

Computer Science & Technology Series

XVI ArgentIne Congress of Computer sCIenCe
seleCted pApers

Computer Science & Technology Series

XVI ArgentIne Congress of Computer sCIenCe
seleCted pApers

Guillermo Simari / HuGo Padovani
(eds)

De Giusti, Armando
 Computer Science & Technology Series : XVI Argentine Congress of Computer Science : selected papers .
- 1a ed. - La Plata : Universidad Nacional de La Plata, 2011.
 276 p. ; 24x16 cm.

 ISBN 978-950-34-0757-8

 1. Informática. 2. Ciencias de la Computación. I. Título.
 CDD 005.3

Computer Science & Technology Series
XVI ArgentIne Congress of Computer sCIenCe
seleCted pApers

Diseño y diagramación: Ignacio Bedatou

Editorial de la Universidad de La Plata (Edulp)
47 N.° 380 / La Plata B1900AJP / Buenos Aires, Argentina
+54 221 427 3992 / 427 4898
editorial@editorial.unlp.edu.ar
www.editorial.unlp.edu.ar

Edulp integra la Red de Editoriales Universitarias (REUN)

Primera edición, 2011
ISBN 978-950-34-0757-8
Queda hecho el depósito que marca la Ley 11.723
© 2011 – Edulp
Impreso en Argentina

ToPicS

XI Intelligent Agents and Systems Workshop
Chairs Guillermo Simari (UNSur) Guillermo Leguizamón (UNSL) Laura Lanzarini (UNLP)

X Distributed and Parallel Processing Workshop
Chairs Armando De Giusti (UNLP) Marcela Printista (UNSL) Jorge Ardenghi (UNSur)

IX Information Technology Applied to Education Workshop
Chairs Cristina Madoz (UNLP) María Eugenia Márquez (UNPA) Sonia Rueda (UNSur)
Claudia Russo (UNNOBA)

VIII Graphic Computation, Imagery and Visualization Workshop
Chairs Silvia Castro (UNSur) Javier Giacomantone (UNLP) Roberto Guerrero (UNSL)

VII Software Engineering Workshop
Chairs Patricia Pesado (UNLP) Elsa Estévez (UNU) Alejandra Cechich (UNCOMA)

VII Database and Data Mining Workshop
Chairs Olinda Gagliardi (UNSL) Hugo Alfonso (UNLPam) Rodolfo Bertone (UNLP)

V Architecture, Nets and Operating Systems Workshop
Chairs Javier Diaz (UNLP) Antonio Castro Lechtaller (UTN) Hugo Padovani (UMorón)

II Innovation in Software Systems Workshop
Chairs Pablo Fillottrani (UNSur) Nelson Acosta (UNCPBA)

II Signal Processing and Real-Time Systems Workshop
Chairs Oscar Bría (INVAP) Horacio Villagarcia Wanza (UNLP)

Program Committee

Acosta, Nelson (Argentina)
Aguilar, José (Venezuela)
Alfonso, Hugo (Argentina)
Ardenghi, Jorge (Argentina)
Areta, Javier (Argentina)
Bertone, Rodolfo (Argentina)
Bria, Oscar (Argentina)
Castro Lechtaller Antonio (Argentina)
Castro, Silvia (Argentina)
Cechich, Alejandra (Argentina)
Collazos Ordóñez, César Alberto (Colombia)
Cukierman, Uriel (Argentina)
De Giusti, Armando (Argentina)
Díaz, Javier (Argentina)
El Saddik, Abed (Canadá)
Esquivel, Susana (Argentina)
Estevez, Elsa (United Nations)
Falappa, Marcelo (Argentina)
Fillottrani, Pablo (Argentina)
Finochietto, Jorge (Italia)
Forradellas, Raymundo (Argentina)
Gagliardi, Olinda (Argentina)
Giacomantone, Javier (Argentina)
Gröller, Eduard (Austria)
Guerrero, Roberto (Argentina)
Janowski, Tomasz (United Nations)
Lanzarini, Laura (Argentina)
Leguizamón, Guillermo (Argentina)
Luque, Emilio (España)
Madoz, Cristina (Argentina)
Malbran, María (Argentina)
Marín, Mauricio (Chile)
Marquez, María Eugenia (Argentina)
Naiouf, Marcelo (Argentina)
Obac Roda, Valentín (Brasil)
Padovani, Hugo (Argentina)
Pesado, Patricia (Argentina)
Piattini, Mario (España)
Piccoli, María F. (Argentina)
Printista, Marcela (Argentina)
Puppo, Enrico (Italia)
Ramió Aguirre, Jorge (España)
Rossi, Gustavo (Argentina)
Rueda, Sonia (Argentina)

Russo, Claudia (Argentina)
Santos, Juan Miguel (Argentina)
Sanz, Cecilia (Argentina)
Scopigno, Roberto (Italia)
Steinmetz, Ralf (Alemania)
Suppi, Remo (España)
Tarouco, Liane (Brasil)
Tirado, Francisco (España)
Velho, Luis (Brasil)
Vendrell, Eduardo (España)
Vénere, Marcelo (Argentina)
Vilanova i Bartrolí, Anna (Holanda)
Villagarcía Wanza, Horacio (Argentina)
Viola, Ivan (Noruega)
Vizcaino, Aurora (España)
Zamarro, Jose Miguel (España)

organizing Commitee

Universidad de Morón –
FacUltad de inForMática,
ciencias de la coMUnicación y técni-
cas especiales – argentina

President
Padovani, Hugo René

Coordinator
Ierache, Jorge Salvador Ierache

Collaborators
Panizzi, Marisa
Louro, Anahí
Sattolo, Iris
Malmlöf, Carolina
Preface

 Preface

CACIC Congress

CACIC is an annual Congress dedicated to the promotion and advancement
of all aspects of Computer Science. The major topics can be divided
into the broad categories included as Workshops (Intelligent Agents and
Systems, Distributed and Parallel Processing, Software Engineering,
Architecture, Nets and Operating Systems, Graphic Computation, Imagery
and Visualization, Information Technology applied to Education, Databases
and Data Mining, Innovation in Software Systems, Theory, Real time
Systems, Models and Optimization).
The objective of CACIC is to provide a forum within which to promote
the development of Computer Science as an academic discipline with
industrial applications, trying to extend the frontier of both the state of the
art and the state of the practice.
The main audience for, and participants in, CACIC are seen as researchers in
academic departments, laboratories and industrial software organizations.
CACIC started in 1995 as a Congress organized by the Network of National
Universities with courses of study in Computer Science (RedUNCI),
and each year it is hosted by one of these Universities. RedUNCI has a
permanent Web site where its history and organization are described: http://
redunci.info.unlp.edu.ar.

CACIC 2010 in Buenos Aires

CACIC’10 was the sixteenth Congress in the CACIC series. It was
organized by the School of Computer Science of the University of Moron.
The Congress included 10 Workshops with 104 accepted papers, 1
main Conference, 4 invited tutorials, different meetings related with
Computer Science Education (Professors, PhD students, Curricula) and an
International School with 5 courses. (http://www.cacic2010.edu.ar/).

CACIC 2010 was organized following the traditional Congress format, with
10 Workshops covering a diversity of dimensions of Computer Science
Research. Each topic was supervised by a committee of three chairs of
different Universities.
The call for papers attracted a total of 195 submissions. An average of
2.6 review reports were collected for each paper, for a grand total of 507
review reports that involved about 300 different reviewers.
A total of 104 full papers were accepted and 20 of them were selected for
this book.

Acknowledgments

CACIC 2010 was made possible due to the support of many individuals
and organizations. The School of Engineering of the University of Moron,
RedUNCI, the Secretary of University Policies, and the National Agency
of Scientific and Technological Advancement were the main institutional
sponsors.
This book is a very careful selection of best qualified papers. Special thanks
are due to the authors, the members of the workshop committees, and all
reviewers, for their contributions to the success of this book.

inG. armando de GiuSTi
dr. Guillermo Simari

 RedUNCI

Table of ConTenTs

XI Intelligent Agents and Systems Workshop
An Argumentative Approach to Local-As-View Integration of Ontologies
for the Semantic Web
Sergio A. Gómez, Carlos I. Chesñevar, Guillermo R. Simari
Parallel ACO algorithms for 2D Strip Packing
Carolina Salto, Guillermo Leguizamón, Enrique Alba Torres
CHC and SA Applied To The Distribution Of Wind Turbines on
Irregular Fields
Martín Bilbao, Enrique Alba Torres

X Distributed and Parallel Processing Workshop
Predictive and Distributed Routing Balancing (PR-DRB)
Carlos Núñez, Diego Lugones, Daniel Franco, Emilio Luque
Comparison of Communication/Synchronization Models in Parallel
Programming on Multi-Core Cluster
Enzo Rucci, Armando E. De Giusti, Franco Chichizola, Marcelo
Naiouf, Laura De Giusti
Towards a High Performance Cellular Automata Programming Skeleton
Marcela Printista, Saez F.

IX Information Technology Applied to Education Workshop
Voice command adaptation for Jclic, for the special education context
Lucrecia Moralejo, Stefanía Ostermann, Cecilia Sanz, Patricia Pesado
E-mail processing using data mining techniques
Augusto Villa Monte, César Estrebou, Laura Lanzarini
Prototype for the virtualization of group moderation based on the
Metaplan technique
Alejandro H. Gonzalez, Maria Cristina Madoz, Dan Hughes, María
Florencia Saadi

VIII Graphic Computation, Imagery and Visualization
Workshop
DeLP Viewer: a Defeasible Logic Programming Visualization Tool
Sebastián Escarza, Martín L. Larrea, Silvia M. Castro, Sergio R. Martig
A Semantics-based Visualization Building Process
Martín Larrea, Sergio R. Martig, Silvia Castro

13

57

97

131

VII Software Engineering Workshop
Using DEVS for Evaluating Software Architectures
Verónica Bogado, Silvio Gonnet, Horacio Leone
Effort Estimation Analysis by Applying Use Case Points
Cristian Remón, Pablo Thomas
The Importance of Using Empirical Evidence in Software Engineering
Enrique Fernández, Oscar Dieste, Patricia Pesado, Ramón García-
Martínez

VII Database and Data Mining Workshop
A UML Profile for Fuzzy Multidimensional Data Models
Iván Rodríguez, José Luis Marti
Dynamic Spatial Approximation Trees with Clusters for Secondary
Memory
Luis Britos, Marcela Printista, Nora Reyes

V Architecture, Nets and Operating Systems Workshop
Collection and Publication of a Fixed Text Keystroke Dynamics
Dataset
Luciano Bello, Maximiliano Bertacchini, Carlos Benitez, Juan
Carlos Pizzoni, Marcelo Cipriano
Reducing the LSQ and L1 Data Cache Power Consumption
Rubén G. Apolloni, P. Carazo, F. Castro, D. Chaver, L. Pinuel,
Francisco Tirado

II Innovation in Software Systems Workshop
JAUS Interface for Tools Development in the robotics field
Federico A. Bazán, Mauricio G. Jost, Orlando Micolini, Ladislao
Mathe

II Signal Processing and Real-Time Systems Workshop
Diffuse Outlier Time Series Detection Technique for Functional
Magnetic Resonance Imaging
Javier Giacomantone, Tatiana Tarutina
Processing Ambiguous Fault Signals with Three Models of
Feedforward Neural Networks
Sergio L. Martínez, Enrique E. Tarifa, Samuel Franco Dominguez

157

191

217

243

253

 XI
Intelligent Agents and Systems Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 15

An Argumentative Approach to Local-As-View
Integration of Ontologies for the Semantic Web

SERGIO A. GÓMEZ1, CARLOS I. CHESÑEVAR1,2
AND GUILLERMO R. SIMARI1

1 Artificial Intelligence Research and Development Laboratory, Department of Computer Science
and Engineering, Universidad Nacional del Sur, Av. Alem 1253, (8000) Bahía Blanca,

Argentina. {sag,cic,grs}@cs.uns.edu.ar.
2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Abstract. Ontology integration is the problem of combining data
sources in the Semantic Web. Concepts in source ontologies are
captured in terms of concepts defined in a global ontology. In
traditional approaches to reasoning with ontologies, when some of the
ontologies involved are inconsistent, the knowledge engineer has to
repair the ontologies in order to extract useful information from them.
In this article we show how to perform local-as-view integration of
possibly inconsistent ontologies by using Defeasible Logic
Programming, thus allowing to reason automatically with ontology
integration systems in the presence of inconsistency.

1. Introduction

The Semantic Web (SW) [1] is a vision of the Web where resources have
exact meaning assigned in terms of ontologies [2], thus enabling agents to
reason about them. Ontologies in the SW are defined in the OWL language,
whose underlying semantics is based on the Description Logics (DL) [3], for
which specialized reasoners exist [4]. Description Logic Programming (DLP)
is an alternative approach to reason with DL ontologies that proposes
translating them into the language of logic programming (LP) [5]. Although
DLP offers several advantages in terms of efficiency and reuse of existing LP
tools (such as Prolog environments), that approach is incapable of reasoning
in the presence of inconsistent ontologies. Thus we have developed a
framework called –ontologies [6] for reasoning with inconsistent DL
ontologies based on Defeasible Logic Programming (DeLP) [7].
As the World Wide Web is constituted by a variety of information sources, in
order to extract information from such sources, their semantic integration and
reconciliation is required [8]. Indeed, reuse of existing ontologies is often not
possible without considerable effort. When one wants to reuse different
ontologies together, those ontologies have to be combined in some way. This
can be done by integrating the ontologies, which means that they are merged
into a single new ontology, or the ontologies can be kept separate. In both
cases, the ontologies have to be aligned, which means that they have to be
brought into mutual agreement [9]. A particular source of inconsistency is

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 16

related to the use of imported ontologies when the knowledge engineer has
no authority to correct them, and as these imported ontologies are usually
developed independently, their combination could also result in
inconsistencies. One kind of such integration is known as local-as-view
(LAV) integration [8], where concepts of the local ontologies are mapped to
queries over a global ontology.
In this article, we present an approach for modeling LAV ontology
integration when the involved ontologies can be potentially inconsistent. The
ontologies are expressed in the language of DL but we give semantics to
them in terms of DeLP. The alignments between the local and global
ontologies are expressed as DL inclusion axioms that are also interpreted as
DeLP sentences. As the ontologies are potentially inconsistent, a dialectical
analysis is performed on the interpretation of both the ontologies and the
mappings from the local to the global ontology.
The rest of this paper is structured as follows. In Section 2 we present the
fundamentals of Description Logics and Defeasible Logic Programming
along with a brief introduction to the -ontologies framework for reasoning
with possibly inconsistent ontologies. In Section 3, we extend -ontologies
for performing local-as-view integration. Finally Section 4 concludes the
paper.

2. Knowledge Representation and Reasoning with -Ontologies

2.1 Fundamentals of Description Logics and Defeasible Logic
Programming

Description Logics (DL) [3] are a family of knowledge representation
formalisms based on the notions of concepts (unary predicates, classes) and
roles (binary relations) that allow building complex concepts and roles from
atomic ones. Let C, D stand for concepts, R for a role and a, b for individuals.
Concept descriptions are built from concept names using the constructors
conjunction (C D), disjunction (C D), complement (C), existential
restriction (R.C), and value restriction (R.C). To define the semantics of
concept descriptions, concepts are interpreted as subsets of a domain of
interest, and roles as binary relations over this domain. Further extensions are
possible including inverse (P-) and transitive (P+) roles. A DL ontology
consists of two finite and mutually disjoint sets: a Tbox which introduces the
terminology and an Abox which contains facts about particular objects in the
application domain. Tbox statements have the form C D (inclusions) and
C D (equalities), where C and D are (possibly complex) concept
descriptions. Objects in the Abox are referred to by a finite number of
individual names and these names may be used in two types of assertional
statements: concept assertions of the type a:C and role assertions of the type
a, b:R.

COMPUTER SCIENCE & TECHNOLOGY SERIES 17

Defeasible Logic Programming (DeLP) [7] provides a language for
knowledge representation and reasoning that uses defeasible argumentation
[10] to decide between contradictory conclusions through a dialectical
analysis. In a DeLP program =(,), a set of strict rules P Q1, ..., Qn,
and a set of defeasible rules P Q1, ..., Qn can be distinguished. An
argument ,H is a minimal non-contradictory set of ground defeasible
clauses of that allows to derive a ground literal H possibly using ground
rules of . Since arguments may be in conflict (concept captured in terms of
a logical contradiction), an attack relationship between arguments can be
defined. Generalized specificity [11] is the criterion used to decide between
two conflicting arguments. If the attacking argument is strictly preferred over
the attacked one, then it is called a proper defeater. If no comparison is
possible, or both arguments are equi-preferred, the attacking argument is
called a blocking defeater. In order to determine whether a given argument
is ultimately undefeated (or warranted), a dialectical process is recursively
carried out, where defeaters for defeaters for these defeaters, and so on, are
taken into account. The answer to a query H w.r.t. a DeLP program takes
such dialectical analysis into account and can be one of yes, no, undecided, or
unknown.

2.2 Reasoning with Inconsistent DL Ontologies in DeLP

In the presence of inconsistent ontologies, traditional DL reasoners (such as
RACER [4] issue an error message and stop further processing. Thus, the
burden of repairing the ontology (i.e., making it consistent) is on the
knowledge engineer. In a previous work [12], we showed how DeLP can be
used for coping with inconsistencies in ontologies such that the task of
dealing with them is automatically solved by the reasoning system. We recall
some of the concepts for making this article more self-contained.

Definition 1 (-Ontology). Let C be an b-class, D an h-class, A, B hb-
classes, P, Q properties, a, b individuals. Let T be a set of inclusion and
equality sentences in DL of the form C D, A B, T P.D, T P-.D,
P Q, P Q, P Q-, or P+ P such that T can be partitioned into two
disjoint sets TS and TD. Let A be a set of assertions disjoint with T of the form
a:D or a,b:P. A -ontology is a tuple (TS, TD, A). The set TS is called the
strict terminology (or Sbox), TD the defeasible terminology (or Dbox) and A
the assertional box (or Abox).

Example 1. Consider the -ontology 1 = (TS
1, TD

1, A1) presented in Fig. 1.
The strict terminology TS

1 says that somebody who is checking mail uses a
web browser. The defeasible terminology TD

1 expresses that those who study
usually pass exams, someone who is sitting at a computer is normally
studying unless he is web surfing, those who do not study usually do not
pass, if someone is using a web browser then he is presumably web surfing
unless he is reading Javadoc documentation. The set A1 asserts that it is

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 18

known that John, Paul and Mary are sitting at a computer; Paul is using a
browser; finally, Mary is also checking mail and reading Javadoc
documentation. Notice that the traditional (in the sense of [3]) DL ontology
(TS

 1
 TD

 1, A1) is incoherent since somebody who both sits at a computer and
web surfs then belongs both to the Studies concept and to its complement,
rendering the concept empty.

Strict terminology T S
 1:

Checks_web_mail Uses_browser
Defeasible terminology T D

 1:
Studies Pass
Sits_at_computer Studies
Sits_at_computer Web_surfing Studies
Studies Pass
Uses_browser Web_surfing
Uses_browser Reads_javadoc Web_surfing

Assertional box A1:
JOHN : Sits_at_computer
PAUL : Sits_at_computer
PAUL : Uses_browser
MARY : Sits_at_computer
MARY : Checks_web_mail
MARY : Reads_javadoc

Fig. 1. Ontology 1 = (TS
1, TD

1, A1)

For assigning semantics to a -ontology we defined two translation functions
 and from DL to DeLP based on the work of [5]. The basic premise for
achieving the translation of DL ontologies into DeLP is based on the
observation that a DL inclusion axiom “C D” is regarded as a First-Order
Logic statement “(x)(C(x) D(x))”, which in turn is regarded as a Horn-
clause “d(X) c(X)”.1 Naturally “C D E” is treated as “e(X) c(X),
d(X)”. Lloyd-Topor transformations are used to handle special cases as
conjunctions in the head of rules and disjunctions in the body of rules; so “C
 D E” is interpreted as two rules “d(X) c(X)” and “e(X) c(X)” while
“C D E” is transformed into “e(X) c(X)” and “e(X) d(X)”. Likewise
axioms of the form “r.C D” are treated as “d(X) r(X,Y), c(Y)”. Dbox
axioms are treated as defeasible and are transformed using the function
(e.g., (CD) is interpreted as “d(X)c(X)”); Sbox axioms are considered
strict and are transformed using (e.g., (CD) is interpreted as
{d(X)c(X)),(c(X) d(X))}).2 Abox assertions are always considered
strict (e.g., (a:C) is regarded as a fact c(a) and (a,b: r) as r(a,b)).
Formally:

Definition 2 (Interpretation of a -ontology). Let =(TS,TD,A) be a -
ontology. The interpretation of is a DeLP program =((TS) (A),
(TD)).
Notice that in order to keep consistency within an argument, we must enforce
some internal coherence between the Abox and the Tbox; namely given a -
ontology =(TS, TD, A), it must not be possible to derive two complementary

1 Following standard logic programming notation, in DeLP rules we note constant and
predicate names with an initial lowercase and variable names with an initial
uppercase.
2 The function computes transposes of rules to allow for the application of modus
tollens.

COMPUTER SCIENCE & TECHNOLOGY SERIES 19

literals from (TS) (A). We recall how we interpret the reasoning task
of instance checking [3, p. 19] in -ontologies:

Definition 3 (Potential, justified and strict membership of an individual
to a class). Let be a -ontology, C a class name, a an individual, and the
interpretation of

1. The individual a potentially belongs to class C iff there exists an
argument ,C(a) w.r.t. ;

2. the individual a justifiedly belongs to class C iff there exists a warranted
argument ,C(a) w.r.t. , and,

3. the individual a strictly belongs to class C iff there exists an argument
,C(a) w.r.t. .

Example 2 (Continues Ex. 1). Consider again the -ontology , which is
interpreted as the DeLP program 1 according to Def. 2 as shown in Fig. 2.
From 1, we can determine that John justifiedly belongs to the concept Pass
in 1 as there exists a warranted argument structure 1, pass(john) that says
that John will pass the exam as he studies (because he sits at a computer), where
1={(pass(john)studies(john)), (studies(john)sits_at_computer(john))}. We
cannot reach a decision w.r.t. the membership of Paul to the concept Pass
because there are two arguments attacking each other, so the answer to the
query pass(paul) is undecided. Formally, there exist two arguments
1,pass(paul) and 2, pass(paul), where: 1={ (pass(paul)studies(paul)),
(studies(paul)sits_at_computer(paul))}, and 2={ (pass(paul) studies(paul)),
(studies(paul)sits_at_computer(paul), web_surfing(paul)), (web_surfing(paul)
uses_browser(paul))}.
In the case of Mary’s membership to Pass, there is an argument
1,pass(mary) that has two defeaters, 2, pass(mary) and 3,
studies(mary), which are both defeated by 4, web_surfing(mary),
where 1={(pass(studies)studies(mary)), (studies(mary)sits_at_ computer
(mary))}; 2={(pass(mary)studies(mary))} 3; 3={(studies(mary)
sits_at_computer(mary), web_surfing(mary)), (web_surfing(mary) uses_
browser(mary))}, and 4={(web_surfing(mary) uses_browser(mary),
reads_javadoc(mary)), (uses_browser(mary) checks_web_mail(mary))}.
Therefore, Mary belongs justifiedly to the concept Pass as the literal
pass(mary) is warranted. The dialectical trees for the three queries are
depicted graphically in Fig. 3.3

3 In a dialectical tree nodes are labeled as either defeated (D) or undefeated (U).
Leaves are always labeled as undefeated; a node is labeled as undefeated iff all of its
children are labeled as defeated, otherwise a node is labeled as defeated.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 20

DeLP program 1=(,) obtained from 1:
Facts and strict rules :
sits_at_computer(john).
uses_browser(paul).
checks_web_mail(mary).
uses_browser(X) checks_web_mail(X).

sits_at_computer(paul).
uses_browser(mary).
reads_javadoc (mary).
checks_web_mail(X) uses_browser(X).

Defeasible rules :
pass(X) studies(X).
studies(X) sits_at_computer(X).
studies(X) sits_at_computer(X), web_surfing(X).
pass(X) studies(X).
web_surfing(X) uses_browser(X).
web_surfing(X) uses_browser(X), reads_javadoc(X).

Fig. 2. DeLP program 1 interpreting ontology 1

1,pass(paul)D

2, pass(paul)U

2, pass(paul)D

1,pass(paul)U

1,pass(mary)U

2, pass(mary)D 2, studies(mary)D

4,web_surfing(mary)U 4,
web_surfing(mary)U

Fig. 3. Dialectical analyses for queries pass(paul) and pass(mary)

3. Local-as-View Integration of -Ontologies

Data integration is the problem of combining data residing at different
sources, and providing the user with a unified view of those data [13]. There
are two main approaches to data integration called global-as-view (GAV) and
local-as-view (LAV). In the LAV approach, we assume we have a global
ontology , a set of local/source ontologies, and the mapping between the
global and the local ontologies is given by associating to each term in the
local ontologies a view over the global ontology [8, Sect. 4]. The intended
meaning of associating with a term C in a view over is that such a
view represents the best way to characterize the instances of C using the
concepts in . The correspondence between C and the associated view can be
sound (all the individuals satisfying C satisfy), complete (if no individual
other than those satisfying C satisfies), and/or exact (the set of individuals
that satisfy C is exactly the set of individuals that satisfy).
In the GAV and LAV approaches to data integration, the queries w.r.t. the
target ontology are reformulated w.r.t. the sources. Hasse & Motik [14]
(referring to [13]) explain that in the GAV systems the problem is simply
reduced to unfolding the views, since the reformulation is explicit in the
mappings. In the LAV case, the problem requires more complex reasoning
steps as in the case of sound mappings is not clear how to reformulate the
concepts of a source ontology in terms of a global ontology. Therefore, in
this work, we will restrict the case of LAV integration to complete views.

COMPUTER SCIENCE & TECHNOLOGY SERIES 21

Definition 4 (Ontology integration system). An ontology integration system
 is a triple (, ,) where:

─ is a global ontology expressed as a -ontology over an alphabet
.
─ is a set of n source ontologies 1,..., n expressed as -ontologies
over alphabets 1, ..., n, resp. Each alphabet i includes a symbol for
each concept or role name of the source i, i=1, ..., n.
─ is a set of n mappings 1, ..., n between and 1,..., n, resp.
Each mapping i is constituted by a set of assertions of the form qi q,
where q and qi are queries of the same arity defined over the global
ontology and i, i=1, ..., n, resp. Queries q are expressed over the
alphabet and queries qi are expressed over the alphabet i. The sets
1, ..., n are called bridge ontologies.

An ontology integration system will be interpreted as a DeLP program.

Definition 5 (Interpretation of an ontology integration system). Let
=(,,) be an ontology integration system such that ={1,...,n} and
={1,...,n}, where =(TS

, TD
, A); =(TS

i,TD
i,Ai

i), and, i=(TS
i,

TD
i), with i=1,...,n. The system is interpreted as the DeLP program

DeLP=(,), with:

 = TS
) A) (i=1,...,n TS

i)) (i=1,...,n TS
i)), and

 = TD
) (i=1,...,n TD

i)) (i=1,...,n TD
i)),

Possible inferences in the integrated ontology DeLP are modeled by means of
a dialectical analysis in the DeLP program that is obtained when each DL
sentence of the ontology is mapped into DeLP clauses. Thus conclusions
supported by warranted arguments will be the valid consequences that will be
obtained from the original ontology, provided the strict information in DeLP is
consistent. Formally:

Definition 6 (Potential, justified and strict membership of individuals to
concepts in ontology integration systems). Let =(,,) be an ontology
integration system.
Let a be an individual name, and C a concept name defined in .

1. Individual a is a potential member of C iff there exists an argument for
the literal C(a) w.r.t. DeLP program DeLP.

2. Individual a is a justified member of C iff there exists a warranted
argument for the literal C(a) w.r.t. DeLP program DeLP.

3. Individual a is an strict member of C iff there exists an empty argument
for the literal C(a) w.r.t. DeLP program DeLP.

We will illustrate the above notions with an example. Notice that we label a
concept C with the name of the ontology i to which it belongs (as in i:C)
following the XML name-space convention.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 22

Example3. Let us consider the problem of assigning reviewers for papers. In
Fig. 4, we present a global ontology 3 interpreted as: a professor with a
postgraduate degree can be a reviewer; someone should not be a reviewer
unless they are either a professor or have a graduate degree; however, a
professor, despite not having a postgraduate degree, is accepted as a reviewer
if he is an outstanding researcher. We also present local ontologies 1 and 2.
1 expresses that John is a professor who has a PhD, Paul is also a professor
but has neither a PhD nor a MSc, Mary just has a MSc, and Steve is not a
professor but has a MSc. The mapping 1, expresses that the terms MSc
and PhD from local ontology 1 are contained in the term postgraduated in
the global ontology, and that someone have neither a MSc nor a PhD is not a
postgraduate. Ontology 2 expresses that a is an article, b a book, c a chapter
and that Paul has published a, b and c. The mapping 2, expresses that the
view corresponding to the individuals who have published an article, a
chapter and a book corresponds to the set of outstanding researchers.
The interpretation of above ontologies in DeLP yields the code presented in
Fig 5. We show next the dialectical analyses that have to be performed to
compute the justified membership of John, Paul, Mary and Steve to the
concept Reviewer w.r.t. the ontology integration system (, {1, 2},
{1,, 2,}).
The individual John is a justified member of the concept Reviewer because
the argument , reviewer(john) has no defeaters and is thus warranted (see
Fig. 6(a)), with = {(reviewer(john)postgrad(john), prof(john)),
(postgrad(john) phd(john))}.
In Paul’s case, we conclude that he is a possible reviewer as he is also a
justified member of the concept Reviewer. Notice that Paul is a potential
member of the concept Reviewer as there is an argument
1,reviewer(paul), with 1={ (reviewer(paul) postgrad(paul)),
(postgrad(paul) msc(paul), phd(paul))}.
However, we see that there is another argument 2, reviewer(paul) where
2 = {(reviewer(paul)prof(paul), postgrad(paul), outstanding(paul)),
(outstanding(paul)published(paul,a), article(a), published(paul,b), book(b),
published(paul,c), chapter(c)), (postgrad(paul) msc(paul), phd(paul))}.
As 2 is undefeated, we conclude that the literal reviewer(paul) is warranted
(see Fig. 6.(b)-(c)).
Steve is not a reviewer as he is a justified member of the concept Reviewer
(see Fig. 6.(d)). In this case, there exists a unique (undefeated) argument ,
reviewer(steve). On the other hand, it is not possible to assess Mary’s
membership to the concept Reviewer as no arguments for reviewer(mary)
nor reviewer(mary) can be built.

COMPUTER SCIENCE & TECHNOLOGY SERIES 23

Global ontology 3 = (, TD
,):

 Prof Postgrad Reviewer
 Postgrad Prof Reviewer
 Prof Postgrad Outstanding Reviewer

Local ontology 1 = (, , A
1

):
 JOHN : Prof; JOHN : Phd; PAUL : Prof; PAUL : Msc;
 PAUL : Msc; MARY : Msc; STEVE : Prof; STEVE : Msc

Mapping 1, = (, , A
1

) between 1 and :
 1 : Msc 1 : Phd : Postgrad
 1 : Msc 1 : Phd : Postgrad

Local ontology 2 = (, , A
2

):
 a : Article; b : Book; c : Book
 PAUL, a : published; PAUL, b : published; PAUL, c : published;

Mapping 2, = (, , A
2

) between 2 and :
 2 : (published.Article published.Book published.Chapter) : Outstanding

Fig. 4. LAV ontology integration system

4. Conclusions

We have presented an approach for performing local-as-view integration of
Description Logic ontologies when these ontologies can be potentially inconsistent.
We have adapted the notion of ontology integration system of [8] for making it
suitable for the -ontology framework, presenting both formal definitions and a case
study. We offer several advantages over previous efforts (such as [8,14]) as our
proposal is capable of dealing with inconsistent ontologies. This work also presents a
difference with previous works of ours (such as [12,15]) as those works focused on
the problem of global-as-view integration of ontologies. Despite this advancement,
the proposed approach is only useful in the case of complete mappings, and therefore
the case for local-as-view integration with sound and exact mappings remains as an
open problem and is part of our current research efforts.

DeLP program (,) obtained from 3:
 reviewer(X) postgrad(X), prof(X). reviewer(X) postgrad(X).
 reviewer(X) prof(X). reviewer(X) prof(X), postgrad(X), outstanding(X).
DeLP program (1,) obtained from 1:
 prof(john). prof(john). prof(paul). msc(paul).
 phd(paul). msc(mary). prof(paul). msc(steve).

Mapping 1, expressed in DeLP as 1:
 : postgrad(X) 1 : msc(X). : postgrad(X) 1 : phd(X).
 : postgrad(X) 1 : msc(X), 1 : phd(X).
DeLP program (2,) obtained from 2:
 article(a). book(b). chapter(c).
 published(paul, a). published(paul, b). published(paul, c).

Mapping 2, expressed in DeLP as 2:
 : outstanding(X) 2 : published(X,Y), 2 : article(Y), 2 : published(X,Z), 2 :
article(Z),
 2 : published(X,W), 2 : article(W).

Fig. 5. Ontologies 3, 1 and 2 expressed in DeLP

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 24

,
reviewer(jo

hn)U

(a)

1, reviewer(paul)D

2, reviewer(paul)U
(b)

2, reviewer(paul)U

(c)

, reviewer(steve)U

(d)

Fig. 6. Dialectical trees for reviewer(john), reviewer(paul), reviewer(steve)

Acknowledgements. This research is funded by Projects PIP 112-200801-
02798 (CONICET, Argentina), PGI 24/ZN10, PGI 24/N006 (SGCyT, UNS,
Argentina) and Universidad Nacional del Sur.

References

1. Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web.
Scient. American.

2. Gruber, T.R. (1993). A translation approach to portable ontologies.
Knowledge Acquisition 5(2), 199-220.

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider,
P., eds. (2003). The Description Logic Handbook - Theory,
Implementation and Applications. Cambridge University Press.

4. Haarslev, V., Möller, R. (2001). RACER System Description. Technical
report, University of Hamburg, Computer Science Department.

5. Grosof, B.N., Horrocks, I., Volz, R., Decker, S. (2003). Description Logic
Programs: Combining Logic Programs with Description Logics.
WWW2003, May 20-24, Budapest, Hungary.

6. Gómez, S.A. (2009) Integración de Argumentación Rebatible y Ontologí-
as en el Contexto de la Web Semántica: Formalización y Aplicaciones.
PhD thesis, Universidad Nacional del Sur.

7. García, A., Simari, G. (2004) Defeasible Logic Programming an
Argumentative Approach. Theory and Practice of Logic Programmming
4(1), 95-138.

8. Calvanese, D., Giacomo, G.D., Lenzerini, M. (2001). A framework for
ontology integration. In: First Semantic Web Working Symposium. 303-
316.

9. Klein, M. (2001). Combining and relating ontologies: an analysis of
problems and solutions. In Gomez-Perez, A., Gruninger, M.,
Stuckenschmidt, H., Uschold, M., eds.: Workshop on Ontologies and
Information Sharing, IJCAI'01, Seattle, USA, August 4-5.

10. Chesñevar, C.I., Maguitman, A., Loui, R. (2000): Logical Models of
Argument. ACM Computing Surveys 32(4), December, 337-383.

11. Stolzenburg, F., García, A., Chesñevar, C., Simari, G. (2003). Computing
Generalized Specificity. J. of N.Classical Logics 13(1), 87-113.

12. Gómez, S.A., Chesñevar, C.I., Simari, G.R. (2008). An Argumentative
Approach to Reasoning with Inconsistent Ontologies. In Meyer, T.,

COMPUTER SCIENCE & TECHNOLOGY SERIES 25

Orgun, M.A., eds.: Proc. of the Knowledge Representation in Ontologies
Workshop (KROW 2008). Volume CPRIT 90., Sydney, Australia, 11-20.

13. Lenzerini, M. (2002). Data integration: A theoretical perspective.
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2002, Madison, Winsconsin,
USA.

14. Haase, P., Motik, B. (2005). A mapping system for the integration of
OWL-DL ontologies. In Hahn, A., Abels, S., Haak, L., eds.: IHIS 05:
Proceedings of the first international workshop on Interoperability of
heterogeneous information systems, ACM Press, NOV, 9-16.

15. Gómez, S.A., Chesñevar, C.I., Simari, G.R. (2010). Reasoning with
Inconsistent Ontologies Through Argumentation. Applied Artificial
Intelligence 24(1), 102-148.

COMPUTER SCIENCE & TECHNOLOGY SERIES 27

Parallel ACO algorithms for 2D Strip Packing

CAROLINA SALTO1, GUILLERMO LEGUIZAMÓN2 AND ENRIQUE ALBA3

1 LISI - Universidad Nacional de La Pampa, Calle 110 esq. 9,
Gral. Pico, La Pampa, Argentina. saltoc@ing.unlpam.edu.ar.

2 LIDIC - Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, Argentina.
legui@unsl.edu.ar.

3 GISUM - Universidad de Málaga, Campus de Teatinos, 29071, Málaga, España.
eat@lcc.uma.es.

Abstract. In this paper we present a study of a parallel Ant Colony
System (ACS) for the two-dimensional strip packing problem. In our
computational study, we emphasize the influence of the incorporation
of the received information in the target subcolony. Colonies send
their best solutions instead of sending information from the
pheromone matrix, as happens in traditional parallel ACS. The
solution arriving to a colony can provide further exploitation around
promising solutions as this arrived solution can be used in both, the
local update of the pheromone trail and the construction solution
process of an ant. The aim of the paper is to report experimental
results on the behavior of different types of parallel ACS algorithms,
regarding solution quality and parallel performance.

1. Introduction

All parallel ACO options studied so far in the literature have a common
characteristic: the construction of a single solution by an ant is not split
between multiple processors [8, 13]. The reason is that the solution
construction process in ACO is typically a sequential process which is
difficult to split in several independent parts. Consequently, the minimum
grain size of parallel ACO is the construction of a single solution.
The majority of the parallel ACO algorithms assign more than one ant on
each processor [2, 12]. When several ants are placed on a single processor
and these ants work more closely than those ants in other processors, this
group of ants are often called a colony. Those ACO algorithms that have
several colonies of ants using their own pheromone matrix and where the
pheromone matrices of different colonies are not necessarily equal are called
multicolony ACO algorithms. This type of ACO algorithms are used in this
work [8, 12]. Multicolony ACO algorithms are well suited for parallelization
because a processor can host a colony of ants [1].
In this work we evaluate the application of three parallel ACO algorithms to
solve a strip packing problem. We considered three parallel strategies to
implement a parallel ant colony. In one of them, no communication is
required between subcolonies. The other two strategies exchange information
between the subcolonies. Traditional implementations exchange information

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 28

of the pheromone matrix, but in this work the subcolonies send the best
solution found-so-far to their neighbors [10]. The difference in these last two
strategies is the way in which the information arriving to the target
subcolonies is used. All algorithms are studied from the numerical point of
view but also from the parallel performance.
The article is organized as follows. Section 2 contains an explanation of the
2SPP. Section 3 describes the multicolony ACS used to solve the 2SPP. In
Section 4, we explain the parameter settings of the algorithms used in the
experimentation. Section 5 reports on the performance of the algorithms
studied and finally, in Section 6 we give some conclusions and analyze future
lines of research.

2. The 2D Strip Packing Problem

Packing problems involve the construction of an arrangement of pieces that
minimize the total space required for that arrangement. In this paper, we
specifically consider the two-dimensional Strip Packing Problem (2SPP),
which consists of a set of M rectangular pieces, each one defined by a width
wi W and a height hi, (i=1...M). The goal is to pack the pieces in a larger
rectangle, the strip, with a fixed width W and unlimited length, minimizing
the required strip length; an important restriction is that the pieces have to be
packed with their sides parallel to the sides of the strip, without overlapping.
In the present study some additional constrains are imposed: pieces must not
be rotated and they have to be packed into three-stage level packing patterns.
In these patterns, pieces are packed by horizontal levels (parallel to the
bottom of the strip). Inside each level, pieces are packed bottom left justified
and, when there is enough room in the level, pieces with same width are
stacked one above the other. Three-stage level patterns are used in many real
applications in the glass, wood, and metal industries, and this is the reason for
incorporating this restriction in the problem. The 2SPP is representative of a
wide class of combinatorial problems, being a NP-hard [9] one.

3. Parallel Ant Colony System to the 2SPP

Ant Colony System (ACS) [7,6] is one of the most representative algorithms
derived from the Ant Colony Optimization (ACO) metaheuristic to deal with
combinatorial optimization and other problems. It uses a colony of artificial
ants which stochastically build new solutions using a combination of
heuristic information and artificial pheromone trail. This pheromone trail is
reinforced according to the quality of the solutions built by the ants.
Like many other metaheuristic approaches, the ACO metaheuristic admits
direct parallelization schemes. Randall and Lewis [15] proposed an
interesting classification of the parallelization strategies for ACO
metaheuristic: parallel independent ant colonies, parallel interacting ant

COMPUTER SCIENCE & TECHNOLOGY SERIES 29

colonies, parallel ants, parallel evaluation of solution elements, and a
combination of two of the mentioned strategies. In this work, we considered a
version of the first and second strategies, which are described in the
following paragraphs. The reason for this election is based on the good
performance observed in the solution of other problems [2], and they
performed similarly regarding the qualities of the results obtained.
In the case of parallel independent ant colony, there is a number of sequential
ACSs which are put on different processors. This method, called dACSni, has
the particularity that colonies do not send information. This alternative has a
positive effect over the behavior since each colony, which is running in a
different processor, can specialize in different regions of the search space.
The parallel interacting ant colonies strategies is similar to the previous one,
except that an exchange of information between subcolonies occurs at a
prefix iterations. The exchange of information is frequently associated to
share the pheromone trail structure of the best performing colony among all
the subcolonies. Also it is possible to send the best solutions found in each
colony.

init_pheromoneValues(); \\Initialize the pheromone trails
sbs=build_solution(,);
while(not(stop condition))
 for(k 1to }
 antk=build_solution,); \\Ant antk builds a solution
 localUpdate(, antk); \\Local update of
pheromone trials (ACS)
 apply_localSearch(antk);
 if(exchange_iteration)
 send/receive_solution(ant,dACSj); \\ interaction with the
neighborhood
 feromone_evaporation() \\ evaporation
 for(k 1 to)
 if(f(antk) < f(sbs))
 sbs=antk \\actualize the best solution, daemon
activity
 globalUpdate(,ant, sbs) \\intensification of pheromone trails
return best solution found sbs

Algorithm 1: Algorithm dACS

The distributed ACS algorithm that we use in this work is shown in
Algorithm 1. The algorithm begins with the initialization of the pheromone
trail associated with each transition. The principal loop of the algorithm
consists of the following steps. A colony of ants incrementally build
solutions (packing patterns) to the 2SPP applying a stochastic local decision
policy that makes use of pheromone trails and heuristic information. While a
solution is being built, the ant deposits a pheromone trail on the used
components or connections (local updating rule). This pheromone

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 30

information will direct the search of future ants. Once the solution is created
a local search procedure is activated. At preset iterations, the subcolony
exchanges information with the neighborhood (the communication structure
used in this work corresponds to an unidirectional ring topology). After this
communication step, a pheromone evaporation is triggered, which is the
process by means of which the pheromone deposited by previous ants
decreases over time. The best solution sbs should be updated if an ant at the
current iteration found a better packing pattern. Finally, a global pheromone
update is carried out in order to deposit extra pheromone to good packing
pattern. The algorithm returns the best solution found-so-far.
One of the aspects to consider in the moment of designing a dACS is the
information exchanged between the colonies. One choice is to send solutions
that have been found in a colony to its neighbor. Another choice is to send
information from the pheromone matrix. As the results of [10] indicate that
the exchange of pheromone matrices is not desirable, in this work we have
chosen to send the best solution found by the colony.
According to the unidirectional ring topology adopted in this work to
communicate the different subcolonies, subcolony i influences the levels of
pheromone trails of subcolony (i+1) mod n (where n is the number of
subcolonies) by sending their best-so-far solution. In this work, the incoming
solution is used in two different moments:

 for local updating. The solution arriving to a target subcolony is
used in the local updating process together with the local set of
solutions. Therefore, when only the best solution in a subcolony is
allowed to update the pheromone values, the incoming solution
influences the pheromone levels only when it is better than all the
solutions found by ants in that iteration. This update made a very
indirect use of the received information. This algorithm is referred
as dACS in the following.

 for a more direct use of the information. One way to complement
the use of the received information from the neighboring colony is
to use the information of the arrangement of the pieces of that
solution in a more direct way. Therefore, we choose another
alternative which consists in to extract the good levels of the
incoming solution (those levels with a less waste) and to copy them
to a pseudo-solution. This pseudo-solution is incomplete: some
pieces are missed. The incoming solution is used in the local
updating process as explained in previous paragraph and the process
continues traditionally. In the next iteration of the algorithm, the
ants begin the process of building their solution by copying the
levels from the pseudo-solution and then they repeatedly apply a
state transition rule to complete the packing pattern, using the
pheromone trail and heuristic information. This combination allows
a mix of exploitation (for the incoming solution) and exploration
(for the experience of the target colony) through the respective

COMPUTER SCIENCE & TECHNOLOGY SERIES 31

pheromone matrix. The algorithm implementing these ideas is called
dACSmem.

The following paragraphs detail how the ACS can be applied to the 2SPP
[16]. This description includes the most important elements of the ACS,
namely the use of heuristic information, the pheromone trail definition, the
state transition rule, and the local search procedure used in order to improve
the solution quality.
We maintain solutions in the form of permutations of the set of pieces [5],
which will be directly translated into the corresponding packing pattern by a
layout algorithm. In order to generate a 3-stage level pattern, i.e., the pieces
layout, we adopt a modified next-fit decreasing height heuristic (NFDH) -in
the following referred as modified next-fit, or MNF- which was proven to be
very efficient in [14, 18]. A more in-depth explanation of the MNF procedure
can be found in [18].
The objective value of a solution s of ants is defined as the strip length needed
to build the corresponding packing pattern. An important consideration is that
two packing patterns could have the same length -so their objective values
will be equal- however, from the point of view of reusing the trim loss, one
of them can be actually better because the trim loss in the last level (which
still connects with the remainder of the strip) is greater than the one present
in the last level in the other layout. Therefore we use the following objective
function:

Wlenghtstrip
wastel

lengthstripsf

.
.

.)((1)

where strip.length is the length of the packing pattern corresponding to the
permutation s and l.waste is the area of reusable trim loss in the last level l of
the packing pattern. Hence, function f is both simple and accurate.

3.1 Heuristic definition

For the 2SPP, the problem-dependent heuristic information used is the height
of piece j, i.e., the heuristic value for a piece j is j=hj.

3.2 Pheromone definition

Trail ij encodes the desirability of having a piece i and j in the same level
[11]. The pheromone matrix has M rows and M columns (in a first stage, each
piece is assigned to a different level, in that way initially we have M different
levels).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 32

3.3 Pheromone update

Once all ants have completed their packing patterns, a global pheromone
updating rule is applied. In this case, only the best ant (which the respective
solution is sbs) is allowed to place pheromone after each iteration. This is
done according to ij= ij + 1/f(sbs), where 0<<1 is the pheromone decay
parameter, and f(sbs) is the objective value of sbs. Using only the best ant for
updating makes the search much more aggressive. Global updating is
intended to provide a greater amount of pheromone to good packing patterns.
Moreover, while ants construct a solution, a local pheromone updating rule is
applied, where the effect is to make the desirability of edges change
dynamically. The local updating is made according to the following
expression: ij =(1-) ij + ij, where 0<<1 is a parameter and ij is
set as min. Dorigo and Gambardella [7] used this expression to run their
experiments with good results.
Another way to promote exploration is by defining a lower limit (min) for the
pheromone values. The following formula sets the value of min [11] as:

M

M

pbestavg

pbest

)1(

)1(1
1

min

 (2)

where pbest is the approximation of the real probability to construct the best
solution, avg is the average number of pieces to choose from at every
decision point when building a solution, defined as M/2. Also an evaporation
phase occurs at each iteration by updating the pheromone trail by ij = ij,
where 0<<1 is a parameter.

3.4 State transition rule definition

It gives the probability with which ant k will choose a piece j as the next
piece for its current level l in the partial solution s, which is given by [11]:

otherwise

 if)(max 0
*

),(

S

qql
j jilsJj k

 (3)

where l j is the pheromone value for piece j in level l, j is the heuristic
information guiding the ant, is a parameter which determines the relative
importance of pheromone information versus heuristic information, q is a
random number uniformly distributed in [0..1], q0 is a constant parameter (0<
q0<1) which determines the relative importance of exploitation versus
exploration, and S is a random variable selected according to the probability
distribution given in Equation 4.

COMPUTER SCIENCE & TECHNOLOGY SERIES 33

otherwise 0

),(if
)(

)(

),,(
),(

*

*

lsJj
l

l

jlsp
k

lsJg gg

jj

k
k

 (4)

In Equations 3 and 4, Jk(s,l) is the set of pieces that qualify for inclusion in
the current level by ant k. The set includes those pieces that are still left after
partial solution s is formed, and are light enough to fit in level l. The
pheromone value *

j (l) for a piece j in a level l is given by:

otherwise 1

),(if
||)(* lsJA

Al kl
l

Ai ij

j

l

 (5)

where Al is the set of current pieces allocated in level l. In other words, *
j (l)

is the sum of all the pheromone values of pieces already in level l, divided by
the number of pieces in that level. This approach is similar to the one
followed by Levine and Ducatelle [11].

3.5 The local search procedure

It starts from a solution created by the ACS towards to the nearest local
optimum for that solution, with the aim of improving the trim loss of all
levels. After this improvement phase, the pheromone trail is updated. The
local search procedure used in this work consists of the application of a
modified version of first-fit decreasing heuristic (FFDH), called MFF. A
more in-depth explanation of the MFF procedure can be found in [18].

4. Implementation

Now we will comment on the actual implementation of the multicolony
algorithms to solve the 2SPP: i) dACS with independent non-interacting
colonies (dACSni) and two dACSs with colonies exchanging information: ii)
dACS, which add the received solution to the solution set of the colony and
iii) dACSmem, which adds the received solution to the solution set as well as
selects the best levels of the incoming solution with the objective that those
levels will be used for ants in the next iterations.
The number of ants is set to 64, each subcolony has 64/n ants, where n
represents the number of subcolonies. Each ant begins the building process of
their solution with a piece randomly selected. The parameter values are the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 34

following: = 2, q0=0.9, =0.8, =0.96, and =0.1. The initial pheromone
value is set to min. These parameters were used with success in [17]. For the
models involving communication between subcolonies, solutions were sent
with a frequency of 100 iterations following an asynchronous approach.
Local search is applied to all solutions generated by the ants.
The algorithms were implemented inside MALLBA [3], a C++ software
library fostering rapid prototyping of hybrid and parallel algorithms. The
platform was a cluster of 16 PCs with Intel Pentium 4 at 2.4 GHz and 1GB
RAM under SuSE Linux with 2.4.19-4 kernel version, and interconnected by
a Fast-Ethernet at 100 Mbps.
We have considered five randomly generated problem instances with M equal to
100, 150, 200, 250, and 300 pieces and a known global optimum equal to 200
(the minimum length of the strip). These instances belong to the subtype of level
packing patterns but the optimum value does not correspond to a 3-stage
guillotine pattern. They were obtained by an own implementation of a data set
generator, following the ideas proposed in [19] with the length-to-width ratio of
all M rectangles in the range 1/3 l/w 3. These instances are publicly available
at http://mdk.ing.unlpam.edu.ar/~lisi/documentos/datos2spp.zip.

5. Computational Analysis

In this section we summarize the results of applying the multicolony
algorithms solve the 2SPP with restrictions, using different strategies to
incorporate the information of the received solution. In a first place, a
comparison of the multicolony algorithms is presented by establishing the
same effort, a prefixed number of iterations. After that, the view point is
changed in order to review the parallel performance. Our aim is to offer
meaningful results and check them from a statistical point of view. For each
algorithm we have performed 30 independent runs per instance using the
parameter values described in the previous section.
In order to obtain meaningful conclusions, we have performed an analysis of
variance of the results. When the results followed a normal distribution, we
used the t-test for the two-group case, and the ANOVA test to compare
differences among three or more groups (multiple comparison test). We have
considered a level of significance of =0.05, in order to indicate a 95%
confidence level in the results. When the results did not follow a normal
distribution, we used the non-parametric Kruskal Wallis test (multiple
comparison test), to distinguish meaningful differences among the means of
the results for each algorithm.

COMPUTER SCIENCE & TECHNOLOGY SERIES 35

Table 1. Best fitness values for ACSseq and the proposed Dacs

ACSseq dACSni dACS dACSmem Inst
best avg best avg Best avg best avg

100 215.78 218.290.88 215.64 218.290.86 214.73 217.931.08 215.64 218.180.98

150 216.38 217.820.79 215.64 218.290.86 215.69 217.820.70 214.79 217.690.88

200 211.61 214.371.12 215.64 218.290.86 210.77 213.291.28 210.68 213.681.18

250 207.68 209.200.76 215.64 218.290.86 207.70 209.280.74 207.54 209.200.62

300 213.66 214.740.57 215.64 218.290.86 211.27 213.980.96 211.79 213.920.68

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 150 200 250 300
instancias

t [
se

g]

ACSseq dACSni dACS dACSMem
Fig. 1. Execution time for seqACS and each dACS

5.1 Results with predefined effort

In this section, a sequential ACS, so-called ACSseq, is also included in the
study, in order to show that the multicolony ACSs present not only lower
runtimes but also better solutions to the problem. In order to make a fair
comparison, all proposals stop after 65.536 evaluations (232). Table 1 shows
the results of the different ACSs for each instance. The columns in this table
stand respectively for the best objective value obtained (best) and the average
objective values of the best found feasible solutions along with their standard
deviations (avg). The minimum best values are printed in bold.
From this table we can observe that multicolony approaches are the
algorithms that reach the best packing patterns for the whole set of instances;
but there are no significant differences in the statistics analysis performed for
instances with M=100, M=150 and M=250, i.e., the statistical tests indicate
that all algorithms have presented similar mean values. The more important
difference between the multicolony approaches and the sequential ACS is the
run time, as to be expected (see Figure 1).
There are no differences between the multicolony approaches regarding the
quality of the solution found, although a small advantage in favor of dACSmem
is

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 36

Table 2. Quality of the target solutions to stop the algorithms
M 100 150 200 250 300

target 217.99 216.23 213.12 213.59 213.90

0

20

40

60

80

100

100 150 200 250 300
instance

hi
t

ra
te

[%
]

dACS dACSmem

0

20

40

60

80

100

100 150 200 250 300
instance

hi
t r

at
e

[%
]

dACS dACSmem

(a) (b)
Fig. 2.Hit rates (in percentage) for each dACS algorithm: (a) 1 processor and (b) 8

processors

observed, since it solves more effectively three of the five instances.
Regarding run times, dACS and dACSmem present significant statistical
differences only for instances with M=100 and M=250. From the examination
of the mean run times values for those instances, it is observed that the
differences are negligible, for example, dACS took about 58.94 sec. in the
search, meanwhile dACSmem took about 59.76 sec. in the instance with
M=100, meaning a difference of 0.82 sec.; similar situation is present in the
instance with M=250. This means that the additional processing incurred in
saving the received solution and in extracting their good level do not
substantially affect the run time, which transforms this option in a viable
alternative to obtain good solutions to 2SPP.

5.2 Results with predefined quality of solutions

Now we change the kind of analysis performed. We want to measure the time
to find equivalent solutions with the dACSs proposed, in order to show their
parallel characteristics. Thus we define our goal as reaching the fitness values
which are shown in Table 2. To carry out this experimentation, the eight
subcolonies of each dACS are put on a same processor and then every
subcolony is put in a dedicated processor.

COMPUTER SCIENCE & TECHNOLOGY SERIES 37

Up to now, we have presented the average results over 30 independent runs.
This time, we show the hit rate of the distributed ACSs, which is presented in
Figure 2. This measure is the relation between the number of execution that
reached the target fitness and the total number of performed tests. It is
important to highlight

0

2

4

6

8

10

12

100 150 200 250 300
instance

sp
ee

du
p

dACS dACSmem

Fig. 3. Speedup values

that both dACS and dACSmem reach the target value in all runs in instance with
M=250, independently of the number of processors used. The eight sub-
colonies running in sequence, i.e., using only one processor, obtain a similar
hit rate that the parallel approaches, in instances with M=150 and M=300.
Instance with M=150 has been difficult for any of the dACS algorithms, since
the hit rate is equal to 3.3%, meaning that in only one run from the 30 the
solution obtained was better than the target.
From the point of view of the parallel performance of the algorithms, Figure
3 shows the speedup values, which are obtained following the orthodox
definition of speedup [4]. We can see high speedup values in the majority of
the dACS approaches, except for dACS and the instance with M=150, where
the speedup value is lower than two. In particular, superlinear speedups are
observed in both algorithms in instance with M=250. These results suggest
that we are using good parallel implementations of the algorithms.

6. Conclusions

In this paper we have presented different parallel ACSs to solve the 2SPP
with additional constrains. The parallelization strategy consisted in a
multicolony model, where sporadic exchange of solutions between
subcolonies occurs. Therefore, the exchange of solutions between
subcolonies can be considered as a class of interaction among parallel ant
colonies. The characteristics of the distributed models have proven to be
good techniques to obtain good packing patterns, which represents a great
step forward in this field.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 38

Computational results of the three considered multicolony strategies are
similar than those obtained with a sequential ACS, but dACSmem and dACS
obtained the best packing patterns. The most important difference between
the sequential ACS and the multicolony ACSs was observed in the run times:
the last ones reduced the time involved in the search. The results suggest that
the exchange of information in the proposed dACSs do not help the search,
similar conclusion are reported in [2].
There are several issues which seem to be worth for further investigation.
One issue deals with the effects of different uses of the information of
solution arriving to promote a more direct use of the information in the
algorithm. Another issue can be the investigation of search space
characteristics and their relation to the algorithm performance.

Acknowledgments

This work has been partially funded by the Spanish Ministry of Science and
Technology and the European FEDER under contract TIN2005-08818-C04-
01 (the OPLINK project) and the proyect DIRICOM (P07-TIC-03044). We
acknowledge the Universidad Nacional de La Pampa, Universidad Nacional
de San Luis, and the ANPCYT in Argentina from which the first and second
authors receive continuous support.

References

1. E. Alba (2005). Parallel Metaheuristics: A New Class of Algorithms.
Wiley.

2. E. Alba, G. Leguizamon and G. Ordoñez (2007). Two models of parallel
ACO for the minimum tardy task problem. Int. Journal High Performance
Systems Architecture, 1:50.59.

3. E. Alba, J. Luna, L.M. Moreno, C. Pablos, J. Petit, A. Rojas, F. Xhafa, F.
Almeida, M.J. Blesa, J. Cabeza, C. Cotta, M. Díaz, I. Dorta, J. Gabarró,
and C. León (2002). MALLBA: A Library of Skeletons for Combinatorial
Optimisation, volume 2400 of LNCS, 927-932. Springer.

4. E. Alba and J. M. Troya (2001). Analyzing synchronous and
asynchronous parallel distributed genetic algorithms. Future Generation
Comput. Systems, 17:451465.

5. M. Boschetti and V. Maniezzo (2005). An ant system heuristic for the
two-dimensional finite bin packing problem: preliminary results. Chapter
7 of book Multidisciplinary Methods for Analysis Optimization and
Control of Complex Systems, 233-247.

6. M. Dorigo and L.M. Gambardella (1997). Ant colonies for the traveling
salesman problem. BioSystems, 43(2):73-81.

COMPUTER SCIENCE & TECHNOLOGY SERIES 39

7. M. Dorigo and L.M. Gambardella (1997). Ant colony system: a
cooperative learning approach to the traveling salesman problem. IEEE
Transactions on Evolutionary Computation, 1(1):53-66.

8. L.M. Gambardella, E. Taillard, and M. Dorigo (1999). New Ideas in
Optimization, chapter MACSVRPTW: A multiple ant colony system for
vehicle routing problems with time windows, 63-76. McGraw-Hill.

9. E. Hopper and B. Turton (2001). A review of the application of meta-
heuristic algorithms to 2D strip packing problems. Artificial Intelligence
Review, 16:257-300.

10. F. Kruger, D. Merkle and M. Middendorf (1998). Studies on a parallel ant
system for the BSP model.

11. J. Levine and F. Ducatelle (2004). Ant colony optimization and local
search for bin packing and cutting stock problems. Journal of the
Operational Research Society, (55):705-716.

12. R. Michels and M. Middendorf (1999). New Ideas in Optimization,
chapter An ant system for the shortest common supersequence problem,
pages 51.61. McGraw-Hill.

13. M. Middendorf, F. Reischle and H. Schmeck (2002). Multicolony ant
system algorithms. Journal of Heuristics (Special issue on Parallel
Metaheuristics, 8(3):305-320.

14. J. Puchinger and G. Raidl (2004). An evolutionary algorithm for column
generation in integer programming: An effective approach for 2D bin
packing. In X. Yao et al, editor, PPSN, volume 3242 of LNCS, 642-651.
Springer.

15. M. Randall and A. Lewis (2002). A parallel implementation of ant colony
optimization. Journal of Parallel and Distributed Computing, 62:1421-
1432.

16. C. Salto, E. Alba and J. M. Molina (2008). Hybrid ant colony system to
solve a 2-dimensional strip packing problem. International Conference on
Hybrid Intelligent Systems, 708-713.

17. C. Salto, E. Alba and J. M. Molina (2009). Optimization Techniques for
Solving Complex Problems, chapter Greedy Seeding and Problem-
Specific Operators for GAs Solving Strip Packing Problems, 361-378.
John Wiley & Sons, Inc.

18. C. Salto, J.M. Molina and E. Alba (2006). Evolutionary algorithms for the
level strip packing problem. Proceedings of NICSO, 137-148.

19. P.Y. Wang and C.L. Valenzuela (2001). Data set generation for
rectangular placement problems. EJOR, 134:378-391.

COMPUTER SCIENCE & TECHNOLOGY SERIES 41

CHC and SA applied to The Distribution Of
Wind Turbines on Irregular Fields

MARTÍN BILBAO1 AND ENRIQUE ALBA2

1
 LabTEM, Universidad Nacional de la Patagonia Austral,

Caleta Olivia, Argentina.
2
 Laboratorio de Ciencias de la Computación, Universidad de Málaga

Málaga, España.
1
{mbilbao}@uaco.unpa.edu.ar, 2eat@lcc.uma.es.

Abstract. In this article we analyze two kinds of metaheuristic
algorithms applied to distribution of wind turbines in a wind farm.
The basic idea is to utilize CHC (a sort of GA) and Simulated
Annealing algorithms to obtain an acceptable configuration of wind
turbines in the wind farm that maximizes the total output energy and
minimize the number of wind turbines used. The energy produced
depends of the farm geometry, wind conditions and the terrain where
it is settled. In this work, the terrain is irregular and we will apply
both algorithms to analyze the performance of the algorithms and the
behavior of the computed wind farm designs.

Keywords. CHC, Simulated Annealing, Optimization, Wind Energy,
Metaheurístics.

1. Introduction

Wind energy is one of the most important alternative energies in the world. It
is an economic, free, and clean energy and nowadays it can compete with
other kinds of energy like fossil-fuel power production methods. The capital
interest is to produce a maximum of energy at the same time as reducing the
total cost of the wind farm. A farm is a set of wind turbines, every one being
costly, whose position is a strategic decision to minimize the wake effect [1]
in orden to maximize the produced energy. The goal in this paper is obtain a
better configuration of the wind farm by using the conditions of the wind and
the terrain given by the enviroment. In this work, we include a real wind
distribution from Comodoro Rivadavia in Argentina taken in 2008 [2]. For
that we need effective algorithms, that should be first evaluated before
utilization.
Simulated Annealing [3] and Distributed Genetic Algorithms [4] have been
used in the past to solve this kind of problem. In a previous work we used
CHC and GPSO considered constant North wind [5] and CHC y Simulated
Annealing considered the real wind distribution and flat terrain [6]. Now, we
compare two scenarios using the real wind distribution and we consider
irregular terrain. We analize the best farm configuration found, the fitness

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 42

value, the produced power, the efficiency, the performance of the algorithms
in terms of their running, time and number of evaluations needed to obtain
the best solution.
The rest of the article is structured as follows: Section 2 explains the wake
model, the power model, and the cost model used. Section 3 will detail the
real wind distribution, wind rose and field data. Section 4 describes CHC and
SA the proposed algorithms. In Section 5 we will detail the objective
function and the representation of wind turbine locations. In Section 6 we
will detail the experimental studies and discuss on the results obtained;
finally Section 7 summarizes the conclusions and future work.

2. Wind Farm Modelling

In this section we describe the mentioned inter-turbine wake effect model, the
power model, and the cost model for our further mathematical manipulations.
These are the basic components to deal with a realistic farm design, and they
are combined together into an objective for the needed guidance of the
function algorithms in their quest for an optimal farm configuration.

2.1 Wake Effect Model

The used model in this work is similar to the wake decay model developed by
Katic [7]. Depending of the farm geometry, the wind turbine that is upwind
of other wind turbine results in lower wind speeds than the one downwind, as
shown in Fig. 1. The velocity deficit measures this effect [7]:

 (1)

where U0 is the initial free stream velocity, Ut is the velocity in the wake at
a distance X downstream of the upwind turbine, Ct is the thrust coefficient
of the turbine, D is the diameter of the upwind turbine, and k is the wake
decay constant. This model assumes that the kinetic energy deficit of
interacting wakes is equal to the sum of the energy deficits of the individual
wakes. Thus, the velocity deficit at the intersection of several wakes is:

 (2)

where Ui is the free stream velocity of the individual wake, and N is the
number of wind turbines in the wind farm.

COMPUTER SCIENCE & TECHNOLOGY SERIES 43

Fig. 1. Wake model for interaction between two wind turbines

2.2 Power Model

The previous wake model directly defines the power model, that is to be
maximized. The power curve for the wind turbine under consideration is a
Gamesa G47, whose power model (in KW) follows here:

(3)

where Ux is the wind speed on the wind turbine, ρ is the density of the
environment (1.23kg/m3), A is the swept rotor area and Cp is the power
coefficient of the wind turbine (0.45 in this case).

2.3 Cost Model

In our case, only the number of wind turbines influences the total cost to be
minimized. The total cost per year for the entire wind farm, assuming a
predefined and constant number of wind turbines, can be expressed as follows:

 (4)

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 44

where costgy represents the cost per wind turbine per year, and its value in
this work is € 730,000. We consider three different cost, the cost of
installation (€ 800 per Kw installed), € 80000 per cost of foundation and €
90,000 per cost of the tower.

3. Real Wind Distribution from Comodoro Rivadavia

In this section we introduce the real data obtained from Comodoro Rivadavia,
Patagonia Argentina, and the process to obtain a good aproximation from the
data for its later use in this work. Fig. 2(a) shows the frequency histogram
and the relative frequency of the actual wind. We can see that the most
probable frequency of the wind is between 2 and 5 m/s, and high probability
has a range between 5 and 12 m/s. TheWeibull distribution is the most
important probability distribution used in wind energy; it is usually used to
approach the real wind data taken yearly (each 15 minutes) in our case. The
process consists in obtaining a histogram of the wind with it frequency of
ocurrence, relative and cummulative frequency. Then we apply a linear
regression like least-squares to obtain a linear trend and calculate the
parameters k and b of the Weibull distribution.

Fig. 2. Absolute Frecuency and Relative Frecuency of the real wind distribution

The probability of wind ocurrency is calculated as follows:

 (5)

where k is a parameter form indicating if the wind speed tends to a particular
value, and c is a parameter scale indicating how many winds are there in the
environment. To obtain parameters k and c out of the natural measured data
in the histograms we apply a linear regression whose form is y = mx + b,
where m = k and c = e−b/k

COMPUTER SCIENCE & TECHNOLOGY SERIES 45

We obtain the linear trends for the independent variable x = ln(v) and the
dependent variable y = ln−(ln(1− p(v))), being v the wind speed and p(v) the
cummulative frequency of the wind v, as shown in Fig. 3(a).

We obtained, with the least-squares approach, the parameter k = 1.42, the
parameter c = 7.53, and 98% correlative coefficient, and then we have
completed the Weibull distribution needed for our algorithms and shown in
Fig. 3(b). Table 1 shows a comparison between real data and the Weibull
distribution to show their acurracy.

The total annual energy power obtained for each wind turbine can be
calculated as follow:

 (6)

where a y b are the cut-in and cut-out wind speed, T is the number of hours
of the years (8760), p(v) is the weibull probability of the wind v and Pj is the
power obtained for the wind turbine j.

Fig. 3. Weibull Distribution

Table 1. Comparison with Weibull Aproach

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 46

The resulting wind rose Fig 4 indicates the different frequency and direction
of the wind. This rose is divided in to eight zones that indicate (in degrees)
different cardinals point. In this scenario, the higher probability of ocurrence
of wind direction is 270º

 (West direction). Thus our initial scenarios for
evaluating the algorithms before a final real study will only consider in this
work the wind coming from the West.

Fig. 4. Wind Rose of Comodoro Rivadavia (Patagonia Argentina)

4. Algorithms

In this section we will explain the algorithms that we will use to solve the
optimization problem of optimally design a wind farm. We have selected two
well-known algorithms, a good feature found in a previous work [3][5][6].

4.1 CHC

The CHC algorithm was designed to work with populations coded as binary
strings. CHC is a type of genetic algorithm that does not use mutation to
produce new solutions; insteads it uses a mechanism called HUX crossover.
The selection of individuals to complete the next generation is under only an
elitist approach between parents and children.The R best solutions are
retained and will be present in the next generation. When stagnation in the
population is detected, a cataclysmic method of restart is used. The
population tends to be homogeneous due to the absence of mutation and the
elitist approach because there is no diversity; in order to solve this problem

COMPUTER SCIENCE & TECHNOLOGY SERIES 47

CHC implements a mechanism called incest prevention. The parents are
selected randomly, but crossover takes place only if the individuals are not
too close between them (Hamming distance) exceeds a certain threshold
called the threshold of incest. As the population evolves, fewer individuals
have the condition of not incest; in this case it is necessary to reduce the
threshold. Every time that no change appears in the population (after one
iteration) the threshold reduces in one unit.
The mechanism of crossover HUX also preserves diversity. This crossover
copies in the two offspring all bits matched in both parents, and then copies
half bits different in each offspring, such the Hamming distance between
children and between children and parents is high. Once that the threshold of
incest is 0, if q iterations pass without
any new solution has entered the population, it means that the population has
converged and the algorithm has stagnated, thus requiring a restart. All
individuals except the best are modified by a mutation by bit inversion with
very high probability (in our case is 50%). Fig.5 shows an example of
crossover HUX. It generates a mask with the common bits from the parents
and non-common bits are assigned randomly to each child taking into
account that each one must take half of the bits not common.
The pseudocode of the CHC algorithm is shown in Algorithm 1.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 48

Fig. 5. Crossover HUX for CHC Algorithm

4.2 Simulated Annealing

Simulated Annealing (SA) is a metaheuristic for global optimization, aimed
at locating a good approximation to the global solution. Simulated annealing
is a generalization of a Monte Carlo method for examining the equations of
states and frozen states of n-body systems[6]. In SA only one tentative
solution exists. The initial tentative solution is created randomly. The
perturbation of a solution to get a neighbor solution is done by choosing one
position where the wind turbine exists and move it to other location. If the
new solution is better than the old solution, it becomes the present tentative
solution. If not, it can be used anyway but with a probability regulated by a
decreasing temperature parameter called Boltzmann probability e−((sn−sb)/T),
where sn is the present fitness value and sb is the old fitness value, T is the
temperature parameter whose initial value is 100. After that, the temperature
is decremented in each iteration, thus decreasing the posibility of a worse
solution is accepted. The iterative process finishes when a stop criterion is
reached (e.g.,maximum number of step), and returns the solution found.
The pseudocode implementing our simulated annealing solver is shown in
algorithm 2:

COMPUTER SCIENCE & TECHNOLOGY SERIES 49

5. Instantiating the Algorithms for the Problem

In this section, we will explain how our approach works: we will introduce
the fitness function, the representation used, and the customizing of CHC and
SA for the problem.

5.1 Objective Function

The objective function that we are maximizing is the annual profit got from
the wind farm, defined as follows [8]:

 (7)

where st represents the estimated selling price for a KWh of electrical energy
on the market in € (in this work it value is 0.1 €/KWh), Ptot represents the
total expected energy output (kWh) of the wind farm per year, and costtot is
given by equation 4. The number of wind turbines is unknown and here also
to be found by the used optimization algorithms.
The penalty function G(x) depends of the number of wind turbines included
in the penalty zone, in this case we substract to fitness function the value
calculated as follow:

 (8)

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 50

where k is the number of the wind turbines included in the penalty zone and q
is the total of places included in the restricted zone.

5.2 Representation of Wind Turbines Locations

As other existing approches for the problem of Wind Energy Optimization
we discretize the terrain in a matrix. A wind farm is logically divided into
many small square like cells. Each cell in the wind farm grid can have two
possible states: it contains a turbine (represented by 1) or it does not contain a
turbine (represented by 0). A 10×10 grid is used here as the ground platform
to place the wind turbines, and shown in Fig. 6. A binary string with 100 bits
represents the location of the wind turbines in the wind farm. There are 2100

candidate solutions. The width at each cell, in the center of which a turbine
would be placed, is equal to five times rotor diameter, 5D (or 235 m). Thus,
the resulting dimension is 50D × 50D. The 5D square grid size also satisfies
the rule of thumb of spacing requirements in the vertical and horizontal
directions.

Fig. 6. Example of wind farm layout and the binary string representation

In this work we use an irregular terrain to evaluate the performance of the
algorithms in this case, Fig. 7. shows the irregular terrain considered.

COMPUTER SCIENCE & TECHNOLOGY SERIES 51

Fig. 7. Irregular terrain considered

5.3 Customizing algorithms for the problem

In this problem, SA was developed as follows: the individual consists of a
binary vector xi = (xi1, xi2,... ,xin) representing the terrain (10 × 10) where the
wind farm will be installed; each element xij can have a wind turbine
(represented by 1) or be empty (represented by 0). In this particular case (10
× 10) the individual has a length (n)
of 100 elements.
CHC was developed as follows: each individuals consists of a binary vector
xi = (xi1, xi2,... ,xin) in the same representation than SA, and the same criteria
for the positioning of the wind turbines

6. Experimental Study

In this work we investigate two farm scenarios and we use the real wind
distribution of Comodoro Rivadavia city. Our aim is to analyse two different
kind of irregular terrain and try to generalize our conclusions to guide
designer in similar configurations. Fig. shows the different kind of terrain
used in this work.
We show the different configurations for each case with the average fitness
values, standard deviation of the fitness, total annual power output, average
power output, number of wind turbines, average efficiency of the park,
average execution time of each algorithm and the number of evaluation needs
to find the better solution. We have also computed a statistical study
comparing the average fitness values, and execution time of each algorithm
and we calcule the p-value with the Kruskal-Wallis test to conclude if it
exists statistical significance between average fitness values and between
average execution times. Each algorithm was executed 30 independent times
with a stop criteria of 5,000,000 evaluations. All the algorithms are executed

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 52

in a MultiCore 2× QuadCore 2 GHz and for the implementation of the
algorithms we have used the library of optimization MALLBA [9].
For each scenario we used the properties of wind turbines and the parameters
of the each algorithm shown in Table 2.

Table 2. Property of wind turbines and parameters used in CHC and SA

6.1 Scenario (a): Northwest irregular terrain

For this scenario we have executed both algorithms (CHC and SA) with the
parameters shown in Table 2(b) and 2(c) respectively, and we obtained the
best configuration of the farm ilustrated in the Fig. 8 and the numerical
values shown in Table 3.

Table 3. Results of scenario (a)

In this scenario CHC obtained better average fitness value, better power
output and better efficiency. CHC needs less execution time and less
evaluations to find the best solution than SA. We calcule the p-value with the
Kruskal-Wallis test for the average fitness values and it value is 0.18e−04.
This value is smaller than 0, 05, so we conclude that it exists statistical
significance between average fitneses and that CHC is more accurate than
SA. The p-value for the average execution time is 0.46e−07, it is smaller than
0.05, so we conclude that it exists statistical significance between average
execution times and CHC is more faster than SA.
The configuration of the farm found for each algorithms is ilustrated in Fig.
8. We can see that the solution for CHC and SA uses 42 wind turbines and
they are aligned in rows keeping a constants distance between them, and in
an orthogonal position with respect to the wind direction.

COMPUTER SCIENCE & TECHNOLOGY SERIES 53

Fig. 8. Best configuration of the park for the two algorithms in scenario (a)

6.2 Scenario (b): Northwest and Southwest irregular terrain

For this scenario we have executed both algorithms CHC and SA with the
parameters shown in Table 2(b) and 2(c) respectively, and we obtained the
best configuration of the wind farm ilustrated in the Fig. 9, with the
numerical values shown in Table 4

Table 4. Results of scenario (b)

In this scenario CHC obtained the best average fitness value, better power
output and better efficiency again. We calculed the p-value with the Kruskal-
Wallis test for the average fitness values and it is smaller than 0.05, so we
conclude that it exist stadistical significance between average fitnees values.
The p-value for the average execution time is 0.002, it is smaller than 0.05, so
we conclude that it exists statistical significance between average execution
times.
The best configuration of the wind farm found for each algorithms is
ilustrated in Fig. 9, where we can see that the number of wind turbines for
CHC and SA is 35, they forming two rows in the center and in the opposite
way with the wind sense.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 54

Fig. 9. Best configuration of the park for the two algorithms in scenario

(b)

7. Conclusions and future works

We have here solved the problem of optimal placement of wind turbines in a
wind farm with irregular terrain andthe objective to maximize the power
energy produced with the less number of wind turbines to reduce the overall
cost. CHC and SA algorithms are very competitive. In the first scenario CHC
obtained better values in average fitness values, average efficiency and
average power output than SA. Both obtained similar final configuration of
the wind farm but SA did it in more execution time and more number of
evaluations. In the second scenario CHC obtained better preformance in the
majority of metrics. As a future work we will consider additional farm
models, including more real world factors, such as terrain effect and the
esthetic impact. Also, we intend to study the scalability of this problem with
bigger instances of the wind farm and new parameters of the wind turbines.
Finally we plan to solve this problem as multiobjective consider two contrast
function, the cost of design the wind farm and the produced energy.

Acknowledgements

We here acknowledge partial funding from Project UNPA-29/B105,
University of Patagonia Austral Argentina, DIRICOM Project Nº P07-TIC-
03044 and M* Project Nº TIN2008-06491-C04-01, University of Malaga
Spain.
M. Bilbao acknowledge the co-operation of the University of Malaga for
providing new ideas and constructive criticisms. Also to the University of
Patagonia Austral, and the ANPCYT (National Agency to Promote Science
and Technology) from which we receive continuous support.

COMPUTER SCIENCE & TECHNOLOGY SERIES 55

References

1. J.F. Manwell, J.G. McGowan and A.L. Rogers (2003). Wind Energy Explained-
Theory, Design and Application, 1st ed., Reprint with correction, Jhon Wiley &
Sons Ltd., 384, 44.

2. http://www.eeolica.com.ar/
3. M. Bilbao, E. Alba (2009). “Simulated Annealing for Optimization of Wind Farm

Annual Profits” - 2nd International Symposium on Logistics and Industrial
Informatics, Linz, Austria.

4. H.S. Huang (2007). “Distributed Genetic Algorithm for Optimization of Wind
Farm Annual Profits”. Intelligent Systems Applications to Power Systems. ISAP.
International Conference on Volume, Issue, 5-8 Nov., 1-6.

5. M.Bilbao, E. Alba (2009). “GA and PSO Applied to Wind Energy Optimization”.
CACIC 09, Jujuy, Argentina.

6. M. Bilbao, E.Alba (2010). “CHC and SA Applied to Wind Energy Optimization
Using Real Data”. CEC 10, Barcelona.

7. I. Katic, J. Hojstrup and N. O. Jensen (1986). “A Simple Model for Cluster
Efficiency”, European Wind Energy Association Conference and Exhibition,
Rome-Italy, 407-410, 7-9 October.

8. U. A. Ozturk and B. A. Norman (2004). “Heuristic methods for wind energy
conversion system positioning”, Electric Power Systems Research, vol.70, 179-
185.

9. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Díaz, I. Dorta, J.Gabarró, C. León, G.
Luque, J. Petit, C. Rodríguez, A. Rojas, F. Xhafa (2006). “Efficient Parallel
LAN/WAN Algorithms for Optimization. The MALLBA Project”, Parallel
Computing 32(5-6):415-440.

X
Distributed and Parallel

Processing Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 59

Predictive and Distributed Routing Balancing
(PR-DRB)

CARLOS NÚÑEZ1, DIEGO LUGONES1, DANIEL FRANCO2

AND EMILIO LUQUE2

Computer Architecture and Operating Systems Department, Universitat Autónoma
de Barcelona, España.

1
{carlos.nunez, diego.lugones}@caos.uab.es.

2
{daniel.franco, emilio.luque}@uab.es.

Abstract. Imbalance in traffic workload can produce network
congestion. It also can raise latency values; decrease the throughput
and thus the overall parallel system performance. Parallel
applications show repetitive behavior during their execution. This
repetitiveness allows their characterization and to obtain its
representative communication patterns. This work presents the
Predictive and Distributed Routing Balancing (PR-DRB), a new
method developed to control network congestion by means of
alternative paths, traffic and load distribution, in order to keep
latency values low. PR-DRB monitors latency values at intermediate
routers, chooses the best alternative paths for each situation and then
saves this information. Also, conflictive communication pattern is
identified and saved, in order to re apply the best solution when
similar situation is detected again. Experimental results show that the
predictive approach could be used to improve performance.

Keywords. Interconnection network, uniform latency, predictive
routing, parallel applications, high performance computing,
application aware routing.

1. Introduction

The behavior of scientific applications that runs on a High Speed
Interconnection Network (HSIN) could be described as a set of process
implicitly assigned to each processor. The cost of the communications and
their power consumption is higher than those of the processors, and it should
be addressed by congestion control mechanism [1]. An inappropriate traffic
load distribution can lead to situations where some portions of the network
are congested while others remain idle. This is known as a hotspot. To
alleviate this situation congestion control mechanisms have been developed,
such as those that improve throughput by using resources properly [1].
Another example could be the adaptive routing algorithms which are used to

This research has been supported by the MEC-MICINN Spain under contract TIN2007-64974.

Furthermore, we thank OPNET Technologies, Inc. for providing us the OPNET Modeler licenses

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 60

dynamically manage available resources in order to reduce congestion. This
work presents the Predictive and Distributed Routing Balancing (PR-DRB), a
new adaptive routing strategy. PR-DRB is based on alternative paths usage
against congestion. This approach pretends to reduce latency values and to
improve bandwidth under congestion, for repetitive traffic patterns. These
improvements are achieved by using historical information about the
conflictive communication pattern. The information saved will be used in
future similar communications.
PR-DRB is based on the DRB [2] algorithm, but enhanced with the
predictive monitoring and logging modules. The proposed model has three
phases: monitoring, congestion and, conflictive pattern detection and
congestion control. This work is also based on parallel applications
repetitiveness [3]. During monitoring phase message latency information is
saved. Besides that, the conflictive pattern that caused congestion is also
saved. Once a message reaches its destination, an acknowledge message
(ACK) is sent to the source node to inform these situations. Then, the source
node is able to start path opening procedures based on latency values. If the
notified situation was already analyzed, then the best saved solution is used
and the historical database is properly updated.
When a congestion situation is detected DRB adapt itself by opening new
alternative paths. This process is executed until a good global latency value is
found and is a time consuming task. This work pretends to save the best
solution encountered for a congestion situation, and re apply it when similar
situations occur.
The rest of this paper is organized as follows. In section 2 related works are
presented. Section 3 shows PR-DRB methodology in more details. Section 4
shows the performance evaluation. Conclusions and future work are
explained in section 5.

2. Related Work

Congestion control is based on monitoring, detection and further control. In
order to evaluate congestion point to point latency [4], buffer occupation
level [5] or backpressure [1] are generally used. Message Throttling [6] is a
corrective technique based on source notification, to reduce or stop new
packets injection until the congestion disappears. This technique improves
buffers occupations but latency is penalized because messages must wait in
source nodes until congestion is controlled.
Other techniques are based on buffer occupation level at intermediate routers
[5]. Buffer management implementation is also simple. However, good
performance is not achieved because packet flows are locally reallocated to
avoid contention but congestion sources are not controlled. There are
techniques based on adaptive routing such as those in [2], [7], [8]. They use
alternative paths in order to inject messages. Major adaptive routing advantage
is that congested area is avoided and message injection is upheld. Thus, global
system performance is improved because traffic load is fairly distributed over

COMPUTER SCIENCE & TECHNOLOGY SERIES 61

the network. Some disadvantages of the adaptive routing mechanisms are the
overhead resulting from information monitoring, the path changing and the
need to guarantee both: deadlock freedom and in-order packet delivery. This
leads to a trade off situation between the monitoring speed and the amount of
information to analyze. An efficient algorithm should get the best performance
under adverse situations and avoid penalizations.
Studies of parallel applications in HPC reveal they have repetitive behavior,
based on computing and communications phases [3].
The routing performance in HSIN greatly depends on the communication
patterns used and the relation between the mappings of application nodes to
processors. This leads to proper resource usage in HPC where the total costs
are prohibited [9]. Some routing techniques use application information to
help routing decisions, in order to minimize latency, bandwidth, flows per
links among others, but statically [10].
In order to improve overall system performance, a technique capable to
combine adaptive routing and application communication patterns is needed.
This combination will be helpful by re applying best saved solutions to
already analyzed situations.

3. Predictive and Distributed Routing Balancing

PR-DRB seeks better response time than DRB by using historical
communication information. PR-DRB uses metapath concept as alternative
paths to the original to send messages. Metapath configuration defines how an
alternative path is created and when it is to be used. PR-DRB phases are shown
in Fig. 1. Fig. 1 (a) shows detection and logging of latency and the pattern
causing congestion. Fig. 1 (b) shows metapath configuration and Fig. 1 (c)
shows alternative paths conforming the multi-step path (MSP). Monitoring
phase logs a message latency value through its path to destination.
Congestion is detected at intermediate routers when latency value surpasses a
threshold. Also, the conflictive pattern causing congestion and the
source/destination involved are logged. The amount of alternative paths
opened is governed by latency values logged during a message traversal
towards the destination, in order to properly distribute all messages through
these new alternative paths. A three-step path (Multi-Step Path, MSP) is then
built by selecting two intermediate nodes, one IN1 neighbor from the source
node, and the other IN2 neighbor from the destination node. Thus, PR-DRB
builds the alternative paths around the original path. Finally, latency
information is used to decide the number of alternative paths and to distribute
messages among these paths. Afterwards, information about latency values
and alternative paths used are saved into the historical database. With these
procedure best paths for each src-dst pair, under a particular congestion
situation, are saved and these solutions can be directly used at a later time.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 62

3.1 Monitoring and Congestion Notification Phase

Each intermediate router is in charge of monitoring the traffic passing
through it, and is also responsible of logging the information that later would
be sent to the source node via an ACK message. Table 1 shows the
Monitoring function.

Table 1. Monitoring and notification phase

Message Monitoring (Message M, Threshold, MSP)
/* At every intermediate PR-DRB router*/
Begin
For each message M at every hop,

1. If (First router in the path)
 Predictive = FALSE;

2. Accumulate latency (queue time)
If (Latency > Threshold) AND NOT (Predictive)

 Identify contending flows in congestion
 Save contending flows (source/destination pairs) into the

message
 Predictive = TRUE

3. Record message latency into the message
4. Forward message M. Continue to next router or final destination
5. At the destination node, latency and contending flows are sent back to the

source into an ACK
End Monitoring and Notification

Contention latency is the time a message must wait at internal router buffers
before it can continue towards the destination, because the buffer is blocked
by other messages. This latency is then incremented at every router it
traverses. Under contention the router saves information about the conflictive
pattern at the buffers, to determine contending flows. Logging contending
flows is done only at the first router, due to the fact that new alternative paths
will control congestion for the analyzed flows. Once at the destination, an
ACK message is sent to the source in order to inject new messages to the
same destination using proper alternative paths. ACK messages have higher

Fig. 1. PR-DRB algorithm phases

COMPUTER SCIENCE & TECHNOLOGY SERIES 63

priority than other messages, and it can be considered negligible because it
only transfers latency and conflictive communication pattern information.
Logging and notification are carried out independently at each intermediate
router with local information, including information about other messages
currently in its internal buffers, which contributes to global network
knowledge.

3.2 Metapath Configuration Phase

Dynamic metapath configuration is based on information collected during
monitoring. The main goal of this phase is to determine the proper number of
alternative paths to be used. These paths are created based on global latency
value for each source/destination pair. Intermediate nodes (INs) are used for
the alternative paths creation procedures. Congestion is controlled by
increasing the available effective bandwidth between src-dst pairs. Table 2
resumes metapath configuration. Fig. 2 gives a general overview of PR-DRB
working scheme. During application first phase, PR-DRB has high latency
values (1) because it is searching alternative paths. At the end of phase 1 (2),
latency is stable and the best solutions found are saved at the source node.
Best solutions are identified when latency curve starts decreasing. Later
phases do not reach its highest historical latency value. Here, PR-DRB has
identified similar communication patterns again (3) and best paths saved are
used (4).
PR-DRB approach is to maintain stable latency values during the whole
application execution. Table 2 shows the metapath configuration function.

Fig. 2. PR-DRB process

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 64

Table 2. Metapath configuration function

Metapath Configuration.
/* Performed at source node every time and ACK message is received*/
Begin

 Receive ACK with MSP latency and contending flows information
 Calculate the metapath latency (MP*)

 11)(*)(
 MSPsLatencyMPLatency

 If (Latency (MP *) > Threshold)
If (Already exists a solution for the source/destination pair)
 Search/retrieve the best MSP from the saved paths database

Else
 Increment INs number to provide new alternative paths

End If
Else If (Latency (MP *) < Threshold)

 Decrease the number of INs to constrain metapath
 Save metapath latency and source/destination nodes involved

 End If
End Metapath configuration.

3.3 Multistep Path Selection Phase

Each time a message is injected into the network, PR-DRB performs the
multistep path (MSP) Selection. This phase is in charge of selecting a
multistep path for each message. A distribution of communication load over
the metapath is accomplished in order to perform the dynamic traffic
balancing. Consequently, messages are distributed in the MSPs according to
the latency in each case. Hence, paths having the lowest latency values are
more frequently used, and they receive a greater number of messages. Path
expansion is performed gradually. This stabilization process is costly in time.
Given a source node with N alternative paths, let’s be Lci (i:1..N) the latency
recorded by path Ci. The alternative path Cx will be selected in the following
injection according to the probability:

)1.(
1

1

)(

1

eq

L

L
Cx

N

i Ci

Cx

Find the best bandwidth/paths combination could take considerable time.
Intermediate path expansion procedures could cause internal router
contention, hence high latency values. PR-DRB keeps saving alternative
paths opening information and the percentage of utilization of each path, for
each source/destination used. All these information is saved because once
similar situation is detected again; PR-DRB will try to avoid high latency

COMPUTER SCIENCE & TECHNOLOGY SERIES 65

during best paths finding procedures. Table 3 shows the multistep path
selection procedure.

Table 3. Multistep Path Selection

Multistep Path Selection
/*Performed at source node each time a message is injected*/
Begin

 Build accumulative function of distributions adding and normalizing
Multistep Path (MSP) bandwidths.

 Generate a random number between [0,1)
 3. Select MSP using accumulative distribution function.
 4. Inject Message in the network.

 4.1. Build a multiple header with intermediate and final nodes.
 4.2. Concatenate header data.
 4.3. Inject message with PR-DRB format.

End Multistep Path Selection

3.4 Integration of all phases

PR-DRB general working scheme is shown in Fig. When a source node
injects a message into the interconnection network, a multistep path (MSP) is
selected from the MSP table according to the respective path latencies. This
message is injected without any other treatment because it is the first packet
in a row and no other information or statistic about the path or network is
available. The path with lowest latency is selected with higher probability.
The PR-DRB multi-header message is forwarded to its destination through
the intermediate routers. The delay suffered in the switch buffers (queuing
latency), is recorded and stored in the message. If queuing latency values
exceeds a threshold while still at intermediate routers, then contending flows
are also recorded by the PR-DRB module. With this information, traffic
pattern that caused congestion could be identified again in future
communications. Once the message arrives to destination node, latency
information as well as conflictive communication patterns found are sent
back to the sender in an Ack.
When Ack reaches the source node, latency value is delivered to the metapath
configuration module. This module configures the metapath with the
alternative paths to be used according to the latency value. Also this module
updates information about source-destination nodes and contending flows
during high latency communication situations encountered, in order to have
historical data about communications. With the information about
communicating nodes, contending flows during a congestion situation and
the solutions found to solve this congestion are saved. Metapath
configuration module can predict future congestion based on previously
similar situations analyzed.
Having predicted a congestion situation, metapath configuration module can
speculate about which paths to open based on information already available.
Because parallel application patterns show repetitive behavior in time,

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 66

metapath configuration can be reduced to find best solution during the first
phase of execution, and then just identify similar phases and re-use best
solutions. This behavior could save considerable time and communication
efforts, such as path creation, ACKs notification, etc. PR-DRB node level
operations have not a high overhead because: these operations are performed
locally, they are simple (comparisons and accumulations for latency
evaluation, saving small info about traffic), and they do not delay
send/receive primitives.
As shown in Fig. 3, message is forwarded without any overhead when output
port is free (thick arrows). Otherwise, packet is queued and latency is
simultaneously accumulated. When output port is available and latency is
lower than threshold, no more operations are needed and message is
forwarded. The Ack generation is invoked only when congestion is detected,
and its operations are performed when messages are waiting in the queue.
Hence, computing these operations is performed concurrently with packet
delivery, as shown in Monitoring in Fig. 3.
Deadlock freedom is ensured by having a separate escape channel for each
phase. With two intermediate nodes, one escape channel is used (if required)
from S to IN1, another from IN1 to IN2, and a third one from IN2 to D. This
way, each phase defines a virtual network, and the packets change virtual
network at each intermediate node.
Although each virtual network relies on a different escape channel, they all
share the same adaptive channel(s). The use of adaptive routing algorithms
can cause out of order delivery of packets. If an application requires in-order
packet delivery, a possible solution is to reorder packets at the destination
node using the well known sliding window protocol, as used in other routing
policies like [7]. The following section presents the performance evaluation
of PR-DRB policy.

Fig. 3. PR-DRB Algorithm with all phases integrated

COMPUTER SCIENCE & TECHNOLOGY SERIES 67

4. PR-DRB evaluation

This section presents the performance evaluation of PR-DRB. Evaluation is
designed to perform a network response analysis under hotspot traffic
patterns in order to evaluate the PR-DRB dynamic behavior and the traffic
load distribution over the network. We designed the Hotspot experiment to
analyze and compare PR-DRB against the original DRB [2] algorithm. Here,
we established some fixed destinations in order to increase the traffic in a
particular network area and force saturated paths. In addition, the remainder
network nodes inject uniform load in order to create a background or noise
traffic over the 64 nodes network.
The PR-DRB operations and modules, together with network components
(i.e. switches, links and end nodes) were modeled using the standard
simulation and modeling tool OPNET Modeler [11]. OPNET provides a
Discrete Event Simulator (DES) engine and offers a hierarchical modeling
environment with an enhanced C++ language. This suitable environment
allows defining network components behavior by a Finite State Machine
approach (FSM), and it supports detailed specification of protocols,
resources, applications, algorithms, and queuing policies. The simulations
were conducted for a 64 nodes network arranged in an 8x8 mesh topology.
We have assumed virtual Cut-through flow control and several standard
packet sizes. Link Bandwidth was set to 2Gbps, packet size was set to 1024
bits and the size of routers buffers was 2MB.

4.1 Hotspot Analysis

Fig. 4 (a) and (b) show latency map of the mesh network under evaluation.
Latency surface represents the average contention latency at buffers. Fig. 4
(a) shows the behavior of the original DRB algorithm, where high values of
latency can be seen under congested areas. Also, load distribution at routers
(x,y) (0,1), (6,2) and (6,4) are considerable high, because DRB uses these
routers in its alternative paths. Fig. 4 (b) shows the latency map for PR-DRB;
where its highest value is lower than the original DRB. Better load
distribution is accomplished by PR-DRB compared to DRB, because PR-
DRB has directly applied best solutions already saved and unnecessary load
at routers are avoided. Fig. 5 (a) shows latency during application
initialization to analyze algorithms reactions under initial traffic injection. On
average, PR-DRB performs better than DRB. This is because PR-DRB
reaches better global latency values faster and without penalizing throughput.
Fig. 5 (b) shows average latency values for the entire mesh network during
initialization phase of communications, in order to analyze algorithms
response under initial traffic injection. On average, PR-DRB outperforms
DRB because it reaches better global latency values in less time. Throughput
is not penalized whatsoever with latency gains of PR-DRB. Fig. 5 (b) also
shows that DRB has an initial latency raise due the fact that it is opening
alternative paths in order to control a particular congestion situation. Recall
that PR-DRB will behave similar to DRB under first phase of parallel

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 68

applications execution, because it will be learning from the alternative
opening paths procedures. In next phases of application repetitive behavior,
PR-DRB will apply directly best solutions encountered previously. Between
time 0 and 0.5 of Fig. 5 (b) we can see latency gains obtained by PR-DRB.
From time 0.5 latency values of both algorithms tend to become stable and
converge.

(a)

(b)

Fig. 4. Latency map

0

0.5

1

1.5

2

2.5

3

0 0.0002 0.0004 0.0006 0.0008 0.001

La
te
n
cy
 (
u
s)

Time (s)

DRB

PR‐DRB

(a)

COMPUTER SCIENCE & TECHNOLOGY SERIES 69

(b)

Fig. 4. Entire network latencies, instantaneous (a) and average (b)

5. Conclusions

In this paper we proposed the Predictive and Distributed Routing Balancing
PR-DRB. PR-DRB limits performance degradation produced by packet
contention in network resources. This strategy uses alternative paths under
congestion situation in order to reduce latency values and increase bandwidth
availability, by considering time as well as traffic dynamic behavior
constraints. Parallel applications running on an HSIN possess repetitive
behavior, and PR-DRB is capable of learning about repetitive traffic patterns
and save information for later use. PR-DRB has been developed to fulfill the
design objectives for cluster interconnection networks. These objectives are
all-to-all connection, and low and uniform latency between any pair of nodes
under any message traffic load. The proposed method is also in line with
current approaches used in commercial interconnects (as InfiniBand).
Our policy allows heavier communication load in the network, or in the case
cost-bounded clusters, PR-DRB allows using less network components,
because those resources are more efficiently handled. The evaluation
performed to validate PR-DRB has revealed very good improvements in
latency. Saturation is reduced allowing the use of the network at higher loads.
We have shown that PR-DRB is a fast and robust method with a very low
overhead. Additionally, PR-DRB is useful for permutation and bursty
communication patterns, which are commonly created by parallel
applications and can produce the worst hot-spot situations.
As a continuation of this work, we plan to predict future congestion situation
based on latency trend, before congestion has effectively emerged into the
network. Also, more experiments with different scenarios is to be done, such
as more topologies as well as real representative scientific applications traces
as input, in order to extend the proposal to a fully application aware
technique.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 70

References

1. Elvira Baydal, Pedro Lopez and Jose Duato (2005). "A Family of Mechanisms
for Congestion Control in Wormhole Networks", IEEE Trans. Parallel Distrib.
Syst., vol. 16, no. 9, 772-784.

2. D. Franco, I. Garcé and E. Luque (1999). "A new method to make
communication latency uniform: distributed routing balancing", 210-219.

3. Wong, D. Rexachs and E. Luque (2009). "Parallel application signature," Cluster
Computing and Workshops, 2009. CLUSTER '09. IEEE International
Conference on, vol. 1, 1-4.

4. D. Lugones, D. Franco and E. Luque (2009). "Dynamic and Distributed
Multipath Routing Policy for High-Speed Cluster Networks", 396-403.

5. P.J. Garcia et al. (2006). "RECN-DD: A Memory-Efficient Congestion
Management Technique for Advanced Switching", Parallel Processing,
International Conference on, vol. 0, 23-32.

6. Shihang Yan, Geyong Min and Irfan Awan (2006). "An Enhanced Congestion
Control Mechanism in InfiniBand Networks for High Performance Computing
Systems", Advanced Information Networking and Applications, International
Conference on, vol. 1, 845-850.

7. Arjun Singh, William J. Dally, Brian Towles and Amit K. Gupta (2004).
"Globally Adaptive Load-Balanced Routing on Tori", IEEE Comput. Archit.
Lett., vol. 3, no. 1, 2.

8. Christopher J. Glass and Lionel M. Ni (1992), "The turn model for adaptive
routing", SIGARCH Comput. Archit. News, vol. 20, no. 2, 278-287.

9. German Rodríguez, Ramon Beivide, Cyriel Minkenberg, Jesus Labarta and
Mateo Valero (2009). "Exploring pattern-aware routing in generalized fat tree
networks", 276-285.

10. Michel A. Kinsy et al. (2009). "Application-aware deadlock-free oblivious
routing", 208-219.

11. OPNET Technologies, Opnet Modeler Accelerating Network R&D, 2008.

12. Xingfu Wu and Xian-He Sun (2000). "Performance Modeling for
Interconnection Networks", High-Performance Computing in the Asia-Pacific
Region, International Conference on, vol. 1, 380.

13. Timothy Sherwood, Erez Perelman and Brad Calder (2001). "Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation Points in
Applications", 3-14.

COMPUTER SCIENCE & TECHNOLOGY SERIES 71

Comparison of
Communication/Synchronization Models in

Parallel Programming on Multi-Core Cluster

ENZO RUCCI, ARMANDO E. DE GIUSTI, FRANCO CHICHIZOLA,
R. MARCELO NAIOUF AND LAURA C. DE GIUSTI

Instituto de Investigación en Informática LIDI (III-LIDI) – School of Computer Science –
Universidad Nacional de La Plata, Argentina.

{erucci, degiusti, francoch, mnaiouf, ldgiusti}@lidi.info.unlp.edu.ar.

Abstract. Taking into account the increase in use of the multi-core
cluster architecture, in this paper we analyze the use of the various
communication models (message passing, shared memory, their
combination) to efficiently exploit the power of the architecture.
Smith-Waterman algorithm, whose parallelization is based on a
pipeline scheme due to problem data dependence, is used as test case
to determine the similarity degree of two DNA sequences.
Finally, future research lines are mentioned, aimed at optimizing the
use of memory levels in the architecture.

Keywords. multi-core cluster, hybrid communication model, pipeline,
Smith-Waterman.

1. Introduction

The study of distributed and parallel systems is one of the most active
research lines in Computer Science nowadays [1][2]. In particular, the use of
multi-processor architectures configured as clusters, multi-clusters, and grids,
supported by networks with different characteristics and topologies has
become generalized, for the development of both parallel algorithms and
distributed Web services [3][4][5]. Cloud computing developments follow the
same line [6].
The technological change, mainly based on multi-core processors, has created
the need for researching mixed or hybrid models where shared memory and
message schemes are in coexistence [7][8].
In this context, it is important to study the modeling of the behavior of this
type of parallel systems, as well as develop new paradigms and tools for
efficient application programming [9][10][11].

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 72

1.1 Multi-core cluster

A multi-core processor is formed by the integration of two or more
computational cores within the same chip [12]. The reasons for their
development are based on the energy consumption and heat generation
problems that appear when the speed of a processor is escalated.
A multi-core processor increases the yield of an application by dividing the
computation work among the available cores [13].
A cluster is a parallel processing system formed by a set of computers
interconnected over some kind of network and that cooperate as if they were
an “only and integrated” resource, regardless of the physical distribution of its
components. Each “processor” may have different hardware and operating
system, and it can even be a “multiprocessor” [14].

1.2 Study application

One of the areas of greatest interest and growth in the last few years within
the field of parallel processing is that of the treatment of large volumes of
data such as DNA sequences. The extensive comparison processing required
for the analysis of genetic patterns demands a significant effort in the
development of efficient parallel algorithms [15].
The center for all bioinformatic operations and analyses is partly held by
Sequence Alignment, both for pattern searching among amino acid and
nucleotide sequences, and for the search of phylogenetic relationships among
organisms. The Smith-Waterman algorithm for local alignment is one of these
methods; it focuses on similar regions only in part of the sequences, which
means that the purpose of the algorithm is finding small, locally similar
regions. This method has been used as the basis for many subsequent
algorithms and is oftentimes used as basic pattern to compare different
alignment techniques. If the length of the sequences involved are N and M,
the complexity of the algorithm is O(NxM). Thus, the problem is escalated as
the square of sequence size [16].
Taking into account that sequences can have up to 109 nucleotides each, the
time and memory required to solve this problem in a sequential manner is
impracticable. This leads to the parallelization of the algorithm over powerful
parallel architectures.

1.3 DNA Sequence Comparison on a Multi-core Cluster

Taking into account the increase in use of the multi-core cluster architecture,
it is important to study new parallel algorithm programming techniques that
efficiently exploit the power of the architecture by combining shared memory
and message passing.
In particular, the approach of the application to study is attractive due to its
complexity and the possibility of breaking down parallel algorithm

COMPUTER SCIENCE & TECHNOLOGY SERIES 73

concurrency into “blocks” of different dimensions, which allows an optimal
adaptation of the application to the multi-core cluster support architecture.
The architecture used in this paper is a Blade with 8 blades. Each blade has 2
quad core Intel Xeon e5405 2.0 GHz processors; 2 Gb of RAM memory
(shared between both processors); and 2 X 6Mb L2 cache for each pair of
cores [17][18]. This architecture allows a comprehensive analysis of the three
approaches (messages, shared memory, and hybrid).
In Section 2, the Smith-Waterman algorithm is explained, together with the
sequential and the parallel solutions used in this paper. In Section 3, the
experimental work carried out is described, whereas in Section 4, the results
obtained are presented and analyzed. Section 5 presents the conclusions and
future lines of work in relation to this paper.

2. Smith-Waterman Algorithm Definition

This method allows aligning two DNA sequences by inserting gaps (if
necessary) that are used to detect locally similar regions that may indicate the
presence of a relation between both sequences, which is done by assigning a
similarity score. If gaps are inserted, that is, certain elements of the sequences
are not aligned to achieve a better overall alignment, a penalization is applied.
The algorithm calculates a similarity score between two sequences and then,
if necessary, employs a backwards alignment process for an optimal result
[14].
The following paragraphs explain the operation of the algorithm to find a
similarity score between two DNA sequences.
Given two sequences: A = a1a2a3…aM and B = b1b2b3…bN, a matrix H of
(N+1)x(M+1) is built, in such a way that the nucleotide bases that form
sequence A label the rows (starting with 1), and those from sequence B label
the columns (starting with 1). The following steps are applied to calculate the
values of H that will yield the similarity score between A and B:

a. Start row 0 and column 0 of H with 0, as indicated in Equation 1.

MjNiHH ji 0and0for000 (1)

b. Calculate the value of Hij i [1,.., N] and j [1,..,M] by means
of Equation 2. This value indicates the maximum similarity between two
segments ending in ai and bj, respectively.

ji

ji

jiji
ji

F

C

baVH
H

),(

0

max
1,1

 (2)

 V(ai, bj) is the matching function that indicates the score obtained
for matching ai with bj. It is based on a table of values called
substitution matrix that describes the probability of a nucleotide

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 74

base from sequence A at position i to occur in sequence B at
position j. The most common matrix is the one that rewards with
a positive value when ai and bj are identical, and punishes with a
negative value otherwise.

 Cij is the score in column j considering a gap, and is calculated
with Equation 3.

)}({max ,1 kgHC jkiikji (3)

 Rij is the score in row i considering a gap, and is calculated with
Equation 4.

)}({max ,1 lgHR ljijlji (4)

 g(x) is the penalization function for a gap of length x, and is
obtained with Equation 5, q being the penalization applied for
opening a gap and e the penalization for prolonging it.

)0;0()(eqxrqxg (5)

c. The similarity score is obtained as shown in Equation 6.

}{max)0)(0(jiMjNi HG (6)

d. Based on the position in matrix H where the value G was found
(representing the end of the highest-scoring alignment between both
sequences), a backwards process is performed to obtain the pair of
segments with maximum similarity, until a position whose value is 0 is
reached, this being the starting point of the segment.

2.1 Sequential Solution of Smith-Waterman Algorithm

In this section, the sequential solution of Smith-Waterman algorithm is
analyzed with the purpose of determining the similarity score between two
DNA sequences. This means that the backwards process is not taken into
account when obtaining the segment that represents the optimal alignment
(step d of the algorithm explained in the previous section is not performed).

 Sequence A

 Hd C
ij

(g
ap

)

Rij (gap) Hij Se
qu

en
ce

 B

Fig. 1. Data dependency scheme

COMPUTER SCIENCE & TECHNOLOGY SERIES 75

Figure 1 shows the data dependency that exists for calculating matrix values.
To obtain Hi,j, the result of Hi-1,j-1 (Hd in Figure 1) is required, and the score
must be known when considering a gap in row i and another one in column j.
This restriction allows calculating H values from top to bottom and left to
right (H11, H12, H13, …H21, H22, H23, …..).
Taking into account that step d of the algorithm is not carried out, matrix H
does not have to be stored in full, all that is needed is:

 A vector h of length M+1 that at each position keeps the value
obtained in the last processed row over that column. Equation 7 shows
the values for h corresponding to the example shown in Figure 1.

 1

1

,1

,

jkH

jkH
h

ki

ki

k (7)

 An element e to temporarily store the last value calculated in the row
that is being processed. In Figure 1, e = Hi,j-1.

 A vector c of length M+1 that at each position keeps the maximum
score considering a gap in that column. Equation 8 shows the values
for c corresponding to the example shown in Figure 1.

 jkC

jkC
c

ki

ik
k

,1

 (8)

 An element r that keeps the maximum score considering a gap in the
row that is being processed. In the example shown in Figure 1, r = Ri, j-1.

2.2 General Parallel Solution of Smith-Waterman Algorithm

Due to the dependency of data mentioned in the previous section, the problem
needs to be solved by following a pipeline scheme, where stages S perform
the same work over various consecutive nucleotide subsets of the first
sequence (A in Figure 1). In each cycle, stage si (for i [1, S-1]) receives a
data block from si-1, solves part of its work, and then sends these results to si+1
(except for the last stage which does not need to send its results to any other
stage). The first stage (s0) only performs its work by sending partial results
(corresponding to a block) to its successor.
An important aspect of this solution is selecting the number of elements (BS)
from sequence B that form the data blocks that are sent from one process to
another, taking into account that:

 Pipeline parallelism is exploited to its maximum capacity only after
S-1 cycles have been processed. That is, when all stages have received
work to do. The larger the BS, the longer the time required to fill the
pipe, and therefore, the lower its exploitation. From this point of view,
BS should tend to 1.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 76

 If the size of BS is very small, the stages spend more time
communicating partial results than actually processing information.
From this point of view, BS should tend to N.

A suitable block size should be found, so that data communication and data
processing can be done simultaneously. The optimal size does not only
depend on the architecture used, but also on the communication model
implemented.

2.2.1 Message Passing as Communication Model

In this case, each pipeline stage is carried out by a different process pi (for i
[0, S-1]), and partial results are communicated by sending messages between
consecutive processes. The first sequence (A in Figure 1) is distributed by p0
among the S processes that form the pipeline.

2.2.2 Shared Memory as Communication Model

In this case, each pipeline stage is carried out by a different thread ti (for i
[0, S-1]). Instead of communicating partial results through message passing,
these are kept in the shared memory as a single structure (as in the sequential
algorithm). Consecutive threads are synchronized to indicate that work with a
new data block can begin.

2.3 Hybrid Parallelization of the Algorithm by Integrating Message
Passing and Shared Memory

When using a hybrid architecture, the different memory levels (among cores
in a same blade) and the interconnecting network (among cores in different
blades) should be considered to determine the optimal size BS. This leads to a
solution that combines the use of message passing with shared memory.
This hybrid solution is based on the use of a pipeline of P stages as the one
described in Section 2.2.1, each of these stages using a pipeline of T phases as
the one detailed in Section 2.2.2.
When each process pi begins (for i [0, P-1]), it generates T-1 threads to
jointly solve the data blocks corresponding to the different cycles. Thus, there
are PxT threads (all P processes plus all T-1 threads generated by each of
them), which means that the set of nucleotides from the first sequence (A in
Figure 1) is equally distributed among PxT threads.
When process pi (for i [0, P-1]) needs to solve a data block (with BSmp
elements), it divides it in sub-blocks of BSsm nucleotides each to be solved by
the pipeline corresponding to that process. To take advantage of the features
of the architecture, the optimal BSmp and BSsm values have to be determined
for each case.

COMPUTER SCIENCE & TECHNOLOGY SERIES 77

3. Experimental Work

In this paper, language C is used with OpenMPI and/or Pthreads libraries to
handle message passing and threads, respectively.
As mentioned in the Section 1, a Blade with 8 blades, each with two 2.0 GHz
quad core Intel Xeon e5405 processors, was used. Each blade has 2 Gb RAM
memory (shared between both processors) and 2 x 6Mb L2 cache for each
pair of cores.
Two types of tests were carried out:

 Using one blade of the Blade. Testing in this case purely parallel
algorithms to determine suitable data block sizes.

 Using the entire architecture. Testing in this case the hybrid
algorithm and the one that uses only message passing to compare both
behaviors.

3.1 Tests with a single blade of the Blade

Tests were carried out on a single blade of the Blade (using the 8 cores) to
analyze the behavior of the purely parallel algorithms described in Sections
2.2.1 and 2.2.2.
The tests carried out vary in sequence length (N = 65536, 131072, 262144,
524288, 1048576) and block size (BS = 8, 16, 32, 64, 128, 256, 512, 1024,
2048).
As a result of these tests, it was observed that the efficiency achieved by the
algorithm that uses shared memory is slightly higher than the efficiency of the
solution that uses message passing. This leads to the proposal of the hybrid
algorithm described in Section 2.3 to fully exploit the architecture.
Also, the results obtained allowed determining the ideal values for BSsm = 16
and BSmp =128. Detailed results can be found in [19].

3.2 Tests with the entire architecture

In order to analyze the behavior of the hybrid algorithm, it is compared with
the algorithm that uses message passing only, using the 8 cores with different
numbers of blades (4 or 8). The same as in Section 3.1, sequence length
varies (N = 65536, 131072, 262144, 524288). In the following paragraphs,
the tests carried out are described.

 MP: the algorithm that uses only message passing is used with
various block sizes (BS = 128, 256, 512, 1024, 2048).
 HY: the hybrid algorithm is used with a process pi and 3 threads for
each processor in each blade. That is, each shared memory pipeline
uses an entire quad core processor. The value of BSsm remains
unchanged during the tests, and the size of the blocks in the message
passing pipeline varies (BSmp = 128, 256, 512, 1024, 2048).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 78

4. Results

To assess the behavior of the algorithms developed when escalating the
problem and/or the architecture, efficiency is analyzed (in this case, on
homogeneous architectures, since all cores are equal) [1][2][20]. Equation 9
indicates how to calculate this metric, where p is the total number of cores
used.

p

Speedup
Efficiency (9)

Figure 2 shows the efficiency achieved by the algorithms MP and HY detailed
in Section 3.2 for the most significant block sizes (BSmp = 128, 512 and 2048).
For readability, only the results obtained when using all 8 blades of the
architecture are shown, since when using only 4, a similar behavior is
observed, with a slight increase in efficiency.

Fig. 2. Efficiency achieved by the algorithms MP and HY for different BSmp and N
values, using 64 cores (8 cores in 8 blades)

This chart shows that both algorithms increase their efficiency when the size
of the problem increases (sequence length). On the other hand, these results
confirm that, for algorithm MP, the ideal block size is 128. The hybrid
algorithm (HY), however, tends to improve its efficiency when the size of the
blocks increases, so that when comparing both algorithms using a block size
of 2048, HY achieves a better efficiency.
Figure 3 presents a summary of the best efficiency achieved by each of the
algorithms (MP and HY) when using 4 and 8 blades of the architecture. In the
case of algorithm MP (MP-4 and MP-8 for 4 and 8 blades, respectively), it is
achieved with a block size BS = 128. For HY, it is achieved when using BSmp
= 2048.

COMPUTER SCIENCE & TECHNOLOGY SERIES 79

This chart shows that algorithm MP achieves a greater efficiency than the
hybrid algorithm, and that the difference decreases as the size of the problem
increases. On the other hand, as it is to be expected in most parallel systems,
efficiency decreases when the number of cores used increases.
This figure also shows that when the total number of cores used increases, so
does the difference between the efficiency achieved by MP and HY.
Inversely, when the size of the problem increases, the gap decreases.

Fig. 3. Summary of the best efficiency achieved by each of the algorithms with 4 and
8 blades of the architecture

5. Conclusions and Future Works

In this paper, the Smith-Waterman algorithm is parallelized for the alignment
of DNA sequences by means of a pipeline scheme due to the dependency of
data that is inherent to the problem. The architecture used for the experiments
is a multi-core cluster (8 blades with 8 cores each).
Given the characteristics of the architecture, the pipeline was initially
implemented with two different communication models: message passing
(MP) and shared memory (SM). The efficiency of both algorithms was
compared when using a single blade of the architecture and a slight advantage
of SM in relation to MP was observed.
Since the SM algorithm could not be used in the entire architecture (because
there was no memory shared among the various blades), a third option was
implemented (HY) using a hybrid communication model that combines
message passing and shared memory. This version has a pipeline scheme
among processes that communicate thorough message passing, and within
each stage there is a shared memory pipeline to solve each data block.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 80

The behavior of this algorithm was compared with that of MP using 4 and 8
full blades of the architecture. As a result, it was observed that MP achieves a
greater efficiency than HY. This is because the optimal block size for MP (BS
= 128) cannot be used in HY (BSmp >> 128) pipeline because it would not be
possible to generate enough sub-blocks to run the internal shared memory
pipeline efficiently with its optimal block size (BSsm = 16).
A future line of R&D is the analysis and optimization of hybrid solutions for
certain types of problems, especially for those that support a composite
parallel solution (combining more than one paradigm). On the other hand, the
scalability of the problem discussed, while ensuring a certain efficiency level,
is also of interest.

References

1. Grama, A., Gupta, A., Karypis, G., Kumar, V. (2003). “An Introduction to
Parallel Computing. Design and Analysis of Algorithms. 2nd Edition”.
Pearson Addison Wesley.

2. Jordan, H, Alaghband, G. (2002). “Fundamentals of parallel computing”.
Prentice Hall.

3. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L.,
White, A. (2003). “The Sourcebook of Parallel Computing”. Morgan
Kauffman Publishers. Elsevier Science.

4. Juhasz Z., Kacsuk P., Kranzlmuller D. (editors) (2004). “Distributed and
Parallel Systems: Cluster and Grid Computing”. Springer; First Edition.

5. Di Stefano, M. (2005). “Distributed data management for Grid
Computing”. John Wiley & Sons Inc.

6. Miller, M. (2008). “Cloud Computing: Web-Based applications that
change the way you work and collaborate online”. QUE Publishing.

7. Mc Cool, M. (2007). “Programming models for scalable multicore
programming”. http://www.hpcwire.com/features/17902939.html

8. Chai, L., Gao, Q., Panda, D. K. (2007). “Understanding the impact of
multi-core architecture in cluster computing: A case study with Intel Dual-
Core System”. IEEE International Symposium on Cluster Computing and
the Grid 2007 (CCGRID 2007), 471-478.

9. De Giusti, L., Chichizola, F., Naiouf, M., De Giusti, A., Luque, E. (2010).
“Automatic Mapping Tasks to Cores - Evaluating AMTHA Algorithm in
Multicore Architectures”. IJCSI International Journal of Computer
Science Issues, Vol. 7, Issue 2, No 1. 2010.

10. Olszewski, M., Ansel, J., Amarasinghe, S. (2009). “Kendo: Efficient
Determistic Multithreading in Software”. Architectural Support for
Programming Languages and Operating Systems (ASPLOS ‘09).

11. Bertogna, M., Grosclaude, E., Naiouf, M., De Giusti, A., Luque, E.
(2008). “Dynamic on Demand Virtual Clusters in Grids”. 3rd Workshop
on Virtualization in High-Performance Cluster and Grid Computing
(VHPC 08). Spain.

COMPUTER SCIENCE & TECHNOLOGY SERIES 81

12. AMD, “Evolución de la tecnología de múltiple núcleo”. 2009.
http://multicore.amd.com/es-ES/AMD-Multi-Core/resources/Technology-
Evolution.

13. Burger T. W., “Intel Multi-Core Processors: Quick Reference Guide”.
http://cachewww.intel.com/cd/00/00/23/19/231912_231912.pdf

14. Grid Computing and Distributed Systems (GRIDS) Laboratory-Department
of Computer Science and Software Engineering (University of Melbourne),
“Cluster and Grid Computing”. 2007. http://www.cs.mu.oz.au/678/.

15. Attwood, T. K., Parry-Smith, D. J. (2002). “Introducción a la
Bioinformática”. Pearson Educación S.A.

16. Zhang, F., Qiao, X., Liu, Z. (2002). “A Parallel Smith-Waterman
Algorithm Based on Divide and Conquer”. Proceeding of the Fifth
International Conference on Algorithms and Architecture for Parallel
Processing. HP, “HP BladeSystem”. http://h18004.www1.hp.com/products/
blades/components/c-class.html.

17. HP, “HP BladeSystem c-Class architecture”. http://h20000.www2.hp.com/
bc/docs/support/SupportManual/c00810839/c00810839.pdf.

18. Rucci, Enzo (2010). “Modelos de Comunicación en BLADE”. III-LIDI
Technical Report.

19. Leopold, C. (2001). “Parallel and Distributed Computing. A survey of
Models, Paradigms, and Approaches”. Wiley, New York.

COMPUTER SCIENCE & TECHNOLOGY SERIES 83

Towards a High Performance Cellular Automata
Programming Skeleton

A. MARCELA PRINTISTA1,2 AND FERNANDO D. SAEZ1

1
 LIDIC- Universidad Nacional de San Luis,

2
 CONICET – CCT – San Luis.

Ejército de los Andes 950 (5700) San Luis. Argentina.
{mprinti, bfsaez}@unsl.edu.ar.

Abstract. Cellular automata provide an abstract model of parallel
computation that can be effectively used for modeling and simulation of
complex phenomena and systems. In this paper, we start from a skeleton
designed to facilitate faster D-dimensional cellular automata application
development. The key for the use of the skeleton is to achieve an efficient
implementation, irrespective of the application specific details. In the
parallel implementation on a cluster was important to consider issues such
as task and data decomposition. With multicore clusters, new problems
have emerged. The increasing numbers of cores per node, caches and
shared memory inside the nodes, has led to the formation of a new
hierarchy of access to processors. In this paper, we described some
optimizations to restructuring the prototype code and exposing an
abstracted view of the multicore cluster to the high performance CA
application developer. We introduce a new mapping strategy that can
obtain benefit in the performance by adapting its communication pattern to
the hardware affinities among processes allocated in different cores. We
apply our approach to a two-dimensional application achieving sensible
execution time reduction.

Keywords. Skeletal Programming, Cellular Automata, Multicore Nodes,
Mapping Strategy.

1. Introduction

Traditionally, parallel programs are designed using low-level message
passing libraries, such as PVM or MPI. Message passing provides the two
key aspects of parallel programming: (1) synchronization of processes and
(2) communications between processes.
However, users still encountered difficulties because these interfaces force to
deal with low-level details, and their functions are too complicated to use for
a nonexpert parallel programmer. Many attempts have been undertaken to
hide parallelism behind some kind of abstraction in order to free the
programmer from the burden of dealing with low issues.
A alternative is to provide a set of high-level abstractions which provides
support for the mostly used parallel paradigms. A programming paradigm is a

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 84

class of algorithms that solve different problems but have the same control
structure. Parallel programming paradigms usually encapsulate information
about useful data and communication patterns, and an interesting idea is to
provide such abstractions in the form of programming templates or skeletons
[6]. The essence of the programming methodology based on skeletons is that
all programs have a parallel component that implements a pattern or
paradigm (provided by the skeletons) and a specific component of an
application (in charge of the user). A parallel skeleton encapsulates the
control and communication primitives of the application into a single
abstraction and frees the user to consider low-level details involved in high
performance computing.
Cellular automata are ideally suited for parallel computing and consequently,
researchers from diverse fields require support to design and implement
parallel cellular algorithms that are portable, efficient, and expressive.
Today, multicore processors are an option to become part for clusters of
multiple sizes. These multicore processors contain multiple execution cores
on the same chip, each of which can independently perform operations,
thereby introducing a new level of parallelization to clusters. These kinds of
processors have emerged as a feasible alternative to use in high performance
computing. As we explain later, many new factors must be considered and
studied to achieve the best performance.
The goal of this paper is to describe the optimization techniques applied to a
CA skeleton that will be able to take advantage of a multicore environment.
We will show a performance improvement not due to modifications of the
MPI implementation itself but rather due to a relevant process placement.
There are a substantial amount of work in the fields of parallel CA, with
work done in both generalized tools and tools dedicated to particular
applications. Several high-level parallel programming systems like CAMEL
[12], CAM [11], StarLogo [9], and CAPE [13] made possible development of
parallel software abstracting from the parallel architecture on which
programs run. Actually, CAMEL has its own programming language
CARPET [10] that allows the programming of cellular automata algorithms.
The rest of the paper is organized as follows. Section 2 gives a background
about cellular automata and cellular algorithms. Section 3 discusses the CA
skeleton and presents some experimental results of the CA implementation
on a Cluster. Section 4 describes the multicore environments and discusses
the MPI Process placement problem. We then introduce a new mapping
strategy. Section 5 presents the comparative analysis of strategies and the
conclusions are given. Finally, the future work is outlined en Section 6.

2. Cellular Automata Background

Cellular automata are simple mathematical idealizations of natural systems.
They consist of a D-dimensional lattice of cells of uniform size connected
with a particular geometry, and where each cell can be in one of a finite
number of states. The values of the cells evolve in discrete time steps

COMPUTER SCIENCE & TECHNOLOGY SERIES 85

according to deterministic rules that specify the value of each cell in terms of
the values of neighboring cells and previous values. Formally, a cellular
automaton is defined as a 4-tuple (LD, S, V, f) where LD is a D-dimensional
lattice partitioned into cells, S is a finite set of states (|S| = v), V is a finite set
of neighborhood indexes, and : Sv S is a transition function.

Below we summarize the most important characteristics that define the
behavior of CA:

1. Initial State: The initial configuration determines the dimensions of the lattice,
the geometry of the lattice, and the state of each cell at the initial stage.

2. State: The basic element of CA is the cell. Each cell in the regular spatial
lattice, can take any of a finite number of discrete state values. In the simplest
case, each cell can have the value 0 or 1. In more complex case, the cells can
have more different values. (It is even thinkable, that each cell has a complex
structure with multiples values.)

3. Neighborhood: For each cell of the automaton, there are a set of cells called
neighborhood (usually including the cell itself). A characteristic of CA is that
all cells have the same neighborhood structure; even the cells at the boundary
of a lattice have neighboring cells that could be outside the domain.
Traditionally, border cells are assumed to be connected to the cells on the
opposite boundary (that is, for one dimension, the right most cell is the
neighbor of the left most one and vice versa). Other types of boundary
conditions may be modeled by using preset values of the cell values for the
boundary nodes or writing unique update rules for the cells at the boundary.
The neighborhood structure and its boundary condition depend on the
application under consideration. The most common neighborhoods are called
Von Neumann and Moore.

4. Transition function: The set of rules that define how the state of each cell
changes on the basis of its current state and the states of its neighbor cells. In a
standard CA, all cells are updated synchronously.

2.1 Overview of Cellular Algorithms

From a computational point of view, CA are basically a computer algorithm
that is discrete in space and time and operates on a lattice of cells. The Fig. 1
shows a simple algorithm that solves a two-dimensional generic cellular
automaton. The algorithm takes as input a two-dimensional lattice of (N x N)
and initializes the structure with some initial configuration. The simulation
involves an iterative relaxation process.

1 AutoCel(Lattice,steps)
2 init(Lattice)
3 for t = 1 to steps
4 for i = 1 to N
5 for j = 1 to N
6 nextState(Lattice,i,j)

Fig. 1. Sequential CA approach

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 86

This process is represented in the algorithm with a iteration of steps steps. In
each time step t, the algorithm updates each cell in the lattice. The next state
of an element st+1(i,j) is a function of its current state and the values of its
neighbors. The relaxation process ends after steps iterations.
Cellular automata parallel systems allow to user exploit the inherent
parallelism of cellular automata to support the efficient simulation of
complex systems that can be modeled by a very large number of simple
elements with local interaction only. In fact, it is possible to exploit the data
parallelism intrinsic to the CA programming model coming from the
possibility to execute the transition function on different sublattices due to
the local nature of cell interactions. Therefore, multicomputer is the
appropriate computing platform for the execution of CA models when real
problems must be solved. In this approach, the update of cells is
synchronized and executed simultaneously by all processing nodes. If a cell
and its neighbors are in the same node, the update is easy. On the other hand,
when nodes want to update the border cells, they must request the values of
the neighboring cells on other nodes. A common solution to this problem is
to let two neighboring lattices overlap by one row or column vector. After a
node updates its interior elements, it exchanges a pair of vectors with each of
the adjacent nodes. The overlapping vectors are kept in the boundary
elements of the sublattices. If a neighboring node does not exist, a local
boundary vector holds the corresponding boundary elements of the entire
lattice.

3. High Performance Simulation for CA Models

Libraries, like PVM or MPI (low-level abstract models) give the programmer
control over the decomposition task and the management of
communication/synchronization among the parallel processes. Although MPI
does not include explicit mapping primitives, most of its implementations
have a static programming style.
In this case, MPI support can avoid the mapping and scheduling problems,
however, the programmer’s task becomes more complex. Its unstructured
programming model based on explicit, individual communications among
processors is notoriously complicated and error-prone.
To reduce this limitation and to increase the level of abstraction without
lowering the performance, an approach exists to restrict the form in which the
parallel computation can be expressed. This can be done at different
abstraction levels. The model provides programming constructs: skeletons,
that directly they correspond with frequent parallel patterns. The programmer
expresses parallelism using a set of basic predefined forms with solution to
the mapping and restructuring problems.
Following this approach, Saez et al. [4] implemented a versatile cellular
automata skeleton and an environment for its use. The skeleton is written in
C and MPI and is accessed through a call to the constructor CA_Call and its
parameters list allows substantial flexibility, which will bring benefits in

COMPUTER SCIENCE & TECHNOLOGY SERIES 87

different application domains. The skeleton enables us to write CA
algorithms in an easy way, hiding parallel programming difficulties while
supporting high performance.
The cellular space of the automaton is represented by an array of D
dimensions (D-lattice), which contains ND objects called cells. Inside of a
cluster based on distributed memory system, the parallel execution using P
processors (denoted p0, p1, .., pP-1) is performed by applying the transition
function simultaneously to P sublattices in a SPMD way. As a first task of
implementation, it is necessary to find a division criterion to provide P
sublattices of the automaton. The underlying idea for the implementation of
lattice division functions is the establishment of a relation among P
processors. The structure of divisions produced by the proposed scheme and
the partnership relation established among processors give place to
communication patterns that are topologically similar to a Mesh. This
partnership is the responsible of the assimilation the communicational
topology of a CA.

If is a natural number and N is multiple of P, then a D-lattice can be
divided in P sublattices given place to a D dimensional Mesh (D-Mesh). For
a D-lattice, meshes of different dimensions can be made (for example, an
tree-dimensional lattice can be divided into sublattices of two or one
dimension), but these are not relevant to the facts discussed in this paper. P
determines the number of divisions produced on the lattice, D defines the

dimension of the Mesh of processors and is the degree of each
dimension. The skeleton implementation assigns each sublattice to a
processor and let the nodes update them simultaneously. Independently of the
topology, each processor will be responsible of D-sublattice

, which means the evolution of cells.
No matter what the simulation problem is attacked, a cell changes its current
value through a set of rules that define its next state depending on its current
value and the value of its neighboring cells. The rules are described by a
function built by the user. At the end of each step, after update all cells in the
local sublattice, all processors interchange the updated border cells and a
communication among its neighboring processors in a D-Mesh topology
takes place.
To improve performance, the implementation uses asynchronous (non-
blocking) communication calls available in MPI. Once the data
communication is issued, the process can perform the computations of those
cells that do not depend on the data expected from the neighboring processors
in the D-Mesh. Finally, the process waits for the end of the communication.
The iterative process is repeated as necessary.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 88

3.1 Experimental Results of the CA Implementation on a Cluster

In this section, we present some results obtained by using the skeleton
prototype previously described, which does not consider multicore facilities.
As a starting point, we propose to evaluate the performance of the described
implementation, and then compare it with the approaches proposed in the
next sections.
The cluster used for the experiments was a 32 Node IBM 3550, which is
equipped with two Dual-Core Intel(R) Xeon(R) 3.00GHz per node. Each
node has 4MB L2 (2x2). The nodes are interconnected by a Gigabit Switch.
The CA_Call prototype was applied to resolve the numerical solution of
Laplace’s equation by lattice relaxation, which is representative of the class
of two-dimensional CA models we study. The problem considers Von
Neumann neighborhood, which comprises the four cells (North/South/
East/West) orthogonally surrounding a central cell on a two-dimensional
lattice. The processes were distributed in a round robin fashion among the 32
quad-core nodes of the cluster. The Figure 2 shows the experiments called
nx1c. The references Mesh 2x2 and Mesh 4x4 correspond to 4 and 16 nodes,
respectively. All nodes are usable by the MPI processes with the restriction
that only a single MPI process runs on a given node. With this scheme, the
operating system chooses on which core of the node a process is executed.

Fig. 2. Execution times on a cluster of 32 multicore nodes. One core by node.

In addition to overall execution time, we measured the computation and
communication times for each lattice size. The Fig. 3 (left) shows that using
4 processors (Mesh 2x2), the computation ratios are much higher than the
communication, obtaining, for example, in the case of an automaton of one
million of cells a ratio of more than 90% of time involved in computation. As
the lattice size increases, a speedup close to ideal can be visualized in the Fig.
3 (right). This configuration achieves to balance the degree of partitioning,
the size of the problem and the communications involved. While for the same
partitioning scheme running on 16 processors (Mesh 4x4), the relation
between computing and communications begins to match. When this

COMPUTER SCIENCE & TECHNOLOGY SERIES 89

happens, the speedup is limited by the cost of communications and network
latencies. This fact, give us some possibilities for the development of the
proposals presented below.

Fig. 3. Computation-Communication relation. Speedup.

4. Multicore Environments

Multicore processors have emerged and are currently the mainstream of
general purpose computing. Quadcore processors are currently commonplace
and core count by chip is expected to increase drastically in the forthcoming
years. In HPC, these processors have been used as building blocks for cluster
of multiple sizes, by grouping together a variable number of nodes (each
containing a few multicore processors) through a commodity interconnection
fabric such as Gigabit Ethernet.
A real challenge for parallel applications is to exploit such architecture at
their potential. In order to achieve the best performance, many new factors
must be considered and studied.
MPI programming model implicitly assumes the message passing as
interprocess communication mechanism, so any existing MPI code can be
employed without changes for running in a multicore cluster. From a point of
view of programmers, pure MPI ignores the fact that cores inside a single
node work on shared memory.
Moreover, it is not required for the MPI library and underlying software
layers to support multi-threaded applications, which simplifies
implementation.
But, the technology in study involves considering the different kind of
communications among processes, depending on whether they are running on
different cores within the same node or different nodes. Chai et al. [5]
presented communication schemes on multicore clusters, where intra-chip,
intra-node and inter-node are described. The speed of communication among
cores in a multicore processor chip (intra-chip) varies with core selection,
since some cores in a processor chip share certain levels of cache and others

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 90

do not. Consequently, intra-chip interprocess communication can be faster if
the processes are running in cores with shared caches than otherwise. This
asymmetry in communication speed may be worse among cores on distinct
processor chips in a cluster node (intra-node) and is certainly worst if
communicating cores belong to distinct nodes of a cluster (inter-node).
As an alternative to the pure MPI model, Rabenseifner et al. [8] presented the
available programming models on hybrid/hierarchical parallel platform. The
authors outline that to seem natural to employ a hybrid programming model
which uses OpenMP [1] for parallelization inside the node and MPI for
message passing between nodes. It can expect hybrid models to have positive
effects on parallel performance. However, mismatch problems arise because
the main issue with getting good performance on hybrid architectures is that
none of the common programming models fits optimally to the hierarchical
hardware.
Fortunately, recent MPI-2 implementations such as Open MPI [2] or
MPICH2 [7] are able to take advantage of multicore environment and offer a
very satisfactory performance level on multicore architectures. In particular,
MPICH2 library is able to use shortcuts via shared memory in this case,
choosing ways of communication that effectively use shared caches,
hardware assists for global operations, and the like.
In the following sections, we describe some modifications to the CA
implementation given in section 3 in order to restructure the prototype code
and exposing an abstracted view of the multicore cluster to the CA
applications developer.

4.1 MPI Process placement

In a multicore cluster based on distributed memory system, the parallel
execution of P tasks, can be carried out by using several combinations
between nodes and cores per node. Considering a homogeneous hardware
environment -with a maximum number of nodes M and the same number of
cores per node C- the node-core combination is composed by: P

where and . This fact involves taking a decision
about what node-core combination delivers the best performance, through the
evaluation of the key features of the algorithm that can affect –positive or
negatively- the expected performance.
According to the previous issue, for the CA model implementation can to
exploit the underlying hardware, the MPI processes have to be placed
carefully on the cores of the multicore cluster. Whilst MPI standard is
architecture-independent, it is responsibility of the each implementation to
bridge the gap between the hardware performance and the applications.
The next experiments were carried out linking the skeleton to MPICH2. The
Fig. 4 shows the performance of 2-CA for lattices of 256x256, 512x512 and
1024x1024 cells when the degree of partitioning applied to each lattice was
4, 16 and 64. In this experimental case all cores of assigned nodes are usable
by the MPI processes with the restriction that only a single MPI process runs

COMPUTER SCIENCE & TECHNOLOGY SERIES 91

on a given core. The experiments consider two different MPI process
launching policies. The first policy uses the four cores per node in base to a
simple sequential ranking. These experiments are called:

 1nx4c, to represent four processes on a 2-mesh of processors (2x2)
 4nx4c, to represent sixteen processes on a 2-mesh of processors

(4x4)

 16nx4c, to represent sixty-four processes on a 2-mesh of processors
(8x8)

The last experiment, 32nx2c, represents sixty-four processes on a 2-mesh of
processors (8x8) using a round robin ranking. In this case, the mesh was
made up of two cores from each of the 32 available nodes in the cluster.
In the case of sequential placement policy, we observed that as the degree of
parallelism grows, the performance improves. However, the better
performance is achieved when we do not fully use all the cores in a node (32
nodes under-subscribed). This configuration effectively provides more
memory bandwidth to each core and improves the network latency
experienced by each core, but it is not recommended because running with
fewer than the maximum number of cores per node reduces overall
throughput of a computing cluster. Besides the problem to assign processes to
nodes, it comes other problem related to the distribution of processes to
specific cores inside a single node. We observed that the default policy used
by MPI not all distributions are able to establish automatically an affinity
mechanism between processes and cores.

Fig. 4. Multicore Execution Times

On Linux Operating System, the system call sched_setaffinity has
the ability to specify in which core within the node a certain process will
execute. We incorporate in the skeleton this facility based on the knowledge
of the hierarchy of multicore cluster.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 92

The Fig. 5 shows the execution time of the CA skeleton as a function of
lattice size, applying an explicit affinity between those neighboring processes
that exchange data and that have been allocated in the same node.
As expected, there are vast reductions in the execution times, showing an
average reduction of the order of 13%, 25% and 30% for 4c-Aff, 16c-
Aff and 64c-Aff experiments respectively.

Fig. 5. Multicore Execution Times using Affinity

It is important to realize that the CA skeleton was designed to allocate, in
matrix notation, the sublattice (ij) to the MPI process with rank

. In sequential order, ranks 0..3 go to the first node, ranks 4..7
to second node, and so forth. In round robin order, the MPI process rank 0
goes to the first node, rank 1 to the second node, and so forth. In any case, the
CA model topology maps efficiently to the hardware topology. This leads to
design a new policy to distributing sublattices to MPI process, which is
explained in the next section.

4.2 The Mapping Problem

By applying different strategies in the prototype, either in the skeleton code
(e.g., affinity) as in its execution environment (MPICH2), the skeleton
implementation has achieved a considerable reduction execution time.
No matter of use case, a relevant observation is that the parallel
implementation of the CA model, includes stable communication patterns in
which data interchange occurs among neighboring sublattices. However, the
methodology of allocating work to the MPI processes does not regroup
sublattices on the same node as much as possible in a way that it reflects the
behavior based on neighborhood of the CA model. This can be observed
graphically in Fig. 6 (left), for a 2-Mesh (8x8). All nodes have the same
setup, for example, sublattices 00, 01, 02 and 03 are assigned to node 0,
sublattices 04, 05, 06 and 07 to node 1 (not showed in the figure) and

COMPUTER SCIENCE & TECHNOLOGY SERIES 93

sublattices 10, 11, 12 and 13 to node 2. Each node must manage ten inter-
node communications (marked with deep blue), two intra-node (dark blue)
and four inter-chip (light blue).
The Fig. 6 (right) shows the configuration when the CA model
implementation applies a new mapping of sublattices to the different
processes. This new mapping accomplishes two objectives: (1) all nodes
manage the same amount of inter-node communication and (2) it takes
advantage of multicore nodes hierarchy. As can be seen in the figure, of the
four neighbors of a sublattice, one of them is mapped on the same chip with
which it shares the cache, the other is mapped on the same node with which it
shares the memory and the interchanges with the other two neighbors
inevitably require inter-node communication.

Fig. 6. Mapping of sublattices to MPI processes ranks in a 2-Mesh (8x8)

5. Results and Final Remaks

In a previous work, we have presented an implementation of parallel CA
skeleton. It attacks the classical problems inherent to parallel programming
such as task and data decomposition and communications. The skeleton frees
the non-expert user from the burden of dealing with low issues of parallelism.
The emergence of multicore processors with shared caches and non uniform
memory access causes the hardware topology to became more complex.
Therefore, a real challenge for parallel applications is to exploit such
architecture at their potential. In order to achieve the best performance, many
new factors must be considered and studied.
In this paper, we carried out experimental work that enabled us to understand
the behavior of the architecture and implementation of the skeleton. This was
possible because the parallel CA model is a typical application in which the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 94

data interchange occurs among neighbor sublattices and the communication
pattern does not change across multiple executions.
The first experiment scattered the processes among the nodes. The second
experiment regrouped the MPI processes on the nodes, but the operating
system chose the placement of them among the cores. The third experiment
also regrouped processes, but the skeleton implementation applied an affinity
based on the knowledge of the hierarchy of multicore cluster. These
experiments showed how the different MPI processes launching strategies
impact in the performance on a multicore cluster and they were useful for
exploring the hierarchy of the architecture.
Afterwards, we show a new mapping strategy that can obtain benefit in the
performance by adapting its communication pattern to the hardware affinities
among processes. Figs. 7 and 8 show a comparison of the implemented
strategies in this work considering tree different lattice sizes. For the
experiments called -Aff and c-Aff-Mpp, the MPI processes were
allocated on the same node as much as possible, i.e. in sequential order.

Fig. 7. Execution Time using 4 cores

For a small mesh size as 2x2 (partitioning degree=4), the multicore strategies
performed in much the same way as the non multicore one (nx1c). This
behavior illustrates how the high costs of sequential computation in each core
can not support optimizations. For 16 and 64 cores, the simultaneous
application of all multicore strategies are the cases that achieve better
performance.

COMPUTER SCIENCE & TECHNOLOGY SERIES 95

Fig. 8. Execution Time using 16 (left) and 64 cores (right)

6. Future Work

We have implemented a first version of the high performance 2-CA skeleton
and early experiences showed us that the strategy of allocation is very
important in a multicore environment. But, all developments were performed
on a particular type of cluster, of quadcore nodes. We are working to
generalize the mapping strategy to cluster with larger number of core per
node, where the hierarchy of memory access can be even greater. We are also
examining other factors that probably influence the performance of
communications, as cache and shared memory sizes.

Acknowledgments

We wish to thank the Department of Computer Architecture and Operating
Systems of the Universidad Autónoma de Barcelona for allowing us to use
their resources. Also to the Universidad Nacional de San Luis, the ANPCYT
and the CONICET from which we receive continuous support.

References

1. OpenMP architecture processing reference model. ITU-TX.901,ISO/IEC
10746-1. available at http://enterprise.shl.com/RM-ODP/default.html.

2. Open MPI: Open Source High Performance Computing.
http://www.openmpi.org.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 96

3. Norman, M.G., Henderson, J.R., Main, G. and Wallace, D.J. (1991). The
use of the CAPE Enviroment in the simulation of Rock Fracturing.
Concurrency: Practice and Experience 3, 687.

4. Saez, F. and Printista, M. (2009). Parallel Cellular Computing Model.
Proceedings of the IADIS international conference,Vol 2, 145-149.

5. Hartono, A., Chai, L. and Panda, D. K. (2006). Designing High
Performance and Scalable MPI Intra-node Communication Support for
Clusters. The IEEE International Conference on Cluster Computing
(Cluster 2006).

6. Cole, M.I. (1989). Algorithmic Skeletons: Structured Management of
Parallel Computation. Research Monographs in Parallel and Distributed
Computing. Pitman, London, UK.

7. MPICH2. http://www.mcs.anl.gov/mpi/.
8. Jost, G., Rabenseifner, R. and Hager, G. (2009). Hybrid MPI/OpenMP

Parallel Programming on Clusters of Multi-Core SMP Nodes. In
Proceedings of the 17th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP 2009), 427436,
Weimar, Germany.

9. Resnick, M. (1994). Turtles, Termites and Traffics Jams. The MIT Press.
10 Spezzano, D., Talia, G. (1996). CARPET: A Programming Languaje for

Parallel Cellular Processing. In Proc. 2nd European School on Parallel
Programming Environments (ESPPE 96).

11. Margolus, N. and Toffoli, T. (1987). Cellular Automata Machines A New
Enviroment for Modeling. The MIT Press. Cambridge, Mass.

12. Spezzano, G., Talia, D., Di Gregorio, S., Rongo, R. and Spataro, W.
(1996). A Parallel Cellular Tool for Interactive Modeling and Simulation.
IEEE Computational Science & Enginieering 3, 33.

IX
Information Technology Applied

to Education Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 99

Voice command adaptation for Jclic, for the special
education context

M. LUCRECIA MORALEJO1,3, STEFANIA OSTERMANN2, CECILIA V. SANZ3
AND PESADO PATRICIA1,3

1 III LIDI, School of Computer Science. Universidad Nacional de La Plata, Argentina.
2 School of Computer Science. Universidad Nacional de La Plata, Argentina.

3 CIC (Comisión de Investigaciones Científicas), Buenos Aires, Argentina.

Abstract. In this paper, the adaptation of an educational software
application with voice commands for students with motor disability
who have no speech impairments is proposed. As part of this process,
some educational program and adaptive software applications were
analyzed. Integration tests with several adaptive software applications
studied with JClic were also carried out to analyze the assistance they
can provide students with some type of motor disability in activity
solving. Different voice recognition (VR) motors were studied, as well
as their theoretical basis. The analysis of the VR motor Sphinx-4 was
detailed, studying the design architecture and development of the
selected educational tool, JClic. Finally, the development of a
prototype with the adaptation of JClic was carried out, with the
integration of Sphinx-4 to provide VR, in particular, for simple
association activities.

Keywords. ICTs, educational software, motor disability, voice
recognition, technical aides.

1. Introduction

Nowadays, there is a large number of software oriented to education on its
various levels. Many of these have been accepted or created taking into
account student diversity, but others are just standard tools that do not offer
any adaptation, which means they are targeted to a restricted set of students
[1]. People affected by some kind of motor disability usually have difficulty
in some basic skills related to perception (visual, auditory and tactile),
communication, movement and/or handling. As a consequence, they face
numerous obstacles and barriers that prevent them from developing skills,
carrying out activities, relating to other people and the environment, etc. For
people with special needs, the mere use of ICTs may represent the
achievement of a high degree of autonomy in their personal lives [2].
One of the reasons for the limited deployment of ICTs in special education is
the diversity and specificity of needs. Their use as tools, in this field, requires
very complex or varied developments, some customized, that are going to be
used by not-very-numerous groups.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 100

The current situation presents great challenges to overcome for a disabled
person to be in a position of equality with the rest of the population.
Therefore, the environment has to be appropriately adapted and technical
aides should be used that allow a maximum elimination of the barriers that
prevent disabled people to interact with their environment. However, this has
been the main conflicting issue: people with motor disabilities usually do not
have the technical aides and adaptations they need to interact with a hostile
environment [3].
These are the reasons behind the development of adaptations to a software
application that is very widely used in the educational context, such as JClic,
to facilitate its use by students with motor disabilities and thus encouraging
their intellectual development.
Even though there is a known relation between motor disability and speech
development difficulties, this is not so in every case. This paper is aimed at
people with motor problems, but with little or no consequences in language
development. This subset of people was selected because there is a wider
variety of technical aides for people with motor disability that use various
parts of the body, and we considered that the use of voice would be a good
alternative if the person affected by the disability had no difficulty in oral
expression. Also, this type of adaptation would require less effort from the
person to use the computer, which would help prevent injuries caused by a
“repetitive strain”.

2. Selection of Jclic as tool to be adapted

In the market, there is a large number of educational software applications
available. With the purpose of having a diverse panorama of available
applications, an analysis was carried out with those which offer various
functionalities and could be used on different educational levels. Among
those, JClic, Textoys, Hot Potatoes, Markin, Lim, and Wink were included.
Among these applications that were analyzed, the JClic tool, which is an
environment for creating, carrying out and assessing multimedia educational
activities, was selected. It is formed by three main components –
JClicAuthor, used for creating activities, JClicPlayer, used to solve activities,
and JClicReports, used to compile data from solved activities. This
application is used to carry out various types of educational activities:
puzzles, associations, text exercises, crosswords, etc. [4]. In general,
activities are not presented alone, but packed into projects. A project is
formed by a set of activities and one or more sequences that indicate the
order in which they are to be shown.
Some of the features that led to the selection of this software application were
that it is developed under a GPL license, which means that the source code of
the program is available for study and analysis. Thus, it was possible to carry
out the integration proposed. It is also one of the most widely used software
applications for carrying out educational activities (it has been used in the

COMPUTER SCIENCE & TECHNOLOGY SERIES 101

educational context for years now), so it was considered that it would be
interesting to develop a prototype to widen user diversity for these activities.
A second strong reason for this selection is that JClic can be used on various
operating systems, such as Windows, Linux, Solaris and Mac OS X. This is
because JClic was entirely developed with Java technology, which is
multiplatform.

3. Voice recognition

Technological advances have provided human beings new and greater
possibilities of developing a fuller lifestyle, but at the same time, this lifestyle
continuously demands new and specific knowledge and skills for individuals to
be able to take advantage of the possibilities being offered. In the case of people
with some type of disability, the progressive complexity of the social media may
however have the opposite effect to the desired social progress [5].
Thus, voice recognition is an alternative to communicate with computers,
allowing people with motor disabilities who cannot access the standard keyboard
and/or mouse to, through speech, perform actions that would not be possible for
them without this technology; in other words, the purpose is to convert human
speech into actions that the computer can interpret.
This technology is a part of Artificial Intelligence whose purpose is to allow
voice communication between human beings and electronic computers, i.e., the
process of converting a spoken message into text that allows the user to
communicate with the computer. The problem to solve with any VR system is
that of achieving the cooperation of a set of data from various knowledge sources
(acoustics, phonetics, phonology, lexicography, syntax, semantics and
pragmatics) in the presence of inevitable ambiguities, uncertainties and errors to
arrive at an acceptable interpretation of the acoustic message received [6]. A
voice recognition system is a computational tool that is able to process voice
signals issued by human beings and recognize the information they contain and
convert it into text or issue orders that act on a process [7]. Various disciplines are
involved in its development, such as: physiology, acoustics, signal processing,
artificial intelligence, and computer science.
There are some greatly significant components for VR systems: the dictionary,
grammar, the acoustic model, and the language model. The dictionary represents
the set of words or sounds to be recognized. Unlike a standard dictionary, each
input is not necessarily a single word; it can be as long as a sentence or two. The
smallest vocabularies may include one or two sounds to be recognized, whereas
very large vocabularies may have hundreds of thousands or more. Grammar is
defined based on the words that have to be accepted by the application, and can
be given through a style that is similar to the BNF.
The language model can be tackled through statistical models (Statistical
Model Language - SLM) or by using finite state grammars (FSG) [8]. A
statistical model captures word and word sequence probability. It is used in
the decoder to limit the search and, in general, makes a significant
contribution to recognition accuracy. A good model is that which accurately

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 102

models the expected input. It is characterized by its order, in terms of “n-
gram”, where “n” indicates the size of the window over which statistics are
computed. In general, the larger “n”, the more accurate the model. Also, as
“n” increases, more data are required to ensure a correct estimation of
statistics. A finite state grammar defines possible words, as well as their
possible orders.
An acoustic model is created from recordings, their respective transcriptions,
and the use of software to create statistical representations of the sounds
forming each word. The performance of the recognition achieved by the
acoustic model can be further improved by means of a language model,
which helps avoid the ambiguity among several similar words produced by
the acoustic model.
For the selection of the tool to be used, various voice recognition software
applications were analyzed, including Loquendo, Xvoice, NicoToolkit,
Sphinx, and Dragon Naturally Speaking. Their main features, functionalities
and requirements were studied.
Among the applications analyzed, Sphinx in its version 4 was selected. It is a
system developed at Carnegie Mellon University (CMU) [9]. This framework
is a system based on hidden Markov models (HMM) so, as a first step for its
operation, it must first learn the characteristics (or parameters) of a set of
sound units, and then use the knowledge acquired from these units to find the
most likely sequence of sound units for a given voice signal. This particular
tool was selected because it is widely used by researchers and developers
working in the area of voice recognition and, therefore, it is constantly
developed and updated.
Due to its licensing characteristics, it can be freely used for any development
and research activities. Also, its source code can be obtained, in case any
modification were required or its low level operation were to be studied. It is
completely developed with Java technology, the same as JClic. Thus, it
served the purpose of integrating both components without the problems of
language incompatibility. Additionally, it has been designed with a high
degree of flexibility and modularity, where each system element can be easily
replaced or modified. It is through the Configuration Manager that the
framework provides the possibility of dynamically loading and configuring
the various modules, during runtime. Thus, the components that are going to
be used, and their specific configuration, are determined. In particular, the
dictionary and grammar to be used during recognition can be specified.
Below, the specific proposal for this work is presented.

4. Adaptation proposal

The adaptation proposed has tackled the modification of JClic activities so
that they can be solved through the use of voice commands. To this end, the
simple association type of activity was initially considered.
In this type of activity that can be created in JClic, the user has to discover
the relations that exist between two sets of information. That is, two groups

COMPUTER SCIENCE & TECHNOLOGY SERIES 103

of data with the same number of elements are presented, where each element
in the source data set corresponds to an element in the target set. This one-to-
one relation is what makes this a simple association, in contrast with complex
associations, where each source element may correspond to 0, 1, or more
target elements.
As a first step to carry out this integration, some decisions had to be made, as
detailed below.

4.1. Stage 1: Analysis

One of the decisions considered was how to inform that the activity will be
done using voice commands.
It was considered that in this situation, the user needs the assistance of the
teacher, since the latter is in charge of deciding if the use of VR is
appropriate for each specific student. To do this, the program shows a prompt
on the screen before starting the activity. It asks the user to indicate if voice
recognition will be used.
Another important issue was deciding on the mechanism that should be
provided to identify each interactive element on the screen, with the purpose
of solving the activity. In this regard, various possibilities were analyzed.
This identification used by the user to name an element will be called label
from here on.
First, the possibility of using the letters of the alphabet as labels was
considered, but this turned out to be impracticable due to the phonetic
similarity between certain letters in Spanish, such as “b” and “d,” which
considerably decreased recognition success rates.
On the other hand, if the number of checkboxes to be used increased, it was
more natural to use combinations of digits (e.g., 10) than using combinations
of letters (e.g., ab). Also, not all letters could be used; those that caused
phonetic conflicts, such as the ones already mentioned, or those whose
pronunciation was complex, such as the case of letter "r," had to be removed
from the dictionary. This considered, the decision was made to use numbers
for the creation of labels. This solution presents certain advantages in relation
to the first option proposed.
Additionally, it was decided to include all necessary adaptations to avoid
difficulties in the pronunciation of certain numbers. To do this, alternative
pronunciations to the correct word were considered. For instance, users can
say “tes” instead of “tres,” “tinco” instead of “cinco,” “acetar” instead of
“aceptar,” among others.
Even though this decision results in a larger dictionary, it has positive
consequences as regards the number of users for whom the prototype would
be accessible. Thus, a balance between application performance and product
usability was attempted.
The second issue that had to be solved was that of knowing when the user
finishes naming the two elements to be joined. To do that, the use of
“connecting” words was considered. For instance, “uno con tres aceptar”
(one with three accept), which is interpreted as follows: the first number

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 104

("uno," one) represents a checkbox from the first set of data, the connecting
word “con” (with) indicates that the user is about to name the checkbox from
the second set, represented by the second number in the phrase ("cinco,"
five). The word “aceptar” (accept) confirms that the user wants to join both
checkboxes.
Also, as regards labels, a decision had to be made on where to add the
necessary code for the label to be inserted in the component representing the
checkbox with the information. It should be mentioned that they are
generated when JClicPlayer is run but only if the user indicates that voice
commands will be used to carry out the activity. This involved a decision,
since the presentation of the information from both sets had to remain
random, so that the activity did not appear already solved because of the use
of labels.
Finally, the necessary code was added in such a manner that the application
shows a message prompting for confirmation of what the user said. Thus,
when the user names the checkboxes to be joined, the program presents a
message with the words that were recognized. To confirm the recognition, the
user says “aceptar” (accept); otherwise, the word used is “cancelar” (cancel).
Below, the second stage of the work is presented, which was deciding on
issues related to the VR motor and implementing those decisions.

4.2. Stage 2: Configuration of Sphinx-4

First, in order to use Sphinx, the application has to be downloaded from the
official site [5]. The site also offers the source code of the tool for those who
wish to make changes. If, however, as in our case, no modifications are to be
introduced, all that has to be done is including the .jar file in the application
where it will be integrated.
Currently, Sphinx-4 has models that have been created with SphinxTrain
(training tool included), and it can be downloaded from the cmusphinx.org
site.
At first, the idea of creating the dictionary using the WSJ_8gau_13dCep
_16k_40mel_130Hz_6800Hz model that is included with the distribution of
Sphinx-4 was considered as a valid alternative, by replacing English
phonemes for those corresponding to Spanish. There are reviewed works in
the VR area that perform this type of solution1.
Even though phonemes correspond to the English language, during a first
stage they were used to generate the dictionary for the integration with JClic.
This solution was partially valid, since the recognizer worked with a high
success rate. However, two shortcomings were found. On the one hand, there
were errors in recognizer accuracy in noisy environments. This would be a
problem in those cases when the adaptations were to be used in schools,
where there are several students in the same classroom. On the other hand, if

1 Among these, the Mouse Advanced GNU Speech (Magnus) project was consulted:
http://magnusproject.wordpress.com/

COMPUTER SCIENCE & TECHNOLOGY SERIES 105

the dictionary were to be extended to use words with the letter “ñ,” there
were no phonemes in English that could represent the corresponding sound.
Based on these conclusions, it was decided to switch to a model based on the
Spanish language. After some research on the topic, two viable alternatives
were found. One of the options was training the recognizer with the
SphinxTrain tool, while the other was using models that had already been
trained and tested. For this development, an already trained model was
selected, but some tests were also done with the training tool in order to
understand and study its operation.
To do this, an already trained model that was available on the Web and
whose use was free, was used. The project is called Diálogos Inteligentes
Multimodales en Español (DIME, Intelligent Multimodal Dialogues in
Spanish), and it offers more than one acoustic model. The model selected for
this work is called DIMEx30-T22 [10].
Using this list of phonetic units, the dictionary to be used in the integration
with JClic was created. It would have been possible to incorporate the
dictionary exactly as presented by DIMEx30, but there were some words that
were missing, so it was redefined using the same original phonetic units. As
regards the language model, the definition of the acoustic model and its
architecture, they were used exactly as offered by DIMEx30.
To incorporate these files to JClic, first a .jar file had to be created which, by
standard, should follow the directory structure of the models provided by
Sphinx-4.
After creating the .jar file, it was included in the classpath of the application.
Also, Sphinx-4 had to be configured to incorporate the new acoustic model
files, dictionary, grammar, and language model. This was done through the
configuration file (Configuration Manager). In the following section, aspects
related to the development of the prototype are detailed.

4.3. Stage 3: Prototype development

In this section, aspects of the prototype including both components used for
the integration will be discussed. One of these is the procedure followed to
incorporate the voice recognition framework into JClic. To do it, a class
representing the recognizer was created in JClic, called VoiceRecognizer,
where the main methods are included, such as the method used for its
creation, as well as the method that is responsible for carrying out the
recognition itself. A package called “recognition” was created within the
“src” package of JClic. Then, this class is used in the builder method of the
Player class if the user chooses to work using voice recognition. This is
where the recognizer is created to start working.
Also, the class representing the recognizer was configured to inherit from
SwingWorker, even if Swing is not used, so that JClic and the recognizer run
on separate threads that interact with each other, so as to parallelize tasks.
Thus, both components can be executed seamlessly.
To carry out the task of solving a simple association activity, upon its
creation, the recognizer runs a method called getCommand() in the class

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 106

representing the corresponding activity. This method is responsible for
processing the voice input from the user and making the corresponding
decisions.
When an “aceptar” (accept) voice input is received, the system shows a
message with the values that are going to be processed; the user has to
confirm the values for the action to be performed.
For the confirmation, the word “aceptar” has to be uttered again. After
confirmation, a method is invoked that is responsible for executing the action
that the user wishes to perform. This method looks for the checkboxes that
were named, if they exist and have not already been selected. Then, it checks
within the internal structure of the elements if the correspondence is correct,
i.e., if the cells selected are part of the solution. If so, the elements are
removed from the set of possible elements to be chosen, and it moves on to
the next correspondence, until getting to the last one. When the last
correspondence is checked, the activity finishes.
JClic provides a module that can keep track of the time used in each activity,
attempts, correct answers, etc. Even though time can vary if voice recognition
is used, the counters for attempts and correct answers were kept unchanged to
allow the teacher to evaluate student performance for the activity. For this
reason, a message prompting the user to confirm the answer was added, since
most recognizers introduce a certain error rate. This means that the
recognizer could interpret a wrong answer and JClic would record it as a
failed attempt on the part of the student, harming student performance
evaluation. With these additions, the teacher can use the error counter
provided by default by JClic.
The prototype developed so far includes, as already mentioned, the resolution
of simple association activities. However, as part of this work, a proposal has
been made for a possible strategy to extend the prototype to the remaining
activities. This will be tackled in future works. In the following section, the
integration strategies proposed so far are assessed.

5. Assessment and conclusion

The prototype described in this article was provided to experts in the field
(working in the various areas involved in this work) for them to express their
opinions.
This type of test was carried out first in order to analyze the results and take
them into account for future lines of research work. After this stage, the
prototype will be tested with end users, including both teachers and students.
The reason to carry out this testing with the end users as a second stage was
to avoid having students experience possible failure situations, typical of the
software testing and strategy itself stages. Also, this methodology offers the
advantages of producing quality feedback and a thorough analysis by the
experts. Experts offer their thoughts about the object to be assessed. Through
this expert opinion, it is expected to obtain reasonably good assessments and
guesses in situations where no exact quantifications can be obtained, or doing

COMPUTER SCIENCE & TECHNOLOGY SERIES 107

so is not advisable [11]. However, these assessments can, and should, be
confirmed or modified in time, as information on the study object is
collected.
A survey with close-ended and open-ended questions was used as assessment
instrument to collect the information needed to asses the prototype.
The following results were obtained as a conclusion of the surveys answered
by the experts: The selection of the educational software to be adapted was
good, as well as the use of voice commands as technical aid. As one of the
experts mentioned, this option can be used as a complement with other tools
and is not necessarily better or worse than any other adaptation, but a
different alternative that opens a road of new possibilities. Even though only
a few experts commented on the selection of the voice recognition motor,
those who did agreed that it was correct. The main aspects to be highlighted
are its availability and possibilities as regard functionality. In the context of
this work, it is considered that the use of Sphinx-4 was convenient, in
agreement with the feedback received from the experts.
Finally, the solution strategy proposed was analyzed, and the experts
expressed their agreement and offered some alternatives to take into account
in future works. Some of these aspects are detailed in the following section.

6. Future lines of work

Even though a significant amount of knowledge has been collected on
various tools, both educational and in relation to VR, there are still certain
modifications, improvements and extensions to be developed in the
adaptation presented, considering as well some suggestions analyzed after the
assessment carried out.
The following future lines of work are proposed:

- Carrying out tests with students and teachers.
- Allowing label configuration (the teacher could choose to
label each checkbox as desired)

One of the improvements that has already been implemented is how to
analyze if voice commands will be used to solve the activity. Before, every
time a project was loaded from JClicPlayer, the user was asked if the activity
would be solved by means of voice commands. Since JClic is used beyond
the context of special education, this prompt was oftentimes unnecessary,
since no student would be using voice commands. In the cases of special
education, it will be a decision made for each student. For this reason, this
decision was initially the responsibility of the teacher. The teacher decides if,
when the project is loaded, the prompt to use voice commands is shown or
not.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 108

Currently, the prototype is being extended to the remaining activities in JClic.
The next type of activities to be added will be those of complex association
and memory games.

References

1. Sánchez Montoya, R. (2007). “Capacidades visibles, tecnologías
invisibles. Perspectivas y estudios de casos”. Seminario Internacional
Virtual: “Las nuevas tecnologías de la información y la comunicación
aplicadas a las necesidades educativas especiales”. Perú.
http://www.ordenadorydiscapacidad.net/Capacidades.pdf

2. Castellano, Sacco, Zurueta (2003). “La utilización de software de uso
general y aplicaciones específicas en el área de las discapacidades
motrices”. IV Congreso Iberoamericano de Informática en la Educación
Especial. http://www.niee.ufrgs.br/eventos/CIIEE/2003/

3. Perez, F.J. y Rodríguez Vázquez, J. (2004). “Tecnología. Educación y
diversidad: retos y realidades de la inclusión digital. Propuestas de
futuro”. 3º Congreso Nacional de Tecnología. Educación y Diversidad.
Conclusiones. Biblioteca TECNONEET.
http://www.tecnoneet.org/conclu04.php.

4. http://clic.xtec.cat/es/jclic/index.htm.
5. http://www.tecnoneet.org/docs/2002/2-82002.pdf.
6. Bernal Bermúdez, Bobadilla Sancho y Gómez Vilda (2000).

“Reconocimiento de voz y fonética acústica”. México, Alfaomega grupo
Editor.

7. Rocha, Luis (1986). “Sistemas de reconocimiento de voz”. Revista
telegráfica electrónica. Agosto, 1172-1180.

8. http://sphinx.subwiki.com/sphinx/index.php/Language_model.
9. http://cmusphinx.sourceforge.net/sphinx4/
10. http://leibniz.iimas.unam.mx/~luis/DIME/recursos.html.
11. http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnica

s/NTP/Ficheros/401a500/ntp_401.pdf.

COMPUTER SCIENCE & TECHNOLOGY SERIES 109

E-mail processing using data mining techniques

AUGUSTO VILLA MONTE, CÉSAR ESTREBOU AND LAURA LANZARINI

III-LIDI (Institute of Research in Computer Science LIDI).
Faculty of Computer Science, Universidad Nacional de La Plata, Argentina.

{avillamonte, cesarest, laural}@lidi.info.unlp.edu.ar.

Abstract. A proposal to use data mining techniques to analyze e-mails
corresponding to courses carried out through a distance education
platform is made. The purpose of this type of analyses is determining
which are the groups of relevant words that allow establishing
communication topics of interest. Even though this new information
can have various applications, they all involve an improvement in
student service. The method proposed has been applied to the e-mails
of the PACENI Project (Support Project for Improving First-Year
Teaching in Courses of Studies in Exact and Natural Sciences,
Economic Science and Computer Science) with satisfactory results.

Keywords. Information Retrieval, Text Mining, e-mails analysis, topic
detection.

1. Introduction

Distance education platforms are a learning environment through which
teachers and students interact by performing various types of activities.
In this context, electronic mail is the most commonly used mechanism, and it
is therefore of interest for the study of techniques that allow analyzing and
modeling the information shared through this medium. For example, it would
be relevant knowing the topics most frequently enquired by students. This
could have various applications:

• It would allow detecting shortcomings in the information provided,
for instance, lack of information regarding exam dates or the need for
reinforcement in any given topic because the theoretical material
provided has not been clear enough.

• Automatically organizing e-mails to improve student service.

• Automatically identifying core discussion topics in order to improve
decision-making.

An e-mail has a date, a set of addresses, a subject, and a body. The latter,
even though it may contain various types of information, consists basically of
text and can therefore be analyzed by means of text mining techniques.
Text mining is a branch of Data Mining, and its main purpose is the
extraction of high-quality information from documents.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 110

It has numerous applications in various areas:

• In Biomedicine, it has been used to automate the identification and
extraction of information from the numerous papers published each
year [1].

• In Molecular Biology, it has been used to automatically extract
information about genes, proteins and their functional relations from
large collections of texts [2].

• In Education, it has been used to facilitate resource searches by
combining the documents from various Web sites from related
organizations [3].

• In the commercial context, it has been used to analyze the information
generated by a consumer complaint Web site in order to obtain word
relations that allow understanding the data [4],

• In the hospitality industry, using information available on Internet
about hotels and possible tourists, it has been used to develop
competitive strategies by analyzing demographic features and
browsing habits [5].

All these works are representative of the diversity of areas in which text
mining techniques are applied. However, regardless of the type of problem at
hand, in most of the cases the main purpose is determining the relevance of
the document based on a previous query. This allows more efficient
automatic classification and access.
However, the extraction of information from e-mails is based on some special
considerations, since, in general, the texts are short and their wording is quite
abbreviated. Thus, some of the metrics used are no longer relevant, such as
text length or the frequency of any given word within it.
The method proposed in this paper was applied to the e-mails of the Tutors
Program (PACENI). This program is promoted by the Ministry of Education
and its purpose is reducing the number of students that drop out from their
university courses of study during their first year. This program was
implemented at UNLP in the 2009 school year. Through it, first-year students
are accompanied by tutors, post-graduate students or advanced students, who
help them overcome the initial difficulties of university life.
For the processing stage, a dictionary built automatically from the reduction
of each word to its root (stemming) [6] and its subsequent selection was used.
By using this dictionary, each e-mail was represented as a numerical vector
and was then used to train a SOM (self organizing map) neural network.
From the weights of each neuron in the trained network, the most frequent
combinations of terms can be identified. Finally, association-rule metrics are
used to establish the relevance of each combination.
This paper is organized as follows: in Section 2, some related works are
mentioned; in Section 3, SOM networks and their training mechanism are
briefly described; in Section 4, the method proposed is detailed; in Section 5,

COMPUTER SCIENCE & TECHNOLOGY SERIES 111

the results obtained are presented; and in Section 6, conclusions are drawn
and future lines of work presented.

2. Related work

Obtaining information from e-mails is a relevant task whose main purpose is
classification and interpretation.
In this sense, the identification of spam e-mails is a generalized problem and
has therefore received a lot of attention [7, 8, 9, 10, 11].
There are also approached that seek to automatically identify the author of
the e-mail or the core subject of the message. For example, [12] tries to
identify the person writing the e-mail from features based on number of
words, number of lines, and the frequency of significant key words. [13]
proposed a method that assesses the words from e-mails based on their age.
The age of a word is calculated based on the frequency with which e-mails
including it are received. The problem of this approach is the number of
different words that can be used to refer to the same concept.
There is a current approach that has become popular with the appearance of
various social networks in work environments. Nowadays, the development
of collaborative tasks and the use of e-mails as communication mechanism
are common. This creates the need of solving some participation-related
issues, which implies identifying project members and their categories, as
well as central work topics [14].
The general objective of this paper is related to this latter approach—we try
to obtain information from a group of e-mails generated by teacher-student
relations during a course carried out through a distance-education platform.

3. SOM (Self-Organizing Maps)

The SOM (Self Organizing Maps) neural network was defined by Kohonen
in 1982 [16]. Its main application is the clustering of available information.
Its ability to preserve input data topology makes it a visualization tool that is
widely used in various areas.
It can be represented as a two-layer structure: the input layer, whose function
is only to allow information to enter the network, and the competitive layer,
which is responsible for the clustering task. The neurons that form this
second layer are connected and have the ability of identifying the number of
“hops” or connections that separate them from each of the remaining neurons
in this level.
Figure 1 shows the structure of a SOM network where the input layer is
formed by a D-dimensional vector and the competitive layer has 9x7=63
neurons. Each neuron in this second layer has 8 direct neighbors (immediate
connections). This connection pattern can change depending on the problem
to solve. Each competitive neuron is associated to a weight vector

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 112

represented by the values of the arches that reach this neuron from the input
layer. These values, for all the neurons in this layer, are represented in the
figure by means of the W matrix.

Fig. 1. Classic structure of a SOM network

Network weights, W values, are initially random, but they adapt with the
successive presentations of input vectors.
Since this is a competitive structure, each input vector is considered to be
represented by (or associated with) the competitive neuron that has the most
similar weight vector based on a given similarity measure.
The final value of W is obtained by means of an iterative process that is
repeated until the weight vectors do not present any significant changes or, in
other words, until each input vector is represented by the same competitive
neuron than in the previous iteration.
In each iteration, the neuron representing each input vector is determined.
This neuron is called "winning neuron", since it is the one that "wins" the
competition to represent the vector (is the most similar one so far). Then, the
weight vector for that neuron and its neighborhood are updated following
equation (1).

 niwxww ijiijij ..1* (1)

where j is the competitive neuron whose vector is being updated and α is a
value between 0 and 1 that represents a learning factor.
Equation (1) has variations that can be consulted in [15].
The concept of neighborhood is used to allow the network to adapt correctly.
This implies that neighboring competitive neurons represent similar input
patterns. For this reason, during the training process (obtaining W values) is
started with a wide neighborhood that is then reduced as iterations occur.

COMPUTER SCIENCE & TECHNOLOGY SERIES 113

Figure 2 shows the pseudo-code corresponding to the basic process for the
adaptation of the SOM network.

W Random initial values.
Neighborhood set the size if the initial
neighborhood
NoIteReduction set the number of iterations that
must

occur to reduce the neighborhood
while termination criterion is not reached do

for all each input vector do
Input the vector to the network and
calculate the winning neuron
Update the winning neuron and its
neighborhood

end for
Reduce the neighborhood {if applicable based on
NoIteReduction}

end while
Fig. 2. Basic training pseudo-code for the SOM network

4. Proposed method

To be able to operate with the network described above, e-mails have to be
represented by numerical vectors. To this end, a dictionary of terms will be
built by processing an only text formed by the concatenation of the subject
and body of each e-mail. Each word in the text is reduced to its root by
applying a stemming algorithm [17]. This process is important for processing
text in Spanish due to the syntactic changes related to gender, number, and
tense. For example, words such as ‘trabajo’ (work), ‘trabajar’ (to work),
‘trabaja’ (he/she works), ‘trabajos’ (the works), ‘trabajoso’(laborious) are
reduced to the common root ‘trabaj’ by applying the stemming algorithm.
Once the root of each word is obtained, its frequency of use in the entire text
and its average length are calculated. By means of statistical analysis
processes, terms that are less relevant are discarded; the dictionary to
represent e-mails is then built with the remaining terms.
Then, each e-mail is represented by a fixed-length binary vector. The number
of elements in the vector is determined by the number of words in the
dictionary. Each position will have a value of 1 if the word appears in the e-
mail or a value of 0 if it does not.
Be D the number of words in the dictionary and M the number of available e-
mails, each e-mail will be represented as follows:

 Mimmmmail iDiii ..1,...,, 21 (2)

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 114

otherwise

imaileiniswordif
m

j
ij

0

1
 Dj ..1 (3)

Using the vectors defined in (2), the SOM network is trained by applying the
algorithm shown in Figure 2.

Be N the number of competitive neurons that form the SOM network, W
k
 will

be the weight vector of the kth competitive neuron. When the training stage is
complete, the weights of these neurons will have the following format

 NkwwwW kDkkk ..1,...,, 21 (4)

where

 NkkjjmailWmailWMswordno sjskk ..1,,/..1.

(5)

 Dj
wordno

m

w
k

wordnos
sj

kj
k ..1

.#
.

 (6)

Therefore, if the subset of e-mails represented by the same competitive
neuron includes the same word, the vector that is associated with that neuron
will also have a value of 1 in the position corresponding to that word.
In other words, the positions that have high values (close to 1) in the vector
associated to a competitive neuron represent words that appear repeatedly in
the emails that have this neuron as the winning one.
The method proposed in this paper uses the self-organizing maps to achieve
two objectives: in the first place, to discard the words that are less significant,
and secondly, to determine the most relevant word associations. Both these
tasks are of interest, since the former helps not having to make an a priori
decision regarding the size of the dictionary, and the latter is the solution to
the problem presented.
The less significant words will be those words whose own weight is not
enough to be clearly represented by a limited subset of neurons. This is the
case of words that are combined with many terms or that are infrequently
used. In either case, these are terms that provide little information, since in
the first case they do not determine the subject matter and in the second case
are not sufficiently supported (number of occurrences) to be considered
significant. The trained SOM network is able to detect these words because
they do not go beyond a minimum threshold in any of the vectors associated
with the competitive neurons (Equation 7). Therefore, the vectors of W
(Equation 4) are converted to binary values by using this threshold.

COMPUTER SCIENCE & TECHNOLOGY SERIES 115

 NkwbinwbinwbinWbin kDkkk ..1,...,, 21 (7)

where

otherwise

thresholdwif
wbin

kj
kj

0

1
 Dj ..1 (8)

and irrelevant words are obtained with equation (9).

 NkwbinDjwordWordsIrrelevant kjj ..1,0|, (9)

It should be mentioned that each element of Wbink will have a value of 1 at

the positions corresponding to relevant terms. This allows identifying the
frequent terms in the e-mails represented by the kth neuron of the network,
which can be used to form various association rules.
An association rule is an expression with the following format

IF (antecedent) THEN (consequence)

where both the antecedent and the consequence are logical expressions
referring to the words present in the e-mail.
The following are examples of association rules:

• IF (’board’ ’exten’ ’certific’) THEN (’transcr’ ’present’

’academ’ ’approve’)

• IF (’pending’) THEN (’academic subject’ ’certificate’)

The first rule indicates that each time an e-mail has the words ’board’, ’exten’
and ’certific’, the words ’transcr’, ’present’, ’academ’ and ’approve’ are also
present. This rule refers to the approval by the academic board of extensions
to present school transcripts. The second rule shows the relationship between
the word ’pending’ and the words ’academic subject’ and ’certificate’. It also
refers to pending academic subject certificates.
Rules are formed by combining in all possible ways the terms that appear in
any given weight vector defined as in equation (7).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 116

There are various metrics that can be used to determine the importance of a
rule. The most common ones are:

• Support: It is the proportion of examples (e-mails) that fulfill the rule.
For example, if the words ’pending’, ’academic subject’ and
’certificate’ are present in 300 e-mails from a total of 3,000 e-mails,
the support of the rule

IF (’pending’) THEN (’academic subject’ ’certificate’)

 will be 300/3000 = 0.1

• Confidence: it is the quotient of the number of examples that fulfill
the rule and the number of those that only fulfill the antecedent. Let

us consider again the rule IF (’pending’) THEN (’academic subject’

’certificate’) verified by 300 of the 3,000 available e-mails. Let us
assume that after revising the available e-los, it is observed that 350
of those contain the word ’pending,’; the confidence of this rule will
be 300/350 = 0.85

The importance of the rules obtained in this paper depends on the product of
the two previously mentioned metrics. Therefore, the result that can be
obtained is the interpretation of the most relevant rules.

5. Results

The method described in Section 4 was applied to the 2,995 e-mails from the
Tutors Program (PACENI) between April and November 2009.
The initial dictionary was formed by 2,935 term roots; 287 of these were
selected by statistical analysis. The selection criterion used had three stages:

i) First, words of atypical lengths were suppressed, considering as such
all words whose value was more than 1.5 times the distance between
the first and the third quartile (fourth dispersion). In the case of the
PACENI e-mails, words that were longer than 18 characters or shorter
than 3.5 characters were discarded. The average length was assessed
based on all words that corresponded to the same root term.

ii) When analyzing the plot box corresponding to the occurrence
frequency for each root term, it was observed that a large part of the

COMPUTER SCIENCE & TECHNOLOGY SERIES 117

population had a low value. That is, the most commonly used terms
were the minority. Therefore, we decided to use those terms with
extreme frequency. For the measured population, these were the terms
with more than 49 occurrences.

iii) Finally, in the plot box of the reduced population, extreme values
corresponding to the terms that are very frequently used in all e-mails
are still observed. This reduces their importance. For this reason,
those terms whose frequency was higher than 613—extreme value—
were removed.

Figure 3 shows the plot box diagrams mentioned in ii) and iii).
A SOM network with 13x13 competitive neurons with 4 neighbors per neuron
was used. The initial size of the neighborhood was set as a third of the number of
rows in the network, that is, 4 neurons. This value is high, since it is the radius
(number of “hop”) that determines the area around the winning neuron where
weight vectors are modified. The reduction was carried out every 30 iterations,
with a maximum of 180 iterations. This value ensures that successive reductions
will be carried out until the adaptation only affects the winning neuron.
After training the network, all weights that were not significant were
removed from the matrix W; to this end, a threshold of 0.85 was used.
With the weight vectors of each competitive neuron, the combinations of
terms that allow clustering the e-mails were determined.

Fig. 3. Plot box diagrams corresponding to the successive reductions of dictionary
terms as detailed in 5.ii) and 5.iii)

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 118

To measure their relevance, they were used to form the corresponding
association rules, considering all possible combinations. The combination
was associated with the maximum value obtained by multiplying its support
and confidence values.
After 50 independent training sessions of the neural network, the most
commonly occurring terms are the following:

(’transcript’, ’academic’, ’approved’, ’board’, ’extend’, ’present’, ’certific’)
(’beta’, ’classroom’, ’inscription’, ’English)’
(’included’, ’scholarship’, ’ministry’, ’ICTs’, ’find’, ’http’, ’inscription’)
(’alumns’, ’inscription’, ’Guaraní’, ’segundo’)
(’situation’, ’know’, ’tutor’, ’question’, ’contact’)

These combinations appear in various orders, but always within the 20 first
best positioned ones. This determines their importance within the set of e-
mails. Another characteristic that was observed after the various tests is that
the neural network allows discarding between 100 and 120 terms by means of
the threshold function indicated in equation (8). This reduces considerably
the time required to obtain the association rules to be measured.

6. Conclusions and future lines of work

An e-mail analysis mechanism based on data mining techniques has been
presented. Even though the results obtained only refer to the 2009 Tutors
Program of the PACENI, this analysis can be applied to other courses with no
considerable changes.
Building the initial dictionary is essential to obtain good combinations of
terms. The proposal presented in this paper included a statistical pre-
processing so as to generate the dictionary as automatically as possible. This
stage can be improved by manually entering additional information.
We are currently working with a dynamic SOM network so that adaptability
is not limited. With this modification, we expect to solve the problem of
neuron saturation. This is observed only in 0.2% of network neurons, but it
may lead to the analysis of terms that are discarded with the current
architecture.

References

1. Ananiadou, Sophia, Douglas B. Kell, Jun-ichi Tsujii (2006). Text mining
and its potential applications in systems biology. Trends in
Biotechnology. Elsevier Science London. Vol. 24, No 12, 571-579.

2. Krallinger, Martin, Alfonso Valencia (2005). Text-mining and
information-retrieval services for molecular biology. Genome Biology.
BioMed Central. Vol. 6, No 7, Article 224.

COMPUTER SCIENCE & TECHNOLOGY SERIES 119

3. Ananiadou, Sophia, Paul Thompson, James Thomas, Tingting Mu, Sandy
Oliver, Mark Rickinson, Yutaka Sasaki, Davy Weissenbacher, John
McNaught (2010). Supporting the education evidence portal via text
mining. Philosophical Transactions of The Royal Society A. 368(1925):
3829-3844.

4. Kuan C. Chen (2009). Text Mining e-Complaints Data From e-Auction
Store With Implications For Internet Marketing Research. Journal of
Business and Economics Research. The Clute Institute for Academic
Research. Vol. 7, N. 5, 15-24.

5. Kin-Nam Lau, Kam-Hon Lee, Ying Ho (2005). Text Mining for the Hotel
Industry. Cornell Hotel and Restaurant Administration Quarterly. Cornell
Hospitality Quarterly. Vol. 46, No 3, 344-362.

6. Figuerola, Carlos G., Raquel Gómez, Angel F. Zazo Rodríguez, José Luis
Alonso Berrocal (2002). Spanish Monolingual Track: The Impact of
Stemming on Retrieval. Evaluation of Cross-Language Information
Retrieval Systems. Springer Berlin/Heidelberg. Vol. 2406, 253-261.

7. Lorenzetti, Carlos M., Rocío L. Cecchini, Ana G. Maguitman, András A.
Benczúr (2010). Métodos para la Selección y el Ajuste de Características
en el Problema de la Detección de Spam. XII Workshop de
Investigadores en Ciencias de la Computación, Área Agentes y Sistemas
Inteligentes.

8. Mehrnoush Famil Saeedian, Hamid Beigy (2009). Dynamic classifier
selection using clustering for spam detection. IEEE Symposium on
Computational Intelligence and Data Mining.

9. Tsan-Ying Yu, Wei-Chih Hsu (2009). E-mail Spam Filtering Using
Support Vector Machines with Selection of Kernel Function Parameters.
Fourth International Conference on Innovative Computing, Information
and Control.

10. Wanli Ma, Dat Tran, Dharmendra Sharma (2009). A Novel Spam Email
Detection System Based on Negative Selection. Fourth International
Conference on Computer Sciences and Convergence Information
Technology.

11. Xiao Li, Junyong Luo, Meijuan Yin (2010). E-Mail Filtering Based on
Analysis of Structural Features and Text Classification. Second
International Workshop on Intelligent Systems and Applications.

12. Olivier de Vel (2000). Mining E-mail Authorship. In Proceedings of
KDD 2000 Workshop on Text Mining.

13. Jason D. M. Rennie (2000). ifile: An Application of Machine Learning to
E-Mail Filtering. In Proceedings of KDD 2000 Workshop on Text
Mining.

14. Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, Anand
Swaminathan (2006). Mining Email Social Networks. In Proceedings of
ICSE 2006 Workshop on Mining Software Repositories.

15. Teuvo Kohonen (1997). Self-organizing Maps. 2nd Edition. Springer.
16. Teuvo Kohonen (1982). Self-organized formation of topologically correct

feature maps. Biological Cybernetics. Springer Berlin/Heidelberg. Vol.
43, No 1, 59-69.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 120

17. Barrenechea Pérez, Dennis D. (2006). A Spanish Stemming Algorithm
Implementation in PROLOG and C#. Accessed at
www.ai.uga.edu/mc/pronto/perez.pdf.

COMPUTER SCIENCE & TECHNOLOGY SERIES 121

Prototype for the virtualization of group
moderation based on the Metaplan technique

ALEJANDRO H. GONZÁLEZ1, CRISTINA MADOZ1, DAN HUGHES2 AND
MARÍA FLORENCIA SAADI2

 Institute of Research in Computer Science. III- LIDI. School of Computer Sciences,
Universidad Nacional de La Plata, Argentina.

1{agonzalez, cmadoz}@lidi.info.unlp.edu.ar.
2 {florsaadi, danlaplata}@gmail.com.

Abstract. In this paper, the research work carried out on group
moderation strategies is presented, particularly the technique
known as Metaplan technique. Through a specific visualization
and questions technique, ideas and solutions for problems,
opinion and agreement development, goal formulation,
recommendations, and action plans are sought for. The
development of this technique favors maintaining group
motivation throughout the process. In this paper, the creation
of a prototype is proposed for the virtualization of some stages
with the purpose of expanding the training scope and
facilitating team collaborative work. For the adaptation to the
virtual format, the aspects of time, space, style, and rhythm of
each student are considered, promoting their autonomy in the
process. Finally, the initial results obtained with the prototype,
which will be incorporated into a virtual teaching and learning
environment, are presented.

Keywords. Metaplan, virtual environments, collaborative work,
interaction.

1. Introduction

Mankind has gone through various technology revolutions, namely, the
agricultural and crafts revolution, the industrial revolution, the post-industrial
revolution, and the information or knowledge revolution, which is currently
ongoing.
The agricultural revolution was characterized by the use of animal strength,
crop rotation, agriculture automation, and seed selection; the industrial
revolution was characterized by the development of the textile and steel
industries, the use of steam as energy, and the appearance of electricity; and
the current revolution adopts as its basic development element information
and communication technologies.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 122

The Information and Communication Technologies (ICTs) applied to
education are more than communication media and channels. They are modes
to take possession of reality, the world, and knowledge. They allow
generating virtual spaces where teaching and learning activities can be
developed. When using ICTs, their technological characteristics and didactic
possibilities should be taken into account. [1]
In the area of education, the presence of ICTs can be taken as a reality, and
the possibilities, advantages, or results have become a matter of significance
in the analysis by experts, the priorities of education administrations, and the
changes suggested in the formation and ongoing training of teachers. [2] [3]
Group work becomes relevant with the incorporation of ICTs, and the
interaction among several people can be used to achieve greater diversity in
concepts and criteria [4]. People interacting with others usually are enriched
with new opinions, and are able to draw new conclusions and tackle issues
that would be more limited if the person worked alone or had only his or her
own opinions or criteria. [5] [6]
The Metaplan technique can be considered as a group moderation
methodology that provides, through visualization techniques and questions, a
set of results in various fields of action such as planning, problem solving,
participative decision making, needs diagnosis, group assessments, feedback,
teaching and learning processes, debates, and workshops, among others. [7]

2. Collaborative Work

Collaborative work is defined as the set of intentional processes of a group to
achieve specific goals, and the set of tools designed to support and facilitate
such work [23]; for instance, in the context of an organization, group work
with technological support is presented as a set of strategies aimed at
maximizing the results and minimizing the loss of time and information to
benefit organizational goals.
The greatest challenge is to achieve the motivation and active participation of
the people involved in the process. Collaborative work or groupware are
terms used to refer to the environment in which all project participants work,
collaborate and help each other to carry out the project.
Belonging to a group with a common goal allows tightening ties among
participants and generates in them a sense of belonging. Wikipedia is an
example of collaborative platform whose purpose is the free dissemination of
knowledge through the hard work of millions of users who update it on a
daily basis.
From an information technology standpoint, the term “groupware” is defined
by integrating the software and the human components. Groupware is not
only a matter of technical issues; the organizational and social implications of
introducing these new work tools should also be considered. It is more
effective when software is adapted to support the goal of the group and the
process used. The evolution of the human and the technological system must

COMPUTER SCIENCE & TECHNOLOGY SERIES 123

be balanced so that the social implications of that progress are not forgotten,
so that new organizational structures and roles are created [8].
From a pedagogical viewpoint, the central approach of Distributed Cognition
can be mentioned, which tries to understand the organization of cognitive
systems (people and environments). This theory wants to extend its limits
beyond what is usually considered to be cognitive, and go into the realms of
individuality to take in the phenomena emerging in social interactions as well
as in interactions between persons and the structure of their environments. [9]
There are various elements that allow seeing the DCG. For instance, Internet
may consist in making distributed cognition feasible, functional and relevant:
a social network where users interact through publications and comments – a
simple page with links can be a distributed cognition process. But maybe the
most noteworthy aspect is how information technologies can technically
make massive distributed cognition processes possible that would be very
hard to organize analogically. [10]

3. Metaplan

The Metaplan uses the maieutic method, of an inductive nature, based on
dialectics (it assumes the idea that truth is hidden within the mind of each
human being).
In essence, it consists in using dialogue to achieve knowledge. This method
has various phases that start with a question asked to the other person and
then the answer received is refuted through the use of general concepts,
showing if there were mistakes or not in the reasoning process established,
and arriving at a new concept, different from the previous one.
The basic idea of the Socratic method of teaching is that the teacher does not
inculcate knowledge in the students, since their minds are not considered as
an empty receptacle or box in which the various truths can be introduced; to
Socrates, it is disciples who extract the knowledge from themselves [11]
The maieutic method offers interactivity – by requiring the exercise of one's
own reason, people learn because they are actively involved in the process.
[12]
Nowadays, it is considered that people can be strongly affected by their
environment; this causes a change in the cognitive perspective, going from an
approach centered on the individual processing of the information to a new
approach that considers human agents and environments (including artifacts)
while they are located in their contexts. Distributed Cognition (DCG) plays a
special role in the understanding of the interactions between people and
technologies. [13]
The Metaplan is an option for group work and is a method to lead meetings
and group sessions of any type with the purpose of maximizing the
interaction level of each and every participant.
It is developed through sessions that are coordinated by a moderator.
One of the basic principles presented in the Metaplan is the permanent
visualization of the development of the meeting. Participants debate and take

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 124

down written notes of their ideas on cards that are placed on panels that
everyone can see. Thus, in a short time, many contributions are obtained. The
ideas contributed by others, always in sight on the panels, encourage the
production of more ideas.
The moderator has techniques for each phase of the work, and offers the
group a public strategy and various ways for posing questions and answering
them, so that every participant can anonymously contribute to the evolution
of the issues. The valuations, priorities, assessments, considerations, etc.,
carried out easily reflect opinion trends and generate transparency when
going into decision making.
The easy access to work panels encourages participants to complete, modify
and specify the concepts. The application of the Moderation Method carries a
motivation effect: Since simple media are used (cards, labels, posters), it has
some ludic characteristics that favor creativity and make meetings more
enjoyable.[14]
In general, the method is used to manage large groups, but it can be adapted
to small work groups. It can be used to create, collect, structure and visualize
ideas. Priorities can be established and assessments can be carried out.
It can be used for people to present seminars to each other or to present
various solutions to a case study.

3. 1 Description of the Technique

Metaplan is a set of "Communication Tools" to be used in groups that look
for ideas and solutions for their problems, for the development of opinions
and agreements, for the formulation of goals, recommendations and plans of
action. It was conceived by Eberhand Schelle in Germany. The main
pedagogical instrument is an interaction-type situation: based on a question
or a thesis presented by the trainer, simultaneous responses, visible to all
participants, are elicited. A tone of attention and tension can be maintained
throughout the process due to the interest in checking if the other responses
confirm one's own response, if they oppose it, or if they complement one's
own knowledge on the topic being discussed.

Fig. 1. Relation between preparation work and behavior

COMPUTER SCIENCE & TECHNOLOGY SERIES 125

The technique is considered to present a relatively reduced work for
preparing the group and task, and it generates an interactive behavior among
people. This can be seen in Figure 1
The trainer has to adopt the role of learning moderator or facilitator and is
responsible for managing groups of people. One of the purposes to achieve
with the Metaplan technique is the active participation of the students, by
dividing complex problems in more limited problems and reducing the size
of the groups. The entire group sets the task and then reviews the results. [15]
The Metaplan is divided in stages. In the first stage, the moderator decides
the distribution of sub-groups and sub-topics among them.
In the following stage, the moderator collects the conclusions of each group
and presents them to the entire group for all participants to work as one large
group. When working with a group with several participants, several points
of view can be generated. When analyzing all the ideas, they are grouped by
similarity, generating "clouds of similar ideas".
When the process ends, a headline is placed on top of each cloud in order to
distinguish them in the following discussions, and an order of importance is
assigned to them. Thus, a map of the clouds is obtained, each cloud being
formed by individual ideas that were grouped by mutual consensus.
Once the moderator collects the opinions of the participants, he/she groups
them by similarity. For each new idea that has no similarity with the ones that
have already been exposed, a new cloud is created; otherwise, it is grouped
with the similar idea. Thus, the moderator puts together the clouds of ideas,
generating a new sub-topic for each cloud that the moderator distributes
among the participants.
In the next stage, each group puts together a “list of recommendations” (on-
hold plans of action) – all these elements are included and the issues on
which action should be taken are highlighted, in order of importance.
The entire group participates in the debate and a “list of actions” is generated
in relation to the activities that can be carried out. Each action to be
performed is assigned an owner and a group of people in charge of carrying it
out.
Finally, the work is organized and the expected result is produced.

4. Virtualization of the Metaplan Technique

Nowadays, this technique is applied in various educational contexts. Even
though it was originally created to be used in on-site classes, some trainers
considered the possibility of using the methodology through a digital
technology, where some of the stages are developed under a distance mode.
The technique was analyzed and the stages whose development through the
Web is feasible were identified.
A review of the existing literature so far on the Internet did not yield any
results for a virtual adaptation of the Metaplan that can be downloaded
through the Web.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 126

After analyzing the Metaplan, some aspects in which the Information and
Communication Technologies (ICTs) can contribute to virtualization were
identified:

 The possibility of expanding the scope of the training on the
technique.
 Favoring the teaching and learning process in the development of
the methodology, considering the aspects of learning time, space,
style, and rhythm of each student, promoting their autonomy in the
process.
 Taking advantage of the synchronous and asynchronous
characteristics of ICTs to facilitate collaborative training events.

4.1 Proposed Development

This paper is part of the research work carried out for a graduate dissertation
for the Bachelor's Degree in Computer Science of the UNLP. The
development of an application that allows virtualizing the “discussion stages”
and the subsequent presentation of the “list of recommendations” created by
the sub-groups is proposed, so that people who cannot be present at all
Metaplan sessions can be involved in courses that use this teaching
methodology. Thus, part of the Metaplan is virtualized, allowing an
assessment of the learning process through a record of the activities
developed. [16]
The purpose is achieving an intuitive application that does not require the
installation of additional software and has the necessary functionality to carry
out the stages for creating a course, divide the participants in sub-groups,
build the debate in each sub-group, incorporate the creation of the “clouds of
ideas,” and design the list of recommendations.
The application allows creating integrated, collaborative activities through
the Web [1].
The application presents an interface with various templates that adapt to the
needs of the different users. There is an interface for the administrator that
allows granting moderator rights to the users and configuring the sessions for
each implementation of the Metaplan.
The moderator interface (Fig. 2) allows keeping track of the discussions and
then building the list of recommendations.
The student interface allows students to work in collaboration by providing
their contributions to build the future clouds of ideas.
There are two communication methods both for moderators and students –
synchronous and asynchronous.
Both methods are private, that is, only the moderator and the participants
from the specific sub-group have access to the discussions; groups cannot
access other groups' discussions.
Asynchronically, the participants from a group can present a new opinion on
a topic being discussed or associate a score (ranking) with an opinion
presented by other participant of the sub-group. The discussions and
subsequent conclusion are recorded in the system.

COMPUTER SCIENCE & TECHNOLOGY SERIES 127

Synchronically, the participants can communicate among them and with the
moderator, who may intercede in any event within the group discussion.
Group members can consult with the moderator in case they have any doubts.
To do this, a synchronous work plan of the “raising hand” type is designed.
As for templates, they allow configuring various communication possibilities
within each work sub-group.

Fig. 2. Prototype for the moderator screen

4.2 Tools Used

After searching on the Web and then analyzing the tools for the
implementation of the functionality described above, it was found that some
of the tools that are suitable for this purpose are Php, MySQL and Symfony,
which are described below.
Php (PHP Hypertext Pre-processor): it is a general-purpose, interpreted
language that was originally designed for creating dynamic Web pages, and
in particular for Web development, and it can be embedded within HTML
code. It is generally run on a Web server, taking the PHP code as input and
creating Web pages as output. Being an open software, it can be deployed in
most Web servers and almost all operating systems and platforms free of
cost. It is used to develop the code of the collaborative Web application and it
is compatible with the tools to be used.
MySQL: It is a relational, multi-thread, multi-user database manager that is
easy to use and fast. Since it is Open Source, it is one of the most widely used
database engines on the Internet. It is used to manage user data and log the
actions on the virtual stages of the Metaplan carried out by the different types
of users.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 128

Symfony: it is a full framework that is designed to optimize the development
of Web applications through some of its main features. It separates business
logics, server logics, and the presentation of the Web application. It provides
several tools and classes aimed at reducing the time required to develop a
complex Web application. Also, it automates the most common tasks,
allowing the developer to fully focus on the specific aspects of each
application.

5. Initial Progress

So far, the technique has been analyzed and described, the stages to virtualize
have been isolated, information on other, possible virtualizations has been
obtained from the Web, and contact has been established with the creators of
the technique, who were very interested in the virtual development.
The interface is also being developed. Figure 3 shows a scheme of the
elements that will be shown to participants on the screen.

Fig. 3. Qualification and ranking scheme for participants

The tool is being built, and the necessary adaptations1 for the forum and chat
are being made in order to include the following tasks:

Single topic discussed by several groups: this situation usually occurs
when the cloud of ideas produces only one topic and the number of
participants is enough to create several groups.
Several topics discussed by N groups: this situation usually occurs when
the cloud of ideas produces several topics and the number of participants is
enough to create several groups.

1 Source: Sigce An International Special Interest Group on Collaborative Editing,
Publications, http://www.cit.gu.edu.au/~scz/sigce/.

COMPUTER SCIENCE & TECHNOLOGY SERIES 129

Single topic discussed by a single group: this situation usually occurs
when the cloud of ideas produces only one topic and the number of
participants is not enough to create several groups.
Several topics discussed by a single group: this situation usually occurs
when the cloud of ideas produces several topics and the number of
participants is not enough to create several groups.

6. Conclusions and Future Work

Information and Communication Technologies (ICTs) are in the area of
education to stay. Among the main concepts presented, that of group work can be
mentioned, where people are enriched by the diversity of opinions and criteria.
The Metaplan technique and its future virtualization promote work group, and are
intended to achieve an optimal use of Information and Communication
Technologies to facilitate the teaching and learning process and promote time and
space autonomy in this process.
The members of each sub-group of the Metaplan need a common workspace
where they can develop their ideas, and this tool would allow them carrying out
these activities remotely.
The technique is aimed at the assessment of the learning process, not just the end
result. It provides virtual escort and a log of the actions carried out both by
moderators (teachers) and students.
Some considerations regarding the continuation of research activities in this area:

 It would be desirable to virtualize a larger number of stages of the
Metaplan technique so that students can manage their time and
space with greater flexibility in relation to contents and technique
phases

 Implementation of the virtual application of the Metaplan in various
educational environments.

 Taking groups of students and assess the response and/or acceptance
of the modifications to the technique introduced by the
virtualization.

 Increase the abstraction level so that the application can be added as
an educational module [4] or an activity in a CMS that meets
SCORM standards.

References

1. Cabero, J. et al. (2000). Las nuevas tecnologías para la mejora educativa.
Algunas comunicaciones y ponencias del Congreso Edutec99, Kronos,
Seville.

2. Bates, A.W. (2000). Managing Technological Change, Strategies for
Colleges and university leaders San Francisco, Ed. Jossey-Bass.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 130

3. Roig, R.L, Marfil, A. (2002). Las Nuevas Tecnologías aplicadas a la
educación. Elementos para una articulación didáctica de las Tecnologías
de la Información y la Comunicación.

4. Moreno, F., Bailly-Bailliere, M. (2002). Diseño instructivo de la
formación on-line, Ariel Educación, Barcelona.

5. Gregori, E. B., Badia A. (2005). Hacia el aula virtual: actividades de
enseñanza y aprendizaje en la red, Revista Iberoamericana de Educación,
Vol. 36, Nº 9.

6. Llorente Cejudo, M. del C., Cabero Almenara J. (2008). La Formación
Semipresencial a Través de Redes Telemáticas (Blended Learning).
Barcelona, Da Vinci, 243.

7. Cisnado Torres Xiomara. Metaplan, una metodología de diagnostico y
moderación grupal. Centro de capacitación. Contraloría General de la
República. Costa Rica.
http://jaguar.cgr.go.cr/content/dav/jaguar/documentos/capacitacion/web_c
entro/Metaplan/metaplan.htm.

8. Rama, J. and Bishop, J. (2006). A survey and comparison of cscw
groupware applications. Paper presented at the Proceedings of the 2006
annual research conference of the South African institute of computer
scientists and information technologists on IT research in developing
couuntries, Somerset West, South Africa.

9. Solomon, G. (2005). “Distributed Cognitions. Psychological and
educational considerations”. Cambridge University Press.
http://books.google.com.ar/books?id=m8Yna0cjxAgC&printsec=frontcov
er&source=gbs_summary_r&cad=0.

10. Madoz C., González A. Saadi M., Hughes D. (2010). Virtualización sobre
un entorno de Enseñanza y Aprendizaje de métodos de trabajo
colaborativo. Presentado en el TEyET 2010, Congreso de Tecnologia en
Educación y Educación en Tecnologia. Calafate. Santa Cruz. Argentina.

11. Olleta J. Historia de la Filosofía. Volumen 1: Filosofía Griega. Editorial
Edinumen. http://www.e-torredebabel.com/Historia-de-la-filosofia/ Filosofiagriega
/Presocraticos/Mayeutica.htm

12. WIKIPEDIA, Mayeútica, retrieved on January 29, 2009 from
http://es.wikipedia.org/wiki/May%C3%A9utica.

13. Hughes D., Saadi M., Madoz C., Gonzalez A. (2009). Aplicación para la
administración y desarrollo de cursos con la técnica de Metaplan que
aporta etapas virtuales mediante la Web. Presented in CACIC 2009.
Congreso Argentino de Ciencias Informáticas y de la Computación.
Jujuy. Argentina.

14. Hanusyk K.. Introducción al Método de Moderación.Vilassar de Mar.
Barcelona, Spain. http://www.klaushanusyk.com/mod.htm.

15. Cisnado Torres Xiomara (2007). Virtualización de la Enseñanza-
Aprendizaje de METAPLAN.
www.infodesarrollo.ec/component/docman/doc_download/132-virtualizacion-
de-la-ensenanza-de-aprendizaje-de-metaplan.html.

16. Lara, S. (2001). La evaluación formativa en la universidad a través de
Internet, Eunsa, Barañáin.

VIII
Graphic Computation, Imagery

and Visualization Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 133

DeLP Viewer: a Defeasible Logic Programming
Visualization Tool

SEBASTIÁN ESCARZA, MARTÍN LARREA, SERGIO MARTIG
AND SILVIA CASTRO

Laboratorio de Investigación y Desarrollo en Visualización
y Computación Gráfica, (VyGLab).

Departamento de Ciencias e Ingeniería de la Computación (DCIC),
Universidad Nacional del Sur (UNS),

Av. Alem 1253, Bahía Blanca, Argentina.
{se, mll, srm, smc}@cs.uns.edu.ar.

Abstract. Defeasible Logic Programming (DeLP) is a knowledge
representation formalism that combines results from Logic
Programming and Defeasible Argumentation to provide reasoning
based on contradictory and potentially incomplete information. DeLP
allows information representation by using weak rules and provides
an argumentation inference mechanism for warranting the entailed
conclusions. It is necessary to comprehend the relationships between
the arguments involved in DeLP derivation to understand the
reasoning process and justify the replies provided by the DeLP
system. In order to reach such a degree of understanding we present
DeLP Viewer, a DeLP visualization tool for representing the inference
process performed by a DeLP reasoner. Albeit there are many
applications designed for argumentation visualization, our proposal
provides a visual representation for the underlying logic and
argumentative structure behind DeLP, allowing the interactive
exploration of the entire reasoning process plus the internals of the
involved arguments.

Keywords. Defeasible Argumentation Visualization, Defeasible Logic
Programming, Dialectical Explanation, Hierarchy Visualization,
Visualization.

1. Introduction

Formal modeling of real world problems has been object of study in
Computer Science since its beginning. These models give to intelligent
agents the ability to deal with information, reason about it, and infer new
knowledge. However, when a real world problem is modeled, it is usual to
have potentially contradictory and incomplete information.
DeLP is a knowledge representation formalism that combines results from
Logic Programming and Defeasible Argumentation to provide reasoning
based on potentially incomplete and contradictory information. It provides
the possibility of representing information in the form of weak rules in a

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 134

declarative manner, and a defeasible argumentation inference mechanism for
warranting the entailed conclusions [7].
The knowledge in a defeasible logic program can have intricate relationships
that make complex the understanding of why some information is held and
another is not. A set of dialectical trees representing the argumentation is
built during the reasoning process. Such a set is called a dialectical
explanation or δ-Explanation, and justify the status of a literal. The main
worry for DeLP users is the construction of mental images about how
arguments are confronted to derive conclusions, i.e., mental images about
dialectical explanations.
In order to aid users to understand the justification of the derived conclusions,
and to improve the analysis of the DeLP process, we present DeLP Viewer, a
defeasible logic programming visualization tool. The goal is to assist users to
gain insight into the dialectical process and, consequently, to easily design,
understand, encode and debug defeasible programs. Our approach provides a
node-link-based interactive visualization that preserves the internal rule-
based structure of arguments, exploits the hierarchical structure of the
dialectical tree, and allows on-demand exploration of the arguments content
and their relationships.
This work is organized as follows. First we provide some preliminaries on
DeLP to give the needed background to understand the problem we try to
solve. Second we analyze related work in argumentation visualization and
logic programming visualization. Third we present our tool, the rationale
behind design decisions, the user domain constraints and the applied
approaches. After that, we illustrate the main purpose of our tool in a
concrete application scenario. Finally, we outline some conclusions.

2. Preliminaries on DeLP

DeLP is a logic programming language similar to Prolog, but it introduces
additional constructors that enable the representation of potentially
contradictory information and a defeasible argumentation inference
mechanism. DeLP considers two kinds of program rules: strict rules used for
representing strict (sound) knowledge, and defeasible rules used for
representing defeasible knowledge, i.e., tentative information that may be
used if nothing could be posed against it [7].
Rules in a DeLP program are combined to support or reject a claim. This
combination is a logical derivation in which conclusions of some rules are
used as premises of others using transitive logical dependencies. That
combination of DeLP rules is an argument in favor of or against such claim
(see Fig. 1). By contrast with other argumentation systems, arguments in
DeLP are derived from the logic program and have internal structure. An
argument is regarded as an explanation for a claim that is represented by a
literal in such a logic program.
The claim of an argument may contradict some premise or the claim of
another. In such a case, it is said that the contradictory argument attacks the

COMPUTER SCIENCE & TECHNOLOGY SERIES 135

other. Each attacker can be further attacked by many other arguments and
these relationships between arguments result in a tree-shaped structure called
dialectical tree (see Fig. 1). Every argument attacked by at least one
undefeated argument becomes defeated, and every argument without
(undefeated) attackers becomes undefeated. If the root argument of the
dialectical tree results undefeated, that dialectical tree represents an
argumentation that supports the claim of such argument.

Fig. 1. Key concepts in DeLP. The figure shows a DeLP program fragment (a), an
argument for pass(self,t1) that results from combining rules 1 and 2 (b), and a
dialectical tree in which the root argument has been attacked and defeated (c). Rules
in (a) have been numbered for referencing. Rules 1 and 3 are strict and rules 2 and 4
are defeasible. The literals labeled with true are removed from visualization for the
sake of clarity.

Given a queried literal and a DeLP program, the DeLP reasoner builds a set
of dialectical trees, trying to give support or contradict the arguments for or
against the query. The sequence of obtained dialectical trees determines the
reply of the system and is the explanation for such a reply. More detailed
descriptions about the dialectical process behind DeLP can be found in [7]
and [11].

3. Related Work

Although Nonmonotonic Reasoning, Logic Programming and Defeasible
Argumentation are not novel fields of research, only a few years ago the
DeLP formal definition was published [7]. Since then, an ever growing
theoretical frame and some practical applications [6, 11] have been
developed. However, previous specific work on visualizing DeLP does not
exist. DeLP combines Logic Programming and Defeasible Argumentation. In
both areas, there are many visualization approaches.
Logic Programming Visualization is a Software Visualization subfield. The
main efforts in this area are devoted to Prolog language execution
visualization and debugging. AORTA diagrams are widely accepted as
graphical representation of Prolog execution [2, 5, 4]. However, these
approaches have not direct applicability to our problem. DeLP users want to
comprehend the dialectical process after the reasoner’s execution. They need

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 136

to understand logic dependencies and argument relationships at a higher
abstraction level than those provided by AORTA diagrams. DeLP users do not
want to visualize how logical variables are bound. They want to understand
the argumentation for the system reply.
In Defeasible Argumentation, many visualization tools with different
purposes have been developed [8]. The most relevant are Araucaria [9],
Rationale [1], Avers [12], Belvedere [13], Athena [10] and Reason!able [14].
These argument visualization tools were thought to help in the visual
building of argumentations by hand. The user adds arguments, establishes
their support/rebut relationships, and no automatic processing is performed at
this level. All these tools use node-link diagrams to represent the
argumentation and the nodes are represented by boxes or circles. The
arguments’ content is plain (unstructured) text in natural language. Also,
these tools share the presence of rebut and support concepts, but under
different terminologies and red/green or red/blue color schemes are used to
distinguish between them. Additionally, some of the applications mentioned
above have semiautomatic and automatic layout algorithms to help users to
keep arguments visually arranged. Finally, all these tools provide a basic
subset of interactions containing argument selection, scrolling and zooming.
Nevertheless, these applications present drawbacks to be applied in DeLP,
because they were designed to represent arguments in natural language. But
in DeLP, the arguments have an underlying logic that must be represented to
understand the dialectical process. Such a logic structure, internal to each
argument, cannot be represented by ordinary argumentation visualization
tools, and, in consequence, interactions that enable the exploration of such
structures are not provided by them either.

4. DeLP System Overview

Before delving into the visualization design, we will outline the macro-
structure and the typical working flow of the DeLP System. The DeLP
system is composed by two main components: the DeLP reasoner and the
DeLP Viewer. The former is responsible for deriving arguments from the
defeasible logic program, building dialectical trees, and analyzing the
defeating relationships in order to answer user queries. The latter is the
visualization module and the tool presented in this article. Both modules are
linked together by the dialectical explanation. This explanation is an XML
file generated by the reasoner and received by our tool. Figure 2 shows an
overview of the whole system.

COMPUTER SCIENCE & TECHNOLOGY SERIES 137

Fig. 2. DeLP System overview. The main components of the system and the typical
working flow performed by the user are illustrated.

Given a defeasible logic program and a query, both specified by the user as
plain text, the DeLP reasoner analyzes the logic program and derives a reply
for the query. After that, the user can ask the system for examining the
dialectical explanation by invoking the visualization module. Initially, the
DeLP Viewer lists the dialectical trees involved in the reasoning process. The
user selects the dialectical trees that will be visualized. For each selected tree,
the system generates an interactive visual representation and shows it in a
separate window. The details concerning each dialectical tree view are
presented in the following sections.

5. Visualization Design

Visualization is concerned with two main aspects: building the visual
representation and providing useful interactions [3]. We discuss the
challenges and our solutions in the following sections.

5.1 The DeLP Viewer Visualization Pipeline

The backbone of our application is the DeLP Viewer visualization pipeline
(see Fig. 3). For each dialectical tree to be shown, a new instance of this
pipeline is configured and executed. The division of the process into stages
results in a better design because the tasks throughout the pipeline can be
addressed independently.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 138

Fig. 3. The DeLP Viewer visualization pipeline. Many details were simplified due to
illustration purposes. The figure shows the stages involved in data transformation
from the explanation parsing to the view creation, and the modules implementing user
interaction feedback.

The pipeline begins parsing the dialectical explanation XML file given by the
reasoner. As the parsing result, a multilevel graph representation of the
dialectical tree is built. The next stage in the pipeline filters entities that will
not be visualized (e.g., the content of arguments that are not completely
shown). After that, the layout algorithm defines starting and ending locations
for each visible entity. Then, the animation stage interpolates these locations
to get intermediate positions for the entities. After the animation stage,
additional entities are generated, i.e., entities whose location is not calculated
by the layout algorithm. Finally, in the rendering stage, the entities are drawn
and graphical attributes like color are applied.
The user directly interacts with the tree-view. Some interactions are solved
locally by only re-executing the rendering phase, and some others involve the
manipulation of the entity sets establishing which arguments are completely
shown, which ones are selected, etc.

COMPUTER SCIENCE & TECHNOLOGY SERIES 139

Fig. 4. The dialectical tree multilevel data structure with its four nesting levels. In (a)
an instance of the underlying data structure for the dialectical tree shown in Fig. 6d
can be seen. Apart from the inclusion relationships (drawn in blue), the edges for
argument attacks and logic dependencies among rules are represented in this figure. In
(b) only the visually mapped entities are shown. When an argument implosion is
performed (as in the case of the argument D for ~shoot(self)), its content loses their
mapping.

5.2 The Dialectical Tree Multilevel Data Structure

One of the main benefits of our tool is the visual representation of the
underlying logic structure. The data structure representing dialectical trees is
a directed acyclic graph (DAG) that has four nesting levels. First, we have
the whole dialectical tree which includes, in a second level, the arguments. In
the third level there are nodes representing rule heads and bodies, and, in the
last level, we have the literals. An instance of this structure for the dialectical
tree shown in Fig. 6d can be seen in Fig. 4.
This structure represents a tree (i.e., the dialectical tree) whose nodes (i.e.,
arguments) are also trees. The arguments have a tree-like structure given by
the underlying logic. Additionally, there is a third hierarchy: the inclusion
tree itself. This tree constitutes a clustering scheme in which arguments can
be thought as clusters that group rule heads and bodies.

5.3 The Visual Representation

The visual representation involves the definition of the spatial substrate, the
visual elements used to represent arguments, relationships, logic
dependencies, etc; and the graphical attributes of those elements. This implies
the setting up of mappings from the abstract data to the graphical space.
Additionally, our tool exploits well known representation conventions in
DeLP to help users to feel familiarized faster with the visualization.
DeLP Viewer uses a node-link visual representation to show each dialectical
tree. Literals, rule bodies and heads, and arguments are represented by nodes.
Attack relationships and weak and strict logic dependencies are represented

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 140

by edges. Only nodes are positioned by our layout algorithm. Edges are
straight lines that are placed using the nodes locations.
As was stated previously, a key aspect in our visualization is the underlying
logical structure of the argumentation. This structure must be present in the
visual representation to enable its reconstruction in the user mental map. Our
approach places nodes in such a way that dependencies and relationships
become evident and node overlap is avoided by means of a bounding box-
based scheme. Additionally, the algorithm keeps the elements of each level
aligned to enforce their position inside the hierarchy. These considerations
facilitate the user insight. The DeLP Viewer visualization layout can be seen
in Fig. 5.

Fig. 5. The DeLP Viewer dialectical tree layout. This is the dialectical tree observed
in Fig. 6d but here the root argument is imploded and, consequently, its content is not
visible. Several additions were made to this screen capture for illustrating layout
aspects.

Dialectical trees do not have any associated visual element because they are
represented by more than one entity. Arguments are represented with
triangles because the triangle enforces the idea of a tree-shaped hierarchy
behind each argument. Rounded rectangles are used for representing rule
heads and bodies and literal representation is performed through textual
labels. DeLP Viewer shows defeated arguments in red and undefeated
arguments in green according to the DeLP conventions.
Edges are represented by straight lines and rendered using the DeLP notation.
To avoid confusion when many attacks are produced over the same
argument, the attacked literals are represented with different color.
Additionally, alpha blending is used in order to make exploded arguments

COMPUTER SCIENCE & TECHNOLOGY SERIES 141

translucent enabling the visualization of the attacking edges under them. All
these visual encodings can be appreciated in Fig. 6.

5.4 Interactions

Gaining insight about the reasoning process from a static representation is a
difficult task. Interactions are needed to tune up the visualization and obtain
richer perspectives that result in a better understanding of that process.
DeLP Viewer provides typical visualization interactions like geometric
zooming and scrolling. An overview display is used to keep the user in
context. Additionally, argument selection provides users with the ability to
mark arguments to perform subsequent operations over them. Finally, DeLP
Viewer provides two forms of semantic zooming. With argument
explosion/implosion, the user can toggle between two argument
representations: one shows only the literal supported by the argument and the
other the entire argument content. Those different levels of detail are shown
in Fig. 5 and Fig. 6d respectively. The other form of semantic zooming is the
literal label switching. For each argument, the user can toggle between full
length labels to get the whole information or abbreviated ones to reduce the
visual complexity.

6. An Application Example

In this section we illustrate the practical usefulness of our proposal in a
concrete application scenario. We consider a DeLP program representing the
knowledge base (KB) for a robotic soccer player agent (more details can be
found in [11]). The soccer agent uses DeLP in its decision making process.

Prog. 1. DeLP program representing the KB of a robotic soccer player agent

Program 1 shows the KB of the soccer agent. In this case, defeasible rules
were used to model the decision logic of the agent, and strict rules were used
to represent the current situation of the agent, his teammate t1, and their
opponents. The agent can find arguments for shoot, pass or carry the ball, and

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 142

these arguments can engage in contradiction in ways that are not perceivable
at first sight.
The main purpose of our tool is to show the justification for a given query. To
illustrate this point, we will consider the query shoot(self) for the Program 1.
From the examination of program rules it is difficult to venture an answer
without a deeper analysis in which the dialectical explanation is rebuilt in
some way. Must or must not the soccer agent shoot? If you ask to the DeLP
System, it answers ‘undecided’. The dialectical explanation for such a query
and the Program 1 can be appreciated in Fig. 6.
After a quick examination of the dialectical explanation, the user can easily
realize about how the argumentation proceeds, inducing dependencies and
drawing conclusions. In the example, the reasons for and against shooting the
ball are exposed. In Fig. 6a, a counter-argument for shooting the ball is found
and it relies in the fact that our agent should pass the ball because he is being
marked. In Fig. 6b and 6c the two arguments against shooting the ball are
defeated because our agent is in the opposite field and there is no opponent
ahead. Finally, in Fig. 6d, the argument against shooting that relies in
carrying the ball is defeated by an argument against carrying the ball that
suggests shooting instead. So, no argument can be built without at least one
argument in contradiction, explaining, in that way, the reasoner’s answer.
Understand why this happens is not a trivial task from the program rules.

Fig. 6. A dialectical explanation. In (a) the only argument in favor of the query is
defeated. So, the system analyzes the negation of the query. The three arguments
against the query are also defeated (b), (c) and (d). Hence, the system answers
‘undecided’.

Dialectical trees allow DeLP programmers to quickly analyze the foundations
on which each argumentation line relies. The automatic building of such
visual representations reduce the time and effort required in the dialectical
explanation analysis, and enables the possibility of introducing modifications
into the DeLP program and observe their effects in real time. In this sense,
our tool has proven to be valuable in performing these application domain
specific and typical tasks.

COMPUTER SCIENCE & TECHNOLOGY SERIES 143

7. Conclusions and Future Work

We have presented DeLP Viewer: a visualization tool intended to help users
to understand dialectical explanations. By contrast with other argumentation
visualization tools, DeLP Viewer represents not only the dialectical
argumentation, but also the underlying logical structure present in DeLP.
This is a key aspect in order that users can gain insight about the relationships
among arguments that justify the replies of the DeLP reasoner. The nested
representation used is a novel aspect in Argumentation Visualization.
Major design decisions have been discussed along the paper. An important
topic to emphasize is the use of DeLP drawing conventions to exploit the
user’s previous knowledge and improve the visualization experience.
As future work, we aim to include interactions intended to deal with some
scalability issues of our tool, and to provide linking and brushing among
dialectical trees to provide better visual queries. Additionally, we expect to
perform some user evaluation of our tool. We need to obtain a quantitative
measure of both the effectiveness of DeLP Viewer and the rate in which our
tool improves the user experience.

Acknowledgement

This research was partially supported by the PGI 24/N028 and 24/ZN19,
Secretaría General the Ciencias y Tecnología, Universidad Nacional del Sur,
Bahía Blanca, Argentina.

References

1. Rationale by Austhink. http://rationale.austhink.com/
2. Brayshaw, M., M. Eisenstadt and J. Paine (1991). The Transparent Prolog

Machine. Intellect Books.
3. Card, S. K., J. Mackinlay and B. Shneiderman (editors) (1999). Readings

in Information Visualization: Using Vision to Think. Morgan Kaufmann.
4. Domingue, J. (1998). Visualizing knowledge based systems. In J. Stasko,

J. Domingue, M. Brown, and B. Price, editors, Software Visualization:
Programming as a Multimedia Experience, chapter 16. MIT Press,
January.

5. Eisenstadt, M. and M. Brayshaw (1998). The truth about prolog
execution. In J. Stasko, J. Domingue, M. Brown, and B. Price, editors,
Software Visualization: Programming as a Multimedia Experience,
chapter 15. MIT Press.

6. García, A., C. Chesñevar, N. Rotstein and G. Simari (2007). An abstract
presentation of dialectical explanations in defeasible argumentation. First
international workshop on Argumentation and Non-Monotonic Reasoning
(ArgNMR 07), 17-32, May.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 144

7. García, A. and G. Simari (2004). Defeasible logic programming: An
argumentative approach. Theory and Practice of Logic Programming
(TPLP), Vol 4(1):95-138.

8. Kirschner, P. A., S. J. Buckingham Shum and C. S. Carr (editors) (2003).
Visualizing argumentation: software tools for collaborative and
educational sense-making. Springer-Verlag, London, UK.

9. Reed, C. A. and G. W. Rowe (2004). Araucaria: Software for argument
analysis, diagramming and representation. International Journal on
Artificial Intelligence Tools (IJAIT), Vol. 13(4):961-979.

10. Rolf, B. and C. Magnusson (2002). Developing the art of argumentation.
a software approach. In Proceedings of the 5th International Conference
on Argumentation.

11. Rotstein, N., A. García and G. Simari (2007). Reasoning from desires to
intentions: A dialectical framework. Twenty-Second AAAI Conference
on Artificial Intelligence (AAAI-07), July.

12. van den Braak S. W., G. A. W. Vreeswijk and H. Prakken (2007). Avers:
an argument visualization tool for representing stories about evidence. In
ICAIL ’07: Proceedings of the 11th International Conference on Artificial
Intelligence and Law, 11-15. MIT Press.

13. Suthers, D., A. Weiner, J. Connelly and M. Paolucci (1995). Belvedere:
Engaging students in critical discussion of science and public policy
issues. In AI-Ed 95: Proceedings of the 7th World Conference on Artificial
Intelligence in Education.

14. van Gelder, T. J. (2002). Argument mapping with reasonable. The
American Philosophical Association Newsletter on Philosophy and
Computers, Vol 2(1):85-90.

COMPUTER SCIENCE & TECHNOLOGY SERIES 145

A Semantics-based Visualization Building Process

MARTÍN LARREA, SERGIO MARTIG AND SILVIA CASTRO

Laboratorio de Investigación y Desarrollo en Visualización
y Computación Gráfica, (VyGLab).

Departamento de Ciencias e Ingeniería de la Computación,
Universidad Nacional del Sur,

Av. Alem 1253, Bahía Blanca, Argentina.
{mll, srm, smc}@cs.uns.edu.ar.

Abstract. A successful visualization allows the user to gain insight
into the data in an effective way. Even with today’s visualization
systems that give the user considerable control over the visualization
process, it can be difficult to produce an effective visualization. This
paper is a step forward to achieve a visualization system that assists
the user in the configuration and preparation of the visualization by
considering both the semantic of the data and the semantic of the
stages, through all the visualization process. In this article we present
a system for the visualization of file system hierarchies where the
color assignment and the configuration of the visualization technique
are carried out by reasoning processes. This work set the way forward
for the integration of reasoning in the visualization process.

Keywords. Semantic, Visualization, Ontology, Spherical Layout,
Color Assignment, Reasoning, RDF, OWL.

1. Introduction

Computer technology allows the visual exploration of large information
resources ([1]). Huge amount of data is becoming available on networked
information systems, ranging from unstructured and multimedia documents
to structured data stored in databases. This is extremely useful and exciting;
but the ever growing amount of available information generates cognitive
overload and even anxiety, especially in novice or occasional users. Today, a
wide range of users access, extract and display information that is distributed
over several sources, which also differ in type, structure and content. In many
cases, the user has an active control over the visualization process, but even
then, it is difficult to achieve and effective visualization. A strategy to
improve this situation is to guide the user in the selection of the different
parameters involved in the visualization.
The Visualization field has matured substantially during the last decades;
new techniques have appeared for different data types in many domains.
With the use of visualization becoming more generalized, a formal
understanding of the visualization process is needed ([2]). This work
improves the one presented in [3] by including explicitly the semantic of the
hardware, the user and the tasks in the visualization process.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 146

Our contribution is a new step forward to achieve a visualization system that
assists the user in the configuration and preparation of the visualization.
Through a semantic reasoning we can determine all the parameters needed
for the creation of a visualization. In our case we considered the visualization
of a file system using the Spherical Layout ([4]).
The remainder of this paper is structured as follows. In the next section we
give the foundation’s details for our research. In Section 3 the previous work
is detailed and Section 4 describes our semantics-based visualization model,
including a brief description of the visualization application used to test it. In
this section we considered the semantics of the data, the hardware, the user
and the task. Finally, Section 5 summarizes the work providing some closing
remarks and directions for future work. Because of space limitations we have
not included an introduction to the Semantic Web and semantic reasoned
terminology. For details about these concepts please see [3].

2. Semantics-based Visualization

Our main goal is the development of a visualization model that considers the
semantics of both the data and the different stages in the visualization
process. This model will transform data into information; according to Keller
and Tergan ([5]), “information is data that has been given meaning through
interpretation by way of relational connection and pragmatic context”. This
meaning can be useful. Information may be distinguished according to
different categories concerning, for instance, its features, origin and relations.
By making these considerations, the visualization process will be able to
determine the characteristics of an effective visualization and guide the user
through the different stages.
The user is an active participant in the visualization process and the goal of a
visualization is to present data in a way that helps him to identify trends,
features and patterns, generate hypotheses, and assign meaning to the visual
information on the screen.
Since 2006 we have been working on the integration of semantic information
into the visualization process ([6], [3]) and our main goal is to define an
unified semantics for the data model and the process involved. In Section 4
we describe the semantics defined and the ontologies that represent them. In
this section we also show how we created a visualization by using the results
from the semantic reasoned and the ontologies.

3. Previous Work

There are some good examples ([7], [8], [9] and [10]) on how semantic
information is integrated into the visualization tasks. However, in all these
cases the role of the semantics is to improve the integration, querying and
description of the visualization data; in neither case the semantics associated

COMPUTER SCIENCE & TECHNOLOGY SERIES 147

with the data is used to create the visualization or define its attributes. Only
in [11] we can find a first approach to the use of the semantics as an aid to
create a visualization. This work defines a customizable representation model
which allows biologist to change the graphical semantics associated to the
data semantic. The representation model is based on an XML implementation
and used an XML Schema definition that prescribes its correctness and
provides validation features. Unfortunately this work is only intended for
biological use; it does not take advantage of the RDF or OWL representation
and does not include any reasoning process with the semantic information.

4. Semantics-based Visualization Creation

A successful visualization allows the user to gain insight into the data. A
successful visualization process takes advantage of the structure and the
meaning of the data to create the most effective visualization. The structure
of the data can be obtained from the data itself but not its meaning. Two sets
may contain the same data, but if its meaning is different hen the final
visualizations will not necessary be the same. This is why we included the
semantic about the data, a way to describe the data about the data.
A visualization is greatly affected by what the user want to do with it. For the
same data set, also with the same meaning, one visualization may be the most
suitable for data exploration and another may be better for data comparison.
By knowing what the user want to do and its meaning the visualization
designer can create a better result. This is our reason to incorporate the
semantic about the tasks.
Additionally, the response time of the interactions its crucial to obtain an
effective visualization. If the user want to explore a 3D visual representation
but there is no dedicated GPU on the computer, the user’s experience would
be negatively affected. Besides that, a 4 inches screen cannot represent a
visualization in the same way that a 42 inches screen does. A formal
description of the system’s hardware could help the visualization designer to
enhance the user experience with the visualization. Then, in addition to the
data and task semantics, we also included the semantic of the hardware, a
description of the actual system’s hardware.
All the previous semantics can be taken as input to the visualization process.
All of them can change from one visualization process to another. But the
visualization process can contain its own semantics as previous knowledge
that depends on knowledge outside of the user scope. For instance, which
colors combine better or which colormap to use to represent a data attribute.
To demonstrate this we included the semantic of color.
Because of these considerations we extended our previous work ([3]) by
improving our system’s architecture. Our previous work only included the
color assignment process, but now we have also considered the rest of the
visualization process, specifically the visualization technique configuration.
We added new ontologies and included new steps where to apply the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 148

reasoning process. As in our previous work, we used our Brows.AR
application as test case.
In the next paragraphs we describe in detail these semantics and how we
created the ontologies representing them. Then we detail how the reasoning
process used these semantics in the visualization process. A review of our
architecture can be seen in Fig. 1. We end this section with the description of
how we adapted these elements to the Brows.AR application.

Fig. 1. The implemented system architecture

4.1 The semantic of the data

We created the semantic of the data based on metrics about the information
to visualize. These metrics can give us information about the data itself.
Because we used Brows.AR as a test case, a file system hierarchy
visualization tool, our metrics are tree oriented. Our Data Ontology contains
5 metrics. All these metrics are data properties on a concept name Metric.

 Number of items (n), in this test case the number of folders and files.
 Height of the tree (h), number of items on the longest path from the

root to the leaf.
 Width of the tree (w), maximum number of items on a level of the

tree.
 Ratio of the tree, Height/Width, (r).
 Bounding box of the tree, Height*Width, (bb).

COMPUTER SCIENCE & TECHNOLOGY SERIES 149

Because this is a test case, we limited the content of this semantic to include
only metrics. The data’s structure is implicit in the test case; a file system as a
tree hierarchy. Each data element is a nominal one.

4.2 The semantic of the tasks

In our previous work ([3]) we showed how the color assignment could be
accomplished by a reasoning process. In this paper, we extend that work to
incorporate the semantic of the visualization tasks ([12]). For simplification
we consider only one task, filter. As described in [12], filter is defined as:
given some conditions on attributes values, select data cases satisfying those
conditions. In our case, we use color to highlight those cases; particularly we
change the color of the visual elements that are selected by the filter. Our
goal was to describe, through an ontology, how to calculate the color
property on each visual element.
By importing the previous ontologies, a developer can create its own Task
Ontology using the concepts, relationships, properties and individuals related
to these. As mentioned earlier, our task was filter with highlight using color.
To stand out an object with color it is necessary to know which the
background color is; and it is also important to know which color to use in
the objects that will not be highlighted. To represent these elements, we
included three concepts in the Task Ontology: background, highlight and
regular. The background concept contains two object properties that relate to
the highlight and regular concepts. Background represents the background
color, highlight is the color for the filtered elements and finally regular is the
color for the remaining elements. In order to set, in the ontology, that these
last concepts are color we establish them as equivalent to the Color concept
(See Section 4.4).
The benefit of this implementation is that the user is no longer responsible for
the selection of the colors because a bad selection of the colormap may lead
to a visualization where the highlighted elements do not seem highlighted
because the contrast between the colors is not perceived. A novice user may
choose colors based on what he thinks looks nice, but does not represent the
true goal of the task.

4.3 The semantic of the hardware

As we said earlier, a visualization occurs in a context and in this case that
context is the computer’s hardware. The same visualization will not
accomplish the same results if it is shown in a 4’’ screen or in a 42’’ screen.
The effectiveness of a visualization method may depend on the available
hardware and the peripheral devices attached to the computational system.
The complexity of the visual elements should be adjusted based on the 3D
capability of the computer in order to improve the response time of the
interactions. The Hardware Ontology contains a concept name hardware
which contains the following data properties.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 150

 An indicator of whether the computer has or has not a
dedicated GPU (GPU).
 The height, on pixels, of the screen resolution (hp).
 The width, on pixels, of the screen resolution (wp).
 The number of pixels on display, (pxs = hp*wp).
 The size, on inches, of the computer display (inches).

4.4 The semantic of color

In this work, we expanded the work done in [3] to enhance the color
representation. The new Color Ontology contains one concept, color. The role of
this ontology is to express all the information related to color. The color concept
contains 3 data properties, red, green and blue. Each one of these represents a
primary color component. There are two object properties with domain and range
in color, these are next and opposite. Based on the color wheel, it is possible to
define, for each color, an opposite and neighbor. The opposite of a color c is
another color d, whereas d is facing c on the color wheel. The next to a color c is
a color t which is the following one to c on the color wheel, also known as
neighbor. The concept color can be easily extended by new data and object
properties.
We also created the Colors Ontology, a new ontology that imports the previous
one. The role of the Color Ontology is to describe a generic color; the role of the
Colors Ontology is to contain all the colors as individuals or instances of the
color concept. All individuals contain specific values for their properties. For our
test case we included 18 colors in the Colors Ontology.

4.5 The reasoning process

Having established the semantic elements in our architecture, we can now show
how these elements are used by a reasoned to create results that will aid in the
visualization creation. We began describing the role of the reasoning process in
the color assignment process. The color assignment is accomplished using the
Task Ontology through the reasoner. We then describe how the visualization
technique is configure by the reasoner. In this stage the semantic of the hardware
and data are used as input to the reasoning process. Finally we end with the
description of the visualization creation per se.

Color Assignment Using Task Semantic. The Color and Colors Ontologies
contain the formal representation of a color and all the colors as individuals.
The first step for color assignment is to select a color scheme, to do so we ask
the user to pick the visualization´s background color. Once this color is
chosen, a color scheme is composed with the selected background color, its
opposite and its neighbor, based on the Colors Ontology. There is no
reasoned involved in this step.
With the color scheme and the semantic of the task, the reasoned can create a
color map. The color map represents which colors will be used, and how.

COMPUTER SCIENCE & TECHNOLOGY SERIES 151

What the reasoner does is to take a color, the one selected by the user as
background and to see that the concept color is equivalent to the concept
background from the Task Ontology. Thus the reasoner knows that what
holds true for a color and a background also does for the selected color,
which is an instance of both concepts. The selected color has an opposite
relationship and the reasoned knows that this is equivalent to the highlight
concept in the Task Ontology.
Because of this, the color opposite to the selected one is the one that will be
used to highlight elements in the visualization. The same process takes place
for the regular relationship. The next step is to create the technique
configuration based on the semantic of the data, the hardware and the task.

Visualization Technique Configuration using Semantics. The Spherical
Layout technique supports different configurations of the final visualization.
In our implementation of the layout there are multiples choices to graphically
represent nodes, edges and visual aids:

 Nodes can be represented by a point in space, a cube or a sphere.
The only visual property for points is color, so they are the less
visual complex element in the technique. The sphere is the most
complex one, follow by the cube; it is also possible not to map nodes
visually. This gives us four possibilities of representation for the
nodes: not mapped, points, cubes and spheres.

 Edges can be represented by two types of lines, a single line whose
only visual property is color and a cylinder, which allows mapping
more visual properties. The latest one is the most complex visual
element. It is also possible not to map edges; For edges we have
three possible representations: not mapped, lines and cylinders.

 In this implementation of the Spherical Layout the nodes are
uniformly distributed on the spheres´ surface; to achieve this goal
we discretized the surfaces of the spheres with triangles and place
the nodes in the barycenter of some of these triangles. As a visual
aid in the visualization, it is possible to show such triangles.

We defined a set of rules to relate the semantics of data, hardware and task
with the configuration of the visualization technique. Based on the semantics
defined earlier we created the rules shown in Fig. 2; in these rules we
considered that the user may or may not want to perform the task filter. The
result from the reasoning process in this stage is am instance of a concept
called configuration; this concept indicates which visual elements to use in
the visualization. This set of rules allows us to control how the visualization
is created to make the most out of the current hardware.

Visualization Creation. The last intervention of the reasoned is in the
creation of the visualization per se. The inputs to this process are the
configuration concept, the color map and the data itself. As we did in [3], the
reasoned can decide which color should be used for each data element, based
on the filter task and the color map. Using the configuration concept the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 152

reasoner can determinate how the elements will be shown in the
visualization. For this stage we created a new concept called displayElement
which represents how a data element will be displayed. This concept includes
data properties to handle the different choices for node and visual aid.

Fig. 2. Rules created to relate the semantics of the data, the hardware and the task
with the configuration of the visualization technique

4.6 Brows.AR Application

We developed Brows.AR, an application for the visualization of file system
hierarchies in 3D based on the Spherical Layout ([4]). The Spherical Layout
is a 3D generalization of the Radial Layout. Instead of circles, as in Radial

COMPUTER SCIENCE & TECHNOLOGY SERIES 153

Layout, we considered concentric spheres on whose surfaces we located the
nodes. In the Radial Layout each node, except the root, is allocated in a 2D
sector within the sector assigned to its parent; in the Spherical Layout we
considered a spherical wedge and the nodes are allocated on the surfaces
defined by this wedge.
In order to test our layout, we created a 3D representation of a file system
structure; to enrich the visual representation we allow the user to see the
triangles that were used to place the nodes. These triangles are painted with
the same color used for the nodes but with a high level of transparency. The
color of each node is based on the file type that the node represents. In the
case of very large trees, it is possible to remove the nodes and edges from the
visual representations and to leave only the triangles, providing an overview
of the hierarchical structure and improving the application performance. For
details about the implementation and the supported interactions see [4].

4.7 Brows.AR Semantic add-on

In order to integrate the semantic information with our application we created
a class called Reasoner; its main method was ask. The Reasoner class used
Protégé ([13]) and Jena ([14]) APIs to interact with the ontologies. The
reasoning service was provided by the Pellet ([15]) API. The constructor of
the Reasoner class takes one parameter, a JenaOwlModel which is a
representation of an ontology model. To improve the performance of the last
stage in the visualization process, we used a hash table as a cache memory to
keep the information retrieved from the reasoned. If a particular data element
is not in the cache, the application asks the reasoned for the corresponding
displayElement instance; then the pair (data element, displayElement
instance) is saved in the cache. Because all the edges are handled uniformly,
the reasoned asks only once about this option at the beginning of the process.

5. Conclusions

We designed several ontologies related to the semantic of the visualization
process. We included the semantic of the data, the tasks, the hardware and the
color. Within the visualization process, we used a semantic reasoned to create
the final visualization. This architecture was integrated into the Brows.AR
application, a 3D visualization of file systems. With this integration, we
created a visualization system that was able to assist the user in the
preparation and configuration of the visual representation.
A visualization system should ensure that, even if the user is not a
visualization expert, the generated visualization will be the most suitable for
the user and the data domain. This work presents a break trough in the
visualization research because of the integration between the visualization
process and the knowledge on visualization creation. The used of Brows.AR

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 154

as a test case proved that it is possible to use a semantic reasoner to create a
visual representation.
As future work, we are looking forward to include Strahler number and its
bifurcation ratio as part of the semantic of the data. The semantic of the
hardware will be extended to include more input and output capabilities and
we will expand the semantic of the task to include all the tasks described in
[12].

Acknowledgement

This research was partially supported by the PGI 24/N028 and 24/ZN19,
Secretaría General the Ciencias y Tecnología, Universidad Nacional del Sur,
Bahía Blanca, Argentina.

References

1 Edward, R. (1986). The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT, USA.

2 Duke, D. J., Brodlie, K. W., Duce, D. A. (2004). Building an Ontology of
Visualization. In Proceedings of the conference on Visualization ‘04 (VIS
‘04). IEEE Computer Society, Washington, DC, USA.

3 Larrea, M., Martig, S., Castro, S. (2010). Semantics-based Color
Assignment in Visualization. In: Journal of Computer Science and
Technology, 14-18, ISTEC.

4 Larrea, M., Martig, S., Castro, S. (2007). Spherical Layout – Layout for
3D Tree Visualization. In: Proceedings of the IADIS 2007, Multi
Conference on Computer Science and Information Systems, 91-98.

5 Keller, T., Tergan, S. (2005). Visualizing Knowledge and Information:
An Introduction. In: Lecture Notes in Computer Science, vol.
3426/2005, 1-23.

6 Larrea, M., Martig, S., Castro, S. (2010). Visualización Basada en
Semántica. In: Proceedings of the XII Workshop de Investigadores de
Ciencias de la Computación. 270-274, Red UNCI.

7 Zhao Xu, Huajun Chen, Zhaohui Wu (2005). Applying Semantic Web
Technologies for Geodata Integration and Visualization. In: Proceedings
of ER (Workshops). 320-329.

8 Kashyap, V., Cheung, K.-H., Doherty, D., Samwald, M., Marshall, M.,
Luciano, J., Stephens, S., Herman, I., Hookway, R. (2008). An Ontology-
based Approach for Data Integration - An Application in Biomedical
Research. In: Real-world Applications of Semantic Web Technology and
Ontologies, Springer-Verlag, Heidelberg.

9 Kalogerakis, E., Christodoulakis, S., Moumoutzis, N. (2006). Coupling
Ontologies with Graphics Content for Knowledge Driven Visualization.

COMPUTER SCIENCE & TECHNOLOGY SERIES 155

In: Proceedings of the IEEE conference on Virtual Reality (VR ‘06). IEEE
Computer Society, Washington, DC, USA, 43-50.

10 Weng, Z., M., Bell, D. (1998). Integrating Visual Ontologies and Wavelets
for Image Content Retrieval. In: Proceedings of the 9th International
Workshop on Database and Expert Systems Applications (DEXA ‘98).
IEEE Computer Society, Washington, DC, USA, 379.

11 Bouzeghoub, M., Goble, C., Kashyap, V., Spaccapietra, S. (eds.) (2004).
Semantics of a Networked World. Semantics for Grid Databases. First
International IFIP Conference on Semantics of a Networked World:
ICSNW 2004, Paris, France, June 17-19.

12 Bongshin, L., Plaisant, C., Sims Parr, C., Fekete, J., Henry, N. (2006).
Task taxonomy for graph visualization. In: Proceedings of the 2006 AVI
workshop on BEyond time and errors: novel evaluation methods for
information visualization (BELIV ‘06). ACM, New York, NY, USA, 1-5.

14 Protégé ontology editor and knowledge-base framework.
http://protege.stanford.edu/

15 Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/
16 Pellet: OWL 2 Reasoner for Java. http://clarkparsia.com/pellet/

VII
Software Engineering Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 159

Using DEVS for Evaluating Software Architectures

VERÓNICA BOGADO, SILVIO GONNET, HORACIO LEONE

INGAR - CIDISI, Facultad Regional Santa Fe, Universidad Tecnológica Nacional,
CONICET.

Avellaneda 3657, 3000 Santa Fe, Argentina.
{vbogado, sgonnet, hleone}@santafe-conicet.gov.ar.

Abstract. In this work a model for the simulation of software products
at early stage of the software development process is proposed, using
its software architecture. It is focused on the representation of
required architectural concepts and its translation into simulation
model components. Thus, we proposed the use of DEVS formalism
with the purpose of adding simulation advantages to the context of the
architectures design. Unlike other simulation techniques, DEVS
framework allows to keep the model uncoupled from the simulator and
a modular and hierarchical form of building. The proposal describes
how architectural elements are transformed into simulation elements.
The main goal is to acquire quantitative information for evaluating
the quality attributes of the system at the design stage, so decisions
can be taken earlier in the development process.

Keywords. software architecture, evaluation of architectures, DEVS.

1. Introduction

Today, it is known that intermediate products obtained at the first stages of
the software development, such as requirements specification and software
architecture, are very important for the final product. Software architecture
design provides foundations for analyzing information related to software
quality. However, to carry out this analysis with a trade-off between quality
attributes requires architects that have knowledge of different techniques.
Thus, companies have difficulty to find human resources with the required
“know-how”. In this context, the development of methods and tools that
provide a support to architects at the software architecture design has an
increasing importance.
The software architecture of a program or computing system is the structure
or structures of the system, which comprise software components, the
externally visible properties of those components, and the relationships
among them [1]. It is a complex entity and cannot be described in one-
dimension, so for a good analysis it is essential different perspectives or
views, like proposed by Clements [2], Hofmeister [3] and Kruchten [4].
Although there is no consensus, these authors agree that it is important to
model at least a static view and a dynamic view. Furthermore, several
alternatives were proposed to represent these views. For example, Use Case
Maps (UCM) can be used to represent functional aspects in software

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 160

architectures [5]. This notation adds responsibilities to the architectural
structures, where these responsibilities have causal relationships, representing
behavior and structures at a high level of abstraction [6].
The different representations of the architecture allow evaluating quality
attributes related to the software. Several works for analyzing software
architectures with different purposes have been proposed. Some of them are
focused on the architecture, analytical form based on the stakeholders and the
expert; others are focused on quality attributes, proposing a quantitative or
qualitative analysis based on Markov Decision Process, Petri Net or Queuing
Nets ([7], [8], [9]), and others are focused on scenarios. In the last group,
there are works based on patterns (analysis of the architecture done by the
expert), others based on design decisions (documentation and analysis of
early decisions that affect the evaluation of quality attributes) and others
based on Use Case Maps (UCM) employing Markov Process or Queuing
Theory [10].
However, few tools to analysis the dynamic of the system at early stages,
showing how changes could happen, have been proposed. Simulation is a
powerful tool for analyzing the states system could pass and for obtaining
values to validate different scenarios. The variables that characterize an
entity, i.e. values that allow to measure performance, can be modified and
studied, showing the impact of a change without implementing the system.
In this way, a model for simulating software products at early stage of the
software development is proposed, using its software architecture. So, the
behavior of the system can be studied, calculating measures that are used to
validate quality attributes specified in the software requirements.
In this paper, we propose a representation of information related to software
architectures that is required to a complete study of software quality. We also
consider the description of the corresponding simulation elements. In this way,
we propose the use of Discrete Event System Specification (DEVS) [11],
formalism developed by Bernard Zeigler and it is widely used as an object-
oriented modeling and simulation tool. DEVS represents models in a modular
and hierarchical form, providing a powerful ability of expression and
abstraction. These characteristics suitably represent concepts of software
architecture and their relationships.

2. Conceptual Model: Software Architecture for Evaluating
Quality Attributes

The proposed model represents (as shown in Fig. 1) information for the
analysis of the architecture from a dynamic viewpoint including data for
calculating metrics about different quality aspects. Thus, the behavior of the
system related to the structural aspects of the architecture can be understood,
analyzing interactions between components that have some presence at
runtime. This model represents essential elements, following different
approaches in the literature ([1], [2], [3], [12]), and functional aspects, using
UCM [6]. This is the basis for the simulation.

COMPUTER SCIENCE & TECHNOLOGY SERIES 161

In a dynamic view different architectural elements are represented.
ArchitecturalElement (Fig. 1) is an abstract concept, which represents
structures that have presence at runtime. Two important concepts are
specialized from it, component (Component concept in Fig. 1) and
connection mechanism (ConnectionMechanism concept in Fig. 1), which is
the communication between two or more components. If connection
mechanisms are complex connectors, they can have assigned responsibilities
to them.
The proposed model includes SimpleComponent concept (Fig. 1) for
representing simple structures. Simple component is a software entity that
could have some run-time presence (such as process, object), and it is in
charge of a set of responsibilities. A more complex structure is represented by
CompositeComponent (Fig. 1), which depends on a set of components for
carrying out its responsibilities. It can be composed by both simple
components and composite components, delegating the responsibilities to
them, because responsibility concept is only represented in the atomic level
(SimpleComponent).
Components, connection mechanisms and responsibilities concepts represent
essential elements to build software architectures, describing the system
behavior too.
A responsibility (Responsibility concept in Fig. 1) is a statement about
software objects. It could be an action an object performs, knowledge an
object maintains, or a major decision an object makes that affect others [13].
The responsibilities have cause-effect relationships (causes relationship in
Fig. 1), where the fulfillment of one or more responsibilities implicates the
execution of others [6].
Architects specify values related to metrics required to evaluate quality
attributes. So, quantitative aspects are associated to the responsibilities,
smallest units at runtime. Quality attribute value (QualityAttributeValue
concept in Fig. 1) depends on the measures that are used to analysis quality
scenarios; it is the result of a simple or complex metric. Measure concept
(Fig. 1) maintains information about the needed values for calculate a quality
indicator.
Finally, aspects related to the decisions of the architect are captured in the
model as Pattern concept (Fig. 1) and Tactic concept (Fig. 1). A Pattern
collects a set of architectural elements, structures, to conform a unit in itself
with characteristics that respond to decisions of the architect. A pattern
packages a set of tactics. A Tactic is a design decision that influences in the
control of the quality attribute response, in other word, it is a design option.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 162

ArchitecturalElement

PatternComponent

SimpleComponent CompositeComponent

Tactic

Responsibility

QualityAttributeValue Measure

ConnectionMechanism

implements

-tactics

-patterns

1..*

1..*

-components

1..*
1

-connectors

1..* 1

causes

-successors

-predecessors

0..*

0..*

-responsibilities
1..*

-architecturalComponents

1..*

-architecturalElements

1..*

measures

-AQValues

1..*

1

requires

-measures-qualityAttributes

1..*1..*

-responsibilities 1..*

Fig. 1. Conceptual Model of the Software Architecture Domain

3. Hierarchy of DEVS for Architectural Elements

The rules for transforming the main architectural elements into simulation
elements are summarized in Table 1. This work is focused on the
specification of DEVS models for representing the basic structures of the
software architecture domain; especially we describe simple component and
responsibility concepts, because they are the most used in an architectural
description.

Table 1. Relationship between models. Correspondence between conceptual elements
(software architecture) and simulation elements (Hierarchy of DEVS-architecture

domain)

Conceptual Model Elements Simulation Model Elements
Responsibility Atomic DEVS with ports
SimpleComponent Coupled DEVS
ConnectionMechanism Coupled DEVS
Relation: causes (between responsibilities) I/O Ports, Couplings between ports
Relation: aggregation
(SimpleComponent-Responsibility,
ConnectionMechanism-Responsibility)

Couplings between ports

Following guidelines suggested by Zeigler [11] and other authors [14], a

hierarchy of DEVS models is built. The elements or building blocks are
defined according to some features: self-contained (local information and
process), interoperable (cooperation between blocks), reusable (multiples
instances), replaceable (interchangeable in the model), and encapsulated
(internal structure and interfaces).

COMPUTER SCIENCE & TECHNOLOGY SERIES 163

3.1 DEVS Model for Responsibility Concept

Responsibility concept (Fig. 1) is transformed into a responsibility model
(RM), an atomic DEVS with ports (as shown in Table 1). The relationships
between responsibilities (RM) in the simulation model are given by the
input/output ports.

Each RM calculates its output values, some related to its own states and
others related to the measurement of quality attributes. At present, parameters
included in the simulation elements allow to measure performance aspects
and validate different performance scenarios. Each element returns the
execution time for computing the turnaround time of the system when stimuli
arrive.

 RMRMRMextRMRMRMRM taSYXRM ,,,,,, int,, . (1)

3.1.1 Set of Input Events (X)

The set of inputs represents information about fulfilled responsibilities and
indicates the level in which each predecessor responsibility is completed. The
only required information for activating a responsibility initially is to know if
previous responsibilities have finished their executions. This set could be
increased by adding more details to the model to evaluate other quality
aspects of the system.

Set of input ports:
 pripRIP where prip is an input port that is connected to the output

ports of other responsibilities or to input ports of coupled models (being a
component).

Set of input values for prip:
 finishedX pripRM,

Set of input ports and input values pairs:
),(finishedpripX RM where RIPprip

3.1.2 Set of States (S)

A responsibility reflexes a point where the system makes a change in its state,
because requests or actions from other elements affect it. So, the states
provide information to the designer for analyzing if it is activated, executing
or in a passive mode.

Phases:

─ inactive: passive state, waiting for an external event. The system stays
in this phase until an event occurs and interrupts the system condition.

─ active: transitory state. This phase starts an internal transition that
generates an output. It indicates that the execution of the responsibility

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 164

has been started. The duration of this phase is null and it cannot be
interrupted by external events.

─ executing: this stage indicates the responsibility is being performed,
where execution means the processing of code in software domain.

σ: resting time in a given state.

SRM= {inactive, active, executing} x
0R . (2)

Parameter (fix parameter of the model): execution_time, time that an

architectural element needs to carry out a responsibility. It follows a
probabilistic distribution.

3.1.3 Set of Output Events (Y)

A responsibility is in charge of emitting two types of information. One
related to its state, information of interest for the successor responsibilities,
and other related to the values used for measuring quality attributes.

Set of output ports:
 mopsropROP , where

srop: output port for emitting events to successor responsibilities.
mop: output port for emitting measures to evaluate quality attributes

(performance).
Set of values for srop:

─ activated: this value is emitted when the execution of the responsibility
has been started, it is ready for the execution.

─ finished: the responsibility has been carried out, its execution has been
finished.

 finishedactivatedY sropRM ,,
Set of values for mop:

 0, RY mopRM
 it indicates the time that a responsibility needs to be executed.

Set of output ports and output values pairs:

),(),,(),,(mmopfinishedsropactivatedsropYRM where ROPmopsropYm mopRM ,;,

3.1.4 Internal Transition Function

The internal transition function defines the next state of the responsibility, as
result of the elapsed time without an external event has taken place. The
“active” transitory state indicates that the responsibility can be carried out,
because their predecessors have been finished in a suitable form. It
communicates its activated state to the corresponding simulation elements; it
has been started. Thus, an internal transition is required to send an event
using the corresponding port and it changes automatically its state to

COMPUTER SCIENCE & TECHNOLOGY SERIES 165

“executing”. The other internal transition happens when the execution time
has elapsed, returning to the passive state (“inactive”), in standby, waiting for
other external event.

)_,(),(int, timeexecutionexecutingactiveRM

),(),(int, inactiveexecutingRM

3.1.5 External Transition Function

This function produces a state transition when an external event happens. In
other words, this change occurs when “finished” value is received from
fulfilled responsibilities.

if phase=inactive

),(

)0,(
),,,(, ephase

active
xephaseextRM

if phase= active or executing

3.1.6 Output Function

The output function generates output values and then performs an internal
transition of states.

),(),(activedsropactiveRM

),(),(),(mmopfinishedsropexecutingRM where
mopRMYm ,

3.1.7 Time Advance Function

This function defines the time that the responsibility has been in a state. For
the proposed model:)(sta

0),(activetaRM
 where s is a transitory state.

timeexecutionexecutingtaRM _),((specified parameter for this model).

),(inactivetaRM
 where s is a passive state.

3.2 DEVS Model for Simple Architectural Component

The simple component (SC) is in charge of a set of responsibilities. The
relationship between this element and their responsibilities can be represented
as a hierarchy of DEVS models. The instances of RM are components of the
SC coupled model.

 SCSCSCSCdSCSCSCSC ICEOCEICDdMDYXSC ,,},|{,,, , . (3)

3.2.1 Set of Input Ports and Input Values (X)

SC, coupled model, has a set of input ports, which propagate the input values
to its components (elements of the simulation model).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 166

Set of input ports:
 peipSCIP where peip is the input port that receives information from

previous architectural elements, and it is connected to the input ports of the
components.

Set of input values:
The set of input values represents information about predecessor

architectural elements, the execution end of the previous components, which
is needed to activate the execution of the corresponding components.

 finishedX peipSC ,
Set of input ports and input values pairs:

),(finishedpeipX SC where SCIPpeip

3.2.2 Set of Output Ports and Output Values (Y)

This set represents events that are generated by the components of this model
and propagated to other simulation elements.

Set of output ports:
 mopseopSCOP , where

seop: output port that emits events to the successors elements.
mop: output port that returns a measure value (indicators of quality

attributes).
Set of output values:
Output values for the first port (seop):

─ activated: indicates that the execution of the component has been
started.

─ finished: indicates that the execution of the component has been ended.

 finishedactivatedY seopSC ,,

Output values for the second port (mop):
 0, RY mopSC
 real number that indicates a measure used to calculate a quality

index.
Set of output ports and output values pairs:
),(),,(),,(mmopfinishedseopactivatedseopYSC where SCOPmopSCOPseopYm mopSC ,,,

3.2.3 Set of Components (D)

This set (Dsc) details the references to the components (RM) that are part of
the SC.

3.2.4 Component (Models)

RM, dSCM SCDd where d is a reference name of a component of the RM
class.

COMPUTER SCIENCE & TECHNOLOGY SERIES 167

3.2.5 Couplings

The different types of couplings are expressed by the following expression:
External Input Coupling (EIC):

},,|)),(),,{((rrSCSCrSCSC RIPpripSCIPpeipDrpriprpeipSCEIC
External Output Coupling (EOC):

},;,;|))),(),,(()),,(),,{(((rrrSCSCSCSCrSCrSC ROPmopsropSCOPmopseopDrmopSCmoprseopSCsroprEOC

Internal Coupling (IC):

},,,|)),(),,{((
221121 2121 rrrrSCrrSC RIPpripROPsropDrrpriprsroprIC where

21 rr

2121)),(),,((
21

rrICpriprsropr SCrr SCDrr 21 ,
Observation: DEVS model for the connection mechanism is specified in

the same form like SC, with the corresponding I/O ports and couplings
between RM instances.

3.3 Implementation using DEVSJAVA

DEVSJAVA [15] is a set of libraries for implementing DEVS models
employing JAVA programming language. The main package, Zdevs, contains
devs class, which is the superclass of atomic class and coupled class, from
which is inherited the digraph class. The proposed simulation elements were
implemented as subclasses of these: ResponsibilityM (atomic),
SimpleComponentM (digraph) and ConectionMechanismM (digraph).

4. Example of Application

A case study, a classic case of software architecture, Model-View-Controller
pattern (or MVC) is described. Fig. 2 shows a high level view of the MVC
pattern using uses case maps (UCM). The definition of the responsibilities on
the map depends on the degree of detail that we want to include. It is
important to avoid particularities that can confuse because of the abstraction
level that we work in the architectures design [16].

In the case study, the controller is responsible for handling events that
happen as a result of user requests (responsibility 1 in Fig. 2). Then, it
communicates with the model and updates it according to the requested
action (responsibility 2 in Fig. 2). The model is the representation of the
information used by the system to operate, and it is responsible for changing
it (responsibility 3 en Fig. 2), receiving the modification orders from the
controller. The task of displaying the user interface is delegated to the view
(responsibility 4 in Fig. 2), which takes the data from the model and
generates the interface, displaying the changes performed in the model.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 168

Fig. 2. UCM of MVC pattern (adapted from [16])

The three architectural components are traduced into DEVS coupled
models (SC), and the responsibilities to DEVS atomic models (RM),
describing how the ports are connected, and how DEVS components are
structured for the Controller component (SC1). Fig. 3 shows how the
responsibilities of this component are coupled in the simulation model and
the connections of its ports. Each responsibility is an atomic model (RM), and
it is in charge of sending the corresponding outputs and of calculating values
to evaluate architectural aspects (i.e. execution time, considered currently in
the model). The coupled model (SC1) propagates the information to its
components (rm1, rm2) and to the outside, inputs or outputs respectively.

Fig. 3. Controller component (CS). Ports and internal components (RM)

5. Conclusion

In this work, we propose a conceptual model that “captures” information about
basic elements of software architecture, the behavior of them, and functional items
(responsibilities) added to the structural elements. Additionally, the model
represents quantitative values which enable quantitative analysis for validating
several scenarios.
To complement the conceptual model, DEVS formalism has been employed to
incorporate the advantages of discrete event simulation in the context of the

COMPUTER SCIENCE & TECHNOLOGY SERIES 169

architectures design. This formalism, unlike other simulation tools, keeps the model
uncoupled from simulator, building its elements in modular and hierarchical way.
Thus, the transformation of the model concepts (software architecture information)
into elements of the simulation model has been described.
As future work, other domain concepts such as composite components and patterns
will be study to specify and implement them in the simulation model. Also,
quantitative aspects of the architectural models will be study in more detail to
incorporate parameters into the simulation elements to evaluate visible attributes at
runtime (quality attributes).

References

1. Bass, L.; Clements, P.; Kazman (2003). Software Architecture in Practice.
Addison-Wesley.

2. Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Nord, R.;
Stafford, J. (2002). Documenting Software Architecture- Views and Beyond.
Addison-Wesley.

3. Hofmeister, C.; Nord, R.; Soni, D. (2000). Applied Software Architecture.
Addison-Wesley.

4. Kruchten. P. (1995). The 4+1 View Model of Architecture. In: IEEE Software,
vol. 12, 42-50.

5. Buhr, R. (1999). Making Behaviour a Concrete Architectural Concept. In: 32nd
Hawaii International Conference on System Sciences, USA.

6. Buhr, R.; Casselman, R. (1999). Use Case Maps for Object-Oriented Systems.
Prentice Hall.

7. Wang, W.; Wu, Y.; Chen, M. (1999). An Architecture-Based Software
Reliability Model. In: Pacific Rim International Symposium on Dependable
Computing, 143-150.

8. Fukuzawa, K..; Saeki, M. (2002). Evaluating Software Architecture by
Coloured Petri Nets. In: 14th International Conference on Software Engineering
and Knowledge Engineering, USA.

9. Spitznagel, B.; Garlan, D. (1998). Architecture-Based Performance Analysis.
In: 1998 Conference on Software Engineering and Knowledge Engineering.

10. Petriu, D.; Woodside, M. (2002). Software Performance Models from System
Scenarios in Use Case Maps. In: 12th International Conference on Computer
Performance Evaluation, Modelling Techniques and Tools, UK.

11. Zeigler, B., Praehofer, H., Kim,. T. (2000). Theory of Modeling and
Simulation–Integrating Discrete Event and Continuous Complex Dynamic
Systems. Academic Press.

12. ISO/IEC WD3 42010. IEEE P42010/D3. Systems and Software Engineering –
Architectural Description (2008).

13. Wirfs-Brock, R.; McKean, A. (2002). Object Design: Roles, Responsibilities
and Collaborations. Addison-Wesley.

14. Verbraeck, A.; Valentin, E. (2008). Design Guidelines for Simulation Building
Blocks. In: 2008 Winter Simulation Conference (WSC), 923-933.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 170

15. Zeigler, B., Sarjoughian, H. (2005). Introduction to DEVS Modeling an
Simulation with JAVA: Developing Component-Based Simulation Models,
University of Arizona, USA.

16. Buhr, R.; Casselman, R.; Pearce, T. (1996). Design Patterns with Use Case
Maps: A Case Study in Reengineering an Object-Oriented Framework,
technical report, SCE 95-17.

COMPUTER SCIENCE & TECHNOLOGY SERIES 171

Effort Estimation Analysis by Applying Use
Case Points

CRISTIAN A. REMÓN1 AND PABLO THOMAS2

1 Dpto. I+D Maker Electrónica, Mar del Plata, Argentina.
cremon@makerelectronica.com.ar.

2 III-LIDI, Instituto de Investigación en Informática,
Facultad de Informática, Universidad Nacional de La Plata, Argentina.

pthomas@lidi.info.unlp.edu.ar.

Abstract. The various effort estimation methodologies in the software
development process have arisen due to project failures and
successes. The evolution of estimation methods has not been a
consequence of their invalidity or erroneous results, but of the
evolution of technology itself, of the reduction of error margins and
market demands in the search for higher-quality products. This paper
shows that the Use Case Points methodology proposed by Frohnhoff
and Engels, which clearly proved to be successful during its
development process, needs adjustments and/or improvements. In this
sense, specific study cases are presented.

Keywords. Use Cases, Use Case Points, Effort Estimation.

1. Introduction

The use of software in society has increased significantly, and therefore,
quality software development is required.
Software quality is measured, primarily, through the completion of the
requirements defined in the initial stages of the development lifecycle and by
the process applied during this lifecycle.
To achieve this goal, the entire software development process must be
managed under an effective project plan [1], which ensures that final cost and
time are as described in the previously defined requirements.
Software development is an economic activity, and it is therefore subject to
monetary restrictions in addition to the inherently technical ones, which are
explicitly within the project plan [2].
The activities or tasks that must be carried out to achieve the stipulated
product require the investment of effort, which is estimated based on the
requirements obtained during the elicitation stage. The elements involved in
the estimation of software projects are: size, invested effort, development
time, technology used, among others. The invested effort is a key element,
since this value, as part of the cost of the project, is used to calculate the
profit margin that is obtained with the finished product.
One of the methods used to estimate the software development effort is based
on Use Case models [3], which is a widely used technique to describe the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 172

interaction of users with a software system. UML (Unified Modeling
Language) designers recommend developers to follow a Use Cases modeled
process to be used as input document for the design and the testing stage [4].
Gustav Karner [6] took the Use Cases model to improve the Function Points
technique for estimating the effort in software projects.
Effort estimation methodologies lie in two clear objectives: estimating the
effort at a preliminary development stage, and relatively reducing error
magnitude.
In this article, 12 study cases will be surveyed: 9 graduate dissertations on
software projects presented by students of Engineering in Computer Science
from the School of Engineering of the FASTA University in the city of Mar
del Plata, Argentina, and 3 software industry projects. From these cases, the
results obtained are analyzed by applying the enhanced Use Case Points
methodology proposed by Frohnhoff and Engels [5], compared with the
results obtained in the estimation performed in each of the study cases.
In section 2, the methodology proposed by Gustav Karner for effort
estimation is described. In section 3, the adjustments incorporated by
Frohnhoff and Engels to Gustav Karner’s method are detailed. Then, in
section 4, a description is included, together with the values obtained when
applying Frohnhoff and Engels’ method to the study cases herein proposed.
In section 5, an analysis and simulation of Frohnhoff and Engels’ method is
carried out using the mean values obtained in section 4, with primary focus
on the A-factor variable of the method. Finally, in section 6, the conclusions
obtained and future works are presented.

2. Gustav Karner’s Use Case Points (UCP) Methodology

The use case points methodology is a derivation of the function points
methodology proposed by Albrecht. Karner [6] bases this methodology in the
utilization of use cases as input data to calculate the effort in the number of
man-hours (mh) that are needed for the development of a software project.
The effort estimation method uses four main variables:

2.1 Classification of the Actors Involved

The actors involved in the use cases are classified based on their intrinsic
characteristic and the way in which they interact with the system. A simple
actor (weight=1) is that which represents a programming interface or API
(e.g., abstraction layer); a medium actor (weight=2) is that which interacts
through a protocol (e.g., TCP/IP, HTTP, FTP); and a complex actor
(weight=3) is that which interacts through a graphic interface. Based on this
classification, each actor is assigned a value that is known as weight (the
author of the methodology does not specify the origin of these weights in any
of the cases).

COMPUTER SCIENCE & TECHNOLOGY SERIES 173

2.2 Use Case Classification

Use cases are classified based on the number of transactions they have,
including transactions from alternative scenarios and excluding extensions or
inclusions of other use cases. A simple use case (weight=5) is that with 3 or
less transactions; a medium use case (weight=10) is that with 4 to 7
transactions; and a complex use case (weight=15) is that with more than 7
transactions. Again, each use case is assigned a weight.

2.3 Software Project Technical Complexity Factor

Technical factors (T) are defined by the technical influences that may affect
the development process of the system to be built. Each technical factor has a
complexity degree that ranges between 0 and 5, where 0 means an irrelevant
or null value and 5 determines a value with a high degree of influence. Each
technical factor has a weight value. The total weight of that technical
influence factor is obtained by multiplying the assigned complexity value and
the weight corresponding to the factor.

2.4 Project Environment Factors

Environment factors (E) indicate the influence of the human group involved
in the project on the system to be developed. The same as technical factors,
environment factors have an influence degree that ranges between 0 and 5,
where 0 means an irrelevant or null value and 5 determines a value with a
high degree of influence. Each environment factor has a weight value. The
total weight of that technical influence factor is obtained by multiplying the
assigned influence value and the weight corresponding to the environment
factor.

To determine the estimation of the Use Case Points, the following steps
must be followed:
1. Classifying actors to determine the UAW (Unadjusted Actor Weight)

value
 UAW = Sum of all weights of identified actors
2. Classifying use cases to determine the UUCW (Unadjusted Use Case

Weight) value
 UUCW= Sum of all use case weights
3. Determining the UUCP (Unadjusted Use Case Point) value
 UUCP = UAW + UUCW
4. Determining the TCF (Technical Complexity Factor) value
 TCF= 0.6 + (0.01 * Σ (T1...T13))
5. Determining the EF (Environment Factor) value
 EF = 1.4 + (-0.03 * Σ (E1…E8))
6. Determining the AUCP (Adjusted Use Case Point) value
 AUCP = UUCP * TFC * EF

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 174

Karner establishes a factor of 20 man-hours for use case point to carry out
the estimation stage of a software project [6].

UCP = AUCP * 20
The Use Case Point (UCP) value obtained indicates the effort in man-

hours that need to be invested to develop the software project.

3. Frohnhoff and Engels Adjustment on the UCP Method

Frohnhoff and Engels performed estimation tests on 15 software projects
from various industrial sectors by comparing the effort estimated by applying
Karner’s UCP method with the real effort of the project, obtaining as a result
a standard deviation of 42% [5].

A deviation of such magnitude is not acceptable in the software industry
because it tends to overestimate the real effort required.

The authors surveyed the causes for these deviations with the project
leaders of the different study cases, and arrived at two main hypotheses:

 Lack of use case standardization
 The software development process model applied:

o standard processes (Rational Unified Process (RUP), V-
model)

o limited processes
o processes with strict development policies

By emphasizing the process models hypothesis, Frohnhoff and Engels
focused on the adjustments on the influence of requirement definition in the
development process and the effort invested in the project. The model
proposed for calculating project effort (PE) is the following:

PE = (PF * M-factor) * (T-factor * A-factor)

A-factor (Application factor): it is defined by the classification of use cases,
which represent project functional requirements. This value is similar to
UUCP in the original method.

The complexity level of each use case is standardized in accordance to
their main scenarios, transactions and dialogue boxes:

 Simple: <= 3 main scenarios, transactions and dialog boxes (5
points)

 Medium: <= 7 main scenarios, transactions and dialog boxes (10
points)

 Complex: >= 8 main scenarios, transactions and dialog boxes (15
points)

Classification weights are taken based on the original UCP method, n is
the number of use cases, resulting in:

A-factor = (Sum of 1 to n of the use cases weight) + UAW (original value
of the UCP method)

T-factor: It represents non-functional requirements. It takes the original
variables and weights from the UCP method and standardizes complexity

COMPUTER SCIENCE & TECHNOLOGY SERIES 175

influence values. A guide is included to indicate the degree of influence with
values 0 (irrelevant), 3 (medium influence), or 5 (high influence). The
influence degree is called G, and the weight for the complexity technical
factor is W, resulting in:

T-factor = 0.58 + Σ i = 1...13 (Wi * Gi * 0.01)

M-factor (Management Factor): The environment influence variables (E)
in the original method are reduced from 8 to 6. The E1 factor (knowledge of
RUP) and the E3 factor (knowledge of the OO paradigm) are excluded on the
grounds that they do not have a significant influence, since there is a high
percentage of projects that are developed using UML processes and under
OO paradigms. A guide is included to indicate the degree of influence with
values 0 (irrelevant), 3 (medium influence), or 5 (high influence).

The authors add a new influence variable, M7, that represents the model of
the process to be used, as shown in Table 1.

Table 1. M7 as new variable and its various influence degrees

M-factor Influence degree Weight
M7- Process
Model

0: limited processes
3: standard processes (RUP, V-model)
5: processes with strict development policies

-4.5

Then, the new M-factor classification according to Frohnhoff and Engels

is established as indicated in Table 2.

Table 2. M-factor classification

M-factor Description Weight
M1 Experience in the application -0.5
M2 Project leader skills 0.0
M3 Motivation 2.5
M4 Stable Requirements 2.0
M5 Part-Time developers group -1.0
M6 Difficulty in programming language 0.0
M7 Process model -4.5

Finally, considering G as the influence degree and M as the weight of the
value of M-factor, the result is:
M-Factor = 0.8875 - Σi = 1...7 (Mi * Gi * 0.025)

The standardization of M-factor weights caused a scalability adjustment in
the productivity factor (PF) from 28.7 to 35 mh/UCP.
Frohnhoff and Engels applied the new, adjusted method on the 15 projects
mentioned at the beginning of this section, and obtained as a result a
deviation of 20% between the estimated effort and the real effort of the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 176

project; in contrast with the 42% deviation obtained using Karner’s method
[5].

4. Application in Study Cases

The UCP method adjusted by Frohnhoff and Engels was applied in 12 study
cases – 9 graduate dissertations on software projects (limited processes
according to the M-factor classification) from the School of Engineering of
the FASTA University in the city of Mar del Plata, Argentina, and 3 software
industry processes from the company Maker Electrónica, Argentina
(www.makerelectronica.com.ar).
In these study cases, the same development policies were applied (standard
processes based on the M-factor classification). The development effort
required was estimated using the methodology proposed by Frohnhoff and
Engels, as well as the experience in the field of the project manager and the
group of developers, and interesting conclusions were drawn after the end of
the projects.

4.1 Project Description

Below, the projects used are briefly described:
 CE1- Current account management in limo cooperative: Computer

system to manage current accounts and information of the owners of cars
under contract with the cooperative.

 CE2- Technical Management and Dashboard of AVL equipment: Design
and implementation of a software system that allows managing all
relevant information and lifecycle of AVL (Automatic Vehicles
Localization) satellite positioning equipment produced by the company
Maker Electrónica. Information centralization and unification of the
current client Business Management system.

 CE3- AVL-Desktop: Design and implementation of a desktop system
that displays the position of the company vehicle fleet on a digital map in
real time. The satellite monitoring of mobiles is performed through a
Web application; the AVL-Desktop project is an extension of the Web
AVL application.

 CE4-GAMA System [9]: Computer system that helps manage
ambulatory medical care of patients at the National Epidemiology
Institute (INE) of Mar del Plata, Argentina, applicable to other health
institutions.

 CE5- SCRUM [10]: Computer solution for the Rugby Union of Mar del
Plata, Argentina, for the comprehensive management of their activities,
through the development of a Web application and a desktop application.

 CE6- DO-RE-MI [11]: Management system for a music conservatory.

COMPUTER SCIENCE & TECHNOLOGY SERIES 177

 CE7- SLT [12]: The main purpose of the project is providing end users
with a computer solution that manages in a comprehensive and efficient
manner the logistics of a transportation company.

 CE8- SIARER [13]: Computer system for the analysis of energy
resources.

 CE9- MARATHON [14]: Sports management and training planning
system.

 CE10- ZONDA [15]: Computer system for the analysis of renewable
energy resources.

 CE11-C.T.E.N.P [16]: Computer system for managing the activities of
the National Fishing School of the city of Mar del Plata, Argentina.

 CE12-GySP [17]: Computer system for managing and monitoring
software projects.

4.2 Results obtained

The values obtained with Frohnhoff and Engels’ method are presented in
Table 3. Effort estimation values for the study cases are expressed in man-
hours.

Table 3. Values obtained with Frohnhoff and Engels’ method

Study
Case

Project Type A: Real
Effort
(MH)

A-
factor

T-
factor

M-
factor

B:
PE(MH)

Gap
(B-A)

/A*100
CE01 Management 750 211 0.915 0.700 4730.09 530.68%
CE02 Industry 173 120 0.800 0.825 2772.00 1502.31%
CE03 Industry 305 59 0.910 0.850 1597.28 423.70%
CE04 Management 5085 461 0.940 0.575 8720.97 71.50%
CE05 Management 2025 266 0.925 0.488 4198.23 107.32%
CE06 Management 1236 696 0.980 0.700 16710.96 1252.02%
CE07 Management 3762 468 1.070 0.425 7448.81 98.00%
CE08 Simulation 4577 101 1.005 0.550 1953.97 -57.31%
CE09 Management 1810 246 0.905 0.325 2532.42 39.91%
CE10 Simulation 3282 140 0.940 0.325 1496.95 -54.39%
CE11 Management 1244 221 0.940 0.450 3271.91 163.015
CE12 Management 1641 121 1.015 0.325 1397.02 -14.87%
Mean 2157.50 259.17 0.95 0.54 4671.98 116.55%

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 178

5. Analysis of A-factor

Figure 1 analyzes the relation between Project Effort (PE) and the value of
A-factor, and it shows that PE value tends to increase as the value of A-factor
increases in minimum ranges.

Fig. 1. Linear trend of Project Effort in relation to the value of A-factor

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600 700 800

A-factor

P
E

To exemplify this trend, the mean values of the study cases used are
considered.
PE=(35mh * M-factor)*(T-factor * A-factor) = (35mh * 0.54) * (0.95 *
259)= 4649mh

The mean values from Table 3 are used below to demonstrate, through a
specific example, the sensitivity of the A-factor variable in relation to project
context; the result obtained is an overestimation of the effort required.
If a new use case of medium complexity is added, it receives the
corresponding weight of 10, and the equation for calculating the effort would
then be:
PE= (35mh *M-factor)*(T-factor * A-factor)=(35mh * 0.325)* (0.905 * 269)
=4819mh

The introduction of a new functionality to the project increased the estimated
effort in 3.6%, with a difference of 170mh. This means that the new medium-
complexity functionality requires the investment of 170mh.
The sensitivity of the A-factor value can be observed through the inclusion of
a medium-complexity requirement, which resulted in an overestimation that
is beyond the acceptable dispersion margins, optimistic or pessimistic, in
relation to the estimation of the effort required for the project.

COMPUTER SCIENCE & TECHNOLOGY SERIES 179

The same as Frohnhoff and Engels analyzed Gustav Karner’s method and
proposed an improvement by focusing in the technological and
environmental variables, the analyses presented in this article suggest an
improvement on that method by focusing on the A-factor variable, which is
sensitive to the context of the functional requirements in a software project.
The improvement proposed is to achieve a normalization of use cases that
derives their qualitative and quantitative reclassification and thus strengthen
the influence of the A-factor variable.

6. Conclusions and Future Work

The discussion in this article indicates that the application of the Use Case
Points proposed by Frohnhoff and Engels on twelve real study cases
generates excessive deviation in the estimation of the effort required for a
software project due to the sensitivity of the A-factor variable. This
sensitivity was demonstrated through a specific example in section 5.
The quantitative and qualitative classification given by Frohnhoff and Engels
to use cases is not a convincing parameter when estimating the effort of a
preliminary stage of the project, since it is the cause for the weakness of the
A-factor variable in this method. As a consequence of this characteristic and
the results shown in this paper, an adjustment of this variable is required.
The same as Frohnhoff and Engels focused their improvement on
technological and environmental aspects, this article suggests applying an
improvement to the environment of the functional requirements of the
project, taking as starting point the normalization of use cases, that is the
input information of this variable, to then tackle the reclassification of use
case complexity.
Use cases are a useful and important tool in software project development.
They represent the starting point for the modeling of an object-oriented
system, the baseline points for project planning, and the input documentation
in requirement validation and testing stages.
Finally, the following future lines of work are planned:

 Normalization of the use cases used in order reclassify them based
on their complexity.

 Analysis of the values and influence degree of the A-factor variable
for each project.

 Development of new field tests applying the adjustments.

References

1. Kusumoto, S., Matsukawa, F., Inoue, K., Hanabusa, S., Maegawa, Y.
(2004). Estimating Effort by Use Case Points: Method, Tool and Case
Study. In: Proceedings of the 10th International Symposium on Software
Metrics, 292-299.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 180

2. Sommerville, I. (2002). Ingeniería de Software, 6ta. Edición. Addison,
Wesley.

3. Anda, B., Dreiem, H., Sjøberg, D.I.K., Jørgensen, M. (2001). “Estimating
Software Development Effort Based on Use Case – Experience from
Industry. En: M. Gogolla, C., Kobryn, C. (Eds.) UML 2001. LNCS, vol.
2185, 487-502. Springer-Verlag.

4. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. (1992). Object
Oriented Software Engineering: A Use Case Driven Approach. (ACM
Press) Addison-Wesley.

5. Frohnhoff, S., Engels, G. (2008). Revised Use Case Point Method - Effort
Estimation in Development Projects for Business Applications. In:
Proceedings of the 11th International Conference on Quality Engineering
in Software Technology, Potsdam, Dpunkt-Verlag.

6. Karner, G. (1993). Metrics for Objectory, Degree thesis, University of
Linkoping, Sweden.

7. Coleman, D. (1998). A Use Case Template: draft for discussion. Fusion
Newsletter.

8. Cockburn, A. (2001). Writing Effective Use Case. Boston, Addison-
Wesley.

9. Cucchi Colleoni, A., Di Crocce, V., Sansevero, R. (2007). Thesis Project:
GAMA. Facultad de Ingeniería, Universidad FASTA, Mar del Plata.

10. Ghigliani, J., Fernández, G. (2005). Thesis Project: SCRUM. Facultad de
Ingeniería, Universidad FASTA, Mar del Plata.

11. Cosia, V., Villen, C. (2009). Thesis Project: DO.RE.MI. Facultad de
Ingeniería, Universidad FASTA, Mar del Plata.

12. Ferrari, M., Ortiz, S., Seoane, L., Ullo, M. (2007). Thesis Project: SLT.
Facultad de Ingeniería, Universidad FASTA, Mar del Plata.

13. Abadie, E., Bressán, J., Guzmán, E. (2010). Thesis Project: SIARER.
Facultad de Ingeniería, Universidad FASTA, Mar del Plata.

14. Gáspari, F., Remón, C. (2006). Thesis Project: MARATHON. Facultad
de Ingeniería, Universidad FASTA, Mar del Plata.

15. Albornoz, D., Posse, J., Speratti, N. (2010). Thesis Project: ZONDA.
Facultad de Ingeniería, Universidad FASTA, Mar del Plata.

16. Aroca, A., D’Angelo, J. (2007). Thesis Project: CTENP. Facultad de
Ingeniería, Universidad FASTA, Mar del Plata.

17. Pavón, J., Rueda, J. (2006). Thesis Project: GySP. Facultad de Ingeniería,
Universidad FASTA, Mar del Plata.

COMPUTER SCIENCE & TECHNOLOGY SERIES 181

The Importance of Using Empirical Evidence in
Software Engineering

ENRIQUE FERNÁNDEZ1, OSCAR DIESTE2, PATRICIA PESADO3
AND RAMÓN GARCÍA-MARTÍNEZ4

1 PhD Program on Computer Sc. School of Computer Sc. Universidad Nacional de La Plata.
2 Empirical Software Eng. Group. School of Computer Sc. Universidad Politécnica de Madrid.

3 Instituto de Investigaciones en Informática LIDI. Facultad de Informática. UNLP – CIC.
4 Information Systems Research Group. Productive & Technologic Development Dept.

Universidad Nacional de Lanús.
enriquefernandez@educ.ar, odieste@fi.upm.es, ppesado@lidi.info.unlp.edu.ar,

rgarcia@unla.edu.ar.

Abstract. Experiments that are run with few experimental subjects are
often considered not to be very reliable and deemed, as a result, to be
useless with a view to generating new knowledge. This belief is not,
however, entirely correct. Today we have tools, such as meta-analysis,
that we can use to aggregate small-scale experiments and output
results that are equivalent to experiments run on large samples that
are therefore reliable. The application of meta-analysis can overcome
some of the obstacles that we come up against when running software
engineering experiments (such as, for example, the practitioner
availability problem).

Keywords. Meta-analysis, statistical power, reliability, replications,
sample size.

1. Introduction

Suppose that a hypothetical Dr. Smith is a university researcher working on
testing techniques [1]. Recently, Dr. Smith has read about new inspection
technique “A” that looks as if it might outperform other techniques, like, for
example, technique “B”. And so, he decides to run an empirical study to test
this hypothesis. To do his, he puts out a call for final-year BSc in Software
Engineering students to participate in the study. As a result of the all, he
manages to recruit 16 students, and 8 are trained in the new technique and the
other 8 in the pre-existing technique. During the experiment, each group
applies the respective technique to the same program. He measures the
number of effects detected as the response variable. Table 1 shows the results
(aggregated by group).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 182

Table 1. Results of the experimental study by Dr. Smith

Based on these values, Dr. Smith runs a hypothesis test (a t-test assuming
variances to be equal) with α = 0.05. This test returns a p-value of 0.53.
Therefore, technique A cannot be said to perform better than B.
Although the results are not promising, Dr. Smith decides to go ahead with
their publication in the hope that the experiment will be replicated and the
aggregation of data will better explain the comparison between A and B. Dr.
Smith submits the paper and, at the end of the review process, receives the
assessment shown in Figure 1.

Fig. 1. Results of the paper review process

The above example, albeit fictitious, is representative of many real pieces of
empirical software engineering (ESE) research. On the one hand, many
researchers interpret hypothesis testing too restrictively (and wrong in many
cases, as will be seen later), focusing on whether or not the results are
significant (level = 0.05). On the other hand, there is a tendency not to take
experimental studies that were built with students as evidence, as this
research is not considered to be extrapolable to real-world environments.
However, there is a shortage of subjects (be they practitioners or students)
that are willing to participate in experimental studies [2][3][4]. Additionally,
the more subjects an experiment has, the more costly it will be in terms of
workload, infrastructure, among others, and this can discourage researchers.
On the other hand, the cost of experiments run with fewer subjects is likely to
be more affordable. These factors clearly limit SE researchers’ prospects of
being able to generate new empirically validated knowledge.
Fortunately, there are some alternatives for exploiting the results of small-
scale studies. In this paper we will focus on one: meta-analysis. Essentially,
meta-analysis is a statistical technique for aggregating more than one study,
thereby increasing the number of experimental subjects involved in the
hypothesis testing and outputting more reliable results. In our research we
have analyzed whether meta-analysis could be applied in ESE to combine the

COMPUTER SCIENCE & TECHNOLOGY SERIES 183

results of several small-scale experiments, with the aim of increasing the
power of experiments with small samples.
We will proceed as follows. Section 2 will describe how sample size affects
hypothesis testing. In Section 3 we will outline how to use meta-analysis to
combine the results of more than one small study and thus increase their
power. Section 4 presents a set of problems related to meta-analysys. Finally,
Section 5 will discuss whether meta-analysis is reliable when applied to ESE.

2. State of the Art

Any statistical test is subject to two types of errors: α, or type I error, and β,
or type II error [5]. These errors occur due to the uncertainty associated with
estimating population parameters (means and standard deviation) from a
sample of the population. Remember that an experiment observes what
happens in a sample (the subjects that tested the techniques) to estimate what
happens in a population (the reality of the tested techniques). As Table 2
shows, α is the error associated with the alternative hypothesis (H1: there is a
difference between tested techniques) being accepted when the null
hypothesis (H0: there is no difference between the tested techniques) holds
for the population, and β is the likelihood associated with the opposite event.

Table 2. Decision of the statistical test

 H0 H1

H0 Correct decision
(1-)

(Tipe II error)

H1
(Tipe I error)

Correct decision
(1-)

It is more dangerous for an experiment to lead to the belief that there actually
is a difference between two tested techniques when there really is none (error
α) than to believe that there is no difference (because none is observed in the
experimental sample) when there really is (error β). Therefore, the value of α
is set at extremely low values, such as 0.1, 0.05 or even 0.01 (10%, 5% and
1%, respectively).
Unfortunately, α and β are not independent: according to statistical theory, a
hypothesis test is characterized by five factors [6]: α, β, the mean difference
d, the level of variation of the response variable s (measured as the variance
or standard deviation) and the number of experimental subjects, or, to be
more precise, sample size, n. Equation 1 shows the relationship between
these factors, where z represents the typified normal distribution:

 11 2
z

S

dn
z

(1)

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 184

These five factors form a closed system. This means that an increase or
decrease in any one of the factors leads to increases or decreases in the
others. In practice, the factor that really is affected is n, as type I (α) and type
II (β) errors are set beforehand, and both d and s are circumscribed by the
experimental context and cannot therefore be manipulated at liberty by the
researcher. This is perhaps the most important, albeit not the only, reason
why experiments are required to have a large number of experimental
subjects. When the number of experimental subjects is small and α is set at
0.05, β returns very high values.
Let us go back to the example of Dr. Smith’s experiment. Applying Equation
1 we get β = 0.83, that is, the test will detect significant differences 17% of
the time, whereas it will fail to do so in 83% of the cases, even though they
possibly do exist in the population/reality. The influence of the number of
subjects on type II error is even clearer if we look at how β decreases as more
experimental subjects join, all other factors being equal. It is usual practice to
use the term reliability instead of α to refer to type I error and statistical
power instead of β to refer to type II error. Reliability is calculated as 1 - α
and power as 1 - β. For an experiment to be considered reliable, it is usual to
set type I error at α = 0.05 (that is, a reliability of 0.95 or 95%) and type II
error at β = 0.2 (that is, a power of 0.8 or 80%). As Figure 2 shows, Dr. Smith
would have needed a total of 120 subjects (60 in each group) for her
experiment to be considered reliable. Fortunately, there are several strategies
designed to overcome the problems of low power caused by the use of
experiments that have few experimental subjects. In this paper, we will look
at meta-analysis.

Fig. 2. Decrease in type II error against the increase in n

3. Taking Advantage of Experiments with Few Subjects

Meta-analysis is a statistical technique for combining the results of more than
one experiment developed previously to achieve a greater statistical power

COMPUTER SCIENCE & TECHNOLOGY SERIES 185

than any of the individual experiments on their own. Although usually
associated with medicine, the term meta-analysis as it is now known was
developed in psychology.
In many cases of psychology, the treatments studied have very small effects
on experimental subjects, meaning, as illustrated in Figure 2 [7], that
experiments need a very large sample size (usual guidelines are around 150
[8]). In many cases, however, not that many subjects are available for
experiments and studies reporting insignificant effects predominate over
others that do detect significant effects, as studies of low statistical power
accumulate. This was the way things were in psychotherapy, the specialized
field with which Dr. G.V. Glass [9], creator of meta-analysis as we know it
today, was concerned. Using an argument very similar to the one brandished
in ESE today (small studies are useless), psychotherapy was judged to be
ineffective. Dr. Glass, who did not agree with this interpretation, took a
different road to demonstrate his belief: instead of excluding studies (on the
grounds of their size or statistical significance), he tried to consider as many
studies as possible upon which to base his findings. Looking back, the
hardest thing was to find a way of aligning the wide range of metrics used in
the different replications to measure the response variables. The solution was
to come up with what is today the well-known concept of effect size, briefly
mentioned in Section 2. Effect size is a non-scalar measure calculated as the
difference between the treatment means divided by the pooled standard
deviation.
After calculating the effect size of each experiment, all Glass had to do was
average the results of the individual experiments to arrive at a global effect
using a procedure dating back to the mid-19th century[10]. This value
represents the effect that, theoretically, a single experiment having a greater
sample size and, consequently, a smaller type II error than any of the original
experiments would have achieved. This way he demonstrated that
psychotherapy was indeed effective. The parallelisms with ESE, in respect of
the potential contribution of small studies, are evident. For example, suppose
that Dr. Smith published her paper on her laboratory web site. Later Dr.
Thomas visited the web site, found the experiment interesting and decided to
replicate it. In this case, Dr. Thomas managed to recruit no more than eight
advanced MSc in Software Engineering students, four of which he assigned
to each of the experimental groups. Results are shown in Table 3.

Table 3. Results of Dr. Thomas’ experimental study

Dr. Thomas ran a t-test on these results (assuming variances to be equal at α
= 0.05) and also found insignificant differences (pvalue = 0.57). What would
happen if these two studies were combined using meta-analysis to achieve a
new result? Would the differences be significant? Would the test be more
powerful? In response to these questions, the sample size is still not big

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 186

enough to return significant results (there are only 12 subjects per technique).
Figure 3 (showing the statistical power of the meta-analysis for a population
with an effect size 2 of 0.5 and α=0.05) indicates that about 70 experimental
subjects would be necessary for a meta-analysis to achieve what is usually
considered as a discriminative statistical power (1-β = 0.8).
The statistical power, however, has improved in part. Whereas Dr. Smith’s
and Dr. Thomas’ tests had a power of 0.17 and 0.11, respectively, the meta-
analysis achieved a power of 0.13. Note that if it had been possible to use 8 +
4 = 12 subjects per group in a single experiment, it would have been possible
to achieve a power of 0.22. Using meta-analysis it is possible to gradually
increase the statistical power as more experiments are added. This way
experiments with a small sample size can supplement each other. The more
experiments (no matter how small the number of subjects per experiment is)
that are aggregated using meta-analysis, the more powerful the results and,
consequently, the greater the possibility of detecting false-negatives will be.

Fig. 3. Increase of the statistical power in a meta-analysis

Suppose that there are three more replications of Dr. Smith’s research, whose
results are shown in Table 4 (note that they all return insignificant results).

Table 4. Results of Identified Studies (Replications)

Figure 4 charts how the power of the meta-analysis increases as more of
these studies are added. In this example, even though the test fails to achieve
the desired power level of 80%, it does, in any case, manage to output
significant differences at a power of almost 57% (which is much greater than
the best experiment separately, estimated at 24%).

COMPUTER SCIENCE & TECHNOLOGY SERIES 187

Fig. 4. Increase in the statistical power by accumulating small-scale replications

This is noteworthy, as the example was designed based on the fact that the
inspection technique efficiency actually IS different.
So far we have given an example of how meta-analysis can be used to take
advantage of studies with small sample sizes that, separately, return results
that are insignificant but, together, could provide valuable evidence.

4. Theoretical Model Limitations

Although the functions of estimating the power of a meta-analysis to estimate
accurately the statistical power of a meta-analysis when the set of
experiments that are part of the aggregation process are homogeneous (the
differences between the results of different experiments are minimal), in our
view, this function has shortcomings to be applied in the current context of
the SE. That problem is that such studies are small, variations in the results,
in general, are great influences of experimental error. When this happens the
power of meta-analysis tends to decline as indicated obliquely by Hedges and
Olkin [11]. We have analyzed this aspect using a Monte Carlo test, which
simulate the results of studies within the same population, but without forcing
homogeneity among the groups to add, varying the number of subjects for
experiments between 4 and 20 and combining 2 to 10 experiments for meta-
analysis.
This study allowed us to determine when it has no homogeneity, that for low
effect sizes (0.2) is almost impossible to get the test showed significant
differences working with 200 subjects per group (simulated maximum
sample size) due to the low power statistical effects that for effect sizes
medium and high (0.5 and 0.8) heterogeneity is not determinant, as it has
been able to achieve good statistical power with lots of subjects no too high
(about 80 to 30 subjects per group, respectively). Figure 5 shows a
comparison of the estimated power for each of the values of typical effect.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 188

Fig. 5. Simulated power for a meta-analysis

5. Conclusions

In this paper we have shown that there are options open to researchers to
generate pieces of empirical SE knowledge more efficiently than they do
today. We have shown that meta-analysis is able to increase the power of
experiments, enabling a set of small studies that individually do not return
statistically significant differences to do so, if taken together. This way we
can solve some of the problems related to the accumulation of a sizeable
number of experimental subjects by a single researcher, as we can put
together a large-scale experiment by meta-analyzing replications of small
studies.
In summary, we can say that:

[1] It is worthwhile running experiments even if they do not have many
experimental subjects, as they can be combined to form a larger scale
study;

[2] It is worthwhile publishing studies even if they do not return significant
results, as this can be very often due to the low power of the statistical
method.

[3] If this strategy were applied to really important technologies in SE (i.e.:
UML or partition of equivalence), the combined effort of the
investigators would allow to decide whether these technologies are really
useful or not, providing the necessary foundation to become software
development in an engineering process.

COMPUTER SCIENCE & TECHNOLOGY SERIES 189

Acknowledgments

This research has been partially funded by grant UNLa-SCyT-33081 of the
National University of Lanus (Argentine) and by grants TIN2008-00555 and
HD2008-00046 of the Spanish Ministry of Science and Innovation (Spain).

References

1. Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F.,
Sörumgård, S., Zelkowitz, M.; 1996; The empirical investigation of
perspective-based reading, International Journal on Empirical Software
Engineering, Vol. 1, No. 2, 133-164.

2. N. Juristo, A. Moreno (2001). Basics of Software Engineering
Experimentation, Kluwer Academic Publishers.

3. Tonella P., Torchiano M., Du Bois B., Systä T. (2007). Empirical studies
in reverse engineering: state of the art and future trends; Empir Software
Eng 12:551-571.

4. Dyba, T., Aricholm, E.; Sjoberg, D.; Hannay J.; Shull, F. (2007). Are two
heads better than one? On the effectiveness of pair programming. IEEE
Software, 12-15.

5. Everitt, B. (2003). The Cambridge Dictionary of Statistics, CUP.

6. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences.
(2nd ed.).

7. Gurevitch, J. and Hedges, L. (20019. Meta-analysis: Combining results of
independent experiments. Design and Analysis of Ecological Experiments
(eds S.M. Scheiner and J. Gurevitch), 347-369. Oxford University Press,
Oxford.

8. Fisher RA (1925). Statistical Methods for Research Workers (first ed.).
Edinburgh: Oliver & Boyd.

9. Glass, G. (1976). Primary, secondary, and meta-analysis of research.
Educational Researcher 5: 3-8.

10. Cochrane (2008). Curso Avanzado de Revisiones Sistemáticas;
www.cochrane.es/?q=es/ node/198.

11. Hedges, L.; Olkin, I. (1985). Statistical methods for meta-analysis.
Academic Press.

VII
Database and Data Mining Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 193

A UML Profile for
Fuzzy Multidimensional Data Models

IVÁN RODRÍGUEZ1 AND JOSÉ LUIS MARTÍ2

1 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Av. Brasil
2147 – Valparaíso, Chile. ivanrodriguezcontreras@gmail.com.

2 Departamento de Informática, Universidad Técnica Federico Santa María,
Av. Vicuña Mackenna 3939 – San Joaquín Vitacura, Chile. jmarti@inf.utfsm.cl.

Abstract. Over the last several years, multidimensional data
modeling has had several proposals for its formalisation; on the other
hand, the incorporation of fuzzy logic in databases has increased the
need to represent uncertainty. However, to our knowledge, so far
projects in both areas have not been developed.
This paper suggests joining those two needs to create a solution;
proposing a UML profile oriented to design multidimensional data
models with the presence of fuzzy elements.

Keywords: Multidimensional Database, Fuzzy Logic, UML Profile.

1. Introduction

A multidimensional database (MDB) manipulates its data as a (hyper)cube,
which is composed of dimensions and facts. A dimension represents a variable
of interest to the analysis, while the facts represent the subject (interesting
patron, event) that must be analyzed to understand its behavior. For example,
for a sale (the fact), it will be important to analyze place, client, time, and
products (the dimensions) involved in it, and also to try to understand its
relationships. The facts are composed of measures that describe the properties
the user wants to optimize. Measures are normally shown quantitatively
(additive). Generally, a measure has two parts: a numerical property of the fact
(i.e.: price of sale, return) and a formula associated to a simple aggregation
function (i.e.: sum, count). For a formal definition, see [1].
For the generation of any data models, there are several graphical notations.
UML has become the standard language for this type of task [2]. The fact that
UML is a general-purpose language provides great flexibility and
expressivity when modeling systems. Nevertheless, there are numerous
situations in which it is better to count on more specific language to model
and to represent the concepts of certain particular domains. This happens, for
example, when the syntax or the UML semantics do not allow expression of
the specific domain concepts, or when the author wants to restrict or
specialize the UML constructors themselves, which are rather generic.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 194

OMG defines two possibilities for achieving a specific domain language:
develop a new language (alternative to the UML); or extend the UML itself
specializing some of its concepts and limiting others, but respecting the
original semantics of the basic elements (class, attributes, relationships,
operations, transitions and so on). This second form is called UML profile; a
profile is defined through three mechanisms: stereotypes, constraints, and
tagged values. Several UML profiles have been proposed (i.e., real-time
systems [3], business modeling [4]); to our knowledge, the only profile that
exists to construct conceptual multidimensional data models [5] is based on
(crisp) traditional data types.
In all the known cases, the type of data considered is precise. However, today
Fuzzy Logic has become an important technique for including imprecise and
uncertain concepts, in a way similar to how the human brain works:
evaluating many options and then weighing them to make a final decision.
Boolean Logic assigns a value true (1) when something matches a condition
(1), or false (0) in any other case. On the other hand, Fuzzy Logic permits
relative grades of matching the condition in the inclusive interval [0,1]. Thus,
fuzzy sets are a convenient way to represent concepts without precise limits
(e.g., high/low temperature).

The general objective of this work is to provide a UML profile that, including
fuzzy concepts, can be utilized to generate multidimensional data models.

2. State of the Art

This paper uses two fundamental concepts: the UML profiles to
multidimensional data models and fuzzy data models used to design
databases. What follows is a short description of both of these.

2.1 UML Profile for a Multidimensional Data Conceptual Model

To our knowledge, only one UML profile has been proposed so far for
multidimensional conceptual modeling [5] (for simplicity, this profile is
called MDC). In general terms, this profile is defined with the following
schema:
 Description: short explanation in natural language.
 Extensions (profiles) or prerequisites: establishes if the proposal needs

other extensions for its complete definition.
 Stereotypes: the concrete definition of the elements of the profile.
 Rules: the semantics of the classes is given by a set of invariants defined

through OCL.
 Comments: any additional comment, note or example serving to best

explain the ideas, usually written in natural language.

COMPUTER SCIENCE & TECHNOLOGY SERIES 195

In the MDC, the information is structured in facts and dimensions. It is
allowed the use of “many-to-many” relationships, but specific attributes must
be set to allow this association. Attributes created in this way are called
DegeneratedFacts. There are some cases in which a dimension is not
considered explicitly, given that it is assumed that most of its properties are
represented by means of other elements (made or dimensions); nevertheless,
some attributes are still needed to identify instances of facts solely. These
dimensions are called degenerated dimensions.
In this profile, the stereotypes and values tagged are specified by means of a
structured scheme; part of the definition of the Fact element is given in Table
1 as an example. It is important to mention that the correct use of this profile
is assured by the definition of 51 restrictions specified in natural language
and expressions OCL [5].

Table 1. Example of definition of the Fact element in the MDC Profile
(obtained from [5])

Name Fact
Base Class Class

Description Classes of this stereotype represent facts in a multidimensional model

Icon

All attributes of a fact must be DegenerateDimension or factAttribute:
self.feature select(fe | fe.ocllsKindOf(Attribute)) forAll(f |
f.ocllsTypeOf(DegenerateDimension) or f.ocllsTypeOf(FactAttribute))

Constraints

…
Labels None

The authors also present a metamodel for their proposal, which is composed
of three levels. Level 1 corresponds to the definition of the model; a package
represents a star schema of a multidimensional conceptual model. A
dependency between two packages of this level indicates that the star
schemas share at least one dimension. Level 2 is the definition of the star
schemas; a package represents a fact or a dimension of the schema; a
dependency between two packages of a dimension indicates that the packages
share at least one level in a hierarchy of dimensions (see the graphical
representation in figure 1a). Finally, level 3 corresponds to the definition of
facts and dimensions; a package is divided into a set of classes that represent
the levels of hierarchy in a dimension package, or the complete star schemas
in the case of a fact package (see figure 1b).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 196

Fig. 1: Level 1 (a) and level 2 (b) of the MDC metamodel (obtained from [5])

2.2 Fuzziness in the Data Modeling

An extension of the Entity-Relationship Model to incorporate fuzziness was
proposed in [6], where fuzzy elements as entities, attributes and associations
are represented graphically. This extension defines three levels of fuzziness:

1. Entities, attributes and associations could be fuzzy; in other words, could
have membership grades to the E-R model.

2. Fuzzy occurrences of entities and associations.
3. Fuzzy values of the attributes, expressed through a distribution of

possibility.

In the case of UML, the fuzzy data modeling corresponds to an extension of the

class diagram [6,7]. A class could be extended considering:
1. Some objects are fuzzy and share the same properties; therefore, the class

defining them is fuzzy. Then, the objects belong to that class with a grade
of membership in the interval [0,1].

2. If the domain of an attribute could be fuzzy; then the class including it is
fuzzy, too.

3. The subclasses generated from a fuzzy class by specialization, and the
superclass produced by one or more fuzzy subclasses through
generalization are fuzzy, too.

Figure 2 shows a fuzzy class, which is distinct of the classic case for its
discontinuous line. Its attribute Age has a fuzzy domain, and as consequence
the class including it is fuzzy. Taking in account that students with a grade of
possibility to achieve a job are really postgraduate students, the same class is
fuzzy, too.

COMPUTER SCIENCE & TECHNOLOGY SERIES 197

Fig. 2. Examples of a fuzzy UML class (obtained from [6])

A fuzzy association could be present in two levels of fuzziness; the first one
means a fuzzy association can exist between two classes, with a grade of
possibility; in the second one, an instance belongs with a membership grade
to an association class. It is important to mention that with fuzzy sets, it is
possible to represent “imprecise” conc-epts in a convenient form to core of a
database, considering four types de values [6]:
1. Precise values (crisp), traditionally used in a database, but with the

possibility to be included in fuzzy queries.
2. Fuzzy data represented as distributions of possibility. For example: the

quality expressed as (0.4/regular, 0.7/good), where regular “<” good.
3. Attributes over “discreet, no ordered domains with analogy”, with a

relation of similarity. For example: hair color expressed as (1/blonde,
0.4/brown, 0.6/red).

4. Attributes defined as the last type, but without the relation of similarity.

3. Proposal of a UML Profile for a Fuzzy Multidimensional
Data Model

The explanation of the profile will be made in an inverse order with respect
the structure developed to the MDC that is Attributes, Classes and Packages.
This way it begins with the smaller elements and finishes with the greater
ones, which are composed of the first.
In addition to the previously mentioned, there is a fourth element, an
AssociationClass, which could be of the DegeneratedFact type. This element
is manipulated as a relationship between the fact table of the star schema and
some dimension. Note that this is because there is an association justifying it,
but it is not the association itself.

3.1 Attributes

There are five types of attributes: Degenerate Dimension, FactAttribute,
OID, Descriptor and DimensionAttribute, which can only be present in the
classes Fact, Base and DegenerateFact. The possibility to include them in
the profile is indicated below.

Postgraduate Student

ID

FullName

Fuzzy Age

Job WITH 0.8 DEGREE

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 198

o OID (OID): corresponds to the identifier of the Base classes. This
element is necessary to a process of automatic export in OLAP tools,
because these store it in the metadata. For this reason, it was not
considered as a fuzzy element.

o Descriptor (D): attribute derivable from another attributes, and it can be
quantitative or qualitative. Without taking this into account, it can be any
fuzzy type.

o DimensionAttribute (DA): gives descriptive information about an
instance of Dimension. It can be optional and doesn’t need to be
specified in every element (if it is necessary, it can contain the “null”
value). For its role in a dimension, it could be any fuzzy type.

o DegenerateDimension (DD): can be considered as a dimension included
in the composition of the fact table. For example, the attribute “Address”
as geographical feature in a fact table, could be disaggregated into sector,
street, and so on. Its presence can not be fuzzy, but its value could. For
the same example, the DD Address could be type 3 to establish
relationships of proximity between the cities and permit fuzzy queries
like “close to…” or “far away from…”.

o FactAttribute (FA): attribute of the Fact o DegenerateFact classes.
Consider the case of an attribute city; taken into account as FA not as
DA, could be classified as type 1, since it is a precise data but can be
used in fuzzy queries. However, if the case is such that the borders of the
cities are not well defined but it is required to register such data for a
house that is “within the city limits”, it could be necessary to specify
with what degree it belongs to that city and what degree to another. If
this second situation were true, the attribute city would become type 3,
which could be represented through distributions of possibility.

.
As it has been indicated already, the absence of some of the attributes that
support fuzziness (DD, FA, DA and D) would repel in the data model (cube),
with a degree between [0,1] in the requirements satisfied by it. For example,
suppose a cube that includes the Customer dimension, in which the author
wants incorporate fuzziness in the property of the FullName attribute of the
Base class. Consider a case in which a given attribute is not present in that
Base; transitively then, it will not be present in the Dimension, either. Then,
to respond to queries about sales, purchases or credit notes (any be the
domain) of a person, this requirement could not be solved given the absence
of essential data for the problem.
The above is explained in terms of having fuzzy attributes, not fuzzy values -
- since the classes cannot own values but rather attributes -- nor in terms of
its presence in the model, because it has been decided to consider that aspect
as fixed. In addition, the absence of the attribute can be replaced by the value
“null” in this attribute.

COMPUTER SCIENCE & TECHNOLOGY SERIES 199

3.2 Classes

The elements of the Class type belonging to the profile MDC are Fact,
Dimension and Base. In these cases it was considered that evaluation about
the presence of fuzziness must be focused on the nature of the attributes that
compose them. Like in the previous section, the presentation will be made
beginning with the parts -- Base, which through inheritance form the
Dimension, and these with the Fact composition structure.

o Base: it is a level of a hierarchy of a classification, by means of which

the Dimension classes are defined. As an example, a Customer
Dimension can have several Bases; one of these called Region Base,
which owns the attribute Location, which can be considered of type 3
when incorporating the degree of proximity with other regions. So, that
Base can be considered fuzzy while it has those fuzzy attributes.
It is possible to consider to any Base as fuzzy based on the roll that their
attributes play in the queries. For example, it can be more advisable to
define type 3 to the bases relative to the Dealership dimension
(concessionary), to analyze the sales grouped by region, that of the
dealership not of the clients, where these last ones are associated to the
dealership where they bought the vehicle.

o Dimension: by itself does not own attributes, but an instance of the Base
class does. In addition, only one Base is associated to the instance of
Dimension, therefore it will be considered as a fuzzy Dimension to those
associated with an instance of the class Fuzzy Base.

o Fact: composed by FactAttributes, owned by the Fact class, and by
DegenerateDimension attributes. Both support fuzzy data so that this
class could be considered fuzzy in the way that some of their attributes
are.

3.3 Packages

o DimensionPackage: can contain instances of the Dimension and Base
classes, where the number of dimensions is 1; this is considered fuzzy if
the dimension containing it is fuzzy, meaning Base classes of the
package can be fuzzy but not necessarily will the last one be. This choice
is to avoid all of the instances of the data model being fuzzy.

o FactPackage: can only store instances of the Fact, Dimension or Base
classes; this package is fuzzy if the only instance of the Fact class is also
fuzzy.

o StarPackage: can only contain instances of the FactPackages or
DimensionPackages classes. It will be considered fuzzy if the unique
FactPackage is fuzzy as well.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 200

3.4 Association Classes

The DegeneratedFact is the one element belonging to this category. The
attributes can be of DegenerateDimension or FactAttribute classes. Then, it is
considered if any of its attributes can contain a fuzzy value of some type.

3.5 Summary of the Profile

Considering the above, the identified elements must be associated with the
definition of the metamodel of level 3, defined previously by the base profile.
Figure 3 shows the relationships between the classic elements of a
multidimensional data model, the elements incorporated by MDC and the
fuzzy elements added by the present work.
To avoid ambiguous use of the profile’s elements, OCL Constraints has been
incorporated; as example, all of the attributes of a FuzzyBase must be OID,
Descriptor, FuzzyDescriptor, DimensionAttribute or FuzzyDimension
Attribute, which OCL expression is:

self.feature -> select(fe | fe.ocllsKindOf(Attribute)) -> forAll(f | f.ocllsTypeOf(OID)
or f.ocllsTypeOf(Descriptor) or f.ocllsTypeOf(FuzzyDescriptor) or

f.ocllsTypeOf(DimensionAttribute) or f.ocllsTypeOf(FuzzyDimensionAttribute))

where self references to the instance of the FuzzyBase class that is being
evaluated.

4. Application of the Proposal in a Practice Case

To demonstrate the use of the profile, it is applied to a problem based in a
library, where an analysis of information about the material lent to its
different types of users is required. The dimensions of interest are:
1. Material: book, magazine, newspaper.
2. Librarian: staff responsible for giving the service.
3. User: the person who gets a material from the library.
4. Time.

COMPUTER SCIENCE & TECHNOLOGY SERIES 201

Fig. 3. Level 3 of the metamodel of the proposed profile

A fact table will register the daily loans, associated with the previous
dimensions as figures 4 and 5 show. In the first, the definition of level 2 of
the Material dimension is given. Note that fuzzy class Material is superclass
of the other three, passing on the fuzziness. Moreover, the base class
Magazine is fuzzy too, because its attribute tendency could be of vogue,
entertainment, sport, and so on, in different grades and without an order
between them (type 4).
Figure 4b gives the level 2 of the Librarian dimension. The base classes have
been considered as fuzzy because the descriptors, which mean the type of
position the person has and the function they fulfill can be imprecise or
overlap.

Fig. 4. Level 2 of the metamodel of the proposed profile, by the Material (a) and
Librarian (b) dimensions

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 202

In the case of figure 5, the User dimension has been modeled as fuzzy,
because it has a type 3 attribute, which is the user type (Student, Particular,
habitualUser, SporadicUser, ..).

Fig. 5. Level 2 of the metamodel of the proposed profile

Figure 6 shows the model of level 2 to represent the Fact instance with its
Dimensions associated. Considering the dimensions User, Material and
Librarian are fuzzies, and having attributes that can be used in fuzzy queries,
the Loan instance of Fact is fuzzy too.
The degenerate fact DateBT represents the loans start-date and length. This
can occur in an association of the type “many-to-many”. However, its type is
fuzzy because such a date can be used in fuzzy queries, for example to list the
loans out for a long time.

Fig. 6. Example of the level 2 of the Material Dimension

COMPUTER SCIENCE & TECHNOLOGY SERIES 203

5. Conclusions

The research of the fuzzy logic and its inclusion in the databases, provide the
first ideas to formulate a way to get a multidimensional data model with
imprecise elements. This task was facilitated by a previous profile, which just
contained crisp data in its structure.
Current work is concentrated on adding more precise OCL specification to
the elements, to guide towards an automatic process on a CASE tool.

References

1. Molina, C., Rodríguez-Ariza, L., Sánchez D., Vila M. A. (2006). A New
Fuzzy Multidimensional Model. IEEE Transactions on Fuzzy Systems,
vol. 14(6), 897-912.

2. Object Management Group (OMG). Unified Modeling Language
Specification 1.5. http://www.uml.org/.

3. Ludovic, A., Courtiat, J.-P., Lohr, C., Saqui-Sannes, P. de. (2004).
TURTLE: A Real-Time UML Profile Supported by a Formal Validation
Toolkit. IEEE Transactions on Software Engineering, vol. 30(7), 473-487.

4. Catalog of UML Profile Specifications. http://www.omg.org/technology
/documents/profile_catalog.htm.

5. Lujan-Mora, S., Trujillo, J., Il-Yeong, S. (2006). A UML Profile for
Multidimensional Modeling in Data Warehouses. ACM Data and
Knowledge Engineering, vol. 59(3), 725-769.

6. Galindo, J., Urrutia, A., M. Piattini, M. (2006). Fuzzy Databases:
Modeling, Design and Implementation. Idea Group Publishing.

7. Ma. Z. (2005). Fuzzy Database Modeling with XML. Springer.

COMPUTER SCIENCE & TECHNOLOGY SERIES 205

Dynamic Spatial Approximation Trees with
Clusters for Secondary Memory

LUIS BRITOS, MARCELA PRINTISTA AND NORA REYES

Dpto. de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, San Luis, Argentina.

{lebritos, mprinti, nreyes}@unsl.edu.ar.

Abstract. Metric space searching is an emerging technique to address
the problem of efficient similarity searching in many applications,
including multimedia databases and other repositories handling
complex objects. Although promising, the metric space approach is
still immature in several aspects that are well established in
traditional databases. In particular, most indexing schemes are not
dynamic. From the few dynamic indexes, even fewer work well in
secondary memory. That is, most of them need the index in main
memory in order to operate efficiently. In this paper we introduce a
secondary-memory version of the Dynamic Spatial Approximation
Tree with Clusters (DSACL-tree) which has shown to be competitive
in main memory. The resulting index handles well the secondary
memory scenario and is competitive with the state of the art. The
resulting index is a much more practical data structure that can be
useful in a wide range of database application.

Keywords. Similarity Search, Multimedia Retrieval, Metric Spaces.

1. Introduction

As the growth of digital data accelerates in variety and extend, the
contemporary databases are bulkier and more complex in nature. To manage
this bulk and complexity increasing new techniques are employed, with the
multimedia data for example, the standard approach is to search not at the
level of the actual multimedia objects, but rather using characteristics
extracted from these objects. In such environments, an exact match has little
meaning, a very useful search paradigm is to quantify the proximity,
similarity, or dissimilarity of a query object versus the objects stored in a
database to be searched. Similarity or proximity searching have became a
fundamental computational tasks with application in many areas as non-
traditional databases, data mining, machine learning, data compression; and
so on. A useful abstraction for nearness is provided by the mathematical
notion of metric space.
In a metric space, there is a universe U of objects and a nonnegative function
d: U x U R+ defined among them that will denote a measure of “distance”
between objects. This distance function satisfies the three axioms that make

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 206

(U, d) a metric space: strict positiveness (d(x; y) ≥ 0 and d(x, y) = 0 x =
y), symmetry ((d(x,y) = d(y,x))), and triangle inequality ((d(x,z) ≤ d(x,y) +
d(y,z))). The smaller the distance between two objects, the more “similar”
they are. A finite subset X U with size n = |X|, is called database and
represents the collection of objects. We are interested to answer similarity
queries posed to this database. That is, given a new object from the universe
(a query) q U, we must retrieve all the elements similar enough to the
query in the database. The database is preprocessed so as to build an index
that reduces query time. There are two typical queries of this kind:

Range query: Retrieve all elements within distance r to q in S. This is,
the set {x S, d(x,q) ≤ r}.

Nearest neighbor query (k-NN): Retrieve the k closest elements to q
S. That is, a set A S: |A|= k and x A; y S - A; d(x,q) ≤ d(y,q).

In this paper we are devoted to range queries. Nearest neighbor queries can
be rewritten as range queries in an optimal way [6], so we can restrict our
attention to range queries. In order to answer queries efficiently the database
is preprocessed so as to build an index that reduces query time. This metric
space approach to similarity search is becoming widely popular [10, 11] and
a large number of indexing methods have flourished [4, 7, 10], but mature
solutions from the database viewpoint are a long way off. As the topological
properties of metric spaces cannot accelerate searches, which are the main
aim of this work, they are not discussed here.
Most of the existing indexes are static: Once they are built for a given
dataset, adding more elements, or removing an element from it, requires an
expensive updating of the index. Some indexes tolerate insertions in
principle, but their quality degrades and requires periodic rebuilding. Others
tolerate deletions with the same quality degradation problem. Thus there are
very few dynamic indexes.
There are also many interesting databases for similarity searching where the
objects are so large that they must stay on disk; or the objects are so many
that the index itself cannot fit in main memory. In this case, although the
similarity computation can be expensive (e.g., taking milliseconds of CPU
time) we cannot disregard disk costs.
From the few dynamic indexes, even fewer work well in secondary memory.
That is, most of them need the data structure in main memory in order to
operate efficiently. Although for some applications a static scheme may be
acceptable, many relevant ones do require dynamic capabilities. Actually, in
many cases it is sufficient to support insertions, such as in digital libraries
and archival systems, versioned and historical databases, and several other
scenarios where objects are never updated or deleted.
In this paper we introduce a dynamic index aimed at secondary memory. We
base our work on the Dynamic Spatial Approximation Tree with Clusters
(DSACL-tree) [2, 3]. It has been shown that the DSACL-tree gives an
attractive tradeoff between memory usage, construction time, and search
performance. Our secondary memory version (DSACL*-tree) retains these
good features, and in addition perform well in secondary memory. We focus

COMPUTER SCIENCE & TECHNOLOGY SERIES 207

on handling insertions and searches in this paper, leaving deletions for future
work.

2. Previous Works

Algorithms to search in general metric spaces can be divided into two large
areas: pivot-based algorithms and compact partition-based ones. Pivot-based
algorithms are better suited for low dimensional metric spaces, while
compact partitions ones deal better with high dimensional metric spaces.
Although the former can improve by using more memory, they need more
and more memory to beat the latter as dimension grows. On the other hand,
indices based on compact partitions use a fixed amount of memory and
cannot be improved by giving them more space. However, there are
algorithms that combine ideas from both areas. See [10, 11, 4, 7] for more
complete surveys.

Pivot-Based Algorithms The idea is to use a set of k distinguished elements
(“pivots") p1 … pk S and storing, for each dataset element x, its distance to
the k pivots (d(x,p1) … d(x,pk)). Given the query q, its distance to the k pivots
is computed (d(q,p1) … d(q,pk)). Now, if for some pivot pi it holds that |d(q,
pi)-d(x, pi)| > r, then we know by the triangle inequality that d(q, x) > r and
therefore do not need to explicitly evaluate d(x,p). All the other elements that
cannot be discarded using this rule are directly compared with the query.

Clustering Algorithms This second trend consists of dividing the space into
zones as compact as possible, and storing a representative point (“center”) for
each zone plus a few extra data that permit quickly discarding the zone at
query time. Two criteria can be used to delimit a zone. The first one is the
Voronoi region, where we select a set of centers and put every other point
inside the zone of its closest center. The regions are bounded by hyperplanes
and the zones are analogous to Voronoi regions in vector spaces. Let {c1 …
cm} be the set of centers. At query time we evaluate (d(q,c1), …,d(q,cm)),
choose the closest center c and discard every zone whose center ci satisfies
d(q,ci) > d(q,c) + 2r. The second criterion is the covering radius cr(ci), which
is the maximum distance between ci and an element in its zone. If d(q,ci) - r
> cr(ci), then there is no need to consider zone i. The two criteria can be
combined.

Combining Clustering with Pivots There are some indexes that combine
both ideas by dividing the space into compact zones and, at the same time,
storing distances to some distinguished elements (pivots) [1].

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 208

3. Dynamic Spatial Approximation Trees

In this section we will describe briefly the Dynamic Spatial Approximation
Tree (DSA-tree), in particular the version called timestamp with bounded
arity (reported in [8] as one of the better options for this dynamic tree), on
top of which DSACL-tree [2, 3] was built. The DSA-tree is a data structure to
answer similarity queries in metric spaces based on the concept to approach
the query spatially, getting closer and closer to it, so when we look for an
element from the universe (a query q U) and being in some element a
belonging to the database S (S U), the goal is to move to another object of
S spatially closer of q than a. When is not longer possible do this move
anymore, we are positioned on the element closest to q from S.
The DSA-tree is built incrementally via insertions. The tree has a maximum
arity A. Each tree node a stores a timestamp of its insertion time, time(a), its
covering radius, R(a), and its set of children N(a) (the neighbors of a). To
insert a new element x, its point of insertion is sought starting at the tree root
and moving to the neighbor closest to x, updating R(a) in the way. We finally
insert x as a new (leaf) child of a if (1) x is closer to a than to any b N(a),
and (2) the arity of a, |N(a)|, is not already maximal. In other case, we insert x
in the subtree of the closest b N(a). Neighbors are stored left to right in
increasing timestamp order, and each element is older than its children and its
next sibling.
The idea for range searching is to replicate the insertion process of relevant
elements. That is, we act as if we wanted to insert q but keep in mind that
relevant elements may be at distance up to r from q. So in each decision for
simulating the insertion of q we permit a tolerance of r, so that it may be
that relevant elements were inserted in different children of the current node,
and backtracking is necessary.
We have to consider two facts, at the time an element x was inserted. The
first that, a node a in its path may not have been chosen as its parent because
its arity was already maximal. So, at query time, instead of choosing the
closest to x among {a} N(a), we may have chosen only among N(a).
Hence, we perform the minimization only among elements in N(a). The
second fact is that, elements with higher timestamp were not yet present in
the tree, so x could choose its closest neighbor only among elements older
than itself.
Hence, we consider the neighbors {b1,…,bk} of a from oldest to newest,
disregarding a, and perform the minimization as we traverse the list. This
means that we enter into the subtree of bi if d(q,bi) ≤ min{d(q,b1),…,d(q,bi-

1)}+2r. Up to now we do not really need the exact timestamps but just to
keep the neighbors sorted by timestamp. We make better use of the
timestamp information in order to reduce the work done inside older
neighbors. Say that d(q, bi) > d(q, bi+j)+2r. We have to enter into the subtree
of bi anyway because bi is older. However, only the elements with timestamp
smaller than that of bi+j should be considered when searching inside bi;
younger elements have seen bi+j and they cannot be interesting for the search
if they are inside bi. As parent nodes are older than their descendants, as soon

COMPUTER SCIENCE & TECHNOLOGY SERIES 209

as we find a node inside the subtree of bi with timestamp larger than that of
bi+j we can stop the search in that branch, because its entire subtree is even
younger.

4. Spatial Approximation between Clusters

 In this section we will describe briefly the Dynamic Spatial Approximation
Trees between Clusters (DSACL-tree) [2, 3]. The DSACL-tree performs the
spatial approximation on groups or clusters of objects that are very close to
each other, rather than individual objects. By this way it can reduce search
costs, because it has to do less backtracking. Therefore, in the DSACL-tree
each node represents a cluster of very similar objects, for short we refer to it
simply as cluster. Thus, we relate the clusters by their proximity in the metric
space. So, each node of the tree would be able to store multiple database
objects, reducing the number of nodes with respect to the original DSA-tree.
As in the DSA-tree we build the tree incrementally, considering a maximum
arity and maintaining information of the timestamp (time of insertion of each
element). We also register the timestamp time(c) of each node c in the tree,
which is the time when this node was created. Each node c keeps an object
center(c) as the center of the cluster and the k nearest objects (cluster(c))
seen in its subtree, and is connected with their clusters-neighbors N(c). The
cluster also have a cluster radius rc(c), that is considering the objects in
increasing order to the center(c) the distance of the k-th object in the
cluster(c). Any object further away from the center than rc(c) would become
part of another tree node, which could be a new neighbor in some cases, since
the arity is bounded in the same way as DSA-tree. Each node c also stores the
maximum distance between the center(c) and the farthest object in its subtree
R(c) (as DSA-tree does), called covering radius of the subtree of c.
Since each node c represents a cluster centered in center(c) with at most k
objects within cluster(c), we maintain the distances between center(c) and all
the objects in cluster(c) ordered by increasing distance to the center. At
search time, we can use these stored distances in order to minimize the
number of distance computations using the triangle inequality. Besides, if
x1,…, xk are the objects in cluster(c) sorted by distances, the covering radius
of the cluster will be rc(c) = d(center(c),xk). Therefore, for each object xi
inside the cluster, we stored its insertion moment time(xi) and the distance
d(center(c), xi). It is clear that it is not necessary to really register rc(c)
because it can be obtained from the stored distances inside the node. During
searches, both radii rc(c) and R(c) are used to rule out entire areas of space
containing non relevant elements.
Because of the spatial approximation, to insert a new element x, we should go
down the tree until found the node c such that x is closer to center(c) than the
centers of neighbors in N(c). If in cluster(c) there is room for one more
element, then it will be inserted along with its distance. If there is not room,
we must choose the most distant element b among the k elements in

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 210

cluster(c) and x (k + 1-th in distance order from center(c)). We have two
possible cases:

1. if b is x, then x must be added like center of a new neighbor node
of c, if the arity allows it, otherwise it must choose the node among
all the neighbors in N(c) whose center is the nearest and keep the
insertion from there.
2. if b is not x, then b must choose the nearest center a among
center(c) and the center of all nodes neighbors in N(c) that are newer
than b because when b was inserted, it was not compared with them.
Later, if a is center(c), the process followed is the same as when b is
x; otherwise, if a is not center(c), then continues with the insertion
of b from the node with center a.

Algorithm 1 illustrates the whole insertion process. The function is invoked
as InsertCl(a, x), where a is the root node and x is the element to be
inserted.

When performing a range query, we proceed in a similar way as DSA-tree,
which is we perform the spatial approximation to the query via the centers of
nodes. As we mentioned previously, the idea for range searching is to
replicate the insertion process of the relevant elements to the query. That is,
we act as if we wanted to insert q but keeping in mind that relevant elements
may be at distance up to r from q. So that it may be that relevant elements
were inserted in a cluster, in different children of the current node, and
backtracking is necessary. The range search process is shown in Algorithm 2.

Algorithm 1: Insertion algorithm in a DSACL-tree with root node a

InsertCl (Node a, Element x)
1. R(a) max(R(a), d(center(a), x))
2. If ((|cluster(a)| < k) (d(center(a), x) < rc(a))) Then
3. cluster(a) cluster(a) {x}, d´(x) d(center(a), x)
4. timestamp(x) CurrentTime
5. If (|cluster(a)| = k + 1) Then
6. y argmax z cluster(a) d´(z)
7. cluster(a) cluster(a) – {y}
8. InsertCl(a,y)
9. Else
10. c argmin b N(a) d(center(b), x)
11. If ((d(center(a), x) < d(center(c), x)) (|N(a)| < MaxArity))
 Then /* b is a new node, neighbor of a, with center(b) = x */
12. N(a) N(a) {b}
13. center(b) x, cluster(b) , N(b) , R(b) 0
14. timestamp(x) CurrentTime, time(b) CurrentTime
15. Else
16. InsertCl (c,x)

COMPUTER SCIENCE & TECHNOLOGY SERIES 211

5. Secondary Memory

The distance is assumed to be expensive to compute. However, when we
work in secondary memory, the complexity of the search must consider both
the number of distance evaluations performed and the I/O time; other
components such as CPU time for side computations can usually be
disregarded. Given a dataset of |S|= n objects of total size N and disk page
size B, queries can be trivially answered by performing n distance evaluations
and N/B I/Os. The goal of an index is to preprocess the dataset so as to
answer queries with as few distance evaluations and I/O operations as
possible.

Algorithm 2: Range query algorithm on a DSACL-tree with root node a

RangeSearchCl (Node a, Query q, Radius r, Timestamp t)
1. If ((time(a) < t) (d(center(a), q) ≤ R(a) + r)) Then
2. If (d(center(a), q) ≤ r) Then Report a
3. If ((d(center(a), q) r ≤ rc(a)) (d(center(a), q) + r ≤ rc(a))) Then
4. For ci cluster(a) Do
5. If |(d(center(a), q) ‐ d´(ci)| ≤ r Then
6. If d(ci, q) ≤ r Then Report ci
7. If (d(center(a), q) + r < rc(a)) Then Return
8. dmin
9. For bi N(a) in increasing order of timestamp Do
10. If (d(center(bi), q) ≤ dmin + 2r) Then
11. k min{j > I, d(center(bi), q) > d(center(bj), q) + 2r}
12. RangeSearchCl (bi,q,r,time(bk))
13. dmin min{dmin, d(center(bi), q)}

The DSACL*-tree (DSACL-tree in secondary memory) make also a partition
of the searching space considering spatial proximity, grouping the closest
elements, relating complete clusters by its proximity in the space. This
permits that each node of the structure is capable of storing multiple elements
from the database. Because of each node has a fixed size, this structure seems
to be naturally adequate for secondary memory. To avoid disk
underutilization, DSACL*-tree we will x the number of size of the clusters
and also the maximum arity of the tree in function to the available page size.
Therefore, each node takes exactly one page in disk, simplifying the
administration of nodes. Therefore, the DSACL*-tree is an improvement of
the DSACL-tree because it maintains the same structure of the index, while
also works efficiently in secondary memory.
As in the original DSACL-tree does, for each neighbor of a node a, we will
save its object center, its location on the file and its insertion time. We do this
to avoid, as we shall see, some I/Os on insertions. Because we need to set the
size of a node as a size of a page disk, considering the size needed to
represent an element we must to x the maximum arity and the cluster size of
each node. If the elements are big it is possible to notice that the arity and the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 212

cluster size will be small. However, as it has been demonstrated in [8], it is
not a drawback because small arities were a key factor, for the DSA-tree, to
reduce construction and search costs in several metric spaces.
To insert an element x into our structure we proceed exactly like in the
DSACL-tree: We find the insertion point in the tree, following a unique path,
so that when we determine that x should be added to a node a because x is
closer to a than to any neighbor in N(a), already have loaded the page
corresponding to a. If a already have its k elements then it must choose the
element furthest from the center from its k +1 elements and then choose if x
must to be inserted like center of a new neighbor, if the arity allows it,
otherwise the insertion must to continue forcing x to choose the closest
neighbor from N(a) and keeping going down on the tree recursively.
As mentioned earlier, in every node (page) we store the object center of all its
neighbors, this avoid some I/O operations when the element to insert must to
decide which element is closer the center of the node or some neighbor.

6. Experimental Results

In order to give a broad picture of the performance of our index, we have
selected four widely different metric spaces, all from the SISAP Metric Space
Library (www.sisap.org). The metric spaces considered are:

 WORDS: a dictionary of 69,069 English words. The distance is the
edit distance, that is, the minimum number of character insertions,
deletions and substitutions needed to make two strings equal.
 DOCUMENTS: 1,265 documents under the Cosine similarity, from
TREC-3 collection. In this model the space has one coordinate per term
and documents are seen as vectors in this space. The distance we use is
the angle among the vectors.

 IMAGES: 40,700 20-dimensional feature vectors, generated from
NASA images, using Euclidean distance.

 HISTOGRAMS: 112,682 8-D color histograms (112-dimensional
vectors) from an image database. Euclidean distance is used.

For search experiments, we built the indexes with 90% of the objects and
used the other 10% (randomly chosen) as queries. All our results are
averaged over index constructions using different database permutations. We
have considered range queries retrieving on average 0.01%, 0.1% and 1% of
the dataset. This corresponds to radii 0.14, 0.15 and 0.195 for
DOCUMENTS, 0.60574, 0.78 and 1.009 for IMAGES, and 0.051768,
0.082514 and 0.131163 for HISTOGRAMS.
WORDS have a discrete distance, so we used radii 1 to 4. The same queries
were used for all the experiments on the same datasets.
In [2, 3] it was experimentally demonstrated that DSACL-tree can beat DSA-
tree in some of these metric spaces. So, we only show here the behavior of

COMPUTER SCIENCE & TECHNOLOGY SERIES 213

DSACL*-tree for lack of space. As it can be noticed in Fig. 1, the maximum
arity has a tradeoff with the cluster size, and this tradeoff affects the number
of I/O operations performed. If the arity is small, the cluster can increase its
size, and it has showed to be good to minimize the I/O operations (see Fig.
2). In WORDS the better results is with maximum arity of 2, considering
distance evaluations and I/O operations performed during searches. For
IMAGES and DOCUMENTS the maximum arity would be 4. In the case of
HISTOGRAMS, because the size of each element (112 real numbers are
needed to represent each element), the maximum arity allowed is 2.
It is also important to notice that our secondary memory version of the
DSACL-tree have a good fill ratio, in all cases over 66%. Table 1 shows the
average disk page occupancy achieved for the different spaces. In [9] are
presented two versions for secondary memory for the DSA-tree (DSA*-tree
and DSA+-tree), and the experimental results for them and for the M-tree [5],
on the same four metric spaces. We compare the fill ratio and the total
number of pages used by these data structures with our results. As it can be
noticed we obtain a good fill ratio and we use, in general, fewer disk pages
than the other indices designed for secondary memory, while we maintain a
good search performance.

Table 1. Average space usage for the different datasets

Fill ratio Total pages used
Dataset DSA*-tree DSA+-tree DSACL*-tree DSA*-tree DSA+-tree M-tree DSACL*-tree

WORDS 83% 66% 69% 904 1,536 1,608 885

DOCUMENTS 84% 68% 68% 12 22 31 9

IMAGES 80% 67% 72% 1,271 1,726 1,973 1,310

HISTOGRAMS 75% 67% 66% 18,781 21,136 31,791 18,827

7. Conclusions

In this work we present the DSACL*-tree which is an index for searching
metric spaces for secondary memory. This new index maintains the good
features of the DSACL-tree (spatial approximation, dynamism, and
clustering), but also takes into account the I/O operations costs. In fact, each
node of the DSACL*-tree corresponds to a page. By this way, we try to get
the most advantage in each read or write into the disk, locating similar
objects together. Therefore, we reduce the backtracking at searches
improving the cost, in distance evaluations, at the same time we make few
I/O operations during the retrieval relevant elements. We have shown some
empirical evidence that our new index is competitive considering the space
used, with respect to the other dynamic indices for secondary memory such
as DSA*-tree, DSA*-+tree and M-tree.
For the final version of this paper we plan to include the complete
comparison of DSACL*-tree with the other secondary memory indices.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 214

Fig. 1: Distance evaluations at search time, for the four spaces

References

1. Arroyuelo, D., Muñoz, F., Navarro, G., Reyes, N. (2003). Memory-adaptative
dynamic spatial approximation trees. In: Proc. 10th International Symposium on
String Processing and Information Retrieval (SPIRE). 360-368. LNCS 2857,
Springer.

2. Barroso, M., Navarro, G., Reyes, N. (2005). Combinando clustering con
aproximación espacial para búsquedas en espacios métricos. In: Actas del XI
Congreso Argentino de Ciencias de la Computación (CACIC). Concordia,
Argentina, in Spanish.

3. Barroso, M., Reyes, N., Paredes, R. (2010). Enlarging nodes to improve spatial
approximation trees. In: Proc. 3rd International Workshop on Similarity Search
and Applications (SISAP). 41-48. ACM Press.

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J. (2001). Searching in
metric spaces. ACM Computing Surveys 33(3), 273-321, Sep.

5. Ciaccia, P., Patella, M., Zezula, P. (1997). M-tree: an efficient access method for
similarity search in metric spaces. In: Proc. of the 23rd Conference on Very Large
Databases (VLDB'97). 426-435.

COMPUTER SCIENCE & TECHNOLOGY SERIES 215

Fig. 2: Number of disk pages read at search time, for the four spaces.

6. Hjaltason, G., Samet, H. (2000). Incremental similarity search in multimedia

databases. Tech. Rep. CS-TR-4199, University of Maryland, Computer Science
Department.

7. Hjaltason, G., Samet, H. (2003). Index-driven similarity search in metric spaces.
ACM Trans. on Database Systems 28(4), 517-580.

8. Navarro, G., Reyes, N. (2008). Dynamic spatial approximation trees. ACM
Journal of Experimental Algorithmics (JEA) 12, article 1.5, 68 pages.

9. Navarro, G., Reyes, N. (2009). Dynamic spatial approximation trees for massive
data. In: Proc. 2nd International Workshop on Similarity Search and Applications
(SISAP). pp. 81-88. IEEE CS Press.

10. Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, San Francisco, CA, USA.

11. Zezula, P., Amato, G., Dohnal, V., Batko, M. (2006). Similarity Search: The
Metric Space Approach, Advances in Database Systems, vol. 32. Springer.

V
Architecture, Nets and Operating

Systems Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 219

Collection and Publication of a Fixed Text
Keystroke Dynamics Dataset

LUCIANO BELLO1, MAXIMILIANO BERTACCHINI1, CARLOS BENITEZ1,
JUAN CARLOS PIZZONI1 AND MARCELO CIPRIANO2

Si6 Labs - CITEFA - Inst. de Investigaciones Científicas y Técnicas para la Defensa.

{lbello,cbenitez,mbertacchini,jpizzoni}@citefa.gov.ar.
Escuela Superior Técnica, Facultad de Ingeniería del Ejército,

Buenos Aires, Argentina.

Abstract. Keystroke Dynamics is a powerful technique which allows to
detect and identify intruders in computer systems. In order to test
keystroke data pattern matching and clustering algorithms, user data
collection is a mandatory task. Si6 Labs3

1
 developed a web

application named k-profiler4
2 with the purpose of collecting the

typing rhythm data of volunteer users. This paper describes the
experiment design criteria as well as the format of the collected data
which will be used for Si6 projects and will be publicly available.

1. Introduction and Previous Work

During the last 30 years many works have been published about computer
user identification and/or individualization based on Keystroke Dynamics
techniques. These methods are based on measuring the latency between
successive keystrokes in a computer keyboard. The most common application
of these techniques is the reinforcement of user authentication in computer
systems based on the user keystroke pattern [2,6,7]. In the last years, these
method was also translated to smartphones [9,12]. Later just a few papers
have been published on intruder identification based on Keystroke Dynamics
[13].
All of the abovemetioned papers use their own collected user data which
make it difficult to compare results of different algorithms because of the lack
of a common dataset. It can be pointed out that there is a related research area
which is intruder or masquerader identification in UNIX systems based on
user command line behavior [14,15,17,19]. Three datasets of UNIX user
command line data were published and are used by most works in the area.
These datasets were collected by Samuel Greenberg[20] and Mathias
Schonlau[21], and a synthetic one created by Ramkumar Chinchani et al.[22].
In recent years some keystroke datasets have been published, such as [23]3
and

1 http://www.citefa.gov.ar/si6/
2 http://www.citefa.gov.ar/si6/k-profiler
3 http://www.cs.cmu.edu/~keystroke/

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 220

[24]4. These datasets are based on fixed short text, such as a particular
password, with focus in authentication. This approach is suitable for user
authentication but not for user identification. Under these conditions, the
natural user typing rhythms get lost because she is not familiar with the
keyboard (layout, position or size). Moreover, she types under pressure just
one fixed given word, causing a deformation of her keystroke pattern along
the session. In the presented dataset, each volunteer types natural sentences
on her own keyboard, watching her own screen without any pressure or
external disturbing factors.
The goal of this work is an attempt to provide a standard dataset to be used in
future works in Keystroke Dynamics research area, particularly in user
identification. This dataset will save other researchers the complex task of
collecting keystroke data from different users and will allow the comparison
of different algorithms.

2. The Dataset collector

The keystroke collector was designed with flexibility in mind to cover as
many use cases as possible. Both depressed and released key times were
recorded as the user typed 15 Spanish sentences. Since much work has been
perfomed in the past in relation with profiling users in UNIX command line
environments[14,15,17,19], 15 UNIX commands are showed at the last page.
Volunteers were asked to type these 16 paragraphs along with some
enrollment data (see Section 2.5) which were used to anonymously label
them.
Nowadays, this task is performed on a regular basis, so the dataset keeps
growing. At the moment, more than 66 keystroke profiles have been
collected.

2.1 The Web Application

A web-based keystroke collector was developed based on PHP and
JavaScript. The code was deployed at http://www.citefa.gov.ar/si6/k-profiler/.
A web-based approach was chosen in order to increase the potential dataset
size, since it is inherently multiplatform and widely accessible, besides the
fact that the volunteer types on her own keyboard. k-profiler is capable of
capturing key depress or release times using the onkeyup and onkeydown
Javascript events on the client-side (i.e. the web browser). This data is sent
via POST HTTP method and stored in the server.
Once the user logs in, she is asked to fill in some basic enrollment data (see
Section 2.5) and later she is prompted to type the paragraphs grouped in 6
pages.

4 http://www.cs.cmu.edu/~keystroke/
 http://jdadesign.net/2010/04/pressure-sensitive-keystroke-dynamics-dataset/

COMPUTER SCIENCE & TECHNOLOGY SERIES 221

The order in which paragraphs and commands are shown to the user is
generated randomly, in order to prevent biased keystroke timings in the last
texts due to tiredness. As a result, the user is rewarded with a 3D chart which
shows the average time for each digraph.

2.2 Limitations

The JavaScript code is executed at the client-side and the keystroke event
time precision is strongly dependent on the conditions of the platform where
the client browser is working (i.e. process priority, RAM and CPU state,
browser load, etc.). The timing accuracy has been measured in different
computers, operating systems and browsers by sending a key at a fixed time
interval. The measured error was at about 10% with a slow CPU use and a
maximum of 20% with high CPU load. Figure 1 shows a histogram sample of
measured delays. In this example, keyboard repetition rate was set at 100 ms,
CPU load was about 10% and as result, the error was of 12 ms.

Regarding this, the time resolution measured in JavaScript is on the order of
tenths of miliseconds, while the values in experiments having special
software for keystroke collection is on the order of 200 microseconds[23].
This is a system limitation, but taking into account the fact that digraph
intervals usually range between 20 and 500 miliseconds, it is considered
acceptable.
In browsers running on the GNU/Linux operating system, the onkeydown
event for dead keys, used for acute accent (´) on Spanish vowels, can not be
recorded. In those cases, an onkeyup event with keyCode 0 followed by the

Fig. 1. Example of k-profiler time measure errors

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 222

onkeyup of the vowel, without a dn, is detected and stored. Under these
browsing conditions, when a modifier key (e.g. Shift or AltGr) is used, the
event onkeyup is detected twice sometimes. Since the web application
captures events as output of the keyCode and charCode methods, and these
depend on the particular browser implementation5 , it is important to keep in
mind the user’s user-agent and the keyboard layout to detect particular
keystrokes.

2.3 Text Selection

In this dataset, a fixed but natural text approach was choosen. This text was
carefully selected to hold some statistical properties (see Section 2.4) from
the following pieces of literature in the public domain:

• One Thousand and One Nights or Arabian Nights;
• War and Peace;

The first one (whose translation in Spanish is Las mil y una noches), is a
compilation of ancient arabian stories; and the second one (whose translation
in Spanish is Guerra y paz), is the famous Russian novel by Leon Tolstoy.
Plain text editions of both books were taken and their sentences were splitted
using the tokenize() function from the NLTK Python library [27].
After unifying the capitalization and purging some special chararcters (e.g.
all the simple and double quotes, dashes and hyphens), all the repeted
sentences and those with less than 70 characters were discarded.
The total amount of digraphs in these sentences was counted and a ranking
including the ten most popular ones was created. The same work was
performed on words, resulting in two lists: top digraphs and top words.
Under the assumption that these are the most popular digraphs and words in
the language, two rankings were produced, sorted by the percentage of the
sentences covered by the popular digraphs or words. The intersection of the
top 30 of these rankings is a set of 20 sentences, from which 15 were
arbitrarily selected, excluding those that included unusual syntax forms.
These sentences are listed below.
ks 00 en aquel momento estaba tan seguro de ello como si se encontrase a su
lado al pie del altar.
ks 01 en todas partes se hablaba de la guerra y de que el enemigo estaba a las
puertas de la ciudad.
ks 02 pedro se daba cuenta de que era el centro de la atención general y se
sentía contento y cohibido.
ks 03 pero le era penoso que el estado de espíritu de las personas que ten´
delante estuviera tan alejado del que nacía en ella.
ks 04 porque las paredes de la casa y las de la cuadra se han derrumbado
encima de todo lo que había en la casa, sin excluir a los carneros, los gansos
y las gallinas.
ks 05 se los veía en los patios y en las ventanas de las casas; otros se
agrupaban en la calle.

5 http://mozilla.pettay.fi/moztests/events/browser-keyCodes.htm.

COMPUTER SCIENCE & TECHNOLOGY SERIES 223

ks 06 aprendí también la ciencia de los astros y las palabras de los poetas.
ks 07 y sentáronse los tres ante las bandejas de oro debidas a los cuidados del
genio de la lámpara; y aladino estaba sentado en medio, con su esposa a la
derecha y su madre a la izquierda.
ks 08 a causa del juego de luces entre las copas de los tilos, no podía darse
cuenta del cambio de las caras.
ks 09 al darse cuenta de la presencia del príncipe, se detuvo perpleja en el
umbral de la puerta.
ks 10 la condesa se dirigió a la sala de los iconos y sonia la halló arrodillada
delante de las pocas cruces que todavía pendían de las paredes.
ks 11 no es que dijera aquello que pudiese complacerla, sino que juzgaba
desde el punto de vista de ella todo lo que decía.
ks 12 una de ellas estaba junto a la cabeza del califa y la otra a sus pies.
ks 13 después de despedirme del rey y de todos los amigos que me hice
durante mi estancia en aquella isla tan encantadora, me embarqué en la nave,
que enseguida se dio a la vela.
ks 14 y efectivamente, me dio la tentación de deshacerme de aquel collar de
oro y de perlas.
During the data collection, sentences are displayed to the volunteer in a
random order and can be identified in the dataset by the prefix “ks ”. In the
last page, 15 UNIX commands are added, also randomly sorted. These
commands are the 15 most frequent commands from a combination of 3
datasets ([20], [15] and a private one obtained from Si6 Labs honeypots.
They can be identified inside the dataset with the “cm “ prfix. These
commands are listed below.
cmd_00 ls -a
cmd_01 bash
cmd_02 rm -rf /var/log/lastlog
cmd_03 unset HISTSAVE
cmd_04 cat /etc/passwd
cmd_05 wget
cmd_06 fg %2
cmd_07 more Makefile
cmd_08 lpq -Pip
cmd_09 tar xvfz *.tgz
cmd_10 mv a.out /var/tmp
cmd_11 touch wtmp
cmd_12 ps aux
cmd_13 kill -9 0

2.4 Statistical Features of the Fixed Text

The ten most frequent digraphs in the dataset, sorted by its repetition rate in
the selected text, are show in Table 1. Most digraphs include a white space.
The top ten digraphs without white spaces and their frequency are: ’de’ (57),
’la’ (52), ’en’ (38), ’as’ (33), ’ue’ (25), ’es’ (24), ’el’ (24), ’os’ (23), ’ta’ (22)
and ’nt’ (22).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 224

The ten most popular words are listed in Table 2. With 333 words in the 15

sentences, the repetition rate is calculated as 100 ∗ sum/333, where column
sum is the sum of ocurrences of each digraph in each sentence. These listed
words comprise nearly 44% of the total words in the text.

2.5 Enrollment Data

The initial form of the web application asks the volunteer for an e-mail (or
name or nickname), occupation, age, handedness and keyboard layout.
Additionally, the IP address and browser User-Agent are recorded. These two
pieces of data together with the e-mail are used to detect user reentrance or
whether the same person performed the experience twice. The IP address is
discarded during the anonymization process (see Section 2.6) and the e-
mails/names/nicknames from the same user are joined.

2.6 Anonimization and Publication

Table 1. Digraph repetition by sentence number

Table 2. Word repetition by sentence number

COMPUTER SCIENCE & TECHNOLOGY SERIES 225

The anonymized dataset is published at http://www.citefa.gov.ar/si6/k-
profiler/dataset/. The anonimization process removes sessions with less than
12 completed and accepted sentences. The finished ones are tagged as
finished, and as unfinished otherwise. The occupation and field of each
session are normalized and translated. The e-mail/name/nickname is replaced
by a generic string with the prefix ”user ”. The date, age and user-agent is
kept unchanged. Each session is saved in a file the following filename:
<UNIX-timestamp> <user>.[un]finished. Finally these files are archived and
compressed as kprofiler-<date>-<UTCtime>.tar.gz.

3. The Published Dataset (kprofiler-20100716-1442)

The published file was relesed with the data collected up to July 16th, 2010.
It
includes 66 sessions (58 finished and 8 unfinished) from 63 unique
volunteers,
from whom 54 of them finished the whole process.

3.1 Data Format

A session file (see Figure 2 for an example) is named after the UNIX
timestamp in which the user started and the unique volunteer id. The files are
in UNIX format, ASCII encoded. The first line contains the following fields
separated by semicolons: Action, local UNIX timestamp, date and hour, user
id, occupation, field, age, gender, handedness, keyboard layout, obfuscated IP
(normaly “na”) and user-agent.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 226

Fig. 2. Session example

The Action can be SESSION or RESUME. In the first case, the user started a
new session. If the user is resuming an existent session, RESUME will
appear and the date will indicate when this happened. If the user paused the
data collection in order to continue later, a banner saying -----PAUSED----
and the date and hour are shown.

Keystroke data follows line by line in the format [invalid-]<model id>
<UNIX timestamp in miliseconds> <direction> <char code>. The invalid tag
appears when the detected amount of keystrokes is out of bounds (when they
are more than 1.3 or less than 0.95 times the expected amount of keys). In
those cases, the sentence or the command is showed again to the volunteer
and she is asked to retype it. The invalid keystrokes are surrounded between
the tokens invalid-data-start and invalid-data-end.
Instead of comparing the typed data against the original data, keystroke
counts were used as aprove/reject parameter. So, if the user typed less than
90% or more than 130% of the total sentence characters, the sentence will be
rejected and she will be asked to type it again. Mistakes were allowed so that
data on typing errors can also be used for user identification [?].
The <model id> refers to the sentence or the command that the volunteer
typed. The Event may be dn or up, depending whether the key was depressed
or released respectively. The char code is the output of the following
JavaScript command:
e.keyCode? e.keyCode : e.charCode;

COMPUTER SCIENCE & TECHNOLOGY SERIES 227

where e is the keystroke event. This returns the output of keyCode6 when this
function is implemented for the event or charCode otherwise, which is the
ASCII value of the resulting character. In browsers running on GNU/Linux,
the dn of a key associated with a dead key (and the deadkey itself) is not
detected and only the up is shown (see Section 2.2 for details).

Fig. 3. Histogram of digraph times (up to 1 second)

A banner with the legend -----END---- with the date and time flags is
appended when the session ends.

3.2 Statistical Features

Fig. 4. Example of 4 keystroke paterns grouped in 3 sets of 5 sentences

6http://lists.w3.org/Archives/Public/www-archive/2006Nov/att-0047/keyCode-ie.htm.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 228

The dataset contains 282020 keystroke events (key presses and releases);
16372 of them are tagged as invalid. Figure 3 shows that most digraphs were
typed in an interval below half a second. Most outliers can be filtered out
ignoring those exceeding 500 miliseconds.
Figure 4 shows the average digraph times of 3 fixed groups of sentences for 4
particular users. Only the most frequent digraphs are included. Each user has
clearly her own typing pattern, which is consistent throughout different
sentences.

4. Future Work

This dataset was collected to perform user identification experiments based
on their keystroke pattern. In order to test the effectiveness of the
identification/clustering algorithms, a fixed test dataset is the natural first
dataset to use. Nevertheless, for identification purposes, free text needs to be
used. Therefore, the next step of this work will be the collection of free text
keystroke data from labeled users.
On the other hand, this dataset was designed with Spanish texts because most
volunteers are Spanish speaking people. A next step could include the
collection of the same type of keystroke data in another language.

References

1. Gaines, R., Press, S., Lisowski, W., Shapiro, N. (1980). Authentication
by keystroke timing. Rand Report R-256-NSF. Rand Corporation.

2. Monrose, F., Rubin, A. (1997). Authentication via keystroke dynamics.
In: Proceedings of the Fourth ACM Conference on Computer and
Communications Security, Zurich, Suiza, 48-56.

3. Monrose, F., Rubin, A. (2000). Keystroke dynamics as a biometric for
authentication. Future Generation Computer Systems 16(4), 351-359.

4. Monrose, F., Reiter, M., Wetzel, S. (1999). Password hardening based
on keystroke dynamics. In: Proceedings of the Sixth ACM Conference
on Computer and Communications Security. 73-82.

5. Obaidat, M., Sadoun, B. (1997). Verification of computer users using
keystroke dynamics. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 27(2), 261-269.

6. Joyce, R., Gupta, G. (1990). Identity authentication based on keystroke
latencies. Communications of the ACM 33(2), 168-176.

7. Jiang, C., Shieh, S., Liu, J. (2007). Keystroke statistical learning model for
web authentication. In: Proceedings of the 2nd ACM symposium on
Information, computer and communications security, ACM New York, NY,
USA, 359-361.

8. Rodrigues, R., Yared, G., do N. Costa, C., Yabu-Uti, J., Violaro, F., Ling,
L. (2006). Biometric access control through numerical keyboards based

COMPUTER SCIENCE & TECHNOLOGY SERIES 229

on keystroke dynamics. Lecture notes in computer science 3832, 640.
9. Clarke, N., Furnell, S., Lines, B., Reynolds, P. (2004). Application of

keystroke analysis to mobile text messaging. In: Proceedings of the 3rd
Security Conference, Las Vegas, NV, 14-15, April.

10. Clarke, N., Furnell, S. (2005). Authentication of users on mobile
telephones-a survey of attitudes and practices. Computers & Security
24(7), 519-527.

11. Hwang, S., Cho, S., Park, S. (2009). Keystroke dynamics-based
authentication for mobile devices. Computers & Security 28(1-2), 85-93.

12. Zahid, S., Shahzad, M., Khayam, S., Farooq, M. (2009). Keystroke-
based user identification on smart phones. In: 12th International
Symposium on Recent Advances in Intrusion Detection - RAID, Sep.
2009, Saint-Malo, Francia.

13. Zamonsky, G., Sznur, S. (2009). Keystroke dynamics aplicado a la
clasificación de intrusos. In: Workshop de Seguridad Informática -
WSegI 2009, Ago. 2009, Mar del Plata, Argentina, SADIO.

14. Maxion, R. (2003). Masquerade detection using enriched command
lines. In: International Conference on Dependable Systems and
Networks. Volume 0, Los Alamitos, California, USA, IEEE Computer
Society, 5.

15. Schonlau, M., DuMouchel, W., Ju, W., M. Theus, A., Vardi, Y. (2001).
Computer intrusion: Detecting masquerades. Statistical Science 16, 58-
74.

16. Wan, M., Wu, H., Kuo, Y., Marshall, J., Huang, S. (2008). Detecting
masqueraders using high frequency commands as signatures. In:
Proceedings of the 22nd International Conference on Advanced
Information Networking and Applications - AINAW ’08; Workshops,
Washington, DC, USA, IEEE Computer Society, 596-601.

17. Bertacchini, M., Fierens, P. (2007). Preliminary results on masquerader
detection using compression based similarity metrics. Electronic Journal
of SADIO 7(1).

18. Bertacchini, M., Benitez, C. (2007). NCD based masquerader detection
using enriched command lines. In: Proc. of the IV Congreso
Iberoamericano de Seguridad Informática (CIBSI ‘07), Mar del Plata,
Argentina, 329-338.

19. Benitez, C., Fierens, P. (2009). Command dimension reduction in
masquerader detection. In: V Conferencia Iberoamericana en Seguridad
Informática, CIBSI 2009, Montevideo, Uruguay, Nov. 16-18.

20. Greenberg, S. (1988). Using unix: Collected traces of 168 users.
Technical Report 1988-333-45, Department of Computer Science,
University of Calgary, Calgary, Alberta, Canada.

21. Schonlau, M. (1998). Masquerading user data. http://www.schonlau.
net/intrusion.html.

22. Chinchani, R., Muthukrishnan, A., Chandrasekaran, M., Upadhyaya, S.
(2004). RACOON: Rapidly Generating User Command Data for
Anomaly Detection from Customizable Templates. In: Proceedings of
the 20th Annual Computer Security Applications Conference (ACSAC
‘04), Tucson, Arizona.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 230

23. Killourhy, K., Maxion, R. (2009). Comparing anomaly-detection algorithms
for keystroke dynamics. In: IEEE/IFIP International Conference on
Dependable Systems & Networks, 2009, DSN ’09, 125-134.

24. (Master’s thesis)
25. Bergadano, F., Gunetti, D., Picardi, C. (2002). User authentication

through keystroke dynamics. ACM Transactions on Information and
System Security (TISSEC) 5(4), 367-397.

26. Gunetti, D., Picardi, C. (2005). Keystroke analysis of free text. ACM
Transactions on Information and System Security (TISSEC) 8(3), 312-347.

27. Loper, E., Bird, S. (2002). Nltk: the natural language toolkit. In: Proceedings
of the ACL-02 Workshop on Effective tools and methodologies for teaching
natural language processing and computational linguistics, Morristown, NJ,
USA, Association for Computational Linguistics, 63-70.

28. Greenberg, S. (1988). Using unix: Collected traces of 168 users.
Research Report 88/333/45, Department of Computer Science,
University of Calgary, Alberta, Canada.

29. Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., Vardi, Y.
(2001). Computer Intrusion: Detecting Masquerades, Statistical Science
(submitted).

COMPUTER SCIENCE & TECHNOLOGY SERIES 231

Reducing the LSQ and L1 Data Cache Power
Consumption

R. APOLLONI1, P. CARAZO2, F. CASTRO3, D. CHAVER3, L. PINUEL3
AND F. TIRADO3

1 Universidad Nacional de San Luis, Argentina.
2 Universidad Politécnica de Madrid, España.

3 Universidad Complutense de Madrid, España.

Abstract. In most modern processor designs, the HW dedicated to
store data and instructions (memory hierarchy) has become a major
consumer of power. In order to reduce this power consumption, we
propose in this paper two techniques, one to filter accesses to the LSQ
(Load-Store Queue) based on both timing and address information,
and the other to filter accesses to the first level data cache based on a
forwarding predictor. Our simulation results show that the power
consumption decreases in 30-40% in each structure, with a negligible
performance penalty of less than 0.1%.

1. Introduction

Power dissipation in an out of order microprocessor is spread across different
structures including Caches, Register Files, the Branch Predictor, the Load-
Store Queue, etc. Specifically, the HW dedicated to store data and
instructions (the LSQ, the different cache levels, and the main memory)
consumes a significant part of the overall power.
In this paper we intend to reduce the LSQ and L1 data cache (DL1) power
consumption in an out of order processor. It can be argued that this research
problem is not a major concern now due to the trend towards multi-core
architectures made by the industry, in which in some cases the pipelines
employed are simpler. However homogeneous multi-manycore architectures
with in-order pipelines will only provide substantial benefits for scalable
applications/workloads, and some researchers have recently highlighted that
future designs will benefit from asymmetric architectures that combine
simple and power-efficient cores with a few complex and power-hungry
cores [1]. The local inefficiencies of a complex core can translate into global
performance/per-watt improvements since a complex core could accelerate
the serial phases of applications when the power-efficient cores are idle. This
way, a single chip will be able to provide good scalability for parallel
applications as well as ensure high serial performance. In summary, as
promoted in [2], researchers should still investigate methods of improving
sequential performance despite we have entered into the multicore era.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 232

We propose two separate techniques for reducing the LSQ and the DL1
power consumption: For the first, based on a set of registers and a small
table, we filter many of the required associative accesses that loads and stores
would have to perform to the LSQ. For the second, based on a small
forwarding predictor, we filter many of the load accesses to DL1. Our
techniques lead to high power savings in those structures, which translate into
important power savings on the whole processor.
The rest of the paper is organized as follows. Section 2 recaps related work.
Section 3 reviews the conventional implementation and brings in our new
mechanisms. Section 4 details our experimental environment, while Section 5
outlines experimental results and analyses. Finally, Section 6 concludes.

2. Background

In the last years, there has been a lot of research focused on reducing the LSQ
and the Cache power consumption. Next, we summarize the proposals
directly related to the mechanisms developed in our job.
Concerning the LSQ power reduction, Sethumadhavan et al. [3] propose an
address-based filtering scheme named search filtering, which uses hashing to
reduce the number of lookups to the LSQ. For this purpose two Bloom Filters
[4] are employed, and based only in address information they are able to
significantly reduce the associative searches needed while maintaining the
program semantics. On the other hand, in our previous work from [5], we
introduced two timing-based filtering mechanisms for the LSQ that avoid
many of the associative searches that a conventional processor performs
unconditionally. The design is based on two sets of age registers: one that
filters lookups to the LQ (Load Queue), and another that carries out the same
operation over the SQ (Store Queue). Upon execution, just based on
straightforward age comparisons between memory instructions and the
corresponding register, the mechanism is able to deliver high filtering
efficiency with a negligible hardware cost.
Concerning the DL1 power reduction, Nicolaescu et.al [6] propose to avoid
the data cache access for those loads that receive their data through
forwarding. To increase forwarding, they modify the LSQ design to retain
load and store instructions after their commit. Thereby, a later load increases
its chances of receiving its data from a previous instruction, either an in-flight
store, a commited store, or a commited load. The mechanism -named cached
load store queue, CLSQ- is based on the low observed rates of LSQ
occupancy for some program phases, that make it possible to earmark
unoccupied entries to already commited load or store instructions.

COMPUTER SCIENCE & TECHNOLOGY SERIES 233

3. Hybrid LSQ Filtering Mechanism

We present here a full LSQ filtering HW, built upon our proposal from [5]
and Sethumadhavan's proposal from [3]. In both papers, the main idea is to
add simple HW capable of ruling out some memory ordering violations and
store to load forwardings. For that purpose, in the first scheme timing
information was mainly used, while the second one employed just address
information of memory instructions. We combine both in a new hybrid
design that provides more filtering capability. Besides, we test our
mechanism in a different microarchitectural model –an x86 architecture- than
that of the prior works. This model, besides of resulting more appealing,
enables for new types of filtering which lead to extra power savings. We
should highlight that it includes two new characteristics that are very
important for our job1: (1) Each store accesses the SQ at issue time in order to
perform store-store forwarding; (2) It provides a dependence predictor
(LSAP), consisting on an associative table accessed by each load at issue
time, that predicts whether a load will alias with a previous store.

3.1 LQ Filtering

Regarding stores searching the LQ looking for premature loads, we can take
advantage of a set of registers that basically contain information about loads'
age (timing information) and include implicitly some information about
loads' address. This approach is referred as Multi-YLA (Multi - Youngest
issued Load Age) [5]. The multi-YLA by itself provides really good results in
terms of filtering capability, and according to our experiments, combining
this scheme with the Bloom Filter from [3] reports no significant
improvements.

3.2 SQ and Predictor Filtering

Regarding loads searching the SQ looking for previous dependent stores, and
similarly to the Multi-YLA, in [5] we proposed to add a set of registers that
contain information about stores' age. This approach is referred as Multi-OFS
(Multi - Oldest in Flight Store) [5]. On the other hand, in [3] the authors
proposed to add two Bloom Filters (BF) that contain address information
(instead of timing information). Due to the very complex updating process of
the OFSs set in the multi-OFS scheme its usage is inappropriate. On the other
hand, using only a Bloom Filter loses the opportunity of filtering more
accesses based on timing information. Hence, we propose to combine a
single OFS, that holds timing information and requires a much simpler
updating process than a Multi-OFS, and a BF, which provides address-based
information. Besides, we include an additional register, called PAS (Pending

1 More details of the LSQ management in this architecture can be found in [7].

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 234

Address Stores), to know if all in flight stores in the processor are resolved.
In the next subsections we describe in detail our proposed mechanism.

Filtering of Loads accessing the SQ. When a load instruction issues, it
consults the OFS (which holds the age of the oldest in-flight store in the
processor) and checks the PAS. If the load is older than OFS (i.e. older than
the oldest in-flight store), we can assure, based just on timing information,
that a store to load forwarding is not needed for that load, and both the BF
access and the SQ associative search can be avoided. Otherwise, the load
goes to the second stage of our mechanism, the Bloom Filter (a hashing table
with one entry per group of addresses that holds the number of in-flight
stores to those addresses). If the corresponding BF entry and the PAS register
are both zero2, or if the BF entry is zero and the LSAP does not predict a
dependence with a previous store, we can guarantee, based now on address
information, that the load can not receive its data via a forwarding, and again
the SQ scan can be avoided. If the BF entry is zero, but PAS is bigger than
zero and the LSAP predicts a dependence, an SQ search must be performed
to find the closest unresolved store. However, this is a simpler and cheaper
access than a common associative one, since we do not need to compare
addresses. Finally, if the value recorded in the corresponding BF entry is
bigger than zero, the normal SQ associative access is carried out.

Filtering of Loads accessing the Predictor. The new architecture we are
using allows for new filtering opportunities. One of them is the chance to
filter some accesses of load instructions to the LSAP. The first opportunity to
avoid such lookups happens when a load checks the OFS: If the load is older
it means that no previous stores exist; hence the LSAP information is
irrelevant and the predictor search turns unnecessary.
In order to increase the LSAP filtering capability, we can take advantage of
the PAS register: If it is zero, we can also aviod the LSAP access, since all
stores are resolved and therefore there is nothing to predict. Otherwise, the
LSAP search is required.

Filtering of Stores accessing the SQ. Recall that in the new architecture
each store checks the SQ in order to find previous stores to the same address.
Once again, we can filter some of these searches. When a store instruction
issues, it compares its age with the OFS value. If they are equal, we can
guarantee that no prior stores exist, and therefore both the BF access and the
SQ lookup can be avoided. Otherwise, the store consults the BF, hashing its
address. If the corresponding entry and PAS3 are zero, we can assure, based

2 PAS being zero means that we do not need to pay attention to LSAP since no

unresolved stores exist.
3 Note that we use the PAS register in combination with the BF for being able to filter
some of the SQ accesses. The BF provides information about resolved stores, while
the PAS register reports information about unresolved ones. As we mentioned before,
without this register the BF can not be trusted in this context.

COMPUTER SCIENCE & TECHNOLOGY SERIES 235

now on address information, that this is the only one store to that address, and
the SQ search can be avoided. If the BF entry is zero but PAS is bigger than
zero, we have to perform an SQ lookup to find the closest unresolved store.
Again, this is a simpler and cheaper access than a normal associative search.
Finally, if the entry is bigger than zero, a normal SQ lookup is carried out.
This proposed hybrid mechanism exhibits several advantages compared to
the multi-OFS [5] and the Bloom Filter [3] schemes. First, thanks to the
combination of timing and address information, the number of filterings
grows significantly, as we will demonstrate in the evaluation section. Second,
unlike the multi-OFS scheme, the updating process for our single-OFS is
very simple and incurs no power cost: when a store instruction commits, the
OFS is just updated with the age of the store accommodated in the
contiguous SQ entry. Third, in our approach the Bloom Filter access is
avoided when the 1st stage filters the SQ search based on the OFS (note that
the OFS access is much cheaper than the BF one). On the contrary, in the BF
scheme, the filter is always accessed at load/store issue.

4. DL1 Filtering using a Forwarding Predictor

4.1 Rationale

In most conventional microprocessors each load instruction consults the first
level data cache in order to move the required data into an available register.
In parallel, the Store-Queue is searched looking for a previous matching in-
flight store. If it is found, the store forwards the corresponding data.
Otherwise, the data is provided by the cache. The technique that we propose
in this paper is based on the observation that if a load gets its data directly
from an earlier store, the data cache access becomes completely unnecessary,
and hence we could avoid it saving some power. Obviously, this is only
useful if the percentage of loads that get the data from the SQ is high enough.
In a RISC processor, the amount of architectural registers is commonly set to
32 and a register-register architecture is generally implemented. With such
configuration, the number of store to load forwardings is relatively small (for
example, in [8], less than 15% on average), and maybe the benefits of trying
to avoid the DL1 access in such reduced occasions could turn meaningless.
However, in a register-memory architecture with only 16 architectural
registers -as in the case of x86-64, the architecture employed in this job- the
number of store to load forwardings is higher as a result of the extra
operations due to register spilling.
In a complementary way, we can use Nicolaescu's CLSQ from [6], which
significantly increases the number of loads that receive their data via
forwarding, both due to store-load forwarding from the Cached-SQ and to
load-load forwarding from the Cached-LQ.
In summary, on a x86-64 architecture using Nicolaescu's Cached-LSQ, the
number of forwardings can be relatively high -up to 40% of the loads-, which
makes our initial intuition appealling. However, in order to be able to filter

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 236

out these accesses, we need to either serialize the LSQ and DL1 cache
searches, or know in advance -i.e. make a prediction- whether the load will
receive the data via forwarding or not. This is a key issue that has to be
addressed.

4.2 Overall structure

As we have just mentioned, an obvious implementation would be to serialize
the accesses (as Nicolaescu in [6]): the load first scans the SQ, and then -only
when neccessary- the cache is accessed. However, this design is not effcient:
when a previous matching store is not found the delay incurred in accessing
to the data cache will result in a significant slowdown. In this paper we will
turn up with a much more convenient approach.
The design that we propose is based on a forwarding predictor: for each load,
we predict whether it will receive its data through forwarding. For
convenience of discussion, we loosely refer to these loads as predicted-
dependent loads and the remainder predicted-independent loads. For
predicted-dependent loads, only the SQ and the cached-LQ are accessed,
omitting the DL1 access (of course, at the risk of being wrong, in which case
the cache access is launched with a delay of 1 cycle). For the remaining, both
the SQ, the cached-LQ and the DL1 are accessed in parallel (note that in this
case, if the predictor is wrong, the data cache access is unnecessary). A
predictor with high accuracy provides significant power savings at the cost of
a tiny performance degradation. This idea has been explored in similar, yet
different contexts [9].
There is a whole lot of research in the field of memory dependence
prediction. However, they all employ sophisticated predictor structures,
which are excessive for our goal of predicting in advance if a load will
receive its data through forwarding. For this reason, we have not considered
them in our job. Instead, we have evaluated two kinds of simple predictors:
Bloom Filter based [4] and Branch Predictor based [10].

Bloom Filter based predictor. In this first kind of predictors, we implement
a low-overhead hash table of counters: At issue time, every load and store
hash their memory addresses to a single entry and increment the
corresponding counter. Then, at commit, the entry is decremented. Besides, at
issue time, loads read the counter before it was incremented to perform the
prediction. If it is bigger than zero, there is a likely (but not certain) address
match with another memory instruction, and the load is predicted to receive
its data via a forwarding. On the other hand, if the counter is zero, the load is
predicted-independent.

Branch Predictor based. The second kind of predictors is based on the well-
known bimodal branch predictor. Similarly to branch instructions, the
majority of loads are usually strongly biased, so such a predictor works well.
An advantage of this Bimodal Predictor versus the Bloom Filter based is that

COMPUTER SCIENCE & TECHNOLOGY SERIES 237

the prediction can be performed as soon as the load instruction is decoded,
based on its PC. On the contrary, a Bloom Filter is consulted with the
memory address of the load, that needs to be calculated first, so the prediction
is delayed to issue phase in this case.

Combined Predictor. Finally, we should mention that we have also
considered in our evaluation a combined predictor, merging a Bloom Filter
with a Bimodal predictor. For extracting the final decision, we predict that a
load will receive its data through forwarding only when both structures
predict the load to be dependent. Such a structure benefits from both the past
forwarding information of loads and memory address information, giving the
best results as we will show in the Evaluation Section.

5. Experimental Framework

We have evaluated our proposed design using the PTLsim [11], a
performance-oriented simulation tool. The microarchitecture models the
default PTLsim configuration that results from the merging of different
features of an Intel Pentium 4 [12], an AMD K8 and an Intel Core 2 [13].
Some of the main simulation parameters are listed in Table 1.

Branch predictor Combined (Bim-2bits + Gshare), 2K BTAC
Instruction Fetch queue size 32
ROB size 128
LSQ size 80 (LQ: 48, SQ: 32)
LSAP size 16
Physical Registers 256
Fuctional Units (INT) 8: 4 ALU (2 INT, 2 FP), 2 Load, 2 Store
Fetch/Decode/Issue/Commit width 4/4/4/4
L1 Instruction Cache
L1 Data Cache

32KB (4 way, 64B line)
16KB (4 way, 64B line, 2 cycles latency)

L2 Data Cache
L3 Data Cache

256KB (16 way, 64B line, 6 cycles latency)
4MB (32 way, 64B line, 16 cycles latency)

Main memory latency 140 cycles

Table 1. Simulation parameters for default PTLSim configuration

The evaluation of our proposal has been performed using 23 benchmarks
from the SPEC CPU2006 suite, compiled for the x86 instruction set. We
simulate regions of 100M instructions after reaching a triggering point [14] ,
that marks the beginning of code area in which the application behavior is
representative of the overall execution. To evaluate the impact of our designs
over the power consumption of the LSQ or the DL1, we use a power model
developed in [14] and CACTI 5.3 [15].

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 238

6. Evaluation

6.1 LSQ Power Savings

In this section we report results for the power savings obtained in the LSQ,
according with the Power Model explained in [14]. We show 3 different
schemes: our proposed scheme (that includes a Multi-YLA for LQ filtering
and our Hybrid scheme for SQ and LSAP filtering), the proposal from [3]
(that includes two Bloom Filters, one for LQ filtering and the other for SQ
filtering), and the proposal from [5] (that includes a Multi-YLA for LQ
filtering and a Multi-OFS for SQ filtering). Note that none of these schemes
affects performance, since they just care about filtering unnecessary accesses.
Figure 1 compares the three approaches for a similar extra HW amount. It
shows the average over the studied 23 SPEC-06 applications. Clearly, our
scheme reports the highest dynamic power savings. For example, with 1024
bits, the 2 Bloom filters save around 25%, the Multi-YLA + Multi-OFS,
22%, and our design, 38% of the dynamic power consumption of a
conventional LSQ. Note that we are including in the LSQ power
consumption the LSAP power cost -of course, apart from LQ/SQ power
waste-.

Fig. 1. Average dynamic power saved over the conventional LSQ

6.2 DL1 Power Savings

In this section we show the data cache power reduction and the whole system
performance using either the baseline or our alternative. Figure 2(a) shows
the power savings achieved in the data cache in our technique with respect to
the original architecture. Figure 2(b) illustrates the performance impact of our
proposal with respect to the original architecture. In these experiments we
always employ the combined predictor, since it reports the highest accuracy

COMPUTER SCIENCE & TECHNOLOGY SERIES 239

values (in [16] we show a comparison of the different forwarding predictors).
We can extract the following conclusions.
First, by including our proposed scheme, a significant fraction of loads are
correctly predicted-dependent, and therefore the corresponding data cache
accesses avoided. This leads to a significant fraction of the DL1 dynamic
power consumption eliminated, as Figure 2(a) shows. On average, for a
Bloom Filter with 64 entries and a Bimodal Predictor of 256, the DL1 power
savings of our approach are around 36%.
Second, and more important, in our architecture average performance
remains almost untouched (around 0.1% of slowdown), something that would
not happen with Nicolaescu's Proposal. The reason is that in his case, when a
load finds no previous dependent stores in the LSQ (i.e. experiments no
forwarding) incurs a delay of 1 cycle accessing the DL1, while in our case the
forwarding predictor avoids this to happen by predicting most of these loads
as independent.

Fig. 2. (a) DL1 Power Savings. (b) Performance Impact

7. Conclusions

The main contributions of this paper are:

─ We implement a hybrid design, based on two previous proposals [5]
and [3], that filters most of the irrelevant searches to the LSQ. The extra

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 240

HW involved is almost negligible and the technique carries no
performance degradation at all. On average, our technique saves up to
39% of the LSQ dynamic power consumption.

─ We implement a mechanism that filters many accesses to the first level
data cache based on a forwarding predictor and Nicolaescu's CLSQ [6].
Both the extra HW and the performance degradation are negligible. On
average, our mechanism saves up to 36% of the DL1 dynamic power,
with a HW cost less than 100B and a slowdown less than 0.1%.

─ All these schemes were tested in a different and more common
microarchitectural model -the widespread x86-64- than the one used in
previous works.

References

1. Bower, F., Sorin, D., Cox, L. (2008). The impact of dynamically
heterogeneous multicore processors on thread scheduling. Micro, IEEE 28(3),
May-June, 17-25.

2. Hill, M.D., Marty, M.R. (2008). Amdahl’s law in the multicore era. IEEE
Computer 41(7), 33-38.

3. Sethumadhavan, S., Desikan, R., Burger, D., Moore, C., Keckler, S. Scalable
Hardware Memory Disambiguation for High ILP Procs. In: MICRO ’03, 399-
410.

4. Bloom, B. (1979). Space/Time Trade-offs in Hash Coding with Allowable
Errors. Communic. of the ACM 13(7), 422-426.

5. Castro, F., Chaver, D., Pinuel, L., Prieto, M., Tirado, F. (2009). Using Age
Registers for a simple Load Store Queue Filtering. Journal of Systems
Architecture 55(2), February, 79-89.

6. Nicolaescu, D., Veidenbaum, A., Nicolau, A. Reducing Data Cache Energy
Consumption via Cached Load/Store Queue. In: ISLPED ’03, 252-257.

7. Yourst, M. (2007). PTLsim Users Guide and Reference: The Anatomy of an
x86-64 Out of Order Superscalar Microprocessor, http://www.ptlsim.org
/documentation.php.

8. Castro, F., Chaver, D., Pinuel, L., Prieto, M., Huang, M., Tirado, F. (2006). A
Load-Store Queue Design based on Predictive State Filtering. Journal of Low
Power Electronics 2(1), April, 27-36.

9. Sha, T., Martin, M., Roth, A. Scalable Store-Load Forwarding via Store Queue
Index Prediction. In: MICRO ’05, 159-170.

10. McFarling, S. (1993). Combining Branch Predictors. Technical report tn-36,
Western Research Laboratory, Digital Equipment Corporation, June.

11. Yourst, M.T. PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. In: ISPASS ’07, 23-34.

12. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel,
P. (2001). The Microarchitecture of the Pentium 4 Proc. Intel Technology
Journal (Q1 2001).

COMPUTER SCIENCE & TECHNOLOGY SERIES 241

13. Copenhagen Univ. College of Eng. (2009). The Microarch. of Intel and AMD
CPU’s: an Optimization Guide for Assembly Programmers and Compiler
Makers.

14. Apolloni, R., Chaver, D., Castro, F., Pinuel, L., Prieto, M., Tirado, F. (2010). A
hybrid timing-address oriented LSQ filtering for an x86 architecture. Accepted
for publication on journal IET-Computers and Digital Techniques.

15. http://www.hpl.hp.com/research/cacti/
16. Carazo, P., Apolloni, R., Castro, F., Chaver, D., Pinuel, L., Tirado, F.

(2010). L1 Data Cache Power Reduction using a Forwarding Predictor.
Accepted for publication on international conference PATMOS-2010.

II
Innovation in Software Systems Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 245

JAUS Interface for Tools Development
in the robotics field

FEDERICO BAZÁN1, MAURICIO JOST1, ORLANDO MICOLINI1
AND LADISLAO MATHE2

1 Computer Architecture Laboratory, Faculty of Exact, Physical and Natural Sciences,
Universidad Nacional de Córdoba, Argentina.

{bazanfedericoa, mauriciojost}@gmail.com, omicolini@compuar.com.
2 Group of Robotics and Integrated Systems, Faculty of Exact, Physical and Natural Sciences,

Universidad Nacional de Córdoba, Argentina.
mathe@ieee.org.

Abstract. Software modularization presents important advantages
when it comes to robotic development because of definition of well-
known limits for each module that make parallel development easier
and reutilization of modules in more systems.
Components Based Software paradigm follows the mentioned idea
and needs definitions that include interfaces, responsibilities and
communication rules between components. JAUS standard makes
those definitions in the specific context of robotics. There are several
SDKs, but they either lack a multi-platform support, or work with
platforms whose features do not satisfy the needs of the developers
(agile development of proof of concepts, existent projects, community
support, among others).
This work extends the possibilities of component implementation, and
allows the developer to take advantage of the benefits of the chosen
platform. As a result, projects based on widely used tools used in
robotics (such as MATLAB, Simulink and LabVIEW) can be easily
integrated in a short period of time.

Keywords. JAUS, OpenJAUS, I-JAUS, MATLAB, Simulink, LabVIEW,
manipulator, robotic arm software, SDK, toolbox, component.

1. Objective

This paper aims to: extend the set of RDTs (Robotics Development Tools)
supported for the implementation of JAUS components and facilitate their
integration.

2. Theoretical Framework

JAUS (Joint Architecture for Unmanned Systems [1]) is a standard promoted
by the United States Department of Defense (OUSD) earmarked to
software for unmanned vehicles. JAUS defines component architecture. This

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 246

means that establishes rules and restrictions for communication between
components, features of each, their interfaces, and the group they belong to.

3. Problem statement

In the field of robotic manipulators, software development has a high
degree of reusability: recurrent blocks exist such as interface to sensors,
closed-loop control blocks, and servos handling blocks, among others. For
this reason, component-based software is a convenient alternative.

JAUS materializes the benefits of the components in the field of robotics.
There are different JAUS SDK (Software Development Kit) that facilitate the
implementation of a component. They are mainly:
OpenJAUS1, Jaus ++2, RESquared3, RI-JAUS4.

To develop a component using these tools is necessary to program in C / C +
+. However, there are higher level languages that provide benefits to the
development of robots such as: facilities for the development of
GUIs, support for a variety of peripherals such as data acquisition
devices and cameras, modeling and simulation toolboxes, etc. These
environments are usually the best choice for concept testing, and even final
versions of the software of a robot. MATLAB, Simulink, and LabVIEW are
the main RDT providing these benefits. In particular there is an alternative
designed by Ruel R. Faruque [4], it is limited only to the implementation of
JAUS components under LabVIEW.

In this context, the user can choose which platform to develop their
components, and then make them interact. However he will only have on his
disposal languages like C / C + + and LabVIEW. This represents a serious
limitation since there are a large number of developments for MATLAB that
could be reused in this area. It is then important the possibility to be able to
include MATLAB between the alternatives of JAUS components
implementation.

On the other hand, the same working group could develop two
different components in different environments using different JAUS SDK,
which cannot even rely on the same paradigm. This multiplicity of environments
and SDK would represent an extra difficulty for programmers. So it is clear that
there is an advantage if all environments use the same SDK as the developer
would have to familiarize only with one.
This work is based on those ideas to offer a solution.

1 http://www.openjaus.com/
2 http://sourceforge.net/projects/active-ist/
3 http://www.resquared.com/JAUS-SDK.html
4 http://www.repinvariant.com/dist/ri-jaus/0.9.0beta/ri-jaus.html

COMPUTER SCIENCE & TECHNOLOGY SERIES 247

4. Raising Solution

This propounds the implementation of an cross-platform interface that allows
the development of JAUS components from any of the above RDT. This
scenario allows to continue to develop common solutions in the RDT, and
integrate them through the standard without much effort.

The solution has a dynamic link library (DLL) developed in C
language, which has been called JAUS Interface (I-JAUS5). This interface makes
use of a SDK called OpenJAUS. Its justification can be seen in [6].

I-JAUS offers the developer a set of calls, as they are the main OpenJAUS
defined which can be called from MATLAB or LabVIEW. They are:
 Initialize an OpenJAUS component.
 Add services to the component.
 Start the component.
 Update its outgoing messages.
 Send these outgoing messages.
 Get incoming messages.
 Finish the OpenJAUS component.

Fig. 1 shows a component developed with I-JAUS as part of aJAUS system.

Fig. 1. JAUS Component implemented in RDT

5 http://www.code.google.com/p/i-jaus/

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 248

Fig. 2. I-JAUS architecture

Fig. 2. Shows the layered architecture of a component developed through
IJAUS. This interface acts as mediator between the demands of the RDT and
the OpenJAUS component.

4.1. Concurrency problema

OpenJAUS allows to define an user structure for each component. It is used
for messages storage and all the information deemed necessary. In addition, a
component features states and functions associated with each. When
implementing an OpenJAUS component, one thread is started in charge of
the processing associated with each state and the message processing.
Running a component from the thread of the RDT a new OpenJAUS thread is
started. This new thread aims to deal with the asynchronous arrival of
messages. This is done to:
 Decoupling the processing of incoming messages made by OpenJAUS

(asynchronous reception) and the user code processing on the RDT.
This allows lower latency when generating calls from the RDT itself.

 The library handles internally the blocking calls, and with this new
thread it avoids blocking the RDT. Reciprocally, the RDT could be
blocked without blocking the OpenJAUS thread (and do not receive
messages for it).

With the execution of two threads it is possible to simultaneously read and
modify any data or message in the user structure of a component. This creates
situations prone to loss of integrity. This problem is solved by a mutual
exclusion mechanism, which is applied to each of the calls involved in
message processing.

COMPUTER SCIENCE & TECHNOLOGY SERIES 249

4.2 Treatment of incoming messages

The threads of RDT and OpenJAUS have a data stream associated with the
messages you want to send or receive. This flow of data implies a link
between two asynchronous entities, which is resolved through a message
queue.
In cases in which the processing capacity of incoming messages is not
enough, there would be an overload in the queue (potential loss). Since JAUS
mostly defines components to conform a control system, discard policy must
ensure the preservation of updated data. However, it is important to note that
JAUS defines a Sequence Number field and an ACK field in the header of
each message. Both can be used if a traffic control is necessary.
Figure 2 shows the Message Management Module, which implements the
mentioned policy. This module was designed so that a component keeps the
last copy of each type6 of incoming message. It also supports a dynamic
priority mechanism based on the order of arrival of message types. This
prevents the occurrence of starvation.

5. Testing

As part of the I-JAUS proyect, a set of experiments have been developed that
exemplify the use of the interface. These show that it is possible to adapt to
the standard projects implemented in multiple languages.
To control the manipulators through JAUS commands, Subsystem
Component Commander (SSC) were created that uses projects that can
interact with the user through: mouse, keyboard, GUI, joystick, voice or eye
tracking. These SSC assume the role of Operator Control Unit (OCU) and
give commands to the component that envelops the manipulator.

5.1 Example of integration of components based on multiple RDT

The PUMA3D Project (MATLAB) has been involved in an End Effector
Pose Driver component (EEPD). Because of this it can be controlled by an
OCU implemented in LabVIEW. This is shown in Fig. 3.

6 The message type is determined by ID. For example, two instances of the message
Set Joint Positions correspond to the same type.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 250

Fig. 3. Components of LabVIEW (SSC Panel) and MATLAB (PUMA3D in EEPD)
interacting

The complete set of demonstrations can be seen on the I-JAUS page (http://i-
jaus.googlecode.com).

6. Conclusions

Development Environments

Tests have shown that the integration of components implemented in
different environments, allows greater flexibility in deployment times. The
developer can select the tool according to their features, support, and existing
projects that it offers and according to his own skills as well.
In particular, the incorporation of MATLAB provides an user-friendly
environment and a variety of mathematical functions associated with the
control. However, it is important to emphasize your command interpreter,
which has allowed to reduce the time to implement each test performed
during IJAUS testing, compared to those made in C. Such interpreter allows
to write code in a more dynamic, and then reuse the commands executed
through scripts with minimal effort. We can say then that, besides being the
most common environment in the studied environment, it provides facilities
to further justify its choice.

Proof of concept

Thanks to I-JAUS you can take benefit of a lot of work done in MATLAB
and LabVIEW, and integrate them to the JAUS standard in a very simple way
and in a short time. For example, all the demonstrations developed for this

COMPUTER SCIENCE & TECHNOLOGY SERIES 251

study were performed in less than two weeks. This agility is the result of two
points:
 The easiness of I-JAUS to be integrated into an existing project of an

operating RDT.
 The means provided by I-JAUS, the JAUS standard, for projects to

communicate with each other.

Impact

I-JAUS has immediate benefits for users. Of those observed, the most
important are:
 Dividing a project into blocks. This mobilizes the group to end

rigorously tested components. So it is possible to abstract from the
implementation of parts that are considered reliable, to continue
experimenting on others.

 JAUS learning facilitation. This occur thanks that MATLAB allows
interactive use of a JAUS component (developed in I-JAUS) with its
command interpreter.

 Increase in considered projects. LabVIEW and MATLAB are cradles
of innovative developments now integrated through a component-
based standard.

Contributions

This paper provides the user with a dynamic link library (DLL) with the
documentation necessary to use it from both MATLAB and LabVIEW. All
material is freely distributed under BSD7 license.

Future

Although I-JAUS is currently based on version 3.3 of the Reference
Architecture documents, its update is possible in order to link to the standard
improvements.
Since the project has met the stated objective, the fact of extending the
functionalities of I-JAUS takes value, and so supports the other component
groups of the standard.
In addition of the interface, this work leaves a set of implemented
components. This opens the door to each user to improve the collection,
create new components and share them with the community.

7 I-JAUS: http://code.google.com/p/i-jaus.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 252

References

1 Rowe, S. Wagner, C. (n.d.) (2010). An Introduction to the Joint
Architecture for Unmanned Systems. USA: Cybernet Systems
Corporation. Feb., 1. http://www.openskies.net/papers/07F-SIW-089
IntroductiontoJAUS.pdf.

2. The Joint Architecture for Unmanned Systems. Reference Architecture
Specification. Volume II, Parts 1, 2 and 3. Version 3.3. (2007). USA: Jaus
Working Group.

3. OpenJAUS. May, 30, 2009. http://openjaus.com/trac/openjaus.
4. Faruque, R. (2010). A JAUS Toolkit for LabVIEW, and a Series of

Implementation Case Studies with Recommendations to the SAE AS-4
Standards Committee. EEUU: Virginia Polytechnic Institute and State
University. Feb., 1. http://scholar.lib.vt.edu/theses/available/etd-01142007
- 212355/unrestricted/jaus.pdf.

5. Sosa, O. (2004). Design and Implementation of a Modular Manipulator
Architecture. USA: University of Florida.

6. Bazán, F. Jost, M. (2010). Interfaz JAUS para Herramientas de Desarrollo
de Software de Robots. Argentina: Universidad Nacional de Córdoba.
March, 6. http://i-jaus.googlecode.com/files/ijaus_report.pdf.

II
Signal Processing and

Real-Time System Workshop

COMPUTER SCIENCE & TECHNOLOGY SERIES 255

Diffuse Outlier Time Series Detection Technique for
Functional Magnetic Resonance Imaging

JAVIER GIACOMANTONE1 AND TATIANA TARUTINA2,3

1
 Instituto de Investigación en Informática (III-LIDI),

Facultad de Informática, Universidad Nacional de La Plata.
jog@lidi.info.unlp.edu.ar.

2 Instituto de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata.

tarutina@fisica.unlp.edu.ar.
3 Consejo Nacional de Investigaciones Científicas y Tecnológicas.

Abstract. We propose a new support vector machine (SVM) based
method that improves the time series classification in magnetic
resonance imaging (fMRI). We exploit the robust anisotropic diffusion
(RAD) technique to increase the classification performance of the one
class support vector machine by taking into account the hypothesis of
spatial relationship between active voxels. The proposed method was
called Diffuse One Class Support Vector Machine (DOCSVM).
DOCSVM method treats activated voxels as outliers and applies one
class support vector machine to generate an activation map and RAD
to include the neighborhood hypothesis, improving the classification
and reducing the iteration steps with respect to RADSPM. We give a
brief review of the main methods, present receiver operating
characteristic (ROC) results and conclude suggesting further research
alternatives.

Keywords. Time Series, Functional Magnetic Resonance Imaging,
classification, Support Vector Machines, Robust Anisotropic
Diffusion.

1. Introduction

The purpose of fMRI is to map areas of increased neuronal activity of the
human brain associated with cognitive or motor tasks. The hemoglobin in the
blood is a natural contrast agent, because it has different magnetic properties
depending of its state of oxygenation. These differences affect the voxel
intensity in the magnetic resonance images [1]. Baseline images are scanned
periodically while the subject is at rest (or in other baseline condition) and
activation images are acquired when the subject is performing a specific task
or receiving a stimulus. A fMRI image can be seen as a set of time series
where each time series corresponds to one voxel in the structural image.
Classification of time series is the main subject of brain fMRI data analysis.
A number of different techniques have been developed for fMRI data
analysis, and can be classified in two main categories, model driven [2][3][4]
and data driven methods [5][6]. Data driven methods use a method in

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 256

machine learning or statistics to analyze fMRI time series while model driven
methods assume a model related to the structure and function of the brain.
Support vector machine (SVM) being a data driven method has been applied
to the supervised classification of cognitive states [7] by optimizing a margin
and using the kernel trick [8]. One class SVM (OCSVM) [9][10] has been
applied to fMRI unsupervised classification [11][12]. Brain fMRI time series
on most voxels are independent of the experimental stimulus and time series
on only few voxels are related to the experimental stimulus. Time series
related to the stimulus can be considered as outliers and time series not
related to the experimental stimulus as normal data points, satisfying the
hypothesis necessary to apply the OCSVM methods. In order to include the
spatial relationship between activated voxels, that assumes that time series on
close voxels have similar state activation correlative or irrelative to the
experimental stimulus, new alternatives have been proposed
[13][14][15][16]. In this work we present preliminary results of a new
technique, DOCSVM, that combines the one class support vector machine
and the RAD to improve the classification of fMRI time series by considering
the neighborhood spatial relationship.
The paper is organized as follows, section 2 to 4 cover the fundamental ideas
behind OCSVM, RAD and DOCSVM. Section 5 and 6 show experimental
results, conclusions and propose future research work.

2. One-class SVM

There are two main one class classification algorithms based on SVM,
support vector data description [9] and one-class SVM [10]. A typical
example of interest of one class classification is the outlier detection that
attempts to detect uncharacteristic objects from a data set. The one-class
SVM estimates a function f that is positive for a subset of the sample space

and negative for the complement. The algorithm maps the data into a feature
space corresponding to the kernel and separates them from the origin with
maximum margin. Different types of kernels can be used corresponding to
nonlinear estimators in the input space.
Consider a given data set

,,,1 lxx

where l is the number of observations and is a compact subset of
N� . Let : F be a feature map, that is, a map into an inner product

space F such that the inner product in the image of can be computed by
evaluating a simple kernel.

))()((=),(zxzxk

It can be formulated as an optimization problem.

COMPUTER SCIENCE & TECHNOLOGY SERIES 257

2

, ,

1 1
|| ||min

2

s. . (()) , 0,

i
lw i

i i i

w
l

t w x

� �F

 (1)

where (0,1] is a parameter controlling the penalized term and i are

slack variables. By solving the optimization problem (1) we obtain w and
 and the decision function is -1 for outliers in the data set and +1 for the

rest of the samples in the data set.

)))((sgn=)(xwxf (2)

Introducing Lagrangian multipliers 0, ii , we obtain

21 1
(, , , ,) = || ||

2

(())

i i i
i i

i i
i

L w w
l

w x

Setting the derivatives with respect to the primal variables ,,w equal to

zero yields

1.=

,
11

=

),(=

i
i

ii

ii
i

ll

xw

The decision function can be written as

)),((sgn=)(xxkxf ii
i

The multipliers i can be solved from the dual problem:

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 258

1
(,)min

2

1
s. . 0 , = 1

i j i j
ij

i i
i

k x x

t
l

The parameter can be recovered by exploiting that for any such i and

the corresponding pattern ix satisfies

).,(=))((= jii
j

i xxkxw (3)

3. Robust Anisotropic Diffusion

Perona and Malik [17] defined the anisotropic diffusion as

 ,),,(),,(d=
),,(

tyxItyxIgiv
t

tyxI

 (4)

using the original image 2(, ,0) :I x y � � as the initial condition,

where t is an artificial time parameter and g is an ``edge-stopping''

function. The right choice of g can greatly affect the extent to which

discontinuities are preserved. Perona and Malik suggested two possible edge-
stopping functions in their paper [17]. Black et al. [18] used the robust
estimation theory to choose a better edge-stopping function, called Tukey's
biweight:

therwise

xx
xg

o0,
5

,
5

1=)(
2

22

2

2

 (5)

The function g above is the dilated and scaled version of the original

Tukey's function, where 1=(0)g and the local maxima of its ``influence

function'')(=)(xxgx is situated at =x . The diffusion that uses the

Tukey's function is called robust anisotropic diffusion (RAD) and this is the
edge-stopping function adopted in this paper.
Perona and Malik [17] discretized spatio-temporally their anisotropic
diffusion equation (4) as:

COMPUTER SCIENCE & TECHNOLOGY SERIES 259

),(|))((|
||

),(=1),(,, tItIgtsItsI psps

sps

 (6)

where),(tsI is a discretely sampled image, s denotes the pixel position in

a discrete 2-D or 3-D grid, 0t now denotes discrete time steps, the

constant determines the rate of diffusion (usually, 1=), and s

represents the set of spatial neighbors of pixel s . For 2-D images, usually
four neighbors are considered: north, south, west and east, except at the
image boundaries. For 3-D images, six voxels are usually considered: the
above-mentioned four plus ``up'' and ``down'' voxels. The gradient magnitude
of a voxel in a particular direction at iteration t is approximated by:

.),,(),(=)(, sps ptsItpItI (7)

Black et al. [18] suggested to use the ``robust scale'' defined by:

 = 1.4826M () = 1.4826m m () , 8e I IAD I edian I I edian I

where MAD is the Median Absolute Deviation.

4. Diffuse One-class SVM

By combining OCSVM and RAD we proposed a new technique that
improves the classification of fMRI temporal series under the validity of the
spatial neighborhood hypothesis.

Let 'I be an fMRI data. First of all, the mean value is removed from 'I ,

yielding the mean-removed fMRI I :

 ' 'I I I

 (9)

This pre-processing is very important, because structural and functional
regions of the brain do not necessarily match. No structural information
should be diffused, but only the activation information. Note that the
activation information is not affected at all by the mean-correction.

Time series on each voxel is taken as a data point. The , ,i j kx is the data point

corresponding to the thi row, thj file and thk slice identifying one particular

time series or data point. The , ,i j kx are directly the input into the optimization

problem (1). The optimal solutions w and can be obtained by solving the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 260

dual problem and (3). Then for each , ,i j kx a primal decision value , ,i j ky is

obtained,

 , ,. , ,.i j k i j ky w x (10)

that represents the distance between a point , ,i j kx and a hyperplane in the

high-dimensional kernel space , ,. 0i j kw x .

Let us denote the fMRI data at iteration 0t of the diffusion process as

 , ,I s n t , where , ,0I s n is the initial mean-corrected fMRI at spatial

voxel position s and volume n , and ,T s t is the activation map form by

, , , ,i j ky i j k where s is a particular position , ,i j k .

 1. Let 0t .

 2. Calculate the activation map ,0T s by using OCSVM (10).

 3. Compute the diffusion coefficients. The diffusion coefficient between a
voxel s and its neighboring voxel p at instant t is:

 , ,() , () , ,s p s pg T t where T t T p t T s t

 (11)

 4. Use these coefficients to perform the diffusion in , ,I s n t , yielding

the diffused fMRI, , , 1I s n t , at iteration 1t :

 , ,, , 1 , , () ()
s

s p s p
ps

I s n t I s n t g T t I t

 (12)

where , (,) , , , ,s pI n t I p n t I s n t

.

 5. Let 1t t and repeat steps 2 to 5 some predefined number of times

or until the average of diffused values (second term of equation (12)) is
below some predefined threshold.

 6. Classify each voxel applying the decision function of equation (2).

The anisotropic diffusion is controlled by the number of iterations and the
scale parameter of the edge stopping function (5), .

COMPUTER SCIENCE & TECHNOLOGY SERIES 261

5. Experimental Results

In order to test and develop classification models in fMRI three main data
sets are commonly used. The first model is a completely synthetic one,
carefully designed to reproduce real fMRI conditions like signal to noise ratio
(SNR), type of noise and spatial distribution of activated voxels. The second
alternative is to generate artificial foci of activated voxels in real fMRI data.
The third possible data set involves working with real fMRI time series. We
present comparative results on synthetic data sets known also as synthetic
time series, artificial images or phantoms. These types of experiments
provide controlled conditions and knowledge of the exact activated region
location, namely a gold standard. In order to test and compare results of the
proposed method we generate two artificial images, based on the phantom
proposed in [19], with different activation levels. The 4D fMRI model is
formed by 31010 voxels per volume and 84 volumes. Voxels values
were 16000 corrupted by zero-mean Gaussian noise with standard deviation

4000= . Active voxels had their values increased by 1000 for phantom I
and 1500 for phantom II. The fMRI experiment had alternating blocks of 6
non-active and 6 active volumes, beginning with non-active volumes.
Activated volumes had a 366 activated region in the center of the

volume, with two non-activated regions of 322 voxels each. Fig. 1
depicts one activated slice of phantom II, the gold standard and the
DOCSVM activation map.

 In the experiments on the two synthetic datasets, the principal parameters of
the algorithms were set as follows. The radial basis function was chosen as
the kernel function for the OCSVM and 0.7= . RADSPM and DOCSVM
are sensible to the scale parameter selection [20], beginning with

s we

adjust using ROC curves as a gauging procedure as suggested in [21].
We have obtained comparative results of four different methods by using the
well-known Receiver Operating Characteristics (ROC) analysis [21][22][23].
Let TP, FN, FP and TN be respectively the number of true positives, false
negatives, false positives and true negatives obtained by comparing the ideal

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 262

classification (gold standard) and the results obtained by each of the
evaluated methods. Then, the True Positive Fraction (TPF) and the False
Positive Fraction (FPF) are defined as:

TNP

P
PF

FNP

P
PF

 F

F
=F,

T

T
=T

(13)

Figure 2 depicts correlation's SPM, OCSVM's, RADSPM's and DOCSVM's
ROC curves. Each point of a ROC curve is obtained by solving equation (13) for
a specific threshold value. Table 1 presents some performance metrics of the four
ROC curves, all of them demonstrating the improved performance of DOCSVM
and RADSPM compared to the non-spatial oriented methods considered in the
experiments. The area under the curve and the distance oopd from the principal

diagonal to the optimal operating point (OOP)(the point of the curve most distant
from the principal diagonal), are superior for DOCSVM with less diffusion
iteration steps with respect to the results of RADSPM.

COMPUTER SCIENCE & TECHNOLOGY SERIES 263

6. Conclusions and Future Work

In this paper we have presented a new SVM based technique named DOCSVM
taking into account the spatial relationship activation hypothesis. This technique
improves fMRI time series classification. We compared this method to OCSVM,
correlation analysis and RADSPM. Experimental results using ROC curves on
synthetic data sets have shown promising results for DOCSVM. The proposed
method treats activated voxels as outliers and applies OCSVM to generate an
activation map and RAD to include the neighborhood hypothesis, improving the
classification and reducing the iteration steps with respect to RADSPM. The
obtained results of DOCSVM are preliminary. Further research involves improving
the probabilistic model used to create the artificial images considering the noise
distribution and the signal to noise ratio in order to approximate the complex and
noisy fMRI signal structure. Extensive tests on real fMRI and artificial data must be
done in order to adjust parameters and extend our results to different real
experiment paradigms.

References

1. Ogawa, S. et. al. (1993). Functional brain mapping by blood oxygenation
level-dependent contrast magnetic resonance imaging. Biophysics
Journal, 14(3):803-812.

2. Friston, K. J., A. P. Holmes, K. J. Worsley, Poline J. P., C. D. Frith, R. S.
Frackowiak (1995). Statistical parametric maps in functional imaging: a
general linear approach. Human Brain Mapping, 2:189-210.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 264

3. Faisan, S., L. Throava, J. Armspach, M. Metz-Lutz, F. Heith (2005).
Unsupervised learning and mapping of active brain functional MRI
signals based on hidden semi-Markov event sequence models. IEEE.
Transactions on Medical Imaging, 24(2):263-276.

4. Tian, J., L. Yang, J. Hu. Recent advances in the data analysis method of
functional magnetic resonance imaging and its applications in
neuroimaging. Progress in Natural Science, 16(8):785-795.

5. Goutte, C., P. Toft, E. Rostrup, F. Nielsen, L. Hansen (1999). On
clustering fMRI time series. NeuroImage, 9:298-310.

6. Friman, O., J. Carlsson, P. Lundberg, M. Borga, H. Knutsson (2001).
Detection of neural activity in functional MRI using canonical correlation
analysis. Magnetic Resonance in Medicine, 45(2):323-330.

7. Cox, D., R. L. Savoy (2003). Functional magnetic resonance imaging
(fMRI) brain reading: detecting and classifying distributed patterns of
fMRI activity in human visual cortex. NeuroImage, 19:261-270.

8. Vapnik, V. (1999). An overview of statistical learning theory. IEEE
Transactions on Neural Networks, 10(5):988-999.

9. Tax, D. M. J., R. P. W. Duin (2004). Support vector data description.
Machine Learning, 54:45-66.

10. Schölkopf, B., J. C. Platt, J. Shawe-Taylor, A. J. Samola, R. C.
Williamson (2001). Estimating the support of a high dimensional
distribution. Neural Computation, 13(7):1443-1471.

11. Wang, D. F., D. S. Yeung, E. C. Tsang (2007). Ellipsoidal support vector
clustering for functional MRI analysis. Pattern Recognition, 40(10):2685-
2695.

12. Song, X., A. M. Wyrwicz (2009). Unsupervised spatiotemporal fMRI
data analysis using support vector machines. NeuroImage, 47:204-212.

13. Chen H. F., D. Z. Yao, S. Becker, Y. Zhou, M. Zeng, L. Chen (2002). A
new method for fMRI data processing: Neighborhood independent
component correlation algorithm and its preliminary application. Science
in China Series, 45(5):373-382.

14. Sole, A. F., S. C. Ngan, G. Shapiro, X. P. Hu, A. López (2001).
Anisotropic 2D and 3D averaging of fMRI signals. IEEE Transactions on
Medical Imaging, 20(2):86-93.

15. Kim, H. Y., J. Giacomantone, Z. H. Cho (2005). Robust Anisotropic
Diffusion to Produce Enhanced Statistical Parametric Map. Computer
Vision and Image Understanding, 99:435-452.

16. Yang, J., N. Zhong, P. Liang, J. Wang, Y. Yao, S. Lu (2010). Brain
activation detection by neighborhood one-class SVM. Cognitive Systems
Reasearch, 11:16-24.

17. Perona, P., J. Malik (1990). Scale space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(7):629-639.

18. Black, M. J., G. Shapiro, D. H. Marimont, D. Hegger (1998). Robust
anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421-
432.

COMPUTER SCIENCE & TECHNOLOGY SERIES 265

19. Kim, H. Y., J. Giacomantone (2005). A New Technique to Obtain Clear
Statistical Parametric Map By Applying Anisotropic Diffusion to fMRI.
IEEE International Conference on Image Processing, 724-727.

20. Voci, F., S. Eiho, N. Sugimoto, H. Sekiguchi (2004). Estimating the
gradient threshold in the perona-malik equation. IEEE Signal Processing
Magazine, 39-46.

21. Giacomantone, J., A. De Giusti (2008). ROC performance evaluation of
RADSPM technique. Argentinian Congress on Computer Science.

22. Sorenson, J. A., X. Wang (1996). ROC Method for Evaluation of fMRI
techniques. Magnetic Resonance in Medicine, 36:737-744.

23. Skudlarski, P., T. Constable, J. C. Gore (1999). ROC Analysis of
Statistical Methods Used in Functional MRI: Individual Subjects.
Neuroimage, 9:311-329.

COMPUTER SCIENCE & TECHNOLOGY SERIES 267

Processing Ambiguous Fault Signals with Three
Models of Feedforward Neural Networks

SERGIO L. MARTÍNEZ1, ENRIQUE E. TARIFA1,2
AND SAMUEL FRANCO DOMINGUEZ1

1 Facultad de Ingeniería, Universidad Nacional de Jujuy,
Gorriti 237, S. S. de Jujuy, Jujuy, Argentina

{smartinez, eetarifa, sfdominguez}@fi.unju.edu.ar
2 CONICET, Argentina.
eetarifa@arnet.com.ar

Abstract. In the industrial technological field, running equipment or
processes usually is monitored through automatic diagnosis systems.
Within several Technologies for implementing such systems, the
artificial neuronal networks are the most successful and widely spread.
The data signals coming from the equipments or processes under
supervision are interpreted by the neuronal networks so as to diagnose
the presence of any fault. In this work three models of artificial neural
networks and two methods of training are analyzed so as to establish,
based on real experiences, the best combination of the neuronal model
and the training method for recognizing in an efficient way the
ambiguous patterns of faults.

Keywords: Neural Networks. Diagnosis. Ambiguous Fault Signals.
Optimized training.

1. Introduction

In the automatic diagnosis of faults in equipments or processes, especially
industrial, several sensors associated to these, give data sequences which,
precisely interpreted, can reveal the working status, normal or abnormal, of such
equipments or processes. Such data are analyzed by a diagnosis system in order
to determine the cause (fault) o fan eventual abnormality, so as to establish the
necessary correcting actions.
Formally the mission of a diagnosis system is to analyze the status of the process
under supervision, so as to determine if any fault (detection stage) has appeared.
In such case, the diagnosis system must analyze how is the evolution of the
process status so as to identify the fault which originated the abnormal condition
(diagnosis stage). This task is complicated since generally there isn’t a simple
relation between the appearance of a fault and the evolution that it makes in the
supervised process. Different faults can cause similar evolutions; on the other
hand, the same fault can cause several types of evolutions. This situation is quite
a critical problem for the traditional methods of diagnosis.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 268

The diagnosis systems of faults based on artificial neuronal networks (ANN)
have achieved a wide level of development and spreading fundamentally because
these structures, with architectures of high parallelism, association and fast
answer times, make up a very efficient tool for developing in the field of
recognizing patterns [4] [9].
In the present work, a theoretical study is realized, based on practical experiences,
of the diagnosis process of faults based on neuronal networks. From this study a
model of neural network is obtained and a training method with an important
modification starting from standard configurations. The experimental results
obtained show the superiority of one of the neuronal models proposed and trained
with a variation of a classical backpropagation algorithm.

2. Fault Diagnosis

During the operation of a system under supervision (an equipment, a process,
a sector of a plant, a complete plant, etc.), the values assumed by the most
important variables of the process are captured by a set of sensors
strategically put. When the normal status of the process corresponds to a
static status, the variables adopt constant values; yet, due to the own noise of
the process, it is considered the status as normal while the value evolution of
each variable remains within a predefined interval of the original static value;
this interval is called band or stripe of normality.
When a fault occurs, the affected variables evolve following defined paths by
the fault. At the time when they abandon their respective normality bands, the
diagnosis system detects an abnormality and starts the analysis of the
observed paths so as to try to identify the problem that originated them.
So as to illustrate this situation, a study of the simplified process is proposed,
having one only variable to supervise (for example X temperature), where in
addition four potential faults are established identified as f1, f2, f3 and f4, such
as shown in Fig. 1.a.

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

t (s)

X
 (

°C
)

f1
f2
f3
f4

-40

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250

t (s)

X

Fig. 1. (a-left) Absolute position regarding path time of X (temperature) for four
potential faults. (b-right) Typified deviation paths X transformed by the detector
module.

The process operated in a static status, that is to say, while operating
normally X adopts a constant predefined value, for example 80ªC. Each time

COMPUTER SCIENCE & TECHNOLOGY SERIES 269

that one of the faults is seen in the process, the X temperature will stop being
constant and will evolve with some of the characteristics paths, where the
paths have been generated with a simple interval t=8 s.
The proposed diagnosis system of faults and associated to the previous
process, uses a set of artificial neural networks (ANNs) specialized in the
individual recognizing of each potential fault of the supervised process (Fig.
2). The ANNs, operating in real time and monitoring the evolution of the
paths of all and each one of the measured variables, analyze the data coming
from the process looking for symptoms or tests for their respective faults.

Supervised System

tk , Xjk
tk Xjk

Xnjk Xnjk

D

Detector

N
o
rm

a
l

e
v
o
lu

ti
o
n

N
o
rm

a
li
ty

b
a
n
d
s

tk Xjk

Xnjk Xnjk

D

Detector

N
o
rm

a
l

e
v
o
lu

ti
o
n

N
o
rm

a
li
ty

b
a
n
d
s

tk Xjk

Xnjk Xnjk

D

Detector

N
o
rm

a
l

e
v
o
lu

ti
o
n

N
o
rm

a
li
ty

b
a
n
d
s

Diagnostician

ANN 1 Fail 1

F1

ANN 1ANN 1 Fail 1

F1

ANN 2 Fail 2

F2

ANN 2ANN 2ANN 2 Fail 2

F2

ANN 3 Fail 3

F3

ANN 3ANN 3ANN 3 Fail 3

F3

ANN 4 Fail 4

F4

ANN 4ANN 4ANN 4 Fail 4

F4

Fig. 2. Diagram of a general system of process-detection-diagnosis

The result of this analysis is the certainty degree F [0 , 1] that each fault
supports. When one of the ANNs produces a null value (F=0) it means that all
the tests are against the fault that corresponds to it. On the contrary, an equal
value to the unit (F=1) implies that there are no proofs against the own fault of
the network. Intermediate values represent intermediate supports for the own
fault. As can be seen in Fig. 1.a, the variable –temperature X–, remains in its
normal value until one of the faults occurs in the activation time ta=48 s.
Taking as reference fault f1, at the beginning the f2 is undistinguishable, but from
the t=88s it starts to differentiate. On the other hand, the f3 path is at the beginning
different from f1, but from t = 112 s it is mixed up with the reference fault.
Finally, the f4 path is in every moment different from the rest of the faults. The
two first cases raise a great difficulty to the diagnosis system because different
faults originate paths which at some time they are identical. To overcome this
problem an optimized method for training the ANNs was developed.

2.1 The Detector Module

For the example under study, a detector module has been used [7] as it is
shown in Fig. 2, which converts the absolute paths of X (Fig. 1.a) in the
typified deviation paths X (Fig. 1.b).
In order to comply with its function, the detector gets a data acquisition
system –in each sample interval t–, the value of X; being the sample k taken
in time tk=kt. On the other hand, the detector also knows the normal value
Xn and uses it to calculate the quantitative deviation X=X-Xn. Alter the

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 270

quantitative deviation is calculated, the detector uses the normal band Xn,
which is also known, to calculate the typified deviation X, as follows:

k
k

ΔX
δX

ΔXn
= (1)

Fig. 1.b shows the transformation of absolute paths of X in the typified
deviation paths X, where the regions that present data ambiguity are
observed and which must be solved by the diagnosis system.

2.2 The Diagnosis Module

In the example analyzed, the diagnosis system estimates the degree of certainty
F
fμ (k) which supports fault f in time tk with the following recursive formulae:

F F X
f f f

F
f

μ (k) = μ (k -1) μ (k) .

μ (-1) =1 .
 (2)

where X
fμ where x represents the certainty which supports variable X

supposing that fault f occurs, as is calculated as:

 X 0
f l fμ fd δX δX= , . (3)

being fd(X, X0) the evaluation function which is used to evaluate the
difference between the observed value X, originated by an unknown fault,
and the expected value X0 [7] [8].
Considering that ANN1 (Fig. 2) has been specialized in recognizing fault f1
and observing the exit of this network, Fig. 3 represents the paths of the F
that would generate the first neuronal network, –already trained–, of the
diagnosis system, while comparing the paths X of Fig. 1.b, originated by
each potential fault of the process, with which it would originate if f1 were
the fault that is really happening. The rest of the networks would produce
similar answers when getting data of their respective faults of specialization.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120

t (s)

F

f1
f2
f3
f4

Fig. 3. Paths of F of the ANN1 that supports f1 facing each potential fault

COMPUTER SCIENCE & TECHNOLOGY SERIES 271

As can be seen in Fig. 3, when to the first neuronal network (ANN1) enters
the path originated by f1, F it is kept in 1 backing up at every moment to
such fault. On the other hand, when the path originated by f2 is entered, the
system does not rule out that it be f1 since the paths of both faults are similar
up to t=32 s. From t=40 s, the system rules out that fault f1 is decreasing F.
When all the paths of f3 or f4 are presented, the ANN1 immediately
recognizes that they do not correspond to its specialization fault, and fault f1
is left aside very early.

3. Neural Networks

The artificial neural networks (ANN) can be considered as mathematical models
representatives of the brain activity, with the capacity of learning, memorizing
and generalizing the learnt information under a diagram of high tolerance to
noise, which makes them powerful and versatile tools for the processing of
basically numeric information [1] [2].
In this work, three different architectures of neural networks are analyzed: the
classical feedforward architecture (Fig. 4) [2] [5], a feedforward architecture with
delay windows (Fig. 6) [2] [5] and a feedback or recurrent architecture (Fig. 8)
[2] [6], based on equation (2). In addition, two supervised training/learning
methods are applied, the traditional method and an optimized method –both
based on the backpropagation algorithm–, with the aim of determining the
configuration and learning method which are more efficient to solve the raised
problem: to recognize the patterns that allow the identification of the fault that
gave them rise.
The difference between the two training methods is deep and determining. In the
traditional method the output value F for training is set up according to the fault
that generated the X path which is fed as an input to each ANN; that is, F must
assume 1 when it enters the X path of the fault that was assigned to ANN which
is being trained, and must assume 0 when it enters the X path of a different fault,
without considering the shape of this path with the rest of them. The latter
constitutes the main weakness of the method, originated in the ambiguity of the
information that the coinciding segments of the paths X give caused by different
faults (Fig. 1.b), as is the case of the example under analysis. This situation
causes the network to try to adjust to contradictory orders.
For the example, in the training of ANN1, specialized in fault f1, when the X
path is fed generated by f1, it is taught to make an output F=1; on the contrary
when the path X generated by f2, ANN is taught to produce an output F=0; yet,
since the first 32 s of both paths are indistinguishable, the network will not be
able to decide if F must be 0 or 1 during the time when both paths coincide.
Such said problem is solved applying an optimization variant to the training
algorithm, when the F value is set according to the coincidence between the
observed X path and the expected path for the network fault and not in the label
of the path that corresponds to each fault, such as is done by the traditional
method. For the example which is being studied, when the X path is fed made

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 272

by f1, ANN1 is taught to have an output F=1 because the observed path is the
same to the expected one; when the X path is fed made by f2, ANN1 is taught to
have an output F=1 during the first 32 s since during that time the observed path
is equal to the expected; but from that moment, the observed path starts to be
different to the expected, and the F value shows this fact decreasing
proportionally its value, as shown in Fig. 3. In this way, the ANN1 has no
conflict during the learning since for similar inputs X they must have similar
outputs.
Three ANNs models are presented configured with similar architectures and
equivalent training conditions so as to be able to compare the results. In relation
to practical experiences, only the results of the specialized ANN1 network in
recognizing fault f1 are presented, since it is the one that supports the most
unfavorable conditions because of the special configuration of the fault paths.
In relation to the specific training data, each fault path has 13 samples, generated
by simulation at intervals of t=8 s (Fig. 1.b). Then, the sequences were
concatenated of the four faults, configuring a general sequence of 52 samples.
So as to make the experimental check up the software MatLab® R.9 was used,
executed on PC Core 2 Duo equipment with 2 GB of RAM memory. All the
ANNs models described in this work have been configured with the neural
networks toolbox assistance, available in the software.

3.1 Classical feedforward ANN

It is the typical model of neuronal network used widely for general processes of
pattern association. The architecture of each ANN is defined based on the data to
be processed and considering the criterion of using an acceptable minimum
structure (Fig. 4). According to the Universal Theorem of Function
Approximation [2], just one hidden layer is enough for a uniform approximation
given a set of training. Due to the dimension of the input and output data, one
neuron (fictitious) is used in the input and one in the output. The definition of
amount of hidden neurons was experimentally established in four units.

f g

f g

f g

f g

f g1
X(k) F(k)

bj
bk

wji wkj

Fig. 4. Classical feedforward ANN architecture

The exciting or net signal fj of each neuron is defined –according to a
classical sketch–, by the pondered composition of the input signals to each
processing unit, i.e.:

COMPUTER SCIENCE & TECHNOLOGY SERIES 273

N

j ji i j
i=1

= w x - b .f (4)

where xi is the output of neuron i of the previous layer made up by N
neurons, wji is the weight of the connection between the present neuron j and
the one given by signal i, and bj is the adjustment weight (bias) of neuron j.
For the output signal xj of each hidden neuron the bivalued sigmoid function
was adopted, and the positive sigmoid function for the neuron of the output
layer.

3.1.1 Experimental data

The behavior of the ANN1 for identifying the paths of Fig. 1.b was quite
unfavorable, both when trained with the traditional method and when they
were trained with the optimized method (Fig. 5.a and 5.b).

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. (a-left) Required/generated output of the classical feedforward model of ANN1.
Training: backpropagation standard. (b-right) Required/generated output of the classical
feedforward model of ANN1. Training: optimized backpropagation.

The training result analysis of the ANN1 network of the diagnosis system –
which was trained for recognizing f1–, reported an F near to 0,5 for the first
three faults with both training methods, and a F=0 for the fault f4. This
behavior is incorrect but coherent, since the first three faults present
ambiguities which the neuronal network cannot solve, while the fault f4, since
it presents a totally different path than the previous, has been well solved.
The inability of learning of this network is founded in its own structure. In
effect, when having to decide the F value (output) according to a unique X
value (input), the ANN1 does not have the necessary information for
discriminating among the several paths in which the coinciding segments
commit. For example, the input value X=10 is achieved at some moment by
the f1, f2 and f3 paths; and both training methods demand at some moment

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 274

output values F different for such input, which confuses the network. One
way of solving this problem is to increase the amount of available
information for the ANN; two alternatives are explored in this way below.

3.2 ANN with delay windows

For certain dynamic processes, having the information of the late past can
improve the behavior of the system [3]. In our case, to increase the
information sent to the ANN1, the architecture presented in the previous
section was widened through the adding of two additional inputs. These new
inputs are obtained by keeping, through delays, the last two observed values
of X, adding two temporal windows (Fig. 6).

3.2.1 Experimental data

At first, this differed time architecture is more appropriate than the direct
feedforward; however, its performance –although a little better than the
previous model–, has not been satisfactory.
Considering once again the first network of the diagnostician (ANN1) –which
was trained for recognizing f1–, generated some incorrect samples in
recognizing its specialization fault with both training methods, but we can see,
from Fig. 7.a and 7.b, a better performance due to the delay windows which
give more information of the paths.

z-1

z-1

X(k)

f g

f g

f g

f g

f g

bj

bk

F(k)

wji

wkj

X(k-1)

X(k-2)

Fig. 6. Feedforward ANN architecture of differed time with two delay windows

The f2 fault was better solved with optimized training method and with a bad
result with the traditional method, because of contradictory data in the first
ambiguous area (Fig. 1.b). The f3 fault was also recognized with mistakes and
the f4 was well solved as in the previous case.

COMPUTER SCIENCE & TECHNOLOGY SERIES 275

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. (a-left) Required/generated output of the feedforward model with windows of
the ANN1. Training: backpropagation standard. (b-right) Required/generated output
of the feedforward model with windows of the ANN1. Training; backpropagation
optimized.

The poor behavior with the traditional method is due to its intrinsic weakness
because of the overlapping of some segments of the X paths, but the failure
with the optimized method shows a limitation of the proposed structure. This
limitation could be founded in the reduced amount of neurons of the inner
layer or for the limited width of the temporal window. Yet, here the analysis
of this type of network is halted in favor of keeping a similar structure for
comparing the networks and while considering the architecture which is
explained in the following section.

3.3 Recurrent ANN

The network shown in Fig. 8 corresponds with the Jordan recurrent model
which back feeds the output towards a contextual layer of the input [2]. This
structure is based in the equation (2), which gives the theoretical basis, and
which was deducted when modeling the desired behavior for the proposed
diagnosis system [7] [8].
When having a feedback of the output towards the input, the information
which the ANN gets, combines the present status and the total history of the
process through the successive product of the feedback outputs [6]. It may be
considered that the potentiality of the optimized training method is based on
this strategy; once the system has detected that the sequence does not
correspond to a fault in consideration, it begins to feedback values of F each
time minor until they are cancelled and kept in that status, even when the
sequence puts again ambiguous values (such as the case in the second
ambiguous area of Fig. 1.b).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 276

z-1

X(k)

f g

f g

f g

f g

f g

bj

bk

F(k)

wji

wkj

F(k-1)

Fig. 8. Recurrent ANN architecture with a delay

The feedback model of Jordan has a great advantage on the non recurrent
architectures that can only see a part of the history of the process; the
classical feedforward ANN only has the present simple and the differed time
ANN just takes two samples of the inputs backwards. The recurrent model
used keeps all the history of the process through a unique numerical
additional input: the feedback F. The latter is very important when working
with a big number of variables.

3.3.1 Experimental data

To the structural simplicity of the recurrent ANN it is added an excellent
behavior of the tests made with the optimized method of training. In effect, the
ANN1 -corresponding to fault f1–, trained with the optimized method, was able
to generate almost exactly the desired F outputs, truly reproducing the curves
of Fig. 3; yet, its behavior was not consistent when it was trained with the
traditional method due to the failures of the used method and not of the
proposed structure, as can be seen in Fig. 9.a and 9.b.

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

Generated f4Generated f3Generated f2Generated f1

Required f4Required f3Required f2Required f1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9. (a-left) Required/generated output of the recurrent model of the ANN1.
Training: backpropagation standard. (b-right) Required/generated output of the
recurrent model of the ANN1. Training: backpropagation optimized.

COMPUTER SCIENCE & TECHNOLOGY SERIES 277

The three models of artificial neural networks have experimentally shown
their abilities in the recognizing process of patterns. For a better comparison,
all the obtained results are briefly shown in the comparison chart of table 1.

Table 1. Comparison chart of the behavior of three neural models and two training
methods in the process of recognizing faults

Standard FF ANN Delayed FF ANN Recurrent ANN Models
Parameters direct μ optim. μ direct μ optim. μ direct μ optim. μ

MSE of training 1,5x10-1 1,8x10-1 4,8x10-2 3,6x10-2 9,6x10-3 2,4x10-14

Non recognized samples 39 37 14 10 27 2

% of recognizing error 75% 71% 27% 19% 52% 3%

Non recognized samples in fi 13 11 5 3 1 0

Percentage error in fault 1 100% 85% 38% 23% 8% 0%

4. Conclusions

In this development the efficiency for making identification of paths of faults of
three neuronal architectures and two training methods were evaluated. From the
study it is deduced that a classical feedforward neural network is not able to
assume ambiguous knowledge produced by contradictory information in its
training stage. On the other hand, feedforward architecture with delay windows,
of comparable complexity to the previous, is also inefficient to learn ambiguous
patterns in its training stage, under the two proposed training methods: the
Standard backpropagation and the optimized backpropagation.
On the other hand, the combination of a recurrent ANN structure, also of
comparable complexity to the previous, and an optimized training method has
given an excellent behavior in recognizing fault paths that present coinciding or
redundant segments. The feedback structure gave to the network enough
information for learning and recognizing complex fault patterns.
Starting from this work, two complementary studies can break down so as to
complete the activity of a diagnosis system with neural networks. On one hand,
the application of multidimensional fault sequence on models based on ARMA
architectures. On the other hand, to improve the training method so that the ANN
increases its tolerance related to noise, which could be achieved by adding paths
with noise in the training stage, or adding normality bands during the learning
stage.

References

1. Anderson, J. (2007). Redes Neurales. Alfaomega Grupo Editor, México.
2. Haykin, S. (1998). Neural Networks – A Comprehensive Foundation.

Prentice-Hall, Ontario.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 278

3. Jain, L.C., Martin, N.M. (1998). Fusion of Neural Networks, Fuzzy
Systems and Genetic Algorithms: Industrial Applications. CRC Press
LLC, Florida.

4. Jain, L., Rao Vemuri, V. (1999). Industrial Applications of Neural
Networks. CRC Press LLC, USA.

5. Looney, C. (1997). Pattern Recognition Using Neural Networks: Theory
and Algorithms for Engineers and Scientists. Oxford University Press,
New York.

6. Mandic, D., Chambers, J. (2001). Recurrent Neural Networks for
Prediction. John Wiley and Sons Ltd., New York.

7. Tarifa, E., Martínez, S. (2007). Diagnóstico de Fallas con Redes Neurona-
les. Parte 1: Reconocimiento de Trayectorias. In Ingeniería e Investiga-
ción, vol. 27/1, 68-76, Bogotá.

8. Tarifa, E., Martínez, S. (2007). Diagnóstico de fallas con redes neurona-
les. Parte I1: Reconocimiento de flujos. In Ingeniería e Investigación, vol.
27/2, pp. 65-71, Bogotá.

9. Zhang, J. (2006). Improved on-line Process Fault Diagnosis through
Information Fusion in Multiple Neural Networks. In Computers &
Chemical Engineering, vol. 30 – issue 13, 558-571, Elsevier Ltd.

ESTA PUBLICACIÓN SE TERMINÓ DE IMPRIMIR

EN EL MES DE OCTUBRE DE 2011,
EN LA CIUDAD DE LA PLATA,

BUENOS AIRES,
ARGENTINA.

