25 mg/m³</td>
</tr>
<tr>
<td><strong>Clordecona (Kepone)</strong></td>
<td>Hepatomegalia, infiltración grasa&lt;br&gt;Hipertensión endocraneana&lt;br&gt;Fetotóxico</td>
<td>No expuestos: 32 μg/l (sangre)</td>
</tr>
<tr>
<td><strong>Mirex</strong></td>
<td>Cataratas (exp. perinatal)</td>
<td>TVL aire: 0,1 mg/m³</td>
</tr>
<tr>
<td><strong>Endrín</strong></td>
<td>No se acumula en tejido adiposo</td>
<td>TVL aire: 0,5 mg/m³</td>
</tr>
<tr>
<td><strong>Heptacloro</strong></td>
<td>Heptacloroépíxido</td>
<td>TVL aire: 0,5 mg/m³</td>
</tr>
<tr>
<td><strong>Toxafeno</strong></td>
<td>Edema pulmonar&lt;br&gt;Necrosis hepática&lt;br&gt;Degeneración tubular renal&lt;br&gt;Lesión miocárdica</td>
<td>TVL aire: 0,5 mg/m³</td>
</tr>
<tr>
<td><strong>Metoxiclor</strong></td>
<td></td>
<td>TVL aire: 10 mg/m³</td>
</tr>
</tbody>
</table>

Nota: BTL (Biological Tolerable Limit o Límite Biológico Tolerable); TVL (Threshold Value Limit o Valor Umbral Límite).

Esas mismas diferencias se pueden comprobar en el comportamiento ambiental.

<table>
<thead>
<tr>
<th>Principio activo</th>
<th>Comportamiento en el medio ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DDT</strong></td>
<td>El DDT entró al ambiente cuando se usó como pesticida. Todavía entra por su uso actual en otros países. El DDE entra al ambiente como contaminante o producto de degradación del DDT. El DDD también entra como producto de degradación del DDT. Todos son degradados rápidamente en el aire por la luz solar. La mitad de cuanto existe en el aire se degrada en dos días o menos.</td>
</tr>
<tr>
<td><strong>DDE</strong></td>
<td>Se adhieren firmemente al suelo. La mayor parte del DDT en el suelo es degradado lentamente a DDE y DDD por microorganismos. La mitad del DDT en el suelo se degrada en dos a quince años, dependiendo del tipo de suelo. Sólo una pequeña cantidad pasará a través del suelo a aguas subterráneas. No se disuelven fácilmente en agua. El DDT, y especialmente el DDE, se acumulan en plantas y en tejidos grasos de peces, aves y otros animales.</td>
</tr>
<tr>
<td><strong>DDD</strong></td>
<td></td>
</tr>
<tr>
<td>Pesticida</td>
<td>Propiedades</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Endosulfán</td>
<td>Cierta cantidad de endosulfán en el aire puede trasladarse larga distancia antes de depositarse sobre cosechas, el suelo o el agua. En cosechas, generalmente se degrada en unas semanas. En suelo se adhiere a partículas de tierra. Se encuentra en el suelo cercano a sitios de desechos peligrosos. Cierta cantidad en el suelo se evapora al aire y cierta parte se degrada lentamente. El agua de lluvia puede arrastrarlo adherido a partículas de tierra hacia el agua superficial, donde permanece en superficie o en sedimento. No se disuelve fácilmente en agua. Las pequeñas cantidades de endosulfán que se disuelven en el agua eventualmente se degradan, dependiendo de las condiciones en el medio, en días o meses. Cierta cantidad de endosulfán en el agua superficial se evapora al aire y se degrada. Debido a que no se disuelve fácilmente, las cantidades en aguas subterráneas son bajas. Los animales que viven en aguas contaminadas con endosulfán pueden acumularlo en sus cuerpos en cantidad mucho más alta que la que se encuentra en el agua que los rodea.</td>
</tr>
<tr>
<td>Clordecona (Kepone)</td>
<td>El mirex y la clordecona se degradan lentamente en el medio ambiente y pueden permanecer años en el suelo y el agua. Su evaporación desde aguas superficiales o suelo es escasa.</td>
</tr>
<tr>
<td>Mirex</td>
<td>Se adhieren fácilmente a partículas en el suelo y el sedimento. Es improbable que migren a través del suelo a aguas subterráneas. Se pueden acumular en peces u otros organismos que viven en agua contaminada o que se alimentan de otros animales contaminados.</td>
</tr>
<tr>
<td>Endrín</td>
<td>No se disuelve muy bien en agua. Se ha encontrado en aguas subterráneas y en superficiales, aunque solamente en niveles muy bajos. Es más probable que se adhiera al sedimento del fondo de ríos, lagos y otras masas acuáticas. Generalmente, no se ha encontrado en el aire, excepto cuando se aplicó a sembrados durante uso agrícola. La persistencia en el medio ambiente depende en gran parte de las condiciones locales. Ciertos cálculos indican que puede permanecer en el suelo por más de diez años. Puede degradarse cuando se expone a altas temperaturas o a la luz, formando cetona y aldehído de endrín en cantidades muy pequeñas.</td>
</tr>
<tr>
<td>Heptacloro</td>
<td>No se disuelve en agua fácilmente. Se adhiere fuertemente a partículas del suelo y se evapora lentamente al aire. Las plantas pueden incorporar heptacloro del suelo. Puede acumularse en los tejidos de peces y ganado.</td>
</tr>
<tr>
<td>Toxafeno</td>
<td>Puede pasar al medio ambiente de sitios de residuos peligrosos. No se disuelve bien en agua, de manera que es más probable encontrarlo en el aire, el suelo o el sedimento en el fondo de lagos o arroyos que en aguas superficiales. Se degrada muy lentamente en el medio ambiente.</td>
</tr>
<tr>
<td>Metoxiclor</td>
<td>Liberado al aire, se deposita en el suelo, aunque cierta cantidad puede viajar largas distancias antes de hacerlo. La lluvia y la nieve hacen que se deposite más rápidamente. Se adhiere a partículas de suelo. Por esta razón, no se moviliza rápidamente.</td>
</tr>
</tbody>
</table>
Las partículas pueden ser movilizadas hacia ríos o lagos por el viento, la lluvia o la nieve que se derrite. La mayor parte del metoxicloro permanece en la capa más superficial del suelo, pero algunos de los productos a los que se degrada pueden pasar a mayor profundidad.

Cantidades más pequeñas pueden depositarse directamente desde el aire en ríos, lagos u otras aguas superficiales. Una vez en el agua, generalmente se adhiere a sedimentos o a materia orgánica y se deposita en el fondo.

Es degradado en el ambiente por varios procesos. Sin embargo, estos son lentos y la degradación puede tardar meses (degradación por bacterias y otros microorganismos, al reaccionar con el agua o con materiales en el suelo, luz solar, otras sustancias químicas). Algunos de los productos de degradación pueden producir efectos perjudiciales similares a los causados por exposición al metoxicloro.

Puede acumularse en algas, bacterias, caracoles, almejas y algunos peces. Sin embargo, la mayoría de los peces y otros animales lo transforman en otras sustancias, las cuales son rápidamente eliminadas del cuerpo. Por esta razón, el metoxicloro generalmente no se acumula en la cadena alimentaria.

### 3.2. Compuestos organofosforados

Los organofosforados (OF) fueron desarrollados en 1937 en Alemania y son ésteres, amidas o tiolos de los ácidos fosfórico, fosfotiónico, fosforotioico o fosforoditioico. Su fórmula general es la siguiente:

<table>
<thead>
<tr>
<th>Estructura química de los organofosforados</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{HO} \quad \text{O} \quad \text{P} \quad \text{OH} )</td>
</tr>
</tbody>
</table>

Los grupos oxidrilos son reemplazados por distintos radicales orgánicos en los diferentes compuestos.

Los productos más difundidos se enumeran en el siguiente cuadro.
### Organofosforados más difundidos

<table>
<thead>
<tr>
<th>Nombre genérico y comercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metil-Azinfos, Gusathion</td>
</tr>
<tr>
<td>Clorpírinos, Lorsban, Terminator</td>
</tr>
<tr>
<td>Diclorvos DDVP, Nuvan</td>
</tr>
<tr>
<td>Dimetoato, Rogor</td>
</tr>
<tr>
<td>Fenamiphos, Nemacur</td>
</tr>
<tr>
<td>Fenitrotion, Sumitomo, Sumithion</td>
</tr>
<tr>
<td>Metamidofos, Tamaron</td>
</tr>
<tr>
<td>Monocrotofos Azodrin, Nuvacron</td>
</tr>
</tbody>
</table>


Según la toxicidad, se clasifican como se indica en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Insecticidas organofosforados según toxicidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicidad</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Alta</td>
</tr>
<tr>
<td>Moderada</td>
</tr>
<tr>
<td>Ligera</td>
</tr>
</tbody>
</table>


Los organofosforados son poco solubles en agua, altamente volátiles y se hidrolizan en pH alcalino. No son bioacumulables y no sufren magnificación en la cadena alimentaria. Se presentan en forma de líquidos, polvos o emulsiones.

Se absorben por todas las vías: digestiva, cutánea e inhalatoria. Se biotransforman por el sistema microsomal hepático. Los compuestos arilfosfatos adquieren toxicidad durante la biotransformación, por oxidación. Los compuestos alquilfosfatos no requieren ninguna modificación para expresar su toxicidad. Se eliminan por vía urinaria. La vida media es propia de cada compuesto, variando entre 2,5 y 48 horas. No producen acumulación. Algunos compuestos pueden permanecer días o semanas en el organismo.

El cuadro clínico varía de acuerdo con el producto. La presentación e intensidad de las manifestaciones depende de la dosis y vía de exposición.

**Intoxicación aguda:**

- **Síndrome clásico:** se produce por inhibición enzimática. Actúan fosforilando la acetilcolinesterasa, inhibiendo su capacidad de hidrolizar la acetilcolina y resultando la acumulación de este neurotransmisor en:
  - Terminación de fibras post-ganglionares del parasimpático.
  - Ganglios parasimpáticos y simpáticos.
  - SNC.
  - Unión Neuromuscular.
Inhiben también otras esterasas: seudocolinesterasa o colinesterasa plasmática, aliesterasa, esterasas centrales.
La signo-sintomatología se puede reunir en tres síndromes:

<table>
<thead>
<tr>
<th>Síndrome Muscarínico</th>
<th>Síndrome Nicotínico</th>
<th>SNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalea, Mareos, Palidez</td>
<td>Fasciculaciones</td>
<td>Ansiedad</td>
</tr>
<tr>
<td>Náuseas, Vómitos, Diarrea</td>
<td>Taquicardia</td>
<td>Desorientación</td>
</tr>
<tr>
<td>Miosis</td>
<td>Debilidad muscular</td>
<td>Convulsiones (infrecuentes)</td>
</tr>
<tr>
<td>Incontinencia urinaria y rectal</td>
<td>Parálisis respiratoria</td>
<td>Depresión respiratoria</td>
</tr>
<tr>
<td>Broncoespasmo</td>
<td></td>
<td>Coma</td>
</tr>
<tr>
<td>Aumento de las secreciones (sialorrea, lagrimeo, sudoración, broncorrea)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradicardia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Síndrome intermedio:** relacionado con algunos productos organofosforados (Monocrotofo, Malathion). El mecanismo de producción está en estudio, pero se sospecha lesión en la unión neuromuscular por acción directa del organofosforado.
Entre las 24 y las 96 horas después que el paciente ha superado el síndrome clásico, se observa:
- Parálisis de los músculos de las raíces de los miembros.
- Parálisis de los músculos del cuello.
- Parálisis de los nervios motores craneales.
- Parálisis de los músculos respiratorios (máxima expresión).
Evoluciona en 5 a 32 días, con recuperación de los grupos musculares en secuencia inversa al orden de afectación.

- **Neuropatía Tóxica Retardada:** existe afectación intramolecular (alquilación) de la esterasa neuropática tóxica (NTE) independientemente del daño por fosforilación. Se origina una atrofia por reducción del número de miofilamentos más próximos al sarcolema. Es una axonopatía simétrica distal sensitivomotora.
  - Parestesias, dolor, hiperreflexia (calambres).
  - Ataxia, incoordinación (debilidad muscular).
  - Parálisis fláccida.
Esta sintomatología es también conocida como polineuropatía retrasada inducida por organofosforados o síndrome OPIDP. El tiempo de latencia varía de ocho a veintiún días según la dosis y tiempo de exposición. Evoluciona en dos a tres meses. El 30% de los pacientes queda con secuelas (neuropatía periférica).

**Intoxicación Crónica:**
Por exposición a mínimas cantidades en forma reiterada (intoxicación crónica por acumulación de efecto).
Se presenta: cefalea, adelgazamiento, miosis, cambios de comportamiento, miopatías con rhabdomiólisis, disminución de la velocidad de conducción de nervios periféricos, alteraciones de los neutrófilos y efectos sobre el sistema inmunitario. Además, provocan alteraciones de memoria, alerta y atención, así como tolerancia a efectos colinérgicos.
Diagnóstico:
- Clínica y antecedentes epidemiológicos.
- Prueba de atropina: se basa en la respuesta de la frecuencia cardíaca a la aplicación endovenosa de 1 mg de sulfato de atropina (0,5 mg en pacientes pediátricos). Frecuencia cardíaca igual o disminuida: prueba positiva = intoxicación por OF.
- Colinesterasa Eritrocitaria (CE): cada individuo tiene un valor propio de CE. La mayoría de la población tiene valores superiores a 0,70 δ pH/hora (Método de Michel). La sintomatología aguda se presenta cuando el valor de CE desciende bruscamente en un 20% o más. La actividad de la enzima eritrocitaria puede no alcanzar su mínimo durante varios días, y a menudo permanece deprimida durante más tiempo, en ocasiones de uno a tres meses, hasta que la enzima nueva reemplaza la inactivada por el organofosforado. Los expuestos crónicos (laboral, ambiental) pueden resistir valores muy bajos sin manifestaciones clínicas.
- Dosaje de plaguicidas: puede realizarse en sangre u orina. Se aplica para cribaje en individuos crónicamente expuestos y para el diagnóstico diferencial del Síndrome Intermedio y Neuropatía Retardada con síndromes neurológicos.

Tratamiento:
Métodos de eliminación: aplicados de acuerdo con la vía de exposición (lavado gástrico o baño corporal) en todo paciente en que se sospeche contacto con estos plaguicidas.
Atropinización: proceso de administración repetida de sulfato de atropina hasta provocar intoxicación atropínica con el objetivo de evitar los efectos colinérgicos derivados de la acción del organofosforado. Independientemente del peso del paciente y con estricto control de la frecuencia cardíaca, se aplica por vía IV, sin diluir, 1 mg, 2 mg, 4 mg, 8 mg, y se continúa duplicando la dosis hasta conseguir aumentar un 50% la frecuencia cardíaca sobre la basal esperada para la edad del paciente. El intervalo entre dosis debe ser menor a cinco minutos. La falta de respuesta y la presentación de convulsiones frecuentemente se deben a hipoxia. Se aspiran las secreciones y se mantiene oxigenado al paciente. Un paciente bien atropinizado está rubicundo, midriático, sin secreciones, taquicárdico y con evidente mejoría de su estado de conciencia. Lograda la atropinización, se debe continuar con atropina por infusión continua en dosis entre 0,3 y 1 mg/kg/hora, que se disminuirá progresivamente.
Pralidoxima: en niños, 25 a 50 mg/kg. En adultos, 1 gramo, siempre diluido en 250 ml de suero fisiológico a pasar en treinta minutos, repitiendo una hora después y cada ocho horas si persiste el cuadro. Su eficacia depende de la administración precoz, preferentemente en las primeras horas. No reemplaza a la atropina, acorta la evolución. Está contraindicada en plaguicidas carbámicos. La imposibilidad de realizar diagnóstico diferencial en la urgencia disminuye su utilización. En todos los casos, se recomendará evitar nuevos contactos hasta la normalización de los valores de laboratorio. Las intoxicaciones crónicas reciben tratamiento sintomático. Los pacientes deben suspender toda exposición.

3.3. Compuestos carbámicos

Los carbamatos comprenden dos grandes grupos de plaguicidas: los derivados del ácido carbámico o carbamatos propiamente dichos, compuestos anticolinesterasa que son utilizados como insecticidas, y los derivados de los ácidos tiocarbámico y ditiocarbámico, sin actividad anticolinesterasa y usados como funguicidas principalmente.
Este grupo de plaguicidas también inhibe la acetilcolinesterasa, pero en forma reversible. Son válidas las consideraciones realizadas para el síndrome clásico, diagnóstico y tratamiento. El cuadro clínico puede ser igualmente severo, pero la evolución es más corta y con mejor pronóstico.

Los productos más difundidos se enumeran en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Carbamatos más difundidos</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nombre genérico y comercial</strong></td>
</tr>
<tr>
<td>Aldicarb, Temik</td>
</tr>
<tr>
<td>Carbaryl, Sevin</td>
</tr>
<tr>
<td>Carbofurán, Furadan</td>
</tr>
<tr>
<td>Metomyl, Lannate</td>
</tr>
<tr>
<td>Metiocarb, Gladiador</td>
</tr>
</tbody>
</table>


3.4. Compuestos piretroides

Las piretrinas son insecticidas de origen vegetal. Se extraen del *Chrysanthemum cinerariafolium* (pelitre). Químicamente, son ésteres de ácidos carboxílicos. Se caracterizan por ser plaguicidas de amplio espectro de acción, útiles a bajas dosis, poco tóxicos para mamíferos, de muy alta labilidad en el medio ambiente y, por lo tanto, bajo impacto ambiental.

Con la finalidad de disminuir los costos de producción, se intensificó la búsqueda de compuestos sintéticos que mantuvieran las características del compuesto natural. Los estudios comenzaron concomitantemente con la difusión comercial y la favorecieron ampliamente, logrando imponer los compuestos sintéticos llamados *piretroides* más allá del campo de la agricultura. En la actualidad, se utilizan también como plaguicidas domésticos para combatir plagas estructurales, en medicina veterinaria y humana, fundamentalmente como ectoparasiticidas. Dicha aceptación se basa en que mantienen las características favorables del compuesto natural, pero además tienen mayor especificidad, igual o mayor potencia y se ha logrado mayor estabilidad al aire y la luz con baja persistencia en el suelo.

Los *piretroides* se clasifican en dos grupos: **Tipo I** (no ciano sustituido), tales como aletrina, permetrina, tetrametrina, cismetrina y d-fenotrina, y **Tipo II** (ciano sustituido), como cipermetrina, deltametrina, fenvalerato y fenpropatrin.

Los productos más difundidos se enumeran en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Piretroides más difundidos</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nombres comerciales y genericos</strong></td>
</tr>
<tr>
<td>Cipermetrina, Arrivo</td>
</tr>
<tr>
<td>Deltametrina, Decis</td>
</tr>
<tr>
<td>Lambdacialotaina, Karate</td>
</tr>
</tbody>
</table>

Se absorben por vía digestiva e inhalatoria. La absorción por piel sana es poco significativa. Se distribuyen por todo el organismo en relación con el grado de irrigación de los tejidos. La metabolización se lleva a cabo por el sistema microsomal hepático, por oxidación los compuestos naturales y por hidrólisis los piretroides. La rapidez de la metabolización con producción de metabolitos inactivos es responsable de la baja toxicidad de estos productos. Se eliminan principalmente por orina, el 90 % en las primeras 48 horas y el 10 % restante (fase lenta) en diez días.

El mecanismo de acción es similar a los clorados. Aumenta la conductancia al Na⁺⁺ resultando en la disminución del umbral de despolarización y descargas repetidas ante un solo estímulo.

Clinicamente, los síntomas iniciales dependen de la vía de absorción.

- **Por piel**: eritema, vesiculación, a veces prurito, parestesias. Las manifestaciones cutáneas son las más frecuentes.
- **Por inhalación**: rinitis, edema, irritación, disnea. La adición de hidrocarburos en la formulación de estos productos es frecuente, agregando la sintomatología que les es propia.
- **Por ambas vías**, y en especial en pacientes con antecedentes alérgicos: dermatitis de contacto, broncoespasmo.
- **Por vía digestiva**: irritación bucal, edema, ardor orofaríngeo, náuseas, vómitos, diarrea.

No hay tratamiento específico. Cuando la dosis es importante, se aconsejan métodos de eliminación. En todos los casos, se indican protectores de mucosas y dieta, nebulizaciones para la exposición por vía inhalatoria. Las reacciones alérgicas y el broncoespasmo se medican de la forma habitual. Las lesiones cutáneas responden a la vitamina E.

4. Fungicidas

Se utilizan ampliamente en la agroindustria para el control de enfermedades fúngicas en cereales, frutales y especialmente en el tratamiento de semillas. Unos pocos compuestos son aplicados a uso doméstico y jardinería.

Los pesticidas con capacidad fungicida son, en su mayoría, compuestos orgánicos sintéticos. Los grupos químicos más comunes incluyen:

- **Compuestos de ftalimida** (captan, captafol): poseen baja toxicidad sistémica. Se relacionan con reacciones alérgicas y con la producción de dermatitis irritativa por contacto excesivo.

Son considerados probables carcinógenos humanos por la EPA (Environmental Protection Agency).

- **Compuestos ditiocarbamatos**: estructuralmente relacionados con los insecticidas carbámicos, poseen baja o nula actividad anticolinesterasa. El grupo comprende varias subclases:
  - Bis-ditiocarbamatos: thiram.
  - Metalo-bis-ditiocarbamatos: ziram (contiene zinc), nabam (contiene sodio), ferbam (contiene hierro).
  - Etileno-bis-ditiocarbamatos: maneb (contiene manganeso), zineb (contiene zinc).

Se comportan como irritantes y sensibilizantes de la piel. La inhalación puede producir congestión nasal y tos irritativa. La ingestión, vómitos, diarrea y ataxia. A muy altas dosis, convulsiones y fallo respiratorio.
El consumo de alcohol en previamente expuestos a ditiocarbamatos puede provocar un efecto similar a antabuse con cefalea, rubor facial, hipotensión y confusión. Algunos compuestos se relacionan con potencial carcinogénico, teratogénico y actividad antitiroidea.

**Compuestos aromáticos sustituidos:** el hexaclorobenceno, un hidrocarburo aromático con actividad fungicida, fue utilizado ampliamente. El uso de semillas tratadas para consumo humano provocó un brote de porfiria adquirida en Turquía a mediados del siglo XX.

El clorotalonilo, del **grupo cloronitrilo**, es un importante irritante y sensibilizante de piel y vías respiratorias

Ambos compuestos son considerados probables carcinógenos humanos.

En todos los casos, los antecedentes de exposición son fundamentales para el diagnóstico. El tratamiento es sintomático, incluyendo eliminación del tóxico del organismo en casos agudos y eliminación de la exposición en crónicos.

### 5. Herbicidas

Los herbicidas se utilizan para el control de las malezas y son sustancias con muy variadas formulaciones químicas. Es preciso tener en cuenta que los **herbicidas son tan tóxicos como los insecticidas**, y algunos productos aún más que estos (por ejemplo, biperidilos).

<table>
<thead>
<tr>
<th><strong>Herbicidas. Clasificación química</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inorgánicos</strong></td>
</tr>
<tr>
<td>Sales de arsénico, calcio, hierro</td>
</tr>
<tr>
<td>Clorato de sodio</td>
</tr>
<tr>
<td>Tetaborato de sodio</td>
</tr>
<tr>
<td>Nitrato de cobre</td>
</tr>
<tr>
<td><strong>Orgánicos</strong></td>
</tr>
<tr>
<td>Derivados clorofenoxicácéticos</td>
</tr>
<tr>
<td>Biperidilos</td>
</tr>
<tr>
<td>Derivados del dinitrofenol</td>
</tr>
<tr>
<td>Der. de úreas y guanidinas</td>
</tr>
<tr>
<td>Derivados de fosfonometilglicina</td>
</tr>
<tr>
<td>Triazinas y triazoles</td>
</tr>
<tr>
<td>Fosforados</td>
</tr>
<tr>
<td>Carbamatos</td>
</tr>
<tr>
<td>Tioembutamatos y ditiocarbamatos</td>
</tr>
<tr>
<td>Dinitroanilinas</td>
</tr>
<tr>
<td>Acetamidas y Acetanilidas</td>
</tr>
<tr>
<td>Otros</td>
</tr>
</tbody>
</table>

#### 5.1. Clorofenoxicácéticos

Se desarrollaron durante la Segunda Guerra Mundial en EE.UU. e Inglaterra, motivados por la necesidad de incrementar la producción. En las plantas, actúan imitando la acción de las auxinas, hormonas estimulantes del crecimiento.

Los principales compuestos son los ésteres y sales de los ácidos:
• Ac. 2,4-Diclorofenoxiacético (2,4-D).
• Ac. 2,4,5-Triclorofenoxiacético (2,4,5-T).
• Ac. 2-metil,4-clorofenoxiacético (MCPA).
• Ac. 2-metil,4-clorofenoxibutírico (MCPB).

Si bien estos compuestos tienen importancia toxicológica por sí mismos, algunos de los efectos sobre la salud se explican por la combinación con dioxinas clorinadas, de las cuales la más riesgosa es la 2,3,7,8-tetraclorodibenzo-p-dioxina (TCDD), que se produce durante la síntesis del 2,4,5-T, cuando la temperatura del proceso no es rigurosamente controlada.

Se absorben por todas las vías. Se unen a las proteínas plasmáticas y se eliminan por orina, el 80% aproximadamente, sin modificar. La vida media biológica en orina, después de una exposición única, es de 17 a 18 horas según el compuesto. Estudios en trabajadores expuestos a MCPA no detectaron alteraciones orgánicas en sujetos que excretaban hasta 12 mg/l de orina. No se conoce con exactitud el mecanismo de acción en el hombre. Son desacopladores débiles de la fosforilación oxidativa.

En la sobreexposición aguda se observan síntomas inmediatos por irritación, que varían de acuerdo con la vía de entrada (dermatitis, ardo y dolor nasal, epistaxis, tos, dolor abdominal, náuseas, vómitos, hematemesis y diarrea). Pocas veces evolucionan a casos severos con cefalea, calambres musculares, mialgias, miotonía, ataxia, acidosis metabólica, sudoración profusa, fiebre, taquicardia, convulsiones y coma. El paciente muere por fibrilación ventricular. En caso de sobrevivir, se evidencia la afectación hepática (aumento de enzimas) y renal (oliguria, albuminuria).

En algunos pacientes se presenta neuropatía periférica varias horas o días después del contacto, con dolor, parestesias y parálisis ascendente que en ningún caso afecta la mecánica respiratoria. El electromiograma sólo en algunos casos demuestra disminución ligera de la velocidad de conducción. Evoluciona en no más de siete días y la recuperación de la función puede llevar un año de rehabilitación.

En la intoxicación crónica, las principales manifestaciones estudiadas en trabajadores expuestos son cloracné (comedones, quistes y pápulas pruriginosas en cara, cuello, lóbulos de oreja, hombros, abdomen, genitales y piernas) y blefaritis asociada. Se pueden encontrar alteraciones hepáticas, porfiria cutánea tarda, hipertrigliceridemia, neuropatía periférica y trastornos neuropsíquicos como fatiga e inestabilidad emocional. Desde que los procesos de síntesis se controlan con mayor rigor, ha disminuido su incidencia, por lo que parece ser provocada por oligocontaminantes.

Se ha relacionado el contacto prolongado con estos productos con aumento de la incidencia de sarcomas de tejidos blandos, enfermedad de Hodgkin y linfomas no Hodgkin. Sin embargo, no hay información científica suficiente y han sido clasificados como probables carcinógenos humanos.

Varios investigadores están estudiando estos productos, especialmente en Suecia, EE.UU. y Australia. Hasta el momento, se desconoce poder teratógeno en las preparaciones comerciales de 2,4-D. El 2,4,5-T ha sido relacionado con malformaciones de la médula espinal en el hombre y en ratones ha provocado paladar hendido y anormalidades renales. En ninguno de los estudios se descarta la coparticipación de otras sustancias como el tetraclorobenceno, triclorofenato y tetrachlorodibenzodioxina como responsables de los hallazgos.

El tratamiento es sintomático. La eliminación se ve favorecida con la diuresis alcalina. Se debe suspender la exposición.
5.2. Compuestos fenoles sustituidos

Son, especialmente, los derivados del dinitrofenol. Incluyen el dinitro-o-cresol (DNOC), dinoseb, dinocap y binapacril y se utilizan como herbicidas, fungicidas y ovicidas.

Pueden ser absorbidos por ingestión e inhalación y a través de la piel (en algunos casos parecen absorberse aún llevando prendas de caucho). Se eliminan por orina. Precipitan las proteínas y desdoblan la fosforilación oxidativa con estimulación del metabolismo oxidativo y producción de calor. Hay escasa bibliografía en relación con la amplitud de su uso, pero se considera dosis peligrosa 30 mg/kg para el DNOC.

Los cuadros agudos se manifiestan por náuseas y vómitos, rubor cutáneo, sudoración, taquipnea, taquicardia, hipertermia, hipotensión y acidosis metabólica. Infrecuentemente evoluciona con afectación hepática, renal y neurológica.

Los expuestos crónicos presentan coloración amarillenta de conjuntivas, fatiga, ansiedad, febrícula, aumento del metabolismo basal y adelgazamiento que puede confundirse con hipertiroidismo. También pueden generar cataratas, anemia y leucopenia. Algunos compuestos, como el Dinoseb, provocan alteraciones reproductivas (oligospermia, lesión de tubos seminales) en animales de experimentación.

El tratamiento es sintomático y se debe suspender la exposición.

5.3. Compuestos derivados de la fosfonometilglicina

El compuesto más reconocido es el glifosato, y la marca registrada más común es Roundup. La toxicidad en mamíferos se atribuye a la sustancia surfactante presente en la fórmula, polioxiethilenamina (POEA), la cual actúa por desacoplamiento de la fosforilación oxidativa.

El producto tiene acción irritante. Los cuadros de intoxicación corresponden a ingesta accidental o suicida: debilidad, irritación o ulceración de mucosa bucal, disfagia, sialorrea, esofagitis, gastritis, ocasionalmente hematemesis, nistagmus, tos, broncoespasmo, disnea, hipotensión, oliguria, acidosis metabólica.

La exposición prolongada, cuando el trabajador no usa protección, se relaciona con la cronificación de los efectos irritativos, especialmente a nivel cutáneo.

No se demostraron efectos teratogénicos hasta el momento. No ha sido incluido entre productos carcinogénicos.

El uso de glifosato para destrucción de cultivos de marihuana y cocaína en América Latina con apoyo de EE.UU. ha despertado una reacción negativa basada en efectos tóxicos que aún no son comprobables científicamente, y también por la destrucción masiva indiscriminada de cultivos alimenticios o comerciales lícitos.

5.4. Compuestos biperidílicos

Los compuestos principales son: paraquat y diquat. Se utilizan ampliamente, en especial el primero (N.C. Gramoxone).

Penetran por todas las vías, pero los casos más graves son por ingestión, a pesar de absorberse sólo el 10 o 15% del producto ingerido. En pulmón, alcanza concentraciones entre diez y quince veces superiores a la del plasma, posiblemente por compartir el mecanismo de las poliamidas que lo vehiculan hasta los neumocitos I y II. La dosis mortal en adultos por vía oral es de tres a seis gramos.

El mecanismo de acción es muy discutido, pero prevalece la teoría de Bus que considera que el paraquat es sometido a una óxido-reducción cíclica con depleción pulmonar de NADPH y...
acumulación de un radical aniónico superóxido. Normalmente, los radicales superóxido son catalizados por la superóxido-dismutasa y las catalasas que lo transforman en O₂ y agua. Cuando estos mecanismos de defensa celular se saturan, se acumula oxígeno activado, que reacciona con los lípidos insaturados dando lugar a hidroperóxidos lipídicos. Estos son transformados en alcoholes estables por medio de una reacción catalizada por la acción de la glutatión-peroxidasa en presencia de glutatión. Nuevamente, el desborde del sistema de defensa provoca la generación de radicales libres lipídicos que causan daños proliferativos y degenerativos en la membrana celular y son fuente inagotable para la formación de hidroperóxidos.

Inicialmente, los síntomas dependen de la causticidad del producto. Se presenta ardor bucal, ulceraciones, vómitos, hematemesis, dolor retroesternal y diarrea. Cuando la dosis supera los 40 mg/kg de peso, la muerte puede producirse por hipereexcitabilidad y convulsiones.

Entre el segundo y quinto día se evidencian signos de alteración sistémica. A nivel hepático: dolor abdominal, náusea constante, ictericia, aumento de transaminasas y bilirrubina. Concomitantemente, disminuye el volumen urinario y se evidencia hematuria, proteinuria, aumento del nitrógeno ureico y de creatinina en sangre. Puede aparecer también compromiso cardiaco, aplasia medular o metahemoglobinemia. Estos procesos remiten en relación directa a la cantidad de tóxico ingerido.

Posteriormente, se presenta disnea progresiva y cianosis. La radiografía de tórax revela infiltración miliar difusa bilateral. El paciente fallece de asfixia por fibrosis pulmonar difusa de rápida instalación o puede sobrevivir con secuelas pulmonares graves. La anatomía patológica descubre engrosamiento de los tabiques alveolares por edema con proliferación celular y fibrosis intraalveolar. Estas lesiones se evidencian cuando ya no es detectable el paraquat en sangre y orina.

El tratamiento se basa en la rápida aplicación de métodos de eliminación. Se realizará lavado gástrico y carbón activado (CA). Se ha recomendado la tierra de Fuller y la Bentonita, pero por falta de disponibilidad sigue usándose el CA, con muy buenos resultados. También como método de eliminación se indicará hemoperfusión o hemodiálisis en las primeras horas después de la ingestión. No hay tratamiento antidótico específico. La administración de oxígeno debe ser evitada cuanto sea posible.

El contacto reiterado con biperidilos ha dado lugar a dermatitis, lesiones ungueales, queratitis y epistaxis.

El diquat produce igual sintomatología, pero de menor gravedad, y no produce el cuadro pulmonar.

6. Toxicidad de los pesticidas

La aplicación de plaguicidas entraña un riesgo inherente a la toxicidad del compuesto empleado. Toxicidad es la capacidad intrínseca de una sustancia para causar daño. Los pesticidas se clasifican de acuerdo con ella con fines regulatorios y preventivos. Esta clasificación utiliza la toxicidad aguda expresada en dosis letal 50 (DL₅₀) en rata en el caso de las vías oral y dérmica, y la CL₅₀ o concentración letal media en rata para la absorción respiratoria, ambos índices ajustados al estado físico del compuesto.
Clases toxicológicas de pesticidas, según vía y forma de presentación. En ratas

<table>
<thead>
<tr>
<th>Vía oral (mg/Kg de peso)</th>
<th>Vía dérmica (mg/Kg peso)</th>
<th>Vía respiratoria (mg/L aire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólidos</td>
<td>Líquidos</td>
<td>Gases, aerosoles y fumigantes</td>
</tr>
<tr>
<td>Muy tóxicos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL₅₀ ≤ 5</td>
<td>DL₅₀ ≤ 25</td>
<td>CL₅₀ ≤ 0,50</td>
</tr>
<tr>
<td>Tóxicos</td>
<td></td>
<td>0,5 ≤ CL₅₀ ≤ 2</td>
</tr>
<tr>
<td>5 ≤ DL₅₀ ≤ 50</td>
<td>25 ≤ DL₅₀ ≤ 200</td>
<td></td>
</tr>
<tr>
<td>10 ≤ DL₅₀ ≤ 100</td>
<td>50 ≤ DL₅₀ ≤ 400</td>
<td></td>
</tr>
<tr>
<td>Nocivos</td>
<td></td>
<td>2 ≤ CL₅₀ ≤ 20</td>
</tr>
<tr>
<td>50 ≤ DL₅₀ ≤ 500</td>
<td>200 ≤ DL₅₀ ≤ 2.000</td>
<td></td>
</tr>
<tr>
<td>100 ≤ DL₅₀ ≤ 1.000</td>
<td>400 ≤ DL₅₀ ≤ 4.000</td>
<td></td>
</tr>
</tbody>
</table>

Dosis letal 50 es la cantidad de sustancia necesaria para lograr la muerte en el 50% de la población en estudio. Para las sustancias que penetran por vía inhalatoria, los parámetros que determinan toxicidad son las concentraciones de la sustancia en el ambiente y el tiempo de exposición. Se habla entonces de concentración letal 50 (CL₅₀).

Otra clasificación de los plaguicidas, atendiendo a su toxicidad, es la efectuada por la OMS, revisada por última vez en 2004 (WHO, 2005). Utiliza también la DL₅₀ oral en rata, expresada como mg/Kg de peso corporal, como criterio de clasificación.

| Clases toxicológicas de pesticidas DL₅₀ s/ vía y forma de presentación. OMS |
|--------------------------|--------------------------|--------------------------|
| Categoría               | Oral Sólido | Líquido | Dérmica Sólido | Líquido |
| Ia                      | < 5          | < 20     | < 10          | < 40    |
| Ib                      | 5-50         | 20-200   | 10-100        | 40-400  |
| II                      | 50-500       | 200-2.000| 100-1.000     | 400-4.000 |
| III                     | > 500        | > 2.000  | > 1.000       | > 4.000  |

Cada producto lleva una etiqueta que provee la información más importante, instrucciones y recomendaciones de uso, restricciones, precauciones durante su manipuleo (equipos de protección, etc.), recomendaciones de almacenamiento, primeros auxilios en caso de accidente, antídoto, teléfonos de Centros Toxicológicos y riesgos ambientales. Además, presenta una banda de color que identifica la Clase Toxicológica a la que pertenece, y, en caso que corresponda, se especifica el plazo de seguridad o tiempo de carencia (TC), tiempo que debe transcurrir entre la última aplicación y la cosecha, de manera de asegurar que los residuos de estos productos se encuentren dentro de los límites aceptados.

La Environment Protection Agency (EPA) recomienda la inclusión de pictogramas internacionalmente aceptados y colores específicos para cada grado de toxicidad.
La utilización de la dosis letal 50 como criterio para clasificar los plaguicidas ha sido ampliamente criticada. Sin embargo, es un requisito exigido para su registro. A partir de la DL50 se pueden establecer las toxicidades relativas de los plaguicidas y dar información sobre la causa de la muerte, la sintomatología, los efectos agudos no letales y la reversibilidad de los mismos. Sin embargo, este parámetro no da información sobre toxicidad subcrónica y crónica (Rose y cols., 1999).

Diversos organismos internacionales (OMS, EPA) reúnen información sobre otros parámetros de toxicidad. La Directiva 94/79/CE de la Unión Europea establece la necesidad de realizar estudios de toxicidad a largo plazo, especialmente de neurotoxicidad.

La evaluación de toxicidad a largo plazo involucra pruebas de toxicidad subcrónica (noventa días) y crónica (seis meses a dos años).9

Las pruebas de toxicidad crónica sirven para evaluar la toxicidad acumulada y el potencial carcinogénico del compuesto estudiado.

También se estudia la toxicidad para la reproducción: capacidad mutagena, teratógena y afectación de fecundidad.

---

9 El objetivo de los primeros es establecer el nivel de mínimo efecto adverso observable (LOAEL: Lowest Observed Adverse Effect Level), el nivel sin efecto adverso observable (Non Observed Adverse Effects Level) e identificar el o los órganos específicamente afectados.
7. Riesgos de los pesticidas

Los países desarrollados, como EE.UU., reportan una mayor incidencia de intoxicaciones con plaguicidas en el público en general que en la población expuesta a actividades agropecuarias. En California, los mayores casos de intoxicaciones no son laborales, se dan en el ámbito hogareño, siendo la mitad en niños menores de seis años.

El mayor riesgo en el sector agropecuario se da durante el mezclado y trasvase de los productos y no durante la aplicación. Por ello, estos productores en general usan mezclas secas, envases hidrosolubles, etcétera. Esto no sucede en los países en vías de desarrollo, ya que utilizan bidones para el mezclado y posteriormente lo vuelcan sobre sus mochilas. Incluso la forma de aplicación es más peligrosa, ya que van caminando y aplicando con mochila por delante de ellos, a diferencia de los primeros, que utilizan equipos con cabina y la aplicación va por detrás del avance, y, a pesar de la menor exposición, utilizan equipo protector.

Además de ello, en los países en vías de desarrollo, las insuficientes legislaciones y la falta de medios para controlar su cumplimiento, junto con los niveles bajos de educación de los aplicadores, llevan a mayores intoxicaciones agudas por pesticidas. Como resultado, los productores de estos países tuvieron más problemas de salud que los de países desarrollados.

Actualmente se busca producir pesticidas más seguros, que se apliquen según indicación del agrónomo e incluso se comercialicen en envases más confiables. De manera que, aunque el riesgo de pesticidas no es cero, es menor y sigue disminuyendo.

8. Seguridad en el uso de pesticidas

La elección del pesticida se hace en base a su eficacia y la menor toxicidad posible para la fauna y vegetación benéficas y para el ser humano. Por eso, deben considerarse las comunidades bióticas vecinas al área de aplicación. Los de uso extensivo deben ser prescriptos por un ingeniero agrónomo y provistos por comercios especializados prestando atención al eventual deterioro de los envases o las etiquetas y a las fechas de vencimiento.

La forma de presentación condiciona los riesgos. Así, cuando es un polvo, la sola apertura del envase los pone en contacto con el aire y pueden penetrar la piel, mucosas o vía aérea. Los concentrados emulsionables que contienen solventes también conllevan ese riesgo y además son inflamables. Los granulados y, más aún, los microcapsulados no se prestan tanto a la absorción. Muchos pesticidas tienen agregadas sustancias de olores o sabores repulsivos o colorantes que llevan a rechazarlos o distinguirlos; los hay combinados con eméticos para ayudar a su eliminación en caso de ingesta.

Las siguientes recomendaciones son resumidas y adaptadas de fuentes citadas en la bibliografía.

El almacenaje se hace con los envases originales, en lugares frescos y ventilados, altos y exclusivos, cerrados bajo llave y advertencia de peligro. Deben estar apartados de almacenes de comida, alimento para animales y medicamentos. Los inflamables se ubican lejos de fuentes de ignición (hornos, automotores, aparatos eléctricos). Se deben evitar lugares inundables o cercanos a pozos, desagües o cursos de agua que puedan recibir derrames o goteos. Las cantidades se calculan de acuerdo con el consumo para evitar el sobresurtimiento. Se separan los herbicidas de
los plaguicidas, se controlan las fechas de vencimiento y se leen minuciosamente las instrucciones y los riesgos.

Los equipos de aplicación no deben tener fugas por ninguna parte, para lo que deben controlarse con sustancias inocuas y, en ese caso, corregirse.

Los envases se abren con extremo cuidado y de acuerdo con las instrucciones. Las bolsas no se rompen, sino que se cortan en ángulo con tijeras, lo que facilita su extracción y la guarda de sobrantes. Las mezclas deben hacerse al aire libre y con el equipo de protección indicado para cada caso.

Los envases más seguros tienen dosificadores o circuitos cerrados, y en algunos casos se usan bolsas solubles en el agua del tanque de fumigación.

Los riesgos se presentan en todo el proceso, desde la producción, transporte, preparación y aplicación hasta el destino de los desechos y envases.

Quienes trabajan en la elaboración, transporte o manipulación de productos deben hacerse exámenes médicos y de laboratorio, iniciales y periódicos, según los productos que manipulan.

El uso de los pesticidas debe emprenderse bajo ciertos principios:

• Aplicarlos sólo cuando el agente a atacar está por sobre los niveles de daño sanitario o económico.
• Hacerlo previa identificación del agente y el problema que genera.
• Seleccionarlos de acuerdo con recomendaciones o indicaciones precisas.
• Utilizarlos según las dosis, formulaciones y momentos oportunos de aplicación.
• Utilizarlos teniendo en cuenta las restricciones de uso.
• Capacitarse para su preparación, aplicación, destino de envases y residuos.
• Asegurarse de su legal etiquetado con nombre comercial, de los principios activos, empresa productora, fecha de vencimiento e instrucciones de uso.
• Rechazar envases deteriorados, con deficiencias en el etiquetado, precintos de seguridad rotos, ausentes o vencidos.
• Rechazar productos fraccionados en envases que no sean los originales.

El transporte de pesticidas está normado, en Argentina, por leyes y resoluciones de la Secretaría de Transporte. Entre otras indicaciones, se destacan las siguientes:

• Sólo se transportan envases cerrados.
• No deben ir junto a personas, animales o alimentos.
• No es conveniente transportarlos en automóviles o vehículos colectivos, salvo en pequeñas cantidades, cajas bien sujetas, alejadas del conductor y con el ámbito ventilado.
• La carga para transporte debe estar bien sujeta.
• La descarga debe hacerse con cuidado, evitando golpes o caídas y asegurando que en el piso no haya clavos, astillas, tornillos o perfiles de metal que puedan perforar los envases.

En caso de derrames, en general, se procede de la siguiente forma:

• Se aleja a las personas y también a los animales.
• Se opera con ropa protectora, guantes y, al menos, barbijo.
• Se evita o apaga cualquier llama libre, ya que muchos de estos productos son inflamables y pueden generar incendios o explosiones.
• Se retiran los envases dañados y se los deposita en el suelo, donde pueda absorberse la pérdida, cuidando que esté apartado de cursos de agua que puedan contaminarse.
• Se vuelcan en contenedores mayores los productos de envases menores afectados.
• Se empapa el líquido derramado con tierra, arena o aserrín y se barre cuidadosamente para enterrar los desechos lejos de aguas superficiales o de pozos de aguas subterráneas.

La aplicación de pesticidas debe seguir las siguientes normas:

• Entrenar a las personas que hacen la aplicación.
• Identificar el producto e interiorizarse de las instrucciones.
• Preparar la formulación según las dosis indicadas, considerando los aditivos y coadyuvantes según compatibilidades e incompatibilidades.
• Usar la protección personal que corresponda según la peligrosidad del producto: ropa cerrada (tipo mameluco), guantes, barbijo o caretas (por ejemplo, para organofosforados y carbamatos), antiparras o gafas, botas y capucha o casco; las mangas deben cubrir parte de los guantes y los pantalones las cañas de las botas; las telas deben ser lo más ligeras posibles y debe operarse en las horas más frescas del día.
• Alejar a las personas, en especial a los niños e incluso los animales.
• Preparar la formulación al aire libre y alejado de viviendas, almacenajes de alimentos o productos agrícolas.
• Revisar el equipo de aplicación y limpiar tanques, cañerías, picos, bomba y todos sus elementos.
• Respetar los plazos entre aplicación y cosecha.
• No aplicar pesticidas a granos almacenados.

La fumigación de pesticidas se hace de acuerdo con las normas precedentes y:

• Se descargan a favor del viento.
• Se prohíbe beber (por ejemplo, mate) o fumar durante la operación.
• Se debe quitar la ropa de protección y someterse a un baño profuso con agua y jabón al concluir la operación.

8. Aspectos operativos

En Argentina, las normas sobre pesticidas han tendido a unificarse en los últimos años. La regulación de los llamados “productos domisanitarios” (Res. Min. Salud y Acción Social Nº 709/08) comprende “aquellas sustancias o preparaciones destinadas a la limpieza, lavado, odorización, desodorización, higienización, desinfección y desinfección para su utilización en el hogar y/o ambientes públicos y/o privados”. Estos se clasifican según riesgo I y II.

La Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (Disp. ANMAT Nº 7292/98, 7334/99) diferencia los productos de venta libre y los de venta restringida. Asimismo, prohíbe la venta de productos domisanitarios que contengan malatión y diclorvos.

En relación con esta prohibición y teniendo en cuenta la resistencia desarrollada por ciertas poblaciones de triatominos a los pesticidas en uso, la ANMAT creó una nueva categoría, “Plagucidas de uso exclusivo en Salud Pública”, entre los que admite el malatión y el diclorvos. Incluye entre ellos a los que se propongan para el control del Aedes aegypti. En todos los casos, establece un régimen de ensayos de campo para medir sus parámetros principales de uso (por ejemplo, exposición, rendimiento, eficacia).

Para el caso del control del Aedes aegypti, se establecen protocolos para ensayo y aplicación de adulticidas con técnicas de Ultra Bajo Volumen (UBV), ya sea con equipo pesado montado en vehículo mediante niebla fría o portátiles mediante termonebulización o niebla fría. A
En espacios abiertos, las máquinas se calibran según la dosis que indica el fabricante y según las propiedades físicas y químicas del producto.

La tasa de aplicación se calcula de acuerdo con la velocidad de la marcha y la amplitud del espacio entre los recorridos. Así, por ejemplo, en equipo montado en vehículo automotor, a 10 km/h en un espacio de cien metros de amplitud, se puede tratar una hectárea con un caudal de nebulizado tipo de 0,5 litros por minuto. La trayectoria debe ser perpendicular al viento con el equipo dirigido hacia atrás.

No se nebuliza cuando llueve o cuando la temperatura ambiente es muy alta.Previo a la operación, se hacen abrir puertas y ventanas de los edificios. La trayectoria se planifica.

En espacios cerrados, se debe requerir consentimiento informado y proceder a cortar el interruptor eléctrico, apagar calefacción y cocinas, proteger recipientes de agua y alimentos y desocupar la casa de personas y animales. Se cierran, entonces, puertas y ventanas y el operador protegido (mameluco, batas, guantes, gorra y máscara), después de haber probado el equipo, pulveriza 10 caminando hacia atrás apartándose de la niebla y sale. Una vez concluido, se mantienen las aberturas cerradas durante treinta minutos, se ventila y recién pueden volver a entrar los habitantes (WHO, 2000: 15 y ss.; Argentina ANMAT Res. 7334/99, anexos). El procedimiento se registra en planillas ad hoc.

En el caso del Aedes aegypti, las hembras depositan los huevos en una superficie sólida por debajo del nivel de un contenedor de agua. Por eso, para detectar su presencia, si no se encuentran larvas, se utilizan ovitrampas, que son frascos de vidrio o plástico pintados de negro con agua limpia (una infusión de agua con heno es más atractiva para las hembras) y un trozo de madera o papel rugoso que encajen en el frasco como base para la ovoposición. La preparación y el traslado de los frascos siguen normas estandarizadas.

Los frascos se colocan de a pares en la base de paredes, protegidos de la lluvia y la luz directa del sol. Deben estar etiquetados con fecha y número de sitios. Como se busca la presencia del insecto en áreas intermedias, se recomienda colocar el par de frascos en veinte o treinta sitios diferentes.

Los frascos se recambian diariamente, se extraen los papeles doblándolos para adentro para no perder los huevos, se cuentan los mismos, preferentemente con lupa (x10), y se registran en planillas ad hoc por papel e indicando fecha y sitio. Para determinar la especie, se espera la eclosión de los huevos y se examinan las larvas.

Para evaluar la eficacia del rociado se usan jaulas de malla estrecha con mosquitos criados con procedimientos normalizados. Estas jaulas se distribuyen en el área a desinsectizar antes del rociado, se recogen a los treinta minutos y se estudia la mortalidad lograda dentro de las veinticuatro horas.

En los siguientes cuadros se presentan esquemas de los equipos adaptados del anexo pertinente de la Disp. ANMAT Nº 7334/99.

---

10 Con un caudal tipo de producto de 20 ml/min se cubre una casa de 800 m² en un minuto (Argentina, ANMAT Res. 7334/99).
**Equipos portátiles motomochilas de aerosol frío**

- Depósito de plaguicida
- Máscara
- Motor de dos tiempos
- Mochila
- Ventilador
- Boquilla de nebulización en frío


---

**Equipos portátiles termonebulizadores (niebla caliente)**

- Bomba de mano
- Protección de la cámara de combustión
- Cámar de combustión
- Bujía
- Sistema de inyección del plaguicida
- Depósito de plaguicida
- Botón de encendido
- Depósito de combustible
- Carburador

---

**HORACIO LUIS BARRAGÁN**
Equipamiento de niebla en frío, montado en vehículo

Bibliografía

Revista Facultad de Cs. Agrarias y Forestales.
CAPÍTULO 22

INFECCIONES E INTOXICACIONES ALIMENTARIAS

María Gabriela Bisceglia
Horacio Luis Barragán

1. Las Enfermedades Transmitidas por Alimentos

Los alimentos son vehículos potenciales de dos grandes grupos de enfermedades: las relacionadas con enfermedades endógenas de animales transmisibles al hombre (antropozoonosis) y las derivadas de microorganismos, aditivos, tóxicos que los contaminan o de animales y vegetales tóxicos. A estas últimas se las agrupa con el nombre de Enfermedades Transmitidas por Alimentos (ETA).

Se estima que las ETA afectan en el mundo entre sesenta y ochenta millones de personas y producen entre seis y ocho millones de muertes por año (Enciclopedia Médica, 2006)\(^1\). Los casos y brotes tienden a ser más numerosos, aunque se mantiene una subestimación de su incidencia. Por otra parte, se reconocen nuevos agentes productores de estas enfermedades y, entre los microbianos, se detecta resistencia a los antibióticos\(^2\).

La susceptibilidad del huésped, el envejecimiento de la población, las enfermedades crónicas y la inmunodepresión por enfermedad o medicamentos contribuyen a la expansión de estos casos y brotes.

Los puntos críticos de contaminación se ubican en la producción, procesamiento, transporte, almacenamiento, distribución, manipulación o consumo de los alimentos, dependiendo de su tipo, del contaminante y de los procedimientos.

Las aguas, suelos, materiales, ingredientes, utensilios y manos son los vehículos habituales de los agentes de ETA (WHO, 1972: 72).

Hay cuatro tipos principales de ETA, según su agente sea:

- Un microorganismo o sus toxinas.
- Un elemento físico o químico.
- Un alimento animal o vegetal tóxico.
- Un aditivo usado en el procesamiento o conservación de alimentos.

Estos dos últimos se tratan en anexo de este capítulo.

2. Microorganismos y toxinas

La infección alimentaria se presenta la mayoría de las veces con síntomas digestivos: náuseas, vómitos, diarrea y fiebre. Algunos agentes dan lugar a síntomas neurológicos o de otros sistemas

\(^1\) En EE.UU. se calcula un costo económico anual de 5.000 millones de dólares por ETA (Tanxe y otros, 2000: 1397).
\(^2\) Entre los nuevos microbios cuentan la Escherichia coli 0157: H7 y la Cyclospora cayaferens. Las Salmonellas y el Campylobacter presentan resistencia a los antibióticos (Tanxe y otros, 2000: 1397).
orgánicos. La causa principal puede pasar desapercibida, aunque una característica frecuente es su aparición brusca a pocas horas de la ingesta.

En términos generales, hay dos formas típicas de presentación: enfermedad diarreica aguda (la más frecuente; con tres o más deposiciones líquidas o semilíquidas en veinticuatro horas o bien una deposición líquida o semisólida con moco, sangre o pus en veinticuatro horas) y enfermedad neurológica. Esta última compromete la vida del paciente con riesgo de muerte inminente, y su ejemplo clásico es el botulismo (aunque los moluscos, los peces tipo tetraodon y los plaguicidas organofosforados generan cuadros similares).

La susceptibilidad es mayor en niños, ancianos, mujeres embarazadas y en inmunodeprimidos; aumenta en aquellas circunstancias en que se manejan alimentos sin mantener la cadena de frío o de calor por periodos prolongados, como en escuelas, reuniones sociales, picnics (Enciclopedia Médica, 2006).

Los microorganismos, aunque no sean patógenos, suelen estar presentes al adquirir los alimentos, ya que estos no son estériles. Se multiplican a temperaturas entre 4°C y 60°C.

La recuperación de los pacientes con enfermedad digestiva, en la mayoría de los casos, se obtiene en uno a tres días evitando la deshidratación con dieta líquida (excepto productos lácteos o cafeinados) y blanda. En los niños y ancianos se usan soluciones de electrolitos vía oral. Si la deshidratación es mayor o los vómitos impiden esta última vía, se rehidrata por vía endovenosa. En general, no se utilizan antibióticos. Algunas infecciones exigen tratamientos específicos.

En caso de sospecha de infección alimentaria, es preciso:

- Conservar como evidencia los restos y envases de los alimentos sospechosos, envolviéndolos congelados, identificados (tipo de alimento, fecha, procedencia o marca, hora de consumo y de comienzo de síntomas) y marcados con el símbolo y la palabra “peligro”.
- Conservar todo alimento idéntico que no se haya utilizado.
- Consultar al médico y ofrecerle las evidencias.
- Si el cuadro es grave o el brote numeroso, se hacen estudios bacteriológicos de heces y de los restos de los alimentos.

Las infecciones alimentarias se producen por la contaminación de alimentos con bacterias o parásitos y con toxinas. Entre las bacterias más frecuentes se destacan:

- **Staphylococcus aureus** (coagulasa-positivos, diferentes tipos serológicos3): produce enterotoxinas polipeptídicas termoestables y contamina por higiene insuficiente en la preparación de alimentos a través de un portador con lesiones (cutáneas –impétigo o forunculosis– o nasales) o sano. Las moscas son vectores mecánicos. Las mastitis de las vacas contaminan la leche.

El hábitat del *S. aureus* está en leche y derivados, helados, carne, huevos, mayonesas, cremas y embutidos. Los alimentos cocinados y no conservados en heladera son una fuente potencial.

La bacteria produce enterotoxinas, preformadas a la ingesta, cuando no se cocina a la temperatura adecuada para matarla o no se refriega el alimento. Una vez producidas, las enterotoxinas son termoestables y pueden resistir temperaturas de 100°C hasta una hora (Rey-Silvestre, 2005: 121).

El cuadro clínico se caracteriza por náuseas y vómitos, cólicos, diarrea no sanguinolenta y malestar general. Puede haber fiebre y cefalea. Hay cuadros graves con desequilibrio ácido

---

3 Se identifican enterotoxinas A, B, C, D y E. Suelen estar preformadas al momento de la ingesta, de allí su corta incubación. El serotipo A produce la enterotoxina más frecuente en brotes alimentarios. El F es el que puede generar el shock tóxico por uso de tampones menstruales (Rey-Silvestre, 2005: 122).
base y shock. Es más frecuente en niños, ancianos o enfermos crónicos. Incuba en escasos **treinta minutos a ocho horas** de la ingesta y su comienzo es brusco. En general, dura entre 12 y 48 horas. La recuperación en la mayoría de los casos es completa.

En tanto la intoxicación es por una toxina, suele aparecer en pequeños brotes. El diagnóstico bacteriológico se hace aislando los estafilococos. Pueden verse en muestras de vómitos con tinción de Gram.

La prevención es la preparación cuidadosa de los alimentos y la exclusión temporal de preparadores con infecciones en la piel o vías aéreas superiores.

- **Salmonella**: hasta el presente se han identificado más de 2.400 serovariedades de *Salmonella*, pero afortunadamente sólo algunas afectan al hombre. Diferentes de la *S. tiphy*, encontramos la *S. enteritidis* y la *S. typhimurium*, que proliferan en el intestino penetrando las células del epitelio. La *Salmonella enteritidis* es la que más brotes ha causado hasta la actualidad.

Uno de sus hábitats preferidos es el huevo crudo o mal cocido, sin almacenar en heladera o consumido después de quince días de su postura. También pueden contaminarse las carnes vacunas, porcinas o de aves, los lácteos, los pescados y mariscos provenientes de aguas contaminadas por efluentes cloacales y las hortalizas y verduras regadas con aguas servidas. (Rey-Silvestre, 2005: 57). Hay miel y marihuana contaminadas.

El cuadro clínico se presenta también con náuseas y vómitos, cólicos y diarrea acuosa, fiebre, cefaleas y mialgias. La diarrea por lo general es acuosa, menos veces pastosa con mucus y sangre. No es frecuente la bacteriemia, pero, en su caso, puede durar una semana y afectar otras partes del tracto gastrointestinal y superficies endoteliales. \(^4\) Hay pacientes más sensibles a las complicaciones: esplenectomizados, portadores de HIV-SIDA y otros cuadros con inmunodepresión\(^5\), así como lactantes y ancianos (por deshidratación y desequilibrios electrolíticos).

La incubación es entre **6 y 72 horas** de la ingesta y la duración del cuadro es entre uno y seis días. Asimismo, hay portadores convalecientes hasta dos o tres meses de la infección.

El diagnóstico se hace por el cuadro clínico y el hallazgo de leucocitos en las heces coloreadas con azul de metileno. Se confirma por la presencia de las *salmonellas* en muestras de heces o de torunda rectal. La bacteriemia es rara, salvo en pacientes inmunodeprimidos. Hay portadores sanos, pero no parecen ser claves en los brotes, a diferencia de lo que ocurre con la *S. tiphy*.

La prevención se hace con la higiene en la preparación de alimentos, su cocción y posterior refrigeración. Debe evitarse comer huevos crudos o sin cocinar y asegurarse la refrigeración a menos de 7°C.

El tratamiento es la hidratación oral y la dieta blanda. Sólo los casos peligrosos por edad o inmunosupresión requieren antibióticos. En niños se usa TMP-SMX (5 mg TMP/kg) vía oral cada doce horas. En los adultos, ciprofloxacina 500 mg cada doce horas por tres a cinco días.

Los portadores que trabajan con alimentos deben recibir una dosis de ciprofloxacina 500 mg/ cada doce horas, vía oral, durante treinta días (Beers-Berkow, 1999: 1170), y se deben hacer cultivos en heces una semana después para confirmar la erradicación.

- **Clostridium perfrigens tipo A**: tiene amplia distribución en aire, suelo, agua y heces. El cuadro clínico suele ser una diarrea acuosa con cólicos abdominales; los vómitos y la fiebre no son frecuentes. La intoxicación se produce por esporas que contaminan los alimentos,

---

\(^4\) De existir, puede infectar tumores sólidos, accedéndolos y configurando una fuente de bacteriemia.

\(^5\) La ETA por salmonellas se ha relacionado con el Síndrome de Reiter, que afecta con preferencia a adultos y se presenta con lesiones en la piel, conjuntivitis, uretritis y artritis. Puede durar varios meses e incluso cronificarse (Rey-Silvestre, 2005: 60).
especialmente la carne (la refrigeración anula su proliferación). La bacteria esporula y libera enterotoxinas en el intestino delgado. Los síntomas comienzan entre las 8 y 24 horas de la ingesta. Se puede aislar Clostridium del alimento contaminado y de las heces.

Se previene cocinando bien la carne (75º de temperatura interna), refrigerándola después y volviendo a cocinarla si se ha guardado bajo refrigeración.

- **Clostridium botulinum** (cfr. Cecchini, González Ayala, 2008): es un bacilo Gram positivo, anaerobio y esporulado. Se describieron hasta la actualidad ocho tipos de Clostridium botulinum. Los tipos A, B y E son los que producen la mayoría de los casos en los seres humanos, mientras que los tipos C, D y E son comunes en la enfermedad del ganado. Este microorganismo está ampliamente distribuido en los cinco continentes y produce la toxina neuroparalizante más potente que se conoce (tiene acción sobre el sector colinérgico y es hemoaglutinante). El tipo A es el más frecuentemente asociado a brotes de botulismo clásico y sus esporas son las más resistentes. La neurotoxina E se asocia a brotes por ingesta de mariscos. La ingestión de muy pequeñas cantidades, del orden de 0,1 a 1 µg, pueden desencadenar la muerte.

Existen dos cuadros clínicos más, aparte del clásico, que son la infección por heridas y el botulismo del lactante.

El cuadro clínico clásico del botulismo es inicialmente digestivo (náuseas, vómitos, espasmos abdominales y diarrea) y, después, neurológico. Los signos neurológicos son bilaterales y simétricos, comienzan en los nervios craneales y continúan con parálisis y debilidad descendentes. Se presenta con diplopía, ptosis palpebral, pérdida de la acomodación visual y disminución del reflejo pupilar, así como sequedad de boca y debilidad de la lengua. La parálisis descendente afecta el bulbo raquídeo con disfagia, disartria, disfonía, expresión facial flácida, hiporreflexia y afectación de los músculos respiratorios. No hay afectación de los músculos del senorio ni sensitiva. No se presenta fiebre. En esta etapa es frecuente la constipación. La gravedad surge de la parálisis diafragmática y consecuente insuficiencia respiratoria con infecciones pulmonares por aspiración.

El cuadro comienza entre las 18 y 36 horas de la ingesta (alcanza a veces a cuatro a ocho días). Los síntomas digestivos preceden a los neurológicos.

El diagnóstico diferencial debe hacerse con el síndrome de Guillain Barré, la miastenia gravis, el accidente cerebrovascular, la poliomielitis e intoxicaciones por curare o derivados de la belladona. Se sospecha en presencia de más de un caso. Pueden afectarse los animales domésticos que ingirieron la misma comida.

Se detecta la toxina en suero, en heces y en el alimento portador. Puede encontrarse el bacilo en heces. El bioensayo en ratones es un método sensible y selectivo (ibid.).

El botulismo de las heridas produce sólo los síntomas neurológicos sin los gastrointestinales. El origen está en heridas o pinchazos profundos con antelación de dos semanas. Deben buscarse excoriaciones, abscesos o lesiones en drogadictos endovenosos.

El botulismo del lactante no tiene fuente precisa. Puede deberse a la ingestión de polvo con esporas. Se han descripto casos por ingestión de miel, por lo que se recomienda no dar ese alimento a niños menores de doce meses. El cuadro se inicia con constipación seguida de signos neurológicos, llanto débil, succión escasa, secreciones orales y facies inexpresiva.

El terrorismo internacional ha ensayado el uso de toxina botulínica aerosolizada para inhalación colectiva o para contaminar agua o alimentos (Pinillos, 2003: 4).

Las esporas del C. botulinum tienen el suelo por reservorio, son resistentes al calor hasta 100ºC y son destruidas por calor húmedo de 120ºC durante treinta minutos. Las toxinas son termolábeles y se destruyen cocinando los alimentos a 80ºC por treinta minutos. Por el contrario, especialmente la del tipo E, pueden generarse a temperaturas bajas (por ejemplo, 3ºC en un frigorífico) y no requieren condiciones anaeróbicas estrictas.
Las clases de alimentos relacionados con el botulismo son principalmente los vegetales (55%), seguidos por los mixtos de vegetales más carnes (30%) y, por último, los cárnicos (15%), según datos aportados por la Universidad Nacional de Cuyo (Argentina). La distribución de la toxina es homogénea en los alimentos vegetales a causa de su contenido líquido; sin embargo, en los alimentos sólidos como las carnes se distribuye de manera irregular, concentrándose mucho en algunas zonas y en otras menos.

Entre 1922 y 2002 se ha registrado en Argentina aproximadamente un brote por año, es decir, 82 en total, con 273 enfermos (de los cuales 112 fallecieron).

Las precauciones involucran la manipulación de elementos presuntamente contaminados por la toxina, porque ella puede penetrar por escoriaciones de la piel, por la conjuntiva del ojo y mucosas de trabajadores y laboratoristas. Estos deben estar vacunados con toxoide botulínico. Las muestras deben colocarse en recipientes irrompibles, bien cerrados, mantenerlos refrigerados entre 4 y 8°C y estudiarlos a la brevedad.

La prevención se hace por el correcto envasado de alimentos caseros o comerciales, el desecho de alimentos o latas en mal estado, abombadas o con pérdidas.

Como recomendación, se sugiere no consumir conservas caseras de procedencia desconocida. El olor y el sabor es normal en presencia de toxina botulínica; también los envases pueden tener características normales (no necesariamente las latas deben estar abombadas).

Es útil el lavado de estómago con sonda gástrica y carbón activado. El paciente debe ser trasladado a Unidad de Terapia Intensiva (UTI) y tratado con sostén respiratorio y general así como con antitoxina trivalente (disponibilidad en el Center for Disease Control and Prevention- CDC, EE.UU.).

La toxina bloquea las vesículas presinápticas de acetilcolina e inhibe su eliminación en las terminaciones nerviosas produciendo parálisis. La antitoxina no tiene efecto sobre ella cuando está fijada. Sin embargo, detiene la progresión. La recuperación es lenta y las funciones neurológicas se restablecen según la regeneración de las terminaciones afectadas, por lo que puede demorar semanas.

El tratamiento es sintomático: monitorización, intubación y ventilación mecánica si es necesaria y tratamiento de infecciones oportunistas (Pinillos, 2003: 5). La antitoxina debe aplicarse cuanto antes, incluso si no hay corroboración bacteriológica, antes de las 72 horas de los síntomas.

El suero empleado debe ser específico para la toxina actuante, de lo contrario, no es eficaz. Se dispone de suero monovalente (A, B) y polivalente (A, B y A, B, E).

Debe preverse la anafilaxia o reacciones alérgicas, ya que la antitoxina se prepara con suero equino. No se usa en el lactante; para él se estudia el uso de gammaglobulina obtenida de personas vacunadas.

- *Escherichia coli O157: H7*: esta y cepas similares se agrupan como *E. coli enterohemorrágica*. Producen una enterotoxina similar a la de la *Shigella disenteriae* tipo I que se absorbe en el intestino grueso, lesionan las células endoteliales de los vasos de la pared intestinal y eventualmente del riñón.

El cuadro clínico inicial es de cólicos con diarrea acuosa que se hace sanguinolenta a las veinticuatro horas, a veces parece “todo sangre sin heces”. Puede o no haber fiebre. La diarrea dura una semana.

El cuadro es más grave en niños y ancianos, como en todas las ETA.

El 5 a 10% se complica con el Síndrome Urémico Hemolítico (SUH): anemia hemolítica, trombocitopenia e insuficiencia renal aguda. En adultos puede confundirse con una púrpura trombocitopénica (PTP), cuya presentación posdiarreica es equivalente al SUH en el niño. También es posible su presentación sin diarrea previa.

---

6 La dosis habitual es de 5.500 a 8.500 IU en 10 ml diluidos en 100 ml de suero salino al 0,9% endovenoso (Pinillos, 2003: 5).
Debe controlarse, especialmente a la primera semana, la presentación de insuficiencia renal aguda en niños menores de cinco años y ancianos. Estos casos requieren UTI y hemodiálisis. El diagnóstico se hace por coprocultivo. Debe diferenciarse de una colitis isquémica, de una invaginación y de las enfermedades inflamatorias intestinales.

Siendo el bovino su principal reservorio, la fuente fundamental es la carne ingerida mal cocinada o triturada, especialmente hamburguesas, o leche no pasteurizada, alimentos o agua contaminados con estiércol de vaca o carne cruda. Se puede transmitir vía fecal-oral, especialmente en niños o adultos que usan pañales.

La prevención secundaria se hace con la eliminación adecuada de las heces infectadas, la higiene y el lavado de las manos. Los niños infectados no deben ir a la escuela hasta no tener dos coprocultivos negativos.

La prevención primaria se hace por la cocción completa de las carnes y la pasteurización de la leche.

- **Vibrio cholerae**: lo habitual es su transmisión fecal-oral por agua. Suele haber brotes de intoxicación con mariscos crudos o mal cocinados contaminados con *V. cholerae* 0-1 tipo El Tor, o más leves, por *V. cholerae* no 0-1. También hay intoxicaciones por contaminación con *V. parahaemoliticus* por mariscos ingeridos crudos. La bacteria vive en agua salada y está muy extendida.\(^7\)

El cuadro severo se presenta con diarrea acuosa profusa ("en agua de arroz"), vómitos y calambres musculares.

Es una bacteria muy sensible al calor. Sometida a temperaturas de 100°C muere en treinta segundos.

### Infecciones alimentarias más frecuentes. Características

<table>
<thead>
<tr>
<th>Agente</th>
<th>Incubación</th>
<th>Síntomas</th>
<th>Fuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>1 a 6 hs.</td>
<td>Náuseas, vómitos, diarrea.</td>
<td>Fiambrés, pollo, ensalada de papas, huevos, mayonesa, cremas.</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>8 a 16 hs.</td>
<td>Cólicos abdominales, diarrea, raro el vómito.</td>
<td>Carne de vaca, pollo, legumbres, salsas.</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>8 a 16 hs.</td>
<td>Cólicos abdominales, diarrea, raro el vómito.</td>
<td>Carne de vaca, pollo, legumbres, salsas.</td>
</tr>
<tr>
<td>Escherichia coli enterohemorrágica</td>
<td>Más de 16 hs.</td>
<td>Diarrea sanguinolenta.</td>
<td>Carne picada, rosbif, fiambrés, leche no pasteurizada, vegetales crudos, jugo de manzana.</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Más de 16 hs.</td>
<td>Diarrea inflamatoria.</td>
<td>Carne de vaca, pollo, huevos, lácteos.</td>
</tr>
</tbody>
</table>


---

\(^7\) El *V. vulnificus*, con iguales características, produce un cuadro grave con brusca fiebre y escalofríos 24 a 48 horas después de la ingesta de mariscos crudos (más frecuentemente ostiones), que evoluciona con un eritema hemorrágico, hipotensión e insuficiencia renal aguda. Se le atribuye un 100% de mortalidad. La adquieren pacientes de diabetes o cirrosis, hemocromatosis y otras enfermedades crónicas.
2.1. Otros microorganismos

La Listeria monocytógenes es un bacilo pequeño, Gram negativo, que crece a temperatura de refrigeración (4º a 10ºC). Se transmite por carnes y vegetales crudos, aves, leche y quesos blandos. Afecta a mujeres embarazadas, recién nacidos, ancianos, diabéticos e inmunodeprimidos, especialmente pacientes con SIDA. La gastroenteritis puede ser autolimitada o evolucionar a diferentes síndromes según sea afectada una embarazada o un recién nacido. La L. monocytógenes es eventual generadora de bacteriemia grave, de meningoencefalitis, absceso cerebral y endocarditis. La incubación es larga, entre once y setenta días.

La Shigella puede producir infecciones alimentarias por falta de higiene de los manipuladores y del ambiente. Son bacilos pequeños, Gram negativos, con alrededor de cuarenta serotipos que se dividen en cuatro grupos (A, B, C, y D). Producen la disentería bacilar, que es más frecuente en climas tropicales y con susceptibilidad mayor en niños de edad preescolar o escolar y desnitrificados. Se producen brotes en comunidades cerradas donde hay hacinamiento. Presenta ciclos epidémicos de varias décadas con variaciones en el grupo del bacilo. Es una infección muy contagiosa, ya sea por alimentos, agua o contacto interpersonal. Las moscas son vectores mecánicos y hay portadores asintomáticos. La disentería se presenta como diarrea, al principio acuosa y después con sangre, mucus, cólicos y afectación del estado general.

El Campylobacter yeyuni, así como la E. coli, se transmite por carne mal cocinada, aves, leche cruda y bivalvos de criadero. Son más frecuentes los casos esporádicos, tanto en niños como adultos, que los brotes. Es uno de los agentes de la diarrea del viajero. Penetra el epitelio intestinal y produce enterotoxinas termolábiles. En la carne picada sobrevive hasta tres semanas si no se conserva la cadena de frío. Incuba entre uno y once días (Rey-Silvestre, 2005: 68). El cuadro es febril, con dolor abdominal y diarrea inflamatoria o hemorrágica. No se recomiendan antibióticos. Después de la recuperación, se siguen eliminando bacterias hasta cuatro meses.

El Bacillus cereus produce in vivo varios tipos de enterotoxinas termoestables que provocan náuseas y vómitos después de las seis horas de la ingesta del alimento contaminado (síndrome emético). Otra toxina termólabil genera diarrea y cólicos después de las doce horas de la ingesta (síndrome diarreico), que se prolonga por más de dos días. El B. cereus esporula en el alimento, crece y produce enterotoxinas. Su crecimiento se inhibe con la refrigeración, pero hay cepas que crecen lentamente aun a los 4ºC.

La Yersinia enterocolítica se transmite por carne mal cocinada, especialmente de cerdo, y leche cruda. El cuadro se caracteriza por vómitos, diarrea con o sin sangre, fiebre y adenitis mesentérica. El dolor abdominal se presenta en el cuadrante inferior derecho y requiere el diagnóstico diferencial con la apendicitis aguda.

El Helicobacter pylori es una bacteria espiralada y Gram negativa cuyo efecto patógeno se descubrió en la década de 1980. Lesiona la mucosa gástrica, generando gastritis y ulceración. Es un factor de riesgo para el cáncer y linfoma de estómago. Se contagia a través de alimentos preparados sin condiciones de higiene, así como también por vía respiratoria.

Los priones son partículas de tipo proteico que se distinguen de los virus por carecer de ácido nucleico. Sin embargo, afectan el sistema nervioso. Después de larga incubación, producen astrocitosis y vacuolas espongiformes. Desde mediados de la década de 1990 se diagnosticaron, en el Reino Unido, alrededor de cuarenta casos de una variante de la enfermedad de Creutzfeldt-

---

8 Se han detectado brotes por aceite mineral utilizado en el baño de lactantes.
9 A fines del siglo xix se diferenció de la disentería por Entamoeba histolytica.
10 El Arcobacter es una bacteria similar causante de ETA que produce fiebre, náusea y diarrea persistente. Su hábitat preferente es la carne, en especial de las aves. Se transmite también por agua.
Jacob en personas más jóvenes que los afectados por la variante original, de mayor duración y con sintomatología sensitiva y psiquiátrica seguida de síndromes piramidales, cerebelosos, mioclonías y otros síntomas.

Estos casos fueron precededidos, alrededor de 1985, por una epidemia de Encefalopatía Espongiforme Bovina (enfermedad de la vaca loca), que afectó a cientos de miles de vacas supuestamente infectadas por alimentos preparados con vísceras de ovejas enfermas de scrapie, y se sostuvo que la ingestión humana de carnes de animales infectados produjo los casos en humanos. Se determinaron, entonces, una serie de medidas drásticas de sanidad veterinaria con severas prohibiciones. Los priones son resistentes, pero pueden ser destruidos por calor húmedo a 132ºC durante una hora (Tyler, 2002: 2395 y ss; cfr. Beers y Berkow, 1999: 1307).

2.2. Virus

Los virus son la principal causa de gastroenteritis infecciosa, ubicándose en primer lugar el rotavirus. Este genera deshidratación en el niño entre tres y quince meses de vida. Se trasmite vía fecal-oral e incuba en uno a tres días. No es frecuente su transmisión por alimentos. Los virus de la hepatitis A y E pueden producir brotes por alimentación. Se han registrado moluscos bivalvos, frutillas, verduras crudas y otros alimentos como origen de infecciones alimentarias.

La gastroenteritis por calicivirus del tipo Norwalk afecta a niños mayores y adultos. Se trasmite por alimentos (moluscos, helados) o agua, e incuba en uno a tres días.

Otros virus de transmisión fecal-oral que producen gastroenteritis son los adenovirus cepas 40 y 41, otros calicivirus no Norwalk y el astrovirus (Rey-Silvestre, 2005: 132 y ss.).

2.3. Parásitos

Las ETA parasitarias reconocen, al igual que el resto de las ETA, la ingestión de los alimentos (vía oral) como la única puerta de ingreso. Pero, a diferencia de otras ETA, la enfermedad no es sólo causada por contaminación, sino que existen otras posibilidades relacionadas con los “ciclos de los parásitos”:

- Fases infestantes de los parásitos en los alimentos como parte obligatoria de su ciclo biológico: Taenia saginata, Taenia solium, Trichinella spiralis.
- Fases infestantes de los parásitos en plantas y verduras como parte obligatoria de su ciclo biológico: Fasciola hepática.
- Fases infestantes de los parásitos presentes en los alimentos como consecuencia de su contaminación: Giardia lamblia, Entamoeba histolytica, Cryptosporidium parvum.

Los síntomas varían según de qué parasitosis se trate. Puede presentarse un cuadro de repercusión general o bien síntomas digestivos (dolor abdominal, diarrea, meteorismo, obstrucciones), neuro-psíquicos (insomnio, bruxismo, irritabilidad) y también alérgicos (eosinofilia, prurito anal, nasal y vulvar, bronquitis asmática, edemas).

---

12 Las lesiones espongiformes por priones se presentan en cuatro enfermedades humanas: la de Creutzfeldt-Jacob, el kuru, la enfermedad de Gerstmann-Sträuss-Scheinker y el insomnio familiar fatal. Las enfermedades veterinarias son el scrapie de las ovejas y la encefalopatía espongiforme bovina y de otras especies.
Pueden dar brotes alimentarios numerosas parasitosis: toxoplasmosis, amebiasis, giardiasis, criptosporidiosis, cyclosporidiosis, fascioliasis y cisticercosis, equinococosis o hidatidosis, difilobotriasis, ascariasis, tricuriasis, himenolepiasis y otras.

La triquinosis se contagia por consumo de carne de cerdo o fiambres sin el debido control veterinario y suele presentarse en brotes. Las manifestaciones clínicas iniciales son dolor abdominal, náuseas, vómitos y en ocasiones diarrea. A medida que las larvas de Trichinella migran hasta la zona muscular, el paciente presenta fuertes mialgias, edemas de párpados superiores y miembros, cefalea y síndrome febril. La ingestión del alimento conteniendo al parásito se produce habitualmente entre ocho y veintiún días previos al inicio de los síntomas. El paso de las larvas a corazón y cerebro puede ocasionar miocarditis o encefalitis de tal gravedad que terminan con la muerte del paciente.

La toxoplasmosis es considerada la zoonosis más difundida en el mundo. El consumo de alimentos con ooquistes (por ejemplo, en verduras mal lavadas) o con quistes que contengan bradizoítos (por ejemplo, en carnes mal cocidas) se vincula con la aparición de la enfermedad. El período de incubación oscila entre los cinco y veintitrés días. La enfermedad suele ser asintomática, pero en algunas oportunidades presenta síntomas alarmanes por su intensidad, como fiebre, mialgias, cefalea, dificultad respiratoria y arritmias cardíacas. Según la localización del T. gondii, puede originar linfoadenitis, coriorretinitis, hepatitis, miocarditis y meningoencefalitis. Los enfermos con HIV-SIDA pueden padecer una forma mucho más grave de predominio encefáltico.

### 3. Síndromes clínicos

Los síndromes clínicos más frecuentes se agrupan en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Cuadros clínicos de infecciones alimentarias</th>
<th>Incubación</th>
<th>M. Sospechoso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolores cónicos y diarrea, náuseas. En muchos casos, vómitos y fiebre infrecuente.</td>
<td>8 a 16 horas (enterotoxinas formadas in vivo).</td>
<td>Clostridium perfrigens. Bacillus cereus (síndrome diarreico).</td>
</tr>
<tr>
<td>Fiebre, dolores cónicos.</td>
<td>16 a 48 horas.</td>
<td>Yersinia enterocolítica.</td>
</tr>
<tr>
<td>Diarrea sanguinolenta, cónicos, sin fiebre; posible lesión renal y púrpura trombocitopenica trombótica.</td>
<td>72 a 120 horas.</td>
<td>Escherichia coli productora de toxina Shiga.</td>
</tr>
</tbody>
</table>

4. Elementos físicos y químicos

4.1. Accidentes físicos

Los peligros físicos por ingestión de alimentos son individuales y pueden tener efectos serios en niños y ancianos: trozos de hueso o cartílago, espinas de pescado. A ellos pueden agregarse un número inusitado de pequeños objetos o parte de ellos caídos accidentalmente en la preparación, desde uñas y cabellos hasta trozos de envases o vidrios rotos. Según las circunstancias, el tamaño y la forma, pueden producir lesiones en la cavidad bucal, rotura de dientes, perforaciones del tubo digestivo o obstrucción de la vía respiratoria.

4.2. Contaminación radioactiva

La contaminación radiactiva, en cambio, produce efectos colectivos. Su fuente artificial son las detonaciones nucleares y las fugas de los reactores atómicos que expanden sustancias radiactivas en la atmósfera, las que, a su vez, se depositan en el agua y el suelo e, introducidos en la cadena alimentaria, se acumulan y bioconcentran.

4.3. Intoxicaciones alimentarias por metales

El mercurio, metal líquido, es altamente volátil y desde la atmósfera es capaz de contaminar el agua y el suelo. Su uso industrial, por otra parte, es extendido. Los plaguicidas agrícolas mercuriales están hoy proscriptos.

Su concentración en vegetales y carnes, salvo si se han utilizado los plaguicidas mencionados o los animales han sido alimentados con harina de pescado contaminado, es baja y son raras las intoxicaciones.

El mercurio se biotransforma y se acumula en la cadena alimentaria como metilmercurio. Cuando está presente en agua de mar, se concentra en los peces predadores y en los moluscos filtradores. Capturados y consumidos, ya sea crudos o cocidos, son neurotóxicos y produjeron los brotes, ya mencionados en otros capítulos, de la bahía de Minamata y de Nigata (Japón, 1953 y 1964). Pan hecho con semillas tratadas con fungicida mercurial produjo una masiva intoxicación en Irak (1956).

El plomo proveniente de industrias que lo utilizan o de las autopistas, en los países en que aún se permite el tetraetilo de plomo como antidetonante de las naftas, contamina el suelo circundante y los sembrados y veredas que crecen en él. Desde ellos llega a la alimentación de animales y seres humanos. Otras posibles fuentes de sobrecarga alimentaria por plomo son los envoltorios de botellas de vino que lo contienen, así como los perdigones y balas remanentes en los animales de caza (Guitart, 2002: 11).

13 El mercurio inorgánico se concentra y lesiona el riñón. Se ha atribuido potencial intoxicación al mercurio de las amalgamas dentales que lo contienen, considerando que las personas con más de ocho obturaciones dentarias exhalan concentraciones altas de mercurio en la respiración. Se le han atribuido cuadros de fatiga, depresión, irritabilidad, vértigo, amnesia y otros (Lankstein, 2006: 2-3).

14 En Argentina hubo un brote de intoxicación en lactantes por uso de pañales tratados con un desinfectante mercurial, absorbido por la piel (c. 1980).
Las antiguas cañerías de plomo pueden contaminar transitoriamente el agua. Los productos, jugos y conservas envasados en latas con soldaduras de plomo o plomo y estaño, en contacto con contenidos ácidos pueden intoxicar.

Estas intoxicaciones alimentarias por plomo se manifiestan con síndromes neurológicos, hipertensión arterial y anemia. En los niños se presenta el riesgo de la encefalopatía saturnina con trastornos motores y psicológicos, así como déficit de aprendizaje y alteraciones de la conducta.

El **estaño**, que tendió a reemplazar el plomo en los envases de conservas, es poco tóxico. Sin embargo, sus compuestos orgánicos (tributil-estaño o TBT), que se usaban como antiincrustantes de algas y mariscos en los cascos de los barcos, pueden generar trastornos por la ingesta de mariscos o peces capturados en zonas costeras (Guitart, 2002: 10).

El **aluminio** es poco tóxico, por lo que se utiliza en latas de bebidas, envoltorios de alimentos, utensilios de cocina y medicamentos. Se absorbe con dificultad en el tubo digestivo. Sin embargo, se hace soluble en medio ácido, por lo que se recomienda no usar utensilios de aluminio para preparaciones alimentarias en esa condición (vinagreta, escabeches). El interior de latas de aluminio con bebidas ácidas se cubre con una capa de polímero plástico. Se lo ha asociado a la enfermedad de Alzheimer (Guitart, 2002: 10).

El **cromo** de valencia VI es tóxico y carcinógeno. A la alimentación puede llegar por productos de suelos contaminados (Guitart, 2002: 10).

El **cadmio** procedente de plantas industriales (de producción de pilas, baterías y procesos de electrólisis) llega a contaminar los cursos de agua dulce y el mar. Se bioconcentra en pulpos y calamares. Los suelos ácidos favorecen su absorción por las plantas. Una de ellas es el tabaco, que hace que el cadmio forme parte de su humo.

En Japón se produjeron brotes de intoxicación por cadmio en las décadas de 1930 y 1940, originados en sembrados de arroz regados con agua contaminada por una planta industrial. Se llamó enfermedad de Itai-Itai, caracterizada por trastornos óseos muy dolorosos y lesión de los túbulos renales (Moreno Grau, 2003: 205).

Se han reportado intoxicaciones alimentarias agudas por contaminación con algunos otros metales como el cobre y el cinc. Incubaban entre cinco y quince minutos y producían una irritación gástrica con náuseas, vómitos y cólicos intestinales (Tane, 2000: 1400).

## 5. Medidas de prevención

**Para prevenir las ETA se requieren condiciones a las que no todas las comunidades y familias tienen acceso:** agua potable, sistemas cloacales, recolección de basura y equipamiento de cocinas (heladeras, mesadas, alacenas). Al enumerarlas de seguido se reafirma la necesidad del saneamiento básico para todas las comunidades y las familias. Son normas elementales:

15 En enero de 1920 se promulgó en EE.UU. la ley seca, que prohibía la producción y venta de bebidas alcohólicas en ese país. El senador Volstead, su promotor, sostenía que con esta medida se corregirían la embriaguez y la violencia, se transformarían las cárcel y correccionales de menores y los barrios marginales se mejorarían. La consecuencia inmediata fue el nacimiento de un nuevo mercado negro que producía bebidas con componentes tóxicos como el plomo y el alcohol metílico, que produjo una epidemia con 30.000 muertos y 100.000 discapacitados por ceguera y parálisis. La producción, contrabando y tráfico ilegal de bebidas alcohólicas dio pie a la creación del sindicato del crimen, conformado por mafias de distintos orígenes, unas veces distribuyéndose áreas de influencia y otras enfrentándose en masacres y asesinatos. La más conocida fue la que dominó la ciudad de Chicago con la complicidad de políticos y policías corruptos. A su frente estuvieron Johnny Torrio y Al Capone. El célebre detective Elliot Ness fue su contrincante y lo relató en su libro “Los Intocables”, que fue llevado al cine. La ley seca se derogó en 1933, después de la crisis económica y en el marco del New Deal del presidente demócrata F.D. Roosvell (Vargas, 2000). En Inglaterra, el consumo de cerveza contaminada con arsénico accidentalmente produjo un brote de arsenicismo agudo.

16 Por inhalación en medio laboral, produce alteraciones pulmonares. Es considerado carcinógeno de pulmón.

• Almacenar los alimentos en refrigerador (4°C) o congelador (−15°C).
• Cocerlos hasta los 70°C (62°C en carne bovina u ovina).
• Mantener las comidas cocidas calientes a más de 62°C.
• Recalentar las comidas ya cocidas hasta los 75°C.
• Mantener frías las comidas frías y calientes las calientes: “cadena de calor o cadena de frío, no cadena rota” (Rey-Silvestre, 2002: 24).
• Higienizar el recinto, las mesadas, instrumentos y utensilios de cocina.
• No procesar en la misma mesada y con los mismos utensilios alimentos crudos y cocidos.
• Usar tablas de plástico, en lugar de madera, más fáciles de higienizar, para cortar carne, pescado o aves crudas.
• Mantener separados los alimentos crudos, cocinados, precocidos y huevos crudos.
• No utilizar repasadores o trapos multiuso.
• Disponer los residuos en recipientes con tapa.
• No admitir la presencia de animales en la cocina (perros, gatos, aves, tortugas).
• Lavar muy bien y/o usar antisépticos clorados para desinfectar las verduras y las frutas que crecen al ras del suelo.
• Lavarse las manos antes de preparar la comida y cada vez que se ensucian (al usar el baño, cambiar pañales, sonarse la nariz, toser, estornudar, fumar, usar artículos de limpieza, tocar dinero o alimentos crudos).
• Almacenar los artículos de limpieza por separado de los alimentos.
• Usar jugo de limón o vinagre, cuando sean adecuados a la preparación, con pH 1-2 y 2,4-3,4 respectivamente, ya que los microorganismos se desarrollan con preferencia en pH cercanos al neutro, entre 4 y 9, y la mayoría de los alimentos tienen un pH ligeramente ácido que los favorece (Rey-Silvestre, 2002: 33).
• Reducir al mínimo el tiempo entre la preparación y el consumo de alimentos, tanto más si no se dispone de heladera.

El Anexo II de la OMS establece “Cinco claves para la inocuidad de los alimentos” (Food Safety Initiative, World Health Organization, WHO/SDE/PHE/FOS/00.4, original en inglés).
Este Anexo, que se adjunta en la siguiente página, sintetiza gráficamente las premisas básicas que deben considerarse en la prevención de las enfermedades trasmitidas por alimentos.
CINCO CLAVES PARA LA INOCUIDAD DE LOS ALIMENTOS

**Mantenga la limpieza**
- Lavado las manos antes de preparar alimentos y al menudear durante la preparación.
- Limpieza de los utensilios y el horno después de usarlos.
- Lave y desinfecte todas las superficies y equipos usados en la preparación de alimentos.
- PRECAUCIONES: Los alimentos y las bandejas de cocina de ensamblaje, máquinas y demás utensilios (cuando los alimentos en recipientes cerrados).

**Separe alimentos crudos y cocinados**
- Separe siempre los alimentos crudos de los cocinados y de los fritos para comestibilidad.
- Lave y desinfecte las superficies, como cubiertas o baldas de cortar, para manipular carne, pollo y pescado y otros alimentos crudos.
- Congelar los alimentos en recipientes separados para evitar si contaminan proximamente.

**Cocine completamente**
- Cocine completamente los alimentos, especialmente carne, pollo, huevos y pescado.
- Haga cocinar los alimentos, como sepárate y Además para que no se contaminen.
- 70°C (158°F) para carne cruda y pollo crudo que se las juegas estarán cocinados y no contaminados. (Recomendado el uso de termómetros)
- 70°C (158°F) para carne cruda y pollo crudo que se las juegas estarán cocinados y no contaminados. (Recomendado el uso de termómetros)
- Recalentar completamente la comida cocinada.

**Mantenga los alimentos a temperaturas seguras**
- No sepan alimentos crudos a temperaturas de 10°C
- Refrigere los alimentos crudos y los alimentos crudos de forma no refrigerada.
- Mantenga los alimentos crudos húmedos a un mínimo de 60°C (140°F)
- No guarde productos de forma incorrecta con húmedos a un mínimo de 60°C (140°F).
- No flanquear los alimentos crudos a temperaturas de 10°C.
- No refrigerar los alimentos crudos a temperaturas de 5°C (41°F).
- Algunos microorganismos pueden multiplicarse y duplicarse en el alimento en condiciones de temperatura almacenada y las condiciones del tiempo de almacenamiento.

**Use agua y materias primas seguras**
- Una agua blanda para que no sea dura.
- Selección alimentaria de agua y fresas.
- Para su inocuidad, las materias primas prelavadas, tales como leche pasteurizada.
- Lave las frutas y las cebolas, especialmente si se comen crudas.
- No utilice alimentos después de la fecha de vencimiento.

Conocimiento = Prevención
Anexo: otros animales y vegetales tóxicos

A veces en la formación y práctica médica se desprecia el conocimiento sobre una patología no muy común en el área donde se ejerce por la remota posibilidad de tener “un caso” de esa enfermedad. Es entonces cuando aparece “uno de esos casos”, momento en el cual se estudia uno y otro diagnóstico buscando una solución. 

HOSPITAL PRACTICE, 1989.

Hay gran diversidad de infecciones e intoxicaciones alimentarias, algunas de ellas propias de regiones distintas y de culturas diferentes. Sin embargo, en la era de los viajes a grandes distancias, algunas de ellas merecen ser mencionadas. Una pregunta que debe agregarse a toda anamnesis ante un cuadro dudoso o extraño es, entonces, a dónde viajó.

1. Pescados tóxicos

Hay cuatro principales toxinas procedentes de peces que tienden a extenderse por el turismo:

- **Ciguatera**: hay más de cuatrocientos peces de arrecifes tropicales (Caribe, Indias Occidentales o Pacífico) que producen toxinas (una es la ciguatoxina) que resisten el jugo gástrico, el calor y la congelación. Los pescados contaminados no cambian su aspecto ni sabor. No se conocen procesamientos protectores. El cuadro clínico comienza entre una y ocho horas de la ingesta con entumecimiento, espasmos tetánicos, sensación de lengua gruesa y rigidez o dolor facial, náuseas, vómitos, espasmos abdominales y diarrea que dura de seis a veinticuatro horas (Pinillos, 2003: 6). Se presentan diversas disestesias, por ejemplo, sensación de quemazón en la mano si tomara con ella una bebida fría (CAREC, 1976: 79). Puede haber hipotensión, prurito, cefaleas, mialgias, inversión de sensaciones calor-frío, arritmias y coma. Los fenómenos sensitivos pueden durar meses. El diagnóstico es clínico. Hay un test para detectar la toxina en el pescado. El tratamiento es la rehidratación y la administración de manitol al 20%, 1g/kg, que se pasa por vía endovenosa durante una hora. En el cuadro crónico se ha recomendado amitriptilina 25 mg, dos veces al día (Pinillos, 2003: 6).

- **Tetrodoxismo**: es una intoxicación por consumo de vísceras o piel de ciertos peces como el pez globo o el pez erizo. Su ingesta produce diversas formas de parestesias, parálisis, ataxia, arritmias y shock. El tratamiento es sintomático. No hay antídoto y se administra carbón activado. La letalidad es mayor del 50% (Pinillos, 2003: 7).

- **Escombroidosis**: se produce por descomposición bacteriana después de la captura del pez (atún, caballa, bonito, pez volador, delfines) y la falta de precoz refrigeración. La descomposición genera elevada concentración de histamina en la sangre, erupción y urticaria. Se presenta en zonas costeras de América del Norte tropical o templada. El sabor puede ser picante o amargo. Se produce enrojecimiento de la cara, náuseas, vómitos y dolor epigástrico entre los pocos minutos y las dos horas de la ingesta. Hay casos con espasmo bronquial. El cuadro dura menos de veinticuatro horas. Se trata con antihistamínicos y corticoides (Pinillos, 2003: 7).

- **Anisakiasis**: el Anisakis es un parásito de cuerpo redondo (nemátodo) que habita en el estómago de mamíferos marinos y también de aves. Los huevos se eliminan con las heces y hacen su ciclo en el agua desde donde infestan peces, cefalópodos y crustáceos. Numerosas especies marinas
están infestadas, en especial el calamar. La temperatura mayor de 60°C los mata en diez minutos, lo mismo que la refrigeración a –20°C en 72 horas. La ingesta de productos marinos crudos o poco cocinados puede infestar al ser humano. Con aproximadamente 72 horas de incubación, las larvas de Anisakis producen cuadros alérgicos o digestivos. Estos últimos se manifiestan con vómitos, cólicos abdominales y diarrreas a partir de una gastritis aguda. Hay formas tendientes a la cronicidad por penetración de larvas a las paredes gástricas o intestinales. Los cuadros severos se tratan con extracción endoscópica de las larvas e incluso con resección quirúrgica del segmento afectado (Pinillos, 2003: 8).

2. Mariscos tóxicos

Los mariscos bivalvos (mejillones, almejas, ostras, vieyras, choritos, machas) que se alimentan con dinoflagelados18 (marea roja) contienen una neurotoxina (saxitoxina) que no los afecta y es resistente a la cocción. El cuadro en seres humanos que comen estos bivalvos incuba entre menos de una y hasta diez horas, comienza con paresias periorales a los cinco a treinta minutos de la ingesta siguen náuseas, vómitos, espasmos abdominales, debilidad muscular, parálisis periférica y síntomas cerebelosos. No afecta la conciencia. No hay antídotos, el tratamiento es sintomático y se hace lavado gástrico y carbón activado, hidratación, alcalinización y diuréticos (Pinillos, 2003: 9). La recuperación suele ser completa, pero la parálisis respiratoria puede producir la muerte. Este tipo de mariscos es “filtrador” de la contaminación de las costas y transmite también infecciones bacterianas, por eso no se deben consumir crudos.19

3. Plantas tóxicas

No son frecuentes las intoxicaciones por vegetales en Argentina,20 sí en otras latitudes21. Se relatan intoxicaciones por frijoles rojos (Phaseolus vulgaris) crudos o con bajo cocimiento, que producen gastroenteritis; semillas del guisante Lathyrus sativus, que, ingeridas por largo tiempo, producen el neurolatirismo (marcha espástica, urgencia y frecuencia urinaria y paraplejía); Curcubita andreana (zapallito amargo), con efectos gastrointestinales y abortivos; té de hierbas como el Senecio y la Crotalaria, que pueden producir veno-oclusión hepática; el árbol de Koenig, que produce la “enfermedad de los vómitos” en Jamaica; habas anchas (Vitia fava), que

18 Las especies habituales de dinoflagelados son el Gonyaulax catenella y el G. tamarensis (Tanxe, 2000: 1401).
20 No obstante, son numerosos los alimentos habituales que contienen factores naturales que actúan como antivitamínicos e inhibidores de las proteasas. El tanino del té, cacao y bananas reduce la absorción de proteínas, pero también el de los metales como el plomo. Los oxalatos interfiere el metabolismo del calcio y favorecen la litiasis renal. La soja puede reducir la absorción intestinal si es alimento exclusivo o predominante (Rey-Silvestre, 2005: 229).
21 El árbol del Ackee produce el fruto nacional de Haití y habita en otros países de Centro América, América del Norte, América del Sur y de África. Si se consume antes de su maduración, produce vómitos. Además, posee una toxina hipoglucemiante, concentrada veinte veces más en el fruto inmaduro que el maduro o expuesto al sol. Las semillas también la contienen. En oportunidad de inundaciones en el norte de Haití (noviembre de 2000), se produjo una epidemia tóxica de un cuadro de iniciación brusca, con dolores abdominales y vómitos incontrolables, pérdida de conocimiento y convulsiones. Se registraron 73 muertes (90% en menores de quince años), de los cuales 46 se confirmaron relacionadas con el consumo de Ackee (OPS, 2001: 8).
pueden generar hemólisis aguda (favismo) en personas con deficiencia de G6P-DH; granos de cereales contaminados con *Claviceps purpurea* (hongo del cornezuelo de centeno); la Belladona produce un síndrome atropínico; la Adelfa da cuadros gastrointestinales y es cardiotóxica; y otras muchas más (tejo, gloria de la mañana, hierba mora, haba de regaliz, caña muda, nueces tung, castañas de caballo, ave del paraíso).

La yuca es un tubérculo básico en la alimentación del África Occidental y algunos países de América del Sur. Contiene glucósidos cianogenéticos capaces de generar e intoxicar por cianuro, ácido cianhídrico y tiocianatos (Rey-Silvestre, 2005: 229).

4. **Micotoxinas**

Son toxinas originadas en hongos que parasitan alimentos humanos o animales:

- **Aflatoxinas**, producidas por el *Aspergillus flavus*, un hongo que contamina cereales, leguminosas, nueces e higos secos, y especialmente el maní. Se lo ha relacionado, en este último caso, con el hepatocarcinoma.
- **Alcaloides del ergot**, producidos por el *Claviceps purpurea*, hongo que contamina cereales y puede producir espasmos arteriales y trombosis con necrosis periféricas (ergotismo).

4.1. **Hongos tóxicos**

La intoxicación producida por la ingesta de hongos es frecuente en países europeos que tienen estos componentes en la dieta habitual. Es Argentina se han reportado casos mortales en la provincia de Buenos Aires por ingesta de *Amanita phalloides*.

El riesgo, en países organizados, se corre por la recolección ocasional. Los mercados de venta regular tienen expertos en recolección y sistemas de vigilancia (Bodin, 1969: 171). De allí la importancia de evitar la obtención del producto fuera de los mercados y, llegado el caso, de saber reconocer los hongos silvestres venenosos o comestibles.

**Esquema de un hongo**

### Caracteres diferenciales de los hongos

<table>
<thead>
<tr>
<th>Caracteres</th>
<th>Tipo</th>
<th>Comestibles</th>
<th>Venenosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sombrero</td>
<td>Blanco, amarillo, ocre o pardo.</td>
<td>Con frecuencia, colores vivos (hay excepciones).</td>
<td></td>
</tr>
<tr>
<td>Himenio</td>
<td>Marrón, negruzco.</td>
<td>Rosado, claro.</td>
<td></td>
</tr>
<tr>
<td>Esporas</td>
<td>Oscuras.</td>
<td>Claras.</td>
<td></td>
</tr>
<tr>
<td>Pie</td>
<td>En general sin anillo.</td>
<td>En general con anillo.</td>
<td></td>
</tr>
<tr>
<td>Volva</td>
<td>Ausente.</td>
<td>Presente.</td>
<td></td>
</tr>
</tbody>
</table>


El género Amanita tiene más de cincuenta especies, entre las que hay comestibles y venenosas. Entre estas últimas, las principales son:

- La *Amanita muscaria*: el sombrero es rojo, presenta restos abundantes de volva de color blanco, las laminillas radiales del himenio son blancas.
- La *Amanita phalloides*: es similar a la anterior, pero el sombrero es color verdoso pálido.
- La *Amanita pantherina*: también es similar, con sombrero oliváceo o castaño, y la *Amanita verna* lo tiene blanco.

El cuadro incuba entre seis y quince horas. Se inicia con un síndrome coleriforme que lleva a la deshidratación. La segunda fase es hepatotóxica y puede llevar al fallo hepático agudo en cinco o diez días. El tratamiento es de sostén, se induce diuresis forzada y rehidratación. Se propone administrar carbón activado y bencil-penicilina en altas dosis (Pinillos, 2003: 19).

Los géneros *Inocybe* y *Clitocybe* son tóxicos por su contenido en muscarina. El cuadro incuba entre unos minutos y dos horas. Los síntomas son vómitos, diarrea con espasmos abdominales, así como lagrimeo, salivación, sudoración, bradicardia y miosis. Eventualmente se presentan vértigos, convulsiones y coma.

Hay otros numerosos géneros que producen intoxicaciones, pero raras veces letales.

5. Aditivos

Los aditivos son sustancias que se agregan intencionalmente a los alimentos para mantener sus características o preservarlos. Hay legislación que enumera aquellos permitidos y sus dosis, y establece la obligación de mencionarlos en los rótulos de los alimentos envasados. Entre ellos, deben mencionarse:

- **Sulfitos**: se utilizan como blanqueantes y antioxidantes en papas preparadas para freír, en cervezas, vinos blancos, sidras y vinagres, en frutas y vegetales deshidratados. Sus límites máximos recomendables (LMR) oscilan, según los productos, entre 50 y 400 ppm. Se prohíbe su uso en verduras de hoja fresca y en la carne picada “reavivada” con sulfitos, ya que es factor de riesgo para espasmos bronquiales y asma.
- **Nitritos**: se utiliza contra la contaminación bacteriana y en especial contra el *Clostridium botulinum*. También se aplica a las carnes para darles un color rojo más apetecible. No se admite más de 150 ppm. Sin embargo, hay productores que agregan nitritos a embutidos en forma empírica y, por otra parte, los controles son escasos.

---

23 Los géneros Leptolía y Galerina son hepatotóxicos (*ibid.*).
24 Desde antiguo se usaba el salitre (nitrato potásico) para conservar las carnes.
El nitrito\textsuperscript{25} procede de la transformación del nitrato (que no es tóxico), y en el torrente sanguíneo forma metahemoglobina, que es tóxica en los niños en sus primeros cuatro meses de vida. Con 10\% de la hemoglobina transformada se manifiesta la cianosis, con 60\% hay trastornos neurológicos y con más de 70\% es letal. Por eso, los niños no deben ingerir productos curados con nitritos y además se debe controlar el tenor de estos elementos en agua de bebida.

- **Benzoatos**: son sales del ácido benzoico (con sodio, potasio o calcio) que se utilizan en jugos de fruta, bebidas carbonatadas, cremas, escabeches, salsas y mermeladas. En concentraciones altas producen gastritis, alergia y espasmos bronquiales.

- **Sorbatos**: son sales del ácido sórbico con sodio, potasio o calcio que se utilizan en alimentos lácteos y grasos, en encurtidos, mermeladas, pasteles, prepizzas, refrescos y otras preparaciones. En concentraciones altas producen gastritis y dermatitis.

Los antioxidantes y colorantes naturales que se adicionan a los alimentos son prácticamente inocuos. Los sintéticos permitidos, en cambio, tienen ciertos riesgos\textsuperscript{26}.

Los edulcorantes (sacarina, ciclamato y aspartamo) son inocuos, no obstante la alarma que produjeron estudios en ratas con muy altas dosis de ciclamatos.

Los saborizantes como el glutamato en dosis autorizadas no son tóxicos. En altas dosis, ha producido el síndrome del Restaurant Chino\textsuperscript{27}.

**El bromato de potasio**, que se utiliza como blanqueador y estabilizador de harinas y panes, está actualmente prohibido sobre la base de efectos carcinógenos en animales de laboratorio, y a la eventual producción de gastritis, lesiones renales, auditivas y polineuritis en seres humanos. Si bien se debe reemplazar por mejoradores inocuos, se sigue utilizando furtivamente por su bajo costo.

### 6. Otras intoxicaciones

Se han descrito intoxicaciones por aceite de cocinar con bifénilpoliclorinados en Asia y por un derivado de la anilina en España, o por insecticidas (aldicarb y eldrin).

La fuente más frecuente son los alimentos envasados en casa. Sin embargo, uno de cada diez brotes suele deberse a alimentos preparados comercialmente: pescados, verduras, frutas y condimentos. Con menos frecuencia, carne vacuna o de cerdo, aves, derivados lácteos. Se han descrito también brotes por alimentos preparados precariamente, como papas envueltas en papel de aluminio y ajo triturado con aceite.

---

\textsuperscript{25} Los nitritos en interacción con aminas (presentes en alimentos fermentados y en especias) forman nitrosaminas, que tienen efecto cancerígeno en esófago, estómago e hígado. Son inhibidas por el ácido ascórbico y los tocoferoles, por lo cual estas sustancias se usan como aditivos junto a los nitritos.

\textsuperscript{26} Entre los antioxidantes: galato de propilo (GP), butilhidroxianisol (BHA) y butilhidroxitolueno (BHT). Entre los colorantes: tartrezina (puede producir insomnio en niños por ingesta de jugos envasados), punzó 4R, amaranto, carmín índigo, amarillo ocaso, eritrosina, verde S.

\textsuperscript{27} Se ha llamado Síndrome del Restaurant Chino a una intoxicación por el glutamato monosódico, con un cuadro de sensaciones quemantes por el cuerpo, diaforesis, presión facial y dolor torácico. La dosis umbral depende de las personas.
Bibliografía


Chief, R., Guía de plantas medicinales, Barcelona, Grijalbo, 1983.


(actualizado Pérez E, 5 de noviembre de 2006).

Font Quer, Diccionario de Botánica, Barcelona, Labor, 1993.


Hospital Practice, Intoxicación por ciguatera: un ejemplo epidemiológico producto de la era del jet, Hospital Practice, septiembre 1989, cit. ILADIBA, marzo 1990.


http://www.pediatraialdia.cl/diferenciar_lo_que_es_una_intoxi.htm, Barreda P.

http://www.pediatraialdia.cl/2005/intoxicacion_alimentaria_con...


OPS (Organización Panamericana de la Salud), Boletín Epidemiológico, v. 22 (2), junio de 2001.


1. El tránsito debe considerarse como un fenómeno ecológico

El tránsito es la circulación de vehículos rodados así como de personas y desempeña en la vida moderna un papel creciente en función de una necesidad casi ilimitada de movilidad espacial.

La planificación del espacio, no tenida en cuenta en la mayoría de los países en vías de desarrollo, tiende a la metropolización y la centralización de actividades. Por otra parte, la concentración de barrios populares y el creciente establecimiento de countries en las periferias aumentan la distancia entre el domicilio y el trabajo. Los largos trayectos de desplazamiento condicionan, a su vez, la calidad de vida.

La diversidad de formas de movilidad requiere una delimitación de vías para peatones y bicicletas, para el transporte particular y público, para el transporte comercial y pesado. Su entrecruzamiento indefinido genera mayores factores de riesgo, así como el deterioro en la infraestructura vial (OMS-BM, 2004: 87).

La motorización creciente a lo largo del siglo XX fue el primer factor que incrementó los accidentes de tránsito. Desde 1949, se correlacionaron en proporción directa ambas variables: cantidad de automotores y colisiones (OMS-BM, 2004: 84). Esta relación se corrobora en los países de reciente motorización selectiva, en los cuales los efectos de los accidentes son sufriados por todos y lesionan o matan, con más frecuencia, a los “usuarios vulnerables de la vía pública” (peatones, vehículos de dos ruedas, ya sean a motor o bicicletas).

El desfasaje entre el aumento de automotores, el desarrollo de infraestructura de tránsito y, más aún, la infraestructura diferencial para distintos tipos de usuarios de la vía pública incrementa también el riesgo y los accidentes.

La red de caminos influye en el uso del espacio, el valor de la propiedad y en la necesidad de desplazamiento, así como en la contaminación atmosférica, sonora, visual, la congestión de vehículos y los accidentes. También condiciona la marginalidad y la trama del delito.

Los intentos de ordenamiento por la construcción o ampliación de carreteras es una acción parcial toda vez que, en este rubro, la oferta atrae a la demanda: “quien siembra carreteras y aparcamientos, recoge tráfico y embotellamientos” (Goedduvert, citado en Vester, 1997: 31).

El sistema de trasporte está determinado por el de producción y consumo. Su análisis es, por ello, complejo como lo es el planteo de alternativas. El transporte de carga está condicionado, a

---

1 Aún alrededor del 80% de los vehículos motorizados pertenecen al 15% de la población del mundo de mayores ingresos (OMS-BM, 2: 84).

2 El economista R. Samuelson decía: “los coches se expanden hasta invadir todo el asfalto disponible” (Tyler Miller, 2003: 104).
su vez, por desplazamientos absurdos desde el punto de vista económico (consumo de frutos de estación en lugares distantes al de su obtención, provisión de materias primas de diversos orígenes para manufactura en un centro que después devuelve lo elaborado a esos mismos orígenes). Se ha advertido también que los grandes camiones en las carreteras se constituyen no sólo en vehículos de trasporte, sino también en depósitos móviles de almacenamiento (Vester, 1997: 50).

Las cargas a más de trescientos kilómetros son más eficientes si se transfieren al ferrocarril o la navegación fluvial (Vester, 1997: 59).

En cuanto al trasporte de pasajeros, una acertada sincronización entre los medios de larga y corta distancia, condiciones de confort y seguridad y posibilidades de transportar bicicletas descongestionaría el tráfico automotor de las grandes ciudades. Hay países que han logrado éxitos de esta forma, como Japón, que a fines de la década de 1990 desplazaba al 47% del público en medios colectivos cuando Alemania alcanzaba sólo el 15% y EE.UU. apenas el 3% (Tyler Miller, 2002: 103).

Para distancias menores de ocho kilómetros, la bicicleta –que no consume combustible, corrige el sedentarismo y tiene bajo costo de inversión– es el medio ideal siempre que haya bicisendas aisladas, lugares de aparcamiento seguros y el usuario use casco. En China, el 50% del transporte es en bicicleta, en Holanda el 30%, en Japón el 15% y en EE.UU. sólo el 2% (Tyler Miller, 2002: 103).

Estas alternativas, puestas en práctica, equilibrarían los costos directos e indirectos del trasporte automotor ya señalados y el uso del espacio urbano que en EE.UU., entre carreteras, estacionamientos y estaciones de servicio, alcanza a ocupar un tercio del mismo (Tyler Miller, 2002: 104).

Queda así planteado que la epidemiología de estos accidentes se inscribe en un sistema de tránsito complejo, a su vez determinado por la organización global de la sociedad. Consecuentemente, las soluciones de fondo sólo se lograrán considerando y corrigiendo progresivamente el conjunto a partir de una toma de conciencia colectiva y una acción política que tenga por objetivo el bien común con estrategias a largo plazo. Estas soluciones involucran un aspecto ético, tal como lo señala un documento de la Santa Sede: “como vemos, hay muchas maneras de violar el quinto mandamiento; también se mata con la imprudencia y con la negligencia, que a veces llega al verdadero dolo, en la conducta vial” (citado en Criterio, 2007: 408).

2. El automóvil revolucionó el transporte y trajo efectos adversos

Los recursos del transporte, revolucionados por la locomotora, tuvieron a fines del siglo xix un cambio radical con el advenimiento del motor a combustión interna y el automóvil.

Su aparición fue recibida como una liberación: el nuevo vehículo ya no cargaba, además del combustible, con una masa de agua destinada a producir vapor, ni estaba esclavizado al tramo

---

3 El Parlamento Británico discutió la conveniencia de reducir el tráfico carretero en un 10% entre 1990 y 2010. El gobierno del Reino Unido elaboró un proyecto de política de transporte integrado de buses, subterráneos y trenes. Se cuestionó, desde ONGs, la construcción de carreteras como solución al congestionamiento, se presentaron diversos proyectos y un parlamentario propuso promover “el uso de transporte público y que la gente deje sus autos en casa” (The Economist, 1998: 55). En EE.UU., grandes ciudades como Boston, San Francisco, Chicago y Nueva York han diseñado diversos modelos de fortalecimiento del transporte público. A la inversa, la ciudad de Los Ángeles invirtió en autopistas y no logró soluciones (Oliva, 2005: 4). En 1997, el Departamento de Transportes de los EE.UU. concluyó una alternativa para el tránsito que llamó “transporte inteligente”, que postulaba tecnología de esa calificación para aumentar la seguridad y la capacidad de la red de autopistas informatizando las señales. Calculaba que se reducirían el 17% de los accidentes, el 14% de la duración de los viajes y el 37% de los retrasos, y se aumentaría el 22% del tránsito por autopistas. En 1998, el Presidente Clinton asignó a la mejora de la red de tránsito inteligente 3.500 millones de dólares, pero los lobbies del cemento lograron que la mayoría del monto se concentrara en carreteras (Toffler, 2006: 481).
invariable de las vías de acero. La eficacia del ferrocarril llegaba con el automóvil hasta el individuo, y así Mumford lo llamó “locomotora privada” (1971: 257). Los procedimientos productivos de Ford permitieron la adquisición de automóviles a amplios grupos de la población.

El progresivo logro de velocidades mayores pareció ayudar al hombre a liberarse de la tiranía del tiempo, y así fue: el automóvil acortó las distancias. Pero su introducción en el espacio que quiso conquistar significó también un conflicto (Martí Ibáñez, 1971: 11).

Su expresión más dramática son los accidentes del tránsito. Otros medios de transporte también los producían, pero a fines del siglo XIX se inició, con dos accidentes por automotor (1896), una cuenta progresiva que en 1997 llevaba una cifra acumulada de 25 millones de muertes (OMS-BM, 2004: 40).

La introducción del automóvil parece un fenómeno irreversible, pero obliga a planificar la prevención de accidentes, la contaminación atmosférica, el control del ruido y el consumo de combustibles fósiles.

3. El accidente no es inevitable

Se suele definir al accidente como un acontecimiento casual que ocurre en forma imprevista y que produce lesiones o muerte, o como suceso fortuito del que resulta una lesión reconocible.

El análisis epidemiológico superó el enraizado concepto de “casual” o “fortuito”, atributos que confirieron el carácter de “inevitables” a los accidentes, sugerido por las mismas palabras.

En este fenómeno, mucho más que en otros que afectan la salud, la cadena de causas es más larga e intrincada y los niveles de prevención despliegan más posibilidades de intervención.

La concepción fatalista de la muerte se fortalece más en la producida por accidentes. Parece sobrevivir, como Levy Bruhl caracterizaba a la “mentalidad primitiva”, el desprecio de las causas inmediatas y la explicación de los accidentes por la acción de potencias imprecisas e inevitables. Para aquella mentalidad, los hechos más inesperados son revelaciones de “fuerzas ocultas que son siempre sentidas como presentes” (Levy Bruhl, 1972: 37, 50). Aun hoy subsiste el concepto de que el accidente “tenía que suceder”, a partir de una concepción fatalista. Esta concepción conspира contra el análisis causal y la prevención.

El lema del Día Mundial de la Salud del año 2004 (7 de abril) fue: “la seguridad vial no es accidental”.

En otro aspecto, definir al accidente sólo cuando produce “lesiones o muerte” también limita el análisis y la prevención.

Las grandes compañías de seguros, en función de sus intereses, prestaron atención a la compleja causalidad de los accidentes (Hanlon, 1973: 583). En la industria, las organizaciones de trabajadores y la Organización Internacional del Trabajo (OIT) plantearon los problemas de seguridad ya en 1927 (Kaplan, 1970: 186). La aplicación del principio jurídico del “riesgo profesional” cargó la responsabilidad de los accidentes del trabajo y de las enfermedades profesionales al sector patronal y despertó la inquietud por la seguridad.

Fue en la industria donde los logros rebatieron el concepto de la imposible previsión de accidentes. La seguridad en el tránsito fue más tardía. La industria del automóvil prestó primero atención a la velocidad, el diseño y la comodidad de las unidades. En los EE.UU., un juicio, en 1966, contra una gran empresa automotriz atrajo la atención sobre la seguridad de sus vehículos (Nader, 1967: 7-39).
4. La incidencia de accidentes de tránsito se acelera

La morbimortalidad por accidentes de tránsito crece con el Desarrollo desequilibrado. La mortalidad producida por las guerras mundiales disimuló hasta su finalización la apreciación de la magnitud de muertes producidas por el tránsito.

Un estudio de la OMS de 1957, en 47 países con una población de 650 millones de habitantes, computó 102.522 muertes por accidentes del tránsito. Entre 1955 y 1966, en 26 países del mundo, el número de muertos por esta causa aumentó en un 90% (Adriasola, Olivares y Díaz Coller, 1968: 2). Sólo había cuatro países en los que las tasas disminuyeron.

Puffer y Griffith analizaron (1962-1964) la mortalidad urbana en doce ciudades e indicaron la causada por accidentes en el grupo de 15 a 74 años con un rango entre 18,6 (Sao Paulo, Brasil) y 53 varones muertos por cien mil hombres (Guatemala, ciudad); La Plata (Argentina) se ubicaba en una posición intermedia: 37,8 por cien mil. La razón promedio de víctimas hombre/mujer era de 4/1.

Hoy se calculan alrededor de 1,2 millones de muertes y 50 millones de lesionados anuales por accidentes de tránsito. De no tomarse medidas de prevención universales, se espera un aumento del 5% de las muertes para el año 2020 (OMS-BM, 2004: 3).

La cifra de 1,2 millones de muertos anuales por estos accidentes marca un promedio de 3.200 óbitos por día, el 2,1% de la mortalidad mundial. Los AVAD (Años de Vida Ajustados por Discapacidad) perdidos se calculan en 38,4 millones (2,6% del total), ya que la mitad de los muertos pertenece al grupo de 15 a 44 años. En Brasil, con 300.000 muertos por año, el 44% tienen entre 20 y 39 años de edad y el 82% son hombres (OMS-BM, 2004: 1).

El costo de estos eventos absorbe entre el 1 y 2% del PBI, según los países sean de ingresos bajos, medianos y altos.4

5. La distribución difiere según las regiones, la demografía y los medios de transporte

El número de accidentes y el de las tasas de letalidad varía según las regiones del mundo. Mientras se espera una reducción de la incidencia en los países de altos ingresos (–27%), ella aumentaría mucho en Asia meridional, Asia oriental y Pacífico (144 y 79%). En América Latina y Caribe, la incidencia se incrementaría menos (48%) con una letalidad alta.

<table>
<thead>
<tr>
<th>Región*</th>
<th>Nº de países</th>
<th>1990</th>
<th>2000</th>
<th>2020</th>
<th>Variación (%)</th>
<th>Tasa de letalidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000-2020</td>
<td>2000</td>
</tr>
<tr>
<td>África subsahariana</td>
<td>46</td>
<td>59</td>
<td>80</td>
<td>144</td>
<td>80</td>
<td>12,3</td>
</tr>
<tr>
<td>América Latina y Caribe</td>
<td>31</td>
<td>60</td>
<td>122</td>
<td>180</td>
<td>48</td>
<td>26,1</td>
</tr>
<tr>
<td>Asia meridional</td>
<td>7</td>
<td>87</td>
<td>135</td>
<td>330</td>
<td>144</td>
<td>10,2</td>
</tr>
<tr>
<td>Asia oriental y Pacífico</td>
<td>15</td>
<td>112</td>
<td>188</td>
<td>337</td>
<td>79</td>
<td>10,9</td>
</tr>
<tr>
<td>Europa oriental y Asia central</td>
<td>9</td>
<td>30</td>
<td>32</td>
<td>38</td>
<td>19</td>
<td>19,0</td>
</tr>
<tr>
<td>Oriente medio y África septentrional</td>
<td>13</td>
<td>41</td>
<td>56</td>
<td>94</td>
<td>68</td>
<td>19,2</td>
</tr>
</tbody>
</table>

4 El costo mundial se estima de un valor de 512.000 millones de dólares. En Argentina, en 1995, se calculó una cifra de orden de los 10.828 millones de dólares anuales (Asociación Luchemos por la Vida, 1995). La mortalidad mide sólo parte del daño por los accidentes del tránsito, las consecuencias son más amplias.
La **estructura etaria de la mortalidad del tránsito** marca el impacto sobre los varones y las edades de 15 a 29 y 30 a 44 años, grupos de vida activa.

![Diagrama de Víctimas mortales de tránsito por sexo y grupos etarios en todo el mundo, 2002](attachment:diagram.png)

La muerte de hombres jóvenes produce una dramática situación en sus hogares. Los riesgos varían también según los medios y formas de desplazamiento.

<table>
<thead>
<tr>
<th>Países de la Unión Europea. Muertes en accidente de tránsito, según medios y formas de desplazamiento, por cada 100 millones de pasajeros/Km y cada 100 millones de pasajeros/hs viaje. 2001-2002</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medios</strong></td>
</tr>
<tr>
<td>Vehículo motorizado de dos ruedas</td>
</tr>
<tr>
<td>Peatones</td>
</tr>
<tr>
<td>Bicicletas</td>
</tr>
<tr>
<td>Automóviles</td>
</tr>
<tr>
<td>Autobuses y autocares</td>
</tr>
<tr>
<td><strong>Total vía pública</strong></td>
</tr>
<tr>
<td>Transbordadores</td>
</tr>
<tr>
<td>Aviones civiles</td>
</tr>
<tr>
<td>Ferrocarriles</td>
</tr>
</tbody>
</table>

* Pasajeros/kilómetros: distancia total recorrida por todos los que han viajado de ese modo.  
** Pasajeros/horas: tiempo total de viaje de todos los que han utilizado ese modo de transporte.  


La morbilidad que producen los accidentes se ha estimado en relación con otros indicadores de salud (Urquijo, 1968: 11):

- 1 de cada 6 afecciones agudas.  
- 1 de cada 8 días perdidos en el trabajo o la escuela.  
- 1 de cada 10 días pasados en cama.

Por cada muerto en accidente de tránsito, se cuentan por término medio (Glizer, 1966: 164):

- 10 a 15 lesiones graves.  
- 30 a 40 lesiones menores.

En Argentina hubo 7.430 muertos y 13.870 heridos graves por accidentes de tránsito en 2002, a razón de dos de estos últimos por cada muerto (Vega, 2002: 41). Es probable que haya un sesgo por subregistro.

6. Incidencia en Argentina

En la estructura de la mortalidad argentina, la producida por factores externos (incluye accidentes de tránsito) configura la cuarta causa.
**Argentina. Tasas de mortalidad ajustadas por edad y sexo. Según cuatro primeras causas**

<table>
<thead>
<tr>
<th>Causa</th>
<th>Tasa c/100.000 habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Varones</td>
</tr>
<tr>
<td>Enf. cardiovasculares</td>
<td>302,77</td>
</tr>
<tr>
<td>Tumores</td>
<td>187,28</td>
</tr>
<tr>
<td>Infecciones</td>
<td>92,38</td>
</tr>
<tr>
<td>Factores externos*</td>
<td>77,02</td>
</tr>
<tr>
<td>Todas las demás</td>
<td>326,13</td>
</tr>
</tbody>
</table>

Nota: según CIE-10; *incluye accidentes.


La tasa de mortalidad por causas externas asciende a 77 y 22 decesos por cada mil varones y mujeres, respectivamente. A principios de la década de 1970 se estimaba que un 25% de las muertes accidentales eran debidas al tránsito (Ray y Repetto, 1971: 169-171). En 1967 se notificaban 4.262 muertos por accidentes del tránsito, de los cuales el 18% eran menores de veinte años de edad. Según los índices de Glizer, en esos episodios se producían, además, 51.000 heridos graves y 149.000 heridos leves.

Las tasas de mortalidad por accidentes son disímiles en las jurisdicciones argentinas.

**Argentina. Muertos y heridos en accidentes de tránsito. Tasa de Mortalidad y Razón de heridos/muertos. Total y por jurisdicciones seleccionadas. 2003 y 2007 (distintas fuentes)**

<table>
<thead>
<tr>
<th></th>
<th>2003*</th>
<th>2007**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muertes</td>
<td>t/100.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.124</td>
<td>8,3</td>
</tr>
<tr>
<td>CABA</td>
<td>107</td>
<td>3,5</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>932</td>
<td>6,5</td>
</tr>
<tr>
<td>Córdoba</td>
<td>327</td>
<td>10,5</td>
</tr>
<tr>
<td>Chubut</td>
<td>6</td>
<td>1,3</td>
</tr>
<tr>
<td>Entre Ríos</td>
<td>97</td>
<td>8,7</td>
</tr>
<tr>
<td>La Pampa</td>
<td>41</td>
<td>13,2</td>
</tr>
<tr>
<td>Misiones</td>
<td>128</td>
<td>12,4</td>
</tr>
<tr>
<td>Río Negro</td>
<td>48</td>
<td>7,6</td>
</tr>
<tr>
<td>San Juan</td>
<td>84</td>
<td>14,4</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>23</td>
<td>10,8</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>358</td>
<td>11,4</td>
</tr>
<tr>
<td>T. del Fuego</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>Tucumán</td>
<td>129</td>
<td>9,9</td>
</tr>
</tbody>
</table>

Nota: razón heridos/muertos redondeado; ** Las cifras son proyección de los datos habidos hasta el presente, aplicados al nuevo lapso e incluyendo fallecidos en el hecho o como consecuencia de él, hasta dentro de los treinta días posteriores, según el criterio internacional generalizado.


### 7. Estudios en Argentina

Si bien los estudios sobre accidente de tránsito son numerosos, se hará referencia al análisis epidemiológico sobre estos eventos en la Ruta nacional N° 2 que une las ciudades de Buenos
Aires y Mar del Plata, antes de la construcción de la autopista. Este análisis pionero fue hecho por José María Paganini y Juan Antonio Bilbao para el período que corre entre 1958 y 1965 (Paganini y Bilbao, 1965: 47-65).

El análisis de personas, tiempo y lugar, resumido, considera:

- Las características e infraestructura de la ruta de 370 kilómetros, con una anchura media de 7,30 metros y tramos de hormigón, asfalto sobre pavimento flexible y asfalto sobre hormigón. A lo largo de esta ruta se emplazan trece puestos de policía caminera y nueve puestos sanitarios con ambulancia; estos últimos funcionan en periodos de temporada.
- Los tramos de la ruta más peligrosos, en función del coeficiente de deslizamiento y que indican mayor cantidad de choques y vuelcos, se ubican entre los kilómetros 24 y 220, con características heterogéneas de superficie, y los de menor cantidad de vuelcos están entre los kilómetros 220 y 400 en función del mismo coeficiente.
- Los lapsos de mayor peligrosidad en función de los vehículos que circulan, medido en un índice que siendo menor que uno significa que el número de accidentes es menor al de vehículos que circulan, se registran entre la una y las doce horas; por el contrario, si el índice es mayor que uno, los accidentes son más que los vehículos circulantes, se registran entre las doce y veinte horas. El estudio de los lapsos semanales indica que la peligrosidad aumenta los sábados y domingos, y el de los mensuales señala como críticos los meses de marzo, abril y mayo, con un pico en agosto.
- El factor humano fue estudiado según el conductor sea profesional (de micros) o no profesional (de automóviles), concluyendo en la mayor peligrosidad de los primeros, con tasas medias de 6,7 y 2,4 accidentes por cada 10.000 vehículos respectivamente.
- La incidencia de accidentes se redujo de 5,6 a 2,6 por cada 10.000 vehículos entre la temporada 1958/1959 y 1964/1965, con un pico de 5,6 en la de 1961/1962; sin embargo, la tasa de mortalidad aumentó entre las primeras dos temporadas de 5,6 a 12,7 óbitos por cada 100 lesionados; en cambio, medidas las tasas de accidentes, muertos y heridos por cada 100 millones de vehículos/Km, se redujo de 115,5 a 53,0 en accidentes, aumentó de 12,1 a 13,1 en óbitos y disminuyó de 214,5 a 103,2 en heridos entre las temporadas 1958/1959 y 1964/1965; llaman la atención las altas tasas (120,5 de accidentes, 23,2 óbitos y 245,3 heridos) en 1961/1962; del análisis se infiere una reducción de la peligrosidad en cuanto accidentes, pero un aumento de la gravedad de los mismos en razón de la tasa de óbitos.
- En tipo de accidente, aproximadamente se igualan, en proporción, los choques y los vuelcos hasta 1960/1961 y comienzan a predominar los primeros a partir de 1961/1962; de todas formas, nunca los vuelcos son menos del 27% de los accidentes.

Como corolario del estudio, los autores, en 1965, recomiendan el desarrollo de un programa conjunto de Salud Pública, Vialidad y Policía que involucre la marcación horizontal y el señalamiento vertical de la ruta, la mayor funcionalidad y permanencia de los puestos sanitarios en red con hospitales de referencia, el control de la velocidad con radares, la revisión mecánica de los vehículos y los neumáticos, así como la educación sanitaria de las conductores en vistas a que tomen mayores precauciones.

8. Los accidentes de tránsito son efecto de múltiples causas

A mediados de la década de 1970, el estadounidense William Haddon planteó la multicausalidad de los accidentes con un criterio sistémico, proponiendo, por consecuencia, un tratamiento sistémico. Sintetizó su enfoque en una matriz de tres fases y tres factores que lleva su nombre.
Matriz de Haddon

<table>
<thead>
<tr>
<th>Fase</th>
<th>Factores</th>
<th>Factores</th>
<th>Entorno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antes del choque</td>
<td>Ser humano</td>
<td>Vehículos y equipos</td>
<td>Entorno</td>
</tr>
<tr>
<td></td>
<td>Información, actitudes, discapacidad, aplicación de la reglamentación por la policía.</td>
<td>Buen estado técnico, luces, frenos, maniobrabilidad, gestión de la velocidad.</td>
<td>Diseño y trazado de la vía pública, limitación de la velocidad, vías peatonales.</td>
</tr>
<tr>
<td>Choque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilización de dispositivos de retención, discapacidad.</td>
<td>Dispositivo de retención de los ocupantes, otros dispositivos de seguridad, diseño protector contra accidentes.</td>
<td>Elementos protectores contra choques.</td>
</tr>
<tr>
<td>Después del choque</td>
<td>Primeros auxilios, acceso a atención médica.</td>
<td>Facilidad de acceso, riesgo de incendio.</td>
<td>Servicios de socorro, congestión.</td>
</tr>
</tbody>
</table>


Los factores enumerados en cada casillero permiten orientar medidas de prevención con criterio sistémico. Sin embargo, su aplicación ha sido lenta en los países de temprana motorización y tiene innumerables dificultades en los que están en fase de rápida motorización, precisamente porque no se enfoca con ese criterio.

9. El factor humano es el más inculpado

El factor humano ha sido el principal inculpado como responsable de los accidentes en una proporción entre el 70 y el 90%, a similitud de los accidentes de trabajo (Boccia, 1952, 395). Muestras realizadas en Santiago de Chile inculpaban al factor humano en más del 90% (Armijo Rojas, 1974: 151). En el Reino Unido se atribuían al conductor al menos un 85% de los accidentes de tránsito (Brown, 1970).

Se ha discutido esta responsabilidad humana respecto del factor vehículo y del sistema de transporte.

El hombre conduce su vehículo dentro del subsistema de tránsito, que es, a su vez, parte del sistema de transporte. En ellos hay características dinámicas e inestables y las laniobras del conductor deben compensar esa inestabilidad. La voluntad humana en un sistema preestablecido que comparte con numerosas personas se relaciona con pautas de consumo y de conducta.

Ralph Nader (1967: 179, 224) criticó el credo del predominio del factor humano en un capítulo que titula “Condenar al conductor, absolver al automóvil”. La complejidad de los factores que tiene que afrontar el conductor ha llevado a sostener que “la verdad es que se autoriza a circular a individuos a los que no se les ha enseñado nada, en condiciones en que excelentes conductores no podrían evitar el accidente” (Rives, 1971: 7).

En efecto, la conducción de automotores es una labor compleja en orden a compensar el equilibrio inestable del subsistema de tránsito. Es una interrelación eficaz entre etapas fisiológicas: información a partir de la ruta y el medio que la rodea, decisión en límites de tiempo y maniobras de control del vehículo (Dep. Scientific Research, London, 1963: 106). Se comprometen los sentidos, el sistema nervioso y el sistema osteomuscular, exigiéndoles eficacia y
precisión. El aprendizaje del manejo y de las normas de tránsito requiere un período de instrucción que se enriquece con la experiencia.

9.1. El factor humano involucra variables de edad y sexo del conductor

El factor humano pesa más como causal de accidentes en ambos extremos etarios: antes de los 17 años y después de los 70.

<table>
<thead>
<tr>
<th>Predisposición para el accidente de tránsito según años de experiencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predisposición a accidente</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Fase I  Fase II  Fase III

Autoseguridad  Sobrestimación propia  Pericia

Años de práctica


El grupo etario mayor de sesenta años constituye en los países desarrollados alrededor del 25% de los conductores. Tiene un declive de la fuerza muscular, disminución de la elasticidad del cristalino y de la audición para los sonidos agudos, mayor lentitud en la reacción psicomotora frente a los estímulos sensoriales (Farreras Valentí, 1963: 106). Sin embargo, la experiencia compensa esas deficiencias.

El número de accidentes mortales por cada 1.000 conductores, alrededor de 1962, era de 0,891 para menores de veinte años y de 0,819 entre veinte y veinticuatro años. Ninguno de los grupos siguientes sobrepasaba en 0,575, siendo el promedio general 0,548 (Norman, 1963: 42).
Los conductores juveniles sin registro tenían un 33% más de accidentes mortales (Badel y Yáñez, 1969; cfr. OMS-BM, 2004: 112).5

La edad y la falta de registro se relacionan con trastornos en la conducta. El aumento del delito de menores involucra las figuras de “robo de uso y apropiación indebida de automotores” y de “homicidio culposo” en accidentes de tránsito.

En Nueva York (Norman, 1963), los conductores hombres eran seis veces más propensos al accidente que las mujeres. En la provincia de Buenos Aires (Badel y Yáñez, 1969), se detectó que las conductoras mujeres sólo constituían un 6% de las accidentadas, pero el número de víctimas es un 14% superior a la media.

En cuanto a las víctimas, la estructura demográfica genera variaciones en el riesgo, teniendo en cuenta que los extremos de la vida son más vulnerables a los accidentes: niños y jóvenes, por un lado, y tercera edad, por otro. Este último grupo, en aumento proporcional, será el más afectado por accidentes de tránsito en los países desarrollados. El primer grupo seguirá siendo el más afectado en los subdesarrollados (OMS-BM, 2004: 87).

9.2. Parámetros de percepción y reacción

Los conductores de vehículos actúan a partir de percepciones sensibles: visuales, cinestésicas, del equilibrio y auditivas. El ángulo visual es cóncico y nítido desde los 3º a los 10º, y más difuso hasta los 160º, lo que se compensa con los movimientos de los ojos y la cabeza en décimas de segundo. Los expertos tienen una mayor visión horizontal, mientras que los principiantes y mal dormidos tienden a concentrar la mirada hacia la orilla derecha del carril. Los mayores de 60 o 65 años tienden a disminuir la valoración de las distancias, la agudeza y el campo visual, así como la discriminación de los colores (Wright-Paquette, 1993: 5).

La cinestesia nace de propiorreceptores de músculos, tendones y articulaciones según la posición del cuerpo, los movimientos y la mediación de los mandos del vehículo (Wright-Paquette, 1993: 5).

El equilibrio nace en el aparato vestibular y, vía cerebral, llega al sistema muscular (Wright-Paquette, 1993: 5).

La audición percibe el desplazamiento del vehículo, los ruidos del motor y la sensación de velocidad, así como sonidos agregados como las bobinas. La conversación o la radio de intensidad alta dentro del vehículo reducen la percepción de los estímulos nombrados. Una medida de seguridad en los caminos son las tiras sonoras que se ubican antes de cruces o sitios peligrosos (Wright-Paquette, 1993: 5).

Las percepciones sensibles llevan a reacciones operativas del conductor: se forma la imagen mental de las situaciones, se pone en marcha el raciocinio, siempre influido por emociones, y termina en la decisión y el acto operativo.

El tiempo de percepción-reacción es más lento en los muy jóvenes y en los de mayor edad, también lo es ante estímulos leves respecto de los fuertes y de los complejos respecto de los simples. Se reduce, asimismo, con la fatiga y las distracciones (Wright-Paquette, 1993: 61).

El tiempo de iniciación de frenado oscila en un rango entre 0,3 y 2,1 segundos con una media de 0,66 segundos (Johansson y Runcar, citado por Wright-Paquette; 1993: 61).

---

5 En un estado de EE.UU. se determinó que un 9,5% de los accidentes frontales tenían como protagonistas a conductores sin licencia (Wright y Paquetele, 1993: 58).
9.3. El estado hipnótico

El **estado hipnótico** es un fenómeno que surge de “todo estímulo monótono, reiterado, uniforme y débil, [que] va a llevar fácilmente a un estado de laxitud, de adormecimiento, fatiga y sueño” (Glizer, 1966). La fatiga predispone a ese estado y la falta de excitantes externos lo condiciona. La peligrosidad del estado hipnótico tiende a generar una “obstinación irracional, disgregación de la capacidad de atención y reacciones inadecuadas a los estímulos” (Glizer, 1966).

Hay **niveles de vigilancia entre el sueño y la excitación** (Bloch, 1973: 95-99). El despertar, inicio del estado de vigilia, depende de la intensidad del estímulo, su novedad y su significación. Inversamente, la reiteración de un estímulo de baja intensidad y carente de significación ejerce un papel negativo en la vigilancia. Respecto a la atención, como orientación mental electiva, se ubica entre un estado de vigilía difusa y el estado de hiperexcitación (Bloch, 1973: 123-132).

**Los estímulos para el estado hipnótico** pueden ser focos de luz sucesivos en las esquinas, cruce de numerosos vehículos a velocidad, sensación de las juntas del camino de hormigón, ritmo de limpiaparabrisas, ruidos rítmicos de la carrocería.

La **fatiga es factor predisponente** del estado hipnótico. La fatiga misma impide al conductor percatarse de su disminución de rendimiento y precisión. Inclusive, el conductor puede llegar a creer que su eficiencia aumenta (Morehouse-Miller, 1965: 247-259). Así se pierde la noción de detalles y la atención tiende a concentrarse en la incomodidad que ella produce.

9.4. Privación del sueño


En Argentina, un equipo del C.I.P.P.A.T. (Coordinación Interministerial de Programas de Prevención de Accidentes de Tránsito) de la provincia de Buenos Aires desarrolló un estudio en conductores profesionales en la terminal de ómnibus de Mar del Plata en 1970. La medición de la fatiga se realizó valorando la atención con el test de Toulouse. Los resultados en este aspecto pueden apreciarse en el cuadro que se transcribe:

<table>
<thead>
<tr>
<th>Argentina. Fatiga en conductores de micros en la terminal de Mar del Plata, 1970. Resultados del test de Toulouse⁶</th>
<th>Frecuencia</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración exacerbada</td>
<td>10</td>
<td>8,07</td>
</tr>
<tr>
<td>Concentración normal</td>
<td>10</td>
<td>8,07</td>
</tr>
<tr>
<td>Concentración disminuida por inhibición anímica</td>
<td>5</td>
<td>4,03</td>
</tr>
<tr>
<td>Concentración deficiente</td>
<td>28</td>
<td>22,59</td>
</tr>
<tr>
<td>Falta profunda de concentración</td>
<td>60</td>
<td>48,38</td>
</tr>
<tr>
<td>Grave alteración de la concentración</td>
<td>10</td>
<td>8,07</td>
</tr>
<tr>
<td>Alteración de la concentración por falta de inteligencia</td>
<td>1</td>
<td>0,80</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>100,00</td>
</tr>
</tbody>
</table>


---

⁶ La supresión total por cinco noches tiende a expresarse con síntomas de alteraciones perceptivas y de la conciencia, fallas de razonamiento, alucinaciones, paranoias, temblor de manos, visión doble e irritabilidad.
En el mismo estudio, al examen médico prevalecen lumbalgias y cervicodorsalgias, edemas de miembros inferiores, calambres y espasmos viscerales.

En entrevistas psicológicas se obtuvo que el 65,32% de los entrevistados empleaba el tiempo libre para “dormir”.

**La privación crónica del sueño** que sufren diversos oficios incluye a los médicos. En especial a los jóvenes residentes que tienen guardias de veinticuatro a treinta horas. Los accidentes de tránsito protagonizados por ellos han sido estimados con un incremento de 9,1% en EE.UU. (Barger, 2005).

### 9.5. Fatiga

La **fatiga** es “la disminución de la capacidad de trabajo consecutiva a la realización de una tarea” (Leveroni, 1969: 643). La fatiga crónica es consecuencia de prolongados lapsos de actividad sin el suficiente reposo periódico que permita la recuperación. Se presenta con más frecuencia con la ansiedad y la tensión muscular (Ey y otros, 1965).

Son factores de riesgo para la fatiga (OPS-OMS-BM, 2004: 99, modificado):

- Conducir con déficit de sueño (menos de cinco horas en las veinticuatro horas, más de dieciséis horas de vigilia antes de un viaje).
- Conducir en horas en que se suele dormir, cuando se ha dormido mal, después de largas jornadas de trabajo o después de guardias nocturnas sucesivas.
- Conducir en zonas remotas y sin relieve, en caminos monótonos, poco conocidos, vías troncales, o largos tramos sin descanso.
- Atender exigencias inesperadas o averías.
- Estar apurado por el tiempo.
- Conducir en condiciones meteorológicas extremas.

Las personas más propensas al cansancio son los choferes o conductores profesionales que cambian de turnos o hacen jornadas prolongadas, los jóvenes varones entre dieciséis y veintinueve años de edad y las personas con apnea del sueño no tratada. Se estima que el 20% de las colisiones de vehículos de transporte que se relacionan con la fatiga del conductor son diez veces más frecuentes por la noche y se duplican después de once horas de trabajo (OPS-OMS-BM, 2004: 100, 155, modificado).

Los intereses empresariales desmedidos llevan a pasar por alto estos factores de riesgo, por lo que el transporte de pasajeros y de carga debe ser normativizado y fuertemente controlado.

### 9.6. Distracciones

Las **distracciones** son maniobras habituales que interrumpen por pocos segundos la atención y la posición en la conducción de un vehículo. Sin embargo, las consecuencias pueden ser trágicas y contribuyen a alrededor del 30% de los accidentes de tránsito.

La **distracción por factores internos** en la conducción tiene motivos comunes o excepcionales. Las primeras se mencionan, junto a sus consecuencias, en el siguiente cuadro.
<table>
<thead>
<tr>
<th>Tipo de distracción</th>
<th>Tiempo en segundos</th>
<th>Distancia recorrida (en metros) a 100 Km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcar el número de un TE celular</td>
<td>5</td>
<td>140</td>
</tr>
<tr>
<td>Ojear un mapa</td>
<td>&gt;4</td>
<td>&gt;110</td>
</tr>
<tr>
<td>Sacar anteojos u otro elemento de la guantera</td>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td>Tomar un sorbo de bebida</td>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td>Sintonizar la radio</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>Encender un cigarrillo</td>
<td>3</td>
<td>80</td>
</tr>
</tbody>
</table>

Fuente: Dirección General de Tráfico de España y Comisión Técnica de Seguros de Autos del Centro de Zaragoza, citado por Autoclub (revista ACA, s/f).

El uso de la telefonía celular ha determinado un importante aumento en las causas de accidentes de tránsito por distracciones de quienes conducen vehículos. La desconcentración se produce debido a que el conductor debe atender el llamado y elaborar la respuesta; a ello se le suma el manejo del volante con una sola mano. El sistema “manos libres” permite tomar el mismo con ambas manos, pero la distracción es la misma, dado que se está atendiendo la llamada entrante. Al respecto, las legislaciones de tránsito de varios países prohíben este dispositivo y otras lo admiten.

Lo adecuado consiste en detenerse en lugar seguro (banquina, parador, etcétera) con las precauciones vehiculares correspondientes y contestar el llamado o, en su defecto, pasar el celular al acompañante.

Se ha comprobado que una llamada telefónica con duración de un minuto, si se está conduciendo a una velocidad de 130 Km/h (autorizada en autopistas), implica recorrer 2,16 kilómetros sin prestar la debida atención al tránsito.

Un estudio realizado por el Departamento de Psicología de la Universidad de Utah (EE.UU.) en el 2003 determinó que el hablar por teléfono celular mientras se conduce equivale a manejar en estado de ebriedad. “Comprobamos que los que conducían con teléfonos móviles en actividad suponían el mismo peligro que los que superaban el máximo de alcohol permitido” (Drews y Strayer, 2004). Asimismo, plantea que el uso del dispositivo “manos libres” no presenta diferencias con hablar sin él. Una ampliación de dicho estudio puntualiza que los conductores no veían la carretera, a pesar que sus miradas se dirigían hacia ella, mientras hablaban por celular.

Por último, una notificación del Real Automóvil Club de España (RACE) consigna que, a partir de los noventa segundos de conversación mediante telefonía celular, el conductor comienza a perder la atención porque se concentra en el tenor de la llamada.

Las distracciones excepcionales comprenden circunstancias muy variadas (la caída de un objeto dentro del habitáculo, el ingreso de un insecto). La ingesta de alimentos o bebidas debe hacerse con el vehículo detenido. En Argentina, el hábito de tomar mate cebado por el acompañante mientras se maneja ha producido accidentes mortales por el derrame del contenido de la infusión sobre el conductor.

Las distracciones externas están ligadas a la contaminación visual, que es desmedida en las rutas de Argentina por el poder de las agencias publicitarias (carteles de propaganda, avisos). Las únicas señales que deben admitirse en caminos y rutas son las de tránsito.

Una distracción inocente es el saludo con un bocinazo de conductor a conductor o a tercera persona. La sorpresa y la respuesta quitan la atención de la dirección del vehículo por unos segundos y puede llevar a una mala maniobra o un choque. Nunca debe hacerse.
9.7. Conductores peligrosos

En la década de 1940 se popularizó la frase “El hombre conduce como vive”. Se habían observado frecuentes accidentes en conductores que se rebelaban contra las autoridades y tenían manifestaciones de inestabilidad en su vida personal.

En EE.UU., los conductores peligrosos por reincidencia oscilaban entre el 1 y el 5% del total. Un 3,9% de los conductores había provocado el 36,4% de los accidentes. Se demostró una alta proporción de jóvenes con manifestaciones de agresividad e imprevisión. Aun sin dificultades en destreza de conducción, asumían en el tránsito actitudes accidentógenas (Kaplan, 1970).

La predisposición a accidentes ha sido discutida, pero se tiende a nombrar a quienes sufren repetidos episodios como “accidentados reincidentes” (Norman, 1963).

9.8. Factores patológicos

En muestras de conductores inmersos en tránsito complejo se han encontrado modificaciones electrocardiográficas –en 11 de 66 pacientes coronarios–, aumento de la excreción urinaria de catecolaminas y 11-hidroxicorticoides. Tanto en sanos como en enfermos, un 30 a 40% de los conductores, en circunstancias críticas de tráfico, sufren modificaciones en la frecuencia del pulso y la tensión arterial (Tribuna Médica, 1972).

La incidencia de enfermedades que producen trastornos súbitos de la conciencia o incapacidad repentina en la conducción se ha estimado entre 1,5 y 4 por mil (Capiel, 1973).

Se encuentran entre los trastornos posibles: la trombosis coronaria aguda, el accidente cardiovascular hemorrágico o embólico, la isquemia cerebral transitoria, la crisis hipertensiva, la ruptura de aneurisma aórtico, la crisis epiléptica, el síndrome vasovagal, la crisis hipoglúcémica, la hematemesis y el espasmo laríngeo (Norman, 1963: 72-73).

El papel de los síndromes coronarios no es mayor en los accidentes de tránsito, porque los conductores tienen tiempo de apartarse de la circulación. No obstante, existe en ellos un potencial accidentógeno que aumenta en relación con factores ambientales como el frío o de hábitos como la ingesta excesiva de alcohol.

La Diabetes mellitus, cuando requiere tratamiento insulínico con riesgo de hipoglucemias, puede ser factor accidentógeno.

Los pacientes de epilepsia pueden conducir siempre que estén controlados con medicación sin haber tenido episodios comicales el año precedente y que los estímulos visuales no sean factor desencadenante de los accesos (Ey, 1965: 329).

Los trastornos de la visión que afectan la agudeza y el campo visual, la visión crepuscular y la adaptación a la oscuridad, contribuyen a los accidentes. Estas perturbaciones se compensan en la práctica del conducir y se superan por las convenciones de la señalización de tránsito (Grossjohann, 1960). La extrema reducción de la visión periférica, la “visión en túnel”, impide conducir. Lo mismo debe decirse de la oftalmopatía diabética avanzada (Foglia-Cardonet, 1970).

Los esquizofrénicos, neuróticos obsesivos, fóbicos, ciclotímicos en sus fases alternativas deben ser estudiados antes de autorizarlos a conducir (Grossjohann, 1960). Los trastornos psíquicos preseniles y seniles requieren igual estudio.

El “trastorno mental transitorio” tiene implicancias jurídicas y debe considerarse según las doctrinas médico-legales en la generación de accidentes (Bonnet, 1967: 665).
9.9. Los tóxicos y los medicamentos

Hay dificultades potenciales generadas por ciertos medicamentos. La nómina incluye grupos de acción terapéutica diversa. El uso de anfetaminas en los conductores profesionales tiene doble riesgo: por un lado, la posibilidad de efectos adversos y, por el otro, el riesgo de adicción.

En un estudio muestral en Puerto Rico, entre 451 fallecidos por accidentes de tránsito se encontraron (Kay, 1972):

- 20 casos intoxicados por monóxido de carbono.
- 2 casos intoxicados por morfina.
- 4 casos positivos para derivados de la fenotiazina.
- 1 caso positivo para meprobamato.
- 1 caso positivo para difenhidramida.
- 2 casos positivos para alcohol metílico.

La intoxicación por monóxido de carbono se relaciona con factores del vehículo, como silenciador roto, entrada de gases de escape a la cabina y tráfico denso. Un factor de intoxicación puede ser el escape de vehículos detenidos delante y, en los viajes largos y días fríos, el humo del cigarrillo.

Diversas dolencias o defectos crean un problema ético al médico que examina al conductor, ya que la habilitación para conducir en muchos casos es imprescindible para el trabajo (Grossjohann, 1960).

9.10. El alcohol

La intoxicación o ingesta alcohólica afecta entre el 1 y 4% de conductores. Un 50% de los accidentes de un solo vehículo con muerte son debidos a la ingesta alcohólica excesiva del conductor (Capiel, 1973: 954).

El alcohol deprime las funciones superiores a partir de la concentración sanguínea de 30 mg/dl, lo que se expresa por (Litter, 1972: 192):

- Aumento del número de errores (pruebas de escritura a máquina y tiro al blanco).
- Prolongación del período latente de los reflejos.
- Aumento de los tiempos de reacción, visual y auditiva.

La universalidad del consumo de alcohol y la ingesta de bebidas destiladas involucran a víctimas de sus efectos que no se consideran “alcoholistas”. Sin embargo, el bebedor social no alcoholista desempeña un papel importante en los accidentes.

En el primer período de la ingesta alcohólica se presenta una sensación mayor de seguridad y euforia, se afecta la autocritica, produciendo un efecto engañoso semejante al de la fatiga. Así, el conductor siempre supone realizar maniobras con mayor precisión cuando la realidad es inversa.

El alcoholizado tiene afectada la vista, ve “a través de la niebla alcohólica”, y la audición. Estas afectaciones son manifiestas con concentraciones en sangre de 80 mg/dl y se insinúan con menos de 30 mg/dl (Cohen, 1962: 216).

La concentración sanguínea depende de la cantidad de bebida ingerida, la rapidez de su ingesta y la previa ingesta de alimentos sólidos. Para alcanzar una concentración de 30 mg/dl en sangre, a una persona de 70 kg de peso le basta con ingerir 30 ml de whisky o 150 ml de vino. Al absorberse el 20% del alcohol en el estómago, su aparición en sangre comienza entre los cinco y diez minutos y alcanza su máxima concentración entre los sesenta y noventa minutos (Litter,
1972: 201). La concentración en sangre disminuye entre 15-20 mg/dl y por hora. De ello se deduce que, aun con una ingesta mínima, no se debe conducir hasta una hora a una hora y media de esa ingesta.

La probabilidad de accidente aumenta en relación con la concentración alcohólica en sangre (Armijo Rojas, 1959: 515).

<table>
<thead>
<tr>
<th>Accidentes. Probabilidad y alcoholemia</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alcoholemia (mg/dl)</strong></td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>más de 150</td>
</tr>
</tbody>
</table>


Los accidentes de tránsito protagonizados por los conductores que han ingerido alcohol son más frecuentes y más graves. Hay mayor incidencia de ellos en horas nocturnas.

El choque contra un obstáculo fijo entre las veintiuna y las ocho horas era atribuido, en Inglaterra, a ocho alcoholizados por cada conductor sobrio (Norman, 1963: 31).

El riesgo relativo de colisión con víctimas aumenta proporcionalmente con el nivel de alcoholemia, según otra fuente, como lo hace también con la velocidad del vehículo.

<table>
<thead>
<tr>
<th>Influencia relativa de la velocidad y de la alcoholemia en los riesgos de una colisión que cause víctimas</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Velocidad (Km/h)</strong></td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

* Referido a un conductor sobrio que se desplaza a una velocidad máxima de 60 Km/h. ** Referido a un conductor con alcoholemia cero. Nota: 0,21 g/l equivale a 21 mg/dl.


**10. El factor vehículo tiene un peso creciente**

La motorización creciente a lo largo del siglo xx fue el primer factor que incrementó los accidentes de tránsito. Desde 1949 se correlacionaron, en proporción directa, ambas variables: cantidad de automóviles y colisiones (OMS-BM, 2004: 84). Esta relación se corrobora en países de reciente motorización selectiva en los que los efectos de los accidentes son sufridos por todos y lesionan y matan con más frecuencia a los “usuarios vulnerables de la vía pública”.

El desfasaje entre el aumento de automotores, el desarrollo de infraestructura de tránsito y, más aún, la infraestructura diferencial para distinto tipo de usuarios de la vía pública incrementó también el riesgo y los accidentes.
Los accidentes de tránsito tienden a aumentar no sólo por la multiplicación del parque automotor y las características vehiculares actuales, sino también por factores culturales que aceleran los desplazamientos innecesarios y llevan a elegir los itinerarios menos seguros por considerarlos más expeditos.

10.1. Velocidad y maniobra

Los vehículos actuales tienen capacidad para desarrollar grandes velocidades, si bien su aplicación depende del conductor.

El exceso de velocidad es decisivo en el 60% de los accidentes de tránsito (Arriaga, 1996). A 80 Km/h, los ocupantes de un automóvil tienen un riesgo relativo de muerte veinte veces mayor que a 30 Km/h. Proporciones similares se dan en peatones atropellados.

Estadísticas oficiales de Alemania indicaban que el “conducir demasiado rápido” era la causa del 18% de los accidentes de tránsito. Si se sumaban otros factores relacionados con la velocidad, como “maniobras de adelantamiento”, “no ceder la prioridad de paso” y “circular densamente (vehículo a vehículo)”, se reunían el 50% de las causas de estos accidentes. En la década de 1980, el aumento del límite de velocidad de 98 a 104 Km/h en tramos de autopistas aumentó un 50% los accidentes mortales (Vester, 1997: 204).

Debe distinguirse el exceso de velocidad de la velocidad inapropiada. El primero indica el límite de las normas legales, la segunda depende de cada conductor según las condiciones de tránsito y el camino (OMS-BM, 2004: 89).

La velocidad y la probabilidad de accidentes se relacionan así:

- Accidentes con traumatismos son proporcionales al cuadrado de la velocidad.
- Accidentes graves son proporcionales al cubo de la velocidad.
- Accidentes con muertes son proporcionales a la cuarta potencia de la velocidad.

En general, se estima que el aumento de 1 Km/h en la velocidad media aumenta un 3% la incidencia de accidentes (Vester, 1997: 90).

Una consecuencia impensada es que el nivel de velocidad de las carreteras tiende a transferirse al ámbito urbano (Vester, 1997: 225). Esta transferencia conlleva el riesgo de atropellar peatones, producir choques y, si en la calle hay lomos de burro, el de generar un vuelco del vehículo o producirle roturas.
10.2. Tiempo de frenado

El tiempo de frenado es función de la velocidad y la condición del pavimento según parámetros del siguiente cuadro.

<table>
<thead>
<tr>
<th>Velocidad (Km/h)</th>
<th>Tiempo de frenado (metros)</th>
<th>Estado del pavimento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seco</td>
<td>Húmedo</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>104</td>
<td>201</td>
</tr>
<tr>
<td>120</td>
<td>188</td>
<td>279</td>
</tr>
<tr>
<td>140</td>
<td>243</td>
<td>373</td>
</tr>
</tbody>
</table>


10.3. El vehículo

La industria ha tendido a que los vehículos automotores tengan comodidades encerradas en una masa metálica que puede llegar a pesar una tonelada y pasar de la movilidad a los 160 Km/h en pocos segundos por un simple juego de palancas (Norman, 1963).

El factor vehículo en la generación de un accidente puede subvalorarse, entre otras razones, porque el análisis en el lugar del hecho no suele ser exhaustivo, muchos elementos se destrozan...
y las pruebas tienden a perderse. Sin embargo, ya en la década de 1960 se advertían defectos vehiculares potencialmente accidentógenos (40% en Nueva Zelanda, 25% en Suecia).

La visibilidad de los vehículos depende de su tamaño, color y luces. Los vehículos de dos ruedas son menos visibles en el tránsito, cuanto más si no llevan luces prendidas. Se ha concluido que el uso de luces diversas en todos los vehículos reduce las colisiones entre un 10 y 15% (OMS-BM, 2004: 101).

Los controles periódicos de la seguridad de los vehículos parecen no haber contribuido mucho a la reducción de accidentes. Es probable que esto se deba, en países como Argentina, a que tales controles se concretan en vehículos normales, mientras que muchos, marginales en sus condiciones, no se someten a tales controles. Sin embargo, deben hacerse, en especial en vehículos de más de doce años de antigüedad y en camiones de gran porte, en los que los frenos defectuosos constituyen un riesgo mayor de colisiones (OMS-BM, 2004: 103).

De acuerdo con los registros del Ente Regulator VTV, las fallas detectadas en vehículos de la provincia de Buenos Aires siguen la frecuencia del siguiente cuadro.

<table>
<thead>
<tr>
<th>Fallas y circunstancias evaluadas en vehículos sometidos a VTV, provincia de Buenos Aires, 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallas y circunstancias en:</td>
</tr>
<tr>
<td>Freno</td>
</tr>
<tr>
<td>Luces</td>
</tr>
<tr>
<td>Suspensión</td>
</tr>
<tr>
<td>Contaminación ambiental</td>
</tr>
<tr>
<td>Dirección y tren delantero</td>
</tr>
<tr>
<td>Seguridad y emergencia</td>
</tr>
<tr>
<td>Neumáticos</td>
</tr>
<tr>
<td>Estado general</td>
</tr>
<tr>
<td>Chasis</td>
</tr>
<tr>
<td>Número de motor</td>
</tr>
<tr>
<td>Llantas</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Fuente: Ente Regulator VTV, 2003, citado por Autoclub (revista ACA, s/f).

Las luces de los vehículos tienen por objeto iluminar el camino, advertir su presencia y recorrido en la oscuridad o penumbra desde todos los ángulos y evitar el deslumbramiento de los que se desplazan en el sentido contrario.

Los faros delanteros deben ser dos simétricos de luz blanca o amarilla, con posición de corto y largo alcance no deslumbrantes y –de noche con buena visibilidad– percibirse al menos a 150 metros. Las luces traseras deben ser dos simétricas de color rojo, no reflectantes ni triangulares y perceptibles al menos a cien metros. El Código de Tránsito de la provincia de Buenos Aires (1995: 39) establece que las luces de posición delanteras (blancas) y traseras (rojas) deben ser visibles desde doscientos metros en condiciones meteorológicas normales. A ellas se agrega la luz de stop, que indica el frenado, a nivel de las luces traseras y además a nivel alto de la luneta trasera, visible a 150 metros. Otras imprescindibles son las luces de giro anteriores y posteriores, las de iluminación para retroceso y las balizas (luz de emergencia).

En los vehículos de gran porte (ómnibus, camiones, camiones con acoplados) se agregan diferentes luces en lo alto y los laterales según lo establece el Código de Tránsito.

Las luces que tienen más cantidad de fallas se anotan, según la misma fuente, en el siguiente cuadro.
Fallas en luces de vehículos sometidos a VTV, provincia de Buenos Aires, 2000

<table>
<thead>
<tr>
<th>Luces</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frenado</td>
<td>40,4</td>
</tr>
<tr>
<td>Faros frontales</td>
<td>18,5</td>
</tr>
<tr>
<td>Cambio de dirección</td>
<td>7,3</td>
</tr>
<tr>
<td>Posición patente</td>
<td>7,3</td>
</tr>
<tr>
<td>Balizas</td>
<td>7,3</td>
</tr>
<tr>
<td>Otros</td>
<td>2,3</td>
</tr>
<tr>
<td>Proyectores adicionales</td>
<td>1,4</td>
</tr>
<tr>
<td>Luces de retroceso</td>
<td>1</td>
</tr>
<tr>
<td>Retroflectores</td>
<td>0,6</td>
</tr>
<tr>
<td>Tablero</td>
<td>0,4</td>
</tr>
<tr>
<td>Resto</td>
<td>15,4</td>
</tr>
<tr>
<td>Total</td>
<td>≈100</td>
</tr>
</tbody>
</table>

Fuente: Ente Regulador VTV, 2003, citado por Autoclub (revista ACA, s/f).

El frenado convierte en calor la energía de la marcha por diversos mecanismos de freno, del estado de los neumáticos y el pavimento, así como de la habilidad del conductor (Rives, 1973: 19).

Los neumáticos transmiten todas las fuerzas para detener, acelerar o cambiar la dirección del vehículo. Después de todas las maniobras, es la última valla contra el accidente. El exceso de uso y el desgaste, la incompatibilidad con el tipo de vehículo o la mezcla de diferentes tipos de neumáticos y su rápida pérdida de aire favorecen los accidentes. La presión del inflado debe coincidir con la especificada por el fabricante. Una presión mayor reduce la vida útil del neumático, y una menor endurece la dirección y disminuye la estabilidad del vehículo y también la vida útil del neumático (Berardo, 2003: 17). El dibujo de la banda de rodado debe ser superior a los 3 mm. Con 1,5 mm (mínimo aceptable), el riesgo de accidente es dieciocho veces mayor que con el dibujo nuevo, y con las cubiertas lisas se eleva a cincuenta veces. La adherencia del neumático al camino se reduce si hay agua, nieve o aceite.

La relación con la llanta y con el árbol de movimiento y otros factores mecánicos son agentes de la estabilidad del vehículo que debe determinar el mecánico.

La mejora en el diseño y la construcción de automóviles reduciría la mortalidad. Por ejemplo:

- **Cerradura segura en puertas**: evita el lanzamiento de ocupantes, con mayor riesgo de muerte que quedando adentro.
- **Altura**: los modelos más bajos mejoran el centro de gravedad y la estabilidad; sin embargo, la posición del conductor dificulta la visibilidad en los caminos ondulados o en pendientes.
- **Correajes y almohadillado del tablero**: protegen bien en el choque de frente, no así en el de flanco.
- **Tablero**: si no tiene perillas salientes y ellas están bien distribuidas.
- **Frenos**: si se equilibran con la velocidad y la aceleración son más efectivos.
- **Ruedas**: si su dimensión está equilibrada con la altura del vehículo.

---

7 En la década de 1990 se detectó un número inesperado de accidentes producidos por el desprendimiento de la banda de rodaje de neumáticos utilizados de un tipo y marca determinados en vehículos todoterreno. La productora de neumáticos adujo que el problema se había ocasionado por la recomendación de inflarlos a menor presión para evitar vuelcos. Se argumentó también sobre el mal estado de las rutas en países del Tercer Mundo, los climas calurosos y el exceso o falta de aire en los neumáticos. El tema se canalizó a los estrados judiciales de EE.UU. en 1998 y las empresas comenzaron a sustituir millones de neumáticos a partir de ese precedente.
• **Espejos retrovisores**: si son central y laterales dobles y alcanzan a cubrir las zonas de visibilidad muertas.

• **Limpiaparabrisas**: si barren todo el campo de visión anterior y posterior y favorecen la visibilidad.

• **Parabrisas**: si no tienen reflejos y evitan el deslumbramiento.

El **cinturón de seguridad y el apoya cabeza** protegen contra lesiones graves. Deben estar dispuestos para los asientos delanteros y traseros y usarse tanto en ruta como en calles urbanas. La posición del “copiloto” es la más riesgosa, ya que no tiene la protección del conductor ni el que la ocupa mantiene la misma atención en el tránsito que aquel; es el lugar que nunca deben ocupar los niños (Clarín, 14 de junio de 1996: 38). De no usarse el cinturón en los asientos traseros, los pasajeros de atrás, tanto como el equipaje u objetos sueltos pueden producir lesiones torácicas a los de adelante que los usan. La protección de los cinturones en vehículos bien diseñados son eficaces en choques frontales a 70 Km/h y en laterales a 50 Km/h. Más allá de esas velocidades pierden buena parte del efecto protector (OMS-BM, 2004: 13, 107).

<table>
<thead>
<tr>
<th>Tipo de choque</th>
<th>Eficacia del cinturón en el conductor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colisión frontal</td>
<td>59</td>
</tr>
<tr>
<td>Colisión lateral (lado del conductor)</td>
<td>14</td>
</tr>
<tr>
<td>Colisión lateral (lado opuesto)</td>
<td>9</td>
</tr>
<tr>
<td>Colisión posterior</td>
<td>5</td>
</tr>
<tr>
<td>Vuelco</td>
<td>14</td>
</tr>
</tbody>
</table>


Las **sillas de seguridad** para niños colocadas en sentido contrario de la marcha ofrecen más seguridad en los choques frontales, siempre que correspondan a sus edades y pesos. Viajando en automóvil, nunca debe llevarse a un pequeño en el regazo. Se recomienda que hasta los doce años los niños viajen en asientos de atrás. En los países desarrollados, su uso tiende a superar el 80%. La protección contra colisiones laterales es menor (OMS-BM, 2004: 108).

La **bolsa de aire** (en inglés, *airbag*) es un sistema de seguridad pasiva instalado en la mayoría de los automóviles modernos. Este sistema fue registrado por primera vez el 23 de octubre de 1971 por la firma Mercedes-Benz, después de cinco años de desarrollo del nuevo sistema. El primer coche que lo incorporó fue el **clase S** de 1981.

El sistema de la bolsa de aire se compone de:

• **Detectores de impacto** situados normalmente en la parte anterior del vehículo, que empezará a desacelerarse antes en caso de colisión; aunque cada vez se ponen más sensores distribuidos por todo el vehículo de manera que no se produzcan errores en su activación.

• **Dispositivos de inflado**, que, gracias a una reacción química, producen en un espacio de tiempo muy reducido gran cantidad de gas (de un modo explosivo).

• **Bolsas de nylon** infladas normalmente con nitrógeno resultante de la reacción química.
Su función es la de, en caso de colisión, amortiguar el impacto de los ocupantes del vehículo contra el tablero, en caso de los delanteros, y ventanas laterales en los delanteros y traseros. Se estima que, en caso de impacto frontal, su uso puede reducir el riesgo de muerte en un 30%.

Las bolsas inflables suelen estar colocadas en el centro del volante, en el tablero frente al asiento del acompañante, en los laterales de los asientos delanteros, en el techo, actuando de “cortina” y, en algunos casos, bajo el volante para proteger las rodillas de su impacto contra el tablero.

Debido a la velocidad con la que el dispositivo de inflado genera los gases de la bolsa de aire, esta tarda solamente en inflarse entre treinta y cuarenta milésimas de segundo, saliendo de su alojamiento a una velocidad cercana a los 300 Km/h. La bolsa permanece sólo unas décimas de segundo inflada, ya que va expulsando el gas por unos orificios que tiene al efecto de dosificar la fuerza aplicada sobre el ocupante. No impide, por ello, la movilidad de los ocupantes.

A pesar de lo que pueda parecer, no evita más lesiones que los cinturones de seguridad. Este último es el elemento de seguridad pasiva más efectivo. El uso de la bolsa de aire es más bien complementario, e inclusive pueden lesionar al ocupante si este no cuenta con el cinturón de seguridad abrochado al momento del impacto.

También existen las bolsas de aire “de cortina”, que cubren la periferia de ventanas internas del vehículo.
Se activan cuando el automóvil impacta a más de 18 Km/h con un objeto deformable (por ejemplo, un animal) o a más de 45 Km/h con uno indeformable (por ejemplo, un automóvil). Impiden que los ocupantes entren en contacto con los cristales rotos en una colisión, y son muy eficaces en caso de vuelco. Otro airbag lateral puede ir colocado en las puertas para amortiguar el golpe en la zona lateral del cuerpo.

Los sistemas de airbags poseen unidades de control que consisten en un pequeño ordenador que gestiona el sistema y controla el buen funcionamiento de los sensores, los circuitos y los detonadores. Además, después del accidente, envía una señal para desbloquear las puertas si los airbags han sido desplegados.

Debe existir una distancia mínima entre el volante y el conductor para que la detonación del airbag no lo dañe. Esto se logra si el conductor tiene colocado el cinturón de seguridad.

El sensor de la desaceleración (caja naranja del extremo inferior) activa ambas bolsas de aire si detecta una desaceleración brusca (colisión). Los pasajeros deberían tomar contacto con la bolsa de aire sólo cuando esta ya está totalmente desplegada, de lo contrario podrían sufrir lesiones. Por ello, y por otras muchas razones, la bolsa de aire está diseñada para funcionar siempre con el cinturón de seguridad. Por este motivo, en muchos coches con bolsa de aire se puede leer además “SRS” (Supplemental Restraint System, Sistema de sujeción suplementario), ya que es un suplemento del cinturón de seguridad.

En EE.UU. los airbags frontales salvaron 25.782 vidas entre 1987 y 2008.

El 9 de abril de 2008, el Congreso sancionó la Ley 26.363, que contiene copiosas normas sobre “seguridad vial” y crea la Agencia Nacional de Seguridad Vial. En su artículo 29, la ley dice que esta Agencia “dispondrá la instalación de doble bolsa de aire para amortiguación de impactos (air bag), el sistema antibloqueo de frenos (ABS), el dispositivo de alerta acústica de cinturón de seguridad, el encendido automático de luces, un sistema de desgrabación de registros de operaciones del vehículo ante siniestros para su investigación, entre otros temas que determine la reglamentación”. Se entiende que esto debería aplicarse a los vehículos nuevos, no al parque de usados.

Ahora bien, todo esto no es todavía obligatorio porque la ley no ha sido reglamentada. No es difícil calcular que esta mora del Ejecutivo pueda deberse a presiones de las automotrices que no quieren afrontar mayores costos.

Según CESVI, el conjunto de airbags para conductor y acompañante cuesta 160 dólares. No parece ser algo tan caro en autos que cuestan, como mínimo, 11.000 dólares. Las automotrices le dan largas al asunto y dicen que han constituido una comisión de trabajo.

11. El camino es el tercer factor directo de accidentes

La planificación de la red vial debe considerar no sólo su construcción sustentable, sino su control y mantenimiento continuo. Si bien la vida útil (período en que funciona económicamente) de las obras civiles se calcula en cincuenta años, la de los caminos es menor. Decaen según la calidad de su diseño y construcción y según las velocidades y cargas que soportan (Sisti, 1981: 21). Son indicadores de deterioro las deformaciones permanentes longitudinales o transversales, las fisuras, grietas y desprendimientos. Los baches son el extremo del descuido, aun cuando están mal rellenados. Las deformaciones afectan la adherencia de los neumáticos al pavimento. Hay equipos viales de control multifunción capaces de evaluar las condiciones del camino en un rango amplio de velocidades, en distintas circunstancias y horarios.

Por otra parte, se deben medir los volúmenes de circulación en ambos sentidos en vistas al diseño o rediseño (indicador: hora trigésima), la distribución de las velocidades en circulación
libre (indicador: percentil 85, que es la velocidad sólo superada por el 15% de los vehículos) y el tránsito medio diario anual (TMDA).

Los diseños dependen de dos factores principales: la configuración del terreno sobre el que se asienta el camino y la carga de tránsito que habrá de soportar. Según estos parámetros, se calculan los radios, las curvas horizontales y verticales, las pendientes y los anchos de las calzadas.8

La superficie de caminos, aun bien diseñados y construidos, tiene riesgos agregados cuando están cubiertos de arena o de barro. La lluvia, en sus primeros momentos, empaña el polvo del camino y deposita sobre él partículas en suspensión del aire adyacente, formando una pasta deslizante. De allí la importancia de los dibujos y ranuras laterales de la banda de rodadura de los neumáticos, que despiden hacia atrás y los lados el agua y el barro y permiten la adherencia. En estas circunstancias, con peligro de deslizamiento o derrape del vehículo, se deben evitar las frenadas o maniobras bruscas y hay que reducir la velocidad. Asimismo, hay que mantener el doble de distancia entre vehículos, ya que se duplica el tiempo de frenado, tanto más si el pavimento es empedrado o de asfalto pulido.

En pavimento mojado y a velocidad alta, el dibujo de los neumáticos, en lugar de expulsar el agua hacia atrás y los lados, tiende a acumularla delante de la rueda, de tal manera que el vehículo comienza a desplazarse sobre un colchón de agua, lo que se ha llamado aqua planning. Resulta esencial, para evitarlo, mantener los dibujos de las bandas del rodado y reducir la velocidad.9

Los charcos de agua deben ser atravesados a baja velocidad. Es preferible pasarlos con las ruedas de ambos lados que con las de uno sólo. Transcurrido el paso, hay que hacer varias frenadas suaves para que se recuperen los frenos, siempre atento a los vehículos que vienen detrás.

La calzada con hielo o nieve apretada multiplica por diez el riesgo de deslizamiento y derrape. El riesgo es similar con los pequeños cristales de hielo y la nieve en derretimiento que se mantiene en las primeras horas de la mañana en zonas frías y con las primeras heladas.10

La capacidad del tránsito varía según el tipo de camino, contribuyendo como factor reductor o promotor de accidentes. Se estima que si la superficie es de tierra, el camino es apto para el tránsito de cien vehículos/día; si es mejorado, para cien a quinientos; si es pavimentado (hormigón o asfalto), para 1.500 vehículos/día.

La calzada de hormigón tiene las ventajas de la superficie dura indeformable, libre de materiales sueltos, especialmente en curvas, la posibilidad de textura estriada, la mayor reflexión de luces y el tono claro que permite ver mejor las siluetas y las formas, así como la eliminación de huellas de tránsito canalizado.

Son condiciones necesarias:

- La homogeneidad de las superficies.
- La capacidad antideslizante y el alineamiento.

8 Los países desarrollados tienden a construir sistemas inteligentes de autopistas que obtienen información permanente del tránsito, la procesan y la transmiten a los conductores. En un modelo, la información se basa en videocámaras ubicadas cada kilómetro y a quince metros de altura, espiras inductivas bajo el pavimento, sensores de incendio y de nivel de monóxido de carbono en los túneles. Los datos indican flujo vehicular, velocidad media, cantidad, densidad y distancia entre vehículos, porcentaje de ocupación de la carretera. Las rampas de ingreso tienen contadores y, según la capacidad de la autopista, autorizan o no el ingreso. Los datos se concentran, mediante fibra óptica, en un centro de cómputos que distribuye información para evitar congestimientos, accidentes, consumo superfluio de combustible, sobrepeso en las calzadas y polución ambiental. Indica, asimismo, lugares de detención, alerta de auxilios y accidentes, ofreciendo mayor seguridad a los conductores. Su costo se estima en el 8% del de la autopista (Bovio, 1998: 10).
• La contribución a la visibilidad nocturna.
• Las banquinas amplias, homogéneas y sin desniveles.
• La resistencia al uso.
• La construcción de diques para detención de micros, vehículos averiados y para espera de cruces.

Hay condiciones especiales, como los cruces ferroviarios y los puentes. Los cruces de vías férrreas y carreteras pueden ser a nivel o desnivel (elevados o subterráneos). En los primeros se ha recomendado una pendiente de acceso para la carretera, amplia visibilidad por limpieza de vegetación, buen drenaje de agua de lluvia, carteles de peligro, “serruchos” (bandas de sobresalto en serie) previos en la superficie del pavimento y barreras automáticas. Cuando se trata de vías por las que transitan más de seis trenes por día, se recomienda el paso a desnivel, que si es subterráneo debe prever un efectivo sistema de drenaje que evite inundaciones.

<table>
<thead>
<tr>
<th>Anchura de puentes y frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchura menos que el camino (cm)</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>Igual</td>
</tr>
<tr>
<td>Más ancho</td>
</tr>
</tbody>
</table>


La señalización clara y precisa con el correlato de una firme educación es parte esencial de la planificación de la vía pública. La contrapartida es la eliminación de toda contaminación visual, como los avisos publicitarios.

Las carreteras de alta velocidad deben prever refugios y márgenes para evitar adelantamientos riesgosos, y las autopistas, barreras que impidan el acceso de peatones.

Suelen conocerse con cierta precisión los sitios de alto riesgo de colisión en los diversos tramos de la vía pública y de las carreteras, por lo que deben ser señalizados.

Los objetos fijos a los lados del camino (árboles, postes) son factores de colisiones de un sólo vehículo y se asocian a las condiciones del conductor: juventud, velocidad, consumo de alcohol o fatiga (OMS-BM, 2004: 109). Otro factor de gran riesgo son los animales sueltos que pueden interceptar la marcha.

La red caminera argentina alcanza alrededor de los 500.000 Km con sólo 61.000 Km pavimentados y 37.000 Km mejorados. Es decir que el 80% de la red vial es de tierra. Alrededor de 10.000 Km (2%) están concesionados. El estado de las rutas más importantes del país es regular.

<table>
<thead>
<tr>
<th>Argentina. Estado de rutas principales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calificación</td>
</tr>
<tr>
<td>Muy bueno</td>
</tr>
<tr>
<td>Bueno</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Malo</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Fuente: UBA, Fac. Ingeniería, s/f.

Un aspecto a considerar, cuando se trata de rutas del interior de nuestro país, es aquel relacionado con los animales sueltos. Debemos tener en cuenta que la Argentina basa gran parte
de su economía en la ganadería, y también que una de cada dos familias cuenta con mascotas (perros y gatos), los cuales suelen ser abandonados a la vera de las rutas. Tal situación genera múltiples accidentes con consecuencias trágicas y/o discapacidades para los conductores.

Las colisiones más frecuentes son contra el ganado vacuno, ovino o equino, que por su volumen producen hechos de gran magnitud, dado que ningún vehículo está preparado para soportar este tipo de impacto. Comúnmente, por la altura, dichos animales se montan sobre el capot, destrozando el parabrisas y la región frontal del techo, con el compromiso directo sobre el conductor y acompañante delantero. En otras circunstancias, al tratar de sortear animales de bajo porte (perros, terneros, etcétera) que aparecen de manera imprevista en la ruta, se ocasionan vuelcos de vehículos con resultados habitualmente trágicos.

Una de las características que generan accidentes con animales es su naturaleza impredecible al momento de su aparición en la vía de tránsito. Es de destacar que la conducción nocturna genera más del 70% de este tipo de accidentes, por lo cual es necesario tomar precauciones al respecto. Sobre todo, evitar el tránsito nocturno o hacerlo con las precauciones del caso (un animal sobre la banquina significa la posible presencia de otros, entonces, hay que disminuir la velocidad y no intentar esquivarlo).

La responsabilidad por estos hechos recae sobre el dueño de los animales, el cual no toma los recaudos necesarios para evitar la fuga del ganado desde sus campos. No obstante, rara vez se penaliza. Un hecho habitual es que el animal embestido aparezca sin la marca respectiva, la cual ha sido borrada antes de iniciar las correspondientes investigaciones.

12. Las condiciones climáticas

La condición más frecuente es la lluvia y sus características de intensidad y velocidad de escurrimiento hacia los lados del camino. Según el Centro de Experimentación y Seguridad Vial, el 72% de los siniestros en condiciones de lluvia se producen en los treinta primeros minutos desde que comienza a llover.11 Debe tenerse en cuenta, asimismo, que cuanto más intensa la lluvia, más disminuye la visibilidad en la ruta.12

La prevención del conductor frente a la lluvia, además de circular con neumáticos de buena banda de rodamiento, consiste en reducir la velocidad (velocidad adecuada a la circunstancia, por debajo de la máxima permitida), no hacer maniobras ni frenadas bruscas, mantener el doble de distancia habitual respecto de vehículos que le preceden y probar despacio los frenos después de haber atravesado un charco de agua.

Respecto a la visibilidad, es necesaria la constatación periódica del buen funcionamiento de los limpiaparabrisas y sus escobillas, así como el llenado de los lavaparabrisas, la disponibilidad de un paño a mano del conductor para el desempañamiento y las condiciones de todas las luces del vehículo. En condiciones de lluvia deben encenderse las luces de posición, las cortas e incluso las balizas para ver y hacerse ver, evitando usar las luces altas, que pueden producir un efecto rebote acortando la visibilidad del conductor. Se ponen en funcionamiento los limpiaparabrisas y los lavaparabrisas y se prende la ventilación del auto hacia el lado interno del vidrio frontal para desempañarlo, los laterales se limpian con un paño y se pone en acción, si el vehículo dispone de él, el desempañador de la luneta trasera.13

El limpiaparabrisas debe ponerse en la máxima velocidad antes de pasar otro vehículo, previendo las salpicaduras que se van a recibir, lo mismo al ser adelantado por otro vehículo. En las paradas es preciso limpiar los faros y todas las luces.

La **nieve y el hielo** aumentan los riesgos de la lluvia, y la distancia de frenado se multiplica por diez. Consecuentemente, las precauciones deben ser mayores. La primera es no salir en vehículo en esa condición meteorológica, salvo que sea imprescindible. En las regiones frías, donde estos fenómenos son habituales, los vehículos deben usar neumáticos especiales en buen estado.\textsuperscript{14}

**13. Víctimas potenciales**

Las víctimas, según “categoría de usuarios de la vía pública”, tienen las siguientes características:

- **Peatones**: son víctima en zonas urbanizadas, más en las grandes ciudades. La vulnerabilidad del peatón es extrema ante la colisión de un vehículo que supera la velocidad de 30 Km/h (OMS-BM, 2004: 13). El riesgo se agrava si no hay aceras que separen el tránsito y si los cruces no son respetados por peatones y conductores. Las víctimas se concentran en dos edades extremas: antes de los 10 años y después de los 65. Por cada peatón muerto hay 25 lesionados, 6 o 7 graves.

- **Ciclistas**: es más frecuente la muerte por accidentes entre 7 y 15 años y en los de más de 50 años.

- **Motociclistas**: el 70% de los accidentados corresponde al grupo de 18 a 40 años. El riesgo es ocho veces mayor que en otros vehículos. Los motociclistas con menos de seis meses de práctica tienen más del doble de accidentes. A mayor cilindrada, más accidentes y más graves. Las motocicletas ligeras se accidentan seis veces más que velomotores.

Los peatones y los ciclistas son dos grupos expuestos sin protección a los accidentes del tránsito. Son los llamados “**usuarios desprotegidos**”. El diseño del tránsito actual está articulado para la circulación de vehículos automotores. La seguridad es un problema de **equidad social**, ya que los grupos de bajos ingresos son más vulnerables a los accidentes. Lo son en su condición de peatones y ciclistas, sin las protecciones necesarias, y por su **falta de acceso a transportes públicos en debidas condiciones**. La falta de equidad se evidencia por el hecho de “privilegiar la movilidad de usuarios de vehículos (de cuatro ruedas) a expensas de la seguridad de los usuarios vulnerables de la vía pública” (OMS-BM, 2004: 12, 16).

En los países desarrollados se tiende a adoptar infraestructuras para la seguridad de peatones y ciclistas. Mientras que **en los países subdesarrollados no hay vías separadas** para los usuarios de automóviles y bicicletas y, muchas veces, tampoco para peatones. La única solución en estos casos es la reducción de la velocidad del automóvil a 30 Km/h y la educación de los usuarios desprotegidos.

Por otra parte, en estos países son frecuentes los **tipos informales de transporte público**, como los minibuses con bajas tarifas utilizados por personas de bajos recursos. Estos vehículos no tienen paradas ni horarios fijos y suelen ser conducidos por personas sobreexigidas, contratadas en negro por empresarios inescrupulosos, consecuentemente fatigadas, con tendencia a detenciones y maniobras imprudentes. Una vez más, el problema de la equidad social (OMS-BM, 2004: 48).

La **falta de iluminación** en la vía pública y la carencia de luces en los peatones y ciclistas aumentan la posibilidad de accidentes. En el caso de los peatones, es conveniente que caminen a contramano y con linternas en horas nocturnas. Los ciclistas deben andar en el sentido de la circulación, pero con dispositivos retroreflectantes y casco claro, ya que el oscuro no es visible.

---

\textsuperscript{14} Ibidem.

El uso de **casco en ciclistas** reduce el riesgo de lesiones de cráneo mortales entre un 63 y 88% (OMS-BM, 2004: 106). Las bicicletas deben estar equipadas con luces, barras o señales refractantes en la parte anterior y posterior, así como límites prefijados de velocidad y todas las normas del tránsito establecidas para los vehículos a motor (OMS-BM, 2004: 51). La lesión más común en los peatones atropellados es en los miembros inferiores. Sin embargo, en la colisión con la parte anterior de un automóvil, la parte superior del capó y el borde del parabrisas suele lesionar la cabeza, la pelvis y el abdomen de un adulto o la cabeza de un niño pequeño.

La mayoría de los casos politraumatizados resultan de la suma del choque y el golpe contra la superficie de caída (OMS-BM, 2004: 104).

Los traumatismos más frecuentes se presentan en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Los 20 principales traumatismos no mortales* en el mundo como resultado de colisiones en la vía pública, 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo de Traumatismo</strong></td>
</tr>
<tr>
<td>Traumatismo intracraneal (de corto plazo**)</td>
</tr>
<tr>
<td>Herida abierta</td>
</tr>
<tr>
<td>fractura de rótula, tibia o peroné</td>
</tr>
<tr>
<td>fractura del fémur (de corto plazo***)</td>
</tr>
<tr>
<td>Traumatismos internos</td>
</tr>
<tr>
<td>fractura de cúbilo o radio</td>
</tr>
<tr>
<td>fractura de clavícula, escápula o húmero</td>
</tr>
<tr>
<td>fractura de huesos de la cara</td>
</tr>
<tr>
<td>fractura de costilla o esternón</td>
</tr>
<tr>
<td>fractura de tobillo</td>
</tr>
<tr>
<td>fractura de columna vertebral</td>
</tr>
<tr>
<td>fractura de pelvis</td>
</tr>
<tr>
<td>Esguinces</td>
</tr>
<tr>
<td>fractura de cráneo (de corto plazo***)</td>
</tr>
<tr>
<td>fractura de huesos del pie</td>
</tr>
<tr>
<td>fractura de huesos de la mano</td>
</tr>
<tr>
<td>Traumatismo de la médula espinal (de largo plazo****)</td>
</tr>
<tr>
<td>fractura de fémur (de largo plazo*****)</td>
</tr>
<tr>
<td>traumatismo intracraneal (de largo plazo****)</td>
</tr>
<tr>
<td>Otra dislocación</td>
</tr>
</tbody>
</table>

Notas: la sumatoria da 120% porque hay casos en que se superponen más de una lesión.
* Pedido de admisión a un establecimiento de salud.
** Lesión cerebral traumática.
*** De corto plazo = dura sólo unas semanas.
**** De largo plazo = dura hasta la muerte o con algunas complicaciones que reducen la esperanza de vida.

14. La conducción de vehículos

La conducción de un vehículo implica introducir un factor de riesgo en el sistema del tránsito y, por lo tanto, debe generar un fuerte sentido de responsabilidad respecto de sí mismo, de los ocupantes del vehículo y de los que comparten el sistema, con la consecuente concentración y atención en su operación. El concepto de conducir a la defensiva involucra prever los riesgo y, con criterio estratégico, tener en cuenta las posibles maniobras o errores de los demás.

Para asumir ese tipo de conducción es preciso:

- Conocer las calles y rutas y/o prestar atención a las señales y condiciones del tránsito: estado de la calzada, banquinas, intersecciones, peatones y otros vehículos en movimiento o estacionados, descenso de pasajeros, previsión de apertura de puertas y de salida de estacionamientos.
- Mirar al frente y hacia los costados, y con frecuencia los espejos retrovisores, cuando se esté por frenar o cambiar la velocidad, dirección, variar el carril o estacionar.
- Asegurarse de ser visto por los otros vehículos y peatones. Si se va a frenar, acompañar las señales lumínicas del vehículo con el brazo izquierdo en alto a través de la ventanilla. En período de caída del sol o al amanecer, usar las luces bajas alternando con las largas, aplicar estas últimas antes de las intersecciones en las calles y en las rutas si no vienen vehículos de frente; bajarlas si se cruza con estos últimos, cuando se transite detrás de otro vehículo evitando encandilarlo por los espejos y cuando se cruce una vía férrea, para poder ver las luces del tren. Para todo ello, las luces delanteras, traseras, de freno y giro deben funcionar y estar limpias sus ópticas, lo que obliga al conductor a revisarlas y repasarlas frecuentemente y antes de un viaje.
- Guiarse por la cortesía y la solidaridad en las intersecciones, encuentros y situaciones conflictivas.
- Evitar entrar en conflicto con conductores prepotentes e irresponsables, cediendo la prioridad que quieren imponer.
- No conducir con discapacidades, salvo haber obtenido la licencia específica.
- No conducir habiendo ingerido alcohol hasta después de una hora, cuanto menos, ni intoxicado por él, por drogas de adicción o bajo efecto de medicamentos sedantes o que produzcan somnolencia.
- No conducir a contramano, sobre los separadores de manos o fuera de la calzada, salvo el uso señalizado de las banquinas para detenerse o en situación de emergencia.
- No reducir sorpresivamente la velocidad ni hacer maniobras intempestivas.

15. La asistencia de los accidentados

La asistencia de las víctimas de accidentes de tránsito requiere una secuencia en red de servicios que se inicia con la alerta de auxilio. La mayoría de las víctimas fatales mueren antes del ingreso hospitalario. Por consecuencia, la alerta debe movilizar al lugar un sistema de personal de auxilio entrenado, ya sea sanitario, de policía o bomberos, así como disponibilidad de ambulancias equipadas.

Los hospitales de derivación deben ser planeados y disponer de cirujanos y traumatólogos entrenados, así como servicios de imágenes y de hemoterapia. El tiempo de intervención debe reducirse al máximo. Hay países que tardan doce o más horas en la operación de urgencia (OMS-BM, 2004: 111).

Las acciones extrahospitalarias, en el lugar del accidente, y el traslado, siguen pautas como las del "soporte vital avanzado para traumatizados" (ATLS) del Comité de Trauma del Colegio Americano de Cirujanos:
El politraumatismo, considerado como la coexistencia de lesiones traumáticas múltiples producidas por un mismo accidente que comporta, aunque sea una sola de ellas, factor de riesgo vital para el afectado, es el prototipo de afección grave (Roig García et al., 1999: 52).

La extricación del accidentado sigue el axioma “extraer el auto del paciente y no el paciente del auto”, colocando el collar cervical, la tabla corta y posteriormente la tabla larga. Evaluados en forma continua los signos vitales e identificadas las lesiones evidentes exponiendo el cuerpo sin ropa, se procede de la siguiente forma:

- Asegurar la permeabilidad de la vía aérea, limpieza de cavidad bucal y orofaringe extrayendo con la mano cuerpos extraños si los hubiera; elevación del mentón o tracción de la mandíbula hacia arriba sin hiperextendir ni girar la cabeza; colocación de cánula nasofaringea de Mayo (contraindicado en fractura de base de cráneo o macizo facial), intubación nasotraqueal (si se sospecha lesión cervical) u orotracheal o traqueotomía; por esa vía se aplica oxígeno y se aspiran los líquidos, sangre y secreciones para mantener la vía expedita y evitar la lesión pulmonar por broncoaspiración. El proceso más frecuente de obstrucción es la caída de la lengua hacia la orofaringe en el accidentado inconsciente, es así como, si el paciente responde a preguntas, la obstrucción se descarta (Roig García et al., 1999: 52).

- Asegurar la estabilidad de la columna cervical manteniendo la cabeza en posición neutra y su alineación con el cuello y el tronco e impidiendo movimientos de flexión, extensión o rotación del cuello mediante collar cervical tipo Philadelphia y bolsas de arena laterales.

- Controlar la hemorragia: si el paciente está lúcido, la reducción de la volemia posiblemente no sea crítica, su reducción a menos de 50% lleva a la pérdida del conocimiento.15 La hipovolemia grave se manifiesta por el color pálido-grisáceo de la piel, la demora en el tiempo de relleno capilar en los lechos ungueales (más de dos segundos), la falta de detección de los pulsos carotídeos y femorales. Las hemorragias de partes blandas se tratan con vendajes compresivos y las fracturas se estabilizan con férulas. El torniquete se usa sólo cuando estas medidas no son efectivas por lesión de un vaso grande. Se coloca lo más distal posible y se marca la hora, considerando que produce metabolismo anaeróbico. La reposición de volumen se hace perfundiendo por dos vías endovenosas Ringer Lactato o solución salina isotónica “a chorro”. Se controla la temperatura y se abriga al paciente.

- La lesión de base de cráneo debe sospecharse cuando el paciente tiene otorragia, rinorragia, hematomas mastoideos, hemorragias subconjuntivales u “ojos de mapache”, o hemotimpano. Se contraindica la intubación nasotraqueal, debiendo usarse la orotracheal con fijación de la cabeza o el acceso quirúrgico por punción cricotiroidea o cricotiroidotomía16. Si se sospecha fractura de laringe (disfonía, cornaje o crepitación), se debe proceder a la intubación endotraqueal con fibroendoscopía o a la punción traqueal con ventilación jet seguida de traqueotomía.

15 Se estima que en una fractura de pelvis pueden perderse 2.000 cc de sangre, en una de fémur alrededor de 1.000 cc y en las de tibia o húmero alrededor de 500 cc.

16 La punción cricotiroidea se canaliza con catéter 12 o 14 G conectado a tubo en T o adaptador a bolsa resucitadora para pasar 10 a 15 ml O2/min. La cricotiroidotomía se hace con bisturí y luego con el mango del mismo se gira en 90° para introducir catéter endotraqueal pediátrico No. 7. Así se puede oxigenar 30 a 45 minutos.
Las lesiones torácicas pueden ser: tórax móvil o batiente, que se estabiliza manualmente o con bolsas de arena laterales; el neumotórax abierto, en cuyo caso la herida se ocluye con gasa, gasa vaselina o adhesivo plástico; el neumotórax hipertensivo, que se debe descomprimir con un trócar transparietal; el hemotórax masivo, que se ventila y repone volumen; el taponamiento cardíaco por hemopericardio, que requiere pericardiocentesis subcostal y catéter. Los elementos penetrantes o empalados no se extraen, sino que se inmovilizan.

Las lesiones de abdomen pueden ser abiertas y con evisceración, en cuyo caso las vísceras no se deben reintroducir, sino ser cubiertas con gasa estéril o papel de aluminio.

Las lesiones óseas se estabilizan sin moverlas, salvo que la angulación sea muy pronunciada, en cuyo caso se enderezan suavemente; las fracturas expuestas se limpian y cubren con gasas estériles, sin introducir fragmentos óseos emergentes. Los entablillados deben quedar firmes pero controlando los pulsos periféricos antes y después de colocarlos.

El criterio en las lesiones de los miembros es priorizar la vida sobre el miembro y el miembro sobre la función.

Las amputaciones espontáneas se tratan con vendaje compresivo periférico, y sólo se usa el torniquete cuando sigue sangrando un vaso grande. La parte amputada se recoge, se lava, se envuelve en gasas húmedas y se conserva en bolsa de plástico con hielo.
Anexo

Consejos a los conductores ante Emergencias

Dirección de Vialidad. Provincia de Buenos Aires (Argentina)

La primera recomendación es la revisación y mantenimiento periódico de los factores críticos del vehículo. Lo mismo antes de comenzar un viaje largo.

La segunda es actitudinal: mantener la calma ante circunstancias críticas como:

a) Falla de los frenos que se detecta ante un riesgo de choque: se suelta el acelerador y se pasa a una velocidad más baja para que el motor obtenga acción frenadora, se coloca progresiva y rápidamente –no de golpe– el freno de mano, que opera sólo sobre las ruedas traseras; se coloca la luz de giro y con el volante firme se desvía a la banquina. Si se baja de una cuesta, se aproxima el vehículo hacia el paredón protector o hacia la ladera aunque se estropee el vehículo.

b) Pinchado o reventón de cubiertas: se retira progresivamente el pie del acelerador teniendo firme el volante, se prende la luz de giro y una vez desacelerado se frena progresivamente para estacionar fuera del pavimento.

c) Patinado por lluvia, barro o escarcha: no se aprieta el freno, se desacelera progresivamente y se gira el volante en la dirección hacia la que se desplaza la parte trasera del vehículo. Al enderezarse el vehículo se gira suavemente el volante en la dirección opuesta y sucesivamente hasta estabilizarlo, siempre disminuyendo la velocidad. Recién entonces se intenta frenar con suavidad y se retira si patinan las cuatro ruedas, volviendo a intentar el frenado suave.

d) Encandilamiento proveniente de un vehículo que viene de frente: se cambia a luz corta y se baja la velocidad, si el otro conductor no responde se insiste haciendo señales con luz corta y luz larga. No se mira a los faros y, siempre bajando la velocidad, se conduce el vehículo hacia la derecha cuidando no morder la banquina. Ante la duda sobre lo que hay delante, se detiene el vehículo lentamente. Pasado el vehículo que encandila, se retorna la marcha con luz larga para superar la situación visual.

e) Desvío repentino con salida de una o dos ruedas a la banquina: no se frena de golpe ni se intenta retornar de inmediato al pavimento, se puede volcar. Se aprieta el volante y se desacelera suavemente, se frena de a poco y en forma repetida salvo que haya un obstáculo inmediato. Ya parado o a muy baja velocidad, fijándose que no haya riesgos atrás o adelante, se vuelve lentamente al pavimento.

f) Vehículo zigzagueando de frente (indica que el conductor está dormido o ebrio): se toca con insistencia la bocina y se hacen señales de luces y si no responde se separa el vehículo propio hacia la derecha y se toma cuidadosamente la banquina bajando la velocidad con el volante firme.

g) Inminencia de choque frontal: si no puede desviarse a la derecha, se frena a fondo y cierra la llave de contacto para evitar incendios, el conductor se lateraliza del volante sin dejar de mantenerlo firme, los pasajeros delanteros se protegen cabeza y cara con los brazos apoyándolos sobre el panel de instrumentos, los del asiento posterior se tiran al piso apoyando la espalda contra el asiento delantero y se protegen cabeza y cara de la misma forma. Este procedimiento es supletorio de la carencia de cinturones de seguridad y apoyacabeza en asientos delanteros y traseros, así como de la falta de equipamiento con airbag.

h) Detección de incendio en el vehículo: se abandona de inmediato la calzada, se estaciona en la banquina y se corta el encendido; todos los ocupantes abandonan de inmediato el
vehículo; se opera el extintor de incendio de polvo triclase (que todo vehículo debe llevar dentro de la cabina) o se sofoca el fuego con mantas, ropa o arena (jamás con agua); si es en el motor, se levanta levemente el capot para apuntarlo, no del todo para evitar oxigenar las llamas; si el fuego está cerca del tanque de nafta, todos se alejan para evitar los riesgos de una explosión.

i) Caída de vehículo al agua: se intenta salir por puertas o ventanas durante los pocos momentos que flota; si se hunde de punta se intenta salir rompiendo la luneta trasera; si no se puede hacer antes que se hunda, debe aprovecharse el momento oportuno: en la parte superior queda una cámara de aire que permite respirar mientras se equilibra la presión del agua externa con la que entra al habitáculo, recién entonces se pueden abrir las puertas, inspirar profundamente e intentar subir a la superficie.

j) Detención del vehículo en las vías del tren (paso a nivel): todos los pasajeros bajan de inmediato y se apartan, el conductor –si no viene el tren de ningún lado– coloca la segunda velocidad, suelta el embrague y hace funcionar el motor hasta que arranque; si no lo logra en algunos minutos, baja y trata de empujar el vehículo fuera de las vías. Si bajan las barreras, se retiran y apartan todos, incluyendo el conductor, de inmediato.

k) El vehículo atropella un peatón: pisa el freno y lo suelta de inmediato, es más riesgoso que las ruedas pasen frenadas sobre el arrollado, que rodando.

l) Detención del vehículo en la noche: las balizas o triángulos reflectantes deben llevarse plegados debajo de los asientos delanteros, si van en el baúl y debajo de equipaje se perderá tiempo en colocarlas con riesgo para la seguridad; se colocan prendidas o desplegadas delante del cuerpo para ir a colocarlas primero detrás del vehículo y luego delante, a alrededor de cuarenta metros de distancia. Se intenta estacionar en la banquina.

m) Apagón de luces del vehículo en tránsito nocturno: se frena suavemente, muy despacio y con máxima atención se lo detiene fuera de la calzada; si se afectó la caja de fusibles y se llevan repuestos, se reemplaza el que se haya quemado, de lo contrario se espera auxilio.

n) Ruptura de parabrisas: se mantiene la calma ante la explosión, se reduce la velocidad y de un golpe se abre un espacio en el parabrisas roto para ver el frente, se pone luz de giro y se detiene cuidadosamente en la banquina; se completa la ruptura del parabrisas, con mucho cuidado si se trata del tipo que dejan astillas que pueden lesionar.

o) Cruce de animales en la circulación: si son pequeños, se toca insistentemente la bocina, pero no se frena de golpe ni se hace ninguna maniobra brusca. Esto último puede causar un accidente más grave que atropellarlos. Si se trata de animales grandes, se actúa como ante un choque frontal. Se denuncia al destacamento más próximo la existencia de animales sueltos.

p) Entrada de un insecto a la cabina: el conductor no debe ocuparse sino de mantener la mirada en el camino y las manos firmes en el volante, se detiene el vehículo en la banquina para eliminar el insecto.

q) Vehículo que viene detrás intenta pasarlo aunque viene otro de frente: se señala con luces y brazo que desista; si ya lo está pasando, se baja la velocidad y se desvía con cuidado y el máximo posible a la derecha; si no se adelantó del todo, se acelera y hacen señas para que se ponga detrás.

r) Entrada a curva a velocidad por no haber visto las señales: con firmeza en el volante se trata de mantener el carril, se toca el freno repetidas veces pero no a fondo y al tomar la curva se acelera ligeraente; si el vehículo patina, se mantiene la aceleración mientras se frena suave y en forma repetida.

Bibliografía

ACA (Automóvil Club Argentino), Manual de Conducción, Buenos Aires, ACA, s/f (c. 2005).


Armijo Rojas, R., Curso de Epidemiología, Santiago de Chile, Editorial de la Universidad de Chile, 1959.


Arriaga, E., “Cómo evitar accidentes en las rutas en el fin de semana largo”, en Clarín, 14 de junio de 1996.


Asociación Luchemos por la vida, en Bini, R., Ámbito Financiero, 27 de julio de 2005.

Badel y Yánez, “Un análisis de los accidentes de tránsito. 10mo Concurso de temas viales”, en La Plata, Dirección de Vialidad de la Provincia de Buenos Aires, publicación Nº 84, 1969.


Boccia, D., Medicina de Trabajo, Buenos Aires, Hachette, 1952.


CIPPAT (Coordinación Interministerial de Programas de Prevención de Accidentes de Tránsito), provincia de Buenos Aires, El factor humano en el tránsito, La Plata, CIPPAT, mimeografiado, 1972.

Código de Tránsito de la provincia de Buenos Aires y leyes complementarias, La Plata, Lex, 1995.


Department of Scientific Research, Road Research Lab. Research on Road Safety, Londres, HM’s Stationery, QF, 1963.


Farreras Valenti, P., Medicina Interna (fundada por Domarus), Barcelona, Marín, 7ma edición, Tomo 2, 1963.


The Economist, “Driving Britain off the roads”, 24 de enero de 1998.


Universidad de Buenos Aires, Facultad de Ingeniería. Estructura Económica Argentina, Redes Terrestres (71-06) s/f.


Wright, P. H., Paquette, R. J., Ingeniería de carreteras, México D.F., Limusa, 1993.


ATENCIÓN SANITARIA EN CATÁSTROFES

José Luis de Echave  Horacio Luis Barragán  Oscar Alfredo Ojea

A mayor escasez de recursos debe haber mayor eficiencia en la organización.
A. O. Alleyne

1. Los riesgos y consecuencias de catástrofes

El desastre o catástrofe es una alteración, por lo general repentina e imprevista, producida por causas naturales o artificiales, de nulo o escaso control, que violenta la vida de una comunidad y desborda la capacidad de reacción de sus recursos propios (OPS, 1995).


Su creciente incidencia es función de una población más vulnerable por diversos factores y una naturaleza más violenta, cuya principal causa es el calentamiento de la atmósfera que genera una secuencia de ciclones, inundaciones y sequías.

<table>
<thead>
<tr>
<th>Factores antrópicos que hacen a las poblaciones más vulnerables a las catástrofes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Subdesarrollo.</td>
</tr>
<tr>
<td>- Crecimiento poblacional.</td>
</tr>
<tr>
<td>- Confrontaciones étnicas.</td>
</tr>
<tr>
<td>- Multiplicación de conflictos bélicos.</td>
</tr>
<tr>
<td>- Grandes migraciones.</td>
</tr>
<tr>
<td>- Masificación de refugiados.</td>
</tr>
<tr>
<td>- Urbanización no planificada.</td>
</tr>
<tr>
<td>- Deforestación excesiva.</td>
</tr>
<tr>
<td>- Extensión de asentamientos marginales.</td>
</tr>
<tr>
<td>- Falta de seguridad alimentaria.</td>
</tr>
<tr>
<td>- Insuficientes medios de saneamiento.</td>
</tr>
<tr>
<td>- Uso irracional de recursos naturales.</td>
</tr>
<tr>
<td>- Multiplicación de tecnologías con riesgos.</td>
</tr>
<tr>
<td>- Descuido en la prevención de tales riesgos.</td>
</tr>
<tr>
<td>- Masificación del tránsito automotor.</td>
</tr>
</tbody>
</table>

Se han considerado en un capítulo anterior las principales catástrofes naturales y las provocadas por la actividad humana o antrópicas, convencionales o no convencionales. La guerra es una de las mayores catástrofes y se ha dejado para otro tópico.

Las catástrofes naturales tienen causalidades y efectos conocidos, son difíciles de evitar y afectan a todos los sectores del área comprometida, incluyendo a los efectores de salud y su personal. Por el contrario, las catástrofes antrópicas tienen causas y efectos más variables y menos conocidos, tiene mayor probabilidad de evitarse y no siempre afectan a todos los sectores del área comprometida ni a los efectores de salud y su personal (OPS, 1995).

Su magnitud es diversa y suele expresarse por el número de víctimas y el costo estimado de las pérdidas materiales. Algunos fenómenos se miden con escalas específicas (por ejemplo, los terremotos).

Suele presentarse, a partir de un evento, una cascada de desastres. En Egipto, en 1994, las fuertes lluvias debilitaron las líneas férreas y volcó un tren cargado de fuel-oil, que en contacto con una red eléctrica generó una explosión. El fuel ardiendo sobre las aguas de inundación alcanzó la ciudad de Dranka (Kamchatka, Rusia), produciendo cientos de muertos (Wisner-Adams, 2002: 10).

El ritmo de generación de estos eventos es variable. Los ciclones se pueden detectar y seguir con días de anticipación por medios satelitales, aunque es difícil prever sus cambios de dirección. Los terremotos también tienen días de latencia en que pueden anunciarse. Mientras que las inundaciones en zonas áridas o semiáridas suelen anunciarse con pocas horas de antelación, lo mismo que las avalanchas de lodo subsiguientes a intensas lluvias (Wisner-Adams, 2002: 38).

Los riesgos sobre la salud pueden considerarse a corto, mediano y largo plazo y varían según la naturaleza del fenómeno.

En general, los riesgos a corto plazo son: muertes, ahogamientos, aplastamientos, politraumatismos, quemaduras, lesiones graves, escasez de agua potable, de alimentos, abrigo y atención médica, así como hacinamiento de los refugiados.

A mediano plazo, los riesgos son los brotes epidémicos, la proliferación de vectores, el aumento de animales sueltos, la migración humana y los saqueos de las casas y comercios abandonados.

A largo plazo, los riesgos son las secuelas de los lesionados y enfermos, la afectación del medio y la carencia de viviendas y servicios en buenas condiciones.

2. La epidemiología y la organización en las catástrofes

La epidemiología de las catástrofes ha sido difícil por el estudio especializado que requiere cada tipo de fenómeno causal, la prioridad operativa de las instituciones y socorristas que actúan y la consecuente postergación de los registros. Sin embargo, desde la guerra civil de Nigeria (África, 1967-1970), la hambruna y la carencia de suficientes alimentos de socorro obligó a valorar el estado nutricional de los afectados para decidir prioridades. Se inició así una "epidemiología de los desastres" que facilitó la planificación, ejecución y evaluación de las acciones de auxilio.

Los progresos de la medicina, de los transportes y comunicaciones y de la información satelital, así como la multiplicación de instituciones internacionales y solidarias de auxilio, favorecen la rápida y eficaz asistencia de las comunidades afectadas (cfr. “Anexo I”).

1 Sin embargo, la Federación Internacional de Sociedades de Cruz Roja y Media Luna Roja han indicado que la ayuda institucional ha decrecido en más del 11%, en términos reales, entre 1991 y 2000 (Wisner-Adams, 2002: XVIII).
3. Los afectados por un desastre están expuestos a diversos riesgos

El concepto de desastre involucra el fenómeno causal y sus efectos nocivos sobre personas, bienes y servicios. El peligro se refiere al fenómeno y la vulnerabilidad a la susceptibilidad de estos últimos a sufrir sus efectos. El riesgo es la relación entre ambos (OPS, 2000: 1):

\[
\text{riesgo} = \text{vulnerabilidad} \times \text{peligro}
\]

De esta manera, los riesgos varían en función del peligro así como de la vulnerabilidad y se presentan en distintos momentos:

- **Inmediatos:**
  - Traumatismos y lesiones (terremotos).
  - Quemados (incendios y explosiones).
  - Ahogamiento y asfixias (inundaciones, maremotos y aludes).
  - Atrapamiento y falta de rescate.
  - Estupor y pánico.
  - Exposición a la intemperie.
  - Pérdida de alimentos y ropa.
  - Pérdida de vivienda.

- **Mediatos:**
  - Hacinamiento.
  - Insuficiencia de recursos de higiene.
  - Epidemias.
  - Síndrome postraumático.

4. Reacciones de la comunidad

Los desastres naturales raramente producen estados de pánico colectivo. Si bien hay un estupor inicial, la mayoría de los adultos se recupera en pocos minutos y comienza acciones de rescate, incluso se organiza en grupos.

Se presenta un grave problema cuando una persona o grupo se niega a la evacuación, ya sea ante la inminencia o la concreción de la pérdida de la vivienda.

El personal sanitario y social tiende a poner a salvo a su familia y presentarse después al servicio.

Los saqueos son propios de un segundo momento y no tan frecuentes.

La conducción de la emergencia debe afrontar estas situaciones con una buena información, organización y comunicación con la comunidad. Esta última es un recurso esencial en las acciones de rescate, primer auxilio, traslado, asentamiento transitorio y cuidado de los evacuados.

El personal sanitario y humanitario está expuesto al riesgo de angustia, ansiedad y depresión.

5. Planificación y organización para casos de desastre

La planificación para afrontar los desastres o catástrofes debe ser parte de la planificación global de la Salud Pública.
Se destaca que en estas circunstancias, más que en cualquier otra, la organización social frente al fenómeno involucrará diversos sectores de servicios a la comunidad. Si bien las funciones de cada servicio son distintas, la coordinación es un eje ineludible. La toma de decisiones en cada función debe estar a cargo de un funcionario idóneo y entrenado del máximo nivel. Este tendrá un equipo de asesoramiento integrando el comité específico e integrará el comité de coordinación a cargo, a su vez, de un especialista en el tipo de evento. La autoridad de cada uno de ellos en el ámbito de su competencia debe ser fuerte, esto es que sus decisiones en los momentos críticos no pueden ser sino inapelables. Es preciso entonces recordar lo planteado para la Salud Pública en general en el sentido que la conducción debe recaer en personas idóneas, honestas y normales en el sentido psíquico. A ello debe agregarse la capacidad de liderazgo y de decidir criteriosa y rápidamente en situaciones críticas.

Una característica propia del desastre o catástrofe, el desborde de la capacidad de reacción local, no debe hacer pensar que la comunidad afectada ha perdido todas sus potencialidades. Por el contrario, es ella la que actúa en los primeros momentos y lo hace sola. Su conocimiento del ambiente y circunstancias locales, así como en muchos casos su experiencia de fenómenos anteriores, constituye a esa comunidad en pieza clave del planeamiento y de la organización, tanto en las situaciones de riesgo como en los acontecimientos ya desencadenados. Es en esos momentos cuando la participación de la comunidad es ineludible.

El concepto de resiliencia como capacidad de resistir en forma activa las adversidades es aplicable a las comunidades afectadas por estos fenómenos. Ello las transforma en comunidades que actúan en el autocuidado y en prestaciones solidarias.

No obstante, teniendo en cuenta que el concepto de desastre o catástrofe involucra el desborde de la capacidad de reacción de los recursos propios de la comunidad afectada, los niveles políticos nacionales y provinciales o estatales deben tener organismos específicos para afrontarlos, así como una legislación y una planificación al respecto.

Asimismo, cada hospital debe tener una planificación que considere todas las probabilidades de desastres en el área de su influencia. Esta planificación debe basarse sobre el estudio en terreno de los factores naturales o antrópicos que puedan producirlos.

Según las características de los desastres posibles, los organismos centrales y los hospitales deben ordenar sus recursos, definir las distintas funciones y actividades, hacerlas conocer a sus integrantes y realizar periódicos simulacros.

En el sector Salud debe haber un funcionario de nivel director general responsable permanente de la intervención en esas circunstancias. Asimismo, bajo su coordinación, un comité asesor de especialistas y representantes de entidades gubernamentales y ONGs que se reúna periódicamente para la actualización y ajuste de programas.

Esta Dirección enfoca la organización por el conocimiento de los riesgos en todo el territorio jurisdiccional, actualizado a la dinámica del país (cambios meteorológicos, instalación de nuevas industrias). Continúa con la elaboración de mapas, normas y procedimientos, así como la definición de estrategias de acción.

La capacitación y educación continuada de personal para intervenir implica la conformación de equipos en los diversos niveles.

La disponibilidad de recursos claves de reserva resulta esencial para la intervención inmediata. Los grados de alerta se fundan en sistemas seguros de comunicación propios y la intervención en recursos de transporte que serán puestos a disposición por otros organismos, incluyendo las Fuerzas Armadas. Por ejemplo, en la provincia de Buenos Aires los grados de alerta sanitaria se indican en el siguiente cuadro.
Provincia de Buenos Aires. Niveles de alerta sanitaria

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Procedimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verde</td>
<td>Relevamiento del banco de Sangre Regional y Central.</td>
</tr>
<tr>
<td></td>
<td>Censo de camas desocupadas.</td>
</tr>
<tr>
<td></td>
<td>Censo de posibilidades de altas hospitalarias.</td>
</tr>
<tr>
<td></td>
<td>Relevamiento de planteles de guardia.</td>
</tr>
<tr>
<td>Amarilla</td>
<td>Relevamiento del banco de Sangre Regional y Central.</td>
</tr>
<tr>
<td></td>
<td>Disposición de altas hospitalarias necesarias.</td>
</tr>
<tr>
<td></td>
<td>Refuerzo de guardias activas en áreas críticas.</td>
</tr>
<tr>
<td></td>
<td>Convocatoria a comités de emergencia hospitalarios.</td>
</tr>
<tr>
<td></td>
<td>Relevamiento de la totalidad de RRHH disponibles.</td>
</tr>
<tr>
<td>Roja</td>
<td>Ante capacidad operativa regional desbordada.</td>
</tr>
</tbody>
</table>


6. Etapas en la planificación para desastres

6.1. Evaluación de vulnerabilidad y capacidad

La evaluación de vulnerabilidad de un área jurisdiccional a desastres o catástrofes es parte de la política de desarrollo humano. Su objetivo es reducir la vulnerabilidad mediante la prevención y mitigación de los desastres y aumentar la resiliencia preparándose para ellos.

Siendo parte de la política de desarrollo humano, se define en niveles descendientes, desde el nacional, pasando por el jurisdiccional (provincias), regional y local.

Como parte de la misma política y en función de la globalidad de los desastres, la planificación para afrontarlos, desde la etapa de evaluación de la vulnerabilidad, convoca a los organismos estatales de salud, seguridad, asistencia social y obras públicas (como otros según el tipo de fenómeno), las organizaciones no gubernamentales idóneas y la misma comunidad. Esta última voz resulta imprescindible por la visión y experiencia de su situación, a la vez que medio para aumentar su resiliencia.

La evaluación sigue una secuencia:

- Identificación de fenómenos posibles.
- Estimación sobre los efectos generales y diferenciales en comunidades y grupos.
- Elaboración de estrategias para reducir la vulnerabilidad.
- Desarrollo de programas de acción.
- Evaluación de la resiliencia de la comunidad y sus organizaciones.

Los eventos externos están en gran parte estudiados y registrados en mapas de escala mayor. Sin embargo, esta evaluación requiere mapas regionales y locales de menor escala que registren las fuentes posibles de desastres, naturales o antrópicos, descripciones de magnitud y efectos posibles a la luz de registros históricos, estudios prospectivos y variantes meteorológicas.

6.2. Información

La información, además de la obtenida por medios propios, incluye el registro de rumores, que influyen sobre la reacción comunitaria.

---

2 Equivale a análisis de riesgos o evaluación de amenazas (Wisner-Adams, 2002: 25).
3 Hay Sistemas de Información Geográfica computarizados o georeferenciados que ofrecen precisión mayor.
La comunicación debe ser formal, escrita y oral, con breves intermedios de tiempo, y contener no muchas pero contundentes explicaciones de lo que se hace o no se hace, para equilibrar las frecuentes presiones colectivas que, por otra parte, no deben pasarse por alto.

Hay personas y grupos resistentes a la conducción y organización de la emergencia que deben ser apartados del equipo.


De la misma manera, las percepciones de la propia comunidad deben llevar a investigar sus orígenes. En oportunidad de la explosión de las instalaciones cloacales en Guadalajara (México, 1992), ya hacía días que la población percibía olor a petróleo y estaba preocupada (Wisner-Adams, 2002: 41).

6.3. Preparación y respuestas

Ante una catástrofe desencadenada, la organización en sus distintos niveles debe proceder a la evaluación de:

- Localización, carácter, condiciones y riesgos por áreas.
- Amplitud de población afectada y su cultura.
- Daño a las instalaciones sanitarias.
- Necesidades de evacuación, refuerzo, alimentación, arropamiento y calefacción.
- Necesidades de atención médica.
- Necesidades de movilización de personal y equipo.
- Requerimientos de control de riesgos ambientales subsecuentes.
- Medidas inmediatas adoptadas.
- Inventario de recursos locales disponibles.

Las necesidades deben ser cuantificadas y priorizadas para la definición de metas, plazos y responsabilidades.

La participación de la comunidad afectada es parte ineludible de la elaboración de los parámetros mencionados, intentando compatibilizar las visiones y prioridades.

Una vez establecido el plan de acción, debe ser aprobado por la máxima autoridad específica en tiempo perentorio.

La asignación de responsabilidades debe ser precisa y difundida para evitar superposiciones y conflictos. A su vez, debe reconocerse una equilibrada autonomía que de lugar a las iniciativas de los expertos sin obviar la supervisión y coordinación general. Las acciones serán, de hecho, descentralizadas y las responsabilidades, por ello, también.

El plan de acción debe ser escrito en forma simple, concisa y accesible a todos los actores, conteniendo: resumen de situación, objetivos, operativos y procedimientos, distribución de responsabilidades, vías de mando y comunicación con párrafos numerados. Mayor información y detalle de procedimientos se escriben en anexos a disposición de los distintos responsables y actores.

El plan asimismo será revisado y ajustado a las circunstancias y, en su caso, reescrito in toto.

6.3.1. Problemas de rescate

El rescate de las víctimas, en primera instancia, lo afronta la misma comunidad afectada. La llegada de ayuda aporta personal especializado con equipo adecuado al fenómeno (lanchas, salvavidas, cuerdas trepanadores, sierras, gatos-crík, generadores eléctricos portátiles, grúas). Este
equipo debe estar a cargo de responsables para evitar su dispersión y pérdida. Una buena medida es que el personal especializado lidere a los voluntarios de la misma comunidad (Wisner-Adams, 2002: 49).

6.3.2. Problemas de alimentación

La seguridad alimentaria, de existir y cuánto más en las zonas carenciadas, se pierde por la destrucción de las despensas domiciliarias y comerciales y, a mediano plazo, por las pérdidas agropecuarias.

Aun llegado el auxilio humanitario, si la distribución no es bien organizada por áreas, el estado de inseguridad continúa. La correcta organización la supera.

Si la distribución de alimentos se prevé a mediano plazo, es preciso un programa de prioridades para niños, mujeres embarazadas o que amamantan y ancianos.

6.3.3. Problemas de agua y alcantarillado

Los servicios de agua y cloacas, cuando los hay, son muy vulnerables a los desastres. Las fuentes de agua de cursos superficiales son vulnerables a los incendios, y tanto ellas como las de aguas subterráneas lo son a los accidentes de contaminación industrial.

La provisión de agua comprende aquella necesaria para la red de agua potable y sus reservas, así como la que se requiere para la lucha contra el fuego. Si existe red, debe considerarse la vulnerabilidad de su fuente, planta de tratamiento y red de distribución, tendiendo a reducir la vulnerabilidad a través de la acertada ubicación y fortalecimiento de las dos primeras y el mantenimiento preventivo de la última. La provisión eléctrica para la extracción y el tratamiento está comprendida en estas precauciones. El riesgo aumenta cuando la fuente y la planta de tratamiento son mayores, en cuyo caso hay necesidad de darle más estructura de protección.

Donde no existen redes de agua corriente, hasta tanto se logren tender, deben promoverse las reglas tradicionales de uso del agua de cursos superficiales delimitando áreas de obtención de agua de bebida, lavado y baño personal, de bebida de animales y, finalmente (aguas abajo), de descarga de aguas servidas o cloacales.

La enseñanza de los métodos de hervido, filtrado y clorinación y el logro de su práctica habitual es una pieza clave en donde no existen estas redes, tanto para situaciones estables como para afrontar catástrofes.

El alcantarillado cloacal, de existir, requiere las mismas precauciones que la red de agua.

El drenaje de agua de lluvia exige, por su parte, un dimensionamiento, diseño y orientación que permita afrontar las situaciones normales y mitigar los desastres. Su mantenimiento expedito es una necesidad permanente. Las inundaciones en Bangladesh (Asia, 1999) empeoraron por la cantidad de plásticos descartables que obstruían estos drenajes existentes (Wisner-Adams, 2002: 9).

Los residuos sólidos municipales y los escombros mal dispuestos en cualquiera de sus etapas contribuyen siempre, tanto más en desastre, a contaminar las aguas y el suelo, así como a obstruir drenajes y favorecer incendios.

6.3.4. Problemas de evacuación y desplazamiento poblacional

De ser necesaria la evacuación poblacional de un área, debe anunciarse por radio y altavoces en lenguaje simple y dando la razón precisa de la amenaza. La gente debe entender la situación y su prioridad. Para lograrlo, se necesitan medios de transporte adaptados a la situación y establecer prioridades de evacuación tendiendo a mantener unidas a las familias. Asimismo, debe ordenarse el tránsito en las rutas de evacuación. Si la evacuación es a pie, la columna debe ir protegida y a un ritmo de descanso cada dos horas. Es preciso mantener informada a la comunidad en marcha, proveerla de agua (tres litros/persona/día en climas templados y seis litros/persona/día en climas cálidos), de alimentos y programar los lugares de descanso. Las
excretas y basuras deben tratar de enterrarse en agujeros de sesenta centímetros de profundidad y cubrirlas con treinta centímetros de tierra removida (Wisner-Adams, 2002: 45).

La relocalización se facilita si cerca del área dastrada hay ciudades no afectadas con edificios públicos que pueden adaptarse a viviendas transitorias. En caso contrario, resta armar campamentos para refugiados con todas las medidas elementales que sean posibles.

La relocalización involucra nuevos riesgos: enfermedades del ciclo fecal oral, brotes infecciosos (por ejemplo, sarampión), ectoparásitos y, en zonas endémicas, casos de paludismo en personas más susceptibles (Wisner-Adams, 2002: 45).

No obstante, suelen enfrentarse resistencias a abandonar el lugar y las pertenencias. Esto es frecuente en las inundaciones.

Hay fenómenos que provocan desplazamientos espontáneos de la comunidad en masa hacia lugares públicos o casas de familiares alejados, por ejemplo, en los terremotos de Armenia (1988) bajo la amenaza de un crudo invierno. Lo mismo ocurrió en la sequía de una zona del Sudán (1984-1985), por otra parte castigada por guerras internas. Alrededor de 120.000 personas se refugiaron en Jartum (la capital, de 1,5 millón de habitantes), la que a su vez fue afectada por inundaciones en 1988 (Wisner-Adams, 2002: 18).


6.3.5. Problemas de infraestructura
El planeamiento urbano, en la medida en que considera los riesgos de desastres y catástrofes, permite orientar la localización, el diseño y el mantenimiento de la infraestructura civil y de servicios o, en su caso, su relocalización o reforzamiento protector (Wisner-Adams, 2002: 31).

La inspección regular y sistemática de las instalaciones de servicios, de puentes, embalses y otras obras de infraestructura es parte de la prevención primaria de las catástrofes.

6.3.6. Problemas psicológicos
En los afectados, la ansiedad y la depresión suelen ser transitorias. Sin embargo, el paradero o la separación de las familias y vecindario pueden provocarlas. Por ello, la información y la reunión pronta de los allegados son eficaces para evitarlas. No se recomienda el uso de sedantes en el primer momento, salvo para casos definidos.

El personal de auxilio está sometido a fuertes tensiones, largas jornadas de trabajo a un ritmo rápido, a veces aislados, sometidos a riesgos graves y con la responsabilidad de apaciguar a las víctimas. Para sostener su moral es preciso que tengan sus propios campamentos, movilidad y medios de comunicación. Deben preverse sus períodos de descanso, incluso de recreación y de apoyo psicológico (Wisner-Adams, 2002: 57).

Este personal debe estar capacitado y entrenado, así como seleccionado de acuerdo con su carácter y habilidades propias con flexibilidad para adoptar distintos roles. Todos ellos deben llevar a la vista tarjetas con fotoidentificación y elementos de protección personal.

6.3.7. Enfermedades después de los desastres
Los brotes epidémicos no son el principal problema de los desastres si la asistencia lleva un ritmo rápido. De todas maneras, la pérdida de los servicios de agua corriente y cloacas, cuando la hay, favorece las gastroenteritis; la proliferación de vectores, las enfermedades trasmitidas por ellos; las variaciones térmicas y el hacinamiento, las enfermedades respiratorias y de la piel; la movilización de animales domésticos y silvestres, las diversas zoonosis (OPS, 2000: 5).

Toda vez que la aparición de epidemias post desastre depende del estado endémico, el perfil patológico cambia en forma dinámica.

Con la medicación o control de algunas enfermedades (viruela, peste bubónica, tifus exantemático), estas no suelen dar brotes.
Por otra parte, ese perfil varía según el grado de desarrollo del país o zona donde se produce el fenómeno.

El cólera produce brotes permanentes en el Sudeste Asiático y en África Subsahariana y se extendió en América a partir de la epidemia de Perú.

La shigellosis produjo más de 8.000 muertes después del terremoto de Guatemala en 1969 (Seaman, 1984: 41).

Las enfermedades más importantes están ligadas a la pobreza y la organización insuficiente de la Salud Pública del lugar: diarreas, disentería, hepatitis, sarampión, tos convulsiva, difteria, meningitis meningocócica, tuberculosis, parasitosis intestinales, escabiosis, paludismo y leptospirosis.

La multiplicación de vectores y la mayor exposición de la población a la intemperie favorecen los brotes de las enfermedades que trasmiten los mosquitos anofeles (paludismo y dengue), los mosquitos culex (encefalitis de San Luis, Japonesa B, Filaria bancrofti) y las moscas (conjuntivitis, disentería, enterovirosis, parasitosis).


La presencia de perros callejeros aumenta la incidencia de mordeduras y los casos de rabia.

El agua de las inundaciones tiende a producir casos de leptospirosis, fiebre tifoidea y hepatitis A.

El comienzo de los brotes depende del período de incubación de cada enfermedad.

Los desplazamientos poblacionales hacia lugares de refugio, si son hacinados y sin suficientes servicios de saneamiento, abren camino a las diarreas, infecciones respiratorias, sarampión, tos ferina, tuberculosis, escabiosis y dermatosis diversas.

Los daños en la red de servicios (agua corriente, cloacas, gas), cuando los hay, exigen medidas de reparación de urgencia, hipercloración, aumento de bombeo y control bacteriológico diario en el caso del agua.

La interrupción de los servicios de atención médica, como por ejemplo el de control de la tuberculosis, puede reactivar casos y producir brotes.

La carencia de alimentos en niños y adultos ya desnutridos aumenta la susceptibilidad a enfermedades infecciosas y las agrava.

<table>
<thead>
<tr>
<th>Enfermedad</th>
<th>Casos (muertes)</th>
<th>Lugar</th>
<th>Fenómeno</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptospirosis</td>
<td>s/d</td>
<td>Lisboa (Portugal)</td>
<td>Inundación</td>
<td>1967</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Recife (Brasil)</td>
<td>Inundación</td>
<td>1975</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>2.150 (15)</td>
<td>Andra Pradesh (India)</td>
<td>Inundación</td>
<td>1977</td>
</tr>
<tr>
<td>Paludismo</td>
<td>2% a 26% (positividad)</td>
<td>Haití</td>
<td>Huracán Flora</td>
<td>1963</td>
</tr>
<tr>
<td>Mordeduras de perro (a)</td>
<td>s/d</td>
<td>Guatemala</td>
<td>Terremoto</td>
<td>1976</td>
</tr>
<tr>
<td>Fiebre tifoidea y hepatitis (b)</td>
<td>s/d</td>
<td>Campania y Basilicata (Italia)</td>
<td>Terremoto</td>
<td>1980</td>
</tr>
<tr>
<td>Dengue</td>
<td>s/d</td>
<td>El Salvador</td>
<td>Huracán Stan</td>
<td>2005*</td>
</tr>
</tbody>
</table>

Notas: (a) También se presentaron casos de tifoidea, tétanos, poliomelitis, meningitis y shigellosis.
(b) También meningitis meningocócica.
*OPS, 2005.

Fuente: Seaman, 1984, pp. 46 y 55, resumen.
7. Planeamiento de los servicios de atención médica

No debe dejar de insistirse en el planeamiento urbano, fuera de las catástrofes, como para emplazar en los lugares más seguros los hospitales y otros servicios esenciales como los cuarteles de policía y bomberos, las usinas eléctricas, las plantas de potabilización (Kuban, 1993). Los hospitales, en especial los que disponen de cuidados intensivos, deben ser autosuficientes en equipos y reserva de suministros, así como los otros servicios.

Si bien la seguridad pretendida depende del tipo de fenómeno, hay soluciones menos y más costosas. Así, en inundaciones, el emplazamiento de esos servicios en terrenos bajos, anegables o inundables es un grave error de planeamiento y criterio. En las áreas de terremotos, la duplicación de la resistencia de la estructura aumentaría alrededor del 1% del costo total si se considera al construir. Si se trata de reforzar la estructura en hospitales antiguos todo se complica. Sin embargo, con posterioridad a terremotos y erupciones volcánicas, México, Chile, Colombia y Costa Rica han emprendido en forma ordenada ese reforzamiento estructural (Kuban, 1993). No hay alternativa, además, por la dificultad de prever dónde se producirán las fallas. No obstante los costos, la prevención indica que debe minimizarse la susceptibilidad de los servicios de salud y otros esenciales para casos de desastre.

La multiplicación continua de accidentes de diferentes orígenes con víctimas múltiples obliga a extremar los recursos, primero para evitarlos y luego para dar una respuesta sanitaria adecuada.

La prevención primaria efectiva obliga a la tarea de diversos estamentos institucionales, por ende el hospital estatal debe abrirse a la comunidad y buscar sumarse para lograr resultados favorables. En todos los casos, la integración de los recursos disponibles de cualquier procedencia es el camino que, junto con el uso racional de los mismos, optimiza el resultado final.

En la atención médica hospitalaria es mucho lo que hay que hacer, ya sea desde el punto de vista de la organización como de la actualización del equipo de salud. El Plan de Emergencias es el gran desafío a llevar a cabo.

Estos planes tuvieron fuerte presencia en la década de 1980, durante el conflicto de Beagle y el enfrentamiento en Malvinas. Se recuerda particularmente el del Hospital “Oscar Allende” de Mar del Plata. Posteriormente, quedaron en el olvido para resurgir en la década de 1990, cuando los episodios de la Embajada de Israel y la AMIA impactaron en nuestra sociedad, y además la Emergencia se perfiló como especialidad y el Trauma tuvo un importante desarrollo en el aspecto organizativo y en los planes de capacitación.

Sin embargo, transcurrieron varios años hasta que el personal hospitalario entendiera la necesidad de contar con un Plan de acción que le permitiera tener respuestas adecuadas ante demandas excepcionales.

Hoy, la organización hospitalaria ante el desastre es un indicador de Calidad en la Gestión Institucional. Dentro del aspecto operativo y docente, el primer paso dentro del hospital es estudiar los riesgos internos y externos para definir los procedimientos a seguir en cada caso, asignando los roles específicos del personal.

La segunda etapa es la difusión del proyecto y la capacitación de cada sector vinculado con el mismo. Por último, la puesta en práctica del Plan en demostraciones, simulaciones y simulacros, ya sean totales o parciales, que deben tener objetivos claros y evaluaciones acordes al mismo. Seguramente, esta tarea demandará al grupo de profesionales actuantes, con distintas características de formación y edad, un alto nivel de entrega y compromiso para el cumplimiento de las metas propuestas.

---

8. Organización sanitaria frente a catástrofe

La organización frente a un desastre exige en el lugar:

- Una conducción única e idónea como autoridad máxima.
- Un comité de coordinación asesora subordinado a la conducción.
- Un sistema de información de emergencia centralizada que registre las notificaciones, los informes periodísticos, aun los rumores relativos a brotes y, si es preciso, que recurra a encuestas y salidas a terreno.
- El sistema de información epidemiológica debe tener en cuenta el perfil previo del lugar y el propio del fenómeno que produjo el desastre.

9. Reforzamiento de los hospitales

De acuerdo con los mapas de riesgo de desastres, la estructura misma de los hospitales debe ser reforzada a partir de la adecuación de su emplazamiento. El número de quienes recurren a ellos y la complejidad de sus servicios los hacen más vulnerables a los desastres si no están emplazados y construidos para soportar sus efectos. Una vivienda puede contener a la familia, hasta cierto límite, aun privada de servicios públicos, pero un hospital pierde su utilidad. Si fuera necesaria su evacuación, sería más compleja y riesgosa que la de casas particulares, perdiendo, por otra parte, su función clave de asistir a las víctimas. Sus elementos no estructurales requieren mantenimiento y seguridad, ya que, si “se quiebra una ventana, una lámpara de techo mal ajustada se cae; se voltea un generador eléctrico mal asegurado; estantes atestados de sustancias químicas y suministros se desploman; las escaleras están bloqueadas por escombros que caen; y un tanque de oxígeno causa una explosión”, se generan graves accidentes y limitaciones funcionales (Kuban, 1993, resumen: 17).

Estos riesgos obligan a una instalación precisa de servicios y equipos, un serio mantenimiento preventivo y el desarrollo de una conciencia y capacidad de todo el personal hospitalario para detectar fallas e informarlas.

Asimismo, a nivel regional, los hospitales deben ser clasificados según los riesgos propios que corren y categorizados según la complejidad para ordenar la derivación de los distintos tipos de víctimas según sus requerimientos de asistencia (por ejemplo, disponibilidad de equipos para diálisis renal aguda).

Tanto en el nivel regional como en el de cada hospital, deben elaborarse planes de respuesta para emergencias y catástrofes según el relevamiento de situaciones potenciales de riesgo en sus respectivas áreas. Estos planes requieren para su elaboración el concurso de las instituciones y comunidades regionales y locales. Una vez elaborados, deben ser conocidos por todo el personal involucrado, por los líderes de esas instituciones y comunidades, y sometidos a prueba mediante simulacros anuales y actualizados periódicamente.

Las escuelas deben también lograr seguridad para alumnos y docentes y constituirse como efectores sociales y sanitarios en situaciones de emergencia sobre aquella base. En tal sentido, pueden configurarse, por sus espacios, recursos y habilidades de su personal, en puestos de comando, áreas de recepción, centros de evacuación o áreas de descanso para equipos de rescate (Kuban, 1993, resumen: 17).
10. Organización de los hospitales ante desastres

La primera condición para lograr una organización *a priori* es el destierro del concepto “aquí no puede pasar”. Debe ser reemplazado por el “puede pasar, tal vez pase, seguramente va a pasar” (Villamil, 1978: 1).

La segunda condición es la toma de conciencia institucional de que cada hospital debe ofrecer una respuesta organizada ante un desastre, y esto involucra la elaboración y entrenamiento del plan para situación de desastre, incluyendo los simulacros sorpresivos.

Hay ciertos principios que deben estar previstos en el plan:

• Unidad de mando en el jefe de guardia del día hasta que llegue el jefe de servicio de guardia y, si es avezado para ello, el director del establecimiento. Deben reunir condiciones de entrenamiento y experiencia, capacidad de organización y de conducción y serenidad.
• Definición de roles y pautas de acción para cada sector y cada uno de los miembros del personal.
• Avocación de parte de los especialistas no críticos, en esa circunstancia, a prestaciones simples pero claves, quizás ajenas a su orientación.
• Cambio de criterio de calidad, que necesariamente va a reducirse en un nivel.
• Expansión de la capacidad instalada por el procedimiento de alta inmediata de pacientes que pueden ser controlados en domicilio, lo que se estima en un promedio de 50-60% de los internados.
• Detención de toda otra internación, salvo casos graves o partos a término.
• Agrupamiento de los pacientes restantes por separado de las víctimas que deban internarse.
• Habilitación de un hall o aula grande para recepción y categorización de las víctimas.
• Habilitación de una morgue provisional con personal de reconocimiento e identificación.
• Definir áreas de asistencia para:
  - Shockeados.
  - Quemados.
  - Preoperatorio para traumatizados.
  - Obstetricia, ya que en situaciones de desastre tienden a adelantarse los partos y a producirse abortos.
  - Salud mental para control de afectados de síndromes postraumático y aun psicosis colectiva.
  - Curaciones de lesiones menores.

Además, debe procederse a:

• Establecer tres turnos en todos los servicios, en particular quirófano, anestesia, imágenes y hemoterapia, de tal forma que funcionen a tiempo completo.
• Convocar al personal imprescindible, dar rol y lugar específico y advertir que se suspenden los regímenes horarios.
• Establecer equipos que cubran tres turnos de ocho horas, sin perjuicio de lo anterior, para no agotar al personal y facilitar periódicos descansos.
• Disponer de una clave de llamada, “operativo”, para convocar por radio o televisión sin generar alarma.
• Disponer de un sistema de llamadas telefónicas en doble red para que el aviso llegue a cada uno de los convocados por dos vías.
• Restringir todas las llamadas o comunicaciones que no se relacionen con la asistencia de las víctimas.
• Restringir la circulación interna del establecimiento.
• Asegurar a través de la fuerza pública la circulación externa con calles despejadas, establecerla en sentido direccional para evitar cruces, impedir el estacionamiento en las áreas críticas y dirigir el tránsito.

• Gestionar las reservas del hospital para estos casos, que deben haber sido previstas y obtenidas previamente según el plan, en especial medicamentos críticos, material de curación y descartables, ropa de cirugía estéril y oxígeno.

• Registrar en todos los casos historias clínicas y protocolos abreviados.

• Identificar en oportunidad del anterior registro a cada paciente, su domicilio y teléfono, y marcarlo en una tarjeta adherida a la ropa que se le provea.

• Desnudar y proveer batas a los internados y colocar todas sus ropas y pertenencias en una bolsa de plástico cerrada.

• Establecer una sala para informar a los allegados, a plazos periódicos y fijos.

• Recibir a los periodistas cordialmente en horas fijas tres o cuatro veces al día, informándoles y haciéndoles comprender la inconveniencia de su circulación dentro del hospital. Esta actividad debe estar a cargo de un único interlocutor, que debe ser un directivo.

11. Rescate y disposición de cadáveres

Después del rescate de sobrevivientes corresponde el de cadáveres, intentando la identificación in situ y anotando en tarjeta atada al pie o la muñeca los datos disponibles para su posterior reconocimiento de familiares.

La constatación de la muerte de los seres queridos es una condición para la elaboración del duelo. Hay una necesidad psicológica de identificar a sus muertos, pasada la esperanza de encontrarlos vivos. Por otra parte, la incertidumbre sobre la muerte genera mitos, como el de haberlos visto vivos tiempo después en otra parte, y problemas legales respecto a la propiedad y las indemnizaciones.

Una vez identificados los cuerpos, deben ser entregados a las familias para que procedan a su disposición según sus creencias y sus ritos. En situaciones de catástrofe, es conveniente que se sufraguen los gastos de los servicios fúnebres.

No se justifica en los desastres, salvo en determinadas epidemias infecciosas, el entierro en fosas comunes o la cremación. La reacción de la población puede ser negativa. Se ha dicho que, con motivo del huracán Joanne, los afectados de Gonaïvas (Haití) apedrearon un camión que arrojaba los cadáveres en una fosa común (OPS, 2005). En primer lugar, los microorganismos patógenos no sobreviven mucho tiempo en un cadáver, y los que generan la descomposición no causan enfermedades. Son más resistentes los virus HIV, HVB y HVC, así como el bacilo de la TBC, pero el riesgo es mínimo para quienes manipulan cadáveres, más aún si actúan con las normas de bioseguridad (OPS, 2005).

Cuando, en casos de epidemias, es preciso el uso de fosas comunes, se abren trincheras que den espacio de cincuenta centímetros por cuerpo con cincuenta centímetros entre ellos, y pueden hacerse niveles. Siempre debe tratarse de identificarse y anotar el lugar y nivel en que están ubicado cada cuerpo (OPS, 2003).

La identificación se hace con apoyo del cuerpo forense. Si bien es difícil, no es imposible aún con un gran número de muertos. En el atentado del World Trade Center, con 2.700 muertos, quedaron sólo 47 desaparecidos sin identificar (OPS, 2003).
Anexo I

Organizaciones Humanitarias para asistencia en catástrofes en internet

Organizaciones de la ONU (Naciones Unidas)
Oficinas de la ONU para la coordinación de asuntos Humanitarios (OCHA)
http://www.reliefweb.int/ocha_ol/
Organización Mundial de la Salud (OMS)
http://www.who.in/eha.
Fondo de la ONU para la infancia (UNICEF)
Programa Mundial de Alimentos (PMA)
Organización de la ONU para la Agricultura y la Alimentación (FAO)
http://www.fao.org

Organizaciones Intergubernamentales
Organizaciones de Asuntos Humanitarios de la Unión Europea (ECHO)
http://europa.eu.int/comm/echo
Centro de Coordinación para prevención de Desastres Naturales en América Central (CEPREDENAC)
http://www.ceprenac.org
Agencia Caribeña de Emergencia y Respuesta a los desastres (CDERA)
http://www.edera.org

Organizaciones No Gubernamentales
Adventist. Development and Relief Agency
http://www.adra.org
American Council For Voluntary International Action (Inter Action)
http://www.interaction.org
Cooperative For Assistance and Relief Everywhere (CARE)
http://www.care.org
Caritas International’s
http://www.caritasint.org
Comité Internacional de la Cruz Roja (ICRC)
Consejo Mundial de Iglesias (WCC)
http://www.wcc-col.org
Federación Internacional de la Cruz Roja y la Media Luna Roja (IFRC)
http://www.ifrc.org
International Council of Voluntary Agencies (ICVA)
http://www.icva.ch
Llinteran World Relief Federation (LWR)
http://www.lwr.org
Médicos sin Fronteras (MSF)
http://www/msf.org
Mennonite Central Committee (WCA)
http://www.mennonitecc.ca
Oxford Committee for Famine (OXFAM)
http://www.ofam.org.uk
Salvation Army
http://www.salvationarmy.org
Save the Children Fund/Federation
http://www.savethechildren.org
Servicios Católicos de Socorro
Voluntary Organizations in Cooperation in Emergencies (VOICE)
http://www.onuworld.org/voice

Solicitudes de asistencia internacional (Recomendaciones de la OPS)

Todas las solicitudes de asistencia sanitaria deben provenir del Ministerio de Salud o efectuarse por medio de dicho ministerio con su aprobación.

Manejo de desastres

Todos los países deben identificar su vulnerabilidad a los desastres y establecer medidas apropiadas para mitigar su efecto en las poblaciones más vulnerables.

Preparación

Los preparativos para casos de desastres deben recibir la importancia que merecen. Se recomienda que:
1. Los Países Miembros de la OPS intensifiquen sus esfuerzos para cumplir las resoluciones adoptadas por el Consejo Directivo de la organización.
2. Los países y organismos donantes apoyen, hasta donde sea posible, las actividades de las organizaciones internacionales, los servicios nacionales de salud y otros grupos en las actividades de preparativos para casos de desastre.
3. Los países y los organismos internacionales apoyen las investigaciones de campo para determinar las necesidades en relación con el tipo de desastre, aprovechando las experiencias acumuladas.
4. Los países elaboren, en la medida de lo posible, proyectos de colaboración bilateral entre países vecinos para proporcionar oportunamente ayuda a nivel regional.
5. Se insista en la importancia de la educación y la capacitación en todos los niveles educativos en materia de preparativos de socorro en casos de desastre.

Principios de asistencia humanitaria

Cuando la asistencia humanitaria es coordinada adecuadamente y responde a las necesidades reales, sus beneficios son mucho mayores para las víctimas y puede jugar incluso un papel importante en el desarrollo del país. Tanto los donantes como las autoridades de los países proclives a sufrir desastres deben tener presentes los siguientes principios para prestar una asistencia humanitaria eficaz.

No tipificar los desastres. Los efectos de los desastres sobre la salud varían no sólo según el tipo de desastre, sino también según la situación económica y política del país afectado, y el grado de desarrollo de su infraestructura.

La asistencia sanitaria debe prestarse en consulta con los funcionarios designados por el Ministerio de Salud para coordinar la asistencia humanitaria. El coordinador de desastres del sector salud es un funcionario de alto nivel que sirve de punto focal para situaciones de emergencia y coordina las actividades humanitarias vinculadas a la salud.

Seguir los procedimientos de comunicación, coordinación y supervisión establecidos por las autoridades de los países afectados por el desastre. Esto se logra más fácilmente mediante reuniones llevadas a cabo regularmente, como parte del proceso de planificación de desastres, entre autoridades nacionales y representantes de los organismos donantes, ONGs y otras organizaciones que participen en la asistencia humanitaria.
La evaluación de las necesidades debe ser realizada sin demora por las autoridades sanitarias nacionales del país afectado. Los donantes deben ser informados de inmediato acerca de cuál es el tipo concreto de ayuda que se necesita y cuál es el que no se necesita. Los retrasos en la llegada de la ayuda del exterior son inevitables y pueden ser prolongados; a veces ya se han satisfecho las necesidades cuando la ayuda llega.

**Informar a los donantes de lo que no se desea recibir ni se necesita.** Esto es tan crítico como dar las especificaciones de lo que sí se necesita. Las pautas deben circularse entre todos los posibles proveedores de asistencia y los representantes diplomáticos y consulares en el extranjero.

Los donantes no deben competir entre ellos para satisfacer las necesidades más visibles de un país afectado. La calidad y la adecuación de la asistencia son más importantes que su tamaño, su valor monetario o la velocidad con la que llega.

**La ayuda de emergencia debe complementar, no duplicar, las medidas aplicadas por el país afectado.** Si bien es inevitable cierta duplicación cuando tantos países y organismos de todo el mundo se apresuran a cubrir las mismas necesidades, reales o supuestas, gran parte de esa duplicación puede evitarse recurriendo, en su calidad de entidad de coordinación, a la Oficina de las Naciones Unidas para la Coordinación de Asuntos Humanitarios (OCHA) y a la OPS/OMS en cuanto a las necesidades sanitarias. Hay también consorcios de ONGs y organizaciones voluntarias que coordinan la asistencia.

**Es improbable que se necesite personal médico del exterior.** Las necesidades inmediatas de las víctimas deben ser satisfechas en las primeras horas posteriores al desastre. Tanto los equipos médicos como los voluntarios provenientes del exterior por iniciativa propia se encuentran sin la preparación adecuada o bien llegan demasiado tarde para representar una verdadera ayuda. Los equipos de países o regiones vecinos que comparten una cultura y un idioma comunes pueden prestar una ayuda valiosa.

La necesidad de búsqueda y rescate, de primeros auxilios para salvar vidas y de otros procedimientos médicos inmediatos suele ser breve. Es necesaria mucha cautela al considerar asistencia internacional que resulta inútil una vez que ha pasado la fase de emergencia aguda. Por ejemplo, personal, equipos especializados de rescate, hospitales móviles y productos perecederos.

**El uso de internet se ha convertido en una necesidad antes y durante las emergencias.** Las comunicaciones electrónicas reducen las demoras para hacer promesas y contribuciones en situaciones de desastre. Las ONGs y otros colaboradores deben participar activamente y promover el libre intercambio de la información en internet.

**La información debe circular sin trabas y ser sometida a examen para asegurar que el manejo de los suministros humanitarios se haga de manera responsable.** Los donantes y las autoridades nacionales deben proporcionar informes exactos sobre el estado de los envíos y la distribución de los suministros. Los sistemas de manejo de suministros son utilizados para mantener inventarios, clasificar y seleccionar los suministros que llegan y proporcionar a los donantes y a las autoridades nacionales informes exactos de la situación de los envíos y las entregas.

Los militares del país y, cada vez con mayor frecuencia, los extranjeros desempeñan una función importante en la asistencia humanitaria, en particular en el ámbito de la logística (transporte, comunicación y reconocimientos aéreos). El diálogo continuo entre las autoridades civiles y militares y la participación en ejercicios conjuntos servirán para asegurar que la colaboración militar contribuya a mejorar y no a desplazar la influencia de las autoridades sanitarias nacionales en situaciones de emergencia.

**No reaccionar exageradamente ante los informes de los medios de comunicación que piden ayuda internacional urgente.** A pesar de las trágicas imágenes que los medios muestran, es necesario formarse una visión de conjunto de la situación y esperar hasta que las peticiones de ayuda se hayan hecho formalmente.
Mitos y realidades de los desastres (OPS)

La Organización Panamericana de la Salud (OPS) ha identificado algunos mitos y creencias erróneas que se asocian ampliamente con el impacto de los desastres en salud pública. Todos los planificadores y ejecutores de desastres deben estar familiarizados con ellos. Incluyen los siguientes.

Mito 1 Se necesitan voluntarios médicos extranjeros con cualquier tipo de entrenamiento médico.
Realidad La población local casi siempre cubre las necesidades inmediatas para salvar vidas. Solamente se necesita personal médico con habilidades especiales que no se encuentre disponible en el país afectado.

Mito 2 Se necesita cualquier tipo de ayuda internacional... ¡y se necesita ahora!
Realidad Una respuesta apresurada que no esté basada en una evaluación imparcial únicamente contribuye al caos. Es mejor esperar hasta que se hayan establecido las necesidades verdaderas. De hecho, la mayoría de las necesidades son atendidas por las víctimas mismas, su gobierno y sus agencias locales y no por intervenciones foráneas.

Mito 3 Las epidemias y las plagas son inevitables después de un desastre.
Realidad Las epidemias no ocurren espontáneamente después de un desastre y los cadáveres no conllevan epidemias catastróficas de enfermedades exóticas. La clave para prevenirlas es mejorar las condiciones sanitarias y educar al público.

Mito 4 Los desastres sacan a relucir lo peor del comportamiento humano (por ejemplo, los saqueos y los amotinamientos).
Realidad Aunque existen casos aislados de comportamientos antisociales, la mayor parte de la gente responde espontáneamente y generosamente.

Mito 5 La población afectada está muy golpeada y es incapaz de tomar la responsabilidad de su propia supervivencia.
Realidad Por el contrario, mucha gente rehace su fuerza durante una emergencia, como lo han evidenciado miles de voluntarios que espontáneamente se unieron en la búsqueda de víctimas entre los escombros después del terremoto de Ciudad de México en 1985.

Mito 6 Los desastres son asesinos al azar.
Realidad Los desastres golpean más fuertemente a los grupos más vulnerables, los pobres y, especialmente, las mujeres, los niños y los ancianos.

Mito 7 La mejor alternativa es ubicar a las víctimas de los desastres en alojamientos temporales.
Realidad Esa debe ser la última alternativa. Muchas agencias usan fondos, normalmente gastados en carpas, para la compra de materiales de construcción, herramientas y otros suministros de construcción en el país afectado.

Mito 8 Siempre se requiere la ayuda alimentaria en los desastres naturales.
Realidad Los desastres naturales sólo raramente causan la pérdida de las cosechas. Por consiguiente, las víctimas no requieren asistencia masiva de alimentos.

Mito 9 Siempre se necesita ropa para las víctimas de los desastres.
Realidad Casi nunca se necesita ropa usada. Casi siempre es culturalmente inapropiada y, aunque las víctimas de los desastres la aceptan, no la usan.

Mito 10 Las cosas retornarán a la normalidad en pocas semanas.
Realidad Los efectos de un desastre duran mucho tiempo. Los países afectados por un desastre reducen mucho sus fuentes financieras y recursos materiales en la fase inmediata post-impacto. Los programas de ayuda exitosos son los que orientan sus operaciones teniendo en cuenta que el interés internacional disminuye cuando las necesidades y la escasez se tornan más urgentes.
Bibliografía


